
System Administration Guide: Volume 2

Sybase IQ 15.3

DOCUMENT ID: DC00800-01-1530-01
LAST REVISED: May 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Audience ...1
Using Procedures and Batches ..3

Overview of Procedures ...3
Benefits of Procedures ...3
Introduction to Procedures ..4

Creating Procedures ..4
Altering Procedures ...5
Calling Procedures ..5
Copying Procedures in Sybase Central5
Deleting Procedures ..6
Permissions to Execute Procedures6
Returning Procedure Results in Parameters6
Returning Procedure Results in Result Sets7

Introduction to User-Defined Functions7
Creating User-Defined Functions7
Calling User-Defined Functions8
Dropping User-Defined Functions8
Permissions to Execute User-Defined Functions

...8
Introduction to Batches ...9
Control Statements ...9

Using Compound Statements9
Declarations In Compound Statements10
Atomic Compound Statements10

Structure of Procedures ..10
SQL Statements Allowed in Procedures10
Declaring Parameters for Procedures11
Passing Parameters to Procedures11
Passing Parameters to Functions11

Procedure Results ..11

System Administration Guide: Volume 2 iii

Returning a Value Using the RETURN
Statement ..12

Returning Results as Procedure Parameters12
Returning Result Sets from Procedures12
Returning Multiple Result Sets from Procedures

...12
Returning Variable Result Sets from Procedures

...12
Cursors in Procedures ..13

Cursor Management Overview13
Cursor Positioning ..13
Cursors and SELECT Statements in Procedures

...13
Errors and Warnings in Procedures14

Default Error Handling in Procedures14
Error Handling With ON EXCEPTION RESUME

...14
Default Handling of Errors and Warnings in

Procedures ..14
Using Exception Handlers in Procedures15
Nested Compound Statements and Exception

Handlers ..15
Using the EXECUTE IMMEDIATE Statement In

Procedures ...15
Transactions and Savepoints in Procedures15
Hiding the Contents of Procedures, Functions, and

Views ..16
Statements Allowed In Batches16

Using SELECT Statements in Batches17
Using IQ UTILITIES to Create Your Own Stored

Procedures ...17
How IQ Uses the IQ UTILITIES Command18
Choosing Procedures to Call18
Numbers Used by IQ UTILITIES19
Procedure Testing ..19

Contents

 iv Sybase IQ

Using OLAP ..21
About OLAP ..21

OLAP Benefits ...22
OLAP Evaluation ... 22

GROUP BY Clause Extensions24
Group by ROLLUP and CUBE25

Analytical Functions ..36
Simple Aggregate Functions37
Windowing ...37
Numeric Functions ...61

OLAP Rules and Restrictions64
Additional OLAP Examples ...65

Example: Window Functions in Queries66
Example: Window with multiple functions67
Example: Calculate cumulative sum67
Example: Calculate moving average 68
Example: ORDER BY results 68
Example: Multiple aggregate functions in a

query ... 69
Example: Window frame comparing ROWS and

RANGE ..70
Example: Window frame excludes current row70
Example: Window frame for RANGE71
Example: Unbounded preceding and

unbounded following ..72
Example: Default window frame for RANGE 72

BNF Grammar for OLAP Functions73
Sybase IQ as a Data Server ..81

Client/Server Interfaces to Sybase IQ 81
Configuring IQ Servers with iqdsedit81
Sybase Applications and Sybase IQ84
Open Client Applications and Sybase IQ84

Sybase IQ as an Open Server85
System Requirements ... 85

Contents

System Administration Guide: Volume 2 v

Starting the Database Server as an Open Server
...85

Configuring Your Database for Use with Open
Client ...86

Characteristics of Open Client and jConnect
Connections ...86

Servers with Multiple Databases86
Accessing Remote Data ..89

Sybase IQ and Remote Data ..89
Requirements for Accessing Remote Data89
Remote Servers ...89
External Logins ..94
Proxy Tables ..95
Example: Join Between Two Remote Tables97
Multiple Local Databases97
Send Native Statements to Remote Servers97
Remote Procedure Calls (RPCs)97

Transaction Management and Remote Data98
Remote Transaction Management Overview98
Restrictions on Transaction Management98

Internal Operations ...98
Query Parsing ..99
Query Normalization ..99
Query Preprocessing ...99
Server Capabilities ...99
Complete Passthrough of the Statement99
Partial Passthrough of the Statement100

Remote Data Access Troubleshooting100
Features Not Supported For Remote Data100
Case Sensitivity ...100
Connectivity Problems100
General Problems with Queries101
Managing Remote Data Access Connections .. .101

Server Classes for Remote Data Access103
Server Classes Overview ...103

Contents

 vi Sybase IQ

JDBC-based Server Classes103
Configuration Notes for JDBC Classes103
Server Class sajdbc ...103
Server Class asejdbc ...104

ODBC-based Server Classes105
ODBC External Servers105
Server Class saodbc ..105
Server Class aseodbc ..106
Server Class db2odbc106
Server Class oraodbc ..106
Server Class mssodbc109
Server Class odbc ...109

Automating Tasks Using Schedules and Events111
Introduction to Scheduling and Event Handling111
Schedules ...111

Defining Schedules ..111
Events ...112

Choosing a System Event112
Defining Trigger Conditions for Events112

Event Handlers ...113
Developing Event Handlers113

Schedule and Event Internals113
How the Database Server Checks for System

Events ..113
How the Database Server Checks for Scheduled

Times ...114
How Event Handlers are Executed 114

Scheduling and Event Handling Tasks114
Adding a Schedule or Event to a Database114
Adding a Manually-triggered Event To a

Database ...114
Triggering an Event Handler115
Debugging an Event Handler115
Retrieving Information about an Event or

Schedule ...115

Contents

System Administration Guide: Volume 2 vii

Data Access Using JDBC ..117
JDBC Overview ..117

Choose JDBC Driver ...118
JDBC Program Structure119
Server-side JDBC Features119
Differences Between Client- and Server-side

JDBC Connections ..121
Establish JDBC Connections122

Connect From a JDBC Client Application Using
jConnect ..122

Establish Connection From a Server-side JDBC
Class ...126

Use JDBC to Access Data ..128
Installing the JDBCExamples Class129
Using JDBC to Insert, Update, and Delete129
Passing Arguments to Java Methods131
Queries Using JDBC ..132
Using Prepared Statements for More Efficient

Access ...133
Insert and Retrieve Objects134

Sybase jConnect JDBC Driver135
Versions of jConnect Supplied with Sybase IQ

...136
The jConnect Driver Files136
Installing jConnect System Objects Into a

Database ...136
Supply URL For the Server137

Distributed Applications ..139
Serializable Interfaces140
Importing the Class On the Client Side140
A Sample Distributed Application141

Debugging Logic in the Database143
Introduction To Debugging In the Database143

Debugger Features ..143
Requirements for Using the Debugger143

Contents

 viii Sybase IQ

Tutorial 1: Getting Started With the Debugger144
Lesson 1: Connect To a Database and Start the

Debugger ...144
Tutorial 2: Debugging a stored procedure144
Tutorial 3: Debugging a Java Class144

Demo Database Java Example Classes145
Displaying Java Source Code Into the Debugger

...145
Setting a Breakpoint ..145
Running the Method ..146
Stepping Through Source Code146
Inspecting and Modifying Variables147

Breakpoints ...148
View and Edit Variable Behavior148
Write Debugger Scripts ...148

sybase.asa.procdebug.DebugScript Class148
sybase.asa.procdebug.IDebugAPI Interface149
sybase.asa.procdebug.IDebugWindow

Interface ...151
Index ..153

Contents

System Administration Guide: Volume 2 ix

Contents

 x Sybase IQ

Audience

This guide is for developers of applications that access data in Sybase® IQ databases.

Familiarity with relational database systems and introductory user-level experience with
Sybase IQ is assumed. Use this guide with other manuals in the documentation set.

Audience

System Administration Guide: Volume 2 1

Audience

 2 Sybase IQ

Using Procedures and Batches

Create procedures and batches for use with Sybase IQ.

Procedures store procedural SQL statements in the database for use by all applications. They
enhance the security, efficiency, and standardization of databases. User-defined functions are
one kind of procedure that return a value to the calling environment for use in queries and other
SQL statements.

For many purposes, server-side JDBC provides a more flexible way to build logic into the
database than SQL stored procedures. See SQL Anywhere 11.0.1 > SQL Anywhere Server -
Programming > SQL Anywhere Data Access APIs > SQL Anywhere JDBC driver >
Introduction to JDBC.

Batches are sets of SQL statements submitted to the database server as a group. Many features
available in procedures, such as control statements, are also available in batches.

Overview of Procedures
Procedures store procedural SQL statements in a database for use by all applications. They can
include control statements that allow repetition (LOOP statements) and conditional execution
(IF and CASE statements) of SQL statements.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Procedure and trigger overview.

Note: Sybase IQ does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Benefits of Procedures
Definitions for procedures appear in the database separately from any one database
application. This separation provides a number of advantages.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Benefits of procedures and triggers.

Using Procedures and Batches

System Administration Guide: Volume 2 3

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/server-side-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/server-side-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/server-side-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptbn.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptbn.html

Introduction to Procedures
This section discusses the available procedures and their functions.

Two system stored procedures that are useful when working with stored procedures are
sp_iqprocedure and sp_iqprocparm. The sp_iqprocedure stored procedure displays
information about system and user-defined procedures in a database. The sp_iqprocparm
stored procedure displays information about stored procedure parameters, including these
columns:

• proc_name
• proc_owner
• parm_name
• parm_type
• parm_mode
• domain_name
• width, scale
• default

See also
• Procedure Results on page 11

Creating Procedures
Procedures are created using the CREATE PROCEDURE statement. You must have
RESOURCE authority to create a procedure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Creating
procedures.

Sybase IQ Example

Note: For examples, use the Sybase IQ demo database iqdemo.db.

CREATE PROCEDURE new_dept(IN id INT,
 IN name CHAR(35),
 IN head_id INT)
BEGIN
 INSERT
 INTO GROUPO.departments(DepartmentID,
 DepartmentName,
 DepartmentHeadID)
 values (id, name, head_id);
END

Note: To create a remote procedure in IQ, you must use the AT location-string SQL
syntax of CREATE PROCEDURE to create a proxy stored procedure. This capability is

Using Procedures and Batches

 4 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipcp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipcp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipcp.html

currently certified on only Windows and Sun Solaris. The Create Remote Procedure Wizard in
Sybase Central is available only for remote servers.

Altering Procedures
You can modify an existing procedure using either Sybase Central or Interactive SQL. You
must have DBA authority or be the owner of the procedure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Altering
procedures.

For information on altering database object properties, see Introduction to Sybase IQ >
Managing Databases > Managing Procedures.

For information on granting or revoking permissions for procedures, see System
Administration Guide: Volume 1 > Managing User IDs and Permissions > Managing
Individual User IDs and Permissions > Granting Permissions on Procedures in Interactive
SQL and System Administration Guide: Volume 1 > Managing User IDs and Permissions >
Managing Individual User IDs and Permissions > Revoking User Permissions in Interactive
SQL.

You can also modify procedures using the ALTER PROCEDURE statement.

Calling Procedures
CALL statements invoke procedures. Procedures can be called by an application program or by
other procedures.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Calling
procedures.

See also
• Permissions to Execute Procedures on page 6

Copying Procedures in Sybase Central
You can copy procedure codes from one database to another connected database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Copying
procedures in Sybase Central.

Using Procedures and Batches

System Administration Guide: Volume 2 5

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/alteringprocedures.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/alteringprocedures.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/alteringprocedures.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/copyingprocedures-sc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/copyingprocedures-sc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/copyingprocedures-sc.html

Deleting Procedures
Once you create a procedure, it remains in the database until someone explicitly removes it.
Only the owner of the procedure or a user with DBA authority can drop the procedure from the
database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Deleting
procedures.

Permissions to Execute Procedures
A procedure is owned by the user who created it and that user can execute it without
permission.

Permission to execute the procedure can be granted to other users using the GRANT EXECUTE
command. For example, the owner of the procedure new_dept allows another_user to
execute new_dept with the statement:

GRANT EXECUTE ON new_dept TO another_user

The following statement revokes permission to execute the procedure:

REVOKE EXECUTE ON new_dept FROM another_user

See System Administration Guide: Volume 1 > Managing User IDs and Permissions >
Managing Individual User IDs and Permissions > Granting Permissions on Procedures in
Interactive SQL.

See also
• Calling Procedures on page 5

Returning Procedure Results in Parameters
Procedures return results to the calling environment.

Procedures return results in one of the following ways:

• Individual values are returned as OUT or INOUT parameters.
• Result sets can be returned.
• A single result can be returned using a RETURN statement.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Returning
procedure results in parameters.

Sybase IQ example

Note: For examples, use the Sybase IQ demo database iqdemo.db.

CREATE PROCEDURE SalaryList (IN department_id INT)
RESULT ("Employee ID" INT, "Salary" NUMERIC(20,3))

Using Procedures and Batches

 6 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipdp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipdp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipdp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprp.html

BEGIN
 SELECT EmployeeID, Salary
 FROM Employees
 WHERE Employees.DepartmentID = department_id;
END

Returning Procedure Results in Result Sets
In addition to returning results to the calling environment in individual parameters, procedures
can return information in result sets. A result set is typically the result of a query.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Returning
procedure results in result sets.

Creating and Selecting from Temporary Tables
If a procedure dynamically creates and then selects the same temporary table within a stored
procedure, you must use the EXECUTE IMMEDIATE WITH RESULT SET ON syntax to avoid
Column not found errors.

For example:
CREATE PROCEDURE p1 (IN @t varchar(30))
 BEGIN
 EXECUTE IMMEDIATE
 'SELECT * INTO #resultSet FROM ' || @t;
 EXECUTE IMMEDIATE WITH RESULT SET ON
 'SELECT * FROM #resultSet'; END

Introduction to User-Defined Functions
User-defined functions are a class of procedures that return a single value to the calling
environment. This section introduces creating, using, and dropping user-defined functions.

Creating User-Defined Functions
You use the CREATE FUNCTION statement to create user-defined functions. However, you
must have RESOURCE authority.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to user-defined functions >
Creating user-defined functions.

For a complete description of the CREATE FUNCTION syntax, including performance
considerations and differences between SQL Anywhere and IQ, see Reference: Statements
and Options > SQL Statements > CREATE FUNCTION Statement.

Using Procedures and Batches

System Administration Guide: Volume 2 7

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifcf.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifcf.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifcf.html

Calling User-Defined Functions
A user-defined function can be used, subject to permissions, in any place you would use a
built-in nonaggregate function.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to user-defined functions >
Calling user-defined functions.

Sybase IQ example

Note: For examples, use the Sybase IQ demo database iqdemo.db.

SELECT fullname (GivenName, SurName)FROM Employees;

fullname (GivenName, SurName)

Fran Whitney Matthew Cobb Philip Chin...

