
Reference: Statements and Options

Sybase IQ 15.3

DOCUMENT ID: DC00801-01-1530-01
LAST REVISED: May 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Audience ...1
SQL Statements ...3

Common Elements in SQL Syntax3
Syntax Conventions ..4
Statement Applicability Indicators5
ALLOCATE DESCRIPTOR Statement [ESQL]5
ALTER DATABASE Statement ..7
ALTER DBSPACE Statement ...9
ALTER DOMAIN Statement ..13
ALTER EVENT Statement ..14
ALTER FUNCTION Statement15
ALTER INDEX Statement ...17
ALTER LOGICAL SERVER Statement19
ALTER LOGIN POLICY Statement19
ALTER LS POLICY Statement21
ALTER MULTIPLEX RENAME Statement21
ALTER MULTIPLEX SERVER Statement22
ALTER PROCEDURE Statement22
ALTER SERVER Statement ..23
ALTER SERVICE Statement ...25
ALTER TABLE Statement ...27
ALTER TEXT CONFIGURATION Statement35
ALTER TEXT INDEX Statement36
ALTER USER Statement ..36
ALTER VIEW Statement ...38

Identifying and Fixing Invalid Dependent Views . .40
BACKUP Statement ..41
BEGIN … END Statement ..47
BEGIN PARALLEL IQ … END PARALLEL IQ

Statement ...49
BEGIN TRANSACTION Statement [T-SQL]50

Reference: Statements and Options iii

CALL Statement ...53
CASE Statement ...54
CHECKPOINT Statement ...56
CLEAR Statement [Interactive SQL]56
CLOSE Statement [ESQL] [SP]57
COMMENT Statement ..58
COMMENT ON LOGICAL SERVER Statement60
COMMIT Statement ..60
CONFIGURE Statement [Interactive SQL]62
CONNECT Statement [ESQL] [Interactive SQL]63
CREATE DATABASE Statement66
CREATE DBSPACE Statement76
CREATE DOMAIN Statement79
CREATE EVENT Statement ...81
CREATE EXISTING TABLE Statement86
CREATE EXTERNLOGIN Statement89
CREATE FUNCTION Statement90
CREATE INDEX Statement ..97
CREATE JOIN INDEX Statement104
CREATE LOGICAL SERVER Statement107
CREATE LOGIN POLICY Statement107
CREATE MESSAGE Statement [T-SQL]109
CREATE MULTIPLEX SERVER Statement110
CREATE PROCEDURE Statement110
CREATE PROCEDURE Statement [T-SQL]116
CREATE PROCEDURE Statement (External

Procedures) ..118
CREATE SCHEMA Statement127
CREATE SERVER Statement129
CREATE SERVICE Statement130
CREATE TABLE Statement ..133
CREATE TEXT CONFIGURATION Statement146
CREATE TEXT INDEX Statement146
CREATE USER Statement ...146
CREATE VARIABLE Statement148

Contents

 iv Sybase IQ

CREATE VIEW Statement ..149
DEALLOCATE DESCRIPTOR Statement [ESQL]151
Declaration Section [ESQL] ..152
DECLARE Statement ...153
DECLARE CURSOR Statement [ESQL] [SP]154
DECLARE CURSOR Statement [T-SQL]159
DECLARE LOCAL TEMPORARY TABLE Statement .160
DELETE Statement ..162
DELETE (positioned) Statement [ESQL] [SP]164
DESCRIBE Statement [ESQL]166
DISCONNECT Statement [Interactive SQL]169
DROP Statement ..170
DROP CONNECTION Statement172
DROP DATABASE Statement173
DROP EXTERNLOGIN Statement174
DROP LOGIN POLICY Statement175
DROP LOGICAL SERVER Statement176
DROP MULTIPLEX SERVER Statement176
DROP SERVER Statement ..176
DROP SERVICE Statement177
DROP STATEMENT Statement [ESQL]178
DROP TEXT CONFIGURATION Statement179
DROP TEXT INDEX Statement179
DROP USER Statement ...179
DROP VARIABLE Statement180
EXECUTE Statement [ESQL]181
EXECUTE Statement [T-SQL]183
EXECUTE IMMEDIATE Statement [ESQL] [SP]184
EXIT Statement [Interactive SQL]186
FETCH Statement [ESQL] [SP]187
FOR Statement ...190
FORWARD TO Statement ..192
FROM Clause ...193
GET DESCRIPTOR Statement [ESQL]197
GOTO Statement [T-SQL] ...198

Contents

Reference: Statements and Options v

GRANT Statement ..199
IF Statement ...205
IF Statement [T-SQL] ..206
INCLUDE Statement [ESQL]208
INSERT Statement ...209
INSTALL JAVA Statement ...216
IQ UTILITIES Statement ...218
LEAVE Statement ...220
LOAD TABLE Statement ...221

Storage Sizes ..239
LOCK TABLE Statement ...239
LOOP Statement ..242
MESSAGE Statement ...243
OPEN Statement [ESQL] [SP]246
OUTPUT Statement [Interactive SQL]248
PARAMETERS Statement [Interactive SQL]252
PREPARE Statement [ESQL]253
PRINT Statement [T-SQL] ..255
PUT Statement [ESQL] ...256
RAISERROR Statement [T-SQL]258
READ Statement [Interactive SQL]259
RELEASE SAVEPOINT Statement261
REMOVE Statement ...261
RESIGNAL Statement ..263
RESTORE Statement ...264
RESUME Statement ...270
RETURN Statement ...271
REVOKE Statement ...272
ROLLBACK Statement ...275
ROLLBACK TO SAVEPOINT Statement276
ROLLBACK TRANSACTION Statement [T-SQL]277
SAVEPOINT Statement ..278
SAVE TRANSACTION Statement [T-SQL]278
SELECT Statement ..279
SET Statement [ESQL] ...287

Contents

 vi Sybase IQ

SET Statement [T-SQL] ..289
SET CONNECTION Statement [ESQL] [Interactive

SQL] ...291
SET DESCRIPTOR Statement [ESQL]292
SET OPTION Statement ...293
SET OPTION Statement [Interactive SQL]295
SET SQLCA Statement [ESQL]296
SIGNAL Statement ...297
START DATABASE Statement [Interactive SQL]298
START ENGINE Statement [Interactive SQL]299
START JAVA Statement ..300
STOP DATABASE Statement [Interactive SQL]301
STOP ENGINE Statement [Interactive SQL]302
STOP JAVA Statement ...302
SYNCHRONIZE JOIN INDEX Statement303
TRIGGER EVENT Statement 304
TRUNCATE TABLE Statement305
UNION Operation ...306
UPDATE Statement ..307
UPDATE (positioned) Statement [ESQL] [SP]311
WAITFOR Statement ..312
WHENEVER Statement [ESQL] 314
WHILE Statement [T-SQL] ..315

Database Options ..317
Introduction to Database Options317

Current Option Settings318
Scope and Duration of Database Options319
Temporary Options ..320
Public Options ..320
Delete an Option Setting320
Initial Option Settings ...321
Deprecated Database Options322

General Database Options ...322
Data Extraction Options329

Transact-SQL Compatibility Options329

Contents

Reference: Statements and Options vii

Transact-SQL Option Settings for Adaptive
Server Enterprise Compatibility331

Interactive SQL Options ..332
Alphabetical List of Options ..333

AGGREGATION_PREFERENCE Option334
ALLOW_NULLS_BY_DEFAULT Option [TSQL]

...335
ANSI_CLOSE_CURSORS_ON_ROLLBACK

Option [TSQL] ...335
ANSI_PERMISSIONS Option [TSQL]336
ANSINULL Option [TSQL]336
ANSI_SUBSTRING Option [TSQL]337
ANSI_UPDATE_CONSTRAINTS Option338
ALLOW_READ_CLIENT_FILE Option339
APPEND_LOAD Option339
ASE_BINARY_DISPLAY Option340
ASE_FUNCTION_BEHAVIOR Option341
AUDITING Option [database]342
BIT_VECTOR_PINNABLE_CACHE_PERCEN

T Option ...342
BLOCKING Option ...343
BT_PREFETCH_MAX_MISS Option343
BT_PREFETCH_SIZE Option344
BTREE_PAGE_SPLIT_PAD_PERCENT Option

...345
CACHE_PARTITIONS Option345
CHAINED Option [TSQL]347
CHECKPOINT_TIME Option347
CIS_ROWSET_SIZE Option348
CLOSE_ON_ENDTRANS Option [TSQL]348
CONTINUE_AFTER_RAISERROR Option

[TSQL] ...348
CONVERSION_ERROR Option [TSQL]349
CONVERSION_MODE Option350
CONVERT_VARCHAR_TO_1242 Option356

Contents

 viii Sybase IQ

COOPERATIVE_COMMIT_TIMEOUT Option ...356
COOPERATIVE_COMMITS Option357
CURSOR_WINDOW_ROWS Option357
DATE_FIRST_DAY_OF_WEEK Option358
DATE_FORMAT Option359
DATE_ORDER Option361
DBCC_LOG_PROGRESS Option361
DBCC_PINNABLE_CACHE_PERCENT Option

...362
DEBUG_MESSAGES Option363
DEDICATED_TASK Option363
DEFAULT_DBSPACE Option364
DEFAULT_DISK_STRIPING Option365
DEFAULT_HAVING_SELECTIVITY_PPM

Option ..366
DEFAULT_ISQL_ENCODING Option

[Interactive SQL] ..366
DEFAULT_KB_PER_STRIPE Option367
DEFAULT_LIKE_MATCH_SELECTIVITY_PPM

Option ..368
DEFAULT_LIKE_RANGE_SELECTIVITY_PPM

Option ..369
DELAYED_COMMIT_TIMEOUT Option369
DELAYED_COMMITS Option370
DISABLE_RI_CHECK Option370
DIVIDE_BY_ZERO_ERROR Option [TSQL]370
DQP_ENABLED Option371
EARLY_PREDICATE_EXECUTION Option371
ENABLE_LOB_VARIABLES Option372
EXTENDED_JOIN_SYNTAX Option372
FORCE_DROP Option373
FORCE_NO_SCROLL_CURSORS Option373
FORCE_UPDATABLE_CURSORS Option374
FP_LOOKUP_SIZE Option374
FP_LOOKUP_SIZE_PPM Option375

Contents

Reference: Statements and Options ix

FP_PREDICATE_WORKUNIT_PAGES Option . 376
FPL_EXPRESSION_MEMORY_KB Option377
GARRAY_FILL_FACTOR_PERCENT Option377
GARRAY_INSERT_PREFETCH_SIZE Option ..378
GARRAY_PAGE_SPLIT_PAD_PERCENT

Option ..378
GARRAY_RO_PREFETCH_SIZE Option379
HASH_PINNABLE_CACHE_PERCENT Option

...380
HASH_THRASHING_PERCENT Option380
HG_DELETE_METHOD Option381
HG_SEARCH_RANGE Option382
HTTP_SESSION_TIMEOUT Option382
IDENTITY_ENFORCE_UNIQUENESS Option . 383
IDENTITY_INSERT Option383
INDEX_ADVISOR Option384
INDEX_ADVISOR_MAX_ROWS Option386
INDEX_PREFERENCE Option387
INFER_SUBQUERY_PREDICATES Option388
IN_SUBQUERY_PREFERENCE Option389
IQGOVERN_MAX_PRIORITY Option390
IQGOVERN_PRIORITY Option390
IQGOVERN_PRIORITY_TIME Option391
ISOLATION_LEVEL Option392
JAVA_LOCATION Option392
JAVA_VM_OPTIONS Option393
JOIN_EXPANSION_FACTOR Option393
JOIN_OPTIMIZATION Option394
JOIN_PREFERENCE Option395
JOIN_SIMPLIFICATION_THRESHOLD Option .397
LARGE_DOUBLES_ACCUMULATOR Option ...397
LF_BITMAP_CACHE_KB Option398
LOAD_ZEROLENGTH_ASNULL Option399
LOCKED Option ..399
LOG_CONNECT Option400

Contents

 x Sybase IQ

LOG_CURSOR_OPERATIONS Option400
LOGIN_MODE Option401
LOGIN_PROCEDURE Option401
MAIN_RESERVED_DBSPACE_MB Option402
MAX_CARTESIAN_RESULT Option403
MAX_CLIENT_NUMERIC_PRECISION Option

...403
MAX_CLIENT_NUMERIC_SCALE Option404
MAX_CONNECTIONS Option405
MAX_CUBE_RESULT Option405
MAX_CURSOR_COUNT Option405
MAX_DAYS_SINCE_LOGIN Option406
MAX_FAILED_LOGIN_ATTEMPTS Option406
MAX_HASH_ROWS Option406
MAX_IQ_THREADS_PER_CONNECTION

Option ..407
MAX_IQ_THREADS_PER_TEAM Option407
MAX_JOIN_ENUMERATION Option408
MAX_PREFIX_PER_CONTAINS_PHRASE

Option ..409
MAX_QUERY_PARALLELISM Option409
MAX_QUERY_TIME Option409
MAX_STATEMENT_COUNT Option410
MAX_TEMP_SPACE_PER_CONNECTION

Option ..411
MAX_WARNINGS Option412
MINIMIZE_STORAGE Option412
MIN_PASSWORD_LENGTH Option413
MONITOR_OUTPUT_DIRECTORY Option414
MPX_AUTOEXCLUDE_TIMEOUT Option415
MPX_HEARTBEAT_FREQUENCY Option415
MPX_IDLE_CONNECTION_TIMEOUT Option .415
MPX_MAX_CONNECTION_POOL_SIZE

Option ..415
MPX_MAX_UNUSED_POOL_SIZE Option415

Contents

Reference: Statements and Options xi

NEAREST_CENTURY option [TSQL]416
NOEXEC Option ..416
NON_ANSI_NULL_VARCHAR Option417
NON_KEYWORDS Option [TSQL]417
NOTIFY_MODULUS Option418
ODBC_DISTINGUISH_CHAR_AND_VARCHA

R Option ..418
ON_CHARSET_CONVERSION_FAILURE

Option ..419
ON_ERROR Option [Interactive SQL]419
ON_TSQL_ERROR Option [TSQL]420
OS_FILE_CACHE_BUFFERING Option421
OS_FILE_CACHE_BUFFERING_TEMPDB

Option ..422
PASSWORD_EXPIRY_ON_NEXT_LOGIN

Option ..423
PASSWORD_GRACE_TIME Option423
PASSWORD_LIFE_TIME Option423
POST_LOGIN_PROCEDURE Option423
PRECISION Option ...424
PREFETCH Option ..424
PREFETCH_BUFFER_LIMIT Option425
PREFETCH_BUFFER_PERCENT Option425
PREFETCH_GARRAY_PERCENT Option426
PREFETCH_SORT_PERCENT Option426
PRESERVE_SOURCE_FORMAT Option

[database] ..427
QUERY_DETAIL Option428
QUERY_NAME Option428
QUERY_PLAN Option429
QUERY_PLAN_AFTER_RUN Option429
QUERY_PLAN_AS_HTML Option430
QUERY_PLAN_AS_HTML_DIRECTORY

Option ..431
QUERY_PLAN_TEXT_ACCESS Option432

Contents

 xii Sybase IQ

QUERY_PLAN_TEXT_CACHING Option433
QUERY_ROWS_RETURNED_LIMIT Option433
QUERY_TEMP_SPACE_LIMIT Option434
QUERY_TIMING Option435
QUOTED_IDENTIFIER Option [TSQL]435
RECOVERY_TIME Option436
RETURN_DATE_TIME_AS_STRING Option436
ROW_COUNT Option ..437
SCALE Option ...438
SIGNIFICANTDIGITSFORDOUBLEEQUALITY

Option ..438
SORT_COLLATION Option439
SORT_PINNABLE_CACHE_PERCENT Option

...440
SQL_FLAGGER_ERROR_LEVEL Option

[TSQL] ...440
SQL_FLAGGER_WARNING_LEVEL Option

[TSQL] ...441
STRING_RTRUNCATION Option [TSQL]442
SUBQUERY_CACHING_PREFERENCE

Option ..442
SUBQUERY_FLATTENING_PERCENT Option

...444
SUBQUERY_FLATTENING_PREFERENCE

Option ..444
SUBQUERY_PLACEMENT_PREFERENCE

Option ..445
SUPPRESS_TDS_DEBUGGING Option446
SWEEPER_THREADS_PERCENT option447
TDS_EMPTY_STRING_IS_NULL Option

[database] ..447
TEMP_EXTRACT_APPEND Option448
TEMP_EXTRACT_BINARY Option448
TEMP_EXTRACT_COLUMN_DELIMITER

Option ..449

Contents

Reference: Statements and Options xiii

TEMP_EXTRACT_DIRECTORY Option450
TEMP_EXTRACT_ESCAPE_QUOTES Option

...451
TEMP_EXTRACT_NAMEn Options452
TEMP_EXTRACT_NULL_AS_EMPTY Option

...453
TEMP_EXTRACT_NULL_AS_ZERO Option454
TEMP_EXTRACT_QUOTE Option455
TEMP_EXTRACT_QUOTES Option456
TEMP_EXTRACT_QUOTES_ALL Option456
TEMP_EXTRACT_ROW_DELIMITER Option ...457
TEMP_EXTRACT_SIZEn Options458
TEMP_EXTRACT_SWAP Option459
TEMP_RESERVED_DBSPACE_MB Option460
TEMP_SPACE_LIMIT_CHECK Option460
TEXT_DELETE_METHOD Option461
TIME_FORMAT Option462
TIMESTAMP_FORMAT Option462
TOP_NSORT_CUTOFF_PAGES Option464
TRIM_PARTIAL_MBC Option464
TSQL_VARIABLES Option [TSQL]465
USER_RESOURCE_RESERVATION Option465
VERIFY_PASSWORD_FUNCTION Option466
WASH_AREA_BUFFERS_PERCENT Option ...467
WAIT_FOR_COMMIT Option468
WD_DELETE_METHOD Option468

Index ..471

Contents

 xiv Sybase IQ

Audience

This book is for Sybase® IQ users who require reference material for Sybase IQ SQL
statements and database options.

Reference material for other aspects of Sybase IQ, including language elements, data types,
functions, system procedures, and system tables is provided in Reference: Building Blocks,
Tables, and Procedures. Other books provide more context on how to perform particular tasks.
This reference book is the place to look for information such as available SQL syntax,
parameters, and options. For command line utility start-up parameters, see the Utility
Guide.

Audience

Reference: Statements and Options 1

Audience

 2 Sybase IQ

SQL Statements

Descriptions of the SQL statements available in Sybase IQ, including some that can be used
only from Embedded SQL or Interactive SQL.

Common Elements in SQL Syntax
Language elements that are found in the syntax of many SQL statements.

For more information on the elements described here, see Identifiers, Search Conditions,
Expressions, and Strings in Reference: Building Blocks, Tables, and Procedures > SQL
Language Elements.

• column-name – an identifier that represents the name of a column.
• condition – an expression that evaluates to TRUE, FALSE, or UNKNOWN.
• connection-name – a string representing the name of an active connection.
• data-type – a storage data type.
• expression – an expression.
• filename – a string containing a file name.
• host-variable – a C language variable, declared as a host variable, preceded by a colon.
• indicator-variable – a second host variable of type short int immediately following a

normal host variable. An indicator variable must also be preceded by a colon. Indicator
variables are used to pass NULL values to and from the database.

• number – any sequence of digits followed by an optional decimal part and preceded by an
optional negative sign. Optionally, the number can be followed by an ‘e’ and then an
exponent. For example,
42
-4.038
.001
3.4e10
1e-10

• owner – an identifier representing the user ID who owns a database object.
• role-name – an identifier representing the role name of a foreign key.
• savepoint-name – an identifier that represents the name of a savepoint.
• search-condition – a condition that evaluates to TRUE, FALSE, or UNKNOWN.
• special-value – one of the special values described in Reference: Building Blocks, Tables,

and Procedures > SQL Language Elements > Special Values .
• statement-label – an identifier that represents the label of a loop or compound statement.
• table-list – a list of table names, which might include correlation names. For more

information, see FROM clause.

SQL Statements

Reference: Statements and Options 3

• table-name – an identifier that represents the name of a table.
• userid – an identifier representing a user name. The user ID is not case-sensitive and is

unaffected by the setting of the CASE RESPECT property of the database.

• variable-name – an identifier that represents a variable name.

See also
• FROM Clause on page 193

Syntax Conventions
Conventions used in the SQL syntax descriptions.

• Keywords – all SQL keywords appear in UPPERCASE; however, SQL keywords are case-
insensitive, so you can type keywords in any case. For example, SELECT is the same as
Select, which is the same as select.

• Placeholders – items that must be replaced with appropriate identifiers or expressions are
shown in italics.

• Continuation – lines beginning with an ellipsis (…) are a continuation from the previous
line.

• Optional portions – optional portions of a statement are enclosed by square brackets. For
example:
RELEASE SAVEPOINT [savepoint-name]

This example indicates that the savepoint-name is optional. Do not type the square
brackets.

• Repeating items – lists of repeating items are shown with an element of the list followed by
an ellipsis. One or more list elements are allowed. When more than one is specified, they
must be separated by commas if indicated as such. For example:
UNIQUE (column-name [, ...])

The example indicates that you can specify column-name more than once, separated by
commas. Do not type the square brackets.

• Alternatives – when one option must be chosen, the alternatives are enclosed in curly
braces. For example:
[QUOTES { ON | OFF }]

The example indicates that if you choose the QUOTES option, you must provide one of
ON or OFF. Do not type the braces.

• One or more options – if you choose more than one, separate your choices by commas. For
example:
{ CONNECT, DBA, RESOURCE }

SQL Statements

 4 Sybase IQ

Statement Applicability Indicators
Some statement titles are followed by an indicator in square brackets that shows where the
statement can be used.

These indicators are as follows:

• [ESQL] – the statement is for use in Embedded SQL.
• [Interactive SQL] – the statement is for use only in Interactive SQL (dbisql).
• [SP] – the statement is for use in stored procedures or batches.
• [T-SQL] – the statement is implemented for compatibility with Adaptive Server®

Enterprise. In some cases, the statement cannot be used in stored procedures that are not
Transact-SQL format. In other cases, there is an alternative statement that is closer to the
ISO/ANSI SQL standard that is recommended unless Transact-SQL compatibility is an
issue.

If two sets of brackets are used, the statement can be used in both environments. For example,
[ESQL] [SP] means a statement can be used either in Embedded SQL or in stored procedures.

ALLOCATE DESCRIPTOR Statement [ESQL]
Allocates space for a SQL descriptor area (SQLDA).

Syntax
ALLOCATE DESCRIPTOR descriptor-name
… [WITH MAX { integer | host-variable }]

Parameters

• descriptor-name: – string

For more information, see Reference: Building Blocks, Tables, and Procedures > SQL
Language Elements.

Examples

• Example 1 – This sample program includes an example of ALLOCATE DESCRIPTOR
statement usage.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

SQL Statements

Reference: Statements and Options 5

#include <sqldef.h>

EXEC SQL BEGIN DECLARE SECTION;
int x;
short type;
int numcols;
char string[100];
a_sql_statement_number stmt = 0;
EXEC SQL END DECLARE SECTION;

int main(int argc, char * argv[])
{
 struct sqlda * sqlda1;

 if(!db_init(&sqlca)) {
 return 1;
 }
 db_string_connect(&sqlca, "UID=dba;PWD=sql;DBF=d:\\IQ-15_3\
\sample.db");

 EXEC SQL ALLOCATE DESCRIPTOR sqlda1 WITH MAX 25;

 EXEC SQL PREPARE :stmt FROM
 'select * from Employees';
 EXEC SQL DECLARE curs CURSOR FOR :stmt;
 EXEC SQL OPEN curs;

 EXEC SQL DESCRIBE :stmt into sqlda1;
 EXEC SQL GET DESCRIPTOR sqlda1 :numcols=COUNT;
 // how many columns?
 if(numcols > 25) {
 // reallocate if necessary
 EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
 EXEC SQL ALLOCATE DESCRIPTOR sqlda1
 WITH MAX :numcols;
 }
 type = DT_STRING; // change the type to string
 EXEC SQL SET DESCRIPTOR sqlda1 VALUE 2 TYPE = :type;
 fill_sqlda(sqlda1); // allocate space for the variables

 EXEC SQL FETCH ABSOLUTE 1 curs USING DESCRIPTOR sqlda1;
 EXEC SQL GET DESCRIPTOR sqlda1 VALUE 2 :string = DATA;

 printf("name = %s", string);

 EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
 EXEC SQL CLOSE curs;
 EXEC SQL DROP STATEMENT :stmt;

 db_string_disconnect(&sqlca, "");
 db_fini(&sqlca);

 return 0;
}

SQL Statements

 6 Sybase IQ

Usage

You must declare the following in your C code prior to using this statement:

struct sqlda * descriptor_name

The WITH MAX clause lets you specify the number of variables within the descriptor area. The
default size is 1.

You must still call fill_sqlda to allocate space for the actual data items before doing a fetch or
any statement that accesses the data within a descriptor area.

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere embedded SQL > The SQL descriptor area (SQLDA).

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Open Client/Open Server.

See also
• DEALLOCATE DESCRIPTOR Statement [ESQL] on page 151

ALTER DATABASE Statement
Upgrades a database created with a previous version of the software or adds or removes Java or
jConnect™ for JDBC™ support. Run this statement with Interactive SQL (dbisql).

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > Java in the database >
Java support in SQL Anywhere > Introduction to Java support.

Syntax
ALTER DATABASE UPGRADE
 [JAVA { ON | OFF }]
 [JCONNECT { ON | OFF }]

Examples

• Example 1 – Upgrade a database created with the Java options off:

ALTER DATABASE UPGRADE JAVA OFF JCONNECT OFF

Usage

The ALTER DATABASE statement upgrades databases created with earlier versions of the
software. This applies to maintenance releases as well as major releases.

When you upgrade a database, Sybase IQ makes these changes:

SQL Statements

Reference: Statements and Options 7

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html

• Upgrades the system tables to the current version.
• Adds any new database options.
• Enables new features in the current version.

You can also use ALTER DATABASE UPGRADE simply to add Java or jConnect features, if the
database was created with the current version of the software.

Note:

• See the Installation and Configuration Guide for backup recommendations before you
upgrade.

• Be sure to start the server in a way that restricts user connections before you run ALTER
DATABASE UPGRADE. For instructions and other upgrade caveats, see Installation and
Configuration Guide > Database Upgrades for your platform.

• Use the iqunload utility to upgrade databases created in versions earlier than 15.0. See
Installation and Configuration Guide > Database Upgrades for your platform.

After using ALTER DATABASE UPGRADE, shut down the database.

JAVA clause— Controls support for Java in the upgraded database.

• Specify JAVA ON to enable support for Java in the database by adding entries for the
default Sybase runtime Java classes to the system tables. If Java in the database is already
installed, but is at a lower version than the default classes, this clause upgrades it to the
current default classes. The default classes are the JDK 1.3 classes.

• Specify JAVA OFF to prevent the addition of Java in the database to databases that do not
already have it installed. For databases that already have Java installed, setting JAVA OFF
does not remove Java support: the version of Java remains at the current version.

• The default behavior is JAVA OFF.
• To use Java after adding it in the database, you must restart the database.
• Java support is external to the database. Upgrade or change the version of the Java

Development Kit (JDK)/Java Runtime Environment (JRE) installed on your system to
change the version of Java used by Sybase IQ.

• For more information on Java support, see SQL Anywhere 11.0.1 > SQL Anywhere Server
– Programming > Java in the database > Java support in SQL Anywhere > Introduction to
Java support.

JCONNECT clause— To allow the Sybase jConnect JDBC driver to access system catalog
information, you must specify JCONNECT ON. This installs jConnect system tables and
procedures. To exclude the jConnect system objects, specify JCONNECT OFF. You can still
use JDBC, as long as you do not access system catalog information. The default is to include
jConnect support (JCONNECT ON).

Side effects:

• Automatic commit

SQL Statements

 8 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority.

See also
• CREATE DATABASE Statement on page 66

ALTER DBSPACE Statement
Changes the read/write mode, changes the size, or extends an existing dbspace.

Syntax
ALTER DBSPACE dbspace-name
{ ADD new-file-spec [, new-file-spec ...]
| DROP FILE logical-file-name [, FILE logical-file-name ...]
 | RENAME TO newname | RENAME 'new-file-pathname'
 | READONLY | READWRITE
 | ONLINE | OFFLINE
 | STRIPING{ ON | OFF }
 | STRIPESIZEKB size-in-KB
ALTER FILE file-name
{ READONLY | [FORCE] READWRITE }
 | SIZE file-size [KB | MB | GB | TB | PAGES]
 | ADD file-size [KB | MB | GB | TB | PAGES] }
RENAME PATH 'new-file-pathname'
RENAME TO newname

Parameters

• new-file-spec: –
FILE logical-file-name 'file-path' iq-file-opts

• iq-file-opts: –
[[SIZE] file-size]
…[KB | MB | GB | TB]]
 [RESERVE reserve-size [KB | MB | GB | TB]]

Examples

• Example 1 – Change the mode of a dbspace called DspHist to READONLY.

ALTER DBSPACE DspHist READONLY

SQL Statements

Reference: Statements and Options 9

• Example 2 – Add 500MB to the dbspace DspHist by adding the file FileHist3 of
size 500MB.

ALTER DBSPACE DspHist
ALTER FILE FileHist3 ADD 500MB

• Example 3 – On a UNIX system, add two 500MB files to the dbspace DspHist.

ALTER DBSPACE DspHist ADD
FILE FileHist3 '/History1/data/file3' SIZE 500MB,
FILE FileHist4 '/History1/data/file4' SIZE 500

• Example 4 – Increase the size of the dbspace IQ_SYSTEM_TEMP by 2GB.

ALTER DBSPACE IQ_SYSTEM_TEMP ADD 2 GB

• Example 5 – Remove two files from dbspace DspHist. Both files must be empty.

ALTER DBSPACE DspHist
DROP FILE FileHist2, FILE FileHist4

• Example 6 – Increase the size of the dbspace IQ_SYSTEM_MAIN by 1000 pages. (ADD
defaults to pages.)

ALTER DBSPACE IQ_SYSTEM_MAIN ADD 1000

Usage

ALTER DBSPACE changes the read-write mode, changes the online/offline state, alters the file
size, renames the dbspace name, file logical name or file path, or sets the dbspace striping
parameters. For details about existing dbspaces, run sp_iqdbspace procedure,
sp_iqdbspaceinfo procedure, sp_iqfile procedure, sp_iqdbspaceobjectinfo, and
sp_iqobjectinfo. Dbspace and dbfile names are always case-insensitive. The physical file
paths are case-sensitive, if the database is CASE RESPECT and the operating system supports
case-sensitive files. Otherwise, the file paths are case-insensitive.

Enclose dbspace and dbfile names either in no quotes or in double quotes. Enclose the physical
file path to the dbfile in single quotes.

In Windows, if you specify a path, any backslash characters (\) must be doubled if they are
followed by an n or an x. This prevents them being interpreted as a newline character (\n) or as
a hexadecimal number (\x), according to the rules for strings in SQL. It is safer to always
double the backslash.

See Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqdbspace Procedure and System Administration Guide: Volume 1 >
Database Object Management > Data Storage.

ADD FILE clause—Adds one or more files to the specified dbspace. The dbfile name and the
physical file path are required for each file and must be unique. You can add files to IQ main,
IQ shared temporary, or IQ temporary dbspaces. You may add a file to a read-only dbspace, but
the dbspace remains read-only. You can add files to multiplex shared temporary dbspaces only
in read-only mode (the default for ADD FILE). See Using Sybase IQ Multiplex.

SQL Statements

 10 Sybase IQ

A catalog dbspace may contain only one file, so ADD FILE may not be used on catalog
dbspaces.

DROP FILE clause—Removes the specified file from an IQ dbspace. The file must be empty.
You cannot drop the last file from the specified dbspace. Instead use DROP DBSPACE if the
dbspace contains only one file. Rename TO clause—Renames the dbspace-name to a new
name. The new name must be unique in the database. You cannot rename
IQ_SYSTEM_MAIN, IQ_SYSTEM_MSG, IQ_SYSTEM_TEMP, IQ_SHARED_TEMP, or
SYSTEM.

RENAME clause—Renames the pathname of the dbspace that contains a single file. It is
semantically equivalent to the ALTER FILE RENAME PATH clause. An error is returned if the
dbspace contains more than one file.

READONLY clause—Changes any dbspace except IQ_SYSTEM_MAIN,
IQ_SYSTEM_TEMP, IQ_SYSTEM_MSG, IQ_SHARED_TEMP, and SYSTEM to read-only.
Disallows DML modifications to any object currently assigned to the dbspace. Can only be
used for dbspaces in the IQ main store.

READWRITE clause—Changes the dbspace to read-write. The dbspace must be online. Can
only be used for dbspaces in the IQ main store.

ONLINE clause—Puts an offline dbspace and all associated files online. Can only be used for
dbspaces in the IQ main store.

OFFLINE clause—Puts an online read-only dbspace and all associated files offline. (Returns
an error if the dbspace is read-write, offline already, or not of the IQ main store.) Can only be
used for dbspaces in the IQ main store.

STRIPING clause—Changes the disk striping on the dbspace as specified. When disk striping
is set ON, data is allocated from each file within the dbspace in a round-robin fashion. For
example, the first database page written goes to the first file, the second page written goes to
the next file within given dbspace, and so on. Read-only dbspaces are skipped.

STRIPESIZEKB clause—Specifies the number of kilobytes (KB) to write to each file before
the disk striping algorithm moves to the next stripe for the specified dbspace.

ALTER FILE READONLY—Changes the specified file to read-only. The file must be
associated with an IQ main dbspace. You cannot change files in IQ_SHARED_TEMP to
READONLY status.

ALTER FILE READWRITE—Changes specified IQ main or temporary store dbfile to read-
write. The file must be associated with an IQ main or temporary dbspace.

ALTER FILE FORCE READWRITE—Changes the status of the specified shared temporary
store dbfile to read-write, although there may be known file status problems on secondary
nodes. The file may be associated with an IQ main, shared temporary, or temporary dbspace,
but because new dbfiles in IQ_SYSTEM_MAIN and user main are created read-write, this
clause only affects shared temporary dbspaces.

SQL Statements

Reference: Statements and Options 11

ALTER FILE SIZE clause— Specifies the new size of the file in units of kilobytes (KB),
megabytes (MB), gigabytes (GB), or terabytes (TB). The default is megabytes. You can
increase the size of the dbspace only if the free list (an allocation map) has sufficient room and
if the dbspace has sufficient reserved space. You can decrease the size of the dbspace only if
the portion to be truncated is not in use.

ALTER FILE ADD clause—Extends the size of the file in units of pages, kilobytes (KB),
megabytes (MB), gigabytes (GB), or terabytes (TB). The default is MB. You can ADD only if
the free list (an allocation map) has sufficient room and if the dbspace has sufficient reserved
space.

You can also view and change the dbspace mode and size through the Sybase Central
Dbspaces window.

ALTER FILE RENAME PATH clause—Renames the file pathname associated with the
specified file. This clause merely associates the file with the new file path instead of the old
path. The clause does not actually change the operating system file name. You must change the
file name through your operating system. The dbspace must be offline to rename the file path.
The new path is used when the dbspace is altered online or when the database is restarted.

You may not rename the path of a file in IQ_SYSTEM_MAIN, because if the new path were
not accessible, the database would be unable to start. If you need to rename the path of a file in
IQ_SYSTEM_MAIN, make the file read-only, empty the file, drop the file, and add the file
again with the new file path name.

ALTER FILE RENAME TO clause—Renames the specified file’s logical name to a new
name. The new name must be unique in the database.

Side effects:

• Automatic commit
• Automatic checkpoint
• A mode change to READONLY causes immediate relocation of the internal database

structures on the dbspace to one of the read-write dbspaces.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have SPACE ADMIN or DBA authority.

See also
• CREATE DATABASE Statement on page 66
• CREATE DBSPACE Statement on page 76
• DROP Statement on page 170

SQL Statements

 12 Sybase IQ

ALTER DOMAIN Statement
Renames a user-defined domain or data type. Does not rename Java types.

Syntax
ALTER { DOMAIN | DATATYPE } user-type
RENAME new-name

Parameters

• new-name: – an identifier representing the new domain name.
• user-type: – user-defined data type of the domain being renamed.

Examples

• Example 1 – Rename the Address domain to MailingAddress:

ALTER DOMAIN Address RENAME MailingAddress

Usage

The ALTER DOMAIN statement updates the name of the user-defined domain or data type in
the SYSUSERTYPE system table. See Reference: Building Blocks, Tables, and Procedures >
System Tables and Views > System Views > SYSUSERTYPE System View.

You must recreate any procedures, views or events that reference the user-defined domain or
data type, or else they will continue to reference the former name.

See also Reference: Building Blocks, Tables, and Procedures > SQL Data Types.

Side effects:

• Automatic commit

Permissions

Must have DBA authority or be the database user who created the domain.

See also
• CREATE DOMAIN Statement on page 79

SQL Statements

Reference: Statements and Options 13

ALTER EVENT Statement
Changes the definition of an event or its associated handler for automating predefined actions.
Also alters the definition of scheduled actions.

Syntax
ALTER EVENT event-name
[DELETE TYPE | TYPE event-type]
{ WHERE { trigger-condition | NULL }
 | { ADD | [MODIFY] | DELETE } SCHEDULE schedule-spec
}
[ENABLE | DISABLE]
[[MODIFY] HANDLER compound-statement | DELETE HANDLER }

Parameters

• event-type: – BackupEnd | “Connect” | ConnectFailed | DatabaseStart | DBDiskSpace |
“Disconnect” | GlobalAutoincrement | GrowDB | GrowLog | GrowTemp | LogDiskSpace |
“RAISERROR” | ServerIdle | TempDiskSpace

• trigger-condition: – [event_condition(condition-name) { = | < | > | != | <= |
>= }value]

• schedule-spec: – [schedule-name] { START TIME start-time | BETWEEN start-time AND
end-time } [EVERY period { HOURS | MINUTES | SECONDS }] [ON { (day-of-week,
…) | (day-of-month, …) }] [START DATE start-date]

• event-name | schedule-name: – identifier
• day-of-week: – string
• value | period | day-of-month: – integer
• start-time | end-time: – time
• start-date: – date

Usage

ALTER EVENT lets you alter an event definition created with CREATE EVENT. Possible uses
include:

• Change an event handler during development.
• Define and test an event handler without a trigger condition or schedule during a

development phase, and then add the conditions for execution using ALTER EVENT once
the event handler is completed.

• Disable an event handler temporarily by disabling the event.

When you alter an event using ALTER EVENT, specify the event name and, optionally, the
schedule name.

List event names by querying the system table SYSEVENT. For example:

SQL Statements

 14 Sybase IQ

SELECT event_id, event_name FROM SYS.SYSEVENT

List schedule names by querying the system table SYSSCHEDULE. For example:

SELECT event_id, sched_name FROM SYS.SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

DELETE TYPE clause—Removes an association of the event with an event type.

ADD | MODIFY | DELETE SCHEDULE clause—Changes the definition of a schedule. Only
one schedule can be altered in any one ALTER EVENT statement.

WHERE clause—The WHERE NULL option deletes a condition.

For descriptions of most of the parameters, see CREATE EVENT Statement.

See also System Administration Guide: Volume 2 > Automating Tasks Using Schedules and
Events.

Side effects:

• Automatic commit

Permissions

Must have DBA authority.

See also
• BEGIN … END Statement on page 47
• CREATE EVENT Statement on page 81

ALTER FUNCTION Statement
Modifies an existing function. Include the entire modified function in the ALTER FUNCTION
statement.

Syntax

Syntax 1
ALTER FUNCTION [owner.]function-name function-definition

function-definition : CREATE FUNCTION syntax

Syntax 2
ALTER FUNCTION [owner.]function-name

 SET HIDDEN

Syntax 3

SQL Statements

Reference: Statements and Options 15

ALTER FUNCTION [owner.]function-name

 RECOMPILE

Usage

Syntax 1—Identical in syntax to the CREATE FUNCTION statement except for the first word.
Either version of the CREATE FUNCTION statement can be altered.

Existing permissions on the function are maintained and do not have to be reassigned. If a
DROP FUNCTION and CREATE FUNCTION were carried out, execute permissions must be
reassigned.

Syntax 2—Use SET HIDDEN to scramble the definition of the associated function and cause it
to become unreadable. The function can be unloaded and reloaded into other databases.

Warning! The SET HIDDEN setting is irreversible. If you need the original source again, you
must maintain it outside the database.

If you use SET HIDDEN, debugging using the stored procedure debugger does not show the
function definition, nor is it be available through procedure profiling.

See also System Administration Guide: Volume 2 > Using Procedures and Batches > Hiding
the Contents of Procedures, Functions, and Views.

Syntax 3—Use RECOMPILE to recompile a user-defined function. When you recompile a
function, the definition stored in the catalog is re-parsed and the syntax is verified. The
preserved source for a function is not changed by recompiling. When you recompile a
function, the definitions scrambled by the SET HIDDEN clause remain scrambled and
unreadable.

Side effects:

• Automatic commit

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.

Permissions

Must be the owner of the function or have DBA authority.

See also
• ALTER PROCEDURE Statement on page 22

• CREATE FUNCTION Statement on page 90

• DROP Statement on page 170

SQL Statements

 16 Sybase IQ

ALTER INDEX Statement
Renames indexes in base or global temporary tables and foreign key role names of indexes and
foreign keys explicitly created by a user.

Syntax
ALTER { INDEX index-name
| [INDEX] FOREIGN KEY role-name
| [INDEX] PRIMARY KEY
| ON [owner.]table-name { rename-clause | move-clause }

Parameters

• rename-clause – : RENAME TO | AS new-name
• move-clause: – MOVE TO dbspace-name

Examples

• Example 1 – Move the primary key, HG for c5, from dbspace Dsp4 to Dsp8:

CREATE TABLE foo (
 c1 INT IN Dsp1,
 c2 VARCHAR(20),
 c3 CLOB IN Dsp2,
 c4 DATE,
 c5 BIGINT,
 PRIMARY KEY (c5) IN Dsp4) IN Dsp3);

CREATE DATE INDEX c4_date ON foo(c4) IN Dsp5;

ALTER INDEX PRIMARY KEY ON foo MOVE TO Dsp8;

• Example 2 – Move DATE index from Dsp5 to Dsp9:

ALTER INDEX c4_date ON foo MOVE TO Dsp9

• Example 3 – Rename an index COL1_HG_OLD in the table jal.mytable to
COL1_HG_NEW:

ALTER INDEX COL1_HG_OLD ON jal.mytable
RENAME AS COL1_HG_NEW

• Example 4 – Rename a foreign key role name ky_dept_id in table dba.Employees
to emp_dept_id:

ALTER INDEX FOREIGN KEY ky_dept_id
ON dba.Employees
RENAME TO emp_dept_id

Usage

The ALTER INDEX statement renames indexes and foreign key role names of indexes and
foreign keys that were explicitly created by a user. Only indexes on base tables or global

SQL Statements

Reference: Statements and Options 17

temporary tables can be renamed. You cannot rename indexes created to enforce key
constraints.

ON clause—The ON clause specifies the name of the table that contains the index or foreign
key to rename.

RENAME [AS | TO] clause—The RENAME clause specifies the new name of the index or
foreign key role.

MOVE clause—The MOVE clause moves the specified index, unique constraint, foreign key,
or primary key to the specified dbspace. For unique constraint or foreign key, you must specify
its unique index name.

You must have CREATE privilege on the new dbspace and be the table owner or have DBA or
SPACE ADMIN authority.

Note: Attempts to alter an index in a local temporary table return the error index not
found. Attempts to alter a nonuser-created index, such as a default index (FP), return the
error Cannot alter index. Only indexes in base tables or global
temporary tables with an owner type of USER can be altered.

Side effects:

• Automatic commit. Clears the Results tab in the Results pane in Interactive SQL. Closes
all cursors for the current connection.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must own the table, or have REFERENCES permissions on the table, or have DBA or
RESOURCE authority. For ALTER INDEX MOVE TO statements, you must have CREATE
privilege on the new dbspace and be the table owner or have DBA or SPACE ADMIN
authority.

See also
• ALTER TABLE Statement on page 27

• CREATE INDEX Statement on page 97

• CREATE TABLE Statement on page 133

SQL Statements

 18 Sybase IQ

ALTER LOGICAL SERVER Statement
Modifies configuration for the existing user-defined logical server in the database.

Syntax
 See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex > Multiplex Reference >
SQL Statements > ALTER LOGICAL SERVER Statement.

ALTER LOGIN POLICY Statement
Modifies some or all option values for existing login policies in the database.

Syntax

ALTER LOGIN POLICY policy-name {alter-clause}

Parameters

• alter-clause: –
{
 policy-option-name=policy-option-value
}

• policy-option-value: –
{ UNLIMITED | DEFAULT | value }

Usage

SQL Statements

Reference: Statements and Options 19

Table 1. Login Policy Options

Option

Description

Values

Initial
value
for
ROOT
policy

Applies to

locked If the value for this option
is ON, users are prohibi-
ted from establishing new
connections

ON, OFF OFF Users without
DBA authority
only

max_connections The maximum number of
concurrent connections
allowed for a user.

0 – 2147483647 Unlimi-
ted

Users without
DBA authority
only

max_days_since_log
in

The maximum number of
days that can elapse be-
tween two successive log-
ins by the same user.

0 – 2147483647 Unlimi-
ted

Users without
DBA authority
only

max_failed_log-
in_attempts

The maximum number of
failed attempts, since the
last successful attempt, to
login to the user account
before the account is
locked.

0 – 2147483647 Unlimi-
ted

Users without
DBA authority
only

max_non_dba_con-
nections

The maximum number of
concurrent connections
that a user without DBA
authority can make. This
option is only supported in
the root login policy.

0 – 2147483647 Unlimi-
ted

Users without
DBA authority
only. Only to
the root login
policy.

password_expi-
ry_on_next_login

If the value for this option
is ON, the user's password
will expire in the next log-
in.

ON, OFF OFF All users in-
cluding those
with DBA au-
thority

pass-
word_grace_time

The number of days be-
fore password expiration
during which login is al-
lowed but the default
post_login procedure is-
sues warnings.

0 – 2147483647 0 All users in-
cluding those
with DBA au-
thority

SQL Statements

 20 Sybase IQ

Option

Description

Values

Initial
value
for
ROOT
policy

Applies to

password_life_time The maximum number of
days before a password
must be changed.

0 – 2147483647 Unlimi-
ted

All users in-
cluding those
with DBA au-
thority

For syntax and usage related to multiplex servers only, see Using Sybase IQ Multiplex >
Multiplex Reference > SQL Statements > ALTER LOGIN POLICY Statement.

Permissions

Must have DBA or USER ADMIN authority.

ALTER LS POLICY Statement
Modifies some or all option values for the existing root logical server policy in the database.

Syntax
 See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex > Multiplex Reference >
SQL Statements > ALTER LS POLICY Statement.

ALTER MULTIPLEX RENAME Statement
Renames the multiplex and stores the multiplex name in SYS.ISYSIQINFO system table.
Users must be specifically licensed for the Multiplex Option in order to start secondary nodes.

Syntax
See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex > Multiplex Reference >
SQL Statements > ALTER MULTIPLEX RENAME Statement.

SQL Statements

Reference: Statements and Options 21

ALTER MULTIPLEX SERVER Statement
Changes the name, catalog file path, role, or status of the given server.

Syntax
See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex > Multiplex Reference >
SQL Statements > ALTER MULTIPLEX SERVER Statement.

ALTER PROCEDURE Statement
Replaces an existing procedure with a modified version. Include the entire modified
procedure in the ALTER PROCEDURE statement, and reassign user permissions on the
procedure.

Syntax
ALTER PROCEDURE [owner.]procedure-name procedure-definition

Parameters

• procedure-definition: – CREATE PROCEDURE syntax following the name

Usage

The ALTER PROCEDURE statement is identical in syntax to the CREATE PROCEDURE
statement.

Existing permissions on the procedure are maintained and need not be reassigned. If a DROP
procedure and CREATE PROCEDURE were carried out, execute permissions would have to be
reassigned.

Side effects:

• Automatic commit

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

SQL Statements

 22 Sybase IQ

Permissions

Must be the owner of the procedure or a DBA. Automatic commit.

See also
• CREATE PROCEDURE Statement on page 110

ALTER SERVER Statement
Modifies the attributes of a remote server.

Syntax
ALTER SERVER server-name
[CLASS 'server-class']
[USING 'connection-info']
[CAPABILITY 'cap-name' { ON | OFF }]
[CONNECTION CLOSE [CURRENT | ALL | connection-id]]

Parameters

• server-class: – { ASAJDBC | ASEJDBC | ASAODBC | ASEODBC | DB2ODBC |
MSSODBC | ORAODBC | ODBC }

• connection-info: – { machine-name:port-number [/dbname] | data-source-name }
• cap-name: – the name of a server capability

Examples

• Example 1 – Changes the server class of the Adaptive Server Enterprise server named
ase_prod so its connection to Sybase IQ is ODBC-based. The Data Source Name is
ase_prod.

ALTER SERVER ase_prod
CLASS 'ASEODBC'
USING 'ase_prod'

• Example 2 – Changes a capability of server infodc:

ALTER SERVER infodc
CAPABILITY 'insert select' OFF

• Example 3 – Closes all connections to the remote server named rem_test:

ALTER SERVER rem_test
CONNECTION CLOSE ALL

• Example 4 – Closes the connection to the remote server named rem_test that has the
connection ID 142536:

ALTER SERVER rem_test
CONNECTION CLOSE 142536

SQL Statements

Reference: Statements and Options 23

Usage

Changes made by ALTER SERVER do not take effect until the next connection to the remote
server.

CLASS clause—Use the CLASS clause to change the server class. For more information on
server classes, see System Administration Guide: Volume 2 > Accessing Remote Data and
System Administration Guide: Volume 2 > Server Classes for Remote Data Access.

USING clause—The USING clause changes the server’s connection information. For more
information about connection information, see CREATE SERVER Statement.

CAPABILITY clause—The CAPABILITY clause turns a server capability ON or OFF. Server
capabilities are stored in the system table SYSCAPABILITY. The names of these capabilities
are stored in the system table SYSCAPABILITYNAME. The SYSCAPABILITY table
contains no entries for a remote server until the first connection is made to that server. At the
first connection, Sybase IQ interrogates the server about its capabilities and then populates
SYSCAPABILITY. For subsequent connections, the server’s capabilities are obtained from
this table.

In general, you need not alter a server’s capabilities. It might be necessary to alter capabilities
of a generic server of class ODBC.

CONNECTION CLOSE clause—When a user creates a connection to a remote server, the
remote connection is not closed until the user disconnects from the local database. The
CONNECTION CLOSE clause allows you to explicitly close connections to a remote server.
You may find this useful when a remote connection becomes inactive or is no longer needed.

These SQL statements are equivalent and close the current connection to the remote server:

ALTER SERVER server-name CONNECTION CLOSE

ALTER SERVER server-name CONNECTION CLOSE CURRENT

You can close both ODBC and JDBC connections to a remote server using this syntax. You do
not need DBA authority to execute either of these statements.

You can also disconnect a specific remote ODBC connection by specifying a connection ID,
or disconnect all remote ODBC connections by specifying the ALL keyword. If you attempt to
close a JDBC connection by specifying the connection ID or the ALL keyword, an error
occurs. When the connection identified by connection-id is not the current local connection,
the user must have DBA authority to be able to close the connection.

Side effects:

• Automatic commit

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Open Client/Open Server.

SQL Statements

 24 Sybase IQ

Permissions

Must have DBA authority to execute this command.

See also
• CREATE SERVER Statement on page 129
• DROP SERVER Statement on page 176

ALTER SERVICE Statement
Alters a Web service.

Syntax
ALTER SERVICE service-name
[TYPE 'service-type-string']
[attributes]
[AS statement']

Parameters

• attributes:[AUTHORIZATION { ON | OFF }] [SECURE { ON | OFF }] [USER
user-name | NULL }] [URL [PATH] { PATH] { ON | OFF | ELEMENTS }] [USING
(SOAP-prefix | NULL }] – service-type-string: { ‘RAW’ | ‘HTML’ | ‘XML’ | ‘SOAP’
| ’DISH’ }

Examples

• Example 1 – To set up a Web server quickly, start a database server with the -xs switch,
then execute these statements:

CREATE SERVICE tables TYPE 'HTML'

ALTER SERVICE tables
AUTHORIZATION OFF
USER DBA
AS SELECT * FROM SYS.ISYSTAB

After executing these statements, use any Web browser to open the URL http://localhost/
tables.

Usage

The ALTER SERVICE statement causes the database server to act as a Web server.

service-name—You cannot rename Web services.

service-type-string—Identifies the type of the service. The type must be one of the listed
service types. There is no default value.

SQL Statements

Reference: Statements and Options 25

AUTHORIZATION clause—Determines whether users must specify a user name and
password when connecting to the service. If authorization is OFF, the AS clause is required
and a single user must be identified by the USER clause. All requests are run using that user’s
account and permissions.

If authorization is ON, all users must provide a user name and password. Optionally, you
might limit the users that are permitted to use the service by providing a user or group name
using the USER clause. If the user name is NULL, all known users can access the service.

The default value is ON. It is recommended that production systems be run with authorization
turned on and that you grant permission to use the service by adding users to a group.

SECURE clause—Indicates whether unsecure connections are accepted. ON indicates that
only HTTPS connections are to be accepted. Service requests received on the HTTP port are
automatically redirected to the HTTPS port. If set to OFF, both HTTP and HTTPS
connections are accepted. The default value is OFF.

USER clause—If authorization is disabled, this parameter becomes mandatory and specifies
the user id used to execute all service requests. If authorization is enabled (the default), this
optional clause identified the user or group permitted access to the service. The default value is
NULL, which grants access to all users.

URL clause—Determines whether URI paths are accepted and, if so, how they are processed.
OFF indicates that nothing must follow the service name in a URI request. ON indicates that
the remainder of the URI is interpreted as the value of a variable named url. ELEMENTS
indicates that the remainder of the URI path is to be split at the slash characters into a list of up
to 10 elements. The values are assigned to variables named url plus a numeric suffix of
between 1 and 10; for example, the first three variable names are url1, url2, and url3. If fewer
than 10 values are supplied, the remaining variables are set to NULL. If the service name ends
with the character /, then URL must be set to OFF. The default value is OFF.

USING clause—This clause applies only to DISH services. The parameter specifies a name
prefix. Only SOAP services whose names begin with this prefix are handled.

statement—If the statement is NULL, the URI must specify the statement to be executed.
Otherwise, the specified SQL statement is the only one that can be executed through the
service. SOAP services must have statements; DISH services must have none. The default
value is NULL.

It is strongly recommended that all services run in production systems define a statement. The
statement can be NULL only if authorization is enabled.

RAW—The result set is sent to the client without any further formatting. You can produce
formatted documents by generating the required tags explicitly within your procedure.

HTML—The result set of a statement or procedure is automatically formatted into an HTML
document that contains a table.

XML—The result set is assumed to be in XML format. If it is not already so, it is automatically
converted to XML RAW format.

SQL Statements

 26 Sybase IQ

SOAP—The request must be a valid Simple Object Access Protocol, or SOAP, request. The
result set is automatically formatted as a SOAP response. For more information about the
SOAP standards, see www.w3.org/TR/SOAP.

DISH—A Determine SOAP Handler, or DISH, service acts as a proxy for one or more SOAP
services. In use, it acts as a container that holds and provides access to a number of SOAP
services. A Web Services Description Language (WSDL) file is automatically generated for
each of the included SOAP services. The included SOAP services are identified by a common
prefix, which must be specified in the USING clause.

See also SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere
Data Access APIs > SQL Anywhere web services.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority.

See also
• CREATE SERVICE Statement on page 130

• DROP SERVICE Statement on page 177

ALTER TABLE Statement
Modifies a table definition.

Syntax
ALTER TABLE [owner.]table-name
{ alter-clause, ... }

Parameters

• alter-clause: – ADD create-clause | ALTER column-name column-alteration | ALTER
 [CONSTRAINT constraint-name] CHECK (condition) | DROP drop-object |
RENAME rename-object | move-clause | SPLIT PARTITION partition-
name INTO (partition-decl-1, partition-decl-2) | MERGE PARTITION partition-
name-1 INTO partition-name-2 | UNPARTITION | PARTITION BY RANGE (partition-
key) range-partition-decl

• create-clause: – column-name column-definition [column-constraint] | table-constraint
 | PARTITION BY partitioning-schema

SQL Statements

Reference: Statements and Options 27

http://www.w3.org/TR/SOAP
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-httpserver.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-httpserver.html

• column-alteration: – { alterable-column-attribute } [alterable-column-attribute…]
 | ADD [constraint-name] CHECK (condition)
 | DROP { DEFAULT | CHECK | CONSTRAINT constraint-name }

• alterable-column-attribute: – [NOT] NULL | DEFAULT default-value | [CONSTRAINT
constraint-name] CHECK { NULL | (condition) }

• column-constraint: – [CONSTRAINT constraint-name] { UNIQUE | PRIMARY KEY |
REFERENCES table-name [(column-name)] [actions] | CHECK (condition) | IQ
UNIQUE (integer) }

• drop-object: – { column-name | CHECK| | CONSTRAINT constraint-name
 | UNIQUE (index-columns-list) | PRIMARY KEY | FOREIGN KEY fkey-name
 | PARTITION range-partition-name }

• move-clause: – { ALTER column-name MOVE { PARTITION (partition-name TO new-
dbspace-name) | TO new-dbspace-name } } | MOVE PARTITION partition-name TO new-
dbspace-name | MOVE TO new-dbspace-name | MOVE METADATA TO new-dbspace-
name

• rename-object: – new-table-name | column-name TO new-column-name
 | CONSTRAINT constraint-name TO new-constraint-name | PARTITION partition-
name TO new-partition-name

• column-definition: – column-name data-type [NOT NULL] [DEFAULT default-value |
IDENTITY]

• default-value: – special-value | string | global variable | [-] number | (constant-
expression) | built-in-function (constant-expression) | AUTOINCREMENT | NULL |
TIMESTAMP | LAST USER | USER

• special-value: – CURRENT { DATABASE | DATE | REMOTE USER | TIME | TIMESTAMP |
USER | PUBLISHER }

• table-constraint: – [CONSTRAINT constraint-name] { UNIQUE (column-name [, …]) |
PRIMARY KEY (column-name [, …]) | foreign-key-constraint | CHECK (condition) }

• foreign-key-constraint: – FOREIGN KEY [role-name] [(column-name [, …])] ...
REFERENCES table-name [(column-name [, …])] ... [actions] [

• rename-object: – new-table-name | column-name TO new-column-name
 | CONSTRAINT constraint-name TO new-constraint-name | PARTITION partition-
name TO new-partition-name

• range-partitioning-scheme: – RANGE(partition-key) (range-partition-decl [,range-
partition-decl ...])

• partition-key: – column-name
• range-partition-decl: – partition-name VALUES <= ({constant | MAX }) [IN dbspace-

name]
• actions: – [ON { UPDATE | DELETE } action]
• action: – { RESTRICT }

SQL Statements

 28 Sybase IQ

Examples

• Example 1 – Add a new column to the Employees table showing which office they work
in:

ALTER TABLE Employees
ADD office CHAR(20)

• Example 2 – Drop the office column from the Employees table:

ALTER TABLE Employees
DROP office

• Example 3 – Add a column to the Customers table assigning each customer a sales
contact:

ALTER TABLE Customers
ADD SalesContact INTEGER
REFERENCES Employees (EmployeeID)

• Example 4 – Add a new column CustomerNum to the Customers table and assigns a
default value of 88:

ALTER TABLE Customers
ADD CustomerNum INTEGER DEFAULT 88

• Example 5 – Only FP indexes for c2, c4, and c5, are moved from dbspace Dsp3 to
Dsp6. FP index for c1 remains in Dsp1. FP index for c3 remains in Dsp2. The primary
key for c5 remains in Dsp4. DATE index c4_date remains in Dsp5.

CREATE TABLE foo (
 c1 INT IN Dsp1,
 c2 VARCHAR(20),
 c3 CLOB IN Dsp2,
 c4 DATE,
 c5 BIGINT,
 PRIMARY KEY (c5) IN Dsp4) IN Dsp3);

 CREATE DATE INDEX c4_date ON foo(c4) IN Dsp5;
 ALTER TABLE foo
 MOVE TO Dsp6;

• Example 6 – Move only FP index c1 from dbspace Dsp1 to Dsp7:

ALTER TABLE foo ALTER c1 MOVE TO Dsp7

• Example 7 – This example illustrates the use of many ALTER TABLE clauses to move,
split, rename, and merge partitions.

Create a partitioned table:

CREATE TABLE bar (
 c1 INT,
 c2 DATE,
 c3 VARCHAR(10))
 PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2005-12-31') IN dbsp1,
 p2 VALUES <= ('2006-12-31') IN dbsp2,
 P3 VALUES <= ('2007-12-31') IN dbsp3,
 P4 VALUES <= ('2008-12-31') IN dbsp4);

SQL Statements

Reference: Statements and Options 29

 INSERT INTO bar VALUES(3, '2007-01-01', 'banana nut');
 INSERT INTO BAR VALUES(4, '2007-09-09', 'grape jam');
 INSERT INTO BAR VALUES(5, '2008-05-05', 'apple cake');

Move partition p2 to dbsp5:

ALTER TABLE bar MOVE PARTITION p2 TO DBSP5;

Split partition p4 into 2 partitions:

ALTER TABLE bar SPLIT PARTITION p4 INTO
 (P41 VALUES <= ('2008-06-30') IN dbsp4,
 P42 VALUES <= ('2008-12-31') IN dbsp4);

This SPLIT PARTITION reports an error, as it requires data movement. Not all existing rows
are in the same partition after split.

ALTER TABLE bar SPLIT PARTITION p3 INTO
 (P31 VALUES <= ('2007-06-30') IN dbsp3,
 P32 VALUES <= ('2007-12-31') IN dbsp3);

This error is reported:

No data move is allowed, cannot split partition p3.

This SPLIT PARTITION reports an error, because it changes the partition boundary value:

ALTER TABLE bar SPLIT PARTITION p2 INTO
 (p21 VALUES <= ('2006-06-30') IN dbsp2,
 P22 VALUES <= ('2006-12-01') IN dbsp2);

This error is reported:

Boundary value for the partition p2 cannot be changed.

Merge partition p3 into p2. An error is reported as a merge from a higher boundary value
partition into a lower boundary value partition is not allowed.

ALTER TABLE bar MERGE PARTITION p3 into p2;

This error is reported:

Partition 'p2' is not adjacent to or before partition 'p3'.

Merge partition p2 into p3:

ALTER TABLE bar MERGE PARTITION p2 INTO P3;

Rename partition p1 to p1_new:

ALTER TABLE bar RENAME PARTITION p1 TO p1_new;

Unpartition table bar:

ALTER TABLE bar UNPARTITION;

SQL Statements

 30 Sybase IQ

Partition table bar. This command reports an error, because all rows must be in the first
partition.

ALTER TABLE bar PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2005-12-31') IN dbsp1,
 P2 VALUES <= ('2006-12-31') IN DBSP2,
 P3 VALUES <= ('2007-12-31') IN dbsp3,
 P4 VALUES <= ('2008-12-31') IN dbsp4);

This error is reported:

All rows must be in the first partition.

Partition table bar:

ALTER TABLE bar PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2008-12-31') IN dbsp1,
 P2 VALUES <= ('2009-12-31') IN dbsp2,
 P3 VALUES <= ('2010-12-31') IN dbsp3,
 P4 VALUES <= ('2011-12-31') IN dbsp4);

Usage

The ALTER TABLE statement changes table attributes (column definitions and constraints) in
a table that was previously created. The syntax allows a list of alter clauses; however, only one
table constraint or column constraint can be added, modified, or deleted in each ALTER TABLE
statement.

Note: You cannot alter local temporary tables, but you can alter global temporary tables when
they are in use by only one connection.

Sybase IQ enforces REFERENCES and CHECK constraints. Table and/or column check
constraints added in an ALTER TABLE statement are not evaluated as part of that alter table
operation. For details about CHECK constraints, see CREATE TABLE Statement.

If SELECT * is used in a view definition and you alter a table referenced by the SELECT *, then
you must run ALTER VIEW <viewname> RECOMPILE to ensure that the view definition is
correct and to prevent unexpected results when querying the view.

ADD column-definition [column-constraint]—Add a new column to the table. The table
must be empty to specify NOT NULL. The table might contain data when you add an
IDENTITY or DEFAULT AUTOINCREMENT column. If the column has a default IDENTITY
value, all rows of the new column are populated with sequential values. You can also add a
foreign key constraint as a column constraint for a single column key. The value of the
IDENTITY/DEFAULT AUTOINCREMENT column uniquely identifies every row in a table. The
IDENTITY/DEFAULT AUTOINCREMENT column stores sequential numbers that are
automatically generated during inserts and updates. DEFAULT AUTOINCREMENT columns
are also known as IDENTITY columns. When using IDENTITY/DEFAULT AUTOINCREMENT,
the column must be one of the integer data types, or an exact numeric type, with scale 0. See
CREATE TABLE Statement for more about column constraints and IDENTITY/DEFAULT
AUTOINCREMENT columns.

SQL Statements

Reference: Statements and Options 31

Note: You cannot add foreign key constraints to an unenforced primary key created with
Sybase IQ version 12.4.3 or earlier.

ALTER column-name column-alteration—Change the definition of a column. The permitted
modifications are:

• SET DEFAULT default-value—Change the default value of an existing column in a table.
You can also use the MODIFY clause for this task, but ALTER is ISO/ANSI SQL compliant,
and MODIFY is not. Modifying a default value does not change any existing values in the
table.

• DROP DEFAULT—Remove the default value of an existing column in a table. You can
also use the MODIFY clause for this task, but ALTER is ISO/ANSI SQL compliant, and
MODIFY is not. Dropping a default does not change any existing values in the table.

• ADD—Add a named constraint or a CHECK condition to the column. The new constraint
or condition applies only to operations on the table after its definition. The existing values
in the table are not validated to confirm that they satisfy the new constraint or condition.

• CONSTRAINT column-constraint-name—The optional column constraint name lets you
modify or drop individual constraints at a later time, rather than having to modify the entire
column constraint.

• [CONSTRAINT constraint-name] CHECK (condition)—Use this clause to add a
CHECK constraint on the column.

• SET COMPUTE (expression)—Change the expression associated with a computed
column. The values in the column are recalculated when the statement is executed, and the
statement fails if the new expression is invalid.

• DROP COMPUTE—Change a column from being a computed column to being a
noncomputed column. This statement does not change any existing values in the table.

DROP partition clause—Drop the specified partition. The rows are deleted and the partition
definition is dropped. You cannot drop the last partition because dropping the last partition
would transform a partitioned table to a non-partitioned table. (To merge a partitioned table,
use UNPARTITION clause instead.) For example:

 CREATE TABLE foo (c1 INT, c2 INT)
 PARTITION BY RANGE (c1)
 (P1 VALUES <= (100) IN dbsp1,
 P2 VALUES <= (200) IN dbsp2,
 P3 VALUES <= (MAX) IN dbsp3
) IN dbsp4);
 LOAD TABLE ….
 ALTER TABLE DROP PARTITION P1;

ADD table-constraint—Add a constraint to the table. You can also add a foreign key constraint
as a table constraint for a single-column or multicolumn key. See CREATE TABLE Statement
for a full explanation of table constraints.

If PRIMARY KEY is specified, the table must not already have a primary key created by the
CREATE TABLE statement or another ALTER TABLE statement.

SQL Statements

 32 Sybase IQ

Note: You cannot MODIFY a table or column constraint. To change a constraint, DELETE the
old constraint and ADD the new constraint.

DROP column-name—Drop the column from the table. If the column is contained in any
multicolumn index, uniqueness constraint, foreign key, or primary key, then the index,
constraint, or key must be deleted before the column can be deleted. This does not delete
CHECK constraints that refer to the column. An IDENTITY/DEFAULT AUTOINCREMENT
column can only be deleted if IDENTITY_INSERT is turned off and the table is not a local
temporary table.

DROP CHECK—Drop all check constraints for the table. This includes both table check
constraints and column check constraints.

DROP CONSTRAINT constraint-name—Drop the named constraint for the table or specified
column.

DROP UNIQUE (column-name,…)—Drop the unique constraints on the specified
column(s). Any foreign keys referencing the unique constraint (rather than the primary key)
are also deleted. Reports an error if there are associated foreign-key constraints. Use ALTER
TABLE to delete all foreign keys that reference the primary key before you delete the primary
key constraint.

DROP PRIMARY KEY—Drop the primary key. All foreign keys referencing the primary key
for this table are also deleted. Reports an error if there are associated foreign key constraints. If
the primary key is unenforced, DELETE returns an error if associated unenforced foreign key
constraints exist.

DROP FOREIGN KEY role-name—Drop the foreign key constraint for this table with the
given role name. Retains the implicitly created nonunique HG index for the foreign key
constraint. Users can explicitly remove the HG index with the DROP INDEX statement.

DROP PARTITION—Delete rows in partition P1 and drop the partition definition of P1. If a
new row with value 99 for column c1 is inserted, it will be placed under partition p2 in
dbspace dbsp2.

RENAME new-table-name—Change the name of the table to the new-table-name. Any
applications using the old table name must be modified. Also, any foreign keys that were
automatically assigned the same name as the old table name do not change names.

RENAME column-name TO new-column-name—Change the name of the column to new-
column-name. Any applications using the old column name must be modified.

RENAME constraint-name TO new-constraint-name—Change the name of the constraint to
new-constraint-name. Any applications using the old constraint name must be modified.

ALTER TABLE is prevented whenever the statement affects a table that is currently being used
by another connection. ALTER TABLE can be time consuming, and the server does not process
requests referencing the same table while the statement is being processed.

SQL Statements

Reference: Statements and Options 33

ALTER Column MOVE TO—Move the specified column to the new dbspace for a non-
partitioned table. The ALTER Column MOVE TO clause cannot be requested on a partitioned
table. The ALTER Column MOVE PARTITION clause moves the column of the specified
partition to the specified dbspace.

MOVE PARTITION—Move the specified partition to the new dbspace.

MOVE TO—Move all table objects including columns, indexes, unique constraints, primary
key, foreign keys, and metadata resided in the same dbspace as the table is mapped to the new
dbspace.

Each table object can reside in only one dbspace. Any type of ALTER MOVE blocks any
modification to the table for the entire duration of the move.

MOVE TABLE METADATA—Move the metadata of the table to a new dbspace. For a
partitioned table, the MOVE TABLE METADATA clause also moves metadata that is shared
among partitions.

You must have DBA or SPACE ADMIN authority, or have CREATE privilege on the new
dbspace and be the table owner or have alter permission on the table.

SPLIT PARTITION—Split the specified partition into two partitions. A partition can be split
only if no data must be moved. All existing rows of the partition to be split must remain in a
single partition after the split. The boundary value for partition-decl-1 must be less than the
boundary value of partition-name and the boundary value for partition-decl-2 must be equal to
the boundary value of partition-name. You can specify different names for the two new
partitions. The old partition-name can only be used for the second partition, if a new name is
not specified.

MERGE PARTITION—Merge partition-name-1 into partition-name-2. Two partitions can be
merged if they are adjacent partitions and the data resides on the same dbspace. You can only
merge a partition with a lower partition value into the adjacent partition with a higher partition
value. Note that the server does not check CREATE permission on the dbspace into which the
partition is merged. For an example of how to create adjacent partitions, see Example 3 in
CREATE TABLE Statement.

UNPARTITION—Remove partitions from a partitioned table. Each column is placed in a
single dbspace. Note that the server does not check CREATE permission on the dbspace to
which data of all partitions is moved. ALTER TABLE UNPARTITION blocks all database
activities.

PARTITION BY—Partition a non-partitioned table. A non-partitioned table can be
partitioned, if all existing rows belong to the first partition. You can specify a different dbspace
for the first partition than the dbspace of the column or table. But existing rows are not moved.
Instead, the proper dbspace for the column/partition is kept in
SYS.ISYSIQPARTITIONCOLUMN for existing columns. Only the default or max identity
column(s) that are added later for the first partition are stored in the specified dbspace for the
first partition.

SQL Statements

 34 Sybase IQ

RENAME PARTITION—Rename an existing partition name to a new partition name.

Side effects:

• Automatic commit. The ALTER and DROP options close all cursors for the current
connection. The dbisql data window is also cleared.

• A checkpoint is carried out at the beginning of the ALTER TABLE operation.
• Once you alter a column or table, any stored procedures, views or other items that refer to

the altered column no longer work.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Some clauses are supported by Adaptive Server Enterprise.

Permissions

For MOVE syntax, one of the following must be true:

• Have DBA or SPACE ADMIN authority
• Have CREATE permission on the new dbspace and be the table owner
• Have ALTER permission on the table

For syntax other than MOVE, one of the following must be true:

• Have DBA authority
• Have CREATE permission on the new dbspace and be the table owner
• Have ALTER permission on the table

Requires exclusive access to the table.

See also
• CREATE TABLE Statement on page 133

• DROP Statement on page 170

• IDENTITY_INSERT Option on page 383

ALTER TEXT CONFIGURATION Statement
Alters a text configuration object.

Syntax
See below.

SQL Statements

Reference: Statements and Options 35

Usage

For syntax and complete description, see Unstructured Data Analytics in Sybase IQ.

ALTER TEXT INDEX Statement
Alters the definition of a TEXT index.

Syntax
See below.

Usage

For syntax and complete description, see Unstructured Data Analytics in Sybase IQ.

ALTER USER Statement
Changes user settings.

Syntax

Syntax 1

ALTER USER user-name [IDENTIFIED BY password] [LOGIN POLICY policy-name]
[FORCE PASSWORD CHANGE { ON | OFF }]

Syntax 2

ALTER USER user-name [RESET LOGIN POLICY]

Examples

• Example 1 – Alter a user named SQLTester. The password is set to “welcome”. The
SQLTester user is assigned to the Test1 login policy and the password does not expire
on the next login.

ALTER USER SQLTester
IDENTIFIED BY welcome
LOGIN POLICY Test1
FORCE PASSWORD CHANGE OFF

The user executing this command requires both USER ADMIN and PERMS ADMIN or
DBA authority. PERMS ADMIN authority is required to change the password and USER
ADMIN authority to change the login policy.

SQL Statements

 36 Sybase IQ

Usage

user--name—The name of the user.

IDENTIFIED BY clause—Clause providing the password for the user.

policy-name—The name of the login policy to assign the user. No change is made if the LOGIN
POLICY clause is not specified.

FORCE PASSWORD CHANGE clause—Controls whether the user must specify a new
password when they log in. This setting overrides the
PASSWORD_EXPIRY_ON_NEXT_LOGIN option setting in their policy.

RESET LOGIN POLICY clause—Reverts the settings of the user's login to the original values
in the login policy. This usually clears all locks that are implicitly set due to the user exceeding
the failed logins or exceeding the maximum number of days since the last login. When you
reset a login policy, a user can access an account that has been locked for exceeding a login
policy option limit such as MAX_FAILED_LOGIN_ATTEMPTS or
MAX_DAYS_SINCE_LOGIN.

For more information on managing login policies, see SQL Anywhere 11.0.1 > SQL
Anywhere Server – Database Administration > Configuring Your Database > Managing user
IDs, authorities, and permissions > Managing login policies overview.

Enhanced ALTER LOGIN POLICY syntax for multiplex is described in Using Sybase IQ
Multiplex.

User IDs and passwords cannot:

• Begin with white space, single quotes, or double quotes
• End with white space
• Contain semicolons

If you set the PASSWORD_EXPIRY_ON_NEXT_LOGIN value to ON, the passwords of all
users assigned to this login policy expire immediately when they next log in. You can use the
ALTER USER and LOGIN POLICY clauses to force a user to change the password when he next
logs in.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Users may change their own passwords. To change other users’ passwords requires either
DBA or PERMS ADMIN authorities. A user needs DBA or USER ADMIN authority for
ALTER USER LOGIN POLICY, FORCE PASSWORD CHANGE, or RESET LOGIN POLICY.

SQL Statements

Reference: Statements and Options 37

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html

See also
• ALTER LOGIN POLICY Statement on page 19

• COMMENT Statement on page 58

• CREATE LOGIN POLICY Statement on page 107

• CREATE USER Statement on page 146

• DROP LOGIN POLICY Statement on page 175

• DROP USER Statement on page 179

• GRANT Statement on page 199

• REVOKE Statement on page 272

ALTER VIEW Statement
Replaces a view definition with a modified version.

Syntax

Syntax 1 – Alter the structure of the view
ALTER VIEW
… [owner.]view-name [(column-name [, …])]
… AS select-statement
… [WITH CHECK OPTION]

Syntax 2 – Change attributes for the view
ALTER VIEW
… [owner.]view-name
… { SET HIDDEN | RECOMPILE | DISABLE | ENABLE }

Usage

AS—Purpose and syntax identical to CREATE VIEW statement. See CREATE VIEW
Statement.

WITH CHECK OPTION —Purpose and syntax identical to CREATE VIEW statement. See
CREATE VIEW Statement.

SET HIDDEN—Obfuscate the definition of the view and cause the view to become hidden
from view, for example in Sybase Central. Explicit references to the view still work.

Warning! The SET HIDDEN operation is irreversible.

RECOMPILE—Recreate the column definitions for the view. Identical in functionality to the
ENABLE clause, except you can use it on a view that is not disabled.

DISABLE—Disable the view from use by the database server.

SQL Statements

 38 Sybase IQ

ENABLE—Enable a disabled view, which causes the database server to recreate the column
definitions for the view. Before you enable a view, you must enable any views on which it
depends.

When you alter a view, existing permissions on the view are maintained and do not require
reassignment. Instead of using the ALTER VIEW statement, you could also drop the view and
recreate it using DROP VIEW and CREATE VIEW, respectively. If you do this, view
permissions must be reassigned.

After completing the view alteration using Syntax 1, the database server recompiles the view.
Depending on the type of change you made, if there are dependent views, the database server
attempts to recompile them. If you made changes that impact a dependent view, that view may
become invalid, requiring you to alter the definition for the dependent view.

Warning! If the SELECT statement defining the view contains an asterisk (*), the number of
the columns in the view could change if columns were added or deleted from the underlying
tables. The names and data types of the view columns could also change.

Syntax 1—Alter the structure of the view. Unlike altering tables, where your change might be
limited to individual columns, altering the structure of a view requires that you replace the
entire view definition with a new definition, much as you would when creating the view. For a
description of the parameters used to define the structure of a view, see CREATE VIEW
Statement.

Syntax 2—Change attributes for the view, such as whether the view definition is hidden.

When you use SET HIDDEN, you can unload and reload the view into other databases.
Debugging using the debugger does not show the view definition, nor is it available through
procedure profiling. If you need to change the definition of a hidden view, you must drop the
view and create it again using the CREATE VIEW statement.

When you use the DISABLE clause, the view is no longer available for use by the database
server to answer queries. Disabling a view is similar to dropping one, except that the view
definition remains in the database. Disabling a view also disables any dependent views.
Therefore, the DISABLE clause requires exclusive access, not only to the view being disabled,
but to any dependent views, which are also disabled.

See also System Administration Guide: Volume 2 > Using Procedures and Batches > Hiding
the Contents of Procedures, Functions, and Views, Reference: Building Blocks, Tables, and
Procedures > System Procedures > System Stored Procedures > sa_dependent_views
Procedure.

For detailed information on how the database server handles view dependencies, see SQL
Anywhere 11.0.1 > SQL Anywhere Server – SQL Usage > Creating Databases > Working
with database objects > Working with views > View Dependencies.

Side effects:

• Automatic commit

SQL Statements

Reference: Statements and Options 39

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html

• All procedures and triggers are unloaded from memory, so that any procedure or trigger
that references the view reflects the new view definition. The unloading and loading of
procedures and triggers can have a performance impact if you regularly alter views.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must be owner of the view or have DBA authority.

See also
• CREATE VIEW Statement on page 149
• DROP Statement on page 170
• Identifying and Fixing Invalid Dependent Views on page 40

Identifying and Fixing Invalid Dependent Views
Check for, and correct, any dependent views that become invalid due to changes to their
underlying tables.

Under most circumstances the database server automatically recompiles views to keep them
valid if the underlying tables change. However, if your table alteration removes or materially
changes something referenced by the view definition, then the dependent view becomes
invalid. For example, if you remove a column referenced in the view definition, then the
dependent view is no longer valid. Correct the view definition and manually recompile the
view.

1. Run sa_dependent_views to get the list of dependent views.

2. Perform the DDL operation that alters the table. The server automatically disables
dependent views, and attempts to recompile them once the DDL is complete.

3. Check that all the views listed by sa_dependent_views are valid. For example, perform a
simple test such as SELECT * FROM myview.

4. If a view is invalid, it is likely you will need to alter the view definition to resolve the issue.
Examine the view definition against the DDL change that you made and make the
necessary changes. Run ALTER VIEW RECOMPILE to correct the view definition.

5. Test the corrected view to make sure it works. For example, perform a simple test such as
SELECT * FROM myview.

sa_dependent_views returns the list of all dependent views for a given table or view. See
Reference: Building Blocks, Tables, and Procedures > System Procedures > System Stored
Procedures > sa_dependent_views Procedure and SQL Anywhere 11.0.1 > SQL Anywhere

SQL Statements

 40 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-dependent-views-sysproc.html

Server - SQL Reference > System Objects > System procedures > Alphabetical list of system
procedures > sa_dependent_views system procedure.

For detailed information on how the database server handles view dependencies, see SQL
Anywhere 11.0.1 > SQL Anywhere Server – SQL Usage > Creating Databases > Working
with database objects > Working with views > View Dependencies.

See also
• ALTER VIEW Statement on page 38

BACKUP Statement
Backs up a Sybase IQ database on one or more archive devices.

Syntax
BACKUP DATABASE
[backup-option…]
TO archive_device [archive-option...]
… [WITH COMMENT string]

Parameters

• backup-option: –
{ READWRITE FILES ONLY |
READONLY dbspace-or-file [, …] }
CRC { ON | OFF }
ATTENDED { ON | OFF }
BLOCK FACTOR integer
{ FULL | INCREMENTAL | INCREMENTAL SINCE FULL }
VIRTUAL { DECOUPLED |
ENCAPSULATED ‘shell_command’ }
WITH COMMENT comment

• dbspace-or-file: –
{ DBSPACES identifier-list | FILES identifier-list }

• identifier-list: – identifier [, …]
• archive-option: – SIZE integer STACKER integer

Examples

• Example 1 – This UNIX example backs up the iqdemo database onto tape devices /
dev/rmt/0 and /dev/rmt/2 on a Sun Solaris platform. On Solaris, the letter n after
the device name specifies the “no rewind on close” feature. Always specify this feature
with BACKUP, using the naming convention appropriate for your UNIX platform
(Windows does not support this feature). This example backs up all changes to the
database since the last full backup:

SQL Statements

Reference: Statements and Options 41

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-dependent-views-sysproc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-dependent-views-sysproc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html

BACKUP DATABASE
INCREMENTAL SINCE FULL
TO '/dev/rmt/0n' SIZE 10000000
TO '/dev/rmt/2n' SIZE 15000000

Note: Size units are kilobytes (KB), although in most cases, size of less than 1GB are
inappropriate. In this example, the specified sizes are 10GB and 15GB.

• Example 2 – These BACKUP commands specify read-only files and dbspaces:

BACKUP DATABASE READONLY DBSPACES dsp1
TO '/dev/rmt/0'

BACKUP DATABASE READONLY FILES dsp1_f1, dsp1_f2
TO 'bkp.f1f2'

BACKUP DATABASE READONLY DBSPACES dsp2, dsp3
READONLY FILES dsp4_f1, dsp5_f2
TO 'bkp.RO'

Usage

The IQ database might be open for use by many readers and writers when you execute a
BACKUP command. It acts as a read-only user and relies on the Table Level Versioning feature
of Sybase IQ to achieve a consistent set of data.

BACKUP implicitly issues a CHECKPOINT prior to commencing, and then it backs up the
catalog tables that describe the database (and any other tables you have added to the catalog
store). During this first phase, Sybase IQ does not allow any metadata changes to the database
(such as adding or dropping columns and tables). Correspondingly, a later RESTORE of the
backup restores only up to that initial CHECKPOINT.

The BACKUP command lets you specify full or incremental backups. You can choose two
kinds of incremental backups. INCREMENTAL backs up only those blocks that have changed
and committed since the last BACKUP of any type (incremental or full). INCREMENTAL
SINCE FULL backs up all of the blocks that have changed since the last full backup. The first
type of incremental backup can be smaller and faster to do for BACKUP commands, but slower
and more complicated for RESTORE commands. The opposite is true for the other type of
incremental backup. The reason is that the first type generally results in N sets of incremental
backup archives for each full backup archive. If a restore is required, the DBA must RESTORE
the full backup archive first, and then each incremental archive in the proper order. (Sybase IQ
keeps track of which ones are needed.) The second type requires the DBA to restore only the
full backup archive and the last incremental archive.

Incremental virtual backup is supported using the VIRTUAL DECOUPLED and VIRTUAL
ENCAPSULATED parameters of the BACKUP statement.

Although you can perform an OS-level copy of tablespaces to make a virtual backup of one or
more read-only dbspaces, Sybase recommends that you use the virtual backup statement,
because it records the backup in the IQ system tables. See Reference: Building Blocks, Tables,
and Procedures > System Tables and Views > System Views > SYSIQBACKUPHISTORY

SQL Statements

 42 Sybase IQ

System View and Reference: Building Blocks, Tables, and Procedures > System Tables and
Views > System Views > SYSIQBACKUPHISTORYDETAIL System View.

READWRITE FILES ONLY may be used with FULL, INCREMENTAL, and INCREMENTAL
SINCE FULL to restrict the backup to only the set of read-write files in the database. The read-
write dbspaces/files must be IQ dbspaces.

If READWRITE FILES ONLY is used with an INCREMENTAL or INCREMENTAL SINCE FULL
backup, the backup will not back up data on read-only dbspaces or dbfiles that has changed
since the depends-on backup. If READWRITE FILES ONLY is not specified for an
INCREMENTAL or INCREMENTAL SINCE FULL backup, the backup backs up all database
pages that have changed since the depends-on backup, both on read-write and read-only
dbspaces.

CRC clause – Activate 32-bit cyclical redundancy checking on a per block basis (in addition to
whatever error detection is available in the hardware). When you specify this clause, the
numbers computed on backup are verified during any subsequent RESTORE operation,
affecting performance of both commands. The default is ON.

ATTENDED clause – Applies only when backing up to a tape device. If ATTENDED ON (the
default) is used, a message is sent to the application that issued the BACKUP statement if the
tape drive requires intervention. This might happen, for example, when a new tape is required.
If you specify OFF, BACKUP does not prompt for new tapes. If additional tapes are needed and
OFF has been specified, Sybase IQ gives an error and aborts the BACKUP command.
However, a short delay is included to account for the time an automatic stacker drive requires
to switch tapes.

BLOCK FACTOR clause – Specify the number of blocks to write at one time. Its value must
be greater than 0, or Sybase IQ generates an error message. Its default is 25 for UNIX systems
and 15 for Windows systems (to accommodate the smaller fixed tape block sizes). This clause
effectively controls the amount of memory used for buffers. The actual amount of memory is
this value times the block size times the number of threads used to extract data from the
database. Sybase recommends setting BLOCK FACTOR to at least 25.

FULL clause – Specify a full backup; all blocks in use in the database are saved to the archive
devices. This is the default action.

INCREMENTAL clause – Specify an incremental backup; all blocks changed since the last
backup of any kind are saved to the archive devices.

The keyword INCREMENTAL is not allowed with READONLY FILES.

INCREMENTAL SINCE FULL clause – Specify an incremental backup; all blocks changed
since the last full backup are saved to the archive devices.

VIRTUAL DECOUPLED clause – Specify a decoupled virtual backup. For the backup to be
complete, you must copy the IQ dbspaces after the decoupled virtual backup finishes, and then
perform a nonvirtual incremental backup.

SQL Statements

Reference: Statements and Options 43

VIRTUAL ENCAPSULATED clause – Specify an encapsulated virtual backup. The ‘shell-
command’ argument can be a string or variable containing a string that is executed as part of
the encapsulated virtual backup. The shell commands execute a system-level backup of the IQ
store as part of the backup operation.

TO clause – Specify the name of the archive_device to be used for backup, delimited with
single quotation marks. The archive_device is a file name or tape drive device name for the
archive file. If you use multiple archive devices, specify them using separate TO clauses. (A
comma-separated list is not allowed.) Archive devices must be distinct. The number of TO
clauses determines the amount of parallelism Sybase IQ attempts with regard to output
devices.

BACKUP and RESTORE write your IQ data in parallel to or from all of the archive devices you
specify. The catalog store is written serially to the first device. Faster backups and restores
result from greater parallelism.

Sybase IQ supports a maximum of 36 hardware devices for backup. For faster backups,
specifying one or two devices per core will help to avoid hardware and IO contention. Set the
SIZE parameter on the BACKUP command to avoid creating multiple files per backup device
and consider the value used in the BLOCK FACTOR clause on the BACKUP command.

BACKUP overwrites existing archive files unless you move the old files or use a different
archive_device name or path.

The backup API DLL implementation lets you specify arguments to pass to the DLL when
opening an archive device. For third-party implementations, the archive_device string has this
format:

'DLLidentifier::vendor_specific_information'

A specific example:

'spsc::workorder=12;volname=ASD002'

The archive_device string length can be up to 1023 bytes. The DLLidentifier portion must be 1
to 30 bytes in length and can contain only alphanumeric and underscore characters. The
vendor_specific_information portion of the string is passed to the third-party implementation
without checking its contents. Do not specify the SIZE or STACKER clauses of the BACKUP
command when using third-party implementations, as that information should be encoded in
the vendor_specific_information portion of the string.

Note: Only certain third-party products are certified with Sybase IQ using this syntax. See the
Release Bulletin for additional usage instructions or restrictions. Before using any third-party
product to back up your Sybase IQ database in this way, make sure it is certified. See the
Release Bulletin, or see the Sybase Certification Reports for the Sybase IQ product in
Technical Documents at http://www.sybase.com/support/techdocs/.

For the Sybase implementation of the backup API, you need to specify only the tape device
name or file name. For disk devices, you should also specify the SIZE value, or Sybase IQ
assumes that each created disk file is no larger than 2GB on UNIX, or 1.5GB on Windows. An

SQL Statements

 44 Sybase IQ

http://www.sybase.com/support/techdocs/

example of an archive device for the Sybase API DLL that specifies a tape device for certain
UNIX systems is:

'/dev/rmt/0'

SIZE clause—Specify maximum tape or file capacity per output device (some platforms do
not reliably detect end-of-tape markers). No volume used on the corresponding device should
be shorter than this value. This value applies to both tape and disk files but not third-party
devices.

Units are kilobytes (KB), although in general, less than 1GB is inappropriate. For example, for
a 3.5GB tape, specify 3500000. Defaults are by platform and medium. The final size of the
backup file will not be exact, because backup writes in units of large blocks of data.

The SIZE parameter is per output device. SIZE does not limit the number of bytes per device;
SIZE limits the file size. Each output device can have a different SIZE parameter.

During backup, when the amount of information written to a given device reaches the value
specified by the SIZE parameter, BACKUP does one of the following:

• If the device is a file system device, BACKUP closes the current file and creates another file
of the same name, with the next ascending number appended to the file name, for example,
bkup1.dat1.1, bkup1.dat1.2, bkup1.dat1.3.

• If the device is a tape unit, BACKUP closes the current tape and you need to mount another
tape.

It is your responsibility to mount additional tapes if needed, or to ensure that the disk has
enough space to accommodate the backup.

When multiple devices are specified, BACKUP distributes the information across all devices.

Table 2. BACKUP default sizes

Platform Default SIZE for tape Default SIZE for disk

UNIX none 2GB

Windows 1.5GB

SIZE must be a multiple of 64. Other values
are rounded down to a multiple of 64.

1.5GB

STACKER clause—Specify that the device is automatically loaded, and specifies the number
of tapes with which it is loaded. This value is not the tape position in the stacker, which could
be zero. When ATTENDED is OFF and STACKER is ON, Sybase IQ waits for a predetermined
amount of time to allow the next tape to be autoloaded. The number of tapes supplied along
with the SIZE clause are used to determine whether there is enough space to store the backed-
up data. Do not use this clause with third-party media management devices.

SQL Statements

Reference: Statements and Options 45

WITH COMMENT clause—Specify an optional comment recorded in the archive file and in
the backup history file. Maximum length is 32KB. If you do not specify a value, a NULL string
is stored.

Other issues for BACKUP include:

• BACKUP does not support raw devices as archival devices.
• Windows systems support only fixed-length I/O operations to tape devices (for more

information about this limitation, see your Installation and Configuration Guide).
Although Windows supports tape partitioning, Sybase IQ does not use it, so do not use
another application to format tapes for BACKUP. Windows has a simpler naming strategy
for its tape devices, where the first tape device is \\.\tape0, the second is \\.\tape1, and so
on.

Warning! For backup (and for most other situations) Sybase IQ treats the leading
backslash in a string as an escape character, when the backslash precedes an n, an x, or
another backslash. For this reason, when you specify backup tape devices, you must
double each backslash required by the Windows naming convention. For example,
indicate the first Windows tape device you are backing up to as '\\\\.\\tape0', the
second as '\\\\.\\tape1', and so on. If you omit the extra backslashes, or otherwise
misspell a tape device name, and write a name that is not a valid tape device on your
system, Sybase IQ interprets this name as a disk file name.

• Sybase IQ does not rewind tapes before using them. You must ensure the tapes used for
BACKUP or RESTORE are at the correct starting point before putting them in the tape
device. Sybase IQ does rewind tapes after using them on rewinding devices.

• During BACKUP and RESTORE operations, if Sybase IQ cannot open the archive device
(for example, when it needs the media loaded) and the ATTENDED parameter is ON, it
waits for ten seconds and tries again. It continues these attempts indefinitely until either it
is successful or the operation is terminated with a Ctrl+C.

• If you enter Ctrl+C, BACKUP fails and returns the database to the state it was in before the
backup started.

• If disk striping is used, such as on a RAID device, the striped disks are treated as a single
device.

• If you are recovering a SQL Anywhere database, see SQL Anywhere 11.0.1 > SQL
Anywhere Server – Database Administration > Maintaining Your Database > Backup and
data recovery for additional options.

See also System Administration Guide: Volume 1 > Data Backup, Recovery, and
Archiving.

Side effects:

• Automatic commit

SQL Statements

 46 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-new-backup.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-new-backup.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-new-backup.html

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must be the owner of the database or have DBA authority. Users without DBA authority
require OPERATOR authority.

See also
• RESTORE Statement on page 264

BEGIN … END Statement
Groups SQL statements together.

Syntax
[statement-label :]
… BEGIN [[NOT] ATOMIC]
… [local-declaration ; …]
… statement-list
… [EXCEPTION [exception-case …]]
… END [statement-label]

Parameters

• local-declaration: – { variable-declaration | cursor-declaration | exception-declaration |
temporary-table-declaration }

• variable-declaration: – DECLARE variable-name data-type
• exception-declaration: – DECLARE exception-name EXCEPTION FOR SQLSTATE

[VALUE] string
• exception-case: – WHEN exception-name [, …] THEN statement-list | WHEN OTHERS

THEN statement-list

Examples

• Example 1 – The body of a procedure is a compound statement:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT
TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION FOR
 SQLSTATE '02000' ;
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName, CAST(
 sum(SalesOrderItems.Quantity *

SQL Statements

Reference: Statements and Options 47

 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers
 LEFT OUTER JOIN Salesorders
 LEFT OUTER JOIN SalesOrderItems
 LEFT OUTER JOIN Products
 GROUP BY CompanyName ;
 DECLARE ThisValue INT ;
 DECLARE ThisCompany CHAR(35) ;
 SET TopValue = 0 ;
 OPEN curThisCust ;

 CustomerLoop:
 LOOP
 FETCH NEXT curThisCust
 INTO ThisCompany, ThisValue ;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop ;
 END IF ;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue ;
 SET TopCompany = ThisCompany ;
 END IF ;
 END LOOP CustomerLoop ;

CLOSE curThisCust ;
END

Usage

The body of a procedure or trigger is a compound statement. Compound statements can also
be used in control statements within a procedure or trigger.

A compound statement allows one or more SQL statements to be grouped together and treated
as a unit. A compound statement starts with BEGIN and ends with END. Immediately
following BEGIN, a compound statement can have local declarations that exist only within the
compound statement. A compound statement can have a local declaration for a variable, a
cursor, a temporary table, or an exception. Local declarations can be referenced by any
statement in that compound statement, or in any compound statement nested within it. Local
declarations are invisible to other procedures that are called from within a compound
statement.

If the ending statement-label is specified, it must match the beginning statement-label. You
can use the LEAVE statement to resume execution at the first statement after the compound
statement. The compound statement that is the body of a procedure has an implicit label that is
the same as the name of the procedure or trigger.

ATOMIC clause—An atomic statement is a statement executed completely or not at all. For
example, an UPDATE statement that updates thousands of rows might encounter an error after
updating many rows. If the statement does not complete, all changes revert back to their
original state. Similarly, if you specify that the BEGIN statement is atomic, the statement is
executed either in its entirety or not at all.

SQL Statements

 48 Sybase IQ

For a complete description of compound statements and exception handling, see System
Administration Guide: Volume 2 > Using Procedures and Batches.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise. This does not mean that all statements

inside a compound statement are supported.
BEGIN and END keywords are not required in Transact-SQL.
BEGIN and END are used in Transact-SQL to group a set of statements into a single
compound statement, so that control statements such as IF … ELSE, which affect the
performance of only a single SQL statement, can affect the performance of the whole
group. The ATOMIC keyword is not supported by Adaptive Server Enterprise.
In Transact-SQL. DECLARE statements need not immediately follow BEGIN, and the
cursor or variable that is declared exists for the duration of the compound statement. You
should declare variables at the beginning of the compound statement for compatibility.

Permissions

None

See also
• DECLARE LOCAL TEMPORARY TABLE Statement on page 160

• DECLARE CURSOR Statement [ESQL] [SP] on page 154

• LEAVE Statement on page 220

• RESIGNAL Statement on page 263

• SIGNAL Statement on page 297

BEGIN PARALLEL IQ … END PARALLEL IQ Statement
Groups CREATE INDEX statements together for execution at the same time.

Syntax
... BEGIN PARALLEL IQ
 statement-list
... END PARALLEL IQ

Parameters

• statement-list – a list of CREATE INDEX statements

SQL Statements

Reference: Statements and Options 49

Examples

• Example 1 – This statement executes atomically. If one command fails, the entire
statement rolls back:

BEGIN PARALLEL IQ
 CREATE HG INDEX c1_HG on table1 (col1);
 CREATE HNG INDEX c12_HNG on table1 (col12);
 CREATE LF INDEX c1_LF on table1 (col1);
 CREATE HNG INDEX c2_HNG on table1 (col2);
END PARALLEL IQ

Usage

The BEGIN PARALLEL IQ … END PARALLEL IQ statement lets you execute a group of
CREATE INDEX statements as though they are a single DDL statement, creating indexes on
multiple IQ tables at the same time. While this statement is executing, you and other users
cannot issue other DDL statements.

You can specify multiple tables within the statement list. Granularity is at the column level. In
other words, multiple indexes on the same column are executed serially.

Note: This statement does not support TEXT indexes.

Side effects:

• Automatic commit

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise. For support of statements inside

the statement, see CREATE INDEX Statement.

Permissions

None

See also
• CREATE INDEX Statement on page 97

BEGIN TRANSACTION Statement [T-SQL]
Use this statement to begin a user-defined transaction.

Note: BEGIN TRANSACTION is a T-SQL construct and must contain only valid T-SQL
commands. You cannot mix T-SQL and non-T-SQL commands.

SQL Statements

 50 Sybase IQ

Syntax
BEGIN TRAN[SACTION] [transaction-name]

Examples

• Example 1 – This batch reports successive values of @@trancount as 0, 1, 2, 1, 0. The
values are printed on the server window:

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount

You should not rely on the value of @@trancount for more than keeping track of the
number of explicit BEGIN TRANSACTION statements that have been issued.

When Adaptive Server Enterprise starts a transaction implicitly, the @@trancount
variable is set to 1. Sybase IQ does not set the @@trancount value to 1 when a transaction
is started implicitly. So, the Sybase IQ @@trancount variable has a value of zero before
any BEGIN TRANSACTION statement (even though there is a current transaction), while in
Adaptive Server Enterprise (in chained mode) it has a value of 1.

