SYBASE

Company

Reference: Statements and Options

Sybase IQ 15.3

DOCUMENT ID: DC00801-01-1530-01

LAST REVISED: May 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

AUAIBNCE ... 1
SOQL StatemMEeNTS ..o 3
Common Elements in SQL Syntaxccccceeviiieeeeiiennen. 3
Syntax CoONVENLIONSuuuiiiiieeeeeeeeeiee e 4
Statement Applicability Indicatorsccoeevveeviiinnnnnn. 5
ALLOCATE DESCRIPTOR Statement [ESQL] 5
ALTER DATABASE Statementccooevvevvviiiineeeeneennnnns 7
ALTER DBSPACE Statement..........ccoovvviiiiiiniviiiiieeeeeens 9
ALTER DOMAIN Statementcccceeeiieiiiiiieeeiiiineeeees 13
ALTER EVENT Statementccoovvviiinieeiieiiiineeeeeeees 14
ALTER FUNCTION Statementeevveiiiiiniieeeeeeennnn. 15
ALTER INDEX Statementcoovvvvviiineeeiieiiiinieeeeeees 17
ALTER LOGICAL SERVER Statement..........cccccceeeeeee. 19
ALTER LOGIN POLICY Statement............cccceeeveeeeeeennnns 19
ALTER LS POLICY Statementccoouvviiiriiiiiinnnnnn. 21
ALTER MULTIPLEX RENAME Statement.................... 21
ALTER MULTIPLEX SERVER Statement..................... 22
ALTER PROCEDURE Statement.........cccccoovviviiiiinnenens 22
ALTER SERVER Statement...........ccooooviiiiiiiiiiiiiiiieee, 23
ALTER SERVICE Statementuvvviiiiiiiiieeeeeeeeeeee, 25
ALTER TABLE Statement...........cccoooviiiiiiiiiiiicciceis 27
ALTER TEXT CONFIGURATION Statement................ 35
ALTER TEXT INDEX Statement............ccoovevvvviiieeeenenns 36
ALTER USER Statement..........ccccoovviiiiiiiiiiiiinciieeeis 36
ALTER VIEW Statementccooviiiiiiiiiieiiineeeeiieeeee 38
Identifying and Fixing Invalid Dependent Views . .40
BACKUP Statementooviiiiiiiiiieiei e, 41
BEGIN ... END Statement...........cccoovvviiiiiiiiiiiineciieeenn 47
BEGIN PARALLEL IQ ... END PARALLEL 1Q
StAEMENT ... 49
BEGIN TRANSACTION Statement [T-SQL]................. 50

Reference: Statements and Options

Contents

CALL Statementcooeeviiiiiiiieieee e 53
CASE Statementoviviiiiiiiiiie e 54
CHECKPOINT Statementcccouueiieiiiiiiiieeieeieeeeeeeeen, 56
CLEAR Statement [Interactive SQL].........ccccvvvveieereennn. 56
CLOSE Statement [ESQL] [SP]uvvvvviiiiiiiiiiiiiiiiiiiiines 57
COMMENT Statement..........ccooeeviviiiiiniiiiine e, 58
COMMENT ON LOGICAL SERVER Statement........... 60
COMMIT Statementcoooeviiiiiiieeieee e 60
CONFIGURE Statement [Interactive SQL]................... 62
CONNECT Statement [ESQL] [Interactive SQL].......... 63
CREATE DATABASE Statementccoooevviiiiiiiiineeeennn. 66
CREATE DBSPACE Statement............cooovvviiviiiiinnnnnnnn. 76
CREATE DOMAIN Statement..........coooovvuiireeiiiineeeeennnn. 79
CREATE EVENT Statement..........ccoooovviiiiiiineeieiiiie, 81
CREATE EXISTING TABLE Statement........................ 86
CREATE EXTERNLOGIN Statement............cccceeeeeennnn. 89
CREATE FUNCTION Statement...........ccooeeveeiiiiiieeneenes 90
CREATE INDEX Statement..........cccooovvviiiiinneiiiiiiie, 97
CREATE JOIN INDEX Statement............cccceeveeeeinnnnne. 104
CREATE LOGICAL SERVER Statement.................... 107
CREATE LOGIN POLICY Statement..........ccoccevvvnnnnn.. 107
CREATE MESSAGE Statement [T-SQL]ccceveeens 109
CREATE MULTIPLEX SERVER Statement................ 110
CREATE PROCEDURE Statement............ccccceeeeeenenn. 110
CREATE PROCEDURE Statement [T-SQL]............... 116
CREATE PROCEDURE Statement (External
Procedures) ... 118
CREATE SCHEMA Statementcccevivieeeeiiiinneee. 127
CREATE SERVER Statementcoocoiiiiiiiiiiiiieennnn. 129
CREATE SERVICE Statement...........cccooveeviiiiiiinneeeee. 130
CREATE TABLE Statementcoocoviiiieiiineieiieeeennn, 133
CREATE TEXT CONFIGURATION Statement........... 146
CREATE TEXT INDEX Statement............ccccoeeevevnnnnne. 146
CREATE USER Statement............cccovvvvviiiiiiinieeeeeinnnnn, 146
CREATE VARIABLE Statement............ccccceeveevvviiinnnnne. 148

Sybase 1Q

Contents

CREATE VIEW Statement..........ccccoveiiiiiiiiiicieee, 149
DEALLOCATE DESCRIPTOR Statement [ESQL]...... 151
Declaration Section [ESQL]cccoovviiiiiiiiiiiiiiiiieeeee 152
DECLARE Statement............ccccoveiiiiiiiiiiieeeeeeee 153
DECLARE CURSOR Statement [ESQL] [SP] 154
DECLARE CURSOR Statement [T-SQL]uvuee... 159
DECLARE LOCAL TEMPORARY TABLE Statement. 160
DELETE Statementccovveiiiiiiiciieeeeeeeeeea 162
DELETE (positioned) Statement [ESQL] [SP]............ 164
DESCRIBE Statement [ESQL]oooevvvviieeriiiieeeeeeennn, 166
DISCONNECT Statement [Interactive SQL]............... 169
DROP Statement.........oooeveiiiiiieeren e 170
DROP CONNECTION Statement...........c.ccoeeevveeniennnnes 172
DROP DATABASE Statement..........cccceeeveveeiiineeinnes 173
DROP EXTERNLOGIN Statement............ccccoeevvneeennnes 174
DROP LOGIN POLICY Statement.............ccceeeeevnnnnnns 175
DROP LOGICAL SERVER Statement...........cccccceune.. 176
DROP MULTIPLEX SERVER Statement.................... 176
DROP SERVER Statement..........ccoooeiiieiiiiiiiiiieeens 176
DROP SERVICE Statement..........ccocccevevieiiiieiineennns 177
DROP STATEMENT Statement [ESQL]........cccceuneeeen. 178
DROP TEXT CONFIGURATION Statement............... 179
DROP TEXT INDEX Statement.........cccooeeevveviineeinnnnnns 179
DROP USER Statement..........cccooiiiiiiiiinincnee 179
DROP VARIABLE Statement..........cccccoeeiiiiiiiiiiiieennns 180
EXECUTE Statement [ESQL]cccvveeiiiieeiiieeiiiiinnn, 181
EXECUTE Statement [T-SQL]cccovviiiiiiiiiiiiieeeee 183
EXECUTE IMMEDIATE Statement [ESQL] [SP]........ 184
EXIT Statement [Interactive SQL]........oovvviiiiiiiiiiiennnn. 186
FETCH Statement [ESQL] [SP]....ooveevviiiiiiieeeeeeeeiin, 187
FOR Statement ..o 190
FORWARD TO Statementc.cccoeeeiiiiiieeiiieeiieeiies 192
FROM CIAUSEciiiieeiiieeeee et 193
GET DESCRIPTOR Statement [ESQL]ccoccevvvnnenn. 197
GOTO Statement [T-SQL]coevviiiiiiiiiiiiiiieiiiiiiiiiiiiines 198

Reference: Statements and Options %

Contents

GRANT Statementcoviieiiiiee e, 199
IF Statement ... 205
IF Statement [T-SQL]ooiiiiiiiiiiiiii e 206
INCLUDE Statement [ESQL]coovvvviviieeeiiiiiiieeeee 208
INSERT Statementcoevieviiiiiiiiieeeeeee, 209
INSTALL JAVA Statement.......cccccoveevieiiiiiiiiieieeiieeenne 216
IQ UTILITIES Statementccoueeiieiiiiiiiiiiieeeeiieeee 218
LEAVE Statement......ccoiiiiiiiiee e 220
LOAD TABLE Statement........cceveiiviiiiiiiiecei e, 221

StOrage SiZESvvieviiiiiiie e 239
LOCK TABLE Statement........coooveeiiiiiiiinciceeeeeeeen, 239
LOOP Statementcooviiviiiiiiiiee e, 242
MESSAGE Statementccccovvvvveiiiiiiiiieiceeee e, 243
OPEN Statement [ESQL] [SP] .ccvvoviveviiiiiiiieeeeeiieeee 246
OUTPUT Statement [Interactive SQL]........c.ceeevevennnn.. 248
PARAMETERS Statement [Interactive SQL].............. 252
PREPARE Statement [ESQL]ccoovviiiiiiiiiiiiieeeeeeee, 253
PRINT Statement [T-SQL]ccovveiiiiiiiiieeeeeeeee e, 255
PUT Statement [ESQL]ccoovvviiiiiiiiiiiiiiiieeeeeeeeeeeee 256
RAISERROR Statement [T-SQL]cccccoevevviiiiiieeennnnnn. 258
READ Statement [Interactive SQL]........cccoovviiieeiinnnne. 259
RELEASE SAVEPOINT Statement..........ccccceeevvenennns 261
REMOVE Statementccooeviiiiiiiiieieeeee e 261
RESIGNAL Statementccocoviiiieiiiiieeeeeeee, 263
RESTORE Statementooeviiiiiiiiiieeeeeeee e 264
RESUME Statementcoocoviiiiiiiiieceeeeeeen, 270
RETURN Statementcocveviiiiiiiiieeceeeeeee, 271
REVOKE Statement.........coocoviiiiiiiiie, 272
ROLLBACK Statement......cocuveiiiiiiiiiiiiieeeeeeeee e, 275
ROLLBACK TO SAVEPOINT Statement.................... 276
ROLLBACK TRANSACTION Statement [T-SQL]........ 277
SAVEPOINT Statementc.coeeeviiiiiiiiiiieieeeeeeee 278
SAVE TRANSACTION Statement [T-SQL]................. 278
SELECT Statement.....cooooviiiiiiiiieeeeee e, 279
SET Statement [ESQL]cooooieiiiiiiiiiiiieee 287

Vi

Sybase 1Q

Contents

SET Statement [T-SQL] ...covvviiiiiiiiiiiieee e 289
SET CONNECTION Statement [ESQL] [Interactive
SO e 291
SET DESCRIPTOR Statement [ESQL]ccceeeeeeeee. 292
SET OPTION Statementcoovviveiiiiiiieieeiiiiie e 293
SET OPTION Statement [Interactive SQL] 295
SET SQLCA Statement [ESQL]........ccooeiiiiiiiiiiiiinnnne. 296
SIGNAL Statementccoeuoiiiiiiiiiieeei e 297
START DATABASE Statement [Interactive SQL]........ 298
START ENGINE Statement [Interactive SQL]............. 299
START JAVA Statementccoouvovieiiiiiiineeeeiiiee e, 300
STOP DATABASE Statement [Interactive SQL].......... 301
STOP ENGINE Statement [Interactive SQL].............. 302
STOP JAVA Statementc.oeeeieeiiiiieeicieeeei e 302
SYNCHRONIZE JOIN INDEX Statement................... 303
TRIGGER EVENT Statement...........coooovvviiiiiivnnnnnee, 304
TRUNCATE TABLE Statement..........cccccvvvvvvvvvvinnnnnnnn, 305
UNION Operationccevveevuuiiiieeeeeeeeiiiiie s e e eeeeeeannnns 306
UPDATE Statementcooiiiiiiiiiieee e 307
UPDATE (positioned) Statement [ESQL] [SP]............ 311
WAITFOR Statement ..., 312
WHENEVER Statement [ESQL]..........coooviiiiiiiinnnnee, 314
WHILE Statement [T-SQL]ccoooeiiiiiiieieeeeeeeeeeeeeeeeeen 315
Database OPtioNSuevvviiiiiiiiiiiiii e 317
Introduction to Database Optionsccccceeiiiiiinnns 317
Current Option SettingsSccovvvvvviiiiieeeeeeeeeeiinns 318
Scope and Duration of Database Options......... 319
Temporary OptioNSccooeeevvveiiiiieie e 320
Public OpLioNSoooviiiiieieie e 320
Delete an Option Settingvvveieeiiieeeeeeeeeeee, 320
Initial Option Settingscvvveevirieeeeeieiiiieeeeeeeeee, 321
Deprecated Database Options.............cccceeee... 322
General Database OptioNScevvvveeeeeeeeieeeiieieeeenne. 322
Data Extraction OptionScccoevvvvviiiiiieeeereennns 329
Transact-SQL Compatibility Optionscccceeeeeeennn. 329

Reference: Statements and Options vii

Contents

Transact-SQL Option Settings for Adaptive

Server Enterprise Compatibility 331
Interactive SQL OPLiONSevvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 332
Alphabetical List of OptionScccocvvviiiiiiiiiiiiiieeeeen, 333

AGGREGATION_PREFERENCE Option.......... 334
ALLOW_NULLS_BY_DEFAULT Option [TSQL]

... 335
ANSI|_CLOSE_CURSORS_ON_ROLLBACK

Option [TSQL] ..cvveeeiiiiiiiieieee e 335
ANSI_PERMISSIONS Option [TSQL]............... 336
ANSINULL Option [TSQL]ceveverereeereveeenenns 336
ANSI_SUBSTRING Option [TSQL]oeevvvvnnnnn. 337
ANSI_UPDATE_CONSTRAINTS Option........... 338
ALLOW_READ_CLIENT_FILE Option.............. 339
APPEND_LOAD OpPtioNccoevvveeeiiiiiiiieee e 339
ASE_BINARY_DISPLAY Optionccceeeeeeneee. 340
ASE_FUNCTION_BEHAVIOR Option............... 341
AUDITING Option [database]ccccceeeevevnnnnn. 342
BIT_VECTOR_PINNABLE_CACHE_PERCEN

T OPLON .o 342
BLOCKING Optionccoeeeeeeiiiiiiieiciiiieee 343
BT_PREFETCH_MAX_MISS Option................. 343
BT_PREFETCH_SIZE Optioncccocevvvvnieennns 344
BTREE_PAGE_SPLIT_PAD_PERCENT Option

... 345
CACHE_PARTITIONS Optionccccocuvvvvvvvnnnnen. 345
CHAINED Option [TSQL] ...cvveveveeeeeecererenenenae, 347
CHECKPOINT_TIME Optionccoovvvvvveiiiinnnnns 347
CIS_ROWSET_SIZE Optionc.ccccevevreennnn. 348
CLOSE_ON_ENDTRANS Option [TSQL]......... 348
CONTINUE_AFTER_RAISERROR Option

[TSQL] tettiiiiiiiiiiiiiiiiiiiiieseieeeeaieieeeeeebeeeeeeeennnenes 348
CONVERSION_ERROR Option [TSQL]............. 349
CONVERSION_MODE Optioncccoveeeeeiieennnns 350
CONVERT_VARCHAR_TO_1242 Option.......... 356

viii Sybase 1Q

Contents

COOPERATIVE_COMMIT_TIMEOUT Option ...356

COOPERATIVE_COMMITS OptioNncccc.. 357
CURSOR_WINDOW_ROWS Option 357
DATE_FIRST_DAY_OF_WEEK Option............. 358
DATE_FORMAT OPtiONuuuiiiiiiiiiiiiiiiiiiiiinnnes 359
DATE_ORDER OPtiONccvvviiiiiiiieieeeeeeaeeeiiee 361
DBCC_LOG_PROGRESS Option..........cc..cee... 361
DBCC_PINNABLE_CACHE_PERCENT Option

... 362
DEBUG_MESSAGES Option...........ccevvvvvvnnnnnnee 363
DEDICATED_TASK Optioncooovvieiiieiiieeeees 363
DEFAULT_DBSPACE Optioncuvvvvveeeeennnns 364
DEFAULT_DISK_STRIPING Option.................. 365
DEFAULT_HAVING_SELECTIVITY_PPM

OPLION . 366
DEFAULT_ISQL_ENCODING Option

[Interactive SQL]ccooeeiiiiiiiiiiiieiis 366
DEFAULT_KB_PER_STRIPE Option................ 367
DEFAULT_LIKE_MATCH_SELECTIVITY_PPM

(@]] 10} o ISR 368
DEFAULT_LIKE_RANGE_SELECTIVITY_PPM

(@]] 10} o ISR 369
DELAYED_COMMIT_TIMEOUT Option............. 369
DELAYED_COMMITS Optionccooeevvieeiinn 370
DISABLE_RI_CHECK Optioncccoeeieiiieiennns 370
DIVIDE_BY_ZERO_ERROR Option [TSQL].....370
DQP_ENABLED Optioncccccvvviiiiiiiiiieeeeeeens 371
EARLY_PREDICATE_EXECUTION Option....... 371
ENABLE_LOB_VARIABLES Option.................. 372
EXTENDED_JOIN_SYNTAX Option................. 372
FORCE_DROP Optionuvvviiiiiieiieeeeeieiiieiiins 373
FORCE_NO_SCROLL_CURSORS Option........ 373
FORCE_UPDATABLE_CURSORS Option........ 374
FP_LOOKUP_SIZE OpPtioNcvvviiiiiiiieeeeaannnns 374
FP_LOOKUP_SIZE_PPM Optionuennnns 375

Reference: Statements and Options iX

Contents

FP_PREDICATE_WORKUNIT_PAGES Option .376
FPL_EXPRESSION_MEMORY_KB Option......377
GARRAY_FILL_FACTOR_PERCENT Option377
GARRAY_INSERT_PREFETCH_SIZE Option..378
GARRAY_PAGE_SPLIT_PAD_PERCENT

(@]] 1[0} o USSP 378
GARRAY_RO_PREFETCH_SIZE Option.......... 379
HASH_PINNABLE_CACHE_PERCENT Option

... 380
HASH_THRASHING_PERCENT Option........... 380
HG_DELETE_METHOD Option...........cccvvuveeen. 381
HG_SEARCH_RANGE Option............ccceeeiennne 382
HTTP_SESSION_TIMEOUT Option................... 382
IDENTITY_ENFORCE_UNIQUENESS Option . 383
IDENTITY_INSERT Optioncccovvvvviviiinneeeen. 383
INDEX_ADVISOR OptioNccvvvviviviieieeeeneeene. 384
INDEX_ADVISOR_MAX_ROWS Option........... 386
INDEX_PREFERENCE Optionccccccceevvveee... 387
INFER_SUBQUERY_PREDICATES Option...... 388
IN_SUBQUERY_PREFERENCE Option........... 389
IQGOVERN_MAX_PRIORITY Option................ 390
IQGOVERN_PRIORITY Optioncccvvvvvvvennnee. 390
IQGOVERN_PRIORITY_TIME Option............... 391
ISOLATION_LEVEL Optionccvvvvveeeeeeeeenennn. 392
JAVA_LOCATION OptioNccvvuiiieeeeeeeiiiiiiineeeenn, 392
JAVA_VM_OPTIONS Optioncccuvveeeeeerennnnnn. 393
JOIN_EXPANSION_FACTOR Option................ 393
JOIN_OPTIMIZATION Optionccceeveeuvvnnnnee. 394
JOIN_PREFERENCE Option..........ccccvveeeennnnnn. 395

JOIN_SIMPLIFICATION_THRESHOLD Option .397
LARGE_DOUBLES_ACCUMULATOR Option ...397

LF_BITMAP_CACHE_KB Optioncocov...... 398
LOAD_ZEROLENGTH_ASNULL Option............ 399
LOCKED OPtON w.vevveeveeeeeeeeeeeeeeeeeeeeeeeeene, 399
LOG_CONNECT OPtON c..veveeeeeereeeeeeeeeeresereeenes 400

X Sybase 1Q

Contents

LOG_CURSOR_OPERATIONS Option............. 400
LOGIN_MODE Optioncuuuiiiiiiiieeeeiieiiieiiiiiinnns 401
LOGIN_PROCEDURE Optionccvvevieerrinnnns 401
MAIN_RESERVED_DBSPACE_MB Option...... 402
MAX_CARTESIAN_RESULT Option................. 403
MAX_CLIENT_NUMERIC_PRECISION Option

... 403
MAX_CLIENT_NUMERIC_SCALE Option......... 404
MAX_CONNECTIONS Optioncoeeeeeeirieiiiinnns 405
MAX_CUBE_RESULT Optioncccvvvvivvunnnnnnns 405
MAX_CURSOR_COUNT Optionccceevvvvnnnns 405
MAX_DAYS_SINCE_LOGIN Option................. 406
MAX_FAILED_LOGIN_ATTEMPTS Option....... 406
MAX_HASH_ROWS OptioNnccccvvviiireeiiennnns 406
MAX_1Q_THREADS PER_CONNECTION

(@] 10} o IS 407
MAX_1Q_THREADS_ PER_TEAM Option......... 407
MAX_JOIN_ENUMERATION Option: 408
MAX_PREFIX_PER_CONTAINS_PHRASE

(@] 10} o IS 409
MAX_QUERY_PARALLELISM Option............... 409
MAX_QUERY_TIME Optioncccevvveeieeiiiniinns 409
MAX_STATEMENT_COUNT Options 410
MAX_TEMP_SPACE_PER_CONNECTION

OPLION . 411
MAX_WARNINGS Optionccooveeeeeiiiiiiiiiiiiiinnns 412
MINIMIZE_STORAGE Optionccvvvvvvvvvvnnnnns 412
MIN_PASSWORD_LENGTH Option................. 413

MONITOR_OUTPUT_DIRECTORY Option.......414
MPX_AUTOEXCLUDE_TIMEOUT Option.......... 415
MPX_HEARTBEAT FREQUENCY Option........ 415
MPX_IDLE_CONNECTION_TIMEOUT Option . 415
MPX_MAX_CONNECTION_POOL_SIZE

Reference: Statements and Options Xi

Contents

NEAREST_CENTURY option [TSQL]............... 416
NOEXEC Option ...cccooeeiiiiiiiieiiiiiiiiiveeeeeeeee 416
NON_ANSI_NULL_VARCHAR Option.............. 417
NON_KEYWORDS Option [TSQL]........cccevvrrnne 417
NOTIFY_MODULUS Optioncccuvvveiieeeeeennne. 418
ODBC_DISTINGUISH_CHAR_AND_VARCHA

R OPLiON ...ttt 418
ON_CHARSET_CONVERSION_FAILURE

OPLION .o 419
ON_ERROR Option [Interactive SQL]............... 419
ON_TSQL_ERROR Option [TSQL]ccco.o....... 420
OS_FILE_CACHE_BUFFERING Option........... 421
OS_FILE_CACHE_BUFFERING_TEMPDB

(@]] 1[0} o S SP 422
PASSWORD_EXPIRY_ON_NEXT_LOGIN

(@]] 1[0} o S SP 423
PASSWORD_GRACE_TIME Option................. 423
PASSWORD_LIFE_TIME Option.............cce..... 423
POST_LOGIN_PROCEDURE Option............... 423
PRECISION Optionccooeeeeeeeiieieeeeeeeeeeeeeeeeeee, 424
PREFETCH OPtioNcoiiiiiiiieieiiiiiiee e 424
PREFETCH_BUFFER_LIMIT Option................ 425
PREFETCH_BUFFER_PERCENT Option........ 425
PREFETCH_GARRAY_PERCENT Option........ 426
PREFETCH_SORT_PERCENT Option............. 426
PRESERVE_SOURCE_FORMAT Option

[database] ... 427
QUERY_DETAIL Optionccooovvveieeeiiiiieeeeeeee, 428
QUERY_NAME OPtioNocuvveeeviireeeeeeen, 428
QUERY_PLAN Optionccuvvvveeeieiiiiiiieeeneiennne. 429
QUERY_PLAN_AFTER_RUN Option................ 429
QUERY_PLAN_AS _HTML Option..........ccceuueeee 430
QUERY_PLAN_AS_HTML_DIRECTORY

(@]] 1[0 o R SUS 431
QUERY_PLAN_TEXT_ACCESS Option............ 432

Xii Sybase 1Q

Contents

QUERY_PLAN_TEXT_CACHING Option......... 433
QUERY_ROWS_RETURNED_LIMIT Option....433
QUERY_TEMP_SPACE_LIMIT Option............... 434
QUERY_TIMING Optionccuvvimiieiiiieeaeaniinnne 435
QUOTED_IDENTIFIER Option [TSQL].............. 435
RECOVERY_TIME Optioncccccvvvvieeeieeennnne 436
RETURN_DATE_TIME_AS_STRING Option....436
ROW_COUNT OPtiONovvviiieeeeeiiiiiiiiieeeeee e 437
SCALE OPLON .. 438
SIGNIFICANTDIGITSFORDOUBLEEQUALITY
OPLION .o 438
SORT_COLLATION OPtioNnvvvvvvmmmmnmnnnnnnnnns 439
SORT_PINNABLE_CACHE_PERCENT Option
... 440
SQL_FLAGGER_ERROR_LEVEL Option
[TSQLY et 440
SQL_FLAGGER_WARNING_LEVEL Option
[TSQLY et 441
STRING_RTRUNCATION Option [TSQL].......... 442
SUBQUERY_CACHING_PREFERENCE
OPLION . 442
SUBQUERY_FLATTENING_PERCENT Option
... 444
SUBQUERY_FLATTENING_PREFERENCE
OPLION . 444
SUBQUERY_PLACEMENT_PREFERENCE
OPLION . 445
SUPPRESS_TDS_DEBUGGING Option.......... 446
SWEEPER_THREADS_PERCENT option........ 447
TDS_EMPTY_STRING_IS_NULL Option
[database] ... 447
TEMP_EXTRACT_APPEND Option.................. 448
TEMP_EXTRACT_BINARY Option 448
TEMP_EXTRACT_COLUMN_DELIMITER
OPLION .o 449

Reference: Statements and Options Xiii

Contents

TEMP_EXTRACT_DIRECTORY Option............ 450
TEMP_EXTRACT_ESCAPE_QUOTES Option
... 451
TEMP_EXTRACT_NAMEN Options 452
TEMP_EXTRACT NULL_AS_EMPTY Option
... 453
TEMP_EXTRACT_NULL_AS_ZERO Option.....454
TEMP_EXTRACT_QUOTE Option 455
TEMP_EXTRACT_QUOTES Option 456
TEMP_EXTRACT_QUOTES_ALL Option.......... 456
TEMP_EXTRACT _ROW_DELIMITER Option ...457
TEMP_EXTRACT_SIZEn Optionsc..co....... 458
TEMP_EXTRACT_SWAP Optioncocovvve... 459
TEMP_RESERVED_DBSPACE_MB Option.....460
TEMP_SPACE_LIMIT_CHECK Option.............. 460
TEXT_DELETE_METHOD Optionco........ 461
TIME_FORMAT OPtON ...voveeveeeeeeeeeeeeeeeeseeeereenn. 462
TIMESTAMP_FORMAT OptioNovvvevevereennn. 462
TOP_NSORT_CUTOFF_PAGES Option............ 464
TRIM_PARTIAL_MBC Optionccvrveevreerenenn. 464
TSQL_VARIABLES Option [TSQL]cvvveveeenn.e. 465

USER_RESOURCE_RESERVATION Option465
VERIFY_PASSWORD_FUNCTION Option.......466
WASH_AREA_BUFFERS_PERCENT Option ...467

WAIT_FOR_COMMIT OptioNncccvvuveeereeinnnnnn. 468
WD_DELETE_METHOD Option........cccccceeeeennnn. 468
I X e s 471

Xiv Sybase 1Q

Audience

Audience

This book is for Sybase® 1Q users who require reference material for Sybase 1Q SQL
statements and database options.

Reference material for other aspects of Sybase 1Q, including language elements, data types,
functions, system procedures, and system tables is provided in Reference. Building Blocks,
Tables, and Procedures. Other books provide more context on how to perform particular tasks.
This reference book is the place to look for information such as available SQL syntax,
parameters, and options. For command line utility start-up parameters, see the Utility
Guide.

Reference: Statements and Options 1

Audience

2 Sybase 1Q

SQL Statements

SQL Statements

Descriptions of the SQL statements available in Sybase 1Q, including some that can be used
only from Embedded SQL or Interactive SQL.

Common Elements in SQL Syntax

Language elements that are found in the syntax of many SQL statements.

For more information on the elements described here, see /dentifiers, Search Conditions,
Expressions, and Strings in Reference: Building Blocks, Tables, and Procedures > SQL
Language Elements.

« column-name — an identifier that represents the name of a column.

« condition — an expression that evaluates to TRUE, FALSE, or UNKNOWN.

* connection-name — a string representing the name of an active connection.

» data-type — a storage data type.

e expression — an expression.

« filename — a string containing a file name.

» host-variable — a C language variable, declared as a host variable, preceded by a colon.

 indicator-variable —a second host variable of type shor t i nt immediately following a
normal host variable. An indicator variable must also be preceded by a colon. Indicator
variables are used to pass NULL values to and from the database.

« number — any sequence of digits followed by an optional decimal part and preceded by an
optional negative sign. Optionally, the number can be followed by an ‘e’ and then an
exponent. For example,

42
-4.038
. 001
3.4el0
le-10

» owner — an identifier representing the user ID who owns a database object.

» role-name — an identifier representing the role name of a foreign key.

« savepoint-name — an identifier that represents the name of a savepoint.

« search-condition — a condition that evaluates to TRUE, FALSE, or UNKNOWN.

» special-value — one of the special values described in Reference. Building Blocks, Tables,
and Procedures > SQL Language Elements > Special Values .

» statement-label — an identifier that represents the label of a loop or compound statement.

 table-list — a list of table names, which might include correlation names. For more
information, see FROM clause.

Reference: Statements and Options 3

SQL Statements

table-name — an identifier that represents the name of a table.

userid — an identifier representing a user name. The user ID is not case-sensitive and is
unaffected by the setting of the CASE RESPECT property of the database.

variable-name — an identifier that represents a variable name.

See also

FROM Clause on page 193

Syntax Conventions

Conventions used in the SQL syntax descriptions.

Keywords —all SQL keywords appear in UPPERCASE; however, SQL keywords are case-
insensitive, so you can type keywords in any case. For example, SELECT is the same as
Select, which is the same as select.

Placeholders — items that must be replaced with appropriate identifiers or expressions are
shown in Jtalics.

Continuation — lines beginning with an ellipsis (...) are a continuation from the previous
line.

Optional portions — optional portions of a statement are enclosed by square brackets. For
example:
RELEASE SAVEPO NT [savepoi nt - nanme |

This example indicates that the savepoint-name is optional. Do not type the square
brackets.

Repeating items — lists of repeating items are shown with an element of the list followed by
an ellipsis. One or more list elements are allowed. When more than one is specified, they
must be separated by commas if indicated as such. For example:

UNIQUE (colum-nanme [, ...])

The example indicates that you can specify column-name more than once, separated by
commas. Do not type the square brackets.

Alternatives — when one option must be chosen, the alternatives are enclosed in curly
braces. For example:

[QUTES { ON | OFF }]

The example indicates that if you choose the QUOTES option, you must provide one of
ON or OFF. Do not type the braces.

One or more options — if you choose more than one, separate your choices by commas. For
example:
{ CONNECT, DBA, RESOURCE }

Sybase 1Q

SQL Statements

Statement Applicability Indicators

Some statement titles are followed by an indicator in square brackets that shows where the
statement can be used.

These indicators are as follows:

« [ESQL] - the statement is for use in Embedded SQL.

* [Interactive SQL] — the statement is for use only in Interactive SQL (dbisql).

« [SP] - the statement is for use in stored procedures or batches.

» [T-SQL] - the statement is implemented for compatibility with Adaptive Server®
Enterprise. In some cases, the statement cannot be used in stored procedures that are not
Transact-SQL format. In other cases, there is an alternative statement that is closer to the
ISO/ANSI SQL standard that is recommended unless Transact-SQL compatibility is an
issue.

If two sets of brackets are used, the statement can be used in both environments. For example,
[ESQL] [SP] means a statement can be used either in Embedded SQL or in stored procedures.

ALLOCATE DESCRIPTOR Statement [ESQL]
Allocates space for a SQL descriptor area (SQLDA).

Syntax

ALLOCATE DESCRIPTOR descri ptor - name
.. WiITHMAX{ integer | host-variable }]

Parameters

* descriptor-name: — string

For more information, see Reference. Building Blocks, Tables, and Procedures > SQL
Language Elements.

Examples

* Example 1 —This sample program includes an example of ALLOCATE DESCRIPTOR
statement usage.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

EXEC SQL | NCLUDE SQLCA;

Reference: Statements and Options 5

SQL Statements

#i ncl ude <sql def . h>

EXEC SQL BEG N DECLARE SECTI ON,

i nt X;

short type;

i nt nuntol s;
char string[100];

a_sql _statenment _nunmber stnt = 0;
EXEC SQ. END DECLARE SECTI ON;

int main(int argc, char * argv[])

{
struct sqlda * sql dai;

if('db_init(&sqlca)) {
return 1;

db_string_connect (&sql ca, "U D=dba; PWD=sql ; DBF=d: \\ | Q@ 15_3\
\'sampl e. db");

EXEC SQL ALLOCATE DESCRI PTCR sql dal W TH MAX 25;

EXEC SQL PREPARE :stnmt FROM

"select * from Enpl oyees';
EXEC SQL DECLARE curs CURSOR FOR :stnt;
EXEC SQL OPEN curs;

EXEC SQL DESCRIBE :stnt into sql dai;
EXEC SQL GET DESCRI PTOR sqgl dal : nuntol s=COUNT;
/1 how many col ums?
if(nuntols > 25) {
/'l reallocate if necessary
EXEC SQL DEALLOCATE DESCRI PTOR sql dal;
EXEC SQL ALLOCATE DESCRI PTOR sqgl dal
W TH MAX : nunctol s;

}

type = DT_STRI NG /1 change the type to string

EXEC SQL SET DESCRI PTOR sql dal VALUE 2 TYPE = :type;
fill_sqglda(sgldal); // allocate space for the variabl es

EXEC SQL FETCH ABSCLUTE 1 curs USI NG DESCRI PTOR sql dal;
EXEC SQL GET DESCRI PTOR sql dal VALUE 2 :string = DATA

printf("name = %", string);

EXEC SQ. DEALLOCATE DESCRI PTOR sql dal;
EXEC SQL CLCSE curs;

EXEC SQL DROP STATEMENT : stnt;

db_string_di sconnect(&sqlca, "");
db_fini(&sqlca);

return O;

6 Sybase 1Q

SQL Statements

Usage
You must declare the following in your C code prior to using this statement:

struct sqlda * descriptor_nane

The WITH MAX clause lets you specify the number of variables within the descriptor area. The
default size is 1.

You must still call fill_sqlda to allocate space for the actual data items before doing a fetch or
any statement that accesses the data within a descriptor area.

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere Data
Access APIs > SQL Anywhere embedded SQL > The SQL descriptor area (SQLDA).
Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Open Client/Open Server.

See also
e DEALLOCATE DESCRIPTOR Statement [ESQL]on page 151

ALTER DATABASE Statement

Upgrades a database created with a previous version of the software or adds or removes Java or
jConnect™ for JDBC™ support. Run this statement with Interactive SQL (dbisg]).

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > Java in the database >
Java support in SQL Anywhere > Introduction to Java support.

Syntax
ALTER DATABASE UPGRADE
[JAVA { ON | OFF }]
[JCONNECT { ON | OFF }]

Examples
* Example 1 —Upgrade a database created with the Java options off:
ALTER DATABASE UPGRADE JAVA OFF JCONNECT OFF

Usage

The ALTER DATABASE statement upgrades databases created with earlier versions of the
software. This applies to maintenance releases as well as major releases.

When you upgrade a database, Sybase 1Q makes these changes:

Reference: Statements and Options 7

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html

SQL Statements

Upgrades the system tables to the current version.
Adds any new database options.
Enables new features in the current version.

You can also use ALTER DATABASE UPGRADE simply to add Java or jConnect features, if the
database was created with the current version of the software.

Note:

See the /nstallation and Configuration Guide for backup recommendations before you
upgrade.

Be sure to start the server in a way that restricts user connections before you run ALTER
DATABASE UPGRADE. For instructions and other upgrade caveats, see /nstallation and
Configuration Guide > Database Upgrades for your platform.

Use the iqunload utility to upgrade databases created in versions earlier than 15.0. See
Installation and Configuration Guide > Database Upgrades for your platform.

After using ALTER DATABASE UPGRADE, shut down the database.

JAVA clause— Controls support for Java in the upgraded database.

Specify JAVA ON to enable support for Java in the database by adding entries for the
default Sybase runtime Java classes to the system tables. If Java in the database is already
installed, but is at a lower version than the default classes, this clause upgrades it to the
current default classes. The default classes are the JDK 1.3 classes.

Specify JAVA OFF to prevent the addition of Java in the database to databases that do not
already have it installed. For databases that already have Java installed, setting JAVA OFF
does not remove Java support: the version of Java remains at the current version.

The default behavior is JAVA OFF.

To use Java after adding it in the database, you must restart the database.

Java support is external to the database. Upgrade or change the version of the Java
Development Kit (JDK)/Java Runtime Environment (JRE) installed on your system to
change the version of Java used by Sybase 1Q.

For more information on Java support, see SQL Anywhere 11.0.1 > SQL Anywhere Server
— Programming > Java in the database > Java support in SQL Anywhere > Introduction to
Java support.

JCONNECT clause— To allow the Sybase jConnect JDBC driver to access system catalog
information, you must specify JCONNECT ON. This installs jConnect system tables and
procedures. To exclude the jConnect system objects, specify JCONNECT OFF. You can still
use JDBC, as long as you do not access system catalog information. The default is to include
jConnect support (JCONNECT ON).

Side effects:

Automatic commit

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-java-secta-3828186.html

SQL Statements

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority.

See also
* CREATE DATABASE Statement on page 66

ALTER DBSPACE Statement

Changes the read/write mode, changes the size, or extends an existing dbspace.

Syntax
ALTER DBSPACE dbspace- nane
{ ADDnewfile-spec [, newfile-spec ...]
| DROPFILEI ogical -file-nane [, FILE |ogical-file-name ...]
| RENAME TO newnane | RENAME' new-fil e- pat hnane'
| READONLY | READWRITE
| ONLINE | OFFLINE
|

STRIPING{ ON | OFF }
| STRIPESIZEKB Si ze-i n- KB
ALTERFILEf i | e- nane

{ READONLY | [FORCE] READWRITE }
| SizE file-size [KB| MB| GB | TB| PAGES]
| ADD file-size [KB | MB | GB| TB | PAGES] }

RENAME PATH ' new-fi | e- pat hnane'
RENAME TO newnaire

Parameters
* new-file-spec: —

FILE | ogical -file-name 'file-path' iqg-file-opts
* ig-file-opts: —

[[size] file-size]
. KB| MB | GB | TB]]
[RESERVE reserve-size [KB| MB| GB | TB]]

Examples
* Example 1 —Change the mode of a dbspace called DspHi st to READONLY.
ALTER DBSPACE DspHi st READONLY

Reference: Statements and Options 9

SQL Statements

* Example 2 — Add 500MB to the dbspace DspHi st by adding the file Fi | eHi st 3 of
size 500MB.
ALTER DBSPACE DspHi st
ALTER FILE Fil eH st3 ADD 500MB
* Example 3—0n a UNIX system, add two 500MB files to the dbspace DspHist.
ALTER DBSPACE DspHi st ADD

FILE FileHi st3 '/Hi storyl/data/file3" SIZE 500MVB,
FILE FileHi st4 '/H storyl/data/file4" SIZE 500

« Example 4 — Increase the size of the dbspace | Q SYSTEM TEMP by 2GB.

ALTER DBSPACE | Q SYSTEM TEMP ADD 2 GB

* Example 5—Remove two files from dbspace DspHist. Both files must be empty.
ALTER DBSPACE DspHi st
DROP FILE FileH st2, FILE FileH st4

* Example 6 — Increase the size of the dbspace | Q_ SYSTEM MAI Nby 1000 pages. (ADD
defaults to pages.)

ALTER DBSPACE | Q SYSTEM MAIN ADD 1000

Usage

ALTER DBSPACE changes the read-write mode, changes the online/offline state, alters the file
size, renames the dbspace name, file logical name or file path, or sets the dbspace striping
parameters. For details about existing dbspaces, run sp_iqdbspace procedure,
sp_igdbspaceinfo procedure, sp_igfile procedure, sp_igdbspaceobjectinfo, and
sp_igobjectinfo. Dbspace and dbfile names are always case-insensitive. The physical file
paths are case-sensitive, if the database is CASE RESPECT and the operating system supports
case-sensitive files. Otherwise, the file paths are case-insensitive.

Enclose dbspace and dbfile names either in no quotes or in double quotes. Enclose the physical
file path to the dbfile in single quotes.

In Windows, if you specify a path, any backslash characters (\) must be doubled if they are
followed by an n or an x. This prevents them being interpreted as a newline character (\n) or as
a hexadecimal number (\x), according to the rules for strings in SQL. It is safer to always
double the backslash.

See Reference. Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_igadbspace Procedureand System Administration Guide. Volume 1 >
Database Obfect Management > Data Storage.

ADD FILE clause—Adds one or more files to the specified dbspace. The dbfile name and the
physical file path are required for each file and must be unique. You can add files to 1Q main,
1Q shared temporary, or IQ temporary dbspaces. You may add a file to a read-only dbspace, but
the dbspace remains read-only. You can add files to multiplex shared temporary dbspaces only
in read-only mode (the default for ADD FILE). See Using Sybase 1Q Multiplex.

10

Sybase 1Q

SQL Statements

A catalog dbspace may contain only one file, so ADD FILE may not be used on catalog
dbspaces.

DROP FILE clause—Removes the specified file from an 1Q dbspace. The file must be empty.
You cannot drop the last file from the specified dbspace. Instead use DROP DBSPACE if the
dbspace contains only one file. Rename TO clause—Renames the dbspace-nameto a new
name. The new name must be unique in the database. You cannot rename

| Q SYSTEM MAI N, | Q SYSTEM MSG, | Q SYSTEM TEMP, | Q SHARED TEMP, or
SYSTEM

RENAME clause—Renames the pathname of the dbspace that contains a single file. It is
semantically equivalent to the ALTER FILE RENAME PATH clause. An error is returned if the
dbspace contains more than one file.

READONLY clause—Changes any dbspace except | Q SYSTEM MAI N,

| Q SYSTEM TEMP, | Q SYSTEM MSG | Q SHARED TEMP, and SYSTEMto read-only.
Disallows DML modifications to any object currently assigned to the dbspace. Can only be
used for dbspaces in the 1Q main store.

READWRITE clause—Changes the dbspace to read-write. The dbspace must be online. Can
only be used for dbspaces in the 1Q main store.

ONLINE clause—Puts an offline dbspace and all associated files online. Can only be used for
dbspaces in the 1Q main store.

OFFLINE clause—Puts an online read-only dbspace and all associated files offline. (Returns
an error if the dbspace is read-write, offline already, or not of the 1Q main store.) Can only be
used for dbspaces in the 1Q main store.

STRIPING clause—Changes the disk striping on the dbspace as specified. When disk striping
is set ON, data is allocated from each file within the dbspace in a round-robin fashion. For
example, the first database page written goes to the first file, the second page written goes to
the next file within given dbspace, and so on. Read-only dbspaces are skipped.

STRIPESIZEKB clause—Specifies the number of kilobytes (KB) to write to each file before
the disk striping algorithm moves to the next stripe for the specified dbspace.

ALTER FILE READONLY—Changes the specified file to read-only. The file must be
associated with an 1Q main dbspace. You cannot change files in IQ_SHARED_TEMP to
READONLY status.

ALTER FILE READWRITE—Changes specified 1Q main or temporary store dbfile to read-
write. The file must be associated with an 1Q main or temporary dbspace.

ALTER FILE FORCE READWRITE—Changes the status of the specified shared temporary
store dbfile to read-write, although there may be known file status problems on secondary
nodes. The file may be associated with an 1Q main, shared temporary, or temporary dbspace,
but because new dbfiles in | Q_SYSTEM MAI Nand user main are created read-write, this
clause only affects shared temporary dbspaces.

Reference: Statements and Options 11

SQL Statements

ALTER FILE SIZE clause— Specifies the new size of the file in units of kilobytes (KB),
megabytes (MB), gigabytes (GB), or terabytes (TB). The default is megabytes. You can
increase the size of the dbspace only if the free list (an allocation map) has sufficient room and
if the dbspace has sufficient reserved space. You can decrease the size of the dbspace only if
the portion to be truncated is not in use.

ALTER FILE ADD clause—Extends the size of the file in units of pages, kilobytes (KB),
megabytes (MB), gigabytes (GB), or terabytes (TB). The default is MB. You can ADD only if
the free list (an allocation map) has sufficient room and if the dbspace has sufficient reserved
space.

You can also view and change the dbspace mode and size through the Sybase Central
Dbspaces window.

ALTER FILE RENAME PATH clause—Renames the file pathname associated with the
specified file. This clause merely associates the file with the new file path instead of the old
path. The clause does not actually change the operating system file name. You must change the
file name through your operating system. The dbspace must be offline to rename the file path.
The new path is used when the dbspace is altered online or when the database is restarted.

You may not rename the path of a file in | Q_SYSTEM MAI N, because if the new path were
not accessible, the database would be unable to start. If you need to rename the path of a file in
I Q_ SYSTEM MAI N, make the file read-only, empty the file, drop the file, and add the file

again with the new file path name.

ALTER FILE RENAME TO clause—Renames the specified file’s logical name to a new
name. The new name must be unique in the database.

Side effects:

* Automatic commit
» Automatic checkpoint

* A mode change to READONLY causes immediate relocation of the internal database
structures on the dbspace to one of the read-write dbspaces.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have SPACE ADMIN or DBA authority.

See also

CREATE DATABASE Statement on page 66
* CREATE DBSFACE Statement on page 76

* DROP Statement on page 170

12

Sybase 1Q

SQL Statements

ALTER DOMAIN Statement

Renames a user-defined domain or data type. Does not rename Java types.

Syntax
ALTER { DOMAIN | DATATYPE } user-type

RENAME new name
Parameters

* new-name: —an identifier representing the new domain name.
* user-type: — user-defined data type of the domain being renamed.

Examples
* Example 1 — Rename the Address domain to MailingAddress:
ALTER DOVAI N Addr ess RENAME Mai | i ngAddr ess

Usage

The ALTER DOMAIN statement updates the name of the user-defined domain or data type in
the SYSUSERTYPE system table. See Reference: Building Blocks, Tables, and Procedures >
System Tables and Views > System Views > SYSUSERTYPE System View.

You must recreate any procedures, views or events that reference the user-defined domain or
data type, or else they will continue to reference the former name.

See also Reference. Building Blocks, Tables, and Procedures > SQL Data Types.
Side effects:

e Automatic commit

Permissions

Must have DBA authority or be the database user who created the domain.

See also
e CREATE DOMAIN Statement on page 79

Reference: Statements and Options 13

SQL Statements

ALTER EVENT Statement

Changes the definition of an event or its associated handler for automating predefined actions.
Also alters the definition of scheduled actions.

Syntax

ALTER EVENT event - nane
DELETE TYPE | TYPE event-type]
WHERE { trigger-condition | NULL }
| { ADD | [MODIFY] | DELETE } SCHEDULE schedul e- spec

ENABLE | DISABLE]
[MODIFY] HANDLER compound-statement | DELETE HANDLER }

[
{
}
[
[

Parameters

* event-type: —BackupEnd |“Connect” | ConnectFailed | DatabaseStart | DBDiskSpace |
“Disconnect” | GlobalAutoincrement | GrowDB | GrowLog | GrowTemp |LogDiskSpace |
“RAISERROR” | Serverldle | TempDiskSpace

» trigger-condition: — [event_condition(condition-name) { = | <|>|!=|<=|
>= }value]

» schedule-spec: —[schedule-name] { START TIME Start-time| BETWEEN start-time AND
end-time} [EVERY period{ HOURS | MINUTES | SECONDS }] [ON { (day-of-week,
...)| (day-of-month, ...) } 1 [START DATE start-date]

* event-name | schedule-name: — identifier

» day-of-week: — string

* value| period | day-of-month: — integer

e dart-time| end-time: — time

» start-date: — gate

Usage

ALTER EVENT lets you alter an event definition created with CREATE EVENT. Possible uses
include:

* Change an event handler during development.

« Define and test an event handler without a trigger condition or schedule during a
development phase, and then add the conditions for execution using ALTER EVENT once
the event handler is completed.

« Disable an event handler temporarily by disabling the event.

When you alter an event using ALTER EVENT, specify the event name and, optionally, the
schedule name.

List event names by querying the system table SYSEVENT. For example:

14

Sybase 1Q

SQL Statements

SELECT event _id, event_nane FROM SYS. SYSEVENT
List schedule names by querying the system table SYSSCHEDULE. For example:
SELECT event id, sched _name FROM SYS. SYSSCHEDULE

Each event has a unique event ID. Use the event _i d columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

DELETE TYPE clause—Removes an association of the event with an event type.

ADD | MODIFY | DELETE SCHEDULE clause—Changes the definition of a schedule. Only
one schedule can be altered in any one ALTER EVENT statement.

WHERE clause—The WHERE NULL option deletes a condition.
For descriptions of most of the parameters, see CREATE EVENT Statement.

See also System Administration Guide: Volume 2 > Automating Tasks Using Schedules and
Events.

Side effects:

¢ Automatic commit

Permissions
Must have DBA authority.

See also
e BEGIN ... END Statementon page 47
e CREATE EVENT Statement on page 81

ALTER FUNCTION Statement

Modifies an existing function. Include the entire modified function in the ALTER FUNCTION
statement.

Syntax

Syntax 1
ALTER FUNCTION [owner.]function-name function-definition

function-definition : CREATE FUNCTION synt ax

Syntax 2
ALTER FUNCTION [owner.]function-nane

SET HIDDEN

Syntax 3

Reference: Statements and Options 15

SQL Statements

ALTER FUNCTION [owner.]function-nane

RECOMPILE

Usage

Syntax 1—Identical in syntax to the CREATE FUNCTION statement except for the first word.
Either version of the CREATE FUNCTION statement can be altered.

Existing permissions on the function are maintained and do not have to be reassigned. If a
DROP FUNCTION and CREATE FUNCTION were carried out, execute permissions must be
reassigned.

Syntax 2—Use SET HIDDEN to scramble the definition of the associated function and cause it
to become unreadable. The function can be unloaded and reloaded into other databases.

Warning! The SET HIDDEN setting is irreversible. If you need the original source again, you
must maintain it outside the database.

If you use SET HIDDEN, debugging using the stored procedure debugger does not show the
function definition, nor is it be available through procedure profiling.

See also Sysstem Administration Guide: Volume 2 > Using Procedures and Batches > Hiding
the Contents of Procedures, Functions, and Views.

Syntax 3—Use RECOMPILE to recompile a user-defined function. When you recompile a
function, the definition stored in the catalog is re-parsed and the syntax is verified. The
preserved source for a function is not changed by recompiling. When you recompile a
function, the definitions scrambled by the SET HIDDEN clause remain scrambled and
unreadable.

Side effects:

* Automatic commit

Standards
e SQL—Vendor extension to ISO/ANSI SQL grammar.

Permissions

Must be the owner of the function or have DBA authority.

See also

» ALTER PROCEDURE Statementon page 22
e CREATE FUNCTION Statement on page 90
* DROP Statement on page 170

16

Sybase 1Q

SQL Statements

ALTER INDEX Statement

Renames indexes in base or global temporary tables and foreign key role names of indexes and
foreign keys explicitly created by a user.

Syntax

ALTER { INDEX i ndex- name

| [INDEX]FOREIGN KEY r ol e- nane

| [INDEX] PRIMARY KEY

| ON [owner.]tabl e-nane { rename-cl ause | nove-cl ause }

Parameters

* rename-clause—: RENAME TO | AS new-name
* move-clause: —MOVE TO dbspace-name

Examples
* Example 1 — Move the primary key, HG for c5, from dbspace Dsp4 to Dsp8:

CREATE TABLE foo (
cl INT IN Dspl,
c2 VARCHAR(20),
c3 CLOB I N Dsp2,

c5 Bl G NT,
PRI MARY KEY (c5) I N Dsp4) IN Dsp3);

CREATE DATE | NDEX c4_date ON foo(c4) |IN Dsp5;

ALTER | NDEX PRI MARY KEY ON foo MOVE TO Dsp8;
* Example 2 —Move DATE index from Dsp5 to Dsp9:

ALTER | NDEX c4_date ON foo MOVE TO Dsp9

e Example3—Rename anindex COL1_HG OLDinthe tablej al . nyt abl e to
COL1 _HG NEW
ALTER | NDEX COL1_HG OLD ON jal . mytabl e
RENAME AS COL1_HG NEW

* Example4—Rename aforeign key role nameky _dept i dintabledba. Enpl oyees
to enp_dept _i d:
ALTER | NDEX FOREI GN KEY ky_dept _id

ON dba. Enpl oyees
RENAME TO enp_dept _id

Usage

The ALTER INDEX statement renames indexes and foreign key role names of indexes and
foreign keys that were explicitly created by a user. Only indexes on base tables or global

Reference: Statements and Options 17

SQL Statements

temporary tables can be renamed. You cannot rename indexes created to enforce key
constraints.

ON clause—The ON clause specifies the name of the table that contains the index or foreign
key to rename.

RENAME [AS | TO] clause—The RENAME clause specifies the new name of the index or
foreign key role.

MOVE clause—The MOVE clause moves the specified index, unique constraint, foreign key,
or primary key to the specified dbspace. For unique constraint or foreign key, you must specify
its unique index name.

You must have CREATE privilege on the new dbspace and be the table owner or have DBA or
SPACE ADMIN authority.

Note: Attempts to alter an index in a local temporary table return the error i ndex not
f ound. Attempts to alter a nonuser-created index, such as a default index (FP), return the
error Cannot alter index. Only indexes in base tables or gl obal
tenporary tables with an owner type of USER can be altered.

Side effects:

« Automatic commit. Clears the Results tab in the Results pane in Interactive SQL. Closes
all cursors for the current connection.

Standards

* SQL—ISO/ANSI SQL compliant.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must own the table, or have REFERENCES permissions on the table, or have DBA or
RESOURCE authority. For ALTER INDEX MOVE TO statements, you must have CREATE
privilege on the new dbspace and be the table owner or have DBA or SPACE ADMIN
authority.

See also

* ALTER TABLE Statement on page 27

o CREATE INDEX Statement on page 97
o CREATE TABLE Statementon page 133

18 Sybase 1Q

SQL Statements

ALTER LOGICAL SERVER Statement

Modifies configuration for the existing user-defined logical server in the database.

Syntax

See bel ow.

Usage

For syntax and complete description, see Using Sybase 1Q Multiplex > Multiplex Reference >
SQL Statements > ALTER LOGICAL SERVER Statement.

ALTER LOGIN POLICY Statement

Modifies some or all option values for existing login policies in the database.

Syntax
ALTER LOGIN POLICY policy-nane {al ter-cl ause}

Parameters

e alter-clause: —

{
pol i cy-opti on- name=pol i cy- opti on-val ue
}
* policy-option-value: —
{ UNLIMITED | DEFAULT | value }
Usage

Reference: Statements and Options 19

SQL Statements

Table 1. Login Policy Options

Description Initial | Applies to
value
for
ROOT
Option Values policy
| ocked If the value for this option | ON, OFF OFF Users without
is ON, users are prohibi- DBA authority
ted from establishing new only
connections
max_connecti ons The maximum number of | 0-2147483647 | Unlimi- | Users without
concurrent connections ted DBA authority
allowed for a user. only
max_days_si nce_l og | The maximum number of | 0— 2147483647 [Unlimi- | Users without
in days that can elapse be- ted DBA authority
tween two successive log- only
ins by the same user.
max_fail ed_| og- The maximum number of | 0— 2147483647 [Unlimi- | Users without
in_attenpts failed attempts, since the ted DBA authority
last successful attempt, to only
login to the user account
before the account is
locked.
nmax_non_dba_con- The maximum number of | 0- 2147483647 | Unlimi- | Users without
necti ons concurrent connections ted DBA authority
that a user without DBA only. Only to
authority can make. This the root login
optionisonly supportedin policy.
the root login policy.
passwor d_expi - If the value for this option | ON, OFF OFF All users in-
ry _on_next login is ON, the user's password cluding those
will expire in the next log- with DBA au-
in. thority
pass- The number of days be- | 02147483647 | O All users in-
word_grace_tine fore password expiration cluding those
during which login is al- with DBA au-
lowed but the default thority

post_login procedure is-
sues warnings.

20

Sybase 1Q

SQL Statements

Description Initial | Applies to
value
for
ROOT
Option Values policy
password_life_time | The maximum number of | 0— 2147483647 [Unlimi- | All users in-
days before a password ted cluding those
must be changed. with DBA au-
thority

For syntax and usage related to multiplex servers only, see Using Sybase 1Q Multiplex >
Multiplex Reference > SQL Statements > ALTER LOGIN POLICY Statement.

Permissions
Must have DBA or USER ADMIN authority.

ALTER LS POLICY Statement

Modifies some or all option values for the existing root logical server policy in the database.

Syntax
See bel ow.

Usage

For syntax and complete description, see Using Sybase 1Q Multiplex > Multiplex Reference >
SQL Statements > ALTER LS POLICY Statement.

ALTER MULTIPLEX RENAME Statement

Renames the multiplex and stores the multiplex name in SYS. | SYSI Q NFOsystem table.
Users must be specifically licensed for the Multiplex Option in order to start secondary nodes.

Syntax

See bel ow.

Usage

For syntax and complete description, see Using Sybase 1Q Multiplex > Multiplex Reference >
SQL Statements > ALTER MULTIPLEX RENAME Statement.

Reference: Statements and Options 21

SQL Statements

ALTER MULTIPLEX SERVER Statement

Changes the name, catalog file path, role, or status of the given server.

Syntax

See bel ow.

Usage

For syntax and complete description, see Using Sybase 1Q Multiplex > Multiplex Reference >
SQL Statements > ALTER MULTIPLEX SERVER Statement.

ALTER PROCEDURE Statement

Replaces an existing procedure with a modified version. Include the entire modified
procedure in the ALTER PROCEDURE statement, and reassign user permissions on the
procedure.

Syntax
ALTER PROCEDURE [owner.] procedure-nanme procedure-definition

Parameters

* procedure-definition: — CREATE PROCEDURE syntax following the name

Usage

The ALTER PROCEDURE statement is identical in syntax to the CREATE PROCEDURE
statement.

Existing permissions on the procedure are maintained and need not be reassigned. If a DROP
procedure and CREATE PROCEDURE were carried out, execute permissions would have to be
reassigned.

Side effects:

e Automatic commit

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

22

Sybase 1Q

SQL Statements

Permissions

Must be the owner of the procedure or a DBA. Automatic commit.

See also

CREATE PROCEDURE Statementon page 110

ALTER SERVER Statement

Modifies the attributes of a remote server.

Syntax
ALTER SERVER ser ver - name

P —

CLASS ' server-cl ass' |

USING ' connection-info']

CAPABILITY 'cap-nane' { ON| OFF}]

CONNECTION CLOSE[CURRENT | ALL | connection-id]]

Parameters

server-class. —{ ASAJDBC | ASEJDBC | ASAODBC | ASEODBC | DBZODBC |
MSSODBC| ORAODBC| ODBC}

connection-info: —{ machine-name:port-number [|dbname] | data-source-name }
cap-name: —the name of a server capability

Examples

Example 1 — Changes the server class of the Adaptive Server Enterprise server named
ase_pr od so its connection to Sybase 1Q is ODBC-based. The Data Source Name is
ase_prod.

ALTER SERVER ase_prod

CLASS ' ASECDBC
USI NG ' ase_prod'

Example 2 — Changes a capability of server i nf odc:

ALTER SERVER i nf odc

CAPABI LI TY '"insert select' OFF

Example 3 — Closes all connections to the remote server namedr em t est :

ALTER SERVER remt est

CONNECTI ON CLOSE ALL

Example 4 — Closes the connection to the remote server named r em t est that has the
connection ID 142536:

ALTER SERVER rem t est
CONNECTI ON CLOSE 142536

Reference: Statements and Options 23

SQL Statements

Usage

Changes made by ALTER SERVER do not take effect until the next connection to the remote
server.

CLASS clause—Use the CLASS clause to change the server class. For more information on
server classes, see Systerm Administration Guide: Volume 2 > Accessing Remote Data and
System Administration Guide: Volume 2 > Server Classes for Remote Data Access.

USING clause—The USING clause changes the server’s connection information. For more
information about connection information, see CREATE SERVER Statement.

CAPABILITY clause—The CAPABILITY clause turns a server capability ON or OFF. Server
capabilities are stored in the system table SYSCAPABI LI TY. The names of these capabilities
are stored in the system table SYSCAPABI LI TYNAME. The SYSCAPABI LI TY table
contains no entries for a remote server until the first connection is made to that server. At the
first connection, Sybase 1Q interrogates the server about its capabilities and then populates
SYSCAPABI LI TY. For subsequent connections, the server’s capabilities are obtained from
this table.

In general, you need not alter a server’s capabilities. It might be necessary to alter capabilities
of a generic server of class ODBC.

CONNECTION CLOSE clause—When a user creates a connection to a remote server, the
remote connection is not closed until the user disconnects from the local database. The
CONNECTION CLOSE clause allows you to explicitly close connections to a remote server.
You may find this useful when a remote connection becomes inactive or is no longer needed.
These SQL statements are equivalent and close the current connection to the remote server:
ALTER SERVER server-name CONNECTI ON CLOSE

ALTER SERVER server - name CONNECTI ON CLOSE CURRENT

You can close both ODBC and JDBC connections to a remote server using this syntax. You do
not need DBA authority to execute either of these statements.

You can also disconnect a specific remote ODBC connection by specifying a connection ID,
or disconnectall remote ODBC connections by specifying the ALL keyword. If you attempt to
close a JDBC connection by specifying the connection ID or the ALL keyword, an error
occurs. When the connection identified by connection-idis not the current local connection,
the user must have DBA authority to be able to close the connection.

Side effects:

¢ Automatic commit

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
e Sybase—Supported by Open Client/Open Server.

24 Sybase 1Q

SQL Statements

Permissions

Must have DBA authority to execute this command.

See also
e CREATE SERVER Statementon page 129
* DROP SERVER Statementon page 176

ALTER SERVICE Statement

Alters a Web service.

Syntax

ALTER SERVICE ser vi ce- nane

[TYPE' service-type-string' |
[attributes]

[AS statenent']

Parameters

» attributes| AUTHORIZATION { ON |OFF }] [SECURE { ON | OFF }] [USER
user-name|NULL }][URL [PATH]{PATH]{ON |OFF |ELEMENTS}][USING
(SOAP-prefix | NULL } | — service-type-string. { ‘RAW’ | ‘HTML’ | ‘XML’ | ‘'SOAP’
| 'DISH' }

Examples

* Example 1—To set up a Web server quickly, start a database server with the -xs switch,
then execute these statements:

CREATE SERVI CE tabl es TYPE ' HTM.'

ALTER SERVI CE t abl es

AUTHORI ZATI ON OFF

USER DBA

AS SELECT * FROM SYS. | SYSTAB

After executing these statements, use any Web browser to open the URL http://localhost/
tables.

Usage
The ALTER SERVICE statement causes the database server to act as a Web server.

service-name—You cannot rename Web services.

service-type-string—Identifies the type of the service. The type must be one of the listed
service types. There is no default value.

Reference: Statements and Options 25

SQL Statements

AUTHORIZATION clause—Determines whether users must specify a user name and
password when connecting to the service. If authorization is OFF, the AS clause is required
and a single user must be identified by the USER clause. All requests are run using that user’s
account and permissions.

If authorization is ON, all users must provide a user name and password. Optionally, you
might limit the users that are permitted to use the service by providing a user or group name
using the USER clause. If the user name is NULL, all known users can access the service.

The default value is ON. It is recommended that production systems be run with authorization
turned on and that you grant permission to use the service by adding users to a group.

SECURE clause—Indicates whether unsecure connections are accepted. ON indicates that
only HTTPS connections are to be accepted. Service requests received on the HTTP port are
automatically redirected to the HTTPS port. If set to OFF, both HTTP and HTTPS
connections are accepted. The default value is OFF.

USER clause—If authorization is disabled, this parameter becomes mandatory and specifies
the user id used to execute all service requests. If authorization is enabled (the default), this
optional clause identified the user or group permitted access to the service. The default value is
NULL, which grants access to all users.

URL clause—Determines whether URI paths are accepted and, if so, how they are processed.
OFF indicates that nothing must follow the service name in a URI request. ON indicates that
the remainder of the URI is interpreted as the value of a variable named url. ELEMENTS
indicates that the remainder of the URI path is to be split at the slash characters into a list of up
to 10 elements. The values are assigned to variables named url plus a numeric suffix of
between 1 and 10; for example, the first three variable names are urll, url2, and url3. If fewer
than 10 values are supplied, the remaining variables are set to NULL. If the service name ends
with the character /, then URL must be set to OFF. The default value is OFF.

USING clause—This clause applies only to DISH services. The parameter specifies a name
prefix. Only SOAP services whose names begin with this prefix are handled.

statement—If the statement is NULL, the URI must specify the statement to be executed.
Otherwise, the specified SQL statement is the only one that can be executed through the
service. SOAP services must have statements; DISH services must have none. The default
value is NULL.

Itis strongly recommended that all services run in production systems define a statement. The
statement can be NULL only if authorization is enabled.

RAW—The result set is sent to the client without any further formatting. You can produce
formatted documents by generating the required tags explicitly within your procedure.

HTML—The result set of a statement or procedure is automatically formatted into an HTML
document that contains a table.

XML—The result setisassumed to be in XML format. If itis notalready so, itis automatically
converted to XML RAW format.

26

Sybase 1Q

SQL Statements

SOAP—The request must be a valid Simple Object Access Protocol, or SOAP, request. The
result set is automatically formatted as a SOAP response. For more information about the
SOAP standards, see www.w3.org/TR/SOAP.

DISH—A Determine SOAP Handler, or DISH, service acts as a proxy for one or more SOAP
services. In use, it acts as a container that holds and provides access to a number of SOAP
services. A Web Services Description Language (WSDL) file is automatically generated for
each of the included SOAP services. The included SOAP services are identified by acommon
prefix, which must be specified in the USING clause.

See also SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere
Data Access APIs > SQL Anywhere web services.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority.

See also
e CREATE SERVICE Statement on page 130
* DROP SERVICE Statementon page 177

ALTER TABLE Statement

Modifies a table definition.

Syntax

ALTER TABLE [owner.]t abl e- nane
{ alter-clause, ... }
Parameters

» alter-clause: — ADD create-clause | ALTER column-name column-alteration | ALTER
[CONSTRAINT constraint-name] CHECK (condition) | DROP drop-object |
RENAME rename-object | move-clause | SPLIT PARTITION partition-
nameINTO (partition-decl-1, partition-decl-2) | MERGE PARTITION partition-
name-1 INTO partition-name-2 | UNPARTITION | PARTITION BY RANGE (partition-
key) range-partition-decl

» create-clause: — column-name column-definition[column-constraint] | table-constraint
| PARTITION BY partitioning-schema

Reference: Statements and Options 27

http://www.w3.org/TR/SOAP
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-httpserver.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-httpserver.html

SQL Statements

column-alteration: —{ alterable-column-attribute } [alterable-column-attribute...]

| ADD [constraint-name] CHECK (condition)

| DROP { DEFAULT | CHECK | CONSTRAINT constraint-name }
alterable-column-attribute: —[NOT] NULL | DEFAULT default-value | [CONSTRAINT
constraint-name] CHECK { NULL | (condition) }

column-constraint: — [CONSTRAINT constraint-name] { UNIQUE | PRIMARY KEY |
REFERENCES table-name [(column-name)] [actions] | CHECK (condition) | 1Q
UNIQUE (/nteger) }

drop-object: — { column-name | CHECK| | CONSTRAINT constraint-name

| UNIQUE (/ndex-columns-Iist) | PRIMARY KEY | FOREIGN KEY fkey-name

| PARTITION range-partition-name }

move-clause: —{ ALTER column-name MOVE { PARTITION (partition-name TO new-
dbspace-name) | TO new-adbspace-name} } | MOVE PARTITION partition-nameTO new-
dbspace-name | MOVE TO new-dbspace-name | MOVE METADATA TO new-dbspace-
name

rename-object: — new-table-name | column-name TO new-column-name

| CONSTRAINT constraint-name TO new-constraint-name | PARTITION partition-
name TO new-partition-name

column-definition: — column-name data-type [NOT NULL] [DEFAULT default-value |
IDENTITY]

default-value: — special-value | string | global variable | [- 1 number| (constant-
expression) | built-in-function (constant-expression) | AUTOINCREMENT | NULL |
TIMESTAMP | LAST USER | USER

special-value: —CURRENT { DATABASE | DATE | REMOTE USER | TIME | TIMESTAMP |
USER | PUBLISHER }

table-constraint: —[CONSTRAINT constraint-name] { UNIQUE (column-namel, ...1)|
PRIMARY KEY (column-name| , ... 1) | foreign-key-constraint| CHECK (condition) }
foreign-key-constraint: — FOREIGN KEY [role-name] [(column-name([, ...1)1] ...
REFERENCES table-name [(column-name[, ... 1)1 ... [actions] [

rename-object: — new-table-name | column-name TO new-column-name

| CONSTRAINT constraint-name TO new-constraint-name | PARTITION partition-

name TO new-partition-name

range-partitioning-scheme: — RANGE(partition-key) (range-partition-decl [,range-
partition-decl ...])

partition-key: — column-name

range-partition-decl: — partition-name VALUES <= ({constant| MAX }) [IN dbspace-
name]

actions: —[ON { UPDATE | DELETE } action]

action: —{ RESTRICT }

28

Sybase 1Q

SQL Statements

Examples

* Examplel—Addanew columntothe Enpl oyees table showing which office they work
in:

ALTER TABLE Enpl oyees
ADD of fi ce CHAR(20)

» Example 2 —Drop the of f i ce column from the Enpl oyees table:
ALTER TABLE Enpl oyees

DROP of fi ce
* Example 3—Add a column to the Cust oner s table assigning each customer a sales
contact:

ALTER TABLE Cust oners
ADD Sal esCont act | NTEGER
REFERENCES Enpl oyees (Enpl oyeel D)
* Example4—Add a new column Cust oner Numto the Cust oner s table and assigns a

default value of 88:

ALTER TABLE Cust oners
ADD Cust oner Num | NTEGER DEFAULT 88

» Example5—Only FP indexes for c2, c4, and ¢5, are moved from dbspace Dsp3 to
Dsp6. FP index for c1 remains in Dspl. FP index for ¢3 remains in Dsp2. The primary
key for ¢5 remains in Dsp4. DATE index c4_dat e remains in Dsp5.

CREATE TABLE foo (
cl INT IN Dspi,
c2 VARCHAR(20),
c3 CLOB I N Dsp2,
c4 DATE,
c5 Bl G NT,
PRI MARY KEY (c5) IN Dsp4) | N Dsp3);

CREATE DATE | NDEX c4_date ON foo(c4) |N Dsp5;
ALTER TABLE f oo
MOVE TO Dsp6;

* Example 6 — Move only FP index ¢ 1 from dbspace Dsp1 to Dsp7:

ALTER TABLE foo ALTER c1 MOVE TO Dsp7
» Example 7 — This example illustrates the use of many ALTER TABLE clauses to move,
split, rename, and merge partitions.

Create a partitioned table:

CREATE TABLE bar (
cl INT,
c2 DATE,
c3 VARCHAR(10))
PARTI TI ON BY RANGE(c2)

(pl VALUES <= ('2005-12-31') IN dbspl,
p2 VALUES <= ('2006-12-31') IN dbsp2,
P3 VALUES <= ('2007-12-31') IN dbsp3,
P4 VALUES <= ('2008-12-31') IN dbsp4);

Reference: Statements and Options 29

SQL Statements

I NSERT | NTO bar VALUES(3, '2007-01-01', 'banana nut');
I NSERT | NTO BAR VALUES(4, '2007-09-09', 'grape jam):
I NSERT | NTO BAR VALUES(5, '2008-05-05', 'apple cake');

Move partition p2 to dbsp5:
ALTER TABLE bar MOVE PARTI TI ON p2 TO DBSPS5;
Split partition p4 into 2 partitions:

ALTER TABLE bar SPLIT PARTI TION p4 | NTO
(P41 VALUES <= (' 2008-06-30') IN dbsp4,
P42 VALUES <= (' 2008-12-31') IN dbsp4);

This SPLIT PARTITION reports an error, as it requires datamovement. Not all existing rows
are in the same partition after split.

ALTER TABLE bar SPLIT PARTI TI ON p3 | NTO
(P31 VALUES <= (' 2007-06-30') IN dbsp3,
P32 VALUES <= ('2007-12-31') IN dbsp3):

This error is reported:
No data nove is all owed, cannot split partition p3.

This SPLIT PARTITION reports an error, because it changes the partition boundary value:

ALTER TABLE bar SPLI T PARTI TI ON p2 | NTO
(p21 VALUES <= (' 2006-06-30') IN dbsp2
P22 VALUES <= ('2006-12-01') IN dbsp2);

This error is reported:

Boundary val ue for the partition p2 cannot be changed.

Merge partition p3 into p2. An error is reported as a merge from a higher boundary value
partition into a lower boundary value partition is not allowed.

ALTER TABLE bar MERGE PARTI TION p3 into p2;

This error is reported:

Partition 'p2' is not adjacent to or before partition 'p3'.
Merge partition p2 into p3:

ALTER TABLE bar MERGE PARTI TI ON p2 | NTO P3;

Rename partition p1 to p1_new:

ALTER TABLE bar RENAME PARTI TI ON pl TO pl_new;

Unpartition table bar :

ALTER TABLE bar UNPARTI Tl ON;

30

Sybase 1Q

SQL Statements

Partition table bar . This command reports an error, because all rows must be in the first
partition.
ALTER TABLE bar PARTI TI ON BY RANGE(c2)
(pl VALUES <= ('2005-12-31') IN dbspl,
P2 VALUES <= ('2006-12-31') | N DBSP2,
P3 VALUES <= ('2007-12-31"') I N dbsp3,
P4 VALUES <= ('2008-12-31') IN dbsp4);

This error is reported:

All rows must be in the first partition.

Partition table bar :

ALTER TABLE bar PARTI TI ON BY RANGE(c2)
(pl VALUES <= ('2008-12-31') IN dbspl,
P2 VALUES <= ('2009-12-31') IN dbsp2,
P3 VALUES <= ('2010-12-31') IN dbsp3,
P4 VALUES <= ('2011-12-31') IN dbsp4);

Usage

The ALTER TABLE statement changes table attributes (column definitions and constraints) in
atable that was previously created. The syntax allows a list of alter clauses; however, only one
table constraint or column constraint can be added, modified, or deleted in each ALTER TABLE
statement.

Note: You cannot alter local temporary tables, but you can alter global temporary tables when
they are in use by only one connection.

Sybase 1Q enforces REFERENCES and CHECK constraints. Table and/or column check
constraints added in an ALTER TABLE statement are not evaluated as part of that alter table
operation. For details about CHECK constraints, see CREATE TABLE Statement.

If SELECT *isused in a view definition and you alter a table referenced by the SELECT *, then
you must run ALTER VIEW <viewname>RECOMPILE to ensure that the view definition is
correct and to prevent unexpected results when querying the view.

ADD column-definition [column-constraint]| —Add a new column to the table. The table
must be empty to specify NOT NULL. The table might contain data when you add an
IDENTITY or DEFAULT AUTOINCREMENT column. If the column has a default IDENTITY
value, all rows of the new column are populated with sequential values. You can also add a
foreign key constraint as a column constraint for a single column key. The value of the
IDENTITY/DEFAULT AUTOINCREMENT column uniquely identifies every row in a table. The
IDENTITY/DEFAULT AUTOINCREMENT column stores sequential numbers that are
automatically generated during inserts and updates. DEFAULT AUTOINCREMENT columns
are also known as IDENTITY columns. When using IDENTITY/DEFAULT AUTOINCREMENT,
the column must be one of the integer data types, or an exact numeric type, with scale 0. See
CREATE TABLE Statement for more about column constraints and IDENTITY/DEFAULT
AUTOINCREMENT columns.

Reference: Statements and Options 31

SQL Statements

Note: You cannot add foreign key constraints to an unenforced primary key created with
Sybase 1Q version 12.4.3 or earlier.

ALTER column-name column-alteration—Change the definition of a column. The permitted
modifications are:

e SET DEFAULT default-value—Change the default value of an existing column in a table.
You can also use the MODIFY clause for this task, but ALTER is ISO/ANSI SQL compliant,
and MODIFY is not. Modifying a default value does not change any existing values in the
table.

« DROP DEFAULT—Remove the default value of an existing column in a table. You can
also use the MODIFY clause for this task, but ALTER is ISO/ANSI SQL compliant, and
MODIFY is not. Dropping a default does not change any existing values in the table.

* ADD—Add a named constraint or a CHECK condition to the column. The new constraint
or condition applies only to operations on the table after its definition. The existing values
in the table are not validated to confirm that they satisfy the new constraint or condition.

e CONSTRAINT column-constraint-name—The optional column constraint name lets you
modify or drop individual constraints at a later time, rather than having to modify the entire
column constraint.

e [CONSTRAINT constraint-name] CHECK (condition)—Use this clause to add a
CHECK constraint on the column.

e SET COMPUTE (expression)—Change the expression associated with a computed
column. The values in the column are recalculated when the statement is executed, and the
statement fails if the new expression is invalid.

 DROP COMPUTE—Change a column from being a computed column to being a
noncomputed column. This statement does not change any existing values in the table.

DROP partition clause—Drop the specified partition. The rows are deleted and the partition
definition is dropped. You cannot drop the last partition because dropping the last partition
would transform a partitioned table to a non-partitioned table. (To merge a partitioned table,
use UNPARTITION clause instead.) For example:

CREATE TABLE foo (cl1 INT, c2 INT)
PARTI TI ON BY RANGE (c1)
(P1 VALUES <= (100) IN dbsp1,
P2 VALUES <= (200) | N dbsp2,
P3 VALUES <= (MAX) | N dbsp3
) I N dbsp4);

LOAD TABLE ...

ALTER TABLE DROP PARTI TI ON P1;

ADD table-constraint—Add a constraint to the table. You can also add a foreign key constraint
as atable constraint for a single-column or multicolumn key. See CREATE TABLE Statement
for a full explanation of table constraints.

If PRIMARY KEY is specified, the table must not already have a primary key created by the
CREATE TABLE statement or another ALTER TABLE statement.

32

Sybase 1Q

SQL Statements

Note: You cannot MODIFY a table or column constraint. To change a constraint, DELETE the
old constraint and ADD the new constraint.

DROP column-name—Drop the column from the table. If the column is contained in any
multicolumn index, uniqueness constraint, foreign key, or primary key, then the index,
constraint, or key must be deleted before the column can be deleted. This does not delete
CHECK constraints that refer to the column. An IDENTITY/DEFAULT AUTOINCREMENT
column can only be deleted if IDENTITY_INSERT is turned off and the table is not a local
temporary table.

DROP CHECK—Drop all check constraints for the table. This includes both table check
constraints and column check constraints.

DROP CONSTRAINT constraint-name—Drop the named constraint for the table or specified
column.

DROP UNIQUE (column-name,...)—Drop the unique constraints on the specified
column(s). Any foreign keys referencing the unique constraint (rather than the primary key)
are also deleted. Reports an error if there are associated foreign-key constraints. Use ALTER
TABLE to delete all foreign keys that reference the primary key before you delete the primary
key constraint.

DROP PRIMARY KEY—Drop the primary key. All foreign keys referencing the primary key
for this table are also deleted. Reports an error if there are associated foreign key constraints. If
the primary key is unenforced, DELETE returns an error if associated unenforced foreign key
constraints exist.

DROP FOREIGN KEY role-name—Drop the foreign key constraint for this table with the
given role name. Retains the implicitly created nonunique HG index for the foreign key
constraint. Users can explicitly remove the HG index with the DROP INDEX statement.

DROP PARTITION—Delete rows in partition P1 and drop the partition definition of P1. If a
new row with value 99 for column c1 is inserted, it will be placed under partition p2 in
dbspace dbsp2.

RENAME new-table-name—Change the name of the table to the new-table-name. Any
applications using the old table name must be modified. Also, any foreign keys that were
automatically assigned the same name as the old table name do not change names.

RENAME column-name TO new-column-name—Change the name of the column to new-
column-name. Any applications using the old column name must be modified.

RENAME constraint-name TO new-constraint-name—Change the name of the constraint to
new-constraint-name. Any applications using the old constraint name must be modified.

ALTER TABLE is prevented whenever the statement affects a table that is currently being used
by another connection. ALTER TABLE can be time consuming, and the server does not process
requests referencing the same table while the statement is being processed.

Reference: Statements and Options 33

SQL Statements

ALTER Column MOVE TO—Move the specified column to the new dbspace for a hon-
partitioned table. The ALTER Co/umnMOVE TO clause cannot be requested on a partitioned
table. The ALTER Column MOVE PARTITION clause moves the column of the specified
partition to the specified dbspace.

MOVE PARTITION—Move the specified partition to the new dbspace.

MOVE TO—Move all table objects including columns, indexes, unique constraints, primary
key, foreign keys, and metadata resided in the same dbspace as the table is mapped to the new
dbspace.

Each table object can reside in only one dbspace. Any type of ALTER MOVE blocks any
modification to the table for the entire duration of the move.

MOVE TABLE METADATA—Move the metadata of the table to a new dbspace. For a
partitioned table, the MOVE TABLE METADATA clause also moves metadata that is shared
among partitions.

You must have DBA or SPACE ADMIN authority, or have CREATE privilege on the new
dbspace and be the table owner or have alter permission on the table.

SPLIT PARTITION—Split the specified partition into two partitions. A partition can be split
only if no data must be moved. All existing rows of the partition to be split must remain in a
single partition after the split. The boundary value for partition-decl-1 must be less than the
boundary value of partition-nameand the boundary value for partition-dec/-2must be equal to
the boundary value of partition-name. You can specify different names for the two new
partitions. The old partition-name can only be used for the second partition, if a new name is
not specified.

MERGE PARTITION—Merge partition-name-1into partition-name-Z2. Two partitions can be
merged if they are adjacent partitions and the data resides on the same dbspace. You can only
merge a partition with a lower partition value into the adjacent partition with a higher partition
value. Note that the server does not check CREATE permission on the dbspace into which the
partition is merged. For an example of how to create adjacent partitions, see Example 3 in
CREATE TABLE Statement.

UNPARTITION—Remove partitions from a partitioned table. Each column is placed in a
single dbspace. Note that the server does not check CREATE permission on the dbspace to
which data of all partitions is moved. ALTER TABLE UNPARTITION blocks all database
activities.

PARTITION BY—-Partition a non-partitioned table. A non-partitioned table can be
partitioned, if all existing rows belong to the first partition. You can specify a different dbspace
for the first partition than the dbspace of the column or table. But existing rows are not moved.
Instead, the proper dbspace for the column/partition is kept in

SYS. | SYSI QPARTI TI ONCOLUIWN for existing columns. Only the default or max identity
column(s) that are added later for the first partition are stored in the specified dbspace for the
first partition.

34

Sybase 1Q

SQL Statements

RENAME PARTITION—Rename an existing partition name to a new partition name.
Side effects:

« Automatic commit. The ALTER and DROP options close all cursors for the current
connection. The dbisql data window is also cleared.

« A checkpoint is carried out at the beginning of the ALTER TABLE operation.

* Once you alter a column or table, any stored procedures, views or other items that refer to
the altered column no longer work.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Some clauses are supported by Adaptive Server Enterprise.

Permissions
For MOVE syntax, one of the following must be true:

« Have DBA or SPACE ADMIN authority
« Have CREATE permission on the new dbspace and be the table owner
* Have ALTER permission on the table

For syntax other than MOVE, one of the following must be true:

« Have DBA authority
« Have CREATE permission on the new dbspace and be the table owner
* Have ALTER permission on the table

Requires exclusive access to the table.

See also

o CREATE TABLE Statementon page 133
* DROP Statement on page 170

e IDENTITY INSERT Optionon page 383

ALTER TEXT CONFIGURATION Statement

Alters a text configuration object.

Syntax
See bel ow.

Reference: Statements and Options 35

SQL Statements

Usage
For syntax and complete description, see Unstructured Data Analytics in Sybase 1Q.

ALTER TEXT INDEX Statement

Alters the definition of a TEXT index.

Syntax

See bel ow.

Usage
For syntax and complete description, see Unstructured Data Analytics in Sybase 1Q.

ALTER USER Statement

Changes user settings.

Syntax
Syntax 1

ALTER USER user-name [IDENTIFIED BY password] [LOGIN POLICY policy-name]
[FORCE PASSWORD CHANGE { ON | OFF }]

Syntax 2
ALTER USER user-name [RESET LOGIN POLICY]

Examples

* Example 1 — Alter a user named SQLTest er . The password is set to “welcome”. The
SQLTest er userisassigned tothe Test 1 login policy and the password does not expire
on the next login.

ALTER USER SQL.Test er
| DENTI FI ED BY wel come

LOA N POLI CY Test 1
FORCE PASSWORD CHANCE OFF

The user executing this command requires both USER ADMIN and PERMS ADMIN or
DBA authority. PERMS ADMIN authority is required to change the password and USER
ADMIN authority to change the login policy.

36

Sybase 1Q

SQL Statements

Usage
user--name—The name of the user.

IDENTIFIED BY clause—Clause providing the password for the user.

policy-name—The name of the login policy to assign the user. No change is made if the LOGIN
POLICY clause is not specified.

FORCE PASSWORD CHANGE clause—Controls whether the user must specify a new
password when they log in. This setting overrides the
PASSWORD_EXPI RY_ON_NEXT_LOG N option setting in their policy.

RESET LOGIN POLICY clause—Reverts the settings of the user's login to the original values
in the login policy. This usually clears all locks that are implicitly set due to the user exceeding
the failed logins or exceeding the maximum number of days since the last login. When you
reset a login policy, a user can access an account that has been locked for exceeding a login
policy option limit such as MAX_FAI LED LOG N_ATTEMPTS or

MAX_DAYS_SI NCE_LCA N.

For more information on managing login policies, see SQL Anywhere 11.0.1 > SQL
Anywhere Server — Database Administration > Configuring Your Database > Managing user
1Ds, authorities, and permissions > Managing login policies overview.

Enhanced ALTER LOGIN POLICY syntax for multiplex is described in Using Sybase 1Q
Multiplex.

User IDs and passwords cannot:

« Begin with white space, single quotes, or double quotes
« End with white space
« Contain semicolons

If you set the PASSWORD EXPI RY_ON_NEXT_LOG Nvalue to ON, the passwords of all
users assigned to this login policy expire immediately when they next log in. You can use the
ALTER USER and LOGIN POLICY clauses to force a user to change the password when he next
logs in.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Users may change their own passwords. To change other users’ passwords requires either
DBA or PERMS ADMIN authorities. A user needs DBA or USER ADMIN authority for
ALTER USER LOGIN POLICY, FORCE PASSWORD CHANGE, or RESET LOGIN POLICY.

Reference: Statements and Options 37

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html

SQL Statements

See also

e ALTER LOGIN POLICY Statementon page 19

» COMMENT Statement on page 58

e CREATE LOGIN POLICY Statementon page 107
o CREATE USER Statementon page 146

» DROP LOGIN POLICY Statementon page 175

e DROP USER Statementon page 179

e GRANT Statementon page 199

* REVOKE Statementon page 272

ALTER VIEW Statement

Replaces a view definition with a modified version.

Syntax

Syntax 1 — Alter the structure of the view

ALTER VIEW

...[owner.]viewnane [(colum-name [, ...])]
...AS sel ect - st at enent

...[WITH CHECK OPTION]

Syntax 2 — Change attributes for the view

ALTER VIEW
...[owner.]view nane
..{ SETHIDDEN | RECOMPILE | DISABLE | ENABLE }

Usage

AS—Purpose and syntax identical to CREATE VIEW statement. See CREATE VIEW
Statement.

WITH CHECK OPTION —Purpose and syntax identical to CREATE VIEW statement. See
CREATE VIEW Statement.

SET HIDDEN—Obfuscate the definition of the view and cause the view to become hidden
from view, for example in Sybase Central. Explicit references to the view still work.

Warning! The SET HIDDEN operation is irreversible.

RECOMPILE—Recreate the column definitions for the view. Identical in functionality to the
ENABLE clause, except you can use it on a view that is not disabled.

DISABLE—Disable the view from use by the database server.

38

Sybase 1Q

SQL Statements

ENABLE—Enable a disabled view, which causes the database server to recreate the column
definitions for the view. Before you enable a view, you must enable any views on which it
depends.

When you alter a view, existing permissions on the view are maintained and do not require
reassignment. Instead of using the ALTER VIEW statement, you could also drop the view and
recreate it using DROP VIEW and CREATE VIEW, respectively. If you do this, view
permissions must be reassigned.

After completing the view alteration using Syntax 1, the database server recompiles the view.
Depending on the type of change you made, if there are dependent views, the database server
attempts to recompile them. If you made changes that impact a dependent view, that view may
become invalid, requiring you to alter the definition for the dependent view.

Warning! If the SELECT statement defining the view contains an asterisk (*), the number of
the columns in the view could change if columns were added or deleted from the underlying
tables. The names and data types of the view columns could also change.

Syntax 1—Alter the structure of the view. Unlike altering tables, where your change might be
limited to individual columns, altering the structure of a view requires that you replace the
entire view definition with a new definition, much as you would when creating the view. For a
description of the parameters used to define the structure of a view, see CREATE VIEW
Statement.

Syntax 2—Change attributes for the view, such as whether the view definition is hidden.

When you use SET HIDDEN, you can unload and reload the view into other databases.
Debugging using the debugger does not show the view definition, nor is it available through
procedure profiling. If you need to change the definition of a hidden view, you must drop the
view and create it again using the CREATE VIEW statement.

When you use the DISABLE clause, the view is no longer available for use by the database
server to answer queries. Disabling a view is similar to dropping one, except that the view
definition remains in the database. Disabling a view also disables any dependent views.
Therefore, the DISABLE clause requires exclusive access, not only to the view being disabled,
but to any dependent views, which are also disabled.

See also Sysstem Administration Guide: Volume 2 > Using Procedures and Batches > Hiding
the Contents of Procedures, Functions, and Views, Reference: Building Blocks, Tables, and
Procedures > System Procedures > System Stored Procedures > sa_dependent views
Procedure.

For detailed information on how the database server handles view dependencies, see SQL
Anywhere 11.0.1 > SQL Anywhere Server — SQL Usage > Creating Databases > Working
with database objects > Working with views > View Dependencies.

Side effects:

* Automatic commit

Reference: Statements and Options 39

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html

SQL Statements

« All procedures and triggers are unloaded from memory, so that any procedure or trigger
that references the view reflects the new view definition. The unloading and loading of
procedures and triggers can have a performance impact if you regularly alter views.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must be owner of the view or have DBA authority.

See also

o CREATE VIEW Statement on page 149

e DROP Statementon page 170

» ldentifying and Fixing Invalid Dependent Views on page 40

Identifying and Fixing Invalid Dependent Views

Check for, and correct, any dependent views that become invalid due to changes to their
underlying tables.

Under most circumstances the database server automatically recompiles views to keep them
valid if the underlying tables change. However, if your table alteration removes or materially
changes something referenced by the view definition, then the dependent view becomes
invalid. For example, if you remove a column referenced in the view definition, then the
dependent view is no longer valid. Correct the view definition and manually recompile the
view.

1. Runsa_dependent_views to get the list of dependent views.

2. Perform the DDL operation that alters the table. The server automatically disables
dependent views, and attempts to recompile them once the DDL is complete.

3. Check that all the views listed by sa_dependent_views are valid. For example, perform a
simple test such as SELECT * FROM myview.

4, Ifaviewisinvalid, itis likely you will need to alter the view definition to resolve the issue.
Examine the view definition against the DDL change that you made and make the
necessary changes. Run ALTER VIEW RECOMPILE to correct the view definition.

5. Test the corrected view to make sure it works. For example, perform a simple test such as
SELECT * FROM myview.

sa_dependent_views returns the list of all dependent views for a given table or view. See
Reference: Building Blocks, Tables, and Procedures > System Procedures > System Stored
Procedures > sa_dependent_views Procedure and SQL Anywhere 11.0.1 > SQL Anywhere

40

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-dependent-views-sysproc.html

SQL Statements

Server - SQL Reference > System Objects > System procedures > Alphabetical list of system
procedures > sa_dependent views system procedure.

For detailed information on how the database server handles view dependencies, see SQL
Anywhere 11.0.1 > SQL Anywhere Server — SQL Usage > Creating Databases > Working
with database objects > Working with views > Viiew Dependencies.

See also
e ALTER VIEW Statement on page 38

BACKUP Statement

Backs up a Sybase 1Q database on one or more archive devices.

Syntax

BACKUP DATABASE

[backup-option...]

TO archive_device [archive-option...]
...[WITH COMMENT string]

Parameters

* backup-option: —

{ READWRITE FILES ONLY |

READONLY dbspace-or-file [, ...] }

CRC { ON | OFF }

ATTENDED { ON | OFF }

BLOCK FACTOR i nt eger

{ FULL | INCREMENTAL | INCREMENTAL SINCE FULL }
VIRTUAL { DECOUPLED |

ENCAPSULATED ‘ shel | _conmand’ }

WITH COMMENT conmment

* dbspace-or-file: —

{ DBSPACES identifier-list | FILES identifier-list }
* identifier-list: — identifier|[, ...]
» archive-option: — SIZE integer STACKER /nteger

Examples

* Example 1—This UNIX example backs up the i gdeno database onto tape devices /
dev/rmt/0and/ dev/rmnt/ 2 ona Sun Solaris platform. On Solaris, the letter nafter
the device name specifies the “no rewind on close” feature. Always specify this feature
with BACKUP, using the naming convention appropriate for your UNIX platform
(Windows does not support this feature). This example backs up all changes to the
database since the last full backup:

Reference: Statements and Options 41

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-dependent-views-sysproc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-dependent-views-sysproc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-workingwdb-s-5236926.html

SQL Statements

BACKUP DATABASE

| NCREMENTAL SI NCE FULL

TO '/dev/rnt/0On' SIZE 10000000
TO '/dev/rnt/2n" SIZE 15000000

Note: Size units are kilobytes (KB), although in most cases, size of less than 1GB are
inappropriate. In this example, the specified sizes are 10GB and 15GB.

* Example 2 —These BACKUP commands specify read-only files and dbspaces:

BACKUP DATABASE READONLY DBSPACES dspl
TO '/dev/rnt/ 0

BACKUP DATABASE READONLY FILES dspl f1, dspl_f2
TO ' bkp. f 1f 2"

BACKUP DATABASE READONLY DBSPACES dsp2, dsp3
READONLY FI LES dsp4_f1, dsp5_f2
TO ' bkp. RO

Usage

The 1Q database might be open for use by many readers and writers when you execute a
BACKUP command. It acts as a read-only user and relies on the Table Level Versioning feature
of Sybase 1Q to achieve a consistent set of data.

BACKUP implicitly issues a CHECKPOINT prior to commencing, and then it backs up the
catalog tables that describe the database (and any other tables you have added to the catalog
store). During this first phase, Sybase 1Q does not allow any metadata changes to the database
(such as adding or dropping columns and tables). Correspondingly, a later RESTORE of the
backup restores only up to that initial CHECKPOINT.

The BACKUP command lets you specify full or incremental backups. You can choose two
kinds of incremental backups. INCREMENTAL backs up only those blocks that have changed
and committed since the last BACKUP of any type (incremental or full). INCREMENTAL
SINCE FULL backs up all of the blocks that have changed since the last full backup. The first
type of incremental backup can be smaller and faster to do for BACKUP commands, but slower
and more complicated for RESTORE commands. The opposite is true for the other type of
incremental backup. The reason is that the first type generally results in N sets of incremental
backup archives for each full backup archive. If a restore is required, the DBA must RESTORE
the full backup archive first, and then each incremental archive in the proper order. (Sybase 1Q
keeps track of which ones are needed.) The second type requires the DBA to restore only the
full backup archive and the last incremental archive.

Incremental virtual backup is supported using the VIRTUAL DECOUPLED and VIRTUAL
ENCAPSULATED parameters of the BACKUP statement.

Although you can perform an OS-level copy of tablespaces to make a virtual backup of one or
more read-only dbspaces, Sybase recommends that you use the virtual backup statement,

because it records the backup in the 1Q system tables. See Reference. Building Blocks, Tables,
and Procedures > System Tables and Views > System Views > SYSIQBACKUPHISTORY

42

Sybase 1Q

SQL Statements

System View and Reference: Building Blocks, Tables, and Procedures > System Tables and
Views > System Views > SYSIQBACKUPHISTORYDETAIL System View.

READWRITE FILES ONLY may be used with FULL, INCREMENTAL, and INCREMENTAL
SINCE FULL to restrict the backup to only the set of read-write files in the database. The read-
write dbspaces/files must be 1Q dbspaces.

If READWRITE FILES ONLY is used with an INCREMENTAL or INCREMENTAL SINCE FULL
backup, the backup will not back up data on read-only dbspaces or dbfiles that has changed
since the depends-on backup. If READWRITE FILES ONLY is not specified for an
INCREMENTAL or INCREMENTAL SINCE FULL backup, the backup backs up all database
pages that have changed since the depends-on backup, both on read-write and read-only
dbspaces.

CRC clause — Activate 32-bit cyclical redundancy checking on a per block basis (in addition to
whatever error detection is available in the hardware). When you specify this clause, the
numbers computed on backup are verified during any subsequent RESTORE operation,
affecting performance of both commands. The default is ON.

ATTENDED clause — Applies only when backing up to a tape device. If ATTENDED ON (the
default) is used, a message is sent to the application that issued the BACKUP statement if the
tape drive requires intervention. This might happen, for example, when a new tape is required.
If you specify OFF, BACKUP does not prompt for new tapes. If additional tapes are needed and
OFF has been specified, Sybase 1Q gives an error and aborts the BACKUP command.
However, a short delay is included to account for the time an automatic stacker drive requires
to switch tapes.

BLOCK FACTOR clause — Specify the number of blocks to write at one time. Its value must
be greater than 0, or Sybase 1Q generates an error message. Its default is 25 for UNIX systems
and 15 for Windows systems (to accommodate the smaller fixed tape block sizes). This clause
effectively controls the amount of memory used for buffers. The actual amount of memory is
this value times the block size times the number of threads used to extract data from the
database. Sybase recommends setting BLOCK FACTOR to at least 25.

FULL clause — Specify a full backup; all blocks in use in the database are saved to the archive
devices. This is the default action.

INCREMENTAL clause — Specify an incremental backup; all blocks changed since the last
backup of any kind are saved to the archive devices.

The keyword INCREMENTAL is not allowed with READONLY FILES.

INCREMENTAL SINCE FULL clause — Specify an incremental backup; all blocks changed
since the last full backup are saved to the archive devices.

VIRTUAL DECOUPLED clause — Specify a decoupled virtual backup. For the backup to be
complete, you must copy the 1Q dbspaces after the decoupled virtual backup finishes, and then
perform a nonvirtual incremental backup.

Reference: Statements and Options 43

SQL Statements

VIRTUAL ENCAPSULATED clause — Specify an encapsulated virtual backup. The ‘shell-
command’ argument can be a string or variable containing a string that is executed as part of
the encapsulated virtual backup. The shell commands execute a system-level backup of the I1Q
store as part of the backup operation.

TO clause — Specify the name of the archive_device to be used for backup, delimited with
single quotation marks. The archive_device is a file name or tape drive device name for the
archive file. If you use multiple archive devices, specify them using separate TO clauses. (A
comma-separated list is not allowed.) Archive devices must be distinct. The number of TO
clauses determines the amount of parallelism Sybase 1Q attempts with regard to output
devices.

BACKUP and RESTORE write your 1Q data in parallel to or from all of the archive devices you
specify. The catalog store is written serially to the first device. Faster backups and restores
result from greater parallelism.

Sybase 1Q supports a maximum of 36 hardware devices for backup. For faster backups,
specifying one or two devices per core will help to avoid hardware and 10 contention. Set the
SIZE parameter on the BACKUP command to avoid creating multiple files per backup device
and consider the value used in the BLOCK FACTOR clause on the BACKUP command.

BACKUP overwrites existing archive files unless you move the old files or use a different
archive_device name or path.

The backup API DLL implementation lets you specify arguments to pass to the DLL when
opening an archive device. For third-party implementations, the archive_device string has this
format:

"DLLidentifier::vendor_specific_information'
A specific example:

' spsc: : wor kor der =12; vol name=ASD002'

The archive_devicestring length can be up to 1023 bytes. The DL Lidentifierportion must be 1
to 30 bytes in length and can contain only alphanumeric and underscore characters. The
vendor_specific_information portion of the string is passed to the third-party implementation
without checking its contents. Do not specify the SIZE or STACKER clauses of the BACKUP
command when using third-party implementations, as that information should be encoded in
the vendor_specific_information portion of the string.

Note: Only certain third-party products are certified with Sybase 1Q using this syntax. See the
Release Bulletinfor additional usage instructions or restrictions. Before using any third-party
product to back up your Sybase 1Q database in this way, make sure it is certified. See the
Release Bulletin, or see the Sybase Certification Reports for the Sybase 1Q product in
Technical Documents at hitp.//www.sybase.com/support/techdocs/.

For the Sybase implementation of the backup API, you need to specify only the tape device
name or file name. For disk devices, you should also specify the SIZE value, or Sybase 1Q
assumes that each created disk file is no larger than 2GB on UNIX, or 1.5GB on Windows. An

44

Sybase 1Q

http://www.sybase.com/support/techdocs/

SQL Statements

example of an archive device for the Sybase API DLL that specifies a tape device for certain
UNIX systems is:

‘/dev/rm/O0'

SIZE clause—Specify maximum tape or file capacity per output device (some platforms do
not reliably detect end-of-tape markers). No volume used on the corresponding device should
be shorter than this value. This value applies to both tape and disk files but not third-party
devices.

Units are kilobytes (KB), although in general, less than 1GB is inappropriate. For example, for
a 3.5GB tape, specify 3500000. Defaults are by platform and medium. The final size of the
backup file will not be exact, because backup writes in units of large blocks of data.

The SIZE parameter is per output device. SIZE does not limit the number of bytes per device;
SIZE limits the file size. Each output device can have a different SIZE parameter.

During backup, when the amount of information written to a given device reaches the value
specified by the SIZE parameter, BACKUP does one of the following:

« Ifthedevice isafile system device, BACKUP closes the current file and creates another file
of the same name, with the next ascending number appended to the file name, for example,
bkupl. dat 1. 1, bkupl. dat 1. 2, bkupl. dat 1. 3.

« Ifthe device is a tape unit, BACKUP closes the current tape and you need to mount another
tape.

It is your responsibility to mount additional tapes if needed, or to ensure that the disk has
enough space to accommodate the backup.

When multiple devices are specified, BACKUP distributes the information across all devices.

Table 2. BACKUP default sizes

Platform Default SIZE for tape Default SIZE for disk
UNIX none 2GB
Windows 1.5GB 1.5GB

SIZE must be a multiple of 64. Other values
are rounded down to a multiple of 64.

STACKER clause—Specify that the device is automatically loaded, and specifies the number
of tapes with which it is loaded. This value is not the tape position in the stacker, which could
be zero. When ATTENDED is OFF and STACKER is ON, Sybase 1Q waits for a predetermined
amount of time to allow the next tape to be autoloaded. The number of tapes supplied along
with the SIZE clause are used to determine whether there is enough space to store the backed-
up data. Do not use this clause with third-party media management devices.

Reference: Statements and Options 45

SQL Statements

WITH COMMENT clause—Specify an optional comment recorded in the archive file and in
the backup history file. Maximum length is 32KB. If you do not specify a value, a NULL string
is stored.

Other issues for BACKUP include:

BACKUP does not support raw devices as archival devices.

Windows systems support only fixed-length 1/O operations to tape devices (for more
information about this limitation, see your /nstallation and Configuration Guide).
Although Windows supports tape partitioning, Sybase 1Q does not use it, so do not use
another application to format tapes for BACKUP. Windows has a simpler naming strategy
for its tape devices, where the first tape device is |l [fape0, the second is Il. ltapel, and so
on.