Dropping User-Defined Functions
Once a user-defined function is created, it remains in the database until it is explicitly
removed.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to user-defined functions >
Dropping user-defined functions.

Permissions to Execute User-Defined Functions
A user-defined function is owned by the user who created it, and that user can execute it
without permission.

The owner of a user-defined function can grant permissions to other users with the GRANT
EXECUTE command.

For example, the creator of the function fullname allows another_user to use
fullname with the statement:

GRANT EXECUTE ON fullname TO another_user

The following statement revokes permission to use the function:

REVOKE EXECUTE ON fullname FROM another_user

See System Administration Guide: Volume 1 > Managing User IDs and Permissions >
Managing Individual User IDs and Permissions > Granting Permissions on Procedures in
Interactive SQL.

Using Procedures and Batches

 8 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifdf.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifdf.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifdf.html

Introduction to Batches
A simple batch consists of a set of SQL statements, separated by semicolons.

For example, the following statements form a batch that creates an Eastern Sales department
and transfers all sales representatives from Massachusetts (MA) to that department.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to batches.

Sybase IQ example

Note: For examples, use the Sybase IQ demo database iqdemo.db.

INSERT
INTO Departments (DepartmentID, DepartmentName)
VALUES (220, 'Eastern Sales') ;
UPDATE Employees

SET DepartmentID = 220
WHERE DepartmentID = 200
AND state = 'GA' ;

COMMIT ;

Control Statements
There are a number of control statements for logical flow and decision making in the body of
the procedure or in a batch.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Control statements.

For complete descriptions of each, see the entries in Reference: Statements and Options >SQL
Statements.

Using Compound Statements
Compound statements can be nested, and combined with other control statements to define
execution flow in procedures or in batches.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Control statements > Using compound
statements.

See also
• SQL Statements Allowed in Procedures on page 10
• Structure of Procedures on page 10

Using Procedures and Batches

System Administration Guide: Volume 2 9

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/control.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/control.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstcs.html

• Transactions and Savepoints in Procedures on page 15

Declarations In Compound Statements
Local declarations in a compound statement immediately follow the BEGIN keyword. These
local declarations exist only within the compound statement.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Control statements > Declarations in
compound statements.

Atomic Compound Statements
An atomic statement is a statement that is executed completely or not at all.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Control statements > Atomic compound
statements.

Structure of Procedures
The body of a procedure consists of a compound statement.

A compound statement consists of a BEGIN and an END, enclosing a set of SQL statements.
Semicolons delimit each statement.

See also
• SQL Statements Allowed in Procedures on page 10

• Transactions and Savepoints in Procedures on page 15

• Using Compound Statements on page 9

SQL Statements Allowed in Procedures
You can use almost all SQL statements within procedures, including the following:

• SELECT, UPDATE, DELETE, INSERT, and SET VARIABLE

• The CALL statement to execute other procedures
• Control statements
• Cursor statements
• Exception handling statements
• The EXECUTE IMMEDIATE statement

Some SQL statements you cannot use within procedures include:

• CONNECT statement
• DISCONNECT statement

Using Procedures and Batches

 10 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstdc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstdc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstdc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstas.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstas.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstas.html

You can use COMMIT, ROLLBACK, and SAVEPOINT statements within procedures with
certain restrictions.

See the Usage section for each statement in Reference: Statements and Options > SQL
Statements.

See also
• Structure of Procedures on page 10
• Transactions and Savepoints in Procedures on page 15
• Using Compound Statements on page 9

Declaring Parameters for Procedures
Procedure parameters appear as a list in the CREATE PROCEDURE statement.

Parameter names must conform to the rules for other database identifiers such as column
names. They must have valid data types , and must be prefixed with one of the keywords IN,
OUT or INOUT.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > The structure of procedures and triggers
> Declaring parameters for procedures.

Passing Parameters to Procedures
You can take advantage of default values of stored procedure parameters with either of two
forms of the CALL statement.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > The structure of procedures and triggers
> Passing parameters to procedures.

Passing Parameters to Functions
UDFs are not invoked with the CALL statement, but are used in the same manner that built-in
functions are used.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > The structure of procedures and triggers
> Passing parameters to functions.

Procedure Results
Procedures can return results of either single or multiple rows of data.

Results consisting of a single row of data can be passed back as arguments to the procedure.
Results consisting of multiple rows of data are passed back as result sets. Procedures can also
return a single value given in the RETURN statement.

Using Procedures and Batches

System Administration Guide: Volume 2 11

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstpp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstpp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstpp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppfn.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppfn.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppfn.html

For simple examples of how to return results from procedures, see . For more detailed
information, see the following sections.

See also
• Introduction to Procedures on page 4

Returning a Value Using the RETURN Statement
The RETURN statement returns a single integer value to the calling environment, causing an
immediate exit from the procedure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning a value using the RETURN statement.

Returning Results as Procedure Parameters
Procedures can return results to the calling environment in the procedure's parameters.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning results as procedure parameters.

Returning Result Sets from Procedures
Result sets allow a procedure to return more than one row of results to the calling environment.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning result sets from procedures.

Returning Multiple Result Sets from Procedures
A procedure can return more than one result set to the calling environment.

The method for returning multiple result sets differs for dbisql and dbisqlc.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning multiple result sets from procedures.

Returning Variable Result Sets from Procedures
The RESULT clause is optional in procedures. Omitting the result clause allows you to write
procedures that return different result sets, with different numbers or types of columns,
depending on how they are executed.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning variable result sets from procedures.

Using Procedures and Batches

 12 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrsr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrsr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrsr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-proctrig-sectb-5471523.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-proctrig-sectb-5471523.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-proctrig-sectb-5471523.html

Cursors in Procedures
Cursors retrieve rows one at a time from a query or stored procedure with multiple rows in its
result set.

A cursor is a handle or an identifier for the query or procedure, and for a current position within
the result set.

Cursor Management Overview
Managing a cursor is similar to managing a file in a programming language.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Using cursors in procedures and triggers
> Cursor management overview.

The sp_iqcursorinfo stored procedure displays information about cursors currently open on
the server. For more information, see Reference: Building Blocks, Tables, and Procedures >
System Procedures> sp_iqcursorinfo procedure.

Cursor Positioning
Cursor positioning is extremely flexible.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Programming > Introduction to
Programming with SQL Anywhere > Using SQL in applications > Working with cursors >
Cursor positioning.

Note: Sybase IQ treats the FIRST, LAST, and ABSOLUTE options as starting from the
beginning of the result set. It treats RELATIVE with a negative row count as starting from the
current position.

Cursors and SELECT Statements in Procedures
The TopCustomerValue procedure uses a cursor on a SELECT statement and is based on
the same query used in the ListCustomerValue procedure .

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Using cursors in procedures and triggers
> Using cursors on SELECT statements in procedures.

Using Procedures and Batches

System Administration Guide: Volume 2 13

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/cursor-positioning-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/cursor-positioning-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/cursor-positioning-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucss.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucss.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucss.html

Errors and Warnings in Procedures
After an application program executes a SQL statement, it can examine a return code (or status
code) for errors.

The return code indicates whether the statement executed successfully or failed and gives the
reason for the failure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers.

Note: Sybase IQ does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Default Error Handling in Procedures
Sybase IQ handles errors that occur during a procedure execution.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Default error handling in procedures and triggers.

Note: Sybase IQ does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Error Handling With ON EXCEPTION RESUME
The ON EXCEPTION RESUME clause is included in the CREATE PROCEDURE statement.

The procedure checks the statement when an error occurs. If the statement handles the error,
then the procedure does not return control to the calling environment when an error occurs.
Instead, it continues executing, resuming at the statement after the one causing the error.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Error handling with ON EXCEPTION RESUME.

Default Handling of Errors and Warnings in Procedures
Errors and warnings are handled differently in procedures.

The default action for errors is to set a value for the SQLSTATE and SQLCODE variables, and
return control to the calling environment in the event of an error, the default action for
warnings is to set the SQLSTATE and SQLCODE values and continue execution of the
procedure.

Using Procedures and Batches

 14 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptew.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptew.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptew.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/on-exception-resume-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/on-exception-resume-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/on-exception-resume-proctrig.html

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Default error handling of warnings in procedures and triggers.

Note: Sybase IQ does not support triggers. You can ignore information about triggers in the
SQL Anywhere documentation.

Using Exception Handlers in Procedures
Certain types of errors can be intercepted and handled within a procedure, rather than passing
the error back to the calling environment. This is done through the use of an exception
handler.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Using exception handlers in procedures and triggers.

Note: Sybase IQ does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Nested Compound Statements and Exception Handlers
Nested compound statements can be use to give users more control over which statements
execute following an error and which do not.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Nested compound statements and exception handlers.

Using the EXECUTE IMMEDIATE Statement In Procedures
The EXECUTE IMMEDIATE statement allows statements to be compiled inside procedures
using a combination of literal strings (in quotes) and variables.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Using the EXECUTE IMMEDIATE
statement in procedures.

Transactions and Savepoints in Procedures
SQL statements in a procedure or trigger are part of the current transaction.

You can call several procedures within one transaction or have several transactions in one
procedure.

Using Procedures and Batches

System Administration Guide: Volume 2 15

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewwh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewwh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewwh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/pteweh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/pteweh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/pteweh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptei.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptei.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptei.html

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Transactions and savepoints in
procedures and triggers.

Note: Sybase IQ does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

For more information, see System Administration Guide: Volume 1 > Transactions and
Versioning > Savepoints within transactions.

See also
• SQL Statements Allowed in Procedures on page 10

• Structure of Procedures on page 10

• Using Compound Statements on page 9

Hiding the Contents of Procedures, Functions, and Views
In some cases, you may want to distribute an application and a database without disclosing the
logic contained in the procedures, functions, triggers and views.

As an added security measure, you can obscure the contents of these objects using the SET
HIDDEN clause of the ALTER PROCEDURE, ALTER FUNCTION, and ALTER VIEW
statements.

See ”SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Hiding the contents of procedures,
functions, triggers and views.

Note: Sybase IQ does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

For more information, see the ALTER FUNCTION statement, ALTER PROCEDURE
statement, and ALTER VIEW statement in Reference: Statements and Options.

Statements Allowed In Batches
Most SQL statements are acceptable in batches, with some exceptions.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Statements allowed in procedures,
triggers, events, and batches.

Note: Sybase IQ does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Using Procedures and Batches

 16 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tranp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tranp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tranp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/hiding-calling-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/hiding-calling-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/hiding-calling-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcas.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcas.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcas.html

Using SELECT Statements in Batches
You can include one or more SELECT statements in a batch.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Statements allowed in procedures,
triggers, events, and batches > Using SELECT statements in batches.

Sybase IQ Example

Note: For examples, use the Sybase IQ demo database iqdemo.db.

IF EXISTS(
 SELECT * FROM SYSTAB
 WHERE table_name='Employees')
THEN
 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
ELSE
 MESSAGE 'The Employees table does not exist'
 TO CLIENT;
END IF

Using IQ UTILITIES to Create Your Own Stored Procedures
The system stored procedures provided in Sybase IQ are implemented in SQL, using the
methods described in the rest of this chapter.

You must use the local temporary table and IQ UTILITIES statement in exactly the same way as
system stored procedures:

Warning! Violating these rules can cause serious problems for your IQ server or database.

All SQL code for procedures is encrypted and compiled into the shared library
libiqscripts15_r.so file on Unix and iqscripts15.dll file on Windows.

You can view the stored procedures code by using Sybase Central or by entering sp_helptext
'owner.procname' in Interactive SQL.

The syntax for IQ UTILITIES is:
IQ UTILITIES MAIN INTO local-temp-table-name arguments

The IQ UTILITIES command is only documented in Reference: Statements and Options to the
IQ monitor, because of the strict requirements for its use and the risk to system operations if it
is used incorrectly.

Using Procedures and Batches

System Administration Guide: Volume 2 17

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcassl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcassl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcassl.html

You may want to create your own variants of some of these procedures. Among the ways you
might do this are:

1. Create a procedure that calls a system stored procedure.
2. Create a procedure that is independent of the system stored procedures but performs a

similar function.
3. Create a procedure that uses the same structure as the system stored procedures but

provides additional functionality. For example, you might want to display procedure
results in graphical form in a front-end tool or browser rather than as text.

4. If you choose the second or third option, you need to understand the IQ UTILITIES
statement and the strict requirements for using it.

How IQ Uses the IQ UTILITIES Command
IQ UTILITIES is the underlying statement that executes whenever you run most IQ system
procedures. In most cases, users are unaware that IQ UTILITIES is executing. The only time IQ
UTILITIES is issued directly by users is to run the IQ buffer cache monitor.

IQ UTILITIES provides a systematic way to collect and report on information maintained in the
IQ system tables. There is no general user interface; you can only use IQ UTILITIES in the ways
that existing system procedures do.

System procedures declare local temporary tables in which they store information. They
execute IQ UTILITIES to get the information from the system tables and store this information
in the local temporary table. The system procedures may simply report the information from
the local temporary table or perform additional processing.

In some system procedures, the IQ UTILITIES statement includes a predefined number as one
of its arguments. This number performs a specific function, for example, deriving a value from
information in the system tables. See for a list of the numbers used as IQ UTILITIES arguments.

Choosing Procedures to Call
You can safely use IQ UTILITIES to create your own versions of documented system
procedures that report on information in the database.

For example, sp_iqspaceused displays information about used and available space available
in the IQ main and IQ temporary stores. Check the owner of the procedure you create from a
system stored procedure to be sure your version of the procedure has the correct owner.

Do not create your own versions of system procedures that control IQ operations. Modifying
procedures that control IQ operations can lead to serious problems.

Using Procedures and Batches

 18 Sybase IQ

Numbers Used by IQ UTILITIES
The following table lists the numbers used as arguments in the IQ UTILITIES command and the
system procedure where each number is used.

For information on the function of these procedures, see Reference: Building Blocks, Tables,
and Procedures > System Procedures.

Table 1. IQ UTILITIES values used in system procedures

Number Procedure Comments

10000 sp_iqtransaction

20000 sp_iqconnection and sp_iqmpxcountd-
bremote

30000 sp_iqspaceused

40000 sp_iqspaceinfo

50000 sp_iqlocks

60000 sp_iqmpxversionfetch Do Not Use

70000 sp_iqmpxdumptlvlog

80000 sp_iqcontext

100000 sp_iqindexfragmentation

110000 sp_iqrowdensity

Procedure Testing
Always test your procedures in a development environment first. Test procedures before you
run them in a production environment to help maintain the stability of your IQ server and
database.

Using Procedures and Batches

System Administration Guide: Volume 2 19

Using Procedures and Batches

 20 Sybase IQ

Using OLAP

OLAP (online analytical processing) is an efficient method of data analysis of information
stored in a relational database.