For transactions starting with a BEGIN TRANSACTION statement, @@trancount has a
value of 1 in both Sybase IQ and Adaptive Server Enterprise after the first BEGIN
TRANSACTION statement. If a transaction is implicitly started with a different statement,
and a BEGIN TRANSACTION statement is then executed, @@trancount has a value of 2 in
both Sybase IQ, and Adaptive Server Enterprise after the BEGIN TRANSACTION
statement.

Usage

The optional parameter transaction-name is the name assigned to this transaction. It must be a
valid identifier. Use transaction names only on the outermost pair of nested BEGIN/COMMIT
or BEGIN/ROLLBACK statements.

When executed inside a transaction, the BEGIN TRANSACTION statement increases the
nesting level of transactions by one. The nesting level is decreased by a COMMIT statement.
When transactions are nested, only the outermost COMMIT makes the changes to the database
permanent.

Both Adaptive Server Enterprise and Sybase IQ have two transaction modes.

The default Adaptive Server Enterprise transaction mode, called unchained mode, commits
each statement individually, unless an explicit BEGIN TRANSACTION statement is executed
to start a transaction. In contrast, the ISO SQL/2003 compatible chained mode only commits a

SQL Statements

Reference: Statements and Options 51

transaction when an explicit COMMIT is executed or when a statement that carries out an
autocommit (such as data definition statements) is executed.

For more information on BEGIN TRANSACTION statement [T-SQL], see SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Reference > Using SQL > SQL statements > SQL
statements (A-D) > BEGIN TRANSACTION statement [T-SQL].

You can control the mode by setting the chained database option. The default setting for
ODBC and embedded SQL connections in Sybase IQ is On, in which case Sybase IQ runs in
chained mode. (ODBC users should also check the AutoCommit ODBC setting). The default
for TDS connections is Off.

In unchained mode, a transaction is implicitly started before any data retrieval or modification
statement. These statements include: DELETE, INSERT, OPEN, FETCH, SELECT, and
UPDATE. You must still explicitly end the transaction with a COMMIT or ROLLBACK
statement.

You cannot alter the chained option within a transaction.

Note: When calling a stored procedure, you should ensure that it operates correctly under the
required transaction mode.

The current nesting level is held in the global variable @@trancount. The @@trancount
variable has a value of zero before the first BEGIN TRANSACTION statement is executed, and
only a COMMIT executed when @@trancount is equal to one makes changes to the database
permanent.

A ROLLBACK statement without a transaction or savepoint name always rolls back statements
to the outermost BEGIN TRANSACTION (explicit or implicit) statement, and cancels the entire
transaction.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

None

See also
• COMMIT Statement on page 60

• ROLLBACK TRANSACTION Statement [T-SQL] on page 277

• SAVE TRANSACTION Statement [T-SQL] on page 278

• ISOLATION_LEVEL Option on page 392

SQL Statements

 52 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/begin-transaction-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/begin-transaction-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/begin-transaction-statement.html

CALL Statement
Invokes a procedure.

Syntax

Syntax 1
[variable =] CALL procedure-name ([expression] [, …])

Syntax 2
[variable =] CALL procedure-name ([parameter-name = expression]
[, …])

Examples

• Example 1 – Call the sp_customer_list procedure. This procedure has no
parameters, and returns a result set:

CALL sp_customer_list()

• Example 2 – This dbisql example creates a procedure to return the number of orders
placed by the customer whose ID is supplied, creates a variable to hold the result, calls the
procedure, and displays the result:

CREATE PROCEDURE OrderCount (IN CustomerID INT, OUT Orders INT)
BEGIN
SELECT COUNT("DBA".SalesOrders.ID)
INTO Orders
FROM "DBA".Customers
KEY LEFT OUTER JOIN "DBA".SalesOrders
WHERE "DBA".Customers.ID = CustomerID ;
END
go
-- Create a variable to hold the result
CREATE VARIABLE Orders INT
go

-- Call the procedure, FOR customer 101
-- -----------------------------
CALL OrderCount (101, Orders)
go

-- Display the result
SELECT Orders FROM DUMMY
go

Usage

CALL invokes a procedure that has been previously created with a CREATE PROCEDURE
statement. When the procedure completes, any INOUT or OUT parameter values are copied
back.

SQL Statements

Reference: Statements and Options 53

You can specify the argument list by position or by using keyword format. By position,
arguments match up with the corresponding parameter in the parameter list for the procedure.
By keyword, arguments match the named parameters.

Procedure arguments can be assigned default values in the CREATE PROCEDURE statement,
and missing parameters are assigned the default value, or, if no default is set, NULL.

Inside a procedure, CALL can be used in a DECLARE statement when the procedure returns
result sets. See System Administration Guide: Volume 2 > Using Procedures and Batches.

Procedures can return an integer value (as a status indicator, say) using the RETURN
statement. You can save this return value in a variable using the equality sign as an assignment
operator:

CREATE VARIABLE returnval INT ;
returnval = CALL proc_integer (arg1 = val1, ...)

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise. For an alternative that is

supported, see EXECUTE Statement [ESQL].

Permissions

Must be the owner of the procedure, have EXECUTE permission for the procedure, or have
DBA authority.

See also
• CREATE PROCEDURE Statement on page 110

• GRANT Statement on page 199

• EXECUTE Statement [ESQL] on page 181

CASE Statement
Selects execution path based on multiple cases.

Syntax
CASE value-expression
…WHEN [constant | NULL] THEN statement-list …
… [WHEN [constant | NULL] THEN statement-list] …
…ELSE statement-list
… END

SQL Statements

 54 Sybase IQ

Examples

• Example 1 – This procedure using a CASE statement classifies the products listed in the
Products table of the demo database into one of shirt, hat, shorts, or unknown:

CREATE PROCEDURE ProductType (IN product_id INT, OUT type
CHAR(10))
 BEGIN
 DECLARE prod_name CHAR(20) ;
 SELECT name INTO prod_name FROM "GROUPO"."Products"
 WHERE ID = product_id;
 CASE prod_name
 WHEN 'Tee Shirt' THEN
 SET type = 'Shirt'
 WHEN 'Sweatshirt' THEN
 SET type = 'Shirt'
 WHEN 'Baseball Cap' THEN
 SET type = 'Hat'
 WHEN 'Visor' THEN
 SET type = 'Hat'
 WHEN 'Shorts' THEN
 SET type = 'Shorts'
 ELSE
 SET type = 'UNKNOWN'
 END CASE ;
 END

Usage

The CASE statement is a control statement that lets you choose a list of SQL statements to
execute based on the value of an expression.

If a WHEN clause exists for the value of value-expression, the statement-list in the WHEN
clause is executed. If no appropriate WHEN clause exists, and an ELSE clause exists, the
statement-list in the ELSE clause is executed. Execution resumes at the first statement after the
END.

Note: The ANSI standard allows two forms of CASE statements. Although Sybase IQ allows
both forms, when CASE is in the predicate, for best performance you must use the form shown
here.

If you require the other form (also called ANSI syntax) for compatibility with SQL Anywhere,
see the CASE statement Syntax 2 in SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL
Reference > Using SQL > SQL statements > SQL statements (A-D) > CASE statement.

Attention: Do not confuse the syntax of the CASE statement with that of the CASE
expression.

For information on the CASE expression, see Reference: Building Blocks, Tables, and
Procedures > SQL Language Elements > Expressions.

SQL Statements

Reference: Statements and Options 55

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/case-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/case-statement.html

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

None

See also
• BEGIN … END Statement on page 47

CHECKPOINT Statement
Checkpoints the database.

Syntax
CHECKPOINT

Usage

CHECKPOINT forces the database server to execute a checkpoint. Checkpoints are also
performed automatically by the database server according to an internal algorithm.
Applications do not normally need to issue CHECKPOINT. For a full description of
checkpoints, see System Administration Guide: Volume 1 > Data Backup, Recovery, and
Archiving.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must have DBA or OPERATOR authority to checkpoint a database.

CLEAR Statement [Interactive SQL]
Clears the Interactive SQL (dbisql) data window.

Syntax
CLEAR

SQL Statements

 56 Sybase IQ

Usage

The CLEAR statement is used to clear the dbisql main window.

Side effects:

The CLEAR statement loses the cursor associated with the data being cleared.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

None

See also
• EXIT Statement [Interactive SQL] on page 186

CLOSE Statement [ESQL] [SP]
Closes a cursor.

Syntax
CLOSE cursor-name

Parameters

• cursor-name: – { identifier | host-variable }

Examples

• Example 1 – Close cursors in Embedded SQL:

EXEC SQL CLOSE employee_cursor;
EXEC SQL CLOSE :cursor_var;

• Example 2 – Use a cursor:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT
TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION
 FOR SQLSTATE '02000' ;
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName,
 CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers

SQL Statements

Reference: Statements and Options 57

 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesOrderItems
 LEFT OUTER JOIN Products
 GROUP BY CompanyName ;
 DECLARE ThisValue INT ;
 DECLARE ThisCompany CHAR(35) ;
 SET TopValue = 0 ;
 OPEN curThisCust ;
 CustomerLoop:
 LOOP
 FETCH NEXT curThisCust
 INTO ThisCompany, ThisValue ;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop ;
 END IF ;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue ;
 SET TopCompany = ThisCompany ;
 END IF ;
 END LOOP CustomerLoop ;
 CLOSE curThisCust ;
END

Usage

This statement closes the named cursor.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

The cursor must have been previously opened.

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154
• OPEN Statement [ESQL] [SP] on page 246
• PREPARE Statement [ESQL] on page 253

COMMENT Statement
Stores a comment about a database object in the system tables.

Syntax
COMMENT ON
{ COLUMN [owner.]table-name.column-name

SQL Statements

 58 Sybase IQ

| DBSPACE dbspace-name
| EVENT event-name
| EXTERNAL ENVIRONMENT environment-name
| EXTERNAL OBJECT object-name
| FOREIGN KEY [owner.]table-name.role-name
| INDEX [[owner.]table.]index-name
| INTEGRATED LOGIN integrated-login-id
| JAVA CLASS java-class-name
| JAVA JAR java-jar-name
| KERBEROS LOGIN “client-Kerberos-principal”
| LOGIN POLICY policy-name
| MATERIALIZED VIEW [owner.]materialized-view-name
| PROCEDURE [owner.]table-name
| SERVICE web-service-name
| TABLE [owner.]table-name
| TRIGGER [[owner.]table-name.]trigger-name
| USER userid
| VIEW [owner.]view-name }
IS comment

Parameters

• comment: – { string | NULL }
• environment-name: – JAVA | PERL | PHP | CLR | C_ESQL32 | C_ESQL64 | C_ODBC32 |

C_ODBC64

Examples

• Example 1 – Add a comment to the Employees table:

COMMENT
ON TABLE Employees
IS "Employee information"

• Example 2 – Remove the comment from the Employees table:

COMMENT
ON TABLE Employees
IS NULL

Usage

The COMMENT statement allows you to set a comment for an object in the database. The
COMMENT statement updates remarks in the ISYSREMARK system table. You can remove a
comment by setting it to NULL. The owner of a comment on an index or trigger is the owner of
the table on which the index or trigger is defined.

The COMMENT ON DBSPACE, COMMENT ON JAVA JAR, and COMMENT ON JAVA CLASS
statements allow you to set the Remarks column in the SYS.ISYSREMARK system table.
Remove a comment by setting it to NULL.

You cannot add comments for local temporary tables.

SQL Statements

Reference: Statements and Options 59

Note: Materialized views are only supported for SQL Anywhere tables in the IQ catalog
store.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must either be the owner of the database object being commented, or have DBA authority.
(You must have DBA or SPACE ADMIN authority to issue this statement with the DBSPACE
clause.)

COMMENT ON LOGICAL SERVER Statement
Comments on the user-defined logical server.

Syntax
 See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex.

COMMIT Statement
Makes changes to the database permanent, or terminates a user-defined transaction.

Syntax

Syntax 1
COMMIT [WORK]

Syntax 2
COMMIT TRAN[SACTION] [transaction-name]

Examples

• Example 1 – Commit the current transaction:

COMMIT

• Example 2 – This Transact-SQL batch reports successive values of @@trancount as 0,
1, 2, 1, 0:

SQL Statements

 60 Sybase IQ

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
go

Usage

Syntax 1—The COMMIT statement ends a transaction and makes all changes made during this
transaction permanent in the database.

Data definition statements carry out commits automatically. For information, see the Side
effects listing for each SQL statement.

COMMIT fails if the database server detects any invalid foreign keys. This makes it impossible
to end a transaction with any invalid foreign keys. Usually, foreign key integrity is checked on
each data manipulation operation. However, if the database option WAIT_FOR_COMMIT is
set ON or a particular foreign key was defined with a CHECK ON COMMIT clause, the database
server delays integrity checking until the COMMIT statement is executed.

Syntax 2—You can use BEGIN TRANSACTION and COMMIT TRANSACTION statements in
pairs to construct nested transactions. Nested transactions are similar to savepoints. When
executed as the outermost of a set of nested transactions, the statement makes changes to the
database permanent. When executed inside a transaction, COMMIT TRANSACTION decreases
the nesting level of transactions by one. When transactions are nested, only the outermost
COMMIT makes the changes to the database permanent.

The optional parameter transaction-name is the name assigned to this transaction. It must be a
valid identifier. Use transaction names only on the outermost pair of nested BEGIN/COMMIT
or BEGIN/ROLLBACK statements.

You can use a set of options to control the detailed behavior of the COMMIT statement. See
COOPERATIVE_COMMIT_TIMEOUT Option, COOPERATIVE_COMMITS Option,
DELAYED_COMMITS Option, and DELAYED_COMMIT_TIMEOUT Option. You can
use the Commit connection property to return the number of commits on the current
connection.

Side effects:

• Closes all cursors except those opened WITH HOLD.
• Deletes all rows of declared temporary tables on this connection, unless they were

declared using ON COMMIT PRESERVE ROWS.

SQL Statements

Reference: Statements and Options 61

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise. Syntax 2 is a Transact-SQL extension

to ISO/ANSI SQL grammar.

Permissions

Must be connected to the database.

See also
• BEGIN TRANSACTION Statement [T-SQL] on page 50

• CONNECT Statement [ESQL] [Interactive SQL] on page 63

• DISCONNECT Statement [Interactive SQL] on page 169

• ROLLBACK Statement on page 275

• SAVEPOINT Statement on page 278

• SET CONNECTION Statement [ESQL] [Interactive SQL] on page 291

• COOPERATIVE_COMMIT_TIMEOUT Option on page 356

• COOPERATIVE_COMMITS Option on page 357

• DELAYED_COMMITS Option on page 370

• DELAYED_COMMIT_TIMEOUT Option on page 369

CONFIGURE Statement [Interactive SQL]
Activates the Interactive SQL (dbisql) configuration window.

Syntax
CONFIGURE

Usage

The dbisql configuration window displays the current settings of all dbisql options. It does not
display or let you modify database options.

If you select Permanent, the options are written to the SYSOPTION table in the database and
the database server performs an automatic COMMIT. If you do not choose Permanent, and
instead click OK, options are set temporarily and remain in effect for the current database
connection only.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.

SQL Statements

 62 Sybase IQ

• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

None

See also
• SET OPTION Statement on page 293

CONNECT Statement [ESQL] [Interactive SQL]
Establishes a connection to a database.

Syntax

Syntax 1
CONNECT
… [TO engine-name]
…[DATABASE database-name]
…[AS connection-name]
…[USER] userid [IDENTIFIED BY]

Syntax 2
CONNECT USING connect-string

Parameters

• engine-name: – identifier, string, or host-variable
• database-name: – identifier, string, or host-variable
• connection-name: – identifier, string, or host-variable
• userid: – identifier, string, or host-variable
• password: – identifier, string, or host-variable
• connect-string: – a valid connection string or host-variable

Examples

• Example 1 – CONNECT usage within Embedded SQL:

EXEC SQL CONNECT AS :conn_name
USER :userid IDENTIFIED BY :password;
EXEC SQL CONNECT USER "dba" IDENTIFIED BY "sql";

• Example 2 – CONNECT usage from dbisql:

• Connect to a database from dbisql. Prompts display for user ID and password:

CONNECT

SQL Statements

Reference: Statements and Options 63

• Connect to the default database as DBA, from dbisql. A password prompt displays:

CONNECT USER "DBA"

• Connect to the demo database as the DBA, from dbisql:

CONNECT
TO <machine>_iqdemo
USER "DBA"
IDENTIFIED BY sql

where <machine>_iqdemo is the engine name.

• Connect to the demo database using a connect string, from dbisql:

CONNECT
USING 'UID=DBA;PWD=sql;DBN=iqdemo'

Usage

The CONNECT statement establishes a connection to the database identified by database-
name running on the server identified by engine-name.

Embedded SQL behavior—In Embedded SQL, if no engine-name is specified, the default
local database server is assumed (the first database server started). If a local database server is
not running and the Anywhere Client (DBCLIENT) is running, the default server is assumed
(the server name specified when the client was started). If no database-name is specified, the
first database on the given server is assumed.

The WHENEVER statement, SET SQLCA, and some DECLARE statements do not generate
code and thus might appear before the CONNECT statement in the source file. Otherwise, no
statements are allowed until a successful CONNECT statement has been executed.

The user ID and password are used for permission checks on all dynamic SQL statements. By
default, the password is case-sensitive; the user ID is not.

For a detailed description of the connection algorithm, see System Administration Guide:
Volume 1 > Sybase IQ Connections > How Sybase IQ Establishes Connections.

DBISQL behavior—If no database or server is specified in the CONNECT statement, dbisql
remains connected to the current database, rather than to the default server and database. If a
database name is specified without a server name, dbisql attempts to connect to the specified
database on the current server. You must specify the database name defined in the -n database
switch, not the database file name. If a server name is specified without a database name,
dbisql connects to the default database on the specified server. For example, if this batch is
executed while connected to a database, the two tables are created in the same database.

CREATE TABLE t1(c1 int);
CONNECT DBA IDENTIFIED BY sql;
CREATE TABLE t2 (c1 int);

No other database statements are allowed until a successful CONNECT statement has been
executed.

SQL Statements

 64 Sybase IQ

The user ID and password are used for checking the permissions on SQL statements. If the
password or the user ID and password are not specified, the user is prompted to type the
missing information. By default, the password is case-sensitive; the user ID is not.

Multiple connections are managed through the concept of a current connection. After a
successful connect statement, the new connection becomes the current one. To switch to a
different connection, use SET CONNECTION. Executing a CONNECT statement does not
close the existing connection (if any). Use DISCONNECT to drop connections.

Static SQL statements use the user ID and password specified with the -l option on the SQLPP
statement line. If no -l option is given, then the user ID and password of the CONNECT
statement are used for static SQL statements also.

Connecting with no password—If you are connected to a user ID with DBA authority, you can
connect to another user ID without specifying a password. (The output of dbtran requires this
capability.) For example, if you are connected to a database from Interactive SQL as DBA, you
can connect without a password with the statement:

CONNECT other_user_id

In Embedded SQL, you can connect without a password by using a host variable for the
password and setting the value of the host variable to be the null pointer.

AS clause—connection can optionally be named by specifying the AS clause. This allows
multiple connections to the same database, or multiple connections to the same or different
database servers, all simultaneously. Each connection has its own associated transaction. You
might even get locking conflicts between your transactions if, for example, you try to modify
the same record in the same database from two different connections.

Syntax 2—A connect-string is a list of parameter settings of the form keyword=value, and
must be enclosed in single quotes.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Open Client Embedded SQL supports a different syntax for the CONNECT

statement.

Permissions

None

See also
• DISCONNECT Statement [Interactive SQL] on page 169

• GRANT Statement on page 199

• SET CONNECTION Statement [ESQL] [Interactive SQL] on page 291

SQL Statements

Reference: Statements and Options 65

CREATE DATABASE Statement
Creates a database consisting of several operating system files.

Syntax
CREATE DATABASE db-name
… [[TRANSACTION] { LOG ON [log-file-name]
 [MIRROR mirror-file-name] }]
… [CASE { RESPECT | IGNORE }]
… [PAGE SIZE page-size]
… [COLLATION collation-label[(collation-tailoring-string)]]
… [ENCRYPTED [TABLE] {algorithm-key-spec | OFF }]
… { … [BLANK PADDING ON]
… [JCONNECT { ON | OFF }]
… [IQ PATH iq-file-name]
… [IQ SIZE iq-file-size]
… [IQ PAGE SIZE iq-page-size]
… [BLOCK SIZE block-size]
… [IQ RESERVE sizeMB]
… [TEMPORARY RESERVE sizeMB]
… [MESSAGE PATH message-file-name]
… [TEMPORARY PATH temp-file-name]
… [TEMPORARY SIZE temp-db-size]
… [DBA USER userid]
… [DBA PASSWORD password]

Parameters

• db-name | log-file-name | mirror-file-name | iq-file-name | message-file-name | temp-
file-name: – 'file-name'

• page-size: – { 4096 | 8192 | 16384 | 32768 }
• iq-page-size: – { 65536 | 131072 | 262144 | 524288 }
• block-size: – { 4096 | 8192 | 16384 | 32768 }
• collation-label: – string
• collation-tailoring-string: – keyword=value
• algorithm-key-spec: – ON | [ON] KEY key [ALGORITHM AES-algorithm]

| [ON] ALGORITHM AES-algorithm KEY key | [ON] ALGORITHM ‘SIMPLE’
• AES-algorithm: – ‘AES’ | ‘AES256’ | ‘AES_FIPS’ | ‘AES256_FIPS’
• key: – quoted string

Examples

• Example 1 – This Windows example creates a Sybase IQ database named mydb with its
corresponding mydb.db, mydb.iq, mydb.iqtmp, and mydb.iqmsg files in the C:
\s1\data directory:

SQL Statements

 66 Sybase IQ

CREATE DATABASE 'C:\\s1\\data\\mydb'
BLANK PADDING ON
IQ PATH 'C:\\s1\\data'
IQ SIZE 2000
IQ PAGE SIZE 65536

• Example 2 – This UNIX command creates a Sybase IQ database with raw devices for IQ
PATH and TEMPORARY PATH. The default IQ page size of 128KB applies.

CREATE DATABASE '/s1/data/bigdb'
IQ PATH '/dev/md/rdsk/bigdb'
MESSAGE PATH '/s1/data/bigdb.iqmsg'
TEMPORARY PATH '/dev/md/rdsk/bigtmp'

• Example 3 – This Windows command creates a Sybase IQ database with a raw device for
IQ PATH. Note the doubled backslashes in the raw device name (a Windows requirement):

CREATE DATABASE 'company'
IQ PATH '\\\\.\\E:'
JCONNECT OFF
IQ SIZE 40

• Example 4 – This UNIX example creates a strongly encrypted Sybase IQ database using
the AES encryption algorithm with the key “is!seCret.”

CREATE DATABASE 'marvin.db'
BLANK PADDING ON
CASE RESPECT
COLLATION 'ISO_BINENG'
IQ PATH '/filesystem/marvin.main1'
IQ SIZE 6400
IQ PAGE SIZE 262144
TEMPORARY PATH '/filesystem/marvin.temp1'
TEMPORARY SIZE 3200
ENCRYPTED ON KEY 'is!seCret' ALGORITHM 'AES'

Usage

Creates an IQ database with the supplied name and attributes. The IQ PATH clause is required
for creating the Sybase IQ database; otherwise, you create a standard SQL Anywhere
database.

If you omit theIQ PATH option, specifying any of these options generates an error: IQ SIZE, IQ
PAGE SIZE, BLOCK SIZE, MESSAGE PATH, TEMPORARY PATH, and TEMPORARY SIZE.

When Sybase IQ creates an IQ database, it automatically generates four database files to store
different types of data that constitute an IQ database. Each file corresponds to a dbspace, the
logical name by which Sybase IQ identifies database files. The files are:

• db-name.db is the file that holds the catalog dbspace, SYSTEM. It contains the system
tables and stored procedures describing the database and any standard SQL Anywhere
database objects you add. If you do not include the .db extension, Sybase IQ adds it. This
initial dbspace contains the catalog store, and you can later add dbspaces to increase its
size. It cannot be created on a raw partition.

SQL Statements

Reference: Statements and Options 67

• db-name.iq is the default name of the file that holds the main data dbspace,
IQ_SYSTEM_MAIN, which contains the IQ tables and indexes. You can specify a
different file name with the IQ PATH clause. This initial dbspace contains the IQ store.

Warning! IQ_SYSTEM_MAIN is a special dbspace that contains all structures necessary
for the database to open: the IQ db_identity blocks, the IQ checkpoint log, the IQ
rollforward/rollback bitmaps of each committed transaction and each active checkpointed
transaction, the incremental backup bitmaps, and the freelist root pages.
IQ_SYSTEM_MAIN is always online when the database is open.

The administrator can allow user tables to be created in IQ_SYSTEM_MAIN, especially if
these tables are small, important tables. However, it is more common that immediately
after creating the database, the administrator creates a second main dbspace, revokes
create privilege in dbspace IQ_SYSTEM_MAIN from all users, grants create privilege on
the new main dbspace to selected users, and sets PUBLIC.default_dbspace to the new
main dbspace.

• db-name.iqtmp is the default name of the file that holds the initial temporary dbspace,
IQ_SYSTEM_TEMP. It contains the temporary tables generated by certain queries. The
required size of this file can vary depending on the type of query and amount of data. You
can specify a different name using the TEMPORARY PATH clause. This initial dbspace
contains the temporary store.

• db-name.iqmsg is the default name of the file that contains the messages trace dbspace,
IQ_SYSTEM_MSG. You can specify a different file name using the MESSAGE PATH
clause.

In addition to these files, an IQ database has a transaction log file (db-name.log), and
might have a transaction log mirror file.

File names and the CREATE DATABASE statement:

The file names (db-name, log-file-name, mirror-file-name, iq-file-name, message-file-name,
temp-file-name) are strings containing operating system file names. As literal strings, they
must be enclosed in single quotes.

• In Windows, if you specify a path, any backslash characters (\) must be doubled if they are
followed by an n or an x. This prevents them being interpreted as a newline character (\n) or
as a hexadecimal number (\x), according to the rules for strings in SQL. It is safer to always
double the backslash. For example:
CREATE DATABASE 'c:\\sybase\\mydb.db'
LOG ON 'e:\\logdrive\\mydb.log'
JCONNECT OFF
IQ PATH 'c:\\sybase\\mydb'
IQ SIZE 40

• If you specify no path, or a relative path:
• The catalog store file (db-name.db) is created relative to the working directory of the

server.

SQL Statements

 68 Sybase IQ

• The IQ store, temporary store, and message log files are created in the same directory
as, or relative to, the catalog store.

Relative path names are recommended.

Warning! The database file, temporary dbspace, and transaction log file must be located on
the same physical machine as the database server. Do not place database files and transaction
log files on a network drive. The transaction log should be on a separate device from its mirror,
however.

On UNIX systems, you can create symbolic links, which are indirect pointers that contain the
path name of the file to which they point. You can use symbolic links as relative path names.
There are several advantages to creating a symbolic link for the database file name:

• Symbolic links to raw devices can have meaningful names, while the actual device name
syntax can be obscure.

• A symbolic name might eliminate problems restoring a database file that was moved to a
new directory since it was backed up.

To create a symbolic link, use the ln -s command. For example:
ln -s /disk1/company/iqdata/company.iq company_iq_store

Once you create this link, you can specify the symbolic link in commands like CREATE
DATABASE or RESTORE instead of the fully qualified path name.

When you create a database or a dbspace, the path for every dbspace file must be unique. If
your CREATE DATABASE command specifies the identical path and file name for these two
stores, you receive an error.

Note: To create multiplex databases, see Using Sybase IQ Multiplex.

You can create a unique path in any of these ways:

• Specify a different extension for each file (for example, mydb.iq and mydb.iqtmp)
• Specify a different file name (for example, mydb.iq and mytmp.iq)
• Specify a different path name (for example, /iqfiles/main/iq and /iqfiles/

temp/iq) or different raw partitions
• Omit TEMPORARY PATH when you create the database. In this case, the temporary store is

created in the same path as the catalog store, with the default name and extension
dbname.iqtmp, where dbname is the database name.

Warning! On UNIX platforms, to maintain database consistency, you must specify file names
that are links to different files. Sybase IQ cannot detect the target where linked files point.
Even if the file names in the command differ, make sure they do not point to the same operating
system file.

Clauses and options of CREATE DATABASE:

TRANSACTION LOG—The transaction log is a file where the database server logs all
changes made to the database. The transaction log plays a key role in system recovery. If you

SQL Statements

Reference: Statements and Options 69

do not specify any TRANSACTION LOG clause, or if you omit a path for the file name, it is
placed in the same directory as the .db file. However, you should place it on a different
physical device from the .db and .iq. It cannot be created on a raw partition.

MIRROR—A transaction log mirror is an identical copy of a transaction log, usually
maintained on a separate device, for greater protection of your data. By default, Sybase IQ
does not use a mirrored transaction log. If you do want to use a transaction log mirror, you must
provide a file name. If you use a relative path, the transaction log mirror is created relative to
the directory of the catalog store (db-name.db). Sybase recommends that you always create
a mirror copy of the transaction log.

CASE—For databases created with CASE RESPECT, all affected values are case-sensitive in
comparisons and string operations. Database object names such as columns, procedures, or
user IDs, are unaffected. Dbspace names are always case-insensitive, regardless of the CASE
specification.

The default (RESPECT) is that all comparisons are case-sensitive. CASE RESPECT provides
better performance than CASE IGNORE.

Character strings inserted into tables are always stored in the case they are entered, regardless
of whether the database is case-sensitive or not. If the string Value is inserted into a character
data type column, the string is always stored in the database with an uppercase V and the
remainder of the letters lowercase. SELECT statements return the string as Value. If the
database is not case-sensitive, however, all comparisons make Value the same as value,
VALUE, and so on. The IQ server may return results in any combination of lowercase and
uppercase, so you cannot expect case-sensitive results in a database that is case-insensitive
(CASE IGNORE).

For example, given this table and data:

CREATE TABLE tb (id int NOT NULL,
 string VARCHAR(30) NOT NULL);
INSERT INTO tb VALUES (1, ‘ONE’);
SELECT * FROM tb WHERE string = ‘oNe’;

The result of the SELECT can be “oNe” (as specified in the WHERE clause) and not necessarily
“ONE” (as stored in the database).

Similarly, the result of:

SELECT * FROM tb WHERE string = ‘One’;

can be “One” and the result of:

SELECT * FROM tb WHERE string = ‘ONe’;

can be “ONe”.

All databases are created with at least one user ID:

DBA

SQL Statements

 70 Sybase IQ

and password:

sql

In new databases, all passwords are case-sensitive, regardless of the case-sensitivity of the
database. The user ID is unaffected by the CASE RESPECT setting.

PAGE SIZE—The page size for the SQL Anywhere segment of the database (containing the
catalog tables) can be 4096, 8192, 16384, or 32768 bytes. Normally, use the default, 4096
(4KB). Large databases might need a larger page size than the default and may see
performance benefits as a result. The smaller values might limit the number of columns your
database can support. If you specify a page size smaller than 4096, Sybase IQ uses a page size
of 4096.

When you start a database, its page size cannot be larger than the page size of the current
server. The server page size is taken from the first set of databases started or is set on the server
command line using the -gp command line option.

Command line length for any statement is limited to the catalog page size. The 4KB default is
large enough in most cases; however, in a few cases, a larger PAGE SIZE value is needed to
accommodate very long commands, such as RESTORE commands that reference numerous
dbspaces. A larger page size might also be needed to execute queries involving large numbers
of tables or views.

Because the default catalog page size is 4KB, this is a problem only when the connection is to a
database such as utility_db, which has a page size of 1024. This restriction may cause
RESTORE commands that reference numerous dbspaces to fail. To avoid the problem, make
sure the length of SQL command lines is less than the catalog page size.

Alternatively, start the engine with -gp 32768 to increase catalog page size.

COLLATION—The collation sequence used for sorting and comparison of character data
types in the database. The collation provides character comparison and ordering information
for the encoding (character set) being used. If the COLLATION clause is not specified, Sybase
IQ chooses a collation based on the operating system language and encoding.

For most operating systems, the default collation sequence is ISO_BINENG, which provides
the best performance. In ISO_BINENG, the collation order is the same as the order of
characters in the ASCII character set. All uppercase letters precede all lowercase letters (for
example, both ‘A’ and ‘B’ precede ‘a’).

You can choose the collation from a list of supported collations. For SQL Anywhere databases
created on a Sybase IQ server, the collation can also be the Unicode Collation Algorithm
(UCA). If UCA is specified, also specify the ENCODING clause. For more information on the
ENCODING clause, see SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference >
Using SQL > SQL statements > SQL statements (A-D) > CREATE DATABASE statement.

Sybase IQ does not support any of the UCA-based collations for IQ databases. If a UCA-based
collation is specified in the CREATE DATABASE statement for an IQ database, the server
returns the error UCA collation is not supported and database creation fails.

SQL Statements

Reference: Statements and Options 71

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html

It is important to carefully choose your collation; it cannot be changed after the database is
created. For information on choosing a collation, see System Administration Guide: Volume 1
> International Languages and Character Sets.

Optionally, you can specify collation tailoring options (collation-tailoring-string) for
additional control over the sorting and comparing of characters. These options take the form of
keyword=value pairs, assembled in parentheses, following the collation name.

Note: Several collation tailoring options are supported when you specify the UCA collation
for a SQL Anywhere database created on an Sybase IQ server. For all other collations and for
Sybase IQ, only case sensitivity tailoring is supported. Also, databases created with collation
tailoring options cannot be started using a pre-15.0 database server.

Collation tailoring options for Sybase IQ contains the supported keyword, allowed alternate
forms, and allowed values for the collation tailoring option (collation-tailoring-string) for a
Sybase IQ database.

Table 3. Collation Tailoring Option for Sybase IQ

Keyword Collation Alternate
forms

Allowed values

CaseSensitiv-
ity

All suppor-
ted colla-
tions

CaseSensi-
tive, Case

• respect Respect case differences between letters.
For the UCA collation, this is equivalent to Up-
perFirst. For other collations, the value of respect
depends on the collation itself.

• ignore Ignore case differences between letters.
• UpperFirst Always sort upper case first (Aa).
• LowerFirst Always sort lowercase first (aA).

For syntax and a complete list of the collation tailoring options supported when specifying the
UCA collation for a SQL Anywhere database, see SQL Anywhere 11.0.1 > SQL Anywhere
Server – SQL Reference > Using SQL > SQL statements > SQL statements (A-D) > CREATE
DATABASE statement.

ENCRYPTED—Encryption makes the data stored in your physical database file unreadable.
Use the CREATE DATABASE ENCRYPTED keyword without the TABLE keyword to encrypt
the entire database. Use the ENCRYPTED TABLE clause to enable only table encryption for
SQL Anywhere tables. Table-level encryption is not supported for Sybase IQ tables. Enabling
table encryption means that the tables that are subsequently created or altered using the
ENCRYPTED clause are encrypted using the settings you specified at database creation.

There are two levels of database and table encryption: simple and strong.

• Simple encryption is equivalent to obfuscation. The data is unreadable, but someone with
cryptographic expertise could decipher the data. For simple encryption, specify the
CREATE DATABASE clause ENCRYPTED ON ALGORITHM ‘SIMPLE’, ENCRYPTED

SQL Statements

 72 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html

ALGORITHM ‘SIMPLE’, or specify the ENCRYPTED ON clause without specifying an
algorithm or key.

• Strong encryption is achieved through the use of a 128-bit algorithm and a security key.
The data is unreadable and virtually undecipherable without the key. For strong
encryption, specify the CREATE DATABASE clause ENCRYPTED ON ALGORITHM with a
128-bit or 256-bit AES algorithm and use the KEY clause to specify an encryption key. You
should choose a value for your key that is at least 16 characters long, contains a mix of
uppercase and lowercase, and includes numbers, letters, and special characters.
This encryption key is required each time you start the database.

Warning! Protect your encryption key! Store a copy of your key in a safe location. A lost key
results in a completely inaccessible database from which there is no recovery.

You can specify encryption only during database creation. To introduce encryption to an
existing database requires a complete unload, database re-creation, and reload of all data.

If the ENCRYPTED clause is used but no algorithm is specified, the default is AES. By default,
encryption is OFF.

BLANK PADDING—By default, trailing blanks are ignored for comparison purposes
(BLANK PADDING ON), and Embedded SQL programs pad strings that are fetched into
character arrays. This option is provided for compatibility with the ISO/ANSI SQL standard.

For example, these two strings are treated as equal in a database created with BLANK
PADDING ON:

'Smith'
'Smith '

Note: CREATE DATABASE no longer supports BLANK PADDING OFF.

JCONNECT—To use the Sybase jConnect for JDBC driver to access system catalog
information, install jConnect support. Set JCONNECT to OFF to exclude the jConnect system
objects (the default is ON). You can still use JDBC, as long as you do not access system
information.

IQ PATH—The path name of the main segment file containing the Sybase IQ data. You can
specify an operating system file or a raw partition of an I/O device. (The Installation and
Configuration Guide for your platform describes the format for specifying a raw partition.)
Sybase IQ automatically detects which type based on the path name you specify. If you use a
relative path, the file is created relative to the directory of the catalog store (the .db file).

IQ SIZE—The size in MB of either the raw partition or the operating system file you specify
with the IQ PATH clause. For raw partitions, you should always take the default by not
specifying IQ SIZE, which allows Sybase IQ to use the entire raw partition; if you specify a
value for IQ SIZE, the value must match the size of the I/O device or Sybase IQ returns an error.
For operating system files, you can specify a value from the minimum in the following table up
to a maximum of 4TB.

The default size for an operating system file depends on IQ PAGE SIZE:

SQL Statements

Reference: Statements and Options 73

Table 4. Default and Minimum Sizes of IQ and Temporary Store Files

IQ PAGE
SIZE

IQ SIZE de-
fault

TEMPORARY
SIZE default

Minimum ex-
plicit IQ SIZE

Minimum ex-
plicit TEMPO-
RARY SIZE

65536 4096000 2048000 4MB 2MB

131072 8192000 4096000 8MB 4MB

262144 16384000 8192000 16MB 8MB

524288 32768000 16384000 32MB 16MB

IQ PAGE SIZE—The page size, in bytes, for the Sybase IQ segment of the database
(containing the IQ tables and indexes). The value must be a power of 2, from 65536 to 524288
bytes. The default is 131072 (128KB). Other values for the size are changed to the next larger
size. The IQ page size determines the default I/O transfer block size and maximum data
compression for your database.

For the best performance, Sybase recommends that you use these minimum IQ page sizes:

• 64KB (IQ PAGE SIZE 65536) for databases whose largest table contains up to 1 billion
rows, or a total size less than 8TB. This is the absolute minimum for a new database. On
32-bit platforms, a 64KB IQ page size gives the best performance.

• 128KB (IQ PAGE SIZE 131072) for databases on a 64-bit platform whose largest table
contains more than 1 billion rows and fewer than 4 billion rows, or might grow to a total
size of 8TB or greater. 128KB is the default IQ page size.

• 256KB (IQ PAGE SIZE 262144) for databases on a 64-bit platform whose largest table
contains more than 4 billion rows, or might grow to a total size of 8TB or greater.

Very wide tables, such as tables with multiple columns of wide VARCHAR data (columns from
255 to 32,767 bytes) might need the next larger IQ PAGE SIZE.

BLOCK SIZE—The I/O transfer block size, in bytes, for the Sybase IQ segment of the
database. The value must be less than IQ PAGE SIZE, and must be a power of two between 4096
and 32768. Other values for the size are changed to the next larger size. The default value
depends on the value of the IQ PAGE SIZE clause. For most applications, the default value is
optimum. Before specifying a different value, see Performance and Tuning Guide > Manage
System Resources.

IQ RESERVE—Specifies the size, in megabytes, of space to reserve for the main IQ store
(IQ_SYSTEM_MAIN dbspace), so that the dbfile can be increased in size in the future. The
sizeMB parameter can be any number greater than 0. You cannot change the reserve after the
dbspace is created.

When IQ RESERVE is specified, the database uses more space for internal (free list) structures.
If reserve size is too large, the space needed for the internal structures can be larger than the
specified size, which results in an error.

SQL Statements

 74 Sybase IQ

TEMPORARY RESERVE clause—Specifies the size, in megabytes, of space to reserve for
the temporary IQ store (IQ_SYSTEM_TEMP dbspace), so that the dbfile can be increased in
size in the future. The sizeMB parameter can be any number greater than 0. You cannot change
the reserve after the dbspace is created.

When TEMPORARY RESERVE is specified, the database uses more space for internal (free
list) structures. If reserve size is too large, the space needed for the internal structures can be
larger than the specified size, which results in an error.

Note: Reserve and mode for temporary dbspaces are lost if the database is restored from a
backup.

MESSAGE PATH—The path name of the segment containing the Sybase IQ messages trace
file. You must specify an operating system file; the message file cannot be on a raw partition. If
you use a relative path or omit the path, the message file is created relative to the directory of
the .db file.

TEMPORARY PATH—The path name of the temporary segment file containing the
temporary tables generated by certain queries. You can specify an operating system file or a
raw partition of an I/O device. (The Installation and Configuration Guide for your platform
describes the format for specifying a raw partition.) Sybase IQ automatically detects which
type based on the path name you specify. If you use a relative path or omit the path, the
temporary file is created relative to the directory of the .db file.

TEMPORARY SIZE—The size, in megabytes, of either the raw partition or the operating
system file you specify with the TEMPORARY PATH clause. For raw partitions, always use the
default by not specifying TEMPORARY SIZE, which allows Sybase IQ to use the entire raw
partition. The default for operating system files is always one-half the value of IQ SIZE. If the
IQ store is on a raw partition and the temporary store is an operating system file, the default
TEMPORARY SIZE is half the size of the IQ store raw partition.

DBA USER—The user name for the default user account with DBA authority. If you do not
specify this clause, Sybase IQ creates a default dba user ID.

DBA PASSWORD—The password for the default user account with DBA authority.

Side effects:

• Automatic commit

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Adaptive Server Enterprise provides a CREATE DATABASE statement, but with

different options.

SQL Statements

Reference: Statements and Options 75

Permissions

The permissions required to execute this statement are set on the server command line, using
the -gu option. The default setting is to require DBA authority.

The account under which the server is running must have write permissions on the directories
where files are created.

See also
• CREATE DBSPACE Statement on page 76

• DROP DATABASE Statement on page 173

CREATE DBSPACE Statement
Creates a new dbspace and the associated dbfiles for the IQ main store or catalog store.

Syntax

Syntax 1

Use for catalog store dbspaces only (SQL Anywhere (SA) dbspaces).
CREATE DBSPACE dbspace-name AS file-path CATALOG STORE

Syntax 2

Use for IQ dbspaces.
CREATE DBSPACE dbspace-name USING file-specification
[IQ STORE] iq-dbspace-opts

Parameters

• file-specification: – { single-path-spec | new-file-spec [, ...] }
• single-path-spec: – 'file-path' | iq-file-opts
• new-file-spec: – FILE logical-file-name | 'file-path' iq-file-opts
• iq-file-opts: – [[SIZE] file-size] …[KB | MB | GB | TB]] [RESERVE size …[KB | MB

| GB | TB]]
• iq-dbspace-opts: – [STRIPING] {ON | OFF}] …[STRIPESIZEKB sizeKB]

Examples

• Example 1 – Create a dbspace called DspHist for the IQ main store with two files on a
UNIX system. Each file is 1GB in size and can grow 500MB:

CREATE DBSPACE DspHist USING FILE
FileHist1 '/History1/data/file1'
SIZE 1000 RESERVE 500,

SQL Statements

 76 Sybase IQ

FILE FileHist2 '/History1/data/file2'
SIZE 1000 RESERVE 500;

• Example 2 – Create a second catalog dbspace called DspCat2:

CREATE DBSPACE DspCat2 AS
'catalog_file2'
CATALOG STORE;

• Example 3 – Creates an IQ main dbspace called EmpStore1 for the IQ store (three
alternate syntax examples):

CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' SIZE 8 MB IQ STORE;

CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' 8 IQ STORE;

CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' 8;

Usage

CREATE DBSPACE creates a new dbspace for the IQ main store or the catalog store. The
dbspace you add can be on a different disk device than the initial dbspace, allowing you to
create stores that are larger than one physical device.

Syntax 1 creates a dbspace for the catalog store, where both dbspace and dbfile have the
same logical name. Each dbspace in the catalog store has a single file.

new-file-spec creates a dbspace for the IQ main store. You can specify one or more
dbfiles for the IQ main store. The dbfile name and physical file path are required for each file,
and must be unique.

The dbspace name and dbfile names are always case-insensitive. The physical file paths have
the case sensitivity of the operating system if the database is CASE RESPECT, and are case-
insensitive if the database is CASE IGNORE.

You cannot create a dbspace for an IQ temporary store. A single temporary dbspace,
IQ_SYSTEM_TEMP, is created when you create a new database or upgrade one that was
created in a version earlier than Sybase IQ 15.3. You can add additional files to the
IQ_SYSTEM_TEMP dbspace using the ALTER DBSPACE ADD FILE syntax.

RESERVE clause—Specifies the size in kilobytes (KB), megabytes (MB), gigabytes (GB), or
terabytes (TB) of space to reserve, so that the dbspace can be increased in size in the future.
The size parameter can be any number greater than 0; megabytes is the default. You cannot
change the reserve after the dbspace dbfile is created.

When RESERVE is specified, the database uses more space for internal (free list) structures. If
reserve size is too large, the space needed for the internal structures can be larger than the
specified size, which results in an error.

SQL Statements

Reference: Statements and Options 77

See CREATE DATABASE Statement for the names and types of files created by default.

Note: For information on creating dbspaces for a multiplex database, see Using Sybase IQ
Multiplex.

You can create a unique path in any of these ways:

• Specify a different extension for each file (for example, mydb.iq)

• Specify a different file name (for example, mydb2.iq)

• Specify a different path name (for example, /iqfiles/main/iq) or different raw
partitions

Warning! On UNIX platforms, to maintain database consistency, specify file names that are
links to different files. Sybase IQ cannot detect the target where linked files point. Even if the
file names in the command differ, make sure they do not point to the same operating system
file.

dbspace-name and dbfile-name are internal names for dbspaces and dbfiles. filepath is the
actual operating system file name of the dbfile, with a preceding path where necessary.
filepath without an explicit directory is created in the same directory as the catalog store
of the database. Any relative directory is relative to the catalog store.

SIZE clause—Specifies the size, from 0 to 4 terabytes, of the operating system file specified in
filepath. The default depends on the store type and block size. For the IQ main store, the
default number of bytes equals 1000* the block size. You cannot specify the SIZE clause for
the catalog store.

A SIZE value of 0 creates a dbspace of minimum size, which is 8MB for the IQ main store.

For raw partitions, do not explicitly specify SIZE. Sybase IQ automatically sets this parameter
to the maximum raw partition size, and returns an error if you attempt to specify another size.

STRIPESIZEKB clause—Specifies the number of kilobytes (KB) to write to each file before
the disk striping algorithm moves to the next stripe for the specified dbspace.

If you do not specify striping or stripe size, the default values of the options
DEFAULT_DISK_STRIPING and DEFAULT_KB_PER_STRIPE apply.

A database can have as many as (32KB - 1) dbspaces, including the initial dbspaces created
when you create the database. However, your operating system might limit the number of files
per database.

See also System Administration Guide: Volume 1 > Database Object Management.

Side effects:

• Automatic commit
• Automatic checkpoint.

SQL Statements

 78 Sybase IQ

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA or SPACE ADMIN authority.

See also
• CREATE DATABASE Statement on page 66
• DROP Statement on page 170

CREATE DOMAIN Statement
Creates a user-defined data type in the database.

Syntax
CREATE { DOMAIN | DATATYPE } domain-name data-type
… [NOT] NULL]
… [DEFAULT default-value]

Parameters

• domain-name: – identifier
• data-type: – built-in data type, with precision and scale
• default-value: – special-value | string | global variable | [-] number | (constant-

expression) | built-in-function(constant-expression) | AUTOINCREMENT | CURRENT
DATABASE | CURRENT REMOTE USER | NULL | TIMESTAMP | LAST USER

• special-value: – CURRENT { DATE | TIME | TIMESTAMP | USER | PUBLISHER } | USER

Examples

• Example 1 – Create a data type named address, which holds a 35-character string, and
which may be NULL:

CREATE DOMAIN address CHAR(35) NULL

Usage

User-defined data types are aliases for built-in data types, including precision and scale
values, where applicable. They improve convenience and encourage consistency in the
database.

Sybase recommends that you use CREATE DOMAIN, rather than CREATE DATATYPE, as
CREATE DOMAIN is the ANSI/ISO SQL3 term.

SQL Statements

Reference: Statements and Options 79

The user who creates a data type is automatically made the owner of that data type. No owner
can be specified in the CREATE DATATYPE statement. The user-defined data type name must
be unique, and all users can access the data type without using the owner as prefix.

User-defined data types are objects within the database. Their names must conform to the
rules for identifiers. User-defined data type names are always case-insensitive, as are built-in
data type names.

By default, user-defined data types allow NULLs unless the allow_nulls_by_default option is
set to OFF. In this case, new user-defined data types by default do not allow NULLs. The
nullability of a column created on a user-defined data type depends on the setting of the
definition of the user-defined data type, not on the setting of the allow_nulls_by_default
option when the column is referenced. Any explicit setting of NULL or NOT NULL in the
column definition overrides the user-defined data type setting.

The CREATE DOMAIN statement allows you to specify DEFAULT values on user-defined data
types. The DEFAULT value specification is inherited by any column defined on the data type.
Any DEFAULT value explicitly specified on the column overrides that specified for the data
type. For more information on the use of column DEFAULT values, see System
Administration Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data
Integrity.

The CREATE DOMAIN statement lets you incorporate a rule, called a CHECK condition, into
the definition of a user-defined data type.

Sybase IQ enforces CHECK constraints for base, global temporary. local temporary tables,
and user-defined data types.

To drop the data type from the database, use the DROP statement. You must be either the owner
of the data type or have DBA authority in order to drop a user-defined data type.

See also Reference: Building Blocks, Tables, and Procedures > SQL Data Types.

Side effects:

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported by Adaptive Server Enterprise. Transact-SQL provides similar

functionality using the sp_addtype system procedure and the CREATE DEFAULT and
CREATE RULE statements.

Permissions

Must have RESOURCE authority.

SQL Statements

 80 Sybase IQ

See also
• DROP Statement on page 170

CREATE EVENT Statement
Defines an event and its associated handler for automating predefined actions. Also defines
scheduled actions.

Syntax
CREATE EVENT event-name
[TYPE event-type
 [WHERE trigger-condition [AND trigger-condition], ...]
 | SCHEDULE schedule-spec, …]
…[ENABLE | DISABLE]
…[AT { CONSOLIDATED | REMOTE | ALL }]
…[HANDLER
 BEGIN
…
 END]

Parameters

• event-type: – BackupEnd | “Connect” | ConnectFailed | DatabaseStart |
DBDiskSpace | “Disconnect” | GlobalAutoincrement | GrowDB | GrowLog |
GrowTemp | IQMainDBSpaceFree | IQTempDBSpaceFree | LogDiskSpace |
“RAISERROR” | ServerIdle | TempDiskSpace

• trigger-condition: – event_condition(condition-name) { = | < | > | != | <= | >= } value
• schedule-spec: – [schedule-name] { START TIME start-time | BETWEEN start-time AND

end-time } [EVERY period { HOURS | MINUTES | SECONDS }] [ON { (day-of-
week, …) | (day-of-month, …) }] [START DATE start-date]

• event-name | schedule-name: – identifier
• day-of-week: – string
• day-of-month | value | period: – integer
• start-time | end-time: – time
• start-date: – date

Examples

• Example 1 – Instruct the database server to carry out an automatic incremental backup
daily at 1 a.m.:

CREATE EVENT IncrementalBackup
SCHEDULE
START TIME '1:00AM' EVERY 24 HOURS
HANDLER
 BEGIN

SQL Statements

Reference: Statements and Options 81

 BACKUP DATABASE INCREMENTAL
 TO 'backups/daily.incr'
 END

• Example 2 – Instruct the database server to call the system stored procedure
sp_iqspaceused every 10 minutes, then store in a table the returned current date and time,
the current number of connections to the database, and current information about the use of
main and temporary IQ store:

CREATE TABLE mysummary(dt DATETIME,
 users INT, mainKB UNSIGNED BIGINT,
 mainPC UNSIGNED INT,
 tempKB UNSIGNED BIGINT,
 tempPC UNSIGNED INT) ;

CREATE EVENT mysummary
 SCHEDULE sched_mysummary
 START TIME '00:01 AM' EVERY 10 MINUTES
 HANDLER
 BEGIN
 DECLARE mt UNSIGNED BIGINT;
 DECLARE mu UNSIGNED BIGINT;
 DECLARE tt UNSIGNED BIGINT;
 DECLARE tu UNSIGNED BIGINT;
 DECLARE conncount UNSIGNED INT;

 SET conncount = DB_PROPERTY('ConnCount');
 CALL SP_IQSPACEUSED(mt,mu,tt,tu);

 INSERT INTO mysummary VALUES(NOW(),
 conncount, mu, (mu*100)/mt, tu,
 (tu*100)/tt);
 END;

• Example 3 – Post a message to the server log when free disk space on the device
containing the transaction log file falls below 30 percent, but execute the handler no more
than once every 300 seconds.

CREATE EVENT LowTxnLogDiskSpace
TYPE DBDiskSpace
WHERE event_condition('DBFreePercent') < 30
AND event_condition('Interval') >= 300
HANDLER
BEGIN
message 'Disk space for Transaction Log is low.';
END;

For more examples, see System Administration Guide: Volume 2 > Automating Tasks
Using Schedules and Events > Trigger Conditions for Events.

Usage

Events can be used in two main ways:

SQL Statements

 82 Sybase IQ

• Scheduling actions – the database server carries out a set of actions on a schedule of times.
You can use this capability to schedule backups, validity checks, queries to fill up reporting
tables, and so on.

• Event handling actions – the database server carries out a set of actions when a predefined
event occurs. The events that can be handled include disk space restrictions (when a disk
fills beyond a specified percentage), when the server is idle, and so on.

An event definition includes two distinct pieces. The trigger condition can be an occurrence,
such as a disk filling up beyond a defined threshold. A schedule is a set of times, each of which
acts as a trigger condition. When a trigger condition is satisfied, the event handler executes.
The event handler includes one or more actions specified inside a compound statement
(BEGIN... END).

If no trigger condition or schedule specification is supplied, only an explicit TRIGGER EVENT
statement can trigger the event. During development, you might want to develop and test event
handlers using TRIGGER EVENT and add the schedule or WHERE clause once testing is
complete.

Event errors are logged to the database server console.

When event handlers are triggered, the server makes context information, such as the
connection ID that caused the event to be triggered, available to the event handler using the
EVENT_PARAMETER function.

Note: Although statements that return result sets are disallowed in events, you can allow an
event to call a stored procedure and insert the procedure results into a temporary table. See
System Administration Guide: Volume 1 > Data Import and Export > Methods for Exporting
Data from a Database > Data Extraction Facility > Enabling Data Extraction Options >
Extraction Limitations.

CREATE EVENT – event-name is an identifier. An event has a creator, which is the user
creating the event, and the event handler executes with the permissions of that creator. This is
the same as stored procedure execution. You cannot create events owned by other users.

You can list event names by querying the system table SYSEVENT. For example:

SELECT event_id, event_name FROM SYS.SYSEVENT

TYPE – event-type is one of the listed set of system-defined event types. The event types are
case-insensitive. To specify the conditions under which this event-type triggers the event, use
the WHERE clause.

• DiskSpace event types—If the database contains an event handler for one of the DiskSpace
types, the database server checks the available space on each device associated with the
relevant file every 30 seconds.
In the event the database has more than one dbspace, on separate drives, DBDiskSpace
checks each drive and acts depending on the lowest available space.

SQL Statements

Reference: Statements and Options 83

The LogDiskSpace event type checks the location of the transaction log and any mirrored
transaction log, and reports based on the least available space.

• Globalautoincrement event type—This event fires when the GLOBAL
AUTOINCREMENT default value for a table is within one percent of the end of its range.
A typical action for the handler could be to request a new value for the
GLOBAL_DATABASE_ID option.
You can use the EVENT_CONDITION function with RemainingValues as an argument for
this event type.

• ServerIdle event type—If the database contains an event handler for the ServerIdle type,
the server checks for server activity every 30 seconds.

WHERE Clause – the trigger condition determines the condition under which an event is fired.
For example, to take an action when the disk containing the transaction log becomes more than
80% full, use this triggering condition:
...
WHERE event_condition('LogDiskSpacePercentFree') < 20
...

The argument to the EVENT_CONDITION function must be valid for the event type.

You can use multiple AND conditions to make up the WHERE clause, but you cannot use OR
conditions or other conditions.

For information on valid arguments, see Reference: Building Blocks, Tables, and Procedures
> SQL Functions > Alphabetical List of Functions > EVENT_CONDITION Function
[System].

SCHEDULE – specifies when scheduled actions are to take place. The sequence of times acts
as a set of triggering conditions for the associated actions defined in the event handler.

You can create more than one schedule for a given event and its associated handler. This
permits complex schedules to be implemented. While it is compulsory to provide a schedule
name when there is more than one schedule, it is optional if you provide only a single schedule.

You can list schedule names by querying the system table SYSSCHEDULE. For example:

SELECT event_id, sched_name FROM SYS.SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

When a nonrecurring scheduled event has passed, its schedule is deleted, but the event handler
is not deleted.

Scheduled event times are calculated when the schedules are created, and again when the
event handler completes execution. The next event time is computed by inspecting the
schedule or schedules for the event, and finding the next schedule time that is in the future. If
an event handler is instructed to run every hour between 9:00 and 5:00, and it takes 65 minutes
to execute, it runs at 9:00, 11:00, 1:00, 3:00, and 5:00. If you want execution to overlap, you
must create more than one event.

SQL Statements

 84 Sybase IQ

The subclauses of a schedule definition are as follows:

• START TIME – the first scheduled time for each day on which the event is scheduled. If a
START DATE is specified, the START TIME refers to that date. If no START DATE is
specified, the START TIME is on the current day (unless the time has passed) and each
subsequent day.

• BETWEEN … AND – a range of times during the day outside of which no scheduled times
occur. If a START DATE is specified, the scheduled times do not occur until that date.

• EVERY – an interval between successive scheduled events. Scheduled events occur only
after the START TIME for the day, or in the range specified by BETWEEN …AND.

• ON – a list of days on which the scheduled events occur. The default is every day. These
can be specified as days of the week or days of the month.
Days of the week are Monday, Tuesday, and so on. The abbreviated forms of the day, such
as Mon, Tue, and so on, may also be used. The database server recognizes both full-length
and abbreviated day names in any of the languages supported by Sybase IQ.
Days of the month are integers from 0 to 31. A value of 0 represents the last day of any
month.

• START DATE – the date on which scheduled events are to start occurring. The default is
the current date.

Each time a scheduled event handler is completed, the next scheduled time and date is
calculated.

1. If the EVERY clause is used, find whether the next scheduled time falls on the current day,
and is before the end of the BETWEEN …AND range. If so, that is the next scheduled time.

2. If the next scheduled time does not fall on the current day, find the next date on which the
event is to be executed.

3. Find the START TIME for that date, or the beginning of the BETWEEN … AND range.

ENABLE | DISABLE – by default, event handlers are enabled. When DISABLE is specified,
the event handler does not execute even when the scheduled time or triggering condition
occurs. A TRIGGER EVENT statement does not cause a disabled event handler to be executed.

AT – to execute events at remote or consolidated databases in a SQL Remote setup, use this
clause to restrict the databases at which the event is handled. By default, all databases execute
the event.

HANDLER – each event has one handler. Like the body of a stored procedure, the handler is a
compound statement. There are some differences, though: you can use an EXCEPTION clause
within the compound statement to handle errors, but not the ON EXCEPTION RESUME clause
provided within stored procedures.

See also System Administration Guide: Volume 2 > Automating Tasks Using Schedules and
Events.

Side Effects:

SQL Statements

Reference: Statements and Options 85

• Automatic commit.
• The actions of an event handler are committed if no error is detected during execution, and

rolled back if errors are detected.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority.

Event handlers execute on a separate connection, with the permissions of the event owner. To
execute with permissions other than DBA, you can call a procedure from within the event
handler: the procedure executes with the permissions of its owner. The separate connection
does not count towards the ten-connection limit of the personal database server.

See also
• ALTER EVENT Statement on page 14
• BEGIN … END Statement on page 47
• COMMENT Statement on page 58
• DROP Statement on page 170
• TRIGGER EVENT Statement on page 304

CREATE EXISTING TABLE Statement
Creates a new proxy table that represents an existing table on a remote server.

Syntax
CREATE EXISTING TABLE [owner.]table_name
[(column-definition, …)]
AT 'location-string'

Parameters

• column-definition: – column-name data-type [NOT NULL]
• location-string: – remote-server-name.[db-name].[owner].object-name | remote-server-

name;[db-name];[owner];object-name

Examples

• Example 1 – Create a proxy table named nation for the nation table at the remote
server server_a:

SQL Statements

 86 Sybase IQ

CREATE EXISTING TABLE nation
(n_nationkey int,
 n_name char(25),
 n_regionkey int,
 n_comment char(152))
AT 'server_a.db1.joe.nation'

• Example 2 – Create a proxy table named blurbs for the blurbs table at the remote
server server_a. Sybase IQ derives the column list from the metadata it obtains from
the remote table:

CREATE EXISTING TABLE blurbs
AT 'server_a.db1.joe.blurbs'

• Example 3 – Create a proxy table named rda_employee for the Employees table at
the Sybase IQ remote server remote_iqdemo_srv:

CREATE EXISTING TABLE rda_employee
AT 'remote_iqdemo_srv..dba.Employees'

Usage

CREATE EXISTING TABLE is a variant of the CREATE TABLE statement. The EXISTING
keyword is used with CREATE TABLE to specify that a table already exists remotely, and that
its metadata is to be imported into Sybase IQ. This establishes the remote table as a visible
entity to its users. Sybase IQ verifies that the table exists at the external location before it
creates the table.

Tables used as proxy tables cannot have names longer than 30 characters.

If the object does not exist (either as a host data file or remote server object), the statement is
rejected with an error message.

Index information from the host data file or remote server table is extracted and used to create
rows for the system table sysindexes. This defines indexes and keys in server terms and
enables the query optimizer to consider any indexes that might exist on this table.

Referential constraints are passed to the remote location when appropriate.

If you do not specify column definitions, Sybase IQ derives the column list from the metadata
it obtains from the remote table. If you do specify column definitions, Sybase IQ verifies them.
When Sybase IQ checks column names, data types, lengths, and null properties:

• Column names must match identically (although case is ignored).
• Data types in CREATE EXISTING TABLE must match or be convertible to the data types of

the column on the remote location. For example, a local column data type is defined as
NUMERIC, whereas the remote column data type is MONEY. You may encounter some
errors, if you select from a table in which the data types do not match or other
inconsistencies exist.

SQL Statements

Reference: Statements and Options 87

• Each column’s NULL property is checked. If the local column’s NULL property is not
identical to the remote column’s NULL property, a warning message is issued, but the
statement is not aborted.

• Each column’s length is checked. If the lengths of CHAR, VARCHAR, BINARY,
DECIMAL, and NUMERIC columns do not match, a warning message is issued, but the
command is not aborted. You might choose to include only a subset of the actual remote
column list in your CREATE EXISTING statement.

• AT specifies the location of the remote object. The AT clause supports the semicolon (;) as a
delimiter. If a semicolon is present anywhere in the location string, the semicolon is the
field delimiter. If no semicolon is present, a period is the field delimiter. This allows you to
use file names and extensions in the database and owner fields. Semicolon field delimiters
are used primarily with server classes that are not currently supported; however, you can
also use them where a period would also work as a field delimiter. For example, this
statement maps the table proxy_a1 to the SQL Anywhere database mydb on the remote
server myasa:

CREATE EXISTING TABLE
proxy_a1
AT 'myasa;mydb;;a1'

In a simplex environment, you cannot create a proxy table that refers to a remote table on the
same node. In a multiplex environment, you cannot create a proxy table that refers to the
remote table defined within the multiplex.

For example, in a simplex environment, if you try to create proxy table proxy_e, which
refers to base table Employees defined on the same node, the CREATE EXISTING TABLE
statement is rejected with an error message. In a multiplex environment, the CREATE
EXISTING TABLE statement is rejected if you create proxy table proxy_e from any node
(coordinator or secondary) that refers to remote table Employees defined within a
multiplex.

See also System Administration Guide: Volume 2 > Accessing Remote Data and System
Administration Guide: Volume 2 > Server Classes for Remote Data Access.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

Must have RESOURCE authority. To create a table for another user, you must have DBA
authority.

See also
• CREATE TABLE Statement on page 133

SQL Statements

 88 Sybase IQ

CREATE EXTERNLOGIN Statement
Assigns an alternate login name and password to be used when communicating with a remote
server.

Syntax
CREATE EXTERNLOGIN login-name
TO remote-server
REMOTE LOGIN remote-user
[IDENTIFIED BY remote-password]

Examples

• Example 1 – Map the local user named DBA to the user sa with password 4TKNOX when
connecting to the server sybase1:

CREATE EXTERNLOGIN dba
TO sybase1
REMOTE LOGIN sa
IDENTIFIED BY 4TKNOX

Usage

Changes made by CREATE EXTERNLOGIN do not take effect until the next connection to the
remote server.

By default, Sybase IQ uses the names and passwords of its clients whenever it connects to a
remote server on behalf of those clients. CREATE EXTERNLOGIN assigns an alternate login
name and password to be used when communicating with a remote server. It stores the
password internally in encrypted form. The remote_server must be known to the local server
by an entry in the ISYSSERVER system table. For more information, see CREATE SERVER
Statement.

Sites with automatic password expiration should plan for periodic updates of passwords for
external logins.

CREATE EXTERNLOGIN cannot be used from within a transaction.

login-name—Specifies the local user login name. When using integrated logins, the login-
name is the database user to which the Windows user ID is mapped.

TO—The TO clause specifies the name of the remote server.

REMOTE LOGIN—The REMOTE LOGIN clause specifies the user account on remote-server
for the local user login-name.

IDENTIFIED BY—The IDENTIFIED BY clause specifies that remote-password is the
password for remote-user. If you omit the IDENTIFIED BY clause, the password is sent to the

SQL Statements

Reference: Statements and Options 89

remote server as NULL. If you specify IDENTIFIED BY " " (an empty string), the password sent
is the empty string.

The remote-user and remote-password combination must be valid on remote-server.

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

Only the DBA or USER ADMIN account can add or modify an external login.

See also
• DROP EXTERNLOGIN Statement on page 174

• INSERT Statement on page 209

• CREATE SERVER Statement on page 129

CREATE FUNCTION Statement
Creates a new function in the database.

Syntax

Syntax 1
CREATE [TEMPORARY] FUNCTION [owner.]function-name
([parameter, …])
 RETURNS data-type routine-characteristics
 [SQL SECURITY { INVOKER | DEFINER }]
 { compound-statement
 | AS tsql-compound-statement
 | external-name }

Syntax 2
CREATE FUNCTION [owner.]function-name ([parameter, …])
 RETURNS data-type
 URL url-string
 [HEADER header-string]
 [SOAPHEADER soap-header-string]
 [TYPE { 'HTTP[:{ GET | POST }] ' | 'SOAP[:{ RPC | DOC }]' }]
 [NAMESPACE namespace-string]
 [CERTIFICATE certificate-string]

SQL Statements

 90 Sybase IQ

 [CLIENTPORT clientport-string]
 [PROXY proxy-string]

Parameters

• url-string: – ' { HTTP | HTTPS | HTTPS_FIPS }://[user:password@]hostname[:port][/
path] '

• parameter: – IN parameter-name data-type [DEFAULT expression]
• routine-characteristics: – ON EXCEPTION RESUME | [NOT] DETERMINISTIC

• tsql-compound-statement: – sql-statement sql-statement …
• external-name: – EXTERNAL NAME library-call | EXTERNAL NAME java-call

LANGUAGE JAVA

• library-call: – '[operating-system:]function-name@library; …'
• operating-system: – UNIX

• java-call: – '[package-name.]class-name.method-name method-signature'
• method-signature: – ([field-descriptor, ….]) return-descriptor
• field-descriptor and return-descriptor: – Z | B | S | I | J | F | D | C | V | [descriptor | L

class-name;

Examples

• Example 1 – Concatenate a firstname string and a lastname string:

CREATE FUNCTION fullname (
 firstname CHAR(30),
 lastname CHAR(30))
RETURNS CHAR(61)
BEGIN
 DECLARE name CHAR(61);
 SET name = firstname || ' ' || lastname;
 RETURN (name);
END

This examples illustrate the use of the fullname function.

• Return a full name from two supplied strings:
SELECT fullname ('joe','smith')

fullname('joe', 'smith')

joe smith

• List the names of all employees:
SELECT fullname (givenname, surname)
FROM Employees

SQL Statements

Reference: Statements and Options 91

fullname (givenname, surname)

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

Robert Breault

...

• Example 2 – Use Transact-SQL syntax:

CREATE FUNCTION DoubleIt (@Input INT)
RETURNS INT
AS
DECLARE @Result INT
SELECT @Result = @Input * 2
RETURN @Result

The statement SELECT DoubleIt(5) returns a value of 10.

• Example 3 – Create an external function written in Java:

CREATE FUNCTION dba.encrypt(IN name char(254))
RETURNS VARCHAR
EXTERNAL NAME
'Scramble.encrypt (Ljava/lang/String;)Ljava/lang/String;'
LANGUAGE JAVA

Usage

The CREATE FUNCTION statement creates a user-defined function in the database. A function
can be created for another user by specifying an owner name. Subject to permissions, a user-
defined function can be used in exactly the same way as other non-aggregate functions.

CREATE FUNCTION—Parameter names must conform to the rules for database identifiers.
They must have a valid SQL data type and be prefixed by the keyword IN, signifying that the
argument is an expression that provides a value to the function.

When functions are executed, not all parameters need to be specified. If a default value is
provided in the CREATE FUNCTION statement, missing parameters are assigned the default
values. If an argument is not provided by the caller and no default is set, an error is given.

Specifying TEMPORARY (CREATE TEMPORARY FUNCTION) means that the function is
visible only by the connection that created it, and that it is automatically dropped when the
connection is dropped. Temporary functions can also be explicitly dropped. You cannot
perform ALTER, GRANT, or REVOKE operations on them, and unlike other functions,
temporary functions are not recorded in the catalog or transaction log.

SQL Statements

 92 Sybase IQ

Temporary functions execute with the permissions of their creator (current user), and can only
be owned by their creator. Therefore, do not specify owner when creating a temporary
function.

Temporary functions can be created and dropped when connected to a read-only database.

SQL SECURITY—Defines whether the function is executed as the INVOKER, the user who
is calling the function, or as the DEFINER, the user who owns the function. The default is
DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because annotation must
be done for each user that calls the procedure. Also, when SQL SECURITY INVOKER is
specified, name resolution is done as the invoker as well. Therefore, take care to qualify all
object names (tables, procedures, and so on) with their appropriate owner.

compound-statement—A set of SQL statements bracketed by BEGIN and END, and separated
by semicolons. See BEGIN … END Statement.

tsql-compound-statement—A batch of Transact-SQL statements. See Reference: Building
Blocks, Tables, and Procedures > Compatibility with Other Sybase Databases > Transact-
SQL Procedure Language Overview > Transact-SQL Batch Overview and CREATE
PROCEDURE Statement [T-SQL].

EXTERNAL NAME—A function using the EXTERNAL NAME clause is a wrapper around a
call to a function in an external library. A function using EXTERNAL NAME can have no other
clauses following the RETURNS clause. The library name may include the file extension,
which is typically .dll on Windows and .so on UNIX. In the absence of the extension, the
software appends the platform-specific default file extension for libraries.

The EXTERNAL NAME clause is not supported for temporary functions. See SQL Anywhere
11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere Data Access APIs > SQL
Anywhere External Function API > Calling external libraries from procedures.

EXTERNAL NAME LANGUAGE JAVA—A function that uses EXTERNAL NAME with a
LANGUAGE JAVA clause is a wrapper around a Java method. For information on calling Java
procedures, see CREATE PROCEDURE Statement.

ON EXCEPTION RESUME—Uses Transact-SQL-like error handling. See CREATE
PROCEDURE Statement.

NOT DETERMINISTIC—A function specified as NOT DETERMINISTIC is re-evaluated each
time it is called in a query. The results of functions not specified in this manner may be cached
for better performance, and re-used each time the function is called with the same parameters
during query evaluation.

Functions that have side effects, such as modifying the underlying data, should be declared as
NOT DETERMINISTIC. For example, a function that generates primary key values and is used
in an INSERT … SELECT statement should be declared NOT DETERMINISTIC:

SQL Statements

Reference: Statements and Options 93

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html

CREATE FUNCTION keygen(increment INTEGER)
RETURNS INTEGER
NOT DETERMINISTIC
BEGIN
 DECLARE keyval INTEGER;
 UPDATE counter SET x = x + increment;
 SELECT counter.x INTO keyval FROM counter;
 RETURN keyval
END
INSERT INTO new_table
SELECT keygen(1), ...
FROM old_table

Functions may be declared as DETERMINISTIC if they always return the same value for given
input parameters.

All user-defined functions are treated as deterministic unless they are declared NOT
DETERMINISTIC. Deterministic functions return a consistent result for the same parameters
and are free of side effects. That is, the database server assumes that two successive calls to the
same function with the same parameters will return the same result without unwanted side-
effects on the semantics of the query.

If a function returns a result set, it cannot also set output parameters or return a return value.

Note: User-defined functions are processed by SQL Anywhere. They do not take advantage of
the performance features of Sybase IQ. Queries that include user-defined functions run at least
10 times slower than queries without them.

In certain cases, differences in semantics between SQL Anywhere and Sybase IQ can produce
different results for a query if the query is issued in a user-defined function. For example,
Sybase IQ treats the CHAR and VARCHAR data types as distinct and different, while SQL
Anywhere treats CHAR data as if it were VARCHAR.

To modify a user-defined function, or to hide the contents of a function by scrambling its
definition, use the ALTER FUNCTION statement. For more information, see SQL Anywhere
11.0.1 > SQL Anywhere Server – SQL Reference > Using SQL > SQL statements > SQL
statements (A-D) > ALTER FUNCTION statement.

URL—For use only when defining an HTTP or SOAP web services client function. Specifies
the URL of the web service. The optional user name and password parameters provide a
means of supplying the credentials needed for HTTP basic authentication. HTTP basic
authentication base-64 encodes the user and password information and passes it in the
“Authentication” header of the HTTP request.

For web service client functions, the return type of SOAP and HTTP functions must one of the
character data types, such as VARCHAR. The value returned is the body of the HTTP response.
No HTTP header information is included. If more information is required, such as status
information, use a procedure instead of a function.

SQL Statements

 94 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/alter-function-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/alter-function-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/alter-function-statement.html

Parameter values are passed as part of the request. The syntax used depends on the type of
request. For HTTP:GET, the parameters are passed as part of the URL; for HTTP:POST
requests, the values are placed in the body of the request. Parameters to SOAP requests are
always bundled in the request body.

HEADER—When creating HTTP web service client functions, use this clause to add or
modify HTTP request header entries. Only printable ASCII characters can be specified for
HTTP headers, and they are case-insensitive. For more information about how to use this
clause, see the HEADER clause of the CREATE PROCEDURE Statement.

For more information about using HTTP headers, see SQL Anywhere 11.0.1 > SQL
Anywhere Server – Programming> SQL Anywhere Data Access APIs > SQL Anywhere web
services > Working with HTTP headers.

SOAPDHEADER—When declaring a SOAP Web service as a function, use this clause to
specify one or more SOAP request header entries. A SOAP header can be declared as a static
constant, or can be dynamically set using the parameter substitution mechanism (declaring IN,
OUT, or INOUT parameters for hd1, hd2, and so on). A web service function can define one or
more IN mode substitution parameters, but cannot define an INOUT or OUT substitution
parameter. For more information about how to use this clause, see the SOAPHEADER clause in
SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference > Using SQL > SQL
statements > SQL statements (A-D) > CREATE PROCEDURE statement (web services).

TYPE—Specifies the format used when making the web service request. If SOAP is specified
or no type clause is included, the default type SOAP:RPC is used. HTTP implies HTTP:POST.
Since SOAP requests are always sent as XML documents, HTTP:POST is always used to send
SOAP requests.

NAMESPACE—Applies to SOAP client functions only and identifies the method namespace
usually required for both SOAP:RPC and SOAP:DOC requests. The SOAP server handling the
request uses this namespace to interpret the names of the entities in the SOAP request message
body. The namespace can be obtained from the WSDL description of the SOAP service
available from the web service server. The default value is the procedure's URL, up to but not
including the optional path component.

CERTIFICATE—To make a secure (HTTPS) request, a client must have access to the
certificate used by the HTTPS server. The necessary information is specified in a string of
semicolon-separated key/value pairs. The certificate can be placed in a file and the name of the
file provided using the file key, or the whole certificate can be placed in a string, but not both.
These keys are available:

Key Abbreviation Description

file File name of certificate

certificate cert The certificate

company co Company specified in the certificate

SQL Statements

Reference: Statements and Options 95

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/headers-http.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/headers-http.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/headers-http.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-procedure-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-procedure-statement.html

Key Abbreviation Description

unit Company unit specified in the certificate

name Common name specified in the certificate

Certificates are required only for requests that are either directed to an HTTPS server or can be
redirected from an insecure to a secure server.

CLIENTPORT—Identifies the port number on which the HTTP client procedure
communicates using TCP/IP. It is provided for and recommended only for connections across
firewalls, as firewalls filter according to the TCP/UDP port. You can specify a single port
number, ranges of port numbers, or a combination of both; for example, CLIENTPORT
'85,90-97'.

See System Administration Guide: Volume 1 > Connection and Communication Parameters >
Network Communications Parameters > ClientPort Communication Parameter [CPort].

PROXY—Specifies the URI of a proxy server. For use when the client must access the
network through a proxy. Indicates that the procedure is to connect to the proxy server and
send the request to the web service through it.

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have RESOURCE authority.

External functions, including Java functions, must have DBA authority.

See also
• ALTER FUNCTION Statement on page 15

• BEGIN … END Statement on page 47

• CREATE PROCEDURE Statement on page 110

• DROP Statement on page 170

• RETURN Statement on page 271

SQL Statements

 96 Sybase IQ

CREATE INDEX Statement
Creates an index on a specified table, or pair of tables.

Syntax
CREATE [UNIQUE] [index-type] INDEX index-name
…ON [owner.]table-name
… (column-name [, column-name] …)
…[{ IN | ON } dbspace-name]
…[NOTIFY integer]
…[DELIMITED BY ‘separators-string ‘]
…[LIMIT maxwordsize-integer]

Parameters

• index-type: – { CMP | HG | HNG | LF | WD | DATE | TIME | DTTM }

Examples

• Example 1 – Create a Compare index on the projected_earnings and
current_earnings columns. These columns are decimal columns with identical
precision and scale.

CREATE

CMP INDEX proj_curr_cmp
ON sales_data
(projected_earnings, current_earnings)

• Example 2 – Create a High_Group index on the ID column of the SalesOrderItems
table. The data pages for this index are allocated from dbspace Dsp5.

CREATE

HG INDEX id_hg
ON SalesOrderItems
(ID) IN Dsp5

• Example 3 – Create a High_Group index on the SalesOrderItems table for the
ProductID column:

CREATE HG INDEX item_prod_hg
ON Sales_OrderItems
(ProductID)

• Example 4 – Create a Low_Fast index on the SalesOrderItems table for the same
ProductID column without any notification messages:

CREATE LF INDEX item_prod
ON SalesOrderItems

SQL Statements

Reference: Statements and Options 97

(ProductID)
 NOTIFY 0

• Example 5 – Create a WD index on the earnings_report table. Specify that the
delimiters of strings are space, colon, semicolon, and period. Limit the length of the strings
to 25.

CREATE WD INDEX earnings_wd
ON earnings_report_table(varchar)
DELIMITED BY ‘ :;.’
LIMIT 25

• Example 6 – Create a DTTM index on the SalesOrders table for the OrderDate
column:

CREATE DTTM INDEX order_dttm
ON SalesOrders
(OrderDate)

Usage

The CREATE INDEX statement creates an index on the specified column of the named table.
Once an index is created, it is never referenced in a SQL statement again except to delete it
using the DROP INDEX statement.

For columns in Sybase IQ tables, you can specify an index-type of HG (High_Group), HNG
(High_Non_Group), LF (Low_Fast), WD (Word), DATE, TIME, or DTTM (Datetime). If you do
not specify an index-type, an HG index is created by default.

To create an index on the relationship between two columns in an IQ table, you can specify an
index-type of CMP (Compare). Columns must be of identical data type, precision and scale.
For a CHAR, VARCHAR, BINARY or VARBINARY column, precision means that both
columns have the same width.

For maximum query speed, the correct type of index for a column depends on:

• The number of unique values in the column
• How the column is going to be used in queries
• The amount of disk space available

The System Administration Guide: Volume 1 describes the index types in detail and tells how
to determine the appropriate index types for your data.

You can specify multiple indexes on a column of an IQ table, but these must be of different
index types. CREATE INDEX does not let you add a duplicate index type. Sybase IQ chooses
the fastest index available for the current query or portion of the query. However, each
additional index type might significantly add to the space requirements of that table.

column-name—Specifies the name of the column to be indexed. A column name is an
identifier preceded by an optional correlation name. (A correlation name is usually a table
name. For more information on correlation names, see FROM Clause.) If a column name has
characters other than letters, digits, and underscore, enclose it in quotation marks (“”).

SQL Statements

 98 Sybase IQ

When you omit UNIQUE, you can specify only an HG index. Foreign keys require nonunique
HG indexes and composite foreign keys require nonunique composite HG indexes. The
multicolumn composite key for both unique and nonunique HG indexes has a maximum width
of 5300 bytes. CHAR or VARCHAR data cannot be more than 255 bytes when it is part of a
composite key or single-column HG, LF, HNG, DATE, TIME, or DTTM indexes.

UNIQUE—UNIQUE ensures that no two rows in the table have identical values in all the
columns in the index. Each index key must be unique or contain a NULL in at least one
column. You can create unique HG indexes with more than one column, but you cannot create
multicolumn indexes using other index types. You cannot specify UNIQUE with the CMP,
HNG, WD, DATE, TIME, or DTTM index types.

Sybase IQ allows the use of NULL in data values on a user created unique multicolumn HG
index, if the column definition allows for NULL values and a constraint (primary key or
unique) is not being enforced. See “Multicolumn indexes” in Notes for more information.

IN—Specifies index placement. If you omit the IN clause, the index is created in the dbspace
where the table is created. An index is always placed in the same type of dbspace (IQ store or
temporary store) as its table. When you load the index, the data is spread across any database
files of that type with room available. Sybase IQ ensures that any dbspace-name you specify is
appropriate for the index. If you try to specify IQ_SYSTEM_MAIN or other main dbspaces for
indexes on temporary tables, or vice versa, you receive an error. Dbspace names are always
case-insensitive, regardless of the CREATE DATABASE...CASE IGNORE or CASE RESPECT
specification.

DELIMITED BY—Specifies separators to use in parsing a column string into the words to be
stored in the WD index of that column. If you omit this clause or specify the value as an empty
string, Sybase IQ uses the default set of separators. The default set of separators is designed for
the default collation order (ISO-BINENG). It includes all 7-bit ASCII characters that are not
7-bit ASCII alphanumeric characters, except for the hyphen and the single quotation mark.
The hyphen and the single quotation mark are part of words by default. There are 64 separators
in the default separator set. For example, if the column value is this string:
The cat is on the mat

and the database was created with the CASE IGNORE setting using default separators, these
words are stored in the WD index from this string:
cat is mat on the

If you specify multiple DELIMITED BY and LIMIT clauses, no error is returned, but only the last
clause of each type is used.

separators-string—The separators string must be a sequence of 0 or more characters in the
collation order used when the database was created. Each character in the separators string is
treated as a separator. If there are no characters in the separators string, the default set of
separators is used. (Each separator must be a single character in the collation sequence being
used.) There cannot be more than 256 characters (separators) in the separators string.

SQL Statements

Reference: Statements and Options 99

To specify tab as a delimiter, you can either type a <TAB> character within the separator
string, or use the hexadecimal ASCII code of the tab character, \x09. “\t” specifies two
separators, \ and the letter t. To specify newline as a delimiter, you can type a <RETURN>
character or the hexadecimal ASCII code \x0a.

For example, the clause DELIMITED BY ' :;.\/t' specifies these seven separators:
space : ; . \ / t

Table 5. Tab and Newline as Delimiters

For these delimiters Use this separators string in the DELIMITED
BY clause

tab ' ' (type <TAB>)or

'\x09'

newline ' ' (type <RETURN>) or '\x0a'

LIMIT—Can be used for the creation of the WD index only. Specifies the maximum word
length that is permitted in the WD index. Longer words found during parsing causes an error.
The default is 255 bytes. The minimum permitted value is 1 and the maximum permitted value
is 255. If the maximum word length specified in the CREATE INDEX statement or determined
by default exceeds the column width, the used maximum word length is silently reduced to the
column width. Using a lower maximum permitted word length allows insertions, deletions,
and updates to use less space and time. The empty word (two adjacent separators) is silently
ignored. After a WD index is created, any insertions into its column are parsed using the
separators and maximum word size determined at create time. These separators and maximum
word size cannot be changed after the index is created.

NOTIFY—Gives notification messages after n records are successfully added for the index.
The messages are sent to the standard output device. A message contains information about
memory usage, database space, and how many buffers are in use. The default is 100,000
records. To turn off NOTIFY, set it to 0.

Note:

• Index ownership—There is no way to specify the index owner in the CREATE INDEX
statement. Indexes are automatically owned by the owner of the table on which they are
defined. The index name must be unique for each owner.

• No indexes on views—Indexes cannot be created for views.
• Index name—The name of each index must be unique for a given table.
• Exclusive table use—CREATE INDEX is prevented whenever the statement affects a table

currently being modified by another connection. However, queries are allowed on a table
that is also adding an index.

• CHAR columns—After a WD index is created, any insertions into its column are parsed
using the separators, and maximum word size cannot be changed after the index is created.
For CHAR columns, Sybase recommends that you specify a space as at least one of the
separators or use the default separator set. Sybase IQ automatically pads CHAR columns to

SQL Statements

 100 Sybase IQ

the maximum column width. If your column contains blanks in addition to the character
data, queries on WD indexed data might return misleading results. For example, column
CompanyName contains two words delimited by a separator, but the second word is blank
padded:
‘Concord’ ‘Farms ’

Suppose that a user entered this query:
SELECT COUNT(*)FROM Customers WHERE CompanyName contains (‘Farms’)

The parser determines that the string contains:
‘Farms ’

instead of:
‘Farms’

and returns 0 instead of 1. You can avoid this problem by using VARCHAR instead of CHAR
columns.

• Data types—You cannot use CREATE INDEX to create an index on a column with BIT
data. Only the default index, CMP index, or WD index can be created on CHAR and
VARCHAR data with more than 255 bytes. Only the default and WD index types can be
created on LONG VARCHAR data. Only the default index and CMP index can be created on
VARBINARY data with more than 255 bytes. In addition, you cannot create an HNG index
or a CMP index on a column with FLOAT, REAL, or DOUBLE data. A TIME index can be
created only on a column having the data type TIME. A DATE index can be created only on
a column having the data type DATE. A DTTM index can be created only on a column
having the data type DATETIME or TIMESTAMP.

• Multicolumn indexes—You can create a unique or nonunique HG index with more than
one column. Sybase IQ implicitly creates a nonunique HG index on a set of columns that
makes up a foreign key.
HG and CMP are the only types of indexes that can have multiple columns. You cannot
create a unique HNG or LF index with more than one column, and you cannot create a
DATE, TIME, or DTTM index with more than one column.
The maximum width of a multicolumn concatenated key is 5KB (5300 bytes). The number
of columns allowed depends on how many columns can fit into 5KB. CHAR or VARCHAR
data greater than 255 bytes are not allowed as part of a composite key in single-column HG,
LF, HNG, DATE, TIME, or DTTM indexes.
Multicolumn indexes on base tables are not replicated in join indexes created using those
base tables.
An INSERT on a multicolumn index must include all columns of the index.
Queries with a single column in the ORDER BY clause run faster using multicolumn HG
indexes. For example:
SELECT abs (x) from t1
ORDER BY x

In the above example, the HG index vertically projects x in sorted order.

SQL Statements

Reference: Statements and Options 101

To enhance query performance, use multicolumn HG indexes to run ORDER BY operations
on more than one column (that can also include ROWID) in the SELECT or ORDER BY
clause with these conditions:
• All projected columns, plus all ordering columns (except ROWID), exist within the

index
• The ordering keys match the leading HG columns, in order
If more than one multicolumn HG index satisfies these conditions, the index with the
lowest distinct counts is used.
If a query has an ORDER BY clause, and the ORDER BY column list is a prefix of a
multicolumn index where all columns referenced in the SELECT list are present in a
multicolumn index, then the multicolumn index performs vertical projection; for example:
SELECT x,z,y FROM T
ORDER BY x,y

If expressions exist on base columns in the SELECT list, and all the columns referenced in
all the expressions are present in the multicolumn index, then the query will use a
multicolumn index; for example:
SELECT power(x,2), x+y, sin(z) FROM T
ORDER BY x,y

In addition to the two previous examples, if the ROWID() function is in the SELECT list
expressions, multicolumn indexes will be used. For example:
SELECT rowid()+x, z FROM T
ORDER BY x,y,z

In addition to the three previous examples, if ROWID() is present at the end of an ORDER
BY list, and if the columns of that list—except for ROWID()—use multicolumn indexes in
the exact order, multicolumn indexes will be used for the query. For example:
SELECT z,y FROM T
ORDER BY x,y,z,ROWID()

Sybase IQ allows the use of NULL in data values on a user created unique multicolumn HG
index, if the column definition allows for NULL values and a constraint (primary key or
unique) is not being enforced. The rules for this feature are as follows:
• A NULL is treated as an undefined value.
• Multiple rows with NULL values in a unique index column or columns are allowed.

1. In a single column index, multiple rows with a NULL value in an index column are
allowed.

2. In a multicolumn index, multiple rows with a NULL value in index column or
columns are allowed, as long as non-NULL values in the rest of the columns
guarantee uniqueness in that index.

3. In a multicolumn index, multiple rows with NULL values in all columns
participating in the index are allowed.

These examples illustrate these rules. Given the table table1:

CREATE TABLE table1
(c1 INT NULL, c2 INT NULL, c3 INT NOT NULL);

SQL Statements

 102 Sybase IQ

Create a unique single column HG index on a column that allows NULLs:
CREATE UNIQUE HG INDEX c1_hg1 ON table1 (c1);

According to rule 1 above, you can insert a NULL value into an index column in multiple
rows:
INSERT INTO table1(c1,c2,c3) VALUES (NULL,1,1);
INSERT INTO table1(c1,c2,c3) VALUES (NULL,2,2);

Create a unique multicolumn HG index on a columns that allows NULLs:
CREATE UNIQUE HG INDEX c1c2_hg2 ON table1(c1,c2);

According to rule 2 above, you must guarantee uniqueness in the index. The following
INSERT does not succeed, since the multicolumn index c1c2_hg2 on row 1 and row 3
has the same value:
INSERT INTO table1(c1,c2,c3) VALUES (NULL,1,3);

These INSERT operations are successful, however, according to rules 1 and 3:
INSERT INTO table1(c1,c2,c3) VALUES (NULL,NULL,3);
INSERT INTO table1(c1,c2,c3) VALUES (NULL,NULL,4);

Uniqueness is preserved in the multicolumn index.
This UPDATE operation is successful, as rule 3 allows multiple rows with NULL values in
all columns in the multicolumn index:
UPDATE table1 SET c2=NULL WHERE c3=1

When a multicolumn HG index is governed by a unique constraint, a NULL value is not
allowed in any column participating in the index.

• Parallel index creation—You can use the BEGIN PARALLEL IQ … END PARALLEL IQ
statement to group CREATE INDEX statements on multiple IQ tables, so that they execute
as though they are a single DDL statement. See BEGIN PARALLEL IQ … END
PARALLEL IQ Statement for more information.

Warning! Using the CREATE INDEX command on a local temporary table containing
uncommitted data fails and generates the error message Local temporary table,
<tablename>, must be committed in order to create an index.
Commit the data in the local temporary table before creating an index.

See also System Administration Guide: Volume 1 > Sybase IQ Indexes.

Side Effects

• Automatic commit

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Adaptive Server Enterprise has a more complex CREATE INDEX statement than

Sybase IQ. While the Adaptive Server Enterprise syntax is permitted in Sybase IQ, some

SQL Statements

Reference: Statements and Options 103

clauses and keywords are ignored. For the full syntax of the Adaptive Server Enterprise
CREATE INDEX statement, see the Adaptive Server Enterprise Reference Manual, Volume
2: Commands.

Adaptive Server Enterprise indexes can be either clustered or nonclustered. A clustered index
almost always retrieves data faster than a nonclustered index. Only one clustered index is
permitted per table.

Sybase IQ does not support clustered indexes. The CLUSTERED and NONCLUSTERED
keywords are allowed by SQL Anywhere, but are ignored by Sybase IQ. If no index-type is
specified, Sybase IQ creates an HG index on the specified column(s).

Sybase IQ does not permit the DESC keyword.

Index names must be unique on a given table for both Sybase IQ and Adaptive Server
Enterprise.

Permissions

Must have DBA authority or RESOURCE authority and CREATE privilege in the specified
dbspace to create an index.

See also
• BEGIN PARALLEL IQ … END PARALLEL IQ Statement on page 49

• FROM Clause on page 193

• CREATE JOIN INDEX Statement on page 104

• DROP Statement on page 170

• INDEX_PREFERENCE Option on page 387

CREATE JOIN INDEX Statement
Creates a join index, which defines a group of tables that are prejoined through specific
columns, to improve performance of queries using tables in a join operation.

Syntax
CREATE JOIN INDEX join-index-name FOR join-clause
IN dbspace-name

Parameters

• join-clause: – [(] join-expression join-type join-expression [ON search-condition]
[)]

• join-expression: – { table-name | join-clause }
• join-type: – [NATURAL] FULL [OUTER] JOIN

SQL Statements

 104 Sybase IQ

• search-condition: – [(] search-expression [AND search-expression] [)]
• search-expression: – [(] [table-name.] column-name = [table-name.] column-name

[)]

Examples

• Example 1 – Create a join index between the Departments and Employees tables
using the DepartmentID column, which is the primary key for Departments and
foreign key for Employees.

CREATE JOIN INDEX emp_dept_join
FOR Departments FULL OUTER JOIN Employees
ON Departments.DepartmentID = Employees.DepartmentID

• Example 2 – Create tables t1 and t2, where future data allocation is from the default
dbspace, and join index t1t2, where future data allocation is from dbspace Dsp6.

CREATE TABLE t1(c1 int, c2 char(5));
CREATE TABLE t2(c1 int, c3 char(5));
CREATE JOIN INDEX t1t2 FOR t1
 FULL OUTER JOIN t2 ON t2.c1=t1.c1 IN Dsp6;

Usage

CREATE JOIN INDEX creates a join index on the specified columns of the named tables. Once
a join index is created, it is never referenced again except to delete it using DROP JOIN INDEX
or to synchronize it using SYNCHRONIZE JOIN INDEX.

This statement supports joins only of type FULL OUTER; the OUTER keyword is optional.

IN—Specifies the join index placement. If the IN clause is omitted, Sybase IQ creates the join
index in the default dbspace (as specified by the option DEFAULT_DBSPACE).

ON—References only columns from two tables. One set of columns must be from a single
table in the left subtree and the other set of columns must be from a table in the right subtree.
The only predicates supported are equijoin predicates. Sybase IQ does not allow single-
variable predicates, intra-column comparisons, or nonequality joins.

Join index columns must have identical data type, precision, and scale.

To specify a multipart key, include more than one predicate linking the two tables connected
by a logical AND. A disjunct ON clause is not supported; that is, Sybase IQ does not permit a
logical OR of join predicates. Also, the ON clause does not accept a standard WHERE clause,
so you cannot specify an alias.

You can use the NATURAL keyword instead of an ON clause. A NATURAL join is one that
pairs columns up by name and implies an equijoin. If the NATURAL join generates predicates
involving more than one pair of tables, CREATE JOIN INDEX returns an error. You can specify
NATURAL or ON, but not both.

CREATE JOIN INDEX looks for a primary-key-to-foreign-key relationship in the tables to
determine the direction of the one-to-many relationship. (The direction of a one-to-one

SQL Statements

Reference: Statements and Options 105

relationship is not important.) The primary key is always the “one” and the foreign key is
always the “many”. If such information is not defined, Sybase IQ assumes the subtree on the
left is the “one” while the subtree on the right is the “many”. If the opposite is true, CREATE
JOIN INDEX returns an error.

Note: Query optimizations for all joins rely heavily on underlying primary keys. They do not
require foreign keys. However, you can benefit from using foreign keys. Sybase IQ enforces
foreign keys if you set up your loads to check for primary key-foreign key relationships.

Join index tables must be Sybase IQ base tables. They cannot be temporary tables, remote
tables, or proxy tables.

Multicolumn indexes on base tables are not replicated in join indexes created using those base
tables.

A star-join index is one in which a single table at the center of the star is joined to multiple
tables in a one-to-many relationship. To define a star-join index, you must define single-
column key and primary keys, and then use the key join syntax in the CREATE JOIN INDEX
statement. Sybase IQ does not support star-join indexes that use multiple join key columns for
any join.

Note: You must explicitly grant permissions on the underlying “join virtual table” to other
users in your group before they can manipulate tables in the join. For information on granting
privileges on the join virtual table, see System Administration Guide: Volume 1 > Sybase IQ
Indexes > Using Join Indexes > Insertions or Deletions from Join Index Tables.

See also System Administration Guide: Volume 1 > Sybase IQ Indexes.

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority or have RESOURCE authority, be the owner of all tables involved in
the join, and have CREATE permission in the dbspace.

See also
• CREATE INDEX Statement on page 97

• CREATE TABLE Statement on page 133

SQL Statements

 106 Sybase IQ

CREATE LOGICAL SERVER Statement
Creates a user-defined logical server.

Syntax
See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex.

CREATE LOGIN POLICY Statement
Creates a login policy in the database.

Syntax
CREATE LOGIN POLICY policy-name policy-options

Parameters

• policy-options: – policy-option [policy-option...]
• policy_option: – policy-option-name =policy-option-value policy-option-

value={ UNLIMITED | ROOT | legal-option-value }

Examples

• Example 1 – Create the Test1 login policy. This login policy has an unlimited password
life and allows the user a maximum of five attempts to enter a correct password before the
account is locked.

CREATE LOGIN POLICY Test1
password_life_time=UNLIMITED
max_failed_login_attempts=5;

Usage

policy-name—the name of the login policy.

policy-option-name—the name of the login policy option. If you do not specify an option, the
value from the root login policy is applied.

policy-option-value—the value assigned to the login policy option. If you specify
UNLIMITED, no limits are imposed.

SQL Statements

Reference: Statements and Options 107

If you do not specify a policy option, values for the login policy are taken from the root login
policy.

Table 6. Login Policy Options

Option

Description

Values

Initial
value
for
ROOT
policy

Applies to

locked If the value for this option
is ON, users are prohibi-
ted from establishing new
connections

ON, OFF OFF Users without
DBA authority
only

max_connections The maximum number of
concurrent connections
allowed for a user.

0 – 2147483647 Unlimi-
ted

Users without
DBA authority
only

max_days_since_log
in

The maximum number of
days that can elapse be-
tween two successive log-
ins by the same user.

0 – 2147483647 Unlimi-
ted

Users without
DBA authority
only

max_failed_log-
in_attempts

The maximum number of
failed attempts, since the
last successful attempt, to
login to the user account
before the account is
locked.

0 – 2147483647 Unlimi-
ted

Users without
DBA authority
only

max_non_dba_con-
nections

The maximum number of
concurrent connections
that a user without DBA
authority can make. This
option is only supported in
the root login policy.