Warning! For backup (and for most other situations) Sybase 1Q treats the leading
backslash in a string as an escape character, when the backslash precedes an n, an x, or
another backslash. For this reason, when you specify backup tape devices, you must
double each backslash required by the Windows naming convention. For example,
indicate the first Windows tape device you are backinguptoas\\\\ .\ \ t ape0’, the
secondas \\\\.\\t apel', and so on. If you omit the extra backslashes, or otherwise
misspell a tape device name, and write a name that is not a valid tape device on your
system, Sybase 1Q interprets this name as a disk file name.

Sybase 1Q does not rewind tapes before using them. You must ensure the tapes used for
BACKUP or RESTORE are at the correct starting point before putting them in the tape
device. Sybase 1Q does rewind tapes after using them on rewinding devices.

During BACKUP and RESTORE operations, if Sybase 1Q cannot open the archive device
(for example, when it needs the media loaded) and the ATTENDED parameter is ON, it
waits for ten seconds and tries again. It continues these attempts indefinitely until either it
is successful or the operation is terminated with a Ctrl+C.

If you enter Ctrl+C, BACKUP fails and returns the database to the state it was in before the
backup started.

If disk striping is used, such as on a RAID device, the striped disks are treated as a single
device.

If you are recovering a SQL Anywhere database, see SQL Anywhere 11.0.1 > SQL
Anywhere Server — Database Administration > Maintaining Your Database > Backup and
aata recovery for additional options.

See also System Administration Guide: Volume 1 > Data Backup, Recovery, and
Archiving.

Side effects:

Automatic commit

46

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-new-backup.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-new-backup.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-new-backup.html

SQL Statements

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must be the owner of the database or have DBA authority. Users without DBA authority
require OPERATOR authority.

See also
e RESTORE Statementon page 264

BEGIN ... END Statement
Groups SQL statements together.

Syntax
[statement-|abel :]
..BEGIN [[NOT] ATOMIC]

...[local-declaration ; ..]
...statement-1|i st

...| EXCEPTION [exception-case ...]]
..END [statenent-|abel]

Parameters

* local-declaration: — { variable-declaration | cursor-declaration| exception-declaration |
temporary-table-declaration }

* variable-declaration: — DECLARE variable-name data-type

* exception-declaration: — DECLARE exception-name EXCEPTION FOR SQLSTATE
[VALUE] string

* exception-case: —WHEN exception-name| , ... | THEN statement-list| WHEN OTHERS
THEN statement-Iist

Examples
* Example 1—The body of a procedure is a compound statement:

CREATE PROCEDURE TopCustomer (OUT TopConpany CHAR(35), OUT
TopVal ue | NT)
BEGA N
DECLARE err_not found EXCEPTI ON FOR
SQLSTATE ' 02000' ;
DECLARE cur Thi sCust CURSOR FOR
SELECT ConpanyNane, CAST(
sun(Sal esOrderltens. Quantity *

Reference: Statements and Options a7

SQL Statements

Products. UnitPrice) AS | NTEGER) VALUE
FROM Cust oner s
LEFT OQUTER JO N Sal esorders
LEFT OUTER JO N Sal esOrderltens
LEFT QUTER JO N Products
CROUP BY ConpanyNane ;
DECLARE Thi sVal ue | NT ;
DECLARE Thi sConpany CHAR(35) ;
SET TopVal ue = 0 ;
OPEN cur Thi sCust ;

Cust onmer Loop:
LooP
FETCH NEXT cur Thi sCust
I NTO Thi sConpany, ThisVal ue ;
| F SQLSTATE = err_notfound THEN
LEAVE Cust oner Loop ;
END I F ;
| F Thi sval ue > TopVal ue THEN
SET TopVal ue = Thi sVal ue ;
SET TopConpany = Thi sConpany ;
END I F ;
END LOOP Cust oner Loop ;

CLCSE cur Thi sCust ;
END

Usage

The body of a procedure or trigger is a compound statement. Compound statements can also
be used in control statements within a procedure or trigger.

A compound statement allows one or more SQL statements to be grouped together and treated
as a unit. A compound statement starts with BEGIN and ends with END. Immediately
following BEGIN, a compound statement can have local declarations that exist only within the
compound statement. A compound statement can have a local declaration for a variable, a
cursor, a temporary table, or an exception. Local declarations can be referenced by any
statement in that compound statement, or in any compound statement nested within it. Local
declarations are invisible to other procedures that are called from within a compound
statement.

If the ending statement-label is specified, it must match the beginning statement-label. You
can use the LEAVE statement to resume execution at the first statement after the compound
statement. The compound statement that is the body of a procedure has an implicit label that is
the same as the name of the procedure or trigger.

ATOMIC clause—An atomic statement is a statement executed completely or not at all. For
example, an UPDATE statement that updates thousands of rows might encounter an error after
updating many rows. If the statement does not complete, all changes revert back to their
original state. Similarly, if you specify that the BEGIN statement is atomic, the statement is
executed either in its entirety or not at all.

48

Sybase 1Q

SQL Statements

For a complete description of compound statements and exception handling, see System
Administration Guide: Volume 2 > Using Procedures and Batches.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.

« Sybase—Supported by Adaptive Server Enterprise. This does hot mean that all statements
inside a compound statement are supported.
BEGIN and END keywords are not required in Transact-SQL.

BEGIN and END are used in Transact-SQL to group a set of statements into a single
compound statement, so that control statements such as IF ... ELSE, which affect the
performance of only a single SQL statement, can affect the performance of the whole
group. The ATOMIC keyword is not supported by Adaptive Server Enterprise.

In Transact-SQL. DECLARE statements need not immediately follow BEGIN, and the
cursor or variable that is declared exists for the duration of the compound statement. You
should declare variables at the beginning of the compound statement for compatibility.

Permissions

None

See also

o DECLARE LOCAL TEMPORARY TABLE Statementon page 160
e DECLARE CURSOR Statement [ESQL] [SP] on page 154

» L EAVE Statement on page 220

e RESIGNAL Statementon page 263

o SIGNAL Statementon page 297

BEGIN PARALLEL 1Q ... END PARALLEL IQ Statement

Groups CREATE INDEX statements together for execution at the same time.

Syntax
BEGIN PARALLEL 1Q
statenent-1i st
END PARALLEL IQ

Parameters

e statement-list —a list of CREATE INDEX statements

Reference: Statements and Options 49

SQL Statements

Examples

» Example 1 - This statement executes atomically. If one command fails, the entire
statement rolls back:

BEG N PARALLEL 1Q
CREATE HG | NDEX c1_HG on tablel (col1);
CREATE HNG | NDEX c12_HNG on tabl el (col 12);
CREATE LF INDEX c1_LF on tablel (col1);
CREATE HNG | NDEX c2_HNG on tablel (col 2);
END PARALLEL 1Q

Usage

The BEGIN PARALLEL 1Q ... END PARALLEL IQ statement lets you execute a group of
CREATE INDEX statements as though they are a single DDL statement, creating indexes on
multiple 1Q tables at the same time. While this statement is executing, you and other users
cannot issue other DDL statements.

You can specify multiple tables within the statement list. Granularity is at the column level. In
other words, multiple indexes on the same column are executed serially.

Note: This statement does not support TEXT indexes.

Side effects:

* Automatic commit

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

« Sybase—Not supported by Adaptive Server Enterprise. For support of statements inside
the statement, see CREATE INDEX Statement.

Permissions

None

See also
o CREATE INDEX Statementon page 97

BEGIN TRANSACTION Statement [T-SQL]

Use this statement to begin a user-defined transaction.

Note: BEGIN TRANSACTION is a T-SQL construct and must contain only valid T-SQL
commands. You cannot mix T-SQL and non-T-SQL commands.

50

Sybase 1Q

SQL Statements

Syntax
BEGIN TRAN[SACTION] [transaction-nane]

Examples

« Example 1 —This batch reports successive values of @@trancount as 0, 1, 2, 1, 0. The
values are printed on the server window:
PRI NT @@ r ancount
BEG N TRANSACTI ON
PRI NT @@ r ancount
BEGA N TRANSACTI ON
PRI NT @@ r ancount
COWM T TRANSACTI ON
PRI NT @@ r ancount
COW T TRANSACTI ON
PRI NT @@ r ancount

You should not rely on the value of @@trancount for more than keeping track of the
number of explicit BEGIN TRANSACTION statements that have been issued.

When Adaptive Server Enterprise starts a transaction implicitly, the @ @trancount
variable is set to 1. Sybase 1Q does not set the @ @trancount value to 1 when a transaction
is started implicitly. So, the Sybase 1Q @ @trancount variable has a value of zero before
any BEGIN TRANSACTION statement (even though there is a current transaction), while in
Adaptive Server Enterprise (in chained mode) it has a value of 1.

For transactions starting with a BEGIN TRANSACTION statement, @ @trancount has a
value of 1 in both Sybase 1Q and Adaptive Server Enterprise after the first BEGIN
TRANSACTION statement. If a transaction is implicitly started with a different statement,
and a BEGIN TRANSACTION statement is then executed, @ @trancount has a value of 2 in
both Sybase 1Q, and Adaptive Server Enterprise after the BEGIN TRANSACTION
statement.

Usage

The optional parameter transaction-nameis the name assigned to this transaction. It must be a
valid identifier. Use transaction names only on the outermost pair of nested BEGIN/COMMIT
or BEGIN/ROLLBACK statements.

When executed inside a transaction, the BEGIN TRANSACTION statement increases the
nesting level of transactions by one. The nesting level is decreased by a COMMIT statement.
When transactions are nested, only the outermost COMMIT makes the changes to the database
permanent.

Both Adaptive Server Enterprise and Sybase 1Q have two transaction modes.

The default Adaptive Server Enterprise transaction mode, called unchained mode, commits
each statement individually, unless an explicit BEGIN TRANSACTION statement is executed
to start a transaction. In contrast, the ISO SQL/2003 compatible chained mode only commits a

Reference: Statements and Options 51

SQL Statements

transaction when an explicit COMMIT is executed or when a statement that carries out an
autocommit (such as data definition statements) is executed.

For more information on BEGIN TRANSACTION statement [T-SQL], see SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Reference > Using SQL > SQL statements > SQL
statements (A-D) > BEGIN TRANSACTION statement [T-SQL].

You can control the mode by setting the chained database option. The default setting for
ODBC and embedded SQL connections in Sybase IQ is On, in which case Sybase 1Q runs in
chained mode. (ODBC users should also check the AutoCommit ODBC setting). The default
for TDS connections is Off.

In unchained mode, a transaction is implicitly started before any data retrieval or modification
statement. These statements include: DELETE, INSERT, OPEN, FETCH, SELECT, and
UPDATE. You must still explicitly end the transaction with a COMMIT or ROLLBACK
statement.

You cannot alter the chained option within a transaction.

Note: When calling a stored procedure, you should ensure that it operates correctly under the
required transaction mode.

The current nesting level is held in the global variable @ @trancount. The @ @trancount
variable has a value of zero before the first BEGIN TRANSACTION statement is executed, and
only a COMMIT executed when @ @trancount is equal to one makes changes to the database
permanent.

A ROLLBACK statement without a transaction or savepoint name always rolls back statements
to the outermost BEGIN TRANSACTION (explicit or implicit) statement, and cancels the entire
transaction.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

None

See also

COMMIT Statement on page 60

* ROLLBACK TRANSACTION Statement [T-SQL] on page 277
o SAVE TRANSACTION Statement [T-SQL] on page 278
ISOLATION_LEVEL Optionon page 392

52

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/begin-transaction-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/begin-transaction-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/begin-transaction-statement.html

SQL Statements

CALL Statement

Invokes a procedure.

Syntax

Syntax 1
[variable =] CALL procedure-name ([expression] [, ...])

Syntax 2
[variable =] CALL procedure-name ([paraneter-nane = expression]

[, ...1)

Examples

» Example1l—Call the sp_cust oner _I| i st procedure. This procedure has no
parameters, and returns a result set:

CALL sp_customer_list()

* Example 2 —This dbisql example creates a procedure to return the number of orders
placed by the customer whose ID is supplied, creates a variable to hold the result, calls the
procedure, and displays the result:

CREATE PROCEDURE Order Count (I N Custoner|ID INT, OQUT Orders | NT)
BEG N

SELECT COUNT("DBA". Sal esOrders. | D)

| NTO Orders

FROM " DBA". Cust oner s

KEY LEFT QUTER JO N "DBA". Sal esOrders
VWHERE " DBA". Custoners.| D = CustonerlD ;
END

go

-- Create a variable to hold the result
CREATE VARI ABLE Orders | NT

go
-- Call the procedure, FOR custoner 101

go

-- Display the result
SELECT Orders FROM DUMWY

go

Usage

CALL invokes a procedure that has been previously created with a CREATE PROCEDURE
statement. When the procedure completes, any INOUT or OUT parameter values are copied
back.

Reference: Statements and Options 53

SQL Statements

You can specify the argument list by position or by using keyword format. By position,
arguments match up with the corresponding parameter in the parameter list for the procedure.
By keyword, arguments match the named parameters.

Procedure arguments can be assigned default values in the CREATE PROCEDURE statement,
and missing parameters are assigned the default value, or, if no default is set, NULL.

Inside a procedure, CALL can be used in a DECLARE statement when the procedure returns
result sets. See System Administration Guide: Volume 2 > Using Procedures and Batches.

Procedures can return an integer value (as a status indicator, say) using the RETURN
statement. You can save this return value in a variable using the equality sign as an assignment
operator:

CREATE VARI ABLE returnval |NT ;
returnval = CALL proc_integer (argl = vall, ...)

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Adaptive Server Enterprise. For an alternative that is
supported, see EXECUTE Statement [ESQL].

Permissions

Must be the owner of the procedure, have EXECUTE permission for the procedure, or have
DBA authority.

See also

» CREATE PROCEDURE Statementon page 110
e GRANT Statemment on page 199

e EXECUTE Statement [ESQL] on page 181

CASE Statement

Selects execution path based on multiple cases.

Syntax

CASE val ue- expressi on

.WHEN [constant | NULL] THEN statement-|i st

... WHEN [constant | NULL] THEN statenent-list]
.ELSE statenent-|i st

... END

54

Sybase 1Q

SQL Statements

Examples

» Example 1 —This procedure using a CASE statement classifies the products listed in the
Product s table of the demo database into one of shirt, hat, shorts, or unknown:

CREATE PROCEDURE Product Type (I N product_id INT, OUT type
CHAR(10))
BEGA N
DECLARE prod_nane CHAR(20) ;
SELECT nane | NTO prod_nanme FROM " GROUPO'." Product s"
WHERE | D = product _i d;
CASE prod_nane
VWHEN ' Tee Shirt' THEN
SET type = 'Shirt'
WHEN ' Sweatshirt' THEN
SET type = 'Shirt'
VWHEN ' Basebal | Cap' THEN
SET type = 'Hat'
WHEN ' Vi sor' THEN
SET type = 'Hat'
VWHEN ' Shorts' THEN
SET type = ' Shorts'
ELSE
SET type = ' UNKNOWN
END CASE ;
END

Usage

The CASE statement is a control statement that lets you choose a list of SQL statements to
execute based on the value of an expression.

If a WHEN clause exists for the value of value-expression, the statement-listin the WHEN
clause is executed. If no appropriate WHEN clause exists, and an ELSE clause exists, the
statement-fistin the ELSE clause is executed. Execution resumes at the first statement after the
END.

Note: The ANSI standard allows two forms of CASE statements. Although Sybase 1Q allows
both forms, when CASE is in the predicate, for best performance you must use the form shown
here.

If you require the other form (also called ANSI syntax) for compatibility with SQL Anywhere,
see the CASE statement Syntax 2 in SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL
Reference > Using SQL > SQL statements > SQL statements (A-D) > CASE statement.

Attention:; Do not confuse the syntax of the CASE statement with that of the CASE
expression.

For information on the CASE expression, see Reference: Building Blocks, Tables, and
Procedures > SQL Language Elements > EXpressions.

Reference: Statements and Options 55

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/case-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/case-statement.html

SQL Statements

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

None

See also
e BEGIN ... END Statementon page 47

CHECKPOINT Statement
Checkpoints the database.

Syntax
CHECKPOINT

Usage

CHECKPOINT forces the database server to execute a checkpoint. Checkpoints are also
performed automatically by the database server according to an internal algorithm.
Applications do not normally need to issue CHECKPOINT. For a full description of
checkpoints, see System Administration Guide: Vblume 1 > Data Backup, Recovery, and
Archiving.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must have DBA or OPERATOR authority to checkpoint a database.

CLEAR Statement [Interactive SQL]
Clears the Interactive SQL (dbisql) data window.

Syntax
CLEAR

56 Sybase 1Q

SQL Statements

Usage
The CLEAR statement is used to clear the dbisgl main window.

Side effects:

The CLEAR statement loses the cursor associated with the data being cleared.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not applicable.

Permissions

None

See also
e EXIT Statement [Interactive SQLJ]on page 186

CLOSE Statement [ESQL] [SP]

Closes a cursor.

Syntax

CLOSE cur sor - nane

Parameters

» cursor-name: —{ identifier| host-variable }

Examples
* Example 1 —Close cursors in Embedded SQL.:

EXEC SQL CLCSE enpl oyee_cursor;
EXEC SQL CLOSE :cursor_var;

* Example 2 —Use a cursor:

CREATE PROCEDURE TopCustoner (OUT TopConpany CHAR(35), QUT
TopVal ue | NT)
BEG N
DECLARE err_notfound EXCEPTI ON
FOR SQLSTATE ' 02000' ;
DECLARE cur Thi sCust CURSOR FOR
SELECT ConpanyNane,
CAST(sun(Sal esOrderltens. Quantity *
Products. UnitPrice) AS | NTEGER) VALUE
FROM Cust oner s

Reference: Statements and Options 57

SQL Statements

LEFT QUTER JO N Sal esOrders
LEFT OQUTER JO N Sal esOrderltens
LEFT OUTER JO N Product s
CROUP BY ConpanyNane ;
DECLARE Thi sVal ue I NT ;
DECLARE Thi sConpany CHAR(35) ;
SET TopVal ue = 0 ;
OPEN cur Thi sCust ;
Cust ormer Loop:
LOOP
FETCH NEXT cur Thi sCust
I NTO Thi sConpany, ThisVal ue ;
| F SQLSTATE = err_notfound THEN
LEAVE Cust oner Loop ;
END | F ;
| F Thi sval ue > TopVal ue THEN
SET TopVal ue = Thi sVal ue ;
SET TopConpany = Thi sConpany ;
END | F ;
END LOOP Cust omer Loop ;
CLGSE cur Thi sCust
END

Usage
This statement closes the named cursor.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

The cursor must have been previously opened.

See also

 DECLARE CURSOR Statement [ESQL] [SP] on page 154
e OPEN Statement [ESQL] [SP] on page 246

e PREFARE Statement [ESQL] on page 253

COMMENT Statement

Stores a comment about a database object in the system tables.

Syntax
COMMENT ON
{ COLUMN [owner.]tabl e-nane. col utmm- nane

58

Sybase 1Q

SQL Statements

DBSPACE dbspace- nane

EVENT event - nane

| EXTERNAL ENVIRONMENT envi r onment - name
EXTERNAL OBJECT obj ect - nanme

FOREIGN KEY [owner.]tabl e- nane. rol e- nane
INDEX [[owner.]table.]index-nane

| INTEGRATED LOGIN i nt egrat ed-1ogin-id

JAVA CLASS j ava- cl ass- nane

JAVA JAR j ava-j ar - nane

KERBEROS LOGIN “cl i ent - Ker ber os- pri nci pal ”
| LOGIN POLICY policy-name

MATERIALIZED VIEW [owner.] materi al i zed-vi ew nane
PROCEDURE [owner.]t abl e- nane

SERVICE web- servi ce-nane

| TABLE [owner.]tabl e-nane

TRIGGER [[owner.]tabl e-nane.]trigger-name
USER userid

VIEW [owner.]vi ew nane }

IS comment

Parameters

» comment: —{ string| NULL }
* environment-name: —JAVA | PERL | PHP | CLR | C_ESQL32 | C_ESQL64 | C_ODBC32 |
C_ODBC64

Examples
* Example 1 - Add a comment to the Enpl oyees table:

COMVENT
ON TABLE Enpl oyees
I'S "Enpl oyee information"

* Example 2 — Remove the comment from the Enpl oyees table:
COMVENT

ON TABLE Enpl oyees
I'S NULL

Usage

The COMMENT statement allows you to set a comment for an object in the database. The
COMMENT statement updates remarks in the | SYSREMARK system table. You can remove a
comment by setting itto NULL. The owner of acomment on an index or trigger is the owner of
the table on which the index or trigger is defined.

The COMMENT ON DBSPACE, COMMENT ON JAVA JAR, and COMMENT ON JAVA CLASS
statements allow you to set the Remarks column in the SYS. | SYSREMARK system table.
Remove a comment by setting it to NULL.

You cannot add comments for local temporary tables.

Reference: Statements and Options 59

SQL Statements

Note: Materialized views are only supported for SQL Anywhere tables in the 1Q catalog
store.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must either be the owner of the database object being commented, or have DBA authority.
(You must have DBA or SPACE ADMIN authority to issue this statement with the DBSPACE
clause.)

COMMENT ON LOGICAL SERVER Statement

Comments on the user-defined logical server.

Syntax

See bel ow.

Usage
For syntax and complete description, see Using Sybase 1Q Multiplex.

COMMIT Statement

Makes changes to the database permanent, or terminates a user-defined transaction.

Syntax
Syntax 1
COMMIT [WORK]

Syntax 2
COMMIT TRAN[SACTION] [transaction-nane]

Examples
e Example 1 — Commit the current transaction:

COW T
» Example2—This Transact-SQL batch reports successive values of @@ r ancount as0,
1,2,1,0:

60 Sybase 1Q

SQL Statements

PRI NT @@ r ancount
BEG N TRANSACTI ON
PRI NT @@ r ancount
BEG N TRANSACTI ON
PRI NT @@ r ancount
COM T TRANSACTI ON
PRI NT @@ r ancount
COM T TRANSACTI ON
PRI NT @@ r ancount

go

Usage

Syntax 1—The COMMIT statement ends a transaction and makes all changes made during this
transaction permanent in the database.

Data definition statements carry out commits automatically. For information, see the Side
effects listing for each SQL statement.

COMMIT fails if the database server detects any invalid foreign keys. This makes it impossible
to end a transaction with any invalid foreign keys. Usually, foreign key integrity is checked on
each data manipulation operation. However, if the database option WAl T_FOR_COWM T is
set ON or a particular foreign key was defined witha CHECK ON COMMIT clause, the database
server delays integrity checking until the COMMIT statement is executed.

Syntax 2—You can use BEGIN TRANSACTION and COMMIT TRANSACTION statements in
pairs to construct nested transactions. Nested transactions are similar to savepoints. When
executed as the outermost of a set of nested transactions, the statement makes changes to the
database permanent. When executed inside a transaction, COMMIT TRANSACTION decreases
the nesting level of transactions by one. When transactions are nested, only the outermost
COMMIT makes the changes to the database permanent.

The optional parameter transaction-nameis the name assigned to this transaction. It must be a
valid identifier. Use transaction names only on the outermost pair of nested BEGIN/COMMIT
or BEGIN/ROLLBACK statements.

You can use a set of options to control the detailed behavior of the COMMIT statement. See
COOPERATIVE _COMMIT_TIMEOUT Option, COOPERATIVE_COMMITS Option,
DELAYED COMMITS Option, and DELAYED COMMIT_TIMEOUT Option. You can
use the Commit connection property to return the number of commits on the current
connection.

Side effects:

» Closes all cursors except those opened WITH HOLD.

« Deletes all rows of declared temporary tables on this connection, unless they were
declared using ON COMMIT PRESERVE ROWS.

Reference: Statements and Options 61

SQL Statements

Standards

e SQL—ISO/ANSI SQL compliant.

» Sybase—Supported by Adaptive Server Enterprise. Syntax 2 is a Transact-SQL extension
to ISO/ANSI SQL grammar.

Permissions

Must be connected to the database.

See also

e BEGIN TRANSACTION Statement [T-SQL] on page 50

e CONNECT Statement [ESQL] [Interactive SQL]on page 63
* DISCONNECT Statement [Interactive SQL]Jon page 169

e ROLLBACK Statementon page 275

o SAVEPOINT Statementon page 278

o SET CONNECTION Statement [ESQL] [Interactive SQL]on page 291
e COOPERATIVE COMMIT_TIMEOUT Option on page 356
e COOPERATIVE COMMITS Optionon page 357

o DELAYED COMMITS Optionon page 370

» DELAYED COMMIT_TIMEOUT Option on page 369

CONFIGURE Statement [Interactive SQL]

Activates the Interactive SQL (dbisql) configuration window.

Syntax
CONFIGURE

Usage

The dbisql configuration window displays the current settings of all dbisql options. It does not
display or let you modify database options.

If you select Permanent, the options are written to the SYSOPTI ONtable in the database and
the database server performs an automatic COMMIT. If you do not choose Permanent, and
instead click OK, options are set temporarily and remain in effect for the current database
connection only.

Standards
* SQL—Vendor extension to ISO/ANSI SQL grammar.

62

Sybase 1Q

SQL Statements
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

None

See also
e SET OPTION Statement on page 293

CONNECT Statement [ESQL] [Interactive SQL]

Establishes a connection to a database.

Syntax

Syntax 1

CONNECT

...[TO engi ne-nane]

..l DATABASE dat abase- nane]

..l AS connection-nane]

.[USER] userid [IDENTIFIED BY]
Syntax 2

CONNECT USING connect -string

Parameters

* engine-name: —identifier, string, or host-variable

» database-name: —identifier, string, or host-variable

» connection-name: — identifier, string, or host-variable

» userid: —identifier, string, or host-variable

* password: —identifier, string, or host-variable

» connect-string: —a valid connection string or host-variable

Examples
e Example1— CONNECT usage within Embedded SQL.:

EXEC SQL CONNECT AS :conn_nane
USER :userid | DENTI FI ED BY : password;
EXEC SQL CONNECT USER "dba" | DENTI FI ED BY "sql *;

* Example 2 — CONNECT usage from dbisql:

» Connect to a database from dbisgl. Prompts display for user ID and password:
CONNECT

Reference: Statements and Options 63

SQL Statements

» Connect to the default database as DBA, from dbisql. A password prompt displays:
CONNECT USER " DBA"

e Connect to the demo database as the DBA, from dbisql:

CONNECT

TO <machi ne>_i qdeno
USER " DBA"

| DENTI FI ED BY sql

where <machine>_igdemo is the engine name.

« Connect to the demo database using a connect string, from dbisq]:

CONNECT
USI NG ' Ul D=DBA; PWD=sql ; DBN=i qdenp'

Usage

The CONNECT statement establishes a connection to the database identified by database-
name running on the server identified by engine-name.

Embedded SQL behavior—In Embedded SQL, if no engine-name is specified, the default
local database server is assumed (the first database server started). If a local database server is
not running and the Anywhere Client (DBCLIENT) is running, the default server is assumed
(the server name specified when the client was started). If no database-nameis specified, the
first database on the given server is assumed.

The WHENEVER statement, SET SQLCA, and some DECLARE statements do not generate
code and thus might appear before the CONNECT statement in the source file. Otherwise, no
statements are allowed until a successful CONNECT statement has been executed.

The user ID and password are used for permission checks on all dynamic SQL statements. By
default, the password is case-sensitive; the user ID is not.

For a detailed description of the connection algorithm, see System Administration Guide.
Wolume 1 > Sybase 1Q Connections > How Sybase 1Q Establishes Connections.

DBISQL behavior—If no database or server is specified in the CONNECT statement, dbisql
remains connected to the current database, rather than to the default server and database. If a
database name is specified without a server name, dbisql attempts to connect to the specified
database on the current server. You must specify the database name defined in the -n database
switch, not the database file name. If a server name is specified without a database name,
dbisql connects to the default database on the specified server. For example, if this batch is
executed while connected to a database, the two tables are created in the same database.
CREATE TABLE t1(cl int);

CONNECT DBA | DENTI FI ED BY sql ;
CREATE TABLE t2 (cl int);

No other database statements are allowed until a successful CONNECT statement has been
executed.

64

Sybase 1Q

SQL Statements

The user ID and password are used for checking the permissions on SQL statements. If the
password or the user ID and password are not specified, the user is prompted to type the
missing information. By default, the password is case-sensitive; the user ID is not.

Multiple connections are managed through the concept of a current connection. After a
successful connect statement, the new connection becomes the current one. To switch to a
different connection, use SET CONNECTION. Executing a CONNECT statement does not
close the existing connection (if any). Use DISCONNECT to drop connections.

Static SQL statements use the user ID and password specified with the -/option on the SQLPP
statement line. If no -/option is given, then the user 1D and password of the CONNECT
statement are used for static SQL statements also.

Connecting with no password—If you are connected to a user ID with DBA authority, you can
connect to another user ID without specifying a password. (The output of dbtran requires this
capability.) For example, if you are connected to a database from Interactive SQL as DBA, you
can connect without a password with the statement:

CONNECT ot her _user _id

In Embedded SQL, you can connect without a password by using a host variable for the
password and setting the value of the host variable to be the null pointer.

AS clause—connection can optionally be named by specifying the AS clause. This allows
multiple connections to the same database, or multiple connections to the same or different
database servers, all simultaneously. Each connection has its own associated transaction. You
might even get locking conflicts between your transactions if, for example, you try to modify
the same record in the same database from two different connections.

Syntax 2—A connect-string is a list of parameter settings of the form keyword=value, and
must be enclosed in single quotes.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

» Sybase—Open Client Embedded SQL supports a different syntax for the CONNECT
statement.

Permissions

None

See also

e DISCONNECT Statement [Interactive SQL] on page 169

e GRANT Statementon page 199

* SET CONNECTION Statement [ESQL] [Interactive SQL] on page 291

Reference: Statements and Options 65

SQL Statements

CREATE DATABASE Statement

Creates a database consisting of several operating system files.

Syntax
CREATE DATABASE db- nane

N

e e e —

[TRANSACTION] { LOG ON [log-file-nane]
[MIRROR mirror-file-nane] }]
CASE { RESPECT | IGNORE }]
PAGE SIZE page- si ze]
COLLATION col | ation-label[(collation-tailoring-string)]]
ENCRYPTED [TABLE] {al gorithmkey-spec | OFF }]
...[BLANK PADDING ON]
JCONNECT { ON | OFF }]
IQPATH i g-fil e-name]
IQSIZE ig-file-size]
IQ PAGE SIZE i g- page- si ze]
BLOCK SIZE bl ock-si ze]
IQ RESERVE si zeMB]
TEMPORARY RESERVE si zeMB]
MESSAGE PATH message-fil e-name]
TEMPORARY PATH tenp-fil e-name]
TEMPORARY SIZE t enp- db-si ze]
DBA USER userid]
DBA PASSWORD password]

Parameters

db-name | log-file-name | mirror-file-name | ig-file-name | message-file-name | temp-
file-name: — 'file-name

page-size: —{ 4096 | 8192 | 16384 | 32768 }

ig-page-size: —{ 65536 | 131072 | 262144 | 524288 }

block-size: —{ 4096 | 8192 | 16384 | 32768 }

collation-label: — string

collation-tailoring-string: — keyword=value

algorithm-key-spec: —ON | [ON] KEY key [ALGORITHM AES-algorithm |

| [ON] ALGORITHM AES-algorithm KEY key| [ON] ALGORITHM ‘SIMPLE’
AES-algorithm; —‘AES’ | ‘AES256’ | ‘AES_FIPS’ | ‘AES256_FIPS’

key: — quoted string

Examples

Example 1 — This Windows example creates a Sybase 1Q database named mydb with its
corresponding mydb. db, mydb. i g, nydb. i gt np, and mydb. i gnsqg files in the C.
\ s1\ dat a directory:

66

Sybase 1Q

SQL Statements

CREATE DATABASE ' C:\\si1\\dat a\\ nydb'
BLANK PADDI NG ON
| Q PATH ' C:\\sl1\\dat a'
I Q SI ZE 2000
| Q PAGE SI ZE 65536
* Example2—This UNIX command creates a Sybase 1Q database with raw devices for 1Q

PATH and TEMPORARY PATH. The default IQ page size of 128KB applies.

CREATE DATABASE '/ s1/ dat a/ bi gdb’
I Q PATH ' / dev/ md/ r dsk/ bi gdb’
MESSACE PATH ' /s1/dat a/ bi gdb. i gnsg’
TEMPORARY PATH ' / dev/ md/ r dsk/ bi gt np'
» Example 3—This Windows command creates a Sybase 1Q database with a raw device for

IQ PATH. Note the doubled backslashes in the raw device name (a Windows requirement):

CREATE DATABASE ' conpany'
I Q PATH "\ \\\ .\ \E:"
JCONNECT OFF
| Q Sl ZE 40
* Example4—This UNIX example creates a strongly encrypted Sybase 1Q database using
the AES encryption algorithm with the key “is!seCret.”
CREATE DATABASE ' mar vi n. db'
BLANK PADDI NG ON
CASE RESPECT
COLLATI ON ' | SO_BI NENG
| Q PATH ' /fil esystenm marvin. mai nl'
I Q SI ZE 6400
I Q PAGE SI ZE 262144
TEMPORARY PATH ' /fil esystem marvin.tenpl'
TEMPCORARY S| ZE 3200
ENCRYPTED ON KEY 'is!seCret' ALGORI THM ' AES

Usage

Creates an 1Q database with the supplied name and attributes. The 1Q PATH clause is required
for creating the Sybase 1Q database; otherwise, you create a standard SQL Anywhere
database.

If you omit thelQ PATH option, specifying any of these options generates an error: IQ SIZE, IQ
PAGE SIZE, BLOCK SIZE, MESSAGE PATH, TEMPORARY PATH, and TEMPORARY SIZE.

When Sybase 1Q creates an 1Q database, it automatically generates four database files to store
different types of data that constitute an 1Q database. Each file corresponds to a dbspace, the
logical name by which Sybase 1Q identifies database files. The files are:

e adb-name.dbis the file that holds the catalog dbspace, SYSTEM It contains the system
tables and stored procedures describing the database and any standard SQL Anywhere
database objects you add. If you do not include the . db extension, Sybase 1Q adds it. This
initial dbspace contains the catalog store, and you can later add dbspaces to increase its
size. It cannot be created on a raw partition.

Reference: Statements and Options 67

SQL Statements

db-name.iq is the default name of the file that holds the main data dbspace,
| Q_SYSTEM MAI N, which contains the 1Q tables and indexes. You can specify a
different file name with the IQ PATH clause. This initial dbspace contains the 1Q store.

Warning! | Q SYSTEM MAI Nis a special dbspace that contains all structures necessary
for the database to open: the 1Q db_identity blocks, the IQ checkpoint log, the 1Q
rollforward/rollback bitmaps of each committed transaction and each active checkpointed
transaction, the incremental backup bitmaps, and the freelist root pages.

| Q SYSTEM MAI Nis always online when the database is open.

The administrator can allow user tables to be created in1 Q_SYSTEM_MAI N, especially if
these tables are small, important tables. However, it is more common that immediately
after creating the database, the administrator creates a second main dbspace, revokes
create privilege in dbspace | Q_ SYSTEM MAI Nfrom all users, grants create privilege on
the new main dbspace to selected users, and sets PUBLIC.default_dbspace to the new
main dbspace.

db-name.igtmp is the default name of the file that holds the initial temporary dbspace,

| Q_SYSTEM TEMP. It contains the temporary tables generated by certain queries. The
required size of this file can vary depending on the type of query and amount of data. You
can specify a different name using the TEMPORARY PATH clause. This initial dbspace
contains the temporary store.

db-name.igmsg is the default name of the file that contains the messages trace dbspace,
| Q_ SYSTEM MSG You can specify a different file name using the MESSAGE PATH
clause.

In addition to these files, an IQ database has a transaction log file (db- nane. | og), and
might have a transaction log mirror file.

File names and the CREATE DATABASE statement:

The file names (db-name, log-file-name, mirror-file-name, iq-file-name, message-file-name,
temp-file-name) are strings containing operating system file names. As literal strings, they
must be enclosed in single quotes.

In Windows, if you specify a path, any backslash characters (\) must be doubled if they are
followed by an n or an x. This prevents them being interpreted as a newline character (\n) or
as a hexadecimal number (\x), according to the rules for strings in SQL. It is safer to always
double the backslash. For example:

CREATE DATABASE ' c:\\sybase\\ nmydb. db’
LOG ON 'e:\\l ogdrive\\nydb. | og'
JCONNECT OFF

| Q PATH ' c:\\ sybase\\ nydb'

I Q SI ZE 40

If you specify no path, or a relative path:
e The catalog store file (db-name.db) is created relative to the working directory of the
server.

68

Sybase 1Q

SQL Statements

e The IQ store, temporary store, and message log files are created in the same directory
as, or relative to, the catalog store.

Relative path names are recommended.

Warning! The database file, temporary dbspace, and transaction log file must be located on
the same physical machine as the database server. Do not place database files and transaction
log files on a network drive. The transaction log should be on a separate device from its mirror,
however.

On UNIX systems, you can create symbolic links, which are indirect pointers that contain the
path name of the file to which they point. You can use symbolic links as relative path names.
There are several advantages to creating a symbolic link for the database file name:

« Symbolic links to raw devices can have meaningful names, while the actual device name
syntax can be obscure.

« Asymbolic name might eliminate problems restoring a database file that was moved to a
new directory since it was backed up.

To create a symbolic link, use the In -s command. For example:
In -s /diskl/ conpany/i gdata/ conpany.i g conpany_igq_store

Once you create this link, you can specify the symbolic link in commands like CREATE
DATABASE or RESTORE instead of the fully qualified path name.

When you create a database or a dbspace, the path for every dbspace file must be unique. If
your CREATE DATABASE command specifies the identical path and file name for these two
stores, you receive an error.

Note: To create multiplex databases, see Using Sybase 1Q Multiplex.

You can create a unique path in any of these ways:

» Specify a different extension for each file (for example, mydb. i g and nmydb. i gt np)

» Specify a different file name (for example, nydb. i g and nyt np. i q)

« Specify a different path name (for example, /i gf i | es/main/iqg and/iqfil es/
t enp/ i q) or different raw partitions

« OmitTEMPORARY PATH when you create the database. In this case, the temporary store is
created in the same path as the catalog store, with the default name and extension
dbnan®e. i qt np, where dbname is the database name.

Warning! On UNIX platforms, to maintain database consistency, you must specify file names
that are links to different files. Sybase 1Q cannot detect the target where linked files point.
Even if the file names in the command differ, make sure they do not point to the same operating
system file.

Clauses and options of CREATE DATABASE:

TRANSACTION LOG—The transaction log is a file where the database server logs all
changes made to the database. The transaction log plays a key role in system recovery. If you

Reference: Statements and Options 69

SQL Statements

do not specify any TRANSACTION LOG clause, or if you omit a path for the file name, it is
placed in the same directory as the . db file. However, you should place it on a different
physical device from the . db and . i . It cannot be created on a raw partition.

MIRROR—A transaction log mirror is an identical copy of a transaction log, usually
maintained on a separate device, for greater protection of your data. By default, Sybase 1Q
does not use amirrored transaction log. If you do want to use a transaction log mirror, you must
provide a file name. If you use a relative path, the transaction log mirror is created relative to
the directory of the catalog store (db- narre. db). Sybase recommends that you always create
a mirror copy of the transaction log.

CASE—For databases created with CASE RESPECT, all affected values are case-sensitive in
comparisons and string operations. Database object names such as columns, procedures, or
user I1Ds, are unaffected. Dbspace names are always case-insensitive, regardless of the CASE
specification.

The default (RESPECT) is that all comparisons are case-sensitive. CASE RESPECT provides
better performance than CASE IGNORE.

Character strings inserted into tables are always stored in the case they are entered, regardless
of whether the database is case-sensitive or not. If the string Value is inserted into a character
data type column, the string is always stored in the database with an uppercase V and the
remainder of the letters lowercase. SELECT statements return the string as Value. If the
database is not case-sensitive, however, all comparisons make Value the same as value,
VALUE, and so on. The 1Q server may return results in any combination of lowercase and
uppercase, SO you cannot expect case-sensitive results in a database that is case-insensitive
(CASE IGNORE).

For example, given this table and data:

CREATE TABLE tb (id int NOT NULL,

string VARCHAR(30) NOT NULL);
I NSERT INTO tb VALUES (1, ‘ONE);
SELECT * FROMtb WHERE string = ‘oNe’;

The result of the SELECT can be “oNe” (as specified in the WHERE clause) and not necessarily
“ONE?” (as stored in the database).

Similarly, the result of:

SELECT * FROMtb WHERE string = ‘ One’;
can be “One” and the result of:
SELECT * FROMtb WHERE string = ‘' ONe’;

can be “ONe”.

All databases are created with at least one user ID:
DBA

70

Sybase 1Q

SQL Statements

and password:
sql

In new databases, all passwords are case-sensitive, regardless of the case-sensitivity of the
database. The user ID is unaffected by the CASE RESPECT setting.

PAGE SIZE—The page size for the SQL Anywhere segment of the database (containing the
catalog tables) can be 4096, 8192, 16384, or 32768 bytes. Normally, use the default, 4096
(4KB). Large databases might need a larger page size than the default and may see
performance benefits as a result. The smaller values might limit the number of columns your
database can support. If you specify a page size smaller than 4096, Sybase 1Q uses a page size
of 4096.

When you start a database, its page size cannot be larger than the page size of the current
server. The server page size is taken from the first set of databases started or is set on the server
command line using the -gp command line option.

Command line length for any statement is limited to the catalog page size. The 4KB default is
large enough in most cases; however, in a few cases, a larger PAGE SIZE value is needed to
accommodate very long commands, such as RESTORE commands that reference numerous
dbspaces. A larger page size might also be needed to execute queries involving large numbers
of tables or views.

Because the default catalog page size is 4KB, this is a problem only when the connectionistoa
database such as uti | i ty_db, which has a page size of 1024. This restriction may cause
RESTORE commands that reference numerous dbspaces to fail. To avoid the problem, make
sure the length of SQL command lines is less than the catalog page size.

Alternatively, start the engine with - gp 32768 to increase catalog page size.

COLLATION—The collation sequence used for sorting and comparison of character data
types in the database. The collation provides character comparison and ordering information
for the encoding (character set) being used. If the COLLATION clause is not specified, Sybase
1Q chooses a collation based on the operating system language and encoding.

For most operating systems, the default collation sequence is ISO_BINENG, which provides
the best performance. In ISO_BINENG, the collation order is the same as the order of
characters in the ASCII character set. All uppercase letters precede all lowercase letters (for
example, both ‘A’ and ‘B’ precede ‘a’).

You can choose the collation from a list of supported collations. For SQL Anywhere databases
created on a Sybase 1Q server, the collation can also be the Unicode Collation Algorithm

(UCA). If UCA is specified, also specify the ENCODING clause. For more information on the
ENCODING clause, see SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference >
Using SQL > SQL statements > SQL statements (A-D) > CREATE DATABASE statement.

Sybase 1Q does not support any of the UCA-based collations for 1Q databases. Ifa UCA-based
collation is specified in the CREATE DATABASE statement for an 1Q database, the server
returns the error UCA col | ati on i s not support ed and database creation fails.

Reference: Statements and Options 71

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html

SQL Statements

It is important to carefully choose your collation; it cannot be changed after the database is
created. For information on choosing a collation, see System Administration Guide. Volume 1
> International Languages and Character Sets.

Optionally, you can specify collation tailoring options (collation-tailoring-string) for
additional control over the sorting and comparing of characters. These options take the form of
keyword=value pairs, assembled in parentheses, following the collation name.

Note: Several collation tailoring options are supported when you specify the UCA collation
for a SQL Anywhere database created on an Sybase 1Q server. For all other collations and for
Sybase 1Q, only case sensitivity tailoring is supported. Also, databases created with collation
tailoring options cannot be started using a pre-15.0 database server.

Collation tailoring options for Sybase 1Q contains the supported keyword, allowed alternate
forms, and allowed values for the collation tailoring option (collation-tailoring-string) for a
Sybase 1Q database.

Table 3. Collation Tailoring Option for Sybase 1Q

Keyword |[Collation [Alternate |Allowed values
forms

CaseSensitiv- | All suppor- | CaseSensi-
ity ted colla- tive, Case
tions

e respect Respectcase differencesbetween letters.
For the UCA collation, this is equivalent to Up-
perFirst. For other collations, the value of respect
depends on the collation itself.

« ignore Ignore case differences between letters.

e UpperFirst Always sort upper case first (Aa).

e LowerFirst Always sort lowercase first (aA).

For syntax and a complete list of the collation tailoring options supported when specifying the
UCA collation for a SQL Anywhere database, see SQL Anywhere 11.0.1 > SQL Anywhere
Server—SQL Reference > Using SQL > SQL statements > SQL statements (A-D) > CREATE
DATABASE statement.

ENCRYPTED—Encryption makes the data stored in your physical database file unreadable.
Use the CREATE DATABASE ENCRYPTED keyword without the TABLE keyword to encrypt
the entire database. Use the ENCRYPTED TABLE clause to enable only table encryption for
SQL Anywhere tables. Table-level encryption is not supported for Sybase 1Q tables. Enabling
table encryption means that the tables that are subsequently created or altered using the
ENCRYPTED clause are encrypted using the settings you specified at database creation.

There are two levels of database and table encryption: simple and strong.

« Simple encryption is equivalent to obfuscation. The data is unreadable, but someone with
cryptographic expertise could decipher the data. For simple encryption, specify the
CREATE DATABASE clause ENCRYPTED ON ALGORITHM ‘SIMPLE’, ENCRYPTED

72

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-database-statement.html

SQL Statements

ALGORITHM ‘SIMPLE’, or specify the ENCRYPTED ON clause without specifying an
algorithm or key.

« Strong encryption is achieved through the use of a 128-bit algorithm and a security key.
The data is unreadable and virtually undecipherable without the key. For strong
encryption, specify the CREATE DATABASE clause ENCRYPTED ON ALGORITHM with a
128-bit or 256-bit AES algorithm and use the KEY clause to specify an encryption key. You
should choose a value for your key that is at least 16 characters long, contains a mix of
uppercase and lowercase, and includes numbers, letters, and special characters.

This encryption key is required each time you start the database.

War ning! Protect your encryption key! Store a copy of your key in a safe location. A lost key
results in a completely inaccessible database from which there is no recovery.

You can specify encryption only during database creation. To introduce encryption to an
existing database requires a complete unload, database re-creation, and reload of all data.

If the ENCRYPTED clause is used but no algorithm is specified, the default is AES. By default,
encryption is OFF.

BLANK PADDING—RBY default, trailing blanks are ignored for comparison purposes
(BLANK PADDI NGON), and Embedded SQL programs pad strings that are fetched into
character arrays. This option is provided for compatibility with the ISO/ANSI SQL standard.

For example, these two strings are treated as equal in a database created with BLANK
PADDI NGON:

'Smth'

"Smith

Note: CREATE DATABASE no longer supports BLANK PADDI NG OFF.

JCONNECT—To use the Sybase jConnect for JDBC driver to access system catalog
information, install jConnect support. Set JCONNECT to OFF to exclude the jConnect system
objects (the default is ON). You can still use JDBC, as long as you do not access system
information.

IQ PATH—The path name of the main segment file containing the Sybase 1Q data. You can
specify an operating system file or a raw partition of an 1/0 device. (The /nstallation and
Configuration Guide for your platform describes the format for specifying a raw partition.)
Sybase 1Q automatically detects which type based on the path name you specify. If you use a
relative path, the file is created relative to the directory of the catalog store (the . db file).

IQ SIZE—The size in MB of either the raw partition or the operating system file you specify
with the 1Q PATH clause. For raw partitions, you should always take the default by not
specifying 1Q SIZE, which allows Sybase 1Q to use the entire raw partition; if you specify a
value for 1Q SIZE, the value must match the size of the I/O device or Sybase 1Q returns an error.
For operating system files, you can specify a value from the minimum in the following table up
to a maximum of 4TB.

The default size for an operating system file depends on 1Q PAGE SIZE:

Reference: Statements and Options 73

SQL Statements

Table 4. Default and Minimum Sizes of IQ and Temporary Store Files

IQ PAGE IQ SIZE de- |[TEMPORARY | Minimum ex- | Minimum ex-

SIZE fault SIZE default plicit 1Q SIZE | plicit TEMPO-
RARY SIZE

65536 4096000 2048000 4MB 2MB

131072 8192000 4096000 8MB 4MB

262144 16384000 8192000 16MB 8MB

524288 32768000 16384000 32MB 16MB

IQ PAGE SIZE—The page size, in bytes, for the Sybase 1Q segment of the database
(containing the 1Q tables and indexes). The value must be a power of 2, from 65536 to 524288
bytes. The default is 131072 (128KB). Other values for the size are changed to the next larger
size. The 1Q page size determines the default I/O transfer block size and maximum data
compression for your database.

For the best performance, Sybase recommends that you use these minimum IQ page sizes:

* 64KB (IQ PAGE SIZE 65536) for databases whose largest table contains up to 1 billion
rows, or a total size less than 8TB. This is the absolute minimum for a new database. On
32-bit platforms, a 64KB 1Q page size gives the best performance.

« 128KB (1Q PAGE SIZE 131072) for databases on a 64-bit platform whose largest table
contains more than 1 billion rows and fewer than 4 billion rows, or might grow to a total
size of 8TB or greater. 128KB is the default 1Q page size.

» 256KB (IQ PAGE SIZE 262144) for databases on a 64-bit platform whose largest table
contains more than 4 billion rows, or might grow to a total size of 8TB or greater.

Very wide tables, such as tables with multiple columns of wide VARCHAR data (columns from
255 to 32,767 bytes) might need the next larger 1Q PAGE SIZE.

BLOCK SIZE—The 1/O transfer block size, in bytes, for the Sybase 1Q segment of the
database. The value must be less than 1IQ PAGE SIZE, and must be a power of two between 4096
and 32768. Other values for the size are changed to the next larger size. The default value
depends on the value of the 1Q PAGE SIZE clause. For most applications, the default value is
optimum. Before specifying a different value, see Performance and Tuning Guide > Manage
System Resources.

IQ RESERVE—Specifies the size, in megabytes, of space to reserve for the main 1Q store
(I Q_SYSTEM MAI N dbspace), so that the dbfile can be increased in size in the future. The
sizeMB parameter can be any number greater than 0. You cannot change the reserve after the
dbspace is created.

When IQ RESERVE is specified, the database uses more space for internal (free list) structures.
If reserve size is too large, the space needed for the internal structures can be larger than the
specified size, which results in an error.

74

Sybase 1Q

SQL Statements

TEMPORARY RESERVE clause—Specifies the size, in megabytes, of space to reserve for
the temporary 1Q store (I Q_ SYSTEM TEMP dbspace), so that the dbfile can be increased in
size inthe future. The sizeMBparameter can be any number greater than 0. You cannot change
the reserve after the dbspace is created.

When TEMPORARY RESERVE is specified, the database uses more space for internal (free
list) structures. If reserve size is too large, the space needed for the internal structures can be
larger than the specified size, which results in an error.

Note: Reserve and mode for temporary dbspaces are lost if the database is restored from a
backup.

MESSAGE PATH—The path name of the segment containing the Sybase 1Q messages trace
file. You must specify an operating system file; the message file cannot be on araw partition. If
you use a relative path or omit the path, the message file is created relative to the directory of
the . db file.

TEMPORARY PATH—The path name of the temporary segment file containing the
temporary tables generated by certain queries. You can specify an operating system file or a
raw partition of an 1/O device. (The /nstallation and Configuration Guide for your platform
describes the format for specifying a raw partition.) Sybase 1Q automatically detects which
type based on the path name you specify. If you use a relative path or omit the path, the
temporary file is created relative to the directory of the . db file.

TEMPORARY SIZE—The size, in megabytes, of either the raw partition or the operating
system file you specify with the TEMPORARY PATH clause. For raw partitions, always use the
default by not specifying TEMPORARY SIZE, which allows Sybase 1Q to use the entire raw
partition. The default for operating system files is always one-half the value of IQ SIZE. If the
1Q store is on a raw partition and the temporary store is an operating system file, the default
TEMPORARY SIZE is half the size of the IQ store raw partition.

DBA USER—The user name for the default user account with DBA authority. If you do not
specify this clause, Sybase 1Q creates a default dba user ID.

DBA PASSWORD—The password for the default user account with DBA authority.
Side effects:

¢ Automatic commit

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

» Sybase—Adaptive Server Enterprise provides a CREATE DATABASE statement, but with
different options.

Reference: Statements and Options 75

SQL Statements

Permissions

The permissions required to execute this statement are set on the server command line, using
the -gu option. The default setting is to require DBA authority.

The account under which the server is running must have write permissions on the directories
where files are created.

See also
* CREATE DBSFACE Statementon page 76
e DROP DATABASE Statement on page 173

CREATE DBSPACE Statement

Creates a new dbspace and the associated dbfiles for the IQ main store or catalog store.

Syntax
Syntax 1

Use for catalog store dbspaces only (SQL Anywhere (SA) dbspaces).
CREATE DBSPACE dbspace-nane AS fil e-path CATALOG STORE

Syntax 2

Use for 1Q dbspaces.

CREATE DBSPACE dbspace-nanme USING fil e-specification
[IQSTORE] iqg-dbspace-opts

Parameters

o file-specification: — { single-path-spec | new-file-spec [, ...] }

* single-path-spec: — file-path' | ig-file-opts

* new-file-spec: — FILE logical-file-name | ‘file-path’ ig-file-opts

» ig-file-opts. —[[SIZE] file-size] ...[KB |MB |GB | TB]] [RESERVE Ssize ...[KB|MB
|GB | TB]]

* ig-dbspace-opts. —[STRIPING] {ON | OFF}] ...[STRIPESIZEKB sizeKB]

Examples

» Example 1—Create a dbspace called DspHi st for the IQ main store with two files on a
UNIX system. Each file is 1GB in size and can grow 500MB:
CREATE DBSPACE DspHi st USI NG FI LE

FileHi stl '/Historyl/data/filel
SI ZE 1000 RESERVE 500,

76

Sybase 1Q

SQL Statements

FILE FileHi st2 '/Historyl/data/file2'
SI ZE 1000 RESERVE 500;

* Example 2 —Create a second catalog dbspace called DspCat 2:
CREATE DBSPACE DspCat 2 AS

"catal og_file2
CATALOG STORE;

e Example 3 - Creates an 1Q main dbspace called EnpSt or el for the 1Q store (three
alternate syntax examples):
CREATE DBSPACE EnpSt orel

USI NG FI LE EnpStorel
'"EnpStorel.|Q SIZE 8 MB | Q STORE;

CREATE DBSPACE EnpStorel
USI NG FI LE EnpSt orel
"EnmpStorel. Q@ 8 I Q STORE;

CREATE DBSPACE EnpSt or el
USI NG FI LE EnpSt orel
"EnpStorel. 1 Q 8;

Usage

CREATE DBSPACE creates a new dbspace for the 1Q main store or the catalog store. The
dbspace you add can be on a different disk device than the initial dbspace, allowing you to
create stores that are larger than one physical device.

Synt ax 1 creates a dbspace for the catalog store, where both dbspace and dbfile have the
same logical name. Each dbspace in the catalog store has a single file.

new-f il e- spec creates a dbspace for the 1Q main store. You can specify one or more
dbfiles for the 1Q main store. The dbfile name and physical file path are required for each file,
and must be unique.

The dbspace name and dbfile names are always case-insensitive. The physical file paths have
the case sensitivity of the operating system if the database is CASE RESPECT, and are case-
insensitive if the database is CASE IGNORE.

You cannot create a dbspace for an 1Q temporary store. A single temporary dbspace,

| Q SYSTEM TEMP, is created when you create a new database or upgrade one that was
created in a version earlier than Sybase 1Q 15.3. You can add additional files to the

| Q_SYSTEM TEMP dbspace using the ALTER DBSPACE ADD FILE syntax.

RESERVE clause—Specifies the size in kilobytes (KB), megabytes (MB), gigabytes (GB), or
terabytes (TB) of space to reserve, so that the dbspace can be increased in size in the future.
The size parameter can be any number greater than 0; megabytes is the default. You cannot
change the reserve after the dbspace dbfile is created.

When RESERVE is specified, the database uses more space for internal (free list) structures. If
reserve size is too large, the space needed for the internal structures can be larger than the
specified size, which results in an error.

Reference: Statements and Options 77

SQL Statements

See CREATE DATABASE Statement for the names and types of files created by default.

Note: For information on creating dbspaces for a multiplex database, see Using Sybase 1Q
Multiplex.

You can create a unique path in any of these ways:

» Specify a different extension for each file (for example, nydb. i q)

« Specify a different file name (for example, mydb2. i q)

« Specify a different path name (for example, /i gf i | es/ mai n/ i q) or different raw
partitions

Warning! On UNIX platforms, to maintain database consistency, specify file names that are
links to different files. Sybase 1Q cannot detect the target where linked files point. Even if the
file names in the command differ, make sure they do not point to the same operating system
file.

abspace-name and dbfile-name are internal names for dbspaces and dbfiles. filepath is the
actual operating system file name of the dbfile, with a preceding path where necessary.

fi | epat h without an explicit directory is created in the same directory as the catalog store
of the database. Any relative directory is relative to the catalog store.

SIZE clause—Specifies the size, from 0 to 4 terabytes, of the operating system file specified in
filepath. The default depends on the store type and block size. For the 1Q main store, the
default number of bytes equals 1000* the block size. You cannot specify the SIZE clause for
the catalog store.

A SIZE value of 0 creates a dbspace of minimum size, which is 8MB for the 1Q main store.

For raw partitions, do not explicitly specify SIZE. Sybase 1Q automatically sets this parameter
to the maximum raw partition size, and returns an error if you attempt to specify another size.

STRIPESIZEKB clause—Specifies the number of kilobytes (KB) to write to each file before
the disk striping algorithm moves to the next stripe for the specified dbspace.

If you do not specify striping or stripe size, the default values of the options
DEFAULT_DI SK_STRI PI NGand DEFAULT_KB_PER_STRI PE apply.

A database can have as many as (32KB - 1) dbspaces, including the initial dbspaces created
when you create the database. However, your operating system might limit the number of files
per database.

See also System Administration Guide: Volume 1 > Database Object Management.
Side effects:

* Automatic commit
» Automatic checkpoint.

78

Sybase 1Q

SQL Statements

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions
Must have DBA or SPACE ADMIN authority.

See also
e CREATE DATABASE Statement on page 66
* DROP Statement on page 170

CREATE DOMAIN Statement

Creates a user-defined data type in the database.

Syntax

CREATE { DOMAIN | DATATYPE} domai n-nane data-type
...[NOT] NuLL]
..[DEFAULT default-val ue]

Parameters

* domain-name: —identifier
* data-type: —built-in data type, with precision and scale

» default-value: — special-value | string | global variable| [- 1 number | (constant-
expression) | built-in-function(constant-expression) | AUTOINCREMENT | CURRENT
DATABASE | CURRENT REMOTE USER | NULL | TIMESTAMP | LAST USER

* gpecial-value: — CURRENT { DATE | TIME | TIMESTAMP | USER | PUBLISHER } | USER

Examples

* Example 1 —Create a data type named address, which holds a 35-character string, and
which may be NULL:

CREATE DOVAI N address CHAR(35) NULL

Usage

User-defined data types are aliases for built-in data types, including precision and scale
values, where applicable. They improve convenience and encourage consistency in the
database.

Sybase recommends that you use CREATE DOMAIN, rather than CREATE DATATYPE, as
CREATE DOMAIN is the ANSI/ISO SQL3 term.

Reference: Statements and Options 79

SQL Statements

The user who creates a data type is automatically made the owner of that data type. No owner
can be specified in the CREATE DATATYPE statement. The user-defined data type name must
be unique, and all users can access the data type without using the owner as prefix.

User-defined data types are objects within the database. Their names must conform to the
rules for identifiers. User-defined data type names are always case-insensitive, as are built-in
data type names.

By default, user-defined data types allow NULLSs unless the allow_nulls_by_default option is
set to OFF. In this case, new user-defined data types by default do not allow NULLs. The
nullability of a column created on a user-defined data type depends on the setting of the
definition of the user-defined data type, not on the setting of the allow_nulls_by_default
option when the column is referenced. Any explicit setting of NULL or NOT NULL in the
column definition overrides the user-defined data type setting.

The CREATE DOMAIN statement allows you to specify DEFAULT values on user-defined data
types. The DEFAULT value specification is inherited by any column defined on the data type.
Any DEFAULT value explicitly specified on the column overrides that specified for the data
type. For more information on the use of column DEFAULT values, see System
Administration Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data
Integrity.

The CREATE DOMAIN statement lets you incorporate a rule, called a CHECK condition, into
the definition of a user-defined data type.

Sybase 1Q enforces CHECK constraints for base, global temporary. local temporary tables,
and user-defined data types.

To drop the data type from the database, use the DROP statement. You must be either the owner
of the data type or have DBA authority in order to drop a user-defined data type.

See also Reference. Building Blocks, Tables, and Procedures > SQL Data Types.
Side effects:

e Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.

« Sybase—Not supported by Adaptive Server Enterprise. Transact-SQL provides similar
functionality using the sp_addtype system procedure and the CREATE DEFAULT and
CREATE RULE statements.

Permissions

Must have RESOURCE authority.

80

Sybase 1Q

SQL Statements

See also
e DROP Statement on page 170

CREATE EVENT Statement

Defines an event and its associated handler for automating predefined actions. Also defines
scheduled actions.

Syntax
CREATE EVENT event - nanme
[TYPE event-type
[WHERE trigger-condition [AND trigger-condition], ...]
| SCHEDULE schedul e-spec, ...]

.[ENABLE | DISABLE]
.[AT { CONSOLIDATED | REMOTE | ALL }]
..l HANDLER

BEGIN

END]

Parameters

e event-type: —BackupEnd | “Connect” | ConnectFailed | DatabaseStart |
DBDiskSpace | “Disconnect” | GlobalAutoincrement | GrowDB | GrowlLog |
GrowTemp | IQMainDBSpaceFree | IQTempDBSpaceFree | LogDiskSpace |
“RAISERROR” | Serverldle | TempDiskSpace

» trigger-condition: —event_condition(condition-name) { =|<|>|'=| <=|>=} value

» schedule-spec: —[schedule-name] { START TIME Start-time| BETWEEN Start-time AND
end-time} [EVERY period { HOURS | MINUTES | SECONDS }] [ON { (day-of-
week, ...) | (day-of-month, ...) } 1 [START DATE start-date]

* event-name | schedule-name: — identifier

» day-of-week: — string

» day-of-month | value | period: — integer

e dtart-time| end-time: — time

* start-date: — date

Examples

« Example 1 — Instruct the database server to carry out an automatic incremental backup
daily at 1 a.m.:

CREATE EVENT | ncrenent al Backup
SCHEDULE
START TI ME ' 1: 00AM EVERY 24 HOURS
HANDLER

BEG N

Reference: Statements and Options 81

SQL Statements

BACKUP DATABASE | NCREMENTAL
TO ' backups/daily.incr'
END

Example 2 — Instruct the database server to call the system stored procedure
sp_igspaceused every 10 minutes, then store in a table the returned current date and time,
the current number of connections to the database, and current information about the use of
main and temporary 1Q store:

CREATE TABLE nysunmary(dt DATETI ME,
users | NT, nmai nKB UNSI GNED Bl G NT,
mai NPC UNSI GNED | NT,

t enpKB UNSI GNED BI G NT,
t empPC UNSI GNED | NT) ;

CREATE EVENT nysumary
SCHEDULE sched_mnysunmary
START TIME ' 00: 01 AM EVERY 10 M NUTES

DECLARE nt UNSI GNED BI G NT;
DECLARE nmu UNSI GNED Bl G NT;
DECLARE tt UNSI GNED Bl G NT
DECLARE tu UNSI GNED BI G NT;

DECLARE conncount UNSI GNED | NT;

SET conncount = DB_PROPERTY(' ConnCount');
CALL SP_| QSPACEUSED(nt, mu, tt, tu);

I NSERT | NTO nmysummary VALUES(NOW),
conncount, mu, (nu*100)/nt, tu,
(tux100)/tt);
END;
Example 3 — Post a message to the server log when free disk space on the device
containing the transaction log file falls below 30 percent, but execute the handler no more

than once every 300 seconds.

CREATE EVENT LowTxnLogDi skSpace

TYPE DBDi skSpace

WHERE event _condition(' DBFreePercent') < 30
AND event _condition('Interval') >= 300

HANDL ER

BEG N

message ' Di sk space for Transaction Log is low';
END;

For more examples, see System Administration Guide. \Volume 2 > Automating Tasks
Using Schedules and Events > Trigger Conditions for Events.

Usage
Events can be used in two main ways:

82

Sybase 1Q

SQL Statements

« Scheduling actions — the database server carries out a set of actions on a schedule of times.
You can use this capability to schedule backups, validity checks, queriesto fill up reporting
tables, and so on.

« Event handling actions — the database server carries out a set of actions when a predefined
event occurs. The events that can be handled include disk space restrictions (when a disk
fills beyond a specified percentage), when the server is idle, and so on.

An event definition includes two distinct pieces. The trigger condition can be an occurrence,
such as a disk filling up beyond a defined threshold. A schedule is a set of times, each of which
acts as a trigger condition. When a trigger condition is satisfied, the event handler executes.
The event handler includes one or more actions specified inside a compound statement
(BEGIN... END).

If no trigger condition or schedule specification is supplied, only an explicit TRIGGER EVENT
statement can trigger the event. During development, you might want to develop and test event
handlers using TRIGGER EVENT and add the schedule or WHERE clause once testing is
complete.

Event errors are logged to the database server console.

When event handlers are triggered, the server makes context information, such as the
connection ID that caused the event to be triggered, available to the event handler using the
EVENT_PARAMETER function.

Note: Although statements that return result sets are disallowed in events, you can allow an
event to call a stored procedure and insert the procedure results into a temporary table. See
System Administration Guide: Volume 1 > Data Import and Export > Methods for Exporting
Data from a Database > Data Extraction Facility > Enabling Data Extraction Options >
Extraction Limitations.

CREATE EVENT - event-name is an identifier. An event has a creator, which is the user
creating the event, and the event handler executes with the permissions of that creator. This is
the same as stored procedure execution. You cannot create events owned by other users.

You can list event names by querying the system table SYSEVENT. For example:
SELECT event _id, event_nane FROM SYS. SYSEVENT

TYPE - event-typeis one of the listed set of system-defined event types. The event types are
case-insensitive. To specify the conditions under which this event-typetriggers the event, use
the WHERE clause.

» DiskSpace event types—If the database contains an event handler for one of the DiskSpace
types, the database server checks the available space on each device associated with the
relevant file every 30 seconds.

In the event the database has more than one dbspace, on separate drives, DBDiskSpace
checks each drive and acts depending on the lowest available space.

Reference: Statements and Options 83

SQL Statements

The LogDiskSpace event type checks the location of the transaction log and any mirrored
transaction log, and reports based on the least available space.

» Globalautoincrement event type—This event fires when the GLOBAL
AUTOINCREMENT default value for a table is within one percent of the end of its range.
A typical action for the handler could be to request a new value for the
GLOBAL_DATABASE_ID option.
You can use the EVENT_CONDITION function with RemainingValues as an argument for
this event type.

« Serverldle event type—If the database contains an event handler for the Serveridle type,
the server checks for server activity every 30 seconds.

WHERE Clause —the trigger condition determines the condition under which an event is fired.
Forexample, to take an action when the disk containing the transaction log becomes more than
80% full, use this triggering condition:

V\HERE event _condition('LogD skSpacePercentFree') < 20

The argument to the EVENT_CONDITION function must be valid for the event type.

You can use multiple AND conditions to make up the WHERE clause, but you cannot use OR
conditions or other conditions.

For information on valid arguments, see Reference: Building Blocks, Tables, and Procedures
> SQL Functions > Alphabetical List of Functions > EVENT_CONDITION Function
[System].

SCHEDULE - specifies when scheduled actions are to take place. The sequence of times acts
as a set of triggering conditions for the associated actions defined in the event handler.

You can create more than one schedule for a given event and its associated handler. This
permits complex schedules to be implemented. While it is compulsory to provide a schedule
name when there is more than one schedule, itis optional if you provide only asingle schedule.

You can list schedule names by querying the system table SYSSCHEDULE. For example:
SELECT event _id, sched_nanme FROM SYS. SYSSCHEDULE

Each event has a unique event ID. Use the event _i d columns of SYSEVENT and
SYSSCHEDUL E to match the event to the associated schedule.

When a nonrecurring scheduled event has passed, its schedule is deleted, but the event handler
is not deleted.

Scheduled event times are calculated when the schedules are created, and again when the
event handler completes execution. The next event time is computed by inspecting the
schedule or schedules for the event, and finding the next schedule time that is in the future. If
an event handler is instructed to run every hour between 9:00 and 5:00, and it takes 65 minutes
to execute, it runs at 9:00, 11:00, 1:00, 3:00, and 5:00. If you want execution to overlap, you
must create more than one event.

84

Sybase 1Q

SQL Statements

The subclauses of a schedule definition are as follows:

e START TIME - the first scheduled time for each day on which the event is scheduled. If a
START DATE is specified, the START TIME refers to that date. If no START DATE is
specified, the START TIME is on the current day (unless the time has passed) and each
subsequent day.

e BETWEEN ... AND -arange of times during the day outside of which no scheduled times
occur. If a START DATE is specified, the scheduled times do not occur until that date.

* EVERY -an interval between successive scheduled events. Scheduled events occur only
after the START TIME for the day, or in the range specified by BETWEEN ...AND.

e ON —alist of days on which the scheduled events occur. The default is every day. These
can be specified as days of the week or days of the month.

Days of the week are Monday, Tuesday, and so on. The abbreviated forms of the day, such
as Mon, Tue, and so on, may also be used. The database server recognizes both full-length
and abbreviated day names in any of the languages supported by Sybase 1Q.

Days of the month are integers from 0 to 31. A value of O represents the last day of any
month.

* START DATE - the date on which scheduled events are to start occurring. The default is
the current date.

Each time a scheduled event handler is completed, the next scheduled time and date is
calculated.

1. Ifthe EVERY clause is used, find whether the next scheduled time falls on the current day,
and is before the end of the BETWEEN ...AND range. If so, that is the next scheduled time.

2. If the next scheduled time does not fall on the current day, find the next date on which the
event is to be executed.

3. Find the START TIME for that date, or the beginning of the BETWEEN ... AND range.

ENABLE | DISABLE - by default, event handlers are enabled. When DISABLE is specified,
the event handler does not execute even when the scheduled time or triggering condition
occurs. A TRIGGER EVENT statement does notcause a disabled event handler to be executed.

AT — to execute events at remote or consolidated databases in a SQL Remote setup, use this
clause to restrict the databases at which the event is handled. By default, all databases execute
the event.

HANDLER - each event has one handler. Like the body of a stored procedure, the handler isa
compound statement. There are some differences, though: you can use an EXCEPTION clause
within the compound statement to handle errors, but not the ON EXCEPTION RESUME clause
provided within stored procedures.

See also Systermn Administration Guide: Volume 2 > Automating Tasks Using Scheaules and
Events.

Side Effects:

Reference: Statements and Options 85

SQL Statements

e Automatic commit.

« Theactions of an event handler are committed if no error is detected during execution, and
rolled back if errors are detected.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions
Must have DBA authority.

Event handlers execute on a separate connection, with the permissions of the event owner. To
execute with permissions other than DBA, you can call a procedure from within the event
handler: the procedure executes with the permissions of its owner. The separate connection
does not count towards the ten-connection limit of the personal database server.

See also

* ALTER EVENT Statementon page 14

e BEGIN ... END Statementon page 47

e COMMENT Statement on page 58

e DROP Statementon page 170

e TRIGGER EVENT Statement on page 304

CREATE EXISTING TABLE Statement

Creates a new proxy table that represents an existing table on a remote server.

Syntax
CREATE EXISTING TABLE [owner .] t abl e_name
[(colum-definition, ...)]

AT 'l ocation-string'

Parameters

» column-definition: — column-name data-type [NOT NULL]

* location-string: — remote-server-name.[db-name).[ownen.object-name | remote-server-
name;[db-namel;[ownen; object-name

Examples

« Example 1 - Create a proxy table named nat i on for the nati on table at the remote
server server _a:

86

Sybase 1Q

SQL Statements

CREATE EXI STI NG TABLE nati on
(n_nationkey int,

n_name char (25),

n_regi onkey int,

n_conment char (152))
AT 'server_a. dbl.joe. nation'

* Example 2 —Create a proxy table named bl ur bs for the bl ur bs table at the remote
server ser ver _a. Sybase 1Q derives the column list from the metadata it obtains from
the remote table:

CREATE EXI STI NG TABLE bl ur bs
AT 'server_a. dbl.joe. bl urbs'

* Example3—Create aproxy table namedr da_enpl oyee forthe Enpl oyees tableat

the Sybase 1Q remote server r enot e_i gdeno_srv:

CREATE EXI STI NG TABLE rda_enpl oyee
AT 'renote_i qdeno_srv. . dba. Enpl oyees’

Usage

CREATE EXISTING TABLE is a variant of the CREATE TABLE statement. The EXISTING
keyword is used with CREATE TABLE to specify that a table already exists remotely, and that
its metadata is to be imported into Sybase 1Q. This establishes the remote table as a visible
entity to its users. Sybase 1Q verifies that the table exists at the external location before it
creates the table.

Tables used as proxy tables cannot have names longer than 30 characters.

If the object does not exist (either as a host data file or remote server object), the statement is
rejected with an error message.

Index information from the host data file or remote server table is extracted and used to create
rows for the system table sysindexes. This defines indexes and keys in server terms and
enables the query optimizer to consider any indexes that might exist on this table.

Referential constraints are passed to the remote location when appropriate.

If you do not specify column definitions, Sybase 1Q derives the column list from the metadata
it obtains from the remote table. I1f you do specify column definitions, Sybase 1Q verifies them.
When Sybase 1Q checks column names, data types, lengths, and null properties:

e Column names must match identically (although case is ignored).

» Datatypes in CREATE EXISTING TABLE must match or be convertible to the data types of
the column on the remote location. For example, a local column data type is defined as
NUMERI C, whereas the remote column data type is MONEY. You may encounter some
errors, if you select from a table in which the data types do not match or other
inconsistencies exist.

Reference: Statements and Options 87

SQL Statements

» Each column’s NULL property is checked. If the local column’s NULL property is not
identical to the remote column’s NULL property, a warning message is issued, but the
statement is not aborted.

e Each column’s length is checked. If the lengths of CHAR, VARCHAR, Bl NARY,

DECI MAL, and NUMERI C columns do not match, a warning message is issued, but the
command is not aborted. You might choose to include only a subset of the actual remote
column list in your CREATE EXISTING statement.

» AT specifies the location of the remote object. The AT clause supports the semicolon (;) asa
delimiter. If a semicolon is present anywhere in the location string, the semicolon is the
field delimiter. If no semicolon is present, a period is the field delimiter. This allows you to
use file names and extensions in the database and owner fields. Semicolon field delimiters
are used primarily with server classes that are not currently supported; however, you can
also use them where a period would also work as a field delimiter. For example, this
statement maps the table pr oxy_al to the SQL Anywhere database my db on the remote
server myasa:

CREATE EXI STI NG TABLE
proxy_al
AT 'nyasa; nydb; ; al'

In a simplex environment, you cannot create a proxy table that refers to a remote table on the
same node. In a multiplex environment, you cannot create a proxy table that refers to the
remote table defined within the multiplex.

For example, in a simplex environment, if you try to create proxy table pr oxy_e, which
refers to base table Enpl oyees defined on the same node, the CREATE EXISTING TABLE
statement is rejected with an error message. In a multiplex environment, the CREATE
EXISTING TABLE statement is rejected if you create proxy table pr oxy_e from any node
(coordinator or secondary) that refers to remote table Enpl oyees defined within a
multiplex.

See also System Administration Guide: Volume 2 > Accessing Remote Data and System
Administration Guide: Volume 2 > Server Classes for Remote Data Access.

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Open Client/Open Server.

Permissions

Must have RESOURCE authority. To create a table for another user, you must have DBA
authority.

See also
o CREATE TABLE Statementon page 133

88

Sybase 1Q

SQL Statements

CREATE EXTERNLOGIN Statement

Assigns an alternate login name and password to be used when communicating with a remote
server.

Syntax

CREATE EXTERNLOGIN | ogi n- name
TO renot e-server

REMOTE LOGIN r enpt e- user

[IDENTIFIED BY renpt e- password]

Examples

» Examplel—Map the local user named DBA to the user sa with password 4TKNOX when
connecting to the server sybasel:
CREATE EXTERNLOG N dba
TO sybasel

REMOTE LOG N sa
| DENTI FI ED BY 4TKNOX

Usage

Changes made by CREATE EXTERNLOGIN do not take effect until the next connection to the
remote server.

By default, Sybase 1Q uses the names and passwords of its clients whenever it connects to a
remote server on behalf of those clients. CREATE EXTERNLOGIN assigns an alternate login
name and password to be used when communicating with a remote server. It stores the
password internally in encrypted form. The remote_servermust be known to the local server
by anentry inthe | SYSSERVER system table. For more information, see CREATE SERVER
Statement.

Sites with automatic password expiration should plan for periodic updates of passwords for
external logins.

CREATE EXTERNLOGIN cannot be used from within a transaction.

login-name—Specifies the local user login name. When using integrated logins, the /ogin-
name is the database user to which the Windows user ID is mapped.

TO—The TO clause specifies the name of the remote server.

REMOTE LOGIN—The REMOTE LOGIN clause specifies the user account on remote-server
for the local user /ogin-name.

IDENTIFIED BY—The IDENTIFIED BY clause specifies that remote-password is the
password for remote-user. If you omit the IDENTIFIED BY clause, the password is sent to the

Reference: Statements and Options 89

SQL Statements

remote serveras NULL. If you specify IDENTIFIED BY " " (an empty string), the password sent
is the empty string.

The remote-userand remote-password combination must be valid on remote-server.

Side Effects

* Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.
« Sybase—Supported by Open Client/Open Server.

Permissions
Only the DBA or USER ADMIN account can add or modify an external login.

See also

* DROP EXTERNLOGIN Statement on page 174
e INSERT Statement on page 209

e CREATE SERVER Statementon page 129

CREATE FUNCTION Statement

Creates a new function in the database.

Syntax

Syntax 1

CREATE [TEMPORARY] FUNCTION [owner.]functi on-name
([paraneter, ..])

RETURNS dat a-type routine-characteristics
[SQL SECURITY { INVOKER | DEFINER }]

{ conpound- st at enment

| AS tsql -compound- st at enent

| external -nane }

Syntax 2

CREATE FUNCTION [owner.]function-nanme ([paraneter, ..])
RETURNS dat a-type

URL url-string

HEADER header-string]

SOAPHEADER soap- header-string]

TYPE { "HTTP[:{ GET | POST }] ' | '"SoAP[:{ RPC | DOC }]' }]
NAMESPACE nanespace-string]

CERTIFICATE certificate-string]

—————

90 Sybase 1Q

SQL Statements

CLIENTPORT clientport-string]
PROXY proxy-string]

Parameters

url-string: —'{ HTTP | HTTPS | HTTPS_FIPS }://[user:password@) hostname[: pord[/
path]'

parameter: — IN parameter-name data-type [DEFAULT expression |
routine-characteristics: — ON EXCEPTION RESUME | [NOT] DETERMINISTIC
tsgl-compound-statement: — sg/-statement sql-statement ...

external-name: — EXTERNAL NAME /ibrary-call| EXTERNAL NAME java-call
LANGUAGE JAVA

library-call: —'[gperating-system:]function-name@library, ...'

operating-system: — UNIX

java-call: —'[package-name.] class-name.method-name method-signature
method-signature: — ([field-descriptor,]) return-descriptor

field-descriptor and return-descriptor: —z |B|S|I|J|F|D|C|V|[descriptor|L
class-name,

Examples

Example 1 —Concatenate af i r st nane string and a| ast nan® string:

CREATE FUNCTI ON ful | name (
firstnane CHAR(30),
| ast nane CHAR(30))
RETURNS CHAR(61)
BEG N
DECLARE nanme CHAR(61);
SET name = firstname || " ' || |astnaneg;
RETURN (nane) ;
END

This examples illustrate the use of the fullname function.

e Return a full name from two supplied strings:
SELECT fullnane ('joe','smth')

fullname(‘joe’, 'smith")

joe smith

« List the names of all employees:

SELECT ful | name (gi vennane, surnane)
FROM Enpl oyees

Reference: Statements and Options 91

SQL Statements

fullname (givenname, surname)

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

Robert Breault

e Example 2 — Use Transact-SQL syntax:

CREATE FUNCTI ON Doublelt (@nput INT)
RETURNS | NT

AS

DECLARE @Result | NT

SELECT @Result = @nput * 2

RETURN @Resul t

The statement SELECT Doubl el t (5) returns a value of 10.
* Example 3 —Create an external function written in Java:

CREATE FUNCTI ON dba. encrypt (| N nane char (254))

RETURNS VARCHAR

EXTERNAL NAME

' Scranbl e. encrypt (Ljava/lang/String;)Ljaval/lang/String;"'
LANGUAGE JAVA

Usage

The CREATE FUNCTION statement creates a user-defined function in the database. A function
can be created for another user by specifying an owner name. Subject to permissions, a user-
defined function can be used in exactly the same way as other non-aggregate functions.

CREATE FUNCTION—~Parameter names must conform to the rules for database identifiers.
They must have a valid SQL data type and be prefixed by the keyword IN, signifying that the
argument is an expression that provides a value to the function.

When functions are executed, not all parameters need to be specified. If a default value is
provided in the CREATE FUNCTION statement, missing parameters are assigned the default
values. If an argument is not provided by the caller and no default is set, an error is given.

Specifying TEMPORARY (CREATE TEMPORARY FUNCTION) means that the function is
visible only by the connection that created it, and that it is automatically dropped when the
connection is dropped. Temporary functions can also be explicitly dropped. You cannot
perform ALTER, GRANT, or REVOKE operations on them, and unlike other functions,
temporary functions are not recorded in the catalog or transaction log.

92

Sybase 1Q

SQL Statements

Temporary functions execute with the permissions of their creator (current user), and can only
be owned by their creator. Therefore, do not specify owner when creating a temporary
function.

Temporary functions can be created and dropped when connected to a read-only database.

SQL SECURITY—Defines whether the function is executed as the INVOKER, the user who
is calling the function, or as the DEFINER, the user who owns the function. The default is
DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because annotation must
be done for each user that calls the procedure. Also, when SQL SECURITY INVOKER is
specified, name resolution is done as the invoker as well. Therefore, take care to qualify all
object names (tables, procedures, and so on) with their appropriate owner.

compound-statement—A set of SQL statements bracketed by BEGIN and END, and separated
by semicolons. See BEGIN ... END Statement.

tsgl-compound-statement—A batch of Transact-SQL statements. See Reference: Building
Blocks, Tables, and Procedures > Compatibility with Other Sybase Databases > Transact-
SQL Procedure Language Overview > Transact-SQL Batch Overview and CREATE
PROCEDURE Statement [T-SQL].

EXTERNAL NAME—A function using the EXTERNAL NAME clause is a wrapper around a
call to a function in an external library. A function using EXTERNAL NAME can have no other
clauses following the RETURNS clause. The library name may include the file extension,
which is typically . dI I on Windows and . so on UNIX. In the absence of the extension, the
software appends the platform-specific default file extension for libraries.

The EXTERNAL NAME clause is not supported for temporary functions. See SQL Anywhere
11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere Data Access APIs > SQL
Anywhere External Function APl > Calling external libraries from procedures.

EXTERNAL NAME LANGUAGE JAVA—A function that uses EXTERNAL NAME with a
LANGUAGE JAVA clause is a wrapper around a Java method. For information on calling Java
procedures, see CREATE PROCEDURE Statement.

ON EXCEPTION RESUME—Uses Transact-SQL-like error handling. See CREATE
PROCEDURE Statement.

NOT DETERMINISTIC—A function specified as NOT DETERMINISTIC is re-evaluated each
time itis called in a query. The results of functions not specified in this manner may be cached
for better performance, and re-used each time the function is called with the same parameters
during query evaluation.

Functions that have side effects, such as modifying the underlying data, should be declared as
NOT DETERMINISTIC. For example, a function that generates primary key values and is used
in an INSERT ... SELECT statement should be declared NOT DETERMINISTIC:

Reference: Statements and Options 93

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html

SQL Statements

CREATE FUNCTI ON keygen(increnent | NTEGER)

RETURNS | NTEGER

NOT DETERM NI STI C

BEG N
DECLARE keyval | NTEGER;
UPDATE counter SET x = x + increnent;
SELECT counter.x | NTO keyval FROM counter;
RETURN keyval

END

I NSERT | NTO new_t abl e

SELECT keygen(1),

FROM ol d_t abl e

Functions may be declared as DETERMINISTIC if they always return the same value for given
input parameters.

All user-defined functions are treated as deterministic unless they are declared NOT
DETERMINISTIC. Deterministic functions return a consistent result for the same parameters
and are free of side effects. That is, the database server assumes that two successive calls to the
same function with the same parameters will return the same result without unwanted side-
effects on the semantics of the query.

If a function returns a result set, it cannot also set output parameters or return a return value.

Note: User-defined functions are processed by SQL Anywhere. They do not take advantage of
the performance features of Sybase 1Q. Queries that include user-defined functions run at least
10 times slower than queries without them.

In certain cases, differences in semantics between SQL Anywhere and Sybase 1Q can produce
different results for a query if the query is issued in a user-defined function. For example,
Sybase 1Q treats the CHAR and VARCHAR data types as distinct and different, while SQL
Anywhere treats CHAR data as if it were VARCHAR.

To modify a user-defined function, or to hide the contents of a function by scrambling its
definition, use the ALTER FUNCTION statement. For more information, see SQL Anywhere
11.0.1 > SQL Anywhere Server — SQL Reference > Using SQL > SQL statements > SQL
statements (A-D) > ALTER FUNCTION statement.

URL—For use only when defining an HTTP or SOAP web services client function. Specifies
the URL of the web service. The optional user name and password parameters provide a
means of supplying the credentials needed for HTTP basic authentication. HTTP basic
authentication base-64 encodes the user and password information and passes it in the
“Authentication” header of the HTTP request.

For web service client functions, the return type of SOAP and HTTP functions must one of the
character data types, such as VARCHAR. The value returned is the body of the HTTP response.
No HTTP header information is included. If more information is required, such as status
information, use a procedure instead of a function.

94

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/alter-function-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/alter-function-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/alter-function-statement.html

SQL Statements

Parameter values are passed as part of the request. The syntax used depends on the type of
request. For HTTP:GET, the parameters are passed as part of the URL; for HTTP:POST
requests, the values are placed in the body of the request. Parameters to SOAP requests are
always bundled in the request body.

HEADER—When creating HTTP web service client functions, use this clause to add or
modify HTTP request header entries. Only printable ASCII characters can be specified for
HTTP headers, and they are case-insensitive. For more information about how to use this
clause, see the HEADER clause of the CREATE PROCEDURE Statement.

For more information about using HTTP headers, see SQL Anywhere 11.0.1 > SQL
Anywhere Server - Programming> SQL Anywhere Data Access APIs > SQL Anywhere web
services > Working with HTTP headers.

SOAPDHEADER—When declaring a SOAP Web service as a function, use this clause to
specify one or more SOAP request header entries. A SOAP header can be declared as a static
constant, or can be dynamically set using the parameter substitution mechanism (declaring IN,
OUT, or INOUT parameters for hd1, hd2, and so on). A web service function can define one or
more IN mode substitution parameters, but cannot define an INOUT or OUT substitution
parameter. For more information about how to use this clause, see the SOAPHEADER clause in
SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference > Using SQL > SQL
Sstatements > SQL statements (A-D) > CREATE PROCEDURE statement (web services).

TYPE—Specifies the format used when making the web service request. If SOAP is specified
or no type clause is included, the default type SOAP:RPC is used. HTTP implies HTTP:POST.
Since SOAP requests are always sent as XML documents, HTTP:POST is always used to send
SOAP requests.

NAMESPACE—Applies to SOAP client functions only and identifies the method namespace
usually required for both SOAP:RPC and SOAP:DOC requests. The SOAP server handling the
request uses this namespace to interpret the names of the entities in the SOAP request message
body. The namespace can be obtained from the WSDL description of the SOAP service
available from the web service server. The default value is the procedure's URL, up to but not
including the optional path component.

CERTIFICATE—To make a secure (HTTPS) request, a client must have access to the
certificate used by the HTTPS server. The necessary information is specified in a string of
semicolon-separated key/value pairs. The certificate can be placed in a file and the name of the
file provided using the file key, or the whole certificate can be placed in a string, but not both.
These keys are available:

Key Abbreviation Description

file File name of certificate

certificate cert The certificate

company co Company specified in the certificate

Reference: Statements and Options 95

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/headers-http.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/headers-http.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/headers-http.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-procedure-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-procedure-statement.html

SQL Statements

Key Abbreviation Description
unit Company unit specified in the certificate
name Common name specified in the certificate

Certificates are required only for requests that are either directed to an HTTPS server or can be
redirected from an insecure to a secure server.

CLIENTPORT—Identifies the port number on which the HTTP client procedure
communicates using TCP/IP. Itis provided for and recommended only for connections across
firewalls, as firewalls filter according to the TCP/UDP port. You can specify a single port
number, ranges of port numbers, or a combination of both; for example, CLIENTPORT
'85,90-97".

See System Administration Guide. Volume 1 > Connection and Communication Parameters >
Network Communications Parameters > ClientPort Communication Parameter [CPort].

PROXY—Specifies the URI of a proxy server. For use when the client must access the
network through a proxy. Indicates that the procedure is to connect to the proxy server and
send the request to the web service through it.

Side Effects

¢ Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have RESOURCE authority.

External functions, including Java functions, must have DBA authority.

See also

* ALTER FUNCTION Statementon page 15

e BEGIN ... END Statementon page 47

* CREATE PROCEDURE Statementon page 110
e DROP Statement on page 170

e RETURN Statementon page 271

96

Sybase 1Q

SQL Statements

CREATE INDEX Statement

Creates an index on a specified table, or pair of tables.

Syntax

CREATE [UNIQUE] [index-type] INDEX i ndex-name
.ON [owner.]tabl e-nane

...(colum-name [, colum-nane] .)

.l { IN| ON} dbspace-nane]

..l NOTIFY integer]

.[DELIMITEDBY ‘separators-string ‘]

[LIMIT maxwor dsi ze-i nt eger]

Parameters

+ index-type: —{ CMP | HG | HNG | LF | WD | DATE | TIME | DTTM }

Examples

* Example 1 —Create a Compare index on the pr oj ect ed_ear ni ngs and
current _ear ni ngs columns. These columns are decimal columns with identical
precision and scale.

CREATE

CVMP | NDEX proj _curr_cnp
ON sal es_data
(projected_earnings, current_earnings)

» Example2—Create a High_Group index on the | Dcolumn of the Sal esOr der | t ens
table. The data pages for this index are allocated from dbspace Dsp5.

CREATE

HG | NDEX i d_hg
ON Sal esOrderltens
(ID) IN Dsp5
* Example 3 —Create a High_Group index on the Sal esOr der | t ens table for the
Pr oduct | Dcolumn:
CREATE HG | NDEX item prod_hg

ON Sal es_Orderltens
(Product| D)

* Example4 —Create a Low_Fast index on the Sal esOr der | t ens table for the same
Pr oduct | Dcolumn without any notification messages:

CREATE LF | NDEX item prod
ON Sal esOrderltens

Reference: Statements and Options 97

SQL Statements

(Product| D)
NOTI FY O

* Example5—Create a WD index on the ear ni ngs_r eport table. Specify that the
delimiters of strings are space, colon, semicolon, and period. Limit the length of the strings
to 25.
CREATE WD | NDEX ear ni ngs_wd
ON earni ngs_report _tabl e(varchar)

DELIM TED BY “ :;.
LIMT 25

* Example 6 —Create a DTTM index on the Sal esOr der s table for the Or der Dat e
column:
CREATE DTTM | NDEX order _dttm

ON Sal esOrders
(OrderDate)

Usage

The CREATE INDEX statement creates an index on the specified column of the named table.
Once an index is created, it is never referenced in a SQL statement again except to delete it
using the DROP INDEX statement.

For columns in Sybase 1Q tables, you can specify an index-type of HG (High_Group), HNG
(High_Non_Group), LF (Low_Fast), wD (Word), DATE, TIME, or DTTM (Datetime). If you do
not specify an /ndex-type, an HG index is created by default.

To create an index on the relationship between two columns in an 1Q table, you can specify an
index-type of CMP (Compare). Columns must be of identical data type, precision and scale.
For a CHAR, VARCHAR, Bl NARY or VARBI NARY column, precision means that both
columns have the same width.

For maximum query speed, the correct type of index for a column depends on:

e The number of unique values in the column
* How the column is going to be used in queries
e The amount of disk space available

The System Administration Guide: Volume 1 describes the index types in detail and tells how
to determine the appropriate index types for your data.

You can specify multiple indexes on a column of an 1Q table, but these must be of different
index types. CREATE INDEX does not let you add a duplicate index type. Sybase 1Q chooses
the fastest index available for the current query or portion of the query. However, each
additional index type might significantly add to the space requirements of that table.

column-name—Specifies the name of the column to be indexed. A column name is an
identifier preceded by an optional correlation name. (A correlation name is usually a table
name. For more information on correlation names, see FROM Clause.) If a column name has
characters other than letters, digits, and underscore, enclose it in quotation marks (“”).

98

Sybase 1Q

SQL Statements

When you omit UNIQUE, you can specify only an HG index. Foreign keys require nonunique
HG indexes and composite foreign keys require nonunique composite HG indexes. The
multicolumn composite key for both unique and nonunique HG indexes has a maximum width
of 5300 bytes. CHAR or VARCHAR data cannot be more than 255 bytes when it is part of a
composite key or single-column HG, LF, HNG, DATE, TIME, or DTTM indexes.

UNIQUE—UNIQUE ensures that no two rows in the table have identical values in all the
columns in the index. Each index key must be unique or contain a NULL in at least one
column. You can create unique HG indexes with more than one column, but you cannot create
multicolumn indexes using other index types. You cannot specify UNIQUE with the CMP,
HNG, WD, DATE, TIME, or DTTM index types.

Sybase 1Q allows the use of NULL in data values on a user created unique multicolumn HG
index, if the column definition allows for NULL values and a constraint (primary key or
unique) is not being enforced. See “Multicolumn indexes” in Aotes for more information.

IN—Specifies index placement. If you omit the IN clause, the index is created in the dbspace
where the table is created. An index is always placed in the same type of dbspace (1Q store or
temporary store) as its table. When you load the index, the data is spread across any database
files of that type with room available. Sybase 1Q ensures that any dbspace-nameyou specify is
appropriate for the index. If you try to specify | Q_SYSTEM_MAI Nor other main dbspaces for
indexes on temporary tables, or vice versa, you receive an error. Dbspace names are always
case-insensitive, regardless of the CREATE DATABASE...CASE IGNORE or CASE RESPECT
specification.

DELIMITED BY—Specifies separators to use in parsing a column string into the words to be
stored in the WD index of that column. If you omit this clause or specify the value as an empty
string, Sybase 1Q uses the default set of separators. The default set of separators is designed for
the default collation order (ISO-BINENG). It includes all 7-bit ASCII characters that are not
7-bit ASCII alphanumeric characters, except for the hyphen and the single quotation mark.
The hyphen and the single quotation mark are part of words by default. There are 64 separators
in the default separator set. For example, if the column value is this string:

The cat is on the mat

and the database was created with the CASE IGNORE setting using default separators, these
words are stored in the wD index from this string:

cat is mat on the

If you specify multiple DELIMITED BY and LIMIT clauses, no error is returned, but only the last
clause of each type is used.

separators-string—The separators string must be a sequence of 0 or more characters in the
collation order used when the database was created. Each character in the separators string is
treated as a separator. If there are no characters in the separators string, the default set of
separators is used. (Each separator must be a single character in the collation sequence being
used.) There cannot be more than 256 characters (separators) in the separators string.

Reference: Statements and Options 99

SQL Statements

To specify tab as a delimiter, you can either type a <TAB> character within the separator
string, or use the hexadecimal ASCII code of the tab character, \x09. “\t” specifies two
separators, \ and the letter t. To specify newline as a delimiter, you can type a <RETURN>
character or the hexadecimal ASCII code \x0a.

For example, the clause DELI M TED BY ' :;.\/t"' specifies these seven separators:
space : ; . \ [t
Table 5. Tab and Newline as Delimiters

For these delimiters Use this separators string in the DELIMITED
BY clause

tab "' (type <TAB>)or
"\ x09'

new i ne " ' (type <RETURN>)or' \ x0a'

LIMIT—Can be used for the creation of the wD index only. Specifies the maximum word
length that is permitted in the wD index. Longer words found during parsing causes an error.
The default is 255 bytes. The minimum permitted value is 1 and the maximum permitted value
is 255. If the maximum word length specified in the CREATE INDEX statement or determined
by default exceeds the column width, the used maximum word length is silently reduced to the
column width. Using a lower maximum permitted word length allows insertions, deletions,
and updates to use less space and time. The empty word (two adjacent separators) is silently
ignored. After a wD index is created, any insertions into its column are parsed using the
separators and maximum word size determined at create time. These separators and maximum
word size cannot be changed after the index is created.

NOTIFY—Gives notification messages after /7records are successfully added for the index.
The messages are sent to the standard output device. A message contains information about
memory usage, database space, and how many buffers are in use. The default is 100,000
records. To turn off NOTIFY, set it to 0.

Note:

* Index ownership—There is no way to specify the index owner in the CREATE INDEX
statement. Indexes are automatically owned by the owner of the table on which they are
defined. The index name must be unique for each owner.

* No indexes on views—Indexes cannot be created for views.

* Index name—The name of each index must be unique for a given table.

« Exclusive table use—CREATE INDEX is prevented whenever the statement affects a table
currently being modified by another connection. However, queries are allowed on a table
that is also adding an index.

e CHAR columns—After a WD index is created, any insertions into its column are parsed
using the separators, and maximum word size cannot be changed after the index is created.
For CHAR columns, Sybase recommends that you specify a space as at least one of the
separators or use the default separator set. Sybase 1Q automatically pads CHAR columns to

100

Sybase 1Q

SQL Statements

the maximum column width. If your column contains blanks in addition to the character
data, queries on WD indexed data might return misleading results. For example, column
Conpany Nare contains two words delimited by a separator, but the second word is blank
padded:

‘Concord’ ‘Farms

Suppose that a user entered this query:
SELECT COUNT(*) FROM Cust orrer s WHERE ConpanyNane contains (‘ Farns’)

The parser determines that the string contains:
‘ Far ns ’

instead of:
‘Farns’

and returns 0 instead of 1. You can avoid this problem by using VARCHAR instead of CHAR
columns.

« Data types—You cannot use CREATE INDEX to create an index on a column with BI T
data. Only the default index, CMP index, or WD index can be created on CHAR and
VARCHAR data with more than 255 bytes. Only the default and WD index types can be
created on LONG VARCHAR data. Only the defaultindex and CMP index can be created on
VARBI NARY data with more than 255 bytes. In addition, you cannot create an HNG index
or a CMP index on a column with FLOAT, REAL, or DOUBLE data. A TIME index can be
created only on a column having the data type TI ME. A DATE index can be created only on
a column having the data type DATE. A DTTM index can be created only on a column
having the data type DATETI ME or TI MESTAMP.

e Multicolumn indexes—You can create a unique or nonunique HG index with more than
one column. Sybase 1Q implicitly creates a nonunique HG index on a set of columns that
makes up a foreign key.

HG and CMP are the only types of indexes that can have multiple columns. You cannot
create a unique HNG or LF index with more than one column, and you cannot create a
DATE, TIME, or DTTM index with more than one column.

The maximum width of a multicolumn concatenated key is 5KB (5300 bytes). The number
of columns allowed depends on how many columns can fit into 5KB. CHAR or VARCHAR
data greater than 255 bytes are not allowed as part of a composite key in single-column HG,
LF, HNG, DATE, TIME, or DTTM indexes.

Multicolumn indexes on base tables are rotreplicated in join indexes created using those
base tables.

An INSERT on a multicolumn index must include all columns of the index.

Queries with a single column in the ORDER BY clause run faster using multicolumn HG
indexes. For example:

SELECT abs (x) fromt1l
ORDER BY x

In the above example, the HG index vertically projects x in sorted order.

Reference: Statements and Options 101

SQL Statements

To enhance query performance, use multicolumn HG indexes to run ORDER BY operations

on more than one column (that can also include ROWID) in the SELECT or ORDER BY

clause with these conditions:

« All projected columns, plus all ordering columns (except ROWID), exist within the
index

» The ordering keys match the leading HG columns, in order

If more than one multicolumn HG index satisfies these conditions, the index with the

lowest distinct counts is used.

If a query has an ORDER BY clause, and the ORDER BY column list is a prefix of a

multicolumn index where all columns referenced in the SELECT list are present in a

multicolumn index, then the multicolumn index performs vertical projection; for example:

SELECT x,z,y FROM T
ORDER BY X,y

If expressions exist on base columns in the SELECT list, and all the columns referenced in
all the expressions are present in the multicolumn index, then the query will use a
multicolumn index; for example:

SELECT power (X, 2), x+y, sin(z) FROMT
ORDER BY X,y

In addition to the two previous examples, if the ROWID() function is in the SELECT list
expressions, multicolumn indexes will be used. For example:

SELECT rowid()+x, z FROM T
CRDER BY Xx,Vy, z

In addition to the three previous examples, if ROWID() is present at the end of an ORDER
BY list, and if the columns of that list—except for ROWID()—use multicolumn indexes in
the exact order, multicolumn indexes will be used for the query. For example:

SELECT z,y FROM T
ORDER BY X, Y, z, RON ()

Sybase IQ allows the use of NULL in data values on a user created unique multicolumn HG
index, if the column definition allows for NULL values and a constraint (primary key or
unique) is not being enforced. The rules for this feature are as follows:

e A NULL is treated as an undefined value.

e Multiple rows with NULL values in a unique index column or columns are allowed.

1. Inasingle column index, multiple rows with a NULL value in an index column are
allowed.

2. Ina multicolumn index, multiple rows with a NULL value in index column or
columns are allowed, as long as non-NULL values in the rest of the columns
guarantee uniqueness in that index.

3. In amulticolumn index, multiple rows with NULL values in all columns
participating in the index are allowed.

These examples illustrate these rules. Given the table t abl el:

CREATE TABLE t abl el
(cl INT NULL, c2 INT NULL, c3 INT NOT NULL);

102

Sybase 1Q

SQL Statements

Create a unique single column HG index on a column that allows NULLSs:
CREATE UNI QUE HG I NDEX c1_hgl ON tablel (cl);

According to rule 1 above, you can insert a NULL value into an index column in multiple
rows:

I NSERT | NTO tabl el(cl, c2, c3) VALUES (NULL, 1,1);
I NSERT | NTO tabl el(cl, c2, c3) VALUES (NULL, 2, 2);

Create a unique multicolumn HG index on a columns that allows NULLSs:
CREATE UNI QUE HG | NDEX c1c2_hg2 ON tabl el(cl,c2);

According to rule 2 above, you must guarantee uniqueness in the index. The following
INSERT does not succeed, since the multicolumn index c1c2_hg2 on row 1 and row 3
has the same value:

| NSERT | NTO tabl e1(cl, c2, c3) VALUES (NULL, 1, 3);

These INSERT operations are successful, however, according to rules 1 and 3:

| NSERT | NTO tabl el(cl, c2, c3) VALUES (NULL, NULL, 3);
| NSERT | NTO tabl el(cl, c2, c3) VALUES (NULL, NULL, 4) ;

Uniqueness is preserved in the multicolumn index.

This UPDATE operation is successful, as rule 3 allows multiple rows with NULL values in
all columns in the multicolumn index:

UPDATE t abl el SET c2=NULL WHERE c3=1

When a multicolumn HG index is governed by a unique constraint, a NULL value is not
allowed in any column participating in the index.

» Parallel index creation—You can use the BEGIN PARALLEL IQ ... END PARALLEL IQ
statement to group CREATE INDEX statements on multiple 1Q tables, so that they execute
as though they are a single DDL statement. See BEGIN PARALLEL 1Q ... END
PARALLEL 1Q Statement for more information.

Warning! Using the CREATE INDEX command on a local temporary table containing
uncommitted data fails and generates the error message Local tenporary tabl e,
<t abl ename>, nust be conmitted in order to create an index.
Commit the data in the local temporary table before creating an index.

See also System Administration Guide: Volume 1 > Sybase 1Q Indexes.
Side Effects

e Automatic commit

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Adaptive Server Enterprise has a more complex CREATE INDEX statement than
Sybase 1Q. While the Adaptive Server Enterprise syntax is permitted in Sybase 1Q, some

Reference: Statements and Options 103

SQL Statements

clauses and keywords are ignored. For the full syntax of the Adaptive Server Enterprise
CREATE INDEX statement, see the Adaptive Server Enterprise Reference Manual, Volume
2: Commands.