Using OLAP you can analyze data on different dimensions, acquire result sets with subtotaled
rows, and organize data into multidimensional cubes, all in a single SQL query. You can also
use filters to drill down into the data, returning result sets quickly. This chapter describes the
SQL/OLAP functionality that Sybase IQ supports.

Note: The tables shown in OLAP examples are available in the iqdemo database.

About OLAP
The analytic functions, which offer the ability to perform complex data analysis within a
single SQL statement, are facilitated by a category of software technology named online
analytical processing (OLAP). Its functions are shown in the following list:

• GROUP BY clause extensions – CUBE and ROLLUP

• Analytical functions:
• Simple aggregates – AVG, COUNT, MAX, MIN, and SUM, STDDEV and VARIANCE

Note: You can use simple aggregate functions, except Grouping(), with an OLAP
windowed function.

• Window functions:
• Windowing aggregates – AVG, COUNT, MAX, MIN, and SUM

• Ranking functions – RANK, DENSE_RANK, PERCENT_RANK, and NTILE

• Statistical functions – STDDEV, STDDEV_SAMP, STDDEV_POP, VARIANCE,
VAR_POP, VAR_SAMP, REGR_AVGX, REGR_AVGY, REGR_COUNT,
REGR_INTERCEPT, REGR_R2, REGR_SLOPE, REGR_SXX, REGR_SXY,
REGR_SYY, CORR, COVAR_POP, COVAR_SAMP, CUME_DIST,
EXP_WEIGHTED_AVG, and WEIGHTED_AVG.

• Distribution functions – PERCENTILE_CONT and PERCENTILE_DISC

• Numeric functions – WIDTH_BUCKET, CEIL, and LN, EXP, POWER, SQRT, and
FLOOR

Extensions to the ANSI SQL standard to include complex data analysis were introduced as an
amendment to the 1999 SQL standard. Sybase IQ added portions of these SQL enhancements
provides additional comprehensive support for the extensions.

Some database products provide a separate OLAP module that requires you to move data from
the database into the OLAP module before analyzing it. By contrast, Sybase IQ builds OLAP

Using OLAP

System Administration Guide: Volume 2 21

features into the database itself, making deployment and integration with other database
features, such as stored procedures, easy and seamless.

OLAP Benefits
OLAP functions, when combined with the GROUPING, CUBE, and ROLLUP extensions,
provide two primary benefits.

First, they let you perform multidimensional data analysis, data mining, time series analyses,
trend analysis, cost allocations, goal seeking, ad hoc multidimensional structural changes,
nonprocedural modeling, and exception alerting, often with a single SQL statement. Second,
the window and reporting aggregate functions use a relational operator, called a window that
can be executed more efficiently than semantically equivalent queries that use self-joins or
correlated subqueries. The result sets you obtain using OLAP can have subtotal rows and can
be organized into multidimensional cubes. See .

Moving averages and moving sums can be calculated over various intervals; aggregations and
ranks can be reset as selected column values change; and complex ratios can be expressed in
simple terms. Within the scope of a single query expression, you can define several different
OLAP functions, each with its own partitioning rules.

See also
• Distribution Functions on page 59

• OLAP Evaluation on page 22

• Ranking Functions on page 48

• Statistical Aggregate Functions on page 54

• Windowing on page 37

• Windowing Aggregate Functions on page 52

• BNF Grammar for OLAP Functions on page 73

OLAP Evaluation
OLAP evaluation can be conceptualized as several phases of query execution that contribute
to the final result.

You can identify OLAP phases of execution by the relevant clause in the query. For example, if
a SQL query specification contains window functions, the WHERE, JOIN, GROUP BY, and
HAVING clauses are processed first. Partitions are created after the groups defined in the
GROUP BY clause and before the evaluation of the final SELECT list in the query’s ORDER
BY clause.

For the purpose of grouping, all NULL values are considered to be in the same group, even
though NULL values are not equal to one another.

The HAVING clause acts as a filter, much like the WHERE clause, on the results of the GROUP
BY clause.

Using OLAP

 22 Sybase IQ

Consider the semantics of a simple query specification involving the SQL statements and
clauses, SELECT, FROM, WHERE, GROUP BY, and HAVING from the ANSI SQL standard:

1. The query produces a set of rows that satisfy the table expressions present in the FROM
clause.

2. Predicates from the WHERE clause are applied to rows from the table. Rows that fail to
satisfy the WHERE clause conditions (do not equal true) are rejected.

3. Except for aggregate functions, expressions from the SELECT list and in the list and
GROUP BY clause are evaluated for every remaining row.

4. The resulting rows are grouped together based on distinct values of the expressions in the
GROUP BY clause, treating NULL as a special value in each domain. The expressions in
the GROUP BY clause serve as partition keys if a PARTITION BY clause is present.

5. For each partition, the aggregate functions present in the SELECT list or HAVING clause
are evaluated. Once aggregated, individual table rows are no longer present in the
intermediate result set. The new result set consists of the GROUP BY expressions and the
values of the aggregate functions computed for each partition.

6. Conditions from the HAVING clause are applied to result groups. Groups are eliminated
that do not satisfy the HAVING clause.

7. Results are partitioned on boundaries defined in the PARTITION BY clause. OLAP
windows functions (rank and aggregates) are computed for result windows.

Figure 1: SQL processing for OLAP

See . See also .

See also
• Distribution Functions on page 59

• OLAP Benefits on page 22

• Ranking Functions on page 48

• Statistical Aggregate Functions on page 54

• Windowing on page 37

• Windowing Aggregate Functions on page 52

• BNF Grammar for OLAP Functions on page 73

Using OLAP

System Administration Guide: Volume 2 23

GROUP BY Clause Extensions
Extensions to the GROUP BY clause let application developers write complex SQL statements
that:

• Partition the input rows in multiple dimensions and combine multiple subsets of result
groups.

• Create a “data cube,” providing a sparse, multi dimensional result set for data mining
analyses.

• Create a result set that includes the original groups, and optionally includes a subtotal and
grand-total row.

OLAP Grouping() operations, such as ROLLUP and CUBE, can be conceptualized as prefixes
and subtotal rows.

Prefixes
A list of prefixes is constructed for any query that contains a GROUP BY clause. A prefix is a
subset of the items in the GROUP BY clause and is constructed by excluding one or more of the
rightmost items from those in the query’s GROUP BY clause. The remaining columns are
called the prefix columns.

ROLLUP example 1—In the following ROLLUP example query, the GROUP BY list includes
two variables, Year and Quarter:

SELECT year (OrderDate) AS Year, quarter(OrderDate)
 AS Quarter, COUNT(*) Orders
FROM SalesOrders
GROUP BY ROLLUP(Year, Quarter)
ORDER BY Year, Quarter

The query’s two prefixes are:

• Exclude Quarter – the set of prefix columns contains the single column Year.

• Exclude both Quarter and Year – there are no prefix columns.

Note: The GROUP BY list contains the same number of prefixes as items.

Using OLAP

 24 Sybase IQ

Group by ROLLUP and CUBE
ROLLUP and CUBE are syntactic shortcuts that specify common grouping prefixes.

Group by ROLLUP
The ROLLUP operator requires an ordered list of grouping expressions to be supplied as
arguments.

ROLLUP syntax.

SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [, …]
| ROLLUP (expression [, …])]

GROUPING takes a column name as a parameter and returns a Boolean value as listed in the
following table:

Table 2. Values returned by GROUPING with the ROLLUP operator

If the value of the result is GROUPING returns

NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a ROLLUP operation 0 (FALSE)

A stored NULL 0 (FALSE)

ROLLUP first calculates the standard aggregate values specified in the GROUP BY clause.
Then ROLLUP moves from right to left through the list of grouping columns and creates
progressively higher-level subtotals. A grand total is created at the end. If n is the number of
grouping columns, then ROLLUP creates n+1 levels of subtotals.

This SQL syntax... Defines the following sets...

GROUP BY ROLLUP (A, B, C); (A, B, C)

(A, B)

(A)

()

ROLLUP and subtotal rows
ROLLUP is equivalent to a UNION of a set of GROUP BY queries. The result sets of the
following queries are identical. The result set of GROUP BY (A, B) consists of subtotals over
all those rows in which A and B are held constant. To make a union possible, column C is
assigned NULL.

Using OLAP

System Administration Guide: Volume 2 25

This ROLLUP query... Is equivalent to this query without ROLLUP...

select year(order-
date) as year, quar-
ter(orderdate) as
Quarter, count(*) Or-
dersfrom SalesOr-
dersgroup by Rollup
(year, quarter)order
by year, quarter

Select null,null, count(*) Orders
from SalesOrdersunion allSELECT
year(orderdate) AS YEAR, NULL,
count(*) Orders from SalesOr-
dersGROUP BY year(orderdate) union
allSELECT year(orderdate) as YEAR,
quarter(orderdate) as QUATER,
count(*) Orders from SalesOr-
dersGROUP BY year(orderdate), quar-
ter(orderdate)

Subtotal rows can help you analyze data, especially if there are large amounts of data, different
dimensions to the data, data contained in different tables, or even different databases
altogether. For example, a sales manager might find reports on sales figures broken down by
sales representative, region, and quarter to be useful in understanding patterns in sales.
Subtotals for the data give the sales manager a picture of overall sales from different
perspectives. Analyzing this data is easier when summary information is provided based on
the criteria that the sales manager wants to compare.

With OLAP, the procedure for analyzing and computing row and column subtotals is invisible
to users.

Figure 2: Subtotals

1. This step yields an intermediate result set that has not yet considered the ROLLUP.
2. Subtotals are evaluated and attached to the result set.
3. The rows are arranged according to the ORDER BY clause in the query.

NULL values and subtotal rows
When rows in the input to a GROUP BY operation contain NULL, there is the possibility of
confusion between subtotal rows added by the ROLLUP or CUBE operations and rows that
contain NULL values that are part of the original input data.

The Grouping() function distinguishes subtotal rows from others by taking a column in the
GROUP BY list as its argument, and returning 1 if the column is NULL because the row is a
subtotal row, and 0 otherwise.

The following example includes Grouping() columns in the result set. Rows are highlighted
that contain NULL as a result of the input data, not because they are subtotal rows. The

Using OLAP

 26 Sybase IQ

Grouping() columns are highlighted. The query is an outer join between the Employees
table and the SalesOrders table. The query selects female employees who live in Texas,
New York, or California. NULL appears in the columns corresponding to those female
employees who are not sales representatives (and therefore have no sales).

Note: For examples, use the Sybase IQ demo database iqdemo.db.

SELECT Employees.EmployeeID as EMP, year(OrderDate) as
 YEAR, count(*) as ORDERS, grouping(EMP) as
 GE, grouping(YEAR) as GY
 FROM Employees LEFT OUTER JOIN SalesOrders on
 Employees.EmployeeID = SalesOrders.SalesRepresentative
 WHERE Employees.Sex IN ('F') AND Employees.State
 IN ('TX', 'CA', 'NY')
GROUP BY ROLLUP (YEAR, EMP)
ORDER BY YEAR, EMP

The preceding query returns:

EMP YEAR ORDERS GE GY
------ ---- ------ -- --
NULL NULL 5 1 0
NULL NULL 169 1 1
 102 NULL 1 0 0
 309 NULL 1 0 0
1062 NULL 1 0 0
1090 NULL 1 0 0
1507 NULL 1 0 0
NULL 2000 98 1 0
 667 2000 34 0 0
 949 2000 31 0 0
1142 2000 33 0 0
NULL 2001 66 1 0
 667 2001 20 0 0
949 2001 22 0 0
1142 2001 24 0 0

For each prefix, a subtotal row is constructed that corresponds to all rows in which the prefix
columns have the same value.

To demonstrate ROLLUP results, examine the example query again:

SELECT year (OrderDate) AS Year, quarter
 (OrderDate) AS Quarter, COUNT (*) Orders
FROM SalesOrders
 GROUP BY ROLLUP (Year, Quarter)
 ORDER BY Year, Quarter

In this query, the prefix containing the Year column leads to a summary row for Year=2000
and a summary row for Year=2001. A single summary row for the prefix has no columns,
which is a subtotal over all rows in the intermediate result set.

The value of each column in a subtotal row is as follows:

Using OLAP

System Administration Guide: Volume 2 27

• Column included in the prefix – the value of the column. For example, in the preceding
query, the value of the Year column for the subtotal over rows with Year=2000 is 2000.

• Column excluded from the prefix – NULL. For example, the Quarter column has a
value of NULL for the subtotal rows generated by the prefix consisting of the Year column.

• Aggregate function – an aggregate over the values of the excluded columns.
Subtotal values are computed over the rows in the underlying data, not over the aggregated
rows. In many cases, such as SUM or COUNT, the result is the same, but the distinction is
important in the case of statistical functions such as AVG, STDDEV, and VARIANCE, for
which the result differs.

Restrictions on the ROLLUP operator are:

• The ROLLUP operator supports all of the aggregate functions available to the GROUP BY
clause except COUNT DISTINCT and SUM DISTINCT.

• ROLLUP can only be used in the SELECT statement; you cannot use ROLLUP in a
subquery.

• A grouping specification that combines multiple ROLLUP, CUBE, and GROUP BY
columns in the same GROUP BY clause is not currently supported.

• Constant expressions as GROUP BY keys are not supported.

For the general format of an expression, see Reference: Building Blocks, Tables, and
Procedures > Expressions and Reference: Building Blocks, Tables, and Procedures > SQL
Language Elements.

ROLLUP example 2—The following example illustrates the use of ROLLUP and GROUPING
and displays a set of mask columns created by GROUPING. The digits 0 and 1 displayed in
columns S, N, and C are the values returned by GROUPING to represent the value of the
ROLLUP result. A program can analyze the results of this query by using a mask of “011” to
identify subtotal rows and “111” to identify the row of overall totals.

SELECT size, name, color, SUM(quantity),
 GROUPING(size) AS S,
 GROUPING(name) AS N,
 GROUPING(color) AS C
FROM Products
GROUP BY ROLLUP(size, name, color) HAVING (S=1 or N=1 or C=1)
ORDER BY size, name, color;

The preceding query returns:

size name color SUM S N C
---- ----- ------ --- - - -
(NULL) (NULL) (NULL) 496 1 1 1
Large (NULL) (NULL) 71 0 1 1
Large Sweatshirt (NULL) 71 0 0 1
Medium (NULL) (NULL) 134 0 1 1
Medium Shorts (NULL) 80 0 0 1
Medium Tee Shirt (NULL) 54 0 0 1
One size fits all (NULL) (NULL) 263 0 1 1
One size fits all Baseball Cap (NULL) 124 0 0 1
One size fits all Tee Shirt (NULL) 75 0 0 1

Using OLAP

 28 Sybase IQ

One size fits all Visor (NULL) 64 0 0 1
Small (NULL) (NULL) 28 0 1 1
Small Tee Shirt (NULL) 28 0 1 1

Note: In the Rollup Example 2 results, the SUM column displays as
SUM(products.quantity).