0 – 2147483647 Unlimi-
ted

Users without
DBA authority
only. Only to
the root login
policy.

password_expi-
ry_on_next_login

If the value for this option
is ON, the user's password
will expire in the next log-
in.

ON, OFF OFF All users in-
cluding those
with DBA au-
thority

pass-
word_grace_time

The number of days be-
fore password expiration
during which login is al-
lowed but the default
post_login procedure is-
sues warnings.

0 – 2147483647 0 All users in-
cluding those
with DBA au-
thority

SQL Statements

 108 Sybase IQ

Option

Description

Values

Initial
value
for
ROOT
policy

Applies to

password_life_time The maximum number of
days before a password
must be changed.

0 – 2147483647 Unlimi-
ted

All users in-
cluding those
with DBA au-
thority

Permissions

Must have DBA or USER ADMIN authority.

CREATE MESSAGE Statement [T-SQL]
Adds a user-defined message to the SYSUSERMESSAGES system table for use by PRINT and
RAISERROR statements.

Syntax
CREATE MESSAGE message-number
... AS 'message-text'

Usage

CREATE MESSAGE associates a message number with a message string. The message
number can be used in PRINT and RAISERROR statements.

• message_number—The message number of the message to add. The message number for
a user-defined message must be 20000 or greater.

• message_text—The text of the message to add. The maximum length is 255 bytes. PRINT
and RAISERROR recognize placeholders in the message text to print out. A single message
can contain up to 20 unique placeholders in any order. These placeholders are replaced
with the formatted contents of any arguments that follow the message when the text of the
message is sent to the client.
Placeholders are numbered to allow reordering of the arguments when translating a
message to a language with a different grammatical structure. A placeholder for an
argument appears as “%nn!”—a percent sign (%), followed by an integer from 1 to 20,
followed by an exclamation mark (!)—where the integer represents the position of the
argument in the argument list, “%1!” is the first argument, “%2!” is the second argument,
and so on.

There is no parameter corresponding to the language argument for sp_addmessage.

Side Effects

SQL Statements

Reference: Statements and Options 109

• Automatic commit

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—The functionality of CREATE MESSAGE is provided by the sp_addmessage

procedure in Adaptive Server Enterprise.

Permissions

Must have RESOURCE authority.

See also
• PRINT Statement [T-SQL] on page 255

• RAISERROR Statement [T-SQL] on page 258

CREATE MULTIPLEX SERVER Statement
Creates a multiplex server.

Syntax
See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex.

CREATE PROCEDURE Statement
Creates a new user-defined SQL procedure in the database.

To create external procedure interfaces, see CREATE PROCEDURE Statement (External
Procedures).

Syntax
CREATE[OR REPLACE | TEMPORARY] PROCEDURE [owner.]procedure-name
([parameter, …]) {
[RESULT (result-column, …) | NO RESULT SET]
[SQL SECURITY { INVOKER | DEFINER }]
[ON EXCEPTION RESUME] compound statement | AT location-string

SQL Statements

 110 Sybase IQ

Parameters

• parameter: – parameter_mode parameter-name data-type [DEFAULT expression] |
SQLCODE | SQLSTATE

• parameter_mode: – IN | OUT | INOUT

• result-column: – column-name data-type

Examples

• Example 1 – Use a case statement to classify the results of a query:

CREATE PROCEDURE ProductType (IN product_id INT, OUT type
CHAR(10))
BEGIN
 DECLARE prod_name CHAR(20) ;
 SELECT name INTO prod_name FROM "GROUPO"."Products"
 WHERE ID = product_id;
 CASE prod_name
 WHEN 'Tee Shirt' THEN
 SET type = 'Shirt'
 WHEN 'Sweatshirt' THEN
 SET type = 'Shirt'
 WHEN 'Baseball Cap' THEN
 SET type = 'Hat'
 WHEN 'Visor' THEN
 SET type = 'Hat'
 WHEN 'Shorts' THEN
 SET type = 'Shorts'
 ELSE
 SET type = 'UNKNOWN'
 END CASE ;
END

• Example 2 – Use a cursor and loop over the rows of the cursor to return a single value:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT
TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION
 FOR SQLSTATE '02000' ;
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName, CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers
 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesorderItems
 LEFT OUTER JOIN Products
 GROUP BY CompanyName ;

 DECLARE ThisValue INT ;
 DECLARE ThisCompany CHAR(35) ;
 SET TopValue = 0 ;
 OPEN curThisCust ;
 CustomerLoop:
 LOOP

SQL Statements

Reference: Statements and Options 111

 FETCH NEXT curThisCust
 INTO ThisCompany, ThisValue ;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop ;
 END IF ;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue ;
 SET TopCompany = ThisCompany ;
 END IF ;
 END LOOP CustomerLoop ;
 CLOSE curThisCust ;
END

Usage

CREATE PROCEDURE creates a procedure in the database. Users with DBA authority can
create procedures for other users by specifying an owner. A procedure is invoked with a CALL
statement.

Note: There are two ways to create stored procedures: ISO/ANSI SQL and T-SQL. BEGIN
TRANSACTION, for example, is T-SQL-specific when using CREATE PROCEDURE syntax.
Do not mix syntax when creating stored procedures. See CREATE PROCEDURE Statement
[T-SQL].

CREATE PROCEDURE— You can create permanent or temporary (TEMPORARY) stored
procedures. You can use PROC as a synonym for PROCEDURE.

Parameter names must conform to the rules for other database identifiers, such as column
names, and must be a valid SQL data type. See Reference: Building Blocks, Tables, and
Procedures > SQL Data Types. The keywords have the following meanings:

Parameters can be prefixed by one of the keywords IN, OUT or INOUT. If no keyword is
specified, parameters are INOUT by default. The keywords have the following meanings:

• IN—The parameter is an expression that provides a value to the procedure.
• OUT—The parameter is a variable that could be given a value by the procedure.
• INOUT—The parameter is a variable that provides a value to the procedure, and could be

given a new value by the procedure.

When procedures are executed using CALL, not all parameters need to be specified. If a default
value is provided in the CREATE PROCEDURE statement, missing parameters are assigned
the default values. If an argument is not provided in the CALL statement, and no default is set,
an error is given.

SQLSTATE and SQLCODE are special parameters that output the SQLSTATE or SQLCODE
value when the procedure ends (they are OUT parameters). Whether or not a SQLSTATE and
SQLCODE parameter is specified, the SQLSTATE and SQLCODE special values can always be
checked immediately after a procedure call to test the return status of the procedure.

SQL Statements

 112 Sybase IQ

The SQLSTATE and SQLCODE special values are modified by the next SQL statement.
Providing SQLSTATE or SQLCODE as procedure arguments allows the return code to be
stored in a variable.

Specifying CREATE OR REPLACE PROCEDURE creates a new procedure, or replaces an
existing procedure with the same name. This clause changes the definition of the procedure,
but preserves existing permissions. You cannot use the OR REPLACE clause with temporary
procedures. Also, an error is returned if the procedure being replaced is already in use.

Specifying CREATE TEMPORARY PROCEDURE means that the stored procedure is visible
only by the connection that created it, and that it is automatically dropped when the connection
is dropped. You can also explicitly drop temporary stored procedures. You cannot perform
ALTER, GRANT, or REVOKE on them, and, unlike other stored procedures, temporary stored
procedures are not recorded in the catalog or transaction log.

Temporary procedures execute with the permissions of their creator (current user), or
specified owner. You can specify an owner for a temporary procedure when:

• The temporary procedure is created within a permanent stored procedure
• The temporary and permanent procedure both have the same owner

To drop the owner of a temporary procedure, drop the temporary procedure first.

You can create and drop temporary stored procedures when you are connected to a read-only
database; they cannot be external procedures.

For example, the following temporary procedure drops the table called CustRank, if it
exists. For this example, the procedure assumes that the table name is unique and can be
referenced by the procedure creator without specifying the table owner:

CREATE TEMPORARY PROCEDURE drop_table(IN @TableName char(128))
BEGIN
 IF EXISTS (SELECT * FROM SYS.SYSTAB WHERE
 table_name = @TableName)
 THEN EXECUTE IMMEDIATE
 'DROP TABLE "' || @TableName || '"';
 MESSAGE 'Table "' || @TableName ||
 '" dropped' to client;
 END IF;
END;
CALL drop_table('CustRank')

RESULT—Declares the number and type of columns in the result set. The parenthesized list
following the RESULT keyword defines the result column names and types. This information
is returned by the Embedded SQL DESCRIBE or by ODBC SQLDescribeCol when a CALL
statement is being described. Allowed data types are listed in Reference: Building Blocks,
Tables, and Procedures > SQL Data Types.

For more information on returning result sets from procedures, see System Administration
Guide: Volume 2 > Using Procedures and Batches.

SQL Statements

Reference: Statements and Options 113

Some procedures can produce more than one result set, depending on how they are executed.
For example, this procedure returns two columns under some circumstances, and one in
others.

CREATE PROCEDURE names(IN formal char(1))
BEGIN
 IF formal = 'n' THEN
 SELECT GivenName
 FROM Employees
 ELSE
 SELECT Surname,GivenName
 FROM Employees
 END IF
END

Procedures with variable result sets must be written without a RESULT clause, or in Transact-
SQL. Their use is subject to these limitations:

• Embedded SQL—You must DESCRIBE the procedure call after the cursor for the result set
is opened, but before any rows are returned, in order to get the proper shape of result set.
The CURSOR cursor-name clause on the DESCRIBE statement is required.

• ODBC, OLE DB, ADO.NET—Variable result-set procedures can be used by ODBC
applications. The proper description of the result sets is carried out by the driver or
provider.

• Open Client applications—Variable result-set procedures can be used by Open Client
applications.

If your procedure returns only one result set, use a RESULT clause. The presence of this clause
prevents ODBC and Open Client applications from describing the result set again after a
cursor is open.

To handle multiple result sets, ODBC must describe the currently executing cursor, not the
procedure’s defined result set. Therefore, ODBC does not always describe column names as
defined in the RESULT clause of the procedure definition. To avoid this problem, use column
aliases in the SELECT statement that generates the result set.

NO RESULT SET —Declares that this procedure returns no result set. This is useful when an
external environment needs to know that a procedure does not return a result set.

SQL SECURITY—Defines whether the procedure is executed as the INVOKER (the user
who is calling the procedure), or as the DEFINER (the user who owns the procedure). The
default is DEFINER.

Extra memory is used when you specify SQL SECURITY INVOKER, because annotation
must be done for each user that calls the procedure. Also, name resolution is performed as the
invoker as well. Therefore, qualify all object names (tables, procedures, and so on) with their
appropriate owner. For example, suppose user1 creates this procedure:

 CREATE PROCEDURE user1.myProcedure()
 RESULT(columnA INT)
 SQL SECURITY INVOKER
 BEGIN

SQL Statements

 114 Sybase IQ

 SELECT columnA FROM table1;
 END;

If user2 attempts to run this procedure and a table user2.table1 does not exist, a table
lookup error results. Additionally, if a user2.table1 does exist, that table is used instead
of the intended user1.table1. To prevent this situation, qualify the table reference in the
statement (user1.table1, instead of just table1).

If you use ON EXCEPTION RESUME, the procedure takes an action that depends on the setting
of the ON_TSQL_ERROR option. If ON_TSQL_ERROR is set to CONDITIONAL (which is the
default) the execution continues if the next statement handles the error; otherwise, it exits.

Error-handling statements include:

• IF

• SELECT @variable =
• CASE

• LOOP

• LEAVE

• CONTINUE

• CALL

• EXECUTE

• SIGNAL

• RESIGNAL

• DECLARE

• SET VARIABLE

Do not use explicit error-handling code with an ON EXCEPTION RESUME clause.

See ON_TSQL_ERROR Option [TSQL].

AT location-string—Creates a proxy stored procedure on the current database for a remote
procedure specified by location-string. The AT clause supports the semicolon (;) as a field
delimiter in location-string. If no semicolon is present, a period is the field delimiter. This
allows file names and extensions to be used in the database and owner fields.

Remote procedures can return only up to 254 characters in output variables.

If a remote procedure can return a result set, even if it does not return one in all cases, then the
local procedure definition must contain a RESULT clause.

For information on remote servers, see CREATE SERVER Statement. For information on
using remote procedures, see System Administration Guide: Volume 2 > Accessing Remote
Data > Sybase IQ and Remote Data > Remote Procedure Calls (RPCs).

Note: As procedures are dropped and created, databases created prior to Sybase IQ 12.6 may
eventually reach the maximum proc_id limit of 32767, causing CREATE PROCEDURE to
return an Item already exists error in Sybase IQ 12.6. For a workaround, see System

SQL Statements

Reference: Statements and Options 115

Administration Guide: Volume 1 > Troubleshooting Hints > Solutions for Specific Conditions
> Resource Issues > Insufficient Procedure Identifiers.

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—The Transact-SQL CREATE PROCEDURE statement is different.
• SQLJ—The syntax extensions for Java result sets are as specified in the proposed SQLJ1

standard.

Permissions

Must have RESOURCE authority, unless creating a temporary procedure. For external
procedures or to create a procedure for another user, must have DBA authority.

See also
• BEGIN … END Statement on page 47

• CALL Statement on page 53

• CREATE PROCEDURE Statement [T-SQL] on page 116

• CREATE PROCEDURE Statement (External Procedures) on page 118

• CREATE SERVER Statement on page 129

• DROP Statement on page 170

• EXECUTE IMMEDIATE Statement [ESQL] [SP] on page 184

• GRANT Statement on page 199

• RAISERROR Statement [T-SQL] on page 258

• ON_TSQL_ERROR Option [TSQL] on page 420

CREATE PROCEDURE Statement [T-SQL]
Creates a new procedure that is compatible with Adaptive Server Enterprise.

Syntax

This subset of the Transact-SQL CREATE PROCEDURE statement is supported in Sybase
IQ:
CREATE PROCEDURE [owner.]procedure_name
… [[(] @parameter_name data-type [= default] [OUTPUT] [, …]
[)]]
…[WITH RECOMPILE]

SQL Statements

 116 Sybase IQ

… AS
… statement-list

Usage

Differences between Transact-SQL and Sybase IQ SQL statements:

• Variable names prefixed by @—The “@” sign denotes a Transact-SQL variable name;
Sybase IQ variables can be any valid identifier and the @ prefix is optional.

• Input and output parameters—Sybase IQ procedure parameters are specified as IN, OUT,
or INOUT; Transact-SQL procedure parameters are INPUT parameters by default or can be
specified as OUTPUT. Those parameters declared as INOUT or as OUT in Sybase IQ should
be declared with OUTPUT in Transact-SQL.

• Parameter default values—Sybase IQ procedure parameters are given a default value
using the keyword DEFAULT; Transact-SQL uses an equality sign (=) to provide the
default value.

• Returning result sets—Sybase IQ uses a RESULT clause to specify returned result sets. In
Transact-SQL procedures, the column names or alias names of the first query are returned
to the calling environment:

CREATE PROCEDURE showdept @deptname varchar(30)
AS
 SELECT Employees.Surname, Employees.givenName
 FROM Departments, Employees
 WHERE Departments.DepartmentName = @deptname
 AND Departments.DepartmentID =
 Employees.DepartmentID

The corresponding Sybase IQ procedure:

CREATE PROCEDURE showdept(in deptname
 varchar(30))
RESULT (lastname char(20), firstname char(20))
ON EXCEPTION RESUME
BEGIN
 SELECT Employees.SurName, Employees.GivenName
 FROM Departments, Employees
 WHERE Departments.DepartmentName = deptname
 AND Departments.DepartmentID =
 Employees.DepartmentID
END

• Procedure body—The body of a Transact-SQL procedure is a list of Transact-SQL
statements prefixed by the AS keyword. The body of a Sybase IQ procedure is a compound
statement, bracketed by BEGIN and END keywords.

Note: There are two ways to create stored procedures: T-SQL and SQL/92. BEGIN
TRANSACTION, for example, is T-SQL specific when using CREATE PROCEDURE syntax.
Do not mix syntax when creating stored procedures.

Side Effects

SQL Statements

Reference: Statements and Options 117

• Automatic commit

Standards

• SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
• Sybase—Sybase IQ supports a subset of the Adaptive Server Enterprise CREATE

PROCEDURE statement syntax.
If the Transact-SQL WITH RECOMPILE optional clause is supplied, it is ignored. SQL
Anywhere always recompiles procedures the first time they are executed after a database is
started, and stores the compiled procedure until the database is stopped.
Groups of procedures are not supported.

Permissions

Must have RESOURCE authority.

See also
• CREATE PROCEDURE Statement on page 110

CREATE PROCEDURE Statement (External Procedures)
Creates an interface to a native or external procedure.

To create a SQL procedure, see CREATE PROCEDURE Statement .

Syntax
CREATE[OR REPLACE] PROCEDURE [owner.]procedure-name ([parameter,
…])
[RESULT (result-column, …) | NO RESULT SET]
[DYNAMIC RESULT SETS integer-expression]
 [SQL SECURITY { INVOKER | DEFINER }]
[EXTERNAL NAME ‘external-call’ [LANGUAGE environment-name]

Parameters

• parameter: – parameter_mode parameter-name data-type [DEFAULT expression] |
SQLCODE | SQLSTATE

• parameter_mode: – IN | OUT | INOUT

• result-column: – column-name data-type
• environment-name : – C_ESQL32 | C_ESQL64 | C_ODBC32 | C_ODBC64 | CLR | JAVA

| PERL | PHP

SQL Statements

 118 Sybase IQ

Examples

• Example 1 – Use a case statement to classify the results of a query:

CREATE PROCEDURE ProductType (IN product_id INT, OUT type
CHAR(10))
BEGIN
 DECLARE prod_name CHAR(20) ;
 SELECT name INTO prod_name FROM "GROUPO"."Products"
 WHERE ID = product_id;
 CASE prod_name
 WHEN 'Tee Shirt' THEN
 SET type = 'Shirt'
 WHEN 'Sweatshirt' THEN
 SET type = 'Shirt'
 WHEN 'Baseball Cap' THEN
 SET type = 'Hat'
 WHEN 'Visor' THEN
 SET type = 'Hat'
 WHEN 'Shorts' THEN
 SET type = 'Shorts'
 ELSE
 SET type = 'UNKNOWN'
 END CASE ;
END

• Example 2 – Use a cursor and loop over the rows of the cursor to return a single value:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT
TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION
 FOR SQLSTATE '02000' ;
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName, CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers
 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesorderItems
 LEFT OUTER JOIN Products
 GROUP BY CompanyName ;

 DECLARE ThisValue INT ;
 DECLARE ThisCompany CHAR(35) ;
 SET TopValue = 0 ;
 OPEN curThisCust ;
 CustomerLoop:
 LOOP
 FETCH NEXT curThisCust
 INTO ThisCompany, ThisValue ;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop ;
 END IF ;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue ;
 SET TopCompany = ThisCompany ;

SQL Statements

Reference: Statements and Options 119

 END IF ;
 END LOOP CustomerLoop ;
 CLOSE curThisCust ;
END

Usage

The body of a procedure consists of a compound statement. For information on compound
statements, see BEGIN … END Statement.

Note: There are two ways to create stored procedures: ISO/ANSI SQL and T-SQL. BEGIN
TRANSACTION, for example, is T-SQL specific when using CREATE PROCEDURE syntax.
Do not mix syntax when creating stored procedures. See CREATE PROCEDURE Statement
[T-SQL].

CREATE PROCEDURE creates a procedure in the database. Users with DBA authority can
create procedures for other users by specifying an owner. A procedure is invoked with a CALL
statement.

If a stored procedure returns a result set, it cannot also set output parameters or return a return
value.

When referencing a temporary table from multiple procedures, a potential issue can arise if the
temporary table definitions are inconsistent and statements referencing the table are cached.

See SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Usage > > Creating Databases >
Working with database objects > Working with temporary tables > Referencing temporary
tables within procedures.

CREATE PROCEDURE—You can create permanent stored procedures that call external or
native procedures written in a variety of programming languages. You can use PROC as a
synonym for PROCEDURE.

Parameter names must conform to the rules for other database identifiers such as column
names. They must be a valid SQL data type. See Reference: Building Blocks, Tables, and
Procedures > SQL Data Types.

Parameters can be prefixed with one of the keywords IN, OUT, or INOUT. If you do not specify
one of these values, parameters are INOUT by default. The keywords mean:

• IN—The parameter is an expression that provides a value to the procedure.
• OUT—The parameter is a variable that could be given a value by the procedure.
• INOUT—The parameter is a variable that provides a value to the procedure, and could be

given a new value by the procedure.

When procedures are executed using CALL, not all parameters need to be specified. If a default
value is provided in the CREATE PROCEDURE statement, missing parameters are assigned
the default values. If an argument is not provided in the CALL statement, and no default is set,
an error is given.

SQLSTATE and SQLCODE are special OUT parameters that output the SQLSTATE or
SQLCODE value when the procedure ends. Whether or not a SQLSTATE and SQLCODE

SQL Statements

 120 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/workingwdb-s-3675401.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/workingwdb-s-3675401.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/workingwdb-s-3675401.html

parameter is specified, the SQLSTATE and SQLCODE special values can always be checked
immediately after a procedure call to test the return status of the procedure.

The SQLSTATE and SQLCODE special values are modified by the next SQL statement.
Providing SQLSTATE or SQLCODE as procedure arguments allows the return code to be
stored in a variable.

Specifying OR REPLACE (CREATE OR REPLACE PROCEDURE) creates a new procedure, or
replaces an existing procedure with the same name. This clause changes the definition of the
procedure, but preserves existing permissions. An error is returned if you attempt to replace a
procedure that is already in use.

You cannot create TEMPORARY external call procedures.

For more information on returning result sets from procedures, see System Administration
Guide: Volume 2 > Using Procedures and Batches.

RESULT—Declares the number and type of columns in the result set. The parenthesized list
following the RESULT keyword defines the result column names and types. This information
is returned by the Embedded SQL DESCRIBE or by ODBC SQLDescribeCol when a CALL
statement is being described. Allowed data types are listed in Reference: Building Blocks,
Tables, and Procedures > SQL Data Types.

Procedures that call into Embedded SQL (LANGUAGE C_ESQL32, LANGUAGE
C_ESQL64) or ODBC (LANGUAGE C_ODBC32, LANGUAGE C_ODBC64) external
functions can return 0 or 1 result sets.

Procedures that call into Perl or PHP (LANGUAGE PERL, LANGUAGE PHP) external
functions cannot return result sets. Procedures that call native functions loaded by the database
server cannot return result sets.

Procedures that call into CLR or Java (LANGUAGE CLR, LANGUAGE JAVA) external
functions can return 0, 1, or more result sets.

Some procedures can return more than one result set, with different numbers of columns,
depending on how they are executed. For example, this procedure returns two columns under
some circumstances, and one in others:

CREATE PROCEDURE names(IN formal char(1))
BEGIN
 IF formal = 'n' THEN
 SELECT GivenName
 FROM Employees
 ELSE
 SELECT Surname,GivenName
 FROM Employees
 END IF
END

Procedures with variable result sets must be written without a RESULT clause, or be written in
Transact-SQL. Their use is subject to these limitations:

SQL Statements

Reference: Statements and Options 121

• Embedded SQL—You must DESCRIBE the procedure call after the cursor for the result set
is opened, but before any rows are returned, in order to get the proper shape of result set.
The CURSOR cursor-name clause on the DESCRIBE statement is required.

• ODBC, OLE DB, ADO.NET—Variable result-set procedures can be used by applications
using these interfaces. The proper description of the result sets is carried out by the ODBC
driver.

• Open Client applications—Variable result-set procedures can be used by Open Client
applications.

If your procedure returns only one result set, use a RESULT clause. The presence of this clause
prevents ODBC and Open Client applications from describing the result set again after a
cursor is open.

To handle multiple result sets, ODBC must describe the currently executing cursor, not the
procedure’s defined result set. Therefore, ODBC does not always describe column names as
defined in the RESULT clause of the procedure definition. To avoid this problem, use column
aliases in the SELECT statement that generates the result set.

See SQL Anywhere 11.01 > SQL Anywhere Server – SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures.

NO RESULT SET —Declares that this procedure returns no result set. This is useful when an
external environment needs to know that a procedure does not return a result set.

DYNAMIC RESULT SETS—Use this clause with LANGUAGE CLR and LANGUAGE
JAVA calls. If the DYNAMIC RESULT SETS clause is not provided, it is assumed that the
method returns no result set.

Note that procedures that call into Perl or PHP (LANGUAGE PERL, LANGUAGE PHP)
external functions cannot return result sets. Procedures that call native functions loaded by the
database server cannot return result sets.

SQL SECURITY—Defines whether the procedure is executed as the INVOKER (the user
who is calling the procedure), or as the DEFINER (the user who owns the procedure). The
default is DEFINER. For external calls, this clause establishes the ownership context for
unqualified object references in the external environment.

When SQL SECURITY INVOKER is specified, more memory is used because annotation
must be done for each user that calls the procedure. Also, when SQL SECURITY INVOKER
is specified, name resolution is done as the invoker as well. Therefore, care should be taken to
qualify all object names (tables, procedures, and so on) with their appropriate owner. For
example, suppose user1 creates this procedure:

CREATE PROCEDURE user1.myProcedure()
 RESULT(columnA INT)
 SQL SECURITY INVOKER
 BEGIN
 SELECT columnA FROM table1;
 END;

SQL Statements

 122 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrr.html

If user2 attempts to run this procedure and a table user2.table1 does not exist, a table
lookup error results. Additionally, if user2.table1 does exist, that table is used instead of
the intended user1.table1. To prevent this situation, qualify the table reference in the
statement (user1.table1, instead of just table1).

EXTERNAL NAME LANGUAGE ‘native-call’ native-call:[operating-system:]function-
name@library; ...

A procedure that uses EXTERNAL NAME with a LANGUAGE JAVA clause is a wrapper around
a Java method.

operating-system: UNIX—A procedure using the EXTERNAL NAME clause with no
LANGUAGE attribute defines an interface to a native function written in a programming
language such as C. The native function is loaded by the database server into its address space.

The library name can include the file extension, which is typically .dll on Windows
and .so on UNIX. In the absence of the extension, the software appends the platform-specific
default file extension for libraries. This is a formal example:

CREATE PROCEDURE mystring(IN instr LONG VARCHAR)
EXTERNAL NAME
'mystring@mylib.dll;Unix:mystring@mylib.so';

A simpler way to write the preceding EXTERNAL NAME clause, using platform-specific
defaults:

CREATE PROCEDURE mystring(IN instr LONG VARCHAR)
EXTERNAL NAME 'mystring@mylib';

When called, the library containing the function is loaded into the address space of the
database server. The native function executes as part of the server. In this case, if the function
causes a fault, then the database server terminates. Because of this, loading and executing
functions in an external environment using the LANGUAGE attribute is recommended. If a
function causes a fault in an external environment, the database server continues to run.

For information about native library calls, see SQL Anywhere 11.0.1 > SQL Anywhere Server
– Programming > SQL Anywhere Data Access APIs > SQL Anywhere External Function API
> Calling external libraries from procedures.

EXTERNAL NAME LANGUAGE ‘c-call’ LANGUAGE { C_ESQL32 | C_ESQL64 |
C_ODBC32 | C_ODBC64 } c-call:

[operating-system:]function-name@library; ...

operating-system: UNIX

To call a compiled native C function in an external environment instead of within the database
server, the stored procedure or function is defined with the EXTERNAL NAME clause followed
by the LANGUAGE attribute specifying one of C_ESQL32, C_ESQL64, C_ODBC32, or
C_ODBC64.

SQL Statements

Reference: Statements and Options 123

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html

When the LANGUAGE attribute is specified, then the library containing the function is
loaded by an external process and the external function will execute as part of that external
process. In this case, if the function causes a fault, then the database server will continue to
run.

Sample procedure definition:

CREATE PROCEDURE ODBCinsert(
IN ProductName CHAR(30),
IN ProductDescription CHAR(50)
)
NO RESULT SET
EXTERNAL NAME 'ODBCexternalInsert@extodbc.dll'
LANGUAGE C_ODBC32;

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The ESQL and ODBC
external environments.

EXTERNAL NAME ‘clr-call’ LANGUAGE CLR clr-call : dll-name::function-name
 (param-type-1, ...)

operating-system: UNIX

To call a .NET function in an external environment, the procedure interface is defined with an
EXTERNAL NAME clause followed by the LANGUAGE CLR attribute.

A CLR stored procedure or function behaves the same as a SQL stored procedure or function
with the exception that the code for the procedure or function is written in a .NET language
such as C# or Visual Basic, and the execution of the procedure or function takes place outside
the database server (that is, within a separate .NET executable).

Sample procedure definition:

CREATE PROCEDURE clr_interface(
IN p1 INT,
IN p2 UNSIGNED SMALLINT,
OUT p3 LONG VARCHAR)
NO RESULT SET
EXTERNAL NAME 'CLRlib.dll::CLRproc.Run(int, ushort, out string)'
LANGUAGE CLR;

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The CLR external
environment.

EXTERNAL NAME ‘perl-call’ LANGUAGE CLR perl-call:

 < file=perl-call > $sa_perl_return=perl-sub ($sa_perl_arg0, ...)

To call a Perl function in an external environment, the procedure interface is defined with an
EXTERNAL NAME clause followed by the LANGUAGE PERL attribute.

SQL Statements

 124 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-esql-odbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-esql-odbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-esql-odbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-clr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-clr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-clr.html

A Perl stored procedure or function behaves the same as a SQL stored procedure or function
with the exception that the code for the procedure or function is written in Perl and the
execution of the procedure or function takes place outside the database server (that is, within a
Perl executable instance).

Sample procedure definition:

CREATE PROCEDURE PerlWriteToConsole(IN str LONG VARCHAR)
NO RESULT SET
EXTERNAL NAME '<file=PerlConsoleExample>
WriteToServerConsole($sa_perl_arg0)'
LANGUAGE PERL;

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The PERL external
environment.

EXTERNAL NAME ‘perl-call’ LANGUAGE PHP <file=php-file> print php-
func($argv[1], ...)

To call a PHP function in an external environment, the procedure interface is defined with an
EXTERNAL NAME clause followed by the LANGUAGE PHP attribute.

A PHP stored procedure or function behaves the same as a SQL stored procedure or function
with the exception that the code for the procedure or function is written in PHP and the
execution of the procedure or function takes place outside the database server (that is, within a
PHP executable instance).

Sample procedure definition:

CREATE PROCEDURE PHPPopulateTable()
NO RESULT SET
EXTERNAL NAME '<file=ServerSidePHPExample>
ServerSidePHPSub()'
LANGUAGE PHP;

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The PHP external
environment.

EXTERNAL NAME java-call LANGUAGE JAVA ‘java-call‘ [package-name.] class-
name.method-name (method-signature

method-signature: ([field-descriptor, ...]) return-descriptor

A Java method signature is a compact character representation of the types of the parameters
and the type of the return value.

To call a Java method in an external environment, the procedure interface is defined with an
EXTERNAL NAME clause followed by the LANGUAGE JAVA attribute.

A Java-interfacing stored procedure or function behaves the same as a SQL stored procedure
or function with the exception that the code for the procedure or function is written in Java and

SQL Statements

Reference: Statements and Options 125

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-perl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-perl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-perl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-php.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-php.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-php.html

the execution of the procedure or function takes place outside the database server (that is,
within a Java Virtual Machine).

Sample procedure definition:

CREATE PROCEDURE HelloDemo(IN
name LONG VARCHAR)
NO RESULT SET
EXTERNAL NAME 'Hello.main([Ljava/lang/String;)V'
LANGUAGE JAVA;

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The Java external
environment.

Table 7. Java Field-descriptor and Return-descriptor

Field type Java data type

B byte

C char

D double

F float

I int

J long

Lclass-name; an instance of the class-name class. The class name must be fully qualified, and
any dot in the name must be replaced by a backslash. For example, java/lang/
String

S short

V void

Z boolean

[use one for each dimension of an array

For example:

double some_method(
 boolean a,
 int b,
 java.math.BigDecimal c,
 byte [][] d,
 java.sql.ResultSet[] d) {
}

has this signature:

'(ZILjava/math/BigDecimal;[[B[Ljava/sql/ResultSet;)D'

SQL Statements

 126 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-java.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-java.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-java.html

Note: As procedures are dropped and created, databases created prior to Sybase IQ 12.6 may
eventually reach the maximum proc_id limit of 32767, causing CREATE PROCEDURE to
return an Item already exists error in Sybase IQ 12.6. For a workaround, see System
Administration Guide: Volume 1 > Troubleshooting Hints > Solutions for Specific Conditions
> Resource Issues > Insufficient Procedure Identifiers.

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—The Transact-SQL CREATE PROCEDURE statement is different.
• SQLJ—The syntax extensions for Java result sets are as specified in the proposed SQLJ1

standard.

Permissions

Must have RESOURCE authority, unless creating a temporary procedure. For external
procedures or to create a procedure for another user, must have DBA authority.

See also
• ALTER PROCEDURE Statement on page 22

• BEGIN … END Statement on page 47

• CALL Statement on page 53

• CREATE PROCEDURE Statement on page 110

• CREATE PROCEDURE Statement [T-SQL] on page 116

• DROP Statement on page 170

• EXECUTE IMMEDIATE Statement [ESQL] [SP] on page 184

• GRANT Statement on page 199

CREATE SCHEMA Statement
Creates a schema, which is a collection of tables, views, and permissions and their associated
permissions, for a database user.

Syntax
CREATE SCHEMA AUTHORIZATION userid
... [{ create-table-statement
| create-view-statement
| grant-statement }] …

SQL Statements

Reference: Statements and Options 127

Usage

The userid must be the user ID of the current connection. You cannot create a schema for
another user. The user ID is not case-sensitive.

If any of the statements in the CREATE SCHEMA statement fail, the entire CREATE SCHEMA
statement is rolled back.

CREATE SCHEMA statement is simply a way to collect individual CREATE and GRANT
statements into one operation. There is no SCHEMA database object created in the database,
and to drop the objects you must use individual DROP TABLE or DROP VIEW statements. To
revoke permissions, use a REVOKE statement for each permission granted.

Note: The CREATE SCHEMA statement is invalid on an active multiplex.

Individual CREATE or GRANT statements are not separated by statement delimiters. The
statement delimiter marks the end of the CREATE SCHEMA statement itself.

The individual CREATE or GRANT statements must be ordered such that the objects are
created before permissions are granted on them.

Creating more than one schema for a user is not recommended and might not be supported in
future releases.

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Sybase IQ does not support the use of REVOKE statements within the CREATE

SCHEMA statement, and does not allow its use within Transact-SQL batches or
procedures.

Permissions

Must have RESOURCE authority.

See also
• CREATE TABLE Statement on page 133

• CREATE VIEW Statement on page 149

• GRANT Statement on page 199

SQL Statements

 128 Sybase IQ

CREATE SERVER Statement
Adds a server to the ISYSSERVER table.

Syntax
CREATE SERVER server-name
CLASS 'server-class'
USING 'connection-info'
[READ ONLY]

Parameters

• server-class: – { ASAJDBC | ASEJDBC | ASAODBC | ASEODBC |
DB2ODBC | MSSODBC | ORAODBC | ODBC }

• connection-info: – { machine-name:port-number [/dbname] | data-source-name }

Examples

• Example 1 – Create a remote server for the JDBC-based Adaptive Server Enterprise
server named ase_prod. Its machine name is “banana” and port number is 3025.

CREATE SERVER ase_prod
CLASS 'asejdbc'
USING 'banana:3025'

• Example 2 – Create a SQL Anywhere remote server named testasa on the machine
“apple” with listening on port number 2638.

CREATE SERVER testasa
CLASS 'asajdbc'
USING 'apple:2638'

• Example 3 – Create a remote server for the Oracle server named oracle723. Its ODBC
Data Source Name is “oracle723.”

CREATE SERVER oracle723
CLASS 'oraodbc'
USING 'oracle723'

Usage

CREATE SERVER defines a remote server from the Sybase IQ catalogs.

For more information on server classes and how to configure a server, see System
Administration Guide: Volume 2 > Server Classes for Remote Data Access.

USING clause—If a JDBC-based server class is used, the USING clause is hostname:port-
number [/dbname] where:

SQL Statements

Reference: Statements and Options 129

• hostname—Is the machine on which the remote server runs.
• portnumber—Is the TCP/IP port number on which the remote server listens. The default

port number for Sybase IQ and SQL Anywhere is 2638.
• dbname—For SQL Anywhere remote servers, if you do not specify a dbname, the default

database is used. For Adaptive Server Enterprise, the default is the master database, and an
alternative to using dbname is to another database by some other means (for example, in
the FORWARD TO statement).

For more information, see System Administration Guide: Volume 2 > Server Classes for
Remote Data Access > JDBC-based Server Classes.

If an ODBC-based server class is used, the USING clause is the data-source-name. The data-
source-name is the ODBC Data Source Name.

READ ONLY—The READ ONLY clause specifies that the remote server is a read-only data
source. Any update request is rejected by Sybase IQ.

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

Must have DBA authority to execute this command.

See also
• ALTER SERVER Statement on page 23

• DROP SERVER Statement on page 176

CREATE SERVICE Statement
Permits a database server to act as a Web server.

Syntax
CREATE SERVICE service-name
TYPE service-type-string
[attributes] [
AS statement]

SQL Statements

 130 Sybase IQ

Parameters

• attributes: – [AUTHORIZATION { ON | OFF }] [SECURE { ON | OFF }] [USER { user-
name | NULL }] [URL [PATH/] { ON | OFF | ELEMENTS }] [USING { SOAP-
prefix | NULL }]

• service-type-string: – { 'RAW ' | 'HTML ' | 'XML ' | 'SOAP ' | ' DISH ' }

Examples

• Example 1 – Set up a Web server quickly, start a database server with the -xs switch, then
execute this statement:

CREATE SERVICE tables TYPE 'HTML'
AUTHORIZATION OFF USER DBA

AS SELECT * FROM SYS.ISYSTAB

After executing this statement, use any Web browser to open the URL http://
localhost/tables.

Usage

The CREATE SERVICE statement causes the database server to act as a web server. A new
entry is created in the SYSWEBSERVICE system table.

service-name—Web service names may be any sequence of alphanumeric characters or “/”,
“-”, “_”, “.”, “!”, “~”, “*”, “'”, “(“, or “”)”, except that the first character cannot begin with a
slash (/) and the name cannot contain two or more consecutive slash characters.

service-type-string—Identifies the type of the service. The type must be one of the listed
service types. There is no default value.

AUTHORIZATION clause—Determines whether users must specify a user name and
password when connecting to the service. If authorization is OFF, the AS clause is required
and a single user must be identified by the USER clause. All requests are run using that user’s
account and permissions.

If authorization is ON, all users must provide a user name and password. Optionally, you can
limit the users that are permitted to use the service by providing a user or group name using the
USER clause. If the user name is NULL, all known users can access the service.

The default value is ON. Sybase recommends that production systems be run with
authorization turned on and that you grant permission to use the service by adding users to a
group.

SECURE clause—Indicates whether unsecure connections are accepted. ON indicates that
only HTTPS connections are to be accepted. Service requests received on the HTTP port are
automatically redirected to the HTTPS port. If set to OFF, both HTTP and HTTPS
connections are accepted. The default value is OFF.

USER clause—If authorization is disabled, this parameter becomes mandatory and specifies
the user ID used to execute all service requests. If authorization is enabled (the default), this

SQL Statements

Reference: Statements and Options 131

optional clause identifies the user or group permitted access to the service. The default value is
NULL, which grants access to all users.

URL clause—Determines whether URI paths are accepted and, if so, how they are processed.
OFF indicates that nothing must follow the service name in a URI request. ON indicates that
the remainder of the URI is interpreted as the value of a variable named url. ELEMENTS
indicates that the remainder of the URI path is to be split at the slash characters into a list of up
to 10 elements. The values are assigned to variables named url plus a numeric suffix of
between 1 and 10; for example, the first three variable names are url1, url2, and url3. If fewer
than 10 values are supplied, the remaining variables are set to NULL. If the service name ends
with the character /, then URL must be set to OFF. The default value is OFF.

USING clause—Applies only to DISH services. The parameter specifies a name prefix. Only
SOAP services whose names begin with this prefix are handled.

statement—If the statement is NULL, the URI must specify the statement to be executed.
Otherwise, the specified SQL statement is the only one that can be executed through the
service. The statement is mandatory for SOAP services, and ignored for DISH services. The
default value is NULL.

Sybase strongly recommends that all services that are run in production systems define a
statement. The statement can be NULL only if authorization is enabled.

RAW—The result set is sent to the client without any further formatting. You can produce
formatted documents by generating the required tags explicitly within your procedure, as
demonstrated in an example, below.

HTML—The result set of a statement or procedure is automatically formatted into an HTML
document that contains a table.

XML—The result set is assumed to be in XML format. If it is not already so, it is automatically
converted to XML RAW format.

SOAP—The request must be a valid Simple Object Access Protocol, or SOAP, request. The
result set is automatically formatted as a SOAP response. For more information about the
SOAP standards, see www.w3.org/TR/SOAP.

DISH—A Determine SOAP Handler, or DISH, service acts as a proxy for one or more SOAP
services. In use, it acts as a container that holds and provides access to a number of SOAP
services. A Web Services Description Language (WSDL) file is automatically generated for
each of the included SOAP services. The included SOAP services are identified by a common
prefix, which must be specified in the USING clause.

For more information about using web services, see SQL Anywhere 11.0.1 > SQL Anywhere
Server – Programming > SQL Anywhere Data Access APIs > SQL Anywhere web services >
Introduction to web services.

SQL Statements

 132 Sybase IQ

http://www.w3.org/TR/SOAP
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority.

See also
• ALTER SERVICE Statement on page 25

• DROP SERVICE Statement on page 177

CREATE TABLE Statement
Creates a new table in the database or on a remote server.

Syntax
CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE
 [owner.]table-name
… (column-definition [column-constraint] …
[, column-definition [column-constraint] …]
[, table-constraint] …)
…[IN dbspace-name]
…[ON COMMIT { DELETE | PRESERVE } ROWS
| NOT TRANSACTIONAL]
[AT location-string]
[PARTITION BY range-partitioning-scheme]

Parameters

• column-definition: – column-name data-type [[NOT] NULL] [IN dbspace-name]
[DEFAULT default-value | IDENTITY] [PARTITION (partition-name IN dbspace-name
[, ...])]

• default-value: – special-value | string | global variable | [-] number | (constant-
expression) | built-in-function(constant-expression) | AUTOINCREMENT | CURRENT
DATABASE | CURRENT REMOTE USER | NULL | TIMESTAMP | LAST USER

• special-value: – CURRENT { DATE | TIME | TIMESTAMP | USER | PUBLISHER } | USER

• column-constraint: – [CONSTRAINT constraint-name] { { UNIQUE | PRIMARY KEY |
REFERENCES table-name [(column-name)] [action] } [IN dbspace-name] | CHECK
(condition) | IQ UNIQUE (integer) }

• table-constraint: – [CONSTRAINT constraint-name] { { UNIQUE (column-name [,
column-name] …) | PRIMARY KEY (column-name [, column-name] …) } [IN dbspace-
name] | foreign-key-constraint| CHECK (condition) | IQ UNIQUE (integer) }

SQL Statements

Reference: Statements and Options 133

• foreign-key-constraint: – FOREIGN KEY [role-name] [(column-name [, column-
name] …)] …REFERENCES table-name [(column-name [, column-name] …)] …
[action] [IN dbspace-name]

• action: – ON { UPDATE | DELETE { RESTRICT }
• location-string: – { remote-server-name.[db-name].[owner].object-name | remote-

server-name;[db-name];[owner];object-name }
• range-partitioning-scheme: – RANGE(partition-key) (range-partition-decl [,range-

partition-decl ...])
• partition-key: – column-name
• range-partition-decl: – partition-name VALUES <= ({constant-expr | MAX }) [IN

dbspace-name]

Examples

• Example 1 – Create a table named SalesOrders2 with five columns. Data pages for
columns FinancialCode, OrderDate, and ID are in dbspace Dsp3. Data pages for
integer column CustomerID are in dbspace Dsp1. Data pages for CLOB column
History are in dbspace Dsp2. Data pages for the primary key, HG for ID, are in dbspace
Dsp4:

CREATE TABLE SalesOrders2 (
FinancialCode CHAR(2),
CustomerID int IN Dsp1,
History CLOB IN Dsp2,
OrderDate TIMESTAMP,
ID BIGINT,
PRIMARY KEY(ID) IN Dsp4
) IN Dsp3

• Example 2 – Create a table fin_code2 with four columns. Data pages for columns
code, type, and id are in the default dbspace, which is determined by the value of the
database option DEFAULT_DBSPACE. Data pages for CLOB column description
are in dbspace Dsp2. Data pages from foreign key fk1, HG for c1 are in dbspace Dsp4:

CREATE TABLE fin_code2 (
code INT,
type CHAR(10),
description CLOB IN Dsp2,
id BIGINT,
FOREIGN KEY fk1(id) REFERENCES SalesOrders(ID) IN Dsp4
)

• Example 3 – Create a table t1 where partition p1 is adjacent to p2 and partition p2 is
adjacent to p3:

CREATE TABLE t1 (c1 INT, c1 INT)
PARTITION BY RANGE(c1),
(p1 VALUES <= (0), p2 VALUES <= (10), p3 VALUES <= (100))

• Example 4 – Create a partitioned table bar with six columns and three partitions,
mapping data to partitions based on dates:

SQL Statements

 134 Sybase IQ

CREATE TABLE bar (
 c1 INT IQ UNIQUE(65500),
 c2 VARCHAR(20),
 c3 CLOB PARTITION (P1 IN Dsp11, P2 IN Dsp12,
 P3 IN Dsp13),
 c4 DATE,
 c5 BIGINT,
 c6 VARCHAR(500) PARTITION (P1 IN Dsp21,
 P2 IN Dsp22),
 PRIMARY KEY (c5) IN Dsp2) IN Dsp1
 PARTITION BY RANGE (c4)
 (P1 VALUES <= ('2006/03/31') IN Dsp31,
 P2 VALUES <= ('2006/06/30') IN Dsp32,
 P3 VALUES <= ('2006/09/30') IN Dsp33
) ;

Data page allocation for each partition:

Parti-
tion

Dbspa-
ces

Columns

P1 Dsp31 c1, c2, c4, c5

P1 Dsp11 c3

P1 Dsp21 c6

P2 Dsp32 c1, c2, c4, c5

P2 Dsp12 c3

P2 Dsp22 c6

P3 Dsp33 c1, c2, c4, c5, c6

P3 Dsp13 c3

P1, P2, P3 Dsp1 lookup store of c1 and other shared data

P1, P2, P3 Dsp2 primary key (HG for c5)

• Example 5 – Create a table for a library database to hold book information:

CREATE TABLE library_books (
isbn CHAR(20) PRIMARY KEY IQ UNIQUE (150000),
copyright_date DATE,
title CHAR(100),
author CHAR(50)
)

• Example 6 – Create a table for a library database to hold information on borrowed books:

CREATE TABLE borrowed_book (
date_borrowed DATE NOT NULL,
date_returned DATE,

SQL Statements

Reference: Statements and Options 135

book CHAR(20)
 REFERENCES library_books (isbn),
CHECK(date_returned >= date_borrowed)
)

• Example 7 – Create table t1 at the remote server SERVER_A and create a proxy table
named t1 that is mapped to the remote table:

CREATE TABLE t1
(a INT,
 b CHAR(10))
AT 'SERVER_A.db1.joe.t1'

• Example 8 – Create table tab1 that contains a column c1 with a default value of the
special constant LAST USER:

CREATE TABLE tab1(c1 CHAR(20) DEFAULT LAST USER)

Usage

You can create a table for another user by specifying an owner name. If GLOBAL
TEMPORARY or LOCAL TEMPORARY is not specified, the table is referred to as a base table.
Otherwise, the table is a temporary table.

A created global temporary table exists in the database like a base table and remains in the
database until it is explicitly removed by a DROP TABLE statement. The rows in a temporary
table are visible only to the connection that inserted the rows. Multiple connections from the
same or different applications can use the same temporary table at the same time and each
connection sees only its own rows. A given connection inherits the schema of a global
temporary table as it exists when the connection first refers to the table. The rows of a
temporary table are deleted when the connection ends.

When you create a local temporary table, omit the owner specification. If you specify an owner
when creating a temporary table, for example, CREATE TABLE dbo.#temp(col1
int), a base table is incorrectly created.

An attempt to create a base table or a global temporary table will fail, if a local temporary table
of the same name exists on that connection, as the new table cannot be uniquely identified by
owner.table.

You can, however, create a local temporary table with the same name as an existing base table
or global temporary table. References to the table name access the local temporary table, as
local temporary tables are resolved first.

For example, consider this sequence:

CREATE TABLE t1 (c1 int);
INSERT t1 VALUES (9);

CREATE LOCAL TEMPORARY TABLE t1 (c1 int);
INSERT t1 VALUES (8);

SELECT * FROM t1;

SQL Statements

 136 Sybase IQ

The result returned is 8. Any reference to t1 refers to the local temporary table t1 until the
local temporary table is dropped by the connection.

In a procedure, use the CREATE LOCAL TEMPORARY TABLE statement, instead of the
DECLARE LOCAL TEMPORARY TABLE statement, when you want to create a table that
persists after the procedure completes. Local temporary tables created using the CREATE
LOCAL TEMPORARY TABLE statement remain until they are either explicitly dropped, or
until the connection closes.

Local temporary tables created in IF statements using CREATE LOCAL TEMPORARY TABLE
also persist after the IF statement completes.

You cannot use a temporary table to create a join index.

Do not update a base table that is part of any join index. This is not allowed, and returns the
error:

-1000102 Cannot update table %2 because it is defined in one or more
join indexes

Sybase IQ does not support the CREATE TABLE ENCRYPTED clause for table-level
encryption of Sybase IQ tables. However, the CREATE TABLE ENCRYPTED clause is
supported for SQL Anywhere tables in a Sybase IQ database.

IN—Specifies in which database file (dbspace) the table is to be created. You can specify
SYSTEM with this clause to put either a permanent or temporary table in the catalog store. All
other use of the IN clause is ignored. You cannot use this clause to place an IQ table in a
particular dbspace. By default, all permanent tables are placed in the main IQ store, and all
temporary tables are placed in the temporary IQ store. Global temporary and local temporary
tables can never be in the IQ store.

The IN clause in the column-definition, column-constraint, table-constraint, and foreign-key
clauses specify the dbspace where the object is to be created. If the IN clause is omitted, Sybase
IQ creates the object in the dbspace where the table is assigned.

For more information about dbspaces, see CREATE DBSPACE Statement .

ON COMMIT—Allowed for temporary tables only. By default, the rows of a temporary table
are deleted on COMMIT.

For clause behavior on multiplex global temporary tables, see Using Sybase IQ Multiplex >
Multiplex Transactions > DDL Commands > Role Restriction > Preserving Rows.

NOT TRANSACTIONAL—Allowed only for temporary tables. A table created using NOT
TRANSACTIONAL is not affected by either COMMIT or ROLLBACK.

The NOT TRANSACTIONAL clause provides performance improvements in some
circumstances because operations on nontransactional temporary tables do not cause entries
to be made in the rollback log. For example, NOT TRANSACTIONAL might be useful if
procedures that use the temporary table are called repeatedly with no intervening COMMIT or
ROLLBACK statements.

SQL Statements

Reference: Statements and Options 137

The parenthesized list following the CREATE TABLE statement can contain these clauses in
any order:

AT—Used to create a table at the remote location specified by location-string. The local table
that is created is a proxy table that maps to the remote location. Tables used as proxy tables
must have names of 30 characters or less. The AT clause supports the semicolon (;) as a
delimiter. If a semicolon is present anywhere in the location-string, the semicolon is the field
delimiter. If no semicolon is present, a period is the field delimiter. This allows file names and
extensions to be used in the database and owner fields.

Semicolon field delimiters are used primarily with server classes not currently supported;
however, you can also use them in situations where a period would also work as a field
delimiter. For example, this statement maps the table proxy_a to the SQL Anywhere
database mydb on the remote server myasa:

CREATE TABLE proxy_a1
AT 'myasa;mydb;;a1'

Foreign-key definitions are ignored on remote tables. Foreign-key definitions on local tables
that refer to remote tables are also ignored. Primary key definitions are sent to the remote
server if the server supports primary keys.

In a simplex environment, you cannot create a proxy table that refers to a remote table on the
same node. In a multiplex environment, you cannot create a proxy table that refers to the
remote table defined within the multiplex.

For example, in a simplex environment, if you try to create proxy table proxy_e which refers
to base table Employees defined on the same node, the CREATE TABLE ... AT statement is
rejected with an error message. In a multiplex environment, the CREATE TABLE AT
statement is rejected if you create proxy table proxy_e from any node (coordinator or
secondary) that refers to remote table Employees defined within a multiplex.

column-definition—Defines a column in the table. Allowable data types are described in
Reference: Building Blocks, Tables, and Procedures > SQL Data Types. Two columns in the
same table cannot have the same name. If NOT NULL is specified, or if the column is in a
UNIQUE or PRIMARY KEY constraint, the column cannot contain any NULL values. You can
create up to 45,000 columns; however, there might be performance penalties with more than
10,000 columns in a table. The limit on the number of columns per table that allow NULLs is
approximately 8*(database-page-size - 30).

• DEFAULT default-value—When defining a column for a table, you can specify a default
value for the column using the DEFAULT keyword in the CREATE TABLE (and ALTER
TABLE) statement. If a DEFAULT value is specified for a column, this DEFAULT value is
used as the value of the column in any INSERT (or LOAD) statement that does not specify a
value for the column.
For detailed information on the use of column DEFAULT values, see System
Administration Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data
Integrity.

SQL Statements

 138 Sybase IQ

• DEFAULT AUTOINCREMENT—The value of the DEFAULT AUTOINCREMENT
column uniquely identifies every row in a table. Columns of this type are also known as
IDENTITY columns, for compatibility with Adaptive Server Enterprise. The IDENTITY/
DEFAULT AUTOINCREMENT column stores sequential numbers that are
automatically generated during inserts and updates. When using IDENTITY or
DEFAULT AUTOINCREMENT, the column must be one of the integer data types, or an
exact numeric type, with scale 0. The column value might also be NULL. You must qualify
the specified table name with the owner name.
ON inserts into the table. If a value is not specified for the IDENTITY/DEFAULT
AUTOINCREMENT column, a unique value larger than any other value in the column is
generated. If an INSERT specifies a value for the column, it is used; if the specified value is
not larger than the current maximum value for the column, that value is used as a starting
point for subsequent inserts.
Deleting rows does not decrement the IDENTITY/AUTOINCREMENT counter. Gaps
created by deleting rows can only be filled by explicit assignment when using an insert.
The database option IDENTITY_INSERT must be set to the table name to perform an
insert into an IDENTITY/AUTOINCREMENT column.
For example, this creates a table with an IDENTITY column and explicitly adds some data
to it:
CREATE TABLE mytable(c1 INT IDENTITY);
SET TEMPORARY OPTION IDENTITY_INSERT = "DBA".mytable;
INSERT INTO mytable VALUES(5);

After an explicit insert of a row number less than the maximum, subsequent rows without
explicit assignment are still automatically incremented with a value of one greater than the
previous maximum.
You can find the most recently inserted value of the column by inspecting the @@identity
global variable.

• IDENTITY—A Transact-SQL-compatible alternative to using the AUTOINCREMENT
default. In Sybase IQ, the identity column may be created using either the IDENTITY or the
DEFAULT AUTOINCREMENT clause.

table-constraint—Helps ensure the integrity of data in the database. There are four types of
integrity constraints:

• UNIQUE constraint—Identifies one or more columns that uniquely identify each row in
the table. No two rows in the table can have the same values in all the named columns. A
table may have more than one unique constraint.

• PRIMARY KEY constraint—Is the same as a UNIQUE constraint except that a table can
have only one primary-key constraint. You cannot specify the PRIMARY KEY and
UNIQUE constraints for the same column. The primary key usually identifies the best
identifier for a row. For example, the customer number might be the primary key for the
customer table.

• FOREIGN KEY constraint—Restricts the values for a set of columns to match the values
in a primary key or uniqueness constraint of another table. For example, a foreign-key

SQL Statements

Reference: Statements and Options 139

constraint could be used to ensure that a customer number in an invoice table corresponds
to a customer number in the customer table.

Note: You cannot create foreign-key constraints on local temporary tables. Global
temporary tables must be created with ON COMMIT PRESERVE ROWS.

• CHECK constraint—Allows arbitrary conditions to be verified. For example, a check
constraint could be used to ensure that a column called Gender contains only the values
male or female. No row in a table is allowed to violate a constraint. If an INSERT or
UPDATE statement would cause a row to violate a constraint, the operation is not permitted
and the effects of the statement are undone.
Column identifiers in column check constraints that start with the symbol ‘@’ are
placeholders for the actual column name. A statement of the form:
CREATE TABLE t1(c1 INTEGER CHECK (@foo < 5))

is exactly the same as this statement:
CREATE TABLE t1(c1 INTEGER CHECK (c1 < 5))

Column identifiers appearing in table check constraints that start with the symbol ‘@’are
not placeholders.

If a statement would cause changes to the database that violate an integrity constraint, the
statement is effectively not executed and an error is reported. (Effectively means that any
changes made by the statement before the error was detected are undone.)

Sybase IQ enforces single-column UNIQUE constraints by creating an HG index for that
column.

Note: You cannot define a column with a BIT data type as a UNIQUE or PRIMARY KEY
constraint. Also, the default for columns of BIT data type is to not allow NULL values; you
can change this by explicitly defining the column as allowing NULL values.

column-constraint—Restricts the values the column can hold. Column and table constraints
help ensure the integrity of data in the database. If a statement would cause a violation of a
constraint, execution of the statement does not complete, any changes made by the statement
before error detection are undone, and an error is reported. Column constraints are
abbreviations for the corresponding table constraints. For example, these are equivalent:

CREATE TABLE Products (
 product_num integer UNIQUE
)
CREATE TABLE Products (
 product_num integer,
 UNIQUE (product_num)
)

Column constraints are normally used unless the constraint references more than one column
in the table. In these cases, a table constraint must be used.

IQ UNIQUE constraint—This constraint can be specified for columns only. IQ UNIQUE
defines the cardinality of the column, and it is used to optimize the indexes internally. The

SQL Statements

 140 Sybase IQ

default value is 0, which gives IQ no information for optimizing the default index. The IQ
UNIQUE constraint should be applied if the expected distinct count (the number of unique
values) for the column is less than or equal to 65536. This allows Sybase IQ to optimize
storage of this column's data.

When the MINIMIZE_STORAGE option is ON (the default for new databases is OFF), it is
equivalent to specifying IQ UNIQUE 255 for every newly created column, and there is no
need to specify IQ UNIQUE except for columns with more than 65536 unique values. For
related information, see System Administration Guide: Volume 1 > Database Object
Management > Table Management > Guidelines for Creating Tables > Optimizing Storage
and Query Performance.

Integrity Constraints

UNIQUE or UNIQUE (column-name, …)—No two rows in the table can have the same
values in all the named columns. A table may have more than one unique constraint.

There is a difference between a unique constraint and a unique index. Columns of a unique
index are allowed to be NULL, while columns in a unique constraint are not. A foreign key can
reference either a primary key or a column with a unique constraint, but not a unique index,
because it can include multiple instances of NULL.

PRIMARY KEY or PRIMARY KEY (column-name, …) —The primary key for the table
consists of the listed columns, and none of the named columns can contain any NULL values.
Sybase IQ ensures that each row in the table has a unique primary key value. A table can have
only one PRIMARY KEY.

When the second form is used (PRIMARY KEY followed by a list of columns), the primary key
is created including the columns in the order in which they are defined, not the order in which
they are listed.

When a column is designated as PRIMARY KEY, FOREIGN KEY, or UNIQUE, Sybase IQ
creates a High_Group index for it automatically. For multicolumn primary keys, this index is
on the primary key, not the individual columns. For best performance, you should also index
each column with a HG or LF index separately.

REFERENCES primary-table-name [(primary-column-name)] —This clause defines the
column as a foreign key for a primary key or a unique constraint of a primary table. Normally, a
foreign key would be for a primary key rather than an unique constraint. If a primary column
name is specified, it must match a column in the primary table which is subject to a unique
constraint or primary key constraint, and that constraint must consist of only that one column.
Otherwise the foreign key references the primary key of the second table. Primary key and
foreign key must have the same data type and the same precision, scale, and sign. Only a
nonunique single-column HG index is created for a single-column foreign key. For a
multicolumn foreign key, Sybase IQ creates a nonunique composite HG index. The maximum
width of a multicolumn composite key for a unique or nonunique HG index is 1KB.

SQL Statements

Reference: Statements and Options 141

A temporary table cannot have a foreign key that references a base table and a base table
cannot have a foreign key that references a temporary table. Local temporary tables cannot
have or be referenced by a foreign key.

FOREIGN KEY [role-name] [(...)] REFERENCES primary-table-name [(...)]—Defines
foreign-key references to a primary key or a unique constraint in another table. Normally, a
foreign key would be for a primary key rather than an unique constraint. (In this description,
this other table is called the primary table.)

If the primary table column names are not specified, the primary table columns are the
columns in the table’s primary key. If foreign key column names are not specified, the foreign-
key columns have the same names as the columns in the primary table. If foreign-key column
names are specified, then the primary key column names must be specified, and the column
names are paired according to position in the lists.

If the primary table is not the same as the foreign-key table, either the unique or primary key
constraint must have been defined on the referenced key. Both referenced key and foreign key
must have the same number of columns, of identical data type with the same sign, precision,
and scale.

The value of the row’s foreign key must appear as a candidate key value in one of the primary
table’s rows unless one or more of the columns in the foreign key contains nulls in a null allows
foreign key column.

Any foreign-key column not explicitly defined is automatically created with the same data
type as the corresponding column in the primary table. These automatically created columns
cannot be part of the primary key of the foreign table. Thus, a column used in both a primary
key and foreign key must be explicitly created.

role-name is the name of the foreign key. The main function of role-name is to distinguish two
foreign keys to the same table. If no role-name is specified, the role name is assigned as
follows:

1. If there is no foreign key with a role-name the same as the table name, the table name is
assigned as the role-name.

2. If the table name is already taken, the role-name is the table name concatenated with a
zero-padded 3-digit number unique to the table.

The referential integrity action defines the action to be taken to maintain foreign-key
relationships in the database. Whenever a primary key value is changed or deleted from a
database table, there may be corresponding foreign key values in other tables that should be
modified in some way. You can specify an ON DELETE clause, followed by the RESTRICT
clause:

RESTRICT—Generates an error if you try to update or delete a primary key value while there
are corresponding foreign keys elsewhere in the database. Generates an error if you try to
update a foreign key so that you create new values unmatched by a candidate key. This is the
default action, unless you specify that LOAD optionally reject rows that violate referential
integrity. This enforces referential integrity at the statement level.

SQL Statements

 142 Sybase IQ

If you use CHECK ON COMMIT without specifying any actions, then RESTRICT is implied as
an action for DELETE. Sybase IQ does not support CHECK ON COMMIT.

A global temporary table cannot have a foreign key that references a base table and a base table
cannot have a foreign key that references a global temporary table. Local temporary tables
cannot have or be referenced by a foreign key.

CHECK (condition)— No row is allowed to fail the condition. If an INSERT statement would
cause a row to fail the condition, the operation is not permitted and the effects of the statement
are undone.

The change is rejected only if the condition is FALSE; in particular, the change is allowed if
the condition is UNKNOWN. CHECK condition is not enforced by Sybase IQ. For more
information about TRUE, FALSE, and UNKNOWN conditions, see Reference: Building
Blocks, Tables, and Procedures > SQL Language Elements > NULL Value and Reference:
Building Blocks, Tables, and Procedures > SQL Language Elements > Search Conditions.

Note: Sybase recommends that you not define referential integrity foreign key-primary key
relationships in Sybase IQ unless you are certain there are no orphan foreign keys.

Remote Tables

Foreign-key definitions are ignored on remote tables. Foreign-key definitions on local tables
that refer to remote tables are also ignored. Primary-key definitions are sent to the remote
server if the server supports it.

PARTITION BY RANGE—Specifies that rows are to be partitioned according to the
specified ranges of values in the partitioning column.

The column-name in the partition-key clause specifies the partition key column. Sybase IQ
supports a single partition key column.

The partition-name in the range-partition-decl clause specifies the name of a new partition on
which table rows are stored. Partition names must be unique within the set of partitions on a
table. The partition_name clause is required.

VALUE clause—Specifies the inclusive upper bound for each partition for range partitioning
criteria. The user must specify the partitioning criteria for each range partition to guarantee
that each row is distributed to only one partition. NULLs are allowed for the partition column
and rows with NULL as partition key value belong to the first table partition. However, NULL
cannot be the bound value. There is no lower bound (MIN value) for the first partition. Rows of
NULL cells in the first column of the partition key will go to the first partition. For the last
partition, you can either specify an inclusive upper bound or MAX. If the upper bound value
for the last partition is not MAX, loading or inserting any row with partition key value larger
than the upper bound value of the last partition generates an error.

MAX—Denotes the infinite upper bound and can only be specified for the last partition.

IN—In the partition-decl, specifies the dbspace on which rows of the partition should reside.

SQL Statements

Reference: Statements and Options 143

These restrictions affect partitions keys and bound values for range partitioned tables:

• Partition bounds must be constants, not constant expressions.
• Partition bounds must be in ascending order according to the order in which the partitions

were created. That is, the upper bound for the second partition must be higher than for the
first partition, and so on.
In addition, partition bound values must be compatible with the corresponding partition-
key column data type. For example, VARCHAR is compatible with CHAR.

• If a bound value has a different data type than that of its corresponding partition key
column, Sybase IQ converts the bound value to the data type of the partition key column,
with these exceptions:

• Explicit conversions are not allowed. This example attempts an explicit conversion from
INT to VARCHAR and generates an error:

CREATE TABLE Employees(emp_name VARCHAR(20))
PARTITION BY RANGE(emp_name)
(p1 VALUES <=(CAST (1 AS VARCHAR(20))),
p2 VALUES <= (CAST (10 AS VARCHAR(20)))

• Implicit conversions that result in data loss are not allowed. In this example, the partition
bounds are not compatible with the partition key type. Rounding assumptions may lead to
data loss and an error is generated:
CREATE TABLE emp_id (id INT) PARTITION BY RANGE(id) (p1 VALUES <=
(10.5), p2 VALUES <= (100.5))

• In this example, the partition bounds and the partition key data type are compatible. The
bound values are directly converted to float values. No rounding is required, and
conversion is supported:
CREATE TABLE id_emp (id FLOAT)
PARTITION BY RANGE(id) (p1 VALUES <= (10),
p2 VALUES <= (100))

• Conversions from nonbinary data types to binary data types are not allowed. For example,
this conversion is not allowed and returns an error:
CREATE TABLE newemp (name BINARY)
PARTITION BY RANGE(name)
(p1 VALUES <= ("Maarten"),
p2 VALUES <= ("Zymmerman")

• NULL cannot be used as a boundary in a range-partitioned table.
• The row will be in the first partition if the cell value of the 1st column of the partition key

evaluated to be NULL. Sybase IQ supports only single column partition keys, so any
NULL in the partition key distributes the row to the first partition.

See also System Administration Guide: Volume 1 > Database Object Management > Table
Management > Guidelines for Creating Tables.

Side Effects

• Automatic commit

SQL Statements

 144 Sybase IQ

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
These are vendor extensions:
• The { IN | ON } dbspace-name clause
• The ON COMMIT clause
• Some of the default values

• Sybase—Supported by Adaptive Server Enterprise, with some differences.
• Temporary tables— You can create a temporary table by preceding the table name in a

CREATE TABLE statement with a pound sign (#). These temporary tables are Sybase
IQ declared temporary tables, which are available only in the current connection. For
information about declared temporary tables, see DECLARE LOCAL TEMPORARY
TABLE Statement.

• Physical placement—Physical placement of a table is carried out differently in Sybase
IQ and in Adaptive Server Enterprise. The ON segment-name clause supported by
Adaptive Server Enterprise is supported in Sybase IQ, but segment-name refers to an
IQ dbspace.

• Constraints—Sybase IQ does not support named constraints or named defaults, but
does support user-defined data types that allow constraint and default definitions to be
encapsulated in the data type definition. It also supports explicit defaults and CHECK
conditions in the CREATE TABLE statement.

• NULL default—By default, columns in Adaptive Server Enterprise default to NOT
NULL, whereas in Sybase IQ the default setting is NULL, to allow NULL values. This
setting can be controlled using the ALLOW_NULLS_BY_DEFAULT option. See
ALLOW_NULLS_BY_DEFAULT Option [TSQL]. To make your data definition
statements transferable, explicitly specify NULL or NOT NULL.

Permissions

Must have RESOURCE authority. To create a table for another user, you must have DBA
authority. To create a base table in an IQ main store dbspace, you must have DBA authority or
RESOURCE authority and CREATE privilege in the specified dbspace.

See also
• ALLOW_NULLS_BY_DEFAULT Option [TSQL] on page 335

• ALTER TABLE Statement on page 27

• CREATE DBSPACE Statement on page 76

• CREATE INDEX Statement on page 97

• DECLARE LOCAL TEMPORARY TABLE Statement on page 160

• DROP Statement on page 170

• MINIMIZE_STORAGE Option on page 412

SQL Statements

Reference: Statements and Options 145

CREATE TEXT CONFIGURATION Statement
Creates a text configuration object.

Syntax
See below.

Usage

For syntax and complete description, see Unstructured Data Analytics in Sybase IQ.

CREATE TEXT INDEX Statement
Creates a TEXT index.

Syntax
See below.

Usage

For syntax and complete description, see Unstructured Data Analytics in Sybase IQ.

CREATE USER Statement
Creates a user.

Syntax
CREATE USER user-name [IDENTIFIED BY password]
[LOGIN POLICY policy-name]
[FORCE PASSWORD CHANGE { ON | OFF }]

Examples

• Example 1 – Create a user named SQLTester with the password welcome. The
SQLTester user is assigned to the Test1 login policy and the password expires on the
next login:

CREATE USER SQLTester IDENTIFIED BY welcome
LOGIN POLICY Test1
FORCE PASSWORD CHANGE ON;

• Example 2 – Create a group named MyGroup:

SQL Statements

 146 Sybase IQ

CREATE USER MyGroup;
GRANT GROUP TO MyGroup;

Usage

user-name—Name of the user.

IDENTIFIED BY clause—Provides the password for the user.

policy-name—Name of the login policy to assign the user. No change is made if LOGIN
POLICY is not specified.

FORCE PASSWORD CHANGE clause—Controls whether the user must specify a new
password when they log in. This setting overrides the
PASSWORD_EXPIRY_ON_NEXT_LOGIN option setting in their policy.

You do not have to specify a password for the user. A user without a password cannot connect
to the database. This is useful if you are creating a group and do not want anyone to connect to
the database using the group user ID. A user ID must be a valid identifier.

User IDs and passwords cannot:

• Begin with white space, single quotes, or double quotes
• End with white space
• Contain semicolons

A password can be either a valid identifier, or a string (maximum 255 bytes) placed in single
quotes. Passwords are case-sensitive. Sybase recommends that the password be composed of
7-bit ASCII characters, as other characters may not work correctly if the database server
cannot convert them from the client's character set to UTF-8.

The VERIFY_PASSWORD_FUNCTION option can be used to specify a function to
implement password rules (for example, passwords must include at least one digit). If a
password verification function is used, you cannot specify more than one user ID and
password in the GRANT CONNECT statement. For details, see
VERIFY_PASSWORD_FUNCTION Option and GRANT Statement.

See also SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Configuring Your Database > Managing user IDs, authorities, and permissions > Managing
login policies overview.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Requires DBA or USER ADMIN authority.

SQL Statements

Reference: Statements and Options 147

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html

See also
• ALTER LOGIN POLICY Statement on page 19

• COMMENT Statement on page 58

• CREATE LOGIN POLICY Statement on page 107

• DROP LOGIN POLICY Statement on page 175

• DROP USER Statement on page 179

• GRANT Statement on page 199

• PASSWORD_EXPIRY_ON_NEXT_LOGIN Option on page 423

• VERIFY_PASSWORD_FUNCTION Option on page 466

CREATE VARIABLE Statement
Creates a SQL variable.

Syntax
CREATE VARIABLE identifier data-type

Examples

• Example 1 – This code fragment inserts a large text value into the database:

EXEC SQL BEGIN DECLARE SECTION;
char buffer[5000];
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob VARCHAR;
EXEC SQL SET hold_blob = '';
for(;;) {
 /* read some data into buffer ... */
 size = fread(buffer, 1, 5000, fp);
 if(size <= 0) break;
 /* add data to blob using concatenation
 Note that concatenation works for binary
 data too! */
 EXEC SQL SET hold_blob = hold_blob || :buffer;
}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

Usage

The CREATE VARIABLE statement creates a new variable of the specified data type. The
variable contains the NULL value until it is assigned a different value by the SET VARIABLE
statement.

A variable can be used in a SQL expression anywhere a column name is allowed. If a column
name exists with the same name as the variable, the variable value is used.

SQL Statements

 148 Sybase IQ

Variables belong to the current connection, and disappear when you disconnect from the
database, or when you use the DROP VARIABLE statement. Variables are not visible to other
connections. Variables are not affected by COMMIT or ROLLBACK statements.

In Sybase IQ 12.5 and above, variables created with the CREATE VARIABLE statement persist
for a connection even when the statement is issued within a (BEGIN...END) statement. You
must use DECLARE to create variables that only persist within a (BEGIN...END) statement, for
example, within stored procedures.

Variables are useful for creating large text or binary objects for INSERT or UPDATE statements
from Embedded SQL programs.

Local variables in procedures and triggers are declared within a compound statement. See
System Administration Guide: Volume 2 > Using Procedures and Batches > Control
Statements > Using Compound Statements.

See also Reference: Building Blocks, Tables, and Procedures > SQL Data Types.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

None

See also
• BEGIN … END Statement on page 47

• DECLARE Statement on page 153

• DROP VARIABLE Statement on page 180

• SET Statement [ESQL] on page 287

CREATE VIEW Statement
Creates a view on the database. Views are used to give a different perspective on the data even
though it is not stored that way.

Syntax
CREATE VIEW
… [owner.]view-name [(column-name [, …])]
… AS select-without-order-by
… [WITH CHECK OPTION]

SQL Statements

Reference: Statements and Options 149

Examples

• Example 1 – Create a view showing all information for male employees only. This view
has the same column names as the base table:

CREATE VIEW male_employee
AS SELECT *
FROM Employees
WHERE Sex = 'M'

• Example 2 – Create a view showing employees and the departments to which they belong:

CREATE VIEW emp_dept
AS SELECT Surname, GivenName, DepartmentName
FROM Employees JOIN Departments
ON Employees.DepartmentID = Departments.DepartmentID

Usage

A view can be created for another user by specifying the owner. You must have DBA authority
to create a view for another user.

A view name can be used in place of a table name in SELECT, DELETE, UPDATE, and INSERT
statements. Views, however, do not physically exist in the database as tables. They are derived
each time they are used. The view is derived as the result of the SELECT statement specified in
the CREATE VIEW statement. Table names used in a view should be qualified by the user ID of
the table owner. Otherwise, a different user ID might not be able to find the table or might get
the wrong table.

The columns in the view are given the names specified in the column name list. If the column
name list is not specified, then the view columns are given names from the select list items. To
use the names from the select list items, the items must be a simple column name or they must
have an alias name specified (see SELECT Statement). You cannot add or drop IDENTIY/
AUTOINCREMENT columns from a view.

Views can be updated unless the SELECT statement defining the view contains a GROUP BY
clause, an aggregate function, or involves a UNION operation. An update to the view causes the
underlying tables to be updated.

view-name—An identifier. The default owner is the current user ID.

column-name—The columns in the view are given the names specified in the column-name
list. If the column name list is not specified, the view columns are given names from the select
list items. To use the names from the select list items, each item must be a simple column name
or have an alias name specified (see SELECT Statement).

AS—The SELECT statement on which the view is based must not contain an ORDER BY
clause, a subquery in the SELECT list, or a TOP or FIRST qualification. It may have a GROUP
BY clause and may be a UNION.

WITH CHECK OPTION—Rejects any updates and inserts to the view that do not meet the
criteria of the views as defined by its SELECT statement. However, Sybase IQ currently
ignores this option (it supports the syntax for compatibility reasons).

SQL Statements

 150 Sybase IQ

Side Effects

• Automatic commit

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must have RESOURCE authority and SELECT permission on the tables in the view
definition.

See also
• CREATE TABLE Statement on page 133

• DROP Statement on page 170

• SELECT Statement on page 279

DEALLOCATE DESCRIPTOR Statement [ESQL]
Frees memory associated with a SQL descriptor area.

Syntax
DEALLOCATE DESCRIPTOR descriptor-name:
string

Examples

• Example 1 – See ALLOCATE DESCRIPTOR Statement [ESQL].

Usage

Frees all memory associated with a descriptor area, including the data items, indicator
variables, and the structure itself.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Open Client/Open Server.

Permissions

None

SQL Statements

Reference: Statements and Options 151

See also
• ALLOCATE DESCRIPTOR Statement [ESQL] on page 5

• SET DESCRIPTOR Statement [ESQL] on page 292

Declaration Section [ESQL]
Declares host variables in an Embedded SQL program. Host variables are used to exchange
data with the database.

Syntax
EXEC SQL BEGIN DECLARE SECTION;
... C declarations
EXEC SQL END DECLARE SECTION;

Examples

• Example 1 –
EXEC SQL BEGIN DECLARE SECTION;
char *emp_lname, initials[5];
int dept;
EXEC SQL END DECLARE SECTION;

Usage

A declaration section is a section of C variable declarations surrounded by the BEGIN
DECLARE SECTION and END DECLARE SECTION statements. A declaration section makes
the SQL preprocessor aware of C variables that are used as host variables. Not all C
declarations are valid inside a declaration section. See SQL Anywhere 11.0.1 > SQL
Anywhere Server – Programming > SQL Anywhere Data Access APIs > SQL Anywhere
embedded SQL > Embedded SQL programming techniques.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.

Permissions

None

See also
• BEGIN … END Statement on page 47

SQL Statements

 152 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/esql-secta-8635295.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/esql-secta-8635295.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/esql-secta-8635295.html

DECLARE Statement
Declares a SQL variable within a compound statement (BEGIN... END).

Syntax
DECLARE variable_name data-type

Examples

• Example 1 – This batch illustrates the use of the DECLARE statement and prints a message
on the server window:

BEGIN
 DECLARE varname CHAR(61);
 SET varname = 'Test name';
 MESSAGE varname;
END

Usage

Variables used in the body of a procedure can be declared using the DECLARE statement. The
variable persists for the duration of the compound statement in which it is declared and must
be unique within the compound statement.

The body of a procedure is a compound statement, and variables must be declared
immediately following BEGIN. In a Transact-SQL procedure or trigger, there is no such
restriction.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise.

• To be compatible with Adaptive Server Enterprise, the variable name must be preceded
by an @.

• In Adaptive Server Enterprise, a variable that is declared in a procedure or trigger exists
for the duration of the procedure or trigger. In Sybase IQ, if a variable is declared inside
a compound statement, it exists only for the duration of that compound statement
(whether it is declared in a Sybase IQ SQL or Transact-SQL compound statement).

Permissions

None

See also
• BEGIN … END Statement on page 47

SQL Statements

Reference: Statements and Options 153

DECLARE CURSOR Statement [ESQL] [SP]
Declares a cursor. Cursors are the primary means for manipulating the results of queries.

Syntax
DECLARE cursor-name
[SCROLL
 | NO SCROLL
 | DYNAMIC SCROLL
]
CURSOR FOR
{ select-statement
| statement-name
 [FOR { READ ONLY | UPDATE [OF column-name-list] }]
| USING variable-name }

Parameters

• cursor-name: – identifier
• statement-name: – identifier | host-variable
• column-name-list: – identifiers
• variable-name: – identifier

Examples

• Example 1 – Declare a scroll cursor in Embedded SQL:

EXEC SQL DECLARE cur_employee SCROLL CURSOR
FOR SELECT * FROM Employees;

• Example 2 – Declare a cursor for a prepared statement in Embedded SQL:

EXEC SQL PREPARE employee_statement
FROM 'SELECT emp_lname FROM Employees';
EXEC SQL DECLARE cur_employee CURSOR
FOR employee_statement ;

• Example 3 – Use cursors in a stored procedure:

BEGIN
 DECLARE cur_employee CURSOR FOR
 SELECT emp_lname
 FROM Employees;
 DECLARE name CHAR(40);
 OPEN cur_employee;
 LOOP
 FETCH NEXT cur_employee INTO name;
 ...
 END LOOP;

SQL Statements

 154 Sybase IQ

 CLOSE cur_employee;
END

Usage

The DECLARE CURSOR statement declares a cursor with the specified name for a SELECT
statement or a CALL statement.

SCROLL—A cursor declared as SCROLL supports the NEXT, PRIOR, FIRST, LAST,
ABSOLUTE, and RELATIVE options of the FETCH statement. A SCROLL cursor lets you
fetch an arbitrary row in the result set while the cursor is open.

NO SCROLL—A cursor declared as NO SCROLL is restricted to moving forward through
the result set using only the FETCH NEXT and FETCH ABSOLUTE (0) seek operations.

DYNAMIC SCROLL—A cursor declared as DYNAMIC SCROLL supports the NEXT,
PRIOR, FIRST, LAST, ABSOLUTE, and RELATIVE options of the FETCH statement. A
DYNAMIC SCROLL cursor lets you fetch an arbitrary row in the result set while the cursor is
open.

Since rows cannot be returned to once the cursor leaves the row, there are no sensitivity
restrictions on the cursor. Consequently, when a NO SCROLL cursor is requested, Sybase IQ
supplies the most efficient kind of cursor, which is an asensitive cursor.

FOR statement-name—Statements are named using the PREPARE statement. Cursors can be
declared only for a prepared SELECT or CALL.

FOR READ ONLY—A cursor declared FOR READ ONLY may not be used in a positioned
UPDATE or a positioned DELETE operation. READ ONLY is the default value of the FOR
clause.

A cursor declared FOR READ ONLY sees the version of table(s) on which the cursor is
declared when the cursor is opened, not the version of table(s) at the time of the first
FETCH.

For example, when the cursor is fetched, only one row can be fetched from the table:

CREATE TABLE t1 (c1 INT);
INSERT t1 VALUES (1);

BEGIN
DECLARE t1_cursor CURSOR FOR SELECT * FROM t1
FOR READ ONLY;
OPEN t1_cursor;
INSERT t1 VALUES (2);
FETCH T1_CURSOR;
END

FOR UPDATE—You can update the cursor result set of a cursor declared FOR UPDATE.
Only asensitive behavior is supported for updatable cursors; any other sensitivity is ignored.

When the cursor is opened, exclusive table locks are taken on all tables that are opened for
update. Standalone LOAD TABLE, UPDATE, INSERT, DELETE, and TRUNCATE statements

SQL Statements

Reference: Statements and Options 155

are not allowed on tables that are opened for update in the same transaction, since Sybase IQ
permits only one statement to modify a table at a time. You can open only one updatable cursor
on a specific table at a time.

Updatable cursors are allowed to scroll, except over Open Client.

OF column-name-list—The list of columns from the cursor result set (specified by the select-
statement) defined as updatable.

USING variable-name—You can declare a cursor on a variable in stored procedures and user-
defined functions. The variable is a string containing a SELECT statement for the cursor. The
variable must be available when the DECLARE is processed, and so must be one of the
following:

• A parameter to the procedure. For example:
create function get_row_count(in qry varchar)
returns int
begin
 declare crsr cursor using qry;
 declare rowcnt int;

 set rowcnt = 0;
 open crsr;
 lp: loop
 fetch crsr;
 if SQLCODE <> 0 then leave lp end if;
 set rowcnt = rowcnt + 1;
 end loop;
 return rowcnt;
end

• Nested inside another BEGIN…END after the variable has been assigned a value. For
example:
create procedure get_table_name(
 in id_value int, out tabname char(128))

begin
 declare qry varchar;

 set qry = 'select table_name from SYS.ISYSTAB ' ||
 'where table_id=' || string(id_value);
 begin
 declare crsr cursor using qry;

 open crsr;
 fetch crsr into tabname;
 close crsr;
 end
end

Embedded SQL

Statements are named using the PREPARE statement. Cursors can be declared only for a
prepared SELECT or CALL.

SQL Statements

 156 Sybase IQ

Updatable Cursor Support

Sybase IQ support of updatable cursors is similar to SQL Anywhere support of updatable
cursors. For a full discussion of cursor types and working with cursors, see SQL Anywhere
11.0.1 > SQL Anywhere Server – Programming > Introduction to Programming with SQL
Anywhere > Using SQL in applications > Introduction to cursors.

Sybase IQ supports one type of cursor sensitivity, which is defined in terms of which changes
to underlying data are visible. All Sybase IQ cursors are asensitive, which means that changes
might be reflected in the membership, order, or values of the result set seen through the cursor,
or might not be reflected at all.

With an asensitive cursor, changes effected by positioned UPDATE and positioned DELETE
statements are visible in the cursor result set, except where client-side caching prevents seeing
these changes. Inserted rows are not visible.

Rows that are updated so that they no longer meet the requirements of the WHERE clause of
the open cursor are still visible.

When using cursors, there is always a trade-off between efficiency and consistency.
Asensitive cursors provide efficient performance at the expense of consistency.

Sybase IQ supports updatable cursors on single tables.

LONG VARCHAR and LONG BINARY data types are not supported in updatable cursors. For
information on the LONG VARCHAR and LONG BINARY data types in Sybase IQ, see
Unstructured Data Analytics in Sybase IQ.

Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

Supported query specifications for updatable cursors in Sybase IQ are:

• Expressions in the select list against columns that are not functionally dependent on
columns being updated

• Arbitrary subqueries with asensitive behavior, that is, changes to data referenced by
subqueries are not visible in the cursor result set

• ORDER BY clause; the ORDER BY columns may be updated, but the result set does not
reorder

• Columns that meet these requirements:
• No CAST on a column
• Base columns of a base table in the SELECT clause
• There are no expressions or functions on that column in the SELECT clause and it is not

duplicated in the select list (for example, SELECT c1, c1).

• Base columns of a base table restricted to those listed in the FOR UPDATE OF column-
name-list clause, if the clause is specified.

Sybase IQ does not permit updatable cursors on queries that contain any operator that
precludes a one-to-one mapping of result set rows to rows in a base table; specifically:

SQL Statements

Reference: Statements and Options 157

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/introduction-cursors-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/introduction-cursors-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/introduction-cursors-sqlapp.html

• SELECT DISTINCT

• Operator that has a UNION

• Operator that has a GROUP BY

• Operator that has a SET function
• Operator that has an OLAP function, with the exception of RANK()

See the description of the UPDATE (positioned) Statement [ESQL] [SP] for information on
the columns and expressions allowed in the SET clause for the update of a row in the result set
of a cursor.

Sybase IQ supports inserts only on updatable cursors where all nonnullable, nonidentity
columns are both selected and updatable.

In Sybase IQ, COMMIT and ROLLBACK are not allowed inside an open updatable cursor, even
if the cursor is opened as a hold cursor. Sybase IQ does support ROLLBACK TO SAVEPOINT
inside an updatable cursor.

Any failure that occurs after the cursor is open results in a rollback of all operations that have
been performed through this open cursor.

Updatable Cursor Limitations

A declared cursor is read-only and not updatable in cases where:

• The data extraction facility is enabled with the TEMP_EXTRACT_NAME1 option set to a
pathname

• As a join index, or within a join index
• ANSI_CLOSE_CURSORS_ON_ROLLBACK is set OFF
• CHAINED is set OFF
• The statement is INSERT SELECT or SELECT INTO

• More than one table is included
• No updatable columns exist

If Sybase IQ fails to set an updatable cursor when requested, see the .iqmsg file for related
information.

There is a limitation regarding updatable cursors and ODBC. A maximum of 65535 rows or
records can be updated, deleted, or inserted at a time using these ODBC functions:

• SQLSetPos SQL_UPDATE, SQL_DELETE, and SQL_ADD

• SQLBulkOperations SQL_ADD, SQL_UPDATE_BY_BOOKMARK, and
SQL_DELETE_BY_BOOKMARK

There is an implementation-specific limitation to the maximum value in the statement
attribute that controls the number of effected rows to the largest value of an UNSIGNED
SMALL INT, which is 65535.

SQLSetStmtAttr(HANDLE,SQL_ATTR_ROW_ARRAY_SIZE, VALUE,0)

Updatable Cursor Differences

SQL Statements

 158 Sybase IQ

Sybase IQ updatable cursors differ from ANSI SQL3 standard behavior as follows:

• Hold cursor update close on commit.
• Sybase IQ locks tables when the cursor is open.
• All updates, deletes, and insert operations are applied when the cursor is closed, in this

order: deletes first, then updates, then inserts.

See also Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqcursorinfo Procedure.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
• CALL Statement on page 53

• DELETE (positioned) Statement [ESQL] [SP] on page 164

• FETCH Statement [ESQL] [SP] on page 187

• OPEN Statement [ESQL] [SP] on page 246

• PREPARE Statement [ESQL] on page 253

• SELECT Statement on page 279

• UPDATE (positioned) Statement [ESQL] [SP] on page 311

DECLARE CURSOR Statement [T-SQL]
Declares a cursor that is compatible with Adaptive Server Enterprise.

Syntax
DECLARE cursor-name
… CURSOR FOR select-statement
…[FOR { READ ONLY | UPDATE }]

Usage

Sybase IQ supports a DECLARE CURSOR syntax that is not supported in Adaptive Server
Enterprise. For information on the full DECLARE CURSOR syntax, see DECLARE CURSOR
Statement [ESQL] [SP].

SQL Statements

Reference: Statements and Options 159

See also Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqcursorinfo Procedure.

Standards

• SQL—The FOR UPDATE and FOR READ ONLY options are Transact-SQL extensions
to ISO/ANSI SQL grammar.

• Sybase—There are some features of the Adaptive Server Enterprise DECLARE CURSOR
statement that are not supported in Sybase IQ.
• In the Sybase IQ dialect, DECLARE CURSOR in a procedure or batch must

immediately follow the BEGIN keyword. In the Transact-SQL dialect, there is no such
restriction.

• In Adaptive Server Enterprise, when a cursor is declared in a procedure or batch, it
exists for the duration of the procedure or batch. In Sybase IQ, if a cursor is declared
inside a compound statement, it exists only for the duration of that compound
statement (whether it is declared in a Sybase IQ or Transact-SQL compound
statement).

Permissions

None

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154

DECLARE LOCAL TEMPORARY TABLE Statement
Declares a local temporary table.

Syntax
DECLARE LOCAL TEMPORARY TABLE table-name
… (column-definition [column-constraint] …
[, column-definition [column-constraint] …]
[, table-constraint] …)
…[ON COMMIT { DELETE | PRESERVE } ROWS
NOT TRANSACTIONAL]

Examples

• Example 1 – Declare a local temporary table in Embedded SQL:

EXEC SQL DECLARE LOCAL TEMPORARY TABLE MyTable (
 number INT
);

• Example 2 – Declare a local temporary table in a stored procedure:

SQL Statements

 160 Sybase IQ

BEGIN
 DECLARE LOCAL TEMPORARY TABLE TempTab (
 number INT
);
 ...
END

Usage

DECLARE LOCAL TEMPORARY TABLE declares a temporary table.

A local temporary table and the rows in it are visible only to the connection that created the
table and inserted the rows. By default, the rows of a temporary table are deleted on
COMMIT.

Declared local temporary tables within compound statements exist within the compound
statement. Otherwise, the declared local temporary table exists until the end of the connection.

See CREATE TABLE Statement for definitions of column-definition, column-constraint, and
table-constraint, and the NOT TRANSACTIONAL clause. See SELECT Statement for an
example of how to select data into a temporary table.

Once you create a local temporary table, either implicitly or explicitly, you cannot create
another temporary table of that name for as long as the temporary table exists. For example,
you can create a local temporary table implicitly:

select * into #tmp from table1

or you can create a local temporary table with an explicit by declaration:

declare local temporary table foo

Then if you try to select into #tmp or foo, or declare #tmp or foo again, you receive an error
indicating that #tmp or foo already exists.

When you declare a local temporary table, omit the owner specification. If you specify the
same owner.table in more than one DECLARE LOCAL TEMPORARY TABLE statement in
the same session, a syntax error is reported. For example, an error is reported when these
statements are executed in the same session:

DECLARE LOCAL TEMPORARY TABLE user1.temp(col1 int);
DECLARE LOCAL TEMPORARY TABLE user1.temp(col1 int);

If the owner name is omitted, then the error Item temp already exists is reported:

DECLARE LOCAL TEMPORARY TABLE temp(col1 int);
DECLARE LOCAL TEMPORARY TABLE temp(col1 int);

An attempt to create a base table or a global temporary table fails, if a local temporary table of
the same name exists on that connection, as the new table cannot be uniquely identified by
owner.table.

SQL Statements

Reference: Statements and Options 161

You can, however, create a local temporary table with the same name as an existing base table
or global temporary table. References to the table name access the local temporary table, as
local temporary tables are resolved first.

For example, consider this sequence:

CREATE TABLE t1 (c1 int);
INSERT t1 VALUES (9);

DECLARE LOCAL TEMPORARY TABLE t1 (c1 int);
INSERT t1 VALUES (8);

SELECT * FROM t1;

The result returned is 8. Any reference to t1 refers to the local temporary table t1 until the
local temporary table is dropped by the connection.

You cannot use the ALTER TABLE and DROP INDEX statements on local temporary tables.

You cannot use the sp_iqindex, sp_iqtablesize, and sp_iqindexsize stored procedures on
local temporary tables.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Adaptive Server Enterprise does not support DECLARE TEMPORARY TABLE.

Permissions

None

See also
• CREATE TABLE Statement on page 133

• SELECT Statement on page 279

DELETE Statement
Deletes rows from the database.

Syntax
DELETE [FROM] [owner.]table-name
…[FROM table-list]
…[WHERE search-condition]

Examples

• Example 1 – Remove employee 105 from the database:

SQL Statements

 162 Sybase IQ

DELETE
FROM Employees
WHERE EmployeeID = 105

• Example 2 – Remove all data prior to 1993 from the FinancialData table:

DELETE
FROM FinancialData
WHERE Year < 1993

• Example 3 – Remove all names from the Contacts table if they are already present in
the Customers table:

DELETE
FROM Contacts
FROM Contacts, Customers
WHERE Contacts.Surname = Customers.Surname
AND Contacts.GivenName = Customers.GivenName

Usage

DELETE deletes all the rows from the named table that satisfy the search condition. If no
WHERE clause is specified, all rows from the named table are deleted.

DELETE can be used on views provided the SELECT statement defining the view has only one
table in the FROM clause and does not contain a GROUP BY clause, an aggregate function, or
involve a UNION operation.

The optional second FROM clause in the DELETE statement allows rows to be deleted based on
joins. If the second FROM clause is present, the WHERE clause qualifies the rows of this
second FROM clause. Rows are deleted from the table name given in the first FROM clause.

The effects of a DELETE on a table can be passed on to any of the join indexes that reference
that table through the SYNCHRONIZE JOIN INDEX command. For performance reasons, you
should do as many deletes as possible before synchronizing the join indexes.

Note: You cannot use the DELETE statement on a join virtual table. If you attempt to delete
from a join virtual table, an error is reported.

Correlation Name Resolution

This statement illustrates a potential ambiguity in table names in DELETE statements with two
FROM clauses that use correlation names:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_2 AS alias_2
WHERE ...

The table table_1 is identified without a correlation name in the first FROM clause, but with
a correlation name in the second FROM clause. In this case, table_1 in the first clause is
identified with alias_1 in the second clause; there is only one instance of table_1 in this
statement.

SQL Statements

Reference: Statements and Options 163

This is an exception to the general rule that where a table is identified with a correlation name
and without a correlation name in the same statement, two instances of the table are
considered.

Consider this example:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_1 AS alias_2
WHERE ...

In this case, there are two instances of table_1 in the second FROM clause. There is no way
of identifying which instance the first FROM clause should be identified with. The usual rules
of correlation names apply, and table_1 in the first FROM clause is identified with neither
instance in the second clause: there are three instances of table_1 in the statement.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise, including the vendor extension.

Permissions

Must have DELETE permission on the table.

See also
• FROM Clause on page 193

• INSERT Statement on page 209

• SYNCHRONIZE JOIN INDEX Statement on page 303

• TRUNCATE TABLE Statement on page 305

DELETE (positioned) Statement [ESQL] [SP]
Deletes the data at the current location of a cursor.

Syntax

DELETE [FROM table-spec]
WHERE CURRENT OF cursor-name

Parameters

• cursor-name: – identifier | hostvar
• table-spec: – [owner.]correlation-name
• owner: – identifier

SQL Statements

 164 Sybase IQ

Examples

• Example 1 – Remove the current row from the database:

DELETE WHERE CURRENT OF cur_employee

Usage

This form of the DELETE statement deletes the current row of the specified cursor. The current
row is defined to be the last row fetched from the cursor.

The table from which rows are deleted is determined as follows:

• If no FROM clause is included, the cursor can only be on a single table.
• If the cursor is for a joined query (including using a view containing a join), you must use

the FROM clause. Only the current row of the specified table is deleted. The other tables
involved in the join are not affected.

• If you include a FROM clause and do not specify table owner, table-spec is first matched
against any correlation names.
• If a correlation name exists, table-spec is identified with the correlation name.
• If a correlation name does not exist, table-spec must be unambiguously identifiable as a

table name in the cursor.
• If a FROM clause is included, and a table owner is specified, table-spec must be

unambiguously identifiable as a table name in the cursor.

The positioned DELETE statement can be used on a cursor open on a view as long as the view is
updatable.

Changes effected by positioned DELETE statements are visible in the cursor result set, except
where client-side caching prevents seeing these changes.

See also Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqcursorinfo Procedure.

Standards

• SQL—The range of cursors that can be updated may contain vendor extensions to ISO/
ANSI SQL grammar if the ANSI_UPDATE_CONSTRAINTS option is set to OFF.

• Sybase—Embedded SQL use is supported by Open Client/Open Server. Procedure and
trigger use is supported in SQL Anywhere.

Permissions

Must have DELETE permission on tables used in the cursor.

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154
• INSERT Statement on page 209

SQL Statements

Reference: Statements and Options 165

• UPDATE Statement on page 307

• UPDATE (positioned) Statement [ESQL] [SP] on page 311

DESCRIBE Statement [ESQL]
Gets information about the host variables required to store data retrieved from the database or
host variables used to pass data to the database.

Syntax
DESCRIBE
…[USER TYPES]
…[{ ALL | BIND VARIABLES FOR | INPUT
| OUTPUT | SELECT LIST FOR }]
…[{ LONG NAMES [long-name-spec] | WITH VARIABLE RESULT }]
…[FOR] { statement-name | CURSOR cursor-name }
…INTO sqlda-name

Parameters

• long-name-spec: – { OWNER.TABLE.COLUMN | TABLE.COLUMN | COLUMN }
• statement-name: – identifier | host-variable
• cursor-name: – declared cursor
• sqlda-name: – identifier

Examples

• Example 1 – How to use the DESCRIBE statement:

sqlda = alloc_sqlda(3);
EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
if(sqlda->sqld > sqlda->sqln) {
 actual_size = sqlda->sqld;
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(actual_size);
 EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
}

Usage

DESCRIBE sets up the named SQLDA to describe either the OUTPUT (equivalently SELECT
LIST) or the INPUT (BIND VARIABLES) for the named statement.

SQL Statements

 166 Sybase IQ

In the INPUT case, DESCRIBE BIND VARIABLES does not set up the data types in the SQLDA:
this needs to be done by the application. The ALL keyword lets you describe INPUT and
OUTPUT in one SQLDA.

If you specify a statement name, the statement must have been previously prepared using the
PREPARE statement with the same statement name and the SQLDA must have been
previously allocated (see ALLOCATE DESCRIPTOR Statement [ESQL]).

If you specify a cursor name, the cursor must have been previously declared and opened. The
default action is to describe the OUTPUT. Only SELECT statements and CALL statements have
OUTPUT. A DESCRIBE OUTPUT on any other statement, or on a cursor that is not a dynamic
cursor, indicates no output by setting the sqld field of the SQLDA to zero.

USER TYPES—A DESCRIBE statement with the USER TYPES clause returns information
about user-defined data types of a column. Typically, such a DESCRIBE is done when a
previous DESCRIBE returns an indicator of DT_HAS_USERTYPE_INFO.