Adaptive Server Enterprise indexes can be either clusteredor nonclustered. A clustered index
almost always retrieves data faster than a nonclustered index. Only one clustered index is
permitted per table.

Sybase 1Q does not support clustered indexes. The CLUSTERED and NONCLUSTERED
keywords are allowed by SQL Anywhere, but are ignored by Sybase 1Q. If no /ndex-typeis
specified, Sybase 1Q creates an HG index on the specified column(s).

Sybase 1Q does not permit the DESC keyword.

Index names must be unique on a given table for both Sybase 1Q and Adaptive Server
Enterprise.

Permissions

Must have DBA authority or RESOURCE authority and CREATE privilege in the specified
dbspace to create an index.

See also

e BEGINPARALLEL 1Q ... END PARALLEL IQ Statement on page 49
e FROM Clause on page 193

e CREATE JOIN INDEX Statementon page 104

* DROP Statement on page 170

* INDEX PREFERENCE Optionon page 387

CREATE JOIN INDEX Statement

Creates a join index, which defines a group of tables that are prejoined through specific
columns, to improve performance of queries using tables in a join operation.

Syntax

CREATE JOIN INDEX j 0i n-i ndex- nane FOR j oi n-cl ause
IN dbspace- nane

Parameters

» join-clause: —[(] join-expression join-type join-expression [ON search-condition
[)]

* join-expression: —{ table-name | join-clause }

e join-type: —[NATURAL] FULL [OUTER] JOIN

104 Sybase 1Q

SQL Statements

» search-condition: —[(] search-expression | AND search-expression] [)]
* search-expression: —[(] [table-name.] column-name = | table-name.] column-name

D]

Examples

* Example1—Create a join index between the Depar t ment s and Enpl oyees tables
using the Depar t nent | D column, which is the primary key for Depart ment s and
foreign key for Enpl oyees.

CREATE JO N | NDEX enp_dept _j oi n

FOR Departnents FULL OUTER JO N Enpl oyees
ON Departnents. Department| D = Enpl oyees. Depart ment | D

» Example2—Create tablest 1 and t 2, where future data allocation is from the default
dbspace, and join index t 1t 2, where future data allocation is from dbspace Dsp6.

CREATE TABLE t1(cl int, c2 char(5));
CREATE TABLE t2(cl int, c3 char(5));
CREATE JON INDEX t1t2 FOR t1
FULL QUTER JONt2 ONt2.cl=tl1l.cl |IN Dsp6;

Usage

CREATE JOIN INDEX creates a join index on the specified columns of the named tables. Once
ajoinindex is created, it is never referenced again except to delete it using DROP JOIN INDEX
or to synchronize it using SYNCHRONIZE JOIN INDEX.

This statement supports joins only of type FULL OUTER; the OUTER keyword is optional.

IN—Specifies the join index placement. If the IN clause is omitted, Sybase 1Q creates the join
index in the default dbspace (as specified by the option DEFAULT _DBSPACE).

ON—References only columns from two tables. One set of columns must be from a single
table in the left subtree and the other set of columns must be from a table in the right subtree.
The only predicates supported are equijoin predicates. Sybase 1Q does not allow single-
variable predicates, intra-column comparisons, or nonequality joins.

Join index columns must have identical data type, precision, and scale.

To specify a multipart key, include more than one predicate linking the two tables connected
by a logical AND. A disjunct ON clause is not supported; that is, Sybase 1Q does not permit a
logical OR of join predicates. Also, the ON clause does not accept a standard WHERE clause,
S0 you cannot specify an alias.

You can use the NATURAL keyword instead of an ON clause. A NATURAL join is one that
pairs columns up by name and implies an equijoin. If the NATURAL join generates predicates
involving more than one pair of tables, CREATE JOIN INDEX returns an error. You can specify
NATURAL or ON, but not both.

CREATE JOIN INDEX looks for a primary-key-to-foreign-key relationship in the tables to
determine the direction of the one-to-many relationship. (The direction of a one-to-one

Reference: Statements and Options 105

SQL Statements

relationship is not important.) The primary key is always the “one” and the foreign key is
always the “many”. If such information is not defined, Sybase 1Q assumes the subtree on the
left is the “one” while the subtree on the right is the “many”. If the opposite is true, CREATE
JOIN INDEX returns an error.

Note: Query optimizations for all joins rely heavily on underlying primary keys. They do not
require foreign keys. However, you can benefit from using foreign keys. Sybase 1Q enforces
foreign keys if you set up your loads to check for primary key-foreign key relationships.

Join index tables must be Sybase 1Q base tables. They cannot be temporary tables, remote
tables, or proxy tables.

Multicolumn indexes on base tables are notreplicated in join indexes created using those base
tables.

A star-join index is one in which a single table at the center of the star is joined to multiple
tables in a one-to-many relationship. To define a star-join index, you must define single-
column key and primary keys, and then use the key join syntax in the CREATE JOIN INDEX
statement. Sybase 1Q does not support star-join indexes that use multiple join key columns for
any join.

Note: You must explicitly grant permissions on the underlying “join virtual table” to other
users in your group before they can manipulate tables in the join. For information on granting
privileges on the join virtual table, see System Administration Guide: Volume 1 > Sybase 1Q
Indexes > Using Join Indexes > Insertions or Deletions from Join Index Tables.

See also System Administration Guide: Volume 1 > Sybase 1Q Indexes.
Side Effects

¢ Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority or have RESOURCE authority, be the owner of all tables involved in
the join, and have CREATE permission in the dbspace.

See also
e CREATE INDEX Statement on page 97
o CREATE TABLE Statementon page 133

106

Sybase 1Q

SQL Statements

CREATE LOGICAL SERVER Statement

Creates a user-defined logical server.

Syntax

See bel ow.
Usage

For syntax and complete description, see Using Sybase 1Q Multiplex.

CREATE LOGIN POLICY Statement

Creates a login policy in the database.

Syntax
CREATE LOGIN POLICY pol i cy-nanme policy-options

Parameters

* policy-options: — policy-option [policy-option...]
» policy_option: — policy-option-name =policy-option-value policy-option-
value={ UNLIMITED | ROOT | /legal-option-value}

Examples

» Examplel—Create the Test 1 login policy. This login policy has an unlimited password
life and allows the user a maximum of five attempts to enter a correct password before the
account is locked.

CREATE LOG N POLI CY Test 1
password_life_time=UNLI M TED
max_fail ed_| ogi n_att enpt s=5;

Usage
policy-name—the name of the login policy.

policy-option-name—the name of the login policy option. If you do not specify an option, the
value from the root login policy is applied.

policy-option-value—the value assigned to the login policy option. If you specify
UNLIMITED, no limits are imposed.

Reference: Statements and Options 107

SQL Statements

If you do not specify a policy option, values for the login policy are taken from the root login

policy.
Table 6. Login Policy Options
Description Initial | Applies to
value
for
ROOT
Option Values policy
| ocked If the value for this option | ON, OFF OFF Users without
is ON, users are prohibi- DBA authority
ted from establishing new only
connections
nmax_connecti ons The maximum number of | 0-2147483647 | Unlimi- | Users without
concurrent connections ted DBA authority
allowed for a user. only
max_days_si nce_| og | The maximum number of | 0— 2147483647 [Unlimi- | Users without
in days that can elapse be- ted DBA authority
tween two successive log- only
ins by the same user.
max_fail ed_| og- The maximum number of | 0— 2147483647 [Unlimi- | Users without
in_attenpts failed attempts, since the ted DBA authority
last successful attempt, to only
login to the user account
before the account is
locked.
max_non_dba_con- The maximum number of | 0—2147483647 | Unlimi- | Users without
necti ons concurrent connections ted DBA authority
that a user without DBA only. Only to
authority can make. This the root login
optionisonly supported in policy.
the root login policy.
passwor d_expi - If the value for this option | ON, OFF OFF All users in-
ry _on_next login is ON, the user's password cluding those
will expire in the next log- with DBA au-
in. thority
pass- The number of days be- | 02147483647 | O All users in-
word_grace_tine fore password expiration cluding those
during which login is al- with DBA au-
lowed but the default thority

post_login procedure is-
sues warnings.

108

Sybase 1Q

SQL Statements

Description Initial | Applies to
value
for
ROOT
Option Values policy
password_life_time | The maximum number of | 0— 2147483647 [Unlimi- | All users in-
days before a password ted cluding those
must be changed. with DBA au-
thority

Permissions
Must have DBA or USER ADMIN authority.

CREATE MESSAGE Statement [T-SQL]

Adds a user-defined message to the SYSUSERMESSAGES system table for use by PRINT and
RAISERROR statements.

Syntax

CREATE MESSAGE nmessage- nunber
AS' nessage-text'

Usage

CREATE MESSAGE associates a message number with a message string. The message
number can be used in PRINT and RAISERROR statements.

e message_number—The message number of the message to add. The message number for
a user-defined message must be 20000 or greater.

* message_text—The text of the message to add. The maximum length is 255 bytes. PRINT
and RAISERROR recognize placeholders in the message text to print out. A single message
can contain up to 20 unique placeholders in any order. These placeholders are replaced
with the formatted contents of any arguments that follow the message when the text of the
message is sent to the client.

Placeholders are numbered to allow reordering of the arguments when translating a
message to a language with a different grammatical structure. A placeholder for an
argument appears as “%nn!”—a percent sign (%), followed by an integer from 1 to 20,
followed by an exclamation mark (!)—where the integer represents the position of the
argument in the argument list, “%21!” is the first argument, “%2!” is the second argument,
and so on.

There is no parameter corresponding to the /anguage argument for sp_addmessage.
Side Effects

Reference: Statements and Options 109

SQL Statements
e Automatic commit

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

« Sybase—The functionality of CREATE MESSAGE is provided by the sp_addmessage
procedure in Adaptive Server Enterprise.

Permissions
Must have RESOURCE authority.

See also
e PRINT Statement [T-SQL] on page 255
* RAISERROR Statement [T-SQL] on page 258

CREATE MULTIPLEX SERVER Statement

Creates a multiplex server.

Syntax
See bel ow.

Usage
For syntax and complete description, see Using Sybase 1Q Multiplex.

CREATE PROCEDURE Statement

Creates a new user-defined SQL procedure in the database.

To create external procedure interfaces, see CREATE PROCEDURE Statement (External
Procedures).

Syntax

CREATE[OR REPLACE | TEMPORARY] PROCEDURE [owner.] procedure-name
([paranmeter, .]) {

[RESULT (result-columm, .) | NORESULT SET]

[SQL SECURITY { INVOKER | DEFINER }]

[ONEXCEPTION RESUME | conpound statenent | AT |ocation-string

110 Sybase 1Q

SQL Statements

Parameters

e parameter: — parameter_mode parameter-name data-type [DEFAULT expression] |
SQLCODE | SQLSTATE

* parameter_mode: —IN | OUT | INOUT

* result-column: — column-name data-type

Examples
* Example 1 —Use a case statement to classify the results of a query:

CREATE PROCEDURE Product Type (I N product_id I NT, OUT type
CHAR(10))
BEG N
DECLARE prod_nanme CHAR(20) ;
SELECT nane | NTO prod_nanme FROM " GROUPO'. " Product s"
WHERE | D = product _i d;
CASE prod_nane
WHEN ' Tee Shirt' THEN
SET type = 'Shirt’
WHEN ' Sweatshirt' THEN
SET type = 'Shirt'
WHEN ' Basebal | Cap' THEN
SET type = ' Hat'
VWHEN ' Vi sor' THEN
SET type = 'Hat"®
WHEN ' Shorts' THEN
SET type = ' Shorts'
ELSE
SET type = ' UNKNOWN
END CASE ;
END

* Example 2 —Use a cursor and loop over the rows of the cursor to return a single value:

CREATE PROCEDURE TopCustoner (OUT TopConpany CHAR(35), OUT
TopVal ue | NT)
BEG N

DECLARE err _not f ound EXCEPTI ON

FOR SQLSTATE ' 02000' ;

DECLARE cur Thi sCust CURSOR FOR

SELECT ConpanyNane, CAST(sun(Sal esOrderltens. Quantity *

Products. UnitPrice) AS | NTEGER) VALUE

FROM Cust oner s

LEFT QUTER JO N Sal esOrders

LEFT QUTER JO N Sal esorderltens

LEFT QUTER JO N Products

CROUP BY ConpanyNane ;

DECLARE Thi sVal ue I NT ;
DECLARE Thi sConpany CHAR(35) ;
SET TopVal ue = 0 ;

OPEN cur Thi sCust ;

Cust onmer Loop:

LOOP

Reference: Statements and Options 111

SQL Statements

FETCH NEXT cur Thi sCust
I NTO Thi sConpany, ThisVal ue ;
| F SQLSTATE = err_notfound THEN
LEAVE Cust oner Loop ;
END I F ;
| F Thi sVal ue > TopVal ue THEN
SET TopVal ue = Thi sVal ue ;
SET TopConpany = Thi sConpany ;
END I F ;
END LOOP Cust oner Loop ;
CLCSE cur Thi sCust ;
END

Usage

CREATE PROCEDURE creates a procedure in the database. Users with DBA authority can
create procedures for other users by specifying an owner. A procedure is invoked with a CALL
statement.

Note: There are two ways to create stored procedures: ISO/ANSI SQL and T-SQL. BEGIN
TRANSACTION, for example, is T-SQL-specific when using CREATE PROCEDURE syntax.
Do not mix syntax when creating stored procedures. See CREATE PROCEDURE Statement

[T-50L].

CREATE PROCEDURE— You can create permanent or temporary (TEMPORARY) stored
procedures. You can use PROC as a synonym for PROCEDURE.

Parameter names must conform to the rules for other database identifiers, such as column
names, and must be a valid SQL data type. See Reference: Building Blocks, Tables, and
Procedures > SQL Data Types. The keywords have the following meanings:

Parameters can be prefixed by one of the keywords IN, OUT or INOUT. If no keyword is
specified, parameters are INOUT by default. The keywords have the following meanings:

« IN—The parameter is an expression that provides a value to the procedure.
* OUT—The parameter is a variable that could be given a value by the procedure.

« INOUT—The parameter is a variable that provides a value to the procedure, and could be
given a new value by the procedure.

When procedures are executed using CALL, not all parameters need to be specified. If a default
value is provided in the CREATE PROCEDURE statement, missing parameters are assigned
the default values. If an argument is not provided in the CALL statement, and no default is set,
an error is given.

SQLSTATE and SQLCODE are special parameters that output the SQLSTATE or SQLCODE
value when the procedure ends (they are OUT parameters). Whether or not a SQLSTATE and
SQLCODE parameter is specified, the SQLSTATE and SQLCODE special values can always be
checked immediately after a procedure call to test the return status of the procedure.

112

Sybase 1Q

SQL Statements

The SQLSTATE and SQLCODE special values are modified by the next SQL statement.
Providing SQLSTATE or SQLCODE as procedure arguments allows the return code to be
stored in a variable.

Specifying CREATE OR REPLACE PROCEDURE creates a hew procedure, or replaces an
existing procedure with the same name. This clause changes the definition of the procedure,
but preserves existing permissions. You cannot use the OR REPLACE clause with temporary
procedures. Also, an error is returned if the procedure being replaced is already in use.

Specifying CREATE TEMPORARY PROCEDURE means that the stored procedure is visible
only by the connection that created it, and that it is automatically dropped when the connection
is dropped. You can also explicitly drop temporary stored procedures. You cannot perform
ALTER, GRANT, or REVOKE on them, and, unlike other stored procedures, temporary stored
procedures are not recorded in the catalog or transaction log.

Temporary procedures execute with the permissions of their creator (current user), or
specified owner. You can specify an owner for a temporary procedure when:

e The temporary procedure is created within a permanent stored procedure
» The temporary and permanent procedure both have the same owner

To drop the owner of a temporary procedure, drop the temporary procedure first.

You can create and drop temporary stored procedures when you are connected to a read-only
database; they cannot be external procedures.

For example, the following temporary procedure drops the table called Cust Rank, if it
exists. For this example, the procedure assumes that the table name is unique and can be
referenced by the procedure creator without specifying the table owner:

CREATE TEMPORARY PROCEDURE drop_tabl e(I N @abl eNane char(128))
BEGA N

IF EXISTS (SELECT * FROM SYS. SYSTAB WHERE

tabl e_nane = @abl eNane)

THEN EXECUTE | MVEDI ATE

' DROP TABLE "' || @abl eNane ||

MESSAGE 'Table "' || @abl eNare ||
" dropped' to client;

END | F;

END;
CALL drop_tabl e('CustRank')

RESULT—Declares the number and type of columns in the result set. The parenthesized list
following the RESULT keyword defines the result column names and types. This information
is returned by the Embedded SQL DESCRIBE or by ODBC SQLDescribeCol when a CALL
statement is being described. Allowed data types are listed in Reference. Building Blocks,
Tables, and Procedures > SQL Data Types.

For more information on returning result sets from procedures, see System Administration
Guide: Volume 2 > Using Procedures and Batches.

Reference: Statements and Options 113

SQL Statements

Some procedures can produce more than one result set, depending on how they are executed.
For example, this procedure returns two columns under some circumstances, and one in

others.
CREATE PROCEDURE nanes(IN formal char(1))
BEG N

IF formal = 'n' THEN

SELECT G venNane
FROM Enpl oyees
ELSE
SELECT Sur nanme, G venNane
FROM Enpl oyees
END | F
END

Procedures with variable result sets must be written without a RESULT clause, or in Transact-
SQL. Their use is subject to these limitations:

« Embedded SQL—You must DESCRIBE the procedure call after the cursor for the result set
is opened, but before any rows are returned, in order to get the proper shape of result set.
The CURSOR cursor-name clause on the DESCRIBE statement is required.

« ODBC, OLE DB, ADO.NET—Variable result-set procedures can be used by ODBC
applications. The proper description of the result sets is carried out by the driver or
provider.

e Open Client applications—Variable result-set procedures can be used by Open Client
applications.

If your procedure returns only one result set, use a RESULT clause. The presence of this clause
prevents ODBC and Open Client applications from describing the result set again after a
cursor is open.

To handle multiple result sets, ODBC must describe the currently executing cursor, not the
procedure’s defined result set. Therefore, ODBC does not always describe column names as
defined in the RESULT clause of the procedure definition. To avoid this problem, use column
aliases in the SELECT statement that generates the result set.

NO RESULT SET —Declares that this procedure returns no result set. This is useful when an
external environment needs to know that a procedure does not return a result set.

SQL SECURITY—Defines whether the procedure is executed as the INVOKER (the user
who is calling the procedure), or as the DEFINER (the user who owns the procedure). The
default is DEFINER.

Extra memory is used when you specify SQL SECURITY INVOKER, because annotation
must be done for each user that calls the procedure. Also, name resolution is performed as the
invoker as well. Therefore, qualify all object names (tables, procedures, and so on) with their
appropriate owner. For example, suppose user 1 creates this procedure:

CREATE PROCEDURE user 1. myProcedure()
RESULT(col utmmA I NT)
SQ SECURI TY | NVOKER
BEG N

114 Sybase 1Q

SQL Statements

SELECT col utmA FROM t abl el;
END;
If user 2 attempts to run this procedure and a table user 2. t abl el does not exist, a table
lookup error results. Additionally, ifauser 2. t abl el does exist, that table is used instead
of the intended user 1. t abl el. To prevent this situation, qualify the table reference in the
statement (user 1. t abl el, instead of just t abl el).

If you use ON EXCEPTION RESUME, the procedure takes an action that depends on the setting
of the ON_TSQL_ERROR option. If ON_TSQL_ERROR is set to CONDITIONAL (which is the
default) the execution continues if the next statement handles the error; otherwise, it exits.

Error-handling statements include:

e IF

e SELECT @variable =
e CASE

e LOOP

e LEAVE

e CONTINUE

* CALL

* EXECUTE

¢ SIGNAL

* RESIGNAL

* DECLARE

* SETVARIABLE

Do not use explicit error-handling code with an ON EXCEPTION RESUME clause.
See ON_TSQL _ERROR Option [TSQL].

AT location-string—Creates a proxy stored procedure on the current database for a remote
procedure specified by /ocation-string. The AT clause supports the semicolon (;) as a field

delimiter in /ocation-string. If no semicolon is present, a period is the field delimiter. This

allows file names and extensions to be used in the database and owner fields.

Remote procedures can return only up to 254 characters in output variables.

If a remote procedure can return a result set, even if it does not return one in all cases, then the
local procedure definition must contain a RESULT clause.

For information on remote servers, see CREATE SERVER Statement. For information on
using remote procedures, see System Administration Guide. Volume 2 > Accessing Remote
Data > Sybase 1Q and Remote Data > Remote Procedure Calls (RPCs).

Note: As procedures are dropped and created, databases created prior to Sybase 1Q 12.6 may
eventually reach the maximum proc_id limit of 32767, causing CREATE PROCEDURE to
returnanl t em al ready exi st s errorin Sybase I1Q 12.6. For a workaround, see System

Reference: Statements and Options 115

SQL Statements

Administration Guide: Volume 1 > Troubleshooting Hints > Solutions for Specific Conditions
> Resource Issues > Insufficient Procedure Identifiers.

Side Effects

* Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.
e Sybase—The Transact-SQL CREATE PROCEDURE statement is different.

* SQLJ—The syntax extensions for Java result sets are as specified in the proposed SQLJ1
standard.

Permissions

Must have RESOURCE authority, unless creating a temporary procedure. For external
procedures or to create a procedure for another user, must have DBA authority.

See also

e BEGIN ... END Statementon page 47

e CALL Statementon page 53

» CREATE PROCEDURE Statement [T-SQL]on page 116

» CREATE PROCEDURE Statement (External Procedures) on page 118
e CREATE SERVER Statementon page 129

* DROP Statement on page 170

* EXECUTE IMMEDIATE Statement [ESQL] [SP]on page 184
e GRANT Statement on page 199

* RAISERROR Statement [T-SQL] on page 258

* ON_TSQL_ERROR Option [TSQL] on page 420

CREATE PROCEDURE Statement [T-SQL]

Creates a new procedure that is compatible with Adaptive Server Enterprise.

Syntax

This subset of the Transact-SQL CREATE PROCEDURE statement is supported in Sybase
1Q:

CREATE PROCEDURE [owner.] procedur e_nane

..[[(] @araneter_nane data-type [= default] [ouTtPUT] [, ...]

()]

.J WITH RECOMPILE]

116 Sybase 1Q

SQL Statements

...AS
...Statenment-1i st

Usage
Differences between Transact-SQL and Sybase 1Q SQL statements:

e Variable names prefixed by @—The “@” sign denotes a Transact-SQL variable name;
Sybase 1Q variables can be any valid identifier and the @ prefix is optional.

« Input and output parameters—Sybase 1Q procedure parameters are specified as IN, OUT,
or INOUT; Transact-SQL procedure parameters are INPUT parameters by default or can be
specified as OUTPUT. Those parameters declared as INOUT or as OUT in Sybase 1Q should
be declared with OUTPUT in Transact-SQL.

» Parameter default values—Sybase 1Q procedure parameters are given a default value
using the keyword DEFAULT; Transact-SQL uses an equality sign (=) to provide the
default value.

« Returning result sets—Sybase 1Q uses a RESULT clause to specify returned result sets. In
Transact-SQL procedures, the column names or alias names of the first query are returned
to the calling environment:

CREATE PROCEDURE showdept @lept nane var char (30)
AS
SELECT Enpl oyees. Sur nanme, Enpl oyees. gi venNane
FROM Depart ments, Enpl oyees
WHERE Depart ment s. Depart ment Name = @lept nanme
AND Departnments. Departnment| D =
Enpl oyees. Depart ment | D

The corresponding Sybase 1Q procedure:

CREATE PROCEDURE showdept (i n dept name
var char (30))
RESULT (| astnanme char (20), firstnane char(20))
ON EXCEPTI ON RESUVE
BEG N
SELECT Enpl oyees. Sur Nane, Enpl oyees. G venNane
FROM Depart ment s, Enpl oyees
VHERE Depart ment s. Depart nent Name = dept nanme
AND Departnments. Departnment| D =
Enpl oyees. Departnent | D
END

* Procedure body—The body of a Transact-SQL procedure is a list of Transact-SQL
statements prefixed by the AS keyword. The body of a Sybase 1Q procedure isa compound
statement, bracketed by BEGIN and END keywords.

Note: There are two ways to create stored procedures: T-SQL and SQL/92. BEGIN
TRANSACTION, for example, is T-SQL specific when using CREATE PROCEDURE syntax.
Do not mix syntax when creating stored procedures.

Side Effects

Reference: Statements and Options 117

SQL Statements
e Automatic commit

Standards

e SQL—Transact-SQL extension to ISO/ANSI SQL grammar.

» Sybase—Sybase 1Q supports a subset of the Adaptive Server Enterprise CREATE
PROCEDURE statement syntax.

If the Transact-SQL WITH RECOMPILE optional clause is supplied, it is ignored. SQL
Anywhere always recompiles procedures the first time they are executed after a database is
started, and stores the compiled procedure until the database is stopped.

Groups of procedures are not supported.

Permissions

Must have RESOURCE authority.

See also
e CREATE PROCEDURE Statementon page 110

CREATE PROCEDURE Statement (External Procedures)

Creates an interface to a native or external procedure.
To create a SQL procedure, see CREATE PROCEDURE Statement .

Syntax
CREATE[ORREPLACE | PROCEDURE [owner.] procedure-nane ([paraneter,

1)

[RESULT (result-columm, .) | NORESULT SET]
[DYNAMIC RESULT SETS i nt eger - expr essi on]
[SQL SECURITY { INVOKER | DEFINER }]
[EXTERNAL NAME ‘ external -call’ [LANGUAGE environment - nanme |

Parameters

e parameter: — parameter_mode parameter-name data-type [DEFAULT expression] |
SQLCODE | SQLSTATE

e parameter_mode —IN | OUT | INOUT

e result-column: — column-name data-type

* environment-name: —C_ESQL32 | C_ESQL64 | C_ODBC32 | C_ODBC64 | CLR | JAVA
| PERL | PHP

118 Sybase 1Q

SQL Statements

Examples
* Example 1 —Use a case statement to classify the results of a query:

CREATE PROCEDURE Pr oduct Type (I N product_id INT, QUT type
CHAR(10))
BEG N
DECLARE prod_nane CHAR(20) ;
SELECT nane | NTO prod_nanme FROM " GROUPO'. " Product s"
WHERE | D = product _i d;
CASE prod_nane
VWHEN ' Tee Shirt' THEN
SET type = 'Shirt'
WHEN ' Sweat shirt' THEN
SET type = '"Shirt'
VWHEN ' Basebal | Cap' THEN
SET type = 'Hat"'
WHEN ' Vi sor' THEN
SET type = 'Hat'
VWHEN ' Shorts' THEN
SET type = ' Shorts'
ELSE
SET type = ' UNKNOWN
END CASE ;
END

» Example 2 — Use a cursor and loop over the rows of the cursor to return a single value:

CREATE PROCEDURE TopCustoner (OUT TopConpany CHAR(35), OUT
TopVal ue | NT)
BEG N

DECLARE err _not f ound EXCEPTI ON

FOR SQLSTATE ' 02000' ;

DECLARE cur Thi sCust CURSOR FOR

SELECT ConpanyName, CAST(sum(Sal esOrderltens. Quantity *

Products. UnitPrice) AS | NTEGER) VALUE

FROM Cust oner s

LEFT QUTER JO N Sal esOrders

LEFT QUTER JO N Sal esorder|tens

LEFT OQUTER JO N Products

CROUP BY ConpanyNane ;

DECLARE Thi sVal ue I NT ;
DECLARE Thi sConpany CHAR(35) ;
SET TopVal ue = 0 ;
OPEN cur Thi sCust ;
Cust oner Loop:
LOoP
FETCH NEXT cur Thi sCust
I NTO Thi sConmpany, ThisVal ue ;
| F SQLSTATE = err_notfound THEN
LEAVE Cust oner Loop ;
END I F ;
I F Thi sVal ue > TopVal ue THEN
SET TopVal ue = Thi sVal ue ;
SET TopConpany = Thi sConpany ;

Reference: Statements and Options 119

SQL Statements

END I F ;
END LOOP Cust oner Loop ;
CLCSE cur Thi sCust ;
END

Usage

The body of a procedure consists of a compound statement. For information on compound
statements, see BEGIN ... END Statement.

Note: There are two ways to create stored procedures: ISO/ANSI SQL and T-SQL. BEGIN
TRANSACTION, for example, is T-SQL specific when using CREATE PROCEDURE syntax.
Do not mix syntax when creating stored procedures. See CREATE PROCEDURE Statement
[T-SQL].

CREATE PROCEDURE creates a procedure in the database. Users with DBA authority can
create procedures for other users by specifying an owner. A procedure is invoked with a CALL
statement.

If a stored procedure returns a result set, it cannot also set output parameters or return a return
value.

When referencing atemporary table from multiple procedures, a potential issue can arise if the
temporary table definitions are inconsistent and statements referencing the table are cached.

See SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Usage > > Creating Databases >
Working with database obfects > Working with temporary tables > Referencing temporary
tables within procedures.

CREATE PROCEDURE—You can create permanent stored procedures that call external or
native procedures written in a variety of programming languages. You can use PROC as a
synonym for PROCEDURE.

Parameter names must conform to the rules for other database identifiers such as column
names. They must be a valid SQL data type. See Reference: Building Blocks, Tables, and
Procedures > SQL Data Types.

Parameters can be prefixed with one of the keywords IN, OUT, or INOUT. If you do not specify
one of these values, parameters are INOUT by default. The keywords mean:

« IN—The parameter is an expression that provides a value to the procedure.

* OUT—The parameter is a variable that could be given a value by the procedure.

* INOUT—The parameter is a variable that provides a value to the procedure, and could be
given a new value by the procedure.

When procedures are executed using CALL, not all parameters need to be specified. If a default
value is provided in the CREATE PROCEDURE statement, missing parameters are assigned
the default values. If an argument is not provided in the CALL statement, and no default is set,
an error is given.

SQLSTATE and SQLCODE are special OUT parameters that output the SQLSTATE or
SQLCODE value when the procedure ends. Whether or not a SQLSTATE and SQLCODE

120 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/workingwdb-s-3675401.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/workingwdb-s-3675401.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/workingwdb-s-3675401.html

SQL Statements

parameter is specified, the SQLSTATE and SQLCODE special values can always be checked
immediately after a procedure call to test the return status of the procedure.

The SQLSTATE and SQLCODE special values are modified by the next SQL statement.
Providing SQLSTATE or SQLCODE as procedure arguments allows the return code to be
stored in a variable.

Specifying OR REPLACE (CREATE OR REPLACE PROCEDURE) creates a new procedure, or
replaces an existing procedure with the same name. This clause changes the definition of the
procedure, but preserves existing permissions. An error is returned if you attempt to replace a
procedure that is already in use.

You cannot create TEMPORARY external call procedures.

For more information on returning result sets from procedures, see System Administration
Guide: Volume 2 > Using Procedures and Batches.

RESULT—Declares the number and type of columns in the result set. The parenthesized list
following the RESULT keyword defines the result column names and types. This information
is returned by the Embedded SQL DESCRIBE or by ODBC SQLDescribeCol when a CALL
statement is being described. Allowed data types are listed in Reference. Building Blocks,
Tables, and Procedures > SQL Data Types.

Procedures that call into Embedded SQL (LANGUAGE C_ESQL32, LANGUAGE
C_ESQL64) or ODBC (LANGUAGE C_ODBC32, LANGUAGE C_ODBC64) external
functions can return 0 or 1 result sets.

Procedures that call into Perl or PHP (LANGUAGE PERL, LANGUAGE PHP) external
functions cannot return result sets. Procedures that call native functions loaded by the database
server cannot return result sets.

Procedures that call into CLR or Java (LANGUAGE CLR, LANGUAGE JAVA) external
functions can return 0, 1, or more result sets.

Some procedures can return more than one result set, with different numbers of columns,
depending on how they are executed. For example, this procedure returns two columns under
some circumstances, and one in others:

CREATE PROCEDURE nanes(IN formal char(1))

IF formal = 'n" THEN
SELECT G venNane
FROM Enpl oyees

ELSE
SELECT Sur nanme, G venNane
FROM Enpl oyees

END | F

END

Procedures with variable result sets must be written without a RESULT clause, or be written in
Transact-SQL. Their use is subject to these limitations:

Reference: Statements and Options 121

SQL Statements

« Embedded SQL—You must DESCRIBE the procedure call after the cursor for the result set
is opened, but before any rows are returned, in order to get the proper shape of result set.
The CURSOR cursor-name clause on the DESCRIBE statement is required.

« ODBC, OLE DB, ADO.NET—Variable result-set procedures can be used by applications
using these interfaces. The proper description of the result sets is carried out by the ODBC
driver.

* Open Client applications—Variable result-set procedures can be used by Open Client
applications.

If your procedure returns only one result set, use a RESULT clause. The presence of this clause
prevents ODBC and Open Client applications from describing the result set again after a
cursor is open.

To handle multiple result sets, ODBC must describe the currently executing cursor, not the
procedure’s defined result set. Therefore, ODBC does not always describe column names as
defined in the RESULT clause of the procedure definition. To avoid this problem, use column
aliases in the SELECT statement that generates the result set.

See SQL Anywhere 11.01 > SQL Anywhere Server — SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures.

NO RESULT SET —Declares that this procedure returns no result set. This is useful when an
external environment needs to know that a procedure does not return a result set.

DYNAMIC RESULT SETS—Use this clause with LANGUAGE CLR and LANGUAGE
JAVA calls. If the DYNAMIC RESULT SETS clause is not provided, it is assumed that the
method returns no result set.

Note that procedures that call into Perl or PHP (LANGUAGE PERL, LANGUAGE PHP)
external functions cannot return result sets. Procedures that call native functions loaded by the
database server cannot return result sets.

SQL SECURITY—Defines whether the procedure is executed as the INVOKER (the user
who is calling the procedure), or as the DEFINER (the user who owns the procedure). The
default is DEFINER. For external calls, this clause establishes the ownership context for
unqualified object references in the external environment.

When SQL SECURITY INVOKER is specified, more memory is used because annotation
must be done for each user that calls the procedure. Also, when SQL SECURITY INVOKER
is specified, name resolution is done as the invoker as well. Therefore, care should be taken to
qualify all object names (tables, procedures, and so on) with their appropriate owner. For
example, suppose user 1 creates this procedure:

CREATE PROCEDURE user 1. nyProcedure()
RESULT(col ummA I NT)
SQL SECURI TY | NVOKER
BEGA N
SELECT col unmmA FROM t abl e1l;
END;

122 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrr.html

SQL Statements

If user 2 attempts to run this procedure and a table user 2. t abl el does not exist, a table
lookup error results. Additionally, if user 2. t abl el does exist, that table is used instead of
the intended user 1. t abl el. To prevent this situation, qualify the table reference in the
statement (user 1. t abl el, instead of just t abl el).

EXTERNAL NAME LANGUAGE *native-call’ native-call[operating-system. | function-
name@library; ...

A procedure that uses EXTERNAL NAME with a LANGUAGE JAVA clause is a wrapper around
a Java method.

operating-system: UNIX—A procedure using the EXTERNAL NAME clause with no
LANGUAGE attribute defines an interface to a native function written in a programming
language such as C. The native function is loaded by the database server into its address space.

The library name can include the file extension, which is typically . dl | on Windows
and. soonUNIX. Inthe absence of the extension, the software appends the platform-specific
default file extension for libraries. This is a formal example:

CREATE PROCEDURE nystring(INinstr LONG VARCHAR)
EXTERNAL NANE

"nmystring@ylib.dll;Unix:nmystring@ylib.so';

A simpler way to write the preceding EXTERNAL NAME clause, using platform-specific
defaults:

CREATE PROCEDURE nystring(INinstr LONG VARCHAR)
EXTERNAL NAME ' nystring@rylib';

When called, the library containing the function is loaded into the address space of the
database server. The native function executes as part of the server. In this case, if the function
causes a fault, then the database server terminates. Because of this, loading and executing
functions in an external environment using the LANGUAGE attribute is recommended. If a
function causes a fault in an external environment, the database server continues to run.

For information about native library calls, see SQL Anywhere 11.0.1 > SQL Anywhere Server
— Programming > SQL Anywhere Data Access APIs > SQL Anywhere External Function API
> Calling external libraries from procedures.

EXTERNAL NAME LANGUAGE ‘c-call’ LANGUAGE { C_ESQL32 | C_ESQL64 |
C_ODBC32| C_ODBC64 } c-calf

[operating-system:. | function-name@library, ...
operating-systen. UNIX

To call acompiled native C function in an external environment instead of within the database
server, the stored procedure or function is defined with the EXTERNAL NAME clause followed
by the LANGUAGE attribute specifying one of C_ESQL32, C_ESQL64, C_ODBC32, or
C_ODBC64.

Reference: Statements and Options 123

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html

SQL Statements

When the LANGUAGE attribute is specified, then the library containing the function is
loaded by an external process and the external function will execute as part of that external
process. In this case, if the function causes a fault, then the database server will continue to
run.

Sample procedure definition:

CREATE PROCEDURE ODBCGi nsert (
I N Product Name CHAR(30),
I N Product Descri pti on CHAR(50)

)

NO RESULT SET

EXTERNAL NANME ' ODBCext er nal | nsert @xt odbc. dl |’
LANGUAGE C_ODBC32;

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The ESQL and ODBC
external environments.

EXTERNAL NAME “clr-call’ LANGUAGE CLR c/r-call : dll-name:: function-name
(param-type-1, ...)

operating-systent. UNIX

To call a.NET function in an external environment, the procedure interface is defined with an
EXTERNAL NAME clause followed by the LANGUAGE CLR attribute.

A CLR stored procedure or function behaves the same as a SQL stored procedure or function
with the exception that the code for the procedure or function is written in a .NET language
such as C# or Visual Basic, and the execution of the procedure or function takes place outside
the database server (that is, within a separate .NET executable).

Sample procedure definition:

CREATE PROCEDURE clr_interface(

IN pl INT,

IN p2 UNSI GNED SMALLI NT,

QUT p3 LONG VARCHAR)

NO RESULT SET

EXTERNAL NAME 'CLRIib.dll::CLRproc. Run(int, ushort, out string)'
LANGUAGE CLR;

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The CLR external
environment.

EXTERNAL NAME ‘perl-call’ LANGUAGE CLR per/-calf
< file=per/-call > $sa_perl_return=per/-sub ($sa_perl_argo, ...)

To call a Perl function in an external environment, the procedure interface is defined with an
EXTERNAL NAME clause followed by the LANGUAGE PERL attribute.

124

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-esql-odbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-esql-odbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-esql-odbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-clr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-clr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-clr.html

SQL Statements

A Perl stored procedure or function behaves the same as a SQL stored procedure or function
with the exception that the code for the procedure or function is written in Perl and the
execution of the procedure or function takes place outside the database server (that is, within a
Perl executable instance).

Sample procedure definition:

CREATE PROCEDURE Per| WiteToConsol e(IN str LONG VARCHAR)
NO RESULT SET

EXTERNAL NAME ' <fil e=Per| Consol eExanpl e>

WiteToServer Consol e($sa_perl _arg0)’

LANGUAGE PERL;

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The PERL external
environment.

EXTERNAL NAME ‘“perl-call’ LANGUAGE PHP <file=php-file> print php-
func(sargv[l], ...)

To call a PHP function in an external environment, the procedure interface is defined with an
EXTERNAL NAME clause followed by the LANGUAGE PHP attribute.

A PHP stored procedure or function behaves the same as a SQL stored procedure or function
with the exception that the code for the procedure or function is written in PHP and the
execution of the procedure or function takes place outside the database server (that is, within a
PHP executable instance).

Sample procedure definition:

CREATE PROCEDURE PHPPopul at eTabl e()

NO RESULT SET

EXTERNAL NAME ' <fi |l e=Server Si dePHPExanpl e>
Server Si dePHPSub()"'

LANGUAGE PHP;

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The PHP external
environment.

EXTERNAL NAME java-call LANGUAGE JAVA ‘java-call [package-name.] class-
name.method-name (method-signature

method-signature. ([field-descriptor, ... 1) return-descriptor

A Java method signature is a compact character representation of the types of the parameters
and the type of the return value.

To call a Java method in an external environment, the procedure interface is defined with an
EXTERNAL NAME clause followed by the LANGUAGE JAVA attribute.

A Java-interfacing stored procedure or function behaves the same as a SQL stored procedure
or function with the exception that the code for the procedure or function is written in Java and

Reference: Statements and Options 125

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-perl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-perl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-perl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-php.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-php.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-php.html

SQL Statements

the execution of the procedure or function takes place outside the database server (that is,
within a Java Virtual Machine).

Sample procedure definition:

CREATE PROCEDURE Hel | oDenp(| N

name LONG VARCHAR)

NO RESULT SET

EXTERNAL NAME ' Hel | o. mai n([Lj ava/l ang/ String;)V
LANGUAGE JAVA,

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere Data
Access APIs > SQL Anywhere external environment support > The Java external
environment.

Table 7. Java Field-descriptor and Return-descriptor

Field type Java data type
B byte
C char
D double
F float
I int
J long
L class-name, an instance of the c/ass-name class. The class name must be fully qualified, and
any dot in the name must be replaced by a backslash. For example, java/lang/
String
S short
\% void
z boolean
[use one for each dimension of an array
For example:
doubl e sone_net hod(
bool ean a,
int b,
j ava. mat h. Bi gDeci mal c,
byte [][] d,

java.sql.ResultSet[] d) {

has this signature:
'(ZI'Ljava/ mat h/ Bi gDeci mal ; [[B[Lj ava/sql / Resul t Set ;) D

126 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-java.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-java.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extenv-java.html

SQL Statements

Note: As procedures are dropped and created, databases created prior to Sybase 1Q 12.6 may
eventually reach the maximum proc_id limit of 32767, causing CREATE PROCEDURE to
returnanl t em al ready exi st s errorin Sybase IQ 12.6. For a workaround, see System
Administration Guide: Volume 1 > Troubleshooting Hints > Solutions for Specific Conditions
> Resource Issues > Insufficient Procedure Identifiers.

Side Effects

e Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.
e Sybase—The Transact-SQL CREATE PROCEDURE statement is different.

e SQLJ—The syntax extensions for Java result sets are as specified in the proposed SQLJ1
standard.

Permissions

Must have RESOURCE authority, unless creating a temporary procedure. For external
procedures or to create a procedure for another user, must have DBA authority.

See also

» ALTER PROCEDURE Statementon page 22

e BEGIN ... END Statementon page 47

e CALL Statementon page 53

CREATE PROCEDURE Statementon page 110

» CREATE PROCEDURE Statement [T-SQL] on page 116

e DROP Statement on page 170

e EXECUTE IMMEDIATE Statement [ESQL] [SP]on page 184
e GRANT Statemment on page 199

CREATE SCHEMA Statement

Creates a schema, which is a collection of tables, views, and permissions and their associated
permissions, for a database user.

Syntax

CREATE SCHEMA AUTHORIZATION useri d
. [{ create-tabl e-statenent

| create-viewstatenment

| grant-statement }]

Reference: Statements and Options 127

SQL Statements

Usage

The wuserid must be the user ID of the current connection. You cannot create a schema for
another user. The user ID is not case-sensitive.

If any of the statements in the CREATE SCHEMA statement fail, the entire CREATE SCHEMA
statement is rolled back.

CREATE SCHEMA statement is simply a way to collect individual CREATE and GRANT
statements into one operation. There is no SCHEMA database object created in the database,
and to drop the objects you must use individual DROP TABLE or DROP VIEW statements. To
revoke permissions, use a REVOKE statement for each permission granted.

Note: The CREATE SCHEMA statement is invalid on an active multiplex.

Individual CREATE or GRANT statements are not separated by statement delimiters. The
statement delimiter marks the end of the CREATE SCHEMA statement itself.

The individual CREATE or GRANT statements must be ordered such that the objects are
created before permissions are granted on them.

Creating more than one schema for a user is not recommended and might not be supported in
future releases.

Side Effects

e Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.

» Sybase—Sybase 1Q does not support the use of REVOKE statements within the CREATE
SCHEMA statement, and does not allow its use within Transact-SQL batches or
procedures.

Permissions
Must have RESOURCE authority.

See also

e CREATE TABLE Statementon page 133
o CREATE VIEW Statement on page 149
e GRANT Statement on page 199

128

Sybase 1Q

SQL Statements

CREATE SERVER Statement
Adds a server to the | SYSSERVER table.

Syntax

CREATE SERVER ser ver - name
CLASS 'server-cl ass'
USING ' connecti on-i nfo'

[READ ONLY]

Parameters

+ server-class. — { ASAJDBC | ASEJDBC | ASAODBC | ASEODBC |
DB20DBC | MSSODBC | ORAODBC | ODBC }

* connection-info: —{ machine-name:port-number [/dbname] | data-source-name }

Examples

« Example 1 —Create a remote server for the JDBC-based Adaptive Server Enterprise
server named ase_ pr od. Its machine name is “banana” and port number is 3025.
CREATE SERVER ase_prod

CLASS ' asej dbc’
USI NG ' banana: 3025’

* Example 2 —Create a SQL Anywhere remote server named t est asa on the machine
“apple” with listening on port number 2638.

CREATE SERVER testasa
CLASS ' asaj dbc’
USI NG ' appl e: 2638"

» Example3—Create a remote server for the Oracle server named or acl e723. 1tsODBC
Data Source Name is “oracle723.”

CREATE SERVER or acl e723
CLASS ' or aodbc'
USI NG ' or acl e723'

Usage
CREATE SERVER defines a remote server from the Sybase 1Q catalogs.

For more information on server classes and how to configure a server, see System
Administration Guide: Volume 2 > Server Classes for Remote Data Access.

USING clause—If a JDBC-based server class is used, the USING clause is hostname.port-
number [/dbname] where:

Reference: Statements and Options 129

SQL Statements

* hostname—Is the machine on which the remote server runs.

e portnumber—Is the TCP/IP port number on which the remote server listens. The default

port number for Sybase 1Q and SQL Anywhere is 2638.

» dbname—For SQL Anywhere remote servers, if you do not specify a dbname, the default
database is used. For Adaptive Server Enterprise, the default is the master database, and an
alternative to using dbname is to another database by some other means (for example, in

the FORWARD TO statement).

For more information, see System Administration Guide: Volume 2 > Server Classes for

Remote Data Access > JDBC-based Server Classes.

If an ODBC-based server class is used, the USING clause is the data-source-name. The data-

source-name is the ODBC Data Source Name.

READ ONLY—The READ ONLY clause specifies that the remote server is a read-only data

source. Any update request is rejected by Sybase 1Q.
Side Effects

e Automatic commit

Standards
e SQL—ISO/ANSI SQL compliant.

» Sybase—Supported by Open Client/Open Server.

Permissions

Must have DBA authority to execute this command.

See also
e ALTER SERVER Statement on page 23
* DROP SERVER Statement on page 176

CREATE SERVICE Statement

Permits a database server to act as a Web server.

Syntax

CREATE SERVICE servi ce- nanme
TYPE service-type-string

[attributes] [

AS statenent]

130

Sybase 1Q

SQL Statements

Parameters

* attributes: —[AUTHORIZATION { ON | OFF }] [SECURE { ON | OFF }] [USER { user-
name|NULL }][URL [PATH/] { ON | OFF | ELEMENTS }] [USING { SOAP-
prefix| NULL }]

e servicetype-string: — { 'RAW ' | 'HTML ' | 'XML ' | 'SOAP ' | ' DISH ' }

Examples
* Examplel—SetupaWeb server quickly, start a database server with the - xs switch, then
execute this statement:

CREATE SERVI CE tabl es TYPE ' HTM.'
AUTHORI ZATI ON OFF USER DBA

AS SELECT * FROM SYS. | SYSTAB

After executing this statement, use any Web browser to open the URL ht t p: //
| ocal host/t abl es.

Usage

The CREATE SERVICE statement causes the database server to act as a web server. A new
entry is created in the SYSWEBSERVI CE system table.

service-name—Web service names may be any sequence of alphanumeric characters or “/”,
s e L ek e s Cor 7)) except that the first character cannot begin with a
slash (/) and the name cannot contain two or more consecutive slash characters.

service-type-string—Identifies the type of the service. The type must be one of the listed
service types. There is no default value.

AUTHORIZATION clause—Determines whether users must specify a user name and
password when connecting to the service. If authorization is OFF, the AS clause is required
and a single user must be identified by the USER clause. All requests are run using that user’s
account and permissions.

If authorization is ON, all users must provide a user name and password. Optionally, you can
limit the users that are permitted to use the service by providing a user or group name using the
USER clause. If the user name is NULL, all known users can access the service.

The default value is ON. Sybase recommends that production systems be run with
authorization turned on and that you grant permission to use the service by adding users to a

group.
SECURE clause—Indicates whether unsecure connections are accepted. ON indicates that
only HTTPS connections are to be accepted. Service requests received on the HTTP port are

automatically redirected to the HTTPS port. If set to OFF, both HTTP and HTTPS
connections are accepted. The default value is OFF.

USER clause—If authorization is disabled, this parameter becomes mandatory and specifies
the user ID used to execute all service requests. If authorization is enabled (the default), this

Reference: Statements and Options 131

SQL Statements

optional clause identifies the user or group permitted access to the service. The default value is
NULL, which grants access to all users.

URL clause—Determines whether URI paths are accepted and, if so, how they are processed.
OFF indicates that nothing must follow the service name in a URI request. ON indicates that
the remainder of the URI is interpreted as the value of a variable named wr/. ELEMENTS
indicates that the remainder of the URI path is to be split at the slash characters into a list of up
to 10 elements. The values are assigned to variables named url plus a numeric suffix of
between 1 and 10; for example, the first three variable names are urll, url2, and url3. If fewer
than 10 values are supplied, the remaining variables are set to NULL. If the service name ends
with the character /, then URL must be set to OFF. The default value is OFF.

USING clause—Applies only to DISH services. The parameter specifies a name prefix. Only
SOAP services whose names begin with this prefix are handled.

statement—If the statement is NULL, the URI must specify the statement to be executed.
Otherwise, the specified SQL statement is the only one that can be executed through the
service. The statement is mandatory for SOAP services, and ignored for DISH services. The
default value is NULL.

Sybase strongly recommends that all services that are run in production systems define a
statement. The statement can be NULL only if authorization is enabled.

RAW—The result set is sent to the client without any further formatting. You can produce
formatted documents by generating the required tags explicitly within your procedure, as
demonstrated in an example, below.

HTML—The result set of a statement or procedure is automatically formatted into an HTML
document that contains a table.

XML—The result setisassumed to be in XML format. If itis notalready so, itis automatically
converted to XML RAW format.

SOAP—The request must be a valid Simple Object Access Protocol, or SOAP, request. The
result set is automatically formatted as a SOAP response. For more information about the
SOAP standards, see www.w3.org/TR/SOAP.

DISH—A Determine SOAP Handler, or DISH, service acts as a proxy for one or more SOAP
services. In use, it acts as a container that holds and provides access to a number of SOAP
services. A Web Services Description Language (WSDL) file is automatically generated for
each of the included SOAP services. The included SOAP services are identified by acommon
prefix, which must be specified in the USING clause.

For more information about using web services, see SQL Anywhere 11.0.1 > SQL Anywhere
Server - Programming > SQL Anywhere Data Access APIs > SQL Anywhere web services >
Introduction to web services.

132

Sybase 1Q

http://www.w3.org/TR/SOAP
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html

SQL Statements

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority.

See also
e ALTER SERVICE Statementon page 25
e DROP SERVICE Statementon page 177

CREATE TABLE Statement

Creates a new table in the database or on a remote server.

Syntax

CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE
[owner.]table-name

...(colum-definition [colum-constraint] ..
[, colum-definition [colum-constraint] .]
[, table-constraint 1 ...)

..[IN dbspace-nane]

.[ON coMMIT { DELETE | PRESERVE } ROWS

| NOT TRANSACTIONAL]

[AT location-string]

[PARTITIONBY range-partitioni ng-schene]

Parameters

* column-definition: — column-name data-type [[NOT] NULL] [IN dbspace-name]

[DEFAULT default-value | IDENTITY] [PARTITION (partition-name \N dbspace-name
[, D]

» default-value: — special-value | string | global variable| [- 1 number | (constant-
expression) | built-in-function(constant-expression) | AUTOINCREMENT | CURRENT
DATABASE | CURRENT REMOTE USER | NULL | TIMESTAMP | LAST USER

* gpecial-value: — CURRENT { DATE | TIME | TIMESTAMP | USER | PUBLISHER } | USER

e column-constraint: —[CONSTRAINT constraint-name] { { UNIQUE | PRIMARY KEY |
REFERENCES fable-name| (column-name)][action] } [IN dbspace-name] | CHECK
(condition) | 1Q UNIQUE (/nteger) }

e table-constraint: — [CONSTRAINT constraint-name] { { UNIQUE (column-name| ,
column-name] ...) | PRIMARY KEY (column-name|[, column-name] ...) } [IN dbspace-
name] | foreign-key-constrain CHECK (condition) | 1Q UNIQUE (integer) }

Reference: Statements and Options 133

SQL Statements

foreign-key-constraint: — FOREIGN KEY [role-name] [(column-name[, column-
name] ...)] ...REFERENCES fable-name| (column-name[, column-name] ...)] ...
[action] [IN dbspace-name]

action: —ON { UPDATE | DELETE { RESTRICT }

location-string: — { remote-server-name.[db-namel.[ownen.object-name | remote-
server-name;[db-name ;[owner];object-name }

range-partitioning-scheme: — RANGE(partition-key') (range-partition-decl [, range-
partition-decl ...])

partition-key: — column-name

range-partition-decl: — partition-name VALUES <= ({constant-expr| MAX }) [IN
dbspace-name

Examples

Example 1 — Create a table named Sal esOr der s2 with five columns. Data pages for
columns Fi nanci al Code, Or der Dat e, and | Dare in dbspace Dsp3. Data pages for
integer column Cust orrer | Dare in dbspace Dspl. Data pages for CLOB column

Hi st ory are in dbspace Dsp2. Data pages for the primary key, HG for | D, are in dbspace
Dsp4:

CREATE TABLE Sal esOrders2 (

Fi nanci al Code CHAR(2),

CustonerID int IN Dspl,

H story CLOB I N Dsp2,

Or der Dat e Tl MESTAMP,

I D Bl G NT,

PRI MARY KEY(I D) | N Dsp4

) IN Dsp3

Example 2 — Create a table f i n_code2 with four columns. Data pages for columns
code, t ype, andi d are in the default dbspace, which is determined by the value of the
database option DEFAULT_DBSPACE. Data pages for CLOB column descri pti on
are in dbspace Dsp2. Data pages from foreign key fk1, HG for c1 are in dbspace Dsp4:

CREATE TABLE fin_code2 (

code | NT,

type CHAR(10),

description CLOB I N Dsp2,

id Bl G NT,

FOREI GN KEY fk1(id) REFERENCES Sal esOrders(ID) IN Dsp4

)

Example 3 - Create a table t 1 where partition p1 is adjacent to p2 and partition p2 is

adjacent to p3:
CREATE TABLE t1 (c1 INT, cl1 INT)

PARTI TI ON BY RANGE(c1),
(pl VALUES <= (0), p2 VALUES <= (10), p3 VALUES <= (100))

Example 4 — Create a partitioned table bar with six columns and three partitions,
mapping data to partitions based on dates:

134

Sybase 1Q

CREATE TABLE bar (

cl
c2
c3

c4
c5
c6

I NT | Q UNI QUE(65500),

VARCHAR(20) ,

CLOB PARTITION (P1 IN Dspll, P2 IN Dspil2,
P3 I N Dspil3),

DATE,

Bl GI NT,

VARCHAR(500) PARTI TION (P1 I N Dsp21,

P2 I N Dsp22),

PRI MARY KEY (c5) IN Dsp2) IN Dspl
PARTI TI ON BY RANGE (c4)

(P1 VALUES <= ('2006/03/31') IN Dsp31,
P2 VALUES <= ('2006/06/30') IN Dsp32,

)

P3 VALUES <= ('2006/09/30') IN Dsp33

Data page allocation for each partition:

SQL Statements

Parti- Dbspa- |Columns

tion ces

P1 Dsp31 cl, c2,c4,c5

P1 Dspll c3

P1 Dsp21 c6

P2 Dsp32 cl,c2,c4,ch

P2 Dspl2 c3

P2 Dsp22 c6

P3 Dsp33 cl, c2, c4,c5, c6

P3 Dspl13 c3

P1, P2, P3| Dspl lookup store of c1 and other shared data
P1, P2, P3| Dsp2 primary key (HG for c5)

* Example5—Create a table for a library database to hold book information:

CREATE TABLE | i brary_books (

i sbn CHAR(20) PRI MARY KEY | Q UNI QUE (150000),
copyright _date DATE,

title CHAR(100) ,

aut hor CHAR(50)

)

» Example6—Create a table for a library database to hold information on borrowed books:

CREATE TABLE borrowed_book (
dat e_borrowed DATE NOT NULL,
dat e _returned DATE,

Reference: Statements and Options

135

SQL Statements

book CHAR(20)
REFERENCES | i brary_books (i shbn),
CHECK(date_returned >= date_borrowed)

» Example 7 —Create table t 1 at the remote server SERVER A and create a proxy table
named t 1 that is mapped to the remote table:

CREATE TABLE t1
(a [INT,
b CHAR(10))
AT ' SERVER A. dbl.joe.t1'
* Example 8 —Create table t ab1 that contains a column ¢ 1 with a default value of the

special constant LAST USER:
CREATE TABLE tabl(cl CHAR(20) DEFAULT LAST USER)

Usage

You can create a table for another user by specifying an owner name. If GLOBAL
TEMPORARY or LOCAL TEMPORARY is not specified, the table is referred to as a base table.
Otherwise, the table is a temporary table.

A created global temporary table exists in the database like a base table and remains in the
database until it is explicitly removed by a DROP TABLE statement. The rows in a temporary
table are visible only to the connection that inserted the rows. Multiple connections from the
same or different applications can use the same temporary table at the same time and each
connection sees only its own rows. A given connection inherits the schema of a global
temporary table as it exists when the connection first refers to the table. The rows of a
temporary table are deleted when the connection ends.

When you create a local temporary table, omit the owner specification. If you specify an owner
when creating a temporary table, for example, CREATE TABLE dbo. #t enp(col 1
i nt), abase table is incorrectly created.

An attempt to create a base table or a global temporary table will fail, if a local temporary table
of the same name exists on that connection, as the new table cannot be uniquely identified by
owner.table.

You can, however, create a local temporary table with the same name as an existing base table
or global temporary table. References to the table name access the local temporary table, as
local temporary tables are resolved first.

For example, consider this sequence:

CREATE TABLE t1 (cl int);
INSERT t1 VALUES (9);

CREATE LOCAL TEMPORARY TABLE t1 (cl int);
I NSERT t1 VALUES (8);

SELECT * FROM t1;

136

Sybase 1Q

SQL Statements

The result returned is 8. Any reference to t 1 refers to the local temporary table t 1 until the
local temporary table is dropped by the connection.

In a procedure, use the CREATE LOCAL TEMPORARY TABLE statement, instead of the
DECLARE LOCAL TEMPORARY TABLE statement, when you want to create a table that
persists after the procedure completes. Local temporary tables created using the CREATE
LOCAL TEMPORARY TABLE statement remain until they are either explicitly dropped, or
until the connection closes.

Local temporary tables created in IF statements using CREATE LOCAL TEMPORARY TABLE
also persist after the IF statement completes.

You cannot use a temporary table to create a join index.

Do not update a base table that is part of any join index. This is not allowed, and returns the
error:

-1000102 Cannot update table 9% because it is defined in one or nore
join indexes

Sybase 1Q does not support the CREATE TABLE ENCRYPTED clause for table-level
encryption of Sybase 1Q tables. However, the CREATE TABLE ENCRYPTED clause is
supported for SQL Anywhere tables in a Sybase 1Q database.

IN—Specifies in which database file (dbspace) the table is to be created. You can specify
SYSTEMwith this clause to put either a permanent or temporary table in the catalog store. All
other use of the IN clause is ignored. You cannot use this clause to place an IQ table in a
particular dbspace. By default, all permanent tables are placed in the main 1Q store, and all
temporary tables are placed in the temporary 1Q store. Global temporary and local temporary
tables can never be in the 1Q store.

The IN clause in the column-definition, column-constraint, table-constraint, and foreign-key
clauses specify the dbspace where the object is to be created. If the IN clause is omitted, Sybase
1Q creates the object in the dbspace where the table is assigned.

For more information about dbspaces, see CREATE DBSPACE Statement .

ON COMMIT—Allowed for temporary tables only. By default, the rows of a temporary table
are deleted on COMMIT.

For clause behavior on multiplex global temporary tables, see Using Sybase 1Q Multiplex >
Multiplex Transactions > DDL Commands > Role Restriction > Preserving Rows.

NOT TRANSACTIONAL—AIllowed only for temporary tables. A table created using NOT
TRANSACTIONAL is not affected by either COMMIT or ROLLBACK.

The NOT TRANSACTIONAL clause provides performance improvements in some
circumstances because operations on nontransactional temporary tables do not cause entries
to be made in the rollback log. For example, NOT TRANSACTIONAL might be useful if
procedures that use the temporary table are called repeatedly with no intervening COMMIT or
ROLLBACK statements.

Reference: Statements and Options 137

SQL Statements

The parenthesized list following the CREATE TABLE statement can contain these clauses in
any order:

AT—Used to create a table at the remote location specified by /ocation-string. The local table
that is created is a proxy table that maps to the remote location. Tables used as proxy tables
must have names of 30 characters or less. The AT clause supports the semicolon (;) as a
delimiter. If a semicolon is present anywhere in the focation-string, the semicolon is the field
delimiter. If no semicolon is present, a period is the field delimiter. This allows file names and
extensions to be used in the database and owner fields.

Semicolon field delimiters are used primarily with server classes not currently supported,;
however, you can also use them in situations where a period would also work as a field
delimiter. For example, this statement maps the table pr oxy_a to the SQL Anywhere
database nmydb on the remote server nyasa:

CREATE TABLE proxy_al

AT 'nyasa; nydb; ; al'

Foreign-key definitions are ignored on remote tables. Foreign-key definitions on local tables
that refer to remote tables are also ignored. Primary key definitions are sent to the remote
server if the server supports primary keys.

In a simplex environment, you cannot create a proxy table that refers to a remote table on the
same node. In a multiplex environment, you cannot create a proxy table that refers to the
remote table defined within the multiplex.

Forexample, inasimplex environment, if you try to create proxy table pr oxy_e which refers
to base table Enpl oyees defined on the same node, the CREATE TABLE ... AT statement is
rejected with an error message. In a multiplex environment, the CREATE TABLE AT
statement is rejected if you create proxy table pr oxy_e from any node (coordinator or
secondary) that refers to remote table Enpl oyees defined within a multiplex.

column-definition—Defines a column in the table. Allowable data types are described in
Reference: Building Blocks, Tables, and Procedures > SQL Data Types. Two columns in the
same table cannot have the same name. If NOT NULL is specified, or if the columnisina
UNIQUE or PRIMARY KEY constraint, the column cannot contain any NULL values. You can
create up to 45,000 columns; however, there might be performance penalties with more than
10,000 columns in a table. The limit on the number of columns per table that allow NULLSs is
approximately 8*(database-page-size - 30).

e DEFAULT default-value—When defining a column for a table, you can specify a default
value for the column using the DEFAULT keyword in the CREATE TABLE (and ALTER
TABLE) statement. If a DEFAULT value is specified for a column, this DEFAULT value is
used as the value of the column in any INSERT (or LOAD) statement that does not specify a
value for the column.

For detailed information on the use of column DEFAULT values, see System
Administration Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data
Integrity.

138

Sybase 1Q

SQL Statements

e DEFAULT AUTOINCREMENT—The value of the DEFAULT AUTOINCREMENT
column uniquely identifies every row in a table. Columns of this type are also known as
IDENTITY columns, for compatibility with Adaptive Server Enterprise. The IDENTITY/
DEFAULT AUTOINCREMENT column stores sequential numbers that are
automatically generated during inserts and updates. When using IDENTITY or
DEFAULT AUTOINCREMENT, the column must be one of the integer data types, or an
exact numeric type, with scale 0. The column value might also be NULL. You must qualify
the specified table name with the owner name.

ON inserts into the table. If a value is not specified for the IDENTITY/DEFAULT
AUTOINCREMENT column, a unique value larger than any other value in the column is
generated. Ifan INSERT specifies a value for the column, it is used; if the specified value is
not larger than the current maximum value for the column, that value is used as a starting
point for subsequent inserts.

Deleting rows does not decrement the IDENTITY/AUTOINCREMENT counter. Gaps
created by deleting rows can only be filled by explicit assignment when using an insert.
The database option | DENTI TY_| NSERT must be set to the table name to perform an
insert into an IDENTITY/AUTOINCREMENT column.

For example, this creates a table with an IDENTITY column and explicitly adds some data
to it:

CREATE TABLE nytabl e(cl I NT | DENTITY);

SET TEMPORARY OPTI ON | DENTI TY_I NSERT = "DBA". nyt abl e;
I NSERT | NTO nyt abl e VALUES(5);

After an explicit insert of a row number less than the maximum, subsequent rows without
explicitassignment are still automatically incremented with a value of one greater than the
previous maximum.
You can find the most recently inserted value of the column by inspecting the @ @identity
global variable.

e IDENTITY—A Transact-SQL-compatible alternative to using the AUTOINCREMENT
default. In Sybase 1Q, the identity column may be created using either the IDENTITY or the
DEFAULT AUTOINCREMENT clause.

table-constraint—Helps ensure the integrity of data in the database. There are four types of
integrity constraints:

* UNIQUE constraint—Identifies one or more columns that uniquely identify each row in
the table. No two rows in the table can have the same values in all the named columns. A
table may have more than one unique constraint.

* PRIMARY KEY constraint—Is the same as a UNIQUE constraint except that a table can
have only one primary-key constraint. You cannot specify the PRIMARY KEY and
UNIQUE constraints for the same column. The primary key usually identifies the best
identifier for a row. For example, the customer number might be the primary key for the
customer table.

» FOREIGN KEY constraint—Restricts the values for a set of columns to match the values
in a primary key or uniqueness constraint of another table. For example, a foreign-key

Reference: Statements and Options 139

SQL Statements

constraint could be used to ensure that a customer number in an invoice table corresponds
to a customer number in the customer table.

Note: You cannot create foreign-key constraints on local temporary tables. Global
temporary tables must be created with ON COMMIT PRESERVE ROWS.

» CHECK constraint—Allows arbitrary conditions to be verified. For example, a check
constraint could be used to ensure that a column called Gender contains only the values
male or female. No row in a table is allowed to violate a constraint. If an INSERT or
UPDATE statement would cause a row to violate a constraint, the operation is not permitted
and the effects of the statement are undone.

Column identifiers in column check constraints that start with the symbol ‘@’ are
placeholders for the actual column name. A statement of the form:
CREATE TABLE t1(cl I NTEGER CHECK (@00 < 5))

is exactly the same as this statement:
CREATE TABLE t1(cl I NTEGER CHECK (cl1 < 5))

Column identifiers appearing in table check constraints that start with the symbol ‘@’are
not placeholders.

If a statement would cause changes to the database that violate an integrity constraint, the
statement is effectively not executed and an error is reported. (Effectively means that any
changes made by the statement before the error was detected are undone.)

Sybase 1Q enforces single-column UNIQUE constraints by creating an HG index for that
column.

Note: You cannot define a column with a Bl T data type as a UNIQUE or PRIMARY KEY
constraint. Also, the default for columns of Bl T data type is to not allow NULL values; you
can change this by explicitly defining the column as allowing NULL values.

column-constraint—Restricts the values the column can hold. Column and table constraints
help ensure the integrity of data in the database. If a statement would cause a violation of a
constraint, execution of the statement does not complete, any changes made by the statement
before error detection are undone, and an error is reported. Column constraints are
abbreviations for the corresponding table constraints. For example, these are equivalent:

CREATE TABLE Products (
product _num i nteger UN QUE

)

CREATE TABLE Products (
product _num i nt eger,
UNI QUE (product_num)

)

Column constraints are normally used unless the constraint references more than one column
in the table. In these cases, a table constraint must be used.

1Q UNIQUE constraint—This constraint can be specified for columns only. IQ UNIQUE
defines the cardinality of the column, and it is used to optimize the indexes internally. The

140

Sybase 1Q

SQL Statements

default value is 0, which gives 1Q no information for optimizing the default index. The 1Q
UNIQUE constraint should be applied if the expected distinct count (the number of unique
values) for the column is less than or equal to 65536. This allows Sybase 1Q to optimize
storage of this column's data.

When the M NI M ZE_STORAGE option is ON (the default for new databases is OFF), it is
equivalent to specifying 1Q UNIQUE 255 for every newly created column, and there is no
need to specify 1Q UNIQUE except for columns with more than 65536 unique values. For
related information, see System Administration Guide: Volume 1 > Database Object
Management > Table Management > Guidelines for Creating Tables > Optimizing Storage
and Query Performance.

Integrity Constraints

UNIQUE or UNIQUE (column-name, ...)—No two rows in the table can have the same
values in all the named columns. A table may have more than one unique constraint.

There is a difference between a unique constraint and a unique index. Columns of a unique
index are allowed to be NULL, while columns in a unique constraint are not. A foreign key can
reference either a primary key or a column with a unique constraint, but not a unique index,
because it can include multiple instances of NULL.

PRIMARY KEY or PRIMARY KEY (column-name, ...) —The primary key for the table
consists of the listed columns, and none of the named columns can contain any NULL values.
Sybase 1Q ensures that each row in the table has a unique primary key value. A table can have
only one PRIMARY KEY.

When the second form is used (PRIMARY KEY followed by a list of columns), the primary key
is created including the columns in the order in which they are defined, not the order in which
they are listed.

When a column is designated as PRIMARY KEY, FOREIGN KEY, or UNIQUE, Sybase 1Q
creates a High_Group index for it automatically. For multicolumn primary keys, this index is
on the primary key, not the individual columns. For best performance, you should also index
each column with a HG or LF index separately.

REFERENCES primary-table-name [(primary-column-name)] —This clause defines the
column as a foreign key for a primary key or a unique constraint of a primary table. Normally, a
foreign key would be for a primary key rather than an unique constraint. If a primary column
name is specified, it must match a column in the primary table which is subject to a unique
constraint or primary key constraint, and that constraint must consist of only that one column.
Otherwise the foreign key references the primary key of the second table. Primary key and
foreign key must have the same data type and the same precision, scale, and sign. Only a
nonunique single-column HG index is created for a single-column foreign key. For a
multicolumn foreign key, Sybase 1Q creates a nonunique composite HG index. The maximum
width of a multicolumn composite key for a unique or nonunique HG index is 1KB.

Reference: Statements and Options 141

SQL Statements

A temporary table cannot have a foreign key that references a base table and a base table
cannot have a foreign key that references a temporary table. Local temporary tables cannot
have or be referenced by a foreign key.

FOREIGN KEY [role-name] [(...)] REFERENCES primary-table-name [(...)]—Defines
foreign-key references to a primary key or a unique constraint in another table. Normally, a
foreign key would be for a primary key rather than an unique constraint. (In this description,
this other table is called the primary table.)

If the primary table column names are not specified, the primary table columns are the
columns in the table’s primary key. If foreign key column names are not specified, the foreign-
key columns have the same names as the columns in the primary table. If foreign-key column
names are specified, then the primary key column names must be specified, and the column
names are paired according to position in the lists.

If the primary table is not the same as the foreign-key table, either the unique or primary key
constraint must have been defined on the referenced key. Both referenced key and foreign key
must have the same number of columns, of identical data type with the same sign, precision,
and scale.

The value of the row’s foreign key must appear as a candidate key value in one of the primary
table’s rows unless one or more of the columns in the foreign key contains nulls in a null allows
foreign key column.

Any foreign-key column not explicitly defined is automatically created with the same data
type as the corresponding column in the primary table. These automatically created columns
cannot be part of the primary key of the foreign table. Thus, a column used in both a primary
key and foreign key must be explicitly created.

role-nameis the name of the foreign key. The main function of ro/e-nameis to distinguish two
foreign keys to the same table. If no role-nameis specified, the role name is assigned as
follows:

1. If there is no foreign key with a role-name the same as the table name, the table name is
assigned as the role-name.

2. If the table name is already taken, the role-name is the table name concatenated with a
zero-padded 3-digit number unique to the table.

The referential integrity action defines the action to be taken to maintain foreign-key
relationships in the database. Whenever a primary key value is changed or deleted from a
database table, there may be corresponding foreign key values in other tables that should be
modified in some way. You can specify an ON DELETE clause, followed by the RESTRICT
clause:

RESTRICT—Generates an error if you try to update or delete a primary key value while there
are corresponding foreign keys elsewhere in the database. Generates an error if you try to
update a foreign key so that you create new values unmatched by a candidate key. This is the
default action, unless you specify that LOAD optionally reject rows that violate referential
integrity. This enforces referential integrity at the statement level.

142

Sybase 1Q

SQL Statements

If you use CHECK ON COMMIT without specifying any actions, then RESTRICT is implied as
an action for DELETE. Sybase 1Q does not support CHECK ON COMMIT.

A global temporary table cannot have a foreign key that references a base table and a base table
cannot have a foreign key that references a global temporary table. Local temporary tables
cannot have or be referenced by a foreign key.

CHECK (condition)— No row is allowed to fail the condition. If an INSERT statement would
cause a row to fail the condition, the operation is not permitted and the effects of the statement
are undone.

The change is rejected only if the condition is FALSE; in particular, the change is allowed if
the condition is UNKNOWN. CHECK condition is notenforced by Sybase 1Q. For more
information about TRUE, FALSE, and UNKNOWN conditions, see Reference. Building
Blocks, Tables, and Procedures > SQL Language Elements > NULL Value and Reference:
Building Blocks, Tables, and Procedures > SQL Language Elements > Search Conditions.

Note: Sybase recommends that you not define referential integrity foreign key-primary key
relationships in Sybase 1Q unless you are certain there are no orphan foreign keys.

Remote Tables

Foreign-key definitions are ignored on remote tables. Foreign-key definitions on local tables
that refer to remote tables are also ignored. Primary-key definitions are sent to the remote
server if the server supports it.

PARTITION BY RANGE—Specifies that rows are to be partitioned according to the
specified ranges of values in the partitioning column.

The column-name in the partition-key clause specifies the partition key column. Sybase 1Q
supports a single partition key column.

The partition-namein the range-partition-decl clause specifies the name of a new partition on
which table rows are stored. Partition names must be unique within the set of partitions on a
table. The partition_name clause is required.

VALUE clause—Specifies the inclusive upper bound for each partition for range partitioning
criteria. The user must specify the partitioning criteria for each range partition to guarantee
that each row is distributed to only one partition. NULLSs are allowed for the partition column
and rows with NULL as partition key value belong to the first table partition. However, NULL
cannot be the bound value. There is no lower bound (MIN value) for the first partition. Rows of
NULL cells in the first column of the partition key will go to the first partition. For the last

partition, you can either specify an inclusive upper bound or MAX. If the upper bound value
for the last partition is not MAX, loading or inserting any row with partition key value larger
than the upper bound value of the last partition generates an error.

MAX—Denotes the infinite upper bound and can only be specified for the last partition.

IN—In the partition-decl, specifies the dbspace on which rows of the partition should reside.

Reference: Statements and Options 143

SQL Statements

These restrictions affect partitions keys and bound values for range partitioned tables:

Partition bounds must be constants, not constant expressions.

Partition bounds must be in ascending order according to the order in which the partitions
were created. That is, the upper bound for the second partition must be higher than for the
first partition, and so on.

In addition, partition bound values must be compatible with the corresponding partition-
key column data type. For example, VARCHAR is compatible with CHAR.

If a bound value has a different data type than that of its corresponding partition key
column, Sybase 1Q converts the bound value to the data type of the partition key column,
with these exceptions:

Explicit conversions are not allowed. This example attempts an explicit conversion from
I NT to VARCHAR and generates an error:

CREATE TABLE Enpl oyees(enp_nanme VARCHAR(20))

PARTI TI ON BY RANGE(enp_nane)

(pl VALUES <=(CAST (1 AS VARCHAR(20))),
p2 VALUES <= (CAST (10 AS VARCHAR(20)))

Implicit conversions that result in data loss are not allowed. In this example, the partition
bounds are not compatible with the partition key type. Rounding assumptions may lead to
data loss and an error is generated:

CREATE TABLE enp_id (id I NT) PARTI TI ON BY RANGE(id) (pl VALUES <=
(10.5), p2 VALUES <= (100.5))

In this example, the partition bounds and the partition key data type are compatible. The
bound values are directly converted to float values. No rounding is required, and
conversion is supported:

CREATE TABLE id_enp (id FLOAT)
PARTI TI ON BY RANGE(id) (pl VALUES <= (10),
p2 VALUES <= (100))

Conversions from nonbinary data types to binary data types are not allowed. For example,
this conversion is not allowed and returns an error:

CREATE TABLE newenp (nane Bl NARY)
PARTI TI ON BY RANGE(nane)

(pl VALUES <= ("Maarten"),

p2 VALUES <= ("Zymrer nan")

NULL cannot be used as a boundary in a range-partitioned table.

The row will be in the first partition if the cell value of the 1st column of the partition key
evaluated to be NULL. Sybase 1Q supports only single column partition keys, so any
NULL in the partition key distributes the row to the first partition.

See also System Administration Guide: Volume 1 > Database Object Management > Table
Management > Guidelines for Creating Tables.

Side Effects

Automatic commit

144

Sybase 1Q

SQL Statements

Standards

SQL—Vendor extension to ISO/ANSI SQL grammar.

These are vendor extensions:

e The {IN| ON } dbspace-name clause

e The ON COMMIT clause

* Some of the default values

Sybase—Supported by Adaptive Server Enterprise, with some differences.

» Temporary tables— You can create a temporary table by preceding the table name ina
CREATE TABLE statement with a pound sign (#). These temporary tables are Sybase
1Q declared temporary tables, which are available only in the current connection. For
information about declared temporary tables, see DECLARE LOCAL TEMPORARY
TABLE Statement.

» Physical placement—Physical placement of a table is carried out differently in Sybase
1Q and in Adaptive Server Enterprise. The ON segment-name clause supported by
Adaptive Server Enterprise is supported in Sybase 1Q, but segment-name refers to an
1Q dbspace.

« Constraints—Sybase 1Q does not support named constraints or named defaults, but
does support user-defined data types that allow constraint and default definitions to be
encapsulated in the data type definition. It also supports explicit defaults and CHECK
conditions in the CREATE TABLE statement.

¢ NULL default—By default, columns in Adaptive Server Enterprise default to NOT
NULL, whereas in Sybase 1Q the default setting is NULL, to allow NULL values. This
setting can be controlled using the ALLOW NULLS BY_DEFAULT option. See
ALLOW NULLS BY DEFAULT Option [TSQL]. To make your data definition
statements transferable, explicitly specify NULL or NOT NULL.

Permissions

Must have RESOURCE authority. To create a table for another user, you must have DBA
authority. To create a base table in an 1Q main store dbspace, you must have DBA authority or
RESOURCE authority and CREATE privilege in the specified dbspace.

See also

ALLOW NULLS BY DEFAULT Option [TSQL]on page 335
ALTER TABLE Statement on page 27

CREATE DBSFACE Statement on page 76

CREATE INDEX Statement on page 97

DECLARE LOCAL TEMPORARY TABLE Statement on page 160
DROP Statement on page 170

MINIMIZE STORAGE Option on page 412

Reference: Statements and Options 145

SQL Statements

CREATE TEXT CONFIGURATION Statement

Creates a text configuration object.

Syntax

See bel ow.

Usage
For syntax and complete description, see Unstructured Data Analytics in Sybase 1Q.

CREATE TEXT INDEX Statement

Creates a TEXT index.

Syntax

See bel ow.

Usage
For syntax and complete description, see Unstructured Data Analytics in Sybase 1Q.

CREATE USER Statement

Creates a user.

Syntax

CREATE USER user-nane [IDENTIFIEDBY password]
[LOGINPOLICY policy-nane]
[FORCE PASSWORD CHANGE { ON | OFF }]

Examples

» Example 1 - Create a user named SQLTest er with the password welcome. The
SQLTest er user is assigned to the Test 1 login policy and the password expires on the
next login:

CREATE USER SQ.Tester | DENTIFIED BY wel cone

LOG N POLI CY Test1
FORCE PASSWORD CHANGE ON;

* Example 2 — Create a group named My G oup:

146 Sybase 1Q

SQL Statements

CREATE USER MyGr oup:
GRANT GROUP TO MyGr oup;

Usage
user-name—Name of the user.

IDENTIFIED BY clause—Provides the password for the user.

policy-name—Name of the login policy to assign the user. No change is made if LOGIN
POLICY is not specified.

FORCE PASSWORD CHANGE clause—Controls whether the user must specify a new
password when they log in. This setting overrides the
PASSWORD_EXPI RY_ON_NEXT_LOG N option setting in their policy.

You do not have to specify a password for the user. A user without a password cannot connect
to the database. This is useful if you are creating a group and do not want anyone to connect to
the database using the group user ID. A user ID must be a valid identifier.

User IDs and passwords cannot:

« Begin with white space, single quotes, or double quotes
« End with white space
» Contain semicolons

A password can be either a valid identifier, or a string (maximum 255 bytes) placed in single
guotes. Passwords are case-sensitive. Sybase recommends that the password be composed of
7-bit ASCII characters, as other characters may not work correctly if the database server
cannot convert them from the client's character set to UTF-8.

The VERI FY_PASSWORD FUNCTI ON option can be used to specify a function to
implement password rules (for example, passwords must include at least one digit). If a
password verification function is used, you cannot specify more than one user 1D and
password in the GRANT CONNECT statement. For details, see

VERIFY PASSWORD FUNCTION Optionand GRANT Statement.

See also SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Configuring Your Database > Managing user 1Ds, authorities, and permissions > Managing
login policies overview.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions
Requires DBA or USER ADMIN authority.

Reference: Statements and Options 147

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html

SQL Statements

See also

ALTER LOGIN POLICY Statement on page 19

COMMENT Statement on page 58

CREATE LOGIN POLICY Statement on page 107

DROP LOGIN POLICY Statementon page 175

DROP USER Statement on page 179

GRANT Statement on page 199

PASSWORD_EXPIRY _ON_NEXT_LOGIN Optionon page 423
VERIFY PASSWORD FUNCTION Option on page 466

CREATE VARIABLE Statement

Creates a SQL variable.

Syntax
CREATE VARIABLE identifier data-type

Examples

Example 1 — This code fragment inserts a large text value into the database:

EXEC SQL BEG N DECLARE SECTI ON;
char buffer[5000];
EXEC SQL END DECLARE SECTI ON,
EXEC SQL CREATE VARI ABLE hol d_bl ob VARCHAR;
EXEC SQL SET hold blob = '';
for(;;) {
/* read sone data into buffer ... */
size = fread(buffer, 1, 5000, fp);
if(size <= 0) break;
/* add data to bl ob using concatenation
Not e that concatenation works for binary
data too! */
EXEC SQL SET hol d_blob = hold_blob || :buffer;

}
EXEC SQL | NSERT | NTO sone_table VALUES (1, hold_blob);
EXEC SQL DROP VARI ABLE hol d_bl ob;

Usage

The CREATE VARIABLE statement creates a new variable of the specified data type. The
variable contains the NULL value until it is assigned a different value by the SET VARIABLE
statement.

A variable can be used in a SQL expression anywhere a column name is allowed. If a column
name exists with the same name as the variable, the variable value is used.

148

Sybase 1Q

SQL Statements

Variables belong to the current connection, and disappear when you disconnect from the
database, or when you use the DROP VARIABLE statement. Variables are not visible to other
connections. Variables are not affected by COMMIT or ROLLBACK statements.

In Sybase 1Q 12.5 and above, variables created with the CREATE VARIABLE statement persist
for a connection even when the statement is issued within a (BEGIN...END) statement. You
must use DECLARE to create variables that only persist within a (BEGIN...END) statement, for
example, within stored procedures.

Variables are useful for creating large text or binary objects for INSERT or UPDATE statements
from Embedded SQL programs.

Local variables in procedures and triggers are declared within a compound statement. See
System Administration Guide: Volume 2 > Using Procedures and Batches > Control
Statements > Using Compound Statements.

See also Reference. Building Blocks, Tables, and Procedures > SQL Data Types.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

None

See also

e BEGIN ... END Statementon page 47

o DECLARE Statementon page 153

* DROP VARIABLE Statementon page 180
e SET Statement [ESQL] on page 287

CREATE VIEW Statement

Creates a view on the database. Views are used to give a different perspective on the data even
though it is not stored that way.

Syntax

CREATE VIEW

... owner.]viewname [(colum-name [, ...])]
...AS sel ect-wi t hout - or der - by

... WITH CHECK OPTION]

Reference: Statements and Options 149

SQL Statements

Examples

* Example 1 - Create a view showing all information for male employees only. This view
has the same column names as the base table:
CREATE VI EW nal e_enpl oyee
AS SELECT *

FROM Enpl oyees
WHERE Sex = 'M

* Example2—Create a view showing employees and the departments to which they belong:
CREATE VI EW enp_dept
AS SELECT Surnane, G venNane, Departnent Name

FROM Enpl oyees JO N Depart nents
ON Enpl oyees. Departnent| D = Departnents. Depart ment | D

Usage

A view can be created for another user by specifying the owner. You must have DBA authority
to create a view for another user.

A view name can be used in place of a table name in SELECT, DELETE, UPDATE, and INSERT
statements. Views, however, do not physically exist in the database as tables. They are derived
each time they are used. The view is derived as the result of the SELECT statement specified in
the CREATE VIEW statement. Table names used in a view should be qualified by the user 1D of
the table owner. Otherwise, a different user ID might not be able to find the table or might get
the wrong table.

The columns in the view are given the names specified in the column name list. If the column
name list is not specified, then the view columns are given names from the select list items. To
use the names from the select list items, the items must be a simple column name or they must
have an alias name specified (see SELECT Statement). You cannot add or drop IDENTIY/
AUTOINCREMENT columns from a view.

Views can be updated unless the SELECT statement defining the view contains a GROUP BY
clause, an aggregate function, or involves a UNION operation. An update to the view causes the
underlying tables to be updated.

view-name—An identifier. The default owner is the current user ID.

column-name—The columns in the view are given the names specified in the column-name
list. If the column name list is not specified, the view columns are given names from the select
listitems. To use the names from the select list items, each item must be a simple column name
or have an alias name specified (see SELECT Statement).

AS—The SELECT statement on which the view is based must not contain an ORDER BY
clause, a subquery in the SELECT list, ora TOP or FIRST qualification. It may have a GROUP
BY clause and may be a UNION.

WITH CHECK OPTION—REejects any updates and inserts to the view that do not meet the
criteria of the views as defined by its SELECT statement. However, Sybase 1Q currently
ignores this option (it supports the syntax for compatibility reasons).

150

Sybase 1Q

SQL Statements

Side Effects

* Automatic commit

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must have RESOURCE authority and SELECT permission on the tables in the view
definition.

See also

o CREATE TABLE Statementon page 133
* DROP Statement on page 170

e SELECT Statementon page 279

DEALLOCATE DESCRIPTOR Statement [ESQL]

Frees memory associated with a SQL descriptor area.

Syntax

DEALLOCATE DESCRIPTOR descr i pt or - nane:
string

Examples
* Example1—See ALLOCATE DESCRIPTOR Statement [ESQL].

Usage

Frees all memory associated with a descriptor area, including the data items, indicator
variables, and the structure itself.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Open Client/Open Server.

Permissions

None

Reference: Statements and Options 151

SQL Statements

See also
* ALLOCATE DESCRIPTOR Statement [ESQL] on page 5
» SET DESCRIPTOR Statement [ESQL] on page 292

Declaration Section [ESQL]

Declares host variables in an Embedded SQL program. Host variables are used to exchange
data with the database.

Syntax

EXEC SQL BEGIN DECLARE SECTION,;
C decl arati ons

EXEC SQL END DECLARE SECTION;

Examples

* Examplel-

EXEC SQL BEG N DECLARE SECTI ON,;
char *enp_l name, initials[5];

i nt dept;

EXEC SQL END DECLARE SECTI ON;

Usage

A declaration section is a section of C variable declarations surrounded by the BEGIN
DECLARE SECTION and END DECLARE SECTION statements. A declaration section makes
the SQL preprocessor aware of C variables that are used as host variables. Not all C
declarations are valid inside a declaration section. See SQL Anywhere 11.0.1 > SQL
Anywhere Server — Programming > SQL Anywhere Data Access APIs > SQL Anywhere
embedded SQL > Embedded SQL programming techniqgues.

Standards
e SQL—Vendor extension to ISO/ANSI SQL grammar.

Permissions

None

See also
e BEGIN ... END Statementon page 47

152

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/esql-secta-8635295.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/esql-secta-8635295.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/esql-secta-8635295.html

SQL Statements

DECLARE Statement

Declares a SQL variable within a compound statement (BEGIN... END).

Syntax
DECLARE vari abl e_nane data-type

Examples

« Examplel-—Thisbatchillustrates the use of the DECLARE statement and prints a message
on the server window:
BEG N
DECLARE var nane CHAR(61);
SET varnanme = 'Test nane';

MESSAGE var nane;
END

Usage

Variables used in the body of a procedure can be declared using the DECLARE statement. The
variable persists for the duration of the compound statement in which it is declared and must
be unique within the compound statement.

The body of a procedure is a compound statement, and variables must be declared
immediately following BEGIN. In a Transact-SQL procedure or trigger, there is no such
restriction.

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Adaptive Server Enterprise.
» Tobe compatible with Adaptive Server Enterprise, the variable name must be preceded
by an @.
« In Adaptive Server Enterprise, a variable that is declared in a procedure or trigger exists
for the duration of the procedure or trigger. In Sybase 1Q, if a variable is declared inside
a compound statement, it exists only for the duration of that compound statement
(whether it is declared in a Sybase 1Q SQL or Transact-SQL compound statement).

Permissions

None

See also
e BEGIN ... END Statementon page 47

Reference: Statements and Options 153

SQL Statements

DECLARE CURSOR Statement [ESQL] [SP]

Declares a cursor. Cursors are the primary means for manipulating the results of queries.

Syntax

DECLARE cur sor - nane
[SCROLL

| NO SCROLL

| DYNAMIC SCROLL

]
CURSOR FOR
{ sel ect - st at enent
| statenent-nane
[FOR { READONLY | UPDATE [OF columm-nane-list] }]
| USINGvari abl e-nane }

Parameters

e cursor-name: —identifier

* gtatement-name: — identifier | host-variable
¢ column-name-list: —identifiers

e variable-name: —identifier

Examples
* Example 1 — Declare a scroll cursor in Embedded SQL.:

EXEC SQL DECLARE cur_enpl oyee SCROLL CURSCR
FOR SELECT * FROM Enpl oyees;

* Example 2 —Declare a cursor for a prepared statement in Embedded SQL:

EXEC SQL PREPARE enpl oyee_st at enent
FROM ' SELECT enp_| nane FROM Enpl oyees' ;
EXEC SQL DECLARE cur_enpl oyee CURSOR
FOR enpl oyee_st atenment ;

* Example 3 —Use cursors in a stored procedure:

BEG N
DECLARE cur_enpl oyee CURSOR FOR
SELECT enp_| nane
FROM Enpl oyees;
DECLARE nane CHAR(40);
OPEN cur _enpl oyee;
LOoP
FETCH NEXT cur _enpl oyee | NTO nane;

END LOOP;

154 Sybase 1Q

SQL Statements

CLCSE cur _enpl oyee;
END

Usage

The DECLARE CURSOR statement declares a cursor with the specified name for a SELECT
statement or a CALL statement.

SCROLL—A cursor declared as SCROLL supports the NEXT, PRIOR, FIRST, LAST,
ABSOLUTE, and RELATIVE options of the FETCH statement. A SCROLL cursor lets you
fetch an arbitrary row in the result set while the cursor is open.

NO SCROLL—A cursor declared as NO SCROLL is restricted to moving forward through
the result set using only the FETCH NEXT and FETCH ABSOLUTE (0) seek operations.

DYNAMIC SCROLL—A cursor declared as DYNAMIC SCROLL supports the NEXT,
PRIOR, FIRST, LAST, ABSOLUTE, and RELATIVE options of the FETCH statement. A
DYNAMIC SCROLL cursor lets you fetch an arbitrary row in the result set while the cursor is
open.

Since rows cannot be returned to once the cursor leaves the row, there are no sensitivity
restrictions on the cursor. Consequently, when a NO SCROLL cursor is requested, Sybase 1Q
supplies the most efficient kind of cursor, which is an asensitive cursor.

FOR statement-name—Statements are named using the PREPARE statement. Cursors can be
declared only for a prepared SELECT or CALL.

FOR READ ONLY—A cursor declared FOR READ ONLY may not be used in a positioned
UPDATE or a positioned DELETE operation. READ ONLY is the default value of the FOR
clause.

A cursor declared FOR READ ONLY sees the version of table(s) on which the cursor is
declared when the cursor is opened, not the version of table(s) at the time of the first
FETCH.

For example, when the cursor is fetched, only one row can be fetched from the table:

CREATE TABLE t1 (c1 INT);
INSERT t1 VALUES (1);

BEG N

DECLARE t1 cursor CURSOR FOR SELECT * FROMt1
FOR READ ONLY;

OPEN t1_cursor;

INSERT t1 VALUES (2);

FETCH T1_CURSOR;

END

FOR UPDATE—You can update the cursor result set of a cursor declared FOR UPDATE.
Only asensitive behavior is supported for updatable cursors; any other sensitivity is ignored.

When the cursor is opened, exclusive table locks are taken on all tables that are opened for
update. Standalone LOAD TABLE, UPDATE, INSERT, DELETE, and TRUNCATE statements

Reference: Statements and Options 155

SQL Statements

are not allowed on tables that are opened for update in the same transaction, since Sybase 1Q
permits only one statement to modify a table at a time. You can open only one updatable cursor
on a specific table at a time.

Updatable cursors are allowed to scroll, except over Open Client.

OF column-name-list—The list of columns from the cursor result set (specified by the sefect-
statement) defined as updatable.

USING variable-name—You can declare a cursor on a variable in stored procedures and user-
defined functions. The variable is a string containing a SELECT statement for the cursor. The
variable must be available when the DECLARE is processed, and so must be one of the
following:

e A parameter to the procedure. For example:

create function get_row count(in qry varchar)
returns int
begin

decl are crsr cursor using qry;

declare rowcnt int;

set rowcnt = 0;

open crsr;
| p: | oop
fetch crsr;

if SQLCODE <> 0 then leave Ip end if;
set rowcnt = rownt + 1;
end | oop;
return rowcnt;
end

» Nested inside another BEGIN...END after the variable has been assigned a value. For
example:

create procedure get_tabl e_namg(
in id_value int, out tabname char(128))

begin
decl are qry varchar;

set qry = 'select table_nane from SYS. | SYSTAB ' ||
"where table_id=" || string(id_value);
begin
decl are crsr cursor using qry;

open crsr;
fetch crsr into tabnane;
cl ose crsr;

end

end

Embedded SQL

Statements are named using the PREPARE statement. Cursors can be declared only for a
prepared SELECT or CALL.

156 Sybase 1Q

SQL Statements

Updatable Cursor Support

Sybase 1Q support of updatable cursors is similar to SQL Anywhere support of updatable
cursors. For a full discussion of cursor types and working with cursors, see SQL Anywhere
11.0.1 > SQL Anywhere Server — Programming > Introduction to Programming with SQL
Anywhere > Using SQL in applications > Introduction to cursors.

Sybase 1Q supports one type of cursor sensitivity, which is defined in terms of which changes
to underlying data are visible. All Sybase 1Q cursors are asensitive, which means that changes
might be reflected in the membership, order, or values of the result set seen through the cursor,
or might not be reflected at all.

With an asensitive cursor, changes effected by positioned UPDATE and positioned DELETE
statements are visible in the cursor result set, except where client-side caching prevents seeing
these changes. Inserted rows are not visible.

Rows that are updated so that they no longer meet the requirements of the WHERE clause of
the open cursor are still visible.

When using cursors, there is always a trade-off between efficiency and consistency.
Asensitive cursors provide efficient performance at the expense of consistency.

Sybase 1Q supports updatable cursors on single tables.

LONG VARCHARand LONG BI NARY data types are not supported in updatable cursors. For
information on the LONG VARCHAR and LONG BI NARY data types in Sybase 1Q, see
Unstructured Data Analytics in Sybase 1Q.

Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

Supported query specifications for updatable cursors in Sybase 1Q are:

« Expressions in the select list against columns that are not functionally dependent on
columns being updated

< Arbitrary subqueries with asensitive behavior, that is, changes to data referenced by
subqueries are not visible in the cursor result set
e ORDER BY clause; the ORDER BY columns may be updated, but the result set does not
reorder
* Columns that meet these requirements:
* No CAST on a column
» Base columns of a base table in the SELECT clause
e Thereare noexpressions or functions on that column in the SELECT clause and it is not
duplicated in the select list (for example, SELECT c1, c1l).
« Base columns of a base table restricted to those listed in the FOR UPDATE OF column-
name-list clause, if the clause is specified.

Sybase 1Q does not permit updatable cursors on queries that contain any operator that
precludes a one-to-one mapping of result set rows to rows in a base table; specifically:

Reference: Statements and Options 157

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/introduction-cursors-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/introduction-cursors-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/introduction-cursors-sqlapp.html

SQL Statements

e SELECT DISTINCT

e Operator that has a UNION

e Operator that has a GROUP BY

« Operator that has a SET function

» Operator that has an OLAP function, with the exception of RANK()

See the description of the UPDATE (positioned) Statement [ESQL] [SP]for information on
the columns and expressions allowed in the SET clause for the update of a row in the result set
of a cursor.

Sybase 1Q supports inserts only on updatable cursors where all nonnullable, nonidentity
columns are both selected and updatable.

In Sybase 1Q, COMMIT and ROLLBACK are not allowed inside an open updatable cursor, even
if the cursor is opened as a hold cursor. Sybase 1Q does support ROLLBACK TO SAVEPOINT
inside an updatable cursor.

Any failure that occurs after the cursor is open results in a rollback of all operations that have
been performed through this open cursor.

Updatable Cursor Limitations
A declared cursor is read-only and not updatable in cases where:

« The data extraction facility is enabled with the TEMP_EXTRACT _NAMEL option setto a
pathname

* Asajoin index, or within a join index

e ANSI _CLOSE_CURSORS_ON_ROLLBACK is set OFF

e CHAINED is set OFF

» The statement is INSERT SELECT or SELECT INTO

* More than one table is included

» No updatable columns exist

If Sybase I1Q fails to set an updatable cursor when requested, see the . i qnsqg file for related
information.

There is a limitation regarding updatable cursors and ODBC. A maximum of 65535 rows or
records can be updated, deleted, or inserted at a time using these ODBC functions:

« SQLSetPos SQL_UPDATE, SQL_DELETE, and SQL_ADD
« SQLBulkOperations SQL_ADD, SQL_UPDATE_BY_BOOKMARK, and
SQL_DELETE_BY_BOOKMARK

There is an implementation-specific limitation to the maximum value in the statement
attribute that controls the number of effected rows to the largest value of an UNSI GNED
SMALL | NT, which is 65535.

SQLSet St nt At t r (HANDLE, SQL_ATTR_ROW ARRAY_S| ZE, VALUE, 0)

Updatable Cursor Differences

158

Sybase 1Q

SQL Statements

Sybase 1Q updatable cursors differ from ANSI SQL3 standard behavior as follows:

« Hold cursor update close on commit.
» Sybase IQ locks tables when the cursor is open.

» All updates, deletes, and insert operations are applied when the cursor is closed, in this
order: deletes first, then updates, then inserts.

See also Reference. Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqcursorinfo Procedure.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Open Client/Open Server.

Permissions

None

See also

e CALL Statementon page 53

» DELETE (positioned) Statement [ESQL] [SP] on page 164
e FETCH Statement [ESQL] [SP]on page 187

e OPEN Statement [ESQL] [SP] on page 246

» PREFARE Statement [ESQL Jon page 253

e SELECT Statementon page 279

» UPDATE (positioned) Statement [ESQL] [SP] on page 311

DECLARE CURSOR Statement [T-SQL]

Declares a cursor that is compatible with Adaptive Server Enterprise.

Syntax

DECLARE cur sor - nanme

... CURSOR FOR sel ect - st at enent
.f FOR { READONLY | UPDATE }]

Usage

Sybase 1Q supports a DECLARE CURSOR syntax that is not supported in Adaptive Server
Enterprise. For information on the full DECLARE CURSOR syntax, see DECLARE CURSOR
Statement [ESQL] [SP].

Reference: Statements and Options 159

SQL Statements

See also Reference. Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_igcursorinfo Procedure.

Standards

e SQL—The FOR UPDATE and FOR READ ONLY options are Transact-SQL extensions
to ISO/ANSI SQL grammar.

« Sybase—There are some features of the Adaptive Server Enterprise DECLARE CURSOR
statement that are not supported in Sybase 1Q.

e Inthe Sybase IQ dialect, DECLARE CURSOR in a procedure or batch must
immediately follow the BEGIN keyword. In the Transact-SQL dialect, there is no such
restriction.

* In Adaptive Server Enterprise, when a cursor is declared in a procedure or batch, it
exists for the duration of the procedure or batch. In Sybase 1Q, if a cursor is declared
inside a compound statement, it exists only for the duration of that compound
statement (whether it is declared in a Sybase 1Q or Transact-SQL compound
statement).

Permissions

None

See also
* DECLARE CURSOR Statement [ESQL] [SP] on page 154

DECLARE LOCAL TEMPORARY TABLE Statement

Declares a local temporary table.

Syntax

DECLARE LOCAL TEMPORARY TABLE t abl e- nanme

...(colum-definition [columm-constraint]

[, colum-definition [colum-constraint] ...]
[, table-constraint] ...)

.[ON coMMmIT { DELETE | PRESERVE } ROWS

NOT TRANSACTIONAL]

Examples
* Example 1 —Declare a local temporary table in Embedded SQL.:

EXEC SQ. DECLARE LOCAL TEMPORARY TABLE MyTabl e (
nunber | NT
)
* Example 2 —Declare a local temporary table in a stored procedure:

160 Sybase 1Q

SQL Statements

BEG N
DECLARE LOCAL TEMPORARY TABLE TenpTab (
nunmber | NT

)
END

Usage
DECLARE LOCAL TEMPORARY TABLE declares a temporary table.
A local temporary table and the rows in it are visible only to the connection that created the

table and inserted the rows. By default, the rows of a temporary table are deleted on
COMMIT.

Declared local temporary tables within compound statements exist within the compound
statement. Otherwise, the declared local temporary table exists until the end of the connection.

See CREATE TABLE Statementfor definitions of column-definition, column-constraint, and
table-constraint, and the NOT TRANSACTIONAL clause. See SELECT Statement for an
example of how to select data into a temporary table.

Once you create a local temporary table, either implicitly or explicitly, you cannot create
another temporary table of that name for as long as the temporary table exists. For example,
you can create a local temporary table implicitly:

select * into #tnp fromtablel

or you can create a local temporary table with an explicit by declaration:

decl are | ocal tenporary table foo

Thenif youtry toselectinto#t np or f 00, or declare #t np or f 00 again, you receive an error
indicating that #t np or f 0o already exists.

When you declare a local temporary table, omit the owner specification. If you specify the
same owner . t abl e inmore than one DECLARE LOCAL TEMPORARY TABLE statementin
the same session, a syntax error is reported. For example, an error is reported when these
statements are executed in the same session:

DECLARE LOCAL TEMPORARY TABLE userl.tenp(coll int);
DECLARE LOCAL TEMPORARY TABLE userl.tenp(coll int);

If the owner name is omitted, then theerror | t em t enp al r eady exi st s is reported:

DECLARE LOCAL TEMPCORARY TABLE tenp(col 1 int);
DECLARE LOCAL TEMPORARY TABLE tenp(coll int);

An attempt to create a base table or a global temporary table fails, if a local temporary table of
the same name exists on that connection, as the new table cannot be uniquely identified by
owner.table.

Reference: Statements and Options 161

SQL Statements

You can, however, create a local temporary table with the same name as an existing base table
or global temporary table. References to the table name access the local temporary table, as
local temporary tables are resolved first.

For example, consider this sequence:

CREATE TABLE t1 (cl int);
I NSERT t1 VALUES (9);

DECLARE LOCAL TEMPORARY TABLE t1 (cl int);
I NSERT t1 VALUES (8);

SELECT * FROM t 1;

The result returned is 8. Any reference to t 1 refers to the local temporary table t 1 until the
local temporary table is dropped by the connection.