ROLLUP example 3—The following example illustrates the use of GROUPING to distinguish
stored NULL values and “NULL” values created by the ROLLUP operation. Stored NULL
values are then displayed as [NULL] in column prod_id, and “NULL” values created by
ROLLUP are replaced with ALL in column PROD_IDS, as specified in the query.

SELECT year(ShipDate) AS Year,
 ProductID, SUM(quantity)AS OSum,
CASE
 WHEN GROUPING(Year) = 1
 THEN 'ALL'
 ELSE
 CAST(Year AS char(8))
END,
CASE
 WHEN GROUPING(ProductID) = 1
 THEN 'ALL'
 ELSE
 CAST(ProductIDas char(8))
END
FROM SalesOrderItems
GROUP BY ROLLUP(Year, ProductID) HAVING OSum > 36
ORDER BY Year, ProductID;

The preceding query returns:

Year ProductID OSum ...(Year)... ...(ProductID)...
--------- ------- --- ---------- --------
NULL NULL 28359 ALL ALL
2000 NULL 17642 2000 ALL
2000 300 1476 2000 300
2000 301 1440 2000 301
2000 302 1152 2000 302
2000 400 1946 2000 400
2000 401 1596 2000 401
2000 500 1704 2000 500
2000 501 1572 2000 501
2000 600 2124 2000 600
2000 601 1932 2000 601
2000 700 2700 2000 700
2001 NULL 10717 2001 ALL
2001 300 888 2001 300
2001 301 948 2001 301
2001 302 996 2001 302
2001 400 1332 2001 400
2001 401 1105 2001 401
2001 500 948 2001 500
2001 501 936 2001 501
2001 600 936 2001 600

Using OLAP

System Administration Guide: Volume 2 29

2001 601 792 2001 601
2001 700 1836 2001 700

ROLLUP example 4—The next example query returns data that summarizes the number of
sales orders by year and quarter.

SELECT year (OrderDate) AS Year,
quarter(OrderDate) AS Quarter, COUNT (*) Orders
FROM SalesOrders
GROUP BY ROLLUP (Year, Quarter)
ORDER BY Year, Quarter

The following figure illustrates the query results with subtotal rows highlighted in the result
set. Each subtotal row contains a NULL value in the column or columns over which the
subtotal is computed.

Row [1] represents the total number of orders across both years (2000, 2001) and all quarters.
This row contains NULL in both the Year and Quarter columns and is the row where all
columns were excluded from the prefix.

Note: Every ROLLUP operation returns a result set with one row where NULL appears in each
column except for the aggregate column. This row represents the summary of each column to
the aggregate function. For example, if SUM were the aggregate function in question, this row
would represent the grand total of all values.

Row [2] represent the total number of orders in the years 2000 and 2001, respectively. Both
rows contain NULL in the Quarter column because the values in that column are rolled up
to give a subtotal for Year. The number of rows like this in your result set depends on the
number of variables that appear in your ROLLUP query.

The remaining rows marked [3] provide summary information by giving the total number of
orders for each quarter in both years.

ROLLUP example 5—This example of the ROLLUP operation returns a slightly more
complicated result set, which summarizes the number of sales orders by year, quarter, and

Using OLAP

 30 Sybase IQ

region. In this example, only the first and second quarters and two selected regions (Canada
and the Eastern region) are examined.

SELECT year(OrderDate) AS Year, quarter(OrderDate)AS Quarter,
region, COUNT(*) AS OrdersFROM SalesOrders WHERE region IN
('Canada','Eastern') AND quarter IN (1, 2)GROUP BY ROLLUP (Year,
Quarter, Region)ORDER BY Year, Quarter, Region

The following figure illustrates the result set from the above query. Each subtotal row contains
a NULL in the column or columns over which the subtotal is computed.

Row [1] is an aggregate over all rows and contains NULL in the Year, Quarter, and
Region columns. The value in the Orders column of this row represents the total number of
orders in Canada and the Eastern region in quarters 1 and 2 in the years 2000 and 2001.

The rows marked [2] represent the total number of sales orders in each year (2000) and (2001)
in quarters 1 and 2 in Canada and the Eastern region. The values of these rows [2] are equal to
the grand total represented in row [1].

The rows marked [3] provide data about the total number of orders for the given year and
quarter by region.

Using OLAP

System Administration Guide: Volume 2 31

The rows marked [4] provide data about the total number of orders for each year, each quarter,
and each region in the result set.

Using OLAP

 32 Sybase IQ

Group by CUBE
The CUBE operator in the GROUP BY clause analyzes data by forming the data into groups in
more than one dimension (grouping expression).

CUBE requires an ordered list of dimensions as arguments and enables the SELECT statement
to calculate subtotals for all possible combinations of the group of dimensions that you specify
in the query and generates a result set that shows aggregates for all combinations of values in
selected columns.

CUBE syntax:
SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [,…]
| CUBE (expression [,…])]

GROUPING takes a column name as a parameter, and returns a Boolean value as listed in the
following table:

Table 3. Values returned by GROUPING with the CUBE operator

If the value of the result is GROUPING returns

NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a CUBE operation 0 (FALSE)

A stored NULL 0 (FALSE)

CUBE is particularly useful when your dimensions are not a part of the same hierarchy.

This SQL syntax... Defines the following sets...

GROUP BY CUBE (A, B, C); (A, B, C)

(A, B)

(A, C)

(A)

(B, C)

(B)

(C)

()

Restrictions on the CUBE operator are:

• The CUBE operator supports all of the aggregate functions available to the GROUP BY
clause, but CUBE is currently not supported with COUNT DISTINCT or SUM DISTINCT.

Using OLAP

System Administration Guide: Volume 2 33

• CUBE is currently not supported with the inverse distribution analytical functions,
PERCENTILE_CONT and PERCENTILE_DISC.

• CUBE can only be used in the SELECT statement; you cannot use CUBE in a SELECT
subquery.

• A GROUPING specification that combines ROLLUP, CUBE, and GROUP BY columns in
the same GROUP BY clause is not currently supported.

• Constant expressions as GROUP BY keys are not supported.

Note: CUBE performance diminishes if the size of the cube exceeds the size of the temp
cache.

GROUPING can be used with the CUBE operator to distinguish between stored NULL values
and NULL values in query results created by CUBE.

See the examples in the description of the ROLLUP operator for illustrations of the use of the
GROUPING function to interpret results.

All CUBE operations return result sets with at least one row where NULL appears in each
column except for the aggregate columns. This row represents the summary of each column to
the aggregate function.

CUBE example 1—The following queries use data from a census, including the state
(geographic location), gender, education level, and income of people. The first query contains
a GROUP BY clause that organizes the results of the query into groups of rows, according to
the values of the columns state, gender, and education in the table census and
computes the average income and the total counts of each group. This query uses only the
GROUP BY clause without the CUBE operator to group the rows.

SELECT State, Sex as gender, DepartmentID,
COUNT(*),CAST(ROUND(AVG(Salary),2) AS NUMERIC(18,2))AS AVERAGEFROM
employees WHERE state IN ('MA' , 'CA')GROUP BY State, Sex,
DepartmentIDORDER BY 1,2;

The results from the above query:

state gender DepartmentID COUNT() AVERAGE
----- ------ ------- -------- --------
CA F 200 2 58650.00
CA M 200 1 39300.00

Use the CUBE extension of the GROUP BY clause, if you want to compute the average income
in the entire census of state, gender, and education and compute the average income in all
possible combinations of the columns state, gender, and education, while making
only a single pass through the census data. For example, use the CUBE operator if you want to
compute the average income of all females in all states, or compute the average income of all
people in the census according to their education and geographic location.

When CUBE calculates a group, a NULL value is generated for the columns whose group is
calculated. The GROUPING function must be used to distinguish whether a NULL is a NULL
stored in the database or a NULL resulting from CUBE. The GROUPING function returns 1 if
the designated column has been merged to a higher level group.

Using OLAP

 34 Sybase IQ

CUBE example 2—The following query illustrates the use of the GROUPING function with
GROUP BY CUBE.

SELECT case grouping(State) WHEN 1 THEN 'ALL' ELSE StateEND AS
c_state, case grouping(sex) WHEN 1 THEN 'ALL'ELSE Sex end AS
c_gender, case grouping(DepartmentID)WHEN 1 THEN 'ALL' ELSE
cast(DepartmentID as char(4)) endAS c_dept, COUNT(*),
CAST(ROUND(AVG(salary),2) ASNUMERIC(18,2))AS AVERAGEFROM employees
WHERE state IN ('MA' , 'CA')GROUP BY CUBE(state, sex,
DepartmentID)ORDER BY 1,2,3;

The results of this query are shown below. The NULLs generated by CUBE to indicate a
subtotal row are replaced with ALL in the subtotal rows, as specified in the query.

c_state c_gender c_dept COUNT() AVERAGE
------- -------- ------- ----- --------
ALL ALL 200 3 52200.00
ALL ALL ALL 3 52200.00
ALL F 200 2 58650.00
ALL F ALL 2 58650.00
ALL M 200 1 39300.00
ALL M ALL 1 39300.00
CA ALL 200 3 52200.00
CA ALL ALL 3 52200.00
CA F 200 2 58650.00
CA F ALL 2 58650.00
CA M 200 1 39300.00
CA M ALL 1 39300.00

CUBE example 3—In this example, the query returns a result set that summarizes the total
number of orders and then calculates subtotals for the number of orders by year and quarter.

Note: As the number of variables that you want to compare increases, the cost of computing
the cube increases exponentially.

SELECT year (OrderDate) AS Year, quarter(OrderDate) AS Quarter, COUNT
(*) OrdersFROM SalesOrdersGROUP BY CUBE (Year, Quarter)ORDER BY Year,
Quarter

The figure that follows represents the result set from the query. The subtotal rows are
highlighted in the result set. Each subtotal row has a NULL in the column or columns over
which the subtotal is computed.

Using OLAP

System Administration Guide: Volume 2 35

The first highlighted row [1] represents the total number of orders across both years and all
quarters. The value in the Orders column is the sum of the values in each of the rows marked
[3]. It is also the sum of the four values in the rows marked [2].

The next set of highlighted rows [2] represents the total number of orders by quarter across
both years. The two rows marked by [3] represent the total number of orders across all quarters
for the years 2000 and 2001, respectively.

Analytical Functions
Sybase IQ offers both simple and windowed aggregation functions that offer the ability to
perform complex data analysis within a single SQL statement.

You can use these functions to compute results for queries such as “What is the quarterly
moving average of the Dow Jones Industrial average,” or “List all employees and their
cumulative salaries for each department.” Moving averages and cumulative sums can be
calculated over various intervals, and aggregations and ranks can be partitioned, so aggregate
calculation is reset when partition values change. Within the scope of a single query
expression, you can define several different OLAP functions, each with its own arbitrary
partitioning rules. Analytical functions can be broken into two categories:

• Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM summarize data
over a group of rows from the database. The groups are formed using the GROUP BY
clause of the SELECT statement.

• Unary statistical aggregate functions that take one argument include STDDEV,
STDDEV_SAMP, STDDEV_POP, VARIANCE, VAR_SAMP, and VAR_POP.

Using OLAP

 36 Sybase IQ

Both the simple and unary categories of aggregates summarize data over a group of rows from
the database and can be used with a window specification to compute a moving window over a
result set as it is processed.

Note: The aggregate functions AVG, SUM, STDDEV, STDDEV_POP, STDDEV_SAMP,
VAR_POP, VAR_SAMP, and VARIANCE do not support binary data types BINARY and
VARBINARY.

Simple Aggregate Functions
Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM summarize data over a
group of rows from the database.

The groups are formed using the GROUP BY clause of the SELECT statement. These
aggregates are allowed only in the select list and in the HAVING and ORDER BY clauses of a
SELECT statement.

Note: With the exception of Grouping() functions, both the simple and unary aggregates can
be used in a windowing function that incorporates a <window clause> in a SQL query
specification (a window) that conceptually creates a moving window over a result set as it is
processed.

See Reference: Building Blocks, Tables, and Procedures > SQL Functions > Aggregate
functions.

Windowing
A major feature of the ANSI SQL extensions for OLAP is a construct called a window. This
windowing extension lets users divide result sets of a query (or a logical partition of a query)
into groups of rows called partitions and determine subsets of rows to aggregate with respect
to the current row.

You can use three classes of window functions with a window: ranking functions, the row
numbering function, and window aggregate functions.

<WINDOWED TABLE FUNCTION TYPE> ::=
 <RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
 | ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
 | <WINDOW AGGREGATE FUNCTION>

Windowing extensions specify a window function type over a window name or specification
and are applied to partitioned result sets within the scope of a single query expression. A
window partition is a subset of rows returned by a query, as defined by one or more columns in
a special OVER clause:

olap_function() OVER (PARTITION BY col1, col2...)

Windowing operations let you establish information such as the ranking of each row within its
partition, the distribution of values in rows within a partition, and similar operations.

Using OLAP

System Administration Guide: Volume 2 37

Windowing also lets you compute moving averages and sums on your data, enhancing the
ability to evaluate your data and its impact on your operations.

An OLAP window’s three essential parts
The OLAP windows comprise three essential aspects: window partitioning, window ordering,
and window framing. Each has a significant impact on the specific rows of data visible in a
window at any point in time. Meanwhile, the OLAP OVER clause differentiates OLAP
functions from other analytic or reporting functions with three distinct capabilities:

• Defining window partitions (PARTITION BY clause).
• Ordering rows within partitions (ORDER BY clause).
• Defining window frames (ROWS/RANGE specification).

To specify multiple windows functions, and to avoid redundant window definitions, you can
specify a name for an OLAP window specifications. In this usage, the keyword, WINDOW, is
followed by at least one window definition, separated by commas. A window definition
includes the name by which the window is known in the query and the details from the
windows specification, which lets you to define window partitioning, ordering, and framing:

<WINDOW CLAUSE> ::= <WINDOW DEFINITION LIST>

<WINDOW DEFINITION LIST> ::=
 <WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>
 } . . .]

<WINDOW DEFINITION> ::=
 <NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

<WINDOW SPECIFICATION DETAILS> ::=
 [<EXISTING WINDOW NAME>]
 [<WINDOW PARTITION CLAUSE>]
 [<WINDOW ORDER CLAUSE>]
 [<WINDOW FRAME CLAUSE>]

For each row in a window partition, users can define a window frame, which may vary the
specific range of rows used to perform any computation on the current row of the partition. The
current row provides the reference point for determining the start and end points of the
window frame.

Window specifications can be based on either a physical number of rows using a window
specification that defines a window frame unit of ROWS or a logical interval of a numeric
value, using a window specification that defines a window frame unit of RANGE.

Within OLAP windowing operations, you can use the following functional categories:

• Ranking functions
• Windowing aggregate functions
• Statistical aggregate functions
• Distribution functions

Using OLAP

 38 Sybase IQ

See also
• Distribution Functions on page 59

• OLAP Benefits on page 22

• OLAP Evaluation on page 22

• Ranking Functions on page 48

• Statistical Aggregate Functions on page 54

• Windowing Aggregate Functions on page 52

• BNF Grammar for OLAP Functions on page 73

Window Partitioning
Window partitioning is the division of user-specified result sets (input rows) using a
PARTITION BY clause.