The information returned is the same as for a DESCRIBE without the USER TYPES keywords,
except that the sqlname field holds the name of the user-defined data type, instead of the name
of the column.

If DESCRIBE uses the LONG NAMES clause, the sqldata field holds this information.

SELECT—DESCRIBE OUTPUT fills in the data type and length in the SQLDA for each select
list item. The name field is also filled in with a name for the select list item. If an alias is
specified for a select list item, the name is that alias. Otherwise, the name derives from the
select list item: if the item is a simple column name, it is used; otherwise, a substring of the
expression is used. DESCRIBE also puts the number of select list items in the sqld field of the
SQLDA.

If the statement being described is a UNION of two or more SELECT statements, the column
names returned for DESCRIBE OUTPUT are the same column names which would be returned
for the first SELECT statement.

CALL—The DESCRIBE OUTPUT statement fills in the data type, length, and name in the
SQLDA for each INOUT or OUT parameter in the procedure. DESCRIBE OUTPUT also puts
the number of INOUT or OUT parameters in the sqld field of the SQLDA.

CALL (result set)— DESCRIBE OUTPUT fills in the data type, length, and name in the
SQLDA for each RESULT column in the procedure definition. DESCRIBE OUTPUT also puts
the number of result columns in the sqld field of the SQLDA.

INPUT—A bind variable is a value supplied by the application when the database executes the
statements. Bind variables can be considered parameters to the statement. DESCRIBE INPUT
fills in the name fields in the SQLDA with the bind variable names. DESCRIBE INPUT also
puts the number of bind variables in the sqld field of the SQLDA.

DESCRIBE uses the indicator variables in the SQLDA to provide additional information.
DT_PROCEDURE_IN and DT_PROCEDURE_OUT are bits that are set in the indicator
variable when a CALL statement is described. DT_PROCEDURE_IN indicates an IN or

SQL Statements

Reference: Statements and Options 167

INOUT parameter and DT_PROCEDURE_OUT indicates an INOUT or OUT parameter.
Procedure RESULT columns has both bits clear. After a describe OUTPUT, these bits can be
used to distinguish between statements that have result sets (need to use OPEN, FETCH,
RESUME, CLOSE) and statements that do not (need to use EXECUTE). DESCRIBE INPUT sets
DT_PROCEDURE_IN and DT_PROCEDURE_OUT appropriately only when a bind
variable is an argument to a CALL statement; bind variables within an expression that is an
argument in a CALL statement sets the bits.

DESCRIBE ALL lets you describe INPUT and OUTPUT with one request to the database server.
This has a performance benefit in a multiuser environment. The INPUT information is filled in
the SQLDA first, followed by the OUTPUT information. The sqld field contains the total
number of INPUT and OUTPUT variables. The DT_DESCRIBE_INPUT bit in the indicator
variable is set for INPUT variables and clear for OUTPUT variables.

Retrieving Long Column Names

The LONG NAMES clause is provided to retrieve column names for a statement or cursor.
Without this clause, there is a 29-character limit on the length of column names: with the
clause, names of an arbitrary length are supported.

If LONG NAMES is used, the long names are placed into the SQLDATA field of the SQLDA, as
if you were fetching from a cursor. None of the other fields (SQLLEN, SQLTYPE, and so on)
are filled in. The SQLDA must be set up like a FETCH SQLDA: it must contain one entry for
each column, and the entry must be a string type.

The default specification for the long names is TABLE.COLUMN.

Describing Variable Result Sets

The WITH VARIABLE RESULT statement is used to describe procedures that might have more
than one result set, with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT value after the
describe to one of these values:

• 0—The result set may change: the procedure call should be described again following each
OPEN statement.

• 1—The result set is fixed. No redescribing is required.

For more information on the use of the SQLDA structure, see SQL Anywhere 11.0.1 > SQL
Anywhere Server – Programming > SQL Anywhere Data Access APIs > SQL Anywhere
embedded SQL > The SQL descriptor area (SQLDA).

Standards

• SQL— Some clauses are vendor extensions to ISO/ANSI SQL grammar.
• Sybase—Some clauses supported by Open Client/Open Server.

SQL Statements

 168 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html

Permissions

None

See also
• ALLOCATE DESCRIPTOR Statement [ESQL] on page 5

• DECLARE CURSOR Statement [ESQL] [SP] on page 154

• OPEN Statement [ESQL] [SP] on page 246

• PREPARE Statement [ESQL] on page 253

DISCONNECT Statement [Interactive SQL]
Drops a connection with the database.

Syntax
DISCONNECT [{ connection-name | CURRENT | ALL }]

Parameters

• connection-name: – identifier, string, or host-variable

Examples

• Example 1 – How to use DISCONNECT in Embedded SQL:

EXEC SQL DISCONNECT :conn_name

• Example 2 – How to use DISCONNECT from dbisql to disconnect all connections:

DISCONNECT ALL

Usage

The DISCONNECT statement drops a connection with the database server and releases all
resources used by it. If the connection to be dropped was named on the CONNECT statement,
then the name can be specified. Specifying ALL drops all of the connections of the application
to all database environments. CURRENT is the default and drops the current connection.

An implicit ROLLBACK is executed on connections that are dropped.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

SQL Statements

Reference: Statements and Options 169

Permissions

None

See also
• CONNECT Statement [ESQL] [Interactive SQL] on page 63
• SET CONNECTION Statement [ESQL] [Interactive SQL] on page 291

DROP Statement
Removes objects from the database.

Syntax
DROP
{ DBSPACE dbspace-name
| { DATATYPE [IF EXISTS]
| DOMAIN [IF EXISTS] } datatype-name
| EVENT [IF EXISTS] event-name
| INDEX [IF EXISTS] [[owner].table-name.]index-name
| JOIN INDEX [owner.]join-index-name
| MESSAGE message-number
| TABLE [IF EXISTS] [owner.]table-name
| VIEW [IF EXISTS] [owner.]view-name
| PROCEDURE [IF EXISTS] [owner.]procedure-name
| FUNCTION [IF EXISTS] [owner.]function-name }

Examples

• Example 1 – Drop the Departments table from the database:

DROP TABLE Departments

• Example 2 – Drop the emp_dept view from the database:

DROP VIEW emp_dept

Usage

DROP removes the definition of the indicated database structure. If the structure is a dbspace,
then all tables with any data in that dbspace must be dropped or relocated prior to dropping the
dbspace; other structures are automatically relocated. If the structure is a table, all data in the
table is automatically deleted as part of the dropping process. Also, all indexes and keys for the
table are dropped by DROP TABLE. However, you cannot drop the table if any join indexes use
that table. You must first use DROP JOIN INDEX to remove the join indexes.

Use the IF EXISTS clause if you do not want an error returned when the DROP statement
attempts to remove a database object that does not exist.

DROP INDEX deletes any explicitly created index. It deletes an implicitly created index only if
there are no unique or foreign-key constraints or associated primary key.

SQL Statements

 170 Sybase IQ

DROP INDEX for a nonunique HG index fails if an associated unenforced foreign key exists.

Warning! Do not delete views owned by the DBO user. Deleting such views or changing them
into tables might cause problems.

DROP TABLE, DROP INDEX, DROP JOIN INDEX, and DROP DBSPACE are prevented
whenever the statement affects a table that is currently being used by another connection.

DROP TABLE is prevented if the primary table has foreign-key constraints associated with it,
including unenforced foreign-key constraints

DROP TABLE is also prevented if the table has an IDENTITY column and
IDENTITY_INSERT is set to that table. To drop the table you must clear
IDENTITY_INSERT, that is, set IDENTITY_INSERT to ' ' (an empty string), or set to another
table name.

A foreign key can have either a nonunique single or a multicolumn HG index. A primary key
may have unique single or multicolumn HG indexes. You cannot drop the HG index implicitly
created for an existing foreign key, primary key, and unique constraint. If a DBA is dropping a
join index belonging to another user, the join index name must be qualified with an owner
name.

The four initial dbspaces are SYSTEM, IQ_SYSTEM_MAIN, IQ_SYSTEM_TEMP, and
IQ_SYSTEM_MSG. You cannot drop these initial dbspaces, but you may drop dbspaces from
the IQ main store or catalog store, which may contain multiple dbspaces, as long as at least one
dbspace remains with readwrite mode.

You must drop tables in the dbspace before you can drop the dbspace. An error is returned if
the dbspace still contains user data; other structures are automatically relocated when the
dbspace is dropped. You can drop a dbspace only after you make it read-only.

Note: A dbspace may contain data at any point after it is used by a command, thereby
preventing a DROP DBSPACE on it.

For more information on modifying dbspaces, see System Administration Guide: Volume 1 >
Database Object Management > Data Storage.

DROP PROCEDURE is prevented when the procedure is in use by another connection.

DROP DATATYPE is prevented if the data type is used in a table. You must change data types on
all columns defined on the user-defined data type to drop the data type. It is recommended that
you use DROP DOMAIN rather than DROP DATATYPE, as DROP DOMAIN is the syntax used in
the ANSI/ISO SQL3 draft.

Side Effects

• Automatic commit. Clears the Data window in dbisql. DROP TABLE and DROP INDEX
close all cursors for the current connection.

• Local temporary tables are an exception; no commit is performed when one is dropped.

SQL Statements

Reference: Statements and Options 171

See also Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqdbspace Procedure and System Administration Guide: Volume 1 >
Database Object Management.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

For DROP DBSPACE, must have either DBA or SPACE ADMIN authority and must be the
only connection to the database.

For others, must be the owner of the object, or have DBA authority.

Global temporary tables cannot be dropped unless all users that have referenced the temporary
table have disconnected.

For DROP INDEX, non-DBA users must provide a fully-qualified index name to drop an index
on a base table owned by the DBA. DBA or users with the appropriate privileges can drop an
index on tables that are owned by non-DBA users without using a fully-qualified name.

DROP CONNECTION Statement
Drops any user connection to the database.

Syntax
DROP CONNECTION connection-id

Examples

• Example 1 – Drop connection with ID number 4:

DROP CONNECTION 4

Usage

DROP CONNECTION disconnects a user from the database by dropping the connection to the
database. You cannot drop your current connection; you must first create another connection,
then drop your first connection.

The connection-id for the connection is obtained using the connection_property function to
request the connection number. This statement returns the connection ID of the current
connection:

SELECT connection_property('number')

SQL Statements

 172 Sybase IQ

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Requires DBA or OPERATOR authority.

See also
• CONNECT Statement [ESQL] [Interactive SQL] on page 63

DROP DATABASE Statement
Drops a database and its associated dbspace segment files.

Syntax
DROP DATABASE db-filename [KEY key-spec]

Parameters

• key-spec: – A string, including mixed cases, numbers, letters, and special characters. It
might be necessary to protect the key from interpretation or alteration by the command
shell.

Examples

• Example 1 – Drop database mydb:

DROP DATABASE 'mydb.db'

• Example 2 – Drop the encrypted database marvin.db, which was created with the key
is!seCret:

DROP DATABASE 'marvin.db' KEY 'is!seCret'

• Example 3 – This UNIX example drops the database temp.db from the /s1/temp
directory:

DROP DATABASE '/s1/temp/temp.db'

Usage

DROP DATABASE drops all the database segment files associated with the IQ store and
temporary store before it drops the catalog store files.

You must stop a database before you can drop it. If the connection parameter AUTOSTOP=no
is used, you may need to issue a STOP DATABASE statement.

SQL Statements

Reference: Statements and Options 173

The db-filename you specify corresponds to the database file name you defined for the
database using CREATE DATABASE. If you specified a directory path for this value in the
CREATE DATABASE command, you must also specify the directory path for DROP
DATABASE. Otherwise, Sybase IQ looks for the database files in the default directory where
the server files reside.

You cannot execute a DROP DATABASE statement to drop an IQ database that has a
DatabaseStart event defined for it.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Required permissions are set using the database server -gu command line option. The default
setting is to require DBA authority.

See also
• CREATE DATABASE Statement on page 66

• STOP DATABASE Statement [Interactive SQL] on page 301

DROP EXTERNLOGIN Statement
Drops an external login from the Sybase IQ system tables.

Syntax
DROP EXTERNLOGIN login-name
TO remote-server

Examples

• Example 1 –
DROP EXTERNLOGIN dba TO sybase1

Usage

Changes made by DROP EXTERNLOGIN do not take effect until the next connection to the
remote server.

DROP EXTERNLOGIN deletes an external login from the Sybase IQ system tables.

login-name—Specifies the local user login name.

SQL Statements

 174 Sybase IQ

TO—Specifies the name of the remote server. The alternate login name of the local user and
password for that server is the external login that is deleted.

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

Must have DBA or USER ADMIN authority.

See also
• CREATE EXTERNLOGIN Statement on page 89

DROP LOGIN POLICY Statement
Removes a login policy from the database.

Syntax
DROP LOGIN POLICY policy-name

Examples

• Example 1 – Create and then delete the Test11 login policy:

CREATE LOGIN POLICY Test11;
DROP LOGIN POLICY Test11 ;

Usage

A DROP LOGIN POLICY statement fails if you attempt to drop a policy that is assigned to a
user. You can use either the ALTER USER statement to change the policy assignment of the
user or DROP USER to drop the user.

Permissions

Must have DBA or USER ADMIN authority.

See also
• ALTER LOGIN POLICY Statement on page 19
• ALTER USER Statement on page 36

SQL Statements

Reference: Statements and Options 175

• CREATE LOGIN POLICY Statement on page 107

• DROP USER Statement on page 179

DROP LOGICAL SERVER Statement
Deletes a user-defined logical server.

Syntax
See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex.

DROP MULTIPLEX SERVER Statement
Deletes a server from the multiplex.

Syntax
See below.

Usage

For syntax and complete description, see Using Sybase IQ Multiplex.

DROP SERVER Statement
Drops a remote server from the Sybase IQ system tables.

Syntax
DROP SERVER server-name

Examples

• Example 1 –
DROP SERVER ase_prod

Usage

Before DROP SERVER succeeds, you must drop all the proxy tables that have been defined for
the remote server.

SQL Statements

 176 Sybase IQ

Side Effects

• Automatic commit

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

Only the DBA account can delete a remote server.

See also
• CREATE SERVER Statement on page 129

DROP SERVICE Statement
Deletes a Web service.

Syntax
DROP SERVICE service-name

Examples

• Example 1 – Drop a Web service named tables:

DROP SERVICE tables

Usage

DROP SERVICE deletes a Web service.

See also SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere
Data Access APIs > SQL Anywhere web services > Introduction to web services.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority.

SQL Statements

Reference: Statements and Options 177

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html

See also
• ALTER SERVICE Statement on page 25

• CREATE SERVICE Statement on page 130

DROP STATEMENT Statement [ESQL]
Frees statement resources.

Syntax
DROP STATEMENT [owner.]statement-name

Parameters

• statement-name: – identifier or host-variable

Examples

• Example 1 –
EXEC SQL DROP STATEMENT S1;
EXEC SQL DROP STATEMENT :stmt;

Usage

DROP STATEMENT frees resources used by the named prepared statement. These resources
are allocated by a successful PREPARE statement, and are normally not freed until the
database connection is released.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported in Open Client/Open Server

Permissions

Must have prepared the statement.

See also
• PREPARE Statement [ESQL] on page 253

SQL Statements

 178 Sybase IQ

DROP TEXT CONFIGURATION Statement
Drops a text configuration object.

Syntax
See below.

Usage

For syntax and complete description, see Unstructured Data Analytics in Sybase IQ.

DROP TEXT INDEX Statement
Removes a TEXT index from the database.

Syntax
See below.

Usage

For syntax and complete description, see Unstructured Data Analytics in Sybase IQ.

DROP USER Statement
Removes a user.

Syntax
DROP USER user-name

Examples

• Example 1 – Drop the user SQLTester from the database:

DROP USER SQLTester;

Usage

 user-name—Name of the user to remove.

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Database Administration >
Configuring Your Database > Managing user IDs, authorities, and permissions > Managing
login policies overview.

SQL Statements

Reference: Statements and Options 179

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA or USER ADMIN authority.

See also
• ALTER LOGIN POLICY Statement on page 19
• CREATE LOGIN POLICY Statement on page 107
• CREATE USER Statement on page 146
• DROP LOGIN POLICY Statement on page 175
• GRANT Statement on page 199

DROP VARIABLE Statement
Eliminates a SQL variable.

Syntax
DROP VARIABLE identifier

Usage

DROP VARIABLE eliminates a SQL variable that was created using the CREATE VARIABLE
statement. Variables are automatically eliminated when the database connection is released.
Variables are often used for large objects, so eliminating them after use or setting them to
NULL can free up significant resources (primarily disk space).

Use the IF EXISTS clause if you do not want an error returned when the DROP statement
attempts to remove a database object that does not exist.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

None

See also
• CREATE VARIABLE Statement on page 148

SQL Statements

 180 Sybase IQ

• SET Statement [ESQL] on page 287

EXECUTE Statement [ESQL]
Executes a SQL statement.

Syntax

Syntax 1
EXECUTE statement-name
... [{ USING DESCRIPTOR sqlda-name | USING host-variable-list }]
... [{ INTO DESCRIPTOR into-sqlda-name | INTO into-host-variable-
list]
... [ARRAY :nnn }]

Syntax 2
EXECUTE IMMEDIATE statement

Parameters

• statement-name: – identifier or host-variable
• sqlda-name: – identifier
• into-sqlda-name: – identifier
• statement: – string or host-variable

Examples

• Example 1 – Execute a DELETE:

EXEC SQL EXECUTE IMMEDIATE
'DELETE FROM Employees WHERE EmployeeID = 105';

• Example 2 – Execute a prepared DELETE statement:

EXEC SQL PREPARE del_stmt FROM
'DELETE FROM Employees WHERE EmployeeID = :a';
EXEC SQL EXECUTE del_stmt USING :employee_number;

• Example 3 – Execute a prepared query:

EXEC SQL PREPARE sel1 FROM
'SELECT Surname FROM Employees WHERE EmployeeID = :a';
EXEC SQL EXECUTE sel1 USING :employee_number INTO :emp_lname;

Usage

Syntax 1 executes the named dynamic statement that was previously prepared. If the dynamic
statement contains host variable placeholders which supply information for the request (bind
variables), then either the sqlda-name must specify a C variable which is a pointer to an

SQL Statements

Reference: Statements and Options 181

SQLDA containing enough descriptors for all bind variables occurring in the statement, or the
bind variables must be supplied in the host-variable-list.

The optional ARRAY clause can be used with prepared INSERT statements, to allow wide
inserts, which insert more than one row at a time and which might improve performance. The
value nnn is the number of rows to be inserted. The SQLDA must contain nnn * (columns per
row) variables. The first row is placed in SQLDA variables 0 to (columns per row)-1, and so
on.

OUTPUT from a SELECT statement or a CALL statement is put either into the variables in the
variable list or into the program data areas described by the named SQLDA. The
correspondence is one to one from the OUTPUT (selection list or parameters) to either the host
variable list or the SQLDA descriptor array.

If EXECUTE is used with an INSERT statement, the inserted row is returned in the second
descriptor. For example, when using autoincrement primary keys that generate primary-key
values, EXECUTE provides a mechanism to refetch the row immediately and determine the
primary-key value assigned to the row.

Syntax 2 is a short form to PREPARE and EXECUTE a statement that does not contain bind
variables or output. The SQL statement contained in the string or host variable is immediately
executed and is dropped on completion.

EXECUTE can be used for any SQL statement that can be prepared. Cursors are used for
SELECT statements or CALL statements that return many rows from the database.

After successful execution of an INSERT, UPDATE, or DELETE statement, the sqlerrd[2] field
of the SQLCA (SQLCOUNT) is filled in with the number of rows affected by the operation.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported in Open Client/Open Server.

Permissions

Permissions are checked on the statement being executed.

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154

• PREPARE Statement [ESQL] on page 253

SQL Statements

 182 Sybase IQ

EXECUTE Statement [T-SQL]
Invokes a procedure, as an Adaptive Server Enterprise-compatible alternative to the CALL
statement.

Syntax
EXECUTE [@return_status =] [owner.]procedure_name
... { [@parameter-name =] expression
| [@parameter-name =] @variable [output] } ,...

Examples

• Example 1 – Create the procedure p1:

CREATE PROCEDURE p1(@var INTEGER = 54)
AS
PRINT 'on input @var = %1! ', @var
DECLARE @intvar integer
SELECT @intvar=123
SELECT @var=@intvar
PRINT 'on exit @var = %1!', @var;

• Execute the procedure, supplying the input value of 23 for the parameter. If you are
connected from an Open Client application, PRINT messages are displayed on the
client window. If you are connected from an ODBC or Embedded SQL application,
messages display on the database server window.

EXECUTE p1 23

• An alternative way of executing the procedure, which is useful if there are several
parameters:

EXECUTE p1 @var = 23

• Execute the procedure, using the default value for the parameter:

EXECUTE p1

• Execute the procedure and store the return value in a variable for checking return
status:

EXECUTE @status = p1 23

Usage

EXECUTE executes a stored procedure, optionally supplying procedure parameters and
retrieving output values and return status information.

EXECUTE is implemented for Transact-SQL compatibility, but can be used in either Transact-
SQL or Sybase IQ batches and procedures.

SQL Statements

Reference: Statements and Options 183

Permissions

Must be the owner of the procedure, have EXECUTE permission for the procedure, or have
DBA authority.

See also
• CALL Statement on page 53

EXECUTE IMMEDIATE Statement [ESQL] [SP]
Enables dynamically constructed statements to be executed from within a procedure.

Syntax

Syntax 1
EXECUTE IMMEDIATE [execute-option] string-expression

execute-option:
WITH QUOTES [ON | OFF]
| WITH ESCAPES { ON | OFF }
| WITH RESULT SET { ON | OFF }

Syntax 2
EXECUTE (string-expression)

Examples

• Example 1 – This procedure creates a table, where the table name is supplied as a
parameter to the procedure. The full EXECUTE IMMEDIATE statement must be on a single
line.

CREATE PROCEDURE CreateTableProc(
 IN tablename char(30)
)
BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE ' || tablename ||
' (column1 INT PRIMARY KEY)'
END;

Call the procedure and create table mytable:

CALL CreateTableProc('mytable')

Usage

EXECUTE IMMEDIATE extends the range of statements that can be executed from within
procedures. It lets you execute dynamically prepared statements, such as statements that are
constructed using the parameters passed in to a procedure.

SQL Statements

 184 Sybase IQ

Literal strings in the statement must be enclosed in single quotes, and must differ from any
existing statement name in a PREPARE or EXECUTE IMMEDIATE statement. The statement
must be on a single line.

Only global variables can be referenced in a statement executed by EXECUTE IMMEDIATE.

Only syntax 2 can be used inside Transact-SQL stored procedures.

WITH QUOTES—When you specify WITH QUOTES or WITH QUOTES ON, any double
quotes in the string expression are assumed to delimit an identifier. When you do not specify
WITH QUOTES, or specify WITH QUOTES OFF, the treatment of double quotes in the string
expression depends on the current setting of the QUOTED_IDENTIFIER option.

WITH QUOTES is useful when an object name that is passed into the stored procedure is used
to construct the statement that is to be executed, but the name might require double quotes and
the procedure might be called when QUOTED_IDENTIFIER is set to OFF.

See QUOTED_IDENTIFIER Option [TSQL].

WITH ESCAPES—WITH ESCAPES OFF causes any escape sequences (such as \n, \x, or \\) in
the string expression to be ignored. For example, two consecutive backslashes remain as two
backslashes, rather than being converted to a single backslash. The default setting is
equivalent to WITH ESCAPES ON.

You can use WITH ESCAPES OFF for easier execution of dynamically constructed statements
referencing file names that contain backslashes.

In some contexts, escape sequences in the string-expression are transformed before EXECUTE
IMMEDIATE is executed. For example, compound statements are parsed before being
executed, and escape sequences are transformed during this parsing, regardless of the WITH
ESCAPES setting. In these contexts, WITH ESCAPES OFF prevents further translations from
occurring. For example:

BEGIN
DECLARE String1 LONG VARCHAR;
DECLARE String2 LONG VARCHAR;
EXECUTE IMMEDIATE
 'SET String1 = ''One backslash: \\\\ ''';
 EXECUTE IMMEDIATE WITH ESCAPES OFF
 'SET String2 = ''Two backslashes: \\\\ ''';
 SELECT String1, String2
END

WITH RESULT SET—You can have an EXECUTE IMMEDIATE statement return a result set
by specifying WITH RESULT SET ON. With this clause, the containing procedure is marked as
returning a result set. If you do not include this clause, an error is reported when the procedure
is called if the statement does not produce a result set.

Note: The default option is WITH RESULT SET OFF, meaning that no result set is produced
when the statement is executed.

Side Effects

SQL Statements

Reference: Statements and Options 185

None. However, if the statement is a data definition statement with an automatic commit as a
side effect, then that commit does take place.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported in Open Client/Open Server.

Permissions

None. The statement is executed with the permissions of the owner of the procedure, not with
the permissions of the user who calls the procedure.

See also
• BEGIN … END Statement on page 47

• CREATE PROCEDURE Statement on page 110

• QUOTED_IDENTIFIER Option [TSQL] on page 435

EXIT Statement [Interactive SQL]
Leaves dbisql.

Syntax
{ EXIT | QUIT | BYE }

Usage

Leaves the dbisql environment and returns to the operating system, closing your connection
with the database. The default action is to COMMIT any changes you have made to the
database.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable by Adaptive Server Enterprise.

Permissions

None

See also
• SET OPTION Statement on page 293

SQL Statements

 186 Sybase IQ

FETCH Statement [ESQL] [SP]
Repositions a cursor and gets data from it.

Syntax
FETCH
{ NEXT | PRIOR | FIRST | LAST
| ABSOLUTE row-count | RELATIVE row-count }
... cursor-name
... { [INTO host-variable-list]
| USING DESCRIPTOR sqlda-name
| INTO variable-list }
... [PURGE] [BLOCK n] [ARRAY fetch-count]
... INTO variable-list
... IQ CACHE row-count

Parameters

• cursor-name: – identifier or host variable
• sqlda-name: – identifier
• host-variable-list: – may contain indicator variables
• row-count: – number or host variable
• fetch-count: – integer or host variable

Examples

• Example 1 – Embedded SQL example:

EXEC SQL DECLARE cur_employee CURSOR FOR
SELECT EmployeeID, Surname FROM Employees;
EXEC SQL OPEN cur_employee;
EXEC SQL FETCH cur_employee
INTO :emp_number, :emp_name:indicator;

• Example 2 – Procedure example:

BEGIN
 DECLARE cur_employee CURSOR FOR
 SELECT Surname
 FROM Employees;
 DECLARE name CHAR(40) ;
 OPEN cur_employee;
 LOOP
 FETCH NEXT cur_employee into name ;
 .
 .
 .
 END LOOP

SQL Statements

Reference: Statements and Options 187

 CLOSE cur_employee;
END

Usage

FETCH retrieves one row from the named cursor.

The ARRAY clause allows wide fetches, which retrieve more than one row at a time, and which
might improve performance.

The cursor must have been previously opened.

One row from the result of SELECT is put into the variables in the variable list. The
correspondence from the select list to the host variable list is one-to-one.

One or more rows from the result of SELECT are put either into the variables in the variable list
or into the program data areas described by the named SQLDA. In either case, the
correspondence from the select list to either the host variable list or the SQLDA descriptor
array is one-to-one.

The INTO clause is optional. If it is not specified, then FETCH positions the cursor only (see the
following paragraphs).

An optional positional parameter can be specified that allows the cursor to be moved before a
row is fetched. The default is NEXT, which causes the cursor to be advanced one row before the
row is fetched. PRIOR causes the cursor to be backed up one row before fetching.

RELATIVE positioning is used to move the cursor by a specified number of rows in either
direction before fetching. A positive number indicates moving forward and a negative number
indicates moving backwards. Thus, a NEXT is equivalent to RELATIVE 1 and PRIOR is
equivalent to RELATIVE -1. RELATIVE 0 retrieves the same row as the last fetch statement on
this cursor.

The ABSOLUTE positioning parameter is used to go to a particular row. A zero indicates the
position before the first row. See System Administration Guide: Volume 2 > Using Procedures
and Batches.

A one (1) indicates the first row, and so on. Negative numbers are used to specify an absolute
position from the end of the cursor. A negative one (-1) indicates the last row of the cursor.
FIRST is a short form for ABSOLUTE 1. LAST is a short form for ABSOLUTE -1.

Note: Sybase IQ handles the FIRST, LAST, ABSOLUTE, and negative RELATIVE options less
efficiently than some other DBMS products, so there is a performance impact when using
them.

OPEN initially positions the cursor before the first row.

A cursor declared FOR READ ONLY sees the version of table(s) on which the cursor is declared
when the cursor is opened, not the version of table(s) at the time of the first FETCH

If the fetch includes a positioning parameter and the position is outside the allowable cursor
positions, then the SQLE_NOTFOUND warning is issued.

SQL Statements

 188 Sybase IQ

The IQ CACHE clause specifies the maximum number of rows buffered in the FIFO queue. If
you do not specify a value for IQ CACHE, the value of the CURSOR_WINDOW_ROWS database
option is used. The default setting of CURSOR_WINDOW_ROWS is 200.

Using the FETCH and OPEN Statements in Embedded SQL

These clauses are for use in Embedded SQL only:

• USING DESCRIPTOR sqlda-name
• INTO host-variable-list
• PURGE

• BLOCK n
• ARRAY fetch-count
• Use of host-variable in cursor-name and row-count

DECLARE CURSOR must appear before FETCH in the C source code, and the OPEN statement
must be executed before FETCH. If a host variable is being used for the cursor name, then the
DECLARE statement actually generates code and thus must be executed before FETCH.

In the multiuser environment, rows can be fetched by the client more than one at a time. This is
referred to as block fetching or multirow fetching. The first fetch causes several rows to be sent
back from the server. The client buffers these rows and subsequent fetches are retrieved from
these buffers without a new request to the server.

The BLOCK clause gives the client and server a hint as to how many rows may be fetched by
the application. The special value of 0 means the request is sent to the server and a single row is
returned (no row blocking).

The PURGE clause causes the client to flush its buffers of all rows and then send the fetch
request to the server. This fetch request may return a block of rows.

If the SQLSTATE_NOTFOUND warning is returned on the fetch, then the sqlerrd[2] field of
the SQLCA (SQLCOUNT) contains the number of rows that the attempted fetch exceeded the
allowable cursor positions. (A cursor can be on a row, before the first row or after the last row.)
The value is 0 if the row was not found but the position is valid, for example, executing FETCH
RELATIVE 1 when positioned on the last row of a cursor. The value is positive if the attempted
fetch was further beyond the end of the cursor, and negative if the attempted fetch was further
before the beginning of the cursor.

After successful execution of the FETCH statement, the sqlerrd[1] field of the SQLCA
(SQLIOCOUNT) is incremented by the number of input/output operations required to
perform the fetch. This field is actually incremented on every database statement.

To use wide fetches in Embedded SQL, include the FETCH statement in your code:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count nnn can be a host
variable. The SQLDA must contain nnn * (columns per row) variables. The first row is placed
in SQLDA variables 0 to (columns per row)-1, and so on.

SQL Statements

Reference: Statements and Options 189

The server returns in SQLCOUNT the number of records fetched and always returns a
SQLCOUNT greater than zero unless there is an error. Older versions of the server only return
a single row and the SQLCOUNT is set to zero. Thus a SQLCOUNT of zero with no error
condition indicates one valid row has been fetched.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported in Adaptive Server Enterprise.

Permissions

The cursor must be opened and the user must have SELECT permission on the tables
referenced in the declaration of the cursor.

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154
• OPEN Statement [ESQL] [SP] on page 246
• PREPARE Statement [ESQL] on page 253
• CURSOR_WINDOW_ROWS Option on page 357

FOR Statement
Repeats the execution of a statement list once for each row in a cursor.

Syntax
[statement-label:]
FOR for-loop-name AS cursor-name [cursor-type] CURSOR
 { FOR statement
... [{ FOR { UPDATE cursor-concurrency | FOR READ ONLY }]
 | USING variable-name }
 DO statement-list
END FOR [statement-label]

Parameters

• cursor-type: – NO SCROLL | DYNAMIC SCROLL | SCROLL | INSENSITIVE | SENSITIVE

• cursor-concurrency: – BY { VALUES | TIMESTAMP | LOCK]
• variable-name: – identifier

Examples

• Example 1 – This code fragment illustrates the use of the FOR loop:

FOR names AS curs CURSOR FOR
SELECT Surname

SQL Statements

 190 Sybase IQ

FROM Employees
DO
 CALL search_for_name(Surname);
END FOR;

Usage

FOR is a control statement that lets you execute a list of SQL statements once for each row in a
cursor.

The FOR statement is equivalent to a compound statement with a DECLARE for the cursor and
a DECLARE of a variable for each column in the result set of the cursor, followed by a loop that
fetches one row from the cursor into the local variables and executes statement-list once for
each row in the cursor.

For descriptions of the cursor-type parameters and more examples, see SQL Anywhere 11.0.1
> SQL Anywhere Server – SQL Reference > Using SQL > SQL statements > SQL statements
(E-O) > FOR statement.

The name and data type of the local variables that are declared are derived from the statement
used in the cursor. With a SELECT statement, the data type is the data type of the expressions in
the select list. The names are the select list item aliases where they exist; otherwise, they are
the names of the columns. Any select list item that is not a simple column reference must have
an alias. With a CALL statement, the names and data types are taken from the RESULT clause
in the procedure definition.

The LEAVE statement can be used to resume execution at the first statement after the END
FOR. If the ending statement-label is specified, it must match the beginning statement-
label.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported in Adaptive Server Enterprise.

Permissions

None

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154

• FETCH Statement [ESQL] [SP] on page 187

• LEAVE Statement on page 220

• LOOP Statement on page 242

SQL Statements

Reference: Statements and Options 191

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/for-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/for-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/for-statement.html

FORWARD TO Statement
Sends native syntax to a remote server.

Syntax

Syntax 1
FORWARD TO server-name { sql-statement }

Syntax 2
FORWARD TO [server-name]

Examples

• Example 1 – A passthrough session with the remote server ase_prod:

FORWARD TO aseprod
SELECT * from titles
SELECT * from authors
FORWARD TO

Usage

FORWARD TO enables users to specify the server to which a passthrough connection is
required. The statement can be used:

• To send a statement to a remote server (Syntax 1)
• To place Sybase IQ into passthrough mode for sending a series of statements to a remote

server (Syntax 2)

When establishing a connection to server-name on behalf of the user, the server uses:

• A remote login alias set using CREATE EXTERNLOGIN

• If a remote login alias is not set up, the name and password used to communicate with
Sybase IQ

If the connection cannot be made to the server specified, the reason is contained in a message
returned to the user.

After statements are passed to the requested server, any results are converted into a form that
can be recognized by the client program.

server-name is the name of the remote server.

sql-statement is a command in the native syntax of the remote server. The command or group
of commands is enclosed in curly braces ({}) or single quotes.

When you specify a server_name, but do not specify a statement in the FORWARD TO query,
your session enters passthrough mode, and all subsequent queries are passed directly to the

SQL Statements

 192 Sybase IQ

remote server. To turn passthrough mode off, issue FORWARD TO without a server_name
specification.

Note: The FORWARD TO statement is a server directive and cannot be used in stored
procedures, triggers, events, or batches.

Side Effects

• The remote connection is set to AUTOCOMMIT (unchained) mode for the duration of the
FORWARD TO session. Any work that was pending prior to the FORWARD TO statement is
automatically committed.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
• CREATE EXTERNLOGIN Statement on page 89

• CREATE SERVER Statement on page 129

FROM Clause
Specifies the database tables or views involved in a SELECT statement.

Syntax
... FROM table-expression [, …]

Parameters

• table-expression: – { table-spec | table-expression join-type table-spec [ON condition] |
(table-expression [, …]) }

• table-spec: – { [userid.] table-name [[AS] correlation-name] | select-statement [AS
correlation-name (column-name [, …])] }

• join-type: – { CROSS JOIN | [NATURAL | KEY] JOIN | [NATURAL | KEY] INNER JOIN |
[NATURAL | KEY] LEFT OUTER JOIN | [NATURAL | KEY] RIGHT OUTER JOIN |
[NATURAL | KEY] FULL OUTER JOIN }

SQL Statements

Reference: Statements and Options 193

Examples

• Example 1 – Valid FROM clauses:

...
FROM Employees
...
...
FROM Employees NATURAL JOIN Departments
...
...
FROM Customers
KEY JOIN SalesOrders
KEY JOIN SalesOrderItems
KEY JOIN Products
...

• Example 2 – Use derived tables in a query:

SELECT Surname, GivenName, number_of_orders
FROM Customers JOIN
 (SELECT CustomerID, count(*)
 FROM SalesOrders
 GROUP BY CustomerID)
 AS sales_order_counts (CustomerID,
 number_of_orders)
ON (Customers.ID = sales_order_counts.cust_id)
WHERE number_of_orders > 3

Usage

The SELECT statement requires a table list to specify which tables are used by the statement.

Note: Although this description refers to tables, it also applies to views, unless otherwise
noted.

The FROM table list creates a result set consisting of all the columns from all the tables
specified. Initially, all combinations of rows in the component tables are in the result set, and
the number of combinations is usually reduced by join conditions and/or WHERE conditions.

A SELECT statement can also return a result set from a procedure. Note that CIS functional
compensation performance considerations apply. For syntax and an example, see SQL
Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference > Using SQL > SQL statements
> SQL statements (E-O) > FROM clause.

For information on the contains-expression used in the FROM clause for full text searches, see
Unstructured Data Analytics in Sybase IQ.

Table 8. FROM Clause join-type Keywords

join-type keyword Description

CROSS JOIN Returns the Cartesian product (cross product) of the two source
tables

SQL Statements

 194 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html

join-type keyword Description

NATURAL JOIN Compares for equality all corresponding columns with the same
names in two tables (a special case equijoin; columns are of same
length and data type)

KEY JOIN Restricts foreign-key values in the first table to be equal to the
primary-key values in the second table

INNER JOIN Discards all rows from the result table that do not have corre-
sponding rows in both tables

LEFT OUTER JOIN Preserves unmatched rows from the left table, but discards un-
matched rows from the right table

RIGHT OUTER JOIN Preserves unmatched rows from the right table, but discards un-
matched rows from the left table

FULL OUTER JOIN Retains unmatched rows from both the left and the right tables

Do not mix comma-style joins and keyword-style joins in the FROM clause. The same query
can be written two ways, each using one of the join styles. The ANSI syntax keyword style join
is preferable.

This query uses a comma-style join:

SELECT *
 FROM Products pr, SalesOrders so, SalesOrderItems si
 WHERE pr.ProductID = so.ProductID
 AND pr.ProductID = si.ProductID;

The same query can use the preferable keyword-style join:

SELECT *
 FROM Products pr INNER JOIN SalesOrders so
 ON (pr.ProductID = so.ProductID)
 INNER JOIN SalesOrderItems si
 ON (pr.ProductID = si.ProductID);

The ON clause filters the data of inner, left, right, and full joins. Cross joins do not have an ON
clause. In an inner join, the ON clause is equivalent to a WHERE clause. In outer joins,
however, the ON and WHERE clauses are different. The ON clause in an outer join filters the
rows of a cross product and then includes in the result the unmatched rows extended with nulls.
The WHERE clause then eliminates rows from both the matched and unmatched rows
produced by the outer join. You must take care to ensure that unmatched rows you want are not
eliminated by the predicates in the WHERE clause.

You cannot use subqueries inside an outer join ON clause.

For information on writing Transact-SQL compatible joins, see Reference: Building Blocks,
Tables, and Procedures > Compatibility with Other Sybase Databases.

Tables owned by a different user can be qualified by specifying the userid. Tables owned by
groups to which the current user belongs are found by default without specifying the user ID.

SQL Statements

Reference: Statements and Options 195

The correlation name is used to give a temporary name to the table for this SQL statement only.
This is useful when referencing columns that must be qualified by a table name but the table
name is long and cumbersome to type. The correlation name is also necessary to distinguish
between table instances when referencing the same table more than once in the same query. If
no correlation name is specified, then the table name is used as the correlation name for the
current statement.

If the same correlation name is used twice for the same table in a table expression, that table is
treated as if it were only listed once. For example, in:

SELECT *
FROM SalesOrders
KEY JOIN SalesOrderItems,
SalesOrders
KEY JOIN Employees

The two instances of the SalesOrders table are treated as one instance that is equivalent
to:

SELECT *
FROM SalesOrderItems
KEY JOIN SalesOrders
KEY JOIN Employees

By contrast, the following is treated as two instances of the Person table, with different
correlation names HUSBAND and WIFE:

SELECT *
FROM Person HUSBAND, Person WIFE

You can supply a SELECT statement instead of one or more tables or views in the FROM
clause, letting you use groups on groups, or joins with groups, without creating a view. This
use of SELECT statements is called derived tables.

Join columns require like data types for optimal performance.

Depending on the query, Sybase IQ allows between 16 and 64 tables in the FROM clause with
the optimizer turned on; however, performance might suffer if you have more than 16 to 18
tables in the FROM clause in very complex queries.

Note: If you omit the FROM clause, or if all tables in the query are in the SYSTEM dbspace, the
query is processed by SQL Anywhere instead of Sybase IQ and might behave differently,
especially with respect to syntactic and semantic restrictions and the effects of option settings.
See the SQL Anywhere documentation for rules that might apply to processing.

If you have a query that does not require a FROM clause, you can force the query to be
processed by Sybase IQ by adding the clause FROM iq_dummy, where iq_dummy is a
one-row, one-column table that you create in your database.

See also Reference: Building Blocks, Tables, and Procedures > SQL Language Elements >
Search Conditions and System Administration Guide: Volume 2 > Using OLAP.

SQL Statements

 196 Sybase IQ

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—The JOIN clause is not supported in some versions of Adaptive Server

Enterprise. Instead, you must use the WHERE clause to build joins.

Permissions

Must be connected to the database.

See also
• DELETE Statement on page 162

• SELECT Statement on page 279

GET DESCRIPTOR Statement [ESQL]
Retrieves information about variables within a descriptor area, or retrieves actual data from a
variable in a descriptor area.

Syntax
GET DESCRIPTOR descriptor-name
... { hostvar = COUNT } | VALUE n assignment [,…] }

Parameters

• assignment: – hostvar = { TYPE | LENGTH | PRECISION | SCALE | DATA | INDICATOR |
NAME | NULLABLE | RETURNED_LENGTH }

Examples

• Example 1 – For an example, see ALLOCATE DESCRIPTOR Statement [ESQL].

Usage

The value n specifies the variable in the descriptor area about which information is retrieved.

Type checking is performed when doing GET DESCRIPTOR ... DATA to ensure that the host
variable and the descriptor variable have the same data type. LONG VARCHAR and LONG
BINARY are not supported by GET DESCRIPTOR ... DATA.

If an error occurs, it is returned in the SQLCA.

Standards

• SQL—ISO/ANSI SQL compliant.

SQL Statements

Reference: Statements and Options 197

• Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
• ALLOCATE DESCRIPTOR Statement [ESQL] on page 5

• DEALLOCATE DESCRIPTOR Statement [ESQL] on page 151

• SET DESCRIPTOR Statement [ESQL] on page 292

GOTO Statement [T-SQL]
Branches to a labeled statement.

Syntax
label:
GOTO label

Examples

• Example 1 – This Transact-SQL batch prints the message “yes” on the server window four
times:

declare @count smallint
select @count = 1
restart:
 print 'yes'
 select @count = @count + 1
 while @count <=4
 goto restart

Usage

Any statement in a Transact-SQL procedure or batch can be labeled. The label name is a valid
identifier followed by a colon. In the GOTO statement, the colon is not used.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Adaptive Server Enterprise supports the GOTO statement.

Permissions

None

SQL Statements

 198 Sybase IQ

GRANT Statement
Gives permissions to specific users and creates new user IDs.

Syntax

Syntax 1 – Grant authorities
GRANT authority, …
 TO userid, …

authority:
 BACKUP
| DBA
| GROUP
| MEMBERSHIP IN GROUP userid [, …]
| MULTIPLEX ADMIN
| OPERATOR
| PERMS ADMIN
| PROFILE
| READCLIENTFILE
| READFILE
| [RESOURCE | ALL]
| SPACE ADMIN
| USER ADMIN
| VALIDATE
| WRITECLIENTFILE

Syntax 2 – Grant group status or membership in a group
GRANT { GROUP | MEMBERSHIP IN GROUP userid, … }
 TO userid, …

Syntax 3 – Grant database object permissions
GRANT permission, …
 ON [owner.]table-name
 TO userid [, …]
 [WITH GRANT OPTION]
 [FROM userid]

permission:
 ALL [PRIVILEGES]
| ALTER
| DELETE
| INSERT
| REFERENCES [(column-name [, …])]
| SELECT [(column-name [, …])]
| UPDATE [(column-name, …)]

Syntax 4 – Grant execute permission
GRANT EXECUTE ON [owner.]procedure-name
 TO userid [, …]

Syntax 5 – Grant integrated login

SQL Statements

Reference: Statements and Options 199

GRANT INTEGRATED LOGIN TO user_profile_name [, …]
 AS USER userid

Syntax 6 – Grant Kerberos login
GRANT KERBEROS LOGIN TO client-Kerberos-principal, …
 AS USER userid

Syntax 7 – Grant connect permissions
GRANT CONNECT TO userid [, …]
 IDENTIFIED BY password [, …]

Syntax 8 – Grant creation permission on a dbspace
GRANT CREATE ON dbspace_name
 TO userid [, …]

Examples

• Example 1 – Make two new users for the database:

GRANT
CONNECT TO Laurel, Hardy
IDENTIFIED BY Stan, Ollie

• Example 2 – Grant permissions on the Employees table to user Laurel:

GRANT
SELECT, INSERT, DELETE
ON Employees
TO Laurel

• Example 3 – Allow the user Hardy to execute the Calculate_Report procedure:

GRANT
EXECUTE ON Calculate_Report
TO Hardy

• Example 4 – Give users Lawrence and Swift CREATE permission on dbspace DspHist:

GRANT
CREATE ON DspHist
TO LAWRENCE, SWIFT

• Example 5 – Grant CREATE privilege on dbspace DspHist to users Fiona and
Ciaran:

GRANT CREATE ON DspHist TO Fiona, Ciaran

Usage

The GRANT statement is used to grant database permissions to individual user IDs and groups.
It is also used to create and delete users and groups.

GRANT authority clause – Grant one of these authorities to users:

SQL Statements

 200 Sybase IQ

• BACKUP authority – Grants the authority to back up the database. See SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Reference > Using SQL > SQL statements > SQL
statements (E-O) > GRANT statement.

• DBA authority – Database Administrator authority gives a user permission to do anything.
This authority is usually reserved for the person in the organization who is looking after the
database.

• MULTIPLEX ADMIN authority – Allows users to perform multiplex administration tasks
such as creating and deleting multiplex servers. See Using Sybase IQ Multiplex >
Multiplex Server Administration > Administration Authorities > MULTIPLEX ADMIN
Authority for a complete description.

• OPERATOR authority – Allows users to checkpoint and backup databases, drop
connections, and monitor the system. See System Administration Guide: Volume 1 >
Managing User IDs and Permissions for a complete description.

• PERMS ADMIN authority – Allows users to manage data permissions, groups, authorities
and passwords. See System Administration Guide: Volume 1 > Managing User IDs and
Permissions for a complete description.

• PROFILE authority – Grants the user the authority to perform profiling and diagnostic
operations. See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > Using
SQL > SQL statements > SQL statements (E-O) > GRANT statement.

• READCLIENTFILE authority – Grants the user the ability to read from a file on the client
computer, for example, when loading data. See SQL Anywhere 11.0.1 > SQL Anywhere
Server - SQL Reference > Using SQL > SQL statements > SQL statements (E-O) >
GRANT statement.

• READFILE authority – Allows the user to execute a SELECT statement against a file using
the OPENSTRING clause. See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > Using SQL > SQL statements > SQL statements (E-O) > GRANT
statement.

• RESOURCE authority – Allows the user to create database objects such as tables, views,
and stored procedures. In syntax 1, ALL is a synonym for RESOURCE, which is
compatible with Adaptive Server Enterprise.

• SPACE ADMIN authority – Allows users to manage dbspaces. See System Administration
Guide: Volume 1 > Managing User IDs and Permissions for a complete description.

• USER ADMIN authority – Allows users to manage users, external logins, and login
policies. See System Administration Guide: Volume 1 > Managing User IDs and
Permissions for a complete description.

• VALIDATE authority – Allows users to perform the validation operations supported by the
various VALIDATE statements, such as validating the database, validating tables and
indexes, and validating checksums. This authority also allows the user to use the
Validation utility (dbvalid), and the Validate Database wizard in Sybase Central. See SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > Using SQL > SQL
statements > SQL statements (E-O) > GRANT statement.

• WRITECLIENTFILE authority – Grants the user the ability to write to a file on the client
computer, for example, when unloading data. See SQL Anywhere 11.0.1 > SQL

SQL Statements

Reference: Statements and Options 201

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html

Anywhere Server - SQL Reference > Using SQL > SQL statements > SQL statements
(E-O) > GRANT statement.

GROUP clause – Allows the users to have members. See System Administration Guide:
Volume 1 > Managing User IDs and Permissions for a complete description.

MEMBERSHIP IN GROUP clause – Allows users to inherit table permissions from a group and
to reference tables created by the group without qualifying the table name.

If you do not want a specific user to access a particular table, view, or procedure, then do not
make that user a member of a group that has permissions on that object.

GRANT permission clause – Grant permission on individual tables or views. You can list the
table permissions together, or specify ALL to grant all six permissions at once. If WITH GRANT
OPTION is specified, then the named user ID is also given permission to GRANT the same
permissions to other user IDs.
• ALL permission – In syntax 3, grants all of the permissions
• ALTER permission – Users can alter this table with the ALTER TABLE statement. This

permission is not allowed for views.
• DELETE permission – Users can delete rows from this table or view.
• INSERT permission – Users can insert rows into the named table or view.
• REFERENCES permission – Users can create indexes on the named tables, and foreign

keys that reference the named tables. If column names are specified, then users can
reference only those columns. REFERENCES permissions on columns cannot be granted
for views, only for tables.

• SELECT permission – Users can look at information in this view or table. If column names
are specified, then the users can look at only those columns. SELECT permissions on
columns cannot be granted for views, only for tables.

• UPDATE permission – Users can update rows in this view or table. If column names are
specified, users can update only those columns. UPDATE permissions on columns cannot
be granted for views, only for tables. To update a table, users must have both SELECT and
UPDATE permission on the table.

For example, to grant SELECT and UPDATE permissions on the Employees table to user
Laurel:

GRANT
SELECT, UPDATE (street)
ON Employees
TO Laurel

EXECUTE ON clause – Grants permission to execute a procedure.

INTEGRATED LOGIN TO clause – Creates an explicit integrated login mapping between one or
more Windows user profiles and an existing database user ID, allowing users who
successfully log in to their local machine to connect to a database without having to provide a
user ID or password.

KERBEROS LOGIN TO clause – Creates a Kerberos authenticated login mapping from one or
more Kerberos principals to an existing database user ID. This allows users who have

SQL Statements

 202 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html

successfully logged in to Kerberos (users who have a valid Kerberos ticket-granting ticket) to
connect to a database without having to provide a user ID or password. See SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Reference > Using SQL > SQL statements > SQL
statements (E-O) > GRANT statement.

CONNECT TO clause – Creates a new user. GRANT CONNECT can also be used by any user to
change their own password.

Note: Sybase recommends using the CREATE USER statement to create users. See CREATE
USER Statement.

To create a user with the empty string as the password:

GRANT CONNECT TO userid IDENTIFIED BY ""

If you have DBA or PERMS ADMIN authority, you can change the password of any existing
user:

GRANT CONNECT TO userid IDENTIFIED BY password

You can also use the same command to add a new user. For this reason, if you inadvertently
enter the user ID of an existing user when you mean to add a new user, you are actually
changing the password of the existing user. You do not receive a warning because this behavior
is considered normal. This behavior differs from pre-version 12 Sybase IQ.

To avoid this situation, use the system procedures sp_addlogin and sp_adduser to add users.
These procedures give you an error if you try to add an existing user ID, as in Adaptive Server
Enterprise and pre-version 12 Sybase IQ.

Note: Use system procedures, not GRANT and REVOKE, to add and remove user IDs.

To create a user with no password:

GRANT CONNECT TO userid

The user ID is not case-sensitive.

A user with no password cannot connect to the database. This is useful when you are creating
groups and you do not want anyone to connect to the group user ID.

The password must be a valid identifier, as described in Reference: Building Blocks, Tables,
and Procedures > SQL Language Elements > Identifiers. Passwords have a maximum length
of 255 bytes. If the database option VERIFY_PASSWORD_FUNCTION is set to a value other
than the empty string, the GRANT CONNECT TO userid IDENTIFIED BY password statement
calls the function identified by the option value. The function returns NULL to indicate that
the password conforms to rules. If the VERIFY_PASSWORD_FUNCTION option is set, you
can specify only one userid and password with the GRANT CONNECT statement. See
VERIFY_PASSWORD_FUNCTION Option.

These names are invalid for database user IDs and passwords:

SQL Statements

Reference: Statements and Options 203

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html

• Names that begin with white space or single or double quotes
• Names that end with white space
• Names that contain semicolons

CREATE ON clause – Grants CREATE permission on the specified dbspace to the specified
user(s) and/or group(s).

See also REVOKE Statement.

Side Effects:

• Automatic commit.

Standards

• SQL—Syntax 3 is an entry-level feature. Syntax 4 is a Persistent Stored Module feature.
Other syntaxes are vendor extensions to ISO/ANSI SQL grammar.

• Sybase—Syntax 1 and 3 are supported in Adaptive Server Enterprise. The security model
is different in Adaptive Server Enterprise and Sybase IQ, so other syntaxes differ.

Permissions

• For Syntax 1 and 2, one of these conditions must be met:
• To grant DBA authority to any user, you must have DBA authority.
• To GRANT GROUP, GRANT MEMBERSHIP IN GROUP, or grant any other

authority to any user, you must have DBA or PERMS ADMIN authority.
• For Syntax 3, one of these conditions must be met:

• You created the table.
• You have been granted permissions on the table with GRANT OPTION.
• You have DBA or PERMS ADMIN authority.

• For Syntax 4, one of these conditions must be met:
• You created the procedure.
• You have DBA or PERMS ADMIN authority.

• For Syntax 5, you must have DBA or USER ADMIN authority.
• For Syntax 6, you must have DBA or USER ADMIN authority.
• For Syntax 7, one of these conditions must be met:

• If you are creating a new user, you must have DBA or USER ADMIN authority.
• You are changing your own password.
• If you are changing another user’s password, you must have DBA or PERMS ADMIN

authority.
If you are changing another user’s password, the other user cannot be connected to the
database.

• For Syntax 8, you must have DBA or SPACE ADMIN authority.

SQL Statements

 204 Sybase IQ

See also
• CREATE USER Statement on page 146

• REVOKE Statement on page 272

• VERIFY_PASSWORD_FUNCTION Option on page 466

IF Statement
Provides conditional execution of SQL statements.

Syntax
IF search-condition THEN statement-list
... [ELSE IF search-condition THEN statement-list]...
... [ELSE statement-list]
... END IF

Examples

• Example 1 – This procedure illustrates the use of the IF statement:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT
TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION
 FOR SQLSTATE '02000' ;
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName, CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers
 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesOrsderItems
 LEFT OUTER JOIN Product
 GROUP BY CompanyName ;

 DECLARE ThisValue INT ;
 DECLARE ThisCompany CHAR(35) ;
 SET TopValue = 0 ;
 OPEN curThisCust ;
 CustomerLoop:
 LOOP
 FETCH NEXT curThisCust
 INTO ThisCompany, ThisValue ;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop ;
 END IF ;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue ;
 SET TopCompany = ThisCompany ;
 END IF ;
 END LOOP CustomerLoop ;

SQL Statements

Reference: Statements and Options 205

 CLOSE curThisCust ;
END

Usage

The IF statement lets you conditionally execute the first list of SQL statements whose search-
condition evaluates to TRUE.

If no search-condition evaluates to TRUE, and an ELSE clause exists, the statement-list in the
ELSE clause is executed. If no search-condition evaluates to TRUE, and there is no ELSE
clause, the expression returns a NULL value.

Execution resumes at the first statement after the END IF.

When comparing variables to the single value returned by a SELECT statement inside an IF
statement, you must first assign the result of the SELECT to another variable.

Note: Do not confuse the syntax of the IF statement with that of the IF expression.

For information on the IF expression, see Reference: Building Blocks, Tables, and Procedures
> SQL Language Elements > Expressions.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—The Transact-SQL IF statement has a slightly different syntax.

Permissions

None

See also
• BEGIN … END Statement on page 47

IF Statement [T-SQL]
Provides conditional execution of a Transact-SQL statement, as an alternative to the Sybase
IQ IF statement.

Syntax
 IF expression
... statement
... [ELSE [IF expression] statement]...

SQL Statements

 206 Sybase IQ

Examples

• Example 1 – Use of the Transact-SQL IF statement:

IF (SELECT max(id) FROM sysobjects) < 100
 RETURN
ELSE
 BEGIN
 PRINT 'These are the user-created objects'
 SELECT name, type, id
 FROM sysobjects
 WHERE id < 100
END

• Example 2 – Two statement blocks illustrating Transact-SQL and Sybase IQ
compatibility:

/* Transact-SQL IF statement */
IF @v1 = 0
 PRINT '0'
ELSE IF @v1 = 1
 PRINT '1'
ELSE
 PRINT 'other'
/* IQ IF statement */
IF v1 = 0 THEN
 PRINT '0'
ELSEIF v1 = 1 THEN
 PRINT '1'
ELSE
 PRINT 'other'
END IF

Usage

The Transact-SQL IF conditional and the ELSE conditional each control the performance of
only a single SQL statement or compound statement (between the keywords BEGIN and
END).

In contrast to the Sybase IQ IF statement, the Transact-SQL IF statement has no THEN. The
Transact-SQL version also has no ELSE IF or END IF keywords.

When comparing variables to the single value returned by a SELECT statement inside an IF
statement, you must first assign the result of the SELECT to another variable.

Standards

• SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
• Sybase—Adaptive Server Enterprise supports the Transact-SQL IF statement.

Permissions

None

SQL Statements

Reference: Statements and Options 207

INCLUDE Statement [ESQL]
Includes a file into a source program to be scanned by the SQL source language preprocessor.

Syntax
INCLUDE filename

Parameters

• filename: – identifier

Usage

The INCLUDE statement is very much like the C preprocessor #include directive.

However, the SQL preprocessor reads the given file, inserting its contents into the output C
file. Thus, if an include file contains information that the SQL preprocessor requires, it should
be included with the Embedded SQL INCLUDE statement.

Two file names are specially recognized: SQLCA and SQLDA. Any C program using
Embedded SQL must contain this statement before any Embedded SQL statements:

EXEC SQL INCLUDE SQLCA;

This statement must appear at a position in the C program where static variable declarations
are allowed. Many Embedded SQL statements require variables (invisible to the programmer)
which are declared by the SQL preprocessor at the position of the SQLCA include statement.
The SQLDA file must be included if any SQLDAs are used.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

None

SQL Statements

 208 Sybase IQ

INSERT Statement
Inserts into a table either a single row (Syntax 1) or a selection of rows (Syntax 2) from
elsewhere in the current database. Inserts a selection of rows from another database (Syntax
3).

Syntax

Syntax 1
INSERT [INTO] [owner.]table-name [(column-name [, …])]
... VALUES ([expression | DEFAULT,…)]
or
INSERT [INTO] [owner.]table-name DEFAULT VALUES

Syntax 2
INSERT [INTO] [owner.]table-name [(column-name [, …])]
... insert-load-options insert-select-load-options
... select-statement

Syntax 3
INSERT [INTO] [owner.]table-name[(column-name [, …])]
... insert-load-options insert-select-load-options
LOCATION 'servername.dbname'
[location-options]
... { { select-statement } | ‘select statement’ }

Parameters

• insert-load-options: – [LIMIT number-of-rows] [NOTIFY number-of-rows] [SKIP
number-of-rows] [START ROW ID number]

• insert-select-load-options: – [WORD SKIP number] [IGNORE CONSTRAINT
constrainttype [, …]] [MESSAGE LOG ‘string’ ROW LOG ‘string’ [ONLY LOG logwhat
[, …]]] [LOG DELIMITED BY ‘string’]

• constrainttype: – { CHECK integer | UNIQUE integer | NULL integer | FOREIGN KEY
integer | DATA VALUE integer | ALL integer }

• logwhat: – { CHECK | ALL | NULL | UNIQUE | DATA VALUE | FOREIGN KEY | WORD }
• location-options: – [ENCRYPTED PASSWORD] [PACKETSIZE packet-size]

[QUOTED_IDENTIFIER { ON | OFF }] [ISOLATION LEVEL { READ
UNCOMMITTED | READ COMMITTTED | SERIALIZABLE }]

Examples

• Example 1 – Add an Eastern Sales department to the database:

SQL Statements

Reference: Statements and Options 209

INSERT INTO Departments
(DepartmentID, DepartmentName, DepartmentHeadID)
VALUES (600, 'Eastern Sales', 501)

• Example 2 – Fill the table dept_head with the names of department heads and their
departments:

INSERT INTO dept_head (name, dept)
 NOTIFY 20
 SELECT Surname || ' ' || GivenName
 AS name,
 dept_name
FROM Employees JOIN Departments
 ON EmployeeID= DepartmentHeadID

• Example 3 – Insert data from the l_shipdate and l_orderkey columns of the
lineitem table from the Sybase IQ database iqdet on the remote server detroit
into the corresponding columns of the lineitem table in the current database:

INSERT INTO lineitem
 (l_shipdate, l_orderkey)
 LOCATION 'detroit.iqdet'
 PACKETSIZE 512
 ' SELECT l_shipdate, l_orderkey
FROM lineitem '

Usage

Syntax 1 allows the insertion of a single row with the specified expression values. If the list of
column names is not specified, the values are inserted into the table columns in the order they
were created (the same order as retrieved with SELECT *). The row is inserted into the table at
an arbitrary position. (In relational databases, tables are not ordered.)

Syntax 2 allows the user to perform a mass insertion into a table using the results of a fully
general SELECT statement. Insertions are done in an arbitrary order unless the SELECT
statement contains an ORDER BY clause. The columns from the select list are matched
ordinally with the columns specified in the column list, or sequentially in the order in which
the columns were created.

Note: The NUMBER(*) function is useful for generating primary keys with Syntax 2 of the
INSERT statement. See Reference: Building Blocks, Tables, and Procedures > SQL
Functions.

Syntax 3 INSERT...LOCATION is a variation of Syntax 2 that allows you to insert data from an
Adaptive Server Enterprise or Sybase IQ database. The servername.dbname specified in the
LOCATION clause identifies the remote server and database for the table in the FROM clause.
To use Syntax 3, the Adaptive Server Enterprise or Sybase IQ remote server to which you are
connecting must exist in the Sybase Open Client interfaces or sql.ini file on the local
machine.

In queries using Syntax 3, you can insert a maximum of 2147483647 rows.

SQL Statements

 210 Sybase IQ

The SELECT statement can be delimited by either curly braces or straight single quotation
marks. (Curly braces represent the start and end of an escape sequence in the ODBC standard,
and might generate errors in the context of ODBC.)

The local Sybase IQ server connects to the server and database you specify in the LOCATION
clause. The results from the queries on the remote tables are returned and the local server
inserts the results in the current database. If you do not specify a server name in the LOCATION
clause, Sybase IQ ignores any database name you specify, since the only choice is the current
database on the local server.

When Sybase IQ connects to the remote server, INSERT...LOCATION uses the remote login for
the user ID of the current connection, if a remote login has been created with CREATE
EXTERNLOGIN and the remote server has been defined with a CREATE SERVER statement. If
the remote server is not defined, or if a remote login has not been created for the user ID of the
current connection, Sybase IQ connects using the user ID and password of the current
connection.

Creating a remote login with the CREATE EXTERNLOGIN statement and defining a remote
server with a CREATE SERVER statement sets up an external login and password for
INSERT...LOCATION such that any user can use the login and password in any context. This
avoids possible errors due to inaccessibility of the login or password.

For example, user russid connects to the Sybase IQ database and executes this statement:

INSERT local_SQL_Types LOCATION ‘ase1.ase1db’
{SELECT int_col FROM SQL_Types};

On server ase1, there exists user ID ase1user with password sybase. The owner of the
table SQL_Types is ase1user. The remote server is defined on the IQ server as:

CREATE SERVER ase1 CLASS ‘ASEJDBC’
USING ‘system1:4100’;

The external login is defined on the IQ server as:

CREATE EXTERNLOGIN russid TO ase1 REMOTE LOGIN ase1user IDENTIFIED BY
sybase;

INSERT...LOCATION connects to the remote server ase1 using the user ID ase1user and
the password sybase for user russid.

Use the ENCRYPTED PASSWORD parameter to specify the use of Open Client Library default
password encryption when connecting to a remote server. If ENCRYPTED PASSWORD is
specified and the remote server does not support Open Client Library default password
encryption, an error is reported indicating that an invalid user ID or password was used.

When used as a remote server, Sybase IQ supports TDS password encryption. The Sybase IQ
server accepts a connection with an encrypted password sent by the client. For information on
connection properties to set for password encryption, see Software Developer's Kit 15.5 >
Open Client Client-Library/C Reference Manual > Client-Library Topics > Security features

SQL Statements

Reference: Statements and Options 211

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm

> Adaptive Server Enterprise security features > Security handshaking: encrypted password
for Open Server 15.5.

Note: Password encryption requires Open Client 15.0. TDS password encryption requires
Open Client 15.0 ESD #7 or later.

To enable the Sybase IQ server to accept a jConnect connection with an encrypted password,
set the jConnect ENCRYPT_PASSWORD connection property to true.

The PACKETSIZE parameter specifies the TDS packet size in bytes. The default TDS packet
size on most platforms is 512 bytes. If your application is receiving large amounts of text or
bulk data across a network, then a larger packet size might significantly improve performance.

The value of packet-size must be a multiple of 512 either equal to the default network packet
size or between the default network packet size and the maximum network packet size. The
maximum network packet size and the default network packet size are multiples of 512 in the
range 512 – 524288 bytes. The maximum network packet size is always greater than or equal
to the default network packet size. See the Adaptive Server Enterprise System Administration
Guide: Volume 1 for more information on network packet size.

If INSERT...LOCATION PACKETSIZE packet-size is not specified or is specified as zero, then
the default packet size value for the platform is used.

When INSERT...LOCATION is transferring data between a Sybase IQ server and a remote
Sybase IQ or Adaptive Server Enterprise server, the value of the INSERT...LOCATION TDS
PACKETSIZE parameter is always 512 bytes, even if you specify a different value for
PACKETSIZE.

Note: If you specify an incorrect packet size (for example 933, which is not a multiple of 512),
the connection attempt fails with an Open Client ct_connect “Connection failed” error. Any
unsuccessful connection attempt returns a generic “Connection failed” message. The
Adaptive Server Enterprise error log might contain more specific information about the cause
of the connection failure.

Use the QUOTED_IDENTIFIER parameter to specify the setting of the
QUOTED_IDENTIFIER option on the remote server. The default setting is 'OFF.' You set
QUOTED_IDENTIFIER to ‘ON’ only if any of the identifiers in the SELECT statement are
enclosed in double quotes, as in this example using ‘c1’:

INSERT INTO foo
LOCATION 'ase.database'
QUOTED_IDENTIFIER ON {select "c1" from xxx};

Use the ISOLATION LEVEL parameter to specify an isolation level for the connection to a
remote server.

SQL Statements

 212 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm

Isolation level Characteristics

READ UNCOMMITTED • Isolation level 0
• Read permitted on row with or without write lock
• No read locks are applied
• No guarantee that concurrent transaction will not modify row or

roll back changes to row

READ COMMITTED • Isolation level 1
• Read only permitted on row with no write lock
• Read lock acquired and held for read on current row only, but

released when cursor moves off the row
• No guarantee that data will not change during transaction

SERIALIZABLE • Isolation level 3
• Read only permitted on rows in result without write lock
• Read locks acquired when cursor is opened and held until trans-

action ends

See SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Usage > Creating Databases >
Using transactions and isolation levels > Isolation levels and consistency.

Sybase IQ does not support the Adaptive Server Enterprise data type TEXT, but you can
execute INSERT...LOCATION (Syntax 3) from both an IQ CHAR or VARCHAR column whose
length is greater than 255 bytes, and from an ASE database column of data type TEXT. ASE
TEXT and IMAGE columns can be inserted into columns of other Sybase IQ data types, if
Sybase IQ supports the internal conversion. By default, if a remote data column contains over
2GB, Sybase IQ silently truncates the column value to 2GB.

Warning! Sybase IQ does not support the Adaptive Server Enterprise data types UNICHAR,
UNIVARCHAR, or UNITEXT. An INSERT...LOCATION command from UNICHAR or
UNITEXT to CHAR or CLOB columns in the ISO_BINENG collation may execute without
error; if this happens, the data in the columns may be inconsistent. An error is reported in this
situation, only if the conversion fails.

Users must be specifically licensed to use the large object functionality of the Unstructured
Data Analytics Option. See Unstructured Data Analytics in Sybase IQ.

Note: If you use INSERT...LOCATION to insert data selected from a VARBINARY column, set
ASE_BINARY_DISPLAY to OFF on the remote database.

INSERT...LOCATION (Syntax 3) does not support the use of variables in the SELECT
statement.

SQL Statements

Reference: Statements and Options 213

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/udtisol.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/udtisol.html

Inserts can be done into views, provided the SELECT statement defining the view has only one
table in the FROM clause and does not contain a GROUP BY clause, an aggregate function, or
involve a UNION operation.

Character strings inserted into tables are always stored in the case they are entered, regardless
of whether the database is case-sensitive or not. Thus, a string “Value” inserted into a table is
always held in the database with an uppercase V and the remainder of the letters lowercase.
SELECT statements return the string as Value. If the database is not case-sensitive, however,
all comparisons make Value the same as value, VALUE, and so on. Further, if a single-column
primary key already contains an entry Value, an INSERT of value is rejected, as it would make
the primary key not unique.

Whenever you execute an INSERT … LOCATION statement, Sybase IQ loads the localization
information needed to determine language, collation sequence, character set, and date/time
format. If your database uses a nondefault locale for your platform, you must set an
environment variable on your local client to ensure that Sybase IQ loads the correct
information.

If you set the LC_ALL environment variable, Sybase IQ uses its value as the locale name. If
LC_ALL is not set, Sybase IQ uses the value of the LANG environment variable. If neither
variable is set, Sybase IQ uses the default entry in the locales file. For an example, see System
Administration Guide: Volume 1 > International Languages and Character Sets > Setting the
Locale for an INSERT...LOCATION Statement.

Use the DEFAULT VALUES and VALUES clauses to specify the values to insert. To insert the
default column values as specified in the CREATE TABLE statement, specify DEFAULT
VALUES. Specifying DEFAULT VALUES is semantically equivalent to specifying this explicit
syntax:

INSERT [INTO} <tablename>
VALUES(default, default, ..., default)

where the number of default entries is equal to the number of columns in the table. For
example:

INSERT INTO table1 DEFAULT VALUES

You can also use the INSERT VALUES(DEFAULT ...) clause to insert into NULL columns.

The LIMIT option specifies the maximum number of rows to insert into the table from a query.
The default is 0 for no limit. The maximum is 2GB -1.

The NOTIFY option specifies that you be notified with a message each time the number of rows
are successfully inserted into the table. The default is every 100,000 rows.

The SKIP option lets you define a number of rows to skip at the beginning of the input tables
for this insert. The default is 0.

SQL Statements

 214 Sybase IQ

The START ROW ID option specifies the record identification number of a row in the IQ table
where it should start inserting. By default, new rows are inserted wherever there is space in the
table, and each insert starts a new row.

The START ROW ID clause of the LOAD TABLE and the INSERT commands is not allowed on a
partitioned table.

For information on the insert-select-load-options WORD SKIP, IGNORE CONSTRAINT,
MESSAGE LOG, ROW LOG, and LOG DELIMITED BY and the constrainttype and logwhat
parameters, see the LOAD TABLE Statement.

An INSERT on a multicolumn index must include all columns of the index.

Sybase IQ supports column DEFAULT values for INSERT...VALUES, INSERT...SELECT, and
INSERT...LOCATION. If a DEFAULT value is specified for a column, this DEFAULT value is
used as the value of the column in any INSERT (or LOAD) statement that does not specify a
value for the column.

For more information on the use of column DEFAULT values with inserts, see System
Administration Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data
Integrity.

An INSERT from a stored procedure or function is not permitted, if the procedure or function
uses COMMIT, ROLLBACK, or some ROLLBACK TO SAVEPOINT statements. For more
information, see System Administration Guide: Volume 2 > Using Procedures and Batches >
Control Statements > Atomic Compound Statements and System Administration Guide:
Volume 2 > Using Procedures and Batches > Transactions and Savepoints in Procedures.

The result of a SELECT…FROM may be slightly different from the result of an INSERT…
SELECT…FROM due to an internal data conversion of an imprecise data type, such as
DOUBLE or NUMERIC, for optimization during the insert. If a more precise result is required,
a possible workaround is to declare the column as a DOUBLE or NUMERIC data type with a
higher precision.

See also System Administration Guide: Volume 1 > Data Import and Export > Using the
INSERT Statement.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise (excluding the insert-load-options).

Permissions

Must have INSERT permission on the table.

See also
• CREATE EXTERNLOGIN Statement on page 89
• DELETE Statement on page 162

SQL Statements

Reference: Statements and Options 215

• LOAD TABLE Statement on page 221

• SYNCHRONIZE JOIN INDEX Statement on page 303

INSTALL JAVA Statement
Makes Java classes available for use within a database.

Syntax
INSTALL JAVA [install-mode] [JAR jar-name] FROM source

Parameters

• install-mode: – { NEW | UPDATE }
• source: – { FILE filename | URL url-value }

Examples

• Example 1 – Install the user-created Java class named “Demo” by providing the file name
and location of the class:

INSTALL JAVA NEW
FROM FILE 'D:\JavaClass\Demo.class'

After installation, the class is referenced using its name. Its original file path location is no
longer used. For example, this statement uses the class installed in the previous statement:

CREATE VARIABLE d Demo

If the Demo class was a member of the package sybase.work, the fully qualified name of
the class must be used:

CREATE VARIABLE d sybase.work.Demo

• Example 2 – Install all the classes contained in a zip file and associate them within the
database with a JAR file name:

INSTALL JAVA
JAR 'Widgets'
FROM FILE 'C:\Jars\Widget.zip'

The location of the zip file is not retained and classes must be referenced using the fully
qualified class name (package name and class name).

Usage

Install mode—Specifying an install mode of NEW requires that the referenced Java classes be
new classes, rather than updates of currently installed classes. An error occurs if a class with
the same name exists in the database and the NEW install mode is used.

SQL Statements

 216 Sybase IQ

UPDATE specifies that the referenced Java classes may include replacements for Java classes
already installed in the given database.

Connection must be dropped for update to take effect—Updating a Java class installed in a
database takes effect immediately. However, the connection used to execute the INSTALL
JAVA UPDATE statement has access only to the older version of the Java class until the
connection is dropped.

Note: A client application executing this statement should drop the database connection used
to execute the statement and reconnect to get access to the latest version.

This applies to the dbisql utility also. If you update a Java class by executing the INSTALL
statement from dbisql, the new version is not available until you disconnect from the database
engine or server and reconnect.

If install mode is omitted, the default is NEW.

JAR—Specifies that the file-name or text-pointer must designate a JAR file or a column
containing a JAR. JAR files typically have extensions of .jar or .zip.

Installed JAR and zip files can be compressed or uncompressed. However, JAR files produced
by the Sun JDK jar utility are not supported. Files produced by other zip utilities are supported.

If the JAR option is specified, then the JAR is retained as a JAR after the classes that it contains
have been installed. That JAR is the associated JAR of each of those classes. The set of JARs
installed in a database with the JAR option are called the retained JARs of the database.

Retained JARs are referenced in INSTALL and REMOVE statements. Retained JARs have no
effect on other uses of Java-SQL classes. Retained JARs are used by the SQL system for
requests by other systems for the class associated with given data. If a requested class has an
associated JAR, the SQL system can supply that JAR, rather than the individual class.

jar-name is a character string value of length up to 255 bytes. jar-name is used to identify the
retained JAR in subsequent INSTALL, UPDATE, and REMOVE statements.

source—Specifies the location of the Java classes to be installed.

The formats supported for file-name include fully qualified file names, such as 'c:\libs
\jarname.jar' and '/usr/u/libs/jarname.jar', and relative file names, which
are relative to the current working directory of the database server.

The filename must identify either a class file or a JAR file.

The class definition for each class is loaded by the VM of each connection the first time that
class is used. When you INSTALL a class, the VM on your connection is implicitly restarted.
Therefore, you have immediate access to the new class, whether the INSTALL has an install-
mode of NEW or UPDATE.

For other connections, the new class is loaded the next time a VM accesses the class for the
first time. If the class is already loaded by a VM, that connection does not see the new class

SQL Statements

Reference: Statements and Options 217

until the VM is restarted for that connection (for example, with a STOP JAVA and START
JAVA).

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

• Requires DBA permissions to execute the INSTALL statement.
• All installed classes can be referenced in any way by any user.

See also
• REMOVE Statement on page 261

IQ UTILITIES Statement
Collects statistics on the buffer caches for a Sybase IQ database.

Syntax
IQ UTILITIES { MAIN | PRIVATE }
[INTO] table-name
{ START MONITOR ['monitor-options']
| STOP MONITOR }

Parameters

• monitor-options: – { -summary | { -append | -truncate } -bufalloc | -cache | -
cache_by_type | -contention | -debug | -file_suffix suffix| -io | -interval seconds | -
threads }...

Examples

• Example 1 – Start the buffer cache monitor and record activity for the IQ temp buffer
cache:

IQ UTILITIES PRIVATE INTO monitor START MONITOR '-cache -interval
20'

Usage

START MONITOR starts the IQ buffer cache monitor. For START and STOP MONITOR, the
table_name is a dummy table. You can specify any IQ base or temporary table, although it is
best to have a table that you use only for monitoring. Results go to a text file,
dbname.connection#-main-iqmon for MAIN buffer cache results, or

SQL Statements

 218 Sybase IQ

dbname.connection#-temp-iqmon for PRIVATE (Temp) buffer cache results.
Running the monitor again from the same database and connection number overwrites
previous results. To set the directory location of the monitor output file, set the
MONITOR_OUTPUT_DIRECTORY option.

The monitor-options define the content and frequency of results. You can specify more than
one, and they must be enclosed with quotation marks.

• -summary displays summary information for both the main and temp (private) buffer
caches. This option is the default.

• -append | -truncate appends to the existing output file or truncates the existing output file,
respectively. Truncate is the default.

• -bufalloc displays information on the main or temp buffer allocator, which reserves space
in the buffer cache for objects like sorts, hashes, and bitmaps.

• -cache displays main or temp buffer cache activity in detail.
• -cache_by_type displays main or temp buffer cache activity details by IQ page type. This

format is used mainly to supply information to Sybase Technical Support.
• -contention displays many key buffer cache and memory manager locks.
• -debug displays all the information that is available to the performance monitor, whether

or not there is a standard display mode that covers the same information. This option is
used mainly to supply information to Sybase Technical Support.

• -file_suffix suffix creates a monitor output file named <dbname>.<connid>-
<main_or_temp>-<suffix>. The default is iqmon.

• -io displays main or temp buffer cache I/O rates and data compression ratios.
• -interval specifies the reporting interval in seconds. The default is every 60 seconds. The

minimum is every 2 seconds.
• -threads displays information about processing threads.

See also

• Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqsysmon Procedure

• Performance and Tuning Guide > Monitoring and Tuning Performance for examples of
monitor results

• System Administration Guide: Volume 2 > Using Procedures and Batches for advanced
use of IQ UTILITIES to create procedures that extend the functionality of Sybase IQ system
stored procedures

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported in Adaptive Server Enterprise.

SQL Statements

Reference: Statements and Options 219

Permissions

None

See also
• MONITOR_OUTPUT_DIRECTORY Option on page 414

LEAVE Statement
Continues execution by leaving a compound statement or LOOP.

Syntax
LEAVE statement-label

Examples

• Example 1 – This code fragment shows how to use the LEAVE statement to leave a loop:

SET i = 1;
lbl:
LOOP
 INSERT
 INTO Counters (number)
 VALUES (i) ;
 IF i >= 10 THEN
 LEAVE lbl ;
 END IF ;
 SET i = i + 1
END LOOP lbl

• Example 2 – This code fragment uses LEAVE in a nested loop:

outer_loop:
LOOP
 SET i = 1;
 inner_loop:
 LOOP
 ...
 SET i = i + 1;
 IF i >= 10 THEN
 LEAVE outer_loop
 END IF
 END LOOP inner_loop
END LOOP outer_loop

Usage

LEAVE is a control statement that lets you leave a labeled compound statement or a labeled
loop. Execution resumes at the first statement after the compound statement or loop.

SQL Statements

 220 Sybase IQ

The compound statement that is the body of a procedure has an implicit label that is the same
as the name of the procedure.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported in Adaptive Server Enterprise. The break statement provides a

similar feature for Transact-SQL compatible procedures.

Permissions

None

See also
• BEGIN … END Statement on page 47

• FOR Statement on page 190

• LOOP Statement on page 242

LOAD TABLE Statement
Imports data into a database table from an external file.

Syntax
LOAD [INTO] TABLE [owner.]table-name
... (load-specification [, …])
... { FROM | USING [CLIENT] FILE }
{ 'filename-string' | filename-variable } [, …]
... [CHECK CONSTRAINTS { ON | OFF }]
... [DEFAULTS { ON | OFF }]
... [QUOTES OFF]
... ESCAPES OFF
... [FORMAT { ascii | binary | bcp }]
... [DELIMITED BY 'string']
... [STRIP { ON | OFF | RTRIM }]
... [WITH CHECKPOINT { ON | OFF }]
... [BYTE ORDER { NATIVE | HIGH | LOW }]
... [LIMIT number-of-rows]
... [NOTIFY number-of-rows]
... [ON FILE ERROR { ROLLBACK | FINISH | CONTINUE }]
... [PREVIEW { ON | OFF }]
... [ROW DELIMITED BY 'delimiter-string']
... [SKIP number-of-rows]
... [HEADER SKIP number [HEADER DELIMITED BY 'string']]
... [WORD SKIP number]
... [START ROW ID number]
... [ON PARTIAL INPUT ROW { ROLLBACK | CONTINUE }]
... [IGNORE CONSTRAINT constrainttype [, …]]

SQL Statements

Reference: Statements and Options 221

... [MESSAGE LOG ‘string’ ROW LOG ‘string’ [ONLY LOG logwhat [, …]]

... [LOG DELIMITED BY ‘string’]

Parameters

• load-specification: – { column-name [column-spec] | FILLER (filler-type) }
• column-spec: – { ASCII (input-width) | BINARY [WITH NULL BYTE] | PREFIX { 1 | 2 | 4 } |

'delimiter-string' | DATE (input-date-format) | DATETIME (input-datetime-format)
| ENCRYPTED (data-type ‘key-string’ [, ‘algorithm-string’]) | DEFAULT default-value }
[NULL ({ BLANKS | ZEROS | 'literal', …})]

• filler-type: – { input-width | PREFIX { 1 | 2 | 4 } | 'delimiter-string' }
• constrainttype: – { CHECK integer | UNIQUE integer | NULL integer | FOREIGN KEY

integer | DATA VALUE integer | ALL integer }
• logwhat: – { CHECK | ALL | NULL | UNIQUE | DATA VALUE | FOREIGN KEY | WORD }

Examples

• Example 1 – Load data from one file into the Products table on a Windows system. A
tab is used as the column delimiter following the Description and Color columns:

LOAD TABLE Products
(ID ASCII(6),
FILLER(1),
Name ASCII(15),
FILLER(1),
Description '\x09',
Size ASCII(2),
FILLER(1),
Color '\x09',
Quantity PREFIX 2,
UnitPrice PREFIX 2,
FILLER(2))
FROM 'C:\\mydata\\source1.dmp'
QUOTES OFF
ESCAPES OFF
BYTE ORDER LOW
NOTIFY 1000

• Example 2 – Load data from a file a.inp on a client computer:

LOAD TABLE t1(c1,c2,filler(30))
USING CLIENT FILE 'c:\\client-data\\a.inp'
QUOTES OFF ESCAPES OFF
IGNORE CONSTRAINT UNIQUE 0, NULL 0
MESSAGE LOG 'c:\\client-data\\m.log'
ROW LOG 'c:\\client-data\\r.log'ONLY LOG UNIQUE

• Example 3 – Load data from two files into the product_new table (which allows NULL
values) on a UNIX system. The tab character is the default column delimiter, and the
newline character is the row delimiter:

LOAD TABLE product_new
(id,

SQL Statements

 222 Sybase IQ

name,
description,
size,
color '\x09' NULL('null', 'none', 'na'),
quantity PREFIX 2,
unit_price PREFIX 2)
FROM '/s1/mydata/source2.dump',
'/s1/mydata/source3.dump'
QUOTES OFF
ESCAPES OFF
FORMAT ascii
DELIMITED BY '\x09'
ON FILE ERROR CONTINUE
ROW DELIMITED BY '\n'

• Example 4 – Ignore 10 word-length violations; on the 11th, deploy the new error and roll
back the load:

load table PTAB1(
 ck1 ',' null ('NULL') ,
 ck3fk2c2 ',' null ('NULL') ,
 ck4 ',' null ('NULL') ,
 ck5 ',' null ('NULL') ,
 ck6c1 ',' null ('NULL') ,
 ck6c2 ',' null ('NULL') ,
 rid ',' null ('NULL'))
FROM 'ri_index_selfRI.inp'
 row delimited by '\n'
 LIMIT 14 SKIP 10
 IGNORE CONSTRAINT UNIQUE 2, FOREIGN KEY 8
 word skip 10 quotes off escapes off strip
 off

• Example 5 – Load data into table t1 from the BCP character file bcp_file.bcp using
the FORMAT BCP load option:

LOAD TABLE t1 (c1, c2, c3)
FROM ‘bcp_file.bcp’
FORMAT BCP
...

• Example 6 – Load default values 12345 into c1 using the DEFAULT load option, and load
c2 and c3 with data from the LoadConst04.dat file:

LOAD TABLE t1 (c1 DEFAULT ‘12345 ’, c2, c3, filler(1))
FROM ‘LoadConst04.dat’
STRIP OFF
QUOTES OFF
ESCAPES OFF
DELIMITED BY ‘,’;

• Example 7 – Load c1 and c2 with data from the file bcp_file.bcp using the FORMAT
BCP load option and set c3 to the value 10:

LOAD TABLE t1 (c1, c2, c3 DEFAULT ‘10’)
FROM ‘bcp_file.bcp’
FORMAT BCP

SQL Statements

Reference: Statements and Options 223

QUOTES OFF
ESCAPES OFF;

• Example 8 – This code fragment ignores one header row at the beginning of the data file,
where the header row is delimited by ‘&&’:

LOAD TABLE
...HEADER SKIP 1 HEADER DELIMITED by '&&'

• Example 9 – This code fragment ignores 2 header rows at the beginning of the data file,
where each header row is delimited by ‘\n’:

LOAD TABLE
...HEADER SKIP 2

Usage

The LOAD TABLE statement allows efficient mass insertion into a database table from a file
with ASCII or binary data.

The LOAD TABLE options also let you control load behavior when integrity constraints are
violated and to log information about the violations.

You can use LOAD TABLE on a temporary table, but the temporary table must have been
declared with ON COMMIT PRESERVE ROWS, or the next COMMIT removes the rows you
have loaded.

You can also specify more than one file to load data. In the FROM clause, specify each
filename-string separated by commas. Because of resource constraints, Sybase IQ
does not guarantee that all the data can be loaded. If resource allocation fails, the entire load
transaction is rolled back. The files are read one at a time, and processed in the order specified
in the FROM clause. Any SKIP or LIMIT value only applies in the beginning of the load, not for
each file.

Note: When loading a multiplex database, use absolute (fully qualified) paths in all file names.
Do not use relative path names.

LOAD TABLE supports loading of large object (LOB) data. See Unstructured Data Analytics
in Sybase IQ.

Sybase IQ supports loading from both ASCII and binary data, and it supports both fixed- and
variable-length formats. To handle all of these formats, you must supply a load-specification
to tell Sybase IQ what kind of data to expect from each “column” or field in the source file. The
column-spec lets you define these formats:

• ASCII with a fixed length of bytes. The input-width value is an integer indicating the fixed
width in bytes of the input field in every record.

• Binary or non-binary fields that use a number of PREFIX bytes (1, 2, or 4) to specify the
length of the input.
There are two parts related to a PREFIX clause:
• Prefix value – always a binary value.

SQL Statements

 224 Sybase IQ

• Associated data bytes – always character format; never binary format.
If the data is unloaded using the extraction facility with the TEMP_EXTRACT_BINARY
option set ON, you must use the BINARY WITH NULL BYTE parameter for each column
when you load the binary data.

• Variable-length characters delimited by a separator. You can specify the terminator as
hexadecimal ASCII characters. The delimiter-string can be any string of up to 4 characters,
including any combination of printable characters, and any 8-bit hexadecimal ASCII code
that represents a nonprinting character. For example, specify:
• '\x09' to represent a tab as the terminator.
• '\x00' for a null terminator (no visible terminator as in “C” strings).
• '\x0a' for a newline character as the terminator. You can also use the special character

combination of '\n' for newline.

Note: The delimiter string can be from 1 to 4 characters long, but you can specify only a
single character in the DELIMITED BY clause. For BCP, the delimiter can be up to 10
characters.

• DATE or DATETIME string as ASCII characters. You must define the input-date-format
or input-datetime-format of the string using one of the corresponding formats for the date
and datetime data types supported by Sybase IQ. Use DATE for date values and DATETIME
for datetime and time values.

Table 9. Formatting Dates and Times

Option Meaning

yyyy or YYYY

yy or YY

Represents number of year. Default is current year.

mm or MM Represents number of month. Always use leading zero or blank for number of the
month where appropriate, for example, '05' for May. DATE value must include a
month. For example, if the DATE value you enter is 1998, you receive an error. If you
enter '03', Sybase IQ applies the default year and day and converts it to '1998-03-01'.

dd or DD

jjj or JJJ

Represents number of day. Default day is 01. Always use leading zeros for number of
day where appropriate, for example, '01' for first day. J or j indicates a Julian day (1 to
366) of the year.

hh

HH

Represents hour. Hour is based on 24-hour clock. Always use leading zeros or blanks
for hour where appropriate, for example, '01' for 1 am. '00' is also valid value for hour of
12 a.m.

nn Represents minute. Always use leading zeros for minute where appropriate, for ex-
ample, '08' for 8 minutes.

ss[.ssssss] Represents seconds and fraction of a second.

aa Represents the a.m. or p.m. designation.

SQL Statements

Reference: Statements and Options 225

Option Meaning

pp Represents the p.m. designation only if needed. (This is an incompatibility with Sybase
IQ versions earlier than 12.0; previously, “pp” was synonymous with “aa”.)

hh Sybase IQ assumes zero for minutes and seconds. For example, if the DATETIME value
you enter is '03', Sybase IQ converts it to '03:00:00.0000'.

hh:nn or hh:mm Sybase IQ assumes zero for seconds. For example, if the time value you enter is '03:25',
Sybase IQ converts it to '03:25:00.0000'.

Table 10. Sample DATE and DATETIME Format Options

Input data Format specification

12/31/98 DATE ('MM/DD/YY')

19981231 DATE ('YYYYMMDD')

123198140150 DATETIME ('MMDDYYhhnnss')

14:01:50 12-31-98 DATETIME ('hh:mm:ss MM-DD-YY')

18:27:53 DATETIME ('hh:mm:ss')

12/31/98 02:01:50AM DATETIME ('MM/DD/YY hh:mm:ssaa')

Sybase IQ has built-in load optimizations for common date, time, and datetime formats. If
your data to be loaded matches one of these formats, you can significantly decrease load time
by using the appropriate format. For a list of these formats, and details about optimizing
performance when loading date and datetime data, see System Administration Guide: Volume
1 > Data Import and Export.

You can also specify the date/time field as an ASCII fixed-width field (as described above) and
use the FILLER(1) option to skip the column delimiter. For more information about
specifying date and time data, see Reference: Building Blocks, Tables, and Procedures > SQL
Data Types > Date and Time Data Types or System Administration Guide: Volume 1 > Data
Import and Export.

The NULL portion of the column-spec indicates how to treat certain input values as NULL
values when loading into the table column. These characters can include BLANKS, ZEROS,
or any other list of literals you define. When specifying a NULL value or reading a NULL
value from the source file, the destination column must be able to contain NULLs.

ZEROS are interpreted as follows: the cell is set to NULL if (and only if) the input data (before
conversion, if ASCII) is all binary zeros (and not character zeros).

• If the input data is character zero, then:
1. NULL (ZEROS) never causes the cell to be NULL.
2. NULL ('0') causes the cell to be NULL.

• If the input data is binary zero (all bits clear), then:

SQL Statements

 226 Sybase IQ

1. NULL (ZEROS) causes the cell to be NULL.
2. NULL ('0') never causes the cell to be NULL.

For example, if your LOAD statement includes col1 date('yymmdd') null(zeros)
and the date is 000000, you receive an error indicating that 000000 cannot be converted to a
DATE(4). To get LOAD TABLE to insert a NULL value in col1 when the data is 000000, either
write the NULL clause as null('000000'), or modify the data to equal binary zeros and
use NULL(ZEROS).

If the length of a VARCHAR cell is zero and the cell is not NULL, you get a zero-length cell. For
all other data types, if the length of the cell is zero, Sybase IQ inserts a NULL. This is ANSI
behavior. For non-ANSI treatment of zero-length character data, set the
NON_ANSI_NULL_VARCHAR database option.

Use the DEFAULT option to specify a load default column value. You can load a default value
into a column, even if the column does not have a default value defined in the table schema.
This feature provides more flexibility at load time.

• The LOAD TABLE DEFAULTS option must be ON in order to use the default value specified
in the LOAD TABLE statement. If the DEFAULTS option is OFF, the specified load default
value is not used and a NULL value is inserted into the column instead.

• The LOAD TABLE command must contain at least one column that needs to be loaded from
the file specified in the LOAD TABLE command. Otherwise, an error is reported and the
load is not performed.

• The specified load default value must conform to the supported default values for columns
and default value restrictions as described in System Administration Guide: Volume 1 >
Data Integrity > Column Defaults Encourage Data Integrity. The LOAD TABLE DEFAULT
option does not support AUTOINCREMENT, IDENTITY, or GLOBAL AUTOINCREMENT as
a load default value.

• The LOAD TABLE DEFAULT default-value must be of the same character set as that of the
database.

• Encryption of the default value is not supported for the load default values specified in the
LOAD TABLE DEFAULT clause.

• A constraint violation caused by evaluation of the specified load default value is counted
for each row that is inserted in the table.

Another important part of the load-specification is the FILLER option. This option indicates
you want to skip over a specified field in the source input file. For example, there may be
characters at the end of rows or even entire fields in the input files that you do not want to add to
the table. As with the column-spec definition, FILLER specifies ASCII fixed length of bytes,
variable length characters delimited by a separator, and binary fields using PREFIX bytes.

The filename-string is passed to the server as a string. The string is therefore subject to the
same formatting requirements as other SQL strings. In particular:

SQL Statements

Reference: Statements and Options 227

• To indicate directory paths in Windows systems, the backslash character \ must be
represented by two backslashes. Therefore, the statement to load data from the file c:
\temp\input.dat into the Employees table is:

LOAD TABLE Employees
FROM 'c:\\temp\\input.dat' ...

• The path name is relative to the database server, not to the client application. If you are
running the statement on a database server on some other computer, the directory names
refers to directories on the server machine, not on the client machine.

Descriptions of each statement clause follow:

USING— USING FILE loads one or more files from the server. This clause is synonymous
with specifying the FROM filename clause. USING CLIENT FILE bulk loads one or more files
from a client. The character set of the file on the client side must be the same as the server
collation. Sybase IQ serially processes files in the file list. Each file is locked in read mode as it
is processed, then unlocked. Client-side bulk loading incurs no administrative overhead, such
as extra disk space, memory or network-monitoring daemon requirements.

When bulk loading large objects, the USING CLIENT FILE clause applies to both primary and
secondary files. (If you have the Unstructured Data Analytics Option, see Unstructured Data
Analytics in Sybase IQ for details.)

During client-side loads, the IGNORE CONSTRAINT log files are created on the client host and
any error while creating the log files causes the operation to roll back.

Client-side bulk loading is supported by Interactive SQL and ODBC/JDBC clients using the
Command Sequence protocol. It is not supported by clients using the TDS protocol. For data
security over a network, use Transport Layer Security. To control who can use client-side bulk
loads, use the secure feature (-sf) server startup switch, the ALLOW_READ_CLIENT_FILE
database option, and/or the READCLIENTFILE access control.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Importing and exporting data > Accessing data on client computers > Client-side
data security and SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data
and Bulk Operations > Importing and exporting data > Accessing data on client computers.

The LOAD TABLE FROM clause is deprecated, but may be used to specify a file that exists on
the server.

This example loads data from the file a.inp on a client computer.

LOAD TABLE t1(c1,c2,filler(30))
USING CLIENT FILE 'c:\\client-data\\a.inp'
QUOTES OFF ESCAPES OFF
IGNORE CONSTRAINT UNIQUE 0, NULL 0
MESSAGE LOG 'c:\\client-data\\m.log'
ROW LOG 'c:\\client-data\\r.log'
ONLY LOG UNIQUE

SQL Statements

 228 Sybase IQ

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-load-s-5029099.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-load-s-5029099.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-load-s-5029099.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/client-side-blobs.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/client-side-blobs.html

CHECK CONSTRAINTS—This option defaults to ON. When you specify CHECK
CONSTRAINTS ON, check constraints are evaluated and you are free to ignore or log them.

Setting CHECK CONSTRAINTS OFF causes Sybase IQ to ignore all check constraint
violations. This can be useful, for example, during database rebuilding. If a table has check
constraints that call user-defined functions that are not yet created, the rebuild fails unless this
option is set to OFF.

This option is mutually exclusive to the following options. If any of these options are specified
in the same load, an error results:

• IGNORE CONSTRAINT ALL
• IGNORE CONSTRAINT CHECK
• LOG ALL
• LOG CHECK

DEFAULTS—If the DEFAULTS option is ON (the default) and the column has a default value,
that value is used. If the DEFAULTS option is OFF, any column not present in the column list is
assigned NULL.

The setting for the DEFAULTS option applies to all column DEFAULT values, including
AUTOINCREMENT.

For detailed information on the use of column DEFAULT values with loads and inserts, see
System Administration Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data
Integrity.

QUOTES—This parameter is optional and the default is ON. With QUOTES turned on, LOAD
TABLE expects input strings to be enclosed in quote characters. The quote character is either
an apostrophe (single quote) or a quotation mark (double quote). The first such character
encountered in a string is treated as the quote character for the string. String data must be
terminated with a matching quote.

With QUOTES ON, column or row delimiter characters can be included in the column value.
Leading and ending quote characters are assumed not to be part of the value and are excluded
from the loaded data value.

To include a quote character in a value with QUOTES ON, use two quotes. For example, this
line includes a value in the third column that is a single quote character:

‘123 High Street, Anytown’, ‘(715)398-2354’,’’’’

With STRIP turned on (the default), trailing blanks are stripped from values before they are
inserted. Trailing blanks are stripped only for non-quoted strings. Quoted strings retain their
trailing blanks. Leading blank or TAB characters are trimmed only when the QUOTES setting
is ON.

The data extraction facility provides options for handling quotes
(TEMP_EXTRACT_QUOTES, TEMP_EXTRACT_QUOTES_ALL, and
TEMP_EXTRACT_QUOTE). If you plan to extract data to be loaded into an IQ table and the
string fields contain column or row delimiter under default ASCII extraction, use the

SQL Statements

Reference: Statements and Options 229

TEMP_EXTRACT_BINARY option for the extract and the FORMAT binary and QUOTES OFF
options for LOAD TABLE.