You cannot use the ALTER TABLE and DROP INDEX statements on local temporary tables.

You cannot use the sp_igindex, sp_iqtablesize, and sp_igindexsize stored procedures on
local temporary tables.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Adaptive Server Enterprise does not support DECLARE TEMPORARY TABLE.

Permissions

None

See also
e CREATE TABLE Statementon page 133
e SELECT Statementon page 279

DELETE Statement

Deletes rows from the database.

Syntax

DELETE [FROM] [owner.]t abl e- name
.l FROM table-list]
..l WHERE search-condition]

Examples

* Example 1 —Remove employee 105 from the database:

162

Sybase 1Q

SQL Statements

DELETE
FROM Enpl oyees
WHERE Enpl oyeel D = 105

* Example 2 —Remove all data prior to 1993 from the Fi nanci al Dat a table:

DELETE
FROM Fi nanci al Dat a
VWHERE Year < 1993

* Example 3—Remove all names from the Cont act s table if they are already present in
the Cust ormrer s table:

DELETE

FROM Cont act s
FROM Cont acts, Custoners
VWHERE Cont act s. Sur nane
AND Cont acts. G venNanme

Cust omer s. Sur namne
Cust omer s. G venNane

Usage

DELETE deletes all the rows from the named table that satisfy the search condition. If no
WHERE clause is specified, all rows from the named table are deleted.

DELETE can be used on views provided the SELECT statement defining the view has only one
table in the FROM clause and does not contain a GROUP BY clause, an aggregate function, or
involve a UNION operation.

The optional second FROM clause in the DELETE statement allows rows to be deleted based on
joins. If the second FROM clause is present, the WHERE clause qualifies the rows of this
second FROM clause. Rows are deleted from the table name given in the first FROM clause.

The effects of a DELETE on a table can be passed on to any of the join indexes that reference
that table through the SYNCHRONIZE JOIN INDEX command. For performance reasons, you
should do as many deletes as possible before synchronizing the join indexes.

Note: You cannot use the DELETE statement on a join virtual table. If you attempt to delete
from a join virtual table, an error is reported.

Correlation Name Resolution

This statement illustrates a potential ambiguity in table names in DELETE statements with two
FROM clauses that use correlation names:

DELETE

FROM tabl e_1

FROMtable 1 AS alias_1, table 2 AS alias_2
VWHERE . . .

Thetablet abl e 1 isidentified withouta correlation name in the first FROM clause, but with
a correlation name in the second FROM clause. In this case, t abl e_1 in the first clause is
identified with al i as_1 in the second clause; there is only one instance of table_1 in this
statement.

Reference: Statements and Options 163

SQL Statements

This is an exception to the general rule that where a table is identified with a correlation name
and without a correlation name in the same statement, two instances of the table are
considered.

Consider this example:

DELETE

FROM t abl e_1

FROM table_1 AS alias_1, table_1 AS alias_2
WHERE . ..

In this case, there are two instances of t abl e_1 in the second FROM clause. There is ho way
of identifying which instance the first FROM clause should be identified with. The usual rules
of correlation names apply, and t abl e_1 in the first FROM clause is identified with neither
instance in the second clause: there are three instances of t abl e_1 in the statement.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Adaptive Server Enterprise, including the vendor extension.

Permissions
Must have DELETE permission on the table.

See also

e FROM Clause on page 193

e INSERT Statementon page 209

SYNCHRONIZE JOIN INDEX Statement on page 303
e TRUNCATE TABLE Statementon page 305

DELETE (positioned) Statement [ESQL] [SP]

Deletes the data at the current location of a cursor.

Syntax

DELETE [FROM tabl e-spec]
WHERE CURRENT OF cur sor - name

Parameters

* cursor-name: — identifier| hostvar
» table-spec: —[owner.]correlation-name
* owner: — identifier

164

Sybase 1Q

SQL Statements

Examples
* Example 1 — Remove the current row from the database:
DELETE WHERE CURRENT OF cur_enpl oyee

Usage

This form of the DELETE statement deletes the current row of the specified cursor. The current
row is defined to be the last row fetched from the cursor.

The table from which rows are deleted is determined as follows:

e If no FROM clause is included, the cursor can only be on a single table.

« Ifthe cursor is for a joined query (including using a view containing a join), you must use
the FROM clause. Only the current row of the specified table is deleted. The other tables
involved in the join are not affected.

e Ifyou include a FROM clause and do not specify table owner, table-spec is first matched
against any correlation names.
< Ifacorrelation name exists, fable-spec is identified with the correlation name.
« Ifacorrelation name does not exist, fable-specmust be unambiguously identifiable as a
table name in the cursor.

e IfaFROM clause is included, and a table owner is specified, table-spec must be
unambiguously identifiable as a table name in the cursor.

The positioned DELETE statement can be used on a cursor open on a view as long as the view is
updatable.

Changes effected by positioned DELETE statements are visible in the cursor result set, except
where client-side caching prevents seeing these changes.

See also Reference. Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_igcursorinfo Procedure.

Standards

e SQL—The range of cursors that can be updated may contain vendor extensions to 1SO/
ANSI SQL grammar if the ANSI _UPDATE_CONSTRAI NTS option is set to OFF.

e Sybase—Embedded SQL use is supported by Open Client/Open Server. Procedure and
trigger use is supported in SQL Anywhere.

Permissions

Must have DELETE permission on tables used in the cursor.

See also
e DECLARE CURSOR Statement [ESQL] [SP] on page 154
e INSERT Statement on page 209

Reference: Statements and Options 165

SQL Statements

o UPDATE Statement on page 307
e UPDATE (positioned) Statement [ESQL] [SP] on page 311

DESCRIBE Statement [ESQL]

Gets information about the host variables required to store data retrieved from the database or
host variables used to pass data to the database.

Syntax

DESCRIBE

.[USERTYPES]

. { ALL | BIND VARIABLES FOR | INPUT

| OUTPUT | SELECT LIST FOR }]

.[{ LONGNAMES [|ong-nane-spec] | WITHVARIABLE RESULT }]
.l FOR] { statenent-nane | CURSOR cursor-nane }

..INTO sql da- nane

Parameters

* long-name-spec: —{ OWNER.TABLE.COLUMN | TABLE.COLUMN | COLUMN }
* gtatement-name: —identifier | host-variable

* cursor-name: —declared cursor

* gglda-name: —identifier

Examples
* Example 1 —How to use the DESCRIBE statement:

sqlda = alloc_sqglda(3);
EXEC SQL DESCRI BE QUTPUT
FOR enpl oyee_st at ement
I NTO sql da;
if(sglda->sgqld > sqglda->sqln) {
actual _si ze = sql da->sql d;
free_sqgl da(sqglda);
sqlda = all oc_sql da(actual _size);
EXEC SQL DESCRI BE OUTPUT
FOR enpl oyee_st at enent
I NTO sql da;

Usage

DESCRIBE sets up the named SQLDA to describe either the OUTPUT (equivalently SELECT
LIST) or the INPUT (BIND VARIABLES) for the named statement.

166

Sybase 1Q

SQL Statements

Inthe INPUT case, DESCRIBE BIND VARIABLES does not set up the data types in the SQLDA.:
this needs to be done by the application. The ALL keyword lets you describe INPUT and
OUTPUT in one SQLDA.

If you specify a statement name, the statement must have been previously prepared using the
PREPARE statement with the same statement name and the SQLDA must have been
previously allocated (see ALLOCATE DESCRIPTOR Statement [ESQL)).

If you specify a cursor name, the cursor must have been previously declared and opened. The
default action isto describe the OUTPUT. Only SELECT statements and CALL statements have
OUTPUT. A DESCRIBE OUTPUT on any other statement, or on a cursor that is not a dynamic
cursor, indicates no output by setting the sqld field of the SQLDA to zero.

USER TYPES—A DESCRIBE statement with the USER TYPES clause returns information
about user-defined data types of a column. Typically, such a DESCRIBE is done when a
previous DESCRIBE returns an indicator of DT_HAS_USERTYPE_INFO.

The information returned is the same as for a DESCRIBE without the USER TYPES keywords,
except that the sqiname field holds the name of the user-defined data type, instead of the name
of the column.

If DESCRIBE uses the LONG NAMES clause, the sqldata field holds this information.

SELECT—DESCRIBE OUTPUT fills in the data type and length in the SQL DA for each select
list item. The name field is also filled in with a name for the select list item. If an alias is
specified for a select list item, the name is that alias. Otherwise, the name derives from the
select list item: if the item is a simple column name, it is used; otherwise, a substring of the
expression is used. DESCRIBE also puts the number of select list items in the sqld field of the
SQLDA.

If the statement being described is a UNION of two or more SELECT statements, the column
names returned for DESCRIBE OUTPUT are the same column names which would be returned
for the first SELECT statement.

CALL—The DESCRIBE OUTPUT statement fills in the data type, length, and name in the
SQLDA for each INOUT or OUT parameter in the procedure. DESCRIBE OUTPUT also puts
the number of INOUT or OUT parameters in the sqld field of the SQLDA.

CALL (result set)— DESCRIBE OUTPUT fills in the data type, length, and name in the
SQLDA for each RESULT column in the procedure definition. DESCRIBE OUTPUT also puts
the number of result columns in the sqld field of the SQLDA.

INPUT—A bind variable is a value supplied by the application when the database executes the
statements. Bind variables can be considered parameters to the statement. DESCRIBE INPUT
fills in the name fields in the SQLDA with the bind variable names. DESCRIBE INPUT also
puts the number of bind variables in the sqgld field of the SQLDA.

DESCRIBE uses the indicator variables in the SQLDA to provide additional information.
DT_PROCEDURE_IN and DT_PROCEDURE_OUT are bits that are set in the indicator
variable when a CALL statement is described. DT_PROCEDURE_IN indicates an IN or

Reference: Statements and Options 167

SQL Statements

INOUT parameter and DT_PROCEDURE_OUT indicates an INOUT or OUT parameter.
Procedure RESULT columns has both bits clear. After a describe OUTPUT, these bits can be
used to distinguish between statements that have result sets (need to use OPEN, FETCH,
RESUME, CLOSE) and statements that do not (need to use EXECUTE). DESCRIBE INPUT sets
DT_PROCEDURE_IN and DT_PROCEDURE_OUT appropriately only when a bind
variable is an argument to a CALL statement; bind variables within an expression that is an
argument in a CALL statement sets the bits.

DESCRIBE ALL lets you describe INPUT and OUTPUT with one request to the database server.
This has a performance benefit in a multiuser environment. The INPUT information is filled in
the SQLDA first, followed by the OUTPUT information. The sqld field contains the total
number of INPUT and OUTPUT variables. The DT_DESCRIBE_INPUT bit in the indicator
variable is set for INPUT variables and clear for OUTPUT variables.

Retrieving Long Column Names

The LONG NAMES clause is provided to retrieve column names for a statement or cursor.
Without this clause, there is a 29-character limit on the length of column names: with the
clause, names of an arbitrary length are supported.

If LONG NAMES is used, the long names are placed into the SQLDATA field of the SQLDA, as
if you were fetching from a cursor. None of the other fields (SQLLEN, SQLTYPE, and so on)
are filled in. The SQLDA must be set up like a FETCH SQLDA: it must contain one entry for
each column, and the entry must be a string type.

The default specification for the long names is TABLE.COLUMN.
Describing Variable Result Sets

The WITH VARIABLE RESULT statement is used to describe procedures that might have more
than one result set, with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT value after the
describe to one of these values:

« 0—Theresultset may change: the procedure call should be described again following each
OPEN statement.

e 1—The result set is fixed. No redescribing is required.

For more information on the use of the SQLDA structure, see SQL Anywhere 11.0.1 > SQL
Anywhere Server — Programming > SQL Anywhere Data Access APIs > SQL Anywhere
embedded SQL > The SQL descriptor area (SQLDA).

Standards

* SQL— Some clauses are vendor extensions to ISO/ANSI SQL grammar.
» Sybase—Some clauses supported by Open Client/Open Server.

168

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlda.html

SQL Statements

Permissions

None

See also

* ALLOCATE DESCRIPTOR Statement [ESQL]on page 5
e DECLARE CURSOR Statement [ESQL] [SP] on page 154
» OPEN Statement [ESQL] [SP] on page 246

» PREPARE Statement [ESQL Jon page 253

DISCONNECT Statement [Interactive SQL]

Drops a connection with the database.

Syntax
DISCONNECT [{ connection-name | CURRENT | ALL }]

Parameters

e connection-name: — identifier, string, or host-variable

Examples
* Example 1 —How to use DISCONNECT in Embedded SQL.:

EXEC SQL DI SCONNECT : conn_nane
* Example 2 — How to use DISCONNECT from dbisql to disconnect all connections:

DI SCONNECT ALL

Usage

The DISCONNECT statement drops a connection with the database server and releases all
resources used by it. If the connection to be dropped was named on the CONNECT statement,
then the name can be specified. Specifying ALL drops all of the connections of the application
to all database environments. CURRENT is the default and drops the current connection.

An implicit ROLLBACK is executed on connections that are dropped.

Standards

e SQL—ISO/ANSI SQL compliant.
« Sybase—Supported by Open Client/Open Server.

Reference: Statements and Options 169

SQL Statements

Permissions

None

See also

CONNECT Statement [ESQL] [Interactive SQL] on page 63
SET CONNECTION Statement [ESQL] [Interactive SQL] on page 291

DROP Statement

Removes objects from the database.

Syntax

D
{
I
I
I
I
I
I
I
I
I
I

DBSPACE dbspace- nane

{ DATATYPE [IFEXISTS]

DOMAIN [IFEXISTS] } datatype-nanme

EVENT [IFEXISTS] event-nane

INDEX [IFEXISTS] [[owner].tabl e-nane.]index-nane
JOININDEX [owner.]j oi n-i ndex- nane

MESSAGE message- humber

TABLE [IFEXISTS] [owner.]tabl e-nane

VIEW [IFEXISTS | [owner.]vi ew nane

PROCEDURE [IFEXISTS | [owner.]procedure-nane
FUNCTION [IFEXISTS] [owner.]function-nane }

Examples

Example 1 — Drop the Depar t ment s table from the database:

DROP TABLE Departnents
Example 2 — Drop the enp_dept view from the database:

DROP VI EW enp_dept

Usage

DROP removes the definition of the indicated database structure. If the structure is a dbspace,
then all tables with any data in that dbspace must be dropped or relocated prior to dropping the
dbspace; other structures are automatically relocated. If the structure is a table, all data in the
table is automatically deleted as part of the dropping process. Also, all indexes and keys for the
table are dropped by DROP TABLE. However, you cannot drop the table if any join indexes use

that table. You must first use DROP JOIN INDEX to remove the join indexes.

Use the IF EXISTS clause if you do not want an error returned when the DROP statement
attempts to remove a database object that does not exist.

DROP INDEX deletes any explicitly created index. It deletes an implicitly created index only if
there are no unique or foreign-key constraints or associated primary key.

170

Sybase 1Q

SQL Statements

DROP INDEX for a nonunique HG index fails if an associated unenforced foreign key exists.

Warning! Do not delete views owned by the DBO user. Deleting such views or changing them
into tables might cause problems.

DROP TABLE, DROP INDEX, DROP JOIN INDEX, and DROP DBSPACE are prevented
whenever the statement affects a table that is currently being used by another connection.

DROP TABLE is prevented if the primary table has foreign-key constraints associated with it,
including unenforced foreign-key constraints

DROP TABLE is also prevented if the table has an IDENTITY column and
IDENTITY_INSERT is set to that table. To drop the table you must clear

IDENTITY _INSERT, thatis, set IDENTITY_INSERT to"'' (an empty string), or set to another
table name.

A foreign key can have either a nonunique single or a multicolumn HG index. A primary key
may have unique single or multicolumn HG indexes. You cannot drop the HG index implicitly
created for an existing foreign key, primary key, and unique constraint. If a DBA is dropping a
join index belonging to another user, the join index name must be qualified with an owner
name.

The four initial dbspaces are SYSTEM | Q SYSTEM MAI N, | Q SYSTEM TEMP, and

| Q_ SYSTEM MSG You cannot drop these initial dbspaces, but you may drop dbspaces from
the 1Q main store or catalog store, which may contain multiple dbspaces, as long as at least one
dbspace remains with readwrite mode.

You must drop tables in the dbspace before you can drop the dbspace. An error is returned if
the dbspace still contains user data; other structures are automatically relocated when the
dbspace is dropped. You can drop a dbspace only after you make it read-only.

Note: A dbspace may contain data at any point after it is used by a command, thereby
preventing a DROP DBSPACE on it.

For more information on modifying dbspaces, see System Administration Guide: Volume 1 >
Database Object Management > Data Storage.

DROP PROCEDURE is prevented when the procedure is in use by another connection.

DROP DATATYPE is prevented if the data type is used in a table. You must change data types on
all columns defined on the user-defined data type to drop the data type. It is recommended that
you use DROP DOMAIN rather than DROP DATATYPE, as DROP DOMAIN is the syntax used in
the ANSI/ISO SQLS3 draft.

Side Effects

e Automatic commit. Clears the Data window in dbisgl. DROP TABLE and DROP INDEX
close all cursors for the current connection.

» Local temporary tables are an exception; no commit is performed when one is dropped.

Reference: Statements and Options 171

SQL Statements

See also Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_igadbspace Procedureand System Administration Guide.: Volume 1 >
Database Object Management.

Standards

* SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

For DROP DBSPACE, must have either DBA or SPACE ADMIN authority and must be the
only connection to the database.

For others, must be the owner of the object, or have DBA authority.

Global temporary tables cannot be dropped unless all users that have referenced the temporary
table have disconnected.

For DROP INDEX, non-DBA users must provide a fully-qualified index name to drop an index
on a base table owned by the DBA. DBA or users with the appropriate privileges can drop an
index on tables that are owned by non-DBA users without using a fully-qualified name.

DROP CONNECTION Statement

Drops any user connection to the database.

Syntax
DROP CONNECTION connection-id

Examples
* Example 1 — Drop connection with 1D number 4:
DROP CONNECTI ON 4

Usage

DROP CONNECTION disconnects a user from the database by dropping the connection to the
database. You cannot drop your current connection; you must first create another connection,
then drop your first connection.

The connection-id for the connection is obtained using the connection_property function to
request the connection number. This statement returns the connection ID of the current
connection:

SELECT connecti on_property('nunber')

172

Sybase 1Q

SQL Statements

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Requires DBA or OPERATOR authority.

See also
e CONNECT Statement [ESQL] [Interactive SQL] on page 63

DROP DATABASE Statement

Drops a database and its associated dbspace segment files.

Syntax
DROP DATABASE db-fil enane [KEY key-spec]

Parameters

» key-spec: — A string, including mixed cases, numbers, letters, and special characters. It
might be necessary to protect the key from interpretation or alteration by the command
shell.

Examples
* Example 1 - Drop database mydb:

DROP DATABASE ' nydb. db’

» Example2—Drop the encrypted database mar vi n. db, which was created with the key
i slseCret:
DROP DATABASE ' marvi n.db' KEY 'is!seCret’

* Example 3—This UNIX example drops the database t enp. db fromthe/sl/tenp
directory:

DROP DATABASE '/sl/tenp/tenp. db'

Usage

DROP DATABASE drops all the database segment files associated with the 1Q store and
temporary store before it drops the catalog store files.

You must stop a database before you can drop it. If the connection parameter AUTOSTOP=no
is used, you may need to issue a STOP DATABASE statement.

Reference: Statements and Options 173

SQL Statements

The db- f i | enamne you specify corresponds to the database file name you defined for the
database using CREATE DATABASE. If you specified a directory path for this value in the
CREATE DATABASE command, you must also specify the directory path for DROP
DATABASE. Otherwise, Sybase 1Q looks for the database files in the default directory where
the server files reside.

You cannot execute a DROP DATABASE statement to drop an 1Q database that has a
DatabaseStart event defined for it.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Required permissions are set using the database server -gu command line option. The default
setting is to require DBA authority.

See also
* CREATE DATABASE Statement on page 66
e STOP DATABASE Statement [Interactive SQL]on page 301

DROP EXTERNLOGIN Statement

Drops an external login from the Sybase 1Q system tables.

Syntax

DROP EXTERNLOGIN | ogi n- nane
TO renpt e-server

Examples

* Examplel-
DROP EXTERNLOG N dba TO sybasel

Usage

Changes made by DROP EXTERNLOGIN do not take effect until the next connection to the
remote server.

DROP EXTERNLOGIN deletes an external login from the Sybase 1Q system tables.

login-name—Specifies the local user login name.

174

Sybase 1Q

SQL Statements

TO—Specifies the name of the remote server. The alternate login name of the local user and
password for that server is the external login that is deleted.

Side Effects

e Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.
« Sybase—Supported by Open Client/Open Server.

Permissions
Must have DBA or USER ADMIN authority.

See also
* CREATE EXTERNLOGIN Statement on page 89

DROP LOGIN POLICY Statement

Removes a login policy from the database.

Syntax
DROP LOGIN POLICY pol i cy- nane

Examples
¢ Example 1 - Create and then delete the Test 11 login policy:

CREATE LOG N POLI CY Test 11;
DROP LOG@ N PCLI CY Test 11 ;

Usage

A DROP LOGIN POLICY statement fails if you attempt to drop a policy that is assigned to a
user. You can use either the ALTER USER statement to change the policy assignment of the
user or DROP USER to drop the user.

Permissions
Must have DBA or USER ADMIN authority.

See also
e ALTER LOGIN POLICY Statementon page 19
e ALTER USER Statementon page 36

Reference: Statements and Options 175

SQL Statements

* CREATE LOGIN POLICY Statementon page 107
e DROP USER Statementon page 179

DROP LOGICAL SERVER Statement

Deletes a user-defined logical server.

Syntax
See bel ow.

Usage
For syntax and complete description, see Using Sybase 1Q Multiplex.

DROP MULTIPLEX SERVER Statement

Deletes a server from the multiplex.

Syntax
See bel ow.

Usage
For syntax and complete description, see Using Sybase 1Q Multiplex.

DROP SERVER Statement

Drops a remote server from the Sybase 1Q system tables.

Syntax
DROP SERVER ser ver - name

Examples

* Examplel-
DROP SERVER ase_prod

Usage

Before DROP SERVER succeeds, you must drop all the proxy tables that have been defined for

the remote server.

176

Sybase 1Q

SQL Statements

Side Effects

* Automatic commit

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Open Client/Open Server.

Permissions

Only the DBA account can delete a remote server.

See also
» CREATE SERVER Statementon page 129

DROP SERVICE Statement

Deletes a Web service.

Syntax
DROP SERVICE ser Vi ce- nane

Examples
* Example 1—Drop a Web service named t abl es:
DROP SERVI CE t abl es

Usage
DROP SERVICE deletes a Web service.

See also SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere
Data Access APIs > SQL Anywhere web services > Introduction to web services.

Standards

e SQL—ISO/ANSI SQL compliant.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions
Must have DBA authority.

Reference: Statements and Options 177

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-s-5500129.html

SQL Statements

See also
o ALTER SERVICE Statementon page 25
» CREATE SERVICE Statement on page 130

DROP STATEMENT Statement [ESQL]

Frees statement resources.

Syntax
DROP STATEMENT [owner.] st at enent - nane

Parameters

* statement-name; — identifier or host-variable

Examples

* Examplel-

EXEC SQL DROP STATEMENT S1;
EXEC SQL DROP STATEMENT : stnt;

Usage

DROP STATEMENT frees resources used by the named prepared statement. These resources
are allocated by a successful PREPARE statement, and are normally not freed until the
database connection is released.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported in Open Client/Open Server

Permissions

Must have prepared the statement.

See also
e PREFARE Statement [ESQL] on page 253

178 Sybase 1Q

SQL Statements

DROP TEXT CONFIGURATION Statement

Drops a text configuration object.

Syntax
See bel ow.

Usage
For syntax and complete description, see Unstructured Data Analytics in Sybase 1Q.

DROP TEXT INDEX Statement

Removes a TEXT index from the database.

Syntax
See bel ow.

Usage
For syntax and complete description, see Unstructured Data Analytics in Sybase 1Q.

DROP USER Statement

Removes a user.

Syntax
DROP USER user - nane

Examples
* Example 1—Drop the user SQLTest er from the database:
DROP USER SQ.Test er;

Usage
user-name—Name of the user to remove.
See SQL Anywhere 11.0.1 > SQL Anywhere Server — Database Administration >

Configuring Your Database > Managing user 1Ds, authorities, and permissions > Managing
login policies overview.

Reference: Statements and Options 179

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html

SQL Statements

Standards

¢ SQL—ISO/ANSI SQL compliant.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions
Must have DBA or USER ADMIN authority.

See also

e ALTER LOGIN POLICY Statementon page 19

e CREATE LOGIN POLICY Statementon page 107
o CREATE USER Statementon page 146

e« DROP LOGIN POLICY Statementon page 175

e GRANT Statementon page 199

DROP VARIABLE Statement

Eliminates a SQL variable.

Syntax
DROP VARIABLE i dentifier

Usage

DROP VARIABLE eliminates a SQL variable that was created using the CREATE VARIABLE
statement. Variables are automatically eliminated when the database connection is released.
Variables are often used for large objects, so eliminating them after use or setting them to
NULL can free up significant resources (primarily disk space).

Use the IF EXISTS clause if you do not want an error returned when the DROP statement
attempts to remove a database object that does not exist.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

None

See also
* CREATE VARIABLE Statement on page 148

180

Sybase 1Q

SQL Statements

o SET Statement [ESQL] on page 287

EXECUTE Statement [ESQL]

Executes a SQL statement.

Syntax

Synitax 1

EXECUTE st at enent - nane
[{ USING DESCRIPTOR sql da-nanme | USING host-variable-list }]
... [{ INTO DESCRIPTOR i nto-sql da-nane | INTO into-host-variabl e-
list]
[ARRAY :nnn }]
Syntax 2

EXECUTE IMMEDIATE st at enent

Parameters

» statement-name: —identifier or host-variable
* gglda-name: —identifier

* into-sglda-name: —identifier

* statement: —string or host-variable

Examples
* Example 1 - Execute a DELETE:

EXEC SQL EXECUTE | MVEDI ATE

' DELETE FROM Enpl oyees WHERE Enpl oyeel D = 105';
* Example 2 — Execute a prepared DELETE statement:

EXEC SQL PREPARE del _stnmt FROM

' DELETE FROM Enpl oyees WHERE Enpl oyeel D = :a';
EXEC SQL EXECUTE del _stmt USI NG : enpl oyee_nunber;

* Example 3 —Execute a prepared query:

EXEC SQ PREPARE sel 1 FROM
' SELECT Sur nanme FROM Enpl oyees WHERE Enpl oyeelD = :a';
EXEC SQL EXECUTE sel 1 USI NG : enpl oyee_nunber | NTO : errp | nare;

Usage

Syntax 1 executes the named dynamic statement that was previously prepared. If the dynamic
statement contains host variable placeholders which supply information for the request (bind
variables), then either the sqg/da-name must specify a C variable which is a pointer to an

Reference: Statements and Options 181

SQL Statements

SQLDA containing enough descriptors for all bind variables occurring in the statement, or the
bind variables must be supplied in the Aost-variable-list.

The optional ARRAY clause can be used with prepared INSERT statements, to allow wide
inserts, which insert more than one row at a time and which might improve performance. The
value nnnis the number of rows to be inserted. The SQLDA must contain nnn * (columns per
row) variables. The first row is placed in SQLDA variables 0 to (columns per row)-1, and so
on.

OUTPUT from a SELECT statement or a CALL statement is put either into the variables in the
variable list or into the program data areas described by the named SQLDA. The
correspondence is one to one from the OUTPUT (selection list or parameters) to either the host
variable list or the SQLDA descriptor array.

If EXECUTE is used with an INSERT statement, the inserted row is returned in the second
descriptor. For example, when using autoincrement primary keys that generate primary-key
values, EXECUTE provides a mechanism to refetch the row immediately and determine the
primary-key value assigned to the row.

Syntax 2 is a short form to PREPARE and EXECUTE a statement that does not contain bind
variables or output. The SQL statement contained in the string or host variable is immediately
executed and is dropped on completion.

EXECUTE can be used for any SQL statement that can be prepared. Cursors are used for
SELECT statements or CALL statements that return many rows from the database.

After successful execution of an INSERT, UPDATE, or DELETE statement, the sg/erraf2]field
of the SQLCA (SQLCOUNT) is filled in with the number of rows affected by the operation.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Supported in Open Client/Open Server.

Permissions

Permissions are checked on the statement being executed.

See also
e DECLARE CURSOR Statement [ESQL] [SP] on page 154
» PREFARE Statement [ESQL Jon page 253

182

Sybase 1Q

SQL Statements

EXECUTE Statement [T-SQL]

Invokes a procedure, as an Adaptive Server Enterprise-compatible alternative to the CALL
statement.

Syntax

EXECUTE [@eturn_status =] [owner.]procedure_nane
... { [@araneter-nane =] expression

| [@araneter-nane =] @ariable [output] }

Examples
* Example 1 — Create the procedure p1:

CREATE PROCEDURE pl(@ar | NTEGER = 54)
AS

PRINT 'on input @ar = %! ', @ar
DECLARE @ ntvar integer

SELECT @ ntvar=123

SELECT @ar =@ nt var

PRINT 'on exit @ar = %!', @ar;

« Execute the procedure, supplying the input value of 23 for the parameter. If you are
connected from an Open Client application, PRINT messages are displayed on the
client window. If you are connected from an ODBC or Embedded SQL application,
messages display on the database server window.

EXECUTE pl 23

« An alternative way of executing the procedure, which is useful if there are several
parameters:

EXECUTE pl @ar = 23
» Execute the procedure, using the default value for the parameter:
EXECUTE p1l

» Execute the procedure and store the return value in a variable for checking return
status:

EXECUTE @tatus = pl 23

Usage

EXECUTE executes a stored procedure, optionally supplying procedure parameters and
retrieving output values and return status information.

EXECUTE is implemented for Transact-SQL compatibility, but can be used in either Transact-
SQL or Sybase 1Q batches and procedures.

Reference: Statements and Options 183

SQL Statements

Permissions

Must be the owner of the procedure, have EXECUTE permission for the procedure, or have
DBA authority.

See also
e CALL Statementon page 53

EXECUTE IMMEDIATE Statement [ESQL] [SP]

Enables dynamically constructed statements to be executed from within a procedure.

Syntax
Syntax 1
EXECUTE IMMEDIATE [execute-option] string-expression

execut e- opti on:

WITH QUOTES [ON | OFF]

| WITH ESCAPES { ON | OFF }
| WITHRESULTSET { ON | OFF }

Syntax 2
EXECUTE (string-expression)

Examples

« Example 1 —This procedure creates a table, where the table name is supplied as a
parameter to the procedure. The full EXECUTE IMMEDIATE statement must be on a single
line.

CREATE PROCEDURE Cr eat eTabl eProc(
I N tabl enane char (30)

BEG N

EXECUTE | MVEDI ATE ' CREATE TABLE ' || tabl enane ||
(columl I NT PRI MARY KEY)'

END;

Call the procedure and create table myt abl e:
CALL CreateTabl eProc('nytable')

Usage

EXECUTE IMMEDIATE extends the range of statements that can be executed from within
procedures. It lets you execute dynamically prepared statements, such as statements that are
constructed using the parameters passed in to a procedure.

184

Sybase 1Q

SQL Statements

Literal strings in the statement must be enclosed in single quotes, and must differ from any
existing statement name in a PREPARE or EXECUTE IMMEDIATE statement. The statement
must be on a single line.

Only global variables can be referenced in a statement executed by EXECUTE IMMEDIATE.
Only syntax 2 can be used inside Transact-SQL stored procedures.

WITH QUOTES—WHhen you specify WITH QUOTES or WITH QUOTES ON, any double
quotes in the string expression are assumed to delimit an identifier. When you do not specify
WITH QUOTES, or specify WITH QUOTES OFF, the treatment of double quotes in the string
expression depends on the current setting of the QUOTED | DENTI FI ER option.

WITH QUOTES is useful when an object name that is passed into the stored procedure is used
to construct the statement that is to be executed, but the name might require double quotes and
the procedure might be called when QUOTED | DENTI FI ERis set to OFF.

See QUOTED_IDENTIFIER Option [TSOL].

WITH ESCAPES—WITH ESCAPES OFF causes any escape sequences (such as\n, \x, or \\) in
the string expression to be ignored. For example, two consecutive backslashes remain as two
backslashes, rather than being converted to a single backslash. The default setting is
equivalent to WITH ESCAPES ON.

You can use WITH ESCAPES OFF for easier execution of dynamically constructed statements
referencing file names that contain backslashes.

In some contexts, escape sequences in the string-expressionare transformed before EXECUTE
IMMEDIATE is executed. For example, compound statements are parsed before being
executed, and escape sequences are transformed during this parsing, regardless of the WITH
ESCAPES setting. In these contexts, WITH ESCAPES OFF prevents further translations from
occurring. For example:

BEG N

DECLARE Stringl LONG VARCHAR
DECLARE String2 LONG VARCHAR;
EXECUTE | MVEDI ATE

"SET Stringl = '' One backslash: \\\\ "'';
EXECUTE | MVEDI ATE W TH ESCAPES OFF

"SET String2 = ''Two backslashes: \\\\ "'"';
SELECT Stringl, String2

END

WITH RESULT SET—You can have an EXECUTE IMMEDIATE statement return a result set
by specifying WITH RESULT SET ON. With this clause, the containing procedure is marked as
returning a result set. If you do not include this clause, an error is reported when the procedure
is called if the statement does not produce a result set.

Note: The default option is WITH RESULT SET OFF, meaning that no result set is produced
when the statement is executed.

Side Effects

Reference: Statements and Options 185

SQL Statements

None. However, if the statement is a data definition statement with an automatic commit as a
side effect, then that commit does take place.

Standards

* SQL—ISO/ANSI SQL compliant.
« Sybase—Supported in Open Client/Open Server.

Permissions

None. The statement is executed with the permissions of the owner of the procedure, not with
the permissions of the user who calls the procedure.

See also

e BEGIN ... END Statementon page 47

* CREATE PROCEDURE Statementon page 110

* QUOTED_IDENTIFIER Option [TSQL] on page 435

EXIT Statement [Interactive SQL]

Leaves dbisql.

Syntax
{ EXIT | QuUIT | BYE }

Usage

Leaves the dbisql environment and returns to the operating system, closing your connection
with the database. The default action is to COMMIT any changes you have made to the
database.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not applicable by Adaptive Server Enterprise.

Permissions

None

See also
e SET OPTION Statementon page 293

186

Sybase 1Q

SQL Statements

FETCH Statement [ESQL] [SP]

Repositions a cursor and gets data from it.

Syntax

FETCH

{ NEXT | PRIOR | FIRST | LAST

| ABSOLUTE row count | RELATIVE row count }
cur sor - nane

... { [INTO host-variable-list]

| USING DESCRIPTOR sgl da- name

| INTO variable-list }
[PURGE] [BLOCK n] [ARRAY fetch-count]
INTO vari abl e-1ist
IQ CACHE r ow count

Parameters

e cursor-name: —identifier or host variable

* gglda-name: —identifier

* host-variable-list: —may contain indicator variables
* row-count: —number or host variable

» fetch-count: —integer or host variable

Examples
* Example 1 — Embedded SQL example:

EXEC SQL DECLARE cur_enpl oyee CURSOR FOR
SELECT Enpl oyeel D, Surname FROM Enpl oyees;
EXEC SQL OPEN cur _enpl oyee;

EXEC SQL FETCH cur _enpl oyee

I NTO : enp_nunber, :enp_nane:indicator;

» Example 2 — Procedure example:

BEGA N
DECLARE cur _enpl oyee CURSOR FOR
SELECT Sur nane
FROM Enpl oyees;
DECLARE nane CHAR(40) ;
OPEN cur _enpl oyee;
LOOP
FETCH NEXT cur _enpl oyee into nane ;

END LOOP

Reference: Statements and Options 187

SQL Statements

CLCSE cur _enpl oyee;
END

Usage
FETCH retrieves one row from the named cursor.

The ARRAY clause allows wide fetches, which retrieve more than one row at a time, and which
might improve performance.

The cursor must have been previously opened.

One row from the result of SELECT is put into the variables in the variable list. The
correspondence from the select list to the host variable list is one-to-one.

One or more rows from the result of SELECT are put either into the variables in the variable list
or into the program data areas described by the named SQLDA. In either case, the
correspondence from the select list to either the host variable list or the SQLDA descriptor
array is one-to-one.

The INTO clause is optional. If it is not specified, then FETCH positions the cursor only (see the
following paragraphs).

An optional positional parameter can be specified that allows the cursor to be moved before a
row is fetched. The default is NEXT, which causes the cursor to be advanced one row before the
row is fetched. PRIOR causes the cursor to be backed up one row before fetching.

RELATIVE positioning is used to move the cursor by a specified number of rows in either
direction before fetching. A positive number indicates moving forward and a negative number
indicates moving backwards. Thus, a NEXT is equivalent to RELATIVE 1 and PRIOR is
equivalent to RELATIVE -1. RELATIVE 0 retrieves the same row as the last fetch statement on
this cursor.

The ABSOLUTE positioning parameter is used to go to a particular row. A zero indicates the
position before the first row. See System Administration Guide.: Volume 2 > Using Procedures
and Batches.

A one (1) indicates the first row, and so on. Negative numbers are used to specify an absolute
position from the end of the cursor. A negative one (-1) indicates the last row of the cursor.
FIRST is a short form for ABSOLUTE 1. LAST is a short form for ABSOLUTE -1.

Note: Sybase 1Q handles the FIRST, LAST, ABSOLUTE, and negative RELATIVE options less
efficiently than some other DBMS products, so there is a performance impact when using
them.

OPEN initially positions the cursor before the first row.

A cursor declared FOR READ ONLY sees the version of table(s) on which the cursor is declared
when the cursor is opened, not the version of table(s) at the time of the first FETCH

If the fetch includes a positioning parameter and the position is outside the allowable cursor
positions, then the SQLE_NOTFOUND warning is issued.

188

Sybase 1Q

SQL Statements

The IQ CACHE clause specifies the maximum number of rows buffered in the FIFO queue. If
you do not specify a value for IQ CACHE, the value of the CURSOR_W NDOW ROWS database
option is used. The default setting of CURSOR_W NDOW ROWS is 200.

Using the FETCH and OPEN Statementsin Embedded SQL
These clauses are for use in Embedded SQL only:

* USING DESCRIPTOR sglda-name

* INTO host-variable-list

* PURGE

e BLOCK 77

* ARRAY fetch-count

» Use of host-variable in cursor-name and row-count

DECLARE CURSOR must appear before FETCH in the C source code, and the OPEN statement
must be executed before FETCH. If a host variable is being used for the cursor name, then the
DECLARE statement actually generates code and thus must be executed before FETCH.

In the multiuser environment, rows can be fetched by the client more than one atatime. This is
referred to as block fetching or multirow fetching. The first fetch causes several rows to be sent
back from the server. The client buffers these rows and subsequent fetches are retrieved from
these buffers without a new request to the server.

The BLOCK clause gives the client and server a hint as to how many rows may be fetched by
the application. The special value of 0 means the request is sent to the server and a single row is
returned (no row blocking).

The PURGE clause causes the client to flush its buffers of all rows and then send the fetch
request to the server. This fetch request may return a block of rows.

If the SQLSTATE_NOTFOUND warning is returned on the fetch, then the sglerraf2jfield of
the SQLCA (SQLCOUNT) contains the number of rows that the attempted fetch exceeded the
allowable cursor positions. (A cursor can be on a row, before the first row or after the last row.)
The value is 0 if the row was not found but the position is valid, for example, executing FETCH
RELATIVE 1 when positioned on the last row of a cursor. The value is positive if the attempted
fetch was further beyond the end of the cursor, and negative if the attempted fetch was further
before the beginning of the cursor.

After successful execution of the FETCH statement, the sq/erraf1]field of the SQLCA
(SQLIOCOUNT) is incremented by the number of input/output operations required to
perform the fetch. This field is actually incremented on every database statement.

To use wide fetches in Embedded SQL, include the FETCH statement in your code:
EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnnis the last item of the FETCH statement. The fetch count 7771can be a host
variable. The SQLDA must contain nnn * (columns per row) variables. The first row is placed
in SQLDA variables 0 to (columns per row)-1, and so on.

Reference: Statements and Options 189

SQL Statements

The server returns in SQLCOUNT the number of records fetched and always returns a
SQLCOUNT greater than zero unless there is an error. Older versions of the server only return
a single row and the SQLCOUNT is set to zero. Thus a SQLCOUNT of zero with no error
condition indicates one valid row has been fetched.

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Supported in Adaptive Server Enterprise.

Permissions

The cursor must be opened and the user must have SELECT permission on the tables
referenced in the declaration of the cursor.

See also

e DECLARE CURSOR Statement [ESQL] [SP] on page 154
e OPEN Statement [ESQL] [SP] on page 246

e PREFPARE Statement [ESQL] on page 253

« CURSOR_WINDOW ROWS Option on page 357

FOR Statement

Repeats the execution of a statement list once for each row in a cursor.

Syntax

[statenent-|abel:]

FOR for-|oop-nane AS cursor-nane [cursor-type] CURSOR
{ FOR st at ement
[{ FOR { UPDATE cursor-concurrency | FORREADONLY }]
| USING vari abl e- nanme }

DO statement-Ii st
ENDFOR [statement-| abel]

Parameters

e cursor-type: —NO SCROLL | DYNAMIC SCROLL |SCROLL |INSENSITIVE | SENSITIVE
e cursor-concurrency: —BY { VALUES | TIMESTAMP | LOCK]
* variable-name: — identifier

Examples
* Example 1 —This code fragment illustrates the use of the FOR loop:

FOR nanes AS curs CURSOR FOR
SELECT Sur nane

190 Sybase 1Q

SQL Statements

FROM Enpl oyees
DO

CALL search_for_name(Surnane);
END FOR;

Usage

FOR is a control statement that lets you execute a list of SQL statements once for each row ina
Cursor.

The FOR statement is equivalent to a compound statement with a DECLARE for the cursor and
a DECLARE of avariable for each column in the result set of the cursor, followed by a loop that
fetches one row from the cursor into the local variables and executes statement-Iist once for
each row in the cursor.

For descriptions of the cursor-type parameters and more examples, see SQL Anywhere 11.0.1
> SQL Anywhere Server— SQL Reference > Using SQL > SQL statements > SQL statements
(E-O) > FOR statement.

The name and data type of the local variables that are declared are derived from the statement
used in the cursor. With a SELECT statement, the data type is the data type of the expressionsin
the select list. The names are the select list item aliases where they exist; otherwise, they are
the names of the columns. Any select list item that is not a simple column reference must have
an alias. With a CALL statement, the names and data types are taken from the RESULT clause
in the procedure definition.

The LEAVE statement can be used to resume execution at the first statement after the END
FOR. If the ending statement-label is specified, it must match the beginning statement-
label.

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Not supported in Adaptive Server Enterprise.

Permissions

None

See also

* DECLARE CURSOR Statement [ESQL] [SP] on page 154
e FETCH Statement [ESQL] [SP]on page 187

o LEAVE Statement on page 220

e LOOP Statement on page 242

Reference: Statements and Options 191

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/for-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/for-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/for-statement.html

SQL Statements

FORWARD TO Statement

Sends native syntax to a remote server.

Syntax
Syntax 1
FORWARD TO server-name { sql-statement }

Syntax 2
FORWARD TO [server-nane]

Examples
* Example 1 — A passthrough session with the remote server ase_pr od:

FORWARD TO asepr od
SELECT * fromtitles
SELECT * from aut hors
FORWARD TO

Usage

FORWARD TO enables users to specify the server to which a passthrough connection is
required. The statement can be used:

« To send a statement to a remote server (Syntax 1)
» To place Sybase IQ into passthrough mode for sending a series of statements to a remote
server (Syntax 2)

When establishing a connection to server-name on behalf of the user, the server uses:

« Aremote login alias set using CREATE EXTERNLOGIN

« If aremote login alias is not set up, the name and password used to communicate with
Sybase 1Q

If the connection cannot be made to the server specified, the reason is contained in a message
returned to the user.

After statements are passed to the requested server, any results are converted into a form that
can be recognized by the client program.

server-name is the name of the remote server.

sql-statementis a command in the native syntax of the remote server. The command or group
of commands is enclosed in curly braces ({}) or single quotes.

When you specify a server_name, but do not specify a statement in the FORWARD TO query,
your session enters passthrough mode, and all subsequent queries are passed directly to the

192 Sybase 1Q

SQL Statements

remote server. To turn passthrough mode off, issue FORWARD TO without a server_name
specification.

Note: The FORWARD TO statement is a server directive and cannot be used in stored
procedures, triggers, events, or batches.

Side Effects

« Theremote connection is set to AUTOCOMMIT (unchained) mode for the duration of the
FORWARD TO session. Any work that was pending prior to the FORWARD TO statement is
automatically committed.

Standards

e SQL—ISO/ANSI SQL compliant.
« Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
» CREATE EXTERNLOGIN Staterment on page 89
o CREATE SERVER Statementon page 129

FROM Clause

Specifies the database tables or views involved in a SELECT statement.

Syntax
FROM t abl e-expression [, .]

Parameters

* table-expression: —{ fable-spec| table-expression join-type table-spec| ON condition] |
(table-expression|, ...]1) }

» table-spec: —{ [userid] table-name | [AS] correlation-name] | select-statement | AS
correlation-name (column-name|, ...]1) 1}

* join-type: —{ CROSS JOIN | [NATURAL | KEY] JOIN | [NATURAL | KEY] INNER JOIN |
[NATURAL | KEY] LEFT OUTER JOIN | [NATURAL | KEY] RIGHT OUTER JOIN |
[NATURAL | KEY] FULL OUTER JOIN }

Reference: Statements and Options 193

SQL Statements

Examples
» Example 1 - Valid FROM clauses:

FRG\/I Enpl oyees
FRO\/I Enpl oyees NATURAL JO N Departnents

FROM Cust oner s

KEY JO N Sal esOrders

KEY JO N Sal esOrderltens
KEY JO N Product s

* Example 2 — Use derived tables in a query:

SELECT Surnane, G venNane, nunber_of orders
FROM Cust oners JO N
(SELECT Customerl D, count(*)
FROM Sal esOr ders
GROUP BY Custonerl D)
AS sal es_order_counts (Custonerl D,
nunber _of _orders)
ON (Custoners.|D = sal es_order_counts.cust_id)
WHERE nunber _of orders > 3

Usage
The SELECT statement requires a table list to specify which tables are used by the statement.

Note: Although this description refers to tables, it also applies to views, unless otherwise
noted.

The FROM table list creates a result set consisting of all the columns from all the tables
specified. Initially, all combinations of rows in the component tables are in the result set, and
the number of combinations is usually reduced by join conditions and/or WHERE conditions.

A SELECT statement can also return a result set from a procedure. Note that CIS functional
compensation performance considerations apply. For syntax and an example, see SQL
Anywhere 11.0.1 > SQL Anywhere Server— SQL Reference > Using SQL > SQL statements
> SQL statements (E-O) > FROM clause.

For information on the contains-expressionused in the FROM clause for full text searches, see
Unstructured Data Analytics in Sybase 1Q.

Table 8. FROM Clause join-type Keywords

join-type keyword Description
CROSS JOIN Returns the Cartesian product (cross product) of the two source
tables

194

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html

SQL Statements

join-type keyword Description

NATURAL JOIN Compares for equality all corresponding columns with the same
names in two tables (a special case equijoin; columns are of same
length and data type)

KEY JOIN Restricts foreign-key values in the first table to be equal to the

primary-key values in the second table

INNER JOIN Discards all rows from the result table that do not have corre-
sponding rows in both tables

LEFT OUTER JOIN Preserves unmatched rows from the left table, but discards un-
matched rows from the right table

RIGHT OUTER JOIN Preserves unmatched rows from the right table, but discards un-
matched rows from the left table

FULL OUTER JOIN Retains unmatched rows from both the left and the right tables

Do not mix comma-style joins and keyword-style joins in the FROM clause. The same query
can be written two ways, each using oneof the join styles. The ANSI syntax keyword style join
is preferable.

This query uses a comma-style join:

SELECT *
FROM Products pr, SalesOrders so, SalesOderltens si
WHERE pr. Product | D = so. Product | D
AND pr. Product| D = si. Product| D

The same query can use the preferable keyword-style join:

SELECT *
FROM Products pr INNER JO N Sal esOrders so
ON (pr.Productl D = so. Product | D)
I NNER JO N Sal esOrderltens si
ON (pr.Productl D = si.Productl|D);

The ON clause filters the data of inner, left, right, and full joins. Cross joins do not have an ON
clause. In an inner join, the ON clause is equivalent to a WHERE clause. In outer joins,
however, the ON and WHERE clauses are different. The ON clause in an outer join filters the
rows of a cross product and then includes in the result the unmatched rows extended with nulls.
The WHERE clause then eliminates rows from both the matched and unmatched rows
produced by the outer join. You must take care to ensure that unmatched rows you want are not
eliminated by the predicates in the WHERE clause.

You cannot use subqueries inside an outer join ON clause.

For information on writing Transact-SQL compatible joins, see Reference: Building Blocks,
Tables, and Procedures > Compatibility with Other Sybase Databases.

Tables owned by a different user can be qualified by specifying the userid. Tables owned by
groups to which the current user belongs are found by default without specifying the user ID.

Reference: Statements and Options 195

SQL Statements

The correlation name is used to give a temporary name to the table for this SQL statement only.
This is useful when referencing columns that must be qualified by a table name but the table
name is long and cumbersome to type. The correlation name is also necessary to distinguish
between table instances when referencing the same table more than once in the same query. If
no correlation name is specified, then the table name is used as the correlation name for the
current statement.

If the same correlation name is used twice for the same table in a table expression, that table is
treated as if it were only listed once. For example, in:

SELECT *

FROM Sal esOr der s

KEY JO N Sal esOrderltens,

Sal esOrders
KEY JO N Enpl oyees

The two instances of the Sal esOr der s table are treated as one instance that is equivalent
to:

SELECT *

FROM Sal esOrder |t ens

KEY JO N Sal esOrders
KEY JO N Enpl oyees

By contrast, the following is treated as two instances of the Per son table, with different
correlation names HUSBAND and WIFE:

SELECT *
FROM Per son HUSBAND, Person W FE

You can supply a SELECT statement instead of one or more tables or views in the FROM
clause, letting you use groups on groups, or joins with groups, without creating a view. This
use of SELECT statements is called derived tables.

Join columns require like data types for optimal performance.

Depending on the query, Sybase 1Q allows between 16 and 64 tables in the FROM clause with
the optimizer turned on; however, performance might suffer if you have more than 16 to 18
tables in the FROM clause in very complex queries.

Note: If you omit the FROM clause, or if all tables in the query are in the SYSTEMdbspace, the
query is processed by SQL Anywhere instead of Sybase 1Q and might behave differently,
especially with respect to syntactic and semantic restrictions and the effects of option settings.
See the SQL Anywhere documentation for rules that might apply to processing.

If you have a query that does not require a FROM clause, you can force the query to be
processed by Sybase 1Q by adding the clause FROM i g_dummy, wherei g_dumy isa
one-row, one-column table that you create in your database.

See also Reference. Building Blocks, Tables, and Procedures > SQL Language Elements >
Search Conditions and System Administration Guide: Volume 2 > Using OLAP.

196

Sybase 1Q

SQL Statements

Standards

e SQL—ISO/ANSI SQL compliant.

» Sybase—The JOIN clause is not supported in some versions of Adaptive Server
Enterprise. Instead, you must use the WHERE clause to build joins.

Permissions

Must be connected to the database.

See also
o DEL ETE Statementon page 162
e SELECT Statementon page 279

GET DESCRIPTOR Statement [ESQL]

Retrieves information about variables within a descriptor area, or retrieves actual data from a
variable in a descriptor area.

Syntax
GET DESCRIPTOR descri pt or - nane
{ hostvar = COUNT } | VALUE n assignment [,.] }

Parameters

+ assignment: — hostvar={ TYPE | LENGTH | PRECISION | SCALE | DATA | INDICATOR |
NAME | NULLABLE | RETURNED_LENGTH }

Examples
» Example 1 —For an example, see ALLOCATE DESCRIPTOR Statement [ESQL].

Usage
The value nspecifies the variable in the descriptor area about which information is retrieved.

Type checking is performed when doing GET DESCRIPTOR ... DATA to ensure that the host
variable and the descriptor variable have the same data type. LONG VARCHAR and LONG
Bl NARY are not supported by GET DESCRIPTOR ... DATA.

If an error occurs, it is returned in the SQLCA.

Standards
e SQL—ISO/ANSI SQL compliant.

Reference: Statements and Options 197

SQL Statements

» Sybase—Supported by Open Client/Open Server.

Permissions

None

See also

* ALLOCATE DESCRIPTOR Statement [ESQL] on page 5

» DEALLOCATE DESCRIPTOR Statement [ESQL] on page 151
* SET DESCRIPTOR Statement [ESQL] on page 292

GOTO Statement [T-SQL]

Branches to a labeled statement.

Syntax

| abel :
GOTO | abel

Examples

* Example1—This Transact-SQL batch prints the message “yes” on the server window four
times:

decl are @ount smallint
sel ect @ount = 1
restart:
print 'yes'
sel ect @ount = @ount + 1
whil e @ount <=4
goto restart

Usage

Any statement in a Transact-SQL procedure or batch can be labeled. The label name is a valid
identifier followed by a colon. In the GOTO statement, the colon is not used.

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Adaptive Server Enterprise supports the GOTO statement.

Permissions

None

198

Sybase 1Q

SQL Statements

GRANT Statement

Gives permissions to specific users and creates new user 1Ds.

Syntax

Syntax 1 — Grant authorities

GRANT aut hority,
TO userid,

authority:
BACKUP
DBA
GROUP
MEMBERSHIP IN GROUP userid [, .]
| MULTIPLEX ADMIN
OPERATOR
PERMS ADMIN
PROFILE
| READCLIENTFILE
READFILE
[RESOURCE | ALL]
SPACE ADMIN
| USER ADMIN
VALIDATE
WRITECLIENTFILE

Syntax 2 — Grant group status or membership in a group

GRANT { GROUP | MEMBERSHIP IN GROUP userid, ...}
TO useri d,

Syntax 3 — Grant database obfect permissions

GRANT per m ssi on,

ON [owner.]tabl e- name
TO userid [, .]

[WITH GRANT OPTION]

[FROM userid]

per m ssi on
ALL [PRIVILEGES]
| ALTER
| DELETE
| INSERT
| REFERENCES [(columm-nane [, .]) 1]
| SELECT [(colum-name [, .])]
| UPDATE [(col um-nane, ...)]

Syntax 4 — Grant execute permission

GRANT EXECUTE ON [owner.] procedure-nane
TO userid [, .]

Syntax 5 — Grant integrated login

Reference: Statements and Options 199

SQL Statements

GRANT INTEGRATED LOGIN TO user _profile_nanme [, .]
AS USER userid

Syntax 6 — Grant Kerberos login

GRANT KERBEROS LOGIN TO cl i ent - Ker ber os- pri nci pal ,
AS USER userid

Syntax 7 — Grant connect permissions

GRANT CONNECT TO userid [, .]
IDENTIFIED BY password [, ..]

Syntax 8 — Grant creation permission on a dbspace

GRANT CREATE ON dbspace_nane
TO userid [, .]

Examples
* Example 1 — Make two new users for the database:

GRANT
CONNECT TO Laurel, Hardy
| DENTI FIED BY Stan, Alie

* Example 2 — Grant permissions on the Enpl oyees table to user Laurel:

CRANT
SELECT, | NSERT, DELETE
ON Enpl oyees
TO Laur el
* Example 3 — Allow the user Hardy to execute the Calculate_Report procedure:
CRANT
EXECUTE ON Cal cul at e_Report
TO Har dy
* Example 4 — Give users Lawrence and Swift CREATE permission on dbspace DspHist:
GRANT

CREATE ON DspHi st
TO LAWRENCE, SWFT

* Example5— Grant CREATE privilege on dbspace DspHi st to users Fi ona and
G aran:

GRANT CREATE ON DspHi st TO Fi ona, G aran

Usage

The GRANT statement is used to grant database permissions to individual user IDs and groups.
It is also used to create and delete users and groups.

GRANT authority clause — Grant one of these authorities to users:

200 Sybase 1Q

SQL Statements

e BACKUP authority — Grants the authority to back up the database. See SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Reference > Using SQL > SQL statements > SQL
statements (E-O) > GRANT statement.

« DBA authority — Database Administrator authority gives a user permission to do anything.
Thisauthority is usually reserved for the person in the organization who is looking after the
database.

e MULTIPLEX ADMIN authority — Allows users to perform multiplex administration tasks
such as creating and deleting multiplex servers. See Using Sybase 1Q Multiplex >
Multiplex Server Administration > Administration Authorities > MULTIPLEX ADMIN
Authority for a complete description.

* OPERATOR authority — Allows users to checkpoint and backup databases, drop
connections, and monitor the system. See System Administration Guide: Volume 1 >
Managing User IDs and Permissions for a complete description.

e PERMS ADMIN authority — Allows users to manage data permissions, groups, authorities
and passwords. See System Administration Guide.: Volume 1 > Managing User IDs and
Permissions for a complete description.

e PROFILE authority — Grants the user the authority to perform profiling and diagnostic
operations. See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > Using
SQL > SQL statements > SQL statements (E-O) > GRANT statement.

e READCLIENTFILE authority — Grants the user the ability to read from a file on the client
computer, for example, when loading data. See SQL Anywhere 11.0.1 > SQL Anywhere
Server - SQL Reference > Using SQL > SQL statements > SQL statements (E-O) >
GRANT statement.

* READFILE authority — Allows the user to execute a SELECT statement against a file using
the OPENSTRING clause. See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > Using SQL > SQL statements > SQL statements (E-O) > GRANT
Statement.

e RESOURCE authority — Allows the user to create database objects such as tables, views,
and stored procedures. In syntax 1, ALL is a synonym for RESOURCE, which is
compatible with Adaptive Server Enterprise.

e SPACE ADMIN authority — Allows users to manage dbspaces. See System Administration
Guide.: Volume 1 > Managing User IDs and Permissions for a complete description.

e USER ADMIN authority — Allows users to manage users, external logins, and login
policies. See System Administration Guide.: Volume 1 > Managing User IDs and
Permissions for a complete description.

e VALIDATE authority — Allows users to perform the validation operations supported by the
various VALIDATE statements, such as validating the database, validating tables and
indexes, and validating checksums. This authority also allows the user to use the
Validation utility (dbvalid), and the Validate Database wizard in Sybase Central. See SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > Using SQL > SQL
statements > SQL statements (E-O) > GRANT statement.

* WRITECLIENTFILE authority — Grants the user the ability to write to a file on the client
computer, for example, when unloading data. See SQL Anywhere 11.0.1 > SQL

Reference: Statements and Options 201

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html

SQL Statements

Anywhere Server - SQL Reference > Using SQL > SQL statements > SQL statements
(E-O) > GRANT statement.
GROUP clause — Allows the users to have members. See Systermn Administration Guide:
Volume 1 > Managing User IDs and Permissions for a complete description.

MEMBERSHIP IN GROUP clause — Allows users to inherit table permissions from a group and
to reference tables created by the group without qualifying the table name.

If you do not want a specific user to access a particular table, view, or procedure, then do not
make that user a member of a group that has permissions on that object.

GRANT permission clause — Grant permission on individual tables or views. You can list the
table permissions together, or specify ALL to grantall six permissions at once. If WITH GRANT
OPTION is specified, then the named user ID is also given permission to GRANT the same
permissions to other user IDs.

e ALL permission — In syntax 3, grants all of the permissions

e ALTER permission — Users can alter this table with the ALTER TABLE statement. This
permission is not allowed for views.

e DELETE permission — Users can delete rows from this table or view.

e INSERT permission — Users can insert rows into the named table or view.

e REFERENCES permission — Users can create indexes on the named tables, and foreign
keys that reference the named tables. If column names are specified, then users can
reference only those columns. REFERENCES permissions on columns cannot be granted
for views, only for tables.

e SELECT permission — Users can look at information in this view or table. If column names
are specified, then the users can look at only those columns. SELECT permissions on
columns cannot be granted for views, only for tables.

e UPDATE permission — Users can update rows in this view or table. If column names are
specified, users can update only those columns. UPDATE permissions on columns cannot
be granted for views, only for tables. To update a table, users must have both SELECT and
UPDATE permission on the table.

For example, to grant SELECT and UPDATE permissions on the Enpl oyees table to user

Laurel :

CRANT

SELECT, UPDATE (street)

ON Enpl oyees
TO Laur el

EXECUTE ON clause — Grants permission to execute a procedure.

INTEGRATED LOGIN TO clause — Creates an explicit integrated login mapping between one or
more Windows user profiles and an existing database user ID, allowing users who
successfully log in to their local machine to connect to a database without having to provide a
user ID or password.

KERBEROS LOGIN TO clause — Creates a Kerberos authenticated login mapping from one or
more Kerberos principals to an existing database user ID. This allows users who have

202 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html

SQL Statements

successfully logged in to Kerberos (users who have a valid Kerberos ticket-granting ticket) to
connect to a database without having to provide a user 1D or password. See SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Reference > Using SQL > SQL statements > SQL
Statements (E-O) > GRANT statement.

CONNECT TO clause — Creates a new user. GRANT CONNECT can also be used by any user to
change their own password.

Note: Sybase recommends using the CREATE USER statement to create users. See CREATE
USER Statemnent.

To create a user with the empty string as the password:
GRANT CONNECT TO userid | DENTIFIED BY ""

If you have DBA or PERMS ADMIN authority, you can change the password of any existing
user:

GRANT CONNECT TO useri d | DENTI FI ED BY password

You can also use the same command to add a new user. For this reason, if you inadvertently
enter the user ID of an existing user when you mean to add a new user, you are actually
changing the password of the existing user. You do not receive a warning because this behavior
is considered normal. This behavior differs from pre-version 12 Sybase 1Q.

To avoid this situation, use the system procedures sp_addlogin and sp_adduser to add users.
These procedures give you an error if you try to add an existing user ID, as in Adaptive Server
Enterprise and pre-version 12 Sybase 1Q.

Note: Use system procedures, not GRANT and REVOKE, to add and remove user IDs.

To create a user with no password:
GRANT CONNECT TO userid

The user ID is not case-sensitive.

A user with no password cannot connect to the database. This is useful when you are creating
groups and you do not want anyone to connect to the group user ID.

The password must be a valid identifier, as described in Reference: Building Blocks, Tables,
and Procedures > SQL Language Elements > ldentifiers. Passwords have a maximum length
of 255 bytes. If the database option VERI FY_PASSWORD FUNCTI ONis set to a value other
than the empty string, the GRANT CONNECT TO userid IDENTIFIED BY password statement
calls the function identified by the option value. The function returns NULL to indicate that
the password conforms to rules. If the VERI FY_PASSWORD FUNCTI ON option is set, you
can specify only one userid and password with the GRANT CONNECT statement. See
VERIFY _PASSWORD_FUNCTION Option.

These names are invalid for database user IDs and passwords:

Reference: Statements and Options 203

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/grant-statement.html

SQL Statements

« Names that begin with white space or single or double quotes
« Names that end with white space
* Names that contain semicolons

CREATE ON clause — Grants CREATE permission on the specified dbspace to the specified
user(s) and/or group(s).

See also REVOKE Statement.
Side Effects:

e Automatic commit.

Standards

e SQL—Syntax 3 is an entry-level feature. Syntax 4 is a Persistent Stored Module feature.
Other syntaxes are vendor extensions to ISO/ANSI SQL grammar.

» Sybase—Syntax 1 and 3 are supported in Adaptive Server Enterprise. The security model
is different in Adaptive Server Enterprise and Sybase 1Q, so other syntaxes differ.

Permissions

e For Syntax 1 and 2, one of these conditions must be met:
» To grant DBA authority to any user, you must have DBA authority.

e To GRANT GROUP, GRANT MEMBERSHIP IN GROUP, or grant any other
authority to any user, you must have DBA or PERMS ADMIN authority.

« For Syntax 3, one of these conditions must be met:
* You created the table.
* You have been granted permissions on the table with GRANT OPTION.
* You have DBA or PERMS ADMIN authority.
« For Syntax 4, one of these conditions must be met:
* You created the procedure.
* You have DBA or PERMS ADMIN authority.
e For Syntax 5, you must have DBA or USER ADMIN authority.
« For Syntax 6, you must have DBA or USER ADMIN authority.
e For Syntax 7, one of these conditions must be met:
* If you are creating a new user, you must have DBA or USER ADMIN authority.
* You are changing your own password.
« Ifyou are changing another user’s password, you must have DBA or PERMS ADMIN
authority.

If you are changing another user’s password, the other user cannot be connected to the
database.

» For Syntax 8, you must have DBA or SPACE ADMIN authority.

204

Sybase 1Q

SQL Statements

See also

o CREATE USER Statementon page 146

* REVOKE Statementon page 272

 VERIFY PASSWORD FUNCTION Optionon page 466

IF Statement

Provides conditional execution of SQL statements.

Syntax

IF search-condition THEN statenment-Ii st
[ELSEIF search-condition THEN statenment-list]...
[ELSE statenment-list]
END IF

Examples
» Example 1 - This procedure illustrates the use of the IF statement:

CREATE PROCEDURE TopCustoner (OUT TopConpany CHAR(35), OUT
TopVal ue | NT)
BEG N
DECLARE err _not f ound EXCEPTI ON
FOR SQLSTATE ' 02000' ;
DECLARE cur Thi sCust CURSOR FOR
SELECT ConpanyNane, CAST(sun(Sal esOrderltenms. Quantity *
Products. UnitPrice) AS | NTEGER) VALUE
FROM Cust oner s
LEFT QUTER JO N Sal esOrders
LEFT QUTER JO N Sal esOrsder|tens
LEFT QUTER JAO N Product
CROUP BY ConpanyNane ;

DECLARE Thi sVal ue I NT ;
DECLARE Thi sConpany CHAR(35)
SET TopVal ue = 0 ;
OPEN cur Thi sCust ;
Cust oner Loop:
LOoP
FETCH NEXT cur Thi sCust
I NTO Thi sConpany, ThisVal ue ;
| F SQLSTATE = err_notfound THEN
LEAVE Cust oner Loop ;
END I F ;
| F Thi sval ue > TopVal ue THEN
SET TopVal ue = Thi sVal ue ;
SET TopConpany = Thi sConpany ;
END I F ;
END LOOP Cust oner Loop ;

Reference: Statements and Options 205

SQL Statements

CLCSE cur Thi sCust
END

Usage

The IF statement lets you conditionally execute the first list of SQL statements whose search-
condition evaluates to TRUE.

If no search-conditionevaluates to TRUE, and an ELSE clause exists, the statement-/istin the
ELSE clause is executed. If no search-condition evaluates to TRUE, and there is no ELSE
clause, the expression returns a NULL value.

Execution resumes at the first statement after the END IF.

When comparing variables to the single value returned by a SELECT statement inside an IF
statement, you must first assign the result of the SELECT to another variable.

Note: Do not confuse the syntax of the IF statement with that of the IF expression.

For information on the IF expression, see Reference: Building Blocks, Tables, and Procedures
> SQL Language Elements > Expressions.

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—The Transact-SQL IF statement has a slightly different syntax.

Permissions

None

See also
e BEGIN ... END Statementon page 47

IF Statement [T-SQL]

Provides conditional execution of a Transact-SQL statement, as an alternative to the Sybase
1Q IF statement.

Syntax
IF expression
st at enent
[ELSE [IF expression] statenent ...

206

Sybase 1Q

SQL Statements

Examples
» Example 1 — Use of the Transact-SQL IF statement:

| F (SELECT nax(id) FROM sysobjects) < 100
RETURN
ELSE
BEG N
PRI NT ' These are the user-created objects'
SELECT nane, type, id
FROM sysobj ect s
WHERE id < 100
END
* Example 2 — Two statement blocks illustrating Transact-SQL and Sybase 1Q
compatibility:
/* Transact-SQ |F statenent */
IF @l =0
PRI NT * O
ELSE IF @1 =1
PRI NT " 1'
ELSE
PRI NT ' ot her'
[* 1QIF statenent */
IF vl = 0 THEN
PRI NT ' O
ELSEIF vl = 1 THEN
PRI NT ' 1
ELSE
PRI NT ' ot her'
END | F

Usage

The Transact-SQL IF conditional and the ELSE conditional each control the performance of
only a single SQL statement or compound statement (between the keywords BEGIN and
END).

In contrast to the Sybase 1Q IF statement, the Transact-SQL IF statement has no THEN. The
Transact-SQL version also has no ELSE IF or END IF keywords.

When comparing variables to the single value returned by a SELECT statement inside an IF
statement, you must first assign the result of the SELECT to another variable.
Standards

e SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
» Sybase—Adaptive Server Enterprise supports the Transact-SQL IF statement.

Permissions

None

Reference: Statements and Options 207

SQL Statements

INCLUDE Statement [ESQL]

Includes a file into a source program to be scanned by the SQL source language preprocessor.

Syntax
INCLUDE fil enane

Parameters

¢ filename: — identifier

Usage
The INCLUDE statement is very much like the C preprocessor #include directive.
However, the SQL preprocessor reads the given file, inserting its contents into the output C

file. Thus, if an include file contains information that the SQL preprocessor requires, it should
be included with the Embedded SQL INCLUDE statement.

Two file names are specially recognized: SQLCA and SQLDA. Any C program using
Embedded SQL must contain this statement before any Embedded SQL statements:

EXEC SQL | NCLUDE SQLCA;

This statement must appear at a position in the C program where static variable declarations
are allowed. Many Embedded SQL statements require variables (invisible to the programmer)

which are declared by the SQL preprocessor at the position of the SQLCA include statement.
The SQLDA file must be included if any SQLDAs are used.

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Open Client/Open Server.

Permissions

None

208

Sybase 1Q

SQL Statements

INSERT Statement

Inserts into a table either a single row (Syntax 1) or a selection of rows (Syntax 2) from
elsewhere in the current database. Inserts a selection of rows from another database (Syntax
3).

Syntax

Synitax 1

INSERT [INTO] [owner.]table-name [(colum-nane [, .])]
VALUES ([expression | DEFAULT, ...)]

or

INSERT [INTO] [owner.]tabl e-nane DEFAULT VALUES

Syntax 2

INSERT [INTO] [owner.]table-name [(colum-name [, .])]
i nsert-|oad-options insert-sel ect-|oad-options
sel ect - st at ement

Syntax 3

INSERT [INTO] [owner.]table-name[(columm-nane [, .])]
i nsert-load-options insert-sel ect-|oad-options
LOCATION ' server nane. dbnane’
[location-options]
{ { select-statement } | ‘select statement’ }

Parameters

* insert-load-options. — [LIMIT number-of-rows] [NOTIFY number-of-rows] [SKIP
number-of-rows] [START ROW ID number]

* insert-select-load-options. — [WORD SKIP number] [IGNORE CONSTRAINT
constrainttype|, ...]] [MESSAGE LOG ‘string’ ROW LOG “string’ [ONLY LOG Jogwhat
[,...]11]1[LOG DELIMITED BY “string’]

» constrainttype: —{ CHECK /nteger| UNIQUE /nteger| NULL integer| FOREIGN KEY
integer| DATA VALUE integer| ALL integer}

¢ logwhat: —{ CHECK | ALL | NULL | UNIQUE | DATA VALUE | FOREIGN KEY | WORD }

* location-options. —[ENCRYPTED PASSWORD] [PACKETSIZE packet-size]

[QUOTED_IDENTIFIER { ON | OFF }] [ISOLATION LEVEL { READ
UNCOMMITTED | READ COMMITTTED | SERIALIZABLE }]

Examples
* Example 1— Add an Eastern Sales department to the database:

Reference: Statements and Options 209

SQL Statements

I NSERT | NTO Depart nents
(Departnment | D, Departnent Name, Depart nment Headl D)
VALUES (600, 'Eastern Sales', 501)
« Example 2 —Fill the table dept _head with the names of department heads and their
departments:
I NSERT | NTO dept _head (nane, dept)
NOTI FY 20
SELECT Surnane || ' ' || G venNane
AS nane,
dept _nanme
FROM Enpl oyees JO N Depart nments
ON Enpl oyeel D= Depart ment Headl D
* Example 3 —Insert data from the | _shi pdat e and| _or der key columns of the
I i nei t emtable from the Sybase 1Q database i qdet on the remote server det r oi t

into the corresponding columns of the | i nei t emtable in the current database:

I NSERT I NTO |i neitem
(I _shi pdate, | _orderkey)
LOCATI ON 'detroit.iqgdet’
PACKETSI ZE 512
' SELECT | _shi pdate, | _orderkey
FROM lineitem'

Usage

Syntax 1 allows the insertion of a single row with the specified expression values. If the list of
column names is not specified, the values are inserted into the table columns in the order they
were created (the same order as retrieved with SELECT *). The row is inserted into the table at
an arbitrary position. (In relational databases, tables are not ordered.)

Syntax 2 allows the user to perform a mass insertion into a table using the results of a fully
general SELECT statement. Insertions are done in an arbitrary order unless the SELECT
statement contains an ORDER BY clause. The columns from the select list are matched
ordinally with the columns specified in the column list, or sequentially in the order in which
the columns were created.

Note: The NUMBER(*) function is useful for generating primary keys with Syntax 2 of the
INSERT statement. See Reference. Building Blocks, Tables, and Procedures > SQL
Functions.

Syntax 3 INSERT...LOCATION is a variation of Syntax 2 that allows you to insert data from an
Adaptive Server Enterprise or Sybase 1Q database. The servername.dbname specified in the
LOCATION clause identifies the remote server and database for the table in the FROM clause.
To use Syntax 3, the Adaptive Server Enterprise or Sybase 1Q remote server to which you are
connecting must exist in the Sybase Open Clienti nt er f aces orsql . i ni file onthe local
machine.

In queries using Syntax 3, you can insert a maximum of 2147483647 rows.

210

Sybase 1Q

SQL Statements

The SELECT statement can be delimited by either curly braces or straight single quotation
marks. (Curly braces represent the start and end of an escape sequence in the ODBC standard,
and might generate errors in the context of ODBC.)

The local Sybase 1Q server connects to the server and database you specify in the LOCATION
clause. The results from the queries on the remote tables are returned and the local server
inserts the results in the current database. If you do not specify a server name inthe LOCATION
clause, Sybase 1Q ignores any database name you specify, since the only choice is the current
database on the local server.

When Sybase IQ connects to the remote server, INSERT...LOCATION uses the remote login for
the user 1D of the current connection, if a remote login has been created with CREATE
EXTERNLOGIN and the remote server has been defined with a CREATE SERVER statement. If
the remote server is not defined, or if a remote login has not been created for the user ID of the
current connection, Sybase 1Q connects using the user ID and password of the current
connection.

Creating a remote login with the CREATE EXTERNLOGIN statement and defining a remote
server with a CREATE SERVER statement sets up an external login and password for
INSERT...LOCATION such that any user can use the login and password in any context. This
avoids possible errors due to inaccessibility of the login or password.

For example, user r ussi d connects to the Sybase 1Q database and executes this statement:

I NSERT | ocal _SQL_Types LOCATION ‘ asel. aseldb’
{ SELECT int_col FROM SQ._Types};

On server asel, there exists user ID aseluser with password sybase. The owner of the
table SQL_Types isaseluser. The remote server is defined on the 1Q server as:

CREATE SERVER asel CLASS ‘ ASEJDBC
USI NG ‘ systeml: 4100’ ;

The external login is defined on the 1Q server as:

CREATE EXTERNLOG N russid TO asel REMOTE LOG N aseluser | DENTI FI ED BY
sybase;

INSERT...LOCATION connects to the remote server asel using the user ID aseluser and
the password sybase for user r ussi d.

Use the ENCRYPTED PASSWORD parameter to specify the use of Open Client Library default
password encryption when connecting to a remote server. If ENCRYPTED PASSWORD is
specified and the remote server does not support Open Client Library default password
encryption, an error is reported indicating that an invalid user ID or password was used.

When used as a remote server, Sybase 1Q supports TDS password encryption. The Sybase 1Q
server accepts a connection with an encrypted password sent by the client. For information on
connection properties to set for password encryption, see Software Developer's Kit 15.5 >

Open Client Client-Library/C Reference Manual > Client-Library Topics > Security features

Reference: Statements and Options 211

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm

SQL Statements

> Adaptive Server Enterprise security features > Security handshaking: encrypted password
for Open Server 15.5.

Note: Password encryption requires Open Client 15.0. TDS password encryption requires
Open Client 15.0 ESD #7 or later.

To enable the Sybase IQ server to accept a jConnect connection with an encrypted password,
set the jConnect ENCRYPT_PASSWORD connection property to true.

The PACKETSIZE parameter specifies the TDS packet size in bytes. The default TDS packet
size on most platforms is 512 bytes. If your application is receiving large amounts of text or
bulk data across a network, then a larger packet size might significantly improve performance.

The value of packet-size must be a multiple of 512 either equal to the default network packet
size or between the default network packet size and the maximum network packet size. The
maximum network packet size and the default network packet size are multiples of 512 in the
range 512 — 524288 bytes. The maximum network packet size is always greater than or equal
to the default network packet size. See the Adaptive Server Enterprise System Administration
Guide: Volume 1 for more information on network packet size.

If INSERT...LOCATION PACKETSIZE packet-sizeis not specified or is specified as zero, then
the default packet size value for the platform is used.

When INSERT...LOCATION is transferring data between a Sybase 1Q server and a remote
Sybase 1Q or Adaptive Server Enterprise server, the value of the INSERT...LOCATION TDS
PACKETSIZE parameter is always 512 bytes, even if you specify a different value for
PACKETSIZE.

Note: If you specify an incorrect packet size (for example 933, which is not a multiple of 512),
the connection attempt fails with an Open Client ct_connect “Connection failed” error. Any
unsuccessful connection attempt returns a generic “Connection failed” message. The
Adaptive Server Enterprise error log might contain more specific information about the cause
of the connection failure.

Use the QUOTED_IDENTIFIER parameter to specify the setting of the

QUOTED _| DENTI FI ER option on the remote server. The default setting is 'OFF.' You set
QUOTED_IDENTIFIER to ‘ON’ only if any of the identifiers in the SELECT statement are
enclosed in double quotes, as in this example using ‘c1’:

I NSERT | NTO f oo

LOCATI ON ' ase. dat abase’
QUOTED _| DENTI FI ER ON {sel ect "cl1" from xxx};

Use the ISOLATION LEVEL parameter to specify an isolation level for the connection to a
remote server.

212 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm

SQL Statements

Isolation level Characteristics

READ UNCOMMITTED « Isolation level 0

* Read permitted on row with or without write lock
* No read locks are applied

* No guarantee that concurrent transaction will not modify row or
roll back changes to row

READ COMMITTED ¢ Isolation level 1

* Read only permitted on row with no write lock

* Read lock acquired and held for read on current row only, but
released when cursor moves off the row

* No guarantee that data will not change during transaction

SERIALIZABLE * |solation level 3

* Read only permitted on rows in result without write lock

* Read locks acquired when cursor is opened and held until trans-
action ends

See SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Usage > Creating Databases >
Using transactions and isolation levels > Isolation levels and consistency.

Sybase 1Q does not support the Adaptive Server Enterprise data type TEXT, but you can
execute INSERT...LOCATION (Syntax 3) from both an 1Q CHAR or VARCHAR column whose
length is greater than 255 bytes, and from an ASE database column of data type TEXT. ASE
TEXT and | MAGE columns can be inserted into columns of other Sybase 1Q data types, if
Sybase 1Q supports the internal conversion. By default, if a remote data column contains over
2GB, Sybase 1Q silently truncates the column value to 2GB.

Warning! Sybase 1Q does not support the Adaptive Server Enterprise data types UNI CHAR,
UNI VARCHAR, or UNI TEXT. An INSERT...LOCATION command from UNI CHAR or

UNI TEXT to CHAR or CLOB columns in the ISO_BINENG collation may execute without
error; if this happens, the data in the columns may be inconsistent. An error is reported in this
situation, only if the conversion fails.

Users must be specifically licensed to use the large object functionality of the Unstructured
Data Analytics Option. See Unstructured Data Analytics in Sybase 1Q.

Note: If you use INSERT...LOCATION to insert data selected from a VARBINARY column, set
ASE_BINARY_DISPLAY to OFF on the remote database.

INSERT...LOCATION (Syntax 3) does not support the use of variables in the SELECT
statement.

Reference: Statements and Options 213

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/udtisol.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/udtisol.html

SQL Statements

Inserts can be done into views, provided the SELECT statement defining the view has only one
table in the FROM clause and does not contain a GROUP BY clause, an aggregate function, or
involve a UNION operation.

Character strings inserted into tables are always stored in the case they are entered, regardless
of whether the database is case-sensitive or not. Thus, a string “Value” inserted into a table is
always held in the database with an uppercase V and the remainder of the letters lowercase.
SELECT statements return the string as Value. If the database is not case-sensitive, however,
all comparisons make Valuethe same as value, VALUE, and so on. Further, if a single-column
primary key already contains an entry Value, an INSERT of value is rejected, as it would make
the primary key not unique.

Whenever you execute an INSERT ... LOCATION statement, Sybase 1Q loads the localization
information needed to determine language, collation sequence, character set, and date/time
format. If your database uses a nondefault locale for your platform, you must set an
environment variable on your local client to ensure that Sybase 1Q loads the correct
information.

If you set the LC_ALL environment variable, Sybase 1Q uses its value as the locale name. If
LC_ALL is not set, Sybase 1Q uses the value of the LANG environment variable. If neither
variable is set, Sybase 1Q uses the default entry in the locales file. For an example, see System
Administration Guide. Vblume 1 > International Languages and Character Sets > Setting the
Locale for an INSERT...LOCATION Statement.

Use the DEFAULT VALUES and VALUES clauses to specify the values to insert. To insert the
default column values as specified in the CREATE TABLE statement, specify DEFAULT
VALUES. Specifying DEFAULT VALUES is semantically equivalent to specifying this explicit
syntax:

I NSERT [I NTG <t abl enane>
VALUES(def aul t, default, ..., default)

where the number of default entries is equal to the number of columns in the table. For
example:

| NSERT | NTO t abl el DEFAULT VALUES
You can also use the INSERT VALUES(DEFAULT ...) clause to insert into NULL columns.

The LIMIT option specifies the maximum number of rows to insert into the table from a query.
The default is 0 for no limit. The maximum is 2GB -1.

The NOTIFY option specifies that you be notified with a message each time the number of rows
are successfully inserted into the table. The default is every 100,000 rows.

The SKIP option lets you define a number of rows to skip at the beginning of the input tables
for this insert. The default is 0.

214

Sybase 1Q

SQL Statements

The START ROW ID option specifies the record identification number of a row in the 1Q table
where it should start inserting. By default, new rows are inserted wherever there is space in the
table, and each insert starts a new row.

The START ROW ID clause of the LOAD TABLE and the INSERT commands is not allowed on a
partitioned table.

For information on the insert-select-load-options WORD SKIP, IGNORE CONSTRAINT,
MESSAGE LOG, ROW LOG, and LOG DELIMITED BY and the constrainttype and logwhat
parameters, see the LOAD TABLE Statement.

An INSERT on a multicolumn index must include all columns of the index.

Sybase 1Q supports column DEFAULT values for INSERT...VALUES, INSERT...SELECT, and
INSERT...LOCATION. If a DEFAULT value is specified for a column, this DEFAULT value is
used as the value of the column in any INSERT (or LOAD) statement that does not specify a
value for the column.

For more information on the use of column DEFAULT values with inserts, see System
Administration Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data
Integrity.

An INSERT from a stored procedure or function is not permitted, if the procedure or function
uses COMMIT, ROLLBACK, or some ROLLBACK TO SAVEPOINT statements. For more
information, see System Administration Guide. Vblume 2 > Using Procedures and Batches >
Control Statements > Atomic Compound Statements and System Administration Guide.
Volume 2 > Using Procedures and Batches > Transactions and Savepoints in Procedures.

The result of a SELECT...FROM may be slightly different from the result of an INSERT...
SELECT...FROM due to an internal data conversion of an imprecise data type, such as
DOUBLE or NUMERI C, for optimization during the insert. If a more precise result is required,
a possible workaround is to declare the column as a DOUBLE or NUMERI C data type with a
higher precision.

See also System Administration Guide: Volume 1 > Data Import and Export > Using the
INSERT Statement.
Standards

e SQL—ISO/ANSI SQL compliant.
« Sybase—Supported by Adaptive Server Enterprise (excluding the /nsert-load-options).

Permissions

Must have INSERT permission on the table.

See also
CREATE EXTERNLOGIN Statement on page 89
e DEL ETE Statement on page 162

Reference: Statements and Options 215

SQL Statements

» L OAD TABLE Statement on page 221
SYNCHRONIZE JOIN INDEX Statement on page 303

INSTALL JAVA Statement

Makes Java classes available for use within a database.

Syntax
INSTALLJAVA [install-nbde] [JAR jar-name | FROM source

Parameters

* install-mode: —{ NEW | UPDATE }
» source —{ FILE filename| URL url-value}

Examples

* Examplel—Install the user-created Java class named “Demo” by providing the file name
and location of the class:

| NSTALL JAVA NEW
FROM FI LE ' D: \ Javad ass\ Denp. cl ass'

After installation, the class is referenced using its name. Its original file path location is no
longer used. For example, this statement uses the class installed in the previous statement:

CREATE VARI ABLE d Denp

If the Demo class was a member of the package sybase.work, the fully qualified name of
the class must be used:

CREATE VARI ABLE d sybase. wor k. Deno

* Example 2 —Install all the classes contained in a zip file and associate them within the
database with a JAR file name:

I NSTALL JAVA

JAR ' W dget s’

FROM FI LE ' C:\ Jar s\ Wdget. zi p'

The location of the zip file is not retained and classes must be referenced using the fully
qualified class name (package name and class name).

Usage

Install mode—Specifying an install mode of NEW requires that the referenced Java classes be
new classes, rather than updates of currently installed classes. An error occurs if a class with
the same name exists in the database and the NEW install mode is used.

216

Sybase 1Q

SQL Statements

UPDATE specifies that the referenced Java classes may include replacements for Java classes
already installed in the given database.

Connection must be dropped for update to take effect—Updating a Java class installed in a
database takes effect immediately. However, the connection used to execute the INSTALL
JAVA UPDATE statement has access only to the older version of the Java class until the
connection is dropped.

Note: A client application executing this statement should drop the database connection used
to execute the statement and reconnect to get access to the latest version.

This applies to the dbisql utility also. If you update a Java class by executing the INSTALL
statement from dbisql, the new version is not available until you disconnect from the database
engine or server and reconnect.

If install mode is omitted, the default is NEW.

JAR—Specifies that the file-name or text-pointer must designate a JAR file or a column
containing a JAR. JAR files typically have extensions of . j ar or. zi p.

Installed JAR and zip files can be compressed or uncompressed. However, JAR files produced
by the Sun JDK jar utility are not supported. Files produced by other zip utilities are supported.

If the JAR option is specified, then the JAR is retained as a JAR after the classes that it contains
have been installed. That JAR is the associated JAR of each of those classes. The set of JARs
installed in a database with the JAR option are called the retained JARs of the database.

Retained JARs are referenced in INSTALL and REMOVE statements. Retained JARs have no
effect on other uses of Java-SQL classes. Retained JARSs are used by the SQL system for
requests by other systems for the class associated with given data. If a requested class has an
associated JAR, the SQL system can supply that JAR, rather than the individual class.

Jar-nameis a character string value of length up to 255 bytes. jar-nameis used to identify the
retained JAR in subsequent INSTALL, UPDATE, and REMOVE statements.

source—Specifies the location of the Java classes to be installed.

The formats supported for file-name include fully qualified file names, suchas'c: \ | i bs
\jarnane.jar' and'/usr/u/libs/jarnane.|ar’, and relative file names, which
are relative to the current working directory of the database server.

The filename must identify either a class file or a JAR file.

The class definition for each class is loaded by the VM of each connection the first time that
class is used. When you INSTALL a class, the VM on your connection is implicitly restarted.
Therefore, you have immediate access to the new class, whether the INSTALL has an install-
mode of NEW or UPDATE.

For other connections, the new class is loaded the next time a VM accesses the class for the
first time. If the class is already loaded by a VM, that connection does not see the new class

Reference: Statements and Options 217

SQL Statements

until the VM is restarted for that connection (for example, with a STOP JAVA and START
JAVA).
Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

« Requires DBA permissions to execute the INSTALL statement.
« Allinstalled classes can be referenced in any way by any user.

See also
* REMOVE Statement on page 261

IQ UTILITIES Statement

Collects statistics on the buffer caches for a Sybase 1Q database.

Syntax

IQUTILITIES { MAIN | PRIVATE}

[INTO] tabl e-name

{ START MONITOR [' noni t or - opti ons']
| STOP MONITOR }

Parameters

* monitor-options. —{ -summary | { -append | -truncate } -bufalloc | -cache | -
cache_by_type | -contention | -debug | -file_suffix suffix| -io | -interval seconds| -
threads }...

Examples

* Example 1 - Start the buffer cache monitor and record activity for the 1Q temp buffer
cache:

| Q UTI LI TIES PRI VATE | NTO noni t or START MONI TOR ' - cache -i nterval
20

Usage

START MONITOR starts the 1Q buffer cache monitor. For START and STOP MONITOR, the
table_nameis a dummy table. You can specify any 1Q base or temporary table, although it is
best to have a table that you use only for monitoring. Results go to a text file,

dbnan®e. connect i on#- mai n- i gnon for MAIN buffer cache results, or

218 Sybase 1Q

SQL Statements

dbname. connect i on#-t enp- i gnon for PRIVATE (Temp) buffer cache results.
Running the monitor again from the same database and connection number overwrites
previous results. To set the directory location of the monitor output file, set the

MONI TOR_QUTPUT_DI RECTORY option.

The monitor-gptions define the content and frequency of results. You can specify more than
one, and they must be enclosed with quotation marks.

e -summary displays summary information for both the main and temp (private) buffer
caches. This option is the default.

e -append | -truncate appends to the existing output file or truncates the existing output file,
respectively. Truncate is the default.

» -bufalloc displays information on the main or temp buffer allocator, which reserves space
in the buffer cache for objects like sorts, hashes, and bitmaps.

« -cache displays main or temp buffer cache activity in detail.

e -cache_by_type displays main or temp buffer cache activity details by 1Q page type. This
format is used mainly to supply information to Sybase Technical Support.

» -contention displays many key buffer cache and memory manager locks.

« -debug displays all the information that is available to the performance monitor, whether
or not there is a standard display mode that covers the same information. This option is
used mainly to supply information to Sybase Technical Support.

» -file_suffix suffix creates a monitor output file named <dbnane>. <conni d>-
<mai n_or _t enp>- <suf f i x>. The default isi qnon.
» -io displays main or temp buffer cache 1/O rates and data compression ratios.

* -interval specifies the reporting interval in seconds. The default is every 60 seconds. The
minimum is every 2 seconds.

e -threads displays information about processing threads.
See also

» Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iqsysmon Procedure

» Performance and Tuning Guide > Monitoring and Tuning Performance for examples of
monitor results

« System Administration Guide. Volume 2 > Using Procedures and Batches for advanced
use of IQ UTILITIES to create procedures that extend the functionality of Sybase 1Q system
stored procedures

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported in Adaptive Server Enterprise.

Reference: Statements and Options 219

SQL Statements

Permissions

None

See also
« MONITOR_OUTPUT _DIRECTORY Optionon page 414

LEAVE Statement
Continues execution by leaving a compound statement or LOOP.
Syntax
LEAVE st at enment - | abel
Examples
* Example 1 -This code fragment shows how to use the LEAVE statement to leave a loop:
SET i = 1;
| bl :
LOCP
| NSERT
I NTO Counters (nunber)
VALUES (i) ;
IFi >= 10 THEN
LEAVE | bl ;
END | F ;
SETi =i +1
END LOOP | bl

* Example 2 —This code fragment uses LEAVE in a nested loop:
outer_| oop:

LOOP
SET i = 1;
i nner _| oop:
LOOP
SEI' i =i + 1;

IFi >= 10 THEN
LEAVE out er _| oop
END I F
END LOOP i nner _| oop
END LOOP out er _| oop

Usage

LEAVE is a control statement that lets you leave a labeled compound statement or a labeled
loop. Execution resumes at the first statement after the compound statement or loop.

220 Sybase 1Q

SQL Statements

The compound statement that is the body of a procedure has an implicit label that is the same
as the name of the procedure.

Standards

e SQL—ISO/ANSI SQL compliant.
« Sybase—Not supported in Adaptive Server Enterprise. The break statement provides a
similar feature for Transact-SQL compatible procedures.

Permissions

None

See also

e BEGIN ... END Statementon page 47
e FOR Statement on page 190

e LOORP Statementon page 242

LOAD TABLE Statement

Imports data into a database table from an external file.

Syntax

LOAD [INTO] TABLE [owner.]tabl e- nane
(load-specification [, .])
. { FROM | USING [CLIENT] FILE }
{ 'filenane-string' | filenanme-variable } [, .]
CHECK CONSTRAINTS { ON | OFF }]
DEFAULTS { ON | OFF }]
QUOTES OFF]
ESCAPES OFF
FORMAT { ascii | binary | becp }]
DELIMITED BY 'string']
STRIP { ON | OFF | RTRIM }]
[WITH CHECKPOINT { ON | OFF }]
BYTE ORDER { NATIVE | HIGH | LOW}]
LIMIT nunber - of -rows]
NOTIFY nunber - of -rows]
[ONFILEERROR { ROLLBACK | FINISH | CONTINUE }]
PREVIEW { ON | OFF }]
ROW DELIMITEDBY 'delimter-string' |
SKIP nunber - of -rows |
[HEADER SKIP nunmber [HEADERDELIMITEDBY 'string']]
WORD SKIP nunber]
START ROW ID nunber]
ON PARTIAL INPUT ROW { ROLLBACK | CONTINUE }]
[IGNORE CONSTRAINT constrainttype [, .]]

Reference: Statements and Options 221

SQL Statements

[MESSAGELOG ‘string’ ROWLOG ‘string’ [ONLYLOG | ogwhat [, .]]
[LOGDELIMITEDBY ‘string’]

Parameters

load-specification: —{ column-name [column-spec] | FILLER (filler-type) }
column-spec: —{ ASCII (input-width) | BINARY [WITHNULL BYTE]|PREFIX{1|2|4}|
'delimiter-string | DATE (input-date-format) | DATETIME (input-datetime-format)

| ENCRYPTED (data-type ‘ key-string’ [, ‘ algorithm-string’ 1) | DEFAULT default-value}
[NULL ({ BLANKS | ZEROS | 'literal, ...})]

filler-type: —{ input-width| PREFIX { 1| 2 | 4 } | 'delimiter-string }

constrainttype: —{ CHECK /nteger| UNIQUE integer| NULL integer| FOREIGN KEY
integer| DATA VALUE integer| ALL integer}

logwhat: —{ CHECK | ALL | NULL | UNIQUE | DATA VALUE | FOREIGN KEY | WORD }

Examples

Example 1—Load data from one file into the Pr oduct s table on a Windows system. A
tab is used as the column delimiter following the Descr i pti on and Col or columns:

LOAD TABLE Product s

(1D ASCII(6),

FI LLER(1),

Name ASCI | (15),

FI LLER(1),
Description "\ x09',
Size ASCII(2),

FI LLER(1),

Col or "\ x09',
Quantity PREFI X 2,
UnitPrice PREFI X 2,
FI LLER(2))

FROM ' C:\\ nydat a\\ sour cel. dnp'
QUOTES OFF

ESCAPES OFF

BYTE ORDER LOW

NOTI FY 1000

Example 2 — Load data from a file a. i np on a client computer:

LOAD TABLE t1(cl1,c2,filler(30))

USI NG CLI ENT FILE 'c:\\client-data\\a.inp'
QUOTES OFF ESCAPES OFF

| GNORE CONSTRAI NT UNI QUE 0, NULL O

MESSAGE LOG 'c:\\client-data\\m | og'

RONVLOG '"c:\\client-data\\r.log' ONLY LOG UN QUE

Example3—Load data from two files into the pr oduct _newtable (which allows NULL
values) on a UNIX system. The tab character is the default column delimiter, and the
newline character is the row delimiter:

LOAD TABLE product _new
(id,

222

Sybase 1Q

SQL Statements

nane,

description,

si ze,

col or "\ x09' NULL('null*, 'none', 'na'),

quantity PREFI X 2,

unit_price PREFI X 2)

FROM ' / s1/ nydat a/ sour ce2. dunp' ,
'/ s1/ nydat a/ sour ce3. dunp’
QUOTES OFF

ESCAPES OFF

FORVAT asci i

DELI M TED BY '\ x09'

ON FI LE ERROR CONTI NUE

ROW DELI M TED BY '\n'

* Example4—Ignore 10 word-length violations; on the 11th, deploy the new error and roll
back the load:

| oad table PTABL(

ckil ",' null ("NULL") ,
ck3f k2c2 "' null ("NULL") ,
ck4 ' null ("NULL") ,
ck5 "' null ("NULL") ,
ckéecl ", null ("NULL') ,
ck6ec2 "' null ("NULL') ,
rid "' null ("NULL'))

FROM 'ri _i ndex_sel fRI . i np'
row delimted by "\n'
LIMT 14 SKIP 10
| GNORE CONSTRAI NT UNI QUE 2, FOREI GN KEY 8
word skip 10 quotes off escapes off strip
of f

* Example5-Load dataintotablet 1 from the BCP character filebcp_fi | e. bcp using
the FORMAT BCP load option:

LOAD TABLE t1 (cl1, c2, c3)
FROM ‘ bcp_file. bcp’
FORVAT BCP

» Example6—Load default values 12345 into ¢ 1 using the DEFAULT load option, and load
c2 and ¢ 3 with data from the LoadConst 04. dat file:

LOAD TABLE t1 (cl DEFAULT ‘12345 ', c2, c3, filler(1))
FROM ‘ LoadConst 04. dat’

STRI P OFF

QUOTES OFF

ESCAPES OFF

DELI M TED BY *‘,’;

* Example7-Loadc1 andc?2 withdatafromthefilebcp_fi | e. bcp usingthe FORMAT
BCP load option and set ¢3 to the value 10:
LOAD TABLE t1 (cl1, c2, c¢3 DEFAULT *‘10')

FROM * bcp_file. bcp’
FORVAT BCP

Reference: Statements and Options 223

SQL Statements

QUOTES OFF
ESCAPES OFF;

« Example8—This code fragment ignores one header row at the beginning of the data file,
where the header row is delimited by ‘&&’:
LOAD TABLE
... HEADER SKI P 1 HEADER DELI M TED by ' &&'

» Example 9 - This code fragment ignores 2 header rows at the beginning of the data file,
where each header row is delimited by “\n’:

LOAD TABLE
... HEADER SKI P 2

Usage

The LOAD TABLE statement allows efficient mass insertion into a database table from a file
with ASCII or binary data.

The LOAD TABLE options also let you control load behavior when integrity constraints are
violated and to log information about the violations.

You can use LOAD TABLE on a temporary table, but the temporary table must have been
declared with ON COMMIT PRESERVE ROWS, or the next COMMIT removes the rows you
have loaded.

You can also specify more than one file to load data. In the FROM clause, specify each

fil enane- stri ng separated by commas. Because of resource constraints, Sybase 1Q
does not guarantee that all the data can be loaded. If resource allocation fails, the entire load
transaction is rolled back. The files are read one at a time, and processed in the order specified
in the FROM clause. Any SKIP or LIMIT value only applies in the beginning of the load, not for
each file.

Note: When loading a multiplex database, use absolute (fully qualified) paths in all file names.
Do not use relative path names.

LOAD TABLE supports loading of large object (LOB) data. See Unstructured Data Analytics
in Sybase 1Q.

Sybase 1Q supports loading from both ASCII and binary data, and it supports both fixed- and
variable-length formats. To handle all of these formats, you must supply a /oad-specification
to tell Sybase 1Q what kind of data to expect from each “column” or field in the source file. The
column-spec lets you define these formats:

» ASCII with afixed length of bytes. The /nput-widthvalue is an integer indicating the fixed
width in bytes of the input field in every record.

< Binary or non-binary fields that use a number of PREFIX bytes (1, 2, or 4) to specify the
length of the input.

There are two parts related to a PREFIX clause:
» Prefix value — always a binary value.

224

Sybase 1Q

SQL Statements

« Associated data bytes — always character format; never binary format.

If the data is unloaded using the extraction facility with the TEMP_EXTRACT _BI NARY
option set ON, you must use the BINARY WITH NULL BYTE parameter for each column
when you load the binary data.

e Variable-length characters delimited by a separator. You can specify the terminator as
hexadecimal ASCII characters. The delimiter-stringcan be any string of up to 4 characters,
including any combination of printable characters, and any 8-bit hexadecimal ASCII code
that represents a nonprinting character. For example, specify:

« '\x09' to represent a tab as the terminator.

« '\x00' for a null terminator (no visible terminator as in “C” strings).

* "\x0a' for a newline character as the terminator. You can also use the special character
combination of \n' for newline.

Note: The delimiter string can be from 1 to 4 characters long, but you can specify only a
single character in the DELIMITED BY clause. For BCP, the delimiter can be up to 10
characters.

e DATE or DATETIME string as ASCII characters. You must define the /nput-date-format
or input-aatetime-formatof the string using one of the corresponding formats for the date
and datetime data types supported by Sybase 1Q. Use DATE for date values and DATETIME
for datetime and time values.

Table 9. Formatting Dates and Times

Option Meaning

yyyyor YYYY Represents number of year. Default is current year.

yyorYY

mm or MM Represents number of month. Always use leading zero or blank for number of the
month where appropriate, for example, '05' for May. DATE value must include a
month. For example, if the DATE value you enter is 1998, you receive an error. If you
enter '03', Sybase 1Q applies the default year and day and converts it to '1998-03-01".

dd or DD Represents number of day. Default day is 01. Always use leading zeros for number of

day where appropriate, for example, ‘01" for first day. J or j indicates a Julian day (1 to

jjorJddd
366) of the year.

hh Represents hour. Hour is based on 24-hour clock. Always use leading zeros or blanks

HH for hour where appropriate, for example, '01' for 1 am.'00" is also valid value for hour of
12 am.

nn Represents minute. Always use leading zeros for minute where appropriate, for ex-
ample, '08' for 8 minutes.

sS[.ss5558] Represents seconds and fraction of a second.

aa Represents the a.m. or p.m. designation.

Reference: Statements and Options 225

SQL Statements

Option Meaning

pp Represents the p.m. designation only if needed. (This is an incompatibility with Sybase
1Q versions earlier than 12.0; previously, “pp” was synonymous with “aa”.)

hh Sybase 1Q assumes zero for minutes and seconds. For example, if the DATETIME value
you enter is '03', Sybase 1Q converts it to '03:00:00.0000'.

hh:nn or hh:mm Sybase 1Q assumes zero for seconds. For example, if the time value you enter is'03:25',
Sybase 1Q converts it to '03:25:00.0000'.

Table 10. Sample DATE and DATETIME Format Options

Input data Format specification

12/31/98 DATE (‘MM/DD/YY")

19981231 DATE ("YYYYMMDD')
123198140150 DATETIME (‘(MMDDYYhhnnss')
14:01:50 12-31-98 DATETIME (‘hh:mm:ss MM-DD-YY")
18:27:53 DATETIME (‘hh:mm:ss')

12/31/98 02:01:50AM DATETIME ((MM/DD/YY hh:mm:ssaa’)

Sybase 1Q has built-in load optimizations for common date, time, and datetime formats. If
your data to be loaded matches one of these formats, you can significantly decrease load time
by using the appropriate format. For a list of these formats, and details about optimizing
performance when loading date and datetime data, see System Administration Guide: Volume
1 > Data Import and Export.

You can also specify the date/time field as an ASCII fixed-width field (as described above) and
use the FILLER(1) option to skip the column delimiter. For more information about
specifying date and time data, see Reference. Building Blocks, Tables, and Procedures > SQL
Data Types > Date and Time Data Types or System Administration Guide: Volume 1 > Data
Import and Export.

The NULL portion of the column-spec indicates how to treat certain input values as NULL
values when loading into the table column. These characters can include BLANKS, ZEROS,
or any other list of literals you define. When specifying a NULL value or reading a NULL
value from the source file, the destination column must be able to contain NULLSs.

ZEROS are interpreted as follows: the cell is set to NULL if (and only if) the input data (before
conversion, if ASCII) is all binary zeros (and not character zeros).

» If the input data is character zero, then:
1. NULL (ZEROS) never causes the cell to be NULL.
2. NULL ('0") causes the cell to be NULL.