A partition is defined by one or more value expressions separated by commas. Partitioned data
is also implicitly sorted and the default sort order is ascending (ASC).

<WINDOW PARTITION CLAUSE> ::=
 PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

If a window partition clause is not specified, then the input is treated as single partition.

Note: The term partition as used with analytic functions, refers only to dividing the set of
result rows using a PARTITION BY clause.

A window partition can be defined based on an arbitrary expression. Also, because window
partitioning occurs after GROUPING (if a GROUP BY clause is specified), the result of any
aggregate function, such as SUM, AVG, and VARIANCE, can be used in a partitioning
expression. Therefore, partitions provide another opportunity to perform grouping and
ordering operations in addition to the GROUP BY and ORDER BY clauses; for example, you
can construct queries that compute aggregate functions over aggregate functions, such as the
maximum SUM of a particular quantity.

You can specify a PARTITION BY clause, even if there is no GROUP BY clause.

See also
• Window Framing on page 40

• Window Ordering on page 39

Window Ordering
Window ordering is the arrangement of results (rows) within each window partition using a
window order clause, which contains one or more value expressions separated by commas.

If a window order clause is not specified, the input rows could be processed in an arbitrary
order.

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Using OLAP

System Administration Guide: Volume 2 39

The OLAP window order clause is different from the ORDER BY clause that can be appended
to a nonwindowed query expression.

The ORDER BY clause in an OLAP function, for example, typically defines the expressions
for sorting rows within window partitions; however, you can use the ORDER BY clause
without a PARTITION BY clause, in which case the sort specification ensures that the OLAP
function is applied to a meaningful (and intended) ordering of the intermediate result set.

An order specification is a prerequisite for the ranking family of OLAP functions; it is the
ORDER BY clause, not an argument to the function itself, that identifies the measures for the
ranking values. In the case of OLAP aggregates, the ORDER BY clause is not required in
general, but it is a prerequisite to defining a window frame. This is because the partitioned
rows must be sorted before the appropriate aggregate values can be computed for each frame.

The ORDER BY clause includes semantics for defining ascending and descending sorts, as
well as rules for the treatment of NULL values. By default, OLAP functions assume an
ascending order, where the lowest measured value is ranked 1.

Although this behavior is consistent with the default behavior of the ORDER BY clause that
ends a SELECT statement, it is counterintuitive for most sequential calculations. OLAP
calculations often require a descending order, where the highest measured value is ranked 1;
this requirement must be explicitly stated in the ORDER BY clause with the DESC keyword.

Note: Ranking functions require a <window order clause> because they are defined only over
sorted input. As with an <order by clause> in a <query specification>, the default sort
sequence is ascending.

The use of a <window frame unit> of RANGE also requires the existence of a <window order
clause>. In the case of RANGE, the <window order clause> may only consist of a single
expression.

See also
• Window Framing on page 40

• Window Partitioning on page 39

Window Framing
For nonranking aggregate OLAP functions, you can define a window frame with a window
frame clause, which specifies the beginning and end of the window relative to the current
row.

<WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

This OLAP function is computed with respect to the contents of a moving frame rather than
the fixed contents of the whole partition. Depending on its definition, the partition has a start
row and an end row, and the window frame slides from the starting point to the end of the
partition.

Using OLAP

 40 Sybase IQ

Figure 3: Three-row moving window with partitioned input

UNBOUNDED PRECEDING and FOLLOWING
Window frames can be defined by an unbounded aggregation group that either extends back to
the beginning of the partition (UNBOUNDED PRECEDING) or extends to the end of the
partition (UNBOUNDED FOLLOWING), or both.

UNBOUNDED PRECEDING includes all rows within the partition preceding the current
row, which can be specified with either ROWS or RANGE. UNBOUNDED FOLLOWING
includes all rows within the partition following the current row, which can be specified with
either ROWS or RANGE.

The value FOLLOWING specifies either the range or number of rows following the current
row. If ROWS is specified, then the value is a positive integer indicating a number of rows. If
RANGE is specified, the window includes any rows that are less than the current row plus the
specified numeric value. For the RANGE case, the data type of the windowed value must be
comparable to the type of the sort key expression of the ORDER BY clause. There can be only
one sort key expression, and the data type of the sort key expression must allow addition.

The value PRECEDING specifies either the range or number of rows preceding the current
row. If ROWS is specified, then the value is a positive integer indicating a number of rows. If
RANGE is specified, the window includes any rows that are less than the current row minus
the specified numeric value. For the RANGE case, the data type of the windowed value must

Using OLAP

System Administration Guide: Volume 2 41

be comparable to the type of the sort key expression of the ORDER BY clause. There can be
only one sort key expression, and the data type of the sort key expression must allow
subtraction. This clause cannot be specified in second bound group if the first bound group is
CURRENT ROW or value FOLLOWING.

The combination BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING provides an aggregate over an entire partition, without the need to construct a
join to a grouped query. An aggregate over an entire partition is also known as a reporting
aggregate.

CURRENT ROW concept
In physical aggregation groups, rows are included or excluded based on their position relative
to the current row, by counting adjacent rows. The current row is simply a reference to the next
row in a query’s intermediate results. As the current row advances, the window is reevaluated
based on the new set of rows that lie within the window. There is no requirement that the
current row be included in a window.

If a window frame clause is not specified, the default window frame depends on whether or not
a window order clause is specified:

• If the window specification contains a window order clause, the window’s start point is
UNBOUNDED PRECEDING, and the end point is CURRENT ROW, thus defining a varying-
size window suitable for computing cumulative values.

• If the window specification does not contain a window order clause, the window’s start
point is UNBOUNDED PRECEDING, and the end point is UNBOUNDED FOLLOWING, thus
defining a window of fixed size, regardless of the current row.

Note: A window frame clause cannot be used with a ranking function.

You can also define a window by specifying a window frame unit that is row-based (rows
specification) or value-based (range specification).

<WINDOW FRAME UNIT> ::= ROWS | RANGE

<WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW FRAME
BETWEEN>

When a window frame extent specifies BETWEEN, it explicitly provides the beginning and
end of a window frame.

If the window frame extent specifies only one of these two values then the other value defaults
to CURRENT ROW.

Row-based window frames—In the example rows [1] through [5] represent a partition; each
row becomes the current row as the OLAP window frame slides forward. The frame is defined
as Between Current Row And 2 Following, so each frame includes a maximum of three rows
and a minimum of one row. When the frame reaches the end of the partition, only the current
row is included. The shaded areas indicate which rows are excluded from the frame at each
step.

Using OLAP

 42 Sybase IQ

Figure 4: Row-based window frames

The window frame imposes the following rules:

• When row [1] is the current row, rows [4] and [5] are excluded.
• When row [2] is the current row, rows [5] and [1] are excluded.
• When row [3] is the current row, rows [1] and [2] are excluded.
• When row [4] is the current row, rows [1], [2], and [3] are excluded.
• When row [5] is the current row, rows [1], [2], [3], and [4] are excluded.

The following diagram applies these rules to a specific set of values, showing the OLAP AVG
function that would be calculated for each row. The sliding calculations produce a moving
average with an interval of three rows or fewer, depending on which row is the current row:

The following example demonstrates a sliding window:

SELECT dimension, measure,
 AVG(measure) OVER(partition BY dimension
 ORDER BY measure
 ROWS BETWEEN CURRENT ROW and 2 FOLLOWING)
 AS olap_avg
FROM ...

The averages are computed as follows:

• Row [1] = (10 + 50 + 100)/3
• Row [2] = (50+ 100 + 120)/3
• Row [3] = (100 + 120 + 500)/3
• Row [4] = (120 + 500 + NULL)/3
• Row [5] = (500 + NULL + NULL)/3

Similar calculations would be computed for all subsequent partitions in the result set (such as,
B, C, and so on).

Using OLAP

System Administration Guide: Volume 2 43

If there are no rows in the current window, the result is NULL, except for COUNT.

See also
• Window Ordering on page 39

• Window Partitioning on page 39

ROWS
The window frame unit ROWS defines a window in the specified number of rows before or
after the current row, which serves as the reference point that determines the start and end of a
window.

Each analytical calculation is based on the current row within a partition. To produce
determinative results for a window expressed in rows, the ordering expression should be
unique.

The reference point for all window frames is the current row. The SQL/OLAP syntax provides
mechanisms for defining a row-based window frame as any number of rows preceding or
following the current row or preceding and following the current row.

The following list illustrates common examples of a window frame unit:

• Rows between unbounded preceding and current row – specifies a window whose start
point is the beginning of each partition and the end point is the current row and is often used
to construct windows that compute cumulative results, such as cumulative sums.

• Rows between unbounded preceding and unbounded following – specifies a fixed
window, regardless of the current row, over the entire partition. The value of a window
aggregate function is, therefore, identical in each row of the partition.

• Rows between 1 preceding and 1 following – specifies a fixed-sized moving window over
three adjacent rows, one each before and after the current row. You can use this window
frame unit to compute, for example, a 3-day or 3-month moving average.
Be aware of meaningless results that may be generated by gaps in the windowed values
when using ROWS. If the set of values is not continuous, consider using RANGE instead
of ROWS, because a window definition based on RANGE automatically handles adjacent
rows with duplicate values and does not include other rows when there are gaps in the
range.

Note: In the case of a moving window, it is assumed that rows containing NULL values
exist before the first row, and after the last row, in the input. This means that in a 3-row
moving window, the computation for the last row in the input—the current row— includes
the immediately preceding row and a NULL value.

• Rows between current row and current row – restricts the window to the current row only.
• Rows between 1 preceding and 1 preceding – specifies a single row window consisting

only of the preceding row, with respect to the current row. In combination with another
window function that computes a value based on the current row only, this construction
makes it possible to easily compute deltas, or differences in value, between adjacent rows.

Using OLAP

 44 Sybase IQ

See also
• RANGE on page 45

RANGE
Range-based window frames—The SQL/OLAP syntax supports another kind of window
frame whose limits are defined in terms of a value-based—or range-based—set of rows, rather
than a specific sequence of rows.

Value-based window frames define rows within a window partition that contain a specific
range of numeric values. The OLAP function’s ORDER BY clause defines the numeric column
to which the range specification is applied, relative to the current row’s value for that column.
The range specification uses the same syntax as the rows specification, but the syntax is
interpreted in a different way.

The window frame unit, RANGE, defines a window frame whose contents are determined by
finding rows in which the ordering column has values within the specified range of value
relative to the current row. This is called a logical offset of a window frame, which you can
specify with constants, such as “3 preceding,” or any expression that can be evaluated to a
numeric constant. When using a window defined with RANGE, there can be only a single
numeric expression in the ORDER BY clause.

Note: ORDER BY key must be a numeric data in RANGE window frame

For example, a frame can be defined as the set of rows with year values some number of years
preceding or following the current row’s year:

ORDER BY year ASC range BETWEEN CURRENT ROW and 1 PRECEDING

In the above example query, 1 preceding means the current row’s year value minus 1.

This kind of range specification is inclusive. If the current row’s year value is 2000, all rows in
the window partition with year values 2000 and 1999 qualify for the frame, regardless of the
physical position of those rows in the partition. The rules for including and excluding value-
based rows are quite different from the rules applied to row-based frames, which depend
entirely on the physical sequence of rows.

Put in the context of an OLAP AVG() calculation, the following partial result set further
demonstrates the concept of a value-based window frame. Again, the frame consists of rows
that:

• Have the same year as the current row
• Have the same year as the current row minus 1

The following query demonstrates a range-based window definition:

Using OLAP

System Administration Guide: Volume 2 45

SELECT dimension, year, measure,
 AVG(measure) OVER(PARTITION BY dimension
 ORDER BY year ASC
 range BETWEEN CURRENT ROW and 1 PRECEDING)
 as olap_avg
FROM ...

The averages are computed as follows:

• Row [1] = 1999; rows [2] through [5] are excluded; AVG = 10,000/1
• Row [2] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2
• Row [3] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2
• Row [4] = 2002; row [1] is excluded; AVG = 21,000/4
• Row [5] = 2002; row [1] is excluded; AVG = 21,000/4

Ascending and descending order for value -based frames—The ORDER BY clause for an
OLAP function with a value-based window frame not only identifies the numeric column on
which the range specification is based; it also declares the sort order for the ORDER BY values.
The following specification is subject to the sort order that precedes it (ASC or DESC):

RANGE BETWEEN CURRENT ROW AND n FOLLOWING

The specification n FOLLOWING means:

• Plus n if the partition is sorted in default ascending order (ASC)
• Minus n if the partition is sorted in descending order (DESC)

For example, assume that the year column contains four distinct values, from 1999 to 2002.
The following table shows the default ascending order of these values on the left and the
descending order on the right:

If the current row is 1999 and the frame is specified as follows, rows that contain the values
1999 and 1998 (which does not exist in the table) are included in the frame:

ORDER BY year DESC range BETWEEN CURRENT ROW and 1 FOLLOWING

Note: The sort order of the ORDER BY values is a critical part of the test for qualifying rows in
a value-based frame; the numeric values alone do not determine exclusion or inclusion.

Using an unbounded window—The following query produces a result set consisting of all of
the products accompanied by the total quantity of all products:

SELECT id, description, quantity,
 SUM(quantity) OVER () AS total
FROM products;

Using OLAP

 46 Sybase IQ

Computing deltas between adjacent rows—Using two windows—one over the current row
and the other over the previous row—provides a direct way of computing deltas, or changes,
between adjacent rows.

SELECT EmployeeID, Surname, SUM(salary)
OVER(ORDER BY BirthDate rows between current row and current row)
AS curr, SUM(Salary)
OVER(ORDER BY BirthDate rows between 1 preceding and 1 preceding)
AS prev, (curr-prev) as delta
FROM Employees
WHERE State IN ('MA', 'AZ', 'CA', 'CO') AND DepartmentID>10
ORDER BY EmployeeID, Surname;

The results from the query:

EmployeeID Surname curr prev delta
------ --------- -------- --------- ----------
148 Jordan 51432.000191
Bertrand 29800.000 39300.000
-9500.000278 Melkisetian 48500.000
42300.000 6200.000299 Overbey
39300.000 41700.750 -2400.750318
Crow 41700.750 45000.000
-3299.250586 Coleman 42300.000
46200.000 -3900.000690 Poitras
46200.000 29800.000 16400.000703
Martinez 55500.800 51432.000
4068.800949 Savarino 72300.000
55500.800 16799.2001101 Preston
37803.000 48500.000 -10697.0001142
Clark 45000.000 72300.000
-27300.000

Although the window function SUM() is used, the sum contains only the salary value of either
the current or previous row because of the way the window is specified. Also, the prev value
of the first row in the result is NULL because it has no predecessor; therefore, the delta is
NULL as well.