Limits:

• QUOTES ON applies only to column-delimited ASCII fields.
• With QUOTES ON, the first character of a column delimiter or row terminator cannot be a

single or double quote mark.
• The QUOTES option does not apply to loading binary large object (BLOB) or character

large object (CLOB) data from the secondary file, regardless of its setting. A leading or
trailing quote is loaded as part of CLOB data. Two consecutive quotes between enclosing
quotes are loaded as two consecutive quotes with the QUOTES ON option.

• Adaptive Server Enterprise BCP does not support the QUOTES option. All field data is
copied in or out equivalent to the QUOTES OFF setting. As QUOTES ON is the default
setting for the Sybase IQ LOAD TABLE statement, you must specify QUOTES OFF when
importing ASE data from BCP output to a Sybase IQ table.

Exceptions:

• If LOAD TABLE encounters any nonwhite characters after the ending quote character for
an enclosed field, this error is reported and the load operation is rolled back:
Non-SPACE text found after ending quote character for
an enclosed field.
SQLSTATE: QTA14 SQLCODE: -1005014L

• With QUOTES ON, if a single or double quote is specified as the first character of the
column delimiter, an error is reported and the load operation fails:
Single or double quote mark cannot be the 1st character
of column delimiter or row terminator with QUOTES option
ON.
SQLSTATE: QCA90 SQLCODE: -1013090L

For an example of the QUOTES option, see System Administration Guide: Volume 1 > Data
Import and Export > Bulk Loads with the LOAD TABLE Statement.

ESCAPES—If you omit a column-spec definition for an input field and ESCAPES is ON (the
default), characters following the backslash character are recognized and interpreted as
special characters by the database server. You can include newline characters as the
combination \n, and other characters as hexadecimal ASCII codes, such as \x09 for the tab
character. A sequence of two backslash characters (\\) is interpreted as a single backslash. For
Sybase IQ, you must set ESCAPES OFF.

FORMAT—Sybase IQ supports ASCII and binary input fields. The format is usually defined
by the column-spec described above. If you omit that definition for a column, by default
Sybase IQ uses the format defined by this option. Input lines are assumed to have ascii (the
default) or binary fields, one row per line, with values separated by the column delimiter
character.

For a detailed description of the binary format used by Sybase IQ to produce data files that can
be read by the LOAD TABLE statement using the FORMAT BINARY and BINARY column

SQL Statements

 230 Sybase IQ

specification clauses, see System Administration Guide: Volume 1 > Data Import and Export
> Binary Load Formats.

Sybase IQ also accepts data from BCP character files as input to the LOAD TABLE command.

• The BCP data file loaded into Sybase IQ tables using the LOAD TABLE FORMAT BCP
statement must be exported (BCP OUT) in cross-platform file format using the -c option.

• For FORMAT BCP, the default column delimiter for the LOAD TABLE statement is <tab>
and the default row terminator is <newline>.

• For FORMAT BCP, the last column in a row must be terminated by the row terminator, not
by the column delimiter. If the column delimiter is present before the row terminator, then
the column delimiter is treated as a part of the data.

• Data for columns that are not the last column in the load specification must be delimited by
the column delimiter only. If a row terminator is encountered before a column delimiter for
a column that is not the last column, then the row terminator is treated as a part of the
column data.

• Column delimiter can be specified via the DELIMITED BY clause. For FORMAT BCP, the
delimiter must be less than or equal to 10 characters in length. An error is returned, if the
delimiter length is more than 10.

• For FORMAT BCP, the load specification may contain only column names, NULL, and
ENCRYPTED. An error is returned, if any other option is specified in the load specification.
For example, these LOAD TABLE load specifications are valid:
LOAD TABLE x(c1, c2 null(blanks), c3)
FROM 'bcp_file.bcp'
FORMAT BCP
...

LOAD TABLE x(c1 encrypted(bigint,'KEY-ONE','aes'), c2, c3)
FROM 'bcp_file.bcp'
FORMAT BCP
...

For information on the LOAD TABLE ENCRYPTED clause, see Advanced Security in
Sybase IQ.

DELIMITED BY—If you omit a column delimiter in the column-spec definition, the default
column delimiter character is a comma. You can specify an alternative column delimiter by
providing a single ASCII character or the hexadecimal character representation. The
DELIMITED BY clause is:

... DELIMITED BY '\x09' ...

To use the newline character as a delimiter, you can specify either the special combination '\n'
or its ASCII value '\x0a'. Although you can specify up to four characters in the column-spec
delimiter-string, you can specify only a single character in the DELIMITED BY clause.

STRIP—The STRIP clause specifies whether unquoted values should have trailing blanks
stripped off before they are inserted. The LOAD TABLE command accepts these STRIP
keywords:

SQL Statements

Reference: Statements and Options 231

• STRIP OFF—Do not strip off trailing blanks.
• STRIP RTRIM—Strip trailing blanks.
• STRIP ON—Deprecated. Equivalent to STRIP RTRIM.

With STRIP turned on (the default), Sybase IQ strips trailing blanks from values before
inserting them. This is effective only for VARCHAR data. STRIP OFF preserves trailing blanks.

Trailing blanks are stripped only for unquoted strings. Quoted strings retain their trailing
blanks. If you do not require blank sensitivity, you can use the FILLER option as an alternative
to be more specific in the number of bytes to strip, instead of all the trailing spaces. STRIP OFF
is more efficient for Sybase IQ, and it adheres to the ANSI standard when dealing with trailing
blanks. (CHAR data is always padded, so the STRIP option only affects VARCHAR data.)

The STRIP option applies only to variable-length non-binary data and does not apply to
ASCII fixed-width inserts. For example, assume this schema:

CREATE TABLE t(c1 VARCHAR(3));
LOAD TABLE t(c1 ',') STRIP RTRIM // trailing blanks
trimmed

LOAD TABLE t(c1 ',') STRIP OFF // trailing blanks not
trimmed

LOAD TABLE t(c1 ASCII(3)) ... STRIP RTRIM // trailing blanks not
trimmed
LOAD TABLE t(c1 ASCII(3)) ... STRIP OFF // trailing blanks
trimmed

LOAD TABLE t(c1 BINARY) STRIP RTRIM // trailing blanks
trimmed
LOAD TABLE t(c1 BINARY) STRIP OFF // trailing blanks
trimmed

Trailing blanks are always trimmed from binary data.

WITH CHECKPOINT—This option is useful only when loading SQL Anywhere tables in a
Sybase IQ database.

Use this clause to specify whether to perform a checkpoint. The default setting is OFF. If this
clause is set to ON, a checkpoint is issued after successfully completing and logging the
statement. If the server fails after a connection commits and before the next checkpoint, the
data file used to load the table must be present for the recovery to complete successfully.
However, if WITH CHECKPOINT ON is specified, and recovery is subsequently required, the
data file need not be present at the time of recovery.

The data files are required, regardless of what is specified for this clause, if the database
becomes corrupt and you need to use a backup and apply the current log file.

Warning! If you set the database option CONVERSION_ERROR to OFF, you may load bad
data into your table without any error being reported. If you do not specify WITH
CHECKPOINT ON, and the database needs to be recovered, the recovery may fail as
CONVERSION_ERROR is ON (the default value) during recovery. It is recommended that you

SQL Statements

 232 Sybase IQ

do not load tables when CONVERSION_ERROR is set to OFF and WITH CHECKPOINT ON is
not specified.

See also CONVERSION_ERROR Option [TSQL].

For information regarding automatic recovery of Sybase IQ data, see System Administration
Guide: Volume 1 > System Recovery and Database Repair.

BYTE ORDER—Specifies the byte order during reads. This option applies to all binary input
fields. If none are defined, this option is ignored. Sybase IQ always reads binary data in the
format native to the machine it is running on (default is NATIVE). You can also specify:

• HIGH when multibyte quantities have the high order byte first (for big endian platforms
like Sun, IBM AIX, and HP).

• LOW when multibyte quantities have the low order byte first (for little endian platforms
like Windows).

LIMIT—Specifies the maximum number of rows to insert into the table. The default is 0 for no
limit. The maximum is 231 - 1 (2147483647) rows.

NOTIFY—Specifies that you be notified with a message each time the specified number of
rows is successfully inserted into the table. The default is every 100,000 rows. The value of
this option overrides the value of the NOTIFY_MODULUS database option.

ON FILE ERROR—Specifies the action Sybase IQ takes when an input file cannot be opened
because it does not exist or you have incorrect permissions to read the file. You can specify one
of the following:

• ROLLBACK aborts the entire transaction (the default).
• FINISH finishes the insertions already completed and ends the load operation.
• CONTINUE returns an error but only skips the file to continue the load operation.

Only one ON FILE ERROR clause is permitted.

PREVIEW—Displays the layout of input into the destination table including starting
position, name, and data type of each column. Sybase IQ displays this information at the start
of the load process. If you are writing to a log file, this information is also included in the
log.

ROW DELIMITED BY—Specifies a string up to 4 bytes in length that indicates the end of an
input record. You can use this option only if all fields within the row are any of the following:

• Delimited with column terminators
• Data defined by the DATE or DATETIME column-spec options
• ASCII fixed length fields

You cannot use this option if any input fields contain binary data. With this option, a row
terminator causes any missing fields to be set to NULL. All rows must have the same row
delimiters, and it must be distinct from all column delimiters. The row and field delimiter
strings cannot be an initial subset of each other. For example, you cannot specify “*” as a field

SQL Statements

Reference: Statements and Options 233

delimiter and “*#” as the row delimiter, but you could specify “#” as the field delimiter with
that row delimiter.

If a row is missing its delimiters, Sybase IQ returns an error and rolls back the entire load
transaction. The only exception is the final record of a file where it rolls back that row and
returns a warning message. On Windows, a row delimiter is usually indicated by the newline
character followed by the carriage return character. You might need to specify this as the
delimiter-string (see above for description) for either this option or FILLER.

SKIP—Defines the number of rows to skip at the beginning of the input tables for this load.
The maximum number of rows to skip is 231 - 1 (2147483647). The default is 0.

HEADER SKIP…HEADER DELIMITED BY—Specifies a number of lines at the beginning
of the data file, including header rows, for LOAD TABLE to skip. All LOAD TABLE column
specifications and other load options are ignored, until the specified number of rows is
skipped.

• The number of lines to skip is greater than or equal to zero.
• Lines are determined by a 1 to 4 character delimiter string specified in the HEADER

DELIMITED BY clause. The default HEADER DELIMITED BY string is the ‘\n’ character.
• The HEADER DELIMITED BY string has a maximum length of four characters. An error is

returned, if the string length is greater than four or less than one.
• When a non-zero HEADER SKIP value is specified, all data inclusive of the HEADER

DELIMITED BY delimiter is ignored, until the delimiter is encountered the number of times
specified in the HEADER SKIP clause.

• All LOAD TABLE column specifications and other load options are ignored, until the
specified number of rows has been skipped. After the specified number of rows has been
skipped, the LOAD TABLE column specifications and other load options are applied to the
remaining data.

• The "header" bytes are ignored only at the beginning of the data. When multiple files are
specified in the USING clause, HEADER SKIP only ignores data starting from the first row
of the first file, until it skips the specified number of header rows, even if those rows exist in
subsequent files. LOAD TABLE does not look for headers once it starts parsing actual data.

• No error is reported, if LOAD TABLE processes all input data before skipping the number
of rows specified by HEADER SKIP.

WORD SKIP—Allows the load to continue when it encounters data longer than the limit
specified when the word index was created.

If a row is not loaded because a word exceeds the maximum permitted size, a warning is
written to the .iqmsg file. WORD size violations can be optionally logged to the MESSAGE
LOG file and rejected rows logged to the ROW LOG file specified in the LOAD TABLE
statement.

• If the option is not specified, LOAD TABLE reports an error and rolls back on the first
occurrence of a word that is longer than the specified limit.

SQL Statements

 234 Sybase IQ

• number specifies the number of times the “Words exceeding the maximum
permitted word length not supported” error is ignored.

• 0 (zero) means there is no limit.

START ROW ID—Specifies the record identification number of a row in the Sybase IQ table
where it should start inserting.

The START ROW ID clause of the LOAD TABLE and the INSERT commands is not allowed on a
partitioned table.

ON PARTIAL INPUT ROW—Specifies the action to take when a partial input row is
encountered during a load. You can specify one of the following:

• CONTINUE issues a warning and continues the load operation. This is the default.
• ROLLBACK aborts the entire load operation and reports the error.

Partial input record skipped at EOF.
SQLSTATE: QDC32 SQLSTATE: -1000232L

IGNORE CONSTRAINT—Specifies whether to ignore CHECK, UNIQUE, NULL, DATA
VALUE, and FOREIGN KEY integrity constraint violations that occur during a load and the
maximum number of violations to ignore before initiating a rollback. Specifying each
constrainttype has the following result:

• CHECK limit—If limit specifies zero, the number of CHECK constraint violations to
ignore is infinite. If CHECK is not specified, the first occurrence of any CHECK constraint
violation causes the LOAD statement to roll back. If limit is nonzero, then the limit +1
occurrence of a CHECK constraint violation causes the load to roll back.

• UNIQUE limit—If limit specifies zero, then the number of UNIQUE constraint violations
to ignore is infinite. If limit is nonzero, then the limit +1 occurrence of a UNIQUE
constraint violation causes the load to roll back.

• NULL limit—If limit specifies zero, then the number of NULL constraint violations to
ignore is infinite. If limit is nonzero, then the limit +1 occurrence of a NULL constraint
violation causes the load to roll back.

• FOREIGN KEY limit—If limit specifies zero, the number of FOREIGN KEY constraint
violations to ignore is infinite. If limit is nonzero, then the limit +1 occurrence of a
FOREIGN KEY constraint violation causes the load to roll back.

• DATA VALUE limit—If the database option CONVERSION_ERROR = ON, an error is
reported and the statement rolls back. If limit specifies zero, then the number of DATA
VALUE constraint violations (data type conversion errors) to ignore is infinite. If limit is
nonzero, then the limit +1 occurrence of a DATA VALUE constraint violation causes the
load to roll back.

• ALL limit—If the database option CONVERSION_ERROR = ON, an error is reported
and the statement rolls back. If limit specifies zero, then the cumulative total of all integrity
constraint violations to ignore is infinite. If limit is nonzero, then load rolls back when the
cumulative total of all ignored UNIQUE, NULL, DATA VALUE, and FOREIGN KEY
integrity constraint violations exceeds the value of limit. For example, you specify this
IGNORE CONSTRAINT option:

SQL Statements

Reference: Statements and Options 235

IGNORE CONSTRAINT NULL 50, UNIQUE 100, ALL 200

The total number of integrity constraint violations cannot exceed 200, whereas the total
number of NULL and UNIQUE constraint violations cannot exceed 50 and 100,
respectively. Whenever any of these limits is exceeded, the LOAD TABLE statement rolls
back.

Note: A single row can have more than one integrity constraint violation. Every
occurrence of an integrity constraint violation counts towards the limit of that type of
violation.

Sybase strongly recommends setting the IGNORE CONSTRAINT option limit to a nonzero
value if you are logging the ignored integrity constraint violations. Logging an excessive
number of violations affects the performance of the load.

If CHECK, UNIQUE, NULL, or FOREIGN KEY is not specified in the IGNORE
CONSTRAINT clause, then the load rolls back on the first occurrence of each of these types of
integrity constraint violation.

If DATA VALUE is not specified in the IGNORE CONSTRAINT clause, then the load rolls back
on the first occurrence of this type of integrity constraint violation, unless the database option
CONVERSION_ERROR = OFF. If CONVERSION_ERROR = OFF, a warning is reported
for any DATA VALUE constraint violation and the load continues.

When the load completes, an informational message regarding integrity constraint violations
is logged in the .iqmsg file. This message contains the number of integrity constraint
violations that occurred during the load and the number of rows that were skipped.

MESSAGE LOG—Specifies the names of files in which to log information about integrity
constraint violations and the types of violations to log. Timestamps indicating the start and
completion of the load are logged in both the MESSAGE LOG and the ROW LOG files. Both
MESSAGE LOG and ROW LOG must be specified, or no information about integrity violations
is logged.

• If the ONLY LOG clause is not specified, no information on integrity constraint violations is
logged. Only the timestamps indicating the start and completion of the load are logged.

• Information is logged on all integrity constraint-type violations specified in the ONLY LOG
clause or for all word index-length violations if the keyword WORD is specified.

• If constraint violations are being logged, every occurrence of an integrity constraint
violation generates exactly one row of information in the MESSAGE LOG file.
The number of rows (errors reported) in the MESSAGE LOG file can exceed the IGNORE
CONSTRAINT option limit, because the load is performed by multiple threads running in
parallel. More than one thread might report that the number of constraint violations has
exceeded the specified limit.

• If constraint violations are being logged, exactly one row of information is logged in the
ROW LOG file for a given row, regardless of the number of integrity constraint violations
that occur on that row.

SQL Statements

 236 Sybase IQ

The number of distinct errors in the MESSAGE LOG file might not exactly match the
number of rows in the ROW LOG file. The difference in the number of rows is due to the
parallel processing of the load described above for the MESSAGE LOG.

• The MESSAGE LOG and ROW LOG files cannot be raw partitions or named pipes.
• If the MESSAGE LOG or ROW LOG file already exists, new information is appended to the

file.
• Specifying an invalid file name for the MESSAGE LOG or ROW LOG file generates an

error.
• Specifying the same file name for the MESSAGE LOG and ROW LOG files generates an

error.

Various combinations of the IGNORE CONSTRAINT and MESSAGE LOG options result in
different logging actions.

Table 11. LOAD TABLE Logging Actions

IGNORE CON-
STRAINT speci-
fied?

MESSAGE LOG
specified?

Action

yes yes All ignored integrity constraint violations are
logged, including the user specified limit, before
the rollback.

no yes The first integrity constraint violation is logged
before the rollback.

yes no Nothing is logged.

no no Nothing is logged. The first integrity constraint
violation causes a rollback.

Note: Sybase strongly recommends setting the IGNORE CONSTRAINT option limit to a
nonzero value, if you are logging the ignored integrity constraint violations. If a single row has
more than one integrity constraint violation, a row for each violation is written to the
MESSAGE LOG file. Logging an excessive number of violations affects the performance of
the load.

LOG DELIMITED BY—Specifies the separator between data values in the ROW LOG file.
The default separator is a comma.

For more details on the contents and format of the MESSAGE LOG and ROW LOG files, see
System Administration Guide: Volume 1 > Data Import and Export > Bulk Loads with the
LOAD TABLE Statement.

Sybase IQ no longer returns an error message when FORMAT BCP is specified as a LOAD
TABLE clause. In addition, these conditions are verified and proper error messages are
returned:

SQL Statements

Reference: Statements and Options 237

• If the specified load format is not ASCII, BINARY, or BCP, Sybase IQ returns the message
“Only ASCII, BCP and BINARY are supported LOAD formats.”

• If the LOAD TABLE column specification contains anything other than column name,
NULL, or ENCRYPTED, then Sybase IQ returns the error message “Invalid load
specification for LOAD ... FORMAT BCP.”

• If the column delimiter or row terminator size for the FORMAT BCP load is greater than 10
characters, then Sybase IQ returns the message “Delimiter ‘%2’ must be 1
to %3 characters in length.” (where %3 equals 10).
Messages corresponding to error or warning conditions which can occur for FORMAT BCP
as well as FORMAT ASCII are the same for both formats.

• If the load default value specified is AUTOINCREMENT, IDENTITY, or GLOBAL
AUTOINCREMENT, Sybase IQ returns the error “Default value %2 cannot be
used as a LOAD default value. %1”

• If the LOAD TABLE specification does not contain any columns that need to be loaded from
the file specified, Sybase IQ returns the error “The LOAD statement must
contain at least one column to be loaded from input file.”
and the LOAD TABLE statement rolls back.

• If a load exceeds the limit on the maximum number of terms for a text document with TEXT
indexes, Sybase IQ returns the error “Text document exceeds maximum
number of terms. Support up to 4294967295 terms per
document.”

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

The permissions required to execute a LOAD TABLE statement depend on the database server
-gl command line option, as follows:

• If the -gl option is set to ALL, you must be the owner of the table, have DBA authority, or
have ALTER permission.

• If the -gl option is set to DBA, you must have DBA authority.
• If the -gl option is set to NONE, LOAD TABLE is not permitted.

For more information, see the -gl command line option in Utility Guide > start_iq Database
Server Startup Utility > start_iq Server Options.

LOAD TABLE also requires an exclusive lock on the table.

See also
• INSERT Statement on page 209
• LOAD_ZEROLENGTH_ASNULL Option on page 399

SQL Statements

 238 Sybase IQ

• NON_ANSI_NULL_VARCHAR Option on page 417

Storage Sizes
The storage size of character data, given column definition size and input data size.

Table 12. Storage Size of Character Data

Data type Column definition Input data Storage

CHARACTER, CHAR width of (32K – 1) bytes (32K – 1) bytes (32K – 1) bytes

VARCHAR, CHAR-
ACTER VARYING

width of (32K – 1) bytes (32K – 1) bytes (32K – 1) bytes

LOCK TABLE Statement
Prevents other concurrent transactions from accessing or modifying a table within the
specified time.

Syntax
LOCK TABLE table-list [WITH HOLD] IN { SHARE | WRITE | EXCLUSIVE } MODE
[WAIT time]

Parameters

• table-list: – [owner.] table-name [, [owner.] table-name, …]

time:

string

Examples

• Example 1 – Obtain a WRITE lock on the Customers and Employees tables, if
available within 5 minutes and 3 seconds:

LOCK TABLE Customers, Employees IN WRITE MODE WAIT
'00:05:03'

• Example 2 – Wait indefinitely until the WRITE lock on the Customers and
Employees tables is available, or an interrupt occurs:

LOCK TABLE Customers, Employees IN WRITE MODE WAIT

Usage

table-name—The table must be a base table, not a view. WRITE mode is only valid for IQ base
tables. LOCK TABLE either locks all tables in the table list, or none. If obtaining a lock for a

SQL Statements

Reference: Statements and Options 239

SQL Anywhere table, or when obtaining SHARE or EXCLUSIVE locks, you may only
specify a single table. Standard Sybase IQ object qualification rules are used to parse table-
name. For related details, see Reference: Building Blocks, Tables, and Procedures > SQL
Language Elements > Identifiers and System Administration Guide: Volume 1 > Database
Object Management > Table Management > Guidelines for Creating Tables > Types of
Tables.

WITH HOLD—If this clause is specified, the lock is held until the end of the connection. If the
clause is not specified, the lock is released when the current transaction is committed or rolled
back.

SHARE—Prevents other transactions from modifying the table, but allows them read access.
In this mode, you can change data in the table as long as no other transaction has locked the row
being modified, either indirectly, or explicitly by using LOCK TABLE.

WRITE—Prevents other transactions from modifying a list of tables. Unconditionally
commits the connections outermost transaction. The transaction’s snapshot version is
established not by the LOCK TABLE IN WRITE MODE statement, but by the execution of the
next command processed by Sybase IQ.

A WRITE mode lock on an IQ table that participates in a join index also locks:

• The top table of the join index hierarchy in WRITE mode when X is a non-top table
• The corresponding join virtual table (JVT)

WRITE mode locks are released when the transaction commits or rolls back, or when the
connection disconnects.

EXCLUSIVE—Prevents other transactions from accessing the table. In this mode, no other
transaction can execute queries, updates of any kind, or any other action against the table. If a
table t is locked exclusively with LOCK TABLE t IN EXCLUSIVE MODE, the default server
behavior is not to acquire row locks for t. This behavior can be disabled by setting the
SUBSUME_ROW_LOCKS option OFF. See SQL Anywhere 11.0.1 > SQL Anywhere Server –
Database Administration > Configuring Your Database > Database options > Introduction to
database options > Alphabetical list of options > subsume_row_locks option [database].

LOCK TABLE statements run on tables in the IQ main store on the coordinator do not affect
access to those tables from connections on secondary servers. For example:

On a coordinator connection, issue the command:

LOCK TABLE coord1 WITH HOLD IN EXCLUSIVE MODE

sp_iqlocks on the coordinator confirms that the table coord1 has an exclusive (E) lock.

The result of sp_iqlocks run on a connection on a secondary server does not show the
exclusive lock on table coord1. The user on this connection can see updates to table
coord1 on the coordinator.

SQL Statements

 240 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-5520158.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-5520158.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-5520158.html

Other connections on the coordinator can see the exclusive lock on coord1 and attempting to
select from table coord1 from another connection on the coordinator returns User DBA
has the row in coord1 locked.

WAIT time— Wait options specify maximum blocking time for all lock types. This option is
mandatory when lock mode is WRITE. When a time argument is given, the server locks the
specified tables only if available within the specified time. The time argument can be specified
in the format hh:nn:ss:sss. If a date part is specified, the server ignores it and converts the
argument into a timestamp. When no time argument is given, the server waits indefinitely until
a WRITE lock is available or an interrupt occurs.

LOCK TABLE on views is unsupported. Attempting to lock a view acquires a shared schema
lock regardless of the mode specified in the command. A shared schema lock prevents other
transactions from modifying the table schema.

The Transact-SQL (T-SQL) stored procedure dialect does not support LOCK TABLE. For
example, this statement returns Syntax error near LOCK:

CREATE PROCEDURE tproc()
AS
BEGIN
COMMIT;
LOCK TABLE t1 IN SHARE MODE
INSERT INTO t1 VALUES(30)
END

The Watcom-SQL stored procedure dialect supports LOCK TABLE. The default command
delimiter is a semicolon (;). For example:

CREATE PROCEDURE tproc()
AS
BEGIN
COMMIT;
LOCK TABLE t1 IN SHARE MODE
INSERT INTO t1 VALUES(30)
END

See also Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqlocks Procedure.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported in Adaptive Server Enterprise. The WITH HOLD clause is not

supported in Adaptive Server Enterprise. Adaptive Server Enterprise provides a WAIT
clause that is not supported in SQL Anywhere.

Permissions

To lock a table in SHARE mode, SELECT privileges are required.

To lock a table in EXCLUSIVE mode, you must be the table owner or have DBA authority.

SQL Statements

Reference: Statements and Options 241

See also
• SELECT Statement on page 279

LOOP Statement
Repeats the execution of a statement list.

Syntax
[statement-label:]
... [WHILE search-condition] LOOP
... statement-list
... END LOOP [statement-label]

Examples

• Example 1 – A WHILE loop in a procedure:

...
SET i = 1 ;
WHILE i <= 10 LOOP
 INSERT INTO Counters(number) VALUES (i) ;
 SET i = i + 1 ;
END LOOP ;
...

• Example 2 – A labeled loop in a procedure:

SET i = 1;
lbl:
LOOP
 INSERT
 INTO Counters(number)
 VALUES (i) ;
 IF i >= 10 THEN
 LEAVE lbl ;
 END IF ;
 SET i = i + 1 ;
END LOOP lbl

Usage

The WHILE and LOOP statements are control statements that let you repeatedly execute a list
of SQL statements while a search-condition evaluates to TRUE. The LEAVE statement can be
used to resume execution at the first statement after the END LOOP.

If the ending statement-label is specified, it must match the beginning statement-label.

Standards

• SQL—ISO/ANSI SQL compliant.

SQL Statements

 242 Sybase IQ

• Sybase—Not supported in Adaptive Server Enterprise. The WHILE statement provides
looping in Transact-SQL stored procedures.

Permissions

None

See also
• FOR Statement on page 190

• LEAVE Statement on page 220

• WHILE Statement [T-SQL] on page 315

MESSAGE Statement
Displays a message.

Syntax
MESSAGE expression, …
[TYPE { INFO | ACTION | WARNING | STATUS }]
[TO { CONSOLE
 | CLIENT [FOR { CONNECTION conn_id [IMMEDIATE] | ALL }]
 | [EVENT | SYSTEM] LOG }
 [DEBUG ONLY]]

Parameters

• conn_id : – integer

Examples

• Example 1 – Display the string The current date and time, and the current
date and time, on the database server message window:

CREATE PROCEDURE message_test ()
BEGIN
MESSAGE 'The current date and time: ', Now();
END;
CALL message_test();

• Example 2 – To register a callback in ODBC, first declare the message handler:

void SQL_CALLBACK my_msgproc(
 void * sqlca,
 unsigned char msg_type,
 long code,
 unsigned short len,
 char* msg)
{ … }

SQL Statements

Reference: Statements and Options 243

Install the declared message handler by calling the SQLSetConnectAttr function:

rc = SQLSetConnectAttr(
 dbc,
 ASA_REGISTER_MESSAGE_CALLBACK,
 (SQLPOINTER) &my_msgproc, SQL_IS_POINTER);

Usage

The MESSAGE statement displays a message, which can be any expression. Clauses can
specify where the message is displayed.

The procedure issuing a MESSAGE … TO CLIENT statement must be associated with a
connection.

For example, the message box is not displayed because the event occurs outside of a
connection:

CREATE EVENT CheckIdleTime TYPE ServerIdle
WHERE event_condition('IdleTime') > 100
HANDLER
BEGIN
 MESSAGE 'Idle engine' type warning to client;
END;

However, in this example, the message is written to the server console:

CREATE EVENT CheckIdleTime TYPE ServerIdle
WHERE event_condition('IdleTime') > 100
HANDLER
BEGIN
 MESSAGE 'Idle engine' type warning to console;
END;

Valid expressions can include a quoted string or other constant, variable, or function.
However, queries are not permitted in the output of a MESSAGE statement, even though the
definition of an expression includes queries.

The FOR clause can be used to notify another application of an event detected on the server
without the need for the application to explicitly check for the event. When the FOR clause is
used, recipients receive the message the next time they execute a SQL statement. If the
recipient is currently executing a SQL statement, the message is received when the statement
completes. If the statement being executed is a stored procedure call, the message is received
before the call is completed.

If an application requires notification within a short time after the message is sent and when
the connection is not executing SQL statements, you can use a second connection. This
connection can execute one or more WAITFOR DELAY statements. These statements do not
consume significant resources on the server or network (as would happen with a polling
approach), but permit applications to receive notification of the message shortly after it is
sent.

SQL Statements

 244 Sybase IQ

ESQL and ODBC clients receive messages via message callback functions. In each case, these
functions must be registered. To register ESQL message handlers, use the
db_register_callback function.

ODBC clients can register callback functions using the SQLSetConnectAttr function.

For more information about using callback functions, see SQL Anywhere 11.0.1 > SQL
Anywhere Server – Programming > SQL Anywhere Database Tools Interface > Database
tools interface > Using the database tools interface > Using callback functions.

TYPE—The TYPE clause has an effect only if the message is sent to the client. The client
application must decide how to handle the message. Interactive SQL displays messages in
these locations:

• INFO – The Message window (default).
• ACTION– A Message box with an OK button.
• WARNING – A Message box with an OK button.
• STATUS – The Messages pane.

TO—Specifies the destination of a message:

• CONSOLE – Send messages to the database server window. CONSOLE is the default.
• CLIENT – Send messages to the client application. Your application must decide how to

handle the message, and you can use the TYPE as information on which to base that
decision.

• LOG – Send messages to the server log file specified by the -o option.

FOR—For messages TO CLIENT, this clause specifies which connections receive notification
about the message:

• CONNECTION conn_id – Specifies the recipient's connection ID for the message.
• IMMEDIATE – See SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference >

Using SQL > SQL statements > SQL statements (E-O) > MESSAGE statement.
• ALL – Specifies that all open connections receive the message.

DEBUG ONLY—Lets you control whether debugging messages added to stored procedures
are enabled or disabled by changing the setting of the DEBUG_MESSAGES option. When
DEBUG ONLY is specified, the MESSAGE statement is executed only when the
DEBUG_MESSAGES option is set to ON.

Note: DEBUG ONLY messages are inexpensive when the DEBUG_MESSAGES option is set to
OFF, so these statements can usually be left in stored procedures on a production system.
However, they should be used sparingly in locations where they would be executed frequently;
otherwise, they might result in a small performance penalty.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.

SQL Statements

Reference: Statements and Options 245

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/dbt-using-callback-functions.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/dbt-using-callback-functions.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/dbt-using-callback-functions.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/message-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/message-statement.html

• Sybase—Not supported in Adaptive Server Enterprise. The Transact-SQL PRINT
statement provides a similar feature, and is available in SQL Anywhere.

Permissions

Must be connected to the database.

DBA authority is required to execute a MESSAGE statement containing a FOR clause.

See also
• CREATE PROCEDURE Statement on page 110
• WAITFOR Statement on page 312
• DEBUG_MESSAGES Option on page 363

OPEN Statement [ESQL] [SP]
Opens a previously declared cursor to access information from the database.

Syntax
OPEN cursor-name
... [USING [DESCRIPTOR { sqlda-name | host-variable [, …] }]]
... [WITH HOLD]

Parameters

• cursor-name: – identifier or host-variable
• sqlda-name: – identifier

Examples

• Example 1 – Use of OPEN in Embedded SQL:

EXEC SQL OPEN employee_cursor;

and
EXEC SQL PREPARE emp_stat FROM
'SELECT EmployeeID, Surname FROM Employees WHERE name like ?';
EXEC SQL DECLARE employee_cursor CURSOR FOR emp_stat;
EXEC SQL OPEN employee_cursor USING :pattern;

• Example 2 – An example from a procedure:

BEGIN
DECLARE cur_employee CURSOR FOR
 SELECT Surname
 FROM Employees ;
DECLARE name CHAR(40) ;
OPEN cur_employee;
LOOP

SQL Statements

 246 Sybase IQ

FETCH NEXT cur_employee into name ;
 ...
END LOOP
CLOSE cur_employee;
END

Usage

By default, all cursors are automatically closed at the end of the current transaction (COMMIT
or ROLLBACK). The optional WITH HOLD clause keeps the cursor open for subsequent
transactions. The cursor remains open until the end of the current connection or until an
explicit CLOSE statement is executed. Cursors are automatically closed when a connection is
terminated.

The cursor is positioned before the first row. See System Administration Guide: Volume 2 >
Using Procedures and Batches.

A cursor declared FOR READ ONLY sees the version of table(s) on which the cursor is declared
when the cursor is opened, not the version of table(s) at the time of the first FETCH.

The USING DESCRIPTOR sqlda-name, host-variable, and BLOCK n formats are for
Embedded SQL only.

If the cursor name is specified by an identifier or string, then the corresponding DECLARE
CURSOR statement must appear prior to the OPEN in the C program; if the cursor name is
specified by a host variable, then the DECLARE CURSOR statement must execute before the
OPEN statement.

The optional USING clause specifies the host variables that are bound to the placeholder bind
variables in the SELECT statement for which the cursor has been declared.

After successful execution of the OPEN statement, the sqlerrd[3] field of the SQLCA
(SQLIOESTIMATE) is filled in with an estimate of the number of input/output operations
required to fetch all rows of the query. Also, the sqlerrd[2] field of the SQLCA (SQLCOUNT)
is filled in with either the actual number of rows in the cursor (a value greater than or equal to
0), or an estimate thereof (a negative number whose absolute value is the estimate). The
sqlerrd[2] field is the actual number of rows, if the database server can compute this value
without counting the rows.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—The simple OPEN cursor-name syntax is supported by Adaptive Server

Enterprise. None of the other clauses are supported in Adaptive Server Enterprise stored
procedures. Open Client/Open Server supports the USING descriptor or host name
variable syntax.

SQL Statements

Reference: Statements and Options 247

Permissions

• Must have SELECT permission on all tables in a SELECT statement or EXECUTE
permission on the procedure in a CALL statement.

• When the cursor is on a CALL statement, OPEN causes the procedure to execute until the
first result set (SELECT statement with no INTO clause) is encountered. If the procedure
completes and no result set is found, the SQLSTATE_PROCEDURE_COMPLETE
warning is set.

See also
• CLOSE Statement [ESQL] [SP] on page 57

• DECLARE CURSOR Statement [ESQL] [SP] on page 154

• FETCH Statement [ESQL] [SP] on page 187

• PREPARE Statement [ESQL] on page 253

• RESUME Statement on page 270

OUTPUT Statement [Interactive SQL]
Writes the current query results to a file.

Syntax
OUTPUT TO filename
[APPEND] [VERBOSE]
[FORMAT output-format]
[ESCAPE CHARACTER character]
[DELIMITED BY string]
[QUOTE string [ALL]]
[COLUMN WIDTHS (integer, …)]
[HEXADECIMAL { ON | OFF | ASIS }]
[ENCODING encoding]

Parameters

• output-format: – ASCII| DBASEII | DBASEIII | EXCEL | FIXED | FOXPRO | HTML | LOTUS |
SQL | XML

• encoding: – string or identifier

Examples

• Example 1 – Place the contents of the Employees table in a file in ASCII format:

SELECT * FROM Employees;
OUTPUT TO employee.txt FORMAT ASCII

• Example 2 – Place the contents of the Employees table at the end of an existing file, and
include any messages about the query in this file as well:

SQL Statements

 248 Sybase IQ

SELECT * FROM Employees;
OUTPUT TO employee.txt APPEND VERBOSE

• Example 3 – Export a value that contains an embedded line feed character. A line feed
character has the numeric value 10, which you can represent as the string '\x0a' in a SQL
statement.

Execute this statement with HEXADECIMAL ON:

SELECT 'line1\x0aline2'; OUTPUT TO file.txt HEXADECIMAL ON

The result is a file with one line in it, containing this text:

line10x0aline2

Execute the same statement with HEXADECIMAL OFF:

line1\x0aline2

If you set HEXADECIMAL to ASIS, you get a file with two lines:

'line1
line2'

Using ASIS generates two lines, because the embedded line feed character has been
exported without being converted to a two-digit hex representation, and without a prefix.

Usage

The OUTPUT statement copies the information retrieved by the current query to a file.

You can specify the output format with the optional FORMAT clause. If no FORMAT clause is
specified, the Interactive SQL OUTPUT_FORMAT option setting is used.

The current query is the SELECT or LOAD TABLE statement that generated the information
that appears on the Results tab in the Results pane. The OUTPUT statement reports an error if
there is no current query.

Note: OUTPUT is especially useful in making the results of a query or report available to
another application, but is not recommended for bulk operations. For high-volume data
movement, use the ASCII and BINARY data extraction functionality with the SELECT
statement. The extraction functionality provides much better performance for large-scale data
movement, and creates an output file you can use for loads.

APPEND—This optional keyword is used to append the results of the query to the end of an
existing output file without overwriting the previous contents of the file. If the APPEND clause
is not used, the OUTPUT statement overwrites the contents of the output file by default. The
APPEND keyword is valid if the output format is ASCII, FIXED, or SQL.

VERBOSE—When the optional VERBOSE keyword is included, error messages about the
query, the SQL statement used to select the data, and the data itself are written to the output
file. If VERBOSE is omitted (the default), only the data is written to the file. The VERBOSE
keyword is valid if the output format is ASCII, FIXED, or SQL.

SQL Statements

Reference: Statements and Options 249

FORMAT—Allowable output formats are:

• ASCII—The output is an ASCII format file with one row per line in the file. All values are
separated by commas, and strings are enclosed in apostrophes (single quotes). The
delimiter and quote strings can be changed using the DELIMITED BY and QUOTE clauses.
If ALL is specified in the QUOTE clause, all values (not just strings) are quoted.
Three other special sequences are also used. The two characters \n represent a newline
character, \\ represents a single \, and the sequence \xDD represents the character with
hexadecimal code DD. This is the default output format.
If you are exporting Java methods that have string return values, you must use the
HEXADECIMAL OFF clause.

• DBASEII—The output is a dBASE II format file with the column definitions at the top of
the file. Note that a maximum of 32 columns can be output. Column names are truncated to
11 characters, and each row of data in each column is truncated to 255 characters.

• DBASEIII—The output is a dBASE III format file with the column definitions at the top of
the file. Note that a maximum of 128 columns can be output. Column names are truncated
to 11 characters, and each row of data in each column is truncated to 255 characters.

• EXCEL—The output is an Excel 2.1 worksheet. The first row of the worksheet contains
column labels (or names, if there are no labels defined). Subsequent worksheet rows
contain the actual table data.

• FIXED—The output is fixed format with each column having a fixed width. The width for
each column can be specified using the COLUMN WIDTHS clause. No column headings are
output in this format.
If COLUMN WIDTHS is omitted, the width for each column is computed from the data type
for the column, and is large enough to hold any value of that data type. The exception is that
LONG VARCHAR and LONG BINARY data defaults to 32KB.

• FOXPRO—The output is a FoxPro format file (the FoxPro memo field is different than the
dBASE memo field) with the column definitions at the top of the file. Note that a maximum
of 128 columns can be output. Column names are truncated to 11 characters. Column
names are truncated to 11 characters, and each row of data in each column is truncated to
255 characters.

• HTML—The output is in the Hyper Text Markup Language format.
• LOTUS—The output is a Lotus WKS format worksheet. Column names are put as the first

row in the worksheet. Note that there are certain restrictions on the maximum size of Lotus
WKS format worksheets that other software (such as Lotus 1-2-3) can load. There is no
limit to the size of file Interactive SQL can produce.

• SQL—The output is an Interactive SQL INPUT statement required to recreate the
information in the table.

Note: Sybase IQ does not support the INPUT statement. You would need to edit this
statement to a valid LOAD TABLE (or INSERT) statement to use it to load data back in.

SQL Statements

 250 Sybase IQ

• XML—The output is an XML file encoded in UTF-8 and containing an embedded DTD.
Binary values are encoded in CDATA blocks with the binary data rendered as 2-hex-digit
strings. The LOAD TABLE statement does not accept XML as a file format.

ESCAPE CHARACTER—The default escape character for characters stored as hexadecimal
codes and symbols is a backslash (\), so \x0A is the line feed character, for example.

This default can be changed using the ESCAPE CHARACTER clause. For example, to use the
exclamation mark as the escape character, enter:

... ESCAPE CHARACTER '!'

DELIMITED BY—The DELIMITED BY clause is for the ASCII output format only. The
delimiter string is placed between columns (default comma).

QUOTE—The QUOTE clause is for the ASCII output format only. The quote string is placed
around string values. The default is a single quote character. If ALL is specified in the QUOTE
clause, the quote string is placed around all values, not just around strings.

COLUMN WIDTHS—The COLUMN WIDTHS clause is used to specify the column widths for
the FIXED format output.

HEXADECIMAL—The HEXADECIMAL clause specifies how binary data is to be unloaded
for the ASCII format only. When set to ON, binary data is unloaded in the format 0xabcd.
When set to OFF, binary data is escaped when unloaded (\xab\xcd). When set to ASIS, values
are written as is, that is, without any escaping—even if the value contains control characters.
ASIS is useful for text that contains formatting characters such as tabs or carriage returns.

ENCODING—Specifies the encoding that is used to write the file. The ENCODING clause can
be used only with the ASCII format.

If encoding is not specified, Interactive SQL determines the code page that is used to write the
file as follows, where code page values occurring earlier in the list take precedence over those
occurring later:

• The code page specified with the DEFAULT_ISQL_ENCODING option (if this option is
set)

• The code page specified with the -codepage option when Interactive SQL was started
• The default code page for the computer Interactive SQL is running on

Side Effects

• In Interactive SQL, the Results tab displays only the results of the current query. All
previous query results are replaced with the current query results.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

SQL Statements

Reference: Statements and Options 251

Permissions

None

See also
• SELECT Statement on page 279
• DEFAULT_ISQL_ENCODING Option [Interactive SQL] on page 366

PARAMETERS Statement [Interactive SQL]
Specifies parameters to an Interactive SQL (dbisql) command file.

Syntax
PARAMETERS parameter1, parameter2, …

Examples

• Example 1 – This dbisql command file takes two parameters:

PARAMETERS department_id, file ;
SELECT Surname
FROM Employees
WHERE DepartmentID = {department_id}
>#{file}.dat;

Usage

PARAMETERS specifies how many parameters there are to a command file and also names
those parameters so that they can be referenced later in the command file.

Parameters are referenced by putting the named parameter into the command file where you
want the parameter to be substituted:

{parameter1}

There must be no spaces between the braces and the parameter name.

If a command file is invoked with fewer than the required number of parameters, dbisql
prompts for values of the missing parameters.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

None

SQL Statements

 252 Sybase IQ

See also
• READ Statement [Interactive SQL] on page 259

PREPARE Statement [ESQL]
Prepares a statement to be executed later or used for a cursor.

Syntax
PREPARE statement-name
FROM statement
... [DESCRIBE describe-type INTO [[SQL] DESCRIPTOR] descriptor]
... [WITH EXECUTE]

Parameters

• statement-name: – identifier or host-variable
• statement: – string, or host-variable
• describe-type: – { ALL | BIND VARIABLES | INPUT | OUTPUT | SELECT LIST } ... { LONG

NAMES [[OWNER.]TABLE.]COLUMN] | WITH VARIABLE RESULT }

Examples

• Example 1 – Prepare a simple query:

EXEC SQL PREPARE employee_statement FROM
'SELECT Surname FROM Employees';

Usage

The PREPARE statement prepares a SQL statement from the statement and associates the
prepared statement with statement-name.

This statement name is referenced to execute the statement, or to open a cursor if the statement
is a SELECT statement. statement-name may be a host variable of type
a_sql_statement_number defined in the sqlca.h header file that is automatically
included. If an identifier is used for the statement-name, only one statement per module may
be prepared with this statement-name.

If a host variable is used for statement-name, it must have the type short int. There is a
typedef for this type in sqlca.h called a_sql_statement_number. This type is
recognized by the SQL preprocessor and can be used in a DECLARE section. The host variable
is filled in by the database during the PREPARE statement and need not be initialized by the
programmer.

If the DESCRIBE INTO DESCRIPTOR clause is used, the prepared statement is described into
the specified descriptor. The describe type may be any of the describe types allowed in the
DESCRIBE statement.

SQL Statements

Reference: Statements and Options 253

If the WITH EXECUTE clause is used, the statement is executed if and only if it is not a CALL or
SELECT statement, and it has no host variables. The statement is immediately dropped after a
successful execution. If PREPARE and DESCRIBE (if any) are successful but the statement
cannot be executed, a warning SQLCODE 111, SQLSTATE 01W08 is set, and the
statement is not dropped.

The DESCRIBE INTO DESCRIPTOR and WITH EXECUTE clauses might improve
performance, as they decrease the required client/server communication.

The WITH VARIABLE RESULT clause is used to describe procedures that may have more than
one result set, with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT value after the
describe to one of these values:

• 0—The result set may change: the procedure call should be described again following each
OPEN statement.

• 1—The result set is fixed. No redescribing is required.

These statements can be prepared:

• ALTER

• CALL

• COMMENT ON

• CREATE

• DELETE

• DROP

• GRANT

• INSERT

• REVOKE

• SELECT

• SET OPTION

Preparing COMMIT, PREPARE TO COMMIT, and ROLLBACK statements is still supported for
compatibility. However, Sybase recommends that you do all transaction management
operations with static Embedded SQL, because certain application environments may require
it. Also, other Embedded SQL systems do not support dynamic transaction management
operations.

Note: Make sure that you DROP the statement after use. If you do not, then the memory
associated with the statement is not reclaimed.

Side Effects

• Any statement previously prepared with the same name is lost.

SQL Statements

 254 Sybase IQ

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154
• DESCRIBE Statement [ESQL] on page 166
• DROP Statement on page 170
• EXECUTE Statement [ESQL] on page 181
• OPEN Statement [ESQL] [SP] on page 246

PRINT Statement [T-SQL]
Displays a message on the message window of the database server.

Syntax
PRINT format-string [, arg-list]

Examples

• Example 1 – Display a message on the server message window:

CREATE PROCEDURE print_test
AS
PRINT 'Procedure called successfully'

This statement returns the string “Procedure called successfully” to the client:

EXECUTE print_test

• Example 2 – Use placeholders in the PRINT statement; execute these statements inside a
procedure:

DECLARE @var1 INT, @var2 INT
SELECT @var1 = 3, @var2 = 5
PRINT 'Variable 1 = %1!, Variable 2 = %2!', @var1, @var2

• Example 3 – Use RAISERROR to disallow connections:

CREATE procedure DBA.login_check()
begin
 // Allow a maximum of 3 concurrent connections
 IF(db_property('ConnCount') > 3) then
 raiserror 28000
 'User %1! is not allowed to connect -- there are

SQL Statements

Reference: Statements and Options 255

 already %2! users logged on',
 current user,
 cast(db_property('ConnCount') as int)-1;
 ELSE
 call sp_login_environment;
 end if;
end
go
grant execute on DBA.login_check to PUBLIC
go
set option PUBLIC.Login_procedure='DBA.login_check'
go

For an alternate way to disallow connections, see LOGIN_PROCEDURE Option or
Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqmodifylogin Procedure.

Usage

The PRINT statement returns a message to the client window if you are connected from an
Open Client application or JDBC application. If you are connected from an Embedded SQL or
ODBC application, the message displays on the database server window.

The format string can contain placeholders for the arguments in the optional argument list.
These placeholders are of the form %nn!, where nn is an integer between 1 and 20.

Standards

• SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must be connected to the database.

See also
• MESSAGE Statement on page 243

• LOGIN_PROCEDURE Option on page 401

PUT Statement [ESQL]
Inserts a row into the specified cursor.

Syntax

PUT cursor-name [USING DESCRIPTOR sqlda-name
| FROM hostvar-list] [INTO { DESCRIPTOR into-sqlda-name
| into-hostvar-list }] [ARRAY :nnn]

SQL Statements

 256 Sybase IQ

Parameters

• cursor-name: – identifier or hostvar
• sqlda-name: – identifier
• hostvar-list: – may contain indicator variables

Examples

• Example 1 – Use PUT in Embedded SQL:

EXEC SQL PUT cur_employee FROM :EmployeeID, :Surname;

Usage

Inserts a row into the named cursor. Values for the columns are taken from the first SQLDA or
the host variable list, in a one-to-one correspondence with the columns in the INSERT
statement (for an INSERT cursor) or the columns in the select list (for a SELECT cursor).

The PUT statement can be used only on a cursor over an INSERT or SELECT statement that
references a single table in the FROM clause, or that references an updatable view consisting of
a single base table.

If the sqldata pointer in the SQLDA is the null pointer, no value is specified for that column. If
the column has a DEFAULT VALUE associated with it, that is used; otherwise, a NULL value
is used.

The second SQLDA or host variable list contains the results of the PUT statement.

The optional ARRAY clause can be used to carry out wide puts, which insert more than one row
at a time and which might improve performance. The value nnn is the number of rows to be
inserted. The SQLDA must contain nnn * (columns per row) variables. The first row is placed
in SQLDA variables 0 to (columns per row) - 1, and so on.

Note: For scroll (values-sensitive) cursors, the inserted row appears if the new row matches
the WHERE clause and the keyset cursor has not finished populating. For dynamic cursors, if
the inserted row matches the WHERE clause, the row might appear. Insensitive cursors cannot
be updated.

For information on putting LONG VARCHAR or LONG BINARY values into the database,
see SET statement [ESQL].

Side Effects

• When inserting rows into a value-sensitive (keyset-driven) cursor, the inserted rows appear
at the end of the result set, even when they do not match the WHERE clause of the query or
if an ORDER BY clause would normally have placed them at another location in the result
set. For more information, see SQL Anywhere 11.0.1 > SQL Anywhere Server –
Programming > Introduction to Programming with SQL Anywhere > Using SQL in
applications > SQL Anywhere cursors > Value-sensitive cursors.

SQL Statements

Reference: Statements and Options 257

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/keyset-cursor-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/keyset-cursor-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/keyset-cursor-sqlapp.html

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

Must have INSERT permission.

See also
• DELETE (positioned) Statement [ESQL] [SP] on page 164

• INSERT Statement on page 209

• SET Statement [ESQL] on page 287

• UPDATE Statement on page 307

• UPDATE (positioned) Statement [ESQL] [SP] on page 311

RAISERROR Statement [T-SQL]
Signals an error and sends a message to the client.

Syntax
RAISERROR error-number [format-string] [, arg-list]

Examples

• Example 1 – Raise error 99999, which is in the range for user-defined errors, and send a
message to the client:

RAISERROR 99999 'Invalid entry for this
column: %1!', @val

Usage

The RAISERROR statement allows user-defined errors to be signaled, and sends a message on
the client.

The error-number is a 5-digit integer greater than 17000. The error number is stored in the
global variable @@error.

There is no comma between the error-number and the format-string parameters. The first item
following a comma is interpreted as the first item in the argument list.

If format-string is not supplied or is empty, the error number is used to locate an error message
in the system tables. Adaptive Server Enterprise obtains messages 17000-19999 from the
SYSMESSAGES table. In Sybase IQ, this table is an empty view, so errors in this range should

SQL Statements

 258 Sybase IQ

provide a format string. Messages for error numbers of 20000 or greater are obtained from the
SYS.SYSUSERMESSAGES table.

The format-string can be up to 255 bytes long. This is the same as in Adaptive Server
Enterprise.

The extended values supported by the SQL Server or Adaptive Server Enterprise RAISERROR
statement are not supported in Sybase IQ.

The format string can contain placeholders for the arguments in the optional argument list.
These placeholders are of the form %nn!, where nn is an integer between 1 and 20.

Intermediate RAISERROR status and code information is lost after the procedure terminates.
If at return time an error occurs along with the RAISERROR, then the error information is
returned and the RAISERROR information is lost. The application can query intermediate
RAISERROR statuses by examining @@error global variable at different execution points.

Standards

• SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must be connected to the database.

See also
• CONTINUE_AFTER_RAISERROR Option [TSQL] on page 348

• ON_TSQL_ERROR Option [TSQL] on page 420

READ Statement [Interactive SQL]
Reads Interactive SQL (dbisql) statements from a file.

Syntax
READ filename [parameters]

Examples

• Example 1 –
READ status.rpt '160'
READ birthday.sql [>= '1988-1-1'] [<= '1988-1-30']

SQL Statements

Reference: Statements and Options 259

Usage

The READ statement reads a sequence of dbisql statements from the named file. This file can
contain any valid dbisql statement, including other READ statements, which can be nested to
any depth.

To find the command file, dbisql first searches the current directory, then the directories
specified in the environment variable SQLPATH, then the directories specified in the
environment variable PATH. If the named file has no file extension, dbisql also searches each
directory for the same file name with the extension SQL.

Parameters can be listed after the name of the command file. These parameters correspond to
the parameters named on the PARAMETERS statement at the beginning of the statement file
(see PARAMETERS Statement). dbisql then substitutes the corresponding parameter
wherever the source file contains:

{ parameter-name }

where parameter-name is the name of the appropriate parameter.

The parameters passed to a command file can be identifiers, numbers, quoted identifiers, or
strings. When quotes are used around a parameter, the quotes are put into the text during the
substitution. Parameters that are not identifiers, numbers, or strings (contain spaces or tabs)
must be enclosed in square brackets ([]). This allows for arbitrary textual substitution in the
command file.

If not enough parameters are passed to the command file, dbisql prompts for values for the
missing parameters.

The READ statement also supports an ENCODING clause, which lets you specify the encoding
that is used to read the file. See SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL
Reference > Using SQL > SQL statements > SQL statements (P-Z) > READ statement
[Interactive SQL].

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

None

See also
• DEFAULT_ISQL_ENCODING Option [Interactive SQL] on page 366

• PARAMETERS Statement [Interactive SQL] on page 252

SQL Statements

 260 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/read-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/read-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/read-statement.html

RELEASE SAVEPOINT Statement
Releases a savepoint within the current transaction.

Syntax
RELEASE SAVEPOINT [savepoint-name]

Usage

The savepoint-name is an identifier specified on a SAVEPOINT statement within the current
transaction. If savepoint-name is omitted, the most recent savepoint is released.

For a description of savepoints, see System Administration Guide: Volume 2 > Using
Procedures and Batches. Releasing a savepoint does not perform any type of COMMIT; it
simply removes the savepoint from the list of currently active savepoints.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise. A similar feature is available in an

Adaptive Server Enterprise-compatible manner using nested transactions.

Permissions

There must have been a corresponding SAVEPOINT within the current transaction.

See also
• ROLLBACK TO SAVEPOINT Statement on page 276

• SAVEPOINT Statement on page 278

REMOVE Statement
Removes a class, a package, or a JAR file from a database. Removed classes are no longer
available for use as a variable type.

Syntax
REMOVE JAVA classes_to_remove

SQL Statements

Reference: Statements and Options 261

Parameters

• classes_to_remove: – { CLASS java_class_name [, java_class_name]… | PACKAGE
java_package_name [, java_package_name]… | JAR jar_name [, jar_name]… [RETAIN
CLASSES] }

• jar_name: – character_string_expression

Examples

• Example 1 – Remove a Java class named “Demo” from the current database:

REMOVE JAVA CLASS Demo

Usage

Any class, package, or JAR to be removed must already be installed.

java_class_name—The name of one or more Java classes to be removed. Those classes must
be installed classes in the current database.

java_package_name—The name of one or more Java packages to be removed. Those
packages must be the name of packages in the current database.

jar_name—A character string value of maximum length 255.

Each jar_name must be equal to the jar_name of a retained JAR in the current database.
Equality of jar_name is determined by the character string comparison rules of the SQL
system.

If JAR...RETAIN CLASSES is specified, the specified JARs are no longer retained in the
database, and the retained classes have no associated JAR. If RETAIN CLASSES is specified,
this is the only action of the REMOVE statement.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise. A similar feature is available in an

Adaptive Server Enterprise-compatible manner using nested transactions.

Permissions

Must have DBA authority or must own the object.

SQL Statements

 262 Sybase IQ

RESIGNAL Statement
Resignals an exception condition.

Syntax
RESIGNAL [exception-name]

Examples

• Example 1 – This code fragment returns all exceptions except for “Column Not Found” to
the application:

...
DECLARE COLUMN_NOT_FOUND EXCEPTION
 FOR SQLSTATE '52003';
...
EXCEPTION
WHEN COLUMN_NOT_FOUND THEN
SET message='Column not found' ;
WHEN OTHERS THEN
RESIGNAL ;

Usage

Within an exception handler, RESIGNAL lets you quit the compound statement with the
exception still active, or quit reporting another named exception. The exception is handled by
another exception handler or returned to the application. Any actions by the exception handler
before the RESIGNAL are undone.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported in Adaptive Server Enterprise. Error handling in Transact-SQL

procedures is carried out using the RAISERROR statement.

Permissions

None

See also
• BEGIN … END Statement on page 47

• SIGNAL Statement on page 297

SQL Statements

Reference: Statements and Options 263

RESTORE Statement
Restores a Sybase IQ database backup from one or more archive devices.

Syntax

Syntax 1
RESTORE DATABASE 'db_file'
FROM 'archive_device' [FROM 'archive_device']…
… [CATALOG ONLY]
… [KEY key_spec]
… [[RENAME logical-dbfile-name TO 'new-dbspace-path']...
 | VERIFY [COMPATIBLE]]

Syntax 2
RESTORE DATABASE 'database-name'
[restore-option ...]
FROM 'archive_device' ...

Parameters

• db_file: – relative or absolute path of the database to be restored. Can be the original
location, or a new location for the catalog store file.

• key_spec: – quoted string including mixed cases, numbers, letters, and special characters.
It might be necessary to protect the key from interpretation or alteration by the command
shell.

• restore-option: –
READONLY dbspace-or-file [, …]
KEY key_spec
RENAME file-name TO new-file-path ...

Examples

• Example 1 – This UNIX example restores the iqdemo database from tape devices /
dev/rmt/0 and /dev/rmt/2 on a Sun Solaris platform. On Solaris, the letter n after
the device name specifies “no rewind on close.” To specify this feature with RESTORE,
use the naming convention appropriate for your UNIX platform. (Windows does not
support this feature.)

RESTORE DATABASE 'iqdemo'
FROM '/dev/rmt/0n'
FROM '/dev/rmt/2n'

• Example 2 – Restore an encrypted database named marvin that was encrypted with the
key is!seCret:

RESTORE DATABASE 'marvin'
FROM 'marvin_bkup_file1'

SQL Statements

 264 Sybase IQ

FROM 'marvin_bkup_file2'
FROM 'marvin_bkup_file3'
KEY 'is!seCret'

• Example 3 – This example shows the syntax of a BACKUP statement and two possible
RESTORE statements. (This example uses objects in the iqdemo database for illustration
purposes. Note that iqdemo includes a sample user dbspace named iq_main that may
not be present in your database.)

Given this BACKUP statement:

BACKUP DATABASE READONLY DBSPACES iq_main
TO '/system1/IQ15/demo/backup/iqmain'

The dbspace iq_main can be restored using either of these RESTORE statements:

RESTORE DATABASE 'iqdemo' READONLY DBSPACES iq_main
FROM '/system1/IQ15/demo/backup/iqmain'

or

RESTORE DATABASE 'iqdemo'
FROM '/system1/IQ15/demo/backup/iqmain'

A selective backup backs up either all READWRITE dbspaces or specific read-only
dbspaces or dbfiles. Selective backups are a subtype of either full or incremental backups.

Notes:

• You can take a READONLY selective backup and restore all objects from this backup
(as in the second example above).

• You can take an all-inclusive backup and restore read-only files and dbspaces
selectively.

• You can take a READONLY selective backup of multiple read-only files and dbspaces
and restore a subset of read-only files and dbspaces selectively. See “Permissions.”

• You can restore the read-only backup, only if the read-only files have not changed since
the backup. Once the dbspace is made read-write again, the read-only backup is
invalid, unless you restore the entire read-write portion of the database back to the point
at which the read-only dbspace was read-only.

• Sybase recommends that you stick to one backup subtype, either selective or non-
selective. If you must switch from a non-selective to a selective backup, or vice versa,
always take a non-selective full backup before switching to the new subtype, to ensure
that you have all changes.

• Example 4 – Syntax to validate the database archives using the VERIFY clause, without
performing any write operations:

RESTORE DATABASE <database_name.db>
FROM '/sys1/dump/dmp1'
FROM '/sys1/dump/dmp2'
VERIFY

SQL Statements

Reference: Statements and Options 265

When you use validate, specify a different database name to avoid Database name
not unique errors. If the original database is iqdemo.db, for example, use
iq_demo_new.db instead:

RESTORE DATABASE iqdemo_new.db FROM iqdemo.bkp VERIFY

Usage

The RESTORE command requires exclusive access by the DBA to the database. This
exclusive access is achieved by setting the -gd switch to DBA, which is the default when you
start the server engine.

Issue the RESTORE command before you start the database (you must be connected to the
utility_db database). Once you finish specifying RESTORE commands for the type of
backup, that database is ready to be used. The database is left in the state that existed at the end
of the first implicit CHECKPOINT of the last backup you restored. You can now specify a
START DATABASE to allow other users to access the restored database.

The maximum size for a complete RESTORE command, including all clauses, is 32KB.

When restoring to a raw device, make sure the device is large enough to hold the dbspace you
are restoring. IQ RESTORE checks the raw device size and returns an error, if the raw device is
not large enough to restore the dbspace. See System Administration Guide: Volume 1 > Data
Backup, Recovery, and Archiving > Restoring Your Databases > The RESTORE Statement >
Moving Database Files > Restoring to a Raw Device.

BACKUP allows you to specify full or incremental backups. There are two kinds of
incremental backups. INCREMENTAL backs up only those blocks that have changed and
committed since the last backup of any type (incremental or full). INCREMENTAL SINCE
FULL backs up all the blocks that have changed since the last full backup. If a RESTORE of a
full backup is followed by one or more incremental backups (of either type), no modifications
to the database are allowed between successive RESTORE commands. This rule prevents a
RESTORE from incremental backups on a database in need of crash recovery, or one that has
been modified. You can still overwrite such a database with a RESTORE from a full backup.

Before starting a full restore, you must delete two files: the catalog store file (default name
dbname.db) and the transaction log file (default name dbname.log).

If you restore an incremental backup, RESTORE ensures that backup media sets are accessed
in the proper order. This order restores the last full backup tape set first, then the first
incremental backup tape set, then the next most recent set, and so forth, until the most recent
incremental backup tape set. If the DBA produced an INCREMENTAL SINCE FULL backup,
only the full backup tape set and the most recent INCREMENTAL SINCE FULL backup tape set
is required; however, if there is an INCREMENTAL backup made since the INCREMENTAL
SINCE FULL backup, it also must be applied.

Sybase IQ ensures that the restoration order is appropriate, or it displays an error. Any other
errors that occur during the restore results in the database being marked corrupt and unusable.
To clean up a corrupt database, do a RESTORE from a full backup, followed by any additional

SQL Statements

 266 Sybase IQ

incremental backups. Since the corruption probably happened with one of those backups, you
might need to ignore a later backup set and use an earlier set.

To restore read-only files or dbspaces from an archive backup, the database may be running
and the administrator may connect to the database when issuing the RESTORE statement. The
read-only file pathname need not match the names in the backup, if they otherwise match the
database system table information.

The database must not be running to restore a FULL, INCREMENTAL SINCE FULL, or
INCREMENTAL restore of either a READWRITE FILES ONLY or an all files backup. The
database may or may not be running to restore a backup of read-only files. When restoring
specific files in a read-only dbspace, the dbspace must be offline. When restoring read-only
files in a read-write dbspace, the dbspace can be online or offline. The restore closes the read-
only files, restores the files, and reopens those files at the end of the restore.

You can use selective restore to restore a read-only dbspace, as long as the dbspace is still in the
same read-only state.

FROM—Specifies the name of the archive_device from which you are restoring, delimited
with single quotation marks. If you are using multiple archive devices, specify them using
separate FROM clauses. A comma-separated list is not allowed. Archive devices must be
distinct. The number of FROM clauses determines the amount of parallelism Sybase IQ
attempts with regard to input devices.

The backup/restore API DLL implementation lets you specify arguments to pass to the DLL
when opening an archive device. For third-party implementations, the archive_device string
has this format:

'DLLidentifier::vendor_specific_information'

A specific example is:

'spsc::workorder=12;volname=ASD002'

The archive_device string length can be up to 1023 bytes. The DLLidentifier portion must be 1
to 30 bytes in length and can contain only alphanumeric and underscore characters. The
vendor_specific_information portion of the string is passed to the third-party implementation
without checking its contents.

Note: Only certain third-party products are certified with Sybase IQ using this syntax. See the
Release Bulletin for additional usage instructions or restrictions. Before using any third-party
product to back up your Sybase IQ database, make sure it is certified. See the Release Bulletin,
or see the Sybase Certification Reports for the Sybase IQ product in Technical Documents.

For the Sybase implementation of the backup/restore API, you need not specify information
other than the tape device name or file name. However, if you use disk devices, you must
specify the same number of archive devices on the RESTORE as given on the backup;
otherwise, you may have a different number of restoration devices than the number used to
perform the backup. A specific example of an archive device for the Sybase API DLL that
specifies a nonrewinding tape device for a UNIX system is:

SQL Statements

Reference: Statements and Options 267

http://www.sybase.com/support/techdocs/

'/dev/rmt/0n'

CATALOG ONLY—Restores only the backup header record from the archive media.

RENAME—Restore one or more Sybase IQ database files to a new location. Specify each
dbspace-name you are moving as it appears in the SYSFILE table. Specify new-dbspace-path
as the new raw partition, or the new full or relative path name, for that dbspace.

If relative paths were used to create the database files, the files are restored by default relative
to the catalog store file (the SYSTEM dbspace), and a rename clause is not required. If absolute
paths were used to create the database files and a rename clause is not specified for a file, it is
restored to its original location.

Relative path names in the RENAME clause work as they do when you create a database or
dbspace: the main IQ store dbspace, temporary store dbspaces, and Message Log are restored
relative to the location of db_file (the catalog store); user-created IQ store dbspaces are
restored relative to the directory that holds the main IQ dbspace.

Do not use the RENAME clause to move the SYSTEM dbspace, which holds the catalog store.
To move the catalog store, and any files created relative to it and not specified in a RENAME
clause, specify a new location in the db_file parameter.

VERIFY [COMPATIBLE]— Directs the server to validate the specified Sybase IQ database
backup archives for a full, incremental, incremental since full, or virtual backup. The backup
must be Sybase IQ version 12.6 or later. The verification process checks the specified archives
for the same errors a restore process checks, but performs no write operations. All status
messages and detected errors are written to the server log file.

You cannot use the RENAME clause with the VERIFY clause; an error is reported.

The backup verification process can run on a different host than the database host. You must
have DBA, BACKUP, or OPERATOR authority to run RESTORE VERIFY.

If the COMPATIBLE clause is specified with VERIFY, the compatibility of an incremental
archive is checked with the existing database files. If the database files do not exist on the
system on which RESTORE…VERIFY COMPATIBLE is invoked, an error is returned. If
COMPATIBLE is specified while verifying a full backup, the keyword is ignored; no
compatibility checks need to be made while restoring a full backup.

You must have the database and log files (.db and .log) to validate the backup of a read-only
dbspace within a full backup. If you do not have these files, validate the entire backup by
running RESTORE…VERIFY without the READONLY dbspace clause.

See System Administration Guide: Volume 1 > Data Backup, Recovery, and Archiving >
Restoring Your Databases > The RESTORE Statement > Validating the Database After You
Restore.

Note: The verification of a backup archive is different than the database consistency checker
(DBCC) verify mode (sp_iqcheckdb ‘verify...’). RESTORE VERIFY validates the

SQL Statements

 268 Sybase IQ

consistency of the backup archive to be sure it can be restored, whereas DBCC validates the
consistency of the database data.

Run sp_iqcheckdb ‘verify...’ before taking a backup. If an inconsistent database
is backed up, then restored from the same backup archive, the data continues to be in an
inconsistent state, even if RESTORE VERIFY reports a successful validation.

Other RESTORE issues:

• RESTORE to disk does not support raw devices as archival devices.
• Sybase IQ does not rewind tapes before using them; on rewinding tape devices, it does

rewind tapes after using them. You must position each tape to the start of the Sybase IQ
data before starting the RESTORE.

• During BACKUP and RESTORE operations, if Sybase IQ cannot open the archive device
(for example, when it needs the media loaded) and the ATTENDED option is ON, it waits
for ten seconds for you to put the next tape in the drive, and then tries again. It continues
these attempts indefinitely until either it is successful or the operation is terminated with
Ctrl+C.

• If you press Ctrl+C, RESTORE fails and returns the database to its state before the
restoration began.

• If disk striping is used, the striped disks are treated as a single device.
• The file_name column in the SYSFILE system table for the SYSTEM dbspace is not

updated during a restore. For the SYSTEM dbspace, the file_name column always
reflects the name when the database was created. The file name of the SYSTEM dbspace is
the name of the database file.

See also System Administration Guide: Volume 1 > Data Backup, Recovery, and
Archiving.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority. Users with SPACE ADMIN authority can perform read-only
selective restore when the -gu server startup option is set to value DBA (the default).

See also
• BACKUP Statement on page 41

SQL Statements

Reference: Statements and Options 269

RESUME Statement
Resumes a procedure after a query.

Syntax

Syntax 1
RESUME cursor-name

Syntax 2
RESUME [ALL]

Parameters

• cursor-name: – identifier
• cursor-name: – identifier or host-variable

Examples

• Example 1 – Embedded SQL examples:

EXEC SQL RESUME cur_employee;

and

EXEC SQL RESUME :cursor_var;

• Example 2 – dbisql example:

CALL sample_proc() ;
RESUME ALL;

Usage

The RESUME statement resumes execution of a procedure that returns result sets.

The procedure executes until the next result set (SELECT statement with no INTO clause) is
encountered. If the procedure completes and no result set is found, the
SQLSTATE_PROCEDURE_COMPLETE warning is set. This warning is also set when you
RESUME a cursor for a SELECT statement.

Note: The Syntax 1 RESUME statement is supported in dbisqlc, but is invalid in dbisql
(Interactive SQL) or when connected to the database using the iAnywhere JDBC driver.

The dbisql RESUME statement (Syntax 2) resumes the current procedure. If ALL is not
specified, executing RESUME displays the next result set or, if no more result sets are returned,
completes the procedure.

SQL Statements

 270 Sybase IQ

The dbisql RESUME ALL statement cycles through all result sets in a procedure, without
displaying them, and completes the procedure. This is useful mainly in testing procedures.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

The cursor must have been previously opened.

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154

RETURN Statement
Exits a function or procedure unconditionally, optionally providing a return value. Statements
following RETURN are not executed.

Syntax
RETURN [(expression)]

Examples

• Example 1 – Return the product of three numbers:

CREATE FUNCTION product (a numeric,
 b numeric ,
 c numeric)
RETURNS numeric
BEGIN
 RETURN (a * b * c) ;
END

• Example 2 – Calculate the product of three numbers:

SELECT product (2, 3, 4)

product (2,3,4)
24

• Example 3 – Avoid executing a complex query, if it is meaningless:

CREATE PROCEDURE customer_products
(in customer_id integer DEFAULT NULL)
RESULT (id integer, quantity_ordered integer)
BEGIN
 IF customer_id NOT IN (SELECT ID FROM Customers)
 OR customer_id IS NULL THEN
 RETURN

SQL Statements

Reference: Statements and Options 271

 ELSE
 SELECT ID,sum(
 SalesOrderItems.Quantity)
 FROM Products,
 SalesOrderItems,
 SalesOrders
 WHERE SalesOrders.CustomerID = customer_id
 AND SalesOrders.ID = SalesOrderItems.ID
 AND SalesOrderItems.ProductID = Products.D
 GROUP BY Products.ID
 END IF
END

Usage

If expression is supplied, the value of expression is returned as the value of the function or
procedure.

Within a function, the expression should be of the same data type as the RETURN data type of
the function.

RETURN is used in procedures for Transact-SQL-compatibility, and is used to return an
integer error code.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Transact-SQL procedures use the return statement to return an integer error

code.

Permissions

None

See also
• BEGIN … END Statement on page 47
• CREATE PROCEDURE Statement on page 110

REVOKE Statement
Removes permissions for specified users.

Syntax

Syntax 1
REVOKE
{ BACKUP
| CONNECT

SQL Statements

 272 Sybase IQ

| DBA
| GROUP
| INTEGRATED LOGIN
| KERBEROS LOGIN
| MEMBERSHIP IN GROUP userid [, …]
| MULTIPLEX ADMIN
| OPERATOR
| PERMS ADMIN
| PROFILE
| RESOURCE
| SPACE ADMIN
| USER ADMIN }
| VALIDATE
… FROM userid [, …]

Syntax 2
REVOKE
{…ALL [PRIVILEGES] | ALTER | DELETE | INSERT
| REFERENCE | SELECT [(column-name [, …])] | UPDATE [(column-
name, …)] }
… ON [owner.]table-name FROM userid [, …]

Syntax 3
REVOKE EXECUTE ON [owner.]procedure-name FROM userid [, …]

Syntax 4
REVOKE CREATE ON dbspace-name FROM userid [, …]

Examples

• Example 1 – Prevent user dave from inserting into the Employees table:

REVOKE INSERT ON Employees FROM dave

• Example 2 – Revoke resource permission from user Jim:

REVOKE RESOURCE FROM Jim

• Example 3 – Prevent user dave from updating the Employees table:

REVOKE UPDATE ON Employees FROM dave

• Example 4 – Revoke integrated login mapping from the user profile name
Administrator:

REVOKE INTEGRATED LOGIN FROM Administrator

• Example 5 – Disallow the finance group from executing the procedure
sp_customer_list:

REVOKE EXECUTE ON sp_customer_list
FROM finance

• Example 6 – Drop user ID franw from the database:

REVOKE CONNECT FROM franw

• Example 7 – Revoke CREATE privilege on dbspace DspHist from user Smith:

SQL Statements

Reference: Statements and Options 273

REVOKE CREATE ON DspHist FROM Smith

• Example 8 – Revoke CREATE permission on dbspace DspHist from user ID fionat
from the database:

REVOKE CREATE ON DspHist FROM fionat

Usage

The REVOKE statement is used to remove permissions that were given using the GRANT
statement.

Syntax 1 is used to revoke special user permissions (authorities) and Syntax 2 is used to revoke
table permissions. Syntax 3 is used to revoke permission to execute a procedure. REVOKE
CONNECT is used to remove a user ID from a database.

Note: Use system procedures, not GRANT and REVOKE, to add and remove user IDs.

REVOKE GROUP automatically revokes membership from all members of the group.

REVOKE CREATE removes CREATE permission on the specified dbspace from the specified
user IDs.

You cannot revoke permissions for a specific user within a group. If you do not want a specific
user to access a particular table, view, or procedure, then do not make that user a member of a
group that has permissions on that object.

Note: You cannot revoke the connect privileges of a user if that user owns database objects,
such as tables. Attempting to do so with a REVOKE statement or sp_dropuser procedure
returns an error such as “Cannot drop a user that owns tables in runtime
system.”

Side Effects

• Automatic commit

Standards

• SQL—Syntax 1 is a vendor extension to ISO/ANSI SQL grammar. Syntax 2 is an entry-
level feature. Syntax 3 is a Persistent Stored Module feature.

• Sybase—Syntax 2 and 3 are supported by Adaptive Server Enterprise. Syntax 1 is not
supported by Adaptive Server Enterprise. User management and security models are
different for Sybase IQ and Adaptive Server Enterprise.

Permissions

Must be the grantor of the permissions that are being revoked, or must have DBA authority.

For Syntax 1, REVOKE CONNECT, REVOKE INTEGRATED LOGIN and REVOKE
KERBEROS LOGIN require DBA or USER ADMIN authority. REVOKE GROUP,

SQL Statements

 274 Sybase IQ

REVOKE (authority, except DBA), and REVOKE MEMBERSHIP IN GROUP require DBA
or PERMS ADMIN authority. Only a DBA can revoke DBA authority.

If revoking CONNECT permissions or revoking table permissions from another user, the other
user must not be connected to the database.

For Syntax 2, REVOKE, REVOKE ALTER, REVOKE DELETE, REVOKE INSERT,
REVOKE REFERENCE, REVOKE SELECT, and REVOKE UPDATE require DBA or
PERMS ADMIN authority.

For Syntax 3, you must have DBA or PERMS ADMIN authority.

For Syntax 4, you must have DBA or SPACE ADMIN authority.

See also
• GRANT Statement on page 199

ROLLBACK Statement
Undoes any changes made since the last COMMIT or ROLLBACK.

Syntax
ROLLBACK [WORK]

Usage

ROLLBACK ends a logical unit of work (transaction) and undoes all changes made to the
database during this transaction. A transaction is the database work done between COMMIT or
ROLLBACK statements on one database connection.

Side Effects

• Closes all cursors not opened WITH HOLD.
• Releases locks held by the transaction issuing the ROLLBACK.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must be connected to the database.

See also
• COMMIT Statement on page 60

SQL Statements

Reference: Statements and Options 275

• ROLLBACK TO SAVEPOINT Statement on page 276

ROLLBACK TO SAVEPOINT Statement
Cancels any changes made since a SAVEPOINT.

Syntax
ROLLBACK TO SAVEPOINT [savepoint-name]

Usage

The ROLLBACK TO SAVEPOINT statement will undo any changes that have been made since
the SAVEPOINT was established.

Changes made prior to the SAVEPOINT are not undone; they are still pending. For a
description of savepoints, see System Administration Guide: Volume 2 > Using Procedures
and Batches.

The savepoint-name is an identifier that was specified on a SAVEPOINT statement within the
current transaction. If savepoint-name is omitted, the most recent savepoint is used. Any
savepoints since the named savepoint are automatically released.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Savepoints are not supported by Adaptive Server Enterprise. To implement

similar features in an Adaptive Server Enterprise-compatible manner, you can use nested
transactions.

Permissions

There must have been a corresponding SAVEPOINT within the current transaction.

See also
• RELEASE SAVEPOINT Statement on page 261

• ROLLBACK Statement on page 275

• SAVEPOINT Statement on page 278

SQL Statements

 276 Sybase IQ

ROLLBACK TRANSACTION Statement [T-SQL]
Cancels any changes made since a SAVE TRANSACTION.

Syntax
ROLLBACK TRANSACTION [savepoint-name]

Examples

• Example 1 – Return five rows with values 10, 20, and so on. The effect of the delete, but
not the prior inserts or update, is undone by the ROLLBACK TRANSACTION statement:

BEGIN

 SELECT row_num INTO #tmp

 FROM sa_rowgenerator(1, 5)

 UPDATE #tmp SET row_num=row_num*10

 SAVE TRANSACTION before_delete

 DELETE FROM #tmp WHERE row_num >= 3

 ROLLBACK TRANSACTION before_delete

 SELECT * FROM #tmp

END

Usage

ROLLBACK TRANSACTION undoes any changes that have been made since a savepoint was
established using SAVE TRANSACTION. Changes made prior to the SAVE TRANSACTION are
not undone; they are still pending.

The savepoint-name is an identifier that was specified on a SAVE TRANSACTION statement
within the current transaction. If savepoint-name is omitted, all outstanding changes are rolled
back. Any savepoints since the named savepoint are automatically released.

See SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference > Using SQL > SQL
statements > SQL statements (P-Z) > ROLLBACKTRANSACTION statement [T-SQL].

Standards

• Vendor extension to ISO/ANSI SQL grammar.

Permissions

There must be a corresponding SAVE TRANSACTION within the current transaction.

SQL Statements

Reference: Statements and Options 277

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/rollback-transaction-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/rollback-transaction-statement.html

See also
• BEGIN TRANSACTION Statement [T-SQL] on page 50

• SAVE TRANSACTION Statement [T-SQL] on page 278

SAVEPOINT Statement
Establishes a savepoint within the current transaction.

Syntax
SAVEPOINT [savepoint-name]

Usage

The savepoint-name is an identifier that can be used in a RELEASE SAVEPOINT or
ROLLBACK TO SAVEPOINT statement.

All savepoints are automatically released when a transaction ends. See System
Administration Guide: Volume 2 > Using Procedures and Batches.

Savepoints that are established while a trigger is executing or while an atomic compound
statement is executing are automatically released when the atomic operation ends.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported in Adaptive Server Enterprise. To implement similar features in

an Adaptive Server Enterprise-compatible manner, use nested transactions.

Permissions

None

See also
• RELEASE SAVEPOINT Statement on page 261

• ROLLBACK TO SAVEPOINT Statement on page 276

SAVE TRANSACTION Statement [T-SQL]
Establishes a savepoint within the current transaction.

Syntax
SAVE TRANSACTION [savepoint-name]

SQL Statements

 278 Sybase IQ

Examples

• Example 1 – Return five rows with values 10, 20, and so on. The effect of the delete, but
not the prior inserts or update, is undone by the ROLLBACK TRANSACTION statement.

BEGIN
 SELECT row_num INTO #tmp
 FROM sa_rowgenerator(1, 5)
 UPDATE #tmp SET row_num=row_num*10
 SAVE TRANSACTION before_delete
 DELETE FROM #tmp WHERE row_num >= 3
 ROLLBACK TRANSACTION before_delete
 SELECT * FROM #tmp
END

See SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference > Using SQL >
SQL statements > SQL statements (P-Z) > SAVE TRANSACTION statement [T-SQL].

Usage

Establishes a savepoint within the current transaction. The savepoint-name is an identifier that
can be used in a ROLLBACK TRANSACTION statement. All savepoints are automatically
released when a transaction ends.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.

Permissions

None

See also
• BEGIN TRANSACTION Statement [T-SQL] on page 50
• ROLLBACK TRANSACTION Statement [T-SQL] on page 277

SELECT Statement
Retrieves information from the database.

Syntax
SELECT [ALL | DISTINCT] [FIRST | TOP number-of-rows] select-list
… [INTO { host-variable-list | variable-list | table-name }]
… [INTO LOCAL TEMPORARY TABLE { table-name }]
… [FROM table-list]
… [WHERE search-condition]
… [GROUP BY [expression [, …]
 | ROLLUP (expression [, …])

SQL Statements

Reference: Statements and Options 279

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/save-transaction-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/save-transaction-statement.html

 | CUBE (expression [, …])]]
… [HAVING search-condition]
… [ORDER BY { expression | integer } [ASC | DESC] [, …]]

Parameters

• select-list: – { column-name | expression [[AS] alias-name] | * }

Examples

• Example 1 – List all tables and views in the system catalog:

SELECT tname
FROM SYS.SYSCATALOG
WHERE tname LIKE 'SYS%' ;

• Example 2 – List all customers and the total value of their orders:

SELECT CompanyName,
 CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
FROM Customers
 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesOrderItems
 LEFT OUTER JOIN Products
GROUP BY CompanyName
ORDER BY VALUE DESC

• Example 3 – List the number of employees:

SELECT count(*)
FROM Employees;

• Example 4 – An Embedded SQL SELECT statement:

SELECT count(*) INTO :size FROM Employees;

• Example 5 – List the total sales by year, model, and color:

SELECT year, model, color, sum(sales)
FROM sales_tab
GROUP BY ROLLUP (year, model, color);

• Example 6 – Select all items with a certain discount into a temporary table:

SELECT * INTO #TableTemp FROM lineitem
WHERE l_discount < 0.5

Usage

You can use a SELECT statement in dbisql to browse data in the database or to export data
from the database to an external file.

You can also use a SELECT statement in procedures or in Embedded SQL. The SELECT
statement with an INTO clause is used for retrieving results from the database when the
SELECT statement returns only one row. (Tables created with SELECT INTO do not inherit
IDENTITY/AUTOINCREMENT tables.) For multiple-row queries, you must use cursors.
When you select more than one column and do not use #table, SELECT INTO creates a

SQL Statements

 280 Sybase IQ

permanent base table. SELECT INTO #table always creates a temporary table regardless of the
number of columns. SELECT INTO table with a single column selects into a host variable.

Note: When writing scripts and stored procedures that SELECT INTO a temporary table, wrap
any select list item that is not a base column in a CAST expression. This guarantees that the
column data type of the temporary table is the required data type.

Tables with the same name but different owners require aliases. A query without aliases
returns incorrect results:

SELECT * FROM user1.t1
WHERE NOT EXISTS
(SELECT *
FROM user2.t1
WHERE user2.t1.col1 = user1.t.col1);

For correct results, use an alias for each table:

SELECT * FROM user1.t1 U1
WHERE NOT EXISTS
(SELECT *
FROM user2.t1 U2
WHERE U2.col1 = U1.col1);

The INTO clause with a variable-list is used only in procedures.

In SELECT statements, a stored procedure call can appear anywhere a base table or view is
allowed. Note that CIS functional compensation performance considerations apply. For
example, a SELECT statement can also return a result set from a procedure. For syntax and an
example, see SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference > Using SQL
> SQL statements > SQL statements (E-O) > FROM clause. See System Administration
Guide: Volume 2 > Using Procedures and Batches > Introduction to Procedures > Returning
Procedure Results in Result Sets for a restriction that affects selecting from temporary tables
within stored procedures.

ALL or DISTINCT—If neither is specified, all rows that satisfy the clauses of the SELECT
statement are retrieved. If DISTINCT is specified, duplicate output rows are eliminated. This is
called the projection of the result of the statement. In many cases, statements take significantly
longer to execute when DISTINCT is specified, so reserve the use of DISTINCT for cases where
it is necessary.

If DISTINCT is used, the statement cannot contain an aggregate function with a DISTINCT
parameter.

FIRST or TOP number-of-rows—Specifies the number of rows returned from a query. FIRST
returns the first row selected from the query. TOP returns the specified number of rows from
the query where number-of-rows is in the range 1 – 2147483647 and can be an integer constant
or integer variable.

SQL Statements

Reference: Statements and Options 281

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html

FIRST and TOP are used primarily with the ORDER BY clause. If you use these keywords
without an ORDER BY clause, the result might vary from run to run of the same query, as the
optimizer might choose a different query plan.

FIRST and TOP are permitted only in the top-level SELECT of a query, so they cannot be used
in derived tables or view definitions. Using FIRST or TOP in a view definition might result in
the keyword being ignored when a query is run on the view.

Using FIRST is the same as setting the ROW_COUNT database option to 1. Using TOP is the
same as setting the ROW_COUNT option to the same number of rows. If both TOP and
ROW_COUNT are set, then the value of TOP takes precedence.

The ROW_COUNT option could produce inconsistent results when used in a query involving
global variables, system functions or proxy tables. See ROW_COUNT Option for details.

select-list—The select-list is a list of expressions, separated by commas, specifying what is
retrieved from the database. If an asterisk (*) is specified, all columns of all tables in the FROM
clause (table-name all columns of the named table) are selected. Aggregate functions and
analytical functions are allowed in the select-list. See Reference: Building Blocks, Tables, and
Procedures > SQL Functions.

Note: In Sybase IQ, scalar subqueries (nested selects) are allowed in the select list of the top
level SELECT, as in SQL Anywhere and Adaptive Server Enterprise. Subqueries cannot be
used inside a conditional value expression (for example, in a CASE statement).

In Sybase IQ, subqueries can also be used in a WHERE or HAVING clause predicate (one of the
supported predicate types). However, inside the WHERE or HAVING clause, subqueries cannot
be used inside a value expression or inside a CONTAINS or LIKE predicate. Subqueries are not
allowed in the ON clause of outer joins or in the GROUP BY clause.

For more details on the use of subqueries, see Reference: Building Blocks, Tables, and
Procedures > SQL Language Elements > Expressions > Subqueries in Expressions and
Reference: Building Blocks, Tables, and Procedures > SQL Language Elements > Search
Conditions > Subqueries in Search Conditions.

alias-names can be used throughout the query to represent the aliased expression. Alias names
are also displayed by dbisql at the top of each column of output from the SELECT statement. If
the optional alias-name is not specified after an expression, dbisql displays the expression. If
you use the same name or expression for a column alias as the column name, the name is
processed as an aliased column, not a table column name.

INTO host-variable-list—Used in Embedded SQL only. It specifies where the results of the
SELECT statement goes. There must be one host-variable item for each item in the select-list.
Select list items are put into the host variables in order. An indicator host variable is also
allowed with each host-variable so the program can tell if the select list item was NULL.

SQL Statements

 282 Sybase IQ

INTO variable-list—Used in procedures only. It specifies where the results of the SELECT
statement go. There must be one variable for each item in the select list. Select list items are put
into the variables in order.

INTO table-name—Used to create a table and fill the table with data.

If the table name starts with #, the table is created as a temporary table. Otherwise, the table is
created as a permanent base table. For permanent tables to be created, the query must satisfy
these conditions:

• The select-list contains more than one item, and the INTO target is a single table-name
identifier, or

• The select-list contains a * and the INTO target is specified as owner.table.

To create a permanent table with one column, the table name must be specified as owner.table.
Omit the owner specification for a temporary table.

This statement causes a COMMIT before execution as a side effect of creating the table.
RESOURCE authority is required to execute this statement. No permissions are granted on the
new table: the statement is a short form for CREATE TABLE followed by INSERT...
SELECT.

A SELECT INTO from a stored procedure or function is not permitted, as SELECT INTO is an
atomic statement and you cannot do COMMIT, ROLLBACK, or some ROLLBACK TO
SAVEPOINT statements in an atomic statement. For more information, see System
Administration Guide: Volume 2 > Using Procedures and Batches > Control Statements >
Atomic Compound Statements and System Administration Guide: Volume 2 > Using
Procedures and Batches > Transactions and Savepoints in Procedures.

Tables created using this statement do not have a primary key defined. You can add a primary
key using ALTER TABLE. A primary key should be added before applying any updates or
deletes to the table; otherwise, these operations result in all column values being logged in the
transaction log for the affected rows.

Use of this clause is restricted to valid SQL Anywhere queries. Sybase IQ extensions are not
supported.

INTO LOCAL TEMPORARY TABLE—Creates a local, temporary table and populates it
with the results of the query. When you use this clause, you do not need to start the temporary
table name with #.

FROM table-list—Rows are retrieved from the tables and views specified in the table-list.
Joins can be specified using join operators. For more information, see FROM Clause. A
SELECT statement with no FROM clause can be used to display the values of expressions not
derived from tables. For example:

SELECT @@version

displays the value of the global variable @@version. This is equivalent to:

SQL Statements

Reference: Statements and Options 283

SELECT @@version
FROM DUMMY

Note: If you omit the FROM clause, or if all tables in the query are in the SYSTEM dbspace, the
query is processed by SQL Anywhere instead of Sybase IQ and might behave differently,
especially with respect to syntactic and semantic restrictions and the effects of option settings.
See the SQL Anywhere documentation for rules that might apply to processing.

If you have a query that does not require a FROM clause, you can force the query to be
processed by Sybase IQ by adding the clause “FROM iq_dummy,” where iq_dummy is a
one-row, one-column table that you create in your database.

WHERE search-condition—Specifies which rows are selected from the tables named in the
FROM clause. It is also used to do joins between multiple tables. This is accomplished by
putting a condition in the WHERE clause that relates a column or group of columns from one
table with a column or group of columns from another table. Both tables must be listed in the
FROM clause.

The use of the same CASE statement is not allowed in both the SELECT and the WHERE clause
of a grouped query. See Reference: Building Blocks, Tables, and Procedures > SQL Language
Elements > Search Conditions.

Sybase IQ also supports the disjunction of subquery predicates. Each subquery can appear
within the WHERE or HAVING clause with other predicates and can be combined using the
AND or OR operators. See Reference: Building Blocks, Tables, and Procedures > SQL
Language Elements > Search Conditions > Subqueries in Search Conditions > Disjunction of
Subquery Predicates.

GROUP BY—You can group by columns or alias names or functions. GROUP BY expressions
must also appear in the select list. The result of the query contains one row for each distinct set
of values in the named columns, aliases, or functions. The resulting rows are often referred to
as groups since there is one row in the result for each group of rows from the table list. In the
case of GROUP BY, all NULL values are treated as identical. Aggregate functions can then be
applied to these groups to get meaningful results.

GROUP BY must contain more than a single constant. You do not need to add constants to the
GROUP BY clause to select the constants in grouped queries. If the GROUP BY expression
contains only a single constant, an error is returned and the query is rejected.

When GROUP BY is used, the select list, HAVING clause, and ORDER BY clause cannot
reference any identifiers except those named in the GROUP BY clause. This exception applies:
The select-list and HAVING clause may contain aggregate functions.

ROLLUP operator—The ROLLUP operator in the GROUP BY clause lets you analyze
subtotals using different levels of detail. It creates subtotals that roll up from a detailed level to
a grand total.

The ROLLUP operator requires an ordered list of grouping expressions to be supplied as
arguments. ROLLUP first calculates the standard aggregate values specified in the GROUP BY.

SQL Statements

 284 Sybase IQ

Then ROLLUP moves from right to left through the list of grouping columns and creates
progressively higher-level subtotals. A grand total is created at the end. If n is the number of
grouping columns, ROLLUP creates n+1 levels of subtotals.

Restrictions on the ROLLUP operator:

• ROLLUP supports all of the aggregate functions available to the GROUP BY clause, but
ROLLUP does not currently support COUNT DISTINCT and SUM DISTINCT.

• ROLLUP can be used only in the SELECT statement; you cannot use ROLLUP in a SELECT
subquery.

• A multiple grouping specification that combines ROLLUP, CUBE, and GROUP BY
columns in the same GROUP BY clause is not currently supported.

• Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the ROLLUP operator to distinguish between stored NULL values
and NULL values in query results created by ROLLUP.

ROLLUP syntax:
SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [, …]
| ROLLUP (expression [, …])]

See Reference: Building Blocks, Tables, and Procedures > SQL Language Elements >
Expressions for the format of an operator expression.

GROUPING takes a column name as a parameter and returns a Boolean value:

Table 13. Values Returned by GROUPING with the ROLLUP Operator

If the value of the result is GROUPING returns

NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a ROLLUP operation 0 (FALSE)

a stored NULL 0 (FALSE)

For ROLLUP examples, see System Administration Guide: Volume 2 > Using OLAP.

CUBE operator—The CUBE operator in the GROUP BY clause analyzes data by forming the
data into groups in more than one dimension. CUBE requires an ordered list of grouping
expressions (dimensions) as arguments and enables the SELECT statement to calculate
subtotals for all possible combinations of the group of dimensions.

Restrictions on the CUBE operator:

• CUBE supports all of the aggregate functions available to the GROUP BY clause, but CUBE
does not currently support COUNT DISTINCT or SUM DISTINCT.

SQL Statements

Reference: Statements and Options 285

• CUBE does not currently support the inverse distribution analytical functions
PERCENTILE_CONT and PERCENTILE_DISC.

• CUBE can be used only in the SELECT statement; you cannot use CUBE in a SELECT
subquery.

• A multiple GROUPING specification that combines ROLLUP, CUBE, and GROUP BY
columns in the same GROUP BY clause is not currently supported.

• Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the CUBE operator to distinguish between stored NULL values and
NULL values in query results created by CUBE.

CUBE syntax:
SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [, …]
| CUBE (expression [, …])]

GROUPING takes a column name as a parameter and returns a Boolean value:

Table 14. Values Returned by GROUPING with the CUBE Operator

If the value of the result is GROUPING returns

NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a CUBE operation 0 (FALSE)

a stored NULL 0 (FALSE)

When generating a query plan, the IQ optimizer estimates the total number of groups
generated by the GROUP BY CUBE hash operation. The MAX_CUBE_RESULTS database
option sets an upper boundary for the number of estimated rows the optimizer considers for a
hash algorithm that can be run. If the actual number of rows exceeds the
MAX_CUBE_RESULT option value, the optimizer stops processing the query and returns the
error message “Estimate number: nnn exceed the
DEFAULT_MAX_CUBE_RESULT of GROUP BY CUBE or ROLLUP”, where nnn is the
number estimated by the IQ optimizer. See MAX_CUBE_RESULT Option for information
on setting the MAX_CUBE_RESULT option.

For CUBE examples, see System Administration Guide: Volume 2 > Using OLAP.

HAVING search-condition—Based on the group values and not on the individual row values.
The HAVING clause can be used only if either the statement has a GROUP BY clause or if the
select list consists solely of aggregate functions. Any column names referenced in the HAVING
clause must either be in the GROUP BY clause or be used as a parameter to an aggregate
function in the HAVING clause.

ORDER BY—Orders the results of a query. Each item in the ORDER BY list can be labeled as
ASC for ascending order or DESC for descending order. Ascending is assumed if neither is

SQL Statements

 286 Sybase IQ

specified. If the expression is an integer n, then the query results are sorted by the nth item in
the select list.

In Embedded SQL, the SELECT statement is used for retrieving results from the database and
placing the values into host variables with the INTO clause. The SELECT statement must return
only one row. For multiple row queries, you must use cursors.

You cannot include a Java class in the SELECT list, but you can, for example, create a function
or variable that acts as a wrapper for the Java class and then select it.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise, with some differences in syntax.

Permissions

Must have SELECT permission on the named tables and views.

See also
• CREATE VIEW Statement on page 149
• DECLARE CURSOR Statement [ESQL] [SP] on page 154
• FETCH Statement [ESQL] [SP] on page 187
• FROM Clause on page 193
• OPEN Statement [ESQL] [SP] on page 246
• UNION Operation on page 306
• MAX_CUBE_RESULT Option on page 405
• ROW_COUNT Option on page 437
• SUBQUERY_CACHING_PREFERENCE Option on page 442

SET Statement [ESQL]
Assigns a value to a SQL variable.

Syntax
SET identifier = expression

Examples

• Example 1 – This code fragment inserts a large text value into the database:

EXEC SQL BEGIN DECLARE SECTION;
char buffer[5001];
EXEC SQL END DECLARE SECTION;

SQL Statements

Reference: Statements and Options 287

EXEC SQL CREATE VARIABLE hold_text VARCHAR;
EXEC SQL SET hold_text = '';
for(;;) {
 /* read some data into buffer ... */
 size = fread(buffer, 1, 5000, fp);
 if(size <= 0) break;

 /* buffer must be null-terminated */
 buffer[size] = '\0';
 /* add data to blob using concatenation */
 EXEC SQL SET hold_text = hold_text || :buffer;
}
EXEC SQL INSERT INTO some_table VALUES (1, hold_text);
EXEC SQL DROP VARIABLE hold_text;

• Example 2 – This code fragment inserts a large binary value into the database:

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(5000) buffer;
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob LONG BINARY;
EXEC SQL SET hold_blob = '';
for(;;) {
 /* read some data into buffer ... */
 size = fread(&(buffer.array), 1, 5000, fp);
 if(size <= 0) break;
 buffer.len = size;

 /* add data to blob using concatenation
 Note that concatenation works for
 binary data too! */
 EXEC SQL SET hold_blob = hold_blob || :buffer;
}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

Usage

The SET statement assigns a new value to a variable that was previously created using the
CREATE VARIABLE statement.

You can use a variable in a SQL statement anywhere a column name is allowed. If there is no
column name that matches the identifier, the database server checks to see if there is a variable
that matches, and uses its value.

Variables are local to the current connection, and disappear when you disconnect from the
database or when you use DROP VARIABLE. They are not affected by COMMIT or ROLLBACK
statements.

Variables are necessary for creating large text or binary objects for INSERT or UPDATE
statements from Embedded SQL programs because Embedded SQL host variables are limited
to 32,767 bytes.