« If the input data is binary zero (all bits clear), then:

226 Sybase 1Q

SQL Statements

1. NULL (ZEROS) causes the cell to be NULL.
2. NULL ('0") never causes the cell to be NULL.

For example, if your LOAD statementincludescol 1 date(' yymmdd') nul | (zer 0s)
and the date is 000000, you receive an error indicating that 000000 cannot be converted to a
DATE(4). Toget LOAD TABLE to insertaNULL value incol 1 when the data is 000000, either
write the NULL clause asnul | (* 000000'), or modify the data to equal binary zeros and
use NULL(ZEROQS).

If the length of a VARCHARCcell is zero and the cell is not NULL, you get a zero-length cell. For
all other data types, if the length of the cell is zero, Sybase I1Q inserts a NULL. This is ANSI
behavior. For non-ANSI treatment of zero-length character data, set the
NON_ANSI_NULL_VARCHAR database option.

Use the DEFAULT option to specify a load default column value. You can load a default value
into a column, even if the column does not have a default value defined in the table schema.
This feature provides more flexibility at load time.

e TheLOAD TABLE DEFAULTS option mustbe ON in order to use the default value specified
in the LOAD TABLE statement. If the DEFAULTS option is OFF, the specified load default
value is not used and a NULL value is inserted into the column instead.

e The LOAD TABLE command must contain at least one column that needs to be loaded from
the file specified in the LOAD TABLE command. Otherwise, an error is reported and the
load is not performed.

» The specified load default value must conform to the supported default values for columns
and default value restrictions as described in System Administration Guide: Volume 1 >
Data Integrity > Column Defaults Encourage Data Integrity. The LOAD TABLE DEFAULT
option does not support AUTOINCREMENT, IDENTITY, or GLOBAL AUTOINCREMENT as
a load default value.

e The LOAD TABLE DEFAULT default-value must be of the same character set as that of the
database.

« Encryption of the default value is not supported for the load default values specified in the
LOAD TABLE DEFAULT clause.

« A constraint violation caused by evaluation of the specified load default value is counted
for each row that is inserted in the table.

Another important part of the foad-specification is the FILLER option. This option indicates
you want to skip over a specified field in the source input file. For example, there may be
characters at the end of rows or even entire fields in the input files that you do not want to add to
the table. As with the column-spec definition, FILLER specifies ASCII fixed length of bytes,
variable length characters delimited by a separator, and binary fields using PREFIX bytes.

The filename-string is passed to the server as a string. The string is therefore subject to the
same formatting requirements as other SQL strings. In particular:

Reference: Statements and Options 227

SQL Statements

< To indicate directory paths in Windows systems, the backslash character \ must be
represented by two backslashes. Therefore, the statement to load data from the file c:
\'t enp\i nput . dat into the Enpl oyees table is:

LOAD TABLE Enpl oyees
FROM 'c:\\tenp\\input.dat'

« The path name is relative to the database server, not to the client application. If you are
running the statement on a database server on some other computer, the directory names
refers to directories on the server machine, not on the client machine.

Descriptions of each statement clause follow:

USING— USING FILE loads one or more files from the server. This clause is synonymous
with specifying the FROM filename clause. USING CLIENT FILE bulk loads one or more files
from a client. The character set of the file on the client side must be the same as the server
collation. Sybase 1Q serially processes files in the file list. Each file is locked in read mode as it
is processed, then unlocked. Client-side bulk loading incurs no administrative overhead, such
as extra disk space, memory or network-monitoring daemon requirements.

When bulk loading large objects, the USING CLIENT FILE clause applies to both primary and
secondary files. (If you have the Unstructured Data Analytics Option, see Unstructured Data
Analytics in Sybase 1Q for details.)

During client-side loads, the IGNORE CONSTRAINT log files are created on the client host and
any error while creating the log files causes the operation to roll back.

Client-side bulk loading is supported by Interactive SQL and ODBC/JDBC clients using the
Command Sequence protocol. It is not supported by clients using the TDS protocol. For data
security over a network, use Transport Layer Security. To control who can use client-side bulk
loads, use the secure feature (-sf) server startup switch, the ALLOW READ_CLI ENT_FI LE
database option, and/or the READCLI ENTFI LE access control.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Importing and exporting data > Accessing data on client computers > Client-side
aata securityand SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data
and Bulk Operations > Importing and exporting data > Accessing data on client computers.

The LOAD TABLE FROM clause is deprecated, but may be used to specify a file that exists on
the server.

This example loads data from the file a. i np on a client computer.

LOAD TABLE t1(cl,c2,filler(30))

USI NG CLI ENT FILE 'c:\\client-data\\a.inp'
QUOTES OFF ESCAPES OFF

| GNORE CONSTRAI NT UNI QUE 0, NULL O
MESSACGE LOG 'c:\\client-data\\m | og'
ROWVLOG "c:\\client-data\\r. | og'

ONLY LOG UNI QUE

228

Sybase 1Q

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-load-s-5029099.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-load-s-5029099.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-load-s-5029099.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/client-side-blobs.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/client-side-blobs.html

SQL Statements

CHECK CONSTRAINTS—This option defaults to ON. When you specify CHECK
CONSTRAINTS ON, check constraints are evaluated and you are free to ignore or log them.

Setting CHECK CONSTRAINTS OFF causes Sybase IQ to ignore all check constraint
violations. This can be useful, for example, during database rebuilding. If a table has check
constraints that call user-defined functions that are not yet created, the rebuild fails unless this
option is set to OFF.

This option is mutually exclusive to the following options. If any of these options are specified
in the same load, an error results:

¢ IGNORE CONSTRAINT ALL

* IGNORE CONSTRAINT CHECK

e LOGALL

¢ LOG CHECK

DEFAULTS—If the DEFAULTS option is ON (the default) and the column has a default value,
that value is used. If the DEFAULTS option is OFF, any column not present in the column list is
assigned NULL.

The setting for the DEFAULTS option applies to all column DEFAULT values, including
AUTOINCREMENT.

For detailed information on the use of column DEFAULT values with loads and inserts, see
System Administration Guide: Volume 1 > Data Integrity > Column Defaults Encourage Data
Integrity.

QUOTES—This parameter is optional and the default is ON. With QUOTES turned on, LOAD
TABLE expects input strings to be enclosed in quote characters. The quote character is either
an apostrophe (single quote) or a quotation mark (double quote). The first such character
encountered in a string is treated as the quote character for the string. String data must be
terminated with a matching quote.

With QUOTES ON, column or row delimiter characters can be included in the column value.
Leading and ending quote characters are assumed not to be part of the value and are excluded
from the loaded data value.

To include a quote character in a value with QUOTES ON, use two quotes. For example, this
line includes a value in the third column that is a single quote character:

123 High Street, Anytown’, ‘(715)398-2354',' """

With STRIP turned on (the default), trailing blanks are stripped from values before they are
inserted. Trailing blanks are stripped only for non-quoted strings. Quoted strings retain their
trailing blanks. Leading blank or TAB characters are trimmed only when the QUOTES setting
is ON.

The data extraction facility provides options for handling quotes
(TEMP_EXTRACT_QUOTES, TEMP_EXTRACT_QUOTES_ALL, and

TEMP_EXTRACT _QUOTE). If you plan to extract data to be loaded into an 1Q table and the
string fields contain column or row delimiter under default ASCII extraction, use the

Reference: Statements and Options 229

SQL Statements

TEMP_EXTRACT_BI NARY option for the extract and the FORMAT binary and QUOTES OFF

options for LOAD TABLE.

Limits:

e QUOTES ON applies only to column-delimited ASCII fields.

* With QUOTES ON, the first character of a column delimiter or row terminator cannot be a
single or double quote mark.

» The QUOTES option does not apply to loading binary large object (BLOB) or character
large object (CLOB) data from the secondary file, regardless of its setting. A leading or
trailing quote is loaded as part of CL OB data. Two consecutive quotes between enclosing
quotes are loaded as two consecutive quotes with the QUOTES ON option.

« Adaptive Server Enterprise BCP does not support the QUOTES option. All field data is
copied in or out equivalent to the QUOTES OFF setting. As QUOTES ON is the default

setting for the Sybase 1Q LOAD TABLE statement, you must specify QUOTES OFF when
importing ASE data from BCP output to a Sybase 1Q table.

Exceptions:

« If LOAD TABLE encounters any nonwhite characters after the ending quote character for
an enclosed field, this error is reported and the load operation is rolled back:

Non- SPACE text found after ending quote character for
an encl osed fi el d.
SQLSTATE: QrA14 SQ.CODE: -1005014L

« With QUOTES ON, if a single or double quote is specified as the first character of the
column delimiter, an error is reported and the load operation fails:

Singl e or doubl e quote mark cannot be the 1st character
of colum delimter or row term nator with QUOTES option
ON.

SQLSTATE: QCA90 SQLCODE: -1013090L

For an example of the QUOTES option, see System Administration Guide.: Volume 1 > Data
Import and Export > Bulk Loads with the LOAD TABLE Statement.

ESCAPES—If you omit a column-spec definition for an input field and ESCAPES is ON (the
default), characters following the backslash character are recognized and interpreted as
special characters by the database server. You can include newline characters as the
combination \n, and other characters as hexadecimal ASCII codes, such as \x09 for the tab
character. A sequence of two backslash characters (\\) is interpreted as a single backslash. For
Sybase 1Q, you must set ESCAPES OFF.

FORMAT—Sybase 1Q supports ASCII and binary input fields. The format is usually defined
by the column-spec described above. If you omit that definition for a column, by default
Sybase 1Q uses the format defined by this option. Input lines are assumed to have ascii (the
default) or binary fields, one row per line, with values separated by the column delimiter
character.

For a detailed description of the binary format used by Sybase 1Q to produce data files that can
be read by the LOAD TABLE statement using the FORMAT BINARY and BINARY column

230 Sybase 1Q

SQL Statements

specification clauses, see System Administration Guide: Volume 1 > Data Import and Export
> Binary Load Formats.

Sybase 1Q also accepts data from BCP character files as input to the LOAD TABLE command.

» The BCP data file loaded into Sybase IQ tables using the LOAD TABLE FORMAT BCP
statement must be exported (BCP OUT) in cross-platform file format using the -c option.

» For FORMAT BCP, the default column delimiter for the LOAD TABLE statement is <tab>
and the default row terminator is <newline>.

» For FORMAT BCP, the last column in a row must be terminated by the row terminator, not
by the column delimiter. If the column delimiter is present before the row terminator, then
the column delimiter is treated as a part of the data.

« Datafor columns that are not the last column in the load specification must be delimited by
the column delimiter only. If arow terminator is encountered before a column delimiter for
a column that is not the last column, then the row terminator is treated as a part of the
column data.

e Column delimiter can be specified via the DELIMITED BY clause. For FORMAT BCP, the
delimiter must be less than or equal to 10 characters in length. An error is returned, if the
delimiter length is more than 10.

» For FORMAT BCP, the load specification may contain only column names, NULL, and
ENCRYPTED. Anerror is returned, if any other option is specified in the load specification.
For example, these LOAD TABLE load specifications are valid:

LOAD TABLE x(c1, c2 null (bl anks), c3)
FROM ' bcp_fil e. bcp’
FORVAT BCP

LOAD TABLE x(cl1 encrypted(bigint,' KEY-ONE' ,"'aes'), c2, c3)
FROM ' bcp_fil e. bcp’
FORVAT BCP

For information on the LOAD TABLE ENCRYPTED clause, see Advanced Security in
Sybase 1Q.

DELIMITED BY—If you omit a column delimiter in the column-spec definition, the default
column delimiter character is a comma. You can specify an alternative column delimiter by
providing a single ASCII character or the hexadecimal character representation. The
DELIMITED BY clause is:

DELI M TED BY '\ x09'

To use the newline character as a delimiter, you can specify either the special combination "\n'
or its ASCII value "\x0a'. Although you can specify up to four characters in the column-spec
delimiter-string, you can specify only a single character in the DELIMITED BY clause.

STRIP—The STRIP clause specifies whether unquoted values should have trailing blanks
stripped off before they are inserted. The LOAD TABLE command accepts these STRIP
keywords:

Reference: Statements and Options 231

SQL Statements

* STRIP OFF—Do not strip off trailing blanks.
e STRIP RTRIM—Strip trailing blanks.
e STRIP ON—Deprecated. Equivalent to STRIP RTRIM.

With STRIP turned on (the default), Sybase I1Q strips trailing blanks from values before
inserting them. This is effective only for VARCHAR data. STRIP OFF preserves trailing blanks.

Trailing blanks are stripped only for unquoted strings. Quoted strings retain their trailing
blanks. If you do not require blank sensitivity, you can use the FILLER option as an alternative
to be more specific in the number of bytes to strip, instead of all the trailing spaces. STRIP OFF
is more efficient for Sybase 1Q, and it adheres to the ANSI standard when dealing with trailing
blanks. (CHAR data is always padded, so the STRIP option only affects VARCHAR data.)

The STRI P option applies only to variable-length non-binary data and does not apply to
ASCII fixed-width inserts. For example, assume this schema:

CREATE TABLE t(c1 VARCHAR(3));

LOAD TABLE t(c1 ',") STRIP RTRIM /1 trailing bl anks
trinmed
LOAD TABLE t(c1 ',") STRI P OFF /1 trailing bl anks not
tri nmed
LOAD TABLE t(¢1 ASCII(3)) ... STRIP RTRIM /'l trailing bl anks not
tri med
LOAD TABLE t(c1 ASCII(3)) ... STRIP OFF /1 trailing bl anks
trinmed
LOAD TABLE t(cl BINARY) STRIP RTRI M /1 trailing bl anks
tri nmed
LOAD TABLE t(cl BINARY) STRI P OFF /1 trailing bl anks
trinmed

Trailing blanks are always trimmed from binary data.

WITH CHECKPOINT—This option is useful only when loading SQL Anywhere tables in a
Sybase 1Q database.

Use this clause to specify whether to perform a checkpoint. The default setting is OFF. If this
clause is set to ON, a checkpoint is issued after successfully completing and logging the
statement. If the server fails after a connection commits and before the next checkpoint, the
data file used to load the table must be present for the recovery to complete successfully.
However, if WITH CHECKPOINT ON is specified, and recovery is subsequently required, the
data file need not be present at the time of recovery.

The data files are required, regardless of what is specified for this clause, if the database
becomes corrupt and you need to use a backup and apply the current log file.

Warning! If you set the database option CONVERSI ON_ERROR to OFF, you may load bad
data into your table without any error being reported. If you do not specify WITH
CHECKPOINT ON, and the database needs to be recovered, the recovery may fail as
CONVERSI ON_ERRORis ON (the default value) during recovery. It is recommended that you

232

Sybase 1Q

SQL Statements

do not load tables when CONVERSI ON_ERROR s set to OFF and WITH CHECKPOINT ON is
not specified.

See also CONVERSION_ERROR Option [TSQL].

For information regarding automatic recovery of Sybase 1Q data, see System Administration
Guide: Volume 1 > System Recovery and Database Repair.

BYTE ORDER—Specifies the byte order during reads. This option applies to all binary input
fields. If none are defined, this option is ignored. Sybase IQ always reads binary data in the
format native to the machine it is running on (default is NATIVE). You can also specify:

* HIGH when multibyte quantities have the high order byte first (for big endian platforms
like Sun, IBM AlX, and HP).

e LOW when multibyte quantities have the low order byte first (for little endian platforms
like Windows).

LIMIT—Specifies the maximum number of rows to insert into the table. The defaultis 0 for no
limit. The maximum is 231 - 1 (2147483647) rows.

NOTIFY—Specifies that you be notified with a message each time the specified number of
rows is successfully inserted into the table. The default is every 100,000 rows. The value of
this option overrides the value of the NOTI FY_MODULUS database option.

ON FILE ERROR—Specifies the action Sybase 1Q takes when an input file cannot be opened
because it does not exist or you have incorrect permissions to read the file. You can specify one
of the following:

e ROLLBACK aborts the entire transaction (the default).
* FINISH finishes the insertions already completed and ends the load operation.
e CONTINUE returns an error but only skips the file to continue the load operation.

Only one ON FILE ERROR clause is permitted.

PREVIEW—Displays the layout of input into the destination table including starting
position, name, and data type of each column. Sybase 1Q displays this information at the start
of the load process. If you are writing to a log file, this information is also included in the
log.

ROW DELIMITED BY—Specifies a string up to 4 bytes in length that indicates the end of an
input record. You can use this option only if all fields within the row are any of the following:

» Delimited with column terminators
« Data defined by the DATE or DATETIME column-spec options
» ASCII fixed length fields

You cannot use this option if any input fields contain binary data. With this option, a row
terminator causes any missing fields to be set to NULL. All rows must have the same row
delimiters, and it must be distinct from all column delimiters. The row and field delimiter
strings cannot be an initial subset of each other. For example, you cannot specify “*” as a field

Reference: Statements and Options 233

SQL Statements

delimiter and “*#” as the row delimiter, but you could specify “#” as the field delimiter with
that row delimiter.

If a row is missing its delimiters, Sybase 1Q returns an error and rolls back the entire load
transaction. The only exception is the final record of a file where it rolls back that row and
returns a warning message. On Windows, a row delimiter is usually indicated by the newline
character followed by the carriage return character. You might need to specify this as the
delimiter-string (see above for description) for either this option or FILLER.

SKIP—Defines the number of rows to skip at the beginning of the input tables for this load.
The maximum number of rows to skip is 231 - 1 (2147483647). The default is 0.

HEADER SKIP...HEADER DELIMITED BY—Specifies a number of lines at the beginning
of the data file, including header rows, for LOAD TABLE to skip. All LOAD TABLE column
specifications and other load options are ignored, until the specified number of rows is
skipped.

e The number of lines to skip is greater than or equal to zero.

e Lines are determined by a 1 to 4 character delimiter string specified in the HEADER
DELIMITED BY clause. The default HEADER DELIMITED BY string is the ‘\n’ character.

* The HEADER DELIMITED BY string has a maximum length of four characters. An error is
returned, if the string length is greater than four or less than one.

« When a non-zero HEADER SKIP value is specified, all data inclusive of the HEADER
DELIMITED BY delimiter is ignored, until the delimiter is encountered the number of times
specified in the HEADER SKIP clause.

e All LOAD TABLE column specifications and other load options are ignored, until the
specified number of rows has been skipped. After the specified number of rows has been
skipped, the LOAD TABLE column specifications and other load options are applied to the
remaining data.

« The "header" bytes are ignored only at the beginning of the data. When multiple files are
specified in the USING clause, HEADER SKIP only ignores data starting from the first row
of the first file, until it skips the specified number of header rows, even if those rows exist in
subsequent files. LOAD TABLE does not look for headers once it starts parsing actual data.

» Noerror is reported, if LOAD TABLE processes all input data before skipping the number
of rows specified by HEADER SKIP.

WORD SKIP—AIllows the load to continue when it encounters data longer than the limit
specified when the word index was created.

If a row is not loaded because a word exceeds the maximum permitted size, a warning is
writtentothe . i qnsg file. WORD size violations can be optionally logged to the MESSAGE
LOG file and rejected rows logged to the ROW LOG file specified in the LOAD TABLE
statement.

 If the option is not specified, LOAD TABLE reports an error and rolls back on the first
occurrence of a word that is longer than the specified limit.

234 Sybase 1Q

SQL Statements

o number specifies the number of times the “Wor ds exceedi ng t he maxi mum
permtted word | ength not supported” error is ignored.
e 0 (zero) means there is no limit.

START ROW ID—Specifies the record identification number of a row in the Sybase 1Q table
where it should start inserting.

The START ROW ID clause of the LOAD TABLE and the INSERT commands is not allowed on a
partitioned table.

ON PARTIAL INPUT ROW—Specifies the action to take when a partial input row is
encountered during a load. You can specify one of the following:

e CONTINUE issues a warning and continues the load operation. This is the default.
* ROLLBACK aborts the entire load operation and reports the error.

Partial input record skipped at EOCF.
SQLSTATE: QDC32 SQLSTATE: -1000232L

IGNORE CONSTRAINT—Specifies whether to ignore CHECK, UNIQUE, NULL, DATA
VALUE, and FOREIGN KEY integrity constraint violations that occur during a load and the
maximum number of violations to ignore before initiating a rollback. Specifying each
constrainttype has the following result:

e CHECK /imit—If limitspecifies zero, the number of CHECK constraint violations to
ignore is infinite. If CHECK is not specified, the first occurrence of any CHECK constraint
violation causes the LOAD statement to roll back. If /imitis nonzero, then the /imit+1
occurrence of a CHECK constraint violation causes the load to roll back.

* UNIQUE /imit—If limitspecifies zero, then the number of UNIQUE constraint violations
to ignore is infinite. If /imitis nonzero, then the /imit+1 occurrence of a UNIQUE
constraint violation causes the load to roll back.

e NULL /imit—If limitspecifies zero, then the number of NULL constraint violations to
ignore is infinite. If /imitis nonzero, then the /imit+1 occurrence of a NULL constraint
violation causes the load to roll back.

e FOREIGN KEY /imit—If limitspecifies zero, the number of FOREIGN KEY constraint
violations to ignore is infinite. If /imitis nonzero, then the /imit+1 occurrence of a
FOREIGN KEY constraint violation causes the load to roll back.

« DATA VALUE /imit—If the database option CONVERSION_ERROR = ON, an error is
reported and the statement rolls back. If /imit specifies zero, then the number of DATA
VALUE constraint violations (data type conversion errors) to ignore is infinite. If /imitis
nonzero, then the /imit+1 occurrence of a DATA VALUE constraint violation causes the
load to roll back.

e ALL /imit—If the database option CONVERSI ON_ERRCR = QN, an error is reported
and the statement rolls back. If /imitspecifies zero, then the cumulative total of all integrity
constraint violations to ignore is infinite. If /imitis nonzero, then load rolls back when the
cumulative total of all ignored UNIQUE, NULL, DATA VALUE, and FOREIGN KEY
integrity constraint violations exceeds the value of /imit. For example, you specify this
IGNORE CONSTRAINT option:

Reference: Statements and Options 235

SQL Statements

| GNORE CONSTRAI NT NULL 50, UNI QUE 100, ALL 200

The total number of integrity constraint violations cannot exceed 200, whereas the total
number of NULL and UNIQUE constraint violations cannot exceed 50 and 100,
respectively. Whenever any of these limits is exceeded, the LOAD TABLE statement rolls
back.

Note: A single row can have more than one integrity constraint violation. Every
occurrence of an integrity constraint violation counts towards the limit of that type of
violation.

Sybase strongly recommends setting the IGNORE CONSTRAINT option limit to a nonzero
value if you are logging the ignored integrity constraint violations. Logging an excessive
number of violations affects the performance of the load.

If CHECK, UNIQUE, NULL, or FOREIGN KEY is not specified in the IGNORE
CONSTRAINT clause, then the load rolls back on the first occurrence of each of these types of
integrity constraint violation.

If DATA VALUE is not specified in the IGNORE CONSTRAINT clause, then the load rolls back
on the first occurrence of this type of integrity constraint violation, unless the database option
CONVERSI ON_ERROR = OFF. If CONVERSI ON_ERROR = OFF, a warning is reported
for any DATA VALUE constraint violation and the load continues.

When the load completes, an informational message regarding integrity constraint violations
is logged in the . i qnsqg file. This message contains the number of integrity constraint
violations that occurred during the load and the number of rows that were skipped.

MESSAGE LOG—Specifies the names of files in which to log information about integrity

constraint violations and the types of violations to log. Timestamps indicating the start and

completion of the load are logged in both the MESSAGE LOG and the ROW LOG files. Both
MESSAGE LOG and ROW LOG must be specified, or no information about integrity violations
is logged.

« Ifthe ONLY LOG clause is not specified, no information on integrity constraint violations is
logged. Only the timestamps indicating the start and completion of the load are logged.

« Information is logged on all integrity constraint-type violations specified in the ONLY LOG
clause or for all word index-length violations if the keyword WORD is specified.

» If constraint violations are being logged, every occurrence of an integrity constraint
violation generates exactly one row of information in the MESSAGE LOG file.
The number of rows (errors reported) in the MESSAGE LOG file can exceed the IGNORE
CONSTRAINT option limit, because the load is performed by multiple threads running in
parallel. More than one thread might report that the number of constraint violations has
exceeded the specified limit.

« If constraint violations are being logged, exactly one row of information is logged in the
ROW LOG file for a given row, regardless of the number of integrity constraint violations
that occur on that row.

236 Sybase 1Q

SQL Statements

The number of distinct errors in the MESSAGE LOG file might not exactly match the
number of rows in the ROW LOG file. The difference in the number of rows is due to the
parallel processing of the load described above for the MESSAGE LOG.

e The MESSAGE LOG and ROW LOG files cannot be raw partitions or named pipes.
e Ifthe MESSAGE LOG or ROW LOG file already exists, new information is appended to the

file.

« Specifying an invalid file name for the MESSAGE LOG or ROW LOG file generates an
error.

« Specifying the same file name for the MESSAGE LOG and ROW LOG files generates an
error.

Various combinations of the IGNORE CONSTRAINT and MESSAGE LOG options result in
different logging actions.

Table 11. LOAD TABLE Logging Actions

IGNORE CON- MESSAGE LOG |Action

STRAINT speci- specified?

fied?

yes yes All ignored integrity constraint violations are
logged, including the user specified limit, before
the rollback.

no yes The first integrity constraint violation is logged
before the rollback.

yes no Nothing is logged.

no no Nothing is logged. The first integrity constraint

violation causes a rollback.

Note: Sybase strongly recommends setting the IGNORE CONSTRAINT option limit to a
nonzero value, if you are logging the ignored integrity constraint violations. I1f a single row has
more than one integrity constraint violation, a row for each violation is written to the
MESSAGE LOG file. Logging an excessive number of violations affects the performance of
the load.

LOG DELIMITED BY—Specifies the separator between data values in the ROW LOG file.
The default separator is a comma.

For more details on the contents and format of the MESSAGE LOG and ROW LOG files, see
System Administration Guide: Volume 1 > Data Import and Export > Bulk Loads with the
LOAD TABLE Statement.

Sybase 1Q no longer returns an error message when FORMAT BCP is specified as a LOAD
TABLE clause. In addition, these conditions are verified and proper error messages are
returned:

Reference: Statements and Options 237

SQL Statements

 Ifthe specified load format is not ASCII, BINARY, or BCP, Sybase 1Q returns the message
“Only ASCI |, BCP and BI NARY are supported LOAD formats.”

« If the LOAD TABLE column specification contains anything other than column name,
NULL, or ENCRYPTED, then Sybase I1Q returns the error message “I nval i d | oad
specification for LOAD ... FORMAT BCP.”

 Ifthe column delimiter or row terminator size for the FORMAT BCP load is greater than 10
characters, then Sybase 1Q returns the message “Del i miter ‘9%’ nust be 1
to %8 characters in |ength.” (where %3 equals 10).

Messages corresponding to error or warning conditions which can occur for FORMAT BCP
as well as FORMAT ASCII are the same for both formats.

« If the load default value specified is AUTOINCREMENT, IDENTITY, or GLOBAL
AUTOINCREMENT, Sybase 1Q returns the error “Def aul t val ue %2 cannot be
used as a LOAD default value. %d”

« Ifthe LOAD TABLE specification does not contain any columns that need to be loaded from
the file specified, Sybase 1Q returns the error “The LOAD st at enent nust
contain at |east one colum to be |oaded frominput file.”
and the LOAD TABLE statement rolls back.

» Ifaload exceeds the limit on the maximum number of terms for a text document with TEXT
indexes, Sybase 1Q returns the error “Text document exceeds maxi num
number of terms. Support up to 4294967295 terns per
docunent . ”

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not applicable.

Permissions

The permissions required to execute a LOAD TABLE statement depend on the database server
-gl command line option, as follows:

» Ifthe-gl option is set to ALL, you must be the owner of the table, have DBA authority, or
have ALTER permission.

« If the -gl option is set to DBA, you must have DBA authority.
« If the -gl option is set to NONE, LOAD TABLE is not permitted.

For more information, see the -gl command line option in Utility Guide > start_iq Database
Server Startup Utility > start_iq Server Options.

LOAD TABLE also requires an exclusive lock on the table.

See also
e INSERT Statementon page 209
e LOAD ZEROLENGTH ASNULL Optionon page 399

238

Sybase 1Q

SQL Statements

« NON_ANSI_NULL VARCHAR Optionon page 417

Storage Sizes
The storage size of character data, given column definition size and input data size.

Table 12. Storage Size of Character Data

Data type Column definition Input data Storage

CHARACTER, CHAR | width of (32K — 1) bytes (32K — 1) bytes (32K — 1) bytes

VARCHAR, CHAR- width of (32K - 1) bytes (32K - 1) bytes (32K — 1) bytes
ACTER VARYI NG

LOCK TABLE Statement

Prevents other concurrent transactions from accessing or modifying a table within the
specified time.

Syntax
LOCK TABLE table-list [WITHHOLD] IN { SHARE | WRITE|EXCLUSIVE } MODE
[WAITtime]

Parameters
o tablelist: — [owner.] table-name| , [owner.] table-name, ...]
time:

string

Examples

* Example 1—Obtain a WRITE lock on the Cust orrer s and Enpl oyees tables, if
available within 5 minutes and 3 seconds:

LOCK TABLE Custoners, Enployees IN WRI TE MODE WAI T
' 00: 05: 03'

* Example 2 —Wait indefinitely until the WRITE lock on the Cust oner s and
Enpl oyees tables is available, or an interrupt occurs:

LOCK TABLE Custoners, Enployees IN WRI TE MODE WAI T

Usage

table-name—The table must be a base table, not a view. WRITE mode is only valid for 1Q base
tables. LOCK TABLE either locks all tables in the table list, or none. If obtaining a lock for a

Reference: Statements and Options 239

SQL Statements

SQL Anywhere table, or when obtaining SHARE or EXCLUSIVE locks, you may only
specify a single table. Standard Sybase 1Q object qualification rules are used to parse table-
name. For related details, see Reference: Building Blocks, Tables, and Procedures > SQL
Language Elements > ldentifiers and System Administration Guide: Volume 1 > Database
Object Management > Table Management > Guidelines for Creating Tables > Types of
Tables.

WITH HOLD—If this clause is specified, the lock is held until the end of the connection. If the
clause is not specified, the lock is released when the current transaction is committed or rolled
back.

SHARE—Prevents other transactions from modifying the table, but allows them read access.
Inthis mode, you can change data in the table as long as no other transaction has locked the row
being modified, either indirectly, or explicitly by using LOCK TABLE.

WRITE—Prevents other transactions from modifying a list of tables. Unconditionally
commits the connections outermost transaction. The transaction’s snapshot version is
established not by the LOCK TABLE IN WRITE MODE statement, but by the execution of the
next command processed by Sybase 1Q.

A WRITE mode lock on an I1Q table that participates in a join index also locks:

e The top table of the join index hierarchy in WRITE mode when X is a non-top table
» The corresponding join virtual table (JVT)

WRITE mode locks are released when the transaction commits or rolls back, or when the
connection disconnects.

EXCLUSIVE—Prevents other transactions from accessing the table. In this mode, no other
transaction can execute queries, updates of any kind, or any other action against the table. If a
table t is locked exclusively with LOCK TABLE t IN EXCLUSIVE MODE, the default server
behavior is not to acquire row locks for t . This behavior can be disabled by setting the
SUBSUME_ROW LOCKS option OFF. See SQL Anywhere 11.0.1 > SQL Anywhere Server —
Database Administration > Configuring Your Database > Database options > Introduction to
database options > Alphabetical list of options > subsume_row _locks option [database].

LOCK TABLE statements run on tables in the 1Q main store on the coordinator do not affect
access to those tables from connections on secondary servers. For example:

On a coordinator connection, issue the command:
LOCK TABLE coordl W TH HOLD I N EXCLUSI VE MODE
sp_iglocks on the coordinator confirms that the table coor d1 has an exclusive (E) lock.

The result of sp_iglocks run on a connection on a secondary server does not show the
exclusive lock on table coor d1. The user on this connection can see updates to table
coor d1 on the coordinator.

240 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-5520158.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-5520158.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-5520158.html

SQL Statements

Other connections on the coordinator can see the exclusive lock on coor d1 and attempting to
select from table coor d1 from another connection on the coordinator returns User DBA
has the row in coordl | ocked.

WAIT time— Wait options specify maximum blocking time for all lock types. This option is
mandatory when lock mode is WRITE. When a time argument is given, the server locks the
specified tables only if available within the specified time. The time argument can be specified
in the format hh.nn.ss:sss. If a date part is specified, the server ignores it and converts the
argument into a timestamp. When no time argument is given, the server waits indefinitely until
a WRITE lock is available or an interrupt occurs.

LOCK TABLE on views is unsupported. Attempting to lock a view acquires a shared schema
lock regardless of the mode specified in the command. A shared schema lock prevents other
transactions from modifying the table schema.

The Transact-SQL (T-SQL) stored procedure dialect does not support LOCK TABLE. For
example, this statement returns Synt ax error near LOCK:
CREATE PROCEDURE t proc()

COW T,

LOCK TABLE t1 | N SHARE MODE
I NSERT | NTO t1 VALUES(30)
END

The Watcom-SQL stored procedure dialect supports LOCK TABLE. The default command
delimiter is a semicolon (;). For example:

CREATE PROCEDURE t proc()

COW T,

LOCK TABLE t1 | N SHARE MODE
I NSERT I NTO t1 VALUES(30)
END

See also Reference. Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_iglocks Procedure.
Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

e Sybase—Supported in Adaptive Server Enterprise. The WITH HOLD clause is not
supported in Adaptive Server Enterprise. Adaptive Server Enterprise provides a WAIT
clause that is not supported in SQL Anywhere.

Permissions
To lock a table in SHARE mode, SELECT privileges are required.
To lock a table in EXCLUSIVE mode, you must be the table owner or have DBA authority.

Reference: Statements and Options 241

SQL Statements

See also
e SELECT Statementon page 279

LOOP Statement

Repeats the execution of a statement list.

Syntax

[statenent-|abel:]
[WHILE search-condition] LOOP
statenent-1i st
END LOOP [statenent-Iabel]

Examples
e Example 1 — A WHILE loop in a procedure:

SET i =1 ;

VWH LE i <= 10 LOCOP
I NSERT | NTO Counters(number) VALUES (i) ;
SETi =1 + 1 ;

END LOOP ;

* Example 2 — A labeled loop in a procedure:

SET i = 1;
| bl :
LOoP
| NSERT
I NTO Count ers(number)
VALUES (i) ;
IFi >= 10 THEN
LEAVE | bl ;
END | F ;
SETi =1 + 1 ;
END LOOP | bl

Usage

The WHILE and LOOP statements are control statements that let you repeatedly execute a list
of SQL statements while a search-conditionevaluates to TRUE. The LEAVE statement can be
used to resume execution at the first statement after the END LOOP.

If the ending statement-label is specified, it must match the beginning statement-label.

Standards
e SQL—ISO/ANSI SQL compliant.

242

Sybase 1Q

SQL Statements

« Sybase—Not supported in Adaptive Server Enterprise. The WHILE statement provides
looping in Transact-SQL stored procedures.

Permissions

None

See also

e FOR Statement on page 190

» L EAVE Statement on page 220

e WHILE Statement [T-SQL] on page 315

MESSAGE Statement

Displays a message.

Syntax

MESSAGE expr essi on,

[TYPE { INFO| ACTION | WARNING | STATUS }]

[TO { CONSOLE

| CLIENT [FOR { CONNECTION conn_id [IMMEDIATE] | ALL }]
| [EVENT | SYSTEM] LOG }

[DEBUGONLY]]

Parameters

e conn_id : — integer

Examples

* Example 1 - Display the string The current date and tinme, and the current
date and time, on the database server message window:
CREATE PROCEDURE message_test ()
BEG N
MESSACE ' The current date and time: ', Now();

END;
CALL nessage_test();

» Example 2 —To register a callback in ODBC, first declare the message handler:
voi d SQL_CALLBACK my_nsgpr oc(

void * sql ca,
unsi gned char nsg_type,
| ong code,
unsi gned short | en,
char* neg)

{ ...}

Reference: Statements and Options 243

SQL Statements

Install the declared message handler by calling the SQLSetConnectAttr function:

rc = SQ.Set Connect Attr (
dbc,
ASA REG STER _MESSAGE CALLBACK,
(SQLPA NTER) &ny_nsgproc, SQL_|IS PO NTER)

Usage

The MESSAGE statement displays a message, which can be any expression. Clauses can
specify where the message is displayed.

The procedure issuing a MESSAGE ... TO CLIENT statement must be associated with a
connection.

For example, the message box is not displayed because the event occurs outside of a
connection:

CREATE EVENT Checkl dl eTi me TYPE Serverldle
WHERE event _condition('ldleTinme') > 100
HANDLER
BEG N

MESSACE 'Idl e engine' type warning to client;
END;

However, in this example, the message is written to the server console:

CREATE EVENT Checkl dl eTi me TYPE Serverldle
WHERE event _condition('ldleTinme') > 100
HANDLER
BEG N

MESSACE ' I dl e engine' type warning to consol e;
END;

Valid expressions can include a quoted string or other constant, variable, or function.
However, queries are not permitted in the output of a MESSAGE statement, even though the
definition of an expression includes queries.

The FOR clause can be used to notify another application of an event detected on the server
without the need for the application to explicitly check for the event. When the FOR clause is
used, recipients receive the message the next time they execute a SQL statement. If the
recipient is currently executing a SQL statement, the message is received when the statement
completes. If the statement being executed is a stored procedure call, the message is received
before the call is completed.

If an application requires notification within a short time after the message is sent and when
the connection is not executing SQL statements, you can use a second connection. This
connection can execute one or more WAITFOR DELAY statements. These statements do not
consume significant resources on the server or network (as would happen with a polling
approach), but permit applications to receive notification of the message shortly after it is
sent.

244 Sybase 1Q

SQL Statements

ESQL and ODBC clients receive messages via message callback functions. In each case, these
functions must be registered. To register ESQL message handlers, use the
db_register_callback function.

ODBC clients can register callback functions using the SQLSetConnectAttr function.

For more information about using callback functions, see SQL Anywhere 11.0.1 > SQL
Anywhere Server — Programming > SQL Anywhere Database Tools Interface > Database
tools interface > Using the database tools interface > Using callback functions.

TYPE—The TYPE clause has an effect only if the message is sent to the client. The client
application must decide how to handle the message. Interactive SQL displays messages in
these locations:

e INFO - The Message window (default).

* ACTION- A Message box with an OK button.

* WARNING - A Message box with an OK button.
e STATUS - The Messages pane.

TO—Specifies the destination of a message:

e CONSOLE - Send messages to the database server window. CONSOLE is the default.

e CLIENT - Send messages to the client application. Your application must decide how to
handle the message, and you can use the TYPE as information on which to base that
decision.

* LOG - Send messages to the server log file specified by the -o option.

FOR—For messages TO CLIENT, this clause specifies which connections receive notification
about the message:

« CONNECTION conn_id — Specifies the recipient's connection ID for the message.

e IMMEDIATE - See SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference >
Using SQL > SQL statements > SQL statements (E-O) > MESSAGE statement.

e ALL - Specifies that all open connections receive the message.

DEBUG ONLY—Lets you control whether debugging messages added to stored procedures
are enabled or disabled by changing the setting of the DEBUG_MESSAGES option. When
DEBUG ONLY is specified, the MESSAGE statement is executed only when the
DEBUG_MESSAGES option is set to ON.

Note: DEBUG ONLY messages are inexpensive when the DEBUG _MESSAGES option is set to
OFF, so these statements can usually be left in stored procedures on a production system.
However, they should be used sparingly in locations where they would be executed frequently;
otherwise, they might result in a small performance penalty.

Standards
e SQL—Vendor extension to ISO/ANSI SQL grammar.

Reference: Statements and Options 245

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/dbt-using-callback-functions.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/dbt-using-callback-functions.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/dbt-using-callback-functions.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/message-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/message-statement.html

SQL Statements

» Sybase—Not supported in Adaptive Server Enterprise. The Transact-SQL PRINT
statement provides a similar feature, and is available in SQL Anywhere.

Permissions

Must be connected to the database.

DBA authority is required to execute a MESSAGE statement containing a FOR clause.

See also

e CREATE PROCEDURE Statementon page 110
* WAITFOR Statement on page 312

e DEBUG MESSAGES Option on page 363

OPEN Statement [ESQL] [SP]

Opens a previously declared cursor to access information from the database.

Syntax

OPEN cur sor - nane
[USING [DESCRIPTOR { sql da-nane | host-variable [, .] }] 1]
[WITH HOLD]

Parameters

e cursor-name: —identifier or host-variable
* gglda-name: —identifier

Examples
e Example 1—Use of OPEN in Embedded SQL.:
EXEC SQL OPEN enpl oyee_cursor;

and

EXEC SQL PREPARE enp_stat FROM

' SELECT Enpl oyeel D, Surnane FROM Enpl oyees WHERE nane |ike ?';
EXEC SQL DECLARE enpl oyee_cursor CURSOR FOR enp_stat;

EXEC SQL OPEN enpl oyee_cursor USING : pattern;

* Example 2 — An example from a procedure:

BEG N

DECLARE cur _enpl oyee CURSOR FOR
SELECT Sur nane
FROM Enpl oyees ;

DECLARE nane CHAR(40) ;

OPEN cur _enpl oyee;

LOoP

246

Sybase 1Q

SQL Statements

FETCH NEXT cur _enpl oyee into nane ;
END LOOP

CLGCSE cur _enpl oyee;

END

Usage

By default, all cursors are automatically closed at the end of the current transaction (COMMIT
or ROLLBACK). The optional WITH HOLD clause keeps the cursor open for subsequent
transactions. The cursor remains open until the end of the current connection or until an
explicit CLOSE statement is executed. Cursors are automatically closed when a connection is
terminated.

The cursor is positioned before the first row. See System Administration Guide: Volume 2 >
Using Procedures and Batches.

A cursor declared FOR READ ONLY sees the version of table(s) on which the cursor is declared
when the cursor is opened, not the version of table(s) at the time of the first FETCH.

The USING DESCRIPTOR sqlda-name, host-variable, and BLOCK n formats are for
Embedded SQL only.

If the cursor name is specified by an identifier or string, then the corresponding DECLARE
CURSOR statement must appear prior to the OPEN in the C program; if the cursor name is
specified by a host variable, then the DECLARE CURSOR statement must execute before the
OPEN statement.

The optional USING clause specifies the host variables that are bound to the placeholder bind
variables in the SELECT statement for which the cursor has been declared.

After successful execution of the OPEN statement, the sg/errgf3]field of the SQLCA
(SQLIOESTIMATE) is filled in with an estimate of the number of input/output operations
required to fetch all rows of the query. Also, the sglerraf2]field of the SQLCA (SQLCOUNT)
is filled in with either the actual number of rows in the cursor (a value greater than or equal to
0), or an estimate thereof (a negative number whose absolute value is the estimate). The
sqlerraf2] field is the actual number of rows, if the database server can compute this value
without counting the rows.

Standards

e SQL—ISO/ANSI SQL compliant.

« Sybase—The simple OPEN cursor-name syntax is supported by Adaptive Server
Enterprise. None of the other clauses are supported in Adaptive Server Enterprise stored
procedures. Open Client/Open Server supports the USING descriptor or host name
variable syntax.

Reference: Statements and Options 247

SQL Statements

Permissions

e Must have SELECT permission on all tables in a SELECT statement or EXECUTE
permission on the procedure in a CALL statement.

« When the cursor is on a CALL statement, OPEN causes the procedure to execute until the
first result set (SELECT statement with no INTO clause) is encountered. If the procedure
completes and no result set is found, the SQLSTATE_PROCEDURE_COMPLETE
warning is set.

See also

e CLOSE Statement [ESQL] [SP]on page 57

e DECLARE CURSOR Statement [ESQL] [SP] on page 154
e FETCH Statement [ESQL] [SP]on page 187

e PREFPARE Statement [ESQL] on page 253

* RESUME Statementon page 270

OUTPUT Statement [Interactive SQL]

Writes the current query results to a file.

Syntax

ouTPUT TO fil enanme

APPEND] [VERBOSE]

FORMAT out put - for mat]

ESCAPE CHARACTER character]
DELIMITED BY string]

QUOTE string [ALL]]

COLUMN WIDTHS (integer, ...)]
HEXADECIMAL { ON | OFF | ASIS }]
ENCODING encodi ng]

P

Parameters

 output-format: —ASCII| DBASEII | DBASEIII | EXCEL | FIXED | FOXPRO | HTML | LOTUS |
SQL | XML

» encoding: — string or identifier

Examples
* Example 1 —Place the contents of the Enpl oyees table in a file in ASCII format:

SELECT * FROM Enpl oyees;
QUTPUT TO enpl oyee. t xt FORVAT ASCI |

« Example2—Place the contents of the Enpl oyees table at the end of an existing file, and
include any messages about the query in this file as well:

248

Sybase 1Q

SQL Statements

SELECT * FROM Enpl oyees;
OUTPUT TO enpl oyee. t xt APPEND VERBOSE

» Example 3 —Export a value that contains an embedded line feed character. A line feed
character has the numeric value 10, which you can represent as the string '\x0a' in a SQL
statement.

Execute this statement with HEXADECIMAL ON:

SELECT 'linel\x0aline2'; OQUTPUT TO file.txt HEXADECI MAL ON
The result is a file with one line in it, containing this text:

| i nel0x0al i ne2

Execute the same statement with HEXADECIMAL OFF:

i nel\ x0al i ne2

If you set HEXADECI MAL to ASIS, you get a file with two lines:

"l'inel
i ne2'

Using ASIS generates two lines, because the embedded line feed character has been
exported without being converted to a two-digit hex representation, and without a prefix.

Usage
The OUTPUT statement copies the information retrieved by the current query to a file.

You can specify the output format with the optional FORMAT clause. If no FORMAT clause is
specified, the Interactive SQL OUTPUT_FORIVAT option setting is used.

The current query is the SELECT or LOAD TABLE statement that generated the information
that appears on the Results tab in the Results pane. The OUTPUT statement reports an error if
there is no current query.

Note: OUTPUT is especially useful in making the results of a query or report available to
another application, but is not recommended for bulk operations. For high-volume data
movement, use the ASCII and BINARY data extraction functionality with the SELECT
statement. The extraction functionality provides much better performance for large-scale data
movement, and creates an output file you can use for loads.

APPEND—This optional keyword is used to append the results of the query to the end of an
existing output file without overwriting the previous contents of the file. If the APPEND clause
is not used, the OUTPUT statement overwrites the contents of the output file by default. The
APPEND keyword is valid if the output format is ASCII, FIXED, or SQL.

VERBOSE—When the optional VERBOSE keyword is included, error messages about the
query, the SQL statement used to select the data, and the data itself are written to the output
file. If VERBOSE is omitted (the default), only the data is written to the file. The VERBOSE
keyword is valid if the output format is ASCII, FIXED, or SQL.

Reference: Statements and Options 249

SQL Statements

FORMAT—Allowable output formats are:

ASCII—The output is an ASCII format file with one row per line in the file. All values are
separated by commas, and strings are enclosed in apostrophes (single quotes). The
delimiter and quote strings can be changed using the DELIMITED BY and QUOTE clauses.
If ALL is specified in the QUOTE clause, all values (not just strings) are quoted.

Three other special sequences are also used. The two characters \n represent a newline
character, \\ represents a single \, and the sequence \xDD represents the character with
hexadecimal code DD. This is the default output format.

If you are exporting Java methods that have string return values, you must use the
HEXADECIMAL OFF clause.

DBASEII—The output is a dBASE Il format file with the column definitions at the top of
the file. Note that a maximum of 32 columns can be output. Column names are truncated to
11 characters, and each row of data in each column is truncated to 255 characters.
DBASEIII—The output isa dBASE 111 format file with the column definitions at the top of
the file. Note that a maximum of 128 columns can be output. Column names are truncated
to 11 characters, and each row of data in each column is truncated to 255 characters.
EXCEL—The output is an Excel 2.1 worksheet. The first row of the worksheet contains
column labels (or names, if there are no labels defined). Subsequent worksheet rows
contain the actual table data.

FIXED—The output is fixed format with each column having a fixed width. The width for
each column can be specified using the COLUMN WIDTHS clause. No column headings are
output in this format.

If COLUMN WIDTHS is omitted, the width for each column is computed from the data type
for the column, and is large enough to hold any value of that data type. The exception is that
LONG VARCHAR and LONG BI NARY data defaults to 32KB.

FOXPRO—The output is a FoxPro format file (the FoxPro memo field is different than the
dBASE memo field) with the column definitions at the top of the file. Note thata maximum
of 128 columns can be output. Column names are truncated to 11 characters. Column
names are truncated to 11 characters, and each row of data in each column is truncated to
255 characters.

HTML—The output is in the Hyper Text Markup Language format.

LOTUS—The output is a Lotus WKS format worksheet. Column names are put as the first
row in the worksheet. Note that there are certain restrictions on the maximum size of Lotus
WAKS format worksheets that other software (such as Lotus 1-2-3) can load. There is no
limit to the size of file Interactive SQL can produce.

SQL—The output is an Interactive SQL INPUT statement required to recreate the
information in the table.

Note: Sybase 1Q does not support the INPUT statement. You would need to edit this
statement to a valid LOAD TABLE (or INSERT) statement to use it to load data back in.

250

Sybase 1Q

SQL Statements

e XML—The output is an XML file encoded in UTF-8 and containing an embedded DTD.
Binary values are encoded in CDATA blocks with the binary data rendered as 2-hex-digit
strings. The LOAD TABLE statement does not accept XML as a file format.

ESCAPE CHARACTER—The default escape character for characters stored as hexadecimal
codes and symbols is a backslash (1), so \X0A is the line feed character, for example.

This default can be changed using the ESCAPE CHARACTER clause. For example, to use the
exclamation mark as the escape character, enter:

ESCAPE CHARACTER ' !

DELIMITED BY—The DELIMITED BY clause is for the ASCII output format only. The
delimiter string is placed between columns (default comma).

QUOTE—The QUOTE clause is for the ASCII output format only. The quote string is placed
around string values. The default is a single quote character. If ALL is specified in the QUOTE
clause, the quote string is placed around all values, not just around strings.

COLUMN WIDTHS—The COLUMN WIDTHS clause is used to specify the column widths for
the FIXED format output.

HEXADECIMAL—The HEXADECIMAL clause specifies how binary data is to be unloaded
for the ASCII format only. When set to ON, binary data is unloaded in the format Oxabcd.
When set to OFF, binary data is escaped when unloaded (\xab\xcd). When set to ASIS, values
are written as is, that is, without any escaping—even if the value contains control characters.
ASIS is useful for text that contains formatting characters such as tabs or carriage returns.

ENCODING—Specifies the encoding that is used to write the file. The ENCODING clause can
be used only with the ASCII format.

If encodingis not specified, Interactive SQL determines the code page that is used to write the
file as follows, where code page values occurring earlier in the list take precedence over those
occurring later:

« The code page specified with the DEFAULT_ISQL_ENCODING option (if this option is
set)

« The code page specified with the -codepage option when Interactive SQL was started
» The default code page for the computer Interactive SQL is running on

Side Effects

« In Interactive SQL, the Results tab displays only the results of the current query. All
previous query results are replaced with the current query results.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not applicable.

Reference: Statements and Options 251

SQL Statements

Permissions

None

See also
e SELECT Statementon page 279
e DEFAULT ISQL_ENCODING Option [Interactive SQL] on page 366

PARAMETERS Statement [Interactive SQL]

Specifies parameters to an Interactive SQL (dbisgl) command file.

Syntax
PARAMETERS paraneterl, paraneter2,

Examples
e Example 1—This dbisql command file takes two parameters:

PARAMETERS departnent _id, file ;
SELECT Sur nane

FROM Enpl oyees

WHERE Departnent| D = {department _i d}
>#{file}.dat;

Usage

PARAMETERS specifies how many parameters there are to a command file and also names
those parameters so that they can be referenced later in the command file.

Parameters are referenced by putting the named parameter into the command file where you
want the parameter to be substituted:

{par anet er 1}

There must be no spaces between the braces and the parameter name.

If a command file is invoked with fewer than the required number of parameters, dbisq|l
prompts for values of the missing parameters.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not applicable.

Permissions

None

252 Sybase 1Q

SQL Statements

See also
» READ Statement [Interactive SQL] on page 259

PREPARE Statement [ESQL]

Prepares a statement to be executed later or used for a cursor.

Syntax

PREPARE st at enent - nane

FROM st at ement
[DESCRIBEdescribe-type INTO [[SQL] DESCRIPTOR] descri ptor]
[WITH EXECUTE]

Parameters

e statement-name: — identifier or host-variable
* statement: —string, or host-variable

+ describetype: —{ ALL | BIND VARIABLES | INPUT | OUTPUT | SELECTLIST}... { LONG
NAMES [[OWNER.JTABLE.JCOLUMN]| WITH VARIABLE RESULT }

Examples
« Example 1 —Prepare a simple query:

EXEC SQL PREPARE enpl oyee_st at ement FROM
' SELECT Sur nane FROM Enpl oyees' ;

Usage

The PREPARE statement prepares a SQL statement from the stafement and associates the
prepared statement with statement-name.

This statement name is referenced to execute the statement, or to open a cursor if the statement
is a SELECT statement. stafement-name may be a host variable of type

a_sql _stat ement _nunber defined in the sql ca. h header file that is automatically
included. If an identifier is used for the statement-name, only one statement per module may
be prepared with this statement-name.

If a host variable is used for statement-name, it must have the type short i nt.Thereisa
typedef for this type in sql ca. h called a_sql _st at enent _nunber . This type is
recognized by the SQL preprocessor and can be used in a DECLARE section. The host variable
is filled in by the database during the PREPARE statement and need not be initialized by the
programmer.

If the DESCRIBE INTO DESCRIPTOR clause is used, the prepared statement is described into
the specified descriptor. The describe type may be any of the describe types allowed in the
DESCRIBE statement.

Reference: Statements and Options 253

SQL Statements

If the WITH EXECUTE clause is used, the statement is executed if and only if itis nota CALL or
SELECT statement, and it has no host variables. The statement is immediately dropped after a
successful execution. If PREPARE and DESCRIBE (if any) are successful but the statement
cannot be executed, a warning SQLCODE 111, SQ.STATE 01WD8 is set, and the
statement is not dropped.

The DESCRIBE INTO DESCRIPTOR and WITH EXECUTE clauses might improve
performance, as they decrease the required client/server communication.

The WITH VARIABLE RESULT clause is used to describe procedures that may have more than
one result set, with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT value after the
describe to one of these values:

« 0—Theresultset may change: the procedure call should be described again following each
OPEN statement.

e 1—The result set is fixed. No redescribing is required.
These statements can be prepared:

e ALTER

e CALL

¢ COMMENT ON
e CREATE

e DELETE

* DROP

¢ GRANT

* INSERT

* REVOKE

e SELECT

e SET OPTION

Preparing COMMIT, PREPARE TO COMMIT, and ROLLBACK statements is still supported for
compatibility. However, Sybase recommends that you do all transaction management
operations with static Embedded SQL, because certain application environments may require
it. Also, other Embedded SQL systems do not support dynamic transaction management
operations.

Note: Make sure that you DROP the statement after use. If you do not, then the memory
associated with the statement is not reclaimed.

Side Effects

« Any statement previously prepared with the same name is lost.

254

Sybase 1Q

SQL Statements

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Open Client/Open Server.

Permissions

None

See also

e DECLARE CURSOR Statement [ESQL] [SP] on page 154
e DESCRIBE Statement [ESQL]on page 166

* DROP Statement on page 170

e EXECUTE Statement [ESQL]on page 181

e OPEN Statement [ESQL] [SP] on page 246

PRINT Statement [T-SQL]

Displays a message on the message window of the database server.

Syntax

PRINT format-string [, arg-list]

Examples
* Example 1 - Display a message on the server message window:

CREATE PROCEDURE print _test
AS
PRI NT ' Procedure call ed successfully'

This statement returns the string “Procedure called successfully” to the client:

EXECUTE print _t est
» Example2—Use placeholders in the PRINT statement; execute these statements inside a
procedure:

DECLARE @ar1 |INT, @ar2 |INT
SELECT @arl = 3, @ar2 =5
PRINT 'Variable 1 = 94!, Variable 2 = ®!', @arl, @ar?2

* Example 3 — Use RAISERROR to disallow connections:

CREATE procedure DBA. | ogi n_check()
begin
/1 Al'low a maxi mum of 3 concurrent connections
| F(db_property(' ConnCount') > 3) then
rai serror 28000
"User %! is not allowed to connect -- there are

Reference: Statements and Options 255

SQL Statements

al ready %! users | ogged on',
current user,
cast (db_property(' ConnCount') as int)-1;

ELSE
call sp_l ogin_environment;
end if;
end
go
grant execute on DBA.|login_check to PUBLIC
go

set option PUBLIC. Logi n_procedure="' DBA. | ogi n_check’
go

For an alternate way to disallow connections, see LOGIN_PROCEDURE Option or
Reference: Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_igmodifylogin Procedure.

Usage

The PRINT statement returns a message to the client window if you are connected from an
Open Clientapplication or JDBC application. If you are connected from an Embedded SQL or
ODBC application, the message displays on the database server window.

The format string can contain placeholders for the arguments in the optional argument list.
These placeholders are of the form %nn!, where nnis an integer between 1 and 20.
Standards

e SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must be connected to the database.

See also
e MESSAGE Statement on page 243
e LOGIN_PROCEDURE Option on page 401

PUT Statement [ESQL]

Inserts a row into the specified cursor.

Syntax

PUT cursor-nanme [USING DESCRIPTOR sql da- nanme
| FROM hostvar-list] [INTO { DESCRIPTOR i nto-sql da- name
| into-hostvar-list }] [ARRAY :nnn]

256

Sybase 1Q

SQL Statements

Parameters

* cursor-name: — identifier or hostvar
* sglda-name: — identifier
* hostvar-list: —may contain indicator variables

Examples
* Example 1—Use PUT in Embedded SQL:
EXEC SQL PUT cur_enpl oyee FROM : Enpl oyeel D, : Sur nane;

Usage

Inserts a row into the named cursor. Values for the columns are taken from the first SQLDA or
the host variable list, in a one-to-one correspondence with the columns in the INSERT
statement (for an INSERT cursor) or the columns in the select list (for a SELECT cursor).

The PUT statement can be used only on a cursor over an INSERT or SELECT statement that
references asingle table in the FROM clause, or that references an updatable view consisting of
a single base table.

If the sqldata pointer in the SQLDA is the null pointer, no value is specified for that column. If
the column has a DEFAULT VALUE associated with it, that is used; otherwise, a NULL value
is used.

The second SQLDA or host variable list contains the results of the PUT statement.

The optional ARRAY clause can be used to carry out wide puts, which insert more than one row
at a time and which might improve performance. The value nnnis the number of rows to be
inserted. The SQLDA must contain r1n* (columns per row) variables. The first row is placed
in SQLDA variables 0 to (columns per row) - 1, and so on.

Note: For scroll (values-sensitive) cursors, the inserted row appears if the new row matches
the WHERE clause and the keyset cursor has not finished populating. For dynamic cursors, if
the inserted row matches the WHERE clause, the row might appear. Insensitive cursors cannot
be updated.

For information on putting LONG VARCHAR or LONG BI NARY values into the database,
see SET statement [ESQL].

Side Effects

* Wheninserting rows into a value-sensitive (keyset-driven) cursor, the inserted rows appear
at the end of the result set, even when they do not match the WHERE clause of the query or
if an ORDER BY clause would normally have placed them at another location in the result
set. For more information, see SQL Anywhere 11.0.1 > SQL Anywhere Server —
Programming > Introduction to Programming with SQL Anywhere > Using SQL in
applications > SQL Anywhere cursors > Value-sensitive cursors.

Reference: Statements and Options 257

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/keyset-cursor-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/keyset-cursor-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/keyset-cursor-sqlapp.html

SQL Statements

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Open Client/Open Server.

Permissions

Must have INSERT permission.

See also

e DELETE (positioned) Statement [ESQL] [SP] on page 164
e INSERT Statement on page 209

e SET Statement [ESQL] on page 287

* UPDATE Statement on page 307

» UPDATE (positioned) Statement [ESQL] [SP] on page 311

RAISERROR Statement [T-SQL]

Signals an error and sends a message to the client.

Syntax
RAISERROR error-nunber [format-string] [, arg-list]

Examples

» Example 1 —Raise error 99999, which is in the range for user-defined errors, and send a
message to the client:

RAI SERROR 99999 'Invalid entry for this

colum: %!', @al
Usage
The RAISERROR statement allows user-defined errors to be signaled, and sends a message on
the client.

The error-number is a 5-digit integer greater than 17000. The error number is stored in the
global variable @@error.

There is no comma between the error-numberand the format-stringparameters. The firstitem
following a comma is interpreted as the first item in the argument list.

If format-stringis not supplied or is empty, the error number is used to locate an error message
in the system tables. Adaptive Server Enterprise obtains messages 17000-19999 from the
SYSMESSACES table. In Sybase 1Q, this table is an empty view, so errors in this range should

258 Sybase 1Q

SQL Statements

provide a format string. Messages for error numbers of 20000 or greater are obtained from the
SYS. SYSUSERMESSAGES table.

The format-string can be up to 255 bytes long. This is the same as in Adaptive Server
Enterprise.

The extended values supported by the SQL Server or Adaptive Server Enterprise RAISERROR
statement are not supported in Sybase 1Q.

The format string can contain placeholders for the arguments in the optional argument list.
These placeholders are of the form %nn!, where nnis an integer between 1 and 20.

Intermediate RAISERROR status and code information is lost after the procedure terminates.
If at return time an error occurs along with the RAISERROR, then the error information is
returned and the RAISERROR information is lost. The application can query intermediate
RAISERROR statuses by examining @ @error global variable at different execution points.

Standards

e SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
e Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must be connected to the database.

See also
« CONTINUE _AFTER_RAISERROR Option [TSQL]on page 348
e ON_TSQL ERROR Option [TSQL]on page 420

READ Statement [Interactive SQL]

Reads Interactive SQL (dbisql) statements from a file.

Syntax
READ filenane [paraneters]

Examples

* Examplel-

READ st atus. rpt ' 160
READ birthday.sqgl [>= '1988-1-1'] [<= '1988-1-30']

Reference: Statements and Options 259

SQL Statements

Usage

The READ statement reads a sequence of dbisql statements from the named file. This file can
contain any valid dbisql statement, including other READ statements, which can be nested to
any depth.

To find the command file, dbisql first searches the current directory, then the directories
specified in the environment variable SQLPATH, then the directories specified in the
environment variable PATH. If the named file has no file extension, dbisql also searches each
directory for the same file name with the extension SQL.

Parameters can be listed after the name of the command file. These parameters correspond to
the parameters named on the PARAMETERS statement at the beginning of the statement file
(see PARAMETERS Statement). dbisql then substitutes the corresponding parameter
wherever the source file contains:

{ paraneter-nane }
where parameter-name is the name of the appropriate parameter.

The parameters passed to a command file can be identifiers, numbers, quoted identifiers, or
strings. When quotes are used around a parameter, the quotes are put into the text during the
substitution. Parameters that are not identifiers, numbers, or strings (contain spaces or tabs)
must be enclosed in square brackets ([1). This allows for arbitrary textual substitution in the
command file.

If not enough parameters are passed to the command file, dbisql prompts for values for the
missing parameters.

The READ statement also supports an ENCODING clause, which lets you specify the encoding
that is used to read the file. See SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL
Reference > Using SQL > SQL statements > SQL statements (P-Z) > READ statement
[Interactive SQL].

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not applicable.

Permissions

None

See also
e DEFAULT ISQL_ENCODING Option [Interactive SQL] on page 366
* PARAMETERS Statement [Interactive SQL] on page 252

260

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/read-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/read-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/read-statement.html

SQL Statements

RELEASE SAVEPOINT Statement

Releases a savepoint within the current transaction.

Syntax
RELEASE SAVEPOINT [savepoi nt - nanme]

Usage

The savepoint-name is an identifier specified on a SAVEPOINT statement within the current
transaction. If savepoint-name is omitted, the most recent savepoint is released.

For a description of savepoints, see System Administration Guide: Volume 2 > Using
Procedures and Batches. Releasing a savepoint does not perform any type of COMMIT; it
simply removes the savepoint from the list of currently active savepoints.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

» Sybase—Not supported by Adaptive Server Enterprise. A similar feature is available in an
Adaptive Server Enterprise-compatible manner using nested transactions.

Permissions

There must have been a corresponding SAVEPOINT within the current transaction.

See also
e ROLLBACK TO SAVEPOINT Statementon page 276
o SAVEPOINT Statementon page 278

REMOVE Statement

Removes a class, a package, or a JAR file from a database. Removed classes are no longer
available for use as a variable type.

Syntax
REMOVE JAVA cl asses_to_renove

Reference: Statements and Options 261

SQL Statements

Parameters

* classes to remove: —{ CLASS java class name|, java_class name]... | PACKAGE
Java_package name|, java_package_name]... | JAR jar_name|, jar name]... [RETAIN
CLASSES]}

e jar_name: — character _string_expression

Examples
¢ Example 1 —Remove a Java class named “Demo” from the current database:
REMOVE JAVA CLASS Deno

Usage
Any class, package, or JAR to be removed must already be installed.

java_class_name—The name of one or more Java classes to be removed. Those classes must
be installed classes in the current database.

java_package_name—The name of one or more Java packages to be removed. Those
packages must be the name of packages in the current database.

jar_name—A character string value of maximum length 255.

Each jar_name must be equal to the jar_name of a retained JAR in the current database.
Equality of jar_nameis determined by the character string comparison rules of the SQL
system.

If JAR...RETAIN CLASSES is specified, the specified JARs are no longer retained in the
database, and the retained classes have no associated JAR. If RETAIN CLASSES is specified,
this is the only action of the REMOVE statement.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

» Sybase—Not supported by Adaptive Server Enterprise. A similar feature is available in an
Adaptive Server Enterprise-compatible manner using nested transactions.

Permissions

Must have DBA authority or must own the object.

262

Sybase 1Q

SQL Statements

RESIGNAL Statement

Resignals an exception condition.

Syntax
RESIGNAL [exception-name]

Examples

» Example1—This code fragment returns all exceptions except for “Column Not Found” to
the application:

DECLARE COLUMN_NOT_FOUND EXCEPTI ON
FOR SQLSTATE ' 52003 :

EXCEPTI ON

WHEN COLUMN_NOT_FOUND THEN

SET nessage=' Col um not found' ;

VHEN OTHERS THEN
RESI GNAL ;

Usage

Within an exception handler, RESIGNAL lets you quit the compound statement with the
exception still active, or quit reporting another named exception. The exception is handled by
another exception handler or returned to the application. Any actions by the exception handler
before the RESIGNAL are undone.

Standards

e SQL—ISO/ANSI SQL compliant.

» Sybase—Not supported in Adaptive Server Enterprise. Error handling in Transact-SQL
procedures is carried out using the RAISERROR statement.

Permissions

None

See also
e BEGIN ... END Statementon page 47
e SIGNAL Statement on page 297

Reference: Statements and Options 263

SQL Statements

RESTORE Statement

Restores a Sybase 1Q database backup from one or more archive devices.

Syntax

Syntax 1

RESTORE DATABASE ' db_fil e’

FROM ' archive_device' [FROM 'archive_device']..

...[CATALOG ONLY]

..[KEY key_spec]

..[[RENAME | ogi cal -dbfil e-nane TO ' new dbspace-path']...
| VERIFY [COMPATIBLE]]

Syntax 2
RESTORE DATABASE ' dat abase- nane’
[restore-option ...]

FROM ' archi ve_devi ce'

Parameters

« db_file: —relative or absolute path of the database to be restored. Can be the original
location, or a new location for the catalog store file.

* key_spec: —quoted string including mixed cases, numbers, letters, and special characters.
It might be necessary to protect the key from interpretation or alteration by the command
shell.

* restore-option: —

READONLY dbspace-or-file [, ...]
KEY key_spec
RENAME file-name TO newfile-path ...

Examples

* Example 1—This UNIX example restores the i gdeno database from tape devices /
dev/rmt/0and/ dev/rnt/ 2 ona Sun Solaris platform. On Solaris, the letter nafter
the device name specifies “no rewind on close.” To specify this feature with RESTORE,
use the naming convention appropriate for your UNIX platform. (Windows does not
support this feature.)

RESTORE DATABASE ' i qdeno’

FROM '/ dev/rnt/0On'
FROM '/ dev/rnt/2n'

* Example2—Restore an encrypted database named mar vi n that was encrypted with the
key islseCret.

RESTORE DATABASE ' marvin'
FROM ' mar vi n_bkup_fil el

264

Sybase 1Q

SQL Statements

FROM ' mar vi n_bkup_fil e2'
FROM ' mar vi n_bkup_fil e3'
KEY '"is!seCret'

« Example 3 —This example shows the syntax of a BACKUP statement and two possible
RESTORE statements. (This example uses objects in the i gdeno database for illustration
purposes. Note that i gdeno includes a sample user dbspace named i q_rai n that may
not be present in your database.)

Given this BACKUP statement:

BACKUP DATABASE READONLY DBSPACES i g_mai n
TO '/ systentl/ | QL5/ deno/ backup/ i qnai n'

The dbspace i g_nai n can be restored using either of these RESTORE statements:

RESTORE DATABASE ' i qdenp' READONLY DBSPACES i g_nmin
FROM ' / syst eml/ | Q15/ denmo/ backup/ i gmai n'

or

RESTORE DATABASE ' i qdeno’
FROM ' / syst entl/ | QL5/ deno/ backup/ i gnai n'

A selective backup backs up either all READWRITE dbspaces or specific read-only
dbspaces or dbfiles. Selective backups are a subtype of either full or incremental backups.

Notes:

* You can take a READONLY selective backup and restore all objects from this backup
(as in the second example above).

« You can take an all-inclusive backup and restore read-only files and dbspaces
selectively.

« You can take a READONLY selective backup of multiple read-only files and dbspaces
and restore a subset of read-only files and dbspaces selectively. See “Permissions.”

* Youcan restore the read-only backup, only if the read-only files have not changed since
the backup. Once the dbspace is made read-write again, the read-only backup is
invalid, unless you restore the entire read-write portion of the database back to the point
at which the read-only dbspace was read-only.

« Sybase recommends that you stick to one backup subtype, either selective or non-
selective. If you must switch from a non-selective to a selective backup, or vice versa,
always take a non-selective full backup before switching to the new subtype, to ensure
that you have all changes.

» Example 4 — Syntax to validate the database archives using the VERIFY clause, without
performing any write operations:

RESTORE DATABASE <dat abase_name. db>

FROM ' / sys1/ dunp/ dnpl'

FROM ' / sys1/ dunp/ dnp2'
VERI FY

Reference: Statements and Options 265

SQL Statements

When you use validate, specify a different database name to avoid Dat abase nane
not uni que errors. If the original database isi gdeno. db, for example, use
i q_deno_new. db instead:

RESTORE DATABASE i qdenp_new. db FROM i gdeno. bkp VERI FY

Usage

The RESTORE command requires exclusive access by the DBA to the database. This
exclusive access is achieved by setting the -gd switch to DBA, which is the default when you
start the server engine.

Issue the RESTORE command before you start the database (you must be connected to the
utility_db database). Once you finish specifying RESTORE commands for the type of
backup, that database is ready to be used. The database is left in the state that existed at the end
of the first implicit CHECKPOINT of the last backup you restored. You can now specify a
START DATABASE to allow other users to access the restored database.

The maximum size for a complete RESTORE command, including all clauses, is 32KB.

When restoring to a raw device, make sure the device is large enough to hold the dbspace you
are restoring. IQ RESTORE checks the raw device size and returns an error, if the raw device is
not large enough to restore the dbspace. See System Administration Guide: Volume 1 > Data
Backup, Recovery, and Archiving > Restoring Your Databases > The RESTORE Statement >
Moving Database Files > Restoring to a Raw Device.

BACKUP allows you to specify full or incremental backups. There are two kinds of
incremental backups. INCREMENTAL backs up only those blocks that have changed and
committed since the last backup of any type (incremental or full). INCREMENTAL SINCE
FULL backs up all the blocks that have changed since the last full backup. If a RESTORE of a
full backup is followed by one or more incremental backups (of either type), no modifications
to the database are allowed between successive RESTORE commands. This rule prevents a
RESTORE from incremental backups on a database in need of crash recovery, or one that has
been modified. You can still overwrite such a database with a RESTORE from a full backup.

Before starting a full restore, you must delete two files: the catalog store file (default name
dbnan®e. db) and the transaction log file (default name dbnane. | og).

If you restore an incremental backup, RESTORE ensures that backup media sets are accessed
in the proper order. This order restores the last full backup tape set first, then the first
incremental backup tape set, then the next most recent set, and so forth, until the most recent
incremental backup tape set. If the DBA produced an INCREMENTAL SINCE FULL backup,
only the full backup tape set and the most recent INCREMENTAL SINCE FULL backup tape set
is required; however, if there is an INCREMENTAL backup made since the INCREMENTAL
SINCE FULL backup, it also must be applied.

Sybase 1Q ensures that the restoration order is appropriate, or it displays an error. Any other
errors that occur during the restore results in the database being marked corrupt and unusable.
To clean up a corrupt database, do a RESTORE from a full backup, followed by any additional

266 Sybase 1Q

SQL Statements

incremental backups. Since the corruption probably happened with one of those backups, you
might need to ignore a later backup set and use an earlier set.

To restore read-only files or dbspaces from an archive backup, the database may be running
and the administrator may connect to the database when issuing the RESTORE statement. The
read-only file pathname need not match the names in the backup, if they otherwise match the
database system table information.

The database must not be running to restore a FULL, INCREMENTAL SINCE FULL, or
INCREMENTAL restore of either a READWRITE FILES ONLY or an all files backup. The
database may or may not be running to restore a backup of read-only files. When restoring
specific files in a read-only dbspace, the dbspace must be offline. When restoring read-only
files in a read-write dbspace, the dbspace can be online or offline. The restore closes the read-
only files, restores the files, and reopens those files at the end of the restore.

You can use selective restore to restore a read-only dbspace, as long as the dbspace is still in the
same read-only state.

FROM—Specifies the name of the archive_device from which you are restoring, delimited
with single quotation marks. If you are using multiple archive devices, specify them using
separate FROM clauses. A comma-separated list is not allowed. Archive devices must be
distinct. The number of FROM clauses determines the amount of parallelism Sybase 1Q
attempts with regard to input devices.

The backup/restore APl DLL implementation lets you specify arguments to pass to the DLL
when opening an archive device. For third-party implementations, the archive_device string
has this format:

"DLLidentifier::vendor_specific_information'

A specific example is:

' spsc: : wor kor der =12; vol name=ASD002'

The archive_devicestring length can be up to 1023 bytes. The DL Lidentifierportion must be 1
to 30 bytes in length and can contain only alphanumeric and underscore characters. The

vendor_specific_information portion of the string is passed to the third-party implementation
without checking its contents.

Note: Only certain third-party products are certified with Sybase 1Q using this syntax. See the
Release Bulletinfor additional usage instructions or restrictions. Before using any third-party
product to back up your Sybase 1Q database, make sure it is certified. See the Release Bulletin,
or see the Sybase Certification Reports for the Sybase 1Q product in 7echnical Documents.

For the Sybase implementation of the backup/restore API, you need not specify information
other than the tape device name or file name. However, if you use disk devices, you must
specify the same number of archive devices on the RESTORE as given on the backup;
otherwise, you may have a different number of restoration devices than the number used to
perform the backup. A specific example of an archive device for the Sybase API DLL that
specifies a nonrewinding tape device for a UNIX system is:

Reference: Statements and Options 267

http://www.sybase.com/support/techdocs/

SQL Statements

"/ dev/rnt/On'
CATALOG ONLY—Restores only the backup header record from the archive media.

RENAME—Restore one or more Sybase 1Q database files to a new location. Specify each
dbspace-nameyou are moving as it appears in the SYSFI LE table. Specify new-dbspace-path
as the new raw partition, or the new full or relative path name, for that dbspace.

If relative paths were used to create the database files, the files are restored by default relative
to the catalog store file (the SYSTEMdbspace), and a rename clause is not required. If absolute
paths were used to create the database files and a rename clause is not specified for afile, it is
restored to its original location.

Relative path names in the RENAME clause work as they do when you create a database or

dbspace: the main 1Q store dbspace, temporary store dbspaces, and Message Log are restored
relative to the location of db_f i | e (the catalog store); user-created 1Q store dbspaces are

restored relative to the directory that holds the main 1Q dbspace.

Do not use the RENAME clause to move the SYSTEMdbspace, which holds the catalog store.
To move the catalog store, and any files created relative to it and not specified in a RENAME
clause, specify a new location in the db_file parameter.

VERIFY [COMPATIBLE]— Directs the server to validate the specified Sybase 1Q database
backup archives for a full, incremental, incremental since full, or virtual backup. The backup
must be Sybase 1Q version 12.6 or later. The verification process checks the specified archives
for the same errors a restore process checks, but performs no write operations. All status
messages and detected errors are written to the server log file.

You cannot use the RENAME clause with the VERIFY clause; an error is reported.

The backup verification process can run on a different host than the database host. You must
have DBA, BACKUP, or OPERATOR authority to run RESTORE VERIFY.

If the COMPATIBLE clause is specified with VERIFY, the compatibility of an incremental
archive is checked with the existing database files. If the database files do not exist on the
system on which RESTORE...VERIFY COMPATIBLE is invoked, an error is returned. If
COMPATIBLE is specified while verifying a full backup, the keyword is ignored; no
compatibility checks need to be made while restoring a full backup.

You must have the database and log files (. db and. | og) to validate the backup of aread-only
dbspace within a full backup. If you do not have these files, validate the entire backup by
running RESTORE...VERIFY without the READONLY dbspace clause.

See System Administration Guide.: Volume 1 > Data Backup, Recovery, and Archiving >
Restoring Your Databases > The RESTORE Statement > Validating the Database After You
Restore.

Note: The verification of a backup archive is different than the database consistency checker
(DBCC) verifymode (sp_i gcheckdb ‘ verify. ..’). RESTORE VERIFY validates the

268

Sybase 1Q

SQL Statements

consistency of the backup archive to be sure it can be restored, whereas DBCC validates the
consistency of the database data.

Runsp_i qcheckdb ‘verify...’ beforetaking abackup. If an inconsistent database
is backed up, then restored from the same backup archive, the data continues to be in an
inconsistent state, even if RESTORE VERIFY reports a successful validation.

Other RESTORE issues:

* RESTORE to disk does not support raw devices as archival devices.

« Sybase IQ does not rewind tapes before using them; on rewinding tape devices, it does
rewind tapes after using them. You must position each tape to the start of the Sybase 1Q
data before starting the RESTORE.

» During BACKUP and RESTORE operations, if Sybase 1Q cannot open the archive device
(for example, when it needs the media loaded) and the ATTENDED option is ON, it waits
for ten seconds for you to put the next tape in the drive, and then tries again. It continues
these attempts indefinitely until either it is successful or the operation is terminated with
Ctrl+C.

« Ifyou press Ctrl+C, RESTORE fails and returns the database to its state before the
restoration began.

« If disk striping is used, the striped disks are treated as a single device.

e Thefil e_name column inthe SYSFI LE system table for the SYSTEMdbspace is not
updated during a restore. For the SYSTEMdbspace, the f i | e_name column always
reflects the name when the database was created. The file name of the SYSTEMdbspace is
the name of the database file.

See also System Administration Guide: Volume 1 > Data Backup, Recovery, and
Archiving.
Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Must have DBA authority. Users with SPACE ADMIN authority can perform read-only
selective restore when the -gu server startup option is set to value DBA (the default).

See also
e BACKUP Statementon page 41

Reference: Statements and Options 269

SQL Statements

RESUME Statement

Resumes a procedure after a query.

Syntax

Synitax 1
RESUME cur sor - nane

Syntax 2
RESUME [ALL]

Parameters

e cursor-name: — identifier
e cursor-name: — identifier or host-variable

Examples
* Example 1 - Embedded SQL examples:
EXEC SQL RESUME cur _enpl oyee;

and

EXEC SQL RESUME : cursor_var;
* Example 2 —dbisql example:

CALL sanple_proc() ;
RESUME ALL;

Usage

The RESUME statement resumes execution of a procedure that returns result sets.

The procedure executes until the next result set (SELECT statement with no INTO clause) is

encountered. If the procedure completes and no result set is found, the

SQLSTATE_PROCEDURE_COMPLETE warning is set. This warning is also set when you

RESUME a cursor for a SELECT statement.

Note: The Syntax 1 RESUME statement is supported in dbisqlc, but is invalid in dbisql
(Interactive SQL) or when connected to the database using the iAnywhere JDBC driver.

The dbisql RESUME statement (Syntax 2) resumes the current procedure. If ALL is not
specified, executing RESUME displays the next result set or, if no more result sets are returned,

completes the procedure.

270

Sybase 1Q

SQL Statements

The dbisql RESUME ALL statement cycles through all result sets in a procedure, without
displaying them, and completes the procedure. This is useful mainly in testing procedures.
Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not supported by Adaptive Server Enterprise.

Permissions

The cursor must have been previously opened.

See also
» DECLARE CURSOR Statement [ESQL] [SP] on page 154

RETURN Statement

Exits a function or procedure unconditionally, optionally providing a return value. Statements
following RETURN are not executed.

Syntax
RETURN [(expression)]

Examples
* Example 1 —Return the product of three numbers:

CREATE FUNCTI ON product (a nuneric,
b nuneric ,
C nuneric)
RETURNS nuneric
BEG N
RETURN (a * b * ¢) ;
END

* Example 2 — Calculate the product of three numbers:
SELECT product (2, 3, 4)
product (2,3,4)
24

* Example 3 — Avoid executing a complex query, if it is meaningless:

CREATE PROCEDURE cust omer _product s
(in custoner_id integer DEFAULT NULL)
RESULT (id integer, quantity_ordered integer)
BEG N
I F custonmer _id NOT IN (SELECT | D FROM Cust oner s)
OR custoner_id IS NULL THEN
RETURN

Reference: Statements and Options 271

SQL Statements

ELSE
SELECT | D, sum(
Sal esOrderltenms. Quantity)
FROM Pr oduct s,
Sal esOrder |t ens,
Sal esOrders
WHERE Sal esOrders. Customer| D = custoner_id
AND Sal esOrders. I D = SalesOrderltens. | D
AND Sal esOrder|tens. Product| D = Products. D
CGROUP BY Products. | D
END | F
END

Usage

If expression is supplied, the value of expression is returned as the value of the function or
procedure.

Within a function, the expression should be of the same data type as the RETURN data type of
the function.

RETURN is used in procedures for Transact-SQL-compatibility, and is used to return an
integer error code.

Standards

e SQL—ISO/ANSI SQL compliant.

e Sybase—Transact-SQL procedures use the return statement to return an integer error
code.

Permissions

None

See also
e BEGIN ... END Statementon page 47
e CREATE PROCEDURE Statementon page 110

REVOKE Statement

Removes permissions for specified users.

Syntax

Syntax 1

REVOKE
{ BACKUP
| CONNECT

272

Sybase 1Q

SQL Statements

DBA
GROUP
| INTEGRATED LOGIN
KERBEROS LOGIN
MEMBERSHIP IN GROUP userid [, .]
MULTIPLEX ADMIN
| OPERATOR
PERMS ADMIN
PROFILE
RESOURCE
| SPACE ADMIN
USER ADMIN }
VALIDATE
..FROM wuserid [, .]

Syntax 2

REVOKE

{..ALL [PRIVILEGES] | ALTER | DELETE | INSERT

| REFERENCE | SELECT [(colum-name [, .])] | UPDATE [(col um-
name, .)]

...ON [owner.]tabl e-nane FROM userid [, .]

Syntax 3

REVOKE EXECUTE ON [owner.]procedure-nanme FROM userid [, .]

Syntax 4
REVOKE CREATE ON dbspace-nane FROM userid [, .]

Examples
« Example 1 —Prevent user dave from inserting into the Enpl oyees table:

REVOKE | NSERT ON Enpl oyees FROM dave
« Example 2 — Revoke resource permission from user Ji m

REVOKE RESOURCE FROM Ji m

* Example 3 —Prevent user dave from updating the Enpl oyees table:
REVOKE UPDATE ON Enpl oyees FROM dave

» Example 4 — Revoke integrated login mapping from the user profile name
Admi ni strator:
REVOKE | NTEGRATED LOG N FROM Adni ni str at or

+ Example 5 — Disallow the finance group from executing the procedure
sp_customer_list:

REVOKE EXECUTE ON sp_custoner _|i st
FROM fi nance

* Example 6 — Drop user ID f r anwfrom the database:

REVOKE CONNECT FROM franw
* Example 7 — Revoke CREATE privilege on dbspace DspHi st from user Smi t h:

Reference: Statements and Options 273

SQL Statements

REVOKE CREATE ON DspHi st FROM Smith
» Example 8 — Revoke CREATE permission on dbspace DspHistfrom user ID f i onat
from the database:

REVOKE CREATE ON DspHi st FROM fi onat

Usage

The REVOKE statement is used to remove permissions that were given using the GRANT
statement.

Syntax 1 is used to revoke special user permissions (authorities) and Syntax 2 is used to revoke
table permissions. Syntax 3 is used to revoke permission to execute a procedure. REVOKE
CONNECT is used to remove a user ID from a database.

Note: Use system procedures, not GRANT and REVOKE, to add and remove user IDs.

REVOKE GROUP automatically revokes membership from all members of the group.

REVOKE CREATE removes CREATE permission on the specified dbspace from the specified
user IDs.

You cannot revoke permissions for a specific user within a group. If you do not want a specific
user to access a particular table, view, or procedure, then do not make that user a member of a
group that has permissions on that object.

Note: You cannot revoke the connect privileges of a user if that user owns database objects,
such as tables. Attempting to do so with a REVOKE statement or sp_dropuser procedure
returnsanerrorsuchas “Cannot drop a user that owns tables in runtine
system?”

Side Effects

* Automatic commit

Standards

* SQL—Syntax 1 is a vendor extension to ISO/ANSI SQL grammar. Syntax 2 is an entry-
level feature. Syntax 3 is a Persistent Stored Module feature.

« Sybase—Syntax 2 and 3 are supported by Adaptive Server Enterprise. Syntax 1 is not
supported by Adaptive Server Enterprise. User management and security models are
different for Sybase 1Q and Adaptive Server Enterprise.

Permissions
Must be the grantor of the permissions that are being revoked, or must have DBA authority.

For Syntax 1, REVOKE CONNECT, REVOKE INTEGRATED LOGIN and REVOKE
KERBEROS LOGIN require DBA or USER ADMIN authority. REVOKE GROUP,

274 Sybase 1Q

SQL Statements

REVOKE (authority, except DBA), and REVOKE MEMBERSHIP IN GROUP require DBA
or PERMS ADMIN authority. Only a DBA can revoke DBA authority.

If revoking CONNECT permissions or revoking table permissions from another user, the other
user must not be connected to the database.

For Syntax 2, REVOKE, REVOKE ALTER, REVOKE DELETE, REVOKE INSERT,
REVOKE REFERENCE, REVOKE SELECT, and REVOKE UPDATE require DBA or
PERMS ADMIN authority.

For Syntax 3, you must have DBA or PERMS ADMIN authority.
For Syntax 4, you must have DBA or SPACE ADMIN authority.

See also
e GRANT Statementon page 199

ROLLBACK Statement

Undoes any changes made since the last COMMIT or ROLLBACK.

Syntax
ROLLBACK [WORK]

Usage

ROLLBACK ends a logical unit of work (transaction) and undoes all changes made to the
database during this transaction. A transaction is the database work done between COMMIT or
ROLLBACK statements on one database connection.

Side Effects

e Closes all cursors not opened WITH HOLD.
« Releases locks held by the transaction issuing the ROLLBACK.

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

Must be connected to the database.

See also
e COMMIT Statement on page 60

Reference: Statements and Options 275

SQL Statements

e ROLLBACK TO SAVEPOINT Statementon page 276

ROLLBACK TO SAVEPOINT Statement

Cancels any changes made since a SAVEPOINT.

Syntax
ROLLBACK TO SAVEPOINT [savepoi nt - name]

Usage

The ROLLBACK TO SAVEPOINT statement will undo any changes that have been made since
the SAVEPOINT was established.

Changes made prior to the SAVEPOINT are not undone; they are still pending. For a
description of savepoints, see System Administration Guide: Volume 2 > Using Procedures
and Batches.

The savepoint-name is an identifier that was specified on a SAVEPOINT statement within the
current transaction. If savepoint-name is omitted, the most recent savepoint is used. Any
savepoints since the named savepoint are automatically released.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

» Sybase—Savepoints are not supported by Adaptive Server Enterprise. To implement
similar features in an Adaptive Server Enterprise-compatible manner, you can use nested
transactions.

Permissions

There must have been a corresponding SAVEPOINT within the current transaction.

See also

e RELEASE SAVEPOINT Statement on page 261
ROLLBACK Statementon page 275

» SAVEPOINT Statementon page 278

276 Sybase 1Q

SQL Statements

ROLLBACK TRANSACTION Statement [T-SQL]

Cancels any changes made since a SAVE TRANSACTION.

Syntax
ROLLBACK TRANSACTION [savepoi nt-nane |

Examples

» Example 1 —Return five rows with values 10, 20, and so on. The effect of the delete, but
not the prior inserts or update, is undone by the ROLLBACK TRANSACTION statement:

BEG N
SELECT row_num | NTO #t np
FROM sa_rowgenerator(1, 5)
UPDATE #t np SET row_numer ow_nunt 10
SAVE TRANSACTI ON bef ore_del ete
DELETE FROM #t np WHERE row_num >= 3
ROLLBACK TRANSACTI ON bef ore_del et e
SELECT * FROM #t np

END

Usage

ROLLBACK TRANSACTION undoes any changes that have been made since a savepoint was
established using SAVE TRANSACTION. Changes made prior to the SAVE TRANSACTION are
not undone; they are still pending.

The savepoint-nameis an identifier that was specified on a SAVE TRANSACTION statement
within the current transaction. If savepoint-nameis omitted, all outstanding changes are rolled
back. Any savepoints since the named savepoint are automatically released.

See SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference > Using SQL > SQL
Statements > SQL statements (P-Z) > ROLLBACKTRANSACTION statement [T-SQL].
Standards

» Vendor extension to ISO/ANSI SQL grammar.

Permissions

There must be a corresponding SAVE TRANSACTION within the current transaction.

Reference: Statements and Options 277

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/rollback-transaction-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/rollback-transaction-statement.html

SQL Statements

See also
e BEGIN TRANSACTION Statement [T-SQL] on page 50
* SAVE TRANSACTION Statement [T-SQL] on page 278

SAVEPOINT Statement

Establishes a savepoint within the current transaction.

Syntax
SAVEPOINT [savepoi nt - nane]

Usage

The savepoint-nameis an identifier that can be used in a RELEASE SAVEPOINT or
ROLLBACK TO SAVEPOINT statement.

All savepoints are automatically released when a transaction ends. See System
Administration Guide: Vblume 2 > Using Procedures and Batches.

Savepoints that are established while a trigger is executing or while an atomic compound
statement is executing are automatically released when the atomic operation ends.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

» Sybase—Not supported in Adaptive Server Enterprise. To implement similar features in
an Adaptive Server Enterprise-compatible manner, use nested transactions.

Permissions

None

See also
* RELEASE SAVEPOINT Statement on page 261
e ROLLBACK TO SAVEPOINT Statementon page 276

SAVE TRANSACTION Statement [T-SQL]

Establishes a savepoint within the current transaction.

Syntax
SAVE TRANSACTION [savepoi nt - nanme]

278

Sybase 1Q

SQL Statements

Examples

« Example 1 - Return five rows with values 10, 20, and so on. The effect of the delete, but
not the prior inserts or update, is undone by the ROLLBACK TRANSACTION statement.

BEG N
SELECT row_num | NTO #t np
FROM sa_rowgenerator(1, 5)
UPDATE #t np SET row_numnmer ow_nunt 10
SAVE TRANSACTI ON before_del ete
DELETE FROM #t np WHERE r ow_num >= 3
ROLLBACK TRANSACTI ON bef ore_del et e
SELECT * FROM #t np

END

See SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference > Using SQL >
SQL statements > SQL statements (P-Z) > SAVE TRANSACTION statement [T-SQL].

Usage

Establishes a savepoint within the current transaction. The savepoint-nameis an identifier that
can be used in a ROLLBACK TRANSACTION statement. All savepoints are automatically
released when a transaction ends.

Standards
e SQL—Vendor extension to ISO/ANSI SQL grammar.

Permissions

None

See also
* BEGIN TRANSACTION Statement [T-SQL] on page 50
* ROLLBACK TRANSACTION Statement [T-SQL] on page 277

SELECT Statement

Retrieves information from the database.

Syntax
SELECT [ALL | DISTINCT] [FIRST | TOP numnber-of-rows] select-list
. INTO { host-variable-list | variable-list | table-name }]
INTO LOCAL TEMPORARY TABLE { tabl e-nane }]
FROM table-list]
WHERE sear ch-condition]
GROUPBY [expression [, .]
| ROLLUP (expression [, .])

—r—

Reference: Statements and Options 279

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/save-transaction-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/save-transaction-statement.html

SQL Statements

| cuBe (expression [, .1) 11
HAVING sear ch-condition]
ORDER BY { expression | integer } [ASC | DEsSC] [,

Parameters

select-list: —{ column-name | expression [[AS | alias-name] | * }

Examples

Example 1 — List all tables and views in the system catalog:

SELECT t name
FROM SYS. SYSCATALCG
WHERE t nanme LI KE ' SYS%

Example 2 — List all customers and the total value of their orders:

SELECT ConpanyNane,
CAST(sum(Sal esOrderltens. Quantity *
Products. UnitPrice) AS | NTEGER) VALUE
FROM Cust omrer s
LEFT QUTER JO N Sal esOrders
LEFT QUTER JO N Sal esOrderltens
LEFT QUTER JO N Products
CRCOUP BY ConmpanyName
ORDER BY VALUE DESC

Example 3 — List the number of employees:

SELECT count (*)
FROM Enpl oyees;

Example 4 — An Embedded SQL SELECT statement:
SELECT count (*) INTO :size FROM Enpl oyees;
Example 5 — List the total sales by year, model, and color:
SELECT year, nodel, color, sun(sales)

FROM sal es_t ab
GROUP BY ROLLUP (year, nodel, color);

<]

Example 6 — Select all items with a certain discount into a temporary table:

SELECT * | NTO #Tabl eTenp FROM | i neitem
VWHERE | _di scount < 0.5

Usage

You can use a SELECT statement in dbisql to browse data in the database or to export data
from the database to an external file.

You can also use a SELECT statement in procedures or in Embedded SQL. The SELECT
statement with an INTO clause is used for retrieving results from the database when the
SELECT statement returns only one row. (Tables created with SELECT INTO do not inherit
IDENTITY/AUTOINCREMENT tables.) For multiple-row queries, you must use cursors.
When you select more than one column and do not use #fable, SELECT INTO creates a

280

Sybase 1Q

SQL Statements

permanent base table. SELECT INTO #fablealways creates a temporary table regardless of the
number of columns. SELECT INTO table with a single column selects into a host variable.

Note: When writing scripts and stored procedures that SELECT INTO a temporary table, wrap
any select list item that is not a base column in a CAST expression. This guarantees that the
column data type of the temporary table is the required data type.

Tables with the same name but different owners require aliases. A query without aliases
returns incorrect results:

SELECT * FROM userl.t1l

VWHERE NOT EXI STS

(SELECT *

FROM user2.t1

WHERE user2.t1l.coll = userl.t.coll);

For correct results, use an alias for each table:

SELECT * FROM user1.t1 Ul
VWHERE NOT EXI STS

(SELECT *

FROM user2.t1 U2

WHERE WU2.col 1l = Ul.col 1);

The INTO clause with a variable-listis used only in procedures.

In SELECT statements, a stored procedure call can appear anywhere a base table or view is
allowed. Note that CIS functional compensation performance considerations apply. For
example, a SELECT statement can also return a result set from a procedure. For syntax and an
example, see SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference > Using SQL
> SQL statements > SQL statements (E-O) > FROM clause. See System Administration
Guide: Vblume 2 > Using Procedures and Batches > Introduction to Procedures > Returning
Procedure Results in Result Setsfor a restriction that affects selecting from temporary tables
within stored procedures.

ALL or DISTINCT—ITf neither is specified, all rows that satisfy the clauses of the SELECT
statement are retrieved. If DISTINCT is specified, duplicate output rows are eliminated. This is
called the projection of the result of the statement. In many cases, statements take significantly
longer to execute when DISTINCT is specified, so reserve the use of DISTINCT for cases where
it is necessary.

If DISTINCT is used, the statement cannot contain an aggregate function with a DISTINCT
parameter.

FIRST or TOP number-of-rows—Specifies the number of rows returned from a query. FIRST
returns the first row selected from the query. TOP returns the specified number of rows from
the query where number-of-rowsis in the range 1 — 2147483647 and can be an integer constant
or integer variable.

Reference: Statements and Options 281

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/from-statement.html

SQL Statements

FIRST and TOP are used primarily with the ORDER BY clause. If you use these keywords
without an ORDER BY clause, the result might vary from run to run of the same query, as the
optimizer might choose a different query plan.

FIRST and TOP are permitted only in the top-level SELECT of a query, so they cannot be used
in derived tables or view definitions. Using FIRST or TOP in a view definition might result in
the keyword being ignored when a query is run on the view.

Using FIRST is the same as setting the ROW COUNT database option to 1. Using TOP is the
same as setting the ROW COUNT option to the same number of rows. If both TOP and
ROW _COUNT are set, then the value of TOP takes precedence.

The ROW_COUNT option could produce inconsistent results when used in a query involving
global variables, system functions or proxy tables. See ROW COUNT Option for details.

select-list—The select-/ist is a list of expressions, separated by commas, specifying what is

retrieved from the database. If an asterisk (*) is specified, all columns of all tables in the FROM

clause (t abl e- nane all columns of the named table) are selected. Aggregate functions and

analytical functions are allowed in the sefect-list. See Reference: Building Blocks, Tables, and
Procedures > SQL Functions.

Note: In Sybase 1Q, scalar subqueries (nested selects) are allowed in the select list of the top
level SELECT, as in SQL Anywhere and Adaptive Server Enterprise. Subqueries cannot be
used inside a conditional value expression (for example, in a CASE statement).

In Sybase 1Q, subqueries can also be used in a WHERE or HAVING clause predicate (one of the
supported predicate types). However, inside the WHERE or HAVING clause, subqueries cannot
be used inside a value expression or inside a CONTAINS or LIKE predicate. Subqueries are not
allowed in the ON clause of outer joins or in the GROUP BY clause.

For more details on the use of subqueries, see Reference: Building Blocks, Tables, and
Procedures > SQL Language Elements > Expressions > Subqueries in Expressions and
Reference: Building Blocks, Tables, and Procedures > SQL Language Elements > Search
Conditions > Subgueries in Search Conditions.

alias-namescan be used throughout the query to represent the aliased expression. Alias names
are also displayed by dbisql at the top of each column of output from the SELECT statement. If
the optional alias-nameis not specified after an expression, dbisql displays the expression. If
you use the same name or expression for a column alias as the column name, the name is
processed as an aliased column, not a table column name.

INTO host-variable-list—Used in Embedded SQL only. It specifies where the results of the
SELECT statement goes. There must be one Ahost-variableitem for each item in the select-/ist.
Select list items are put into the host variables in order. An indicator host variable is also
allowed with each host-variable so the program can tell if the select list item was NULL.

282

Sybase 1Q

SQL Statements

INTO variable-list—Used in procedures only. It specifies where the results of the SELECT
statement go. There must be one variable for each item in the select list. Select listitems are put
into the variables in order.

INTO table-name—Used to create a table and fill the table with data.

If the table name starts with #, the table is created as a temporary table. Otherwise, the table is
created as a permanent base table. For permanent tables to be created, the query must satisfy
these conditions:

» The select-list contains more than one item, and the INTO target is a single table-name
identifier, or
« The select-list contains a * and the INTO target is specified as owner.table.

To create a permanent table with one column, the table name must be specified as owner. table.
Omit the owner specification for a temporary table.

This statement causes a COMMIT before execution as a side effect of creating the table.
RESOURCE authority is required to execute this statement. No permissions are granted on the
new table: the statement is a short form for CREATE TABLE followed by INSERT...
SELECT.

A SELECT INTO from a stored procedure or function is not permitted, as SELECT INTO is an
atomic statement and you cannot do COMMIT, ROLLBACK, or some ROLLBACK TO
SAVEPOINT statements in an atomic statement. For more information, see System
Administration Guide: Volume 2 > Using Procedures and Batches > Control Statements >
Atomic Compound Statements and System Administration Guide. Volume 2 > Using
Procedures and Batches > Transactions and Savepoints in Procedures.

Tables created using this statement do not have a primary key defined. You can add a primary
key using ALTER TABLE. A primary key should be added before applying any updates or
deletes to the table; otherwise, these operations result in all column values being logged in the
transaction log for the affected rows.

Use of this clause is restricted to valid SQL Anywhere queries. Sybase 1Q extensions are not
supported.

INTO LOCAL TEMPORARY TABLE—Creates a local, temporary table and populates it
with the results of the query. When you use this clause, you do not need to start the temporary
table name with #.

FROM table-list—Rows are retrieved from the tables and views specified in the table-/ist.
Joins can be specified using join operators. For more information, see FROM Clause. A
SELECT statement with no FROM clause can be used to display the values of expressions not
derived from tables. For example:

SELECT @@er si on

displays the value of the global variable @ @version. This is equivalent to:

Reference: Statements and Options 283

SQL Statements

SELECT @@er si on
FROM DUMWY

Note: If you omit the FROM clause, or if all tables in the query are in the SYSTEMdbspace, the
query is processed by SQL Anywhere instead of Sybase 1Q and might behave differently,
especially with respect to syntactic and semantic restrictions and the effects of option settings.
See the SQL Anywhere documentation for rules that might apply to processing.

If you have a query that does not require a FROM clause, you can force the query to be
processed by Sybase 1Q by adding the clause “FROM i q_dunty,” where i g_dumy isa
one-row, one-column table that you create in your database.

WHERE search-condition—Specifies which rows are selected from the tables named in the
FROM clause. It is also used to do joins between multiple tables. This is accomplished by
putting a condition in the WHERE clause that relates a column or group of columns from one
table with a column or group of columns from another table. Both tables must be listed in the
FROM clause.

The use of the same CASE statement is not allowed in both the SELECT and the WHERE clause
of agrouped query. See Reference: Building Blocks, Tables, and Procedures > SQL Language
Elements > Search Condiitions.

Sybase 1Q also supports the disjunction of subquery predicates. Each subquery can appear
within the WHERE or HAVING clause with other predicates and can be combined using the
AND or OR operators. See Reference: Building Blocks, Tables, and Procedures > SQL
Language Elements > Search Condlitions > Subqueries in Search Conditions > Disjunction of
Subquery Predicates.

GROUP BY—You can group by columns or alias names or functions. GROUP BY expressions
must also appear in the select list. The result of the query contains one row for each distinct set
of values in the named columns, aliases, or functions. The resulting rows are often referred to
as groups since there is one row in the result for each group of rows from the table list. In the
case of GROUP BY, all NULL values are treated as identical. Aggregate functions can then be
applied to these groups to get meaningful results.

GROUP BY must contain more than a single constant. You do not need to add constants to the
GROUP BY clause to select the constants in grouped queries. If the GROUP BY expression
contains only a single constant, an error is returned and the query is rejected.

When GROUP BY is used, the select list, HAVING clause, and ORDER BY clause cannot
reference any identifiers except those named inthe GROUP BY clause. This exception applies:
The select-/istand HAVING clause may contain aggregate functions.

ROLLUP operator—The ROLLUP operator in the GROUP BY clause lets you analyze
subtotals using different levels of detail. It creates subtotals that roll up from a detailed level to
a grand total.

The ROLLUP operator requires an ordered list of grouping expressions to be supplied as
arguments. ROLLUP first calculates the standard aggregate values specified in the GROUP BY.

284

Sybase 1Q

SQL Statements

Then ROLLUP moves from right to left through the list of grouping columns and creates
progressively higher-level subtotals. A grand total is created at the end. If n7is the number of
grouping columns, ROLLUP creates n+1 levels of subtotals.

Restrictions on the ROLLUP operator:

e ROLLUP supports all of the aggregate functions available to the GROUP BY clause, but
ROLLUP does not currently support COUNT DISTINCT and SUM DISTINCT.

e ROLLUP can be used only in the SELECT statement; you cannot use ROLLUP ina SELECT
subquery.

* A multiple grouping specification that combines ROLLUP, CUBE, and GROUP BY
columns in the same GROUP BY clause is not currently supported.

» Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the ROLLUP operator to distinguish between stored NULL values
and NULL values in query results created by ROLLUP.

ROLLUP syntax:

SELECT ... [GROUPING (col um-nane) .]
GROUPBY [expression [, .]
| ROLLUP (expression [, .]) 1]

See Reference. Building Blocks, Tables, and Procedures > SQL Language Elements >
Expressions for the format of an operator expression.