In each of the examples above, the function used with the OVER() clause is the SUM()
aggregate function.

See also
• ROWS on page 44

Explicit and Inline Window Clauses
SQL OLAP provides two ways of specifying a window in a query:

• The explicit window clause lets you define a window that follows a HAVING clause. You
reference windows defined with those window clauses by specifying their names when
you invoke an OLAP function, such as:
SUM (...) OVER w2

Using OLAP

System Administration Guide: Volume 2 47

• The inline window specification lets you define a window in the SELECT list of a query
expression. This capability lets you define your windows in a window clause that follows
the HAVING clause and then reference them by name from your window function
invocations, or to define them along with the function invocations.

Note: If you use an inline window specification, you cannot name the window. Two or
more window function invocations in a single SELECT list that use identical windows
must either reference a named window defined in a window clause or they must define
their inline windows redundantly.

Window function example—The following example shows a window function. The query
returns a result set that partitions the data by department and then provides a cumulative
summary of employees’ salaries, starting with the employee who has been at the company the
longest. The result set includes only those employees who reside in Massachusetts. The
column Sum_Salary provides the cumulative total of employees’ salaries.

SELECT DepartmentID, Surname, StartDate, Salary,SUM(Salary) OVER
(PARTITION BY DepartmentID ORDER BYstartdate rows between unbounded
preceding andcurrent row) AS sum_salaryFROM EmployeesWHERE State IN
('CA') AND DepartmentID IN (100, 200)ORDER BY DepartmentID;

The following result set is partitioned by department.

DepartmentID Surname start_date salary sum_salary
------------ ----------- ------------
---------- -----------
200 Overbey 1987-02-19
39300.000 39300.000
200 Savarino 1989-11-07
72300.000 111600.000
200 Clark 1990-07-21
45000.000 156600.000

Ranking Functions
Ranking functions let you compile a list of values from the data set in ranked order, as well as
compose single-statement SQL queries that fulfil requests such as, “Name the top 10 products
shipped this year by total sales,” or “Give the top 5% of salespersons who sold orders to at least
15 different companies.”

SQL/OLAP defines five functions that are categorized as ranking functions:

<RANK FUNCTION TYPE> ::=
 RANK | DENSE_RANK | PERCENT_RANK | ROW_NUMBER | NTILE

Ranking functions let you compute a rank value for each row in a result set based on the order
specified in the query. For example, a sales manager might need to identify the top or bottom
sales people in the company, the highest- or lowest-performing sales region, or the best- or
worst-selling products. Ranking functions can provide this information.

See also
• Distribution Functions on page 59

Using OLAP

 48 Sybase IQ

• OLAP Benefits on page 22

• OLAP Evaluation on page 22

• Statistical Aggregate Functions on page 54

• Windowing on page 37

• Windowing Aggregate Functions on page 52

• BNF Grammar for OLAP Functions on page 73

RANK() Function
The RANK function returns a number that indicates the rank of the current row among the rows
in the row’s partition, as defined by the ORDER BY clause.

The first row in a partition has a rank of 1, and the last rank in a partition containing 25 rows is
25. RANK is specified as a syntax transformation, which means that an implementation can
choose to actually transform RANK into its equivalent, or it can merely return a result
equivalent to the result that transformation would return.

In the following example, ws1 indicates the window specification that defines the window
named w1.

RANK() OVER ws

is equivalent to:

(COUNT (*) OVER (ws RANGE UNBOUNDED PRECEDING)
- COUNT (*) OVER (ws RANGE CURRENT ROW) + 1)

The transformation of the RANK function uses logical aggregation (RANGE). As a result, two
or more records that are tied—or have equal values in the ordering column—have the same
rank.The next group in the partition that has a different value has a rank that is more than one
greater than the rank of the tied rows. For example, if there are rows whose ordering column
values are 10, 20, 20, 20, 30, the rank of the first row is 1 and the rank of the second row is 2.
The rank of the third and fourth row is also 2, but the rank of the fifth row is 5. There are no
rows whose rank is 3 or 4. This algorithm is sometimes known as sparse ranking.

See also Reference: Building Blocks, Tables, and Procedures > SQL Functions > RANK
function [Analytical].

DENSE_RANK() Function
DENSE_RANK DENSE_RANK returns ranking values without gaps.

The values for rows with ties are still equal, but the ranking of the rows represents the positions
of the clusters of rows having equal values in the ordering column, rather than the positions of
the individual rows. As in the RANK example, where rows ordering column values are 10, 20,
20, 20, 30, the rank of the first row is still 1 and the rank of the second row is still 2, as are the
ranks of the third and fourth rows. The last row, however, is 3, not 5.

DENSE_RANK is computed through a syntax transformation, as well.

DENSE_RANK() OVER ws

Using OLAP

System Administration Guide: Volume 2 49

is equivalent to:

COUNT (DISTINCT ROW (expr_1, . . ., expr_n))
 OVER (ws RANGE UNBOUNDED PRECEDING)

In the above example, expr_1 through expr_n represent the list of value expressions in the sort
specification list of window w1.

See also Reference: Building Blocks, Tables, and Procedures > SQL Functions >
DENSE_RANK function [Analytical].

PERCENT_RANK() Function
The PERCENT_RANK function calculates a percentage for the rank, rather than a fractional
amount, and returns a decimal value between 0 and 1.

PERCENT_RANK returns the relative rank of a row, which is a number that indicates the
relative position of the current row within the window partition in which it appears. For
example, in a partition that contains 10 rows having different values in the ordering columns,
the third row is given a PERCENT_RANK value of 0.222 …, because you have covered 2/9
(22.222...%) of rows following the first row of the partition. PERCENT_RANK of a row is
defined as one less than the RANK of the row divided by one less than the number of rows in the
partition, as seen in the following example (where “ANT” stands for an approximate numeric
type, such as REAL or DOUBLE PRECISION).

PERCENT_RANK() OVER ws

is equivalent to:

CASE
 WHEN COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING) = 1
 THEN CAST (0 AS ANT)
 ELSE
 (CAST (RANK () OVER (ws) AS ANT) -1 /
 (COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING) - 1)
END

See also Reference: Building Blocks, Tables, and Procedures > SQL Functions >
PERCENT_RANK function [Analytical].

ROW_NUMBER() Function
The ROW_NUMBER function returns a unique row number for each row.

If you define window partitions, ROW_NUMBER starts the row numbering in each partition at
1, and increments each row by 1. If you do not specify a window partition, ROW_NUMBER
numbers the complete result set from 1 to the total cardinality of the table.

The ROW_NUMBER function syntax is:

ROW_NUMBER() OVER ([PARTITION BY window partition] ORDER BY window
ordering)

Using OLAP

 50 Sybase IQ

ROW_NUMBER does not require an argument, but you must specify the parentheses.

The PARTITION BY clause is optional. The OVER (ORDER_BY) clause cannot contain a
window frame ROWS/RANGE specification.

Ranking Examples
These are some of the ranking functions examples:

Ranking example 1—The SQL query that follows finds the male and female employees from
California, and ranks them in descending order according to salary.

SELECT Surname, Sex, Salary, RANK() OVER (
ORDER BY Salary DESC) as RANK FROM Employees
WHERE State IN ('CA') AND DepartmentID =200
ORDER BY Salary DESC;

The results from the above query:

Surname Sex Salary RANK
------- --- ------ ----
Savarino F 72300.000 1
Clark F 45000.000 2
Overbey M 39300.000 3

Ranking example 2—Using the query from the previous example, you can change the data by
partitioning it by gender. The following example ranks employees in descending order by
salary and partitions by gender:

SELECT Surname, Sex, Salary, RANK() OVER (PARTITION BY Sex
ORDER BY Salary DESC) AS RANK FROM Employees
WHERE State IN ('CA', 'AZ') AND DepartmentID IN (200, 300)
ORDER BY Sex, Salary DESC;

The results from the above query:

Surname Sex Salary RANK
------- --- --------- ----
Savarino F 72300.000 1
Jordan F 51432.000 2
Clark F 45000.000 3
Coleman M 42300.000 1
Overbey M 39300.000 2

Ranking example 3—This example ranks a list of female employees in California and Texas in
descending order according to salary. The PERCENT_RANK function provides the cumulative
total in descending order.

SELECT Surname, Salary, Sex, CAST(PERCENT_RANK() OVER
(ORDER BY Salary DESC) AS numeric (4, 2)) AS RANK
FROM Employees WHERE State IN ('CA', 'TX') AND Sex ='F'
ORDER BY Salary DESC;

The results from the above query:

Using OLAP

System Administration Guide: Volume 2 51

Surname salary sex RANK
--------- --------- --- ----------
Savarino 72300.000 F 0.00
Smith 51411.000 F 0.33
Clark 45000.000 F 0.66
Garcia 39800.000 F 1.00

Ranking example 4—You can use the PERCENT_RANK function to find the top or bottom
percentiles in the data set. This query returns male employees whose salary is in the top five
percent of the data set.

SELECT * FROM (SELECT Surname, Salary, Sex,
CAST(PERCENT_RANK() OVER (ORDER BY salary DESC) as
numeric (4, 2)) AS percent
FROM Employees WHERE State IN ('CA') AND sex ='F') AS
DT where percent > 0.5
ORDER BY Salary DESC;

The results from the above query:

Surname salary sex percent
--------- ---------- --- ---------
Clark 45000.000 F 1.00

Ranking example 5—This example uses the ROW_NUMBER function to return row numbers
for each row in all window partitions. The query partitions the Employees table by
department ID, and orders the rows in each partition by start date.

SELECT DepartmentID dID, StartDate, Salary ,
ROW_NUMBER()OVER(PARTITION BY dID ORDER BY StartDate)
FROM Employees ORDER BY 1,2;

The results from the above query are:

dID StartDate Salary Row_number()
======== =========== ========== =============
 100 1984-08-28 47500.000 1
 100 1985-01-01 62000.500 2
 100 1985-06-17 57490.000 3
 100 1986-06-07 72995.000 4
 100 1986-07-01 48023.690 5

 200 1985-02-03 38500.000 1
 200 1985-12-06 54800.000 2
 200 1987-02-19 39300.000 3
 200 1987-07-10 49500.000 4

 500 1994-02-27 24903.000 9

Windowing Aggregate Functions
Windowing aggregate functions let you manipulate multiple levels of aggregation in the same
query.

For example, you can list all quarters during which expenses are less than the average. You can
use aggregate functions, including the simple aggregate functions AVG, COUNT, MAX, MIN,

Using OLAP

 52 Sybase IQ

and SUM, to place results—possibly computed at different levels in the statement—on the
same row. This placement provides a means to compare aggregate values with detail rows
within a group, avoiding the need for a join or a correlated subquery.

These functions also let you compare nonaggregate values to aggregate values. For example, a
salesperson might need to compile a list of all customers who ordered more than the average
number of a product in a specified year, or a manager might want to compare an employee’s
salary against the average salary of the department.

If a query specifies DISTINCT in the SELECT statement, then the DISTINCT operation is
applied after the window operator. A window operator is computed after processing the
GROUP BY clause and before the evaluation of the SELECT list items and a query’s ORDER
BY clause.

Windowing aggregate example 1—This query returns a result set, partitioned by year, that
shows a list of the products that sold higher-than-average sales.

SELECT * FROM (SELECT Surname AS E_name, DepartmentID ASDept,
CAST(Salary AS numeric(10,2)) AS Sal,CAST(AVG(Sal) OVER(PARTITION
BY DepartmentID) ASnumeric(10, 2)) AS Average,
CAST(STDDEV_POP(Sal)OVER(PARTITION BY DepartmentID) AS
numeric(10,2)) ASSTD_DEVFROM EmployeesGROUP BY Dept, E_name, Sal) AS
derived_table WHERESal> (Average+STD_DEV)ORDER BY Dept, Sal,
E_name;

The results from the query:

 E_name Dept Sal Average STD_DEV
-------- ----- -------- ------- --------
Lull 100 87900.00 58736.28
16829.59Sheffield 100 87900.00
58736.28 16829.59Scott 100
96300.00 58736.28 16829.59Sterling
200 64900.00 48390.94
13869.59Savarino 200 72300.00
48390.94 13869.59Kelly 200
87500.00 48390.94 13869.59Shea
300 138948.00 59500.00
30752.39Blaikie 400 54900.00
43640.67 11194.02Morris 400
61300.00 43640.67 11194.02Evans
400 68940.00 43640.67
11194.02Martinez 500 55500.80
33752.20 9084.49

For the year 2000, the average number of orders was 1,787. Four products (700, 601, 600, and
400) sold higher than that amount. In 2001, the average number of orders was 1,048 and 3
products exceeded that amount.

Windowing aggregate example 2—This query returns a result set that shows the employees
whose salary is one standard deviation greater than the average salary of their department.
Standard deviation is a measure of how much the data varies from the mean.

Using OLAP

System Administration Guide: Volume 2 53

SELECT * FROM (SELECT Surname AS E_name, DepartmentID AS
 Dept, CAST(Salary AS numeric(10,2)) AS Sal,
 CAST(AVG(Sal) OVER(PARTITION BY dept) AS
 numeric(10, 2)) AS Average, CAST(STDDEV_POP(Sal)
 OVER(PARTITION BY dept) AS numeric(10,2)) AS
 STD_DEV
FROM Employees
GROUP BY Dept, E_name, Sal) AS derived_table WHERE
 Sal> (Average+STD_DEV)
ORDER BY Dept, Sal, E_name;

Every department has at least one employee whose salary significantly deviates from the
mean, as shown in these results:

E_name Dept Sal Average STD_DEV
-------- ---- -------- -------- --------
Lull 100 87900.00 58736.28 16829.59
Sheffield 100 87900.00 58736.28 16829.59
Scott 100 96300.00 58736.28 16829.59
Sterling 200 64900.00 48390.94 13869.59
Savarino 200 72300.00 48390.94 13869.59
Kelly 200 87500.00 48390.94 13869.59
Shea 300 138948.00 59500.00 30752.39
Blaikie 400 54900.00 43640.67 11194.02
Morris 400 61300.00 43640.67 11194.02
Evans 400 68940.00 43640.67 11194.02
Martinez 500 55500.80 33752.20 9084.49

Employee Scott earns $96,300.00, while the average salary for department 100 is $58,736.28.
The standard deviation for department 100 is 16,829.00, which means that salaries less than
$75,565.88 (58736.28 + 16829.60 = 75565.88) fall within one standard deviation of the mean.

See also
• Distribution Functions on page 59

• OLAP Benefits on page 22

• OLAP Evaluation on page 22

• Ranking Functions on page 48

• Statistical Aggregate Functions on page 54

• Windowing on page 37

• BNF Grammar for OLAP Functions on page 73

Statistical Aggregate Functions
The ANSI SQL/OLAP extensions provide a number of additional aggregate functions that
permit statistical analysis of numeric data. This support includes functions to compute
variance, standard deviation, correlation, and linear regression.