SQL Statements

 288 Sybase IQ

See also Reference: Building Blocks, Tables, and Procedures > SQL Language Elements >
Expressions.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Not supported. In Adaptive Server Enterprise, variables are assigned using the

SELECT statement with no table, a Transact-SQL syntax that is also supported by Sybase
IQ. The SET statement is used to set database options in Adaptive Server Enterprise.

Permissions

None

See also
• CREATE VARIABLE Statement on page 148

• DROP VARIABLE Statement on page 180

SET Statement [T-SQL]
Sets database options in an Adaptive Server Enterprise-compatible manner.

Syntax
SET option-name option-value

Usage

Database options in Sybase IQ are set using the SET OPTION statement. However, Sybase IQ
also provides support for the Adaptive Server Enterprise SET statement for a set of options
particularly useful for compatibility.

Table 15. Transact-SQL SET Options

Option name Option value

ANSINULL ON | OFF

ANSI_PERMISSIONS ON | OFF

CLOSE_ON_ENDTRANS ON

QUOTED_IDENTIFIER ON | OFF

ROWCOUNT integer

STRING_RTRUNCATION ON | OFF

SQL Statements

Reference: Statements and Options 289

Option name Option value

TRANSACTION ISOLATION
LEVEL

0 | 1 | 2 | 3

You can set these options using the Transact-SQL SET statement in Sybase IQ, as well as in
Adaptive Server Enterprise:

• SET ANSINULL { ON | OFF }—The default behavior for comparing values to NULL in
Sybase IQ and Adaptive Server Enterprise is different. Setting ANSINULL to OFF provides
Transact-SQL compatible comparisons with NULL.

• SET ANSI_PERMISSIONS { ON | OFF }—The default behavior in Sybase IQ and
Adaptive Server Enterprise regarding permissions required to carry out a DELETE
containing a column reference is different. Setting ANSI_PERMISSIONS to OFF provides
Transact-SQL-compatible permissions on DELETE.

• SET CLOSE_ON_ENDTRANS { ON }—When CLOSE_ON_ENDTRANS is set to ON
(the default and only allowable value), cursors are closed at the end of a transaction. With
the option set ON, CLOSE_ON_ENDTRANS provides Transact-SQL-compatible
behavior.

• SET QUOTED_IDENTIFIER { ON | OFF }—Controls whether strings enclosed in
double quotes are interpreted as identifiers (ON) or as literal strings (OFF).

• SET ROWCOUNT integer—The Transact-SQL ROWCOUNT option limits to the
specified integer the number of rows fetched for any cursor. This includes rows fetched by
repositioning the cursor. Any fetches beyond this maximum return a warning. The option
setting is considered when returning the estimate of the number of rows for a cursor on an
OPEN request.

Note: Sybase IQ supports the @@rowcount global variable. SELECT, INSERT, DELETE,
and UPDATE statements affect the value of the ROWCOUNT option. The ROWCOUNT
option has no effect on cursor operation, the IF statement, or creating/dropping a table or
procedure.

In Sybase IQ, if ROWCOUNT is greater than the number of rows that dbisql can display,
dbisql may do extra fetches to reposition the cursor. The number of rows actually
displayed may be less than the number requested. Also, if any rows are refetched due to
truncation warnings, the count might be inaccurate.
A value of zero resets the option to get all rows.

• SET STRING_RTRUNCATION { ON | OFF }—The default behavior in Sybase IQ and
Adaptive Server Enterprise when nonspace characters are truncated on assigning SQL
string data is different. Setting STRING_RTRUNCATION to ON provides Transact-SQL-
compatible string comparisons, including hexadecimal string (binary data type)
comparisons.

• SET TRANSACTION ISOLATION LEVEL { 0 | 1 | 2 | 3 }—Sets the locking isolation
level for the current connection, as described in System Administration Guide: Volume 1 >

SQL Statements

 290 Sybase IQ

Transactions and Versioning. For Adaptive Server Enterprise, only 1 and 3 are valid
options. For Sybase IQ, only 3 is a valid option.

In addition, this SET statement is allowed by Sybase IQ for compatibility, but has no effect:

• SET PREFETCH { ON | OFF }

Standards

• SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
• Sybase—Sybase IQ supports a subset of the Adaptive Server Enterprise database options.

Permissions

None

See also
• SET OPTION Statement on page 293

SET CONNECTION Statement [ESQL] [Interactive SQL]
Changes the active database connection.

Syntax
SET CONNECTION [connection-name]

Parameters

• connection-name: – identifier, string, or host-variable

Examples

• Example 1 – In Embedded SQL:

EXEC SQL SET CONNECTION :conn_name

• Example 2 – From dbisql, set the current connection to the connection named “conn1”:

SET CONNECTION conn1

Usage

The current connection state is saved and is resumed when it again becomes the active
connection. If connection-name is omitted and there is a connection that was not named, that
connection becomes the active connection.

Note: When cursors are opened in Embedded SQL, they are associated with the current
connection. When the connection is changed, the cursor names are not accessible. The cursors

SQL Statements

Reference: Statements and Options 291

remain active and in position and become accessible when the associated connection becomes
active again.

Standards

• SQL— dbisql use is a vendor extension to ISO/ANSI SQL grammar. Embedded SQL is a
full-level feature.

• Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
• CONNECT Statement [ESQL] [Interactive SQL] on page 63

• DISCONNECT Statement [Interactive SQL] on page 169

SET DESCRIPTOR Statement [ESQL]
Describes the variables in a SQL descriptor area, and places data into the descriptor area.

Syntax
SET DESCRIPTOR descriptor-name
… { COUNT = { integer | hostvar }
| VALUE n assignment [, …] }

Parameters

• assignment: – { { TYPE | SCALE | PRECISION | LENGTH | INDICATOR } = { integer |
hostvar } | DATA = hostvar }

Examples

• Example 1 – See ALLOCATE DESCRIPTOR Statement [ESQL].

Usage

SET...COUNT sets the number of described variables within the descriptor area. The value for
count cannot exceed the number of variables specified when the descriptor area was allocated.

The value n specifies the variable in the descriptor area upon which the assignments are
performed.

Type checking is performed when doing SET...DATA to ensure that the variable in the
descriptor area has the same type as the host variable.

SQL Statements

 292 Sybase IQ

If an error occurs, the code is returned in the SQLCA.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
• ALLOCATE DESCRIPTOR Statement [ESQL] on page 5

• DEALLOCATE DESCRIPTOR Statement [ESQL] on page 151

SET OPTION Statement
Changes database options.

Syntax
SET [EXISTING] [TEMPORARY] OPTION
… [userid. | PUBLIC.]option-name = [option-value]

Parameters

• userid: – identifier, string, or host-variable
• option-name: – identifier, string, or host-variable
• option-value: – host-variable (indicator allowed), string, identifier, or number

Examples

• Example 1 – Set the DATE_FORMAT option:

SET OPTION public.date_format = 'Mmm dd yyyy'

• Example 2 – Set the WAIT_FOR_COMMIT option to on:

SET OPTION wait_for_commit = 'on'

• Example 3 – Embedded SQL examples:

EXEC SQL SET OPTION :user.:option_name = :value;
EXEC SQL SET TEMPORARY OPTION Date_format = 'mm/dd/yyyy';

SQL Statements

Reference: Statements and Options 293

Usage

The SET OPTION statement is used to change options that affect the behavior of the database
and its compatibility with Transact-SQL. Setting the value of an option can change the
behavior for all users or an individual user, in either a temporary or permanent scope.

The classes of options are:

• General database options
• Transact-SQL compatibility database options

Specifying either a user ID or the PUBLIC user ID determines whether the option is set for an
individual user, a user group represented by userid, or the PUBLIC user ID (the user group to
which all users are a member). If the option applies to a group user ID, option settings are not
inherited by members of the group—the change is applied only to the group user ID. If no user
group is specified, the option change is applied to the currently logged-in user ID that issued
the SET OPTION statement.

For example, this statement applies an option change to the PUBLIC user ID:

SET OPTION Public.login_mode = standard

Only users with DBA privileges have the authority to set an option for the PUBLIC user ID.

In Embedded SQL, only database options can be set temporarily.

Changing the value of an option for the PUBLIC user ID sets the value of the option for any
user that has not set its own value. Option values cannot be set for an individual user ID unless
there is already a PUBLIC user ID setting for that option.

Users cannot set the options of another user, unless they have DBA authority.

Users can use the SET OPTION statement to change the values for their own user IDs. Setting
the value of an option for a user ID other than your own is permitted only if you have DBA
authority.

If you use the EXISTING keyword, option values cannot be set for an individual user ID unless
there is already a PUBLIC user ID setting for that option.

Adding the TEMPORARY keyword to the SET OPTION statement changes the duration that the
change takes effect. Without the TEMPORARY keyword, an option change is permanent: it
does not change until it is explicitly changed using SET OPTION.

When SET TEMPORARY OPTION is applied using an individual user ID, the new option value
is in effect as long as that user is logged in to the database.

When SET TEMPORARY OPTION is used with the PUBLIC user ID, the change is in place for
as long as the database is running. When the database is shut down, TEMPORARY options for
the PUBLIC user ID revert back to their permanent value.

Temporarily setting an option for the PUBLIC user ID, as opposed to setting the value of the
option permanently, offers a security advantage. For example, when the LOGIN_MODE option

SQL Statements

 294 Sybase IQ

is enabled, the database relies on the login security of the system on which it is running.
Enabling the option temporarily means a database relying on the security of a Windows
domain is not compromised if the database is shut down and copied to a local machine. In that
case, the temporary enabling of LOGIN_MODE reverts to its permanent value, which might be
Standard, a mode in which integrated logins are not permitted.

If option-value is omitted, the specified option setting is deleted from the database. If it was a
personal option setting, the value used reverts to the PUBLIC setting. If a TEMPORARY option
is deleted, the option setting reverts to the permanent setting.

Note: For all database options that accept integer values, Sybase IQ truncates any decimal
option-value setting to an integer value. For example, the value 3.8 is truncated to 3.

The maximum length of option-value when set to a string is 127 bytes.

Warning! Changing option settings while fetching rows from a cursor is not supported, as it
can lead to unpredictable behavior. For example, changing the DATE_FORMAT setting while
fetching from a cursor returns different date formats among the rows in the result set. Do not
change option settings while fetching rows.

For information about specific database options, see Database Options.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise. Sybase IQ does support some

Adaptive Server Enterprise options using the SET statement.

Permissions

None required to set your own options. Must have DBA authority to set database options for
another user or PUBLIC.

See also
• Database Options on page 317

SET OPTION Statement [Interactive SQL]
Changes Interactive SQL (dbisql) options.

Syntax

Syntax 1
SET [TEMPORARY] OPTION
… [userid. | PUBLIC.]option-name = [option-value]

Syntax 2

SQL Statements

Reference: Statements and Options 295

SET PERMANENT

Syntax 3
SET

Parameters

• userid: – identifier, string, or host-variable
• option-name: – identifier, string, or host-variable
• option-value: – host-variable (indicator allowed), string, identifier, or number

Usage

SET PERMANENT (Syntax 2) stores all current dbisql options in the SYSOPTION system
table. These settings are automatically established every time dbisql is started for the current
user ID.

Syntax 3 is used to display all of the current option settings. If there are temporary options set
for dbisql or the database server, these display; otherwise, permanent option settings are
displayed.

If you incorrectly type the name of an option when you are setting the option, the incorrect
name is saved in the SYSOPTION table. You can remove the incorrectly typed name from the
SYSOPTION table by setting the option PUBLIC with an equality after the option name and
no value:

SET OPTION PUBLIC.a_mistyped_name=;

See also
• Database Options on page 317

SET SQLCA Statement [ESQL]
Tells the SQL preprocessor to use a SQLCA other than the default global sqlca.

Syntax
SET SQLCA sqlca

Parameters

• sqlca: – identifier or string

Examples

• Example 1 – This function can be found in a Windows DLL. Each application that uses the
DLL has its own SQLCA.

SQL Statements

 296 Sybase IQ

an_sql_code FAR PASCAL ExecuteSQL(an_application *app, char
*com)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *sqlcommand;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL SET SQLCA "&app->.sqlca";
 sqlcommand = com;
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL EXECUTE IMMEDIATE :sqlcommand;
return(SQLCODE);
}

Usage

The current SQLCA pointer is implicitly passed to the database interface library on every
Embedded SQL statement. All Embedded SQL statements that follow this statement in the C
source file use the new SQLCA. This statement is necessary only when you are writing code
that is reentrant. The sqlca should reference a local variable. Any global or module static
variable is subject to being modified by another thread.

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere embedded SQL > The SQL Communication Area
(SQLCA).

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Open Client/Open Server.

Permissions

None

SIGNAL Statement
Signals an exception condition.

Syntax
SIGNAL exception-name

Usage

SIGNAL lets you raise an exception. See System Administration Guide: Volume 2 > Using
Procedures and Batches for a description of how exceptions are handled.

SQL Statements

Reference: Statements and Options 297

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlca.html

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—SIGNAL is not supported by Adaptive Server Enterprise.

Permissions

None

See also
• BEGIN … END Statement on page 47

• RESIGNAL Statement on page 263

START DATABASE Statement [Interactive SQL]
Starts a database on the specified database server.

Syntax
START DATABASE database-file
… [AS database-name]
… [ON engine-name]
… [AUTOSTOP { YES | NO }]
… [KEY key]

Examples

• Example 1 – On a UNIX system, start the database file /s1/sybase/sample_2.db
on the current server:

START DATABASE '/s1/sybase/sample_2.db'

• Example 2 – On a Windows system, start the database file c:\sybase
\sample_2.db as sam2 on the server eng1:

START DATABASE 'c:\sybase\sample_2.db'
AS sam2
ON eng1

Usage

The database server must be running. The full path must be specified for the database file
unless the file is located in the current directory.

The START DATABASE statement does not connect dbisql to the specified database: a
CONNECT statement must be issued to make a connection.

SQL Statements

 298 Sybase IQ

If database-name is not specified, a default name is assigned to the database. This default name
is the root of the database file. For example, a database in file c:\sybase\IQ_15\demo
\iqdemo.db is given the default name iqdemo.

If engine-name is not specified, the default database server is assumed. The default database
server is the first started server among those currently running.

The default setting for the AUTOSTOP clause is YES. With AUTOSTOP set to YES, the
database is unloaded when the last connection to it is dropped. If AUTOSTOP is set to NO, the
database is not unloaded.

If the database is strongly encrypted, enter the KEY value (password) using the KEY clause.

Sybase recommends that you start only one database on a given Sybase IQ database server.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

Must have DBA authority.

START ENGINE Statement [Interactive SQL]
Starts a database server.

Syntax
START ENGINE AS engine-name [STARTLINE command-string]

Examples

• Example 1 – Start a database server named eng1 without starting any databases on it:

START ENGINE AS eng1

• Example 2 – Use of the STARTLINE clause:

START ENGINE AS eng1 STARTLINE 'start_iq -c 8096'

Usage

To specify a set of options for the server, use the STARTLINE keyword together with a
command string.

Valid command strings are those that conform to the database server command line
description in Utility Guide > start_iq Database Server Startup Utility.

SQL Statements

Reference: Statements and Options 299

Note: Several server options are required for Sybase IQ to operate well. To ensure that you are
using the right set of options, Sybase recommends that you start your server by using either
Sybase Central or a configuration file with the start_iq command.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

None

See also
• STOP ENGINE Statement [Interactive SQL] on page 302

START JAVA Statement
Starts the Java VM.

Syntax
START JAVA

Examples

• Example 1 – Start the Java VM:

START JAVA

Usage

Use START JAVA to load the VM at a convenient time, so that when the user starts to use Java
functionality there is no initial pause while the VM is loaded.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

Must have DBA authority.

SQL Statements

 300 Sybase IQ

See also
• STOP JAVA Statement on page 302

STOP DATABASE Statement [Interactive SQL]
Stops a database on the specified database server.

Syntax
STOP DATABASE database-name
… [ON engine-name]
… [UNCONDITIONALLY]

Examples

• Example 1 – Stop the database named sample on the default server:

STOP DATABASE sample

Usage

If engine-name is not specified, all running engines are searched for a database of the specified
name.

The database-name is the name specified in the -n parameter when the database is started, or
specified in the DBN (DatabaseName) connection parameter. This name is typically the file
name of the database file that holds the catalog store, without the .db extension, but can be
any user-defined name.

If UNCONDITIONALLY is supplied, the database is stopped, even if there are connections to the
database. If UNCONDITIONALLY is not specified, the database is not stopped if there are
connections to it.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

Must have DBA authority.

See also
• DISCONNECT Statement [Interactive SQL] on page 169

• START DATABASE Statement [Interactive SQL] on page 298

SQL Statements

Reference: Statements and Options 301

STOP ENGINE Statement [Interactive SQL]
Stops a database server.

Syntax
STOP ENGINE engine-name [UNCONDITIONALLY]

Examples

• Example 1 – Stop the database server named sample:

STOP ENGINE sample

Usage

If UNCONDITIONALLY is supplied, the database server is stopped, even if there are
connections to the server. If UNCONDITIONALLY is not specified, the database server is not
stopped if there are connections to it.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

None

See also
• START ENGINE Statement [Interactive SQL] on page 299

STOP JAVA Statement
Stops the Java VM.

Syntax
STOP JAVA

Examples

• Example 1 – Stop the Java VM:

SQL Statements

 302 Sybase IQ

STOP JAVA

Usage

The main use of STOP JAVA is to economize on the use of system resources.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

DBA authority

See also
• START JAVA Statement on page 300

SYNCHRONIZE JOIN INDEX Statement
Synchronizes one or more join indexes after one of their base tables has been updated.

Syntax
SYNCHRONIZE JOIN INDEX [join-index-name [, join-index-name]…]

Examples

• Example 1 – Synchronize the join indexes emp_dept_join1 and
emp_dept_join2:

SYNCHRONIZE JOIN INDEX emp_dept_join1, emp_dept_join2

Usage

When a base table that contributes to a join index is updated, Sybase IQ flags the join index as
unavailable. Queries that previously took advantage of the join index perform an ad-hoc join
instead, perhaps affecting their performance. The SYNCHRONIZE JOIN INDEX command lets
you bring the join index up-to-date, making it available for queries to use.

Note: A join index defines a one-to-many relationship (also known as primary key to foreign
key) between two table columns. If an insert into the “one” (or primary key) column results in
one or more duplicate values, the join index becomes invalid and cannot be synchronized. You
must delete the rows containing the duplicate values before SYNCHRONIZE JOIN INDEX can
make it valid again.

Synchronizing join indexes can be time-consuming, depending on the size of the base tables
that make up the join. It is up to you to decide when to use this command. You can schedule it

SQL Statements

Reference: Statements and Options 303

as a batch job at night or on weekends when you expect your system to have less work to do.
You can perform it immediately after Sybase IQ commits a series of inserts and deletes to
make the join index available as soon as possible. However, do not synchronize a join index
after each insert or delete as the time to update the join index depends on the order of the
updates to the tables.

SYNCHRONIZE JOIN INDEX lets you specify multiple join-index-names, separated by
commas. You must be the owner of each join index or the DBA. If you do not specify a join-
index-name, Sybase IQ synchronizes all the join indexes you own (or all the join indexes in the
database if you are the DBA), which might adversely affect the performance of your system.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

Must be owner of the join indexes or be DBA.

See also
• CREATE JOIN INDEX Statement on page 104

TRIGGER EVENT Statement
Triggers a named event. The event may be defined for event triggers or be a scheduled event.

Syntax
TRIGGER EVENT event-name [(parm = value, ...)]

Usage

Actions are tied to particular trigger conditions or schedules by a CREATE EVENT statement.
You can use TRIGGER EVENT to force the event handler to execute, even when the scheduled
time or trigger condition has not occurred. TRIGGER EVENT does not execute disabled event
handlers

When a triggering condition causes an event handler to execute, the database server can
provide context information to the event handler using the event_parameter function.
TRIGGER EVENT allows you to explicitly supply these parameters, to simulate a context for
the event handler.

When you trigger an event, specify the event name. You can list event names by querying the
system table SYSEVENT. For example:

SQL Statements

 304 Sybase IQ

SELECT event_id, event_name FROM SYS.SYSEVENT

See System Administration Guide: Volume 2 > Automating Tasks Using Schedules and
Events.

Permissions

Must have DBA authority.

See also
• ALTER EVENT Statement on page 14

• CREATE EVENT Statement on page 81

TRUNCATE TABLE Statement
Deletes all rows from a table without deleting the table definition.

Syntax

Syntax 1
TRUNCATE TABLE [owner.]table-name

Syntax 2
TRUNCATE TABLE [owner .]table [PARTITION partition-name]

Examples

• Example 1 – Delete all rows from the Sale table:

TRUNCATE TABLE Sale

Usage

TRUNCATE TABLE is equivalent to a DELETE statement without a WHERE clause, except that
each individual row deletion is not entered into the transaction log. After a TRUNCATE TABLE
statement, the table structure and all of the indexes continue to exist until you issue a DROP
TABLE statement. The column definitions and constraints remain intact, and permissions
remain in effect.

The TRUNCATE TABLE statement is entered into the transaction log as a single statement, like
data definition statements. Each deleted row is not entered into the transaction log.

The partition clause specifies which partition to truncate. It does not affect data in other
partitions.

See also System Administration Guide: Volume 1 > Transactions and Versioning.

SQL Statements

Reference: Statements and Options 305

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

• Must be the table owner or have DBA authority.
• For both temporary and base tables, you can execute TRUNCATE TABLE while other users

have read access to the table. This behavior differs from SQL Anywhere, which requires
exclusive access to truncate a base table. Sybase IQ table versioning ensures that
TRUNCATE TABLE can occur while other users have read access; however, the version of
the table these users see depends on when the read and write transactions commit.

See also
• DELETE Statement on page 162

UNION Operation
Combines the results of two or more select statements.

Syntax
select-without-order-by
… UNION [ALL] select-without-order-by
… [UNION [ALL] select-without-order-by]…
… [ORDER BY integer [ASC | DESC] [, …]]

Examples

• Example 1 – List all distinct surnames of employees and customers:

SELECT Surname
FROM Employees
UNION
SELECT Surname
FROM Customers

Usage

The results of several SELECT statements can be combined into a larger result using UNION.
The component SELECT statements must each have the same number of items in the select
list, and cannot contain an ORDER BY clause. See FROM Clause.

The results of UNION ALL are the combined results of the component SELECT statements. The
results of UNION are the same as UNION ALL, except that duplicate rows are eliminated.
Eliminating duplicates requires extra processing, so UNION ALL should be used instead of
UNION where possible.

SQL Statements

 306 Sybase IQ

If corresponding items in two select lists have different data types, Sybase IQ chooses a data
type for the corresponding column in the result, and automatically converts the columns in
each component SELECT statement appropriately.

If ORDER BY is used, only integers are allowed in the order by list. These integers specify the
position of the columns to be sorted.

The column names displayed are the same column names that display for the first SELECT
statement.

Note: When SELECT statements include constant values and UNION ALL views but omit the
FROM clause, use iq_dummy to avoid errors. See FROM Clause for details.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise, which also supports a COMPUTE

clause.

Permissions

Must have SELECT permission for each of the component SELECT statements.

See also
• FROM Clause on page 193

• SELECT Statement on page 279

UPDATE Statement
Modifies existing rows of a single table, or a view that contains only one table.

Syntax
UPDATE table
... SET [column-name = expression, …
... [FROM table-expression,]
... [WHERE search-condition]
... [ORDER BY expression [ASC | DESC] , …]

FROM table-expression

Parameters

• table-expression: – table-spec | table-expression join-type table-spec [ON condition] |
table-expression, …

SQL Statements

Reference: Statements and Options 307

Examples

• Example 1 – Transfer employee Philip Chin (employee 129) from the sales department to
the marketing department:

UPDATE Employees
SET DepartmentID = 400
WHERE EmployeeID = 129;

• Example 2 – The Marketing Department (400) increases bonuses from 4% to 6% of each
employee’s base salary:

UPDATE Employees
SET bonus = base * 6/100
WHERE DepartmentID =400;

• Example 3 – Each employee gets a pay increase with the department bonus:

UPDATE Employees
SET emp.Salary = emp.Salary + dept.bonus
FROM Employees emp, Departments dept
WHERE emp.DepartmentID = dept.DepartmentID;

• Example 4 – Another way to give each employee a pay increase with the department
bonus:

UPDATE Employees
SET emp.salary = emp.salary + dept.bonus
FROM Employees emp JOIN Departments dept
ON emp.DepartmentID = dept.DepartmentID;

Usage

The table on which you use UPDATE may be a base table or a temporary table.

Note: The base table cannot be part of any join index.

Each named column is set to the value of the expression on the right-hand side of the equal
sign. Even column-name can be used in the expression—the old value is used.

The FROM clause can contain multiple tables with join conditions and returns all the columns
from all the tables specified and filtered by the join condition and/or WHERE condition.

Using the wrong join condition in a FROM clause causes unpredictable results. If the FROM
clause specifies a one-to-many join and the SET clause references a cell from the “many” side
of the join, the cell is updated from the first value selected. In other words, if the join condition
causes multiple rows of the table to be updated per row ID, the first row returned becomes the
update result. For example:

UPDATE T1
SET T1.c2 = T2.c2
FROM T1 JOIN TO T2
ON T1.c1 = T2.c1

If table T2 has more than one row per T2.c1, results might be as follows:

T2.c1 T2.c2 T2.c3

SQL Statements

 308 Sybase IQ

1 4 3

1 8 1

1 6 4

1 5 2

With no ORDER BY clause, T1.c2 may be 4, 6, 8, or 9.

• With ORDER BY T2.c3, T1.c2 is updated to 8.

• With ORDER BY T2.c3 DESC, T1.c2 is updated to 6.

Sybase IQ rejects any UPDATE statement in which the table being updated is on the null-
supplying side of an outer join. In other words:

• In a left outer join, the table on the left side of the join cannot be missing any rows on joined
columns.

• In a right outer join, the table on the right side of the join cannot be missing any rows on
joined columns.

• In a full outer join, neither table can be missing any rows on joined columns.

For example, in this statement, table T1 is on the left side of a left outer join, and thus cannot
contain be missing any rows:

UPDATE T1
SET T1.c2 = T2.c4
FROM T1 LEFT OUTER JOIN T2
ON T1.rowid = T2.rowid

Normally, the order in which rows are updated does not matter. However, in conjunction with
the NUMBER(*) function, an ordering can be useful to get increasing numbers added to the
rows in some specified order. If you are not using the NUMBER(*) function, avoid using the
ORDER BY clause, because the UPDATE statement performs better without it.

In an UPDATE statement, if the NUMBER(*) function is used in the SET clause and the FROM
clause specifies a one-to-many join, NUMBER(*) generates unique numbers that increase, but
do not increment sequentially due to row elimination. For more information about the
NUMBER(*) function, see Reference: Building Blocks, Tables, and Procedures > SQL
Functions > Alphabetical List of Functions > NULLIF Function [Miscellaneous].

You can use the ORDER BY clause to control the result from an UPDATE when the FROM
clause contains multiple joined tables.

Sybase IQ ignores the ORDER BY clause in searched UPDATE and returns a message that the
syntax is not valid ANSI syntax.

If no WHERE clause is specified, every row is updated. If you specify a WHERE clause, Sybase
IQ updates only rows satisfying the search condition.

The left side of each SET clause must be a column in a base table.

SQL Statements

Reference: Statements and Options 309

Views can be updated provided the SELECT statement defining the view does not contain a
GROUP BY clause or an aggregate function, or involve a UNION operation. The view should
contain only one table.

Character strings inserted into tables are always stored in the case they are entered, regardless
of whether the database is case-sensitive or not. Thus a character data type column updated
with the string Value is always held in the database with an uppercase V and the remainder of
the letters lowercase. SELECT statements return the string as Value. If the database is not
case-sensitive, however, all comparisons make Value the same as value, VALUE, and so on.
The IQ server may return results in any combination of lowercase and uppercase, so you
cannot expect case-sensitive results in a database that is case-insensitive (CASE IGNORE).
Further, if a single-column primary key already contains an entry Value, an INSERT of value
is rejected, as it would make the primary key not unique.

If the update violates any check constraints, the whole statement is rolled back.

Sybase IQ supports scalar subqueries within the SET clause, for example:

UPDATE r
SET r.o= (SELECT MAX(t.o)
FROM t ... WHERE t.y = r.y),
r.s= (SELECT SUM(x.s)
FROM x ...
WHERE x.x = r.x)
WHERE r.a = 10

Sybase IQ supports DEFAULT column values in UPDATE statements. If a column has a
DEFAULT value, this DEFAULT value is used as the value of the column in any UPDATE
statement that does not explicitly modify the value for the column.

For detailed information on the use of column DEFAULT values, see System Administration
Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data Integrity.

See CREATE TABLE Statement for details about updating IDENTITY/AUTOINCREMENT
columns, which are another type of DEFAULT column.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—With these exceptions, syntax of the IQ UPDATE statement is generally

compatible with the Adaptive Server Enterprise UPDATE statement Syntax 1: Sybase IQ
supports multiple tables with join conditions in the FROM clause.
Updates of remote tables are limited to Sybase IQ syntax supported by CIS, as described in
System Administration Guide: Volume 2 > Accessing Remote Data and System
Administration Guide: Volume 2 > Server Classes for Remote Data Access.

Permissions

Must have UPDATE permission for the columns being modified.

SQL Statements

 310 Sybase IQ

See also
• CREATE TABLE Statement on page 133

UPDATE (positioned) Statement [ESQL] [SP]
Modifies the data at the current location of a cursor.

Syntax

UPDATE table-list
SET set-item, …
WHERE CURRENT OF cursor-name

Parameters

• cursor-name: – identifier | hostvar
• set-item: – column-name [.field-name…] = scalar-value

Examples

• Example 1 – An UPDATE statement using WHERE CURRENT OF cursor:

UPDATE Employees SET surname = 'Jones'
WHERE CURRENT OF emp_cursor

Usage

This form of the UPDATE statement updates the current row of the specified cursor. The
current row is defined to be the last row successfully fetched from the cursor, and the last
operation on the cursor cannot have been a positioned DELETE statement.

SET—The columns that are referenced in set-item must be in the base table that is updated.
They cannot refer to aliases, nor to columns from other tables or views. If the table you are
updating is given a correlation name in the cursor specification, you must use the correlation
name in the SET clause. The expression on the right side of the SET clause may reference
columns, constants, variables, and expressions from the SELECT clause of the query. The set-
item expression cannot contain functions or expressions.

The requested columns are set to the specified values for the row at the current row of the
specified query. The columns must be in the select list of the specified open cursor.

Changes effected by positioned UPDATE statements are visible in the cursor result set, except
where client-side caching prevents seeing these changes. Rows that are updated so that they no
longer meet the requirements of the WHERE clause of the open cursor are still visible.

Sybase does not recommend the use of ORDER BY in the WHERE CURRENT OF clause. The
ORDER BY columns may be updated, but the result set does not reorder. The results appear to
fetch out of order and appear to be incorrect.

SQL Statements

Reference: Statements and Options 311

Since Sybase IQ does not support the CREATE VIEW... WITH CHECK OPTION, positioned
UPDATE does not support this option. The WITH CHECK OPTION does not allow an update
that creates a row that is not visible by the view.

A rowid column cannot be updated by a positioned UPDATE.

Sybase IQ supports repeatedly updating the same row in the result set.

See also Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqcursorinfo Procedure.

Standards

• The range of cursors that can be updated may contain vendor
extensions to ISO/ANSI SQL grammar if the
ANSI_UPDATE_CONSTRAINTS option is set to OFF.

• Embedded SQL use is supported by Open Client/Open Server, and procedure and trigger
use is supported in SQL Anywhere.

Permissions

Must have UPDATE permission on the columns being modified.

See also
• DECLARE CURSOR Statement [ESQL] [SP] on page 154

• DELETE Statement on page 162

• DELETE (positioned) Statement [ESQL] [SP] on page 164

• UPDATE Statement on page 307

WAITFOR Statement
Delays processing for the current connection for a specified amount of time or until a given
time.

Syntax

WAITFOR {
DELAY time | TIME time }
[CHECK EVERY integer }
[AFTER MESSAGE BREAK]

Parameters

• time: – string

SQL Statements

 312 Sybase IQ

Examples

• Example 1 – Wait for three seconds:

WAITFOR DELAY '00:00:03'

• Example 2 – Wait for 0.5 seconds (500 milliseconds):

WAITFOR DELAY '00:00:00:500'

• Example 3 – Wait until 8 p.m.:

WAITFOR TIME '20:00'

Usage

The WAITFOR statement wakes up periodically (every 5 seconds by default) to check if it has
been canceled or if messages have been received. If neither of these has happened, the
statement continues to wait.

If DELAY is used, processing is suspended for the given interval. If TIME is specified,
processing is suspended until the server time reaches the time specified.

If the current server time is greater than the time specified, processing is suspended until that
time on the following day.

WAITFOR provides an alternative to the following statement, and might be useful for
customers who choose not to enable Java in the database:

call java.lang.Thread.sleep(<time_to_wait_in_millisecs>)

In many cases, scheduled events are a better choice than using WAITFOR TIME, because
scheduled events execute on their own connection.

CHECK EVERY clause—This optional clause controls how often the WAITFOR statement
wakes up. By default, WAITFOR wakes up every 5 seconds. The value is in milliseconds, and
the minimum value is 250milliseconds.

AFTER MESSAGE BREAK clause—The WAITFOR statement can be used to wait for a
message from another connection. In most cases, when a message is received it is forwarded to
the application that executed the WAITFOR statement and the WAITFOR statement continues
to wait. If the AFTER MESSAGE BREAK clause is specified, when a message is received from
another connection, the WAITFOR statement completes. The message text is not forwarded to
the application, but it can be accessed by obtaining the value of the MessageReceived
connection property.

Side Effects

• The implementation of this statement uses a worker thread while it is waiting. This uses up
one of the threads specified by the -gn server command line option.

SQL Statements

Reference: Statements and Options 313

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—This statement is also implemented by Adaptive Server Enterprise.

Permissions

None

See also
• CREATE EVENT Statement on page 81

WHENEVER Statement [ESQL]
Specifies error handling in an Embedded SQL program.

Syntax
WHENEVER
{ SQLERROR | SQLWARNING | NOTFOUND }
… { GOTO label | STOP | CONTINUE | C code; }

Parameters

• label: – identifier

Examples

• Example 1 –
EXEC SQL WHENEVER NOTFOUND GOTO done;

• Example 2 –
EXEC SQL WHENEVER SQLERROR
 {
 PrintError(&sqlca);
 return(FALSE);
 };

Usage

WHENEVER can be put anywhere in an Embedded SQL C program, and does not generate any
code. The preprocessor generates code following each successive SQL statement. The error
action remains in effect for all Embedded SQL statements from the source line of the
WHENEVER statement until the next WHENEVER statement with the same error condition, or
the end of the source file.

The default action is CONTINUE.

SQL Statements

 314 Sybase IQ

WHENEVER is provided for convenience in simple programs. Most of the time, checking the
sqlcode field of the SQLCA (SQLCODE) directly is the easiest way to check error
conditions. In this case, WHENEVER is not used. The WHENEVER statement causes the
preprocessor to generate an if (SQLCODE) test after each statement.

Note: The error conditions are in effect based on positioning in the C language source file and
not on when the statements are executed.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Open Client/Open Server.

Permissions

None

WHILE Statement [T-SQL]
Provides repeated execution of a statement or compound statement.

Syntax
WHILE expression
... statement

Examples

• Example 1 –
WHILE (SELECT AVG(unit_price) FROM Products) < 30
BEGIN
 DELETE FROM Products
 WHERE UnitPrice = MAX(UnitPrice)
 IF (SELECT MAX(UnitPrice) FROM Products) < 50
 BREAK
END

The BREAK statement breaks the WHILE loop, if the most expensive product has a price
less than $50. Otherwise, the loop continues until the average price is greater than $30.

Usage

The WHILE conditional affects the performance of only a single SQL statement, unless
statements are grouped into a compound statement between the keywords BEGIN and END.

The BREAK statement and CONTINUE statement can be used to control execution of the
statements in the compound statement. The BREAK statement terminates the loop, and

SQL Statements

Reference: Statements and Options 315

execution resumes after the END keyword, marking the end of the loop. The CONTINUE
statement causes the WHILE loop to restart, skipping any statements after the CONTINUE.

Standards

• SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

None

See also
• BEGIN … END Statement on page 47

SQL Statements

 316 Sybase IQ

Database Options

Database options and Interactive SQL options customize and modify database behavior.
Sybase IQ database options are divided into three classes: general, Transact-SQL
compatibility, and Interactive SQL.

Introduction to Database Options
Database options control many aspects of database behavior including compatibility, error
handling, and concurrency.

For example, you can use database options for the purposes such as:

• Compatibility – lets you control how much like Adaptive Server Enterprise your Sybase
IQ database operates, and whether SQL that does not conform to SQL92 generates errors.

• Error handling – lets you control what happens when errors, such as dividing by zero or
overflow errors, occur.

• Concurrency and transactions – lets you control the degree of concurrency and details of
COMMIT behavior using options.

You set options with the SET OPTION statement, which has this general syntax:

SET [EXISTING] [TEMPORARY] OPTION
... [userid. | PUBLIC.]option-name = [option-value]

Specify a user ID or group name to set the option only for that user or group. Every user
belongs to the PUBLIC group. If no user ID or group is specified, the option change is applied
to the currently logged on user ID that issued the SET OPTION statement.

For example, this statement applies a change to the PUBLIC user ID, a user group to which all
users belong:

SET OPTION Public.login_mode = standard

Note: When you set an option to TEMPORARY without specifying a user or group, the new
option value takes effect only for the currently logged on user ID that issued the statement, and
only for the duration of the connection. When you set an option to TEMPORARY for the
PUBLIC group, the change remains in place for as long as the database is running—when the
database shuts down, TEMPORARY options for the PUBLIC group revert back to their
permanent value.

When you set an option without issuing the TEMPORARY keyword, the new option value is
permanent for the user or group who issued the statement.

See Scope and Duration of Database Options, Temporary Options, and SET OPTION
Statement for more information on temporary versus permanent option values.

Database Options

Reference: Statements and Options 317

The maximum length of option-value, when set to a string, is 127 bytes.

Note: For all database options that accept integer values, Sybase IQ truncates any decimal
option-value setting to an integer value. For example, the value 3.8 is truncated to 3.

Warning! Do not change option settings while fetching rows.

See also
• Scope and Duration of Database Options on page 319

• Temporary Options on page 320

• SET OPTION Statement on page 293

Current Option Settings
You can obtain a list of option settings, or the values of individual options, using
sp_iqcheckoptions, sa_conn_properties, the SET statement, Sybase Central, and the
SYSOPTIONS system view.

• For the connected user, the sp_iqcheckoptions stored procedure displays a list of the
current value and the default value of database options that have been changed from the
default. sp_iqcheckoptions considers all Sybase IQ and SQL Anywhere database options.
Sybase IQ modifies some SQL Anywhere option defaults, and these modified values
become the new default values. Unless the new Sybase IQ default value is changed again,
sp_iqcheckoptions does not list the option.
sp_iqcheckoptions also lists server start-up options that have been changed from the
default values.
When a DBA runs sp_iqcheckoptions, he or she sees all options set on a permanent basis
for all groups and users and sees temporary options set for DBA. Users who are not DBAs
see their own temporary options. All users see nondefault server start-up options.
The sp_iqcheckoptions stored procedure requires no parameters. In Interactive SQL, run:
sp_iqcheckoptions

See Reference: Building Blocks, Tables, and Procedures.
The system table DBA.SYSOPTIONDEFAULTS contains all of the names and default
values of the Sybase IQ and SQL Anywhere options. You can query this table to see all
option default values.

• Current option settings for your connection are available as a subset of connection
properties. You can list all connection properties using the sa_conn_properties system
procedure:
call sa_conn_properties

• In Interactive SQL, the SET statement with no arguments lists the current setting of
options:
SET

• In Sybase Central, right-click a database and select Options from the submenu.

Database Options

 318 Sybase IQ

• Query the SYSOPTIONS system view:

SELECT *
FROM SYSOPTIONS

This shows all PUBLIC values, and those USER values that have been explicitly set.
• Use the connection_property system function to obtain an individual option setting. For

example, this statement returns the value of the Ansinull option:
SELECT connection_property ('Ansinull')

Scope and Duration of Database Options
You can set options at three levels of scope: public, user, and temporary.

Temporary options take precedence over user and public settings. User-level options take
precedence over public settings. If you set a user-level option for the current user, the
corresponding temporary option is set as well.

Some options, such as COMMIT behavior, are database-wide in scope. Setting these options
requires DBA permissions. Other options, such as ISOLATION_LEVEL, can also be applied
to only the current connection, and need no special permissions.

Changes to option settings take place at different times, depending on the option. Changing a
global option such as RECOVERY_TIME takes place the next time the server is started. Some
of the options that take effect after the server is restarted:

Database Options that Require Restarting the Server

CACHE_PARTITIONS

CHECKPOINT_TIME

OS_FILE_CACHE_BUFFERING

OS_FILE_CACHE_BUFFERING_TEMPDB

PREFETCH_BUFFER_LIMIT

PREFETCH_BUFFER_PERCENT

RECOVERY_TIME

SWEEPER_THREADS_PERCENT

WASH_AREA_BUFFERS_PERCENT

Options that affect only the current connection generally take place immediately. For
example, you can change option settings in the middle of a transaction.

Warning! Changing options when a cursor is open can lead to unreliable results. For example,
changing DATE_FORMAT might not change the format for the next row when a cursor is
opened. Depending on the way the cursor is being retrieved, it might take several rows before
the change works its way to the user.

Database Options

Reference: Statements and Options 319

Temporary Options
Adding the TEMPORARY keyword to the SET OPTION statement changes the duration of
the change.

Ordinarily an option change is permanent: it will not change until it is explicitly changed using
the SET OPTION statement.

When the SET TEMPORARY OPTION statement is executed, the new option value takes effect
only for the current connection, and only for the duration of the connection.

When the SET TEMPORARY OPTION is used to set a PUBLIC option, the change is in place
for as long as the database is running. When the database is shut down, TEMPORARY options
for the PUBLIC user ID revert back to their permanent value.

Setting an option for the PUBLIC user ID temporarily offers a security advantage. For
example, when the LOGIN_MODE option is enabled, the database relies on the login security
of the system on which it is running. Enabling LOGIN_MODE temporarily means that a
database relying on the security of a Windows domain will not be compromised if the database
is shut down and copied to a local machine. In this case, the LOGIN_MODE option reverts to its
permanent value, which could be Standard, a mode where integrated logins are not permitted.

Public Options
Changing the value of an option for the PUBLIC user ID sets the value of the option for all
users who have not set their own value.

Only users with DBA privileges have the authority to set an option for the PUBLIC user ID.

An option value cannot be set for an individual user ID, unless there is already a PUBLIC user
ID setting for that option.

Delete an Option Setting
Omit the option-value to delete the option setting from the database.

If option-value is omitted, the specified option setting is deleted from the database. If option-
value is a personal option setting, the value reverts back to the PUBLIC setting. If a
TEMPORARY option is deleted, the option setting reverts back to the permanent setting.

For example, reset the ANSINULL option to its default value:

SET OPTION ANSINULL =

If you incorrectly type the name of an option when you are setting the option, the incorrect
name is saved in the SYSOPTION table. You can remove the incorrectly typed name from the
SYSOPTION table by setting the option PUBLIC with an equality after the option name and
no value:

SET OPTION PUBLIC.a_mistyped_name=;

Database Options

 320 Sybase IQ

For example, if you set an option and incorrectly type the name, you can verify that the option
was saved by selecting from the SYSOPTIONS view:

SET OPTION PUBLIC.a_mistyped_name='ON';
SELECT * FROM SYSOPTIONS ORDER BY 2;

user_name option setting

PUBLIC a_mistyped_name ON

PUBLIC Abort_On_Error_File

PUBLIC Abort_On_Error_Line 0

PUBLIC Abort_On_Error_Number 0

...

Remove the incorrectly typed option by setting the option to no value, then verify that the
option is removed:

SET OPTION PUBLIC.a_mistyped_name=;
SELECT * FROM SYSOPTIONS ORDER BY 2;

user_name option setting

PUBLIC Abort_On_Error_File

PUBLIC Abort_On_Error_Line 0

PUBLIC Abort_On_Error_Number 0

...

Initial Option Settings
You can use stored procedures to configure the initial database option settings of a user.

Connections to Sybase IQ can be made through the TDS (tabular data stream) protocol (Open
Client and jConnect™ for JDBC™ connections) or through the Sybase IQ protocol (ODBC,
Embedded SQL).

If users have both TDS and the Sybase IQ-specific protocol, you can configure their initial
settings using stored procedures. As it is shipped, Sybase IQ uses this method to set Open
Client connections and jConnect connections to reflect default Adaptive Server Enterprise
behavior.

The initial settings are controlled using the LOGIN_PROCEDURE option, which is called after
all the checks have been performed to verify that the connection is valid. The
LOGIN_PROCEDURE option names a stored procedure to run when users connect. The
default setting is to use the sp_login_environment system stored procedure. You can specify a
different stored procedure. See Reference: Building Blocks, Tables, and Procedures.

Database Options

Reference: Statements and Options 321

The sp_login_environment procedure checks to see if the connection is being made over
TDS. If it is, it calls the sp_tsql_environment procedure, which sets several options to new
default values for the current connection.

See also
• LOGIN_PROCEDURE Option on page 401

Deprecated Database Options
See New Features Summary Sybase IQ 15.3 for information about database options
deprecated in this release.

General Database Options
General database options is the class of options consisting of all options except Transact-SQL
compatibility options and Interactive SQL options.

Note: There are additional internal options not listed in this table that Sybase Technical
Support might ask you to use.

Table 16. General Database Specific Options

Option name Allowed values Default setting

AGGREGATION_PREFERENCE -3 to 3 0

ALLOW_READ_CLIENT_FILE ON, OFF OFF

APPEND_LOAD ON, OFF OFF

AUDITING ON, OFF OFF

BIT_VECTOR_PINNA-
BLE_CACHE_PERCENT*

0 – 100 40

BLOCKING OFF OFF

BT_PREFETCH_MAX_MISS 0 – 1000 2

BT_PREFETCH_SIZE 0 – 100 10

BTREE_PAGE_SPLIT_PAD_PERCENT 0 - 90 50

CACHE_PARTITIONS power of 2, 0 to 64 0

CHECKPOINT_TIME number of minutes 60

CIS_ROWSET_SIZE integer 50

Database Options

 322 Sybase IQ

Option name Allowed values Default setting

CONVERSION_MODE 0, 1 0

CONVERT_VARCHAR_TO_1242 ON, OFF OFF

COOPERATIVE_COMMIT_TIMEOUT integer 250

COOPERATIVE_COMMITS ON, OFF ON

CURSOR_WINDOW_ROWS 20 – 100000 200

DATE_FIRST_DAY_OF_WEEK 0 – 6 0

DATE_FORMAT string 'YYYY-MM-DD'

DATE_ORDER 'YMD', 'DMY',
'MDY'

'YMD'

DBCC_LOG_PROGRESS ON, OFF OFF

DBCC_PINNABLE_CACHE_PERCENT 0 – 100 50

DEBUG_MESSAGES ON, OFF OFF

DEFAULT_DBSPACE string '' (empty string)

DEFAULT_DISK_STRIPING ON, OFF ON

DEDICATED_TASK ON, OFF OFF

DEFAULT_HAVING_SELECTIVI-
TY_PPM

0 – 1000000 0

DEFAULT_KB_PER_STRIPE 1 – max unsigned bi-
gint

1

DEFAULT_LIKE_MATCH_SELECTIVI-
TY_PPM

0 – 1000000 150000

DEFAULT_LIKE_RANGE_SELECTIVI-
TY_PPM

1 – 1000000 150000

DELAYED_COMMIT_TIMEOUT integer 500

DELAYED_COMMITS OFF OFF

DISABLE_RI_CHECK ON, OFF OFF

EARLY_PREDICATE_EXECUTION ON, OFF ON

ENABLE_LOB_VARIABLES ON, OFF OFF

EXTENDED_JOIN_SYNTAX ON, OFF ON

Database Options

Reference: Statements and Options 323

Option name Allowed values Default setting

FORCE_DROP ON, OFF OFF

FORCE_NO_SCROLL_CURSORS ON, OFF OFF

FORCE_UPDATABLE_CURSORS ON, OFF OFF

FP_LOOKUP_SIZE 1 MB – 4096 MB 16 MB

FP_LOOKUP_SIZE_PPM 1 – 1000000 2500

FP_PREDICATE_WORKUNIT_PAGES integer 200

FP_PREFETCH_SIZE 0 – 100 10

FPL_EXPRESSION_MEMORY_KB 0 – 20000 1024

GARRAY_FILL_FACTOR_PERCENT 0 – 1000 25

GARRAY_INSERT_PREFETCH_SIZE 0 – 100 3

GARRAY_PAGE_SPLIT_PAD_PERCENT 0-100 25

GARRAY_RO_PREFETCH_SIZE 0 – 100 10

HASH_PINNABLE_CACHE_PERCENT* 0 – 100 20

HASH_THRASHING_PERCENT 0 – 100 10

HG_DELETE_METHOD 0 – 3 0

HG_SEARCH_RANGE integer 10

HTTP_SESSION_TIMEOUT integer (1 – 525600) 30

IDENTITY_ENFORCE_UNIQUENESS ON, OFF OFF

IDENTITY_INSERT string '' (empty string)

INDEX_ADVISOR ON, OFF OFF

INDEX_PREFERENCE -10 – 10 0

INFER_SUBQUERY_PREDICATES ON, OFF ON

IN_SUBQUERY_PREFERENCE -3 – 3 0

IQGOVERN_MAX_PRIORITY 1 – 3 2

IQGOVERN_PRIORITY 1 – 3 2

IQGOVERN_PRIORITY_TIME 1 – 1000000 seconds 0 (disabled)

ISOLATION_LEVEL 0, 1, 2, 3 0

Database Options

 324 Sybase IQ

Option name Allowed values Default setting

JAVA_LOCATION string '' (empty string)

JAVA_VM_OPTIONS string '' (empty string)

JOIN_EXPANSION_FACTOR 0 – 100 30

JOIN_OPTIMIZATION ON, OFF ON

JOIN_PREFERENCE -7 – 7 0

JOIN_SIMPLIFICATION_THRESHOLD 1 – 64 15

LARGE_DOUBLES_ACCUMULATOR ON, OFF OFF

LF_BITMAP_CACHE_KB 1 – 8 4

LOAD_ZEROLENGTH_ASNULL ON, OFF OFF

LOCKED ON, OFF OFF

LOG_CONNECT ON, OFF ON

LOG_CURSOR_OPERATIONS ON, OFF OFF

LOGIN_MODE STANDARD,
MIXED, INTEGRA-
TED

STANDARD

LOGIN_PROCEDURE string sp_login_environment

MAIN_RESERVED_DBSPACE_MB integer >= 200 in MB 200

MAX_CARTESIAN_RESULT integer 100000000

MAX_CLIENT_NUMERIC_PRECISION 0 – 126 0

MAX_CLIENT_NUMERIC_SCALE 0 – 126 0

MAX_CONNECTIONS 0 - 2147483647 Unlimited

MAX_CUBE_RESULT 0 – 4294967295 10000000

MAX_CURSOR_COUNT integer 50

MAX_DAYS_SINCE_LOGIN 0 - 2147483647 Unlimited

MAX_FAILED_LOGIN_ATTEMPTS 0 - 2147483647 Unlimited

MAX_HASH_ROWS integer to
4294967295

2500000

MAX_IQ_THREADS_PER_CONNECTION 3 – 10000 144

Database Options

Reference: Statements and Options 325

Option name Allowed values Default setting

MAX_IQ_THREADS_PER_TEAM 1 – 10000 144

MAX_JOIN_ENUMERATION 1 – 64 15

MAX_NON_DBA_CONNECTIONS 0 – 2147483647 Unlimited

MAX_PREFIX_PER_CON-
TAINS_PHRASE

0 – 300 1

MAX_QUERY_PARALLELISM integer 64

MAX_QUERY_TIME 0 – 232 - 1 0 (disabled)

MAX_STATEMENT_COUNT integer 100

MAX_TEMP_SPACE_PER_CONNECTION integer 0

MAX_WARNINGS integer 248 - 1

MINIMIZE_STORAGE ON, OFF OFF

MIN_PASSWORD_LENGTH integer >= 0 0 characters

MONITOR_OUTPUT_DIRECTORY string database directory

NOEXEC ON, OFF OFF

NON_ANSI_NULL_VARCHAR ON, OFF OFF

NOTIFY_MODULUS integer 100000

ODBC_DISTIN-
GUISH_CHAR_AND_VARCHAR

ON, OFF OFF

ON_CHARSET_CONVERSION_FAILURE string IGNORE

OS_FILE_CACHE_BUFFERING ON, OFF OFF

PASSWORD_GRACE_TIME 0 – 2147483647 0

PASSWORD_EXPIRY_ON_NEXT_LOGIN ON, OFF OFF

PASSWORD_LIFE_TIME 0 – 2147483647 Unlimited

POST_LOGIN_PROCEDURE string dbo.sa_post_log-
in_procedure

PRECISION 126 126

PREFETCH ON, OFF ON

PREFETCH_BUFFER_LIMIT integer 0

Database Options

 326 Sybase IQ

Option name Allowed values Default setting

PREFETCH_BUFFER_PERCENT 0 – 100 40

PREFETCH_GARRAY_PERCENT 0 – 100 60

PREFETCH_SORT_PERCENT 0 – 100 20

PRESERVE_SOURCE_FORMAT ON, OFF ON

QUERY_DETAIL ON, OFF OFF

QUERY_NAME string '' (empty string)

QUERY_PLAN ON, OFF ON

QUERY_PLAN_AFTER_RUN ON, OFF OFF

QUERY_PLAN_AS_HTML ON, OFF OFF

QUERY_PLAN_AS_HTML_DIRECTORY string '' (empty string)

QUERY_PLAN_TEXT_ACCESS ON, OFF OFF

QUERY_PLAN_TEXT_CACHING ON, OFF OFF

QUERY_ROWS_RETURNED_LIMIT integer 0

QUERY_TEMP_SPACE_LIMIT integer 0

QUERY_TIMING ON, OFF OFF

RECOVERY_TIME number of minutes 2

RETURN_DATE_TIME_AS_STRING ON, OFF OFF

ROW_COUNT integer 0

SCALE 0 – 126 38

SIGNIFICANTDIGITSFORDOUBLEE-
QUALITY

0 – 15 0

SORT_COLLATION Internal, colla-
tion_name, or colla-
tion_id

Internal

SORT_PINNABLE_CACHE_PERCENT* 0 – 100 20

SUBQUERY_CACHING_PREFERENCE -3 – 3 0

SUBQUERY_FLATTENING_PERCENT 0, 1 - 232 -1 100

SUBQUERY_FLATTENING_PREFER-
ENCE

-3 – 3 0

Database Options

Reference: Statements and Options 327

Option name Allowed values Default setting

SUBQUERY_PLACEMENT_PREFERENCE -1 – 1 0

SUPPRESS_TDS_DEBUGGING ON, OFF OFF

SWEEPER_THREADS_PERCENT 1 to 40 10

TDS_EMPTY_STRING_IS_NULL ON, OFF OFF

TEMP_DISK_PER_STRIPE integer > 0 in KB 1

TEMP_EXTRACT_APPEND ON, OFF OFF

TEMP_EXTRACT_BINARY ON, OFF OFF

TEMP_EXTRACT_COLUMN_DELIMITER string ','

TEMP_EXTRACT_DIRECTORY string '' (empty string)

TEMP_EXTRACT_ESCAPE_QUOTES ON, OFF OFF

TEMP_EXTRACT_NAME1 – TEMP_EX-
TRACT_NAME8

string '' (empty string)

TEMP_EXTRACT_NULL_AS_EMPTY ON, OFF OFF

TEMP_EXTRACT_NULL_AS_ZERO ON, OFF OFF

TEMP_EXTRACT_QUOTE string '' (empty string)

TEMP_EXTRACT_QUOTES ON, OFF OFF

TEMP_EXTRACT_QUOTES_ALL ON, OFF OFF

TEMP_EXTRACT_ROW_DELIMITER string '' (empty string)

TEMP_EXTRACT_SIZE1 – TEMP_EX-
TRACT_SIZE8

AIX & HP-UX: 0 –
64GB Sun Solaris: &
Linux 0 – 512GB
Windows: 0 – 128GB

0

TEMP_EXTRACT_SWAP ON, OFF OFF

TEMP_RESERVED_DBSPACE_MB integer >= 200 in MB 200

TEMP_SPACE_LIMIT_CHECK ON, OFF ON

TEXT_DELETE_METHOD 0 – 2 0

TIME_FORMAT string 'HH:NN:SS.SSS'

TIMESTAMP_FORMAT string 'YYYY- MM-DD
HH:NN:SS.SSS'

Database Options

 328 Sybase IQ

Option name Allowed values Default setting

TOP_NSORT_CUTOFF_PAGES 1 – 1000 1

TRIM_PARTIAL_MBC ON, OFF OFF

USER_RESOURCE_RESERVATION integer 1

VERIFY_PASSWORD_FUNCTION string '' (empty string)

WASH_AREA_BUFFERS_PERCENT 1 – 100 20

WAIT_FOR_COMMIT ON, OFF OFF

WD_DELETE_METHOD 0 – 3 0

See also
• Transact-SQL Compatibility Options on page 329

• Interactive SQL Options on page 332

• Alphabetical List of Options on page 333

Data Extraction Options
The data extraction facility allows you to extract data from a database by redirecting the output
of a SELECT statement from the standard interface to one or more disk files or named pipes.

The TEMP_EXTRACT_... database options are used to control the data extraction feature.

See System Administration Guide: Volume 1 > Data Import and Export > Methods for
Exporting Data from a Database > Data Extraction Facility > The Extract Options.

Transact-SQL Compatibility Options
Transact-SQL compatibility options allow Sybase IQ behavior to be compatible with
Adaptive Server Enterprise, or to both support old behavior and allow ISO SQL92 behavior.

For further compatibility with Adaptive Server Enterprise, you can set some of these options
for the duration of the current connection using the Transact-SQL SET statement instead of the
Sybase IQ SET OPTION statement.

Table 17. Transact-SQL Compatibility Options

Option Allowed values Default setting

ALLOW_NULLS_BY_DEFAULT ON, OFF ON

ANSI_BLANKS* ON, OFF OFF

Database Options

Reference: Statements and Options 329

Option Allowed values Default setting

ANSI_CLOSE_CUR-
SORS_ON_ROLLBACK

ON ON

ANSI_INTEGER_OVERFLOW*

ANSI_PERMISSIONS ON, OFF ON

ANSINULL ON, OFF ON

ANSI_SUBSTRING ON, OFF ON

ANSI_UPDATE_CONSTRAINTS OFF, CURSORS, STRICT CURSORS

ASE_BINARY_DISPLAY ON, OFF OFF

ASE_FUNCTION_BEHAVIOR ON, OFF OFF

CHAINED ON, OFF ON

CLOSE_ON_ENDTRANS ON ON

CONTINUE_AFTER_RAISERROR ON, OFF ON

CONVERSION_ERROR ON, OFF ON

DIVIDE_BY_ZERO_ERROR ON, OFF ON

ESCAPE_CHARACTER* Reserved Reserved

FIRE_TRIGGERS* ON, OFF ON

NEAREST_CENTURY 0 – 100 50

NON_KEYWORDS Comma-separated keywords list No keywords turned off

ON_TSQL_ERROR STOP, CONTINUE, CONDI-
TIONAL

CONDITIONAL

QUERY_PLAN_ON_OPEN*

QUOTED_IDENTIFIER ON, OFF ON

RI_TRIGGER_TIME*

SQL_FLAGGER_ERROR_LEVEL E, I, F, W, OFF, SQL:1992/Entry,
SQL:1992/Intermediate, SQL:
1992/Full, SQL:1999/Core, SQL:
1999/Package, SQL:2003/Core,
SQL:2003/Package

OFF

Database Options

 330 Sybase IQ

Option Allowed values Default setting

SQL_FLAGGER_WARNING_LEVEL E, I, F, W, OFF, SQL:1992/Entry,
SQL:1992/Intermediate, SQL:
1992/Full, SQL:1999/Core, SQL:
1999/Package, SQL:2003/Core,
SQL:2003/Package

OFF

STRING_RTRUNCATION ON, OFF ON

TEXTSIZE*

TSQL_HEX_CONSTANT*

TSQL_VARIABLES ON, OFF OFF

Note: An asterisk (*) next to the option name indicates an option currently not supported by
Sybase IQ.

See also
• General Database Options on page 322

• Interactive SQL Options on page 332

• Alphabetical List of Options on page 333

• SET Statement [T-SQL] on page 289

Transact-SQL Option Settings for Adaptive Server Enterprise
Compatibility

The default setting for some options differs from the Adaptive Server Enterprise default
setting. To ensure compatible behavior, you should explicitly set the options.

When a connection is made using the Open Client or JDBC interfaces, some option settings
are explicitly set for the current connection to be compatible with Adaptive Server Enterprise.

For information on how the settings are made, see Reference: Building Blocks, Tables, and
Procedures.

Table 18. Transact-SQL Options Set Explicitly for ASE Compatibility

Option ASE-compatible setting

ALLOW_NULLS_BY_DEFAULT OFF

ANSINULL OFF

CHAINED OFF

CONTINUE_AFTER_RAISERROR ON

Database Options

Reference: Statements and Options 331

Option ASE-compatible setting

DATE_FORMAT YYYY-MM-DD

DATE_ORDER MDY

ESCAPE_CHARACTER OFF

ISOLATION_LEVEL 1

ON_TSQL_ERROR CONDITIONAL

QUOTED_IDENTIFIER OFF

TIME_FORMAT HH:NN:SS.SSS

TIMESTAMP_FORMAT YYYY-MM-DD HH:NN:SS.SSS

TSQL_VARIABLES OFF

Interactive SQL Options
Interactive SQL options change how Interactive SQL interacts with the database.

Syntax 1
SET [TEMPORARY] OPTION
... [userid. | PUBLIC.]option-name = [option-value]

Syntax 2
SET PERMANENT

Syntax 3
SET

Parameters
userid:
identifier, string or host-variable

option-name:
identifier, string or host-variable

option-value:
host-variable (indicator allowed), string, identifier,
or number

Description
Syntax 1 with the TEMPORARY keyword cannot be used between the BEGIN and END
keywords of a compound statement.

Database Options

 332 Sybase IQ

Syntax 2 SET PERMANENT stores all current Interactive SQL options in the SYSOPTIONS
system table. These settings are automatically established every time Interactive SQL is
started for the current user ID.

Syntax 3 is used to display all of the current option settings. If there are temporary options set
for Interactive SQL or the database server, these are displayed; otherwise, the permanent
option settings are displayed.

Table 19. Interactive SQL Options

Option Allowed values Default setting

DEFAULT_ISQL_ENCODING Identifier or string empty string (use sys-
tem code page)

NULLS* String NULL

ON_ERROR STOP, CONTINUE, PROMPT, EXIT,
NOTIFY_CONTINUE, NOTI-
FY_STOP, NOTIFY_EXIT

PROMPT

OUTPUT_FORMAT* ASCII, DBASEII, DBASEIII, EX-
CEL, FIXED, FOXPRO, HTML, LO-
TUS, SQL, XML,

ASCII

OUTPUT_LENGTH* Non-negative integer 0 (no truncation)

OUTPUT_NULLS* String 'NULL'

STATISTICS* 0, 3, 4, 5, 6 3

TRUNCATION_LENGTH* Integer 256

Note: An asterisk (*) next to the option name indicates an option currently not supported by
Sybase IQ.

See also
• General Database Options on page 322

• Transact-SQL Compatibility Options on page 329

• Alphabetical List of Options on page 333

Alphabetical List of Options
Descriptions of general, Transact-SQL compatibility, and Interactive SQL database options.
Some option names are followed by a class indicator in square brackets.

The database option class indicators are:

Database Options

Reference: Statements and Options 333

• [Interactive SQL] – The option changes how Interactive SQL interacts with the database.
• [TSQL] – The option allows Sybase IQ behavior to be made compatible with Adaptive

Server Enterprise, or to both support old behavior and allow ISO SQL92 behavior.

See also
• Introduction to Database Options on page 317

• General Database Options on page 322

• Transact-SQL Compatibility Options on page 329

• Interactive SQL Options on page 332

AGGREGATION_PREFERENCE Option
Controls the choice of algorithms for processing an aggregate.

Allowed Values
-3 to 3

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
For aggregation (GROUP BY, DISTINCT, SET functions) within a query, the Sybase IQ
optimizer has a choice of several algorithms for processing the aggregate.
AGGREGATION_PREFERENCE lets you override the costing decision of the optimizer when
choosing the algorithm. the option does not override internal rules that determine whether an
algorithm is legal within the query engine.

This option is normally used for internal testing and for manually tuning queries that the
optimizer does not handle well. Only experienced DBAs should use it. Inform Sybase
Technical Support, if you need to set AGGREGATION_PREFERENCE, as setting this option
might mean that a change to the optimizer is necessary.

Table 20. AGGREGATION_PREFERENCE Values

Value Action

0 Let the optimizer choose

1 Prefer aggregation with a sort

2 Prefer aggregation using IQ indexes

Database Options

 334 Sybase IQ

Value Action

3 Prefer aggregation with a hash

-1 Avoid aggregation with a sort

-2 Avoid aggregation using IQ indexes

-3 Avoid aggregation with a hash

ALLOW_NULLS_BY_DEFAULT Option [TSQL]
Controls whether new columns created without specifying either NULL or NOT NULL are
allowed to contain NULL values.

Allowed values
ON, OFF

Default
ON

OFF for Open Client and JDBC connections

Description
The ALLOW_NULLS_BY_DEFAULT option is included for Transact-SQL compatibility.

ANSI_CLOSE_CURSORS_ON_ROLLBACK Option [TSQL]
Controls whether cursors that were opened WITH HOLD are closed when a ROLLBACK is
performed.

Allowed Values
ON

Default
ON

Description
The ANSI SQL/3 standard requires all cursors be closed when a transaction is rolled back.
This option forces that behavior and cannot be changed. The CLOSE_ON_ENDTRANS option
overrides this option.

Database Options

Reference: Statements and Options 335

ANSI_PERMISSIONS Option [TSQL]
Controls permissions checking for DELETE and UPDATE statements.

Allowed Values
ON, OFF

Default
ON

Description
With ANSI_PERMISSIONS ON, SQL92 permissions requirements for DELETE and
UPDATE statements are checked. The default value is OFF in Adaptive Server Enterprise. This
table outlines the differences:

Table 21. Effect of ANSI_PERMISSIONS Option

SQL statement
Permissions required with
ANSI_PERMISSIONS OFF

Permissions required with
ANSI_PERMISSIONS ON

UPDATE UPDATE permission on the columns
where values are being set

UPDATE permission on the columns
where values are being set

SELECT permission on all columns
appearing in the WHERE clause.

SELECT permission on all columns
on the right side of the set clause.

DELETE DELETE permission on table DELETE permission on table. SE-

LECT permission on all columns

appearing in the WHERE clause.

The ANSI_PERMISSIONS option can be set only for the PUBLIC group. No private settings
are allowed.

ANSINULL Option [TSQL]
Controls the interpretation of using = and != with NULL.

Allowed Values
ON, OFF

Default
ON

Database Options

 336 Sybase IQ

Description
With ANSINULL ON, results of comparisons with NULL using '=' or '!=' are unknown. This
includes results of comparisons implied by other operations such as CASE.

Setting ANSINULL to OFF allows comparisons with NULL to yield results that are not
unknown, for compatibility with Adaptive Server Enterprise.

Note: Unlike SQL Anywhere, Sybase IQ does not generate the warning “null value
eliminated in aggregate function” (SQLSTATE=01003) for aggregate
functions on columns containing NULL values.

ANSI_SUBSTRING Option [TSQL]
Controls the behavior of the SUBSTRING (SUBSTR) function when negative values are
provided for the start or length parameters.

Allowed Values
ON, OFF

Default
ON

Description
When the ANSI_SUBSTRING option is set to ON, the behavior of the SUBSTRING function
corresponds to ANSI/ISO SQL/2003 behavior. A negative or zero start offset is treated as if the
string were padded on the left with noncharacters, and gives an error if a negative length is
provided.

When this option is set to OFF, the behavior of the SUBSTRING function is the same as in
earlier versions of Sybase IQ: a negative start offset means an offset from the end of the string,
and a negative length means the desired substring ends length characters to the left of the
starting offset. Using a start offset of 0 is equivalent to a start offset of 1.

Avoid using nonpositive start offsets or negative lengths with the SUBSTRING function.
Where possible, use the LEFT or RIGHT functions instead.

Example
These examples show the difference in the values returned by the SUBSTRING function based
on the setting of the ANSI_SUBSTRING option:

SUBSTRING('abcdefgh',-2,4);
 ansi_substring = Off ==> 'gh'
 // substring starts at second-last character
 ansi_substring = On ==> 'a'
 // takes the first 4 characters of
 // ???abcdefgh and discards all ?

Database Options

Reference: Statements and Options 337

SUBSTRING('abcdefgh',4,-2);
 ansi_substring = Off ==> 'cd'
 ansi_substring = On ==> value -2 out of range
 for destination

SUBSTRING('abcdefgh',0,4);
 ansi_substring = Off ==> 'abcd'
 ansi_substring = On ==> 'abc'

ANSI_UPDATE_CONSTRAINTS Option
Controls the range of updates that are permitted.

Allowed Values
OFF, CURSORS, STRICT

Default
CURSORS

Description
Sybase IQ provides several extensions that allow updates that are not permitted by the ANSI
SQL standard. These extensions provide powerful, efficient mechanisms for performing
updates. However, in some cases, they cause behavior that is not intuitive. This behavior might
produce anomalies such as lost updates if the user application is not designed to expect the
behavior of these extensions.

ANSI_UPDATE_CONSTRAINTS controls whether updates are restricted to those permitted
by the SQL92 standard.

If the option is set to STRICT, these updates are prevented:

• Updates of cursors containing JOINS

• Updates of columns that appear in an ORDER BY clause
• The FROM clause is not allowed in UPDATE statements.

If the option is set to CURSORS, these same restrictions are in place, but only for cursors. If a
cursor is not opened with FOR UPDATE or FOR READ ONLY, the database server determines
whether updates are permitted based on the SQL92 standard.

If ANSI_UPDATE_CONSTRAINTS is set to CURSORS or STRICT, cursors containing an
ORDER BY clause default to FOR READ ONLY; otherwise, they continue to default to FOR
UPDATE.

Example
This code has a different effect, depending on the setting of
ANSI_UPDATE_CONSTRAINTS:

CREATE TABLE mmg (a CHAR(3));
CREATE TABLE mmg1 (b CHAR(3));

Database Options

 338 Sybase IQ

INSERT INTO mmg VALUES ('001');
INSERT INTO mmg VALUES ('002');
INSERT INTO mmg VALUES ('003')
INSERT INTO mmg1 VALUES ('003');
SELECT * FROM mmg;
SELECT * FROM mmg1;

Option 1: Set ANSI_UPDATE_CONSTRAINTS to STRICT:

SET OPTION public.Ansi_update_constraints = 'strict';
DELETE MMG FROM MMG1 WHERE A=B;

This results in an error indicating that the attempted update operation is not allowed.

Option 2: Set ANSI_UPDATE_CONSTRAINTS to CURSORS or OFF:

SET OPTION public.Ansi_update_constraints = 'CURSORS'; // or 'OFF'
DELETE mmg FROM mmg1 WHERE A=B;

In this case, the deletion should complete without the error.

See also
• UPDATE Statement on page 307

ALLOW_READ_CLIENT_FILE Option
Enables client-side data transfer.

See SQL Anywhere 11.0.1 > SQL Anywhere Server – Database Administration >
Configuring Your Database > Database options > Introduction to database options >
Alphabetical list of options > allow_read_client_file option [database].

APPEND_LOAD Option
Helps reduce space usage from versioned pages.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
The APPEND_LOAD option applies to LOAD, INSERT...SELECT, and INSERT...VALUES
statements and takes effect on the next execution of the statement.

Database Options

Reference: Statements and Options 339

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/allow-read-client-file-option.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/allow-read-client-file-option.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/allow-read-client-file-option.html

When the APPEND_LOAD option is OFF, Sybase IQ reuses row IDs from deleted rows.
Setting this option ON appends new data to the end of the table.

APPEND_LOAD behaves differently for partitioned and non-partitioned tables. Row ID
ranges are assigned to each partition in a partitioned table. For partitioned tables, when
APPEND_LOAD is ON, new rows are appended at the end of the appropriate partition. When
APPEND_LOAD is OFF, the load reuses the first available row IDs and space from deleted
rows.

For non-partitioned tables, when APPEND_LOAD is ON, new rows are added after the
maximum row ID that is at the end of the table rows. When APPEND_LOAD is OFF, the load
reuses the deleted row IDs. With non-partitioned tables, you can also control where rows are
inserted by using the LOAD or INSERT START ROW ID clause to specify the row at which to
start inserting.

ASE_BINARY_DISPLAY Option
Specifies that the display of Sybase IQ binary columns is consistent with the display of
Adaptive Server Enterprise binary columns.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
ASE_BINARY_DISPLAY affects the output of the SELECT statement.

This option affects only columns in the IQ store. It does not affect variables, catalog store
columns or SQL Anywhere columns. When this option is ON, Sybase IQ displays the column
in readable ASCII format; for example, 0x1234567890abcdef. When this option is OFF,
Sybase IQ displays the column as binary output (not ASCII).

Set ASE_BINARY_DISPLAY OFF to support bulk copy operations on binary data types.
Sybase IQ supports bulk loading of remote data via the LOAD TABLE USING CLIENT FILE
statement.

See also
• LOAD TABLE Statement on page 221

Database Options

 340 Sybase IQ

ASE_FUNCTION_BEHAVIOR Option
Specifies that output of Sybase IQ functions, including INTTOHEX and HEXTOINT, is
consistent with the output of Adaptive Server Enterprise functions.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When ASE_BEHAVIOR_FUNCTION is ON, some of the Sybase IQ data type conversion
functions, including HEXTOINT and INTTOHEX, return output that is consistent with the
output of Adaptive Server Enterprise functions. The differences in the ASE and Sybase IQ
output, with respect to formatting and length, exist because ASE primarily uses signed 32-bit
as the default and Sybase IQ primarily uses unsigned 64-bit as the default.

Sybase IQ does not provide support for 64-bit integer, as ASE does not have a 64-bit integer
data type.

For details on the behavior of the INTTOHEX and HEXTOINT functions, see Reference:
Building Blocks, Tables, and Procedures.

Example
In this example, the HEXTOINT function returns a different value based on whether
ASE_FUNCTION_BEHAVIOR is ON or OFF.

The HEXTOINT function returns 4294967287 with ASE_FUNCTION_BEHAVIOR OFF:

select hextoint(‘fffffff7’) from iq_dummy

The HEXTOINT function returns -9 with ASE_FUNCTION_BEHAVIOR ON:

select hextoint(‘fffffff7’) from iq_dummy

See also
• CONVERSION_ERROR Option [TSQL] on page 349

Database Options

Reference: Statements and Options 341

AUDITING Option [database]
Enables and disables auditing in the database.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for the PUBLIC group only. Takes effect immediately. DBA authority required.

Description
This option turns auditing on and off.

Auditing is the recording of details about many events in the database in the transaction log.
Auditing provides some security features, at the cost of some performance. When you turn on
auditing for a database, you cannot stop using the transaction log. You must turn auditing off
before you turn off the transaction log. Databases with auditing on cannot be started in read-
only mode.

For the AUDITING option to work, you must set the auditing option to ON, and also specify
which types of information you want to audit using the sa_enable_auditing_type system
procedure. Auditing will not take place if either of the following is true:

• The AUDITING option is set to OFF

• Auditing options have been disabled

If you set the AUDITING option to ON, and do not specify auditing options, all types of
auditing information are recorded. Alternatively, you can use sa_enable_auditing_type to
record any combination of the following: permission checks, connection attempts, DDL
statements, public options, and triggers. See Reference: Building Blocks, Tables, and
Procedures.

BIT_VECTOR_PINNABLE_CACHE_PERCENT Option
Maximum percentage of a user’s temp memory that a persistent bit-vector object can pin.

Allowed Values
0 – 100

Default
40

Database Options

 342 Sybase IQ

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
BIT_VECTOR_PINNABLE_CACHE_PERCENT controls the percentage of a user’s temp
memory allocation that any one persistent bit-vector object can pin in memory. It defaults to
40%, and should not generally be changed by users.

This option is primarily for use by Sybase Technical Support. If you change the value of
BIT_VECTOR_PINNABLE_CACHE_PERCENT, do so with extreme caution; first analyze
the effect on a wide variety of queries.

See also
• HASH_PINNABLE_CACHE_PERCENT Option on page 380

• SORT_PINNABLE_CACHE_PERCENT Option on page 440

BLOCKING Option
Controls the behavior in response to locking conflicts.

Allowed Values
OFF

Default
OFF

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
When BLOCKING is OFF, a transaction receives an error when it attempts a write operation
and is blocked by the read lock of another transaction.

BT_PREFETCH_MAX_MISS Option
Controls the way Sybase IQ determines whether to continue prefetching B-tree pages for a
given query.

Allowed Values
0 – 1000

Default
2

Database Options

Reference: Statements and Options 343

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Description
Use only if instructed to do so by Sybase Technical Support. For queries that use HG
(High_Group) indexes, Sybase IQ prefetches B-tree pages sequentially until it determines that
prefetching is no longer useful. For some queries, it might turn off prefetching prematurely.
Increasing the value of BT_PREFETCH_MAX_MISS makes it more likely that Sybase IQ
continues prefetching, but also might increase I/O unnecessarily.

If queries using HG indexes run more slowly than expected, try gradually increasing the value
of BT_PREFETCH_MAX_MISS.

Experiment with different settings to find the setting that gives the best performance. For most
queries, useful settings are in the range of 1 to 10.

See also
• BT_PREFETCH_SIZE Option on page 344

• PREFETCH_BUFFER_LIMIT Option on page 425

BT_PREFETCH_SIZE Option
Restricts the size of the read-ahead buffer for the High_Group B-tree.

Allowed Values
0 – 100. Setting to 0 disables B-tree prefetch.

Default
10

Scope
Can be set only for an individual user. Takes effect immediately.

Description
B-tree prefetch is activated by default for any sequential access to the High_Group index such
as INSERT, large DELETE, range predicates, and DBCC (Database Consistency Checker)
commands.

BT_PREFETCH_SIZE limits the size of the read-ahead buffer for B-tree pages. Reducing
prefetch size frees buffers, but also degrades performance at some point. Increasing prefetch
size might have marginal returns. This option should be used in conjunction with the options
PREFETCH_GARRAY_PERCENT, GARRAY_INSERT_PREFETCH_SIZE, and
GARRAY_RO_PREFETCH_SIZE for non-unique High_Group indexes.

Database Options

 344 Sybase IQ

See also
• GARRAY_INSERT_PREFETCH_SIZE Option on page 378

• GARRAY_RO_PREFETCH_SIZE Option on page 379

• PREFETCH_GARRAY_PERCENT Option on page 426

BTREE_PAGE_SPLIT_PAD_PERCENT Option
Determines per-page fill factor during page splits for B-Tree structures.

Allowed Values
0 – 90

Default
50

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
B-Tree structures are used by the HG, LF, DT, TIME, and DTTM indexes. Splits of a B-Tree
page try to leave the specified percentage empty to avoid splitting when new keys are inserted
into the index.

Indexes reserve storage at the page level that can be allocated to new keys as additional data is
inserted. Reserving space consumes additional disk space, but can help the performance of
incremental inserts. If future plans include incremental inserts, and the new rows do not have
values that are already present in the index, a nonzero value for
GARRAY_PAGE_SPLIT_PAD_PERCENT may improve incremental insert performance.

If you do not plan to incrementally update the index, you can reduce the value of this option to
save disk space.

See also
• GARRAY_FILL_FACTOR_PERCENT Option on page 377

• GARRAY_PAGE_SPLIT_PAD_PERCENT Option on page 378

CACHE_PARTITIONS Option
Sets the number of partitions to be used for the main and temporary buffer caches.

Allowed Values
0, 1, 2, 4, 8, 16, 32, 64

0: Sybase IQ computes the number of partitions automatically as number_of_cpus/8,
rounded to the nearest power of 2, up to a maximum of 64.

Database Options

Reference: Statements and Options 345

1: 1 partition only; this value disables partitioning.

2 – 64: Number of partitions; must be a power of 2.

Default
0 (Sybase IQ computes the number of partitions automatically).

Scope
Can be set for the PUBLIC group only. Takes effect for the current database the next time you
start the database server.

Description
Partitioning the buffer cache can sometimes improve performance on systems with multiple
CPUs by reducing lock contention. Normally you should rely on the value that Sybase IQ
calculates automatically, which is based on the number of CPUs on your system. However, if
you find that load or query performance in a multi-CPU configuration is slower than expected,
you might be able to improve it by setting a different value for CACHE_PARTITIONS. See
System Administration Guide: Volume 1 > Transactions and Versioning > Tools for Managing
Locks > Tools for Investigating Lock Contention.

Both the number of CPUs and the platform can influence the ideal number of partitions.
Experiment with different values to determine the best setting for your configuration.

The value you set for CACHE_PARTITIONS applies to both the main and temp buffer caches.
The absolute maximum number of partitions is 64, for each buffer cache.

The -iqpartition server option sets the partition limit at the server level. If -iqpartition is
specified at server start-up, it always overrides the CACHE_PARTITIONS setting. See the
Utility Guide.

The number of partitions does not affect other buffer cache settings. It also does not affect
statistics collected by the IQ monitor; statistics for all partitions are rolled up and reported as a
single value.

Example
In a system with 100 CPUs, if you do not set CACHE_PARTITIONS, Sybase IQ
automatically sets the number of partitions to 16:

100 cpus/8 = 12, rounded to 16.

With this setting, there are 16 partitions for the main cache and 16 partitions for the temp
cache.

In the same system with 100 CPUs, to explicitly set the number of partitions to 8, specify:

SET OPTION "PUBLIC".CACHE_PARTITIONS=8

Database Options

 346 Sybase IQ

CHAINED Option [TSQL]
Controls transaction mode in the absence of a BEGIN TRANSACTION statement.

Allowed Values
ON, OFF

OFF for Open Client and JDBC connections

Default
ON

Description
Controls the Transact-SQL transaction mode. In unchained mode (CHAINED = OFF) each
statement is committed individually unless an explicit BEGIN TRANSACTION statement is
executed to start a transaction. In chained mode (CHAINED = ON) a transaction is implicitly
started before any data retrieval or modification statement. For Adaptive Server Enterprise,
the default setting is OFF.

CHECKPOINT_TIME Option
Set the maximum length of time, in minutes, that the database server runs without doing a
checkpoint.

Allowed Values
Integer

Default
60

Scope
Can be set only for the PUBLIC group. Requires DBA permissions to set the option. You must
shut down and restart the database server for the change to take effect.

Description
This option is used with the RECOVERY_TIME option to decide when checkpoints should be
done.

See also
• RECOVERY_TIME Option on page 436

Database Options

Reference: Statements and Options 347

CIS_ROWSET_SIZE Option
Sets the number of rows that are returned from remote servers for each fetch.

Allowed Values
Integer

Default
50

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect when a new
connection is made to a remote server.

Description
This option sets the ODBC FetchArraySize value when you are using ODBC to connect to a
remote database server. For information on remote data access, see System Administration
Guide: Volume 2.

CLOSE_ON_ENDTRANS Option [TSQL]
Controls closing of cursors at the end of a transaction.

Allowed Values
ON

Default
ON

Description
When CLOSE_ON_ENDTRANS is set to ON (the default and only value allowed), cursors are
closed at the end of a transaction, which is Transact-SQL compatible behavior.

CONTINUE_AFTER_RAISERROR Option [TSQL]
Controls behavior following a RAISERROR statement.

Allowed Values
ON, OFF

Default
ON

Database Options

 348 Sybase IQ

Description
The RAISERROR statement is used within procedures to generate
an error. When CONTINUE_AFTER_RAISERROR is set to OFF, the
execution of the procedure is stopped when the RAISERROR
statement is encountered.

When CONTINUE_AFTER_RAISERROR is ON, the RAISERROR statement no longer
signals an execution-ending error. Instead, the RAISERROR status code and message are
stored and the most recent RAISERROR is returned when the procedure completes. If the
procedure that caused the RAISERROR was called from another procedure, the RAISERROR
is not returned until the outermost calling procedure terminates.

Intermediate RAISERROR statuses and codes are lost after the procedure terminates. If, at
return time, an error occurs along with the RAISERROR, then the error information is returned
and the RAISERROR information is lost. The application can query intermediate RAISERROR
statuses by examining @@error global variable at different execution points.

The setting of CONTINUE_AFTER_RAISERROR is used to control behavior following a
RAISERROR statement only if the ON_TSQL_ERROR option is set to CONDITIONAL (the
default). If you set the ON_TSQL_ERROR option to STOP or CONTINUE, the
ON_TSQL_ERROR setting takes precedence over the CONTINUE_AFTER_RAISERROR
setting.

See also
• ON_TSQL_ERROR Option [TSQL] on page 420

CONVERSION_ERROR Option [TSQL]
Controls reporting of data type conversion failures on fetching information from the database.

Allowed Values
ON, OFF

Default
ON

Description
This option controls whether data type conversion failures, when data is fetched from the
database or inserted into the database, are reported by the database as errors
(CONVERSION_ERROR set to ON), or as warnings (CONVERSION_ERROR set to OFF).

When CONVERSION_ERROR is set to ON, the SQLE_CONVERSION_ERROR error is
generated.

Database Options

Reference: Statements and Options 349

If the option is set to OFF, the warning SQLE_CANNOT_CONVERT is produced. Each
thread doing data conversion for a LOAD statement writes at most one warning message to
the .iqmsg file.

If conversion errors are reported as warnings only, the NULL value is used in place of the value
that could not be converted. In Embedded SQL, an indicator variable is set to -2 for the column
or columns that cause the error.

CONVERSION_MODE Option
Restricts implicit conversion between binary data types (BINARY, VARBINARY, and LONG
BINARY) and other non-binary data types (BIT, TINYINT, SMALLINT, INT, UNSIGNED
INT, BIGINT, UNSIGNED BIGINT, CHAR, VARCHAR, and LONG VARCHAR) on various
operations.

Allowed Values
0, 1

Default
0

Scope
Can be set either publicly or temporarily. DBA permissions are not required to set this option.

Description
The default value of 0 maintains implicit conversion behavior prior to version 12.7. Setting
CONVERSION_MODE to 1 restricts implicit conversion of binary data types to any other non-
binary data type on INSERT, UPDATE, and in queries. The restrict binary conversion mode
also applies to LOAD TABLE default values and CHECK constraint. The use of this option
prevents implicit data type conversions of encrypted data that would result in semantically
meaningless operations.

For more information on data type conversion see System Administration Guide: Volume 1.

For more information on column encryption, see Advanced Security in Sybase IQ. Users must
be specifically licensed to use the encrypted column functionality of the Sybase IQ Advanced
Security Option.

Implicit Conversion Restrictions
The CONVERSION_MODE option restrict binary mode value of 1 (CONVERSION_MODE = 1)
restricts implicit conversion for these operations:

• LOAD TABLE with CHECK constraint or default value
• INSERT...SELECT, INSERT...VALUE, and INSERT...LOCATION

• Certain types of UPDATE

• Certain types of INSERT and UPDATE via updatable cursor

Database Options

 350 Sybase IQ

• All aspects of queries in general

Restrict Implicit Binary Conversion Mode for LOAD TABLE
The restrict implicit binary conversion mode (CONVERSION_MODE set to 1) applies to LOAD
TABLE with CHECK constraint or default value.

Example

CREATE TABLE t3 (c1 INT,
 csi SMALLINT,
 cvb VARBINARY(2),
 CHECK (csi<cvb));
SET TEMPORARY OPTION CONVERSION_MODE = 1;

This request:

LOAD TABLE t3(c1 ',', csi ',', cvb ',')
 FROM '/s1/mydata/t3.inp'
 QUOTES OFF ESCAPES OFF
 ROW DELIMITED BY '\n'

fails with the message:

"Invalid data type comparison in predicate
(t3.csi < t3.cvb), [-1001013] ['QFA13']"

Restrict Implicit Binary Conversion Mode for INSERT
The restrict implicit binary conversion mode (CONVERSION_MODE set to 1) applies to
INSERT...SELECT, INSERT...VALUE, and INSERT...LOCATION.

Example

CREATE TABLE t1 (c1 INT PRIMARY KEY,
 cbt BIT NULL,
 cti TINYINT,
 csi SMALLINT,
 cin INTEGER,
 cui UNSIGNED INTEGER,
 cbi BIGINT,
 cub UNSIGNED BIGINT,
 cch CHAR(10),
 cvc VARCHAR(10),
 cbn BINARY(8),
 cvb VARBINARY(8),
 clb LONG BINARY,
 clc LONG VARCHAR);

CREATE TABLE t2 (c1 INT PRIMARY KEY,
 cbt BIT NULL,
 cti TINYINT,
 csi SMALLINT,
 cin INTEGER,
 cui UNSIGNED INTEGER,
 cbi BIGINT,
 cub UNSIGNED BIGINT,

Database Options

Reference: Statements and Options 351

 cch CHAR(10),
 cvc VARCHAR(10),
 cbn BINARY(8),
 cvb VARBINARY(8),
 clb LONG BINARY,
 clc LONG VARCHAR);

CREATE TABLE t4 (c1 INT, cin INT DEFAULT 0x31);

SET TEMPORARY OPTION CONVERSION_MODE = 1;

This request:

INSERT INTO t1(c1, cvb) SELECT 99, cin FROM T2
WHERE c1=1

fails with the message:

"Unable to convert column 'cvb' to the requested
datatype (varbinary) from datatype (integer).
[-1013043] ['QCA43']"

Restrict Implicit Binary Conversion Mode for UPDATE
The restrict implicit binary conversion mode (CONVERSION_MODE set to 1) applies to
certain types of UPDATE.

Restrict implicit binary conversion mode applies to:

• UPDATE SET VALUE FROM expression (including constant)
• UPDATE SET VALUE FROM other column
• UPDATE SET VALUE FROM host variable
• JOIN UPDATE SET VALUE FROM column of other table

Example

This request:

UPDATE t1 SET cbi=cbn WHERE c1=1

fails with the message:

"Unable to implicitly convert column 'cbi' to datatype
(bigint) from datatype (binary). [-1000187] ['QCB87']"

Restrict Implicit Binary Conversion Mode for Positioned INSERT and
Positioned UPDATE via Updatable Cursor
The restrict implicit binary conversion mode (CONVERSION_MODE set to 1) applies to
certain types of INSERT and UPDATE via updatable cursor.

Restrict implicit binary conversion mode applies to:

• PUT cursor-name USING … host-variable
• Positioned UPDATE from another column

Database Options

 352 Sybase IQ

• Positioned UPDATE from a constant
• Positioned UPDATE from a host variable

Restrict Implicit Binary Conversion Mode for Queries
The restrict implicit binary conversion mode (CONVERSION_MODE set to 1) applies to all
aspects of queries in general.

Comparison Operators
When CONVERSION_MODE = 1, the restriction applies to these operators:

• =, !=, <, <=, >=, <>, !>, !<
• BETWEEN … AND
• IN

used in a search condition for these clauses:

• WHERE clause
• HAVING clause
• CHECK clause
• ON phrase in a join
• IF/CASE expression

Example

This query:

SELECT COUNT(*) FROM T1
WHERE cvb IN (SELECT csi FROM T2)

fails with the message:

"Invalid data type comparison in predicate
(t1.cvb IN (SELECT t1.csi ...)), [-1001013]
['QFA13']"

String Functions
When CONVERSION_MODE = 1, the restriction applies to these string functions:

• CHAR

• CHAR_LENGTH

• DIFFERENCE

• LCASE

• LEFT

• LOWER

• LTRIM

• PATINDEX

• RIGHT

Database Options

Reference: Statements and Options 353

• RTRIM

• SIMILAR

• SORTKEY

• SOUNDEX

• SPACE

• STR

• TRIM

• UCASE

• UPPER

Example

This query:

SELECT ASCII(cvb) FROM t1 WHERE c1=1

fails with the message:

"Data exception - data type conversion is not
possible. Argument to ASCII must be string,
[-1009145] ['QFA2E']"

The following functions allow either a string argument or a binary argument. When
CONVERSION_MODE = 1, the restriction applies to mixed type arguments, that is, one
argument is string and the other argument is binary.

• INSERTSTR

• LOCATE

• REPLACE

• STRING

• STUFF

Example

This query:

SELECT STRING(cvb, cvc) FROM t1 WHERE c1=1

where the column cvb is defined as VARBINARY and the column cvc is defined as
VARCHAR, fails

with the message:

"Data exception - data type conversion is not
possible. Arguments to STRING must be all binary
or all string, [-1009145] ['QFA2E']"

The restriction does not apply to these string functions:

• BIT_LENGTH

• BYTE_LENGTH

Database Options

 354 Sybase IQ

• CHARINDEX

• LENGTH

• OCTET_LENGTH

• REPEAT

• REPLICATE

• SUBSTRING

Arithmetic Operations and Functions
When CONVERSION_MODE = 1, the restriction applies to these operators used in arithmetic
operations:

+, -, *, /

The restriction applies to these bitwise operators used in bitwise expressions:

& (AND), | (OR), ^ (XOR)

The restriction also applies to integer arguments of these functions:

• ROUND

• “TRUNCATE”
• TRUNCNUM

Example

This query:

SELECT ROUND(4.4, cvb) FROM t1 WHERE C1=1

fails with the message:

"Data exception - data type conversion is not
possible. Second Argument to ROUND cannot be
converted into an integer, [-1009145] ['QFA2E']"

Integer Argument to Various Functions
When CONVERSION_MODE = 1, the restriction applies to integer argument of these
functions:

• ARGN

• SUBSTRING

• DATEADD

• YMD

Example

This query:

SELECT ARGN(cvb, csi, cti) FROM t1 WHERE c1=1

fails with the message:

Database Options

Reference: Statements and Options 355

"Data exception - data type conversion is not
possible. First Argument to ARGN cannot be converted
to an integer, [-1009145] ['QFA2E']"

Analytical Functions, Aggregate Functions, and Numeric Functions
When CONVERSION_MODE = 1, no further restriction applies to analytical functions,
aggregate functions, and numeric functions that require numeric expressions as arguments.

CONVERT_VARCHAR_TO_1242 Option
Converts pre-version 12.4.2 VARCHAR data to compressed format.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set only for the PUBLIC group. Takes effect when you run sp_iqcheckdb in any
mode.

Description
Helps further compress data and improve performance, especially for databases with many
variable character strings.

Set this option and then run sp_iqcheckdb only once, and only for VARCHAR columns that
were created before version 12.4.2.

COOPERATIVE_COMMIT_TIMEOUT Option
Governs when a COMMIT entry in the transaction log is written to disk.

Allowed Values
Integer, in milliseconds

Default
250

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
This option only has meaning when COOPERATIVE_COMMITS is set to ON. The database
server waits for the specified number of milliseconds for other connections to fill a page of the
log before writing to disk. The default setting is 250 milliseconds.

Database Options

 356 Sybase IQ

See also
• COOPERATIVE_COMMITS Option on page 357

COOPERATIVE_COMMITS Option
Controls when commits are written to disk.

Allowed Values
ON, OFF

Default
ON

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
If COOPERATIVE_COMMITS is set to OFF, a COMMIT is written to disk as soon as the
database server receives it, and the application is then allowed to continue.

If COOPERATIVE_COMMITS is set to ON, the default, the database server does not
immediately write the COMMIT to the disk. Instead, it requires the application to wait for a
maximum length set by the COOPERATIVE_COMMIT_TIMEOUT option for something else
to put on the pages before the commit is written to disk.

Setting COOPERATIVE_COMMITS to ON, and increasing the
COOPERATIVE_COMMIT_TIMEOUT setting increases overall database server throughput
by cutting down the number of disk I/Os, but at the expense of a longer turnaround time for
each individual connection.

See also
• COOPERATIVE_COMMIT_TIMEOUT Option on page 356

CURSOR_WINDOW_ROWS Option
Defines the number of cursor rows to buffer.

Allowed Values
20 – 100000

Default
200

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Database Options

Reference: Statements and Options 357

Description
When an application opens a cursor, Sybase IQ creates a FIFO (first-in, first-out) buffer to hold
the data rows generated by the query. CURSOR_WINDOW_ROWS defines how many rows can
be put in the buffer. If the cursor is opened in any mode other than NO SCROLL, Sybase IQ
allows for backward scrolling for up to the total number of rows allowed in the buffer before it
must restart the query. This is not true for NO SCROLL cursors, as they do not allow backward
scrolling.

For example, with the default value for this option, the buffer initially holds rows 1 through
200 of the query result set. If you fetch the first 300 rows, the buffer holds rows 101 through
300. You can scroll backward or forward within that buffer with very little overhead cost. If
you scroll before row 101, Sybase IQ restarts that query until the required row is back in the
buffer. This can be an expensive operation to perform, so your application should avoid it
where possible. An alternative is to increase the value for CURSOR_WINDOW_ROWS to
accommodate a larger possible scrolling area; however, the default setting of 200 is sufficient
for most applications.

DATE_FIRST_DAY_OF_WEEK Option
Determines the first day of the week.

Allowed Values
0 – 6

Default
0 (Sunday)

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
This option specifies which day is the first day of the week. By default, Sunday is day 1,
Monday is day 2, Tuesday is day 3, and so on:

Table 22. DATE_FIRST_DAY_OF_WEEK Valid Values

Value First Day

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

Database Options

 358 Sybase IQ

Value First Day

4 Thursday

5 Friday

6 Saturday

For example, if you change the value of DATE_FIRST_DAY_OF_WEEK to 3, Wednesday
becomes day 1, Thursday becomes day 2, and so on. This option only affects the DOW and
DATEPART functions.

The SQL Anywhere option FIRST_DAY_OF_WEEK performs the same function, but assigns
the values 1 through 7 instead of 0 through 6. 1 stands for Monday and 7 for Sunday (the
default).

DATE_FORMAT Option
Sets the format used for dates retrieved from the database.

Allowed Values
String

Default
'YYYY-MM-DD'. This corresponds to ISO date format specifications.

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
The format is a string using these symbols:

Table 23. Symbols Used in DATE_FORMAT String

Symbol Description

yy 2-digit year

yyyy 4-digit year

mm 2-digit month, or 2-digit minutes if following a colon (as in 'hh:mm')

mmm 3-character name of month

mmmm[m...] Character long form for months—as many characters as there are m's, until the
number of m’s specified exceeds the number of characters in the month’s name.

d Single-digit day of week, (0 = Sunday, 6 = Saturday)

Database Options

Reference: Statements and Options 359

Symbol Description

dd 2-digit day of month

ddd 3-character name of the day of week.

dddd[d...] Character long form for day of the week—as many characters as there are d's,
until the number of d’s specified exceeds the number of characters in the day’s
name.

jjj Day of the year, from 1 to 366

Note: Multibyte characters are not supported in date format strings. Only single-byte
characters are allowed, even when the collation order of the database is a multibyte collation
order like 932JPN. Use the concatenation operator to include multibyte characters in date
format strings. For example, if '?' represents a multibyte character, use the concatenation
operator to move the multibyte character outside of the date format string:

SELECT DATEFORMAT (StartDate, 'yy') + '?'
FROM Employees;

Each symbol is substituted with the appropriate data for the date being formatted. Any format
symbol that represents character rather than digit output can be put in uppercase which causes
the substituted characters to also be in uppercase. For numbers, using mixed case in the format
string suppresses leading zeros.

You can control the padding of numbers by changing the case of the symbols. Same-case
values (MM, mm, DD, or dd) all pad number with zeros. Mixed-case (Mm, mM, Dd, or dD)
cause the number to not be zero-padded; the value takes as much room as required. For
example:

SELECT dateformat (cast ('2011/01/01' as date), 'yyyy/Mm/Dd')

returns this value:

2011/1/1

Examples
This table illustrates DATE_FORMAT settings, together with the output from this statement,
executed on Saturday May 21, 2011:

SELECT CURRENT DATE

Table 24. DATE_FORMAT Settings

DATE_FORMAT SELECT CURRENT DATE

yyyy/mm/dd/ddd 2011/05/21/sat

jjj 141

Database Options

 360 Sybase IQ

DATE_FORMAT SELECT CURRENT DATE

mmm yyyy may 2011

mm-yyyy 05-2011

See also
• RETURN_DATE_TIME_AS_STRING Option on page 436

• TIME_FORMAT Option on page 462

DATE_ORDER Option
Controls the interpretation of date formats.