GROUPING takes a column name as a parameter and returns a Boolean value:

Table 13. Values Returned by GROUPING with the ROLLUP Operator

If the value of the result is GROUPING returns
NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a ROLLUP operation 0 (FALSE)

a stored NULL 0 (FALSE)

For ROLLUP examples, see System Administration Guide.: Volume 2 > Using OLAP.

CUBE operator—The CUBE operator in the GROUP BY clause analyzes data by forming the
data into groups in more than one dimension. CUBE requires an ordered list of grouping
expressions (dimensions) as arguments and enables the SELECT statement to calculate
subtotals for all possible combinations of the group of dimensions.

Restrictions on the CUBE operator:

e CUBE supports all of the aggregate functions available to the GROUP BY clause, but CUBE
does not currently support COUNT DISTINCT or SUM DISTINCT.

Reference: Statements and Options 285

SQL Statements

e CUBE does not currently support the inverse distribution analytical functions
PERCENTILE_CONT and PERCENTILE_DISC.

e CUBE can be used only in the SELECT statement; you cannot use CUBE in a SELECT
subquery.

e A multiple GROUPING specification that combines ROLLUP, CUBE, and GROUP BY
columns in the same GROUP BY clause is not currently supported.

» Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the CUBE operator to distinguish between stored NULL values and
NULL values in query results created by CUBE.

CUBE syntax:

SELECT ...[GROUPING (columm-nane) .]
GROUPBY [expression [, .]
| CcuBE (expression [, .]) 1

GROUPING takes a column name as a parameter and returns a Boolean value:

Table 14. Values Returned by GROUPING with the CUBE Operator

If the value of the result is GROUPING returns
NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a CUBE operation 0 (FALSE)

a stored NULL 0 (FALSE)

When generating a query plan, the 1Q optimizer estimates the total number of groups
generated by the GROUP BY CUBE hash operation. The MAX_CUBE_RESULTS database
option sets an upper boundary for the number of estimated rows the optimizer considers for a
hash algorithm that can be run. If the actual number of rows exceeds the

MAX _CUBE_RESULT option value, the optimizer stops processing the query and returns the
error message “Est i mat e nunmber: nnn exceed the
DEFAULT_MAX_CUBE_RESULT of GROUP BY CUBE or ROLLUP”,where nnnisthe
number estimated by the 1Q optimizer. See MAX_CUBE_RESULT Optionfor information
on setting the MAX_CUBE_RESULT option.

For CUBE examples, see System Administration Guide: Volume 2 > Using OLAP.

HAVING search-condition—Based on the group values and not on the individual row values.
The HAVING clause can be used only if either the statement has a GROUP BY clause or if the
select list consists solely of aggregate functions. Any column names referenced in the HAVING
clause must either be in the GROUP BY clause or be used as a parameter to an aggregate
function in the HAVING clause.

ORDER BY—Orders the results of a query. Each item in the ORDER BY list can be labeled as
ASC for ascending order or DESC for descending order. Ascending is assumed if neither is

286

Sybase 1Q

SQL Statements

specified. If the expression is an integer n, then the query results are sorted by the nth item in
the select list.

In Embedded SQL, the SELECT statement is used for retrieving results from the database and
placing the values into host variables with the INTO clause. The SELECT statement must return
only one row. For multiple row queries, you must use cursors.

You cannot include a Java class in the SELECT list, but you can, for example, create a function
or variable that acts as a wrapper for the Java class and then select it.

Standards

* SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Adaptive Server Enterprise, with some differences in syntax.

Permissions

Must have SELECT permission on the named tables and views.

See also

o CREATE VIEW Statement on page 149

» DECLARE CURSOR Statement [ESQL] [SP] on page 154

e FETCH Statement [ESQL] [SP]on page 187

e FROM Clause on page 193

» OPEN Statement [ESQL] [SP] on page 246

e UNION Operation on page 306

e MAX CUBE RESULT Optionon page 405

e ROW COUNT Optionon page 437

o SUBQUERY CACHING_PREFERENCE Option on page 442

SET Statement [ESQL]

Assigns a value to a SQL variable.

Syntax

SET identifier = expression

Examples

« Example 1 —This code fragment inserts a large text value into the database:

EXEC SQL BEG N DECLARE SECTI ON;
char buffer[5001];
EXEC SQL END DECLARE SECTI ON,;

Reference: Statements and Options 287

SQL Statements

EXEC SQL CREATE VARI ABLE hol d_t ext VARCHAR;
EXEC SQL SET hold_text = "'"';

for(;;) {
/* read sone data into buffer ... */
size = fread(buffer, 1, 5000, fp);
if(size <= 0) break;

/* buffer nmust be null-term nated */
buffer[size] = '\0";

/* add data to bl ob using concatenation */
EXEC SQL SET hold_text = hold_text || :buffer;

}
EXEC SQL | NSERT | NTO sone_table VALUES (1, hold_text);
EXEC SQL DROP VARI ABLE hol d_t ext ;

« Example 2 —This code fragment inserts a large binary value into the database:

EXEC SQL BEG N DECLARE SECTI ON;
DECL_BI NARY(5000) buffer;

EXEC SQL END DECLARE SECTI ON;

EXEC SQL CREATE VARI ABLE hol d_bl ob LONG Bl NARY;
EXEC SQL SET hold_blob = '';

for(;;) {
/* read sone data into buffer ... */
size = fread(&(buffer.array), 1, 5000, fp);
if(size <= 0) break;
buffer.len = size;

/* add data to bl ob using concatenation
Not e that concatenation works for
bi nary data too! */
EXEC SQL SET hol d_blob = hold_blob || :buffer;

}
EXEC SQL | NSERT | NTO sone_table VALUES (1, hold_blob);
EXEC SQL DROP VARI ABLE hol d_bl ob;

Usage

The SET statement assigns a new value to a variable that was previously created using the
CREATE VARIABLE statement.

You can use a variable in a SQL statement anywhere a column name is allowed. If there is no
column name that matches the identifier, the database server checks to see if there is a variable
that matches, and uses its value.

Variables are local to the current connection, and disappear when you disconnect from the
database or when you use DROP VARIABLE. They are not affected by COMMIT or ROLLBACK
statements.

Variables are necessary for creating large text or binary objects for INSERT or UPDATE
statements from Embedded SQL programs because Embedded SQL host variables are limited
to 32,767 bytes.

288

Sybase 1Q

SQL Statements

See also Reference. Building Blocks, Tables, and Procedures > SQL Language Elements >
Expressions.

Standards

* SQL—ISO/ANSI SQL compliant.
« Sybase—Not supported. In Adaptive Server Enterprise, variables are assigned using the

SELECT statement with no table, a Transact-SQL syntax that is also supported by Sybase
IQ. The SET statement is used to set database options in Adaptive Server Enterprise.
Permissions

None

See also
e CREATE VARIABLE Statement on page 148
* DROP VARIABLE Statementon page 180

SET Statement [T-SQL]

Sets database options in an Adaptive Server Enterprise-compatible manner.

Syntax
SET opti on-nane option-val ue

Usage

Database options in Sybase 1Q are set using the SET OPTION statement. However, Sybase 1Q
also provides support for the Adaptive Server Enterprise SET statement for a set of options
particularly useful for compatibility.

Table 15. Transact-SQL SET Options

Option name Option value
ANSINULL ON | OFF
ANSI_PERMISSIONS ON | OFF
CLOSE_ON_ENDTRANS ON
QUOTED_IDENTIFIER ON | OFF
ROWCOUNT integer
STRING_RTRUNCATION ON | OFF

Reference: Statements and Options 289

SQL Statements

Option name Option value

TRANSACTION ISOLATION 0]1]2|3
LEVEL

You can set these options using the Transact-SQL SET statement in Sybase 1Q, as well as in
Adaptive Server Enterprise:

SET ANSINULL { ON | OFF }—The default behavior for comparing values to NULL in
Sybase 1Q and Adaptive Server Enterprise is different. Setting ANSINULL to OFF provides
Transact-SQL compatible comparisons with NULL.

SET ANSI_PERMISSIONS { ON | OFF }—The default behavior in Sybase 1Q and
Adaptive Server Enterprise regarding permissions required to carry out a DELETE
containing a column reference is different. Setting ANSI_PERMISSIONS to OFF provides
Transact-SQL-compatible permissions on DELETE.

SET CLOSE_ON_ENDTRANS { ON }—When CLOSE_ON_ENDTRANS is set to ON
(the default and only allowable value), cursors are closed at the end of a transaction. With
the option set ON, CLOSE_ON_ENDTRANS provides Transact-SQL-compatible
behavior.

SET QUOTED_IDENTIFIER { ON | OFF }—Controls whether strings enclosed in
double quotes are interpreted as identifiers (ON) or as literal strings (OFF).

SET ROWCOUNT /nteger—The Transact-SQL ROWCOUNT option limits to the
specified integer the number of rows fetched for any cursor. This includes rows fetched by
repositioning the cursor. Any fetches beyond this maximum return a warning. The option
setting is considered when returning the estimate of the number of rows for a cursor on an
OPEN request.

Note: Sybase 1Q supports the @@rowcountglobal variable. SELECT, INSERT, DELETE,
and UPDATE statements affect the value of the ROWCOUNT option. The ROWCOUNT
option has no effect on cursor operation, the IF statement, or creating/dropping a table or
procedure.

In Sybase 1Q, if ROWCOUNT is greater than the number of rows that dbisgl can display,
dbisql may do extra fetches to reposition the cursor. The number of rows actually
displayed may be less than the number requested. Also, if any rows are refetched due to
truncation warnings, the count might be inaccurate.

A value of zero resets the option to get all rows.

SET STRING_RTRUNCATION { ON | OFF }—The default behavior in Sybase 1Q and
Adaptive Server Enterprise when nonspace characters are truncated on assigning SQL
string data is different. Setting STRING_RTRUNCATION to ON provides Transact-SQL-
compatible string comparisons, including hexadecimal string (binary data type)
comparisons.

SET TRANSACTION ISOLATION LEVEL {0]1]2 |3 }—Sets the locking isolation
level for the current connection, as described in System Administration Guide. Volume 1 >

290

Sybase 1Q

SQL Statements

Transactions and Versioning. For Adaptive Server Enterprise, only 1 and 3 are valid
options. For Sybase 1Q, only 3 is a valid option.

In addition, this SET statement is allowed by Sybase 1Q for compatibility, but has no effect:
« SET PREFETCH { ON | OFF }

Standards

e SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
» Sybase—Sybase IQ supports a subset of the Adaptive Server Enterprise database options.

Permissions

None

See also
e SET OPTION Statement on page 293

SET CONNECTION Statement [ESQL] [Interactive SQL]

Changes the active database connection.

Syntax
SET CONNECTION [connecti on- nane]

Parameters

e connection-name: — identifier, string, or host-variable

Examples
* Example1—In Embedded SQL:

EXEC SQL SET CONNECTI ON : conn_nane
* Example 2 —From dbisqgl, set the current connection to the connection named “connl”:

SET CONNECTI ON connl

Usage

The current connection state is saved and is resumed when it again becomes the active
connection. If connection-name is omitted and there is a connection that was not named, that
connection becomes the active connection.

Note: When cursors are opened in Embedded SQL, they are associated with the current
connection. When the connection is changed, the cursor names are not accessible. The cursors

Reference: Statements and Options 291

SQL Statements

remain active and in position and become accessible when the associated connection becomes
active again.

Standards

e SQL—dbisgl use is a vendor extension to ISO/ANSI SQL grammar. Embedded SQL is a
full-level feature.

« Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
e CONNECT Statement [ESQL] [Interactive SQL]on page 63
* DISCONNECT Statement [Interactive SQL Jon page 169

SET DESCRIPTOR Statement [ESQL]

Describes the variables in a SQL descriptor area, and places data into the descriptor area.

Syntax
SET DESCRIPTOR descri pt or - nane

...{ COUNT = { integer | hostvar }
| VALUE n assignment [, .] }
Parameters

e assignment: —{ { TYPE | SCALE | PRECISION | LENGTH | INDICATOR } = { integer|
hostvar} | DATA = hostvar}

Examples
* Examplel1l—See ALLOCATE DESCRIPTOR Statement [ESQL].

Usage

SET...COUNT sets the number of described variables within the descriptor area. The value for
count cannot exceed the number of variables specified when the descriptor area was allocated.

The value n specifies the variable in the descriptor area upon which the assignments are
performed.

Type checking is performed when doing SET...DATA to ensure that the variable in the
descriptor area has the same type as the host variable.

292

Sybase 1Q

SQL Statements
If an error occurs, the code is returned in the SQLCA.

Standards

* SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Open Client/Open Server.

Permissions

None

See also
* ALLOCATE DESCRIPTOR Statement [ESQL]on page 5
* DEALLOCATE DESCRIPTOR Statement [ESQL] on page 151

SET OPTION Statement

Changes database options.

Syntax

SET [EXISTING] [TEMPORARY] OPTION

...[userid. | PUBLIC.]option-nane = [option-value]
Parameters

e userid: —identifier, string, or host-variable
» option-name: —identifier, string, or host-variable
* option-value: —host-variable (indicator allowed), string, identifier, or number

Examples
* Example 1 — Set the DATE_FORMAT option:

SET OPTION public.date format = ' Mmm dd yyyy'
e Example 2 — Set the WAIT_FOR_COMMIT option to on:
SET OPTION wait _for_conmmt = 'on'
* Example 3 — Embedded SQL examples:

EXEC SQL SET OPTI ON :user.:option_name = :val ue;
EXEC SQL SET TEMPORARY OPTION Date_format = 'mmi dd/yyyy'

Reference: Statements and Options 293

SQL Statements

Usage
The SET OPTION statement is used to change options that affect the behavior of the database

and its compatibility with Transact-SQL. Setting the value of an option can change the
behavior for all users or an individual user, in either a temporary or permanent scope.

The classes of options are:

* General database options
» Transact-SQL compatibility database options

Specifying either a user ID or the PUBLI Cuser ID determines whether the option is set for an
individual user, a user group represented by userid, or the PUBLI Cuser ID (the user group to
which all users are a member). If the option applies to a group user ID, option settings are not
inherited by members of the group—the change is applied only to the group user ID. If no user
group is specified, the option change is applied to the currently logged-in user ID that issued
the SET OPTION statement.

For example, this statement applies an option change to the PUBLI Cuser ID:

SET OPTION Public.login_nmbde = standard

Only users with DBA privileges have the authority to set an option for the PUBLI Cuser ID.
In Embedded SQL, only database options can be set temporarily.

Changing the value of an option for the PUBLI Cuser ID sets the value of the option for any
user that has not set its own value. Option values cannot be set for an individual user ID unless
there is already a PUBLI Cuser ID setting for that option.

Users cannot set the options of another user, unless they have DBA authority.

Users can use the SET OPTION statement to change the values for their own user IDs. Setting
the value of an option for a user ID other than your own is permitted only if you have DBA
authority.

If you use the EXISTING keyword, option values cannot be set for an individual user 1D unless
there is already a PUBLI Cuser ID setting for that option.

Adding the TEMPORARY keyword to the SET OPTION statement changes the duration that the
change takes effect. Without the TEMPORARY keyword, an option change is permanent: it
does not change until it is explicitly changed using SET OPTION.

When SET TEMPORARY OPTION is applied using an individual user 1D, the new option value
is in effect as long as that user is logged in to the database.

When SET TEMPORARY OPTION is used with the PUBLI Cuser ID, the change is in place for
as long as the database is running. When the database is shut down, TEMPORARY options for
the PUBLI Cuser ID revert back to their permanent value.

Temporarily setting an option for the PUBLI Cuser ID, as opposed to setting the value of the
option permanently, offers a security advantage. For example, whenthe LOG N_MODE option

294

Sybase 1Q

SQL Statements

is enabled, the database relies on the login security of the system on which it is running.
Enabling the option temporarily means a database relying on the security of a Windows
domain is not compromised if the database is shut down and copied to a local machine. In that
case, the temporary enabling of LOG N_MODE reverts to its permanent value, which might be
Standard, a mode in which integrated logins are not permitted.

If gption-valueis omitted, the specified option setting is deleted from the database. If it was a
personal option setting, the value used reverts to the PUBLIC setting. If a TEMPORARY option
is deleted, the option setting reverts to the permanent setting.

Note: For all database options that accept integer values, Sybase 1Q truncates any decimal
option-value setting to an integer value. For example, the value 3.8 is truncated to 3.

The maximum length of option-value when set to a string is 127 bytes.

War ning! Changing option settings while fetching rows from a cursor is not supported, as it
can lead to unpredictable behavior. For example, changing the DATE_FORMAT setting while
fetching from a cursor returns different date formats among the rows in the result set. Do not
change option settings while fetching rows.

For information about specific database options, see Database Options.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

« Sybase—Not supported by Adaptive Server Enterprise. Sybase 1Q does support some
Adaptive Server Enterprise options using the SET statement.

Permissions

None required to set your own options. Must have DBA authority to set database options for
another user or PUBLIC.

See also
» Database Options on page 317

SET OPTION Statement [Interactive SQL]
Changes Interactive SQL (dbisql) options.

Syntax

Syntax 1

SET [TEMPORARY] OPTION
...[userid. | PUBLIC.]option-nane = [option-value]

Syntax 2

Reference: Statements and Options 295

SQL Statements

SET PERMANENT

Syntax 3
SET

Parameters

e userid: —identifier, string, or host-variable
* option-name: —identifier, string, or host-variable
* option-value: —host-variable (indicator allowed), string, identifier, or number

Usage

SET PERMANENT (Syntax 2) stores all current dbisqgl options in the SYSOPTI ON system
table. These settings are automatically established every time dbisql is started for the current
user 1D.

Syntax 3 is used to display all of the current option settings. If there are temporary options set
for dbisql or the database server, these display; otherwise, permanent option settings are
displayed.

If you incorrectly type the name of an option when you are setting the option, the incorrect
name is saved in the SYSOPTI ONtable. You can remove the incorrectly typed name from the
SYSOPTI ONtable by setting the option PUBLIC with an equality after the option name and
no value:

SET OPTI ON PUBLI C. a_m st yped_nane=;

See also
o Database Options on page 317

SET SQLCA Statement [ESQL]
Tells the SQL preprocessor to use a SQLCA other than the default global sg/ca.

Syntax
SET SQLCA sql ca
Parameters

* gglca: —identifier or string

Examples

* Example1—This function can be found in a Windows DLL. Each application that uses the
DLL has its own SQLCA.

296 Sybase 1Q

SQL Statements

an_sql _code FAR PASCAL ExecuteSQ.(an_application *app, char
*com)
{

EXEC SQL BEG N DECLARE SECTI ON;

char *sgl command;

EXEC SQL END DECLARE SECTI ON;

EXEC SQL SET SQ.CA " &app->.sqglca";

sql command = com

EXEC SQL WHENEVER SQLERROR CONTI NUE;

EXEC SQL EXECUTE | MMVEDI ATE : sqgl command;
return(SQLCCDE);

Usage

The current SQLCA pointer is implicitly passed to the database interface library on every
Embedded SQL statement. All Embedded SQL statements that follow this statement in the C
source file use the new SQLCA. This statement is necessary only when you are writing code
that is reentrant. The sg/ca should reference a local variable. Any global or module static
variable is subject to being modified by another thread.

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Programming > SQL Anywhere Data
Access APIs > SQL Anywhere embedded SQL > The SQL Communication Area
(SQLCA).

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not supported by Open Client/Open Server.

Permissions

None

SIGNAL Statement

Signals an exception condition.

Syntax

SIGNAL excepti on- name

Usage

SIGNAL lets you raise an exception. See System Administration Guide: Volume 2 > Using
Procedures and Batches for a description of how exceptions are handled.

Reference: Statements and Options 297

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/sqlca.html

SQL Statements

Standards

e SQL—ISO/ANSI SQL compliant.
» Sybase—SIGNAL is not supported by Adaptive Server Enterprise.

Permissions

None

See also
e BEGIN ... END Statementon page 47
e RESIGNAL Statementon page 263

START DATABASE Statement [Interactive SQL]

Starts a database on the specified database server.

Syntax

START DATABASE dat abase-file
...| As dat abase-nane]

..[ON engi ne-nane]

..[AutosTOP { YES | NO }]
..[KEY key]

Examples

* Example1—-0naUNIX system, start the database file/ s1/ sybase/ sanpl e_2. db
on the current server:
START DATABASE '/s1/sybase/ sanpl e_2. db’

* Example 2 —0n a Windows system, start the database file c: \ sybase
\ sanpl e_2. db as san® on the server eng1l:

START DATABASE ' c:\sybase\sanpl e_2. db'
AS san?
ON engl

Usage

The database server must be running. The full path must be specified for the database file
unless the file is located in the current directory.

The START DATABASE statement does not connect dbisqgl to the specified database: a
CONNECT statement must be issued to make a connection.

298 Sybase 1Q

SQL Statements

If database-nameis not specified, a default name is assigned to the database. This default name
is the root of the database file. For example, a database in file c: \ sybase\ | Q 15\ deno
\'i gdeno. db is given the default name i qdeno.

If engine-nameis not specified, the default database server is assumed. The default database
server is the first started server among those currently running.

The default setting for the AUTOSTOP clause is YES. With AUTOSTOP set to YES, the
database is unloaded when the last connection to it is dropped. If AUTOSTOP is set to NO, the
database is not unloaded.

If the database is strongly encrypted, enter the KEY value (password) using the KEY clause.

Sybase recommends that you start only one database on a given Sybase 1Q database server.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not applicable.

Permissions

Must have DBA authority.

START ENGINE Statement [Interactive SQL]

Starts a database server.

Syntax
START ENGINE AS engi ne-nane [STARTLINE conmand-string]

Examples
« Example 1 — Start a database server named eng1 without starting any databases on it:

START ENG NE AS engl
» Example 2 — Use of the STARTLINE clause:

START ENG NE AS engl STARTLINE 'start_iq -c 8096’

Usage

To specify a set of options for the server, use the STARTLINE keyword together with a
command string.

Valid command strings are those that conform to the database server command line
description in Utility Guide > start_iq Database Server Startup Utility.

Reference: Statements and Options 299

SQL Statements

Note: Several server options are required for Sybase 1Q to operate well. To ensure that you are
using the right set of options, Sybase recommends that you start your server by using either
Sybase Central or a configuration file with the start_iqg command.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not applicable.

Permissions

None

See also
e STOP ENGINE Statement [Interactive SQL] on page 302

START JAVA Statement

Starts the Java VM.

Syntax
START JAVA

Examples
* Example 1 - Start the Java VM:
START JAVA

Usage
Use START JAVA to load the VM at a convenient time, so that when the user starts to use Java

functionality there is no initial pause while the VM is loaded.
Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not applicable.

Permissions

Must have DBA authority.

300

Sybase 1Q

SQL Statements

See also
o STOP JAVA Statementon page 302

STOP DATABASE Statement [Interactive SQL]

Stops a database on the specified database server.

Syntax

STOP DATABASE dat abase- nane
...[ON engi ne-name]
..[UNCONDITIONALLY]

Examples

* Example 1 — Stop the database named sanpl e on the default server:
STOP DATABASE sanpl e

Usage
If engine-nameis not specified, all running engines are searched for a database of the specified
name.

The database-name is the name specified in the -n parameter when the database is started, or
specified in the DBN (DatabaseName) connection parameter. This name is typically the file
name of the database file that holds the catalog store, without the . db extension, but can be
any user-defined name.

If UNCONDITIONALLY is supplied, the database is stopped, even if there are connections to the
database. If UNCONDITIONALLY is not specified, the database is not stopped if there are
connections to it.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not applicable.

Permissions

Must have DBA authority.

See also
e DISCONNECT Statement [Interactive SQL] on page 169
o START DATABASE Statement [Interactive SQL Jon page 298

Reference: Statements and Options 301

SQL Statements

STOP ENGINE Statement [Interactive SQL]

Stops a database server.

Syntax
STOP ENGINE engi ne-nanme [UNCONDITIONALLY]

Examples
» Example 1 — Stop the database server named sanpl e:
STOP ENG NE sanpl e

Usage
If UNCONDITIONALLY is supplied, the database server is stopped, even if there are

connections to the server. If UNCONDITIONALLY is not specified, the database server is not
stopped if there are connections to it.
Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Not applicable.

Permissions

None

See also
o START ENGINE Statement [Interactive SQLJ] on page 299

STOP JAVA Statement
Stops the Java VM.

Syntax
STOP JAVA

Examples
* Example 1 —Stop the Java VM:

302 Sybase 1Q

SQL Statements

STOP JAVA

Usage
The main use of STOP JAVA is to economize on the use of system resources.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not applicable.

Permissions
DBA authority

See also
o START JAVA Statementon page 300

SYNCHRONIZE JOIN INDEX Statement

Synchronizes one or more join indexes after one of their base tables has been updated.

Syntax
SYNCHRONIZE JOIN INDEX [j 0oi n-i ndex-nane [, join-index-nanme]...]

Examples

* Example 1 — Synchronize the join indexes enp_dept _j oi nl and
enp_dept _j oi n2:
SYNCHRONI ZE JO N | NDEX enp_dept _j oi n1, enp_dept_j oi n2

Usage

When a base table that contributes to a join index is updated, Sybase 1Q flags the join index as
unavailable. Queries that previously took advantage of the join index perform an ad-hoc join
instead, perhaps affecting their performance. The SYNCHRONIZE JOIN INDEX command lets
you bring the join index up-to-date, making it available for queries to use.

Note: A join index defines a one-to-many relationship (also known as primary key to foreign
key) between two table columns. If an insert into the “one” (or primary key) column results in
one or more duplicate values, the join index becomes invalid and cannot be synchronized. You
must delete the rows containing the duplicate values before SYNCHRONIZE JOIN INDEX can
make it valid again.

Synchronizing join indexes can be time-consuming, depending on the size of the base tables
that make up the join. It is up to you to decide when to use this command. You can schedule it

Reference: Statements and Options 303

SQL Statements

as a batch job at night or on weekends when you expect your system to have less work to do.
You can perform it immediately after Sybase 1Q commits a series of inserts and deletes to
make the join index available as soon as possible. However, do not synchronize a join index
after each insert or delete as the time to update the join index depends on the order of the
updates to the tables.

SYNCHRONIZE JOIN INDEX lets you specify multiple join-index-names, separated by

commas. You must be the owner of each join index or the DBA. If you do not specify a join-
index-name, Sybase 1Q synchronizes all the join indexes you own (or all the join indexes in the
database if you are the DBA), which might adversely affect the performance of your system.

Standards

* SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—Not applicable.

Permissions

Must be owner of the join indexes or be DBA.

See also
e CREATE JOIN INDEX Statement on page 104

TRIGGER EVENT Statement

Triggers a named event. The event may be defined for event triggers or be a scheduled event.

Syntax
TRIGGER EVENT event-nane [(parm = value, ...)]

Usage

Actions are tied to particular trigger conditions or schedules by a CREATE EVENT statement.
You can use TRIGGER EVENT to force the event handler to execute, even when the scheduled
time or trigger condition has not occurred. TRIGGER EVENT does not execute disabled event
handlers

When a triggering condition causes an event handler to execute, the database server can
provide context information to the event handler using the event _par anet er function.
TRIGGER EVENT allows you to explicitly supply these parameters, to simulate a context for
the event handler.

When you trigger an event, specify the event name. You can list event names by querying the
system table SYSEVENT. For example:

304

Sybase 1Q

SQL Statements

SELECT event _id, event_nane FROM SYS. SYSEVENT
See System Administration Guide. Vblume 2 > Automating Tasks Using Schedules and
Events.

Permissions
Must have DBA authority.

See also
e ALTER EVENT Statementon page 14
o CREATE EVENT Statemment on page 81

TRUNCATE TABLE Statement

Deletes all rows from a table without deleting the table definition.

Syntax
Syntax 1
TRUNCATE TABLE [owner.]tabl e-nane

Syntax 2
TRUNCATETABLE [owner .]Jtable [PARTITION partition-nane]

Examples
» Example 1 - Delete all rows from the Sal e table:
TRUNCATE TABLE Sal e

Usage

TRUNCATE TABLE isequivalent to a DELETE statement without a WHERE clause, except that
each individual row deletion is not entered into the transaction log. After a TRUNCATE TABLE
statement, the table structure and all of the indexes continue to exist until you issue a DROP
TABLE statement. The column definitions and constraints remain intact, and permissions
remain in effect.

The TRUNCATE TABLE statement is entered into the transaction log as a single statement, like
data definition statements. Each deleted row is not entered into the transaction log.

The partition clause specifies which partition to truncate. It does not affect data in other
partitions.

See also System Administration Guide: Volume 1 > Transactions and \Versioning.

Reference: Statements and Options 305

SQL Statements

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

* Must be the table owner or have DBA authority.

» For both temporary and base tables, you can execute TRUNCATE TABLE while other users
have read access to the table. This behavior differs from SQL Anywhere, which requires
exclusive access to truncate a base table. Sybase 1Q table versioning ensures that
TRUNCATE TABLE can occur while other users have read access; however, the version of
the table these users see depends on when the read and write transactions commit.

See also
e DELETE Statement on page 162

UNION Operation

Combines the results of two or more select statements.

Syntax

sel ect-w t hout - or der - by

...UNION [ALL] sel ect-w thout-order-by

...[UNION [ALL] select-w thout-order-by]...
..[ORDER BY integer [AsC | DESC] [, .] 1]

Examples
* Example 1 — List all distinct surnames of employees and customers:

SELECT Sur nanme
FROM Enpl oyees
UNI ON

SELECT Sur nanme
FROM Cust oner s

Usage

The results of several SELECT statements can be combined into a larger result using UNION.
The component SELECT statements must each have the same number of items in the select
list, and cannot contain an ORDER BY clause. See FROM Clause.

Theresults of UNION ALL are the combined results of the component SELECT statements. The
results of UNION are the same as UNION ALL, except that duplicate rows are eliminated.
Eliminating duplicates requires extra processing, so UNION ALL should be used instead of
UNION where possible.

306

Sybase 1Q

SQL Statements

If corresponding items in two select lists have different data types, Sybase 1Q chooses a data
type for the corresponding column in the result, and automatically converts the columns in
each component SELECT statement appropriately.

If ORDER BY is used, only integers are allowed in the order by list. These integers specify the
position of the columns to be sorted.

The column names displayed are the same column names that display for the first SELECT
statement.

Note: When SELECT statements include constant values and UNION ALL views but omit the
FROM clause, use i g_durmmy to avoid errors. See FROM Clause for details.

Standards

¢ SQL—ISO/ANSI SQL compliant.
» Sybase—Supported by Adaptive Server Enterprise, which also supports a COMPUTE
clause.

Permissions
Must have SELECT permission for each of the component SELECT statements.

See also
e FROM Clause on page 193
e SELECT Statement on page 279

UPDATE Statement

Modifies existing rows of a single table, or a view that contains only one table.

Syntax

UPDATE t abl e
SET [col um-nanme = expression
[FROM tabl e-expression,]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC | , .]

FROM t abl e- expressi on

Parameters

* table-expression: — fable-spec | table-expression join-type table-spec [ON condition] |
table-expression, ...

Reference: Statements and Options 307

SQL Statements

Examples

* Examplel-Transfer employee Philip Chin (employee 129) from the sales department to
the marketing department:
UPDATE Enpl oyees
SET Departnent| D = 400
WHERE Enpl oyeel D = 129;

» Example2—The Marketing Department (400) increases bonuses from 4% to 6% of each
employee’s base salary:
UPDATE Enpl oyees

SET bonus = base * 6/100
WHERE Depart nent | D =400;

* Example 3 — Each employee gets a pay increase with the department bonus:

UPDATE Enpl oyees

SET enp. Sal ary = enp. Sal ary + dept. bonus
FROM Enpl oyees enp, Departnents dept

VHERE enp. Departnent| D = dept. Depart ment | D

* Example 4 — Another way to give each employee a pay increase with the department
bonus:

UPDATE Enpl oyees

SET enp.salary = enp.salary + dept. bonus
FROM Enpl oyees enp JO N Departments dept
ON enp. Departnent| D = dept . Depart nment| D

Usage
The table on which you use UPDATE may be a base table or a temporary table.

Note: The base table cannot be part of any join index.

Each named column is set to the value of the expression on the right-hand side of the equal
sign. Even column-name can be used in the expression—the old value is used.

The FROM clause can contain multiple tables with join conditions and returns all the columns
from all the tables specified and filtered by the join condition and/or WHERE condition.

Using the wrong join condition in a FROM clause causes unpredictable results. If the FROM
clause specifies a one-to-many join and the SET clause references a cell from the “many” side
of the join, the cell is updated from the first value selected. In other words, if the join condition
causes multiple rows of the table to be updated per row ID, the first row returned becomes the
update result. For example:

UPDATE T1

SET T1.c2 = T2.c2

FROM T1 JON TO T2
ON Tl.cl1 = T2.c1

If table T2 has more than one row per T2. c1, results might be as follows:
T2.c1l T2.c2 T2.c3

308

Sybase 1Q

SQL Statements

N S N
N NS

4
8
6
5

With no ORDER BY clause, T1. c2 may be 4, 6, 8, or 9.

e With ORDER BY T2. c3, T1. c2 is updated to 8.
e With ORDER BY T2. c3 DESC, T1. c2 is updated to 6.

Sybase 1Q rejects any UPDATE statement in which the table being updated is on the null-
supplying side of an outer join. In other words:

* Inaleftouterjoin, the table on the left side of the join cannot be missing any rows on joined
columns.

« Inaright outer join, the table on the right side of the join cannot be missing any rows on
joined columns.

< Inafull outer join, neither table can be missing any rows on joined columns.

For example, in this statement, table T1 is on the left side of a left outer join, and thus cannot
contain be missing any rows:

UPDATE T1

SET T1.c2 = T2.c4

FROM T1 LEFT OQUTER JAO N T2
ON Tl.rowid = T2.row d

Normally, the order in which rows are updated does not matter. However, in conjunction with
the NUMBER(*) function, an ordering can be useful to get increasing numbers added to the
rows in some specified order. If you are not using the NUMBER(*) function, avoid using the
ORDER BY clause, because the UPDATE statement performs better without it.

In an UPDATE statement, if the NUMBER(*) function is used in the SET clause and the FROM
clause specifies a one-to-many join, NUMBER(*) generates unique numbers that increase, but
do not increment sequentially due to row elimination. For more information about the
NUMBER(*) function, see Reference. Building Blocks, Tables, and Procedures > SQL
Functions > Alphabetical List of Functions > NULLIF Function [Miscellaneous].

You can use the ORDER BY clause to control the result from an UPDATE when the FROM
clause contains multiple joined tables.

Sybase 1Q ignores the ORDER BY clause in searched UPDATE and returns a message that the
syntax is not valid ANSI syntax.

If no WHERE clause is specified, every row is updated. If you specify a WHERE clause, Sybase
1Q updates only rows satisfying the search condition.

The left side of each SET clause must be a column in a base table.

Reference: Statements and Options 309

SQL Statements

Views can be updated provided the SELECT statement defining the view does not contain a
GROUP BY clause or an aggregate function, or involve a UNION operation. The view should
contain only one table.

Character strings inserted into tables are always stored in the case they are entered, regardless
of whether the database is case-sensitive or not. Thus a character data type column updated
with the string Valueis always held in the database with an uppercase V and the remainder of
the letters lowercase. SELECT statements return the string as Value. If the database is not
case-sensitive, however, all comparisons make Valuethe same as value, VAL UE, and so on.
The 1Q server may return results in any combination of lowercase and uppercase, so you
cannot expect case-sensitive results in a database that is case-insensitive (CASE IGNORE).
Further, if a single-column primary key already contains an entry Value, an INSERT of value
is rejected, as it would make the primary key not unique.

If the update violates any check constraints, the whole statement is rolled back.

Sybase 1Q supports scalar subqueries within the SET clause, for example:

UPDATE r

SET r.o= (SELECT MAX(t. o)
FROMt ... WHERE t.y =r.Yy),
r.s= (SELECT SUM x.s)
FROM x ...

VWHERE Xx. X = r.Xx)
WHERE r.a = 10

Sybase 1Q supports DEFAULT column values in UPDATE statements. If a column has a
DEFAULT value, this DEFAULT value is used as the value of the column in any UPDATE
statement that does not explicitly modify the value for the column.

For detailed information on the use of column DEFAULT values, see System Administration
Guide.: Volume 1 > Data Integrity > Column Defaults Encourage Data Integrity.

See CREATE TABLE Statementfor details about updating IDENTITY/AUTOINCREMENT
columns, which are another type of DEFAULT column.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.

« Sybase—With these exceptions, syntax of the IQ UPDATE statement is generally
compatible with the Adaptive Server Enterprise UPDATE statement Syntax 1: Sybase 1Q
supports multiple tables with join conditions in the FROM clause.

Updates of remote tables are limited to Sybase 1Q syntax supported by CIS, as described in
System Administration Guide: Volume 2 > Accessing Remote Dataand System
Administration Guide: Volume 2 > Server Classes for Remote Data Access.

Permissions

Must have UPDATE permission for the columns being modified.

310 Sybase 1Q

SQL Statements

See also
o CREATE TABLE Statementon page 133

UPDATE (positioned) Statement [ESQL] [SP]

Modifies the data at the current location of a cursor.

Syntax

UPDATE t abl e-1i st
SET set-item
WHERE CURRENT OF cur sor - nane

Parameters

* cursor-name: —identifier | hostvar
» set-item: — column-name [. field-name...] = scalar-value

Examples
» Example 1 - An UPDATE statement using WHERE CURRENT OF cursor:

UPDATE Enpl oyees SET surnanme = 'Jones'
WHERE CURRENT OF enp_cursor

Usage

This form of the UPDATE statement updates the current row of the specified cursor. The
current row is defined to be the last row successfully fetched from the cursor, and the last
operation on the cursor cannot have been a positioned DELETE statement.

SET—The columns that are referenced in set-iterm must be in the base table that is updated.
They cannot refer to aliases, nor to columns from other tables or views. If the table you are
updating is given a correlation name in the cursor specification, you must use the correlation
name in the SET clause. The expression on the right side of the SET clause may reference
columns, constants, variables, and expressions from the SELECT clause of the query. The set-
ffem expression cannot contain functions or expressions.

The requested columns are set to the specified values for the row at the current row of the
specified query. The columns must be in the select list of the specified open cursor.

Changes effected by positioned UPDATE statements are visible in the cursor result set, except
where client-side caching prevents seeing these changes. Rows that are updated so that they no
longer meet the requirements of the WHERE clause of the open cursor are still visible.

Sybase does not recommend the use of ORDER BY in the WHERE CURRENT OF clause. The
ORDER BY columns may be updated, but the result set does not reorder. The results appear to
fetch out of order and appear to be incorrect.

Reference: Statements and Options 311

SQL Statements

Since Sybase 1Q does not support the CREATE VIEW... WITH CHECK OPTION, positioned
UPDATE does not support this option. The WiITH CHECK OPTION does not allow an update
that creates a row that is not visible by the view.

A rowid column cannot be updated by a positioned UPDATE.
Sybase 1Q supports repeatedly updating the same row in the result set.

See also Reference. Building Blocks, Tables, and Procedures > System Procedures > System
Stored Procedures > sp_igcursorinfo Procedure.

Standards

« The range of cursors that can be updated may contai n vendor
extensions to | SO ANSI SQL grammar if the
ANSI UPDATE_CONSTRAI NTS option is set to OFF.

« Embedded SQL use is supported by Open Client/Open Server, and procedure and trigger
use is supported in SQL Anywhere.

Permissions

Must have UPDATE permission on the columns being modified.

See also

e DECLARE CURSOR Statement [ESQL] [SP] on page 154
o DEL ETE Statementon page 162

e DELETE (positioned) Statement [ESQL] [SP] on page 164
o UPDATE Statement on page 307

WAITFOR Statement

Delays processing for the current connection for a specified amount of time or until a given
time.

Syntax

WAITFOR {

DELAY time | TIME tinme }
[CHECK EVERY i nteger }
[AFTER MESSAGE BREAK]

Parameters

e time —string

312

Sybase 1Q

SQL Statements

Examples
* Example 1 — Wait for three seconds:

WAl TFOR DELAY ' 00: 00: 03'
* Example 2 —Wait for 0.5 seconds (500 milliseconds):

WAl TFOR DELAY ' 00: 00: 00: 500'
* Example 3 —Wait until 8 p.m.:

WAI TFOR TI ME ' 20: 00

Usage

The WAITFOR statement wakes up periodically (every 5 seconds by default) to check if it has
been canceled or if messages have been received. If neither of these has happened, the
statement continues to wait.

If DELAY is used, processing is suspended for the given interval. If TIME is specified,
processing is suspended until the server time reaches the time specified.

If the current server time is greater than the time specified, processing is suspended until that
time on the following day.

WAITFOR provides an alternative to the following statement, and might be useful for
customers who choose not to enable Java in the database:

call java.lang. Thread.sleep(<tinme_to wait_in_millisecs>)

In many cases, scheduled events are a better choice than using WAITFOR TIME, because
scheduled events execute on their own connection.

CHECK EVERY clause—This optional clause controls how often the WAITFOR statement
wakes up. By default, WAITFOR wakes up every 5 seconds. The value is in milliseconds, and
the minimum value is 250milliseconds.

AFTER MESSAGE BREAK clause—The WAITFOR statement can be used to wait for a
message from another connection. In most cases, when a message is received it is forwarded to
the application that executed the WAITFOR statement and the WAITFOR statement continues
to wait. If the AFTER MESSAGE BREAK clause is specified, when a message is received from
another connection, the WAITFOR statement completes. The message text is not forwarded to
the application, but it can be accessed by obtaining the value of the MessageReceived
connection property.

Side Effects

« Theimplementation of this statement uses a worker thread while it is waiting. This uses up
one of the threads specified by the -gn server command line option.

Reference: Statements and Options 313

SQL Statements

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« Sybase—This statement is also implemented by Adaptive Server Enterprise.

Permissions

None

See also
e CREATE EVENT Statement on page 81

WHENEVER Statement [ESQL]

Specifies error handling in an Embedded SQL program.

Syntax

WHENEVER
{ SQLERROR | SQLWARNING | NOTFOUND }
...{ GOTO label | STOP | CONTINUE | C code; }

Parameters

* |abel: —identifier

Examples

e Examplel-

EXEC SQL WHENEVER NOTFOUND GOTO done;
e Example2-

EXEC SQL WHENEVER SQLERRCR

PrintError(&sqglca);
return(FALSE);

s

Usage

WHENEVER can be put anywhere in an Embedded SQL C program, and does not generate any
code. The preprocessor generates code following each successive SQL statement. The error
action remains in effect for all Embedded SQL statements from the source line of the
WHENEVER statement until the next WHENEVER statement with the same error condition, or
the end of the source file.

The default action is CONTINUE.

314

Sybase 1Q

SQL Statements

WHENEVER is provided for convenience in simple programs. Most of the time, checking the
sql code field of the SQLCA (SQLCODE) directly is the easiest way to check error
conditions. In this case, WHENEVER is not used. The WHENEVER statement causes the
preprocessor to generate an /f (SQLCODE) test after each statement.

Note: The error conditions are in effect based on positioning in the C language source file and
not on when the statements are executed.

Standards

e SQL—Vendor extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Open Client/Open Server.

Permissions

None

WHILE Statement [T-SQL]

Provides repeated execution of a statement or compound statement.

Syntax

WHILE expressi on
st at ement

Examples

* Examplel-

WH LE (SELECT AVGE unit_price) FROM Products) < 30
BEG N
DELETE FROM Product s
WHERE UnitPrice = MAX(UnitPrice)
I F (SELECT MAX(UnitPrice) FROM Products) < 50
BREAK
END

The BREAK statement breaks the WHILE loop, if the most expensive product has a price
less than $50. Otherwise, the loop continues until the average price is greater than $30.

Usage

The WHILE conditional affects the performance of only a single SQL statement, unless
statements are grouped into a compound statement between the keywords BEGIN and END.

The BREAK statement and CONTINUE statement can be used to control execution of the
statements in the compound statement. The BREAK statement terminates the loop, and

Reference: Statements and Options 315

SQL Statements

execution resumes after the END keyword, marking the end of the loop. The CONTINUE
statement causes the WHILE loop to restart, skipping any statements after the CONTINUE.
Standards

e SQL—Transact-SQL extension to ISO/ANSI SQL grammar.
» Sybase—Supported by Adaptive Server Enterprise.

Permissions

None

See also
e BEGIN ... END Statementon page 47

316 Sybase 1Q

Database Options

Database Options

Database options and Interactive SQL options customize and modify database behavior.
Sybase 1Q database options are divided into three classes: general, Transact-SQL
compatibility, and Interactive SQL.

Introduction to Database Options

Database options control many aspects of database behavior including compatibility, error
handling, and concurrency.

For example, you can use database options for the purposes such as:

« Compatibility — lets you control how much like Adaptive Server Enterprise your Sybase
1Q database operates, and whether SQL that does not conform to SQL92 generates errors.

« Error handling — lets you control what happens when errors, such as dividing by zero or
overflow errors, occur.

« Concurrency and transactions — lets you control the degree of concurrency and details of
COMMIT behavior using options.

You set options with the SET OPTION statement, which has this general syntax:

SET [EXISTING] [TEMPORARY] OPTION
[userid. | PUBLIC.]Joption-nane = [option-value]

Specify a user ID or group name to set the option only for that user or group. Every user
belongs to the PUBLI Cgroup. If no user ID or group is specified, the option change is applied
to the currently logged on user ID that issued the SET OPTION statement.

For example, this statement applies a change to the PUBLI Cuser ID, a user group to which all
users belong:

SET OPTI ON Public.login_nmde = standard

Note: When you set an option to TEMPORARY without specifying a user or group, the new
option value takes effect only for the currently logged on user ID that issued the statement, and
only for the duration of the connection. When you set an option to TEMPORARY for the
PUBLI Cgroup, the change remains in place for as long as the database is running—when the
database shuts down, TEMPORARY options for the PUBLI C group revert back to their
permanent value.

When you set an option without issuing the TEMPORARY keyword, the new option value is
permanent for the user or group who issued the statement.

See Scope and Duration of Database Options, Temporary Options, and SET OPTION
Statement for more information on temporary versus permanent option values.

Reference: Statements and Options 317

Database Options

The maximum length of option-value, when set to a string, is 127 bytes.

Note: For all database options that accept integer values, Sybase 1Q truncates any decimal
option-value setting to an integer value. For example, the value 3.8 is truncated to 3.

Warning! Do not change option settings while fetching rows.

See also

Scope and Duration of Database Options on page 319
Temporary Options on page 320
SET OPTION Statement on page 293

Current Option Settings

You can obtain a list of option settings, or the values of individual options, using
sp_igcheckoptions, sa_conn_properties, the SET statement, Sybase Central, and the
SYSOPTI ONS system view.

For the connected user, the sp_igcheckoptions stored procedure displays a list of the
current value and the default value of database options that have been changed from the
default. sp_igcheckoptions considers all Sybase 1Q and SQL Anywhere database options.
Sybase 1Q modifies some SQL Anywhere option defaults, and these modified values
become the new default values. Unless the new Sybase 1Q default value is changed again,
sp_iqcheckoptions does not list the option.

sp_igcheckoptions also lists server start-up options that have been changed from the
default values.

When a DBA runs sp_igcheckoptions, he or she sees all options set on a permanent basis
for all groups and users and sees temporary options set for DBA. Users who are not DBASs
see their own temporary options. All users see nondefault server start-up options.

The sp_iqgcheckoptions stored procedure requires no parameters. In Interactive SQL, run:
sp_i qcheckopti ons

See Reference. Building Blocks, Tables, and Procedures.

The system table DBA. SYSOPTI ONDEFAULTS contains all of the names and default
values of the Sybase 1Q and SQL Anywhere options. You can query this table to see all
option default values.

Current option settings for your connection are available as a subset of connection
properties. You can list all connection properties using the sa_conn_properties System
procedure:

call sa_conn_properties

In Interactive SQL, the SET statement with no arguments lists the current setting of
options:

SET

In Sybase Central, right-click a database and select Options from the submenu.

318

Sybase 1Q

Database Options

e Query the SYSOPTI ONS system view:
SELECT *
FROM SYSOPTI ONS

This shows all PUBLI Cvalues, and those USER values that have been explicitly set.
» Use the connection_property system function to obtain an individual option setting. For
example, this statement returns the value of the Ansinull option:

SELECT connection_property (' Ansinull")

Scope and Duration of Database Options
You can set options at three levels of scope: public, user, and temporary.

Temporary options take precedence over user and public settings. User-level options take
precedence over public settings. If you set a user-level option for the current user, the
corresponding temporary option is set as well.

Some options, such as COMM T behavior, are database-wide in scope. Setting these options
requires DBA permissions. Other options, such as | SOLATI ON_LEVEL, can also be applied
to only the current connection, and need no special permissions.

Changes to option settings take place at different times, depending on the option. Changing a
global option such as RECOVERY _TI IE takes place the next time the server is started. Some
of the options that take effect after the server is restarted:

Database Options that Require Restarting the Server
CACHE_PARTI TI ONS

CHECKPOI NT_TI ME

OS_FI LE_CACHE_BUFFERI NG

OS_FI LE_CACHE_BUFFERI NG _TEMPDB

PREFETCH BUFFER _LIM T
PREFETCH_BUFFER_PERCENT

RECOVERY_TI ME

SWEEPER_THREADS PERCENT

WASH_AREA BUFFERS_PERCENT

Options that affect only the current connection generally take place immediately. For
example, you can change option settings in the middle of a transaction.

War ning! Changing options when a cursor is open can lead to unreliable results. For example,
changing DATE_FCORMAT might not change the format for the next row when a cursor is
opened. Depending on the way the cursor is being retrieved, it might take several rows before
the change works its way to the user.

Reference: Statements and Options 319

Database Options

Temporary Options

Adding the TEMPORARY keyword to the SET OPTI ON statement changes the duration of
the change.

Ordinarily an option change is permanent: it will not change until it is explicitly changed using
the SET OPTION statement.

When the SET TEMPORARY OPTION statement is executed, the new option value takes effect
only for the current connection, and only for the duration of the connection.

When the SET TEMPORARY OPTION is used to set a PUBLI Coption, the change is in place
for as long as the database is running. When the database is shut down, TEMPORARY options
for the PUBLI Cuser ID revert back to their permanent value.

Setting an option for the PUBLI Cuser ID temporarily offers a security advantage. For
example, when the LOG N_MODE option is enabled, the database relies on the login security
of the system on which it is running. Enabling LOE N_MODE temporarily means that a
database relying on the security of a Windows domain will not be compromised if the database
is shut down and copied to a local machine. In this case, the LOG N_MODE option revertsto its
permanent value, which could be Standard, a mode where integrated logins are not permitted.

Public Options

Changing the value of an option for the PUBLI Cuser ID sets the value of the option for all
users who have not set their own value.

Only users with DBA privileges have the authority to set an option for the PUBLI Cuser ID.

An option value cannot be set for an individual user ID, unless there is already a PUBLI Cuser
ID setting for that option.

Delete an Option Setting

Omit the gption-value to delete the option setting from the database.

If gption-valueis omitted, the specified option setting is deleted from the database. If gption-
value is a personal option setting, the value reverts back to the PUBLI Csetting. If a
TEMPORARY option is deleted, the option setting reverts back to the permanent setting.

For example, reset the ANSI NULL option to its default value:

SET OPTI ON ANSI NULL =

If you incorrectly type the name of an option when you are setting the option, the incorrect
name is saved in the SYSOPTI ONtable. You can remove the incorrectly typed name from the

SYSOPTI ONtable by setting the option PUBLI Cwith an equality after the option name and
no value:

SET OPTI ON PUBLI C. a_m st yped_nane=;

320

Sybase 1Q

Database Options

For example, if you set an option and incorrectly type the name, you can verify that the option
was saved by selecting from the SYSOPTI ONS view:

SET CPTI ON PUBLI C. a_mi st yped_nane=' ON ;
SELECT * FROM SYSCOPTI ONS ORDER BY 2;

user_name option setting
PUBLI C a_mistyped_name ON
PUBLI C Abort_On_Error_File

PUBLI C Abort_On_Error_Line 0
PUBLI C Abort_On_Error_Number 0

Remove the incorrectly typed option by setting the option to no value, then verify that the

option is removed:

SET OPTI ON PUBLI C. a_m st yped_nane=;
SELECT * FROM SYSOPTI ONS ORDER BY 2;

user_name option setting
PUBLI C Abort_On_Error_File

PUBLI C Abort_On_Error_Line 0
PUBLI C Abort_On_Error_Number 0

Initial Option Settings

You can use stored procedures to configure the initial database option settings of a user.

Connections to Sybase 1Q can be made through the TDS (tabular data stream) protocol (Open
Client and jConnect™ for JDBC™ connections) or through the Sybase 1Q protocol (ODBC,
Embedded SQL).

If users have both TDS and the Sybase 1Q-specific protocol, you can configure their initial
settings using stored procedures. As it is shipped, Sybase 1Q uses this method to set Open
Client connections and jConnect connections to reflect default Adaptive Server Enterprise
behavior.

The initial settings are controlled using the LOE N_PROCEDURE option, which is called after
all the checks have been performed to verify that the connection is valid. The

LOA N_PROCEDURE option names a stored procedure to run when users connect. The
default setting is to use the sp_login_environment system stored procedure. You can specify a
different stored procedure. See Reference: Building Blocks, Tables, and Procedures.

Reference: Statements and Options 321

Database Options

The sp_login_environment procedure checks to see if the connection is being made over
TDS. If it s, it calls the sp_tsql_environment procedure, which sets several options to new
default values for the current connection.

See also

* LOGIN_PROCEDURE Optionon page 401

Deprecated Database Options

See New Features Summary Sybase 1Q 15.3 for information about database options

deprecated in this release.

General Database Options

General database options is the class of options consisting of all options except Transact-SQL
compatibility options and Interactive SQL options.

Note: There are additional internal options not listed in this table that Sybase Technical

Support might ask you to use.

Table 16. General Database Specific Options

Option name Allowed values | Default setting
AGGREGATI ON_PREFERENCE -3t03 0
ALLOW READ CLI ENT_FI LE ON, OFF OFF
APPEND_LOAD ON, OFF OFF
AUDI Tl NG ON, OFF OFF
Bl T_VECTOR_PI NNA- 0-100 40
BLE_CACHE_PERCENT*

BLOCKI NG OFF OFF
BT_PREFETCH MAX_M SS 0-1000 2
BT_PREFETCH_SI ZE 0-100 10
BTREE_PAGE_SPLI T_PAD_PERCENT 0-90 50
CACHE_PARTI Tl ONS power of 2, 0 to 64 0
CHECKPO NT_TI ME number of minutes | 60
Cl S_RONSET_SI ZE integer 50

322

Sybase 1Q

Database Options

Option name

Allowed values

Default setting

CONVERSI ON_MODE 0,1 0
CONVERT_VARCHAR TO 1242 ON, OFF OFF
COOPERATI VE_COW T_TI MEQUT integer 250
COOPERATI VE_COW TS ON, OFF ON
CURSOR_W NDOW ROWS 20 — 100000 200
DATE_FI RST_DAY_OF_WEEK 0-6 0
DATE_FORMAT string YYYY-MM-DD'
DATE_ORDER 'YMD', 'DMY", "YMD'

‘MDY*
DBCC_LOG_PROGRESS ON, OFF OFF
DBCC_PI NNABLE_CACHE_PERCENT 0-100 50
DEBUG_MESSAGES ON, OFF OFF
DEFAULT_DBSPACE string " (empty string)
DEFAULT_DI SK_STRI PI NG ON, OFF ON
DEDI CATED_TASK ON, OFF OFF
DEFAULT_HAVI NG_SELECTI VI - 0 — 1000000 0
TY_PPM
DEFAULT_KB_PER_STRI PE 1 - max unsigned bi- | 1

gint
DEFAULT_LI KE_MATCH_SELECTI VI - | 0-1000000 150000
TY_PPM
DEFAULT_LI KE_RANGE_SELECTI VI - | 1-1000000 150000
TY_PPM
DELAYED_COW T_TI MEQUT integer 500
DELAYED_COWM TS OFF OFF
DI SABLE_RI _CHECK ON, OFF OFF
EARLY_PREDI CATE_EXECUTI ON ON, OFF ON
ENABLE_LOB_VARI ABLES ON, OFF OFF
EXTENDED_JO N_SYNTAX ON, OFF ON

Reference: Statements and Options

323

Database Options

Option name

Allowed values

Default setting

FORCE_DROP ON, OFF OFF
FORCE_NO_SCROLL_CURSORS ON, OFF OFF
FORCE_UPDATABLE_CURSORS ON, OFF OFF
FP_LOOKUP_SI ZE 1 MB - 4096 MB 16 MB
FP_LOOKUP_SI ZE_PPM 1 - 1000000 2500
FP_PREDI CATE_WORKUNI T_PAGES integer 200
FP_PREFETCH_SI ZE 0-100 10
FPL_EXPRESSI ON_MEMORY_KB 0 - 20000 1024
GARRAY_FI LL_FACTOR_PERCENT 0-1000 25
GARRAY_| NSERT_PREFETCH_SI ZE 0-100 3
GARRAY_PACE_SPLI T_PAD_PERCENT | 0-100 25
GARRAY_RO PREFETCH_SI ZE 0-100 10
HASH_PI NNABLE_CACHE_PERCENT* 0-100 20
HASH_THRASHI NG_PERCENT 0-100 10
HG_DELETE_METHCD 0-3 0
HG_SEARCH RANGE integer 10
HTTP_SESSI ON_TI MEQUT integer (1 —525600) | 30

| DENTI TY_ENFORCE_UNI QUENESS ON, OFF OFF

| DENTI TY_I NSERT string " (empty string)
I NDEX_ADVI SCR ON, OFF OFF

| NDEX_PREFERENCE -10-10 0

| NFER_SUBQUERY_PREDI CATES ON, OFF ON

I N_SUBQUERY_PREFERENCE -3-3 0

| QGOVERN_NMAX_PRI ORI TY 1-3 2

| QGOVERN_PRI ORI TY 1-3 2

| QGOVERN_PRI ORI TY_TI ME 1 -1000000 seconds | O (disabled)

| SOLATI ON_LEVEL

0,123

0

324

Sybase 1Q

Database Options

Option name

Allowed values

Default setting

MIXED, INTEGRA-
TED

JAVA LOCATI ON string " (empty string)
JAVA VM OPTI ONS string " (empty string)
JO N_EXPANSI ON_FACTOR 0-100 30

JO N_OPTI M ZATI ON ON, OFF ON

JO N_PREFERENCE -7 0

JO N_SI MPLI FI CATI ON_THRESHOLD | 1-64 15
LARGE_DOUBLES_ACCUMULATOR ON, OFF OFF

LF_BI TMAP_CACHE_KB 1-8 4

LOAD ZEROLENGTH_ASNULL ON, OFF OFF

LOCKED ON, OFF OFF
LOG_CONNECT ON, OFF ON
LOG_CURSOR_OPERATI ONS ON, OFF OFF

LOG N_MODE STANDARD, STANDARD

LOG N_PRCCEDURE string sp_login_environment
VAl N_RESERVED_DBSPACE_MB integer >= 200 in MB | 200
MAX_CARTESI AN _RESULT integer 100000000
MAX_CLI ENT_NUMERI C_PRECI SI ON 0-126 0
MAX_CLI ENT_NUMERI C_SCALE 0-126 0
MAX_CONNECTI ONS 0 - 2147483647 Unlimited
MAX_CUBE_RESULT 0 - 4294967295 10000000
MAX_CURSOR_COUNT integer 50
MAX_DAYS_SI NCE_LOG N 0 - 2147483647 Unlimited
MAX_FAI LED_LOG N_ATTEMPTS 0 - 2147483647 Unlimited
MAX_HASH ROWS integer to 2500000
4294967295
MAX_1 Q THREADS_PER_CONNECTI ON | 3-10000 144

Reference: Statements and Options

325

Database Options

Option name Allowed values | Default setting

MAX_| Q THREADS PER TEAM 1-10000 144

MAX_JO N_ENUMERATI ON 1-64 15

MAX_NON DBA CONNECTI ONS 0 - 2147483647 Unlimited

MAX_PREFI X_PER_CON- 0-300 1

TAI NS_PHRASE

MAX_QUERY_PARALLELI SM integer 64

MAX_QUERY_TI ME 0-2%2-1 0 (disabled)

MAX_STATEMENT _COUNT integer 100

MAX_TEMP_SPACE_PER_CONNECTI ON | integer 0

MAX_WARNI NGS integer 2481

M NI M ZE_STORAGE ON, OFF OFF

M N_PASSWORD LENGTH integer >=0 0 characters

MONI TOR_QOUTPUT _DI RECTCORY string database directory

NOEXEC ON, OFF OFF

NON_ANSI _NULL_VARCHAR ON, OFF OFF

NOTI FY_MODULUS integer 100000

ODBC_DI STI N- ON, OFF OFF

GUl SH_CHAR_AND_VARCHAR

ON_CHARSET_CONVERSI ON_FAI LURE | string IGNORE

OS_FI LE_CACHE BUFFERI NG ON, OFF OFF

PASSWORD GRACE_TI ME 0 — 2147483647 0

PASSWORD _EXPI RY_ON_NEXT_LOG N | ON, OFF OFF

PASSWORD LI FE_TI ME 0 - 2147483647 Unlimited

POST_LOQJ N_PROCEDURE string dbo. sa_post | og-
i n_procedure

PREC!I SI ON 126 126

PREFETCH ON, OFF ON

PREFETCH BUFFER LIM T integer 0

326 Sybase 1Q

Database Options

Option name

Allowed values

Default setting

PREFETCH_BUFFER_PERCENT 0-100 40
PREFETCH_GARRAY_PERCENT 0-100 60
PREFETCH_SORT_PERCENT 0-100 20
PRESERVE_SOURCE_FORNMAT ON, OFF ON
QUERY_DETAI L ON, OFF OFF
QUERY_NANME string " (empty string)
QUERY_PLAN ON, OFF ON
QUERY_PLAN_AFTER_RUN ON, OFF OFF
QUERY_PLAN_AS HTML ON, OFF OFF
QUERY_PLAN_AS HTM__DI RECTCRY string " (empty string)
QUERY_PLAN_TEXT_ACCESS ON, OFF OFF
QUERY_PLAN_TEXT_CACHI NG ON, OFF OFF
QUERY_ROWS_RETURNED LIM T integer 0
QUERY_TEMP_SPACE_LIM T integer 0
QUERY_TI M NG ON, OFF OFF
RECOVERY_TI ME number of minutes | 2
RETURN_DATE_TI ME_AS_STRI NG ON, OFF OFF
ROW COUNT integer 0
SCALE 0-126 38

SI GNI FI CANTDI G TSFORDOUBL EE- 0-15 0
QUALI TY

SORT_COLLATI ON Internal, colla- Internal

tion_name, or colla-
tion_id

SORT_PI NNABLE_CACHE_PERCENT* | 0-100 20
SUBQUERY_CACHI NG_PREFERENCE 3-3 0
SUBQUERY_FLATTENI NG PERCENT 0,1-2%2-1 100
SUBQUERY_FLATTENI NG_PREFER- 3-3 0

ENCE

Reference: Statements and Options

327

Database Options

Option name

Allowed values

Default setting

TRACT_S| ZES

64GB Sun Solaris: &
Linux 0 - 512GB
Windows: 0 - 128GB

SUBQUERY_PLACEMENT_PREFERENCE | -1-1 0
SUPPRESS_TDS_DEBUGE NG ON, OFF OFF
SWEEPER THREADS_PERCENT 11040 10
TDS_EMPTY_STRING_| S_NULL ON, OFF OFF
TEVP_DI SK_PER_STRI PE integer > 0 in KB 1
TEMP_EXTRACT_APPEND ON, OFF OFF
TEMP_EXTRACT_BI NARY ON, OFF OFF
TEVP_EXTRACT_COLUVMN_DELI M TER | string ,
TEMP_EXTRACT_DI RECTORY string " (empty string)
TEMP_EXTRACT_ESCAPE_QUOTES ON, OFF OFF
TEMP_EXTRACT_NAMEL - TEMP_EX- string " (empty string)
TRACT_NAMES

TEMP_EXTRACT_NULL_AS_EMPTY ON, OFF OFF
TEMP_EXTRACT_NULL_AS_ZERO ON, OFF OFF
TEMP_EXTRACT_QUOTE string " (empty string)
TEMP_EXTRACT_QUOTES ON, OFF OFF
TEVP_EXTRACT_QUOTES_ALL ON, OFF OFF
TEMP_EXTRACT_ROW DELI M TER string " (empty string)
TEMP_EXTRACT_SI ZE1 - TEMP_EX- AIX & HP-UX:0- | 0

TEMP_EXTRACT_SWAP ON, OFF OFF

TEVP_RESERVED_DBSPACE_NVB integer >= 200 in MB | 200

TEMP_SPACE_LI M T_CHECK ON, OFF ON

TEXT_DELETE_METHCD 0-2 0

Tl ME_FORNVAT string 'HH:NN:SS.SSS'

TI MESTAMP_FORVAT string YYYY- MM-DD
HH:NN:SS.SSS'

328

Sybase 1Q

Database Options

Option name Allowed values | Default setting
TOP_NSORT_CUTOFF_PAGES 1-1000 1
TR M _PARTI AL_MBC ON, OFF OFF
USER RESOURCE_RESERVATI ON integer 1
VERI FY_PASSWORD FUNCTI ON string " (empty string)
WASH_AREA BUFFERS_PERCENT 1-100 20
WAIT_FOR COWM T ON, OFF OFF
WD DELETE_METHOD 0-3 0
See also

e Transact-SQL Compatibility Options on page 329
» Interactive SQL Options on page 332
» Alphabetical List of Options on page 333

Data Extraction Options

The data extraction facility allows you to extract data from a database by redirecting the output
of a SELECT statement from the standard interface to one or more disk files or named pipes.

The TEMP_EXTRACT _. . . database options are used to control the data extraction feature.

See System Administration Guide.: Volume 1 > Data Import and Export > Methods for
Exporting Data from a Database > Data Extraction Facility > The Extract Options.

Transact-SQL Compatibility Options

Transact-SQL compatibility options allow Sybase 1Q behavior to be compatible with
Adaptive Server Enterprise, or to both support old behavior and allow 1ISO SQL92 behavior.

For further compatibility with Adaptive Server Enterprise, you can set some of these options
for the duration of the current connection using the Transact-SQL SET statement instead of the
Sybase 1Q SET OPTION statement.

Table 17. Transact-SQL Compatibility Options

Option Allowed values Default setting
ALLOW NULLS BY_DEFAULT ON, OFF ON
ANSI _BLANKS* ON, OFF OFF

Reference: Statements and Options 329

Database Options

Option Allowed values Default setting
ANS| _CLOSE_CUR- ON ON
SCRS_ON_RCLLBACK
ANSI _| NTEGER_OVERFLOW
ANSI _PERM SSI ONS ON, OFF ON
ANSI NULL ON, OFF ON
ANSI _SUBSTRI NG ON, OFF ON
ANS| _UPDATE_CONSTRAI NTS OFF, CURSORS, STRICT CURSORS
ASE_BI NARY_DI SPLAY ON, OFF OFF
ASE_FUNCTI ON_BEHAVI CR ON, OFF OFF
CHAI NED ON, OFF ON
CLOSE_ON_ENDTRANS ON ON
CONTI NUE_AFTER_RAI SERROR | ON, OFF ON
CONVERSI ON_ERROR ON, OFF ON
Dl VI DE_BY_ZERO _ERRCR ON, OFF ON
ESCAPE_CHARACTER* Reserved Reserved
FI RE_TRI GGERS* ON, OFF ON
NEAREST_CENTURY 0-100 50
NON_KEYWORDS Comma-separated keywords list | No keywords turned off
ON_TSQ._ERROR STOP, CONTINUE, CONDI- CONDITIONAL
TIONAL
QUERY_PLAN_ON_OPEN*
QUOTED_I DENTI FI ER ON, OFF ON
Rl _TRI GGER_TI ME*
SQL_FLAGGER ERROR_LEVEL E, I, F, W, OFF, SQL:1992/Entry, | OFF
SQL:1992/Intermediate, SQL:
1992/Full, SQL:1999/Core, SQL:
1999/Package, SQL:2003/Core,
SQL:2003/Package

330

Sybase 1Q

Database Options

Option Allowed values Default setting
SQL_FLAGGER WARNI NG _LEVEL | E, I, F, W, OFF, SQL:1992/Entry, | OFF
SQL:1992/Intermediate, SQL:
1992/Full, SQL:1999/Core, SQL:
1999/Package, SQL:2003/Core,
SQL:2003/Package
STRI NG_RTRUNCATI ON ON, OFF ON
TEXTSI ZE*
TSQL_HEX_CONSTANT*
TSQL_VARI ABLES ON, OFF OFF

Note: An asterisk (*) next to the option name indicates an option currently not supported by

Sybase 1Q.

See also

» General Database Options on page 322

» Interactive SQL Options on page 332

» Alphabetical List of Options on page 333
o SET Statement [T-SQL] on page 289

Transact-SQL Option Settings for Adaptive Server Enterprise

Compatibility

The default setting for some options differs from the Adaptive Server Enterprise default

setting. To ensure compatible behavior, you should explicitly set the options.

When a connection is made using the Open Client or JDBC interfaces, some option settings
are explicitly set for the current connection to be compatible with Adaptive Server Enterprise.

For information on how the settings are made, see Reference: Building Blocks, Tables, and

Procedures.

Table 18. Transact-SQL Options Set Explicitly for ASE Compatibility

Option ASE-compatible setting
ALLOW NULLS BY_DEFAULT OFF
ANSI NULL OFF
CHAI NED OFF
CONTI NUE_AFTER_RAI SERROR ON

Reference: Statements and Options

331

Database Options

Option ASE-compatible setting
DATE_FORMAT YYYY-MM-DD
DATE_ORDER MDY
ESCAPE_CHARACTER OFF

| SOLATI ON_LEVEL 1

ON_TSQL_ERROR CONDITIONAL
QUOTED_| DENTI FI ER OFF

TI ME_FORNMAT HH:NN:SS.SSS

TI MESTAMP_FORVAT

YYYY-MM-DD HH:NN:SS.SSS

TSQL_VARI ABLES

OFF

Interactive SQL Options

Interactive SQL options change how Interactive SQL interacts with the database.

Syntax 1
SET [TEMPORARY] OPTION

[userid. | PuUBLIC. Joption-name = [option-value]
Syntax 2

SET PERMANENT

Syntax 3
SET

Parameters
useri d:

identifier, string or host-variable

opti on- nane:

identifier, string or host-variable

opti on-val ue:

host -vari abl e (i ndicator all owed),

or numnber

Description

string, identifier,

Syntax 1 with the TEMPORARY keyword cannot be used between the BEGIN and END

keywords of a compound statement.

332

Sybase 1Q

Database Options

Syntax 2 SET PERMANENT stores all current Interactive SQL options in the SYSOPTI ONS
system table. These settings are automatically established every time Interactive SQL is
started for the current user ID.

Syntax 3 is used to display all of the current option settings. If there are temporary options set
for Interactive SQL or the database server, these are displayed; otherwise, the permanent
option settings are displayed.

Table 19. Interactive SQL Options

Option Allowed values Default setting

DEFAULT | SQL_ENCODI NG Identifier or string empty string (use sys-
tem code page)

NULLS* String NULL

ON_ERROR STOP, CONTINUE, PROMPT, EXIT, | PROMPT

NOTIFY_CONTINUE, NOTI-
FY_STOP, NOTIFY_EXIT

QUTPUT_FORWVAT* ASCII, DBASEII, DBASEIII, EX- ASCII
CEL, FIXED, FOXPRO, HTML, LO-
TUS, SQL, XML,
QUTPUT_LENGTH* Non-negative integer 0 (no truncation)
OUTPUT_NULLS* String 'NULL'
STATI STI CS* 0,3,4,56 3
TRUNCATI ON_LENGTH* Integer 256

Note: An asterisk (*) next to the option name indicates an option currently not supported by
Sybase 1Q.

See also

e General Database Options on page 322

e Transact-SQL Compatibility Options on page 329
» Alphabetical List of Options on page 333

Alphabetical List of Options

Descriptions of general, Transact-SQL compatibility, and Interactive SQL database options.
Some option names are followed by a class indicator in square brackets.

The database option class indicators are:

Reference: Statements and Options 333

Database Options

 [Interactive SQL] — The option changes how Interactive SQL interacts with the database.

e [TSQL] - The option allows Sybase 1Q behavior to be made compatible with Adaptive
Server Enterprise, or to both support old behavior and allow ISO SQL92 behavior.

See also

 Introduction to Database Options on page 317

» General Database Options on page 322

e Transact-SQL Compatibility Options on page 329
« Interactive SQL Options on page 332

AGGREGATION PREFERENCE Option

Controls the choice of algorithms for processing an aggregate.

Allowed Values
-3t03

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

For aggregation (GROUP BY, DISTINCT, SET functions) within a query, the Sybase 1Q
optimizer has a choice of several algorithms for processing the aggregate.

AGGREGATI ON_PREFERENCE lets you override the costing decision of the optimizer when
choosing the algorithm. the option does not override internal rules that determine whether an
algorithm is legal within the query engine.

This option is normally used for internal testing and for manually tuning queries that the
optimizer does not handle well. Only experienced DBAs should use it. Inform Sybase
Technical Support, if you need to set AGGREGATI ON_PREFERENCE, as setting this option
might mean that a change to the optimizer is necessary.

Table 20. AGGREGATION_PREFERENCE Values

Value Action
0 Let the optimizer choose
1 Prefer aggregation with a sort
2 Prefer aggregation using 1Q indexes

334

Sybase 1Q

Database Options

Value Action
3 Prefer aggregation with a hash
-1 Avoid aggregation with a sort
-2 Avoid aggregation using 1Q indexes
-3 Avoid aggregation with a hash

ALLOW NULLS BY DEFAULT Option [TSQL]

Controls whether new columns created without specifying either NULL or NOT NULL are
allowed to contain NULL values.

Allowed values
ON, OFF

Default
ON
OFF for Open Client and JDBC connections

Description
The ALLOW NULLS BY_ DEFAULT option is included for Transact-SQL compatibility.

ANSI CLOSE_CURSORS ON_ROLLBACK Option [TSQL]

Controls whether cursors that were opened WITH HOLD are closed when a ROLLBACK is
performed.

Allowed Values
ON

Default
ON

Description

The ANSI SQL/3 standard requires all cursors be closed when a transaction is rolled back.
This option forces that behavior and cannot be changed. The CLOSE_ON_ENDTRANS option
overrides this option.

Reference: Statements and Options 335

Database Options

ANSI_PERMISSIONS Option [TSQL]

Controls permissions checking for DELETE and UPDATE statements.

Allowed Values
ON, OFF

Default
ON

Description

With ANSI _PERM SSI ONS ON, SQL92 permissions requirements for DELETE and
UPDATE statements are checked. The default value is OFF in Adaptive Server Enterprise. This
table outlines the differences:

Table 21. Effect of ANSI_PERMISSIONS Option

SQL statement

Permissions required with
ANSI_PERMISSIONS OFF

Permissions required with
ANSI_PERMISSIONS ON

UPDATE

UPDATE permission on the columns
where values are being set

UPDATE permission on the columns
where values are being set

SELECT permission on all columns
appearing in the WHERE clause.

SELECT permission on all columns
on the right side of the set clause.

DELETE

DELETE permission on table

DELETE permission on table. SE-
LECT permission on all columns
appearing in the WHERE clause.

The ANSI _PERM SSI ONS option can be set only for the PUBLI Cgroup. No private settings

are allowed.

ANSINULL Option [TSQL]

Controls the interpretation of using = and != with NULL.

Allowed Values
ON, OFF

Default
ON

336

Sybase 1Q

Database Options

Description
With ANSI NULL ON, results of comparisons with NULL using ‘=" or 'I="are unknown. This
includes results of comparisons implied by other operations such as CASE.

Setting ANSI NULL to OFF allows comparisons with NULL to yield results that are not
unknown, for compatibility with Adaptive Server Enterprise.

Note: Unlike SQL Anywhere, Sybase 1Q does rot generate the warning “nul | val ue
elimnated in aggregate function” (SQLSTATE=01003) for aggregate
functions on columns containing NULL values.

ANS| SUBSTRING Option [TSQL]

Controls the behavior of the SUBSTRING (SUBSTR) function when negative values are
provided for the start or length parameters.

Allowed Values
ON, OFF

Default
ON

Description

When the ANSI _ SUBSTRI NGoption is set to ON, the behavior of the SUBSTRING function
corresponds to ANSI/ISO SQL/2003 behavior. A negative or zero start offset is treated as if the
string were padded on the left with noncharacters, and gives an error if a negative length is
provided.

When this option is set to OFF, the behavior of the SUBSTRING function is the same as in
earlier versions of Sybase 1Q: a negative start offset means an offset from the end of the string,
and a negative length means the desired substring ends length characters to the left of the
starting offset. Using a start offset of O is equivalent to a start offset of 1.

Avoid using nonpositive start offsets or negative lengths with the SUBSTRING function.
Where possible, use the LEFT or RIGHT functions instead.

Example
These examples show the difference in the values returned by the SUBSTRING function based
on the setting of the ANSI _SUBSTRI NG option:

SUBSTRI N ' abcdefgh',-2,4);
ansi _substring = O f ==> "'gh'
/1 substring starts at second-I|ast character
ansi _substring = On ==>"'a'
/'l takes the first 4 characters of
/| ???abcdefgh and discards all ?

Reference: Statements and Options 337

Database Options

SUBSTRI N§ ' abcdefgh',4,-2);
ansi _substring = Of ==> "'cd'
ansi _substring = On ==> value -2 out of range
for destination

SUBSTRI N§ ' abcdefgh',0,4);
ansi _substring Of ==> "abcd'
ansi _substring On ==>"'abc'

ANSI UPDATE_CONSTRAINTS Option

Controls the range of updates that are permitted.

Allowed Values
OFF, CURSORS, STRICT

Default
CURSORS

Description

Sybase 1Q provides several extensions that allow updates that are not permitted by the ANSI
SQL standard. These extensions provide powerful, efficient mechanisms for performing
updates. However, in some cases, they cause behavior that is not intuitive. This behavior might
produce anomalies such as lost updates if the user application is not designed to expect the
behavior of these extensions.

ANSI _UPDATE_CONSTRAI NTS controls whether updates are restricted to those permitted
by the SQL92 standard.

If the option is set to STRI CT, these updates are prevented:

« Updates of cursors containing JO NS
« Updates of columns that appear in an ORDER BY clause
» The FROM clause is not allowed in UPDATE statements.

If the option is set to CURSORS, these same restrictions are in place, but only for cursors. If a
cursor is not opened with FOR UPDATE or FOR READ ONLY, the database server determines
whether updates are permitted based on the SQL92 standard.

If ANSI _UPDATE_CONSTRAI NTSis set to CURSORS or STRICT, cursors containing an
ORDER BY clause default to FOR READ ONLY; otherwise, they continue to default to FOR
UPDATE.

Example
This code has a different effect, depending on the setting of
ANS| UPDATE_CONSTRAI NTS:

CREATE TABLE mmy (a CHAR(3))
)

CREATE TABLE mmgl (b CHAR(3)):

338

Sybase 1Q

Database Options

I NSERT | NTO mmg VALUES (' 001');
I NSERT | NTO mmg VALUES (' 002');
I NSERT | NTO nmg VALUES (' 003')

I NSERT | NTO nmgl VALUES (' 003');
SELECT * FROM mmuy;

SELECT * FROM mmuyl,;

Option 1: Set ANSI _UPDATE_CONSTRAI NTSto STRICT:

SET OPTI ON public. Ansi _update_constraints = 'strict';
DELETE MMG FROM MVGL VHERE A=B;

This results in an error indicating that the attempted update operation is not allowed.

Option 2: Set ANSI _UPDATE_CONSTRAI NTS to CURSORS or OFF:

SET OPTI ON public. Ansi _update_constraints = 'CURSORS ; // or 'OFF
DELETE mmg FROM nmmgl WHERE A=B;

In this case, the deletion should complete without the error.

See also
» UPDATE Statement on page 307

ALLOW READ CLIENT FILE Option
Enables client-side data transfer.

See SQL Anywhere 11.0.1 > SQL Anywhere Server — Database Administration >
Configuring Your Database > Database options > Introduction to database options >
Alphabetical list of options > allow read client file option [database].

APPEND LOAD Option
Helps reduce space usage from versioned pages.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
The APPEND_L QAD option applies to LOAD, INSERT...SELECT, and INSERT...VALUES

statements and takes effect on the next execution of the statement.

Reference: Statements and Options 339

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/allow-read-client-file-option.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/allow-read-client-file-option.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/allow-read-client-file-option.html

Database Options

When the APPEND_L QAD option is OFF, Sybase 1Q reuses row 1Ds from deleted rows.
Setting this option ON appends new data to the end of the table.

APPEND L QAD behaves differently for partitioned and non-partitioned tables. Row ID
ranges are assigned to each partition in a partitioned table. For partitioned tables, when
APPEND_ LQADis ON, new rows are appended at the end of the appropriate partition. When
APPEND_LQAD is OFF, the load reuses the first available row IDs and space from deleted
rows.

For non-partitioned tables, when APPEND_LQAD is ON, new rows are added after the
maximum row ID that is at the end of the table rows. When APPEND L QAD s OFF, the load
reuses the deleted row IDs. With non-partitioned tables, you can also control where rows are
inserted by using the LOAD or INSERT START ROW ID clause to specify the row at which to
start inserting.

ASE BINARY_DISPLAY Option

Specifies that the display of Sybase 1Q binary columns is consistent with the display of
Adaptive Server Enterprise binary columns.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
ASE_BI NARY_DI SPLAY affects the output of the SELECT statement.

This option affects only columns in the 1Q store. It does not affect variables, catalog store
columns or SQL Anywhere columns. When this option is ON, Sybase 1Q displays the column
in readable ASCII format; for example, 0x1234567890abcdef. When this option is OFF,
Sybase 1Q displays the column as binary output (not ASCII).

Set ASE_BINARY_DISPLAY OFF to support bulk copy operations on binary data types.
Sybase 1Q supports bulk loading of remote data via the LOAD TABLE USING CLIENT FILE
statement.

See also
» L OAD TABLE Statement on page 221

340

Sybase 1Q

Database Options

ASE_FUNCTION_ BEHAVIOR Option

Specifies that output of Sybase 1Q functions, including INTTOHEX and HEXTOINT, is
consistent with the output of Adaptive Server Enterprise functions.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

When ASE_BEHAVI OR_FUNCTI ONis ON, some of the Sybase 1Q data type conversion
functions, including HEXTOINT and INTTOHEX, return output that is consistent with the
output of Adaptive Server Enterprise functions. The differences in the ASE and Sybase 1Q
output, with respect to formatting and length, exist because ASE primarily uses signed 32-bit
as the default and Sybase 1Q primarily uses unsigned 64-bit as the default.

Sybase 1Q does not provide support for 64-bit integer, as ASE does not have a 64-bit integer
data type.

For details on the behavior of the INTTOHEX and HEXTOINT functions, see Reference:
Building Blocks, Tables, and Procedures.

Example
In this example, the HEXTOINT function returns a different value based on whether
ASE_FUNCTI ON_BEHAVI ORis ON or OFF.

The HEXTOINT function returns 4294967287 with ASE_FUNCTI ON_BEHAVI OR OFF:
sel ect hextoint(‘fffffff7') fromiqg_dumy

The HEXTOINT function returns -9 with ASE_FUNCTI ON_BEHAVI OR ON:
select hextoint(‘fffffff7') fromiq_dumy

See also
 CONVERSION_ERROR Option [TSQL]on page 349

Reference: Statements and Options 341

Database Options

AUDITING Option [database]

BIT

Enables and disables auditing in the database.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for the PUBLI Cgroup only. Takes effect immediately. DBA authority required.

Description
This option turns auditing on and off.

Auditing is the recording of details about many events in the database in the transaction log.
Auditing provides some security features, at the cost of some performance. When you turn on
auditing for a database, you cannot stop using the transaction log. You must turn auditing off
before you turn off the transaction log. Databases with auditing on cannot be started in read-
only mode.

For the AUDI Tl NGoption to work, you must set the auditing option to ON, and also specify
which types of information you want to audit using the sa_enable_auditing_type System
procedure. Auditing will not take place if either of the following is true:

e The AUDI TI NGoption is set to OFF
« Auditing options have been disabled

If you set the AUDI TI NGoption to ON, and do not specify auditing options, all types of
auditing information are recorded. Alternatively, you can use sa_enable_auditing_type to
record any combination of the following: permission checks, connection attempts, DDL
statements, public options, and triggers. See Reference: Building Blocks, Tables, and
Procedures.

VECTOR_PINNABLE CACHE_PERCENT Option

Maximum percentage of a user’s temp memory that a persistent bit-vector object can pin.

Allowed Values
0-100

Default
40

342

Sybase 1Q

Database Options

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
Bl T_VECTOR_PI NNABLE_CACHE _PERCENT controls the percentage of a user’s temp

memory allocation that any one persistent bit-vector object can pin in memory. It defaults to
40%, and should not generally be changed by users.

This option is primarily for use by Sybase Technical Support. If you change the value of
Bl T_VECTOR_PI NNABLE CACHE PERCENT, do so with extreme caution; first analyze
the effect on a wide variety of queries.

See also
» HASH_PINNABLE CACHE PERCENT Optionon page 380
* SORT _PINNABLE CACHE_PERCENT Optionon page 440

BLOCKING Option
Controls the behavior in response to locking conflicts.

Allowed Values
OFF

Default
OFF

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect immediately.

Description
When BLOCKI NGis OFF, a transaction receives an error when it attempts a write operation
and is blocked by the read lock of another transaction.

BT PREFETCH MAX MISS Option

Controls the way Sybase 1Q determines whether to continue prefetching B-tree pages for a
given query.

Allowed Values
0-1000

Default
2

Reference: Statements and Options 343

Database Options

Scope
Can be set for an individual connection or for the PUBLI Cgroup. Takes effect immediately.

Description

Use only if instructed to do so by Sybase Technical Support. For queries that use HG
(High_Group) indexes, Sybase 1Q prefetches B-tree pages sequentially until it determines that
prefetching is no longer useful. For some queries, it might turn off prefetching prematurely.
Increasing the value of BT_PREFETCH_MAX_M SS makes it more likely that Sybase 1Q
continues prefetching, but also might increase 1/O unnecessarily.

If queries using HG indexes run more slowly than expected, try gradually increasing the value
of BT_PREFETCH_MAX_M SS.

Experiment with different settings to find the setting that gives the best performance. For most
queries, useful settings are in the range of 1 to 10.

See also
e BT PREFETCH_SIZE Optionon page 344
* PREFETCH BUFFER_LIMIT Optionon page 425

BT _PREFETCH_SIZE Option

Restricts the size of the read-ahead buffer for the High_Group B-tree.

Allowed Values
0 — 100. Setting to 0 disables B-tree prefetch.

Default
10

Scope
Can be set only for an individual user. Takes effect immediately.

Description

B-tree prefetch is activated by default for any sequential access to the High_Group index such
as INSERT, large DELETE, range predicates, and DBCC (Database Consistency Checker)
commands.

BT _PREFETCH_SI ZE limits the size of the read-ahead buffer for B-tree pages. Reducing
prefetch size frees buffers, but also degrades performance at some point. Increasing prefetch
size might have marginal returns. This option should be used in conjunction with the options
PREFETCH GARRAY_PERCENT, GARRAY | NSERT PREFETCH_SI ZE, and
GARRAY_RO_PREFETCH_SI ZE for non-unique High_Group indexes.

344

Sybase 1Q

Database Options

See also

* GARRAY _INSERT_PREFETCH_SIZE Option on page 378
 GARRAY RO PREFETCH SIZE Optionon page 379

« PREFETCH_GARRAY PERCENT Option on page 426

BTREE PAGE SPLIT PAD PERCENT Option
Determines per-page fill factor during page splits for B-Tree structures.

Allowed Values
0-90

Default
50

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLIC group. Takes effect immediately.

Description

B-Tree structures are used by the HG, LF, DT, TIME, and DTTM indexes. Splits of a B-Tree
page try to leave the specified percentage empty to avoid splitting when new keys are inserted
into the index.

Indexes reserve storage at the page level that can be allocated to new keys as additional data is
inserted. Reserving space consumes additional disk space, but can help the performance of
incremental inserts. If future plans include incremental inserts, and the new rows do not have
values that are already present in the index, a nonzero value for

GARRAY_PAGE SPLI T_PAD_ PERCENT may improve incremental insert performance.

If you do not plan to incrementally update the index, you can reduce the value of this option to
save disk space.

See also
e GARRAY FILL FACTOR_PERCENT Optionon page 377
* GARRAY PAGE SPLIT PAD PERCENT Optionon page 378

CACHE PARTITIONS Option
Sets the number of partitions to be used for the main and temporary buffer caches.

Allowed Values
0,1,2,4,8,16,32,64

0: Sybase 1Q computes the number of partitions automatically as nunber _of _cpus/ 8,
rounded to the nearest power of 2, up to a maximum of 64.

Reference: Statements and Options 345

Database Options

1: 1 partition only; this value disables partitioning.

2 — 64: Number of partitions; must be a power of 2.

Default
0 (Sybase 1Q computes the number of partitions automatically).

Scope
Can be set for the PUBLI Cgroup only. Takes effect for the current database the next time you
start the database server.

Description

Partitioning the buffer cache can sometimes improve performance on systems with multiple
CPUs by reducing lock contention. Normally you should rely on the value that Sybase 1Q
calculates automatically, which is based on the number of CPUs on your system. However, if
you find that load or query performance in a multi-CPU configuration is slower than expected,
you might be able to improve it by setting a different value for CACHE_PARTI Tl ONS. See
System Administration Guide: Volume 1 > Transactions and Versioning > Tools for Managing
Locks > Tools for Investigating Lock Contention.

Both the number of CPUs and the platform can influence the ideal number of partitions.
Experiment with different values to determine the best setting for your configuration.

The value you set for CACHE _PARTI TI ONSapplies to both the main and temp buffer caches.
The absolute maximum number of partitions is 64, for each buffer cache.

The -igpartition server option sets the partition limit at the server level. If -igpartition is
specified at server start-up, it always overrides the CACHE _PARTI TI ONS setting. See the
Utility Guide.

The number of partitions does not affect other buffer cache settings. It also does not affect
statistics collected by the 1Q monitor; statistics for all partitions are rolled up and reported as a
single value.

Example
In a system with 100 CPUs, if you do not set CACHE_PARTI Tl ONS, Sybase 1Q
automatically sets the number of partitions to 16:

100 cpus/8 = 12, rounded to 16.

With this setting, there are 16 partitions for the main cache and 16 partitions for the temp
cache.

In the same system with 100 CPUs, to explicitly set the number of partitions to 8, specify:
SET OPTI ON " PUBLI C'. CACHE_PARTI Tl ONS=8

346

Sybase 1Q

Database Options

CHAINED Option [TSQL]
Controls transaction mode in the absence of a BEGIN TRANSACTION statement.

Allowed Values
ON, OFF

OFF for Open Client and JDBC connections

Default
ON

Description

Controls the Transact-SQL transaction mode. In unchained mode (CHAI NED = OFF) each
statement is committed individually unless an explicit BEGIN TRANSACTION statement is
executed to start a transaction. In chained mode (CHAI NED = ON) a transaction is implicitly
started before any data retrieval or modification statement. For Adaptive Server Enterprise,
the default setting is OFF.

CHECKPOINT_TIME Option

Set the maximum length of time, in minutes, that the database server runs without doing a
checkpoint.

Allowed Values
Integer

Default
60

Scope
Can be set only for the PUBLI Cgroup. Requires DBA permissions to set the option. You must
shut down and restart the database server for the change to take effect.

Description
This option is used with the RECOVERY_TI ME option to decide when checkpoints should be
done.

See also
e RECOVERY TIME Optionon page 436

Reference: Statements and Options 347

Database Options

CIS

ROWSET _SIZE Option

Sets the number of rows that are returned from remote servers for each fetch.

Allowed Values
Integer

Default
50

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect when a new
connection is made to a remote server.

Description

This option sets the ODBC FetchArraySize value when you are using ODBC to connect to a
remote database server. For information on remote data access, see System Administration
Guide: Volume 2.

CLOSE_ON_ENDTRANS Option [TSQL]

Controls closing of cursors at the end of a transaction.

Allowed Values
ON

Default
ON

Description
When CLOSE_ON_ENDTRANS s set to ON (the default and only value allowed), cursors are
closed at the end of a transaction, which is Transact-SQL compatible behavior.

CONTINUE_AFTER RAISERROR Option [TSQL]

Controls behavior following a RAISERROR statement.

Allowed Values
ON, OFF

Default
ON

348

Sybase 1Q

Database Options

Description

The RAISERROR statenment is used within procedures to generate
an error. Wien CONTI NUE_AFTER RAI SERROR is set to OFF, the
execution of the procedure is stopped when t he RAISERROR
statement i s encountered.

When CONTI NUE_AFTER_RAI SERRCRis ON, the RAISERROR statement no longer
signals an execution-ending error. Instead, the RAISERROR status code and message are
stored and the most recent RAISERROR is returned when the procedure completes. If the
procedure that caused the RAISERROR was called from another procedure, the RAISERROR
is not returned until the outermost calling procedure terminates.

Intermediate RAISERROR statuses and codes are lost after the procedure terminates. If, at
return time, an error occurs along with the RAISERROR, then the error information is returned
and the RAISERROR information is lost. The application can query intermediate RAISERROR
statuses by examining @@error global variable at different execution points.

The setting of CONTI NUE_AFTER_RAI SERROR is used to control behavior following a
RAISERROR statement on/yif the ON_TSQL_ERRCR option is set to CONDITIONAL (the
default). If you set the ON_TSQ._ ERRCOR option to STOP or CONTINUE, the
ON_TSQL_ERROR setting takes precedence over the CONTI NUE_AFTER _RAI SERROR
setting.

See also
e ON_TSQL ERROR Option [TSQL]on page 420

CONVERSION ERROR Option [TSQL]
Controls reporting of data type conversion failures on fetching information from the database.

Allowed Values
ON, OFF

Default
ON

Description

This option controls whether data type conversion failures, when data is fetched from the
database or inserted into the database, are reported by the database as errors

(CONVERSI ON_ERROR set to ON), or as warnings (CONVERSI ON_ERRCR set to OFF).

When CONVERSI ON_ERRCRIis set to ON, the SQLE_CONVERSI ON_ERRCRerror is
generated.

Reference: Statements and Options 349

Database Options

If the option is set to OFF, the warning SQLE_CANNOT_CONVERT is produced. Each
thread doing data conversion for a LOAD statement writes at most one warning message to
the . i grsg file.

If conversion errors are reported as warnings only, the NULL value is used in place of the value
that could not be converted. In Embedded SQL, an indicator variable is set to -2 for the column
or columns that cause the error.

CONVERSION MODE Option
Restricts implicit conversion between binary data types (Bl NARY, VARBI NARY, and LONG
Bl NARY) and other non-binary data types (Bl T, TI NYI NT, SMALLI NT, I NT, UNSI GNED
I NT, Bl G NT, UNSI GNED BI G NT, CHAR, VARCHAR, and LONG VARCHAR) on various
operations.

Allowed Values
0,1

Default
0

Scope
Can be set either publicly or temporarily. DBA permissions are not required to set this option.

Description

The default value of 0 maintains implicit conversion behavior prior to version 12.7. Setting
CONVERSI ON_MODE to 1 restricts implicit conversion of binary data types to any other non-
binary data type on INSERT, UPDATE, and in queries. The restrict binary conversion mode
also applies to LOAD TABLE default values and CHECK constraint. The use of this option
prevents implicit data type conversions of encrypted data that would result in semantically
meaningless operations.

For more information on data type conversion see System Administration Guide: Volume 1.

For more information on column encryption, see Advarnced Security in Sybase 1Q. Users must
be specifically licensed to use the encrypted column functionality of the Sybase 1Q Advanced
Security Option.

Implicit Conversion Restrictions
The CONVERSI ON_MODE option restrict binary mode value of 1 (CONVERSI ON_MODE=1)
restricts implicit conversion for these operations:

* LOAD TABLE with CHECK constraint or default value

e INSERT...SELECT, INSERT...VALUE, and INSERT...LOCATION
e Certain types of UPDATE

« Certain types of INSERT and UPDATE via updatable cursor

350 Sybase 1Q

Database Options

« All aspects of queries in general

Restrict Implicit Binary Conversion Mode for LOAD TABLE
The restrict implicit binary conversion mode (CONVERSI ON_MODE set to 1) applies to LOAD
TABLE with CHECK constraint or default value.

Example

CREATE TABLE t3 (cl1 INT,
csi SMALLI NT,
cvb VARBI NARY(2),
CHECK (csi <cvb));
SET TEMPORARY COPTI ON CONVERSI ON_MODE = 1,

This request:

LOAD TABLE t3(cl ',', csi ',"', cvb ',")
FROM '/ s1/ nydata/t3.inp'
QUOTES OFF ESCAPES OFF
ROW DELI M TED BY '\n'

fails with the message:

"Invalid data type conparison in predicate
(t3.csi < t3.cvb), [-1001013] [' QFA13']"

Restrict Implicit Binary Conversion Mode for INSERT
The restrict implicit binary conversion mode (CONVERSI ON_MODE set to 1) applies to
INSERT...SELECT, INSERT...VALUE, and INSERT...LOCATION.

Example

CREATE TABLE t1 (cl1 I NT PRI MARY KEY,
cbt BIT NULL,
cti TI NYI NT,
csi SMALLI NT,
cin | NTEGER,
cui UNSI GNED | NTEGER,
cbi BI G NT,
cub UNSI GNED BI G NT,
cch CHAR(10),
cvc VARCHAR(10),
cbn BI NARY(8),
cvb VARBI NARY(8) ,
cl b LONG BI NARY,
cl ¢ LONG VARCHAR) ;

CREATE TABLE t2 (cl I NT PRI MARY KEY,
cbt BIT NULL,
cti TI NYI NT,
csi SMALLI NT,
cin | NTEGER,
cui UNSI GNED | NTEGER,
cbi BI G NT,
cub UNSI GNED BI G NT,

Reference: Statements and Options 351

Database Options

cch CHAR(10),

cvc VARCHAR(10),
cbn BI NARY(8),

cvb VARBI NARY(8) ,
cl b LONG BI NARY,
cl ¢ LONG VARCHAR) ;

CREATE TABLE t4 (cl INT, cin |INT DEFAULT 0x31);
SET TEMPORARY OPTI ON CONVERSI ON_MODE = 1;

This request:

I NSERT INTO t1(cl, cvb) SELECT 99, cin FROM T2
WHERE c1=1

fails with the message:

"Unabl e to convert colum 'cvb' to the requested
dat at ype (varbinary) from datatype (integer).
[-1013043] [' QCA43']"

Restrict Implicit Binary Conversion Mode for UPDATE
The restrict implicit binary conversion mode (CONVERSI ON_MODE set to 1) applies to
certain types of UPDATE.

Restrict implicit binary conversion mode applies to:

e UPDATE SET VALUE FROM expression (including constant)
e UPDATE SET VALUE FROM other column

* UPDATE SET VALUE FROM #host variable

» JOIN UPDATE SET VALUE FROM column of other table

Example

This request:
UPDATE t1 SET cbhi =cbn WHERE c1=1

fails with the message:

"Unable to inplicitly convert columm 'chi' to datatype
(bigint) fromdatatype (binary). [-1000187] ['QCB87']"

Restrict Implicit Binary Conversion Mode for Positioned INSERT and
Positioned UPDATE via Updatable Cursor

The restrict implicit binary conversion mode (CONVERSI ON_MODE set to 1) applies to
certain types of INSERT and UPDATE Vvia updatable cursor.

Restrict implicit binary conversion mode applies to:

e PUT cursor-name USING ... host-variable
* Positioned UPDATE from another column

352 Sybase 1Q

Database Options

* Positioned UPDATE from a constant
» Positioned UPDATE from a host variable

Restrict Implicit Binary Conversion Mode for Queries
The restrict implicit binary conversion mode (CONVERSI ON_MODE set to 1) applies to all
aspects of queries in general.

Comparison Operators
When CONVERSI ON_MODE = 1, the restriction applies to these operators:

o = Iz < <= >= <> 1> Ik
e BETWEEN ... AND
« IN

used in a search condition for these clauses:

e WHERE clause
e HAVING clause
e CHECK clause
e ON phrase in a join
* IF/CASE expression

Example
This query:

SELECT COUNT(*) FROM T1
WHERE cvb | N (SELECT csi FROM T2)

fails with the message:

"Invalid data type conparison in predicate
(tl.cvb IN (SELECT tl.csi ...)), [-1001013]

[' QFAL3'] ™

String Functions
When CONVERSI ON_MODE = 1, the restriction applies to these string functions:

* CHAR
* CHAR_LENGTH
* DIFFERENCE

e LCASE

e LEFT

* LOWER

e LTRIM

¢ PATINDEX
* RIGHT

Reference: Statements and Options 353

Database Options

* RTRIM

¢ SIMILAR

¢ SORTKEY
¢ SOUNDEX
* SPACE

e STR

e TRIM

e UCASE

* UPPER

Example
This query:
SELECT ASCI | (cvb) FROM t1 WHERE cl1=1

fails with the message:

"Data exception - data type conversion is not
possi bl e. Argunent to ASCI| nust be string,
[-1009145] [' QFA2E']"

The following functions allow either a string argument or a binary argument. When
CONVERSI ON_MODE = 1, the restriction applies to mixed type arguments, that is, one
argument is string and the other argument is binary.

* INSERTSTR
e LOCATE

* REPLACE

* STRING

e STUFF

Example
This query:
SELECT STRI NG cvb, cvc) FROMt1l WHERE cl=1

where the column cvb is defined as VARBI NARY and the column cvc is defined as
VARCHAR, fails
with the message:

"Data exception - data type conversion is not
possi bl e. Argunents to STRING nust be all binary
or all string, [-1009145] [' QFA2E |"

The restriction does notapply to these string functions:

e BIT_LENGTH
e BYTE_LENGTH

354 Sybase 1Q

Database Options

¢ CHARINDEX

* LENGTH

e OCTET_LENGTH
¢ REPEAT

* REPLICATE

* SUBSTRING

Arithmetic Operations and Functions
When CONVERSI ON_MODE = 1, the restriction applies to these operators used in arithmetic
operations:

+ -5

The restriction applies to these bitwise operators used in bitwise expressions:
& (AND), | (OR), ~ (XOR)

The restriction also applies to integer arguments of these functions:

* ROUND
* “TRUNCATE”
* TRUNCNUM

Example
This query:
SELECT ROUND(4.4, cvb) FROMt1l WHERE Cl=1

fails with the message:

"Data exception - data type conversion is not
possi bl e. Second Argunent to ROUND cannot be
converted into an integer, [-1009145] [' QFA2E']"

Integer Argument to Various Functions
When CONVERSI ON_MODE = 1, the restriction applies to integer argument of these
functions:

* ARGN

e SUBSTRING

* DATEADD

* YMD

Example

This query:

SELECT ARGN(cvb, csi, cti) FROMt1l WHERE cl=1

fails with the message:

Reference: Statements and Options 355

Database Options

"Data exception - data type conversion is not
possi ble. First Argunent to ARGN cannot be converted
to an integer, [-1009145] [' QFA2E]"

Analytical Functions, Aggregate Functions, and Numeric Functions
When CONVERSI ON_MODE = 1, no further restriction applies to analytical functions,
aggregate functions, and numeric functions that require numeric expressions as arguments.

CONVERT VARCHAR TO 1242 Option
Converts pre-version 12.4.2 VARCHAR data to compressed format.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set only for the PUBLI C group. Takes effect when you run sp_igcheckdb in any
mode.

Description
Helps further compress data and improve performance, especially for databases with many
variable character strings.

Set this option and then run sp_igcheckdb only once, and only for VARCHAR columns that
were created before version 12.4.2.

COOPERATIVE COMMIT TIMEOUT Option
Governs when a COVM T entry in the transaction log is written to disk.

Allowed Values
Integer, in milliseconds

Default
250

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect immediately.

Description

This option only has meaning when COOPERATI VE_COMM TS s set to ON. The database
server waits for the specified number of milliseconds for other connections to fill a page of the
log before writing to disk. The default setting is 250 milliseconds.

356 Sybase 1Q

Database Options

See also
e COOPERATIVE _COMMITS Optionon page 357

COOPERATIVE_COMMITS Option

Controls when commits are written to disk.

Allowed Values
ON, OFF

Default
ON

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect immediately.

Description
If COOPERATI VE_COWM TS is set to OFF, a COMMIT is written to disk as soon as the
database server receives it, and the application is then allowed to continue.