Standard deviation and variance
The SQL/OLAP general set functions that take one argument include those appearing in bold
in this syntax statement:

Using OLAP

 54 Sybase IQ

<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
 <BASIC AGGREGATE FUNCTION TYPE>
 | STDDEV | STDDEV_POP | STDDEV_SAMP
 | VARIANCE | VARIANCE_POP | VARIANCE_SAMP

• STDDEV_POP – computes the population standard deviation of the provided value
expression evaluated for each row of the group or partition (if DISTINCT is specified, each
row that remains after duplicates are eliminated), defined as the square root of the
population variance.

• STDDEV_SAMP – computes the population standard deviation of the provided value
expression evaluated for each row of the group or partition (if DISTINCT is specified, each
row that remains after duplicates are eliminated), defined as the square root of the sample
variance.

• VAR_POP – computes the population variance of value expression evaluated for each row
of the group or partition (if DISTINCT is specified, each row that remains after duplicates
are eliminated), defined as the sum of squares of the difference of value expression from
the mean of value expression, divided by the number of rows (remaining) in the group or
partition.

• VAR_SAMP – computes the sample variance of value expression evaluated for each row of
the group or partition (if DISTINCT is specified, each row that remains after duplicates are
eliminated), defined as the sum of squares of the difference of value expression, divided by
one less than the number of rows (remaining) in the group or partition.

These functions, including STDDEV and VARIANCE, are true aggregate functions in that they
can compute values for a partition of rows as determined by the query’s ORDER BY clause. As
with other basic aggregate functions such as MAX or MIN, their computation ignores NULL
values in the input. Also, regardless of the domain of the expression being analyzed, all
variance and standard deviation computation uses IEEE double-precision floating point. If the
input to any variance or standard deviation function is the empty set, then each function returns
NULL as its result. If VAR_SAMP is computed for a single row, it returns NULL, while
VAR_POP returns the value 0.

Correlation
The SQL/OLAP function that computes a correlation coefficient is:

• CORR – returns the correlation coefficient of a set of number pairs.

You can use the CORR function either as a windowing aggregate function (where you specify
a window function type over a window name or specification) or as a simple aggregate
function with no OVER clause.

Covariance
The SQL/OLAP functions that compute covariances include:

• COVAR_POP – returns the population covariance of a set of number pairs.
• COVAR_SAMP – returns the sample covariance of a set of number pairs.

Using OLAP

System Administration Guide: Volume 2 55

The covariance functions eliminate all pairs where expression1 or expression2 has a null
value.

You can use the covariance functions either as windowing aggregate functions (where you
specify a window function type over a window name or specification) or as simple aggregate
functions with no OVER clause.

Cumulative distribution
The SQL/OLAP function that calculates the relative position of a single value among a group
of rows is CUME_DIST.

The window specification must contain an ORDER_BY clause.

Composite sort keys are not allowed in the CUME_DIST function.

Regression analysis
The regression analysis functions calculate the relationship between an independent variable
and a dependent variable using a linear regression equation. The SQL/OLAP linear regression
functions include:

• REGR_AVGX – computes the average of the independent variable of the regression line.
• REGR_AVGY – computes the average of the dependent variable of the regression line.
• REGR_COUNT – returns an integer representing the number of nonnull number pairs used

to fit the regression line.
• REGR_INTERCEPT – computes the y-intercept of the regression line that best fits the

dependent and independent variables.
• REGR_R2 – computes the coefficient of determination (the goodness-of-fir statistic) for

the regression line.
• REGR_SLOPE – computes the slope of the linear regression line fitted to nonnull pairs.
• REGR_SXX – returns the sum of squares of the independent expressions used in a linear

regression model. Use this function to evaluate the statistical validity of the regression
model.

• REGR_SXY – returns the sum of products of the dependent and independent variables. Use
this function to evaluate the statistical validity of the regression model.

• REGR_SYY – returns values that can evaluate the statistical validity of a regression model.

You can use the regression analysis functions either as windowing aggregate functions (where
you specify a window function type over a window name or specification) or as simple
aggregate functions with no OVER clause.

Weighted OLAP aggregates
The weighted OLAP aggregate functions calculate weighted moving averages:

• EXP_WEIGHTED_AVG – calculates an exponentially weighted moving average.
Weightings determine the relative importance of each quantity comprising the average.
Weights in EXP_WEIGHTED_AVG decrease exponentially. Exponential weighting applies

Using OLAP

 56 Sybase IQ

more weight to the most recent values and decreases the weight for older values, while still
applying some weight

• WEIGHTED_AVG – calculates a linearly weighted moving average where weights
decrease arithmetically over time. Weights decrease from the highest weight for the most
recent data points, down to zero for the oldest data point.

The window specification must contain an ORDER_BY clause.

Nonstandard database industry extensions
Non-ANSI SQL/OLAP aggregate function extensions used in the database industry include
FIRST_VALUE, MEDIAN, and LAST_VALUE.

• FIRST_VALUE – returns the first value from a set of values.
• MEDIAN – returns the median from an expression.
• LAST_VALUE – returns the last value from a set of values.

The FIRST_VALUE and LAST_VALUE functions require a window specification. You can use
the MEDIAN function either as windowing aggregate function (where you specify a window
function type over a window name or specification) or as a simple aggregate function with no
OVER clause.

See also
• Distribution Functions on page 59

• OLAP Benefits on page 22

• OLAP Evaluation on page 22

• Ranking Functions on page 48

• Windowing on page 37

• Windowing Aggregate Functions on page 52

• BNF Grammar for OLAP Functions on page 73

Interrow Functions
The interrow functions, LAG and LEAD, provide access to previous or subsequent values in a
data series, or to multiple rows in a table.

Interrow functions also partition simultaneously without a self-join. LAG provides access to a
row at a given physical offset prior to the CURRENT ROW in the table or partition. LEAD
provides access to a row at a given physical offset after the CURRENT ROW in the table or
partition.

LAG and LEAD syntax is identical. Both functions require an OVER (ORDER_BY) window
specification. For example:

LAG (value_expr) [, offset [, default]]) OVER ([PARTITION BY window
partition] ORDER BY window ordering)

and:

Using OLAP

System Administration Guide: Volume 2 57

LEAD (value_expr) [, offset [, default]]) OVER ([PARTITION BY window
partition] ORDER BY window ordering)

The PARTITION BY clause in the OVER (ORDER_BY) clause is optional. The OVER
(ORDER_BY) clause cannot contain a window frame ROWS/RANGE specification.

value_expr is a table column or expression that defines the offset data to return from the table.
You can define other functions in the value_expr, with the exception of analytic functions.

For both functions, specify the target row by entering a physical offset. The offset value is the
number of rows above or below the current row. Enter a nonnegative numeric data type
(entering a negative value generates an error). If you enter 0, Sybase IQ returns the current
row.

The optional default value defines the value to return if the offset value goes beyond the scope
of the table. The default value of default is NULL. The data type of default must be implicitly
convertible to the data type of the value_expr value, or Sybase IQ generates a conversion
error.

LAG example 1—The inter-row functions are useful in financial services applications that
perform calculations on data streams, such as stock transactions. This example uses the LAG
function to calculate the percentage change in the trading price of a particular stock. Consider
the following trading data from a fictional table called stock_trades:

traded at symbol price
------------------- ------ ------
2009-07-13 06:07:12 SQL 15.84
2009-07-13 06:07:13 TST 5.75
2009-07-13 06:07:14 TST 5.80
2009-07-13 06:07:15 SQL 15.86
2009-07-13 06:07:16 TST 5.90
2009-07-13 06:07:17 SQL 15.86

Note: The fictional stock_trades table is not available in the iqdemo database.

The query partitions the trades by stock symbol, orders them by time of trade, and uses the
LAG function to calculate the percentage increase or decrease in trade price between the
current trade and the previous trade:

select stock_symbol as 'Stock',
 traded_at as 'Date/Time of Trade',
 trade_price as 'Price/Share',
 cast ((((trade_price
 - (lag(trade_price, 1)
 over (partition by stock_symbol
 order by traded_at)))
 / trade_price)
 * 100.0) as numeric(5, 2))
 as '% Price Change vs Previous Price'
from stock_trades
order by 1, 2

Using OLAP

 58 Sybase IQ

The query returns these results:

Stock Date/Time of Trade Price/ % Price Change_vs
symbol Share Previous Price
------ ------------------- ----- -----------------
SQL 2009-07-13 06:07:12 15.84 NULL
SQL 2009-07-13 06:07:15 15.86 0.13
SQL 2009-07-13 06:07:17 15.86 0.00
TST 2009-07-13 06:07:13 5.75 NULL
TST 2009-07-13 06:07:14 5.80 0.87
TST 2009-07-13 06:07:16 5.90 1.72

The NULL result in the first and fourth output rows indicates that the LAG function is out of
scope for the first row in each of the two partitions. Since there is no previous row to compare
to, Sybase IQ returns NULL as specified by the default variable.

Distribution Functions
SQL/OLAP defines several functions that deal with ordered sets.

The two inverse distribution functions are PERCENTILE_CONT and PERCENTILE_DISC.
These analytical functions take a percentile value as the function argument and operate on a
group of data specified in the WITHIN GROUP clause or operate on the entire data set.

These functions return one value per group. For PERCENTILE_DISC (discrete), the data type
of the results is the same as the data type of its ORDER BY item specified in the WITHIN
GROUP clause. For PERCENTILE_CONT (continuous), the data type of the results is either
numeric, if the ORDER BY item in the WITHIN GROUP clause is a numeric, or double, if the
ORDER BY item is an integer or floating point.

The inverse distribution analytical functions require a WITHIN GROUP (ORDER BY) clause.
For example:

PERCENTILE_CONT (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

The value of expression1 must be a constant of numeric data type and range from 0 to 1
(inclusive). If the argument is NULL, then a “wrong argument for percentile” error is returned.
If the argument value is less than 0, or greater than 1, then a “data value out of range” error is
returned.

The ORDER BY clause, which must be present, specifies the expression on which the
percentile function is performed and the order in which the rows are sorted in each group. This
ORDER BY clause is used only within the WITHIN GROUP clause and is not an ORDER BY for
the SELECT statement.

The WITHIN GROUP clause distributes the query result into an ordered data set from which the
function calculates a result.

Using OLAP

System Administration Guide: Volume 2 59

The value expression2 is a sort specification that must be a single expression involving a
column reference. Multiple expressions are not allowed and no rank analytical functions, set
functions, or subqueries are allowed in this sort expression.

The ASC or DESC parameter specifies the ordering sequence as ascending or descending.
Ascending order is the default.

Inverse distribution analytical functions are allowed in a subquery, a HAVING clause, a view, or
a union. The inverse distribution functions can be used anywhere the simple nonanalytical
aggregate functions are used. The inverse distribution functions ignore the NULL value in the
data set.

PERCENTILE_CONT example—This example uses the PERCENTILE_CONT function to
determine the 10th percentile value for car sales in a region using the following data set:

sales region dealer_name
----- --------- -----------
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

In the following example query, the SELECT statement contains the PERCENTILE_CONT
function:

SELECT region, PERCENTILE_CONT(0.1)
WITHIN GROUP (ORDER BY ProductID DESC)
FROM ViewSalesOrdersSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales in a region:

region percentile_cont
--------- ---------------
Canada 601.0
Central 700.0
Eastern 700.0

South 700.0
Western 700.0

PERCENTILE_DISC example—This example uses the PERCENTILE_DISC function to
determine the 10th percentile value for car sales in a region, using the following data set:

Using OLAP

 60 Sybase IQ

sales region dealer_name
----- --------- -----------
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

In the following query, the SELECT statement contains the PERCENTILE_DISC function:
SELECT region, PERCENTILE_DISC(0.1) WITHIN GROUP
 (ORDER BY sales DESC)
FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales in each region:
region percentile_cont
--------- ---------------
Northeast 900
Northwest 800
South 500

For more information about the distribution functions, see Reference: Building Blocks,
Tables, and Procedures > SQL Functions > PERCENTILE_CONT function [Analytical] and
PERCENTILE_DISC function [Analytical].

See also
• OLAP Benefits on page 22
• OLAP Evaluation on page 22
• Ranking Functions on page 48
• Statistical Aggregate Functions on page 54
• Windowing on page 37
• Windowing Aggregate Functions on page 52
• BNF Grammar for OLAP Functions on page 73

Numeric Functions
OLAP numeric functions supported by Sybase IQ include CEILING (CEIL is an alias), EXP
(EXPONENTIAL is an alias), FLOOR, LN (LOG is an alias), SQRT, and WIDTH_BUCKET.

<numeric value function> :: =
 <natural logarithm>
| <exponential function>

Using OLAP

System Administration Guide: Volume 2 61

| <power function>
| <square root>
| <floor function>
| <ceiling function>
| <width bucket function>

Table 4. Numeric value functions and syntax

Numeric value function Syntax

Natural logarithm LN (numeric-expression)

Exponential function EXP (numeric-expression)

Power function POWER (numeric-expression1, numeric-expression2)

Square root SQRT (numeric-expression)

Floor function FLOOR (numeric-expression)

Ceiling function CEILING (numeric-expression)

Width bucket function WIDTH_BUCKET (expression, min_value, max_value,
num_buckets)

The semantics of the numeric value functions are:

• LN – returns the natural logarithm of the argument value. Raises an error condition if the
argument value is 0 or negative. LN is a synonym for LOG.

• EXP – returns the value computed by raising the value of e (the base of natural logarithms)
to the power specified by the value of the argument.

• POWER – returns the value computed by raising the value of the first argument to the
power specified by the value of the second argument. If the first argument is 0 and the
second is 0, returns one. If the first argument is 0 and the second is positive, returns 0. If the
first argument is 0 and the second argument is negative, raises an exception. If the first
argument is negative and the second is not an integer, raises an exception.

• SQRT – returns the square root of the argument value, defined by syntax transformation to
“POWER (expression, 0.5).”

• FLOOR – returns the integer value nearest to positive infinity that is not greater than the
value of the argument.

• CEILING – returns the integer value nearest to negative infinity that is not less than the
value of the argument. CEIL is a synonym for CEILING.

WIDTH_BUCKET function
The WIDTH_BUCKET function is somewhat more complicated than the other numeric value
functions. It accepts four arguments: “live value,” two range boundaries, and the number of
equal-sized (or as nearly so as possible) partitions into which the range indicated by the
boundaries is to be divided. WIDTH_BUCKET returns a number indicating the partition into
which the live value should be placed, based on its value as a percentage of the difference

Using OLAP

 62 Sybase IQ

between the higher range boundary and the lower boundary. The first partition is partition
number one.

To avoid errors when the live value is outside the range of boundaries, live values that are less
than the smaller range boundary are placed into an additional first bucket, bucket zero, and live
values that are greater than the larger range boundary are placed into an additional last bucket,
bucket N+1.