Allowed Values
'MDY', 'YMD', or 'DMY'

Default
'YMD'. This corresponds to ISO date format specifications.

Description
DATE_ORDER is used to determine whether 10/11/12 is Oct 11 1912, Nov 12 1910, or Nov 10
1912. The option can have the value 'MDY', 'YMD', or 'DMY'.

DBCC_LOG_PROGRESS Option
Reports the progress of the sp_iqcheckdb system stored procedure.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect at the next
execution of sp_iqcheckdb.

Description
When DBCC_LOG_PROGRESS is ON, the sp_iqcheckdb system stored procedure sends
progress messages to the IQ message file. These messages allow the user to follow the
progress of the sp_iqcheckdb operation.

Stored procedures are documented in Reference: Building Blocks, Tables, and Procedures.

Database Options

Reference: Statements and Options 361

Examples
Sample progress log output of the command sp_iqcheckdb ‘check database’:

IQ Utility Check Database
Start CHECK STATISTICS table: tloansf
Start CHECK STATISTICS for field: aqsn_dt
Start CHECK STATISTICS processing index:
IQ_IDX_T444_C1_FP
Start CHECK STATISTICS processing index:
tloansf_aqsn_dt_HNG
Done CHECK STATISTICS field: aqsn_dt

Sample progress log output of the command sp_iqcheckdb ‘allocation table
nation’:

Start ALLOCATION table: nation
Start ALLOCATION processing index: nationhg1
Done ALLOCATION table: nation
Done ALLCOATION processing index: nationhg1

DBCC_PINNABLE_CACHE_PERCENT Option
Controls the percent of the cache used by the sp_iqcheckdb system stored procedure.

Allowed Values
0 – 100

Default
50

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect at the next
execution of sp_iqcheckdb.

Description
The sp_iqcheckdb system stored procedure works with a fixed number of buffers, as
determined by this option. By default, a large percentage of the cache is reserved to maximize
sp_iqcheckdb performance.

Stored procedures are documented in Reference: Building Blocks, Tables, and Procedures.

For information on troubleshooting sp_iqcheckdb, see System Administration Guide:
Volume 2 > System Recovery and Database Repair > Database Verification > Resource Issues
Running sp_iqcheckdb.

Database Options

 362 Sybase IQ

DEBUG_MESSAGES Option
Controls whether or not MESSAGE statements that include a DEBUG ONLY clause are
executed.

Allowed Values
ON, OFF

Default
OFF

Description
This option allows you to control the behavior of debugging messages in stored procedures
that contain a MESSAGE statement with the DEBUG ONLY clause specified. By default, this
option is set to OFF and debugging messages do not appear when the MESSAGE statement is
executed. By setting DEBUG_MESSAGES to ON, you can enable the debugging messages in
all stored procedures.

Note: DEBUG ONLY messages are inexpensive when the DEBUG_MESSAGES option is set to
OFF, so these statements can usually be left in stored procedures on a production system.
However, they should be used sparingly in locations where they would be executed frequently;
otherwise, they might result in a small performance penalty.

See also
• MESSAGE Statement on page 243

DEDICATED_TASK Option
Dedicates a request handling task to handling requests from a single connection.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set as a temporary option only, for the duration of the current connection. Requires
DBA permissions to set this option.

Description
When the DEDICATED_TASK connection option is set to ON, a request handling task is
dedicated exclusively to handling requests for the connection. By pre-establishing a
connection with this option enabled, you can gather information about the state of the database
server if it becomes otherwise unresponsive.

Database Options

Reference: Statements and Options 363

DEFAULT_DBSPACE Option
Changes the default dbspace where tables or join indexes are created.

Allowed Values
String containing a dbspace name

Default
'' (the empty string)

Scope
Can be set for an individual connection or PUBLIC group. Setting takes effect immediately.
Requires DBA permissions to set the option for groups or users other than the current user.
Takes effect immediately.

Description
DEFAULT_DBSPACE allows the administrator to set the default dbspace for a group or user
or allows a user to set the user’s own default dbspace.

IQ_SYSTEM_TEMP is always used for global temporary tables unless a table IN clause is
used that specifies SYSTEM, in which case an SA global temporary table is created.

At database creation, the system dbspace, IQ_SYSTEM_MAIN, is created and is implied
when the PUBLIC.DEFAULT_DBSPACE option setting is empty or explicitly set to
IQ_SYSTEM_MAIN. Immediately after creating the database, Sybase recommends that the
administrator create a second main dbspace, revoke CREATE privilege in dbspace
IQ_SYSTEM_MAIN from PUBLIC, grant CREATE in dbspace for the new main dbspace to
selected users or PUBLIC, and set PUBLIC.DEFAULT_DBSPACE to the new main dbspace.
For example:

CREATE DBSPACE user_main USING FILE user_main
'user_main1' SIZE 10000;
GRANT CREATE ON user_main TO PUBLIC;
REVOKE CREATE ON IQ_SYSTEM_MAIN FROM PUBLIC;
SET OPTION PUBLIC.DEFAULT_DBSPACE = 'user_main';

Example
In this example, CONNECT and RESOURCE privileges on all dbspaces are granted to users
usrA and usrB, and each of these users is granted CREATE privilege on a particular
dbspace:

GRANT CONNECT, RESOURCE TO usrA, usrB
 IDENTIFIED BY pwdA, pwdB;
GRANT CREATE ON dbsp1 TO usrA;
GRANT CREATE ON dbsp3 TO usrB;
SET OPTION “usrA”.default_dbspace = ‘dbsp1’;
SET OPTION “usrB”.default_dbspace = ‘dbsp3’;
SET OPTION “PUBLIC”.default_dbspace = dbsp2;

Database Options

 364 Sybase IQ

CREATE TABLE “DBA”.t1(c1 int, c2 int);
INSERT INTO t1 VALUES (1, 1);
INSERT INTO t1 VALUES (2, 2);
COMMIT;

UsrA connects:

CREATE TABLE “UsrA”.t1(c1 int, c2 int);
INSERT INTO t1 VALUES (1, 1);
INSERT INTO t1 VALUES (2, 2);
COMMIT;

UsrB connects:

CREATE TABLE “UsrB”.t1(c1 int, c2 int);
INSERT INTO t1 VALUES (1, 1);
INSERT INTO t1 VALUES (2, 2);
COMMIT;

DBA connects:

SELECT Object, DbspaceName, ObjSize
FROM sp_iqindexinfo();

sp_iqindexinfo result:

DBA.t1 dbsp2 200k
DBA.t1.ASIQ_IDX_T730_C1_FP dbsp2 288k
DBA.t1.ASIQ_IDX_T730_C2_FP dbsp2 288k
usrA.t1 dbsp1 200k
usrA.t1.ASIQ_IDX_T731_C1_FP dbsp1 288k
usrA.t1.ASIQ_IDX_T731_C2_FP dbsp1 288k
usrB.t1 dbsp3 200k
usrB.t1.ASIQ_IDX_T732_C1_FP dbsp3 288k
usrB.t1.ASIQ_IDX_T732_C2_FP dbsp3 288k

DEFAULT_DISK_STRIPING Option
Sets the default disk striping value for all dbspaces.

Allowed Values
ON, OFF

Default
ON

Scope
Can be set for the PUBLIC group only. Requires DBA permissions.

Database Options

Reference: Statements and Options 365

Description
By default, disk striping is ON for all dbspaces in the IQ main store. This option is used only by
CREATE DBSPACE and defines the default striping value, if CREATE DBSPACE does not
specify striping.

See also
• CREATE DBSPACE Statement on page 76

DEFAULT_HAVING_SELECTIVITY_PPM Option
Provides default selectivity estimates to the optimizer for most HAVING clauses in parts per
million.

Allowed Values
0 – 1000000

Default
0

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
DEFAULT_HAVING_SELECTIVITY_PPM sets the selectivity for HAVING clauses,
overriding optimizer estimates. A HAVING clause filters the results of a GROUP BY clause or a
query with a select list consisting solely of aggregate functions. When
DEFAULT_HAVING_SELECTIVITY_PPM is set to the default of 0, the optimizer estimates
how many rows are filtered by the HAVING clause. Sometimes the IQ optimizer does not have
sufficient information to choose an accurate selectivity, and in these cases chooses a generic
estimate of 40%. DEFAULT_HAVING_SELECTIVITY_PPM allows a user to replace the
optimizer estimate for all HAVING predicates in a query.

Users can also specify the selectivity of individual HAVING clauses in the query, as described
in Reference: Building Blocks, Tables, and Procedures.

DEFAULT_ISQL_ENCODING Option [Interactive SQL]
Specifies the code page used by READ and OUTPUT statements.

Allowed Values
identifier or string

Default
Use system code page (empty string)

Database Options

 366 Sybase IQ

Scope
Can only be set as a temporary option, for the duration of the current connection.

Description
DEFAULT_ISQL_ENCODING is used to specify the code page to use when reading or
writing files. It cannot be set permanently. The default code page is the default code page for
the platform you are running on. On English Windows machines, the default code page is
1252.

Interactive SQL determines the code page that is used for a particular OUTPUT or READ
statement as follows, where code page values occurring earlier in the list take precedence over
those occurring later in the list:

• The code page specified in the ENCODING clause of the OUTPUT or READ statement
• The code page specified with the DEFAULT_ISQL_ENCODING option (if this option is

set)
• The code page specified with the -codepage command line option when Interactive SQL

was started
• The default code page for the computer on which Interactive SQL is running

For a list of supported code pages, see SQL Anywhere 11.0.1 > SQL Anywhere Server –
Database Administration > Configuring Your Database > International languages and
character sets > Character set and collation reference information > Supported and alternate
collations.

See also SQL Anywhere 11.0.1 > SQL Anywhere Server – Database Administration >
Configuring Your Database > International languages and character sets > Understanding
character sets > Overview of character sets, encodings, and collations.

Example
Set the encoding to UTF-16 (for reading Unicode files):

SET TEMPORARY OPTION DEFAULT_ISQL_ENCODING = 'UTF-16'

See also
• OUTPUT Statement [Interactive SQL] on page 248
• READ Statement [Interactive SQL] on page 259

DEFAULT_KB_PER_STRIPE Option
Sets an upper threshold in KB on the amount to write to a stripe before write operations move
on to the next stripe.

This setting is the default size for all dbspaces in the IQ main store.

Allowed Values
1 to maximum integer

Database Options

Reference: Statements and Options 367

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/recommended-understanding-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/recommended-understanding-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/recommended-understanding-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/recommended-understanding-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/pieces-in-the-char-set-puzzle-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/pieces-in-the-char-set-puzzle-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/pieces-in-the-char-set-puzzle-natlang.html

Default
1

Scope
Can be set for the PUBLIC group only. Requires DBA permissions.

Description
The default value of 1KB means that one page is compressed and that the compressed page is
written to disk as a single operation. Whatever the chosen page size, the next operation writes
to the next dbfile in that dbspace.

To write multiple pages to the same stripe before moving to the next stripe, change the
DEFAULT_KB_PER_STRIPE setting. For example, if the page size is 128KB, and
DEFAULT_KB_PER_STRIPE set to 512KB, Sybase IQ queues up page writes and writes to
disk after reaching the minimum of 512KB of compressed pages.

This option is used only by CREATE DBSPACE and defines the default disk striping size for
dbspaces in the IQ main store, if CREATE DBSPACE does not specify a stripe size.

See also
• CREATE DBSPACE Statement on page 76

DEFAULT_LIKE_MATCH_SELECTIVITY_PPM Option
Provides default selectivity estimates (in parts per million) to the optimizer for most LIKE
predicates.

Allowed Values
0 to 1000000

Default
150000

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
DEFAULT_LIKE_MATCH_SELECTIVITY_PPM sets the default selectivity for generic
LIKE predicates, for example, LIKE 'string%string' where % is a wildcard character.

The optimizer relies on this option when other selectivity information is not available and the
match string does not start with a set of constant characters followed by a single wildcard.

If the column has either an LF index or a 1- or 2- or 3-byte FP index, the optimizer can get exact
information and does not need to use this value.

Database Options

 368 Sybase IQ

Users can also specify selectivity in the query. User-supplied condition hints are described in
Reference: Building Blocks, Tables, and Procedures.

See also
• DEFAULT_LIKE_RANGE_SELECTIVITY_PPM Option on page 369
• FP_LOOKUP_SIZE Option on page 374

DEFAULT_LIKE_RANGE_SELECTIVITY_PPM Option
Provides default selectivity estimates (in parts per million) to the optimizer for leading
constant LIKE predicates.

Allowed Values
1 to 1000000

Default
150000

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
DEFAULT_LIKE_RANGE_SELECTIVITY_PPM sets the default selectivity for LIKE
predicates, of the form LIKE 'string%' where the match string is a set of constant
characters followed by a single wildcard character (%). The optimizer relies on this option
when other selectivity information is not available.

If the column has either an LF index or a 1- or 2- or 3-byte FP index, the optimizer can get exact
information and does not need to use this value.

Users can also specify selectivity in the query. User-supplied condition hints are described in
Reference: Building Blocks, Tables, and Procedures.

See also
• DEFAULT_LIKE_MATCH_SELECTIVITY_PPM Option on page 368
• FP_LOOKUP_SIZE Option on page 374

DELAYED_COMMIT_TIMEOUT Option
Determines when the server returns control to an application following a COMMIT.

Allowed Values
Integer, in milliseconds.

Default
500

Database Options

Reference: Statements and Options 369

Description
This option is ignored by Sybase IQ, since DELAYED_COMMITS can only be set OFF.

DELAYED_COMMITS Option
Determines when the server returns control to an application following a COMMIT.

Allowed Values
OFF

Default
OFF. This corresponds to ISO COMMIT behavior.

Description
When set to OFF (the only value allowed by Sybase IQ), the application must wait until the
COMMIT is written to disk. This option must be set to OFF for ANSI/ISO COMMIT behavior.

DISABLE_RI_CHECK Option
Allows load, insert, update, or delete operations to bypass the referential integrity check,
improving performance.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
Users are responsible for ensuring that no referential integrity violation occurs during requests
while DISABLE_RI_CHECK is set to ON.

DIVIDE_BY_ZERO_ERROR Option [TSQL]
Controls the reporting of division by zero.

Allowed Values
ON, OFF

Default
ON

Database Options

 370 Sybase IQ

Scope
This option indicates whether division by zero is reported as an error. If the option is set ON,
division by zero results in an error with SQLSTATE 22012.

If the option is set OFF, division by zero is not an error; a NULL is returned.

DQP_ENABLED Option
Temporary database option dqp_enabled allows you to enable or disable DQP at the
connection level.

You can set the temporary database option dqp_enabled to OFF to disable DQP for the current
connection. You can set the option to ON (the default value) to enable DQP for the current
connection, but only when DQP is enabled for the user by that user's login policy for the
logical server of the current connection.

Users must be licensed for the Multiplex Grid Option to run secondary servers. For
dqp_enabled syntax and complete description, see Using Sybase IQ Multiplex.

EARLY_PREDICATE_EXECUTION Option
Controls whether simple local predicates are executed before query optimization.

Allowed Values
ON, OFF

Default
ON

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
If this option is ON (the default), the optimizer finds, prepares, and executes predicates
containing only local columns and constraints before query optimization, including join
ordering, join algorithm selection, and grouping algorithm selection, so that the values of
“Estimated Result Rows” in the query plan are more precise. If this option is OFF, the
optimizer finds and prepares the simple predicates, but does not execute them before query
optimization. The resulting values of “Estimated Result Rows” are less precise, if the
predicates are not executed.

In general, EARLY_PREDICATE_EXECUTION should always be left ON, as this results in
improved query plans for many queries.

Database Options

Reference: Statements and Options 371

Note that when EARLY_PREDICATE_EXECUTION is ON, Sybase IQ executes the local
predicates for all queries before generating a query plan, even when the NOEXEC option is
ON. The generated query plan is the same as the runtime plan.

This information is included in the query plan for the root node:

• Threads used for executing local invariant predicates: if greater than 1, indicates parallel
execution of local invariant predicates

• Early_Predicate_Execution: indicates if the option is OFF
• Time of Cursor Creation: the time of cursor creation

The simple predicates whose execution is controlled by this option are referred to as invariant
predicates in the query plan. This information is included in the query plan for a leaf node, if
there are any local invariant predicates on the node:

• Generated Post Invariant Predicate Rows: actual result after executing local invariant
predicate

• Estimated Post Invariant Predicate Rows: calculated by using estimated local invariant
predicates selectivity

• Time of Condition Start: starting time of the execution of local invariant predicates
• Time of Condition Done: ending time of the execution of local invariant predicates
• Elapsed Condition Time: elapsed time for executing local invariant predicates

ENABLE_LOB_VARIABLES Option
Controls the data type conversion of large object variables.

Users must be licensed for the Unstructured Data Analytics Option to use large object
variables. For ENABLE_LOB_VARIABLES syntax and a complete description, see
Unstructured Data Analytics in Sybase IQ.

EXTENDED_JOIN_SYNTAX Option
Controls whether queries with an ambiguous syntax for multi-table joins are allowed or are
reported as an error.

Allowed Values
ON, OFF

Default
ON

Description
This option reports a syntax error for those queries containing outer joins that have ambiguous
syntax due to the presence of duplicate correlation names on a null-supplying table.

This join clause illustrates the kind of query that is reported where C1 is a condition:

(R left outer join T , T join S on (C1))

Database Options

 372 Sybase IQ

If EXTENDED_JOIN_SYNTAX is set to ON, this query is interpreted as follows, where C1
and C2 are conditions:

(R left outer join T on (C1)) join S on (C2)

FORCE_DROP Option
Causes Sybase IQ to leak, rather than reclaim, database disk space during a DROP command.

Allowed Values
ON, OFF

Default
OFF

Scope
Requires DBA permissions to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
You must drop a corrupt index, join index, column or table and set the FORCE_DROP option to
ON. This prevents the free list from being incorrectly updated from incorrect or suspect file
space allocation information in the object being dropped. After dropping corrupt objects, you
can reclaim the file space using the -iqfrec and -iqdroplks server switches.

When force dropping objects, you must ensure that only the DBA is connected to the database.
The server must be restarted immediately after a force drop.

Do not attempt to force drop objects unless Sybase Technical Support has instructed you to do
so.

FORCE_DROP procedures for system recovery and database repair are described in System
Administration Guide: Volume 1.

FORCE_NO_SCROLL_CURSORS Option
Forces all cursors to be non-scrolling.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Database Options

Reference: Statements and Options 373

Description
By default, all cursors are scrolling. Scrolling cursors with no host variable declared cause
Sybase IQ to create a buffer for temporary storage of results. Each row in the result set is stored
to allow for backward scrolling.

Setting FORCE_NO_SCROLL_CURSORS to ON reduces temporary storage requirements.
This option can be useful if you are retrieving very large numbers (millions) of rows. However
if your front-end application makes frequent use of backward-scrolling cursor operations,
query response will be faster with this option set to OFF.

If your front-end application rarely performs backward-scrolling, make
FORCE_NO_SCROLL_CURSORS = ‘ON’ a permanent PUBLIC option, to use less
memory and improve query performance.

FORCE_UPDATABLE_CURSORS Option
Controls whether cursors that have not been declared as updatable can be updated.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set temporary for an individual connection for a group, or PUBLIC. Does not require
DBA permissions. Takes effect immediately.

Description
When FORCE_UPDATABLE_CURSORS is ON, cursors which have not been declared as
updatable can be updated. This option allows updatable cursors to be used in front-end
applications without specifying the FOR UPDATE clause of the DECLARE CURSOR
statement.

Sybase does not recommend the use of FORCE_UPDATABLE_CURSORS unless absolutely
necessary.

FP_LOOKUP_SIZE Option
Specifies the maximum number of lookup pages used in Sybase IQ and controls the amount of
cache allocated to the creation of Lookup FP indexes, particularly FP(3) Indexes.

Allowed Values
1 MB – 4096 MB

Database Options

 374 Sybase IQ

Default
16 MB

Scope
DBA permissions are required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
FP_LOOKUP_SIZE controls the maximum number of lookup pages.

FP_LOOKUP_SIZE must be set public, so the allowed syntax is:

SET OPTION public.FP_LOOKUP_SIZE = 1

These database options support 3-byte indexes:

• INDEX_ADVISOR

• MINIMIZE_STORAGE

• FP_LOOKUP_SIZE_PPM

These stored procedures support 3-byte indexes:

• sp_iqcheckdb

• sp_iqcolumn

• sp_iqindexadvice

• sp_iqindexmetadata

• sp_iqindexsize

• sp_iqindex

• sp_iqindexfragmentation

• sp_iqrebuildindex

• sp_iqrowdensity

See also
• FP_LOOKUP_SIZE_PPM Option on page 375

• MINIMIZE_STORAGE Option on page 412

FP_LOOKUP_SIZE_PPM Option
Restricts FP lookup storage size in Sybase IQ to this parts-per-million value of main memory.

Allowed Values
1 to 1000000

Default
2500

Database Options

Reference: Statements and Options 375

Scope
DBA permissions are required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
FP_LOOKUP_SIZE_PPM controls the amount of main cache allocated to the creation of
Lookup FP indexes for all FP lookup indexes, but particularly for FP(3) indexes.

This option controls the maximum number of lookup pages and restricts this number to a
parts-per-million value of main memory, that is, the value of FP_LOOKUP_SIZE_PPM *
size of main memory / 1,000,000, where the size of main memory is specified by
the -iqmc server startup parameter.

These options support 3-byte indexes:

• FP_LOOKUP_SIZE

• INDEX_ADVISOR

• MINIMIZE_STORAGE

See also
• FP_LOOKUP_SIZE Option on page 374

• MINIMIZE_STORAGE Option on page 412

FP_PREDICATE_WORKUNIT_PAGES Option
Specifies degree of parallelism used in the default index.

Allowed Values
Integer

Default
200

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
The default index calculates some predicates such as SUM, RANGE, MIN, MAX and
COUNT DISTINCT in parallel. FP_PREDICATE_WORKUNIT_PAGES affects the degree
of parallelism used by specifying the number of pages worked on by each thread. To increase
the degree of parallelism, decrease the value of this option.

Database Options

 376 Sybase IQ

FPL_EXPRESSION_MEMORY_KB Option
Controls the use of memory for the optimization of queries involving functional expressions
against columns having enumerated storage.

Allowed Values
0 – 20000

Default
1024 kilobytes

Scope
Can be set temporary for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description
FPL_EXPRESSION_MEMORY_KB controls the use of memory for the optimization of
queries involving functional expressions against columns having enumerated storage. The
option enables the DBA to constrain the memory used by this optimization and balance it with
other Sybase IQ memory requirements, such as caches. Setting this option to 0 switches off
optimization.

GARRAY_FILL_FACTOR_PERCENT Option
Specifies the percent of space on each HG garray page to reserve for future incremental inserts
into existing groups.

Allowed Values
0 – 1000

Default
25

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
The garray tries to pad out each group to include a pad of empty space set by the value. This
space is used for rows added to existing index groups.

An HG index can reserve some storage on a per-group basis (where group is defined as a group
of rows with equivalent values). Reserving space consumes additional disk space, but can help
the performance of incremental inserts into the HG index.

Database Options

Reference: Statements and Options 377

If you plan to do future incremental inserts into an HG index, and those new rows have values
that are already present in the index, a nonzero value for this option might improve
incremental insert performance.

If you do not plan to incrementally update the index, you can reduce the values of this option to
save disk space.

See also
• GARRAY_PAGE_SPLIT_PAD_PERCENT Option on page 378

GARRAY_INSERT_PREFETCH_SIZE Option
Specifies number of pages used for prefetch.

Allowed Values
0 – 100

Default
3

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
This option defines the number of database pages read ahead during an insert to a column that
has an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

See also
• GARRAY_FILL_FACTOR_PERCENT Option on page 377

GARRAY_PAGE_SPLIT_PAD_PERCENT Option
Determines per-page fill factor during page splits on the garray and specifies the percent of
space on each HG garray page to reserve for future incremental inserts.

Allowed Values
0 – 100

Default
25

Database Options

 378 Sybase IQ

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
Splits of a garray page try to leave that percentage empty. This space is used for rows added to
new index groups.

An HG index can reserve storage at the page level that can be allocated to new groups when
additional rows are inserted. Reserving space consumes additional disk space, but can help the
performance of incremental inserts into the HG index.

If future plans include incremental inserts into an HG index, and the new rows do not have
values that are already present in the index, a nonzero value for
GARRAY_PAGE_SPLIT_PAD_PERCENT could improve incremental insert performance.

If you do not plan to incrementally update the index, you can reduce the values of this option to
save disk space.

See also
• GARRAY_FILL_FACTOR_PERCENT Option on page 377

GARRAY_RO_PREFETCH_SIZE Option
Specifies number of pages used for prefetch.

Allowed Values
0 – 100

Default
10

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
This option defines the number of database pages read ahead during a query to a column that
has an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

Database Options

Reference: Statements and Options 379

HASH_PINNABLE_CACHE_PERCENT Option
Controls the maximum percentage of a user’s temp memory that a hash object can pin.

Allowed Values
0 – 100

Default
20

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
HASH_PINNABLE_CACHE_PERCENT controls the percentage of a user’s temp memory
allocation that any one hash object can pin in memory. The default is 20%, but you should
reduce this number to 10% if you are running complex queries, or increase this number to 50%
if you have simple queries that need a single large hash object to run, such as a large IN
subquery.

HASH_PINNABLE_CACHE_PERCENT is for use by primarily Sybase Technical Support. If
you change the value of it, do so with extreme caution; first analyze the effect on a wide variety
of queries.

See also
• BIT_VECTOR_PINNABLE_CACHE_PERCENT Option on page 342

• SORT_PINNABLE_CACHE_PERCENT Option on page 440

HASH_THRASHING_PERCENT Option
Specifies the percent of hard disk I/Os allowed during the execution of a statement that
includes a query involving hash algorithms, before the statement is rolled back and an error
message is reported.

Allowed Values
0 – 100

Default
10

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Database Options

 380 Sybase IQ

Description
If a query that uses hash algorithms causes an excessive number of hard disk I/Os (paging
buffers from memory to disk), query performance is negatively affected, and server
performance might also be affected. HASH_THRASHING_PERCENT controls the
percentage of hard disk I/Os allowed before the statement is rolled back and an error message
is returned. The text of the error message is either Hash insert thrashing
detected or Hash find thrashing detected.

The default value of HASH_THRASHING_PERCENT is 10%. Increasing this value permits
more paging to disk before a rollback and decreasing this value permits less paging before a
rollback.

For more information on controlling excessive paging and using
HASH_THRASHING_PERCENT, see System Administration Guide: Volume 1 >
Troubleshooting Hints > Solutions for Specific Conditions > Processing Issues >
Unexpectedly Long Loads or Queries.

See also
• HASH_PINNABLE_CACHE_PERCENT Option on page 380

HG_DELETE_METHOD Option
Specifies the algorithm used during a delete in a HG index.

Allowed Values
0 – 3

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
This option chooses the algorithm used by the HG index during a delete operation. The cost
model considers the CPU related costs as well as I/O related costs in selecting the appropriate
delete algorithm. The cost model takes into account:

• Rows deleted
• Index size
• Width of index data type
• Cardinality of index data
• Available temporary cache

Database Options

Reference: Statements and Options 381

• Machine related I/O and CPU characteristics
• Available CPUs and threads
• Referential integrity costs
To force a “small” method, set this option to 1. To force the “large” method, set the option to 2.
To force a “midsize” method, set the option to 3.

HG_SEARCH_RANGE Option
Specifies the maximum number of Btree pages used in evaluating a range predicate in the HG
index.

Allowed Values
Integer

Default
10

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
The default setting of this option is appropriate for most queries.

This option effectively controls the amount of time the optimizer spends searching for the best
index to use for a range predicate. Setting this option higher may cause a query to spend more
time in the optimizer, but as a result may choose a better index to resolve a range predicate.

HTTP_SESSION_TIMEOUT Option
Specifies the amount of time, in minutes, that the client waits for an HTTP session to time out
before giving up.

Allowed Values
Integer (0 – 525600)

Default
30

Scope
DBA authority required. Can be set for PUBLIC group only.

Description
This option provides variable session timeout control for Web service applications. A Web
service application can change the timeout value from within any request that owns the HTTP
session, but a change to the timeout value can impact subsequent queued requests if the HTTP
session times out. The Web application must include logic to detect whether a client is

Database Options

 382 Sybase IQ

attempting to access an HTTP session that no longer exists. This can be done by examining the
value of the SessionCreateTime connection property to determine whether a timestamp is
valid: if the HTTP request is not associated with the current HTTP session, the
SessionCreateTime connection property contains an empty string.

See Also
See SQL Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data
Access APIs > SQL Anywhere web services > Using HTTP sessions.

See SessionCreateTime and http_session_timeout properties in SQL Anywhere 11.0.1 >
SQL Anywhere Server - Database Administration > Configuring Your Database >
Connection, database, and database server properties > Connection properties.

IDENTITY_ENFORCE_UNIQUENESS Option
Creates a unique HG index on each IDENTITY/AUTOINCREMENT column, if the column is
not already a primary key.

Allowed Values
ON, OFF

Default
OFF

Scope
Can only be set temporary (for a connection), for a user, or for the PUBLIC group. Takes effect
immediately.

Description
When option is set ON, HG indexes are created on future identity columns. The index can only
be deleted if the deleting user is the only one using the table and the table is not a local
temporary table.

See also
• QUERY_PLAN Option on page 429

IDENTITY_INSERT Option
Enables users to insert values into or to update an IDENTITY or AUTOINCREMENT
column.

Allowed Values
= 'tablename'

Default
Option not set.

Database Options

Reference: Statements and Options 383

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-session.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-session.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/connection-properties.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/connection-properties.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/connection-properties.html

Scope
Can be set only temporary (for a connection), for a user, or for the PUBLIC group. Takes effect
immediately.

Note: If you set a user level option for the current option, the corresponding temporary option
is also set. See Scope and Duration of Database Options.

Description
When IDENTITY_INSERT is set, insert/update is enabled. A table name must be specified
to identify the column to insert or update. If you are not the table owner, qualify the table name
with the owner name.

To drop a table with an IDENTITY column, IDENTITY_INSERT must not be set to that
table.

Examples
If you use the table Employees to run explicit inserts:

SET TEMPORARY OPTION IDENTITY_INSERT = 'Employees'

To turn the option off, specify the equals sign and an empty string:

SET TEMPORARY OPTION IDENTITY_INSERT = ''

Illustrates the effect of user level options on temporary options (see Note), if you are
connected to the database as DBA and enter:

SET OPTION IDENTITY_INSERT = 'Customers'

The value for the option is set to Customers for the user DBA and temporary for the current
connection. Other users who subsequently connect to the database as DBA find their option
value for IDENTITY_INSERT is Customers also.

See also
• Scope and Duration of Database Options on page 319

• QUERY_PLAN Option on page 429

INDEX_ADVISOR Option
Generates messages suggesting additional column indexes that may improve performance of
one or more queries.

Allowed Values
ON, OFF

Default
OFF

Database Options

 384 Sybase IQ

Scope
Can be set temporary (for a connection), for a user, or for the PUBLIC group. Takes effect
immediately.

Description
When set ON, the index advisor prints index recommendations as part of the Sybase IQ query
plan or as a separate message in the Sybase IQ message log file, if query plans are not enabled.
These messages begin with the string “Index Advisor:” and you can use that string to
search and filter them from a Sybase IQ message file. The output is in
OWNER.TABLE.COLUMN format.

Set both INDEX_ADVISOR and INDEX_ADVISOR_MAX_ROWS to accumulate index advice.

Note: When INDEX_ADVISOR_MAX_ROWS is set ON, index advice will not be written to the
Sybase IQ message file as separate messages. Advice will, however, continue to be displayed
on query plans in the Sybase IQ message file.

Table 25. Index Advisor

Situation Recommendation

Local predicates on a single column where an HG, LF, HNG, DATE,

TIME or DATETIME index would be desirable, as appropriate.

Recommend adding an <index-type>
index to column <col>

Single column join keys where an LF or HG index would be useful. Add an LF or HG index to join key
<col>

Single column candidate key indexes where a HG exists, but could
be changed to a unique HG or LF

Change join key <col> to a unique LF

or HG index

Join keys have mismatched data types, and regenerating one col-
umn with a matched data type would be beneficial.

Make join keys <col1> and <col2>
identical data types

Subquery predicate columns where an LF or HG index would be
useful.

Add an LF or HG index to subquery
column <col>

Grouping columns where an LF or HG index would be useful. Create an LF or HG index on grouping
column <col>

Single-table intercolumn comparisons where the two columns are
identical data types, a CMP index are recommended.

Create a CMP index on <col1>, <col2>

Columns where an LF or HG index exists, and the number of distinct
values allows, suggest converting the FP to a 1 or 2-byte FP index.

Rebuild <col> with ‘optimize stor-
age=on’

To support the lookup of default indexes three bytes wide Rebuild your FP Index as a 3-byte FP
with an IQ UNIQUE constraint value
of 65537

Database Options

Reference: Statements and Options 385

It is up to you to decide how many queries benefit from the additional index and whether it is
worth the expense to create and maintain the indexes. In some cases, you cannot determine
how much, if any, performance improvement results from adding the recommended index.

For example, consider columns used as a join key. Sybase IQ uses metadata provided by HG or
LF indexes extensively to generate better/faster query plans to execute the query. Putting an
HG or LF index on a join column without one makes the IQ optimizer far more likely to choose
a faster join plan, but without adding the index and running the query again, it is very hard to
determine whether query performance stays the same or improves with the new index.

Example
Index advisor output with query plan set OFF:

I. 03/30 14:18:45. 0000000002 Advice: Add HG or LF index
on DBA.ta.c1 Predicate: (ta2.c1 < BV(1))

Index advisor output with query plan set ON:

Note: This method accumulates index advisor information for multiple queries, so that advice
for several queries can be tracked over time in a central location.

I. 03/30 14:53:24. 0000000008 [20535]: 6 ...#03: Leaf
I. 03/30 14:53:24. 0000000008 [20535]: Table Name: tb
I. 03/30 14:53:24. 0000000008 [20535]: Condition 1
(Invariant):
(tb.c3 =tb.c4)
I. 03/30 14:53:24. 0000000008 [20535]: Condition 1 Index
Advisor:
Add a CMP index on DBA.tb (c3,c4)

See also
• FP_LOOKUP_SIZE Option on page 374

• INDEX_ADVISOR_MAX_ROWS Option on page 386

• MINIMIZE_STORAGE Option on page 412

• QUERY_PLAN Option on page 429

INDEX_ADVISOR_MAX_ROWS Option
Sets the maximum number of unique advice messages stored by the index advisor to
max_rows.

Allowed Values

Value Description

0 Minimum value disables collection of index advice

4294967295 Maximum value allowed

Database Options

 386 Sybase IQ

Default
0

Scope
Can be set temporary (for the current connection), or persistent for a user/group (such as
PUBLIC or DBA). Takes effect immediately.

Description
INDEX_ADVISOR_MAX_ROWS limits the number of messages stored by the index advisor.
Once the specified limit has been reached, the INDEX_ADVISOR will not store new advice. It
will, however, continue to update counts and timestamps for existing advice messages.

SET OPTION public.Index_Advisor_Max_Rows = max_rows;

See also
• FP_LOOKUP_SIZE Option on page 374

• INDEX_ADVISOR Option on page 384

INDEX_PREFERENCE Option
Controls the choice of indexes to use for queries.

Allowed Values
-10 to 10

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
The Sybase IQ optimizer normally chooses the best index available to process local WHERE
clause predicates and other operations that can be done within an IQ index.
INDEX_PREFERENCE is used to override the optimizer choice for testing purposes; under
most circumstances, it should not be changed.

Table 26. INDEX_PREFERENCE Valid Values

Value Action

0 Let the optimizer choose

1 Prefer LF indexes

Database Options

Reference: Statements and Options 387

Value Action

2 Prefer HG indexes

3 Prefer HNG indexes

4 Prefer CMP indexes

5 Prefer the default index

6 Prefer WD indexes

8 Prefer DATE indexes

9 Prefer TIME indexes

10 Prefer DTTM indexes

-1 Avoid LF indexes

-2 Avoid HG indexes

-3 Avoid HNG indexes

-4 Avoid CMP indexes

-5 Avoid the default index

-6 Avoid WD indexes

-8 Avoid DATE indexes

-9 Avoid TIME indexes

-10 Avoid DTTM indexes

INFER_SUBQUERY_PREDICATES Option
Controls the optimizer’s inference of additional subquery predicates.

Allowed Values
ON, OFF

Default
ON

Scope
Can be set temporary for an individual connection or the PUBLIC group. Takes effect
immediately. DBA permissions are not required to set this option.

Database Options

 388 Sybase IQ

Description
INFER_SUBQUERY_PREDICATES controls whether the optimizer is allowed to infer
additional subquery predicates from an existing subquery predicate through transitive closure
across a simple equality join predicate. In most cases in which the optimizer chooses to make
this inference, the query runs faster. There are some exceptions to this performance
improvement, so you may need to experiment to be sure that this option is appropriate for your
environment.

IN_SUBQUERY_PREFERENCE Option
Controls the choice of algorithms for processing an IN subquery.

Allowed Values
-3 to 3

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
The IQ optimizer has a choice of several algorithms for processing IN subqueries. This option
allows you to override the optimizer's costing decision when choosing the algorithm to use. It
does not override internal rules that determine whether an algorithm is legal within the query
engine.

IN_SUBQUERY_PREFERENCE is normally used for internal testing and for manually
tuning queries that the optimizer does not handle well. Only experienced DBAs should use it.
The only reason to use this option is if the optimizer seriously underestimates the number of
rows produced by a subquery, and the hash object is thrashing. Before setting this option, try to
improve the mistaken estimate by looking for missing indexes and dependent predicates.

Inform Sybase Technical Support if you need to set IN_SUBQUERY_PREFERENCE, as
setting this option might mean that a change to the optimizer is appropriate.

Table 27. IN_SUBQUERY_PREFERENCE Valid Values

Value Action

0 Let the optimizer choose

1 Prefer sort-based IN subquery

Database Options

Reference: Statements and Options 389

Value Action

2 Prefer vertical IN subquery (where a subquery is a child of a leaf node in the query
plan)

3 Prefer hash-based IN subquery

-1 Avoid sort-based IN subquery

-2 Avoid vertical IN subquery

-3 Avoid hash-based IN subquery

IQGOVERN_MAX_PRIORITY Option
Limits the allowed IQGOVERN_PRIORITY setting.

Allowed Values
1 – 3

Default
2

Scope
Can be set temporary for an individual connection or for the PUBLIC group. Requires DBA
permissions to set. Takes effect immediately.

Description
Limits the allowed IQGOVERN_PRIORITY setting, which affects the order in which a user’s
queries are queued for execution. In the range of allowed values, 1 indicates high priority, 2
(the default) medium priority, and 3 low priority. Sybase IQ returns an error if a user sets
IQGOVERN_PRIORITY higher than IQGOVERN_MAX_PRIORITY.

See also
• IQGOVERN_PRIORITY Option on page 390

• IQGOVERN_PRIORITY_TIME Option on page 391

IQGOVERN_PRIORITY Option
Assigns a priority to each query waiting in the -iqgovern queue.

Allowed Values
1 – 3

Default
2

Database Options

 390 Sybase IQ

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
Assigns a value that determines the order in which a user’s queries are queued for execution. In
the range of allowed values, 1 indicates high priority, 2 (the default) medium priority, and 3
low priority. This switch can be set temporary per user or public by any user. Queries with a
lower priority will not run until all higher priority queries have executed.

This option is limited by the per user or per group value of the option
IQGOVERN_MAX_PRIORITY.

See also
• IQGOVERN_MAX_PRIORITY Option on page 390

• IQGOVERN_PRIORITY_TIME Option on page 391

IQGOVERN_PRIORITY_TIME Option
Limits the time a high priority query waits in the queue before starting.

Allowed Values
0 – 1,000,000 seconds. Must be lower than IQGOVERN_MAX_PRIORITY.

Default
0 (disabled)

Scope
Can be set for the PUBLIC group only. Requires DBA permissions. Takes effect immediately.

Description
Limits the time a high priority (priority 1) query waits in the queue before starting. When the
limit is reached, the query is started even if it exceeds the number of queries allowed by the
-iqgovern setting. You must belong to group DBA in order to change this switch. The range is
from 1 to 1,000,000 seconds. The default (0) disables this feature.
IQGOVERN_PRIORITY_TIME must be set PUBLIC.

See also
• IQGOVERN_MAX_PRIORITY Option on page 390

• IQGOVERN_PRIORITY Option on page 390

Database Options

Reference: Statements and Options 391

ISOLATION_LEVEL Option
Controls the locking isolation level for catalog store tables.

Allowed Values
0, 1, 2, or 3

Default
0

Description
Each locking isolation level is defined as follows:

• 0 – Allow dirty reads, nonrepeatable reads, and phantom rows.
• 1 – Prevent dirty reads. Allow nonrepeatable reads and phantom rows.
• 2 – Prevent dirty reads and guarantee repeatable reads. Allow phantom rows.
• 3 – Serializable. Do not allow dirty reads, guarantee repeatable reads, and do not allow

phantom rows.

ISOLATION_LEVEL determines the isolation level for tables in the catalog store. Sybase IQ
always enforces level 3 for tables in the IQ store. Level 3 is equivalent to ANSI level 4.

JAVA_LOCATION Option
Specifies the path of the Java VM for the database.

Allowed Values
String

Default
Empty string

Scope
Can be set for the PUBLIC group only. DBA authority required.

Description
By default, this option contains an empty string. In this case, the database server searches the
JAVA_HOME environment variable, the path, and other locations for the Java VM.

See also
• JAVA_VM_OPTIONS Option on page 393

Database Options

 392 Sybase IQ

JAVA_VM_OPTIONS Option
Specifies command line options that the database server uses when it launches the Java VM.

Allowed Values
String

Default
Empty string

Scope
Can be set for the PUBLIC group only. DBA authority required.

Description
JAVA_VM_OPTIONS specifies options that the database server uses when launching the Java
VM specified by the JAVA_LOCATION option. These additional options can be used to set up
the Java VM for debugging purposes or to run as a service on UNIX platforms. In some cases,
additional options are required to use the Java VM in 64-bit mode instead of 32-bit mode.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Configuring
Your Database > Database options > Introduction to database options > Alphabetical list of
options > java vm options option [database].

See also
• JAVA_LOCATION Option on page 392

JOIN_EXPANSION_FACTOR Option
Controls how conservative the optimizer’s join result estimates are in unusually complex
situations.

Allowed Values
1 – 100

Default
30

Scope
Can be set temporary for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description
This option controls how conservative the join optimizer’s result size estimates are in
situations where an input to a specific join has already passed through at least one intermediate
join that can result in multiple copies of rows projected from the table being joined.

Database Options

Reference: Statements and Options 393

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-2879385.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-2879385.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-2879385.html

A level of zero indicates that the optimizer should use the same estimation method above
intermediate expanding joins as it would if there were no intermediate expanding joins.

This results in the most aggressive (small) join result size estimates.

A level of 100 indicates that the optimizer should be much more conservative in its estimates
whenever there are intermediate expanding joins, and this results in the most conservative
(large) join result size estimates.

Normally, you should not need to change this value. If you do, Sybase recommends setting
JOIN_EXPANSION_FACTOR as a temporary or user option.

JOIN_OPTIMIZATION Option
Enables or disables the optimization of the join order.

Allowed Values
ON, OFF

Default
ON

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When JOIN_OPTIMIZATION is ON, Sybase IQ optimizes the join order to reduce the size
of intermediate results and sorts, and to balance the system load. When the option is OFF, the
join order is determined by the order of the tables in the FROM clause of the SELECT
statement.

JOIN_OPTIMIZATION should always be set ON.

JOIN_OPTIMIZATION controls the order of the joins, but not the order of the tables. To
show the distinction, consider this example FROM clause with four tables:

FROM A, B, C, D

By default, this FROM clause creates a left deep plan of joins that could also be explicitly
represented as:

FROM (((A, B), C), D)

If JOIN_OPTIMIZATION is turned OFF, then the order of these joins on the sets of tables is
kept precisely as specified in the FROM clause. Thus A and B must be joined first, then that
result must be joined to table C, and then finally joined to table D. This option does not control
the left/right orientation at each join. Even with JOIN_OPTIMIZATION turned OFF, the
optimizer, when given the above FROM clause, can produce a join plan that looks like:

Database Options

 394 Sybase IQ

FROM ((C, (A, B)), D)

or

FROM (((B, A), C), D)

or

FROM (D, ((A, B), C))

In all of these cases, A and B are joined first, then that result is joined to C, and finally that
result is joined to table D. The order of the joins remains the same, but the order of the tables
appears different.

In general, if JOIN_OPTIMIZATION is turned OFF, you probably should use parentheses in
the FROM clause, as in the above examples, to make sure that you get the join order you want.
If you want to join A and B to the join of C and D, you can specify this join by using
parentheses:

FROM ((A, B), (C, D))

Note that the above FROM clause is a different join order than the original example FROM
clause, even though all the tables appear in the same order.

JOIN_OPTIMIZATION should be set to OFF only to diagnose obscure join performance
issues or to manually optimize a small number of predefined queries. With
JOIN_OPTIMIZATION turned OFF, queries can join up to 128 tables, but might also suffer
serious performance degradation.

Warning! If you turn off JOIN_OPTIMIZATION, Sybase IQ has no way to ensure optimal
performance for queries containing joins. You assume full responsibility for performance
aspects of your queries.

JOIN_PREFERENCE Option
Controls the choice of algorithms when processing joins.

Allowed Values
-7 to 7

Default
0

Scope
DBA permissions are not required. Can be set temporary for an individual connection or for
the PUBLIC group. Takes effect immediately.

Description
For joins within a query, the IQ optimizer has a choice of several algorithms for processing the
join. JOIN_PREFERENCE allows you to override the optimizer’s cost-based decision when

Database Options

Reference: Statements and Options 395

choosing the algorithm to use. It does not override internal rules that determine whether an
algorithm is legal within the query engine. If you set it to any nonzero value, every join in a
query is affected; you cannot use it to selectively modify one join out of several in a query.

This option is normally used for internal testing, and only experienced DBAs should use it.

Table 28. JOIN_PREFERENCE Valid Values

Value Action

0 Let the optimizer choose

1 Prefer sort-merge

2 Prefer nested-loop

3 Prefer nested-loop push-down

4 Prefer hash

5 Prefer hash push-down

6 Prefer prejoin

7 Prefer sort-merge push-down

-1 Avoid sort-merge

-2 Avoid nested-loop

-3 Avoid nested-loop push-down

-4 Avoid hash

-5 Avoid hash push-down

-6 Avoid prejoin

-7 Avoid sort-merge push-down

Simple equality join predicates can be tagged with a predicate hint that allows a join
preference to be specified for just that one join. If the same join has more than one join
condition with a local join preference, and if those hints are not the same value, then all local
preferences are ignored for that join. Local join preferences do not affect the join order chosen
by the optimizer.

This example requests a hash join:

AND (T.X = 10 * R.x, 'J:4')

Database Options

 396 Sybase IQ

JOIN_SIMPLIFICATION_THRESHOLD Option
Controls the minimum number of tables being joined together before any join optimizer
simplifications are applied.

Allowed Values
1 – 64

Default
15

Scope
Can be set temporary for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description
The query optimizer simplifies its optimization of join order by separate handling of both
lookup tables (that is, nonselective dimension tables) and tables that are effective Cartesian
products. After simplification, it optimizes the remaining tables for join order, up to the limit
set by MAX_JOIN_ENUMERATION.

Setting this option to a value greater than the current value for MAX_JOIN_ENUMERATION
has no effect.

Setting this value below the value for MAX_JOIN_ENUMERATION might improve the time
required to optimize queries containing many joins, but may also prevent the optimizer from
finding the best possible join plan.

Normally, you should not need to change this value. If you do, Sybase recommends setting
JOIN_SIMPLIFICATION_THRESHOLD as a temporary or user option, and to a value of at
least 9.

See also
• MAX_JOIN_ENUMERATION Option on page 408

LARGE_DOUBLES_ACCUMULATOR Option
Controls which accumulator to use for SUM or AVG of floating-point numbers.

Allowed Values
ON, OFF

Default
OFF

Database Options

Reference: Statements and Options 397

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
The small accumulator for floats and doubles is highly accurate for addends in the range of
magnitudes 1e-20 to 1e20. It loses some accuracy outside of this range, but is still good enough
for many applications. The small accumulator allows the optimizer to choose hash for faster
performance more easily than the large accumulator. The large accumulator is highly accurate
for all floats and doubles, but its size often precludes the use of hash optimization. The default
is the small accumulator.

LF_BITMAP_CACHE_KB Option
Specifies the amount of memory to use for a load into a LF index.

Allowed Values
1 – 8

Default
4

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
LF_BITMAP_CACHE_KB defines the amount of heap memory (in KB) per distinct value
used during a load into an LF index. The default allots 4KB. If the sum of the distinct counts for
all LF indexes on a particular table is relatively high (greater than 10,000), then heap memory
use might increase to the point of impacting load performance due to system page faulting. If
this is the case, reduce the value of LF_BITMAP_CACHE_KB.

This formula shows how to calculate the heap memory used (in bytes) by a particular LF index
during a load:

Heap-memory-used = (lf_bitmap_cache_kb * 1024)
* lf-distinct-count-for-column

Using the default of 4KB, an LF index with 1000 distinct values can use up to 4MB of heap
memory during a load.

Database Options

 398 Sybase IQ

LOAD_ZEROLENGTH_ASNULL Option
Specifies LOAD statement behavior under certain conditions.

Allowed Values
ON, OFF

DBA permissions are not required. Can be set temporary for an individual connection or for
the PUBLIC group. Takes effect immediately.

Default
OFF

Description
This option specifies LOAD statement behavior under these conditions:

• inserting a zero-length data value into a column of data type CHAR, VARCHAR, LONG
VARCHAR, BINARY, VARBINARY, or LONG BINARY

and
• a NULL column-spec; for example, NULL(ZEROS) or NULL(BLANKS) is also given

for that same column

Set LOAD_ZEROLENGTH_ASNULL ON to load a zero-length value as NULL when the
above conditions are met.

Set LOAD_ZEROLENGTH_ASNULL OFF to load a zero-length value as zero-length, subject
to the setting of option NON_ANSI_NULL_VARCHAR.

See also
• NON_ANSI_NULL_VARCHAR Option on page 417

• LOAD TABLE Statement on page 221

LOCKED Option
If set for a login policy, prevents users with that policy from establishing new connections.

For details, see System Administration Guide: Volume 1 > Managing User IDs and
Permissions.

See also
• ALTER LOGIN POLICY Statement on page 19

• CREATE LOGIN POLICY Statement on page 107

Database Options

Reference: Statements and Options 399

LOG_CONNECT Option
Controls logging of user connections.

Allowed Values
ON, OFF

Default
ON

Scope
Can be set only for the PUBLIC group. Takes effect immediately.

Description
When this option is ON, a message appears in the IQ message log (.iqmsg file) every time a
user connects to or disconnects from the Sybase IQ database.

Note: If this option is set OFF (connection logging disabled) when a user connects, and then
turned on before the user disconnects, the message log shows that user disconnecting but not
connecting.

LOG_CURSOR_OPERATIONS Option
Controls logging of cursor operations.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When this option is ON, a message appears in the IQ message log every time you open or close
a cursor. Normally this option should be OFF, which is the default. Turn it ON only if you are
having a problem and must provide debugging data to Sybase Technical Support.

Database Options

 400 Sybase IQ

LOGIN_MODE Option
Controls the use of integrated logins for the database.

Allowed Values
Standard, Mixed, or Integrated

Default
Standard

Scope
Can be set only for the PUBLIC group. Takes effect immediately.

Description
This option specifies whether integrated logins are permitted. Values are case insensitive:

• Standard – The default setting, which does not permit integrated logins. An error occurs if
an integrated login connection is attempted.

• Mixed – Both integrated logins and standard logins are allowed.
• Integrated – With this setting, all logins to the database must be made using integrated

logins.

Warning! Setting LOGIN_MODE to Integrated restricts connections to only those users who
have been granted an integrated login mapping. Attempting to connect using a user ID and
password generates an error. The only exceptions to this are users with DBA authority (full
administrative rights).

LOGIN_PROCEDURE Option
Specifies a login procedure that sets connection compatibility options at start-up.

Allowed Values
String

Default
sp_login_environment system procedure

Scope
Can be set for an individual connection or the PUBLIC group. Requires DBA permissions to
set the option. Takes effect immediately.

Description
The initial connection compatibility options settings are controlled using the
LOGIN_PROCEDURE option, which is called after all the checks have been performed to
verify that the connection is valid. The LOGIN_PROCEDURE option names a stored

Database Options

Reference: Statements and Options 401

procedure to run when users connect. The default setting is to use the sp_login_environment
system stored procedure. You can specify a different stored procedure. The procedure
specified by the LOGIN_PROCEDURE option is not executed for event connections.

The sp_login_environment procedure checks to see if the connection is being made over
TDS. If the connection is made over TDS, sp_login_environment calls the
sp_tsql_environment procedure, which sets several options to new default values for the
current connection.

For more details on the LOGIN_PROCEDURE option and examples, see SQL Anywhere
11.0.1 > SQL Anywhere Server – Database Administration > Configuring Your Database >
Database options > Introduction to database options > Alphabetical list of options >
login_procedure option [database].

See also
• Initial Option Settings on page 321

MAIN_RESERVED_DBSPACE_MB Option
Controls the amount of space Sybase IQ reserves in the IQ main store.

Allowed Values
Integer greater than or equal to 200, in megabytes

Default
200; Sybase IQ actually reserves a maximum of 50% and a minimum of 1% of the last read-
write file in IQ_SYSTEM_MAIN

Scope
Can be set only for the PUBLIC group. Requires DBA permissions to set the option. Takes
effect immediately. The server does not need to be restarted in order to change reserved space
size.

Description
MAIN_RESERVED_DBSPACE_MB controls the amount of space Sybase IQ sets aside in the
IQ main store for certain small but critical data structures used during release savepoint,
commit, and checkpoint operations. For a production database, set this value between 200MB
and 1GB. The larger your IQ page size and number of concurrent connections, the more
reserved space you need.

Reserved space size is calculated as a maximum of 50% and a minimum of 1% of the last
read-write file in IQ_SYSTEM_MAIN.

Database Options

 402 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/login-procedure.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/login-procedure.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/login-procedure.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/login-procedure.html

MAX_CARTESIAN_RESULT Option
Limits the number of rows resulting from a Cartesian join.

Allowed Values
Any integer

Can be set temporary (for a connection), for a user, or for the PUBLIC group. Takes effect
immediately.

Default
100000000

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
MAX_CARTESIAN_RESULT limits the number of result rows from a query containing a
Cartesian join (usually the result of missing one or more join conditions when creating the
query). If Sybase IQ cannot find a query plan for the Cartesian join with an estimated result
under this limit, it rejects the query and returns an error. Setting MAX_CARTESIAN_RESULT
to 0 disables the check for the number of result rows of a Cartesian join.

MAX_CLIENT_NUMERIC_PRECISION Option
Controls the maximum precision for numeric data sent to the client.

Allowed Values
0 – 126

Default
0

Scope
Can be set by any user, at any level. This option takes effect immediately.

Description
When Sybase IQ performs its calculation, it promotes data types to an appropriate size that
ensures accuracy. The promoted data type might be larger in size than Open Client and some
ODBC applications can handle correctly.

When MAX_CLIENT_NUMERIC_PRECISION is a nonzero value, Sybase IQ checks that
numeric result columns do not exceed this value. If the result column is bigger than

Database Options

Reference: Statements and Options 403

MAX_CLIENT_NUMERIC_PRECISION allows, and Sybase IQ cannot cast it to the
specified precision, the query returns this error:

Data Exception - data type conversion is not possible %1
SQLCODE = -1001006

Note: In SQL Anywhere, the maximum value supported for the numeric function is 255. If the
precision of the numeric function exceeds the maximum value supported, you see the error:
The result datatype for function '_funcname' exceeds the
maximum supported numeric precision of 255. Please set the
proper value for precision in numeric function, 'location'

See also
• MAX_CLIENT_NUMERIC_SCALE Option on page 404

• PRECISION Option on page 424

MAX_CLIENT_NUMERIC_SCALE Option
Controls the maximum scale for numeric data sent to the client.

Allowed Values
0 – 126

Default
0

Scope
Can be set by any user, at any level. This option takes effect immediately.

Description
When Sybase IQ performs its calculation, it promotes data types to an appropriate scale and
size that ensure accuracy. The promoted data type might be larger than the original defined
data size. You can set this option to the scale you want for numeric results.

Multiplication, division, addition, subtraction, and aggregate functions can all have results
that exceed the maximum precision and scale.

For example, when a DECIMAL(88,2) is multiplied with a DECIMAL(59,2), the result could
require a DECIMAL(147,4). With MAX_CLIENT_NUMERIC_PRECISION of 126, only
126 digits are kept in the result. If MAX_CLIENT_NUMERIC_SCALE is 4, the results are
returned as a DECIMAL(126,4). If MAX_CLIENT_NUMERIC_SCALE is 2, the result are
returned as a DECIMAL(126,2). In both cases, there is a possibility for overflow.

See also
• MAX_CLIENT_NUMERIC_PRECISION Option on page 403

• SCALE Option on page 438

Database Options

 404 Sybase IQ

MAX_CONNECTIONS Option
Specifies the maximum number of concurrent connections allowed for a user.

For details, see SQL Anywhere Server – Database Administration.

MAX_CUBE_RESULT Option
Sets the maximum number of rows that the IQ optimizer considers for a GROUP BY CUBE
operation.

Allowed Values
0 – 4294967295

Default
10000000

Scope
Can be set by any user, at any level. This option takes effect immediately.

Description
When generating a query plan, the IQ optimizer estimates the total number of groups
generated by the GROUP BY CUBE hash operation. The IQ optimizer uses a hash algorithm
for the GROUP BY CUBE operation. This option sets an upper boundary for the number of
estimated rows the optimizer considers for a hash algorithm that can be run. If the actual
number of rows exceeds the MAX_CUBE_RESULT value, the optimizer stops processing the
query and returns the error Estimate number: nnn exceeds the default
MAX_CUBE_RESULT of GROUP BY CUBE or ROLLUP, where nnn is the number
estimated by the IQ optimizer.

Set MAX_CUBE_RESULT to zero to override the default value. When this option is set to zero,
the IQ optimizer does not check the row limit and allows the query to run. Setting
MAX_CUBE_RESULT to zero is not recommended, as the query might not succeed.

MAX_CURSOR_COUNT Option
Specifies a resource governor to limit the maximum number of cursors that a connection can
use at once.

Allowed Values
Integer

Default
50

Database Options

Reference: Statements and Options 405

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.
Requires DBA permissions to set this option for any connection.

Description
The specified resource governor allows a DBA to limit the number of cursors per connection
that a user can have. If an operation exceeds the limit for a connection, an error is generated
indicating that the limit has been exceeded.

If a connection executes a stored procedure, that procedure is executed under the permissions
of the procedure owner. However, the resources used by the procedure are assigned to the
current connection.

You can remove resource limits by setting MAX_CURSOR_COUNT to 0 (zero).

MAX_DAYS_SINCE_LOGIN Option
Specifies the maximum number of days that can elapse between two successive logins by the
same user.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server – Database Administration >
Configuring Your Database > Managing user IDs, authorities, and permissions > Managing
login policies overview.

MAX_FAILED_LOGIN_ATTEMPTS Option
Specifies the maximum number of failed attempts, since the last successful attempt, to log into
the user account before the account is locked.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server – Database Administration >
Configuring Your Database > Managing user IDs, authorities, and permissions > Managing
login policies overview.

MAX_HASH_ROWS Option
Sets the maximum number of rows that the IQ optimizer considers for a hash algorithm.

Allowed Values
Integer from 1 to 4294967295

Default
2500000

Scope
Can be set temporary for an individual connection or the PUBLIC group. DBA permissions
are not required to set the option. This option takes effect immediately.

Database Options

 406 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html

Description
When generating a query plan, the IQ optimizer might have several algorithms (hash, sort,
indexed) to choose from when processing a particular part of a query. These choices often
depend on estimates of the number of rows to process or generate from that part of the query.
This option sets an upper boundary for how many estimated rows are considered for a hash
algorithm.

For example, if there is a join between two tables, and the estimated number of rows entering
the join from both tables exceeds the value of MAX_HASH_ROWS, the optimizer does not
consider a hash join. On systems with more than 50 MB per user of temporary buffer cache
space, you might want to consider a higher value for this option.

MAX_IQ_THREADS_PER_CONNECTION Option
Controls the number of threads for each connection.

Allowed Values
3 – 10000

Default
144

Scope
Can be temporary or permanent. Does not require DBA permissions to set. Can be set for the
PUBLIC group only. Takes effect immediately.

Description
Allows you to constrain the number of threads (and thereby the amount of system resources)
the commands executed on a connection use. For most applications, use the default.

MAX_IQ_THREADS_PER_TEAM Option
Controls the number of threads allocated to perform a single operation (such as a LIKE
predicate on a column) executing within a connection.

Allowed Values
1 – 10000

Default
144

Scope
Can be temporary or permanent. Does not require DBA permissions to set. Can be set for the
PUBLIC group only. Takes effect immediately.

Database Options

Reference: Statements and Options 407

Description
Allows you to constrain the number of threads (and thereby the amount of system resources)
allocated to a single operation. The total for all simultaneously executing teams for this
connection is limited by the related option, MAX_IQ_THREADS_PER_CONNECTION. For
most applications, use the default.

See also
• MAX_IQ_THREADS_PER_CONNECTION Option on page 407

MAX_JOIN_ENUMERATION Option
Controls the maximum number of tables to be optimized for join order after optimizer
simplifications have been applied.

Allowed Values
1 – 64

Each FROM clause is limited to having at most 64 tables. In practice, however, the effective
limit on the number of tables in a FROM clause is usually much lower, and is based partially on
the complexity of the join relationships among those tables. That effective limit is constrained
by the setting for MAX_JOIN_ENUMERATION. The optimizer will attempt to simplify the set
of join relationships within a FROM clause. If those simplifications fail to reduce the set of the
joins that must be simultaneously considered to no more than the current setting for
MAX_JOIN_ENUMERATION, then the query will return an error.

Warning! Setting MAX_JOIN_ENUMERATION over the default value of 16 should only be
done with caution, especially in the case of queries with bushy join relationships that can cause
the amount of time required by the optimizer increase dramatically. In queries that use only a
linear chain of join relationships, a MAX_JOIN_ENUMERATION setting of 64 can still provide
reasonable optimization times.

Default
15

Scope
Can be set temporary for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description
The query optimizer simplifies its optimization of join order by separate handling of both
lookup tables (that is, nonselective dimension tables) and tables that are effective Cartesian
products. After simplification, it proceeds with optimizing the remaining tables for join order,
up to the limit set by MAX_JOIN_ENUMERATION. If this limit is exceeded, the query is
rejected with an error. The user can then either simplify the query or try increasing the limit.

Database Options

 408 Sybase IQ

Normally, you should not need to change this value. If you do, Sybase recommends setting
MAX_JOIN_ENUMERATION as a temporary or user option.

MAX_PREFIX_PER_CONTAINS_PHRASE Option
Specifies the number of prefix terms allowed in a text search expression.

Users must be licensed for the Unstructured Data Analytics Option to use TEXT indexes and
perform full text searches.

For MAX_PREFIX_PER_CONTAINS_PHRASE syntax and a complete description, see
Unstructured Data Analytics in Sybase IQ.

MAX_QUERY_PARALLELISM Option
Sets upper bound for parallel execution of GROUP BY operations and for arms of a UNION.

Allowed Values
Integer less than, greater than or equal to number of CPUs.

Default
64

Scope
Can be set temporary for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description
This parameter sets an upper bound which limits how parallel the optimizer will permit query
operators to go. This can influence the CPU usage for many query join, GROUP BY, UNION,
ORDER BY, and other query operators.

Systems with more than 64 CPU cores often benefit from a larger value, up to the total number
of CPU cores on the system to a maximum of 512; you can experiment to find the best value for
this parameter for your system and queries.

Systems with 64 or fewer CPU cores should not need to reduce this value, unless excessive
system time is seen. In that case, you can try reducing this value to determine if that adjustment
can lower the CPU system time and improve query response times and overall system
throughput.

MAX_QUERY_TIME Option
Sets a time limit so that the optimizer can disallow very long queries.

Allowed Values
0 to 232 - 1 minutes

Database Options

Reference: Statements and Options 409

Default
0 (disabled)

Scope
Can be set at the session (temporary), user, or PUBLIC level.

Description
If the query runs longer than the MAX_QUERY_TIME setting, Sybase IQ stops the query and
sends a message to the user and the IQ message file. For example:

The operation has been cancelled -- Max_Query_Time exceeded.

MAX_QUERY_TIME applies only to queries and not to any SQL statement that is modifying
the contents of the database.

MAX_STATEMENT_COUNT Option
Specifies a resource governor to limit the maximum number of prepared statements that a
connection can use at once.

Allowed Values
Integer

Default
100

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.
Requires DBA permissions to set this option for any connection.

Description
The specified resource governor allows a DBA to limit the number of prepared statements per
connection that a user can have. If an operation exceeds the limit for a connection, an error is
generated indicating that the limit has been exceeded.

If a connection executes a stored procedure, that procedure is executed under the permissions
of the procedure owner. However, the resources used by the procedure are assigned to the
current connection.

You can remove resource limits by setting MAX_STATEMENT_COUNT to 0 (zero).

Database Options

 410 Sybase IQ

MAX_TEMP_SPACE_PER_CONNECTION Option
Limits temporary store space used per connection.

Allowed Values
Integer (number of MB)

Default
0 (no limit on temporary store usage)

Scope
DBA permissions are required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
By controlling space per connection, this option enables DBAs to manage the space for both
loads and queries. If the connection exceeds the run time quota specified by
MAX_TEMP_SPACE_PER_CONNECTION, Sybase IQ rolls back the current statement and
returns this message to the IQ message file or client user:

The current operation has been cancelled:
Max_Temp_Space_Per_Connection exceeded

Conditions that may fill the buffer cache include read or write errors, lack of main or temp
space, or being out of memory. Sybase IQ may return the first error encountered in these
situations and the DBA must determine the appropriate solution. For more information, see
Error Messages and System Administration Guide: Volume 1 > Troubleshooting Hints.

In a distributed query processing transaction, Sybase IQ uses the values set for the
QUERY_TEMP_SPACE_LIMIT and MAX_TEMP_SPACE_PER_CONNECTION options
for the shared temporary store by limiting the total shared and local temporary space used by
all nodes participating in the distributed query. This means that any single query cannot
exceed the total temporary space limit (from IQ_SYSTEM_TEMP and IQ_SHARED_TEMP
dbspaces), no matter how many nodes participate.

For example, if the limit is 100 and four nodes use 25 units of temporary space each, the query
is within limits. If the sum of the total space used by any of the nodes exceeds 100, however,
the query rolls back.

Examples
Set a 500GB limit for all connections:

SET OPTION
PUBLIC.MAX_TEMP_SPACE_PER_CONNECTION = 512000

Set a 10TB limit for all connections:

Database Options

Reference: Statements and Options 411

SET OPTION
PUBLIC.MAX_TEMP_SPACE_PER_CONNECTION = 10485760

Set a 5000MB limit for user wilson:

SET OPTION
wilson.MAX_TEMP_SPACE_PER_CONNECTION = 5000

See also
• QUERY_TEMP_SPACE_LIMIT Option on page 434

MAX_WARNINGS Option
Controls the maximum number of warnings allowed.

Allowed Values
Any integer

Default
248 - 1

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
This option can limit the number of warnings about rejected values, row mismatches, and so
on during DDL commands. The default does not restrict the number you can receive.

MINIMIZE_STORAGE Option
Minimizes use of disk space for newly created columns.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for the PUBLIC group or for temporary use. DBA authority is not required to set the
option. This option takes effect immediately.

Description
When MINIMIZE_STORAGE is ON, IQ optimizes storage for new columns by using as little
as one byte of disk space per row wherever appropriate. By default, this option is OFF for the
PUBLIC group, and the specialized storage optimization does not occur for all newly created

Database Options

 412 Sybase IQ

columns; when MINIMIZE_STORAGE is OFF for the PUBLIC group but ON as a temporary
user option, one-byte storage is used for new columns created by that user ID.

Setting MINIMIZE_STORAGE ON is equivalent to placing an IQ UNIQUE 255 clause on
every new column, with the exception of certain data types that are by nature too wide for
one-byte storage. When MINIMIZE_STORAGE is ON, there is no need to specify IQ
UNIQUE, except for columns with more than 65536 unique values.

Note: An IQ UNIQUE value greater than 65536 can allow the creation of 3-byte indexes,
whereas previously such values were used to prevent it with MINIMIZE_STORAGE ON. If
you want to prevent the specialized storage optimization with MINIMIZE_STORAGE ON,
give IQ UNIQUE a constraint value greater than 16777216.

When the ratio of main memory to the number of columns is large, turning
MINIMIZE_STORAGE ON is beneficial. Otherwise, storage of new columns generally
benefits from turning this option OFF.

Specifying IQ UNIQUE explicitly in CREATE TABLE or ALTER TABLE ADD COLUMN
overrides the MINIMIZE_STORAGE setting for that column.

See also
• FP_LOOKUP_SIZE Option on page 374
• INDEX_ADVISOR Option on page 384

MIN_PASSWORD_LENGTH Option
Sets the minimum length for new passwords in the database.

Allowed Values
Integer greater than or equal to zero

The value is in bytes. For single-byte character sets, this is the same as the number of
characters.

Default
0 characters

Scope
Can be set for the PUBLIC group. Takes effect immediately. Requires DBA permissions to set
this option.

Description
This option allows the DBA to impose a minimum length on all new passwords for greater
security. Existing passwords are not affected.

Example
Set the minimum length for new passwords to 6 bytes:

Database Options

Reference: Statements and Options 413

SET OPTION PUBLIC.MIN_PASSWORD_LENGTH = 6

MONITOR_OUTPUT_DIRECTORY Option
Controls placement of output files for the IQ buffer cache monitor.

Allowed Values
String.

Default
Same directory as the database.

Scope
Can be set for the PUBLIC group. Takes effect immediately. Requires DBA permissions to set
this option.

Description
MONITOR_OUTPUT_DIRECTORY controls the directory in which the IQ monitor output
files are created, regardless of what is being monitored or what monitor mode is used. The
dummy table used to start the monitor can be either a temporary or a permanent table. The
directory can be on any physical machine.

All monitor output files are used for the duration of the monitor runs, which cannot exceed the
lifetime of the connection. The output file still exists after the monitor run stops. A connection
can run up to two performance monitors simultaneously, one for main cache and one for temp
cache. A connection can run a monitor any number of times, successively.

The DBA can use the PUBLIC setting to place all monitor output in the same directory, or set
different directories for individual users.

Example
This example shows how you could declare a temporary table for monitor output, set its
location, and then have the monitor start sending files to that location for the main and temp
buffer caches.

Note: In this example, the output directory string is set to both “/tmp” and “tmp/”. The trailing
slash (“/”) is correct and is supported by the interface. The example illustrates that the buffer
cache monitor does not require a permanent table; a temporary table can be used.

declare local temporary table dummy_monitor (dummy_column integer)

set option Monitor_Output_Directory = "/tmp"
iq utilities main into dummy_monitor start monitor '-debug -interval
2'

set option Monitor_Output_Directory = "tmp/"

iq utilities private into dummy_monitor start monitor '-debug -
interval 2'

Database Options

 414 Sybase IQ

MPX_AUTOEXCLUDE_TIMEOUT Option
Specifies timeout for auto-excluding a secondary node on the coordinator node.

0 indicates that the nodes will not be auto excluded. This option does not apply to the
designated failover node. Users must be licensed for the Multiplex Grid Option to run
secondary nodes. For MPX_AUTOEXCLUDE_TIMEOUT syntax and complete description,
see Using Sybase IQ Multiplex.

MPX_HEARTBEAT_FREQUENCY Option
Specifies interval until the heartbeat thread wakes and cleans up the connection pool on the
secondary node.

Users must be licensed for the Multiplex Grid Option to run secondary nodes. For
MPX_HEARTBEAT_FREQUENCY syntax and complete description, see Using Sybase IQ
Multiplex.

MPX_IDLE_CONNECTION_TIMEOUT Option
Specifies the time after which an unused connection in the connection pool on a secondary
node will be closed.

Users must be licensed for the Multiplex Grid Option to run secondary nodes. For
MPX_IDLE_CONNECTION_TIMEOUT syntax and complete description, see Using Sybase
IQ Multiplex.

MPX_MAX_CONNECTION_POOL_SIZE Option
Specifies the maximum number of connections allowed in the connection pool on a secondary
node.

Users must be licensed for the Multiplex Grid Option to run secondary nodes. For
MPX_MAX_CONNECTION_POOL_SIZE syntax and complete description, see Using
Sybase IQ Multiplex.

MPX_MAX_UNUSED_POOL_SIZE Option
Specifies the maximum number of unused connections in the connection pool on a secondary
node.

Users must be licensed for the Multiplex Grid Option to run secondary nodes. For
MPX_MAX_UNUSED_POOL_SIZE syntax and complete description, see Using Sybase IQ
Multiplex.

Database Options

Reference: Statements and Options 415

NEAREST_CENTURY option [TSQL]
Controls the interpretation of 2-digit years, in string to date conversions.

Allowed Values
0 – 100

Default
50

Description
NEAREST_CENTURY controls the handling of 2-digit years, when converting from strings to
dates or timestamps.

The NEAREST_CENTURY setting is a numeric value that acts as a rollover point. Two-digit
years less than the value are converted to 20yy, whereas years greater than or equal to the value
are converted to 19yy.

Adaptive Server Enterprise and Sybase IQ behavior is to use the nearest century, so that if the
year value yy is less than 50, then the year is set to 20yy.

NOEXEC Option
Generates the optimizer query plans instead of executing the plan.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When determining how to process a query, the IQ optimizer generates a query plan to map how
it plans to have the query engine process the query. If this option is set ON, the optimizer sends
the plan for the query to the IQ message file rather than submitting it to the query engine.
NOEXEC affects queries and commands that include a query.

Setting NOEXEC ON also prevents the execution of INSERT...VALUES, INSERT...SELECT,
INSERT...LOCATION, SELECT...INTO, LOAD TABLE, UPDATE, TRUNCATE TABLE,
DELETE, SYNCHRONIZE JOIN INDEX, and updatable cursor operations.

Database Options

 416 Sybase IQ

When the EARLY_PREDICATE_EXECUTION option is ON, Sybase IQ executes the local
predicates for all queries before generating a query plan, even when the NOEXEC option is
ON. The generated query plan is the same as the runtime plan.

See also
• EARLY_PREDICATE_EXECUTION Option on page 371

NON_ANSI_NULL_VARCHAR Option
Controls whether zero-length VARCHAR data is treated as NULLs for insert, load, and update
operations.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
NON_ANSI_NULL_VARCHAR lets you revert to non-ANSI (Version 12.03.1) behavior for
treating zero-length VARCHAR data during load or update operations. When this option is set
to OFF, zero-length VARCHAR data is stored as zero-length during load, insert, or update.
When this option is set to ON, zero-length VARCHAR data is stored as NULLs on load, insert,
or update.

NON_KEYWORDS Option [TSQL]
Turns off individual keywords, allowing their use as identifiers.

Allowed Values
String

Default
'' (the empty string)

Description
NON_KEYWORDS turns off individual keywords. If you have an identifier in your database
that is now a keyword, you can either add double quotes around the identifier in all
applications or scripts, or you can turn off the keyword using the NON_KEYWORDS option.

This statement prevents TRUNCATE and SYNCHRONIZE from being recognized as keywords:

Database Options

Reference: Statements and Options 417

SET OPTION NON_KEYWORDS = 'TRUNCATE, SYNCHRONIZE'

Each new setting of this option replaces the previous setting. This statement clears all previous
settings:

SET OPTION NON_KEYWORDS =

A side effect of the options is that SQL statements using a turned-off keyword cannot be used;
they produce a syntax error.

NOTIFY_MODULUS Option
Controls the default frequency of notify messages issued by certain commands.

Allowed Values
Any integer

Default
100000

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
This option sets the default number of notify messages Sybase IQ issues for certain commands
that produce them. The NOTIFY clause for some of the commands (such as CREATE INDEX,
LOAD TABLE, and DELETE) override this value. Other commands that do not support the
NOTIFY clause (such as SYNCHRONIZE JOIN INDEX) always use this value. The default does
not restrict the number of messages you can receive.

ODBC_DISTINGUISH_CHAR_AND_VARCHAR Option
Controls how the Sybase IQ and SQL Anywhere ODBC driver describes CHAR columns.

Allowed Values
ON, OFF

Default
OFF

Description
When a connection is opened, the Sybase IQ and SQL Anywhere ODBC driver uses the
setting of this option to determine how CHAR columns are described. If
ODBC_DISTINGUISH_CHAR_AND_VARCHAR is set to OFF (the default), then CHAR
columns are described as SQL_VARCHAR. If this option is set to ON, then CHAR columns are
described as SQL_CHAR. VARCHAR columns are always described as SQL_VARCHAR.

Database Options

 418 Sybase IQ

ON_CHARSET_CONVERSION_FAILURE Option
Controls the action taken, if an error is encountered during character conversion.

Allowed Values
String. See Description for allowed values.

Default
IGNORE

Description
ON_CHARSET_CONVERSION_FAILURE controls the action taken, if an error is
encountered during character conversion:

Character conversion error Action

IGNORE Errors and warnings do not appear.

WARNING Substitutions and illegal characters are reported
as warnings. Illegal characters are not translated.

ERROR Substitutions and illegal characters are reported
as errors.

Single-byte to single-byte converters are not able to report substitutions and illegal characters,
and must be set to IGNORE.

ON_ERROR Option [Interactive SQL]
Controls the action taken if an error is encountered while executing statements in Interactive
SQL.

Allowed Values
String. See Description for allowed values.

Default
PROMPT

Description
Controls the action taken, if an error is encountered while executing statements:

• STOP – Interactive SQL stops executing statements from the file and returns to the
statement window for input.

• PROMPT – Interactive SQL prompts the user to see if he or she wants to continue.
• CONTINUE – The error displays and Interactive SQL continues executing statements.
• EXIT – Interactive SQL terminates.

Database Options

Reference: Statements and Options 419

• NOTIFY_CONTINUE – The error is reported, and the user is prompted to press Enter or
click OK to continue.

• NOTIFY_STOP – The error is reported, and the user is prompted to press Enter or click
OK to stop executing statements.

• NOTIFY_EXIT – The error is reported, and the user is prompted to press Enter or click
OK to terminate Interactive SQL.

When you are executing a .SQL file, the values STOP and EXIT are equivalent.

ON_TSQL_ERROR Option [TSQL]
Controls error handling in stored procedures.

Allowed Values
String. See Description for allowed values.

Default
CONDITIONAL

Description
ON_TSQL_ERROR controls error handling in stored procedures:

• STOP– Stops execution immediately upon finding an error.
• CONDITIONAL – If the procedure uses ON EXCEPTION RESUME, and the statement

following the error handles the error, continue; otherwise, exit.
• CONTINUE – Continue execution, regardless of the following statement. If there are

multiple errors, the first error encountered in the stored procedure is returned. This option
most closely mirrors Adaptive Server Enterprise behavior.

Both CONDITIONAL and CONTINUE settings for ON_TSQL_ERROR are used for
Adaptive Server Enterprise compatibility, with CONTINUE most closely simulating
Adaptive Server Enterprise behavior. The CONDITIONAL setting is recommended,
particularly when developing new Transact-SQL stored procedures, as CONDITIONAL
allows errors to be reported earlier.

Adaptive Server Enterprise compatibility is described in Reference: Building Blocks, Tables,
and Procedures.

When this option is set to STOP or CONTINUE, it supersedes the setting of the
CONTINUE_AFTER_RAISERROR option. However, when this option is set to
CONDITIONAL (the default), behavior following a RAISERROR statement is determined by
the setting of the CONTINUE_AFTER_RAISERROR option.

See also
• CREATE PROCEDURE Statement on page 110

• CREATE PROCEDURE Statement [T-SQL] on page 116

Database Options

 420 Sybase IQ

• RAISERROR Statement [T-SQL] on page 258

• CONTINUE_AFTER_RAISERROR Option [TSQL] on page 348

OS_FILE_CACHE_BUFFERING Option
Controls use of file system buffering for IQ Main dbspaces.

Allowed Values
ON, OFF

Default
OFF; default affects newly created databases only.

Scope
Can be set for the PUBLIC group only. You must shut down the database and restart it for the
change to take effect. Requires DBA permissions to set this option.

Description
Setting OS_FILE_CACHE_BUFFERING OFF prevents file system buffering for IQ Main
Store files. Turning off file system buffering saves a data copy from the file system buffer
cache to the main IQ buffer cache. Usually this reduces paging caused by competition for
memory between the IQ buffer manager and the file system buffer of the operating system.
When OS_FILE_CACHE_BUFFERING reduces paging, this option improves performance;
however, if the IQ page size for the database is less than the block size of the file system
(typically only in testing situations), performance decreases, especially during multiuser
operation.

Experiment with this option to determine the best setting for different conditions. You must
restart the database for the new setting to take effect.

This direct I/O performance option is available on Sun Solaris UFS, Linux, Linux IBM, AIX,
and Windows file systems only. This option has no effect on HP-UX and HP-UXi and does not
affect databases on raw disk. In Linux, direct I/O is supported in kernel versions 2.6.x.

To enable direct I/O on Linux kernel version 2.6 and AIX, also set the environment variable
IQ_USE_DIRECTIO to 1. Direct I/O is disabled by default in Linux kernel version 2.6 and
AIX. IQ_USE_DIRECTIO has no effect on Sun Solaris and Windows.

Note: Sybase IQ does not support direct I/O on Linux kernel version 2.4. If you set the
IQ_USE_DIRECTIO environment variable on Linux kernel version 2.4, the Sybase IQ server
does not start. The error Error: Invalid Block I/O argument, maybe
<pathname> is a directory, or it exceeds maximum file size
limit for the platform, or trying to use Direct IO on
unsupported OS is reported.

OS_FILE_CACHE_BUFFERING_TEMPDB controls file system buffering for IQ
Temporary Store files.

Database Options

Reference: Statements and Options 421

See also
• OS_FILE_CACHE_BUFFERING_TEMPDB Option on page 422

OS_FILE_CACHE_BUFFERING_TEMPDB Option
Controls the use of file system buffering for IQ Temporary dbspaces.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for the PUBLIC group only. You must shut down and restart the database for the
change to take effect. DBA permissions are required to set this option.

Description
Setting OS_FILE_CACHE_BUFFERING_TEMPDB to OFF prevents file system buffering
for IQ Temporary Store files. Turning off file system buffering saves a data copy from the file
system buffer cache to the main IQ buffer cache. Usually this reduces paging caused by
competition for memory between the IQ buffer manager and the file system buffer of the
operating system. When OS_FILE_CACHE_BUFFERING_TEMPDB reduces paging, this
option improves performance; however, if the IQ page size for the database is less than the
block size of the file system (typically only in testing situations), performance decreases,
especially during multiuser operation.

Experiment with this option to determine the best setting for different conditions. You must
restart the database for the new setting to take effect.

This direct I/O performance option is available on Sun Solaris UFS, Linux, Linux IBM, AIX,
and Windows file systems only. This option has no effect on HP-UX and HP-UXi and does not
affect databases on raw disk. In Linux, direct I/O is supported in kernel versions 2.6.x.

To enable direct I/O on Linux kernel version 2.6 and AIX, also set the environment variable
IQ_USE_DIRECTIO to 1. Direct I/O is disabled by default in Linux kernel version 2.6 and
AIX. IQ_USE_DIRECTIO has no effect on Sun Solaris and Windows.

Note: Sybase IQ does not support direct I/O on Linux kernel version 2.4. If you set the
IQ_USE_DIRECTIO environment variable on Linux kernel version 2.4, the Sybase IQ server
does not start. The error Error: Invalid Block I/O argument, maybe
<pathname> is a directory, or it exceeds maximum file size
limit for the platform, or trying to use Direct IO on
unsupported OS is reported.

OS_FILE_CACHE_BUFFERING controls file system buffering for IQ Main Store files.

Database Options

 422 Sybase IQ

See also
• OS_FILE_CACHE_BUFFERING Option on page 421

PASSWORD_EXPIRY_ON_NEXT_LOGIN Option
Marks the user’s password for expiry immediately upon next login, when a user is assigned a
login policy and this option for the policy is set ON.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference > Using
SQL > SQL statements > SQL statements (A-D) > CREATE LOGIN POLICY statement.

PASSWORD_GRACE_TIME Option
Specifies the number of days before password expiration during which login is allowed, but
the default post login procedure issues warnings.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference > Using
SQL > SQL statements > SQL statements (A-D) > CREATE LOGIN POLICY statement.

PASSWORD_LIFE_TIME Option
Specifies the maximum number of days before a password must be changed.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server – SQL Reference > Using
SQL > SQL statements > SQL statements (A-D) > CREATE LOGIN POLICY statement.

POST_LOGIN_PROCEDURE Option
Specifies a login procedure whose result set contains messages that are displayed by the client
application immediately after a user successfully logs in.

Allowed Values
String

Default
dbo.sa_post_login_procedure

Scope
Can be set for an individual connection or the PUBLIC group. DBA permissions required to
set this option. Takes effect immediately.

Description
The default post login procedure, dbo.sa_post_login_procedure, executes immediately after
a user successfully logs in.

If you have DBA authority, you can customize the post login actions by creating a new
procedure and setting POST_LOGIN_PROCEDURE to call the new procedure. Do not edit

Database Options

Reference: Statements and Options 423

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html

dbo.sa_post_login_procedure. The customized post login procedure must be created in
every database you use.

The post login procedure supports the client applications Interactive SQL, Interactive SQL
Classic, and the IQ plug-in for Sybase Central.

See also
• LOGIN_PROCEDURE Option on page 401

PRECISION Option
Specifies the maximum number of digits in the result of any decimal arithmetic, for queries on
the catalog store only.

Allowed Values
126

Default
126

Scope
Only PUBLIC setting allowed.

Description
Precision is the total number of digits to the left and right of the decimal point. The default
PRECISION value is fixed at 126. The SCALE option specifies the minimum number of
digits after the decimal point, when an arithmetic result is truncated to the maximum specified
by PRECISION, for queries on the catalog store.

Note: In SQL Anywhere, the maximum value supported for the numeric function is 255. If the
precision of the numeric function exceeds the maximum value supported, you see the error
The result datatype for function '_funcname' exceeds the
maximum supported numeric precision of 255. Please set the
proper value for precision in numeric function, 'location'

See also
• SCALE Option on page 438
• MAX_CLIENT_NUMERIC_PRECISION Option on page 403

PREFETCH Option
Allows you to turn fetching on or off or to use the ALWAYS value to prefetch the cursor
results, even for SENSITIVE cursor types and for cursors that involve a proxy table.

Allowed Values
ON, OFF, ALWAYS

Database Options

 424 Sybase IQ

Default
ON

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
For the catalog store only, PREFETCH controls whether rows are fetched to the client side
before being made available to the client application. Fetching a number of rows at a time,
even when the client application requests rows one at a time (for example, when looping over
the rows of a cursor) minimizes response time and improves overall throughput by limiting the
number of requests to the database.

The setting of PREFETCH is ignored by Open Client and JDBC connections, and for the IQ
store.

PREFETCH_BUFFER_LIMIT Option
Specifies the amount of memory used for prefetching.

Allowed Values
Integer

Default
0

Scope
Can be set only for the PUBLIC group. DBA authority is required to set the option. Shut down
and restart the database server to have the change take effect.

Description
PREFETCH_BUFFER_LIMIT defines the number of cache pages available to Sybase IQ for
use in prefetching (the read-ahead of database pages).

Do not set this option unless advised to do so by Sybase Technical Support.

See also
• PREFETCH_BUFFER_PERCENT Option on page 425

PREFETCH_BUFFER_PERCENT Option
Specifies the percent of memory used for prefetching.

Allowed Values
0 – 100

Database Options

Reference: Statements and Options 425

Default
40

Scope
Can be set only for the PUBLIC group. DBA authority is required to set the option. Shut down
and restart the database server to have the change take effect.

Description
PREFETCH_BUFFER_PERCENT is an alternative to
PREFETCH_BUFFER_LIMIT, as it specifies the percentage of cache
available for use in prefetching.

Do not set this option unless advised to do so by Sybase Technical Support.

See also
• PREFETCH_BUFFER_LIMIT Option on page 425

PREFETCH_GARRAY_PERCENT Option
Specifies the percent of prefetch resources designated for inserts to HG indexes.

Allowed Values
0 – 100

Default
60

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
As with PREFETCH_SORT_PERCENT, this option designates a percentage of prefetch
resources for use when inserting into an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

PREFETCH_SORT_PERCENT Option
Specifies the percent of prefetch resources designated for sorting objects.

Allowed Values
0 – 100

Default
20

Database Options

 426 Sybase IQ

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
PREFETCH_SORT_PERCENT designates a percentage of prefetch resources for use by a
single sort object. Increasing this value can improve the single-user performance of inserts and
deletes, but may have detrimental effects on multiuser operations.

Do not set this option unless advised to do so by Sybase Technical Support.

PRESERVE_SOURCE_FORMAT Option [database]
Controls whether the original source definition of procedures, views, and event handlers is
saved in system files. If saved, the formatted source is saved in the column source in
SYSTABLE, SYSPROCEDURE, and SYSEVENT.

Allowed Values
ON, OFF

Default
ON

Scope
Only PUBLIC setting allowed.

Description
When PRESERVE_SOURCE_FORMAT is ON, the server saves the formatted source from
CREATE and ALTER statements on procedures, views, and events, and puts original source
definition in the source column of the appropriate system table.

Unformatted source text is stored in the same system tables, in the columns proc_defn, and
view_defn. However, these definitions are not easy to read in Sybase Central. The
formatted source column allows you to view the definitions with the spacing, comments, and
case that you want.

This option can be turned off to reduce space used to save object definitions in the database.
The option can be set only for the PUBLIC group.

Database Options

Reference: Statements and Options 427

QUERY_DETAIL Option
Specifies whether or not to include additional query information in the Query Detail section of
the query plan.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When QUERY_DETAIL and QUERY_PLAN (or QUERY_PLAN_AS_HTML) are both turned
on, Sybase IQ displays additional information about the query when producing its query plan.
When QUERY_PLAN and QUERY_PLAN_AS_HTML are OFF, this option is ignored.

When QUERY_PLAN is ON (the default), especially if QUERY_DETAIL is also ON, you
might want to enable message log wrapping or message log archiving to avoid filling up your
message log file. Message log wrapping is described in System Administration Guide:
Volume 1.

See also
• QUERY_PLAN Option on page 429

• QUERY_PLAN_AS_HTML Option on page 430

QUERY_NAME Option
Gives a name to an executed query in its query plan.

Allowed Values
Quote-delimited string of up to 80 characters.

Default
'' (the empty string)

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Database Options

 428 Sybase IQ

Description
You can assign the QUERY_NAME option any quote-delimited string value, up to 80
characters. For example:

set temporary option Query_Name = 'my third query'

When this option is set, query plans that are sent to the .iqmsg file or .html file include a
line near the top of the plan that looks like:

Query_Name: 'my third query'

If you set the option to a different value before each query in a script, it is much easier to
identify the correct query plan for a particular query. The query name is also added to the file
name for HTML query plans. This option has no other effect on the query.

QUERY_PLAN Option
Specifies whether or not additional query plans are printed to the Sybase IQ message file.

Allowed Values
ON, OFF

Default
ON

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When this option is turned ON, Sybase IQ produces textual query plans in the IQ message file.
These query plans display the query tree topography, as well as details about optimization and
execution. When this option is turned OFF, those messages are suppressed. The information is
sent to the <dbname>.iqmsg file.

See also
• QUERY_DETAIL Option on page 428

• QUERY_PLAN_AFTER_RUN Option on page 429

• QUERY_PLAN_AS_HTML Option on page 430

QUERY_PLAN_AFTER_RUN Option
Prints the entire query plan after query execution is complete.

Allowed Values
ON, OFF

Database Options

Reference: Statements and Options 429

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When QUERY_PLAN_AFTER_RUN is turned ON, the query plan is printed after the query
has finished running. This allows the query plan to include additional information, such as the
actual number of rows passed on from each node of the query.

For this option to work, the QUERY_PLAN option must be set to ON (the default). You can use
this option in conjunction with QUERY_DETAIL to generate additional information in the
query plan report.

See also
• QUERY_DETAIL Option on page 428
• QUERY_PLAN Option on page 429
• QUERY_PLAN_AS_HTML Option on page 430

QUERY_PLAN_AS_HTML Option
Generates graphical query plans in HTML format for viewing in a Web browser.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
QUERY_PLAN_AS_HTML causes graphical query plans to be generated in HTML format.

When you set this option, also set the QUERY_NAME option for each query, so you know
which query is associated with the query plan.

Sybase IQ writes the plans in the same directory as the .iqmsg file, in a file named:

user-name_query-name_YYYYMMDD_HHMMSS_query-number.html

For example, if the user DBA sets the temporary option QUERY_NAME to 'Query_1123',
a file created on May 18, 2011 at exactly 8:30 a.m. is called

Database Options

 430 Sybase IQ

DBA_Query_1123_20110518_083000_1.html. The date, time, and unique number
are appended to the file name automatically to ensure that existing files are not overwritten.

Note: If you use this feature, monitor your disk space usage so you leave enough room for
your .iqmsg and log files to grow. Enable IQ message log wrapping or message log
archiving to avoid filling up your message log file.

Message log wrapping is described in System Administration Guide: Volume 1.

QUERY_PLAN_AS_HTML acts independently of the setting for the QUERY_PLAN option. In
other words, if QUERY_PLAN_AS_HTML is ON, you get an HTML format query plan
whether or not QUERY_PLAN is ON.

This feature is supported with newer versions of many commonly used browsers. Some
browsers might experience problems with plans generated for very complicated queries.

See also
• QUERY_NAME Option on page 428
• QUERY_PLAN Option on page 429
• QUERY_PLAN_AFTER_RUN Option on page 429

QUERY_PLAN_AS_HTML_DIRECTORY Option
Specifies the directory into which Sybase IQ writes the HTML query plans.

Allowed Values
String containing a directory path name

Default
'' (the empty string)

Scope
Can be set temporary for an individual connection or for the PUBLIC group. DBA authority is
required to set the option. Takes effect immediately.

Description
When the QUERY_PLAN_AS_HTML option is turned ON and a directory is specified with the
QUERY_PLAN_AS_HTML_DIRECTORY option, Sybase IQ writes the HTML query plans in
the specified directory. This option provides additional security by allowing HTML query
plans to be produced outside of the server directory. When the
QUERY_PLAN_AS_HTML_DIRECTORY option is not used, the query plans are sent to the
default directory (the .iqmsg file directory).

If the QUERY_PLAN_AS_HTML option is ON and
QUERY_PLAN_AS_HTML_DIRECTORY is set to a directory that does not exist, Sybase IQ
does not save the HTML query plan and no error is generated. In this case, the query continues

Database Options

Reference: Statements and Options 431

to run and a message is logged to the IQ message file, so the DBA knows that the HTML query
plan was not written. If the specified directory path or permissions on the directory are not
correct, the message Error opening HTML Query plan: file-name is written in
the .iqmsg file.

Example
Create the example directory /system1/users/DBA/html_plans and set the correct
permissions on the directory. Then set the options and run the query:

SET TEMPORARY OPTION QUERY_PLAN_AS_HTML = ‘ON’;
SET TEMPORARY OPTION QUERY_PLAN_AS_HTML_DIRECTORY = ‘/system1/users/
DBA/html_plans’;
SELECT col1 FROM tab1;

The HTML query plan is written to a file in the specified directory /system1/users/
DBA/html_plans.

See also
• QUERY_PLAN_AS_HTML Option on page 430

QUERY_PLAN_TEXT_ACCESS Option
Enables or prevents users from accessing query plans from the Interactive SQL client or from
using SQL functions to get plans.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are required to modify this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When QUERY_PLAN_TEXT_ACCESS option is ON, users can view, save, and print query
plans from the Interactive SQL client. When the option is OFF, query plans are not cached, and
other query plan-related database options have no affect on the query plan display from the
Interactive SQL client. This error message displays:

No plan available. The database option QUERY_PLAN_TEXT_ACCESS is OFF.

See also
• QUERY_DETAIL Option on page 428
• QUERY_PLAN_AFTER_RUN Option on page 429
• QUERY_PLAN_AS_HTML Option on page 430

Database Options

 432 Sybase IQ

• QUERY_PLAN_TEXT_CACHING Option on page 433

• OUTPUT Statement [Interactive SQL] on page 248

QUERY_PLAN_TEXT_CACHING Option
Allows you to specify whether or not Sybase IQ generates and caches IQ plans for queries
executed by the user.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to modify this option. Can be set temporary for an
individual connection or for the PUBLIC group. Takes effect immediately.

Description
IQ query plans vary in size and can become very large for complex queries. Caching plans for
display on the Interactive SQL client can have high resource requirements. The
QUERY_PLAN_TEXT_CACHING option gives users a mechanism to control resources for
caching plans. With this option turned OFF (the default), the query plan is not cached for that
user connection.

Note: If QUERY_PLAN_TEXT_ACCESS is turned OFF, the query plan is not cached for the
connections from that user, no matter how QUERY_PLAN_TEXT_CACHING is set.

See also
• QUERY_DETAIL Option on page 428

• QUERY_PLAN_AFTER_RUN Option on page 429

• QUERY_PLAN_AS_HTML Option on page 430

• QUERY_PLAN_TEXT_ACCESS Option on page 432

• OUTPUT Statement [Interactive SQL] on page 248

QUERY_ROWS_RETURNED_LIMIT Option
Sets the row threshold for rejecting queries based on estimated size of result set.

Allowed Values
Any integer

Default
0

Database Options

Reference: Statements and Options 433

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
If Sybase IQ receives a query that has an estimated number of result rows greater than the value
of QUERY_ROWS_RETURNED_LIMIT, it rejects the query with this message:

Query rejected because it exceeds resource:
Query_Rows_Returned_Limit

If you set this option to zero (the default), there is no limit and no queries are ever rejected
based on the number of rows in their output.

QUERY_TEMP_SPACE_LIMIT Option
Specifies the maximum estimated amount of temp space before a query is rejected.

Allowed Values
Any integer

Default
0 (no limit)

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
If Sybase IQ receives a query that is estimated to require a temporary result space larger than
value of this option, it rejects the query with this message:

Query rejected because it exceeds total space resource limit

When set to zero (the default), there is no limit on temporary store usage by queries.

Users may override this option in their own environments to run queries that can potentially
fill up the entire temporary store. To prevent runaway queries from filling up the temporary
store, the DBA can set the option MAX_TEMP_SPACE_PER_CONNECTION. The
MAX_TEMP_SPACE_PER_CONNECTION option monitors and limits actual temporary
store usage for all DML statements, not just queries.

In a distributed query processing transaction, Sybase IQ uses the values set for the
QUERY_TEMP_SPACE_LIMIT and MAX_TEMP_SPACE_PER_CONNECTION options
for the shared temporary store by limiting the total shared and local temporary space used by
all nodes participating in the distributed query. This means that any single query cannot

Database Options

 434 Sybase IQ

exceed the total temp space limit (from IQ_SYSTEM_TEMP and IQ_SHARED_TEMP
dbspaces), no matter how many nodes participate.

For example, if the limit is 100 and four nodes use 25 units of temporary space each, the query
is within limits. If the sum of the total space used by any of the nodes exceeds 100, however,
the query rolls back.

See also
• MAX_TEMP_SPACE_PER_CONNECTION Option on page 411

QUERY_TIMING Option
Determines whether or not to collect specific timing statistics and display them in the query
plan.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
This option controls the collection of timing statistics on subqueries and some other repetitive
functions in the query engine. This parameter should normally be OFF (the default) because
for very short correlated subqueries, timing every subquery execution can slow down a query.