If COOPERATI VE_COWM TS is set to ON, the default, the database server does not
immediately write the COMMIT to the disk. Instead, it requires the application to wait for a
maximum length set by the COOPERATI VE_COVWM T_TI MEQUT option for something else
to put on the pages before the commit is written to disk.

Setting COOPERATI VE_COWM TS to ON, and increasing the

COOPERATI VE_COW T_TI MEQUT setting increases overall database server throughput
by cutting down the number of disk 1/Os, but at the expense of a longer turnaround time for
each individual connection.

See also
» COOPERATIVE_COMMIT_TIMEOUT Option on page 356

CURSOR WINDOW ROWS Option
Defines the number of cursor rows to buffer.

Allowed Values
20 - 100000

Default
200

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Reference: Statements and Options 357

Database Options

Description

When an application opens a cursor, Sybase 1Q createsa FIFO (first-in, first-out) buffer to hold
the data rows generated by the query. CURSOR W NDOW ROWS defines how many rows can
be put in the buffer. If the cursor is opened in any mode other than NO SCROLL, Sybase 1Q
allows for backward scrolling for up to the total number of rows allowed in the buffer before it
must restart the query. This is not true for NO SCROLL cursors, as they do not allow backward
scrolling.

For example, with the default value for this option, the buffer initially holds rows 1 through
200 of the query result set. If you fetch the first 300 rows, the buffer holds rows 101 through
300. You can scroll backward or forward within that buffer with very little overhead cost. If
you scroll before row 101, Sybase 1Q restarts that query until the required row is back in the
buffer. This can be an expensive operation to perform, so your application should avoid it
where possible. An alternative is to increase the value for CURSOR_W NDOW ROV to
accommodate a larger possible scrolling area; however, the default setting of 200 is sufficient
for most applications.

DATE_FIRST DAY OF WEEK Option

Determines the first day of the week.

Allowed Values
0-6

Default
0 (Sunday)

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
This option specifies which day is the first day of the week. By default, Sunday is day 1,
Monday is day 2, Tuesday is day 3, and so on:

Table 22. DATE_FIRST_DAY_OF WEEK Valid Values

Value First Day
0 Sunday
1 Monday
2 Tuesday
3 Wednesday

358

Sybase 1Q

Database Options

Value First Day
4 Thursday
5 Friday
6 Saturday

For example, if you change the value of DATE_FI RST_DAY_OF WEEK to 3, Wednesday

becomes day 1, Thursday becomes day 2, and so on. This option only affects the bOw and
DATEPART functions.

The SQL Anywhere option FI RST_DAY_OF _WEEK performs the same function, but assigns
the values 1 through 7 instead of 0 through 6. 1 stands for Monday and 7 for Sunday (the
default).

DATE FORMAT Option
Sets the format used for dates retrieved from the database.

Allowed Values
String

Default
'YYYY-MM-DD'. This corresponds to ISO date format specifications.

Scope
Can be set for an individual connection or the PUBLI Cgroup. Takes effect immediately.

Description
The format is a string using these symbols:

Table 23. Symbols Used in DATE_FORMAT String

Symbol Description

yy 2-digit year

yyyy 4-digit year

mm 2-digit month, or 2-digit minutes if following a colon (as in ‘hh:mm")

mmm 3-character name of month

mmmm([m...] Character long form for months—as many characters as there are m's, until the
number of m’s specified exceeds the number of characters in the month’s name.

d Single-digit day of week, (0 = Sunday, 6 = Saturday)

Reference: Statements and Options 359

Database Options

Symbol Description

dd 2-digit day of month

ddd 3-character name of the day of week.

dddd[d...] Character long form for day of the week—as many characters as there are d's,
until the number of d’s specified exceeds the number of characters in the day’s
name.

jii Day of the year, from 1 to 366

Note: Multibyte characters are not supported in date format strings. Only single-byte
characters are allowed, even when the collation order of the database is a multibyte collation
order like 932JPN. Use the concatenation operator to include multibyte characters in date
format strings. For example, if ' 7 represents a multibyte character, use the concatenation
operator to move the multibyte character outside of the date format string:

SELECT DATEFORMAT (StartDate, 'yy') + '?
FROM Enpl oyees;

Each symbol is substituted with the appropriate data for the date being formatted. Any format
symbol that represents character rather than digit output can be put in uppercase which causes
the substituted characters to also be in uppercase. For numbers, using mixed case in the format
string suppresses leading zeros.

You can control the padding of numbers by changing the case of the symbols. Same-case
values (MM, mm, DD, or dd) all pad number with zeros. Mixed-case (Mm, mM, Dd, or dD)
cause the number to not be zero-padded; the value takes as much room as required. For
example:

SELECT dateformat (cast ('2011/01/01' as date), 'yyyy/MnDd')

returns this value:
2011/1/1

Examples
This table illustrates DATE_FORMAT settings, together with the output from this statement,
executed on Saturday May 21, 2011:

SELECT CURRENT DATE

Table 24. DATE_FORMAT Settings

DATE_FORMAT SELECT CURRENT DATE
yyyy/mm/dd/ddd 2011/05/21/sat
iii 141

360

Sybase 1Q

Database Options

DATE_FORMAT SELECT CURRENT DATE
mmm yyyy may 2011
mm-yyyy 05-2011

See also

* RETURN_DATE _TIME_AS_STRING Optionon page 436
o TIME_FORMAT Optionon page 462

DATE ORDER Option
Controls the interpretation of date formats.

Allowed Values
'MDY', 'YMD', or 'DMY"

Default
"YMD'. This corresponds to 1SO date format specifications.

Description
DATE_ORDERis used to determine whether 10/11/12is Oct 11 1912, Nov 12 1910, or Nov 10
1912. The option can have the value 'MDY", "YMD', or 'DMY".

DBCC LOG PROGRESS Option
Reports the progress of the sp_igcheckdb system stored procedure.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect at the next
execution of sp_igcheckdb.

Description

When DBCC_LOG _PROGRESS is ON, the sp_igcheckdb system stored procedure sends
progress messages to the 1Q message file. These messages allow the user to follow the
progress of the sp_igcheckdb operation.

Stored procedures are documented in Reference. Building Blocks, Tables, and Procedures.

Reference: Statements and Options 361

Database Options

Examples
Sample progress log output of the command sp_i qcheckdb ‘ check dat abase’:

IQ Utility Check Database

Start CHECK STATI STICS tabl e: tl oansf
Start CHECK STATISTICS for field: agsn_dt
Start CHECK STATI STI CS processi ng i ndex:

| Q IDX _T444_Cl1_FP

Start CHECK STATI STI CS processi ng i ndex:
tl oansf _agsn_dt _HNG

Done CHECK STATI STICS field: agsn_dt

Sample progress log output of the command sp_i qcheckdb *all ocation table
nation’:

Start ALLOCATI ON table: nation

Start ALLOCATI ON processing i ndex: nationhgl

Done ALLOCATI ON table: nation
Done ALLCOATI ON processi ng i ndex: nationhgl

DBCC PINNABLE CACHE PERCENT Option

Controls the percent of the cache used by the sp_igcheckdb system stored procedure.

Allowed Values
0-100

Default
50

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect at the next
execution of sp_igcheckdb.

Description

The sp_igcheckdb system stored procedure works with a fixed number of buffers, as
determined by this option. By default, a large percentage of the cache is reserved to maximize
sp_iqcheckdb performance.

Stored procedures are documented in Reference: Building Blocks, Tables, and Procedures.

For information on troubleshooting sp_iqcheckdb, see System Administration Guide:
Volume 2 > System Recovery and Database Repair > Database Verification > Resource 1ssues
Running sp_iqgcheckdb.

362

Sybase 1Q

Database Options

DEBUG MESSAGES Option
Controls whether or not MESSAGE statements that include a DEBUG ONLY clause are
executed.

Allowed Values
ON, OFF

Default
OFF

Description

This option allows you to control the behavior of debugging messages in stored procedures
that contain a MESSAGE statement with the DEBUG ONLY clause specified. By default, this
option is set to OFF and debugging messages do not appear when the MESSAGE statement is
executed. By setting DEBUG_MESSAGES to ON, you can enable the debugging messages in
all stored procedures.

Note: DEBUG ONLY messages are inexpensive when the DEBUG_MESSAGES option is set to
OFF, so these statements can usually be left in stored procedures on a production system.
However, they should be used sparingly in locations where they would be executed frequently;
otherwise, they might result in a small performance penalty.

See also
e MESSAGE Statement on page 243

DEDICATED TASK Option
Dedicates a request handling task to handling requests from a single connection.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set as a temporary option only, for the duration of the current connection. Requires
DBA permissions to set this option.

Description

When the DEDI CATED_TASK connection option is set to ON, a request handling task is
dedicated exclusively to handling requests for the connection. By pre-establishing a
connection with this option enabled, you can gather information about the state of the database
server if it becomes otherwise unresponsive.

Reference: Statements and Options 363

Database Options

DEFAULT DBSPACE Option

Changes the default dbspace where tables or join indexes are created.

Allowed Values
String containing a dbspace name

Default
" (the empty string)

Scope

Can be set for an individual connection or PUBLI Cgroup. Setting takes effect immediately.
Requires DBA permissions to set the option for groups or users other than the current user.
Takes effect immediately.

Description
DEFAULT _DBSPACE allows the administrator to set the default dbspace for a group or user
or allows a user to set the user’s own default dbspace.

| Q_ SYSTEM TEMP is always used for global temporary tables unless a table IN clause is
used that specifies SYSTEM in which case an SA global temporary table is created.

At database creation, the system dbspace, IQ_SYSTEM_MAIN, is created and is implied
when the PUBLI C. DEFAULT_DBSPACE option setting is empty or explicitly set to

| Q SYSTEM MAI N. Immediately after creating the database, Sybase recommends that the
administrator create a second main dbspace, revoke CREATE privilege in dbspace

| Q_SYSTEM _MAI Nfrom PUBLI C, grant CREATE in dbspace for the new main dbspace to
selected usersor PUBLI C, and set PUBLI C. DEFAULT_DBSPACE to the new main dbspace.
For example:

CREATE DBSPACE user_main USING FI LE user_nmain

"user _mai n1' S| ZE 10000;

GRANT CREATE ON user _main TO PUBLI C

REVOKE CREATE ON | Q SYSTEM MAI N FROM PUBLI C;
SET OPTI ON PUBLI C. DEFAULT_DBSPACE = 'user_main';

Example

In this example, CONNECT and RESOURCE privileges on all dbspaces are granted to users
usr Aand usr B, and each of these users is granted CREATE privilege on a particular
dbspace:

GRANT CONNECT, RESOURCE TO usrA, usrB

| DENTI FI ED BY pwdA, pwdB;
GRANT CREATE ON dbspl TO usrA;
GRANT CREATE ON dbsp3 TO usr B;
SET OPTI ON “usrA’. defaul t _dbspace ‘dbspl’;
SET OPTI ON “usrB’. defaul t _dbspace ‘ dbsp3’;
SET OPTI ON “PUBLI C'. def aul t _dbspace = dbsp2;

364

Sybase 1Q

CREATE TABLE “DBA’.t1(cl int, c2 int);

I NSERT INTO t1 VALUES (1, 1);
I NSERT INTO t1 VALUES (2, 2);
COW T,

Usr A connects:

CREATE TABLE “UsrA’.t1(cl int, c2 int);

I NSERT INTO t1 VALUES (1, 1);
I NSERT INTO t1 VALUES (2, 2);
COW T,

Usr B connects:

CREATE TABLE “UsrB’.t1(cl int, c2 int);

I NSERT INTO t1 VALUES (1, 1);
I NSERT INTO t1 VALUES (2, 2);
COW T,

DBA connects:

SELECT nj ect, DbspaceNane, Obj Size

FROM sp_i gi ndexi nfo();

sp_igindexinfo result:

DBA. t 1
DBA.t1. ASIQ | DX T730_C1_FP
DBA.t1. ASI Q | DX T730_C2_FP
usrA. tl
usrA.t1. ASIQIDX T731 _Cl1_FP
usrA.t1. ASIQIDX T731_C2_FP
usrB.t1l
usrB.t1. ASIQ IDX T732_Cl1_FP
usrB.t1. ASIQ IDX T732_C2_FP

DEFAULT DISK_STRIPING Option

dbsp2
dbsp2
dbsp2
dbspl
dbsp1
dbspl
dbsp3
dbsp3
dbsp3

Sets the default disk striping value for all dbspaces.

Allowed Values
ON, OFF

Default
ON

Scope

200k
288k
288k
200k
288k
288k
200k
288k
288k

Can be set for the PUBLI Cgroup only. Requires DBA permissions.

Database Options

Reference: Statements and Options

365

Database Options

Description
By default, disk striping is ON for all dbspaces in the 1Q main store. This option is used only by
CREATE DBSPACE and defines the default striping value, if CREATE DBSPACE does not

specify striping.

See also
* CREATE DBSFACE Statementon page 76

DEFAULT HAVING SELECTIVITY PPM Option

Provides default selectivity estimates to the optimizer for most HAVING clauses in parts per
million.

Allowed Values
0 -1000000

Default
0

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect immediately.

Description

DEFAULT_HAVI NG_SELECTI VI TY_PPMsets the selectivity for HAVING clauses,
overriding optimizer estimates. A HAVING clause filters the results of a GROUP BY clause or a
query with a select list consisting solely of aggregate functions. When

DEFAULT_HAVI NG_SELECTI VI TY_PPMis set to the default of 0, the optimizer estimates
how many rows are filtered by the HAVING clause. Sometimes the 1Q optimizer does not have
sufficient information to choose an accurate selectivity, and in these cases chooses a generic
estimate of 40%. DEFAULT_HAVI NG_SELECTI VI TY_PPMallows a user to replace the
optimizer estimate for all HAVING predicates in a query.

Users can also specify the selectivity of individual HAVI NGclauses in the query, as described
in Reference: Building Blocks, Tables, and Procedures.

DEFAULT ISQL ENCODING Option [Interactive SQL]

Specifies the code page used by READ and OUTPUT statements.

Allowed Values
identifier or string

Default
Use system code page (empty string)

366

Sybase 1Q

Database Options

Scope
Can only be set as a temporary option, for the duration of the current connection.

Description

DEFAULT | SQL_ENCODI NGis used to specify the code page to use when reading or
writing files. It cannot be set permanently. The default code page is the default code page for
the platform you are running on. On English Windows machines, the default code page is
1252.

Interactive SQL determines the code page that is used for a particular OUTPUT or READ
statement as follows, where code page values occurring earlier in the list take precedence over
those occurring later in the list:

» The code page specified in the ENCODING clause of the OUTPUT or READ statement

» The code page specified with the DEFAULT_| SQL_ENCODI NGoption (if this option is
set)

* The code page specified with the -codepage command line option when Interactive SQL
was started

» The default code page for the computer on which Interactive SQL is running

For a list of supported code pages, see SQL Anywhere 11.0.1 > SQL Anywhere Server —
Database Administration > Configuring Your Database > International languages and
character sets > Character set and collation reference information > Supported and alternate
collations.

See also SQL Anywhere 11.0.1 > SQL Anywhere Server — Database Administration >
Configuring Your Database > International languages and character sets > Understanding
character sets > Overview of character sets, encodings, and collations.

Example
Set the encoding to UTF-16 (for reading Unicode files):

SET TEMPORARY OPTI ON DEFAULT_| SQL_ENCODI NG = ' UTF- 16’

See also
e OUTPUT Statement [Interactive SQL] on page 248
e READ Statement [Interactive SQL] on page 259

DEFAULT KB _PER_STRIPE Option

Sets an upper threshold in KB on the amount to write to a stripe before write operations move
on to the next stripe.

This setting is the default size for all dbspaces in the 1Q main store.

Allowed Values
1 to maximum integer

Reference: Statements and Options 367

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/recommended-understanding-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/recommended-understanding-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/recommended-understanding-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/recommended-understanding-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/pieces-in-the-char-set-puzzle-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/pieces-in-the-char-set-puzzle-natlang.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/pieces-in-the-char-set-puzzle-natlang.html

Database Options

Default
1

Scope
Can be set for the PUBLI C group only. Requires DBA permissions.

Description

The default value of 1KB means that one page is compressed and that the compressed page is
written to disk as a single operation. Whatever the chosen page size, the next operation writes
to the next dbfile in that dbspace.

To write multiple pages to the same stripe before moving to the next stripe, change the
DEFAULT_KB_PER STRI PE setting. For example, if the page size is 128KB, and
DEFAULT KB PER STRI PEsetto512KB, Sybase 1Q queues up page writes and writes to
disk after reaching the minimum of 512KB of compressed pages.

This option is used only by CREATE DBSPACE and defines the default disk striping size for
dbspaces in the 1Q main store, if CREATE DBSPACE does not specify a stripe size.

See also
o CREATE DBSFACE Statement on page 76

DEFAULT LIKE MATCH SELECTIVITY PPM Option

Provides default selectivity estimates (in parts per million) to the optimizer for most LIKE
predicates.

Allowed Values
0 to 1000000

Default
150000

Scope
Can be set for an individual connection or the PUBLI Cgroup. Takes effect immediately.

Description
DEFAULT LI KE_MATCH_ SELECTI VI TY_PPMsets the default selectivity for generic

LIKE predicates, for example, LI KE ' stri ng%stri ng' where % isawildcard character.

The optimizer relies on this option when other selectivity information is not available and the
match string does not start with a set of constant characters followed by a single wildcard.

If the column has either an LF index or a 1- or 2- or 3-byte FP index, the optimizer can get exact
information and does not need to use this value.

368

Sybase 1Q

Database Options

Users can also specify selectivity in the query. User-supplied condition hints are described in
Reference: Building Blocks, Tables, and Procedures.

See also
» DEFAULT LIKE RANGE_SELECTIVITY_PPM Optionon page 369
e FP_LOOKUP_SIZE Optionon page 374

DEFAULT LIKE RANGE_ SELECTIVITY PPM Option

Provides default selectivity estimates (in parts per million) to the optimizer for leading
constant LIKE predicates.

Allowed Values
1 to 1000000

Default
150000

Scope
Can be set for an individual connection or the PUBLI Cgroup. Takes effect immediately.

Description

DEFAULT_LI KE_RANGE_SELECTI VI TY_PPMsets the default selectivity for LIKE
predicates, of the form LI KE ' stri ng% where the match string is a set of constant
characters followed by a single wildcard character (%). The optimizer relies on this option
when other selectivity information is not available.

If the column has either an LF index or a 1- or 2- or 3-byte FP index, the optimizer can get exact
information and does not need to use this value.

Users can also specify selectivity in the query. User-supplied condition hints are described in
Reference: Building Blocks, Tables, and Procedures.

See also
 DEFAULT LIKE MATCH SELECTIVITY _PPM Option on page 368
e FP_LOOKUP_SIZE Optionon page 374

DELAYED COMMIT TIMEOUT Option
Determines when the server returns control to an application following a COMMIT.

Allowed Values
Integer, in milliseconds.

Default
500

Reference: Statements and Options 369

Database Options

Description
This option is ignored by Sybase 1Q, since DELAYED COWM TS can only be set OFF.

DELAYED COMMITS Option

Determines when the server returns control to an application following a COMMIT.

Allowed Values
OFF

Default
OFF. This corresponds to ISO COMMIT behavior.

Description
When set to OFF (the only value allowed by Sybase 1Q), the application must wait until the
COMMIT is written to disk. This option must be set to OFF for ANSI/ISO COMMIT behavior.

DISABLE_RI CHECK Option

Allows load, insert, update, or delete operations to bypass the referential integrity check,
improving performance.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
Users are responsible for ensuring that no referential integrity violation occurs during requests
while DI SABLE_RI _ CHECK is set to ON.

DIVIDE_BY ZERO ERROR Option [TSQL]

Controls the reporting of division by zero.

Allowed Values
ON, OFF

Default
ON

370

Sybase 1Q

Database Options

Scope
This option indicates whether division by zero is reported as an error. If the option is set ON,
division by zero results in an error with SQLSTATE 22012.

If the option is set OFF, division by zero is not an error; a NULL is returned.

DQP_ENABLED Option

Temporary database option dgp_enabled allows you to enable or disable DQP at the
connection level.

You can set the temporary database option dgp_enabled to OFF to disable DQP for the current
connection. You can set the option to ON (the default value) to enable DQP for the current
connection, but only when DQP is enabled for the user by that user's login policy for the
logical server of the current connection.

Users must be licensed for the Multiplex Grid Option to run secondary servers. For
dgp_enabled syntax and complete description, see Using Sybase 1Q Multiplex.

EARLY_PREDICATE _EXECUTION Option

Controls whether simple local predicates are executed before query optimization.

Allowed Values
ON, OFF

Default
ON

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

If this option is ON (the default), the optimizer finds, prepares, and executes predicates
containing only local columns and constraints before query optimization, including join
ordering, join algorithm selection, and grouping algorithm selection, so that the values of
“Estimated Result Rows” in the query plan are more precise. If this option is OFF, the
optimizer finds and prepares the simple predicates, but does not execute them before query
optimization. The resulting values of “Estimated Result Rows” are less precise, if the
predicates are not executed.

In general, EARLY_PREDI CATE_EXECUTI ONshould always be left ON, as this results in
improved query plans for many queries.

Reference: Statements and Options 371

Database Options

Note that when EARLY _PREDI CATE_EXECUTI ONis ON, Sybase 1Q executes the local
predicates for all queries before generating a query plan, even when the NOEXEC option is
ON. The generated query plan is the same as the runtime plan.

This information is included in the query plan for the root node:

« Threads used for executing local invariant predicates: if greater than 1, indicates parallel
execution of local invariant predicates

« Early_Predicate_Execution: indicates if the option is OFF

» Time of Cursor Creation: the time of cursor creation

The simple predicates whose execution is controlled by this option are referred to as invariant
predicates in the query plan. This information is included in the query plan for a leaf node, if
there are any local invariant predicates on the node:

» Generated Post Invariant Predicate Rows: actual result after executing local invariant
predicate

« Estimated Post Invariant Predicate Rows: calculated by using estimated local invariant
predicates selectivity

< Time of Condition Start: starting time of the execution of local invariant predicates

» Time of Condition Done: ending time of the execution of local invariant predicates

» Elapsed Condition Time: elapsed time for executing local invariant predicates

ENABLE LOB VARIABLES Option

Controls the data type conversion of large object variables.

Users must be licensed for the Unstructured Data Analytics Option to use large object
variables. For ENABLE L OB VARl ABLES syntax and a complete description, see
Unstructured Data Analytics in Sybase 1Q.

EXTENDED JOIN SYNTAX Option

Controls whether queries with an ambiguous syntax for multi-table joins are allowed or are
reported as an error.

Allowed Values
ON, OFF

Default
ON

Description

This option reports a syntax error for those queries containing outer joins that have ambiguous
syntax due to the presence of duplicate correlation names on a null-supplying table.

This join clause illustrates the kind of query that is reported where C1 is a condition:

(Rleft outer join T, T join Son (Cl))

372

Sybase 1Q

Database Options

If EXTENDED _JO N_SYNTAX s set to ON, this query is interpreted as follows, where C1
and C2 are conditions:

(Rleft outer join Ton (CL)) join Son (C)

FORCE DROP Option
Causes Sybase 1Q to leak, rather than reclaim, database disk space during a DROP command.

Allowed Values
ON, OFF

Default
OFF

Scope
Requires DBA permissions to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

You must drop a corrupt index, join index, column or table and set the FORCE_ DROP option to
ON. This prevents the free list from being incorrectly updated from incorrect or suspect file
space allocation information in the object being dropped. After dropping corrupt objects, you
can reclaim the file space using the -igfrec and -igdroplks server switches.

When force dropping objects, you must ensure that only the DBA is connected to the database.
The server must be restarted immediately after a force drop.

Do not attempt to force drop objects unless Sybase Technical Support has instructed you to do
S0.

FORCE_DROP procedures for system recovery and database repair are described in System
Administration Guide: Volume 1.

FORCE NO SCROLL CURSORS Option
Forces all cursors to be non-scrolling.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Reference: Statements and Options 373

Database Options

Description

By default, all cursors are scrolling. Scrolling cursors with no host variable declared cause
Sybase 1Q to create a buffer for temporary storage of results. Each row in the result set is stored
to allow for backward scrolling.

Setting FORCE_NO_SCROLL_CURSORS to ON reduces temporary storage requirements.
This option can be useful if you are retrieving very large numbers (millions) of rows. However
if your front-end application makes frequent use of backward-scrolling cursor operations,
query response will be faster with this option set to OFF.

If your front-end application rarely performs backward-scrolling, make
FORCE_NO SCROLL_CURSCRS = ‘ ON' apermanent PUBLI Coption, to use less
memory and improve query performance.

FORCE_UPDATABLE CURSORS Option

Controls whether cursors that have not been declared as updatable can be updated.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set temporary for an individual connection for a group, or PUBLI C. Does not require
DBA permissions. Takes effect immediately.

Description

When FORCE_UPDATABLE CURSORS is ON, cursors which have not been declared as
updatable can be updated. This option allows updatable cursors to be used in front-end
applications without specifying the FOR UPDATE clause of the DECLARE CURSOR
statement.

Sybase does not recommend the use of FORCE_UPDATABLE_CURSORS unless absolutely
necessary.

FP_LOOKUP_SIZE Option

Specifies the maximum number of lookup pages used in Sybase 1Q and controls the amount of
cache allocated to the creation of Lookup FP indexes, particularly FP(3) Indexes.

Allowed Values
1 MB - 4096 MB

374

Sybase 1Q

Database Options

Default
16 MB

Scope
DBA permissions are required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
FP_LOOKUP_SI ZE controls the maximum number of lookup pages.

FP_LOOKUP_SI ZE must be set public, so the allowed syntax is:
SET OPTI ON public. FP_LOOKUP_SI ZE = 1

These database options support 3-byte indexes:

« | NDEX_ADVI SOR
« M N M ZE_STORAGE
« FP_LOOKUP_SI ZE_PPM

These stored procedures support 3-byte indexes:

* sp_iqcheckdb

* sp_igcolumn

* sp_igindexadvice

* sp_igindexmetadata

* sp_igindexsize

* sp_igindex

* sp_igindexfragmentation
* sp_igrebuildindex

* sp_igrowdensity

See also
e FP LOOKUP_SIZE PPM Optionon page 375
o MINIMIZE_STORAGE Optionon page 412

FP LOOKUP SIZE PPM Option
Restricts FP lookup storage size in Sybase 1Q to this parts-per-million value of main memory.

Allowed Values
1 to 1000000

Default
2500

Reference: Statements and Options 375

Database Options

Scope
DBA permissions are required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
FP_LOOKUP_SI ZE_PPMcontrols the amount of main cache allocated to the creation of
Lookup FP indexes for all FP lookup indexes, but particularly for FP(3) indexes.

This option controls the maximum number of lookup pages and restricts this number to a
parts-per-million value of main memory, that is, the value of FP_LOOKUP_SI ZE PPM *
size of main nenory / 1, 000, 000, where the size of main memory is specified by
the -igmc server startup parameter.

These options support 3-byte indexes:

« FP_LOOKUP_SI ZE
« | NDEX_ADVI SOR
« M N M ZE_STORAGE

See also
e FP_LOOKUP_SIZE Optionon page 374
MINIMIZE _STORAGE Option on page 412

FP_PREDICATE WORKUNIT PAGES Option

Specifies degree of parallelism used in the default index.

Allowed Values
Integer

Default
200

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

The default index calculates some predicates such as SUM, RANGE, MIN, MAX and
COUNT DISTINCT in parallel. FP_PREDI CATE_WORKUNI T_PAGES affects the degree
of parallelism used by specifying the number of pages worked on by each thread. To increase
the degree of parallelism, decrease the value of this option.

376

Sybase 1Q

Database Options

FPL _EXPRESSION _MEMORY_ KB Option

Controls the use of memory for the optimization of queries involving functional expressions
against columns having enumerated storage.

Allowed Values
0 - 20000

Default
1024 kilobytes

Scope
Can be set temporary for an individual connection or for the PUBLI C group. Takes effect
immediately.

Description

FPL_EXPRESSI ON_MEMORY_KB controls the use of memory for the optimization of
queries involving functional expressions against columns having enumerated storage. The
option enables the DBA to constrain the memory used by this optimization and balance it with
other Sybase 1Q memory requirements, such as caches. Setting this option to 0 switches off
optimization.

GARRAY FILL FACTOR PERCENT Option

Specifies the percent of space on each HG garray page to reserve for future incremental inserts
into existing groups.

Allowed Values
0-1000

Default
25

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
The garray tries to pad out each group to include a pad of empty space set by the value. This
space is used for rows added to existing index groups.

AN HG index can reserve some storage on a per-group basis (where group is defined as a group
of rows with equivalent values). Reserving space consumes additional disk space, but can help
the performance of incremental inserts into the HG index.

Reference: Statements and Options 377

Database Options

If you plan to do future incremental inserts into an HG index, and those new rows have values
that are already present in the index, a nonzero value for this option might improve
incremental insert performance.

If you do not plan to incrementally update the index, you can reduce the values of this option to
save disk space.

See also
* GARRAY PAGE SPLIT PAD PERCENT Optionon page 378

GARRAY INSERT PREFETCH_SIZE Option

Specifies number of pages used for prefetch.

Allowed Values
0-100

Default
3

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
This option defines the number of database pages read ahead during an insert to a column that
has an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

See also
* GARRAY FILL FACTOR _PERCENT Optionon page 377

GARRAY PAGE_SPLIT PAD PERCENT Option

Determines per-page fill factor during page splits on the garray and specifies the percent of
space on each HG garray page to reserve for future incremental inserts.

Allowed Values
0-100

Default
25

378

Sybase 1Q

Database Options

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
Splits of a garray page try to leave that percentage empty. This space is used for rows added to
new index groups.

An HG index can reserve storage at the page level that can be allocated to new groups when
additional rows are inserted. Reserving space consumes additional disk space, but can help the
performance of incremental inserts into the HG index.

If future plans include incremental inserts into an HG index, and the new rows do not have
values that are already present in the index, a nonzero value for
GARRAY_PAGE _SPLI T_PAD_PERCENT could improve incremental insert performance.

If you do not plan to incrementally update the index, you can reduce the values of this option to
save disk space.

See also
e GARRAY FILL FACTOR _PERCENT Optionon page 377

GARRAY RO PREFETCH SIZE Option
Specifies number of pages used for prefetch.

Allowed Values
0-100

Default
10

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI C group. Takes effect immediately.

Description
This option defines the number of database pages read ahead during a query to a column that
has an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

Reference: Statements and Options 379

Database Options

HASH_ PINNABLE_CACHE_PERCENT Option

Controls the maximum percentage of a user’s temp memory that a hash object can pin.

Allowed Values
0-100

Default
20

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

HASH Pl NNABLE CACHE PERCENT controls the percentage of a user’s temp memory
allocation that any one hash object can pin in memory. The default is 20%, but you should
reduce this number to 10% if you are running complex queries, or increase this number to 50%
if you have simple queries that need a single large hash object to run, such as a large IN
subquery.

HASH_PI NNABLE_CACHE_PERCENT is for use by primarily Sybase Technical Support. If
you change the value of it, do so with extreme caution; first analyze the effect on a wide variety
of queries.

See also
« BIT VECTOR PINNABLE CACHE PERCENT Optionon page 342
* SORT PINNABLE CACHE PERCENT Optionon page 440

HASH THRASHING PERCENT Option

Specifies the percent of hard disk 1/0s allowed during the execution of a statement that
includes a query involving hash algorithms, before the statement is rolled back and an error
message is reported.

Allowed Values
0-100

Default
10

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect immediately.

380

Sybase 1Q

Database Options

Description

If a query that uses hash algorithms causes an excessive number of hard disk 1/Os (paging
buffers from memory to disk), query performance is negatively affected, and server
performance might also be affected. HASH THRASHI NG_PERCENT controls the
percentage of hard disk 1/0s allowed before the statement is rolled back and an error message
is returned. The text of the error message is either Hash i nsert t hrashi ng
detectedorHash find thrashing detected.

The default value of HASH_THRASHI NG_PERCENT is 10%. Increasing this value permits
more paging to disk before a rollback and decreasing this value permits less paging before a
rollback.

For more information on controlling excessive paging and using
HASH_THRASHI NG_PERCENT, see Systerm Administration Guide.: Volume 1 >
Troubleshooting Hints > Solutions for Specific Conditions > Processing Issues >
Unexpectedly Long Loads or Queries.

See also
* HASH_PINNABLE CACHE PERCENT Optionon page 380

HG DELETE METHOD Option
Specifies the algorithm used during a delete in a HG index.

Allowed Values
0-3

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

This option chooses the algorithm used by the HG index during a delete operation. The cost
model considers the CPU related costs as well as 1/0 related costs in selecting the appropriate
delete algorithm. The cost model takes into account:

« Rows deleted

* Index size

* Width of index data type

« Cardinality of index data

« Available temporary cache

Reference: Statements and Options 381

Database Options

HG

« Machine related 1/0 and CPU characteristics
* Available CPUs and threads
« Referential integrity costs

To force a “small” method, set this option to 1. To force the “large” method, set the option to 2.
To force a “midsize” method, set the option to 3.

SEARCH_ RANGE Option

Specifies the maximum number of Btree pages used in evaluating a range predicate in the HG
index.

Allowed Values
Integer

Default
10

Scope
Can be set for an individual connection or the PUBLI Cgroup. Takes effect immediately.

Description
The default setting of this option is appropriate for most queries.

This option effectively controls the amount of time the optimizer spends searching for the best
index to use for a range predicate. Setting this option higher may cause a query to spend more
time in the optimizer, but as a result may choose a better index to resolve a range predicate.

HTTP_SESSION TIMEOUT Option

Specifies the amount of time, in minutes, that the client waits for an HT TP session to time out
before giving up.

Allowed Values
Integer (0 — 525600)

Default
30

Scope
DBA authority required. Can be set for PUBLI C group only.

Description

This option provides variable session timeout control for Web service applications. A Web
service application can change the timeout value from within any request that owns the HTTP
session, but a change to the timeout value can impact subsequent queued requests if the HTTP
session times out. The Web application must include logic to detect whether a client is

382

Sybase 1Q

Database Options

attempting to access an HT TP session that no longer exists. This can be done by examining the
value of the SessionCreateTime connection property to determine whether a timestamp is
valid: if the HTTP request is not associated with the current HTTP session, the
SessionCreateTime connection property contains an empty string.

See Also
See SQL Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data
Access APIs > SQL Anywhere web services > Using HT TP sessions.

See SessionCreateTime and http_session_timeout properties in SQL Anywhere 11.0.1 >
SQL Anywhere Server - Database Administration > Configuring Your Database >
Connection, database, and database server properties > Connection properties.

IDENTITY _ENFORCE_UNIQUENESS Option

Createsaunique HG index on each IDENTITY/AUTOINCREMENT column, if the column is
not already a primary key.

Allowed Values
ON, OFF

Default
OFF

Scope
Can only be set temporary (for a connection), for a user, or for the PUBLI Cgroup. Takes effect
immediately.

Description

When option is set ON, HG indexes are created on future identity columns. The index can only
be deleted if the deleting user is the only one using the table and the table is not a local
temporary table.

See also
e QUERY PLAN Optionon page 429

IDENTITY INSERT Option

Enables users to insert values into or to update an IDENTITY or AUTOINCREMENT
column.

Allowed Values
="tablenamée

Default
Option not set.

Reference: Statements and Options 383

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-session.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/http-session.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/connection-properties.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/connection-properties.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/connection-properties.html

Database Options

Scope
Can be set only temporary (for a connection), for a user, or for the PUBLI Cgroup. Takes effect
immediately.

Note: If you set a user level option for the current option, the corresponding temporary option
is also set. See Scope and Duration of Database Options.

Description

When | DENTI TY_I NSERT is set, insert/update is enabled. A table name must be specified
to identify the column to insert or update. If you are not the table owner, qualify the table name
with the owner name.

To drop a table with an IDENTITY column, | DENTI TY_| NSERT must not be set to that
table.

Examples
If you use the table Enpl oyees to run explicit inserts:

SET TEMPORARY OPTI ON | DENTI TY_I NSERT = ' Enpl oyees'

To turn the option off, specify the equals sign and an empty string:

SET TEMPORARY OPTI ON | DENTI TY_I NSERT = '*

Illustrates the effect of user level options on temporary options (see Note), if you are
connected to the database as DBA and enter:

SET OPTI ON | DENTI TY_I NSERT = ' Cust oners'

The value for the option is set to Cust oner s for the user DBA and temporary for the current

connection. Other users who subsequently connect to the database as DBA find their option
value for | DENTI TY_I NSERT is Cust omrer s also.

See also
» Scope and Duration of Database Options on page 319
e QUERY PLAN Optionon page 429

INDEX_ADVISOR Option

Generates messages suggesting additional column indexes that may improve performance of
one or more queries.

Allowed Values
ON, OFF

Default
OFF

384

Sybase 1Q

Database Options

Scope
Can be set temporary (for a connection), for a user, or for the PUBLI C group. Takes effect
immediately.

Description

When set ON, the index advisor prints index recommendations as part of the Sybase 1Q query
plan or as a separate message in the Sybase 1Q message log file, if query plans are not enabled.
These messages begin with the string “I ndex Advi sor : ” and you can use that string to
search and filter them from a Sybase 1Q message file. The output is in

OMNNER. TABLE. COLUMN format.

Set both INDEX_ADVISOR and INDEX_ADVISOR_MAX_ROWS to accumulate index advice.

Note: When INDEX_ADVISOR_MAX_ROWS is set ON, index advice will not be written to the
Sybase 1Q message file as separate messages. Advice will, however, continue to be displayed
on query plans in the Sybase 1Q message file.

Table 25. Index Advisor

Situation Recommendation

Local predicates on a single column where an HG, LF, HNG, DATE, | Recommend adding an <index-type>
TI ME or DATETI ME index would be desirable, as appropriate. | index to column <col>

Single column join keys where an LF or HG index would be useful. | Add an LF or HG index to join key
<col>

Single column candidate key indexes where a HG exists, but could | Change join key <col> to a unique LF
be changed to a unique HG or LF or HG index

Join keys have mismatched data types, and regenerating one col- | Make join keys <col1> and <col2>
umn with a matched data type would be beneficial. identical data types

Subquery predicate columns where an LF or HG index would be | Add an LF or HG index to subquery

useful. column <col>
Grouping columns where an LF or HG index would be useful. Create an LF or HG index on grouping
column <col>

Single-table intercolumn comparisons where the two columns are | Create a CMP index on <col1>, <col2>
identical data types, a CMP index are recommended.

Columns where an LF or HG index exists, and the number of distinct | Rebuild <col> with ‘optimize stor-
values allows, suggest converting the FP to a 1 or 2-byte FP index. | age=on’

To support the lookup of default indexes three bytes wide Rebuild your FP Index as a 3-byte FP
with an 1Q UNIQUE constraint value
of 65537

Reference: Statements and Options 385

Database Options

Itis up to you to decide how many queries benefit from the additional index and whether it is
worth the expense to create and maintain the indexes. In some cases, you cannot determine
how much, if any, performance improvement results from adding the recommended index.

For example, consider columns used as a join key. Sybase 1Q uses metadata provided by HG or
LF indexes extensively to generate better/faster query plans to execute the query. Putting an
HG or LF index on a join column without one makes the 1Q optimizer far more likely to choose
a faster join plan, but without adding the index and running the query again, it is very hard to
determine whether query performance stays the same or improves with the new index.

Example
Index advisor output with query plan set OFF:

I. 03/30 14:18:45. 0000000002 Advice: Add HG or LF index
on DBA.ta.cl Predicate: (ta2.cl < BV(1))

Index advisor output with query plan set ON:

Note: This method accumulates index advisor information for multiple queries, so that advice
for several queries can be tracked over time in a central location.

I. 03/30 14:53:24. 0000000008 [20535]: 6 ...#03: Leaf
I. 03/30 14:53:24. 0000000008 [20535]: Tabl e Name: tb
. 03/30 14:53:24. 0000000008 [20535]: Condition 1

(I'nvariant):

(tb.c3 =th.c4)

I. 03/30 14:53:24. 0000000008 [20535]: Condi tion 1 Index
Advi sor:

Add a CWP index on DBA.tb (c3,c4)

See also

 FP_LOOKUP_SIZE Optionon page 374

o INDEX_ADVISOR_MAX_ROWS Option on page 386
s MINIMIZE _STORAGE Option on page 412

* QUERY PLAN Optionon page 429

INDEX ADVISOR MAX ROWS Option

Sets the maximum number of unique advice messages stored by the index advisor to
max_rows.

Allowed Values

Value Description
0 Minimum value disables collection of index advice
4294967295 Maximum value allowed

386

Sybase 1Q

Database Options

Default
0

Scope
Can be set temporary (for the current connection), or persistent for a user/group (such as
PUBLIC or DBA). Takes effect immediately.

Description

INDEX_ADVISOR_MAX_ROWS limits the number of messages stored by the index advisor.
Once the specified limit has been reached, the INDEX_ADVISOR will not store new advice. It
will, however, continue to update counts and timestamps for existing advice messages.

SET OPTI ON public. | ndex_Advi sor _Max_Rows = nmax_r ows;

See also
e FP_LOOKUP_SIZE Optionon page 374
e INDEX ADVISOR Option on page 384

INDEX PREFERENCE Option
Controls the choice of indexes to use for queries.

Allowed Values
-10to 10

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

The Sybase 1Q optimizer normally chooses the best index available to process local WHERE
clause predicates and other operations that can be done within an 1Q index.

| NDEX_PREFERENCE is used to override the optimizer choice for testing purposes; under
most circumstances, it should not be changed.

Table 26. INDEX_PREFERENCE Valid Values

Value Action
0 Let the optimizer choose
1 Prefer LF indexes

Reference: Statements and Options 387

Database Options

Value Action
2 Prefer HG indexes
3 Prefer HNG indexes
4 Prefer CMP indexes
5 Prefer the default index
6 Prefer wD indexes
8 Prefer DATE indexes
9 Prefer TIME indexes
10 Prefer DTTM indexes
-1 Avoid LF indexes
-2 Avoid HG indexes
-3 Avoid HNG indexes
-4 Avoid CMP indexes
-5 Avoid the default index
-6 Avoid WD indexes
-8 Avoid DATE indexes
-9 Avoid TIME indexes
-10 Avoid DTTM indexes

INFER_SUBQUERY_PREDICATES Option

Controls the optimizer’s inference of additional subquery predicates.

Allowed Values

ON, OFF

Default
ON

Scope

Can be set temporary for an individual connection or the PUBLI C group. Takes effect
immediately. DBA permissions are not required to set this option.

388

Sybase 1Q

Database Options

Description

| NFER_SUBQUERY_PREDI CATES controls whether the optimizer is allowed to infer
additional subquery predicates from an existing subquery predicate through transitive closure
across a simple equality join predicate. In most cases in which the optimizer chooses to make
this inference, the query runs faster. There are some exceptions to this performance
improvement, so you may need to experiment to be sure that this option is appropriate for your
environment.

IN SUBQUERY PREFERENCE Option
Controls the choice of algorithms for processing an IN subquery.

Allowed Values
-3to 3

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

The 1Q optimizer has a choice of several algorithms for processing IN subqueries. This option
allows you to override the optimizer's costing decision when choosing the algorithm to use. It
does not override internal rules that determine whether an algorithm is legal within the query
engine.

I N_SUBQUERY_PREFERENCE is normally used for internal testing and for manually
tuning queries that the optimizer does not handle well. Only experienced DBAs should use it.
The only reason to use this option is if the optimizer seriously underestimates the number of
rows produced by a subquery, and the hash object is thrashing. Before setting this option, try to
improve the mistaken estimate by looking for missing indexes and dependent predicates.

Inform Sybase Technical Support if you need to set | N SUBQUERY _PREFERENCE, as
setting this option might mean that a change to the optimizer is appropriate.

Table 27. IN_SUBQUERY_PREFERENCE Valid Values

Value Action

0 Let the optimizer choose

1 Prefer sort-based IN subquery

Reference: Statements and Options 389

Database Options

Value Action
2 Prefer vertical IN subquery (where a subquery is a child of a leaf node in the query
plan)
3 Prefer hash-based IN subquery
-1 Avoid sort-based IN subquery
-2 Avoid vertical IN subquery
-3 Avoid hash-based IN subquery

IQGOVERN_MAX PRIORITY Option

Limits the allowed | QGOVERN_PRI ORI TY setting.

Allowed Values
1-3

Default
2

Scope
Can be set temporary for an individual connection or for the PUBLI Cgroup. Requires DBA
permissions to set. Takes effect immediately.

Description

Limits the allowed | QGOVERN_PRI ORI TY setting, which affects the order in which a user’s
queries are queued for execution. In the range of allowed values, 1 indicates high priority, 2
(the default) medium priority, and 3 low priority. Sybase 1Q returns an error if a user sets

| QGOVERN_PRI ORI TY higher than | QGOVERN_MAX_PRI ORI TY.

See also
* IQGOVERN_PRIORITY Option on page 390
e IQGOVERN_PRIORITY TIME Optionon page 391

IQGOVERN_PRIORITY Option

Assigns a priority to each query waiting in the -iggovern queue.

Allowed Values
1-3

Default
2

390

Sybase 1Q

Database Options

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

Assigns avalue that determines the order in which a user’s queries are queued for execution. In
the range of allowed values, 1 indicates high priority, 2 (the default) medium priority, and 3
low priority. This switch can be set temporary per user or public by any user. Queries with a
lower priority will not run until all higher priority queries have executed.

This option is limited by the per user or per group value of the option
| QGOVERN_MAX_PRI ORI TY.

See also
e IQGOVERN_MAX PRIORITY Optionon page 390
* IQGOVERN_PRIORITY_TIME Optionon page 391

IQGOVERN PRIORITY TIME Option
Limits the time a high priority query waits in the queue before starting.

Allowed Values
0 - 1,000,000 seconds. Must be lower than | QGOVERN_MAX_PRI ORI TY.

Default
0 (disabled)

Scope
Can be set for the PUBLI Cgroup only. Requires DBA permissions. Takes effectimmediately.

Description

Limits the time a high priority (priority 1) query waits in the queue before starting. When the
limit is reached, the query is started even if it exceeds the number of queries allowed by the
-iggovern setting. You must belong to group DBA in order to change this switch. The range is
from 1 to 1,000,000 seconds. The default (0) disables this feature.

| QGOVERN_PRI ORI TY_TI ME must be set PUBLI C.

See also
 IQGOVERN_MAX PRIORITY Optionon page 390
* JQGOVERN _PRIORITY Option on page 390

Reference: Statements and Options 391

Database Options

ISOLATION_LEVEL Option

Controls the locking isolation level for catalog store tables.

Allowed Values
0,1,2,0r3

Default
0

Description
Each locking isolation level is defined as follows:

« 0- Allow dirty reads, nonrepeatable reads, and phantom rows.
e 1-Prevent dirty reads. Allow nonrepeatable reads and phantom rows.
e 2 -—Prevent dirty reads and guarantee repeatable reads. Allow phantom rows.

e 3 - Serializable. Do not allow dirty reads, guarantee repeatable reads, and do not allow
phantom rows.

| SOLATI ON_LEVEL determines the isolation level for tables in the catalog store. Sybase 1Q
always enforces level 3 for tables in the 1Q store. Level 3 is equivalent to ANSI level 4.

JAVA_LOCATION Option

Specifies the path of the Java VM for the database.

Allowed Values
String

Default
Empty string

Scope
Can be set for the PUBLI C group only. DBA authority required.

Description
By default, this option contains an empty string. In this case, the database server searches the
JAVA HOVE environment variable, the path, and other locations for the Java VM.

See also
« JAVA VM _OPTIONS Option on page 393

392

Sybase 1Q

Database Options

JAVA VM OPTIONS Option
Specifies command line options that the database server uses when it launches the Java VM.

Allowed Values
String

Default
Empty string

Scope
Can be set for the PUBLI Cgroup only. DBA authority required.

Description

JAVA VM OPTI ONSspecifies options that the database server uses when launching the Java
VM specified by the JAVA_LOCATI ONoption. These additional options can be used to set up
the Java VM for debugging purposes or to run as a service on UNIX platforms. In some cases,
additional options are required to use the Java VM in 64-bit mode instead of 32-bit mode.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Configuring
Your Database > Database options > Introduction to database options > Alphabetical list of
options > java vim options option [database].

See also
e JAVA [OCATION Optionon page 392

JOIN_EXPANSION_ FACTOR Option

Controls how conservative the optimizer’s join result estimates are in unusually complex
situations.

Allowed Values
1-100

Default
30

Scope
Can be set temporary for an individual connection or for the PUBLI C group. Takes effect
immediately.

Description

This option controls how conservative the join optimizer’s result size estimates are in
situations where an input to a specific join has already passed through at least one intermediate
join that can result in multiple copies of rows projected from the table being joined.

Reference: Statements and Options 393

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-2879385.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-2879385.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dboptions-s-2879385.html

Database Options

A level of zero indicates that the optimizer should use the same estimation method above
intermediate expanding joins as it would if there were no intermediate expanding joins.

This results in the most aggressive (small) join result size estimates.

A level of 100 indicates that the optimizer should be much more conservative in its estimates
whenever there are intermediate expanding joins, and this results in the most conservative
(large) join result size estimates.

Normally, you should not need to change this value. If you do, Sybase recommends setting
JO N_EXPANSI ON_FACTORas a temporary or user option.

JOIN_OPTIMIZATION Option

Enables or disables the optimization of the join order.

Allowed Values
ON, OFF

Default
ON

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

When JO N_OPTI M ZATI ONis ON, Sybase 1Q optimizes the join order to reduce the size
of intermediate results and sorts, and to balance the system load. When the option is OFF, the
join order is determined by the order of the tables in the FROM clause of the SELECT
statement.

JA N_OPTI M ZATI ONshould always be set ON.

JO N_OPTI M ZATI ON controls the order of the joins, but not the order of the tables. To
show the distinction, consider this example FROM clause with four tables:

FROM A B, C, D

By default, this FROM clause creates a left deep plan of joins that could also be explicitly
represented as:

FROM (((A, B), ©O, D

IfJO N_OPTI M ZATI ONis turned OFF, then the order of these joins on the sets of tables is
kept precisely as specified in the FROM clause. Thus A and B must be joined first, then that
result must be joined to table C, and then finally joined to table D. This option does not control

the left/right orientation at each join. Even with JO N_OPTI M ZATI ONturned OFF, the
optimizer, when given the above FROM clause, can produce a join plan that looks like:

394

Sybase 1Q

Database Options

FROM ((C, (A B)), D

or
FROM (((B, A, O, D

or
FROM (D, ((A B), Q)

In all of these cases, A and B are joined first, then that result is joined to C, and finally that
result is joined to table D. The order of the joins remains the same, but the order of the tables
appears different.

Ingeneral, if JO N_OPTI M ZATI ONis turned OFF, you probably should use parentheses in
the FROM clause, as in the above examples, to make sure that you get the join order you want.
If you want to join A and B to the join of C and D, you can specify this join by using
parentheses:

FROM ((A, B), (C D))

Note that the above FROM clause is a different join order than the original example FROM
clause, even though all the tables appear in the same order.

JO N_OPTI M ZATI ONshould be set to OFF only to diagnose obscure join performance
issues or to manually optimize a small number of predefined queries. With

JA N_OPTI M ZATI ONturned OFF, queries can join up to 128 tables, but might also suffer
serious performance degradation.

Warning! If you turn off JO N_OPTI M ZATI ON, Sybase IQ has no way to ensure optimal
performance for queries containing joins. You assume full responsibility for performance
aspects of your queries.

JOIN PREFERENCE Option
Controls the choice of algorithms when processing joins.

Allowed Values
-7to7

Default
0

Scope
DBA permissions are not required. Can be set temporary for an individual connection or for
the PUBLI Cgroup. Takes effect immediately.

Description
For joins within a query, the IQ optimizer has a choice of several algorithms for processing the
join. JO N_PREFERENCE allows you to override the optimizer’s cost-based decision when

Reference: Statements and Options 395

Database Options

choosing the algorithm to use. It does not override internal rules that determine whether an
algorithm is legal within the query engine. If you set it to any nonzero value, every join in a
query is affected; you cannot use it to selectively modify one join out of several in a query.

This option is normally used for internal testing, and only experienced DBAs should use it.

Table 28. JOIN_PREFERENCE Valid Values

Value Action
0 Let the optimizer choose
1 Prefer sort-merge
2 Prefer nested-loop
3 Prefer nested-loop push-down
4 Prefer hash
5 Prefer hash push-down
6 Prefer prejoin
7 Prefer sort-merge push-down
-1 Avoid sort-merge
-2 Avoid nested-loop
-3 Avoid nested-loop push-down
-4 Avoid hash
-5 Avoid hash push-down
-6 Avoid prejoin
-7 Avoid sort-merge push-down

Simple equality join predicates can be tagged with a predicate hint that allows a join
preference to be specified for just that one join. If the same join has more than one join
condition with a local join preference, and if those hints are not the same value, then all local
preferences are ignored for that join. Local join preferences do not affect the join order chosen
by the optimizer.

This example requests a hash join:
AND (T.X =10 * Rx, 'J:4")

396

Sybase 1Q

Database Options

JOIN_SIMPLIFICATION_THRESHOLD Option

Controls the minimum number of tables being joined together before any join optimizer
simplifications are applied.

Allowed Values
1-64

Default
15

Scope
Can be set temporary for an individual connection or for the PUBLI C group. Takes effect
immediately.

Description

The query optimizer simplifies its optimization of join order by separate handling of both
lookup tables (that is, nonselective dimension tables) and tables that are effective Cartesian
products. After simplification, it optimizes the remaining tables for join order, up to the limit
set by MAX_JO N_ENUMERATI ON.

Setting this option to a value greater than the current value for MAX_JO N_ENUMERATI ON
has no effect.

Setting this value below the value for MAX_JO N_ENUMERATI ONmight improve the time
required to optimize queries containing many joins, but may also prevent the optimizer from
finding the best possible join plan.

Normally, you should not need to change this value. If you do, Sybase recommends setting
JO N_SI MPLI FI CATI ON_THRESHOL Das a temporary or user option, and to a value of at
least 9.

See also
« MAX JOIN ENUMERATION Option on page 408

LARGE DOUBLES ACCUMULATOR Option
Controls which accumulator to use for SUM or AVG of floating-point numbers.

Allowed Values
ON, OFF

Default
OFF

Reference: Statements and Options 397

Database Options

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

The small accumulator for floats and doubles is highly accurate for addends in the range of
magnitudes 1e-20to 1e20. It loses some accuracy outside of this range, but is still good enough
for many applications. The small accumulator allows the optimizer to choose hash for faster
performance more easily than the large accumulator. The large accumulator is highly accurate
for all floats and doubles, but its size often precludes the use of hash optimization. The default
is the small accumulator.

LF BITMAP_CACHE KB Option

Specifies the amount of memory to use for a load into a LF index.

Allowed Values
1-8

Default
4

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

LF_BI TMAP_CACHE KB defines the amount of heap memory (in KB) per distinct value
used during a load into an LF index. The defaultallots 4KB. If the sum of the distinct counts for
all LF indexes on a particular table is relatively high (greater than 10,000), then heap memory
use might increase to the point of impacting load performance due to system page faulting. If
this is the case, reduce the value of LF_BI TMAP_CACHE KB.

This formula shows how to calculate the heap memory used (in bytes) by a particular LF index
during a load:

Heap- menory-used = (| f_bitmap_cache_kb * 1024)
* | f-distinct-count-for-colum

Using the default of 4KB, an LF index with 1000 distinct values can use up to 4MB of heap
memory during a load.

398

Sybase 1Q

Database Options

LOAD ZEROLENGTH ASNULL Option
Specifies LOAD statement behavior under certain conditions.

Allowed Values
ON, OFF

DBA permissions are not required. Can be set temporary for an individual connection or for
the PUBLI Cgroup. Takes effect immediately.

Default
OFF

Description
This option specifies LOAD statement behavior under these conditions:

 inserting a zero-length data value into a column of data type CHAR, VARCHAR, LONG
VARCHAR, Bl NARY, VARBI NARY, or LONG Bl NARY

and

e aNULL column-spec; for example, NULL(ZEROS) or NULL(BLANKS) is also given
for that same column

Set LOAD ZEROLENGTH_ASNULL ON to load a zero-length value as NULL when the
above conditions are met.

Set LOAD ZEROLENGTH_ASNULL OFF to load a zero-length value as zero-length, subject
to the setting of option NON_ANSI _NULL_ VARCHAR

See also
o NON_ANSI_ NULL VARCHAR Optionon page 417
e LOAD TABLE Statementon page 221

LOCKED Option
If set for a login policy, prevents users with that policy from establishing new connections.

For details, see System Administration Guide: Volume 1 > Managing User IDs and
Permissions.

See also
o ALTER LOGIN POLICY Statementon page 19
» CREATE LOGIN POLICY Statement on page 107

Reference: Statements and Options 399

Database Options

LOG_CONNECT Option

Controls logging of user connections.

Allowed Values
ON, OFF

Default
ON

Scope
Can be set only for the PUBLI C group. Takes effect immediately.

Description
When this option is ON, a message appears in the IQ message log (. i qne(g file) every time a
user connects to or disconnects from the Sybase 1Q database.

Note: If this option is set OFF (connection logging disabled) when a user connects, and then
turned on before the user disconnects, the message log shows that user disconnecting but not
connecting.

LOG_CURSOR_OPERATIONS Option

Controls logging of cursor operations.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

When this option is ON, a message appears in the IQ message log every time you open or close
a cursor. Normally this option should be OFF, which is the default. Turn it ON only if you are
having a problem and must provide debugging data to Sybase Technical Support.

400

Sybase 1Q

Database Options

LOGIN MODE Option
Controls the use of integrated logins for the database.

Allowed Values
Standard, Mixed, or Integrated

Default
Standard

Scope
Can be set only for the PUBLI C group. Takes effect immediately.

Description
This option specifies whether integrated logins are permitted. Values are case insensitive:

« Standard — The default setting, which does not permit integrated logins. An error occurs if
an integrated login connection is attempted.

« Mixed — Both integrated logins and standard logins are allowed.

« Integrated — With this setting, all logins to the database must be made using integrated
logins.

Warning! Setting LOE N_MODE to Integrated restricts connections to only those users who
have been granted an integrated login mapping. Attempting to connect using a user 1D and

password generates an error. The only exceptions to this are users with DBA authority (full
administrative rights).

LOGIN PROCEDURE Option
Specifies a login procedure that sets connection compatibility options at start-up.

Allowed Values
String

Default
sp_login_environment system procedure

Scope
Can be set for an individual connection or the PUBLI Cgroup. Requires DBA permissions to
set the option. Takes effect immediately.

Description

The initial connection compatibility options settings are controlled using the

LOd N_PROCEDURE option, which is called after all the checks have been performed to
verify that the connection is valid. The LOG N_PROCEDURE option names a stored

Reference: Statements and Options 401

Database Options

procedure to run when users connect. The default setting is to use the sp_login_environment
system stored procedure. You can specify a different stored procedure. The procedure
specified by the LOG N_PROCEDURE option is not executed for event connections.

The sp_login_environment procedure checks to see if the connection is being made over
TDS. If the connection is made over TDS, sp_login_environment calls the
sp_tsql_environment procedure, which sets several options to new default values for the
current connection.

For more details on the LOG N_PROCEDURE option and examples, see SQL Anywhere
11.0.1 > SQL Anywhere Server — Database Administration > Configuring Your Database >
Database options > Introduction to database options > Alphabetical list of options >
login_procedure option [database].

See also
 Initial Option Settings on page 321

MAIN_RESERVED DBSPACE_MB Option

Controls the amount of space Sybase 1Q reserves in the 1Q main store.

Allowed Values
Integer greater than or equal to 200, in megabytes

Default
200; Sybase 1Q actually reserves a maximum of 50% and a minimum of 1% of the last read-
write file in | Q_SYSTEM _MAI N

Scope

Can be set only for the PUBLI C group. Requires DBA permissions to set the option. Takes
effect immediately. The server does not need to be restarted in order to change reserved space
size.

Description

MAI N_RESERVED DBSPACE_MB controls the amount of space Sybase 1Q sets aside in the
IQ main store for certain small but critical data structures used during release savepoint,
commit, and checkpoint operations. For a production database, set this value between 200MB
and 1GB. The larger your 1Q page size and number of concurrent connections, the more
reserved space you need.

Reserved space size is calculated as a maximum of 50% and a minimum of 1% of the last
read-write file in | Q_SYSTEM MAI N.

402

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/login-procedure.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/login-procedure.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/login-procedure.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/login-procedure.html

Database Options

MAX CARTESIAN RESULT Option
Limits the number of rows resulting from a Cartesian join.

Allowed Values
Any integer

Can be set temporary (for a connection), for a user, or for the PUBLI C group. Takes effect
immediately.

Default
100000000

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

MAX_CARTESI AN_RESULT limits the number of result rows from a query containing a
Cartesian join (usually the result of missing one or more join conditions when creating the
query). If Sybase 1Q cannot find a query plan for the Cartesian join with an estimated result
under this limit, it rejects the query and returns an error. Setting MAX_CARTESI AN_RESULT
to 0 disables the check for the number of result rows of a Cartesian join.

MAX CLIENT NUMERIC PRECISION Option
Controls the maximum precision for numeric data sent to the client.

Allowed Values
0-126

Default
0

Scope
Can be set by any user, at any level. This option takes effect immediately.

Description

When Sybase 1Q performs its calculation, it promotes data types to an appropriate size that
ensures accuracy. The promoted data type might be larger in size than Open Client and some
ODBC applications can handle correctly.

When MAX_CLI ENT_NUMERI C_PRECI SI ONis a nonzero value, Sybase 1Q checks that
numeric result columns do not exceed this value. If the result column is bigger than

Reference: Statements and Options 403

Database Options

MAX_CLI ENT_NUMERI C_PRECI SI ONallows, and Sybase 1Q cannot cast it to the
specified precision, the query returns this error:

Dat a Exception - data type conversion is not possible %
SQLCODE = -1001006

Note: In SQL Anywhere, the maximum value supported for the numeric function is 255. If the
precision of the numeric function exceeds the maximum value supported, you see the error:
The result datatype for function '_funcname' exceeds the

maxi mum supported nuneric precision of 255. Please set the
proper value for precision in nuneric function, 'location'

See also
* MAX_CLIENT_NUMERIC_SCALE Optionon page 404
* PRECISION Optionon page 424

MAX CLIENT NUMERIC SCALE Option

Controls the maximum scale for numeric data sent to the client.

Allowed Values
0-126

Default
0

Scope
Can be set by any user, at any level. This option takes effect immediately.

Description

When Sybase 1Q performs its calculation, it promotes data types to an appropriate scale and
size that ensure accuracy. The promoted data type might be larger than the original defined
data size. You can set this option to the scale you want for numeric results.

Multiplication, division, addition, subtraction, and aggregate functions can all have results
that exceed the maximum precision and scale.

For example, when a DECIMAL(88,2) is multiplied with a DECIMAL(59,2), the result could
require a DECIMAL(147,4). With MAX_CLI ENT_NUMERI C_PREC! SI ONof 126, only
126 digits are kept in the result. If MAX_CLI ENT_NUVMERI C_SCALE is 4, the results are
returned as a DECIMAL(126,4). If MAX_CLI ENT_NUMERI C_SCALE is 2, the result are
returned as a DECIMAL(126,2). In both cases, there is a possibility for overflow.

See also
o MAX_CLIENT_NUMERIC_PRECISION Option on page 403
e SCALE Optionon page 438

404

Sybase 1Q

Database Options

MAX CONNECTIONS Option
Specifies the maximum number of concurrent connections allowed for a user.

For details, see SQL Anywhere Server — Database Administration.

MAX CUBE_RESULT Option

Sets the maximum number of rows that the 1Q optimizer considers for a GROUP BY CUBE
operation.

Allowed Values
0-4294967295

Default
10000000

Scope
Can be set by any user, at any level. This option takes effect immediately.

Description

When generating a query plan, the 1Q optimizer estimates the total number of groups
generated by the GROUP BY CUBE hash operation. The IQ optimizer uses a hash algorithm
for the GROUP BY CUBE operation. This option sets an upper boundary for the number of
estimated rows the optimizer considers for a hash algorithm that can be run. If the actual
number of rows exceeds the MAX_CUBE_RESULT value, the optimizer stops processing the
query and returns the error Esti nat e nunber: nnn exceeds the default
MAX_CUBE_RESULT of CGROUP BY CUBE or ROLLUP, where nnnis the number
estimated by the 1Q optimizer.

Set MAX_CUBE_RESULT to zero to override the default value. When this option is set to zero,
the 1Q optimizer does not check the row limit and allows the query to run. Setting
MAX_CUBE_RESULT to zero is not recommended, as the query might not succeed.

MAX CURSOR COUNT Option

Specifies a resource governor to limit the maximum number of cursors that a connection can
use at once.

Allowed Values
Integer

Default
50

Reference: Statements and Options 405

Database Options

Scope
Can be set for an individual connection or the PUBLI Cgroup. Takes effect immediately.
Requires DBA permissions to set this option for any connection.

Description

The specified resource governor allows a DBA to limit the number of cursors per connection
that a user can have. If an operation exceeds the limit for a connection, an error is generated
indicating that the limit has been exceeded.

If a connection executes a stored procedure, that procedure is executed under the permissions
of the procedure owner. However, the resources used by the procedure are assigned to the
current connection.

You can remove resource limits by setting MAX_CURSOR_COUNT to 0 (zero).

MAX DAYS SINCE_LOGIN Option

Specifies the maximum number of days that can elapse between two successive logins by the
same user.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server — Database Administration >
Configuring Your Database > Managing user 1Ds, authorities, and permissions > Managing
login policies overview.

MAX FAILED LOGIN ATTEMPTS Option

Specifies the maximum number of failed attempts, since the last successful attempt, to log into
the user account before the account is locked.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server — Database Administration >
Configuring Your Database > Managing user 1Ds, authorities, and permissions > Managing
login policies overview.

MAX HASH_ROWS Option

Sets the maximum number of rows that the 1Q optimizer considers for a hash algorithm.

Allowed Values
Integer from 1 to 4294967295

Default
2500000

Scope
Can be set temporary for an individual connection or the PUBLI Cgroup. DBA permissions
are not required to set the option. This option takes effect immediately.

406

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/da-permissi-s-4686947.html

Database Options

Description

When generating a query plan, the 1Q optimizer might have several algorithms (hash, sort,
indexed) to choose from when processing a particular part of a query. These choices often
depend on estimates of the number of rows to process or generate from that part of the query.
This option sets an upper boundary for how many estimated rows are considered for a hash
algorithm.

For example, if there is a join between two tables, and the estimated number of rows entering
the join from both tables exceeds the value of MAX HASH ROWS, the optimizer does not
consider a hash join. On systems with more than 50 MB per user of temporary buffer cache
space, you might want to consider a higher value for this option.

MAX IQ THREADS PER CONNECTION Option
Controls the number of threads for each connection.

Allowed Values
3-10000

Default
144

Scope
Can be temporary or permanent. Does not require DBA permissions to set. Can be set for the
PUBLI Cgroup only. Takes effect immediately.

Description
Allows you to constrain the number of threads (and thereby the amount of system resources)
the commands executed on a connection use. For most applications, use the default.

MAX 1Q THREADS PER TEAM Option

Controls the number of threads allocated to perform a single operation (such as a LIKE
predicate on a column) executing within a connection.

Allowed Values
1-10000

Default
144

Scope
Can be temporary or permanent. Does not require DBA permissions to set. Can be set for the
PUBLI Cgroup only. Takes effect immediately.

Reference: Statements and Options 407

Database Options

Description

Allows you to constrain the number of threads (and thereby the amount of system resources)
allocated to a single operation. The total for all simultaneously executing teams for this
connection is limited by the related option, MAX_| Q_THREADS_PER_CONNECTI ON. For
most applications, use the default.

See also
« MAX IQ_THREADS PER CONNECTION Optionon page 407

MAX JOIN_ENUMERATION Option

Controls the maximum number of tables to be optimized for join order after optimizer
simplifications have been applied.

Allowed Values
1-64

Each FROM clause is limited to having at most 64 tables. In practice, however, the effective
limit on the number of tables in a FROM clause is usually much lower, and is based partially on
the complexity of the join relationships among those tables. That effective limit is constrained
by the setting for MAX_JOIN_ENUMERATION. The optimizer will attempt to simplify the set
of join relationships within a FROM clause. If those simplifications fail to reduce the set of the
joins that must be simultaneously considered to no more than the current setting for
MAX_JOIN_ENUMERATION, then the query will return an error.

Warning! Setting MAX_JOIN_ENUMERATION over the default value of 16 should only be
done with caution, especially in the case of queries with bushy join relationships that can cause
the amount of time required by the optimizer increase dramatically. In queries that use only a
linear chain of join relationships, a MAX_JOIN_ENUMERATION setting of 64 can still provide
reasonable optimization times.

Default
15

Scope
Can be set temporary for an individual connection or for the PUBLI C group. Takes effect
immediately.

Description

The query optimizer simplifies its optimization of join order by separate handling of both
lookup tables (that is, nonselective dimension tables) and tables that are effective Cartesian
products. After simplification, it proceeds with optimizing the remaining tables for join order,
up to the limit set by MAX_JO N_ENUMERATI ON. If this limit is exceeded, the query is
rejected with an error. The user can then either simplify the query or try increasing the limit.

408

Sybase 1Q

Database Options

Normally, you should not need to change this value. If you do, Sybase recommends setting
MAX_JO N_ENUMERATI ONas a temporary or user option.

MAX PREFIX PER CONTAINS PHRASE Option
Specifies the number of prefix terms allowed in a text search expression.

Users must be licensed for the Unstructured Data Analytics Option to use TEXT indexes and
perform full text searches.

For MAX_PREFI X _PER_CONTAI NS_PHRASE syntax and a complete description, see
Unstructured Data Analytics in Sybase 1Q.

MAX QUERY PARALLELISM Option
Sets upper bound for parallel execution of GROUP BY operations and for arms of a UNION.

Allowed Values
Integer less than, greater than or equal to number of CPUs.

Default
64

Scope
Can be set temporary for an individual connection or for the PUBLI C group. Takes effect
immediately.

Description

This parameter sets an upper bound which limits how parallel the optimizer will permit query
operators to go. This can influence the CPU usage for many query join, GROUP BY, UNION,
ORDER BY, and other query operators.

Systems with more than 64 CPU cores often benefit from a larger value, up to the total number
of CPU cores on the system to a maximum of 512; you can experiment to find the best value for
this parameter for your system and queries.

Systems with 64 or fewer CPU cores should not need to reduce this value, unless excessive
system time is seen. In that case, you can try reducing this value to determine if that adjustment
can lower the CPU system time and improve query response times and overall system
throughput.

MAX QUERY TIME Option
Sets a time limit so that the optimizer can disallow very long queries.

Allowed Values
0 to 232 - 1 minutes

Reference: Statements and Options 409

Database Options

Default
0 (disabled)

Scope
Can be set at the session (temporary), user, or PUBLI C level.

Description
If the query runs longer than the MAX_QUERY_TI ME setting, Sybase 1Q stops the query and
sends a message to the user and the 1Q message file. For example:

The operation has been cancelled -- Max_Query_Ti me exceeded.

MAX_QUERY_TI ME applies only to queries and not to any SQL statement that is modifying
the contents of the database.

MAX STATEMENT COUNT Option

Specifies a resource governor to limit the maximum number of prepared statements that a
connection can use at once.

Allowed Values
Integer

Default
100

Scope
Can be set for an individual connection or the PUBLI Cgroup. Takes effect immediately.
Requires DBA permissions to set this option for any connection.

Description

The specified resource governor allows a DBA to limit the number of prepared statements per
connection that a user can have. If an operation exceeds the limit for a connection, an error is
generated indicating that the limit has been exceeded.

If a connection executes a stored procedure, that procedure is executed under the permissions
of the procedure owner. However, the resources used by the procedure are assigned to the
current connection.

You can remove resource limits by setting MAX_STATEMENT_COUNT to 0 (zero).

410

Sybase 1Q

Database Options

MAX TEMP SPACE PER CONNECTION Option
Limits temporary store space used per connection.

Allowed Values
Integer (number of MB)

Default
0 (no limit on temporary store usage)

Scope
DBA permissions are required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

By controlling space per connection, this option enables DBAs to manage the space for both
loads and queries. If the connection exceeds the run time quota specified by
MAX_TEMP_SPACE_PER_CONNECTI QN, Sybase 1Q rolls back the current statement and
returns this message to the 1Q message file or client user:

The current operation has been cancell ed:
Max_Tenp_Space_Per _Connecti on exceeded

Conditions that may fill the buffer cache include read or write errors, lack of main or temp
space, or being out of memory. Sybase 1Q may return the first error encountered in these
situations and the DBA must determine the appropriate solution. For more information, see
Error Messages and System Administration Guide.: Volume 1 > Troubleshooting Hints.

In a distributed query processing transaction, Sybase 1Q uses the values set for the
QUERY_TEMP_SPACE_LI M T and MAX_TEMP_SPACE_PER_CONNECTI ON options
for the shared temporary store by limiting the total shared and local temporary space used by
all nodes participating in the distributed query. This means that any single query cannot
exceed the total temporary space limit (from | Q_SYSTEM TEMP and | Q_SHARED TEMP
dbspaces), no matter how many nodes participate.

For example, if the limit is 100 and four nodes use 25 units of temporary space each, the query
is within limits. If the sum of the total space used by any of the nodes exceeds 100, however,
the query rolls back.

Examples
Set a 500GB limit for all connections:

SET OPTI ON
PUBLI C. MAX_TEMP_SPACE_PER_CONNECTI ON = 512000

Set a 10TB limit for all connections:

Reference: Statements and Options 411

Database Options

SET OPTI ON

PUBLI C. MAX_TEMP_SPACE_PER_CONNECTI ON = 10485760
Set a 5000MB limit for user wi | son:

SET OPTI ON

wi | son. MAX_TEMP_SPACE_PER_CONNECTI ON = 5000

See also
e QUERY TEMP_SPACE LIMIT Optionon page 434

MAX_ WARNINGS Option

Controls the maximum number of warnings allowed.

Allowed Values
Any integer

Default
248 .1

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
This option can limit the number of warnings about rejected values, row mismatches, and so
on during DDL commands. The default does not restrict the number you can receive.

MINIMIZE STORAGE Option

Minimizes use of disk space for newly created columns.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for the PUBLI Cgroup or for temporary use. DBA authority is not required to set the
option. This option takes effect immediately.

Description

WhenM NI M ZE_STORAGE is ON, 1Q optimizes storage for new columns by using as little
as one byte of disk space per row wherever appropriate. By default, this option is OFF for the
PUBLI Cgroup, and the specialized storage optimization does not occur for all newly created

412

Sybase 1Q

Database Options

columns; whenM NI M ZE_STORAGE is OFF for the PUBLI Cgroup but ON as a temporary
user option, one-byte storage is used for new columns created by that user 1D.

Setting M NI M ZE_STORAGE ON is equivalent to placing an IQ UNIQUE 255 clause on
every new column, with the exception of certain data types that are by nature too wide for
one-byte storage. When M NI M ZE_STORAGE is ON, there is no need to specify IQ
UNIQUE, except for columns with more than 65536 unique values.

Note: An 1 Q UNI QUE value greater than 65536 can allow the creation of 3-byte indexes,
whereas previously such values were used to prevent it with M NI M ZE_STORAGE ON. If
you want to prevent the specialized storage optimization with M NI M ZE_STORAGE ON,
give I Q UNI QUE a constraint value greater than 16777216.

When the ratio of main memory to the number of columns is large, turning
M NI M ZE_STORAGE ON is beneficial. Otherwise, storage of new columns generally
benefits from turning this option OFF.

Specifying 1Q UNIQUE explicitly in CREATE TABLE or ALTER TABLE ADD COLUMN
overrides the M NI M ZE_STORAGE setting for that column.

See also
e FP_LOOKUP_SIZE Optionon page 374
* INDEX_ADVISOR Option on page 384

MIN PASSWORD LENGTH Option
Sets the minimum length for new passwords in the database.

Allowed Values
Integer greater than or equal to zero

The value is in bytes. For single-byte character sets, this is the same as the humber of
characters.

Default
0 characters

Scope
Can be set for the PUBLI Cgroup. Takes effect immediately. Requires DBA permissions to set
this option.

Description
This option allows the DBA to impose a minimum length on all new passwords for greater
security. Existing passwords are not affected.

Example
Set the minimum length for new passwords to 6 bytes:

Reference: Statements and Options 413

Database Options
SET OPTI ON PUBLI C. M N_PASSWORD_LENGTH = 6

MONITOR OUTPUT DIRECTORY Option
Controls placement of output files for the 1Q buffer cache monitor.

Allowed Values
String.

Default
Same directory as the database.

Scope
Can be set for the PUBLI Cgroup. Takes effect immediately. Requires DBA permissions to set
this option.

Description

MONI TOR_OUTPUT_DI RECTORY controls the directory in which the 1Q monitor output
files are created, regardless of what is being monitored or what monitor mode is used. The
dummy table used to start the monitor can be either a temporary or a permanent table. The
directory can be on any physical machine.

All monitor output files are used for the duration of the monitor runs, which cannot exceed the
lifetime of the connection. The output file still exists after the monitor run stops. A connection
can run up to two performance monitors simultaneously, one for main cache and one for temp
cache. A connection can run a monitor any number of times, successively.

The DBA can use the PUBLI Csetting to place all monitor output in the same directory, or set
different directories for individual users.

Example

This example shows how you could declare a temporary table for monitor output, set its
location, and then have the monitor start sending files to that location for the main and temp
buffer caches.

Note: In this example, the output directory string is set to both “/tmp” and “tmp/”. The trailing
slash (“/) is correct and is supported by the interface. The example illustrates that the buffer
cache monitor does not require a permanent table; a temporary table can be used.

decl are | ocal tenporary table dunmmy_nonitor (dummy_col um i nteger)

set option Mnitor_CQutput_Directory = "/tnmp"
igutilities main into dummy_nonitor start nonitor '-debug -interval
o

set option Monitor_CQutput_Directory = "tnp/"

iqg utilities private into dummy_nonitor start nonitor
interval 2'

-debug -

414 Sybase 1Q

Database Options

MPX AUTOEXCLUDE TIMEOUT Option
Specifies timeout for auto-excluding a secondary node on the coordinator node.

0 indicates that the nodes will not be auto excluded. This option does not apply to the
designated failover node. Users must be licensed for the Multiplex Grid Option to run
secondary nodes. For MPX_AUTCEXCLUDE_TI MEQUT syntax and complete description,
see Using Sybase 1Q Multiplex.

MPX_ HEARTBEAT FREQUENCY Option

Specifies interval until the heartbeat thread wakes and cleans up the connection pool on the
secondary node.

Users must be licensed for the Multiplex Grid Option to run secondary nodes. For
MPX_HEARTBEAT _FREQUENCY syntax and complete description, see Using Sybase 1Q
Multiplex.

MPX_IDLE_CONNECTION_TIMEOUT Option

Specifies the time after which an unused connection in the connection pool on a secondary
node will be closed.

Users must be licensed for the Multiplex Grid Option to run secondary nodes. For
MPX_| DLE_CONNECTI ON_TI MEQUT syntax and complete description, see Using Sybase
1Q Multiplex.

MPX MAX CONNECTION POOL_SIZE Option

Specifies the maximum number of connections allowed in the connection pool on a secondary
node.

Users must be licensed for the Multiplex Grid Option to run secondary nodes. For
MPX_MAX_ CONNECTI ON_POOL_SI ZE syntax and complete description, see Using
Sybase 1Q Multiplex.

MPX MAX UNUSED POOL_ SIZE Option

Specifies the maximum number of unused connections in the connection pool on a secondary
node.

Users must be licensed for the Multiplex Grid Option to run secondary nodes. For
MPX_MAX UNUSED POOL_SI ZE syntax and complete description, see Using Sybase 1Q
Multiplex.

Reference: Statements and Options 415

Database Options

NEAREST CENTURY option [TSQL]

Controls the interpretation of 2-digit years, in string to date conversions.

Allowed Values
0-100

Default
50

Description
NEAREST _CENTURY controls the handling of 2-digit years, when converting from strings to
dates or timestamps.

The NEAREST_CENTURY setting is a numeric value that acts as a rollover point. Two-digit
years less than the value are converted to 20yy, whereas years greater than or equal to the value
are converted to 19yy.

Adaptive Server Enterprise and Sybase 1Q behavior is to use the nearest century, so that if the
year value yyis less than 50, then the year is set to 20yy.

NOEXEC Option

Generates the optimizer query plans instead of executing the plan.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

When determining how to process a query, the 1Q optimizer generates a query plan to map how
it plans to have the query engine process the query. If this option is set ON, the optimizer sends
the plan for the query to the 1Q message file rather than submitting it to the query engine.
NOEXEC affects queries and commands that include a query.

Setting NOEXEC ON also prevents the execution of INSERT...VALUES, INSERT...SELECT,
INSERT...LOCATION, SELECT...INTO, LOAD TABLE, UPDATE, TRUNCATE TABLE,
DELETE, SYNCHRONIZE JOIN INDEX, and updatable cursor operations.

416

Sybase 1Q

Database Options

When the EARLY_PREDI CATE_EXECUTI ON option is ON, Sybase 1Q executes the local
predicates for all queries before generating a query plan, even when the NOEXEC option is
ON. The generated query plan is the same as the runtime plan.

See also
« EARLY PREDICATE EXECUTION Option on page 371

NON_ANSI NULL VARCHAR Option

Controls whether zero-length VARCHAR data is treated as NULLSs for insert, load, and update
operations.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

NON_ANSI _NULL_VARCHAR lets you revert to non-ANSI (Version 12.03.1) behavior for
treating zero-length VARCHAR data during load or update operations. When this option is set
to OFF, zero-length VARCHAR data is stored as zero-length during load, insert, or update.
When this option is set to ON, zero-length VARCHAR data is stored as NULLs on load, insert,
or update.

NON KEYWORDS Option [TSQL]
Turns off individual keywords, allowing their use as identifiers.

Allowed Values
String

Default
" (the empty string)

Description

NON_KEYWORDS turns off individual keywords. If you have an identifier in your database
that is now a keyword, you can either add double quotes around the identifier in all
applications or scripts, or you can turn off the keyword using the NON_ KEYWORDS option.

This statement prevents TRUNCATE and SYNCHRONIZE from being recognized as keywords:

Reference: Statements and Options 417

Database Options

SET OPTI ON NON_KEYWORDS = ' TRUNCATE, SYNCHRONI ZE

Each new setting of this option replaces the previous setting. This statement clears all previous
settings:
SET OPTI ON NON_KEYWORDS =

A side effect of the options is that SQL statements using a turned-off keyword cannot be used;
they produce a syntax error.

NOTIFY MODULUS Option

Controls the default frequency of notify messages issued by certain commands.

Allowed Values
Any integer

Default
100000

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

This option sets the default number of notify messages Sybase 1Q issues for certain commands
that produce them. The NOTIFY clause for some of the commands (such as CREATE INDEX,
LOAD TABLE, and DELETE) override this value. Other commands that do not support the
NOTIFY clause (such as SYNCHRONIZE JOIN INDEX) always use this value. The default does
not restrict the number of messages you can receive.

ODBC DISTINGUISH CHAR AND VARCHAR Option

Controls how the Sybase 1Q and SQL Anywhere ODBC driver describes CHAR columns.

Allowed Values
ON, OFF

Default
OFF

Description

When a connection is opened, the Sybase 1Q and SQL Anywhere ODBC driver uses the
setting of this option to determine how CHAR columns are described. If

ODBC_DI STI NGUI SH_CHAR_AND_VARCHAR is set to OFF (the default), then CHAR
columns are described as SQL_ VARCHAR If this option is set to ON, then CHARcolumns are
described as SQL_ CHAR. VARCHAR columns are always described as SQL_ VARCHAR.

418

Sybase 1Q

Database Options

ON CHARSET CONVERSION FAILURE Option
Controls the action taken, if an error is encountered during character conversion.

Allowed Values
String. See Description for allowed values.

Default
IGNORE

Description
ON_CHARSET _CONVERSI ON_FAI LURE controls the action taken, if an error is
encountered during character conversion:

Character conversion error Action

IGNORE Errors and warnings do not appear.

WARNING Substitutions and illegal characters are reported
as warnings. lllegal characters are not translated.

ERROR Substitutions and illegal characters are reported
as errors.

Single-byte to single-byte converters are not able to report substitutions and illegal characters,
and must be set to IGNORE.

ON ERROR Option [Interactive SQL]

Controls the action taken if an error is encountered while executing statements in Interactive
SQL.

Allowed Values
String. See Description for allowed values.

Default
PROMPT

Description
Controls the action taken, if an error is encountered while executing statements:

e STOP - Interactive SQL stops executing statements from the file and returns to the
statement window for input.

e PROMPT - Interactive SQL prompts the user to see if he or she wants to continue.
e CONTINUE - The error displays and Interactive SQL continues executing statements.
e EXIT - Interactive SQL terminates.

Reference: Statements and Options 419

Database Options

* NOTIFY_CONTINUE - The error is reported, and the user is prompted to press Enter or
click OK to continue.

* NOTIFY_STOP - The error is reported, and the user is prompted to press Enter or click
OK to stop executing statements.

e NOTIFY_EXIT - The error is reported, and the user is prompted to press Enter or click
OK to terminate Interactive SQL.

When you are executing a . SQL file, the values STOP and EXIT are equivalent.

ON TSQL ERROR Option [TSQL]

Controls error handling in stored procedures.

Allowed Values

String. See Description for allowed values.

Default

CONDITIONAL

Description

ON_TSQL_ERROR controls error handling in stored procedures:

» STOP- Stops execution immediately upon finding an error.

e CONDITIONAL - If the procedure uses ON EXCEPTION RESUME, and the statement
following the error handles the error, continue; otherwise, exit.

e CONTINUE - Continue execution, regardless of the following statement. If there are
multiple errors, the first error encountered in the stored procedure is returned. This option
most closely mirrors Adaptive Server Enterprise behavior.

Both CONDITIONAL and CONTINUE settings for ON_TSQ._ ERROR are used for

Adaptive Server Enterprise compatibility, with CONTINUE most closely simulating

Adaptive Server Enterprise behavior. The CONDITIONAL setting is recommended,

particularly when developing new Transact-SQL stored procedures, as CONDITIONAL

allows errors to be reported earlier.

Adaptive Server Enterprise compatibility is described in Reference: Building Blocks, Tables,

and Procedures.

When this option is set to STOP or CONTINUE, it supersedes the setting of the

CONTI NUE_AFTER_RAI SERROR option. However, when this option is set to

CONDITIONAL (the default), behavior following a RAISERROR statement is determined by

the setting of the CONTI NUE_AFTER_RAI SERRCR option.

See also

e CREATE PROCEDURE Statementon page 110

» CREATE PROCEDURE Statement [T-SQL]on page 116

420 Sybase 1Q

Database Options

* RAISERROR Statement [T-SQL] on page 258
e CONTINUE_AFTER_RAISERROR Option [TSQL]on page 348

OS FILE CACHE BUFFERING Option
Controls use of file system buffering for 1Q Main dbspaces.

Allowed Values
ON, OFF

Default
OFF; default affects newly created databases only.

Scope
Can be set for the PUBLI Cgroup only. You must shut down the database and restart it for the
change to take effect. Requires DBA permissions to set this option.

Description

Setting OS_FI LE_CACHE_BUFFERI NG OFF prevents file system buffering for 1Q Main
Store files. Turning off file system buffering saves a data copy from the file system buffer
cache to the main 1Q buffer cache. Usually this reduces paging caused by competition for
memory between the 1Q buffer manager and the file system buffer of the operating system.
When OS_FI LE_CACHE BUFFERI NGreduces paging, this option improves performance;
however, if the 1Q page size for the database is less than the block size of the file system
(typically only in testing situations), performance decreases, especially during multiuser
operation.

Experiment with this option to determine the best setting for different conditions. You must
restart the database for the new setting to take effect.

This direct 1/0 performance option is available on Sun Solaris UFS, Linux, Linux IBM, AlX,
and Windows file systems only. This option has no effect on HP-UX and HP-UXi and does not
affect databases on raw disk. In Linux, direct I/O is supported in kernel versions 2.6.x.

To enable direct 1/0 on Linux kernel version 2.6 and AlX, also set the environment variable
IQ_USE_DIRECTIO to 1. Direct 1/O is disabled by default in Linux kernel version 2.6 and
AIX. IQ_USE_DIRECTIO has no effect on Sun Solaris and Windows.

Note: Sybase 1Q does not support direct 1/0O on Linux kernel version 2.4. If you set the
IQ_USE_DIRECTIO environment variable on Linux kernel version 2.4, the Sybase 1Q server
does not start. Theerror Error: Invalid Block 1/O argunment, mybe
<pathname> is a directory, or it exceeds maximumfile size
limt for the platform or trying to use Direct 10 on
unsupported OSis reported.

OS_FI LE_CACHE_BUFFERI NG_TEMPDB controls file system buffering for 1Q
Temporary Store files.

Reference: Statements and Options 421

Database Options

See also
* OS FILE CACHE BUFFERING TEMPDB Optionon page 422

OS FILE CACHE BUFFERING TEMPDB Option
Controls the use of file system buffering for IQ Temporary dbspaces.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for the PUBLIC group only. You must shut down and restart the database for the
change to take effect. DBA permissions are required to set this option.

Description

Setting OS_FI LE_CACHE_BUFFERI NG_TEMPDB to OFF prevents file system buffering
for 1Q Temporary Store files. Turning off file system buffering saves a data copy from the file
system buffer cache to the main 1Q buffer cache. Usually this reduces paging caused by
competition for memory between the 1Q buffer manager and the file system buffer of the
operating system. When OS_FI LE_CACHE BUFFERI NG_TEMPDB reduces paging, this
option improves performance; however, if the 1Q page size for the database is less than the
block size of the file system (typically only in testing situations), performance decreases,
especially during multiuser operation.

Experiment with this option to determine the best setting for different conditions. You must
restart the database for the new setting to take effect.

This direct 1/0 performance option is available on Sun Solaris UFS, Linux, Linux IBM, AlX,
and Windows file systems only. This option has no effect on HP-UX and HP-UXi and does not
affect databases on raw disk. In Linux, direct I/O is supported in kernel versions 2.6.x.

To enable direct 1/0 on Linux kernel version 2.6 and AlX, also set the environment variable
IQ_USE_DIRECTIO to 1. Direct I/O is disabled by default in Linux kernel version 2.6 and
AlIX. IQ_USE_DIRECTIO has no effect on Sun Solaris and Windows.

Note: Sybase 1Q does not support direct 1/0 on Linux kernel version 2.4. If you set the
IQ_USE_DIRECTIO environment variable on Linux kernel version 2.4, the Sybase 1Q server
does not start. Theerror Error: Invalid Block I/O argunment, maybe
<pathname> is a directory, or it exceeds maximumfile size
limt for the platform or trying to use Direct 10 on
unsupported OSisreported.

OS_FI LE_CACHE_BUFFERI NGcontrols file system buffering for IQ Main Store files.

422 Sybase 1Q

Database Options

See also
» OS FILE CACHE BUFFERING Optionon page 421

PASSWORD EXPIRY _ON_NEXT LOGIN Option

Marks the user’s password for expiry immediately upon next login, when a user is assigned a
login policy and this option for the policy is set ON.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference > Using
SQL > SQL statements > SQL statements (A-D) > CREATE LOGIN POLICY statement.

PASSWORD GRACE_TIME Option

Specifies the number of days before password expiration during which login is allowed, but
the default post login procedure issues warnings.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference > Using
SQL > SQL statements > SQL statements (A-D) > CREATE LOGIN POLICY statement.

PASSWORD LIFE TIME Option
Specifies the maximum number of days before a password must be changed.

For details, see SQL Anywhere 11.0.1 > SQL Anywhere Server — SQL Reference > Using
SQL > SQL statements > SQL statements (A-D) > CREATE LOGIN POLICY statement.

POST LOGIN_PROCEDURE Option

Specifies a login procedure whose result set contains messages that are displayed by the client
application immediately after a user successfully logs in.

Allowed Values
String

Default
dbo.sa_post_login_procedure

Scope
Can be set for an individual connection or the PUBLI Cgroup. DBA permissions required to
set this option. Takes effect immediately.

Description
The default post login procedure, dbo.sa_post_login_procedure, executes immediately after
a user successfully logs in.

If you have DBA authority, you can customize the post login actions by creating a new
procedure and setting POST_LOG N_PROCEDURE to call the new procedure. Do not edit

Reference: Statements and Options 423

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/create-login-policy-statement.html

Database Options

dbo.sa_post_login_procedure. The customized post login procedure must be created in
every database you use.

The post login procedure supports the client applications Interactive SQL, Interactive SQL
Classic, and the 1Q plug-in for Sybase Central.

See also
* LOGIN_PROCEDURE Option on page 401

PRECISION Option

Specifies the maximum number of digits in the result of any decimal arithmetic, for queries on
the catalog store only.

Allowed Values
126

Default
126

Scope
Only PUBLI Csetting allowed.

Description

Precision is the total number of digits to the left and right of the decimal point. The default
PRECI SI ONvalue is fixed at 126. The SCALE option specifies the minimum number of
digits after the decimal point, when an arithmetic result is truncated to the maximum specified
by PRECI SI ON, for queries on the catalog store.

Note: In SQL Anywhere, the maximum value supported for the numeric function is 255. If the
precision of the numeric function exceeds the maximum value supported, you see the error
The result datatype for function '_funcnane' exceeds the

maxi num supported nuneric precision of 255. Please set the
proper value for precision in nuneric function, 'location'

See also
e SCALE Optionon page 438
e MAX CLIENT NUMERIC PRECISION Option on page 403

PREFETCH Option

Allows you to turn fetching on or off or to use the ALWAY'S value to prefetch the cursor
results, even for SENSITIVE cursor types and for cursors that involve a proxy table.

Allowed Values
ON, OFF, ALWAYS

424

Sybase 1Q

Database Options

Default
ON

Scope
Can be set for an individual connection or the PUBLI Cgroup. Takes effect immediately.

Description

For the catalog store only, PREFETCH controls whether rows are fetched to the client side
before being made available to the client application. Fetching a number of rows at a time,
even when the client application requests rows one at a time (for example, when looping over
the rows of a cursor) minimizes response time and improves overall throughput by limiting the
number of requests to the database.

The setting of PREFETCH is ignored by Open Client and JDBC connections, and for the I1Q
store.

PREFETCH BUFFER LIMIT Option
Specifies the amount of memory used for prefetching.

Allowed Values
Integer

Default
0

Scope
Can be set only for the PUBLI Cgroup. DBA authority is required to set the option. Shut down
and restart the database server to have the change take effect.

Description
PREFETCH BUFFER_LI M T defines the number of cache pages available to Sybase 1Q for
use in prefetching (the read-ahead of database pages).

Do not set this option unless advised to do so by Sybase Technical Support.

See also
e PREFETCH BUFFER PERCENT Optionon page 425

PREFETCH BUFFER PERCENT Option
Specifies the percent of memory used for prefetching.

Allowed Values
0-100

Reference: Statements and Options 425

Database Options

Default
40

Scope
Can be set only for the PUBLI Cgroup. DBA authority is required to set the option. Shut down
and restart the database server to have the change take effect.

Description

PREFETCH_BUFFER_PERCENT is an alternative to

PREFETCH BUFFER LIM T, as it specifies the percentage of cache
avai l abl e for use in prefetching.

Do not set this option unless advised to do so by Sybase Technical Support.

See also
* PREFETCH BUFFER_LIMIT Optionon page 425

PREFETCH GARRAY PERCENT Option

Specifies the percent of prefetch resources designated for inserts to HG indexes.

Allowed Values
0-100

Default
60

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
As with PREFETCH_SORT_PERCENT, this option designates a percentage of prefetch
resources for use when inserting into an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

PREFETCH _SORT PERCENT Option

Specifies the percent of prefetch resources designated for sorting objects.

Allowed Values
0-100

Default
20

426

Sybase 1Q

Database Options

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

PREFETCH_SORT_PERCENT designates a percentage of prefetch resources for use by a
single sort object. Increasing this value can improve the single-user performance of inserts and
deletes, but may have detrimental effects on multiuser operations.

Do not set this option unless advised to do so by Sybase Technical Support.

PRESERVE SOURCE FORMAT Option [database]
Controls whether the original source definition of procedures, views, and event handlers is
saved in system files. If saved, the formatted source is saved in the column source in
SYSTABLE, SYSPROCEDURE, and SYSEVENT.

Allowed Values
ON, OFF

Default
ON

Scope
Only PUBLI C setting allowed.

Description

When PRESERVE_SOURCE_FORMAT is ON, the server saves the formatted source from
CREATE and ALTER statements on procedures, views, and events, and puts original source
definition in the source column of the appropriate system table.

Unformatted source text is stored in the same system tables, in the columns pr oc_def n,and
vi ew_def n. However, these definitions are not easy to read in Sybase Central. The
formatted source column allows you to view the definitions with the spacing, comments, and
case that you want.

This option can be turned off to reduce space used to save object definitions in the database.
The option can be set only for the PUBLI C group.

Reference: Statements and Options 427

Database Options

QUERY_DETAIL Option

Specifies whether or not to include additional query information in the Query Detail section of
the query plan.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

When QUERY_DETAI L and QUERY_PLAN (or QJERY_PLAN_AS HTM.) are both turned
on, Sybase 1Q displays additional information about the query when producing its query plan.
When QUERY_PLANand QUERY_PLAN_AS HTM. are OFF, this option is ignored.

When QUERY_PLAN s ON (the default), especially if QUERY_DETAI L is also ON, you
might want to enable message log wrapping or message log archiving to avoid filling up your
message log file. Message log wrapping is described in System Administration Guide:
Volume 1.

See also
* QUERY PLAN Optionon page 429
* QUERY _PLAN_AS HTML Optionon page 430

QUERY NAME Option

Gives a name to an executed query in its query plan.

Allowed Values
Quote-delimited string of up to 80 characters.

Default
" (the empty string)

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

428

Sybase 1Q

Database Options

Description
You can assign the QUERY_NANME option any quote-delimited string value, up to 80
characters. For example:

set tenporary option Query_Name = 'ny third query'

When this option is set, query plans that are sent to the . i gnsg fileor . ht ml file include a
line near the top of the plan that looks like:

Query_Nanme: 'ny third query'

If you set the option to a different value before each query in a script, it is much easier to

identify the correct query plan for a particular query. The query name is also added to the file
name for HTML query plans. This option has no other effect on the query.

QUERY PLAN Option
Specifies whether or not additional query plans are printed to the Sybase 1Q message file.

Allowed Values
ON, OFF

Default
ON

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

When this option is turned ON, Sybase 1Q produces textual query plans in the IQ message file.
These query plans display the query tree topography, as well as details about optimization and
execution. When this option is turned OFF, those messages are suppressed. The information is
sent to the <dbnamne>. i gnsg file.

See also

e QUERY DETAIL Optionon page 428

* QUERY PLAN_AFTER_RUN Optionon page 429
e QUERY PLAN_AS HTML Optionon page 430

QUERY PLAN AFTER RUN Option
Prints the entire query plan after query execution is complete.

Allowed Values
ON, OFF

Reference: Statements and Options 429

Database Options

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

When QUERY_PLAN_AFTER_RUN s turned ON, the query plan is printed after the query
has finished running. This allows the query plan to include additional information, such as the
actual number of rows passed on from each node of the query.

For this option to work, the QUERY_ PLANoption must be set to ON (the default). You can use
this option in conjunction with QUERY_DETAI L to generate additional information in the
query plan report.

See also

e QUERY DETAIL Optionon page 428

e QUERY PLAN Optionon page 429

e QUERY PLAN _AS HTML Optionon page 430

QUERY_PLAN_AS HTML Option

Generates graphical query plans in HTML format for viewing in a Web browser.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
QUERY_PLAN_AS HTM. causes graphical query plans to be generated in HTML format.

When you set this option, also set the QUERY_NAME option for each query, so you know
which query is associated with the query plan.

Sybase 1Q writes the plans in the same directory as the . i qnsg file, in a file named:
user - nane_query-nane_YYYYMVDD HHMVBS quer y- nunber. ht n

For example, if the user DBA sets the temporary option QUERY_NAMEto' Query 1123',
a file created on May 18, 2011 at exactly 8:30 a.m. is called

430

Sybase 1Q

Database Options

DBA Query_1123 20110518 _083000_1. ht i . The date, time, and unique number
are appended to the file name automatically to ensure that existing files are not overwritten.

Note: If you use this feature, monitor your disk space usage so you leave enough room for
your . i gqnsg and log files to grow. Enable 1Q message log wrapping or message log
archiving to avoid filling up your message log file.

Message log wrapping is described in System Administration Guide: Volume 1.

QUERY_PLAN_AS HTM. acts independently of the setting for the QUERY_PL ANoption. In
other words, if QUERY_PLAN_AS HTM. is ON, you get an HTML format query plan
whether or not QUERY_PLAN s ON.

This feature is supported with newer versions of many commonly used browsers. Some
browsers might experience problems with plans generated for very complicated queries.

See also

QUERY _NAME Optionon page 428

e QUERY PLAN Optionon page 429

« QUERY PLAN_AFTER_RUN Option on page 429

QUERY PLAN AS HTML DIRECTORY Option
Specifies the directory into which Sybase 1Q writes the HTML query plans.

Allowed Values
String containing a directory path name

Default
" (the empty string)

Scope
Can be set temporary for an individual connection or for the PUBLI Cgroup. DBA authority is
required to set the option. Takes effect immediately.

Description

When the QUERY_PLAN_AS_HTM. option isturned ON and a directory is specified with the
QUERY_PLAN_AS HTM__ DI RECTORY option, Sybase 1Q writes the HTML query plans in
the specified directory. This option provides additional security by allowing HTML query
plans to be produced outside of the server directory. When the

QUERY_PLAN_AS HTM._DI RECTORY option is not used, the query plans are sent to the
default directory (the . i grsg file directory).

If the QUERY_PLAN_AS HTM. option is ON and
QUERY_PLAN_AS _HTM__DI RECTORY is set to a directory that does not exist, Sybase 1Q
does not save the HTML query plan and no error is generated. In this case, the query continues

Reference: Statements and Options 431

Database Options

to run and a message is logged to the 1Q message file, so the DBA knows that the HTML query
plan was not written. If the specified directory path or permissions on the directory are not
correct, the message Er r or openi ng HTM. Query pl an: fil e- naneiswrittenin
the . i grsg file.

Example

Create the example directory / syst emil/ user s/ DBA/ ht ml _pl ans and set the correct
permissions on the directory. Then set the options and run the query:

SET TEMPORARY OPTI ON QUERY_PLAN_AS HTML = ‘ON';

SET TEMPORARY OPTI ON QUERY_PLAN _AS HTM._DI RECTORY = ‘/systenil/ users/

DBA/ ht Ml _pl ans’ ;
SELECT col 1 FROM t abl;

The HTML query plan is written to a file in the specified directory / syst eni/ user s/
DBA/ ht Ml _pl ans.

See also
e QUERY PLAN_AS HTML Optionon page 430

QUERY PLAN_TEXT ACCESS Option

Enables or prevents users from accessing query plans from the Interactive SQL client or from
using SQL functions to get plans.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are required to modify this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

When QUERY_PLAN_ TEXT _ACCESS option is ON, users can view, save, and print query
plans from the Interactive SQL client. When the option is OFF, query plans are not cached, and
other query plan-related database options have no affect on the query plan display from the
Interactive SQL client. This error message displays:

No pl an avail abl e. The dat abase opti on QUERY_PLAN_TEXT_ACCESS i s OFF.

See also

e QUERY DETAIL Optionon page 428

e QUERY PLAN_AFTER_RUN Optionon page 429
e QUERY PLAN_AS HTML Optionon page 430

432

Sybase 1Q

Database Options

* QUERY _PLAN_TEXT_CACHING Optionon page 433
e OUTPUT Statement [Interactive SQL] on page 248

QUERY PLAN_TEXT CACHING Option

Allows you to specify whether or not Sybase 1Q generates and caches 1Q plans for queries
executed by the user.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to modify this option. Can be set temporary for an
individual connection or for the PUBLI C group. Takes effect immediately.

Description

1Q query plans vary in size and can become very large for complex queries. Caching plans for
display on the Interactive SQL client can have high resource requirements. The
QUERY_PLAN_TEXT_CACHI NGoption gives users a mechanism to control resources for
caching plans. With this option turned OFF (the default), the query plan is not cached for that
user connection.

Note: If QUERY_PLAN TEXT_ACCESS is turned OFF, the query plan is not cached for the
connections from that user, no matter how QUERY_PLAN _TEXT _CACHI NGis set.

See also

e QUERY DETAIL Optionon page 428

e QUERY PLAN _AFTER_RUN Optionon page 429

e QUERY PLAN_AS HTML Optionon page 430

e QUERY PLAN_TEXT ACCESS Optionon page 432
e OUTPUT Statement [Interactive SQL] on page 248

QUERY ROWS RETURNED LIMIT Option
Sets the row threshold for rejecting queries based on estimated size of result set.