Query timing is represented in the query plan detail as a series of timestamps. These
timestamps correspond to query operator phases (Conditions, Prepare, Fetch, Complete).
HTML and Interactive SQL query plans display query timing graphically as a timeline.

QUOTED_IDENTIFIER Option [TSQL]
Controls the interpretation of strings that are enclosed in double quotes.

Allowed Values
ON, OFF

OFF for Open Client connections.

Default
ON

Database Options

Reference: Statements and Options 435

Description
QUOTED_IDENTIFIER controls whether strings enclosed in double quotes are interpreted
as identifiers (ON) or as literal strings (OFF). This option is included for Transact-SQL
compatibility.

Sybase Central and Interactive SQL set QUOTED_IDENTIFER temporarily to ON, if it is set
to OFF. A message is displayed informing you of this change. The change is in effect only for
the Sybase Central or Interactive SQL connection. The JDBC driver also temporarily sets
QUOTED_IDENTIFIER to ON.

RECOVERY_TIME Option
Sets the maximum length of time, in minutes, that the database server takes to recover from
system failure.

Allowed Values
Integer, in minutes

Default
2

Scope
Can be set only for the PUBLIC group. Takes effect when the server is restarted.

Description
Use this option with the CHECKPOINT_TIME option to decide when checkpoints should be
done.

A heuristic measures the recovery time based on the operations since the last checkpoint.
Thus, the recovery time is not exact.

See also
• CHECKPOINT_TIME Option on page 347

RETURN_DATE_TIME_AS_STRING Option
Controls how a date, time, or timestamp value is passed to the client application when queried.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set as a temporary option only, for the duration of the current connection.

Database Options

 436 Sybase IQ

Description
RETURN_DATE_TIME_AS_STRING indicates whether date, time, and timestamp values
are returned to applications as a date or time data type or as a string.

When this option is set to ON, the server converts the date, time, or timestamp value to a string
before it is sent to the client in order to preserve the TIMESTAMP_FORMAT, DATE_FORMAT,
or TIME_FORMAT option setting.

Sybase Central and Interactive SQL automatically turn the
RETURN_DATE_TIME_AS_STRING option ON.

See also
• DATE_FORMAT Option on page 359

• TIME_FORMAT Option on page 462

• TIMESTAMP_FORMAT Option on page 462

ROW_COUNT Option
Limits the number of rows returned from a query.

Allowed Values
Integer.

Default
0 (no limit on rows returned)

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When this runtime option is set to a nonzero value, query processing stops after the specified
number of rows.

This option affects only statements with the keyword SELECT and does not affect UPDATE
and DELETE statements.

The SELECT statement keywords FIRST and TOP also limit the number of rows returned from
a query. Using FIRST is the same as setting the ROW_COUNT database option to 1. Using TOP
is the same as setting ROW_COUNT to the same number of rows. If both TOP and ROW_COUNT
are set, then the value of TOP takes precedence.

The ROW_COUNT option could produce non-deterministic results when used in a query
involving global variables, system functions or proxy tables. Such queries are partly executed
using CIS (Component Integrated Services). In such cases, use SELECT TOP n instead of

Database Options

Reference: Statements and Options 437

setting ROW_COUNT, or set the global variable to a local one and use that local variable in the
query.

See also
• QUERY_ROWS_RETURNED_LIMIT Option on page 433

• SELECT Statement on page 279

SCALE Option
Specifies the minimum number of digits after the decimal point when an arithmetic result is
truncated to the maximum PRECISION, for queries on the catalog store only.

Allowed Values
Integer, with a maximum of 126.

Default
38

Scope
Can be set only for PUBLIC.

Description
This option specifies the minimum number of digits after the decimal point when an
arithmetic result is truncated to the maximum PRECISION, for queries on the catalog store.

Multiplication, division, addition, subtraction, and aggregate functions may all have results
that exceed the maximum precision.

See also
• MAX_CLIENT_NUMERIC_SCALE Option on page 404

• PRECISION Option on page 424

SIGNIFICANTDIGITSFORDOUBLEEQUALITY Option
Specifies the number of significant digits to the right of the decimal in exponential notation
that are used in equality tests between two complex arithmetic expressions.

Allowed Values
0 – 15

Default
0

Database Options

 438 Sybase IQ

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
Because doubles are stored in binary (base 2) instead of decimal (base 10), this setting gives
the approximate number of significant decimal digits used. If set to 0, all digits are used.

For example, when SIGNIFICANTDIGITSFORDOUBLEEQUALITY is set to 12, these
numbers compare as equal; when set to 13, they do not:

• 1.23456789012345
• 1.23456789012389

SIGNIFICANTDIGITSFORDOUBLEEQUALITY affects equality tests between two
complex arithmetic expressions, not those done by the indexes.

SORT_COLLATION Option
Allows implicit use of the SORTKEY function on ORDER BY expressions.

Allowed Values
Internal, collation_name, or collation_id

Default
Internal

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
When the value of SORT_COLLATION is Internal, the ORDER BY clause remains
unchanged.

When the value of this option is set to a valid collation name or collation ID, any string
expression in the ORDER BY clause is treated as if the SORTKEY function has been invoked.

Functions are described in Reference: Building Blocks, Tables, and Procedures.

Example
Set the sort collation to binary:

SET TEMPORARY OPTION sort_collation='binary';

Setting the sort collation to binary transforms these queries:

SELECT Name, ID
FROM Products

Database Options

Reference: Statements and Options 439

ORDER BY Name, ID;
SELECT Name, ID
FROM Products
ORDER BY 1, 2;

The queries are transformed into:

SELECT Name, ID
FROM Products
ORDER BY SORTKEY(Name, 'binary'), ID;

SORT_PINNABLE_CACHE_PERCENT Option
Specifies the maximum percentage of currently available buffers a sort object tries to pin.

Allowed Values
0 – 100

Default
20

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description
For very large sorts, a larger value might help reduce the number of merge phases required by
the sort. A larger number, however, might impact the sorts and hashes of other users running
on the system. If you change this option, experiment to find the best value to increase
performance, as choosing the wrong value might decrease performance. Sybase recommends
that you use the default value for SORT_PINNABLE_CACHE_PERCENT.

This option is primarily for use by Sybase Technical Support. If you change the value of
SORT_PINNABLE_CACHE_PERCENT, do so with extreme caution.

SQL_FLAGGER_ERROR_LEVEL Option [TSQL]
Controls the behavior in response to any SQL code that is not part of the specified standard.

Allowed Values

• OFF
• SQL:1992/Entry
• SQL:1992/Intermediate
• SQL:1992/Full
• SQL:1999/Core
• SQL:1999/Package
• SQL:2003/Core

Database Options

 440 Sybase IQ

• SQL:2003/Package

Default
OFF

Description
Flags as an error any SQL code that is not part of a specified standard. For example, specifying
SQL:2003/Package causes the database server to flag syntax that is not full SQL/2003 syntax.

For compatibility with previous Sybase IQ versions, the values in this table are also accepted,
and are mapped as specified.

Table 29. SQL_FLAGGER_ERROR_LEVEL Compatibility Values

Value Action

E Flag syntax that is not entry-level SQL92 syntax. Corresponds to SQL:1992/Entry.

I Flag syntax that is not intermediate-level SQL92 syntax. Corresponds to SQL:1992/
Intermediate.

F Flag syntax that is not full-SQL92 syntax. Corresponds to SQL:1992/Full.

W Allow all supported syntax. Corresponds to OFF.

SQL_FLAGGER_WARNING_LEVEL Option [TSQL]
Controls the response to any SQL that is not part of the specified standard.

Allowed Values

• OFF
• SQL:1992/Entry
• SQL:1992/Intermediate
• SQL:1992/Full
• SQL:1999/Core
• SQL:1999/Package
• SQL:2003/Core
• SQL:2003/Package

Default
OFF

Description
Flags as an error any SQL code that is not part of a specified standard as a warning. For
example, specifying SQL:2003/Package causes the database server to flag syntax that is not
full SQL/2003 syntax.

Database Options

Reference: Statements and Options 441

The default behavior, OFF, turns warning flagging off.

For compatibility with previous Sybase IQ versions, the values in this table are also accepted,
and are mapped as specified.

Table 30. SQL_FLAGGER_WARNING_LEVEL Compatibility Values

Value Action

E Flag syntax that is not entry-level SQL92 syntax. Corresponds to SQL:1992/
Entry.

I Flag syntax that is not intermediate-level SQL92 syntax. Corresponds to SQL:
1992/Intermediate.

F Flag syntax that is not full-SQL92 syntax. Corresponds to SQL:1992/Full.

W Allow all supported syntax. Corresponds to OFF.

STRING_RTRUNCATION Option [TSQL]
Determines whether an error is raised when an INSERT or UPDATE truncates a CHAR or
VARCHAR string.

Allowed Values
ON, OFF

Default
ON

Description
If the truncated characters consist only of spaces, no exception is raised. ON corresponds to
SQL92 behavior. When STRING_RTRUNCATION is OFF, the exception is not raised and the
character string is silently truncated. If the option is ON and an error is raised, a ROLLBACK
occurs.

This option was OFF by default prior to Sybase IQ 15.0. It can safely be set to OFF for
backward compatibility. However, the ON setting is preferable to identify statements where
truncation may cause data loss.

SUBQUERY_CACHING_PREFERENCE Option
Controls which algorithm to use for processing correlated subquery predicates.

Allowed Values
-3 to 3

Database Options

 442 Sybase IQ

Value Action

 1 Use sort-based processing for the first subquery predicate. Other subquery predicates
that do not have the same ordering key are processed using a hash table to cache
subquery results.

 2 Use the hash table to cache results for all subquery predicates when it is legal. If
available temp cache cannot accommodate all of the subquery results, performance
may be poor.

 3 Cache one previous subquery result. Does not use SORT and HASH.

 0 Let the optimizer choose.

-1 Avoid using SORT. The IQ optimizer chooses HASH if it is legal.

-2 Avoid using HASH. The IQ optimizer chooses SORT or cache-one value if it is legal.

-3 Avoid using cache-one value. The IQ optimizer chooses either HASH or SORT if it is
legal.

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary, for an individual
connection, or for the PUBLIC group. Takes effect immediately

Description
For correlated subquery predicates, the IQ optimizer offers a choice of caching outer
references and subquery results that reduces subquery execution costs.
SUBQUERY_CACHING_PREFERENCE lets you override the optimizer’s costing decision
when choosing which algorithm to use. It does not override internal rules that determine
whether an algorithm is legal within the query engine.

A setting of a non-zero value affects every subquery predicate in the query. A non-zero value
cannot be used selectively for one subquery predicate in a query.

See Reference: Building Blocks, Tables, and Procedures > SQL Language Elements > Search
Conditions > Subqueries in Search Conditions > Disjunction of Subquery Predicates.

SUBQUERY_CACHING_PREFERENCE is normally used for internal testing by experienced
DBAs only. It does not apply to IN subqueries.

See also
• IN_SUBQUERY_PREFERENCE Option on page 389

Database Options

Reference: Statements and Options 443

SUBQUERY_FLATTENING_PERCENT Option
Allows the user to change the threshold at which the optimizer decides to transform scalar
subqueries into joins.

Allowed Values
0 to (232 -1)

Value Action

0 The optimizer cost model decides

1 to (232 -1) The percentage of references at which to flatten

Default
100

Scope
This option only applies to correlated scalar subqueries. DBA permissions are not required to
set SUBUERY_FLATTENING_PERCENT. This option can be set by any user, at any level and
takes effect immediately. If you set SUBUERY_FLATTENING_PERCENT to a non-default
value, every scalar subquery predicate in the query is affected; this option cannot be used
selectively for one scalar subquery predicate in a query.

Description
The Sybase IQ query optimizer can convert a correlated scalar subquery into an equivalent
join operation to improve query performance. The SUBQUERY_FLATTENING_PERCENT
option allows the user to adjust the threshold at which this optimization occurs.

SCALAR_FLATTENING_PERCENT represents a percent of estimated inner distinct values
to estimated outer distinct values in a scalar subquery. As the estimated percent approaches
100%, the cost of evaluating the subquery as a join is likely to be smaller than using individual
index probes. The value may be set larger than 100%, since the estimated inners are not
guaranteed to be less than estimated outers.

See also
• SUBQUERY_FLATTENING_PREFERENCE Option on page 444

SUBQUERY_FLATTENING_PREFERENCE Option
Allows a user to override the decisions of the optimizer when transforming (flattening) scalar
or EXISTS subqueries into joins.

Allowed Values
-3 to 3

Database Options

 444 Sybase IQ

Value Action

-3 Avoid flattening both EXISTS and scalar subqueries to a join operation.

-2 Avoid flattening a scalar subquery to a join operation.

-1 Avoid flattening an EXISTS subquery to a join operation.

 0 Allow the IQ optimizer to decide to flatten subqueries.

 1 Ignore cost flattening EXIST, if possible.

 2 Ignore cost flattening scalar, if possible.

 3 Ignore cost of both EXISTS and scalar subquery.

Default
0

Scope
DBA permissions are not required to set this option.
SUBQUERY_FLATTENING_PREFERENCE can be set by any user at any level. This option
takes effect immediately. If you set the option to a non-zero value, every subquery predicate in
the query is affected; this option cannot be used selectively for one subquery predicate in a
query.

Description
The Sybase IQ optimizer may convert a correlated scalar subquery or an EXISTS or NOT
EXISTS subquery into an equivalent join operation to improve query performance. This
optimization is called subquery flattening. SUBQUERY_FLATTENING_PREFERENCE
allows you to override the costing decision of the optimizer when choosing the algorithm to
use.

Setting SUBQUERY_FLATTENING_PREFERENCE to 0 (allow the IQ optimizer to decide to
flatten subqueries) is equivalent to setting the now deprecated FLATTEN_SUBQUERIES
option to ON in earlier versions of Sybase IQ.

See also
• SUBQUERY_FLATTENING_PERCENT Option on page 444

SUBQUERY_PLACEMENT_PREFERENCE Option
Controls the placement of correlated subquery predicate operators within a query plan.

Allowed Values
-1 to 1

Database Options

Reference: Statements and Options 445

Value Action

-1 Prefer the lowest possible location in the query plan, thereby placing the execution of
the subquery as early as possible within the query.

 0 Let the optimizer choose.

 1 Prefer the highest possible location in the query plan, thereby delaying the execution
of the subquery to as late as possible within the query.

Default
0

Scope
Can be set for any scope, any user, takes immediate effect.

Description
For correlated subquery operators within a query, the IQ optimizer may have a choice of
several different valid locations within that query’s plan.
SUBQUERY_PLACEMENT_PREFERENCE allows you to override the optimizer’s cost-
based decision when choosing the placement location. It does not override internal rules that
determine whether a location is valid, and in some queries, there might be only one valid
choice. If you set this option to a nonzero value, it affects every correlated subquery predicate
in a query; it cannot be used to selectively modify the placement of one subquery out of several
in a query.

This option is normally used for internal testing, and only experienced DBAs should use it.

The default setting of this option is almost always appropriate. Occasionally, Sybase
Technical Support might ask you to change this value.

SUPPRESS_TDS_DEBUGGING Option
Determines whether TDS debugging information appears in the server window.

Allowed Values
ON, OFF

Default
OFF

Description
When the server is started with the -z option, debugging information appears in the server
window, including debugging information about the TDS protocol.

Database Options

 446 Sybase IQ

SUPPRESS_TDS_DEBUGGING restricts the debugging information about TDS that appears
in the server window. When this option is set to OFF (the default), TDS debugging information
appears in the server window.

SWEEPER_THREADS_PERCENT option
Specifies the percentage of Sybase IQ threads used to sweep out buffer caches.

Allowed Values
1 – 40

Default
10

Scope
Can be set only for the PUBLIC group. DBA authority is required to set the option. You must
shut down and restart the database server for the change to take effect.

Description
Sybase IQ uses a small percentage of its processing threads as sweeper threads. These sweeper
threads clean out dirty pages in the main and temp buffer caches.

In the IQ Monitor -cache report, the GDirty column shows the number of times the LRU buffer
was grabbed in a “dirty” (modified) state. If GDirty is greater than 0 for more than a brief time,
you might need to increase SWEEPER_THREADS_PERCENT or
WASH_AREA_BUFFERS_PERCENT.

The default setting of this option is almost always appropriate. Occasionally, Sybase
Technical Support might ask you to increase this value.

See also
• WASH_AREA_BUFFERS_PERCENT Option on page 467

TDS_EMPTY_STRING_IS_NULL Option [database]
Controls whether empty strings are returned as NULL or a string containing one blank
character for TDS connections.

Allowed Values
ON, OFF

Default
OFF

Description
TDS_EMPTY_STRING_IS_NULL is set to OFF by default and empty strings are returned as
a string containing one blank character for TDS connections. When this option is set to ON,

Database Options

Reference: Statements and Options 447

empty strings are returned as NULL strings for TDS connections. Non-TDS connections
distinguish empty strings from NULL strings.

TEMP_EXTRACT_APPEND Option
Specifies that any rows extracted by the data extraction facility are added to the end of an
output file.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description
This option specifies that any rows extracted by the data extraction facility are added to the end
of an output file. You create the output file in a directory where you have WRITE/EXECUTE
permissions and you set WRITE permission on the directory and output file for the user name
used to start Sybase IQ (for example, sybase). You can give permissions on the output file to
other users as appropriate. The name of the output file is specified in the
TEMP_EXTRACT_NAME1 option. The data extraction facility creates the output file, if the
file does not already exist.

TEMP_EXTRACT_APPEND is not compatible with the TEMP_EXTRACT_SIZEn options.
If you try to restrict the size of the extract append output file, Sybase IQ reports an error.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_NAMEn Options on page 452

TEMP_EXTRACT_BINARY Option
In combination with the TEMP_EXTRACT_SWAP option, specifies the type of extraction
performed by the data extraction facility.

Allowed Values
ON, OFF

Default
OFF

Database Options

 448 Sybase IQ

Scope
Can be set for an individual connection. Takes effect immediately.

Description
Use this option with the TEMP_EXTRACT_SWAP option to specify the type of extraction
performed by the data extraction facility.

Table 31. Extraction Option Settings for Extraction Type

Extraction
type

TEMP_EXTRACT_BINARY TEMP_EXTRACT_SWAP

binary ON OFF

binary/swap ON ON

ASCII OFF OFF

The default extraction type is ASCII.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_SWAP Option on page 459

TEMP_EXTRACT_COLUMN_DELIMITER Option
Specifies the delimiter between columns in the output of the data extraction facility for an
ASCII extraction.

Allowed Values
String

Default
','

Scope
Can be set for an individual connection. Takes effect immediately.

Description
Use TEMP_EXTRACT_COLUMN_DELIMITER to specify the delimiter between columns in
the output of the data extraction facility. In the case of an ASCII extraction, the default is to
separate column values with commas. Strings are unquoted by default.

Database Options

Reference: Statements and Options 449

The delimiter must occupy 1 – 4 bytes, and must be valid in the collation order you are using, if
you are using a multibyte collation order. Choose a delimiter that does not occur in any of the
data output strings themselves.

If you set this option to the empty string '' for ASCII extractions, the extracted data is written in
fixed-width ASCII with no column delimiter. Numeric and binary data types are right-
justified on a field of n blanks, where n is the maximum number of bytes needed for any value
of that type. Character data types are left-justified on a field of n blanks.

Note: The minimum column width in a fixed-width ASCII extraction is 4 bytes to allow the
string “NULL” for a NULL value. For example, if the extracted column is CHAR(2) and
TEMP_EXTRACT_COLUMN_DELIMITER is set to the empty string '', there are two spaces
after the extracted data.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_QUOTE Option on page 455

• TEMP_EXTRACT_QUOTES Option on page 456

• TEMP_EXTRACT_QUOTES_ALL Option on page 456

• TEMP_EXTRACT_ROW_DELIMITER Option on page 457

TEMP_EXTRACT_DIRECTORY Option
Controls whether a user is allowed to use the data extraction facility. Also controls the
directory into which temp extract files are placed and overrides a directory path specified in
the TEMP_EXTRACT_NAMEn options.

Allowed Values
string

Default
'' (the empty string)

Scope
Can be set temporary for an individual connection or for the PUBLIC group. DBA authority is
required to set the option. This option takes effect immediately.

Description
If the TEMP_EXTRACT_DIRECTORY option is set to the string FORBIDDEN (case
insensitive) for a user, then that user is not allowed to perform data extracts. An attempt by this
user to use the data extraction facility results in the error: You do not have
permission to perform Extracts.

Database Options

 450 Sybase IQ

If TEMP_EXTRACT_DIRECTORY is set to FORBIDDEN for the PUBLIC group, then no
one can run data extraction.

If TEMP_EXTRACT_DIRECTORY is set to a valid directory path, temp extract files are
placed in that directory, overriding a path specified in the TEMP_EXTRACT_NAMEn options.

If TEMP_EXTRACT_DIRECTORY is set to an invalid directory path, an error occurs: Files
does not exist File: <invalid path>

If TEMP_EXTRACT_DIRECTORY is blank, then temp extract files are placed in directories
according to their specification in TEMP_EXTRACT_NAMEn. If no path is specified as part of
TEMP_EXTRACT_NAMEn, the extract files are by default placed in the server startup
directory.

This option provides increased security and helps control disk management by restricting the
creation of large data extraction files to the directories for which a user has write access.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_NAMEn Options on page 452

TEMP_EXTRACT_ESCAPE_QUOTES Option
Specifies whether all quotes in fields containing quotes are escaped in the output of the data
extraction facility for an ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description
This option is ignored unless TEMP_EXTRACT_QUOTE is the default or set to the value of
'"' (double quotes), and TEMP_EXTRACT_BINARY is OFF, and either
TEMP_EXTRACT_QUOTES or TEMP_EXTRACT_QUOTES_ALL is ON.

See also
• TEMP_EXTRACT_BINARY Option on page 448
• TEMP_EXTRACT_QUOTES Option on page 456
• TEMP_EXTRACT_QUOTES_ALL Option on page 456

Database Options

Reference: Statements and Options 451

TEMP_EXTRACT_NAMEn Options
Specifies the names of the output files or named pipes used by the data extraction facility.
There are eight options: TEMP_EXTRACT_NAME1 through TEMP_EXTRACT_NAME8.

Allowed Values
string

Default
'' (the empty string)

Scope
Can be set for an individual connection. Takes effect immediately.

Description
TEMP_EXTRACT_NAME1 through TEMP_EXTRACT_NAME8 specify the names of the
output files used by the data extraction facility. You must use these options sequentially. For
example, TEMP_EXTRACT_NAME3 has no effect unless both the options
TEMP_EXTRACT_NAME1 and TEMP_EXTRACT_NAME2 are already set.

The most important of these options is TEMP_EXTRACT_NAME1. If
TEMP_EXTRACT_NAME1 is set to its default setting (the empty string ''), extraction is
disabled and no output is redirected. To enable extraction, set TEMP_EXTRACT_NAME1 to a
path name. Extract starts extracting into a file with that name. Choose a path name to a file that
is not otherwise in use. Sybase recommends setting the TEMP_EXTRACT_NAME1 option as
TEMPORARY.

You can also use TEMP_EXTRACT_NAME1 to specify the name of the output file,
when the TEMP_EXTRACT_APPEND option is set ON. In this case, before you execute the
SELECT statement, set WRITE permission for the user name used to start Sybase IQ (for
example, sybase) on the directory or folder containing the named file and on the named file. In
append mode, the data extraction facility adds extracted rows to the end of the file and does not
overwrite the data that is already in the file. If the output file does not already exist, the data
extraction facility creates the file.

Warning! If you choose the path name of an existing file and the TEMP_EXTRACT_APPEND
option is set OFF (the default), the file contents are overwritten. This might be what you
require if the file is for a weekly report, for example, but not if the file is one of your database
files.

The options TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 can be used in
addition to TEMP_EXTRACT_NAME1 to specify the names of multiple output files.

Database Options

 452 Sybase IQ

If you are extracting to a single disk file or a single named pipe, leave the options
TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 and
TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 at their default values.

When TEMP_EXTRACT_NAME1 is set, you cannot perform these operations:

• LOAD, DELETE, INSERT, or INSERT...LOCATION to a table that is the top table in a join
• SYNCHRONIZE JOIN INDEX (issued explicitly or executed as part of CREATE JOIN

INDEX)
• INSERT...SELECT

Also note these restrictions on the data extraction facility:

• Extract works only with data stored in the IQ store.
• Extract does not work on system tables or cross database joins.
• Extract does not work with queries that use user-defined functions or system functions,

except for the system functions suser_id() and suser_name().
• If you run Interactive SQL with the -q (quiet mode) option and the data extraction

commands are in a command file, you must first set and make permanent the Interactive
SQL option “Show multiple result sets.” If this option is not set, the output file is not
created.
To set the “Show multiple result sets” option, select Tools > Options in the Interactive SQL
window, then check the box “Show multiple result sets” and click “Make permanent.”

The directory path specified using the TEMP_EXTRACT_NAMEn options can be overridden
with the TEMP_EXTRACT_DIRECTORY option.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_APPEND Option on page 448

• TEMP_EXTRACT_DIRECTORY Option on page 450

• TEMP_EXTRACT_SIZEn Options on page 458

TEMP_EXTRACT_NULL_AS_EMPTY Option
Controls the representation of null values in the output of the data extraction facility for an
ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

Database Options

Reference: Statements and Options 453

Scope
Can be set for an individual connection. Takes effect immediately.

Description
TEMP_EXTRACT_NULL_AS_EMPTY controls the representation of null values in the output
of the data extraction facility for ASCII extractions. When the
TEMP_EXTRACT_NULL_AS_EMPTY option is set to ON, a null value is represented as '' (the
empty string) for all data types.

The quotes shown above are not present in the extract output file. When the
TEMP_EXTRACT_NULL_AS_EMPTY option is set to OFF, the string 'NULL' is used in all
cases to represent a NULL value. OFF is the default value.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

TEMP_EXTRACT_NULL_AS_ZERO Option
Controls the representation of null values in the output of the data extraction facility for an
ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description
TEMP_EXTRACT_NULL_AS_ZERO controls the representation of null values in the output
of the data extraction facility for ASCII extractions. When
TEMP_EXTRACT_NULL_AS_ZERO is set to ON, a null value is represented as follows:

• '0' for arithmetic type
• '' (the empty string) for the CHAR and VARCHAR character types

• '' (the empty string) for dates
• '' (the empty string) for times
• '' (the empty string) for timestamps

The quotes shown above are not present in the extract output file. When the
TEMP_EXTRACT_NULL_AS_ZERO option is set to OFF, the string 'NULL' is used in all
cases to represent a NULL value. OFF is the default value.

Database Options

 454 Sybase IQ

Note: In Sybase IQ 12.5, an ASCII extract from a CHAR or VARCHAR column in a table
always returns at least four characters to the output file. This is required if
TEMP_EXTRACT_NULL_AS_ZERO is set to OFF, because Sybase IQ needs to write out the
word NULL for any row in a column that has a null value. Reserving four spaces is not
required if TEMP_EXTRACT_NULL_AS_ZERO is set to ON.

In Sybase IQ 12.6, if TEMP_EXTRACT_NULL_AS_ZERO is set to ON, the number of
characters that an ASCII extract writes to a file for a CHAR or VARCHAR column equals the
number of characters in the column, even if that number is less than four.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

TEMP_EXTRACT_QUOTE Option
Specifies the string to be used as the quote to enclose fields in the output of the data extraction
facility for an ASCII extraction, when either the TEMP_EXTRACT_QUOTES option or the
TEMP_EXTRACT_QUOTES_ALL option is set ON.

Allowed Values
String

Default
'' (the empty string)

Scope
Can be set for an individual connection. Takes effect immediately.

Description
This option specifies the string to be used as the quote to enclose fields in the output of the data
extraction facility for an ASCII extraction, if the default value is not suitable.
TEMP_EXTRACT_QUOTE is used with the TEMP_EXTRACT_QUOTES and
TEMP_EXTRACT_QUOTES_ALL options. The quote string specified in the
TEMP_EXTRACT_QUOTE option has the same restrictions as the row and column delimiters.
The default for this option is the empty string, which Sybase IQ converts to the single quote
mark.

The string specified in the TEMP_EXTRACT_QUOTE option must occupy from 1 to a
maximum of 4 bytes and must be valid in the collation order you are using, if you are using a
multibyte collation order. Be sure to choose a string that does not occur in any of the data
output strings themselves.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

Database Options

Reference: Statements and Options 455

See also
• TEMP_EXTRACT_COLUMN_DELIMITER Option on page 449

• TEMP_EXTRACT_QUOTES Option on page 456

• TEMP_EXTRACT_QUOTES_ALL Option on page 456

• TEMP_EXTRACT_ROW_DELIMITER Option on page 457

TEMP_EXTRACT_QUOTES Option
Specifies that string fields are enclosed in quotes in the output of the data extraction facility for
an ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description
This option specifies that string fields are enclosed in quotes in the output of the data
extraction facility for an ASCII extraction. The string used as the quote is specified in the
TEMP_EXTRACT_QUOTE option, if the default is not suitable.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_COLUMN_DELIMITER Option on page 449

• TEMP_EXTRACT_QUOTES_ALL Option on page 456

• TEMP_EXTRACT_ROW_DELIMITER Option on page 457

TEMP_EXTRACT_QUOTES_ALL Option
Specifies that all fields are enclosed in quotes in the output of the data extraction facility for an
ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

Database Options

 456 Sybase IQ

Scope
Can be set for an individual connection. Takes effect immediately.

Description
TEMP_EXTRACT_QUOTES_ALL specifies that all fields are enclosed in quotes in the output
of the data extraction facility for an ASCII extraction. The string used as the quote is specified
in TEMP_EXTRACT_QUOTE, if the default is not suitable.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_COLUMN_DELIMITER Option on page 449

• TEMP_EXTRACT_QUOTES Option on page 456

• TEMP_EXTRACT_QUOTES_ALL Option on page 456

• TEMP_EXTRACT_ROW_DELIMITER Option on page 457

TEMP_EXTRACT_ROW_DELIMITER Option
Specifies the delimiter between rows in the output of the data extraction facility for an ASCII
extraction.

Allowed Values
String

Default
'' (the empty string)

Scope
Can be set for an individual connection. Takes effect immediately.

Description
TEMP_EXTRACT_ROW_DELIMITER specifies the delimiter between rows in the output of
the data extraction facility. In the case of an ASCII extraction, the default is to end the row with
a newline on UNIX platforms and with a carriage return/newline pair on Windows platforms.

The delimiter must occupy 1 – 4 bytes and must be valid in the collation order you are using, if
you are using a multibyte collation order. Choose a delimiter that does not occur in any of the
data output strings. The default for the TEMP_EXTRACT_ROW_DELIMITER option is the
empty string. Sybase IQ converts the empty string default for this option to the newline on
UNIX platforms and to the carriage return/newline pair on Windows platforms.

Database Options

Reference: Statements and Options 457

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_COLUMN_DELIMITER Option on page 449
• TEMP_EXTRACT_QUOTES Option on page 456
• TEMP_EXTRACT_QUOTES_ALL Option on page 456

TEMP_EXTRACT_SIZEn Options
Specifies the maximum sizes of the corresponding output files used by the data extraction
facility.

There are eight options: TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8.

Default
0

Scope
Can be set for an individual connection. Takes effect immediately.

Description
TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 are used to specify the
maximum sizes of the corresponding output files used by the data extraction facility.
TEMP_EXTRACT_SIZE1 specifies the maximum size of the output file specified by
TEMP_EXTRACT_NAME1, TEMP_EXTRACT_SIZE2 specifies the maximum size of the
output file specified by TEMP_EXTRACT_NAME2, and so on.

The default for the data extraction size options is 0. Sybase IQ converts this default to these
values:

Device type Size

Disk file AIX and HP-UX: 0 – 64GB

Sun Solaris & Linux: 0 – 512GB

Windows: 0 – 128GB

Tape* 524288KB (0.5GB)

Other 9007199254740992KB (8192 Petabytes “unlimited”)

*Tape devices currently are not supported.

When large file systems, such as JFS2, support file size larger than the default value, set
TEMP_EXTRACT_SIZEn to the value that the file system allows. For example, to support
lTB set option:

Database Options

 458 Sybase IQ

TEMP_EXTRACT_SIZE1 = 1073741824 KB

If you are extracting to a single disk file or a single named pipe, leave the options
TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 and
TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 at their default values.

The TEMP_EXTRACT_SIZEn options are not compatible with
TEMP_EXTRACT_APPEND. If you try to restrict the size of the extract append output file,
Sybase IQ reports an error.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_NAMEn Options on page 452

TEMP_EXTRACT_SWAP Option
In combination with the TEMP_EXTRACT_BINARY option, specifies the type of extraction
performed by the data extraction facility.

Allowed values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description
Use this option with the TEMP_EXTRACT_BINARY option to specify the type of extraction
performed by the data extraction facility.

Table 32. Extraction Option Settings for Extraction Type

Extraction type TEMP_EXTRACT_BINARY TEMP_EXTRACT_SWAP

binary ON OFF

binary/swap ON ON

ASCII OFF OFF

The default extraction type is ASCII.

Database Options

Reference: Statements and Options 459

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
• TEMP_EXTRACT_BINARY Option on page 448

TEMP_RESERVED_DBSPACE_MB Option
Controls the amount of space Sybase IQ reserves in the temporary IQ store.

Allowed Values
Integer greater than or equal to 200 in megabytes

Default
200; Sybase IQ actually reserves a maximum of 50% and a minimum of 1% of the last read-
write file in IQ_SYSTEM_TEMP

Scope
Can be set only for the PUBLIC group. DBA authority is required to set the option. Takes
effect immediately. The server does not need to be restarted in order to change reserved space
size.

Description
TEMP_RESERVED_DBSPACE_MB lets you control the amount of space Sybase IQ sets aside
in your temporary IQ store for certain small but critical data structures used during release
savepoint, commit, and checkpoint operations. For a production database, set this value
between 200MB and 1GB. The larger your IQ page size and number of concurrent
connections, the more reserved space you need.

Reserved space size is calculated as a maximum of 50% and a minimum of 1% of the last
read-write file in IQ_SYSTEM_TEMP.

TEMP_SPACE_LIMIT_CHECK Option
Checks for catalog store temporary space on a per connection basis.

Allowed Values
ON, OFF (no limit checking occurs)

Default
ON

Scope
Can be set only for the PUBLIC group. DBA authority required.

Database Options

 460 Sybase IQ

Description
When TEMP_SPACE_LIMIT_CHECK is ON, the database server checks the amount of
catalog store temporary file space that a connection uses. If a connection requests more than its
quota of temporary file space when this option is set to OFF, a fatal error can occur. When this
option is set to ON, if a connection requests more than its quota of temporary file space, the
request fails and the error “Temporary space limit exceeded” is returned.

Two factors are used to determine the temporary file quota for a connection: the maximum size
of the temporary file, and the number of active database connections. The maximum size of
the temporary file is the sum of the current size of the file and the amount of disk space
available on the partition containing the file. When limit checking is turned on, the server
checks a connection for exceeding its quota when the temporary file has grown to 80% or more
of its maximum size, and the connection requests more temporary file space. Once this
happens, any connection fails that uses more than the maximum temporary file space divided
by the number of active connections.

Note: This option is unrelated to IQ temporary store space. To constrain the growth of IQ
temporary space, use the QUERY_TEMP_SPACE_LIMIT option and
MAX_TEMP_SPACE_PER_CONNECTION option.

You can obtain information about the space available for the temporary file using the
sa_disk_free_space system procedure. For more information, see SQL Anywhere 11.0.1
>SQL Anywhere Server – SQL Reference > System Objects > System procedures >
Alphabetical list of system procedures > sa_disk_free_space system procedure.

Example
A database is started with the temporary file on a drive with 100MB free and no other active
files on the same drive. The available temporary file space is 100MB. The DBA enters:

SET OPTION PUBLIC.TEMP_SPACE_LIMIT_CHECK = 'ON'

As long as the temporary file stays below 80MB, the server behaves as it did before. Once the
file reaches 80MB, the new behavior might occur. Assume that with 10 queries running, the
temporary file needs to grow. When the server finds that one query is using more than 8MB of
temporary file space, that query fails.

TEXT_DELETE_METHOD Option
Specifies the algorithm used during a delete in a TEXT index.

Users must be licensed for the Unstructured Data Analytics Option to use TEXT indexes. For
TEXT_DELETE_METHOD syntax and a complete description, see Unstructured Data
Analytics in Sybase IQ.

Database Options

Reference: Statements and Options 461

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-disk-free-space.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-disk-free-space.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-disk-free-space.html

TIME_FORMAT Option
Sets the format used for times retrieved from the database.

Allowed values
A string composed of the symbols HH, NN, MM, SS, separated by colons.

Default
'HH:NN:SS.SSS'

For Open Client and JDBC connections the default is also set to HH:NN:SS.SSS.

Description
The format is a string using these symbols:

• hh – Two-digit hours (24 hour clock).
• nn – Two-digit minutes.
• mm – Two-digit minutes if following a colon (as in 'hh:mm').
• ss[.s...s] – Two-digit seconds plus optional fraction.

Each symbol is substituted with the appropriate data for the date being formatted. Any format
symbol that represents character rather than digit output can be in uppercase, which causes the
substituted characters also to be in uppercase. For numbers, using mixed case in the format
string suppresses leading zeros.

Multibyte characters are not supported in format strings. Only single-byte characters are
allowed, even when the collation order of the database is a multibyte collation order like
932JPN.

See also
• DATE_FORMAT Option on page 359

• RETURN_DATE_TIME_AS_STRING Option on page 436

TIMESTAMP_FORMAT Option
Sets the format used for timestamps retrieved from the database.

Allowed Values
A string composed of the symbols listed below.

Default
'YYYY-MM-DD HH:NN:SS.SSS'

Description
The format is a string using these symbols:

Database Options

 462 Sybase IQ

Table 33. TIMESTAMP_FORMAT String Symbols

Symbol Description

yy 2-digit year.

yyyy 4-digit year.

mm 2-digit month, or two digit minutes if following a colon (as in 'hh:mm').

mmm 3-character short form for name of the month of year

mmmm[m...] Character long form for month name—as many characters as there are m's, until
the number of m’s specified exceeds the number of characters in the month’s
name.

dd 2-digit day of month.

ddd 3-character short form for name of the day of week.

dddd[d...] Character long form for day name—as many characters as there are d's, until the
number of d’s specified exceeds the number of characters in the day’s name.

hh 2-digit hours.

nn 2-digit minutes.

ss.SSS Seconds (ss) and fractions of a second (SSS), up to six decimal places. Not all
platforms support timestamps to a precision of six places.

aa a.m. or p.m. (12-hour clock).

pp p.m. if needed (12-hour clock.)

Each symbol is substituted with the appropriate data for the date being formatted. Any format
symbol that represents character rather than digit output can be in uppercase, which causes the
substituted characters also to be in uppercase. For numbers, using mixed case in the format
string suppresses leading zeros.

Multibyte characters are not supported in format strings. Only single-byte characters are
allowed, even when the collation order of the database is a multibyte collation order like
932JPN.

See also
• DATE_FORMAT Option on page 359

• RETURN_DATE_TIME_AS_STRING Option on page 436

Database Options

Reference: Statements and Options 463

TOP_NSORT_CUTOFF_PAGES Option
Sets the result size threshold for TOP N algorithm selection.

Allowed Values
1 – 1000

Default
1

Description
TOP_NSORT_CUTOFF_PAGES sets the threshold, measured in pages, where evaluation of a
query that contains both a TOP clause and ORDER BY clause switches algorithms from
ordered list-based processing to sort-based processing. Ordered list processing performs
better in cases where the TOP N value is smaller than the number of result rows. Sort-based
processing performs better for large TOP N values.

In some cases, increasing TOP_NSORT_CUTOFF_PAGES can improve performance by
avoiding sort-based processing.

See also
• SELECT Statement on page 279

TRIM_PARTIAL_MBC Option
Allows automatic trimming of partial multibyte character data.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can only be set for the PUBLIC group.
Takes effect immediately.

Description
Provides consistent loading of data for collations that contain both single-byte and multibyte
characters. When TRIM_PARTIAL_MBC is ON:

• A partial multibyte character is replaced with a blank when loading into a CHAR column.
• A partial multibyte character is truncated when loading into a VARCHAR column.

When TRIM_PARTIAL_MBC is OFF, normal CONVERSION_ERROR semantics are in
effect.

Database Options

 464 Sybase IQ

See also
• CONVERSION_ERROR Option [TSQL] on page 349

TSQL_VARIABLES Option [TSQL]
Controls whether the @ sign can be used as a prefix for Embedded SQL host variable names.

Allowed Values
ON, OFF

ON for Open Client and JDBC connections

Default
OFF

Description
When TSQL_VARIABLES is set to ON, you can use the @ sign instead of the colon as a prefix
for host variable names in Embedded SQL. This is implemented primarily for the Open Server
Gateway.

USER_RESOURCE_RESERVATION Option
Adjusts memory use for the number of current users.

Allowed Values
Integer

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Default
1

Description
Sybase IQ tracks the number of open cursors and allocates memory accordingly. In certain
circumstances, you can use this option to adjust the minimum number of current cursors that
Sybase IQ thinks is currently using the product, and allocate memory from the temporary
cache more sparingly.

Set this option only after careful analysis shows it is actually required. If you need to set this
parameter, contact Sybase Technical Support with details.

Database Options

Reference: Statements and Options 465

VERIFY_PASSWORD_FUNCTION Option
Specifies a user-supplied authentication function that can be used to implement password
rules.

Allowed Values
String

Scope
Can be set temporary for an individual connection or for the PUBLIC group. DBA authority is
required to set the option. This option takes effect immediately.

Default
'' (the empty string). (No function is called on GRANT CONNECT.)

Description
When the VERIFY_PASSWORD_FUNCTION option value is set to a valid string, the
statement GRANT CONNECT TO userid IDENTIFIED BY password calls the function specified
by the option value.

The option value requires the form owner.function_name to prevent users from overriding the
function.

The function takes two parameters:

• user_name VARCHAR(128)
• new_pwd VARCHAR(255)

The return value type is VARCHAR(255).

Note: Perform an ALTER FUNCTION function-name SET HIDDEN on the function to ensure
that a user cannot step through it using the procedure debugger.

If VERIFY_PASSWORD_FUNCTION is set, you cannot specify more than one userid and
password with the GRANT CONNECT statement.

Example
This statement creates a function that requires the password to be different from the user
name:

CREATE FUNCTION DBA.f_verify_pwd
(user_name varchar(128),
new_pwd varchar(255))
RETURNS varchar(255)
BEGIN
-- enforce password rules
IF new_pwd = user_name then
RETURN('Password cannot be the same as the user name');
END IF;

Database Options

 466 Sybase IQ

-- return success
RETURN(NULL);
END;
ALTER FUNCTION DBA.f_verify_pwd set hidden;
GRANT EXECUTE on DBA.f_verify_pwd to PUBLIC;
SET OPTION PUBLIC.VERIFY_PASSWORD_FUNCTION = 'DBA.f_verify_pwd';

To turn the option off, set it to the empty string:

SET OPTION PUBLIC.VERIFY_PASSWORD_FUNCTION = ''

See also
• ALTER FUNCTION Statement on page 15

• GRANT Statement on page 199

WASH_AREA_BUFFERS_PERCENT Option
Specifies the percentage of the buffer caches above the wash marker.

Allowed Values
1 – 100

Default
20

Scope
Can be set only for the PUBLIC group. DBA authority is required to set the option. Shut down
and restart the database server to have the change take effect.

Description
Sybase IQ buffer caches are organized as a long MRU/LRU chain. The area above the wash
marker is used to sweep out (that is, write) dirty pages to disk.

In the IQ Monitor -cache report, the Gdirty column shows the number of times the LRU buffer
was grabbed in a “dirty” (modified) state. If GDirty is greater than 0 for more than a brief time,
you might need to increase SWEEPER_THREADS_PERCENT or
WASH_AREA_BUFFERS_PERCENT.

The default setting of this option is almost always appropriate. Occasionally, Sybase
Technical Support might ask you to increase this value.

See also
• SWEEPER_THREADS_PERCENT option on page 447

Database Options

Reference: Statements and Options 467

WAIT_FOR_COMMIT Option
Determines when foreign key integrity is checked as data is manipulated.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection or the PUBLIC group. Takes effect immediately.

Description
If this option is set to ON, the database does not check foreign key integrity until the next
COMMIT statement. Otherwise, all foreign keys not created with the CHECK ON COMMIT
option are checked as they are inserted, updated, or deleted.

WD_DELETE_METHOD Option
Specifies the algorithm used during a delete in a WD index.

Allowed Values
0 – 3

• 0: The delete method is selected by the cost model. Cost model only selects either mid or
large method for deletion.

• 1: Forces small method for deletion. Small method is useful when the number of rows
being deleted is a very small percentage of the total number of rows in the table. Small
delete can randomly access the index, causing cache thrashing with large datasets.

• 2: Forces large method for deletion. This algorithm scans the entire index searching for
rows to delete. Large method is useful when the number of rows being deleted is a high
percentage of the total number of rows in the table.

• 3: Forces mid method for deletion. Mid method is a variation of the small method that
accesses the index in order and is generally faster than the small method.

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary, for an individual
connection, or for the PUBLIC group. Takes effect immediately.

Database Options

 468 Sybase IQ

Description
WD_DELETE_METHOD specifies the algorithm used during a delete operation in a WD index.
When this option is not set or is set to 0, the delete method is selected by the cost model. The
cost model considers the CPU related costs as well as I/O related costs in selecting the
appropriate delete algorithm. The cost model takes into account:

• Rows deleted
• Index size
• Width of index data type
• Cardinality of index data
• Available temporary cache
• Machine related I/O and CPU characteristics
• Available CPUs and threads

Example
Force the large method for deletion from a WD index:

SET TEMPORARY OPTION WD_DELETE_METHOD = 2

Database Options

Reference: Statements and Options 469

Database Options

 470 Sybase IQ

Index
A
AES encryption algorithm

CREATE DATABASE statement 73
AGGREGATION_PREFERENCE option 334
aliases

for columns 282
in SELECT statement 281, 282
in the DELETE statement 162

ALL
keyword in SELECT statement 281

ALLOCATE DESCRIPTOR statement
syntax 5

ALLOW_NULLS_BY_DEFAULT option 335
ALLOW_READ_CLIENT_FILE option 339
ALTER DATABASE statement

syntax 7
ALTER DATABASE UPGRADE statement 7
ALTER DBSPACE statement

syntax 9
ALTER DOMAIN statement

syntax 13
ALTER EVENT statement

syntax 14
ALTER FUNCTION statement

syntax 15
ALTER INDEX statement

errors 18
syntax 17

ALTER LOGICAL SERVER statement 19
ALTER LOGIN POLICY statement

syntax 19
ALTER LS POLICY Statement 21
ALTER MULTIPLEX RENAME statement 21
ALTER MULTIPLEX SERVER statement 22
ALTER PROCEDURE statement

syntax 22
ALTER SERVER statement

syntax 23
ALTER SERVICE statement

syntax 25
ALTER TABLE statement

syntax 27
ALTER USER statement 36
ALTER VIEW statement

RECOMPILE 31

syntax 38, 40
altering

databases 7
functions 15

ANSI_CLOSE_CURSORS_AT_ ROLLBACK
option 335

ANSI_PERMISSIONS option 336
ANSI_SUBSTRING option 337
ANSI_UPDATE_CONSTRAINTS option 338
ANSINULL option 336
APPEND_LOAD option 339
archive backup

restoring 267
archive devices

maximum for parallel backup 44
ASE_BINARY_DISPLAY

database option 340
ASE_FUNCTION_BEHAVIOR

database option 341
with HEXTOINT 341
with INTTOHEX 341

AT clause
CREATE EXISTING TABLE 88

AUDITING option 342
authorities

BACKUP 201
DBA 201
GRANT statement 199
MULTIPLEX ADMIN 201
OPERATOR 201
PERMS ADMIN 201
PROFILE 201
READCLIENTFILE 201
READFILE 201
RESOURCE 201
SPACE ADMIN 201
USER ADMIN 201
VALIDATE 201
WRITECLIENTFILE 201

autoincrement
primary key values 182

AUTOINCREMENT column default 139

B
B-tree pages 343

Index

Reference: Statements and Options 471

BACKUP statement
number of archive devices 44
syntax 41

backups
speed 44
verifying 268

BEGIN DECLARE SECTION statement
syntax 152

BEGIN PARALLEL IQ statement 49
BEGIN TRANSACTION statement

Transact-SQL 50
BEGIN... END statement

syntax 47
binary data

controlling implicit conversion 350
binary large object variable

data type conversions 372
bind variables

DESCRIBE statement 166
EXECUTE statement 181
OPEN statement 247

blanks
trimming trailing 229, 232

BLOB variable
data type conversions 372

block fetches
FETCH statement 189

BLOCKING option 343, 344
BREAK statement

Transact-SQL 315
BT_PREFETCH_MAX_MISS option 343
BTREE_PAGE_SPLIT_PAD_PERCENT option

345
buffer cache

partitioning 345
buffers

disabling operating system buffering 421, 422
bulk load 221
BYE statement

syntax 186

C
CACHE_PARTITIONS option 345
CALL statement

syntax 53
Transact-SQL 183

CASE statement
syntax 54

catalog store 196, 284

catalog temporary files
preventing connections from exceeding quota

460
CHAINED option 347
character large object variable

data type conversions 372
character sets

client file bulk load 228
errors on conversions 419

CHECK conditions
about 140, 143

CHECK ON COMMIT clause
referential integrity 142

CHECKPOINT statement
syntax 56

CHECKPOINT_TIME option 347
CIS

remote data access 348
CIS_ROWSET_SIZE option

about 348
classes

installing 216
removing 261

CLEAR statement
syntax 56

client file bulk load
character sets 228
errors 228
rollback 228

CLOB variable
data type conversions 372

CLOSE statement
syntax 57

CLOSE_ON_ENDTRANS option 348
code pages

DEFAULT_ISQL_ENCODING option 366
collation

SORT_COLLATION option 439
collations

client file bulk load 228
columns

aliases 282
altering 27
constraints 140
naming 3
renaming 33

command files
parameters 252

Index

 472 Sybase IQ

COMMENT ON LOGICAL SERVER statement
60

COMMENT ON LOGIN POLICY statement
syntax 58

COMMENT statement
syntax 58

COMMIT statement
syntax 60

COMMIT TRANSACTION statement
Transact-SQL 60

compatibility options
ASE_FUNCTION_BEHAVIOR 341
CONTINUE_AFTER_RAISERROR 348
CONVERSION_ERROR 349
ON_TSQL_ERROR 420

compound statements
about 47

concurrency
locking tables 239

CONFIGURE statement
syntax 62

CONNECT authority
GRANT statement 203

CONNECT statement
syntax 63

connection_property function
about 318

connections
dbisql 169
DEDICATED_TASK option 363
establishing 19, 399
logging 400

console
displaying messages on 243

contains-expression
FROM clause 194

CONTINUE statement
Transact-SQL 315

CONTINUE_AFTER_RAISE_ERROR option
348

control statements
CALL statement 53
CASE statement 54
IF statement 205
LEAVE statement 220
LOOP statement 242
Transact-SQL GOTO statement 198
Transact-SQL IF statement 206
Transact-SQL WHILE statement 315

CONVERSION_ERROR option 349
CONVERSION_MODE option 350
CONVERT_VARCHAR_TO_1242 option 356
COOPERATIVE_COMMIT_TIMEOUT option

356
COOPERATIVE_COMMITS option 357
correlation names

in the DELETE statement 162
CREATE DATABASE statement

syntax 66
CREATE DBSPACE statement

syntax 76
CREATE DOMAIN statement

syntax 79
CREATE EVENT statement

syntax 81
CREATE EXISTING TABLE statement

proxy tables 86
CREATE EXTERNLOGIN statement

INSERT...LOCATION 211
syntax 89

CREATE FUNCTION statement
syntax 90

CREATE INDEX statement 49
syntax 97
table use 100

CREATE JOIN INDEX statement
syntax 104

CREATE LOGICAL SERVER statement 107
CREATE LOGIN POLICY statement

syntax 107
CREATE MESSAGE statement

Transact-SQL 109
CREATE MULTIPLEX SERVER statement 110
CREATE PROCEDURE statement

syntax 110
Transact-SQL 116

CREATE PROCEDURE statement for external
procedures

syntax 118
CREATE SCHEMA statement

syntax 127
CREATE SERVER statement

INSERT...LOCATION 211
syntax 129

CREATE SERVICE statement
syntax 130

CREATE TABLE statement
syntax 133

Index

Reference: Statements and Options 473

CREATE TEXT CONFIGURATION statement
146

CREATE TEXT INDEX statement 146
CREATE USER statement 146
CREATE VARIABLE statement

syntax 148
CREATE VIEW statement

syntax 149
creating

data types 79
external stored procedures 118
proxy tables 86
stored procedures 110

creating as a group 49
creator 3
CUBE operator 285

SELECT statement 285
CURSOR_WINDOW_ROWS option 357
cursors

closing 57
database options 319
declaring 154, 159
deleting rows from 164
DESCRIBE 166
fetching 187
FOR READ ONLY clause 155
FOR UPDATE clause 155
INSENSITIVE 154
inserting rows using 256
looping over 190
OPEN statement 246
sensitivity 157
WITH HOLD clause 247

D
data

exporting from tables into files 248
data type conversion

CONVERSION_MODE option 350
errors 349
LONG BINARY variables 372

data types
altering user-defined 13
creating 79
dropping user-defined 170
performance for joins 196

database files
altering 9
creating 76

database option
ENABLE_LOB_VARIABLES 372

database options
cursors 319
DEBUG_MESSAGES option 363
DEDICATED_TASK 363
duration 319
ESCAPE_CHARACTER 330
FLATTEN_SUBQUERIES 445
FORCE_DROP 373
FP_LOOKUP_SIZE_PPM 375
initial settings 321
maximum string length 295, 318
ODBC_DISTINGUISH_CHAR_AND_VAR

CHAR 418
ON_CHARSET_CONVERSION_FAILURE

419
POST_LOGIN_PROCEDURE 423
PRESERVE_SOURCE_FORMAT 427
RETURN_DATE_TIME_AS_STRING 436
SUBQUERY_FLATTENING_PERCENT

444
SUBQUERY_FLATTENING_PREFERENC

E 444
SUPPRESS_TDS_DEBUGGING 446
TDS_EMPTY_STRING_IS_NULL 447

database servers
starting 299
stopping 302

databases
altering 7
creating 66
deleting files 173
disabling Java support 7
disabling jConnect support 7
enabling Java support 7
enabling jConnect support 7
loading data into 221
starting 298
stopping 301
upgrading 7

DATE_FIRST_DAY_OF_WEEK option 358
DATE_FORMAT option 359
DATE_ORDER option 361
DBCC_LOG_PROGRESS

database option 361
DBCC_PINNABLE_CACHE_PERCENT

database option 362

Index

 474 Sybase IQ

dbisql
connecting to a database 64
options 295

dbo user ID
views owned by 170

dbspace
CREATE permissions 204

dbspaces
altering 9
creating 76
dropping 170
setting offline 11
virtual backup 42

DEALLOCATE DESCRIPTOR
syntax 151

DEBUG_MESSAGES option
description 363

debugging
controlling MESSAGE statement behavior

243
DEBUG_MESSAGES option 363

declaration section 152
DECLARE CURSOR statement

syntax 154
Transact-SQL syntax 159

DECLARE LOCAL TEMPORARY TABLE
statement

syntax 160
DECLARE statement

syntax 47, 153
DECLARE TEMPORARY TABLE statement

syntax 160
DEDICATED_TASK option

description 363
DEFAULT_DBSPACE option 364
DEFAULT_DISK_STRIPING option 365
DEFAULT_HAVING_SELECTIVITY_PPM

option 366
DEFAULT_ISQL_ENCODING option

description 366
DEFAULT_KB_PER_STRIPE option 367
DEFAULT_LIKE_MATCH_SELECTIVITY_PP

M option 368
DEFAULT_LIKE_RANGE_SELECTIVITY_PPM

option 369
DELAYED_COMMIT_TIMEOUT option 369
DELAYED_COMMITS option 370
DELETE (positioned) statement

SQL syntax 164

DELETE statement
syntax 162

deleting
rows from cursors 164

deleting all rows from a table 305
delimiters

example 99
deprecated database options 322
DESCRIBE statement

syntax 166
descriptor

allocating memory 5
deallocating 151
DESCRIBE statement 166
EXECUTE statement 181
FETCH statement 187
getting 197
PREPARE statement 253

descriptor areas
UPDATE (positioned) statement 311

descriptors
setting 292

direct I/O 421, 422
DISCONNECT statement

syntax 169
disjunction of subquery predicates 284
disk space

notifying when low 82
DISK_STRIPING option 370
displaying

messages 243
DISTINCT keyword 281
DIVIDE_BY_ZERO_ERROR option 370
domains 79

altering 13
DQP_ENABLED option 371
DROP CONNECTION statement

syntax 172
DROP DATABASE statement

syntax 173
DROP DATATYPE statement

syntax 170
DROP DBSPACE statement

syntax 170
DROP DOMAIN statement

syntax 170
DROP EVENT

syntax 170

Index

Reference: Statements and Options 475

DROP EXTERNLOGIN statement
syntax 174

DROP FUNCTION statement
syntax 170

DROP INDEX statement
syntax 170

DROP LOGICAL SERVER statement 176
DROP LOGIN POLICY statement

syntax 175
DROP MESSAGE

syntax 170
DROP MULTIPLEX SERVER statement 176
DROP PROCEDURE statement

syntax 170
DROP SERVER statement

syntax 176
DROP SERVICE statement

syntax 177
DROP statement

syntax 170
DROP STATEMENT statement

syntax 178
DROP TABLE

IDENTITY_INSERT option 171
DROP TABLE statement

syntax 170
DROP TEXT CONFIGURATION statement 179
DROP TEXT INDEX statement 179
DROP USER statement 179
DROP VARIABLE statement

syntax 180
DROP VIEW statement

restriction 170
syntax 170

dropping
users 272–274
views 170

dropping partitions 32
dummy IQ table 196
DYNAMIC SCROLL cursors 154

E
EARLY_PREDICATE_EXECUTION option 371
embedded SQL

DELETE (positioned) statement syntax 164
PUT statement syntax 256

ENABLE_LOB_VARIABLES option 372
encryption

TDS password 211, 212

encryption algorithms
CREATE DATABASE statement 73

END DECLARE STATEMENT
syntax 152

END keyword 47
END PARALLEL IQ statement 49
error handling

Transact-SQL procedures 420
errors

during character conversions 419
RAISERROR statement 258
SIGNAL statement 297
Transact-SQL procedures 420

escape character
OUTPUT SQL statement 248

ESCAPE_CHARACTER option 330
event

monitoring disk space 82
event handler

altering 14
creating 81
triggering 304

events
altering 14
creating 81
dropping 170
triggering 304

EXCEPTION statement
syntax 47

EXECUTE IMMEDIATE statement
syntax 184

EXECUTE statement
syntax 181
Transact-SQL 183

EXIT statement
syntax 186

exporting data
from tables into files 248
SELECT statement 279

EXTENDED_JOIN_SYNTAX option 372
external procedures

creating 118
external stored procedures

creating 118

F

FETCH statement
syntax 187

Index

 476 Sybase IQ

files
dbspaces 9, 76
exporting data from tables into 248
setting offline 11
setting online 11

FIRST
to return one row 281

FLATTEN_SUBQUERIES option 445
FOR statement

syntax 190
FORCE_DROP option 373
FORCE_NO_SCROLL_CURSORS option 373
FORCE_UPDATABLE_CURSORS option 374
foreign keys

integrity constraints 141
unnamed 142

FORWARD TO statement
syntax 192

FP indexes
cache allocated 375

FP_LOOKUP_SIZE option 374
FP_LOOKUP_SIZE_PPM option 375
FP_PREDICATE_WORKUNIT_PAGES option

376
FPL_EXPRESSION_MEMORY_KB option 377
FROM clause 196, 284

contains-expression 194
SELECT statement 283
selects from stored procedure result sets 281
syntax 193

functions
altering 15
creating 90
dropping 170
user-defined 271

G
GARRAY_FILL_FACTOR_PERCENT option

377
GARRAY_PAGE_SPLIT_PAD_PERCENT option

378
GARRAY_PREFETCH_SIZE option 378, 379
GET DESCRIPTOR statement

syntax 197
GOTO statement

Transact-SQL 198
GRANT statement

CONNECT authority 203
INTEGRATED LOGIN 202

KERBEROS LOGIN 202
syntax 199

GROUP BY clause
SELECT statement 284

grouping 49

H

HASH_THRASHING_PERCENT option 380
HEADER SKIP option

LOAD TABLE statement 234
heading name 282
HG index

multicolumn with NULL 102
NULL values 102

HG indexes
improving query performance 343

HG_DELETE_METHOD option 381
HG_SEARCH_RANGE option 382
host variables

declaring 152
syntax 3

HTTP_SESSION_TIMEOUT option 382

I

I/O
direct 421, 422

IDENTITY column
and DROP TABLE 171

IDENTITY_ENFORCE_UNIQUENESS option
383

IDENTITY_INSERT option
dropping tables 171

IF statement
syntax 205
Transact-SQL 206

IN_SUBQUERY_PREFERENCE option 389
INCLUDE statement

syntax 208
INDENTITY_INSERT option 383
INDEX_ADVISOR option 384
INDEX_ADVISOR_MAX_ROWS option 386
INDEX_PREFERENCE option 387
indexes 49

creating 97
dropping 170
lookup pages 375
multicolumn 101

Index

Reference: Statements and Options 477

multicolumn HG and NULL 102
naming 100
owner 100
table use 100
unique 99

indicator variables 3
INFER_SUBQUERY_PREDICATES option 388
INSERT

syntax 209
wide 181

INSERT statement
ISOLATION LEVEL 212
WORD SKIP option 215

inserting
rows using cursors 256

INSTALL JAVA statement
syntax 216

INTEGRATED LOGIN
GRANT statement 202

Interactive SQL
OUTPUT statement syntax 248
specifying code page for reading and writing to

files 366
Interactive SQL options

DEFAULT_ISQL_ENCODING 366
INTO clause

SELECT statement 282
IQ store

reserving space 402
reserving temporary space 460

IQ UNIQUE
alternative method 412

IQ UNIQUE column constraint 140
IQ UTILITIES statement

syntax 218
iq_dummy table 196
IQGOVERN_PRIORITY option 390
IQGOVERN_PRIORITY_TIME option 391
ISOLATION LEVEL

INSERT statement 212
ISOLATION_LEVEL option 392
isysserver system table

remote servers for Component Integration
Services 129

J
jar files

installing 216
removing 261

Java
disabling support 7
enabling support 7
installing classes 216
method signatures 125
removing classes 261

Java VM
starting 300
stopping 302

JAVA_LOCATION option 392
JAVA_VM_OPTIONS option 393
jConnect

disabling support 7
enabling support 7
password encryption 212

join columns
and data types 196

join indexes
creating 104
synchronizing 303

JOIN_EXPANSION_FACTOR option 393
JOIN_OPTIMIZATION option 394
JOIN_PREFERENCE option 395
JOIN_SIMPLIFICATION_THRESHOLD option

397
joins

deletes 162
FROM clause syntax 193
optimizing 393, 394, 397
optimizing join order 408
SELECT statement 283

K

Kerberos authentication
COMMENT ON KERBEROS LOGIN clause

58
KERBEROS LOGIN

GRANT statement 202

L

labels
for statements 3, 198

LEAVE statement
syntax 220

LF_BITMAP_CACHE_KB option 398
LOAD TABLE statement

FROM clause deprecated 228

Index

 478 Sybase IQ

HEADER SKIP option 234
new syntax 232
ON PARTIAL INPUT ROW option 235
performance 232
QUOTES option 229
STRIP keyword 232
syntax 221
syntax changes 232
USING keyword 228
WORD SKIP option 234

LOAD_ZEROLENGTH_ASNULL option 399
loads

scalability 345
LOB variables

data type conversion 372
LOCK TABLE

syntax 239
LOCKED option 399
locking

tables 239
locks

releasing with ROLLBACK 275
LOG_CONNECT database option 400
Login Management

POST_LOGIN_PROCEDURE option 423
Login Management facility 423
login policies

altering 19
commenting 58
creating 107
dropping 175

login policy options 399, 405, 406
login processing 423
LOGIN_MODE option 401
LOGIN_PROCEDURE option 401
logins

external 89
password expiration warning 423

See also connections
LONG BINARY variable

data type conversions 372
LONG VARCHAR variable

data type conversions 372
lookup pages

maximum 375
LOOP statement

syntax 242
low disk space 82

M

MAIN_RESERVED_DBSPACE_MB option 402
MAX_CARTESIAN_RESULT option 403–405
MAX_CURSOR_COUNT option 405
MAX_DAYS_SINCE_LOGIN option 406
MAX_FAILED_LOGIN_ATTEMPTS option 406
MAX_HASH_ROWS option 406
MAX_IQ_GOVERN_PRIORITY option 390
MAX_IQ_THREADS_PER_CONNECTION

option 407
MAX_IQ_THREADS_PER_TEAM option 407
MAX_JOIN_ENUMERATION option 408
MAX_PREFIX_PER_CONTAINS_PHRASE

option 409
MAX_QUERY_PARALLELISM option 409
MAX_QUERY_TIME option 409
MAX_STATEMENT_COUNT option 410
MAX_TEMP_SPACE_PER_CONNECTION

option 411
MAX_WARNINGS option 412
MDSR encryption algorithm

CREATE DATABASE statement 73
memory

prefetching 343
MESSAGE statement

setting DEBUG_MESSAGES option 363
SQL syntax 243

messages
creating 109
displaying 243
dropping 170

method signatures
Java 125

MIN_PASSWORD_LENGTH option 413
MINIMIZE_STORAGE option 412
monitor

in IQ UTILITIES statement 218
setting output file location 414
starting and stopping 218

MONITOR_OUTPUT_DIRECTORY option 414
monitoring disk space 82
MPX_AUTOEXCLUDE_TIMEOUT option 415
MPX_HEARTBEAT_FREQUENCY option 415
MPX_IDLE_CONNECTION_TIMEOUT option

415
MPX_MAX_CONNECTION_POOL_SIZE option

415
MPX_MAX_UNUSED_POOL_SIZE option 415

Index

Reference: Statements and Options 479

multicolumn indexes 99, 101
deleting 33

multiplex databases
adding dbspaces 78
creating 69

multirow fetches
FETCH statement 189

multirow inserts 181

N
named pipes 237
NEAREST_CENTURY option 416
newline

WD index delimiter 99
NO RESULT SET clause 114, 122
NO SCROLL cursors 154
NOEXEC option 416
NON_ANSI_NULL_VARCHAR option 417
NON_KEYWORDS database option 417
NOTIFY_MODULUS option 418
NULL

on multicolumn HG index 102
NULL value

in multicolumn HG index 102

O
ODBC

ODBC_DISTINGUISH_CHAR_AND_VAR
CHAR option 418

static cursors 154
ODBC_DISTINGUISH_CHAR_AND_VARCHA

R option
description 418

offline
dbspaces 11

ON EXCEPTION RESUME clause
stored procedures 420

ON_CHARSET_CONVERSION_FAILURE
option

description 419
ON_ERROR option

description 419
ON_TSQL_ERROR

database option 420
online

dbspaces 11
OPEN statement

syntax 246

optimization
defining existing tables and 87
MAX_HASH_ROWS option 406
MAX_JOIN_ENUMERATION option 408

option
DQP_ENABLED 371
ENABLE_LOB_VARIABLES 372
MAX_PREFIX_PER_CONTAINS_PHRASE

409
MPX_AUTOEXCLUDE_TIMEOUT 415
MPX_HEARTBEAT_FREQUENCY 415
MPX_IDLE_CONNECTION_TIMEOUT

415
MPX_MAX_CONNECTION_POOL_SIZE

415
MPX_MAX_UNUSED_POOL_SIZE 415
NON_ANSI_NULL_VARCHAR 417
TEXT_DELETE_METHOD 461

option value
truncation 295, 318

options
AGGREGATION_PREFERENCE 334
ASE_FUNCTION_BEHAVIOR 341
CIS_ROWSET_SIZE 348
compatibility 329
CONTINUE_AFTER_RAISERROR 348
CONVERSION_ERROR 349
cursors 319
DEBUG_MESSAGES option 363
DEDICATED_TASK 363
DEFAULT_ISQL_ENCODING 366
deprecated 322
duration 319
ESCAPE_CHARACTER 330
EXTENDED_JOIN_SYNTAX 372
finding values 318
FLATTEN_SUBQUERIES 445
FORCE_DROP 373
FP_LOOKUP_SIZE 374
FP_LOOKUP_SIZE_PPM 375
general database 322
initial settings 321
introduction 317
list of 333
MAX_TEMP_SPACE_PER_CONNECTION

411
ODBC_DISTINGUISH_CHAR_AND_VAR

CHAR 418

Index

 480 Sybase IQ

ON_CHARSET_CONVERSION_FAILURE
419

ON_ERROR 419
ON_TSQL_ERROR 420
POST_LOGIN_PROCEDURE 423
precedence 319
PRESERVE_SOURCE_FORMAT 427
RETURN_DATE_TIME_AS_STRING 436
scope 319
setting 293, 317
setting dbisql options 62
setting DBISQL options 62
setting temporary 295, 332
SORT_COLLATION 439
sp_iqcheckoptions 318
SUBQUERY_CACHING_PREFERENCE

442
SUBQUERY_FLATTENING_PERCENT

444
SUBQUERY_FLATTENING_PREFERENC

E 444
SUPPRESS_TDS_DEBUGGING 446
SYSOPTIONDEFAULTS system table 318
TDS_EMPTY_STRING_IS_NULL 447
Transact-SQL 289
unexpected behavior 196, 284

ORDER BY clause 286
OS_FILE_CACHE_BUFFERING option 421
OS_FILE_CACHE_BUFFERING_TEMPDB

option 422
out-of-space conditions

preventing 402
OUTPUT statement

SQL syntax 248
owner 3

P
packages

installing 216
removing 261

parallelism
backup devices 44

PARAMETERS statement
syntax 252

partition limit 345
partitions

dropping 32
password

TDS encryption 211, 212

password encryption
jConnect 212
TDS 211, 212

PASSWORD_EXPIRY_ON_NEXT_LOGIN
option 423

PASSWORD_GRACE_TIME option 423
PASSWORD_LIFE_TIME option 423
passwords

changing 203
encryption 211
expiration warning 423
minimum length 413

performance
getting more memory 343
impact of FROM clause 196

permissions
ALTER 202
CONNECT authority 203
CREATE on dbspace 204
DBA authority 203
DELETE 202
EXECUTE 202
GRANT statement 199
GROUP authority 202
INSERT 202
MEMBERSHIP 202
REFERENCES 202
RESOURCE authority 201
revoking 272
SELECT 202
UPDATE 202

positioned DELETE statement
SQL syntax 164

POST_LOGIN_PROCEDURE option 423
PRECISION option 424
predicates

disjunction of 284
PREFETCH option 424
PREFETCH_BUFFER_LIMIT option 425
PREFETCH_BUFFER_PERCENT option 425
PREFETCH_GARRAY_PERCENT option 426
PREFETCH_SORT_PERCENT option 426
prefetching

BT_PREFETCH_MAX_MISS 343
PREPARE statement

syntax 253
prepared statements

dropping 178
EXECUTE statement 181

Index

Reference: Statements and Options 481

PRESERVE_SOURCE_FORMAT option
description 427

primary keys
integrity constraints 141

PRINT statement
Transact-SQL syntax 255

procedures 254
creating 110
dropping 170
dynamic SQL statements 184
executing 183
proxy 115
RAISERROR statement 258
replicating 22
result sets 114, 122
returning values from 271
sa_post_login_procedure 423
select from result sets 281
Transact-SQL CREATE PROCEDURE

statement 116
variable result sets 113, 121

processing queries without 196, 284
projections

SELECT statement 281
PURGE clause

FETCH statement 189
PUT statement

SQL syntax 256
putting

rows into cursors 256

Q
queries

for updatable cursors 157
improving performance 343
processing by Adaptive Server Anywhere 284
processing by SQL Anywhere 196
SELECT statement 279

QUERY_DETAIL option 428
QUERY_NAME option 428
QUERY_PLAN option 429
QUERY_PLAN_AFTER_RUN option 429
QUERY_PLAN_AS_HTML option 430
QUERY_PLAN_AS_HTML_DIRECTORY option

431
QUERY_PLAN_TEXT_ACCESS option 432
QUERY_PLAN_TEXT_CACHING option 433
QUERY_ROWS_RETURNED_LIMIT option 433
QUERY_TEMP_SPACE_LIMIT option 434

QUERY_TIMING option 435
querying tables 196, 284
QUIT statement

syntax 186
QUOTED_IDENTIFIER option 435

R
RAISERROR statement

CONTINUE_AFTER_RAISERROR option
348

syntax 258
read only

locking tables 239
READ statement

syntax 259
RECOVERY_TIME option 436
REFERENCES clause 31
RELEASE SAVEPOINT statement

syntax 261
remote data access 18, 24, 310

CIS_ROWSET_SIZE 348
REMOVE statement

syntax 261
replication

of procedures 22
RESIGNAL statement

syntax 263
restore operations

verifying backups 268
RESTORE statement

COMPATIBLE clause 268
improving speed 44
syntax 264
VERIFY clause 268
verifying backups 268

restoring databases
verifying backups 268

RESTRICT action 142
result sets

SELECT from 281
variable 113, 121, 254

RESUME statement
syntax 270

RETURN statement
syntax 271

RETURN_DATE_TIME_AS_STRING option
description 436

REVOKE statement
syntax 272

Index

 482 Sybase IQ

Rigndael encryption algorithm
CREATE DATABASE statement 73

ROLLBACK statement
syntax 275

ROLLBACK TO SAVEPOINT statement
syntax 276

ROLLBACK TRANSACTION statement
syntax 277
Transact-SQL 277

ROLLUP operator 284
SELECT statement 284

ROW_COUNT option 437
rows

deleting from cursors 164
inserting using cursors 256

S
sa_conn_properties

using 318
sa_dependent_views system procedure 40
sa_post_login_procedure 423
SAVE TRANSACTION statement

syntax 278
Transact-SQL 278

SAVEPOINT statement
syntax 278

savepoints
name 3
RELEASE SAVEPOINT statement 261
ROLLBACK TO SAVEPOINT statement 276
ROLLBACK TRANSACTION statement 277
SAVE TRANSACTION statement 278

SCALE option 438
scheduled events

WAITFOR statement 312
scheduling

WAITFOR 312
schema

creating 127
SCROLL cursors 154
security

auditing 342
minimum password length 413

SELECT * 31
SELECT INTO

returning results in a base table 280
returning results in a host variable 280
returning results in a temporary table 280

select list
DESCRIBE statement 166

SELECT statement 282
SELECT statement

FIRST 281
FROM clause syntax 193
syntax 279
TOP 281

separators
in WD index 99

servers
altering web services 25
creating 129

services
adding 130

SET CONNECTION statement
syntax 291

SET DESCRIPTOR statement
syntax 292

SET OPTION statement
dbisql syntax 332
syntax 293, 295
using 317

SET SQLCA statement
syntax 296

SET statement
syntax 287
Transact-SQL 289

SET TEMPORARY OPTION statement
dbisql syntax 332
syntax 293, 295
using 317

setting dbspaces online 11
SIGNAL statement

syntax 297
signatures

Java methods 125
SIGNIFICANTDIGITSFORDOUBLEEQUALIT

Y option 438
SORT_COLLATION

database option 439
sp_addmessage 109
sp_dropuser procedure 274
sp_iqcheckoptions system procedure 318
sp_login_environment procedure 401
sp_tsql_environment procedure 401
SQL

common syntax elements 3
statement indicators 5
syntax conventions 4

Index

Reference: Statements and Options 483

SQL descriptor area
inserting rows using cursors 256

SQL standards
compliance 440, 441

SQL statements
ALTER FUNCTION syntax 15
DELETE (positioned) syntax 164
MESSAGE syntax 243
OUTPUT syntax 248
PUT syntax 256
UPDATE (positioned) syntax 311
WAITFOR syntax 312

SQL variables
creating 148
dropping 180
SET VARIABLE statement 287

SQL_FLAGGER_ERROR_LEVEL option 440
SQL_FLAGGER_WARNING_LEVEL option 441
SQLCA

INCLUDE statement 208
SET SQLCA statement 296

SQLDA
allocating memory 5
deallocating 151
DESCRIBE statement 166
Execute statement 181
INCLUDE statement 208
inserting rows using cursors 256
setting 292
UPDATE (positioned) statement 311

standards
SQL 1992 compliance 440, 441
SQL 1999 compliance 440, 441
SQL 2003 compliance 440, 441

START DATABASE statement
syntax 298

START ENGINE statement
syntax 299

START JAVA statement
syntax 300

starting
database servers 299
databases 298
Java VM 300

statement indicators 5
statement labels 3, 198
statements

ALTER FUNCTION syntax 15
DELETE (positioned) syntax 164

MESSAGE syntax 243
OUTPUT syntax 248
PUT syntax 256
UPDATE (positioned) syntax 311
WAITFOR syntax 312

static cursors
declaring 154

STOP DATABASE statement
syntax 301

STOP ENGINE statement
syntax 302

STOP JAVA statement
syntax 302

stopping
Java VM 302

stopping databases 301
storage space

minimizing 412
stored procedures

creating 110
proxy 115
sa_dependent_views 40
selecting into result sets 281

STRING_RTRUNCATION option 442
strings

length for database options 295, 318
STRIP

LOAD TABLE keyword 232
STRIP option 229, 232
strong encryption

CREATE DATABASE statement 73
subqueries

disjunction of 284
SUBQUERY_CACHING_PREFERENCE option

442
SUBQUERY_FLATTENING_PERCENT option

444
SUBQUERY_FLATTENING_PREFERENCE

option 444
SUBQUERY_PLACEMENT_PREFERENCE

database option 445
SUPPRESS_TDS_DEBUGGING option

description 446
SWEEPER_THREADS_PERCENT option 447
SYNCHRONIZE JOIN INDEX statement

syntax 303
syntax

common elements 3
syntax conventions 4

Index

 484 Sybase IQ

syntax errors
joins 372

SYSTEM dbspace 196, 284
system procedures

sa_dependent_views 40
system tables

DUMMY 196
PRESERVE_SOURCE_FORMAT 427
source column 427
SYSFILE 269

SYSWEBSERVICE system table
adding servers 25

T
tab

WD index delimiter 99
table constraints 138
tables

altering 27
altering definition 31
creating 133
creating proxy 86
dropping 170
exporting data into files from 248
GLOBAL TEMPORARY 133
iq_dummy 196
loading 221
locking 239
renaming 33
temporary 145, 160
truncating 305

TDS
password encryption 211, 212

TDS_EMPTY_STRING_IS_NULL option
description 447

TEMP_EXTRACT_APPEND option 448
TEMP_EXTRACT_BINARY option 448
TEMP_EXTRACT_COLUMN_DELIMITER

option 449
TEMP_EXTRACT_DIRECTORY option 450
TEMP_EXTRACT_ESCAPE_QUOTES option

451
TEMP_EXTRACT_NAME1 option 452
TEMP_EXTRACT_NAME2 option 452
TEMP_EXTRACT_NAME3 option 452
TEMP_EXTRACT_NAME4 option 452
TEMP_EXTRACT_NAME5 option 452
TEMP_EXTRACT_NAME6 option 452
TEMP_EXTRACT_NAME7 option 452

TEMP_EXTRACT_NAME8 option 452
TEMP_EXTRACT_NAMEn option 452
TEMP_EXTRACT_NULL_AS_EMPTY option

453
TEMP_EXTRACT_NULL_AS_ZERO option 454
TEMP_EXTRACT_QUOTE option 455
TEMP_EXTRACT_QUOTES option 456
TEMP_EXTRACT_QUOTES_ALL option 456
TEMP_EXTRACT_ROW_DELIMITER option

457
TEMP_EXTRACT_SIZE1 option 458
TEMP_EXTRACT_SIZE2 option 458
TEMP_EXTRACT_SIZE3 option 458
TEMP_EXTRACT_SIZE4 option 458
TEMP_EXTRACT_SIZE5 option 458
TEMP_EXTRACT_SIZE6 option 458
TEMP_EXTRACT_SIZE7 option 458
TEMP_EXTRACT_SIZE8 option 458
TEMP_EXTRACT_SIZEn options 458
TEMP_EXTRACT_SWAP option 459
TEMP_RESERVED_DBSPACE_MB

database option 460
TEMP_SPACE_LIMIT_CHECK

database option 460
temporary dbspaces

creating 77
temporary files (Catalog)

TEMP_SPACE_LIMIT_CHECK 460
temporary options 317
temporary space

reserved for IQ store 460
temporary tables 145

creating 133
declaring 160
populating 283

text search
FROM contains-expression 194

TEXT_DELETE_METHOD option 461
TIME_FORMAT option 462
TIMESTAMP_FORMAT option 462
TOP

specify number of rows 281
TOP_NSORT_CUTOFF_PAGES option 464
trailing blanks

trimming 229, 232
Transact-SQL

BEGIN TRANSACTION statement 50
COMMIT TRANSACTION 60
compatibility options 329

Index

Reference: Statements and Options 485

CREATE MESSAGE 109
CREATE PROCEDURE statement 116
CREATE SCHEMA statement 127
error handling in 258
executing stored procedures 183
procedures 116
ROLLBACK TRANSACTION statement 277
SAVE TRANSACTION statement 278
SET statement 289

transaction log
TRUNCATE TABLE statement 305

transaction management 60
BEGIN TRANSACTION statement 50
in Transact-SQL 60

transactions
committing 60
ROLLBACK statement 275
ROLLBACK TO SAVEPOINT statement 276
ROLLBACK TRANSACTION statement 277
SAVE TRANSACTION statement 278
SAVEPOINT statement 278

TRIGGER EVENT
syntax 304

TRIM_PARTIAL_MBC option 464
trimming trailing blanks 229, 232
TRUNCATE TABLE statement

syntax 305
TSQL_VARIABLES option 465

U
UNION operation 306
unique

constraint 138, 139
unique indexes 99
UPDATE (positioned) statement

SQL syntax 311
upgrading databases 7
user IDs

changing passwords 203
revoking 272

USER_RESOURCE_RESERVATION option 465
user-defined data types

altering 13
CREATE DOMAIN statement 79
dropping 170

user-defined functions
RETURN statement 271

users
altering 36

creating 146
dropping 179, 272

USING
LOAD TABLE keyword 228

USING FILE clause
LOAD TABLE statement 228

Utilities statement 218

V

VARCHAR data type
converting to compressed format 356

variable result sets
from procedures 113, 121, 254

variables
binary large object conversion 372
BLOB conversion 372
creating 148
declaring 153
dropping 180
LONG BINARY conversion 372
select into 283
SET VARIABLE statement 287

VERIFY_PASSWORD_FUNCTION option 466
verifying backups 268
views

about 149
altered tables in 31
altering 38, 40
creating 149
deleting 170
dependencies 40
dropping 170
indexes 100
invalid 40
recompiling invalid 40

W

WAIT_FOR_COMMIT option 468
WAITFOR statement

SQL syntax 312
WASH_AREA_BUFFERS_PERCENT database

option 467
WD index

CHAR columns 100
delimiters 99

WD_DELETE_METHOD option 468

Index

 486 Sybase IQ

WHENEVER statement
syntax 314

WHERE clause
SELECT statement 283

WHILE statement
syntax 242
Transact-SQL 315

wide inserts 181
WITH HOLD clause

OPEN statement 246
WORD SKIP option

INSERT statement 215
LOAD TABLE statement 234

Index

Reference: Statements and Options 487

Index

 488 Sybase IQ

	Reference: Statements and Options
	Contents
	Audience
	SQL Statements
	Common Elements in SQL Syntax
	Syntax Conventions
	Statement Applicability Indicators
	ALLOCATE DESCRIPTOR Statement [ESQL]
	ALTER DATABASE Statement
	ALTER DBSPACE Statement
	ALTER DOMAIN Statement
	ALTER EVENT Statement
	ALTER FUNCTION Statement
	ALTER INDEX Statement
	ALTER LOGICAL SERVER Statement
	ALTER LOGIN POLICY Statement
	ALTER LS POLICY Statement
	ALTER MULTIPLEX RENAME Statement
	ALTER MULTIPLEX SERVER Statement
	ALTER PROCEDURE Statement
	ALTER SERVER Statement
	ALTER SERVICE Statement
	ALTER TABLE Statement
	ALTER TEXT CONFIGURATION Statement
	ALTER TEXT INDEX Statement
	ALTER USER Statement
	ALTER VIEW Statement
	Identifying and Fixing Invalid Dependent Views

	BACKUP Statement
	BEGIN … END Statement
	BEGIN PARALLEL IQ … END PARALLEL IQ Statement
	BEGIN TRANSACTION Statement [T-SQL]
	CALL Statement
	CASE Statement
	CHECKPOINT Statement
	CLEAR Statement [Interactive SQL]
	CLOSE Statement [ESQL] [SP]
	COMMENT Statement
	COMMENT ON LOGICAL SERVER Statement
	COMMIT Statement
	CONFIGURE Statement [Interactive SQL]
	CONNECT Statement [ESQL] [Interactive SQL]
	CREATE DATABASE Statement
	CREATE DBSPACE Statement
	CREATE DOMAIN Statement
	CREATE EVENT Statement
	CREATE EXISTING TABLE Statement
	CREATE EXTERNLOGIN Statement
	CREATE FUNCTION Statement
	CREATE INDEX Statement
	CREATE JOIN INDEX Statement
	CREATE LOGICAL SERVER Statement
	CREATE LOGIN POLICY Statement
	CREATE MESSAGE Statement [T-SQL]
	CREATE MULTIPLEX SERVER Statement
	CREATE PROCEDURE Statement
	CREATE PROCEDURE Statement [T-SQL]
	CREATE PROCEDURE Statement (External Procedures)
	CREATE SCHEMA Statement
	CREATE SERVER Statement
	CREATE SERVICE Statement
	CREATE TABLE Statement
	CREATE TEXT CONFIGURATION Statement
	CREATE TEXT INDEX Statement
	CREATE USER Statement
	CREATE VARIABLE Statement
	CREATE VIEW Statement
	DEALLOCATE DESCRIPTOR Statement [ESQL]
	Declaration Section [ESQL]
	DECLARE Statement
	DECLARE CURSOR Statement [ESQL] [SP]
	DECLARE CURSOR Statement [T-SQL]
	DECLARE LOCAL TEMPORARY TABLE Statement
	DELETE Statement
	DELETE (positioned) Statement [ESQL] [SP]
	DESCRIBE Statement [ESQL]
	DISCONNECT Statement [Interactive SQL]
	DROP Statement
	DROP CONNECTION Statement
	DROP DATABASE Statement
	DROP EXTERNLOGIN Statement
	DROP LOGIN POLICY Statement
	DROP LOGICAL SERVER Statement
	DROP MULTIPLEX SERVER Statement
	DROP SERVER Statement
	DROP SERVICE Statement
	DROP STATEMENT Statement [ESQL]
	DROP TEXT CONFIGURATION Statement
	DROP TEXT INDEX Statement
	DROP USER Statement
	DROP VARIABLE Statement
	EXECUTE Statement [ESQL]
	EXECUTE Statement [T-SQL]
	EXECUTE IMMEDIATE Statement [ESQL] [SP]
	EXIT Statement [Interactive SQL]
	FETCH Statement [ESQL] [SP]
	FOR Statement
	FORWARD TO Statement
	FROM Clause
	GET DESCRIPTOR Statement [ESQL]
	GOTO Statement [T-SQL]
	GRANT Statement
	IF Statement
	IF Statement [T-SQL]
	INCLUDE Statement [ESQL]
	INSERT Statement
	INSTALL JAVA Statement
	IQ UTILITIES Statement
	LEAVE Statement
	LOAD TABLE Statement
	Storage Sizes

	LOCK TABLE Statement
	LOOP Statement
	MESSAGE Statement
	OPEN Statement [ESQL] [SP]
	OUTPUT Statement [Interactive SQL]
	PARAMETERS Statement [Interactive SQL]
	PREPARE Statement [ESQL]
	PRINT Statement [T-SQL]
	PUT Statement [ESQL]
	RAISERROR Statement [T-SQL]
	READ Statement [Interactive SQL]
	RELEASE SAVEPOINT Statement
	REMOVE Statement
	RESIGNAL Statement
	RESTORE Statement
	RESUME Statement
	RETURN Statement
	REVOKE Statement
	ROLLBACK Statement
	ROLLBACK TO SAVEPOINT Statement
	ROLLBACK TRANSACTION Statement [T-SQL]
	SAVEPOINT Statement
	SAVE TRANSACTION Statement [T-SQL]
	SELECT Statement
	SET Statement [ESQL]
	SET Statement [T-SQL]
	SET CONNECTION Statement [ESQL] [Interactive SQL]
	SET DESCRIPTOR Statement [ESQL]
	SET OPTION Statement
	SET OPTION Statement [Interactive SQL]
	SET SQLCA Statement [ESQL]
	SIGNAL Statement
	START DATABASE Statement [Interactive SQL]
	START ENGINE Statement [Interactive SQL]
	START JAVA Statement
	STOP DATABASE Statement [Interactive SQL]
	STOP ENGINE Statement [Interactive SQL]
	STOP JAVA Statement
	SYNCHRONIZE JOIN INDEX Statement
	TRIGGER EVENT Statement
	TRUNCATE TABLE Statement
	UNION Operation
	UPDATE Statement
	UPDATE (positioned) Statement [ESQL] [SP]
	WAITFOR Statement
	WHENEVER Statement [ESQL]
	WHILE Statement [T-SQL]

	Database Options
	Introduction to Database Options
	Current Option Settings
	Scope and Duration of Database Options
	Temporary Options
	Public Options
	Delete an Option Setting
	Initial Option Settings
	Deprecated Database Options

	General Database Options
	Data Extraction Options

	Transact-SQL Compatibility Options
	Transact-SQL Option Settings for Adaptive Server Enterprise Compatibility

	Interactive SQL Options
	Alphabetical List of Options
	AGGREGATION_PREFERENCE Option
	ALLOW_NULLS_BY_DEFAULT Option [TSQL]
	ANSI_CLOSE_CURSORS_ON_ROLLBACK Option [TSQL]
	ANSI_PERMISSIONS Option [TSQL]
	ANSINULL Option [TSQL]
	ANSI_SUBSTRING Option [TSQL]
	ANSI_UPDATE_CONSTRAINTS Option
	ALLOW_READ_CLIENT_FILE Option
	APPEND_LOAD Option
	ASE_BINARY_DISPLAY Option
	ASE_FUNCTION_BEHAVIOR Option
	AUDITING Option [database]
	BIT_VECTOR_PINNABLE_CACHE_PERCENT Option
	BLOCKING Option
	BT_PREFETCH_MAX_MISS Option
	BT_PREFETCH_SIZE Option
	BTREE_PAGE_SPLIT_PAD_PERCENT Option
	CACHE_PARTITIONS Option
	CHAINED Option [TSQL]
	CHECKPOINT_TIME Option
	CIS_ROWSET_SIZE Option
	CLOSE_ON_ENDTRANS Option [TSQL]
	CONTINUE_AFTER_RAISERROR Option [TSQL]
	CONVERSION_ERROR Option [TSQL]
	CONVERSION_MODE Option
	Restrict Implicit Binary Conversion Mode for LOAD TABLE
	Restrict Implicit Binary Conversion Mode for INSERT
	Restrict Implicit Binary Conversion Mode for UPDATE
	Restrict Implicit Binary Conversion Mode for Positioned INSERT and Positioned UPDATE via Updatable Cursor
	Restrict Implicit Binary Conversion Mode for Queries

	CONVERT_VARCHAR_TO_1242 Option
	COOPERATIVE_COMMIT_TIMEOUT Option
	COOPERATIVE_COMMITS Option
	CURSOR_WINDOW_ROWS Option
	DATE_FIRST_DAY_OF_WEEK Option
	DATE_FORMAT Option
	DATE_ORDER Option
	DBCC_LOG_PROGRESS Option
	DBCC_PINNABLE_CACHE_PERCENT Option
	DEBUG_MESSAGES Option
	DEDICATED_TASK Option
	DEFAULT_DBSPACE Option
	DEFAULT_DISK_STRIPING Option
	DEFAULT_HAVING_SELECTIVITY_PPM Option
	DEFAULT_ISQL_ENCODING Option [Interactive SQL]
	DEFAULT_KB_PER_STRIPE Option
	DEFAULT_LIKE_MATCH_SELECTIVITY_PPM Option
	DEFAULT_LIKE_RANGE_SELECTIVITY_PPM Option
	DELAYED_COMMIT_TIMEOUT Option
	DELAYED_COMMITS Option
	DISABLE_RI_CHECK Option
	DIVIDE_BY_ZERO_ERROR Option [TSQL]
	DQP_ENABLED Option
	EARLY_PREDICATE_EXECUTION Option
	ENABLE_LOB_VARIABLES Option
	EXTENDED_JOIN_SYNTAX Option
	FORCE_DROP Option
	FORCE_NO_SCROLL_CURSORS Option
	FORCE_UPDATABLE_CURSORS Option
	FP_LOOKUP_SIZE Option
	FP_LOOKUP_SIZE_PPM Option
	FP_PREDICATE_WORKUNIT_PAGES Option
	FPL_EXPRESSION_MEMORY_KB Option
	GARRAY_FILL_FACTOR_PERCENT Option
	GARRAY_INSERT_PREFETCH_SIZE Option
	GARRAY_PAGE_SPLIT_PAD_PERCENT Option
	GARRAY_RO_PREFETCH_SIZE Option
	HASH_PINNABLE_CACHE_PERCENT Option
	HASH_THRASHING_PERCENT Option
	HG_DELETE_METHOD Option
	HG_SEARCH_RANGE Option
	HTTP_SESSION_TIMEOUT Option
	IDENTITY_ENFORCE_UNIQUENESS Option
	IDENTITY_INSERT Option
	INDEX_ADVISOR Option
	INDEX_ADVISOR_MAX_ROWS Option
	INDEX_PREFERENCE Option
	INFER_SUBQUERY_PREDICATES Option
	IN_SUBQUERY_PREFERENCE Option
	IQGOVERN_MAX_PRIORITY Option
	IQGOVERN_PRIORITY Option
	IQGOVERN_PRIORITY_TIME Option
	ISOLATION_LEVEL Option
	JAVA_LOCATION Option
	JAVA_VM_OPTIONS Option
	JOIN_EXPANSION_FACTOR Option
	JOIN_OPTIMIZATION Option
	JOIN_PREFERENCE Option
	JOIN_SIMPLIFICATION_THRESHOLD Option
	LARGE_DOUBLES_ACCUMULATOR Option
	LF_BITMAP_CACHE_KB Option
	LOAD_ZEROLENGTH_ASNULL Option
	LOCKED Option
	LOG_CONNECT Option
	LOG_CURSOR_OPERATIONS Option
	LOGIN_MODE Option
	LOGIN_PROCEDURE Option
	MAIN_RESERVED_DBSPACE_MB Option
	MAX_CARTESIAN_RESULT Option
	MAX_CLIENT_NUMERIC_PRECISION Option
	MAX_CLIENT_NUMERIC_SCALE Option
	MAX_CONNECTIONS Option
	MAX_CUBE_RESULT Option
	MAX_CURSOR_COUNT Option
	MAX_DAYS_SINCE_LOGIN Option
	MAX_FAILED_LOGIN_ATTEMPTS Option
	MAX_HASH_ROWS Option
	MAX_IQ_THREADS_PER_CONNECTION Option
	MAX_IQ_THREADS_PER_TEAM Option
	MAX_JOIN_ENUMERATION Option
	MAX_PREFIX_PER_CONTAINS_PHRASE Option
	MAX_QUERY_PARALLELISM Option
	MAX_QUERY_TIME Option
	MAX_STATEMENT_COUNT Option
	MAX_TEMP_SPACE_PER_CONNECTION Option
	MAX_WARNINGS Option
	MINIMIZE_STORAGE Option
	MIN_PASSWORD_LENGTH Option
	MONITOR_OUTPUT_DIRECTORY Option
	MPX_AUTOEXCLUDE_TIMEOUT Option
	MPX_HEARTBEAT_FREQUENCY Option
	MPX_IDLE_CONNECTION_TIMEOUT Option
	MPX_MAX_CONNECTION_POOL_SIZE Option
	MPX_MAX_UNUSED_POOL_SIZE Option
	NEAREST_CENTURY option [TSQL]
	NOEXEC Option
	NON_ANSI_NULL_VARCHAR Option
	NON_KEYWORDS Option [TSQL]
	NOTIFY_MODULUS Option
	ODBC_DISTINGUISH_CHAR_AND_VARCHAR Option
	ON_CHARSET_CONVERSION_FAILURE Option
	ON_ERROR Option [Interactive SQL]
	ON_TSQL_ERROR Option [TSQL]
	OS_FILE_CACHE_BUFFERING Option
	OS_FILE_CACHE_BUFFERING_TEMPDB Option
	PASSWORD_EXPIRY_ON_NEXT_LOGIN Option
	PASSWORD_GRACE_TIME Option
	PASSWORD_LIFE_TIME Option
	POST_LOGIN_PROCEDURE Option
	PRECISION Option
	PREFETCH Option
	PREFETCH_BUFFER_LIMIT Option
	PREFETCH_BUFFER_PERCENT Option
	PREFETCH_GARRAY_PERCENT Option
	PREFETCH_SORT_PERCENT Option
	PRESERVE_SOURCE_FORMAT Option [database]
	QUERY_DETAIL Option
	QUERY_NAME Option
	QUERY_PLAN Option
	QUERY_PLAN_AFTER_RUN Option
	QUERY_PLAN_AS_HTML Option
	QUERY_PLAN_AS_HTML_DIRECTORY Option
	QUERY_PLAN_TEXT_ACCESS Option
	QUERY_PLAN_TEXT_CACHING Option
	QUERY_ROWS_RETURNED_LIMIT Option
	QUERY_TEMP_SPACE_LIMIT Option
	QUERY_TIMING Option
	QUOTED_IDENTIFIER Option [TSQL]
	RECOVERY_TIME Option
	RETURN_DATE_TIME_AS_STRING Option
	ROW_COUNT Option
	SCALE Option
	SIGNIFICANTDIGITSFORDOUBLEEQUALITY Option
	SORT_COLLATION Option
	SORT_PINNABLE_CACHE_PERCENT Option
	SQL_FLAGGER_ERROR_LEVEL Option [TSQL]
	SQL_FLAGGER_WARNING_LEVEL Option [TSQL]
	STRING_RTRUNCATION Option [TSQL]
	SUBQUERY_CACHING_PREFERENCE Option
	SUBQUERY_FLATTENING_PERCENT Option
	SUBQUERY_FLATTENING_PREFERENCE Option
	SUBQUERY_PLACEMENT_PREFERENCE Option
	SUPPRESS_TDS_DEBUGGING Option
	SWEEPER_THREADS_PERCENT option
	TDS_EMPTY_STRING_IS_NULL Option [database]
	TEMP_EXTRACT_APPEND Option
	TEMP_EXTRACT_BINARY Option
	TEMP_EXTRACT_COLUMN_DELIMITER Option
	TEMP_EXTRACT_DIRECTORY Option
	TEMP_EXTRACT_ESCAPE_QUOTES Option
	TEMP_EXTRACT_NAMEn Options
	TEMP_EXTRACT_NULL_AS_EMPTY Option
	TEMP_EXTRACT_NULL_AS_ZERO Option
	TEMP_EXTRACT_QUOTE Option
	TEMP_EXTRACT_QUOTES Option
	TEMP_EXTRACT_QUOTES_ALL Option
	TEMP_EXTRACT_ROW_DELIMITER Option
	TEMP_EXTRACT_SIZEn Options
	TEMP_EXTRACT_SWAP Option
	TEMP_RESERVED_DBSPACE_MB Option
	TEMP_SPACE_LIMIT_CHECK Option
	TEXT_DELETE_METHOD Option
	TIME_FORMAT Option
	TIMESTAMP_FORMAT Option
	TOP_NSORT_CUTOFF_PAGES Option
	TRIM_PARTIAL_MBC Option
	TSQL_VARIABLES Option [TSQL]
	USER_RESOURCE_RESERVATION Option
	VERIFY_PASSWORD_FUNCTION Option
	WASH_AREA_BUFFERS_PERCENT Option
	WAIT_FOR_COMMIT Option
	WD_DELETE_METHOD Option

	Index