Allowed Values
Any integer

Default
0

Reference: Statements and Options 433

Database Options

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
If Sybase 1Q receives a query that has an estimated number of result rows greater than the value
of QUERY_ROWS_RETURNED LI M T, it rejects the query with this message:

Query rejected because it exceeds resource:
Query_Rows_Returned_Limt

If you set this option to zero (the default), there is no limit and no queries are ever rejected
based on the number of rows in their output.

QUERY _TEMP_SPACE_LIMIT Option

Specifies the maximum estimated amount of temp space before a query is rejected.

Allowed Values
Any integer

Default
0 (no limit)

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
If Sybase 1Q receives a query that is estimated to require a temporary result space larger than
value of this option, it rejects the query with this message:

Query rejected because it exceeds total space resource limt
When set to zero (the default), there is no limit on temporary store usage by queries.

Users may override this option in their own environments to run queries that can potentially
fill up the entire temporary store. To prevent runaway queries from filling up the temporary
store, the DBA can set the option MAX_TEMP_SPACE_PER_CONNECTI ON. The
MAX_TEMP_SPACE_PER_CONNECTI ON option monitors and limits actual temporary
store usage for all DML statements, not just queries.

In a distributed query processing transaction, Sybase 1Q uses the values set for the
QUERY_TEMP_SPACE LI M T and MAX_TEMP_SPACE_PER_CONNECTI ON options
for the shared temporary store by limiting the total shared and local temporary space used by
all nodes participating in the distributed query. This means that any single query cannot

434

Sybase 1Q

Database Options

exceed the total temp space limit (from | Q_SYSTEM TEMP and | Q_SHARED TEMP
dbspaces), no matter how many nodes participate.

For example, if the limit is 100 and four nodes use 25 units of temporary space each, the query
is within limits. If the sum of the total space used by any of the nodes exceeds 100, however,
the query rolls back.

See also
« MAX TEMP _SPACE PER CONNECTION Optionon page 411

QUERY TIMING Option
Determines whether or not to collect specific timing statistics and display them in the query
plan.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

This option controls the collection of timing statistics on subqueries and some other repetitive
functions in the query engine. This parameter should normally be OFF (the default) because
for very short correlated subqueries, timing every subquery execution can slow down a query.

Query timing is represented in the query plan detail as a series of timestamps. These
timestamps correspond to query operator phases (Conditions, Prepare, Fetch, Complete).
HTML and Interactive SQL query plans display query timing graphically as a timeline.

QUOTED IDENTIFIER Option [TSQL]
Controls the interpretation of strings that are enclosed in double quotes.

Allowed Values
ON, OFF

OFF for Open Client connections.

Default
ON

Reference: Statements and Options 435

Database Options

Description

QUOTED _| DENTI FI ER controls whether strings enclosed in double quotes are interpreted
as identifiers (ON) or as literal strings (OFF). This option is included for Transact-SQL
compatibility.

Sybase Central and Interactive SQL set QUOTED | DENTI FERtemporarily to ON, if it is set
to OFF. A message is displayed informing you of this change. The change is in effect only for
the Sybase Central or Interactive SQL connection. The JDBC driver also temporarily sets
QUOTED_| DENTI FI ERto ON.

RECOVERY_TIME Option

Sets the maximum length of time, in minutes, that the database server takes to recover from
system failure.

Allowed Values
Integer, in minutes

Default
2

Scope
Can be set only for the PUBLI C group. Takes effect when the server is restarted.

Description
Use this option with the CHECKPQO NT_TI ME option to decide when checkpoints should be
done.

A heuristic measures the recovery time based on the operations since the last checkpoint.
Thus, the recovery time is not exact.

See also
e CHECKPOINT _TIME Optionon page 347

RETURN_DATE_TIME_AS STRING Option

Controls how a date, time, or timestamp value is passed to the client application when queried.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set as a temporary option only, for the duration of the current connection.

436

Sybase 1Q

Database Options

Description
RETURN_DATE_TI ME_AS_STRI NGindicates whether date, time, and timestamp values

are returned to applications as a date or time data type or as a string.

When this option is set to ON, the server converts the date, time, or timestamp value to a string
before itissenttothe client in order to preserve the TI MESTAMP_FORNMAT, DATE_FORNAT,
or TI ME_FORMAT option setting.

Sybase Central and Interactive SQL automatically turn the
RETURN_DATE_TI ME_AS_STRI NGoption ON.

See also

« DATE FORMAT Option on page 359

» TIME_FORMAT Option on page 462

o TIMESTAMP_FORMAT Optionon page 462

ROW COUNT Option
Limits the number of rows returned from a query.

Allowed Values
Integer.

Default
0 (no limit on rows returned)

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
When this runtime option is set to a nonzero value, query processing stops after the specified
number of rows.

This option affects only statements with the keyword SELECT and does not affect UPDATE
and DELETE statements.

The SELECT statement keywords FIRST and TOP also limit the number of rows returned from
aquery. Using FIRST is the same as setting the ROW COUNT database option to 1. Using TOP
is the same as setting ROW COUNT to the same number of rows. If both TOP and ROW COUNT
are set, then the value of TOP takes precedence.

The ROW_COUNT option could produce non-deterministic results when used in a query
involving global variables, system functions or proxy tables. Such queries are partly executed
using CIS (Component Integrated Services). In such cases, use SELECT TOP ninstead of

Reference: Statements and Options 437

Database Options

setting ROW COUNT, or set the global variable to a local one and use that local variable in the
query.

See also
e QUERY ROWS RETURNED_LIMIT Optionon page 433
e SELECT Statementon page 279

SCALE Option

Specifies the minimum number of digits after the decimal point when an arithmetic result is
truncated to the maximum PRECI SI ON, for queries on the catalog store only.

Allowed Values
Integer, with a maximum of 126.

Default
38

Scope
Can be set only for PUBLI C.

Description
This option specifies the minimum number of digits after the decimal point when an
arithmetic result is truncated to the maximum PRECI SI QN, for queries on the catalog store.

Multiplication, division, addition, subtraction, and aggregate functions may all have results
that exceed the maximum precision.

See also
» MAX CLIENT NUMERIC SCALE Optionon page 404
e PRECISION Option on page 424

SIGNIFICANTDIGITSFORDOUBLEEQUALITY Option

Specifies the number of significant digits to the right of the decimal in exponential notation
that are used in equality tests between two complex arithmetic expressions.

Allowed Values
0-15

Default
0

438

Sybase 1Q

Database Options

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
Because doubles are stored in binary (base 2) instead of decimal (base 10), this setting gives
the approximate number of significant decimal digits used. If set to 0, all digits are used.

For example, when SI GNI FI CANTDI G TSFORDOUBLEEQUALI TY is set to 12, these
numbers compare as equal; when set to 13, they do not;

» 1.23456789012345
» 1.23456789012389

SI GNI FI CANTDI G TSFORDOUBLEEQUALI TY affects equality tests between two
complex arithmetic expressions, not those done by the indexes.

SORT COLLATION Option
Allows implicit use of the SORTKEY function on ORDER BY expressions.

Allowed Values
Internal, collation_name, or collation_id

Default
Internal

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description
When the value of SORT_COLLATI ONis Internal, the ORDER BY clause remains
unchanged.

When the value of this option is set to a valid collation name or collation ID, any string
expression in the ORDER BY clause is treated as if the SORTKEY function has been invoked.

Functions are described in Reference: Building Blocks, Tables, and Procedures.

Example
Set the sort collation to binary:

SET TEMPORARY OPTI ON sort_col |l ati on='bi nary"';

Setting the sort collation to binary transforms these queries:

SELECT Nane, |D
FROM Pr oduct s

Reference: Statements and Options 439

Database Options

ORDER BY Nane, |ID;
SELECT Nane, |ID
FROM Pr oduct s
ORDER BY 1, 2;

The queries are transformed into:

SELECT Nanme, |D
FROM Pr oduct s
ORDER BY SORTKEY(Nane, 'binary'), 1D

SORT _PINNABLE CACHE_PERCENT Option

Specifies the maximum percentage of currently available buffers a sort object tries to pin.

Allowed Values
0-100

Default
20

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Description

For very large sorts, a larger value might help reduce the number of merge phases required by
the sort. A larger number, however, might impact the sorts and hashes of other users running
on the system. If you change this option, experiment to find the best value to increase
performance, as choosing the wrong value might decrease performance. Sybase recommends
that you use the default value for SORT_PI NNABLE CACHE PERCENT.

This option is primarily for use by Sybase Technical Support. If you change the value of
SORT_PI NNABLE _CACHE_PERCENT, do so with extreme caution.

SQL FLAGGER ERROR LEVEL Option [TSQL]

Controls the behavior in response to any SQL code that is not part of the specified standard.

Allowed Values

« OFF

e SQL:1992/Entry

e SQL:1992/Intermediate
e SQL:1992/Full

e SQL:1999/Core

e SQL:1999/Package

e SQL:2003/Core

440

Sybase 1Q

Database Options

e SQL:2003/Package

Default
OFF

Description
Flags asanerror any SQL code that is not part of a specified standard. For example, specifying
SQL.:2003/Package causes the database server to flag syntax that is not full SQL/2003 syntax.

For compatibility with previous Sybase 1Q versions, the values in this table are also accepted,
and are mapped as specified.

Table 29. SQL_FLAGGER_ERROR_LEVEL Compatibility Values

Value Action

E Flag syntax that is not entry-level SQL92 syntax. Corresponds to SQL:1992/Entry.

| Flag syntax that is not intermediate-level SQL92 syntax. Corresponds to SQL:1992/
Intermediate.

F Flag syntax that is not full-SQL92 syntax. Corresponds to SQL:1992/Full.

w Allow all supported syntax. Corresponds to OFF.

SQL FLAGGER WARNING LEVEL Option [TSQL]
Controls the response to any SQL that is not part of the specified standard.

Allowed Values

« OFF

e SQL:1992/Entry

e SQL:1992/Intermediate
e SQL:1992/Full

e SQL:1999/Core

e SQL:1999/Package

* SQL:2003/Core

e SQL:2003/Package

Default
OFF

Description

Flags as an error any SQL code that is not part of a specified standard as a warning. For
example, specifying SQL:2003/Package causes the database server to flag syntax that is not
full SQL/2003 syntax.

Reference: Statements and Options 441

Database Options

The default behavior, OFF, turns warning flagging off.

For compatibility with previous Sybase 1Q versions, the values in this table are also accepted,
and are mapped as specified.

Table 30. SQL_FLAGGER_WARNING_LEVEL Compatibility Values

Value Action
E Flag syntax that is not entry-level SQL92 syntax. Corresponds to SQL:1992/
Entry.

| Flag syntax that is not intermediate-level SQL92 syntax. Corresponds to SQL:
1992/Intermediate.

F Flag syntax that is not full-SQL92 syntax. Corresponds to SQL:1992/Full.

W Allow all supported syntax. Corresponds to OFF.

STRING_RTRUNCATION Option [TSQL]

Determines whether an error is raised when an INSERT or UPDATE truncates a CHAR or
VARCHAR string.

Allowed Values
ON, OFF

Default
ON

Description
If the truncated characters consist only of spaces, no exception is raised. ON corresponds to
SQL92 behavior. When STRI NG_RTRUNCATI ONis OFF, the exception is not raised and the

character string is silently truncated. If the option is ON and an error is raised, a ROLLBACK
occurs.

This option was OFF by default prior to Sybase 1Q 15.0. It can safely be set to OFF for
backward compatibility. However, the ON setting is preferable to identify statements where
truncation may cause data loss.

SUBQUERY CACHING PREFERENCE Option

Controls which algorithm to use for processing correlated subquery predicates.

Allowed Values
-3to 3

442 Sybase 1Q

Database Options

Value Action

1 Use sort-based processing for the first subquery predicate. Other subquery predicates
that do not have the same ordering key are processed using a hash table to cache
subquery results.

2 Use the hash table to cache results for all subquery predicates when it is legal. If
available temp cache cannot accommodate all of the subquery results, performance
may be poor.

3 Cache one previous subquery result. Does not use SORT and HASH.

0 Let the optimizer choose.

-1 Avoid using SORT. The 1Q optimizer chooses HASH if it is legal.

-2 Avoid using HASH. The 1Q optimizer chooses SORT or cache-one value if it is legal.

-3 Avoid using cache-one value. The 1Q optimizer chooses either HASH or SORT if it is
legal.

Default
0
Scope

DBA permissions are not required to set this option. Can be set temporary, for an individual
connection, or for the PUBLI C group. Takes effect immediately

Description

For correlated subquery predicates, the 1Q optimizer offers a choice of caching outer
references and subquery results that reduces subquery execution costs.
SUBQUERY_CACHI NG_PREFERENCE lets you override the optimizer’s costing decision
when choosing which algorithm to use. It does not override internal rules that determine
whether an algorithm is legal within the query engine.

A setting of a non-zero value affects every subquery predicate in the query. A non-zero value
cannot be used selectively for one subquery predicate in a query.

See Reference. Building Blocks, Tables, and Procedures > SQL Language Elements > Search
Conditions > Subqueries in Search Conditions > Disjunction of Subquery Predicates.

SUBQUERY_CACHI NG_PREFERENCE is hormally used for internal testing by experienced
DBAs only. It does not apply to IN subqueries.

See also
e IN_SUBQUERY PREFERENCE Option on page 389

Reference: Statements and Options 443

Database Options

SUBQUERY_FLATTENING PERCENT Option

Allows the user to change the threshold at which the optimizer decides to transform scalar
subqueries into joins.

Allowed Values
0to (232-1)

Value Action

0 The optimizer cost model decides

1to (232-1) The percentage of references at which to flatten

Default
100

Scope

This option only applies to correlated scalar subqueries. DBA permissions are not required to
set SUBUERY_ _FLATTENI NG _PERCENT. This option can be set by any user, at any level and
takes effect immediately. If you set SUBUERY _FLATTENI NG_PERCENT to a non-default
value, every scalar subquery predicate in the query is affected; this option cannot be used
selectively for one scalar subquery predicate in a query.

Description

The Sybase 1Q query optimizer can convert a correlated scalar subquery into an equivalent
join operation to improve query performance. The SUBQUERY _FLATTENI NG_PERCENT
option allows the user to adjust the threshold at which this optimization occurs.

SCALAR_FLATTEN NG_PERCENT represents a percent of estimated inner distinct values
to estimated outer distinct values in a scalar subquery. As the estimated percent approaches
100%, the cost of evaluating the subquery as a join is likely to be smaller than using individual
index probes. The value may be set larger than 100%, since the estimated inners are not
guaranteed to be less than estimated outers.

See also
o SUBQUERY FLATTENING PREFERENCE Optionon page 444

SUBQUERY FLATTENING PREFERENCE Option

Allows a user to override the decisions of the optimizer when transforming (flattening) scalar
or EXISTS subqueries into joins.

Allowed Values
-3to 3

444 Sybase 1Q

Database Options

Value Action
-3 Avoid flattening both EXISTS and scalar subqueries to a join operation.
-2 Avoid flattening a scalar subquery to a join operation.
-1 Avoid flattening an EXISTS subquery to a join operation.
0 Allow the IQ optimizer to decide to flatten subqueries.
1 Ignore cost flattening EXIST, if possible.
2 Ignore cost flattening scalar, if possible.
3 Ignore cost of both EXISTS and scalar subquery.
Default
0
Scope

DBA permissions are not required to set this option.

SUBQUERY_FLATTENI NG_PREFERENCE can be set by any user at any level. This option
takes effect immediately. If you set the option to a non-zero value, every subquery predicate in
the query is affected; this option cannot be used selectively for one subquery predicate in a
query.

Description

The Sybase 1Q optimizer may convert a correlated scalar subquery or an EXISTS or NOT
EXISTS subquery into an equivalent join operation to improve query performance. This
optimization is called subquery flattening. SUBQUERY _FLATTENI NG PREFERENCE

allows you to override the costing decision of the optimizer when choosing the algorithm to
use.

Setting SUBQUERY_FLATTENI NG_PREFERENCE to 0 (allow the 1Q optimizer to decide to
flatten subqueries) is equivalent to setting the now deprecated FLATTEN SUBQUERI ES
option to ON in earlier versions of Sybase 1Q.

See also
* SUBQUERY FLATTENING PERCENT Optionon page 444

SUBQUERY PLACEMENT PREFERENCE Option
Controls the placement of correlated subquery predicate operators within a query plan.

Allowed Values
-1tol

Reference: Statements and Options 445

Database Options

Value Action

-1 Prefer the lowest possible location in the query plan, thereby placing the execution of
the subquery as early as possible within the query.

0 Let the optimizer choose.

1 Prefer the highest possible location in the query plan, thereby delaying the execution

of the subquery to as late as possible within the query.

Default
0

Scope
Can be set for any scope, any user, takes immediate effect.

Description

For correlated subquery operators within a query, the 1Q optimizer may have a choice of
several different valid locations within that query’s plan.

SUBQUERY_PLACEMENT _PREFERENCE allows you to override the optimizer’s cost-
based decision when choosing the placement location. It does not override internal rules that
determine whether a location is valid, and in some queries, there might be only one valid
choice. If you set this option to a nonzero value, it affects every correlated subquery predicate
inaquery; it cannot be used to selectively modify the placement of one subquery out of several
in a query.

This option is normally used for internal testing, and only experienced DBAs should use it.

The default setting of this option is almost always appropriate. Occasionally, Sybase
Technical Support might ask you to change this value.

SUPPRESS_TDS_DEBUGGING Option

Determines whether TDS debugging information appears in the server window.

Allowed Values
ON, OFF

Default
OFF

Description
When the server is started with the -z option, debugging information appears in the server
window, including debugging information about the TDS protocol.

446

Sybase 1Q

Database Options

SUPPRESS TDS DEBUGG NGrestricts the debugging information about TDS that appears
in the server window. When this option is set to OFF (the default), TDS debugging information
appears in the server window.

SWEEPER THREADS PERCENT option
Specifies the percentage of Sybase 1Q threads used to sweep out buffer caches.

Allowed Values
1-40

Default
10

Scope
Can be set only for the PUBLI Cgroup. DBA authority is required to set the option. You must
shut down and restart the database server for the change to take effect.

Description
Sybase 1Q uses a small percentage of its processing threads as sweeper threads. These sweeper
threads clean out dirty pages in the main and temp buffer caches.

Inthe 1Q Monitor -cache report, the GDirty column shows the number of times the LRU buffer
was grabbed in a “dirty” (modified) state. If GDirty is greater than O for more than a brief time,
you might need to increase SWEEPER _THREADS PERCENT or

WASH_AREA BUFFERS_PERCENT.

The default setting of this option is almost always appropriate. Occasionally, Sybase
Technical Support might ask you to increase this value.

See also
» WASH AREA BUFFERS PERCENT Optionon page 467

TDS EMPTY STRING IS NULL Option [database]

Controls whether empty strings are returned as NULL or a string containing one blank
character for TDS connections.

Allowed Values
ON, OFF

Default
OFF

Description
TDS_EMPTY_STRI NG_| S_NULL issetto OFF by default and empty strings are returned as
a string containing one blank character for TDS connections. When this option is set to ON,

Reference: Statements and Options 447

Database Options

empty strings are returned as NULL strings for TDS connections. Non-TDS connections
distinguish empty strings from NULL strings.

TEMP_EXTRACT_APPEND Option

Specifies that any rows extracted by the data extraction facility are added to the end of an
output file.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description

This option specifies that any rows extracted by the data extraction facility are added to the end
of an output file. You create the output file in a directory where you have WRITE/EXECUTE
permissions and you set WRITE permission on the directory and output file for the user name
used to start Sybase 1Q (for example, sybase). You can give permissions on the output file to
other users as appropriate. The name of the output file is specified in the

TEMP_EXTRACT _NAMEL option. The data extraction facility creates the output file, if the
file does not already exist.

TEMP_EXTRACT _APPEND is not compatible with the TEMP_EXTRACT _SI ZEn options.
If you try to restrict the size of the extract append output file, Sybase IQ reports an error.

For details on the data extraction facility and using the extraction options, see System
Administration Guide.: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
e TEMP _EXTRACT NAMER Options on page 452

TEMP_EXTRACT_BINARY Option

In combination with the TEMP_EXTRACT _SWAP option, specifies the type of extraction
performed by the data extraction facility.

Allowed Values
ON, OFF

Default
OFF

448 Sybase 1Q

Database Options

Scope
Can be set for an individual connection. Takes effect immediately.

Description
Use this option with the TEMP_EXTRACT _SWAP option to specify the type of extraction
performed by the data extraction facility.

Table 31. Extraction Option Settings for Extraction Type

Extraction TEMP_EXTRACT_BINARY TEMP_EXTRACT_SWAP
type

binary ON OFF

binary/swap ON ON

ASCII OFF OFF

The default extraction type is ASCII.

For details on the data extraction facility and using the extraction options, see System
Administration Guide.: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
o TEMP _EXTRACT _SWAP Optionon page 459

TEMP_EXTRACT _COLUMN_DELIMITER Option

Specifies the delimiter between columns in the output of the data extraction facility for an
ASCII extraction.

Allowed Values
String

Default

Scope
Can be set for an individual connection. Takes effect immediately.

Description

Use TEMP_EXTRACT _COLUMN_DELI M TERto specify the delimiter between columns in
the output of the data extraction facility. In the case of an ASCII extraction, the default is to
separate column values with commas. Strings are unquoted by default.

Reference: Statements and Options 449

Database Options

The delimiter must occupy 1 -4 bytes, and must be valid in the collation order you are using, if
you are using a multibyte collation order. Choose a delimiter that does not occur in any of the
data output strings themselves.

If you set this option to the empty string " for ASCII extractions, the extracted data is written in
fixed-width ASCII with no column delimiter. Numeric and binary data types are right-
justified on a field of nblanks, where n7is the maximum number of bytes needed for any value
of that type. Character data types are left-justified on a field of 7 blanks.

Note: The minimum column width in a fixed-width ASCII extraction is 4 bytes to allow the
string “NULL” for a NULL value. For example, if the extracted column is CHAR(2) and
TEMP_EXTRACT_COLUMN_DELI M TER s set to the empty string ", there are two spaces
after the extracted data.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also

e TEMP _EXTRACT QUOTE Option on page 455

o TEMP_EXTRACT_QUOTES Optionon page 456

o TEMP EXTRACT QUOTES ALL Optionon page 456

o TEMP_EXTRACT_ROW _DELIMITER Optionon page 457

TEMP_EXTRACT_ DIRECTORY Option

Controls whether a user is allowed to use the data extraction facility. Also controls the
directory into which temp extract files are placed and overrides a directory path specified in
the TEMP_EXTRACT _NAMEN options.

Allowed Values
string

Default
" (the empty string)

Scope
Can be set temporary for an individual connection or for the PUBLI Cgroup. DBA authority is
required to set the option. This option takes effect immediately.

Description

If the TEMP_EXTRACT _DI RECTORY option is set to the string FORBIDDEN (case
insensitive) for a user, then that user is not allowed to perform data extracts. An attempt by this
user to use the data extraction facility results in the error: You do not have

perm ssion to perform Extracts.

450

Sybase 1Q

Database Options

If TEMP_EXTRACT_DI RECTORY is set to FORBIDDEN for the PUBLI C group, then no
one can run data extraction.

If TEMP_EXTRACT_DI RECTORY is set to a valid directory path, temp extract files are
placed in that directory, overriding a path specified in the TEMP_EXTRACT _NAMEN options.

If TEMP_EXTRACT_DI RECTORY is setto an invalid directory path, an error occurs: Fi | es
does not exist File: <invalid path>

If TEMP_EXTRACT_DI RECTORY is blank, then temp extract files are placed in directories
according to their specification in TEMP_EXTRACT _NAMERN. If no path is specified as part of
TEMP_EXTRACT _NAMERN, the extract files are by default placed in the server startup
directory.

This option provides increased security and helps control disk management by restricting the
creation of large data extraction files to the directories for which a user has write access.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
e TEMP _EXTRACT NAMER Options on page 452

TEMP_EXTRACT ESCAPE_QUOTES Option

Specifies whether all quotes in fields containing quotes are escaped in the output of the data
extraction facility for an ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description

This option is ignored unless TEMP_EXTRACT_QUOTE is the default or set to the value of
"" (double quotes), and TEMP_EXTRACT_BINARY is OFF, and either
TEMP_EXTRACT_QUOTES or TEMP_EXTRACT_QUOTES_ALL is ON.

See also

e TEMP EXTRACT BINARY Optionon page 448

o TEMP_EXTRACT_QUOTES Optionon page 456

o TEMP _EXTRACT QUOTES ALL Optionon page 456

Reference: Statements and Options 451

Database Options

TEMP_EXTRACT _NAMEN Options

Specifies the names of the output files or named pipes used by the data extraction facility.
There are eight options: TEMP_EXTRACT _NAMEL through TEMP_EXTRACT _NANMES.

Allowed Values
string

Default
" (the empty string)

Scope
Can be set for an individual connection. Takes effect immediately.

Description

TEMP_EXTRACT _NAMEL through TEMP_EXTRACT _NAMES specify the names of the
output files used by the data extraction facility. You must use these options sequentially. For
example, TEMP_EXTRACT _NAME3 has no effect unless both the options
TEMP_EXTRACT_NAMEL and TEMP_EXTRACT _NAME2 are already set.

The most important of these options is TEMP_EXTRACT _NAMEL. If

TEMP_EXTRACT _NAMEL is set to its default setting (the empty string "), extraction is
disabled and no output is redirected. To enable extraction, set TEMP_EXTRACT_NAMEL to a
path name. Extract starts extracting into a file with that name. Choose a path name to a file that
is not otherwise in use. Sybase recommends setting the TEMP_EXTRACT _NAMEL option as
TEMPORARY.

You can al so use TEMP_EXTRACT_ NAME1L to specify the name of the output file,
when the TEMP_EXTRACT_APPEND option is set ON. In this case, before you execute the
SELECT statement, set WRITE permission for the user name used to start Sybase 1Q (for
example, sybase) on the directory or folder containing the named file and on the named file. In
append mode, the data extraction facility adds extracted rows to the end of the file and does not
overwrite the data that is already in the file. If the output file does not already exist, the data
extraction facility creates the file.

Warning! If you choose the path name of an existing file and the TEMP_ EXTRACT _APPEND
option is set OFF (the default), the file contents are overwritten. This might be what you
require if the file is for a weekly report, for example, but not if the file is one of your database
files.

The options TEMP_EXTRACT _NAME2 through TEMP_EXTRACT _NAMES can be used in
addition to TEMP_EXTRACT _NAMEL1 to specify the names of multiple output files.

452 Sybase 1Q

Database Options

If you are extracting to a single disk file or a single named pipe, leave the options
TEMP_EXTRACT _NAME2 through TEMP_EXTRACT _NAMES and
TEMP_EXTRACT _SI ZE1 through TEMP_EXTRACT _SI ZES8 at their default values.

When TEMP_EXTRACT _NAMEL is set, you cannot perform these operations:

* LOAD, DELETE, INSERT, or INSERT...LOCATION to a table that is the top table in a join

e SYNCHRONIZE JOIN INDEX (issued explicitly or executed as part of CREATE JOIN
INDEX)
e INSERT..SELECT

Also note these restrictions on the data extraction facility:

» Extract works only with data stored in the 1Q store.
« Extract does not work on system tables or cross database joins.

« Extract does not work with queries that use user-defined functions or system functions,
except for the system functions suser_id() and suser_name().

« If you run Interactive SQL with the -q (quiet mode) option and the data extraction
commands are in a command file, you must first set and make permanent the Interactive
SQL option “Show multiple result sets.” If this option is not set, the output file is not
created.

To set the “Show multiple result sets” option, select Tools > Options in the Interactive SQL
window, then check the box “Show multiple result sets” and click “Make permanent.”

The directory path specified using the TEMP_EXTRACT _NAMEN options can be overridden
with the TEMP_EXTRACT_DI RECTORY option.

For details on the data extraction facility and using the extraction options, see System
Administration Guide.: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also

« TEMP_EXTRACT _APPEND Option on page 448

e TEMP_EXTRACT_DIRECTORY Optionon page 450
o TEMP_EXTRACT _SIZEn Optionson page 458

TEMP_EXTRACT NULL AS EMPTY Option

Controls the representation of null values in the output of the data extraction facility for an
ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

Reference: Statements and Options 453

Database Options

Scope
Can be set for an individual connection. Takes effect immediately.

Description

TEMP_EXTRACT_NULL_AS_EMPTY controls the representation of null values in the output
of the data extraction facility for ASCII extractions. When the
TEMP_EXTRACT_NULL_AS EMPTY optionissetto ON, anull value is represented as " (the
empty string) for all data types.

The quotes shown above are not present in the extract output file. When the
TEMP_EXTRACT_NULL_AS EMPTY option is set to OFF, the string 'NULL" is used in all
cases to represent a NULL value. OFF is the default value.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

TEMP _EXTRACT NULL AS ZERO Option

Controls the representation of null values in the output of the data extraction facility for an
ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description

TEMP_EXTRACT _NULL_AS ZEROcontrols the representation of null values in the output
of the data extraction facility for ASCII extractions. When
TEMP_EXTRACT_NULL_AS ZEROis set to ON, a null value is represented as follows:

e "0 for arithmetic type

* " (the empty string) for the CHAR and VARCHAR character types
e " (the empty string) for dates

e " (the empty string) for times

e " (the empty string) for timestamps

The quotes shown above are not present in the extract output file. When the
TEMP_EXTRACT _NULL_AS ZEROoption is set to OFF, the string 'NULL" is used in all
cases to represent a NULL value. OFF is the default value.

454

Sybase 1Q

Database Options

Note: In Sybase 1Q 12.5, an ASCII extract from a CHAR or VARCHAR column in a table
always returns at least four characters to the output file. This is required if
TEMP_EXTRACT_NULL_AS ZEROis set to OFF, because Sybase 1Q needs to write out the
word NULL for any row in a column that has a null value. Reserving four spaces is not
required if TEMP_EXTRACT _NULL_AS ZEROis set to ON.

In Sybase 1Q 12.6, if TEMP_EXTRACT_NULL_AS ZEROis set to ON, the number of
characters that an ASCII extract writes to a file for a CHAR or VARCHAR column equals the
number of characters in the column, even if that number is less than four.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

TEMP EXTRACT QUOTE Option
Specifies the string to be used as the quote to enclose fields in the output of the data extraction
facility for an ASCII extraction, when either the TEMP_EXTRACT _QUOTES option or the
TEMP_EXTRACT_QUOTES_ALL option is set ON.

Allowed Values
String

Default
" (the empty string)

Scope
Can be set for an individual connection. Takes effect immediately.

Description

This option specifies the string to be used as the quote to enclose fields in the output of the data
extraction facility for an ASCII extraction, if the default value is not suitable.
TEMP_EXTRACT_QUOTE is used with the TEMP_EXTRACT _QUOTES and
TEMP_EXTRACT_QUOTES_ALL options. The quote string specified in the
TEMP_EXTRACT _QUOTE option has the same restrictions as the row and column delimiters.
The default for this option is the empty string, which Sybase 1Q converts to the single quote
mark.

The string specified in the TEMP_EXTRACT _QUOTE option must occupy from 1 to a
maximum of 4 bytes and must be valid in the collation order you are using, if you are using a
multibyte collation order. Be sure to choose a string that does not occur in any of the data
output strings themselves.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

Reference: Statements and Options 455

Database Options

See also

o TEMP_EXTRACT_COLUMN_DELIMITER Optionon page 449
o TEMP_EXTRACT _QUOTES Optionon page 456

e TEMP EXTRACT QUOTES ALL Optionon page 456

o TEMP_EXTRACT_ROW DELIMITER Optionon page 457

TEMP_EXTRACT QUOTES Option

Specifies that string fields are enclosed in quotes in the output of the data extraction facility for
an ASCI|I extraction.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description

This option specifies that string fields are enclosed in quotes in the output of the data
extraction facility for an ASCII extraction. The string used as the quote is specified in the
TEMP_EXTRACT _QUOTE option, if the default is not suitable.

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also

o« TEMP _EXTRACT COLUMN _DELIMITER Optionon page 449
o TEMP _EXTRACT _QUOTES ALL Optionon page 456

» TEMP _EXTRACT _ROW DELIMITER Optionon page 457

TEMP _EXTRACT QUOTES ALL Option

Specifies that all fields are enclosed in quotes in the output of the data extraction facility for an
ASCII extraction.

Allowed Values
ON, OFF

Default
OFF

456

Sybase 1Q

Database Options

Scope
Can be set for an individual connection. Takes effect immediately.

Description

TEMP_EXTRACT_QUOTES_ALL specifies that all fields are enclosed in quotes in the output
of the data extraction facility for an ASCII extraction. The string used as the quote is specified
in TEMP_EXTRACT _QUOTE, if the default is not suitable.

For details on the data extraction facility and using the extraction options, see System
Administration Guide.: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also

o TEMP EXTRACT COLUMN _DELIMITER Optionon page 449
e TEMP EXTRACT QUOTES Optionon page 456

o TEMP _EXTRACT QUOTES ALL Optionon page 456

e TEMP EXTRACT ROW DELIMITER Optionon page 457

TEMP_EXTRACT _ROW_DELIMITER Option

Specifies the delimiter between rows in the output of the data extraction facility for an ASCI|I
extraction.

Allowed Values
String

Default
" (the empty string)

Scope
Can be set for an individual connection. Takes effect immediately.

Description

TEMP_EXTRACT_ROW DELI M TER specifies the delimiter between rows in the output of
the data extraction facility. In the case of an ASCII extraction, the default is to end the row with
anewline on UNIX platforms and with a carriage return/newline pair on Windows platforms.

The delimiter must occupy 1 -4 bytes and must be valid in the collation order you are using, if
you are using a multibyte collation order. Choose a delimiter that does not occur in any of the
data output strings. The default for the TEMP_EXTRACT_ROW DELI M TER option is the
empty string. Sybase 1Q converts the empty string default for this option to the newline on
UNIX platforms and to the carriage return/newline pair on Windows platforms.

Reference: Statements and Options 457

Database Options

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also

o TEMP_EXTRACT _COLUMN _DELIMITER Optionon page 449
e TEMP EXTRACT QUOTES Optionon page 456

e TEMP EXTRACT QUOTES ALL Optionon page 456

TEMP_EXTRACT_SIZEn Options

Specifies the maximum sizes of the corresponding output files used by the data extraction
facility.

There are eight options: TEMP_EXTRACT _SI ZE1 through TEMP_EXTRACT _SI ZES8.

Default
0

Scope
Can be set for an individual connection. Takes effect immediately.

Description

TEMP_EXTRACT _SI ZE1 through TEMP_EXTRACT _SI ZES8 are used to specify the
maximum sizes of the corresponding output files used by the data extraction facility.
TEMP_EXTRACT _SI ZE1 specifies the maximum size of the output file specified by
TEMP_EXTRACT _NAMEL, TEMP_EXTRACT _SI ZE2 specifies the maximum size of the
output file specified by TEMP_EXTRACT _NAME2, and so on.

The default for the data extraction size options is 0. Sybase 1Q converts this default to these

values:
Device type Size
Disk file AlX and HP-UX: 0 — 64GB
Sun Solaris & Linux: 0 - 512GB
Windows: 0 — 128GB
Tape* 524288KB (0.5GB)
Other 9007199254740992KB (8192 Petabytes “unlimited”)

*Tape devices currently are not supported.

When large file systems, such as JFS2, support file size larger than the default value, set
TEMP_EXTRACT _SI ZEn to the value that the file system allows. For example, to support
ITB set option:

458 Sybase 1Q

Database Options

TEMP_EXTRACT_SI ZE1 = 1073741824 KB

If you are extracting to a single disk file or a single named pipe, leave the options
TEMP_EXTRACT _NAME2 through TEMP_EXTRACT _NAMES8 and
TEMP_EXTRACT _SI ZE1 through TEMP_EXTRACT _SI ZES8 at their default values.

The TEMP_EXTRACT _SI ZEn options are not compatible with
TEMP_EXTRACT _APPEND. If you try to restrict the size of the extract append output file,
Sybase 1Q reports an error.

For details on the data extraction facility and using the extraction options, see System
Administration Guide.: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
o TEMP_EXTRACT_NAMEn Options on page 452

TEMP_EXTRACT_SWAP Option

In combination with the TEMP_ EXTRACT _BI NARY option, specifies the type of extraction
performed by the data extraction facility.

Allowed values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection. Takes effect immediately.

Description
Use this option with the TEMP_EXTRACT_BI NARY option to specify the type of extraction
performed by the data extraction facility.

Table 32. Extraction Option Settings for Extraction Type

Extraction type [TEMP_EXTRACT_BINARY TEMP_EXTRACT_SWAP

binary ON OFF
binary/swap ON ON
ASCII OFF OFF

The default extraction type is ASCII.

Reference: Statements and Options 459

Database Options

For details on the data extraction facility and using the extraction options, see System
Administration Guide: Volume 1 > Data Import and Export > Methods of Exporting Data from
a Database > Data Extraction Facility.

See also
o TEMP EXTRACT BINARY Optionon page 448

TEMP_ RESERVED DBSPACE_MB Option

Controls the amount of space Sybase IQ reserves in the temporary 1Q store.

Allowed Values
Integer greater than or equal to 200 in megabytes

Default
200; Sybase 1Q actually reserves a maximum of 50% and a minimum of 1% of the last read-
write file in | Q_ SYSTEM TEMP

Scope

Can be set only for the PUBLI C group. DBA authority is required to set the option. Takes
effect immediately. The server does not need to be restarted in order to change reserved space
size.

Description

TEMP_RESERVED DBSPACE_MB lets you control the amount of space Sybase 1Q sets aside
in your temporary 1Q store for certain small but critical data structures used during release
savepoint, commit, and checkpoint operations. For a production database, set this value
between 200MB and 1GB. The larger your 1Q page size and number of concurrent
connections, the more reserved space you need.

Reserved space size is calculated as a maximum of 50% and a minimum of 1% of the last
read-write file in | Q_SYSTEM TEMP.

TEMP_SPACE_LIMIT CHECK Option

Checks for catalog store temporary space on a per connection basis.

Allowed Values
ON, OFF (no limit checking occurs)

Default
ON

Scope
Can be set only for the PUBLI C group. DBA authority required.

460

Sybase 1Q

Database Options

Description

When TEMP_SPACE LI M T_CHECK is ON, the database server checks the amount of
catalog store temporary file space that a connection uses. I1f a connection requests more than its
quota of temporary file space when this option is set to OFF, a fatal error can occur. When this
option is set to ON, if a connection requests more than its quota of temporary file space, the
request fails and the error “Tenporary space linit exceeded” isreturned.

Two factors are used to determine the temporary file quota for a connection: the maximum size
of the temporary file, and the number of active database connections. The maximum size of
the temporary file is the sum of the current size of the file and the amount of disk space
available on the partition containing the file. When limit checking is turned on, the server
checks a connection for exceeding its quota when the temporary file has grown to 80% or more
of its maximum size, and the connection requests more temporary file space. Once this
happens, any connection fails that uses more than the maximum temporary file space divided
by the number of active connections.

Note: This option is unrelated to 1Q temporary store space. To constrain the growth of 1Q
temporary space, use the QUERY_TEMP_SPACE LI M T option and
MAX_TEMP_SPACE_PER_CONNECTI ON option.

You can obtain information about the space available for the temporary file using the
sa_disk_free_space system procedure. For more information, see SQL Anywhere 11.0.1
>SQL Anywhere Server — SQL Reference > System Objects > System procedures >
Alphabetical list of system procedures > sa_disk_free_space system procedure.

Example
A database is started with the temporary file on a drive with 100MB free and no other active
files on the same drive. The available temporary file space is 100MB. The DBA enters:

SET OPTI ON PUBLI C. TEMP_SPACE LI M T_CHECK = ' ON
As long as the temporary file stays below 80MB, the server behaves as it did before. Once the
file reaches 80MB, the new behavior might occur. Assume that with 10 queries running, the

temporary file needs to grow. When the server finds that one query is using more than 8MB of
temporary file space, that query fails.

TEXT DELETE_METHOD Option

Specifies the algorithm used during a delete in a TEXT index.

Users must be licensed for the Unstructured Data Analytics Option to use TEXT indexes. For
TEXT_DELETE_METHQOD syntax and a complete description, see Unstructured Data
Analytics in Sybase 1Q.

Reference: Statements and Options 461

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-disk-free-space.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-disk-free-space.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbreference_en11/sa-disk-free-space.html

Database Options

TIME_FORMAT Option

Sets the format used for times retrieved from the database.

Allowed values
A string composed of the symbols HH, NN, MM, SS, separated by colons.

Default
'HH:NN:SS.SSS'

For Open Client and JDBC connections the default is also set to HH:NN:SS.SSS.

Description
The format is a string using these symbols:

e hh - Two-digit hours (24 hour clock).

* nn - Two-digit minutes.

* mm - Two-digit minutes if following a colon (as in ‘hh:mm’).
e ss[.s...s] — Two-digit seconds plus optional fraction.

Each symbol is substituted with the appropriate data for the date being formatted. Any format
symbol that represents character rather than digit output can be in uppercase, which causes the
substituted characters also to be in uppercase. For numbers, using mixed case in the format
string suppresses leading zeros.

Multibyte characters are not supported in format strings. Only single-byte characters are
allowed, even when the collation order of the database is a multibyte collation order like
932JPN.

See also
e DATE FORMAT Option on page 359
e RETURN _DATE TIME AS STRING Optionon page 436

TIMESTAMP FORMAT Option

Sets the format used for timestamps retrieved from the database.

Allowed Values
A string composed of the symbols listed below.

Default
YYYY-MM-DD HH:NN:SS.SSS'

Description
The format is a string using these symbols:

462

Sybase 1Q

Database Options

Table 33. TIMESTAMP_FORMAT String Symbols

Symbol Description

yy 2-digit year.

yyyy 4-digit year.

mm 2-digit month, or two digit minutes if following a colon (as in 'hh:mm’).

mmm 3-character short form for name of the month of year

mmmm[m...] Character long form for month name—as many characters as there are m's, until
the number of m’s specified exceeds the number of characters in the month’s
name.

dd 2-digit day of month.

ddd 3-character short form for name of the day of week.

dddd[d...] Character long form for day name—as many characters as there are d's, until the
number of d’s specified exceeds the number of characters in the day’s name.

hh 2-digit hours.

nn 2-digit minutes.

$5.SSS Seconds (ss) and fractions of a second (SSS), up to six decimal places. Not all
platforms support timestamps to a precision of six places.

aa a.m. or p.m. (12-hour clock).

pp p.m. if needed (12-hour clock.)

Each symbol is substituted with the appropriate data for the date being formatted. Any format
symbol that represents character rather than digit output can be in uppercase, which causes the
substituted characters also to be in uppercase. For numbers, using mixed case in the format
string suppresses leading zeros.

Multibyte characters are not supported in format strings. Only single-byte characters are
allowed, even when the collation order of the database is a multibyte collation order like

932JPN.

See also

* DATE FORMAT Option on page 359
» RETURN_DATE TIME_AS _STRING Optionon page 436

Reference: Statements and Options

463

Database Options

TOP_NSORT_ CUTOFF PAGES Option

Sets the result size threshold for TOP N algorithm selection.

Allowed Values
1-1000

Default
1

Description

TOP_NSORT _CUTOFF_PAGES sets the threshold, measured in pages, where evaluation of a
query that contains both a TOP clause and ORDER BY clause switches algorithms from
ordered list-based processing to sort-based processing. Ordered list processing performs
better in cases where the TOP N value is smaller than the number of result rows. Sort-based
processing performs better for large TOP N values.

In some cases, increasing TOP_NSORT_CUTOFF_PAGES can improve performance by
avoiding sort-based processing.

See also
e SELECT Statementon page 279

TRIM_PARTIAL MBC Option

Allows automatic trimming of partial multibyte character data.

Allowed Values
ON, OFF

Default
OFF

Scope
DBA permissions are not required to set this option. Can only be set for the PUBLI Cgroup.
Takes effect immediately.

Description
Provides consistent loading of data for collations that contain both single-byte and multibyte
characters. When TRI M_PARTI AL_MBC s ON:

« A partial multibyte character is replaced with a blank when loading into a CHAR column.
e A partial multibyte character is truncated when loading into a VARCHAR column.

When TRI M_PARTI AL_MBC is OFF, normal CONVERSI ON_ERROR semantics are in
effect.

464

Sybase 1Q

Database Options

See also
* CONVERSION ERROR Option [TSQL] on page 349

TSQL VARIABLES Option [TSQL]
Controls whether the @ sign can be used as a prefix for Embedded SQL host variable names.

Allowed Values
ON, OFF

ON for Open Client and JDBC connections

Default
OFF

Description

When TSQL_VARI ABLES s setto ON, you can use the @ sign instead of the colon as a prefix
for host variable names in Embedded SQL. This is implemented primarily for the Open Server
Gateway.

USER _RESOURCE_RESERVATION Option

Adjusts memory use for the number of current users.

Allowed Values
Integer

Scope
DBA permissions are not required to set this option. Can be set temporary for an individual
connection or for the PUBLI Cgroup. Takes effect immediately.

Default
1

Description

Sybase 1Q tracks the number of open cursors and allocates memory accordingly. In certain
circumstances, you can use this option to adjust the minimum number of current cursors that
Sybase 1Q thinks is currently using the product, and allocate memory from the temporary
cache more sparingly.

Set this option only after careful analysis shows it is actually required. If you need to set this
parameter, contact Sybase Technical Support with details.

Reference: Statements and Options 465

Database Options

VERIFY _PASSWORD FUNCTION Option

Specifies a user-supplied authentication function that can be used to implement password
rules.

Allowed Values
String

Scope
Can be set temporary for an individual connection or for the PUBLI Cgroup. DBA authority is
required to set the option. This option takes effect immediately.

Default
" (the empty string). (No function is called on GRANT CONNECT.)

Description

When the VERI FY_PASSWORD FUNCTI ON option value is set to a valid string, the
statement GRANT CONNECT TO useridIDENTIFIED BY passwordcalls the function specified
by the option value.

The option value requires the form owner. function_nameto prevent users from overriding the
function.

The function takes two parameters:

o user_name VARCHAR(128)
o new_pwd VARCHAR(255)

The return value type is VARCHAR(255).

Note: Perform an ALTER FUNCTION function-name SET HIDDEN on the function to ensure
that a user cannot step through it using the procedure debugger.

If VERI FY_PASSWORD FUNCTI ON s set, you cannot specify more than one userid and
password with the GRANT CONNECT statement.

Example
This statement creates a function that requires the password to be different from the user
name:

CREATE FUNCTI ON DBA. f _verify_pwd

(user_nane varchar (128),

new_pwd var char (255))

RETURNS var char (255)

BEGA N

-- enforce password rul es

| F new_pwd = user_nane then

RETURN(' Password cannot be the sane as the user name');
END | F;

466 Sybase 1Q

Database Options

-- return success

RETURN(NULL);

END;

ALTER FUNCTI ON DBA. f_verify_pwd set hidden;

GRANT EXECUTE on DBA.f_verify pwd to PUBLIC

SET OPTI ON PUBLI C. VERI FY_PASSWORD_FUNCTI ON = ' DBA. f _verify_pwd';

To turn the option off, set it to the empty string:
SET OPTI ON PUBLI C. VERI FY_PASSWORD FUNCTION = "'

See also
 ALTER FUNCTION Statementon page 15
* GRANT Statemment on page 199

WASH AREA BUFFERS PERCENT Option
Specifies the percentage of the buffer caches above the wash marker.

Allowed Values
1-100

Default
20

Scope
Can be set only for the PUBLI Cgroup. DBA authority is required to set the option. Shut down
and restart the database server to have the change take effect.

Description
Sybase 1Q buffer caches are organized as a long MRU/LRU chain. The area above the wash
marker is used to sweep out (that is, write) dirty pages to disk.

In the 1Q Monitor -cache report, the Gdirty column shows the number of times the LRU buffer
was grabbed in a “dirty” (modified) state. If GDirty is greater than 0 for more than a brief time,
you might need to increase SWEEPER THREADS PERCENT or

WASH AREA BUFFERS_ PERCENT.

The default setting of this option is almost always appropriate. Occasionally, Sybase
Technical Support might ask you to increase this value.

See also
o SWEEPER THREADS PERCENT optionon page 447

Reference: Statements and Options 467

Database Options

WAIT FOR COMMIT Option
Determines when foreign key integrity is checked as data is manipulated.

Allowed Values
ON, OFF

Default
OFF

Scope
Can be set for an individual connection or the PUBLI C group. Takes effect immediately.

Description

If this option is set to ON, the database does not check foreign key integrity until the next
COMMIT statement. Otherwise, all foreign keys not created with the CHECK ON COVM T
option are checked as they are inserted, updated, or deleted.

WD DELETE METHOD Option
Specifies the algorithm used during a delete in a WD index.

Allowed Values
0-3

e 0: The delete method is selected by the cost model. Cost model only selects either mid or
large method for deletion.

» 1: Forces small method for deletion. Small method is useful when the number of rows
being deleted is a very small percentage of the total number of rows in the table. Small
delete can randomly access the index, causing cache thrashing with large datasets.

» 2: Forces large method for deletion. This algorithm scans the entire index searching for
rows to delete. Large method is useful when the number of rows being deleted is a high
percentage of the total number of rows in the table.

» 3: Forces mid method for deletion. Mid method is a variation of the small method that
accesses the index in order and is generally faster than the small method.

Default
0

Scope
DBA permissions are not required to set this option. Can be set temporary, for an individual
connection, or for the PUBLI C group. Takes effect immediately.

468 Sybase 1Q

Database Options

Description

WD DELETE METHODspecifies the algorithm used during a delete operation in a WD index.
When this option is not set or is set to 0, the delete method is selected by the cost model. The
cost model considers the CPU related costs as well as 1/O related costs in selecting the
appropriate delete algorithm. The cost model takes into account:

* Rows deleted

e Index size

« Width of index data type

« Cardinality of index data

« Available temporary cache

e Machine related 1/0 and CPU characteristics
e Available CPUs and threads

Example
Force the large method for deletion from a WD index:

SET TEMPCORARY OPTI ON WD_DELETE_METHOD = 2

Reference: Statements and Options 469

Database Options

470 Sybase 1Q

Index

A
AES encryption algorithm

CREATE DATABASE statement 73
AGGREGATION_PREFERENCE option 334
aliases

for columns 282

in SELECT statement 281, 282

in the DELETE statement 162
ALL

keyword in SELECT statement 281
ALLOCATE DESCRIPTOR statement

syntax 5
ALLOW_NULLS_BY_DEFAULT option 335
ALLOW_READ_CLIENT_FILE option 339
ALTER DATABASE statement

syntax 7
ALTER DATABASE UPGRADE statement 7
ALTER DBSPACE statement

syntax 9
ALTER DOMAIN statement

syntax 13
ALTER EVENT statement

syntax 14
ALTER FUNCTION statement

syntax 15
ALTER INDEX statement

errors 18

syntax 17
ALTER LOGICAL SERVER statement 19
ALTER LOGIN POLICY statement

syntax 19
ALTER LS POLICY Statement 21
ALTER MULTIPLEX RENAME statement 21
ALTER MULTIPLEX SERVER statement 22
ALTER PROCEDURE statement

syntax 22
ALTER SERVER statement

syntax 23
ALTER SERVICE statement

syntax 25
ALTER TABLE statement

syntax 27
ALTER USER statement 36
ALTER VIEW statement

RECOMPILE 31

Index

syntax 38, 40
altering

databases 7

functions 15
ANSI_CLOSE_CURSORS_AT_ ROLLBACK

option 335

ANSI_PERMISSIONS option 336
ANSI_SUBSTRING option 337
ANSI_UPDATE_CONSTRAINTS option 338
ANSINULL option 336
APPEND_LOAD option 339
archive backup

restoring 267
archive devices

maximum for parallel backup 44
ASE_BINARY_DISPLAY

database option 340
ASE_FUNCTION_BEHAVIOR

database option 341

with HEXTOINT 341

with INTTOHEX 341
AT clause

CREATE EXISTING TABLE 88
AUDITING option 342
authorities

BACKUP 201

DBA 201

GRANT statement 199

MULTIPLEX ADMIN 201

OPERATOR 201

PERMS ADMIN 201

PROFILE 201

READCLIENTFILE 201

READFILE 201

RESOURCE 201

SPACE ADMIN 201

USER ADMIN 201

VALIDATE 201

WRITECLIENTFILE 201
autoincrement

primary key values 182
AUTOINCREMENT column default 139

B
B-tree pages 343

Reference: Statements and Options

471

Index

BACKUP statement
number of archive devices 44
syntax 41
backups
speed 44
verifying 268
BEGIN DECLARE SECTION statement
syntax 152
BEGIN PARALLEL 1Q statement 49
BEGIN TRANSACTION statement
Transact-SQL 50
BEGIN... END statement
syntax 47
binary data
controlling implicit conversion 350
binary large object variable
data type conversions 372
bind variables
DESCRIBE statement 166
EXECUTE statement 181
OPEN statement 247
blanks
trimming trailing 229, 232
BLOB variable
data type conversions 372
block fetches
FETCH statement 189
BLOCKING option 343, 344
BREAK statement
Transact-SQL 315
BT_PREFETCH_MAX_MISS option 343
BTREE_PAGE_SPLIT_PAD_PERCENT option
345
buffer cache
partitioning 345
buffers
disabling operating system buffering 421, 422
bulk load 221
BYE statement
syntax 186

C

CACHE_PARTITIONS option 345
CALL statement
syntax 53
Transact-SQL 183
CASE statement
syntax 54
catalog store 196, 284

catalog temporary files

preventing connections from exceeding quota

460

CHAINED option 347
character large object variable

data type conversions 372
character sets

client file bulk load 228

errors on conversions 419
CHECK conditions

about 140, 143
CHECK ON COMMIT clause

referential integrity 142
CHECKPOINT statement

syntax 56
CHECKPOINT_TIME option 347
CIS

remote data access 348
CIS_ROWSET_SIZE option

about 348
classes

installing 216

removing 261
CLEAR statement

syntax 56
client file bulk load

character sets 228

errors 228

rollback 228
CLOB variable

data type conversions 372
CLOSE statement

syntax 57
CLOSE_ON_ENDTRANS option 348
code pages

DEFAULT_ISQL_ENCODING option 366
collation

SORT_COLLATION option 439
collations

client file bulk load 228
columns

aliases 282

altering 27

constraints 140

naming 3

renaming 33
command files

parameters 252

472

Sybase 1Q

COMMENT ON LOGICAL SERVER statement
60
COMMENT ON LOGIN POLICY statement
syntax 58
COMMENT statement
syntax 58
COMMIT statement
syntax 60
COMMIT TRANSACTION statement
Transact-SQL 60
compatibility options
ASE_FUNCTION_BEHAVIOR 341
CONTINUE_AFTER_RAISERROR 348
CONVERSION_ERROR 349
ON_TSQL_ERROR 420
compound statements
about 47
concurrency
locking tables 239
CONFIGURE statement
syntax 62
CONNECT authority
GRANT statement 203
CONNECT statement
syntax 63
connection_property function
about 318
connections
dbisql 169
DEDICATED_TASK option 363
establishing 19, 399
logging 400
console
displaying messages on 243
contains-expression
FROM clause 194
CONTINUE statement
Transact-SQL 315
CONTINUE_AFTER_RAISE_ERROR option
348
control statements
CALL statement 53
CASE statement 54
IF statement 205
LEAVE statement 220
LOOP statement 242
Transact-SQL GOTO statement 198
Transact-SQL IF statement 206
Transact-SQL WHILE statement 315

CONVERSION_ERROR option 349
CONVERSION_MODE option 350
CONVERT_VARCHAR_TO_1242 option 356
COOPERATIVE_COMMIT_TIMEOUT option
356
COOPERATIVE_COMMITS option 357
correlation names
in the DELETE statement 162
CREATE DATABASE statement
syntax 66
CREATE DBSPACE statement
syntax 76
CREATE DOMAIN statement
syntax 79
CREATE EVENT statement
syntax 81
CREATE EXISTING TABLE statement
proxy tables 86
CREATE EXTERNLOGIN statement
INSERT...LOCATION 211
syntax 89
CREATE FUNCTION statement
syntax 90
CREATE INDEX statement 49
syntax 97
table use 100
CREATE JOIN INDEX statement
syntax 104
CREATE LOGICAL SERVER statement 107
CREATE LOGIN POLICY statement
syntax 107
CREATE MESSAGE statement
Transact-SQL 109
CREATE MULTIPLEX SERVER statement 110
CREATE PROCEDURE statement
syntax 110
Transact-SQL 116
CREATE PROCEDURE statement for external
procedures
syntax 118
CREATE SCHEMA statement
syntax 127
CREATE SERVER statement
INSERT...LOCATION 211
syntax 129
CREATE SERVICE statement
syntax 130
CREATE TABLE statement
syntax 133

Index

Reference: Statements and Options

473

Index

CREATE TEXT CONFIGURATION statement

146
CREATE TEXT INDEX statement 146
CREATE USER statement 146
CREATE VARIABLE statement
syntax 148
CREATE VIEW statement
syntax 149
creating
data types 79
external stored procedures 118
proxy tables 86
stored procedures 110
creating as a group 49
creator 3
CUBE operator 285
SELECT statement 285
CURSOR_WINDOW_ROWS option 357
cursors
closing 57
database options 319
declaring 154, 159
deleting rows from 164
DESCRIBE 166
fetching 187
FOR READ ONLY clause 155
FOR UPDATE clause 155
INSENSITIVE 154
inserting rows using 256
looping over 190
OPEN statement 246
sensitivity 157
WITH HOLD clause 247

D

data

exporting from tables into files 248
data type conversion

CONVERSION_MODE option 350

errors 349

LONG BINARY variables 372
data types

altering user-defined 13

creating 79

dropping user-defined 170

performance for joins 196
database files

altering 9

creating 76

database option
ENABLE_LOB_VARIABLES 372
database options
cursors 319
DEBUG_MESSAGES option 363
DEDICATED_TASK 363
duration 319
ESCAPE_CHARACTER 330
FLATTEN_SUBQUERIES 445
FORCE_DROP 373
FP_LOOKUP_SIZE_PPM 375
initial settings 321
maximum string length 295, 318
ODBC_DISTINGUISH_CHAR_AND_VAR
CHAR 418
ON_CHARSET_CONVERSION_FAILURE
419
POST_LOGIN_PROCEDURE 423
PRESERVE_SOURCE_FORMAT 427
RETURN_DATE_TIME_AS_STRING 436
SUBQUERY_FLATTENING_PERCENT
444
SUBQUERY_FLATTENING_PREFERENC
E 444
SUPPRESS_TDS_DEBUGGING 446
TDS_EMPTY_STRING_IS_NULL 447
database servers
starting 299
stopping 302
databases
altering 7
creating 66
deleting files 173
disabling Java support 7
disabling jConnect support 7
enabling Java support 7
enabling jConnect support 7
loading data into 221
starting 298
stopping 301
upgrading 7
DATE_FIRST_DAY_OF WEEK option 358
DATE_FORMAT option 359
DATE_ORDER option 361
DBCC_LOG_PROGRESS
database option 361
DBCC_PINNABLE_CACHE_PERCENT
database option 362

474

Sybase 1Q

dbisql
connecting to a database 64
options 295
dbo user ID
views owned by 170
dbspace
CREATE permissions 204
dbspaces
altering 9
creating 76
dropping 170
setting offline 11
virtual backup 42
DEALLOCATE DESCRIPTOR
syntax 151
DEBUG_MESSAGES option
description 363
debugging
controlling MESSAGE statement behavior
243
DEBUG_MESSAGES option 363
declaration section 152
DECLARE CURSOR statement
syntax 154
Transact-SQL syntax 159
DECLARE LOCAL TEMPORARY TABLE
statement
syntax 160
DECLARE statement
syntax 47, 153
DECLARE TEMPORARY TABLE statement
syntax 160
DEDICATED_TASK option
description 363
DEFAULT_DBSPACE option 364
DEFAULT_DISK_STRIPING option 365
DEFAULT_HAVING_SELECTIVITY_PPM
option 366
DEFAULT_ISQL_ENCODING option
description 366
DEFAULT_KB_PER_STRIPE option 367
DEFAULT_LIKE_MATCH_SELECTIVITY_PP
M option 368
DEFAULT_LIKE_RANGE_SELECTIVITY_PPM
option 369
DELAYED_COMMIT_TIMEOUT option 369
DELAYED_COMMITS option 370
DELETE (positioned) statement
SQL syntax 164

Index

DELETE statement
syntax 162
deleting
rows from cursors 164
deleting all rows from a table 305
delimiters
example 99
deprecated database options 322
DESCRIBE statement
syntax 166
descriptor
allocating memory 5
deallocating 151
DESCRIBE statement 166
EXECUTE statement 181
FETCH statement 187
getting 197
PREPARE statement 253
descriptor areas
UPDATE (positioned) statement 311
descriptors
setting 292
direct 1/0 421, 422
DISCONNECT statement
syntax 169
disjunction of subquery predicates 284
disk space
notifying when low 82
DISK_STRIPING option 370
displaying
messages 243
DISTINCT keyword 281
DIVIDE_BY_ZERO_ERROR option 370
domains 79
altering 13
DQP_ENABLED option 371
DROP CONNECTION statement
syntax 172
DROP DATABASE statement
syntax 173
DROP DATATYPE statement
syntax 170
DROP DBSPACE statement
syntax 170
DROP DOMAIN statement
syntax 170
DROP EVENT
syntax 170

Reference: Statements and Options

475

Index

DROP EXTERNLOGIN statement
syntax 174
DROP FUNCTION statement
syntax 170
DROP INDEX statement
syntax 170
DROP LOGICAL SERVER statement 176
DROP LOGIN POLICY statement
syntax 175
DROP MESSAGE
syntax 170
DROP MULTIPLEX SERVER statement 176
DROP PROCEDURE statement
syntax 170
DROP SERVER statement
syntax 176
DROP SERVICE statement
syntax 177
DROP statement
syntax 170
DROP STATEMENT statement
syntax 178
DROP TABLE
IDENTITY_INSERT option 171
DROP TABLE statement
syntax 170
DROP TEXT CONFIGURATION statement 179
DROP TEXT INDEX statement 179
DROP USER statement 179
DROP VARIABLE statement
syntax 180
DROP VIEW statement
restriction 170
syntax 170
dropping
users 272-274
views 170
dropping partitions 32
dummy 1Q table 196
DYNAMIC SCROLL cursors 154

E

EARLY_PREDICATE_EXECUTION option 371
embedded SQL

DELETE (positioned) statement syntax 164

PUT statement syntax 256
ENABLE_LOB_VARIABLES option 372
encryption

TDS password 211, 212

encryption algorithms
CREATE DATABASE statement 73
END DECLARE STATEMENT
syntax 152
END keyword 47
END PARALLEL IQ statement 49
error handling
Transact-SQL procedures 420
errors
during character conversions 419
RAISERROR statement 258
SIGNAL statement 297
Transact-SQL procedures 420
escape character
OUTPUT SQL statement 248
ESCAPE_CHARACTER option 330
event
monitoring disk space 82
event handler
altering 14
creating 81
triggering 304
events
altering 14
creating 81
dropping 170
triggering 304
EXCEPTION statement
syntax 47
EXECUTE IMMEDIATE statement
syntax 184
EXECUTE statement
syntax 181
Transact-SQL 183
EXIT statement
syntax 186
exporting data
from tables into files 248
SELECT statement 279
EXTENDED_JOIN_SYNTAX option 372
external procedures
creating 118
external stored procedures
creating 118

F

FETCH statement
syntax 187

476

Sybase 1Q

files

dbspaces 9, 76

exporting data from tables into 248

setting offline 11

setting online 11
FIRST

to return one row 281
FLATTEN_SUBQUERIES option 445
FOR statement

syntax 190
FORCE_DROP option 373
FORCE_NO_SCROLL_CURSORS option 373
FORCE_UPDATABLE_CURSORS option 374
foreign keys

integrity constraints 141

unnamed 142
FORWARD TO statement

syntax 192
FP indexes

cache allocated 375
FP_LOOKUP_SIZE option 374
FP_LOOKUP_SIZE_PPM option 375
FP_PREDICATE_WORKUNIT_PAGES option

376

FPL_EXPRESSION_MEMORY_KB option 377
FROM clause 196, 284

contains-expression 194

SELECT statement 283

selects from stored procedure result sets 281

syntax 193
functions

altering 15

creating 90

dropping 170

user-defined 271

G

GARRAY_FILL_FACTOR_PERCENT option
377
GARRAY_PAGE_SPLIT_PAD_PERCENT option
378
GARRAY_PREFETCH_SIZE option 378, 379
GET DESCRIPTOR statement
syntax 197
GOTO statement
Transact-SQL 198
GRANT statement
CONNECT authority 203
INTEGRATED LOGIN 202

Index

KERBEROS LOGIN 202
syntax 199
GROUP BY clause
SELECT statement 284
grouping 49

H

HASH_THRASHING_PERCENT option 380
HEADER SKIP option

LOAD TABLE statement 234
heading name 282
HG index

multicolumn with NULL 102

NULL values 102
HG indexes

improving query performance 343
HG_DELETE_METHOD option 381
HG_SEARCH_RANGE option 382
host variables

declaring 152

syntax 3
HTTP_SESSION_TIMEOUT option 382

110

direct 421, 422
IDENTITY column

and DROP TABLE 171
IDENTITY_ENFORCE_UNIQUENESS option

383

IDENTITY_INSERT option

dropping tables 171
IF statement

syntax 205

Transact-SQL 206
IN_SUBQUERY_PREFERENCE option 389
INCLUDE statement

syntax 208
INDENTITY_INSERT option 383
INDEX_ADVISOR option 384
INDEX_ADVISOR_MAX_ROWS option 386
INDEX_PREFERENCE option 387
indexes 49

creating 97

dropping 170

lookup pages 375

multicolumn 101

Reference: Statements and Options

477

Index

multicolumn HG and NULL 102

naming 100

owner 100

table use 100

unique 99
indicator variables 3
INFER_SUBQUERY_PREDICATES option 388
INSERT

syntax 209

wide 181
INSERT statement

ISOLATION LEVEL 212

WORD SKIP option 215
inserting

rows using cursors 256
INSTALL JAVA statement

syntax 216
INTEGRATED LOGIN

GRANT statement 202
Interactive SQL

OUTPUT statement syntax 248

specifying code page for reading and writing to

files 366

Interactive SQL options

DEFAULT_ISQL_ENCODING 366
INTO clause

SELECT statement 282
1Q store

reserving space 402

reserving temporary space 460
1Q UNIQUE

alternative method 412
1Q UNIQUE column constraint 140
1Q UTILITIES statement

syntax 218
iq_dummy table 196

Java

disabling support 7

enabling support 7

installing classes 216

method signatures 125

removing classes 261
Java VM

starting 300

stopping 302
JAVA_LOCATION option 392
JAVA_VM_OPTIONS option 393
jConnect

disabling support 7

enabling support 7

password encryption 212
join columns

and data types 196
join indexes

creating 104

synchronizing 303
JOIN_EXPANSION_FACTOR option 393
JOIN_OPTIMIZATION option 394
JOIN_PREFERENCE option 395
JOIN_SIMPLIFICATION_THRESHOLD option

397

joins

deletes 162

FROM clause syntax 193

optimizing 393, 394, 397

optimizing join order 408

SELECT statement 283

K

Kerberos authentication
COMMENT ON KERBEROS LOGIN clause

IQGOVERN_PRIORITY option 390 58
IQGOVERN_PRIORITY_TIME option 391 KERBEROS LOGIN
ISOLATION LEVEL GRANT statement 202
INSERT statement 212
ISOLATION_LEVEL option 392
isysserver system table L
remote servers for Component Integration
Services 129 labels
for statements 3, 198
J LEAVE statement
syntax 220
jar files LF_BITMAP_CACHE_KB option 398
installing 216 LOAD TABLE statement
removing 261 FROM clause deprecated 228
478 Sybase 1Q

HEADER SKIP option 234

new syntax 232

ON PARTIAL INPUT ROW option 235

performance 232

QUOTES option 229

STRIP keyword 232

syntax 221

syntax changes 232

USING keyword 228

WORD SKIP option 234
LOAD_ZEROLENGTH_ASNULL option 399
loads

scalability 345
LOB variables

data type conversion 372
LOCK TABLE

syntax 239
LOCKED option 399
locking

tables 239
locks

releasing with ROLLBACK 275
LOG_CONNECT database option 400
Login Management

POST_LOGIN_PROCEDURE option 423
Login Management facility 423
login policies

altering 19

commenting 58

creating 107

dropping 175
login policy options 399, 405, 406
login processing 423
LOGIN_MODE option 401
LOGIN_PROCEDURE option 401
logins

external 89

password expiration warning 423

See also connections

LONG BINARY variable

data type conversions 372
LONG VARCHAR variable

data type conversions 372
lookup pages

maximum 375
LOOP statement

syntax 242
low disk space 82

M

MAIN_RESERVED_DBSPACE_MB option 402
MAX_CARTESIAN_RESULT option 403-405
MAX_CURSOR_COUNT option 405
MAX_DAYS_SINCE_LOGIN option 406
MAX_FAILED _LOGIN_ATTEMPTS option 406
MAX_HASH_ROWS option 406
MAX_1Q_GOVERN_PRIORITY option 390
MAX_1Q_THREADS_PER_CONNECTION
option 407
MAX_1Q_THREADS_PER_TEAM option 407
MAX_JOIN_ENUMERATION option 408
MAX_PREFIX_PER_CONTAINS_PHRASE
option 409
MAX_QUERY_PARALLELISM option 409
MAX_QUERY_TIME option 409
MAX_STATEMENT_COUNT option 410
MAX_TEMP_SPACE_PER_CONNECTION
option 411
MAX_WARNINGS option 412
MDSR encryption algorithm
CREATE DATABASE statement 73
memory
prefetching 343
MESSAGE statement
setting DEBUG_MESSAGES option 363
SQL syntax 243
messages
creating 109
displaying 243
dropping 170
method signatures
Java 125
MIN_PASSWORD_LENGTH option 413
MINIMIZE_STORAGE option 412
monitor
in 1Q UTILITIES statement 218
setting output file location 414
starting and stopping 218
MONITOR_OUTPUT_DIRECTORY option 414
monitoring disk space 82
MPX_AUTOEXCLUDE_TIMEOUT option 415
MPX_HEARTBEAT_FREQUENCY option 415
MPX_IDLE_CONNECTION_TIMEOUT option
415
MPX_MAX_CONNECTION_POOL_SIZE option
415
MPX_MAX_UNUSED_POOL_SIZE option 415

Index

Reference: Statements and Options

479

Index

multicolumn indexes 99, 101
deleting 33
multiplex databases
adding dbspaces 78
creating 69
multirow fetches
FETCH statement 189
multirow inserts 181

N

named pipes 237
NEAREST_CENTURY option 416
newline

WD index delimiter 99
NO RESULT SET clause 114, 122
NO SCROLL cursors 154
NOEXEC option 416
NON_ANSI_NULL_VARCHAR option 417
NON_KEYWORDS database option 417
NOTIFY_MODULUS option 418
NULL

on multicolumn HG index 102
NULL value

in multicolumn HG index 102

O

OoDBC
ODBC_DISTINGUISH_CHAR_AND_VAR
CHAR option 418
static cursors 154
ODBC_DISTINGUISH_CHAR_AND_VARCHA
R option
description 418
offline
dbspaces 11
ON EXCEPTION RESUME clause
stored procedures 420
ON_CHARSET_CONVERSION_FAILURE
option
description 419
ON_ERROR option
description 419

optimization
defining existing tables and 87
MAX_HASH_ROWS option 406
MAX_JOIN_ENUMERATION option 408
option
DQP_ENABLED 371
ENABLE_LOB_VARIABLES 372
MAX_PREFIX_PER_CONTAINS_PHRASE
409
MPX_AUTOEXCLUDE_TIMEOUT 415
MPX_HEARTBEAT_FREQUENCY 415
MPX_IDLE_CONNECTION_TIMEOUT
415
MPX_MAX_CONNECTION_POOL_SIZE
415
MPX_MAX_UNUSED_POOL_SIZE 415
NON_ANSI_NULL_VARCHAR 417
TEXT_DELETE_METHOD 461
option value
truncation 295, 318
options
AGGREGATION_PREFERENCE 334
ASE_FUNCTION_BEHAVIOR 341
CIS_ROWSET _SIZE 348
compatibility 329
CONTINUE_AFTER_RAISERROR 348
CONVERSION_ERROR 349
cursors 319
DEBUG_MESSAGES option 363
DEDICATED_TASK 363
DEFAULT _ISQL_ENCODING 366
deprecated 322
duration 319
ESCAPE_CHARACTER 330
EXTENDED_JOIN_SYNTAX 372
finding values 318
FLATTEN_SUBQUERIES 445
FORCE_DROP 373
FP_LOOKUP_SIZE 374
FP_LOOKUP_SIZE_PPM 375
general database 322
initial settings 321
introduction 317

list of 333

ON—TSQL—ERRQR MAX_TEMP_SPACE_PER_CONNECTION
database option 420 411

online ODBC_DISTINGUISH_CHAR_AND_VAR
dbspaces 11 T CHARA1S - -

OPEN statement
syntax 246

480 Sybase 1Q

ON_CHARSET_CONVERSION_FAILURE
419
ON_ERROR 419
ON_TSQL_ERROR 420
POST_LOGIN_PROCEDURE 423
precedence 319
PRESERVE_SOURCE_FORMAT 427
RETURN_DATE_TIME_AS_STRING 436
scope 319
setting 293, 317
setting dbisql options 62
setting DBISQL options 62
setting temporary 295, 332
SORT_COLLATION 439
sp_iqcheckoptions 318
SUBQUERY_CACHING_PREFERENCE
442
SUBQUERY_FLATTENING_PERCENT
444
SUBQUERY_FLATTENING_PREFERENC
E 444
SUPPRESS_TDS_DEBUGGING 446
SYSOPTIONDEFAULTS system table 318
TDS_EMPTY_STRING_IS_NULL 447
Transact-SQL 289
unexpected behavior 196, 284
ORDER BY clause 286
OS_FILE_CACHE_BUFFERING option 421
OS_FILE_CACHE_BUFFERING_TEMPDB
option 422
out-of-space conditions
preventing 402
OUTPUT statement
SQL syntax 248
owner 3

P

packages

installing 216

removing 261
parallelism

backup devices 44
PARAMETERS statement

syntax 252
partition limit 345
partitions

dropping 32
password

TDS encryption 211, 212

Index

password encryption

jConnect 212

TDS 211, 212
PASSWORD_EXPIRY_ON_NEXT_LOGIN

option 423

PASSWORD_GRACE_TIME option 423
PASSWORD_LIFE_TIME option 423
passwords

changing 203

encryption 211

expiration warning 423

minimum length 413
performance

getting more memory 343

impact of FROM clause 196
permissions

ALTER 202

CONNECT authority 203

CREATE on dbspace 204

DBA authority 203

DELETE 202

EXECUTE 202

GRANT statement 199

GROUP authority 202

INSERT 202

MEMBERSHIP 202

REFERENCES 202

RESOURCE authority 201

revoking 272

SELECT 202

UPDATE 202
positioned DELETE statement

SQL syntax 164
POST_LOGIN_PROCEDURE option 423
PRECISION option 424
predicates

disjunction of 284
PREFETCH option 424
PREFETCH_BUFFER_LIMIT option 425
PREFETCH_BUFFER_PERCENT option 425
PREFETCH_GARRAY_PERCENT option 426
PREFETCH_SORT_PERCENT option 426
prefetching

BT_PREFETCH_MAX_MISS 343
PREPARE statement

syntax 253
prepared statements

dropping 178

EXECUTE statement 181

Reference: Statements and Options

481

Index

PRESERVE_SOURCE_FORMAT option
description 427
primary keys
integrity constraints 141
PRINT statement
Transact-SQL syntax 255
procedures 254
creating 110
dropping 170
dynamic SQL statements 184
executing 183
proxy 115
RAISERROR statement 258
replicating 22
result sets 114, 122
returning values from 271
sa_post_login_procedure 423
select from result sets 281
Transact-SQL CREATE PROCEDURE
statement 116
variable result sets 113, 121
processing queries without 196, 284
projections
SELECT statement 281
PURGE clause
FETCH statement 189
PUT statement
SQL syntax 256
putting
rows into cursors 256

Q

queries

for updatable cursors 157

improving performance 343

processing by Adaptive Server Anywhere 284

processing by SQL Anywhere 196

SELECT statement 279
QUERY_DETAIL option 428
QUERY_NAME option 428
QUERY_PLAN option 429
QUERY_PLAN_AFTER_RUN option 429
QUERY_PLAN_AS_HTML option 430
QUERY_PLAN_AS_HTML_DIRECTORY option

431

QUERY_PLAN_TEXT_ACCESS option 432
QUERY_PLAN_TEXT_CACHING option 433
QUERY_ROWS_RETURNED_LIMIT option 433
QUERY_TEMP_SPACE_LIMIT option 434

QUERY_TIMING option 435
querying tables 196, 284
QUIT statement

syntax 186
QUOTED_IDENTIFIER option 435

R
RAISERROR statement

CONTINUE_AFTER_RAISERROR option

348
syntax 258
read only
locking tables 239
READ statement
syntax 259
RECOVERY_TIME option 436
REFERENCES clause 31
RELEASE SAVEPOINT statement
syntax 261
remote data access 18, 24, 310
CIS_ROWSET_SIZE 348
REMOVE statement
syntax 261
replication
of procedures 22
RESIGNAL statement
syntax 263
restore operations
verifying backups 268
RESTORE statement
COMPATIBLE clause 268
improving speed 44
syntax 264
VERIFY clause 268
verifying backups 268
restoring databases
verifying backups 268
RESTRICT action 142
result sets
SELECT from 281
variable 113, 121, 254
RESUME statement
syntax 270
RETURN statement
syntax 271

RETURN_DATE_TIME_AS_STRING option

description 436
REVOKE statement
syntax 272

482

Sybase 1Q

Rigndael encryption algorithm
CREATE DATABASE statement 73
ROLLBACK statement
syntax 275
ROLLBACK TO SAVEPOINT statement
syntax 276
ROLLBACK TRANSACTION statement
syntax 277
Transact-SQL 277
ROLLUP operator 284
SELECT statement 284
ROW_COUNT option 437
rows
deleting from cursors 164
inserting using cursors 256

S

sa_conn_properties
using 318
sa_dependent_views system procedure 40
sa_post_login_procedure 423
SAVE TRANSACTION statement
syntax 278
Transact-SQL 278
SAVEPOINT statement
syntax 278
savepoints
name 3
RELEASE SAVEPOINT statement 261
ROLLBACK TO SAVEPOINT statement 276
ROLLBACK TRANSACTION statement 277
SAVE TRANSACTION statement 278
SCALE option 438
scheduled events
WAITFOR statement 312
scheduling
WAITFOR 312
schema
creating 127
SCROLL cursors 154
security
auditing 342
minimum password length 413
SELECT * 31
SELECT INTO
returning results in a base table 280
returning results in a host variable 280
returning results in a temporary table 280
select list
DESCRIBE statement 166

Index

SELECT statement 282
SELECT statement
FIRST 281
FROM clause syntax 193
syntax 279
TOP 281
separators
in WD index 99
servers
altering web services 25
creating 129
services
adding 130
SET CONNECTION statement
syntax 291
SET DESCRIPTOR statement
syntax 292
SET OPTION statement
dbisql syntax 332
syntax 293, 295
using 317
SET SQLCA statement
syntax 296
SET statement
syntax 287
Transact-SQL 289
SET TEMPORARY OPTION statement
dbisql syntax 332
syntax 293, 295
using 317
setting dbspaces online 11
SIGNAL statement
syntax 297
signatures
Java methods 125
SIGNIFICANTDIGITSFORDOUBLEEQUALIT
Y option 438
SORT_COLLATION
database option 439
sp_addmessage 109
sp_dropuser procedure 274
sp_iqcheckoptions system procedure 318
sp_login_environment procedure 401
sp_tsql_environment procedure 401
SQL
common syntax elements 3
statement indicators 5
syntax conventions 4

Reference: Statements and Options

483

Index

SQL descriptor area
inserting rows using cursors 256
SQL standards
compliance 440, 441
SQL statements
ALTER FUNCTION syntax 15
DELETE (positioned) syntax 164
MESSAGE syntax 243
OUTPUT syntax 248
PUT syntax 256
UPDATE (positioned) syntax 311
WAITFOR syntax 312
SQL variables
creating 148
dropping 180
SET VARIABLE statement 287
SQL_FLAGGER_ERROR_LEVEL option 440
SQL_FLAGGER_WARNING_LEVEL option 441
SQLCA
INCLUDE statement 208
SET SQLCA statement 296
SQLDA
allocating memory 5
deallocating 151
DESCRIBE statement 166
Execute statement 181
INCLUDE statement 208
inserting rows using cursors 256
setting 292
UPDATE (positioned) statement 311
standards
SQL 1992 compliance 440, 441
SQL 1999 compliance 440, 441
SQL 2003 compliance 440, 441
START DATABASE statement
syntax 298
START ENGINE statement
syntax 299
START JAVA statement
syntax 300
starting
database servers 299
databases 298
Java VM 300
statement indicators 5
statement labels 3, 198
statements
ALTER FUNCTION syntax 15
DELETE (positioned) syntax 164

MESSAGE syntax 243
OUTPUT syntax 248
PUT syntax 256
UPDATE (positioned) syntax 311
WAITFOR syntax 312
static cursors
declaring 154
STOP DATABASE statement
syntax 301
STOP ENGINE statement
syntax 302
STOP JAVA statement
syntax 302
stopping
Java VM 302
stopping databases 301
storage space
minimizing 412
stored procedures
creating 110
proxy 115
sa_dependent_views 40
selecting into result sets 281
STRING_RTRUNCATION option 442
strings
length for database options 295, 318
STRIP
LOAD TABLE keyword 232
STRIP option 229, 232
strong encryption
CREATE DATABASE statement 73
subqueries
disjunction of 284
SUBQUERY_CACHING_PREFERENCE option
442
SUBQUERY_FLATTENING_PERCENT option
444
SUBQUERY_FLATTENING_PREFERENCE
option 444
SUBQUERY_PLACEMENT_PREFERENCE
database option 445
SUPPRESS_TDS_DEBUGGING option
description 446
SWEEPER_THREADS_PERCENT option 447
SYNCHRONIZE JOIN INDEX statement
syntax 303
syntax
common elements 3
syntax conventions 4

484

Sybase 1Q

syntax errors
joins 372
SYSTEM dbspace 196, 284
system procedures
sa_dependent_views 40
system tables
DUMMY 196
PRESERVE_SOURCE_FORMAT 427
source column 427
SYSFILE 269
SYSWEBSERVICE system table
adding servers 25

T

tab

WD index delimiter 99
table constraints 138
tables

altering 27

altering definition 31

creating 133

creating proxy 86

dropping 170

exporting data into files from 248

GLOBAL TEMPORARY 133

iq_dummy 196

loading 221

locking 239

renaming 33

temporary 145, 160

truncating 305
TDS

password encryption 211, 212
TDS_EMPTY_STRING_IS_NULL option

description 447
TEMP_EXTRACT_APPEND option 448
TEMP_EXTRACT_BINARY option 448
TEMP_EXTRACT_COLUMN_DELIMITER

option 449
TEMP_EXTRACT_DIRECTORY option 450
TEMP_EXTRACT_ESCAPE_QUOTES option
451

TEMP_EXTRACT_NAMEL1 option 452
TEMP_EXTRACT_NAME?2 option 452
TEMP_EXTRACT_NAMES3 option 452
TEMP_EXTRACT_NAME4 option 452
TEMP_EXTRACT_NAMES option 452
TEMP_EXTRACT_NAMES option 452
TEMP_EXTRACT_NAMET? option 452

TEMP_EXTRACT_NAMES option 452

TEMP_EXTRACT_NAMEn option 452

TEMP_EXTRACT_NULL_AS_EMPTY option
453

Index

TEMP_EXTRACT_NULL_AS_ZERO option 454

TEMP_EXTRACT_QUOTE option 455
TEMP_EXTRACT_QUOTES option 456
TEMP_EXTRACT_QUOTES_ALL option 456
TEMP_EXTRACT_ROW_DELIMITER option
457

TEMP_EXTRACT_SIZE1 option 458
TEMP_EXTRACT _SIZE2 option 458
TEMP_EXTRACT _SIZE3 option 458
TEMP_EXTRACT _SIZE4 option 458
TEMP_EXTRACT_SIZE5 option 458
TEMP_EXTRACT_SIZE6 option 458
TEMP_EXTRACT _SIZE7 option 458
TEMP_EXTRACT _SIZES option 458
TEMP_EXTRACT_SIZEn options 458
TEMP_EXTRACT_SWAP option 459
TEMP_RESERVED_DBSPACE_MB

database option 460
TEMP_SPACE_LIMIT_CHECK

database option 460
temporary dbspaces

creating 77
temporary files (Catalog)

TEMP_SPACE_LIMIT_CHECK 460
temporary options 317
temporary space

reserved for 1Q store 460
temporary tables 145

creating 133

declaring 160

populating 283
text search

FROM contains-expression 194
TEXT_DELETE_METHOD option 461
TIME_FORMAT option 462
TIMESTAMP_FORMAT option 462
TOP

specify number of rows 281
TOP_NSORT_CUTOFF_PAGES option 464
trailing blanks

trimming 229, 232
Transact-SQL

BEGIN TRANSACTION statement 50

COMMIT TRANSACTION 60

compatibility options 329

Reference: Statements and Options

485

Index

CREATE MESSAGE 109
CREATE PROCEDURE statement 116
CREATE SCHEMA statement 127
error handling in 258
executing stored procedures 183
procedures 116
ROLLBACK TRANSACTION statement 277
SAVE TRANSACTION statement 278
SET statement 289
transaction log
TRUNCATE TABLE statement 305
transaction management 60
BEGIN TRANSACTION statement 50
in Transact-SQL 60
transactions
committing 60
ROLLBACK statement 275
ROLLBACK TO SAVEPOINT statement 276
ROLLBACK TRANSACTION statement 277
SAVE TRANSACTION statement 278
SAVEPOINT statement 278
TRIGGER EVENT
syntax 304
TRIM_PARTIAL_MBC option 464
trimming trailing blanks 229, 232
TRUNCATE TABLE statement
syntax 305
TSQL_VARIABLES option 465

U

UNION operation 306

unique
constraint 138, 139

unique indexes 99

UPDATE (positioned) statement
SQL syntax 311

upgrading databases 7

user IDs
changing passwords 203
revoking 272

USER_RESOURCE_RESERVATION option 465

creating 146

dropping 179, 272
USING

LOAD TABLE keyword 228
USING FILE clause

LOAD TABLE statement 228
Utilities statement 218

Vv

VARCHAR data type

converting to compressed format 356
variable result sets

from procedures 113, 121, 254
variables

binary large object conversion 372

BLOB conversion 372

creating 148

declaring 153

dropping 180

LONG BINARY conversion 372

select into 283

SET VARIABLE statement 287
VERIFY_PASSWORD_FUNCTION option 466
verifying backups 268
views

about 149

altered tables in 31

altering 38, 40

creating 149

deleting 170

dependencies 40

dropping 170

indexes 100

invalid 40

recompiling invalid 40

w

WAIT_FOR_COMMIT option 468
WAITFOR statement

user-defined data types SQL syntax 312
altering 13 WASH_AREA_BUFFERS_PERCENT database
CREATE DOMAIN statement 79 option 467
dropping 170 WD index

user-defined functions CHAR columns 100
RETURN statement 271 delimiters 99

users WD_DELETE_METHOD option 468
altering 36

486 Sybase 1Q

WHENEVER statement
syntax 314
WHERE clause
SELECT statement 283
WHILE statement
syntax 242
Transact-SQL 315

wide inserts 181

WITH HOLD clause
OPEN statement 246

WORD SKIP option
INSERT statement 215
LOAD TABLE statement 234

Index

Reference: Statements and Options

487

Index

488 Sybase 1Q

	Reference: Statements and Options
	Contents
	Audience
	SQL Statements
	Common Elements in SQL Syntax
	Syntax Conventions
	Statement Applicability Indicators
	ALLOCATE DESCRIPTOR Statement [ESQL]
	ALTER DATABASE Statement
	ALTER DBSPACE Statement
	ALTER DOMAIN Statement
	ALTER EVENT Statement
	ALTER FUNCTION Statement
	ALTER INDEX Statement
	ALTER LOGICAL SERVER Statement
	ALTER LOGIN POLICY Statement
	ALTER LS POLICY Statement
	ALTER MULTIPLEX RENAME Statement
	ALTER MULTIPLEX SERVER Statement
	ALTER PROCEDURE Statement
	ALTER SERVER Statement
	ALTER SERVICE Statement
	ALTER TABLE Statement
	ALTER TEXT CONFIGURATION Statement
	ALTER TEXT INDEX Statement
	ALTER USER Statement
	ALTER VIEW Statement
	Identifying and Fixing Invalid Dependent Views

	BACKUP Statement
	BEGIN … END Statement
	BEGIN PARALLEL IQ … END PARALLEL IQ Statement
	BEGIN TRANSACTION Statement [T-SQL]
	CALL Statement
	CASE Statement
	CHECKPOINT Statement
	CLEAR Statement [Interactive SQL]
	CLOSE Statement [ESQL] [SP]
	COMMENT Statement
	COMMENT ON LOGICAL SERVER Statement
	COMMIT Statement
	CONFIGURE Statement [Interactive SQL]
	CONNECT Statement [ESQL] [Interactive SQL]
	CREATE DATABASE Statement
	CREATE DBSPACE Statement
	CREATE DOMAIN Statement
	CREATE EVENT Statement
	CREATE EXISTING TABLE Statement
	CREATE EXTERNLOGIN Statement
	CREATE FUNCTION Statement
	CREATE INDEX Statement
	CREATE JOIN INDEX Statement
	CREATE LOGICAL SERVER Statement
	CREATE LOGIN POLICY Statement
	CREATE MESSAGE Statement [T-SQL]
	CREATE MULTIPLEX SERVER Statement
	CREATE PROCEDURE Statement
	CREATE PROCEDURE Statement [T-SQL]
	CREATE PROCEDURE Statement (External Procedures)
	CREATE SCHEMA Statement
	CREATE SERVER Statement
	CREATE SERVICE Statement
	CREATE TABLE Statement
	CREATE TEXT CONFIGURATION Statement
	CREATE TEXT INDEX Statement
	CREATE USER Statement
	CREATE VARIABLE Statement
	CREATE VIEW Statement
	DEALLOCATE DESCRIPTOR Statement [ESQL]
	Declaration Section [ESQL]
	DECLARE Statement
	DECLARE CURSOR Statement [ESQL] [SP]
	DECLARE CURSOR Statement [T-SQL]
	DECLARE LOCAL TEMPORARY TABLE Statement
	DELETE Statement
	DELETE (positioned) Statement [ESQL] [SP]
	DESCRIBE Statement [ESQL]
	DISCONNECT Statement [Interactive SQL]
	DROP Statement
	DROP CONNECTION Statement
	DROP DATABASE Statement
	DROP EXTERNLOGIN Statement
	DROP LOGIN POLICY Statement
	DROP LOGICAL SERVER Statement
	DROP MULTIPLEX SERVER Statement
	DROP SERVER Statement
	DROP SERVICE Statement
	DROP STATEMENT Statement [ESQL]
	DROP TEXT CONFIGURATION Statement
	DROP TEXT INDEX Statement
	DROP USER Statement
	DROP VARIABLE Statement
	EXECUTE Statement [ESQL]
	EXECUTE Statement [T-SQL]
	EXECUTE IMMEDIATE Statement [ESQL] [SP]
	EXIT Statement [Interactive SQL]
	FETCH Statement [ESQL] [SP]
	FOR Statement
	FORWARD TO Statement
	FROM Clause
	GET DESCRIPTOR Statement [ESQL]
	GOTO Statement [T-SQL]
	GRANT Statement
	IF Statement
	IF Statement [T-SQL]
	INCLUDE Statement [ESQL]
	INSERT Statement
	INSTALL JAVA Statement
	IQ UTILITIES Statement
	LEAVE Statement
	LOAD TABLE Statement
	Storage Sizes

	LOCK TABLE Statement
	LOOP Statement
	MESSAGE Statement
	OPEN Statement [ESQL] [SP]
	OUTPUT Statement [Interactive SQL]
	PARAMETERS Statement [Interactive SQL]
	PREPARE Statement [ESQL]
	PRINT Statement [T-SQL]
	PUT Statement [ESQL]
	RAISERROR Statement [T-SQL]
	READ Statement [Interactive SQL]
	RELEASE SAVEPOINT Statement
	REMOVE Statement
	RESIGNAL Statement
	RESTORE Statement
	RESUME Statement
	RETURN Statement
	REVOKE Statement
	ROLLBACK Statement
	ROLLBACK TO SAVEPOINT Statement
	ROLLBACK TRANSACTION Statement [T-SQL]
	SAVEPOINT Statement
	SAVE TRANSACTION Statement [T-SQL]
	SELECT Statement
	SET Statement [ESQL]
	SET Statement [T-SQL]
	SET CONNECTION Statement [ESQL] [Interactive SQL]
	SET DESCRIPTOR Statement [ESQL]
	SET OPTION Statement
	SET OPTION Statement [Interactive SQL]
	SET SQLCA Statement [ESQL]
	SIGNAL Statement
	START DATABASE Statement [Interactive SQL]
	START ENGINE Statement [Interactive SQL]
	START JAVA Statement
	STOP DATABASE Statement [Interactive SQL]
	STOP ENGINE Statement [Interactive SQL]
	STOP JAVA Statement
	SYNCHRONIZE JOIN INDEX Statement
	TRIGGER EVENT Statement
	TRUNCATE TABLE Statement
	UNION Operation
	UPDATE Statement
	UPDATE (positioned) Statement [ESQL] [SP]
	WAITFOR Statement
	WHENEVER Statement [ESQL]
	WHILE Statement [T-SQL]

	Database Options
	Introduction to Database Options
	Current Option Settings
	Scope and Duration of Database Options
	Temporary Options
	Public Options
	Delete an Option Setting
	Initial Option Settings
	Deprecated Database Options

	General Database Options
	Data Extraction Options

	Transact-SQL Compatibility Options
	Transact-SQL Option Settings for Adaptive Server Enterprise Compatibility

	Interactive SQL Options
	Alphabetical List of Options
	AGGREGATION_PREFERENCE Option
	ALLOW_NULLS_BY_DEFAULT Option [TSQL]
	ANSI_CLOSE_CURSORS_ON_ROLLBACK Option [TSQL]
	ANSI_PERMISSIONS Option [TSQL]
	ANSINULL Option [TSQL]
	ANSI_SUBSTRING Option [TSQL]
	ANSI_UPDATE_CONSTRAINTS Option
	ALLOW_READ_CLIENT_FILE Option
	APPEND_LOAD Option
	ASE_BINARY_DISPLAY Option
	ASE_FUNCTION_BEHAVIOR Option
	AUDITING Option [database]
	BIT_VECTOR_PINNABLE_CACHE_PERCENT Option
	BLOCKING Option
	BT_PREFETCH_MAX_MISS Option
	BT_PREFETCH_SIZE Option
	BTREE_PAGE_SPLIT_PAD_PERCENT Option
	CACHE_PARTITIONS Option
	CHAINED Option [TSQL]
	CHECKPOINT_TIME Option
	CIS_ROWSET_SIZE Option
	CLOSE_ON_ENDTRANS Option [TSQL]
	CONTINUE_AFTER_RAISERROR Option [TSQL]
	CONVERSION_ERROR Option [TSQL]
	CONVERSION_MODE Option
	Restrict Implicit Binary Conversion Mode for LOAD TABLE
	Restrict Implicit Binary Conversion Mode for INSERT
	Restrict Implicit Binary Conversion Mode for UPDATE
	Restrict Implicit Binary Conversion Mode for Positioned INSERT and Positioned UPDATE via Updatable Cursor
	Restrict Implicit Binary Conversion Mode for Queries

	CONVERT_VARCHAR_TO_1242 Option
	COOPERATIVE_COMMIT_TIMEOUT Option
	COOPERATIVE_COMMITS Option
	CURSOR_WINDOW_ROWS Option
	DATE_FIRST_DAY_OF_WEEK Option
	DATE_FORMAT Option
	DATE_ORDER Option
	DBCC_LOG_PROGRESS Option
	DBCC_PINNABLE_CACHE_PERCENT Option
	DEBUG_MESSAGES Option
	DEDICATED_TASK Option
	DEFAULT_DBSPACE Option
	DEFAULT_DISK_STRIPING Option
	DEFAULT_HAVING_SELECTIVITY_PPM Option
	DEFAULT_ISQL_ENCODING Option [Interactive SQL]
	DEFAULT_KB_PER_STRIPE Option
	DEFAULT_LIKE_MATCH_SELECTIVITY_PPM Option
	DEFAULT_LIKE_RANGE_SELECTIVITY_PPM Option
	DELAYED_COMMIT_TIMEOUT Option
	DELAYED_COMMITS Option
	DISABLE_RI_CHECK Option
	DIVIDE_BY_ZERO_ERROR Option [TSQL]
	DQP_ENABLED Option
	EARLY_PREDICATE_EXECUTION Option
	ENABLE_LOB_VARIABLES Option
	EXTENDED_JOIN_SYNTAX Option
	FORCE_DROP Option
	FORCE_NO_SCROLL_CURSORS Option
	FORCE_UPDATABLE_CURSORS Option
	FP_LOOKUP_SIZE Option
	FP_LOOKUP_SIZE_PPM Option
	FP_PREDICATE_WORKUNIT_PAGES Option
	FPL_EXPRESSION_MEMORY_KB Option
	GARRAY_FILL_FACTOR_PERCENT Option
	GARRAY_INSERT_PREFETCH_SIZE Option
	GARRAY_PAGE_SPLIT_PAD_PERCENT Option
	GARRAY_RO_PREFETCH_SIZE Option
	HASH_PINNABLE_CACHE_PERCENT Option
	HASH_THRASHING_PERCENT Option
	HG_DELETE_METHOD Option
	HG_SEARCH_RANGE Option
	HTTP_SESSION_TIMEOUT Option
	IDENTITY_ENFORCE_UNIQUENESS Option
	IDENTITY_INSERT Option
	INDEX_ADVISOR Option
	INDEX_ADVISOR_MAX_ROWS Option
	INDEX_PREFERENCE Option
	INFER_SUBQUERY_PREDICATES Option
	IN_SUBQUERY_PREFERENCE Option
	IQGOVERN_MAX_PRIORITY Option
	IQGOVERN_PRIORITY Option
	IQGOVERN_PRIORITY_TIME Option
	ISOLATION_LEVEL Option
	JAVA_LOCATION Option
	JAVA_VM_OPTIONS Option
	JOIN_EXPANSION_FACTOR Option
	JOIN_OPTIMIZATION Option
	JOIN_PREFERENCE Option
	JOIN_SIMPLIFICATION_THRESHOLD Option
	LARGE_DOUBLES_ACCUMULATOR Option
	LF_BITMAP_CACHE_KB Option
	LOAD_ZEROLENGTH_ASNULL Option
	LOCKED Option
	LOG_CONNECT Option
	LOG_CURSOR_OPERATIONS Option
	LOGIN_MODE Option
	LOGIN_PROCEDURE Option
	MAIN_RESERVED_DBSPACE_MB Option
	MAX_CARTESIAN_RESULT Option
	MAX_CLIENT_NUMERIC_PRECISION Option
	MAX_CLIENT_NUMERIC_SCALE Option
	MAX_CONNECTIONS Option
	MAX_CUBE_RESULT Option
	MAX_CURSOR_COUNT Option
	MAX_DAYS_SINCE_LOGIN Option
	MAX_FAILED_LOGIN_ATTEMPTS Option
	MAX_HASH_ROWS Option
	MAX_IQ_THREADS_PER_CONNECTION Option
	MAX_IQ_THREADS_PER_TEAM Option
	MAX_JOIN_ENUMERATION Option
	MAX_PREFIX_PER_CONTAINS_PHRASE Option
	MAX_QUERY_PARALLELISM Option
	MAX_QUERY_TIME Option
	MAX_STATEMENT_COUNT Option
	MAX_TEMP_SPACE_PER_CONNECTION Option
	MAX_WARNINGS Option
	MINIMIZE_STORAGE Option
	MIN_PASSWORD_LENGTH Option
	MONITOR_OUTPUT_DIRECTORY Option
	MPX_AUTOEXCLUDE_TIMEOUT Option
	MPX_HEARTBEAT_FREQUENCY Option
	MPX_IDLE_CONNECTION_TIMEOUT Option
	MPX_MAX_CONNECTION_POOL_SIZE Option
	MPX_MAX_UNUSED_POOL_SIZE Option
	NEAREST_CENTURY option [TSQL]
	NOEXEC Option
	NON_ANSI_NULL_VARCHAR Option
	NON_KEYWORDS Option [TSQL]
	NOTIFY_MODULUS Option
	ODBC_DISTINGUISH_CHAR_AND_VARCHAR Option
	ON_CHARSET_CONVERSION_FAILURE Option
	ON_ERROR Option [Interactive SQL]
	ON_TSQL_ERROR Option [TSQL]
	OS_FILE_CACHE_BUFFERING Option
	OS_FILE_CACHE_BUFFERING_TEMPDB Option
	PASSWORD_EXPIRY_ON_NEXT_LOGIN Option
	PASSWORD_GRACE_TIME Option
	PASSWORD_LIFE_TIME Option
	POST_LOGIN_PROCEDURE Option
	PRECISION Option
	PREFETCH Option
	PREFETCH_BUFFER_LIMIT Option
	PREFETCH_BUFFER_PERCENT Option
	PREFETCH_GARRAY_PERCENT Option
	PREFETCH_SORT_PERCENT Option
	PRESERVE_SOURCE_FORMAT Option [database]
	QUERY_DETAIL Option
	QUERY_NAME Option
	QUERY_PLAN Option
	QUERY_PLAN_AFTER_RUN Option
	QUERY_PLAN_AS_HTML Option
	QUERY_PLAN_AS_HTML_DIRECTORY Option
	QUERY_PLAN_TEXT_ACCESS Option
	QUERY_PLAN_TEXT_CACHING Option
	QUERY_ROWS_RETURNED_LIMIT Option
	QUERY_TEMP_SPACE_LIMIT Option
	QUERY_TIMING Option
	QUOTED_IDENTIFIER Option [TSQL]
	RECOVERY_TIME Option
	RETURN_DATE_TIME_AS_STRING Option
	ROW_COUNT Option
	SCALE Option
	SIGNIFICANTDIGITSFORDOUBLEEQUALITY Option
	SORT_COLLATION Option
	SORT_PINNABLE_CACHE_PERCENT Option
	SQL_FLAGGER_ERROR_LEVEL Option [TSQL]
	SQL_FLAGGER_WARNING_LEVEL Option [TSQL]
	STRING_RTRUNCATION Option [TSQL]
	SUBQUERY_CACHING_PREFERENCE Option
	SUBQUERY_FLATTENING_PERCENT Option
	SUBQUERY_FLATTENING_PREFERENCE Option
	SUBQUERY_PLACEMENT_PREFERENCE Option
	SUPPRESS_TDS_DEBUGGING Option
	SWEEPER_THREADS_PERCENT option
	TDS_EMPTY_STRING_IS_NULL Option [database]
	TEMP_EXTRACT_APPEND Option
	TEMP_EXTRACT_BINARY Option
	TEMP_EXTRACT_COLUMN_DELIMITER Option
	TEMP_EXTRACT_DIRECTORY Option
	TEMP_EXTRACT_ESCAPE_QUOTES Option
	TEMP_EXTRACT_NAMEn Options
	TEMP_EXTRACT_NULL_AS_EMPTY Option
	TEMP_EXTRACT_NULL_AS_ZERO Option
	TEMP_EXTRACT_QUOTE Option
	TEMP_EXTRACT_QUOTES Option
	TEMP_EXTRACT_QUOTES_ALL Option
	TEMP_EXTRACT_ROW_DELIMITER Option
	TEMP_EXTRACT_SIZEn Options
	TEMP_EXTRACT_SWAP Option
	TEMP_RESERVED_DBSPACE_MB Option
	TEMP_SPACE_LIMIT_CHECK Option
	TEXT_DELETE_METHOD Option
	TIME_FORMAT Option
	TIMESTAMP_FORMAT Option
	TOP_NSORT_CUTOFF_PAGES Option
	TRIM_PARTIAL_MBC Option
	TSQL_VARIABLES Option [TSQL]
	USER_RESOURCE_RESERVATION Option
	VERIFY_PASSWORD_FUNCTION Option
	WASH_AREA_BUFFERS_PERCENT Option
	WAIT_FOR_COMMIT Option
	WD_DELETE_METHOD Option

	Index