For example, WIDTH_BUCKET (14, 5, 30, 5) returns 2 because:
• (30-5)/5 is 5, so the range is divided into 5 partitions, each 5 units wide.
• The first bucket represents values from 0.00% to 19.999 …%; the second represents values

from 20.00% to 39.999 …%; and the fifth bucket represents values from 80.00% to
100.00%.

• The bucket chosen is determined by computing (5*(14-5)/(30-5)) + 1 — one more than the
number of buckets times the ratio of the offset of the specified value from the lower value to
the range of possible values, which is (5*0/25) + 1, which is 2.8. This value is the range of
values for bucket number 2 (2.0 through 2.999 …), so bucket number 2 is chosen.

WIDTH_BUCKET example
The following example creates a ten-bucket histogram on the credit_limit column for
customers in Massachusetts in the sample table and returns the bucket number (“Credit
Group”) for each customer. Customers with credit limits greater than the maximum value are
assigned to the overflow bucket, 11:

Note: This example is for illustration purposes only and was not generated using the iqdemo
database.

SELECT customer_id, cust_last_name, credit_limit,
 WIDTH_BUCKET(credit_limit, 100, 5000, 10) "Credit
 Group"
 FROM customers WHERE territory = 'MA'
 ORDER BY "Credit Group";

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group
----------- -------------- ------------ ------------
825 Dreyfuss 500 1
826 Barkin 500 1
853 Palin 400 1
827 Siegel 500 1
843 Oates 700 2

Using OLAP

System Administration Guide: Volume 2 63

844 Julius 700 2
835 Eastwood 1200 3
840 Elliott 1400 3
842 Stern 1400 3
841 Boyer 1400 3
837 Stanton 1200 3
836 Berenger 1200 3
848 Olmos 1800 4
847 Streep 5000 11

When the bounds are reversed, the buckets are open-closed intervals. For example:
WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket number 1 is (4000, 5000],
bucket number 2 is (3000, 4000], and bucket number 5 is (0, 1000]. The overflow bucket is
numbered 0 (5000, +infinity), and the underflow bucket is numbered 6 (-infinity, 0].

See also
Reference: Building Blocks, Tables, and Procedures > SQL Functions > BIT_LENGTH
function [String], EXP function [Numeric], FLOOR function [Numeric], POWER function
[Numeric], SQRT function [Numeric], and WIDTH_BUCKET function [Numerical].

OLAP Rules and Restrictions
The following provides an overview for the rules and restrictions that govern OLAP
functionality.

OLAP functions can be used
Sybase IQ provides SQL OLAP functions with rules, restrictions and limitations.

• In the SELECT list
• In expressions
• As arguments of scalar functions
• In the final ORDER BY clause (by using aliases or positional references to OLAP functions

elsewhere in the query)

OLAP functions cannot be used
OLAP functions cannot be used under these conditions:

• In subqueries.
• In the search condition of a WHERE clause.
• As arguments for SET (aggregate) functions. For example, the following expression is

invalid:
SUM(RANK() OVER(ORDER BY dollars))

• A windowed aggregate cannot be an argument to argument to another unless the inner one
was generated within a view or derived table. The same applies to ranking functions.

• Window aggregate and RANK functions are not allowed in a HAVING clause.

Using OLAP

 64 Sybase IQ

• Window aggregate functions should not specify DISTINCT.
• Window function cannot be nested inside of other window functions.
• Inverse distribution functions are not supported with the OVER clause.
• Outer references are not allowed in a window definition clause.
• Correlation references are allowed within OLAP functions, but correlated column aliases

are not allowed.

Columns referenced by an OLAP function must be grouping columns or aggregate functions
from the same query block in which the OLAP function and the GROUP BY clause appear.
OLAP processing occurs after the grouping and aggregation operations and before the final
ORDER BY clause is applied; therefore, it must be possible to derive the OLAP expressions
from those intermediate results. If there is no GROUP BY clause in a query block, OLAP
functions can reference other columns in the select list.

Sybase IQ limitations
The Sybase IQ limitations with SQL OLAP functions are:

• User-defined functions in a window frame definition are not supported.
• The constants used in a window frame definition must be unsigned numeric value and

should not exceed the value of maximum BIG INT 263-1.

• Window aggregate functions and RANK functions cannot be used in DELETE and UPDATE
statements.

• Window aggregate and RANK functions are not allowed in subqueries.
• CUME_DIST is currently not supported.
• Grouping sets are currently not supported.
• Correlation and linear regression functions are currently not supported.

Additional OLAP Examples
This section provides additional examples using the OLAP functions.

Both start and end points of a window may vary as intermediate result rows are processed. For
example, computing a cumulative sum involves a window with the start point fixed at the first
row of each partition and an end point that slides along the rows of the partition to include the
current row.

As another example, both the start and end points of the window can be variable yet define a
constant number of rows for the entire partition. Such a construction lets users compose
queries that compute moving averages; for example, a SQL query that returns a moving three-
day average stock price.

Using OLAP

System Administration Guide: Volume 2 65

Example: Window Functions in Queries
This query lists all products shipped in July and August 2005 and the cumulative shipped
quantity by shipping date:

SELECT p.id, p.description, s.quantity, s.shipdate,

SUM(s.quantity) OVER (PARTITION BY productid ORDER BYs.shipdate rows
between unbounded preceding andcurrent row)FROM SalesOrderItems s
JOIN Products p on(s.ProductID =p.id) WHERE s.ShipDate BETWEEN
'2001-05-01' and'2001-08-31' AND s.quantity > 40ORDER BY p.id;

The results from the above query:

ID description quantity ship_date sum quantity
--- ----------- -------- --------- ------------
302 Crew Neck 60 2001-07-02 60
400 Cotton Cap 60 2001-05-26 60
400 Cotton Cap 48 2001-07-05 108
401 Wool cap 48 2001-06-02 48
401 Wool cap 60 2001-06-30 108
401 Wool cap 48 2001-07-09 156
500 Cloth Visor 48 2001-06-21 48
501 Plastic Visor 60 2001-05-03 60
501 Plastic Visor 48 2001-05-18 108
501 Plastic Visor 48 2001-05-25 156
501 Plastic Visor 60 2001-07-07 216
601 Zipped Sweatshirt 60 2001-07-19 60
700 Cotton Shorts 72 2001-05-18 72
700 Cotton Shorts 48 2001-05-31 120

In this example, the computation of the SUM window function occurs after the join of the two
tables and the application of the query’s WHERE clause. The query uses an inline window
specification that specifies that the input rows from the join is processed as follows:

1. Partition (group) the input rows based on the value of the prod_id attribute.

2. Within each partition, sort the rows by the ship_date attribute.

3. For each row in the partition, evaluate the SUM() function over the quantity attribute, using
a sliding window consisting of the first (sorted) row of each partition, up to and including
the current row.

An alternative construction for the query is to specify the window separate from the functions
that use it. This is useful when more than one window function is specified that are based on
the same window. In the case of the query using window functions, a construction that uses the
window clause (declaring a window identified by cumulative) is as follows:

SELECT p.id, p.description, s.quantity, s.shipdate, SUM(s.quantity)
OVER(cumulative ROWS BETWEEN UNBOUNDED PRECEDING and CURRENT ROW)
cumulative FROM SalesOrderItems s JOIN Products p On (s.ProductID
=p.id)WHERE s.shipdate BETWEEN ‘2001-07-01’ and ‘2001-08-31’Window
cumulative as (PARTITION BY s.productid ORDER BY s.shipdate)ORDER BY
p.id;

Using OLAP

 66 Sybase IQ

The window clause appears before the ORDER BY clause in the query specification. When
using a window clause, the following restrictions apply:

• The inline window specification cannot contain a PARTITION BY clause.
• The window specified within the window clause cannot contain a window frame clause.

<WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

• Either the inline window specification, or the window specification specified in the
window clause, can contain a window order clause, but not both.
<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Example: Window with multiple functions
This query defines a single (named) window and compute multiple function results over it:

SELECT p.ID, p.Description, s.quantity, s.ShipDate,SUM(s.Quantity)
OVER ws1, MIN(s.quantity) OVER ws1FROM SalesOrderItems s JOIN
Products p ON (s.ProductID =p.ID) WHERE s.ShipDate BETWEEN
'2000-01-09' AND'2000-01-17' AND s.Quantity > 40 window ws1
AS(PARTITION BY productid ORDER BY shipdate rowsbetween unbounded
preceding and current row)ORDER BY p.id;

The results from the above query:

ID Description quantity shipDate SUM MIN
--- ----------- -------- ----------- --- ---
400 Cotton Cap 48 2000-01-09 48 48
401 Wool cap 48 2000-01-09 48 48
500 Cloth Visor 60 2000-01-14 60 60
500 Cloth Visor 60 2000-01-15 120 60
501 Plastic Visor 60 2000-01-14 60 60

Example: Calculate cumulative sum
This query calculates a cumulative sum of salary per department and ORDER BY
start_date.

SELECT dept_id, start_date, name, salary,
 SUM(salary) OVER (PARTITION BY dept_id ORDER BY
 start_date ROWS BETWEEN UNBOUNDED PRECEDING AND
 CURRENT ROW)
FROM emp1
ORDER BY dept_id, start_date;

The results from the above query:

DepartmentID start_date name salary sum

 (salary)

------- ---------- ---- ------ ---------
100 1996-01-01 Anna
18000 18000
100 1997-01-01 Mike

Using OLAP

System Administration Guide: Volume 2 67

28000 46000
100 1998-01-01 Scott 29000 75000
100 1998-02-01 Antonia 22000 97000
100 1998-03-12 Adam 25000 122000
100 1998-12-01 Amy 18000 140000
200 1998-01-01 Jeff 18000 18000
200 1998-01-20 Tim 29000 47000
200 1998-02-01 Jim 22000 69000
200 1999-01-10 Tom 28000 97000
300 1998-03-12 Sandy 55000 55000
300 1998-12-01 Lisa 38000 93000
300 1999-01-10 Peter 48000 141000

Example: Calculate moving average
This query generates the moving average of sales in three consecutive months. The size of the
window frame is three rows: two preceding rows plus the current row. The window slides from
the beginning to the end of the partition.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN 2 PRECEDING AND CURRENT ROW)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales avg(sales)
------- --------- ------ ----------
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00
20 1 20 20.00
20 2 30 25.00
20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00

Example: ORDER BY results
In this example, the top ORDER BY clause of a query is applied to the final results of a window
function. The ORDER BY in a window clause is applied to the input data of a window function.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN 2 PRECEDING AND CURRENT ROW)

Using OLAP

 68 Sybase IQ

FROM sale WHERE rep_id = 1
ORDER BY prod_id desc, month_num;

The results from the above query:

prod_id month_num sales avg(sales)
------- --------- ----- ----------
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00
20 1 20 20.00
20 2 30 25.00
20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00

Example: Multiple aggregate functions in a query
This example calculates aggregate values against different windows in a query.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (WS1 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS
 CAvg, SUM(sales) OVER(WS1 ROWS BETWEEN UNBOUNDED
 PRECEDING AND CURRENT ROW) AS CSum
FROM sale WHERE rep_id = 1 WINDOW WS1 AS (PARTITION BY
 prod_id
ORDER BY month_num)
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales CAvg CSum
------- --------- ----- ---- ----
10 1 100 110.00 100
10 2 120 106.66 220
10 3 100 116.66 320
10 4 130 116.66 450
10 5 120 120.00 570
10 6 110 115.00 680
20 1 20 25.00 20
20 2 30 25.00 50
20 3 25 28.33 75
20 4 30 28.66 105
20 5 31 27.00 136
20 6 20 25.50 156
30 1 10 10.50 10
30 2 11 11.00 21

Using OLAP

System Administration Guide: Volume 2 69

30 3 12 8.00 33
30 4 1 6.50 34

Example: Window frame comparing ROWS and RANGE
This query compares ROWS and RANGE. The data contain duplicate ROWS per the ORDER
BY clause.

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (ws1 RANGE BETWEEN 2 PRECEDING AND CURRENT ROW) AS
 Range_sum, SUM(sales) OVER
 (ws1 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS
 Row_sum
FROM sale window ws1 AS (PARTITION BY prod_id ORDER BY
 month_num)
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales Range_sum Row_sum
------- --------- ----- ---------- -------
10 1 100 250 100
10 1 150 250 250
10 2 120 370 370
10 3 100 470 370
10 4 130 350 350
10 5 120 381 350
10 5 31 381 281
10 6 110 391 261
20 1 20 20 20
20 2 30 50 50
20 3 25 75 75
20 4 30 85 85
20 5 31 86 86
20 6 20 81 81
30 1 10 10 10
30 2 11 21 21
30 3 12 33 33
30 4 1 25 24
30 4 1 25 14

Example: Window frame excludes current row
In this example, you can define the window frame to exclude the current row. The query
calculates the sum over four rows, excluding the current row.

SELECT prod_id, month_num, sales, sum(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEN 6 PRECEDING AND 2 PRECEDING)
FROM sale
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales sum(sales)
------- --------- ----- ----------

Using OLAP

 70 Sybase IQ

10 1 100 (NULL)
10 1 150 (NULL)
10 2 120 (NULL)
10 3 100 250
10 4 130 370
10 5 120 470
10 5 31 470
10 6 110 600
20 1 20 (NULL)
20 2 30 (NULL)
20 3 25 20
20 4 30 50
20 5 31 75
20 6 20 105
30 1 10 (NULL)
30 2 11 (NULL)
30 3 12 10
30 4 1 21
30 4 1 21

Example: Window frame for RANGE
This query illustrates the RANGE window frame. The number of rows used in the summation
is variable.

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEN 1 FOLLOWING AND 3 FOLLOWING)
FROM sale
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales sum(sales)
------- --------- ----- ----------
10 1 100 350
10 1 150 350
10 2 120 381
10 3 100 391
10 4 130 261
10 5 120 110
10 5 31 110
10 6 110 (NULL)
20 1 20 85
20 2 30 86
20 3 25 81
20 4 30 51
20 5 31 20
20 6 20 (NULL)
30 1 10 25
30 2 11 14
30 3 12 2
30 4 1 (NULL)
30 4 1 (NULL)

Using OLAP

System Administration Guide: Volume 2 71

Example: Unbounded preceding and unbounded following
In this example, the window frame can include all rows in the partition. The query calculates
max(sales) sale over the entire partition (no duplicate rows in a month).

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales SUM(sales)
------- --------- ----- ----------
10 1 100 680
10 2 120 680
10 3 100 680
10 4 130 680
10 5 120 680
10 6 110 680
20 1 20 156
20 2 30 156
20 3 25 156
20 4 30 156
20 5 31 156
20 6 20 156
30 1 10 34
30 2 11 34
30 3 12 34
30 4 1 34

The query in this example is equivalent to:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

Example: Default window frame for RANGE
This query illustrates the default window frame for RANGE:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num)
FROM sale
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales SUM(sales)
------- --------- ----- ----------
10 1 100 250
10 1 150 250
10 2 120 370
10 3 100 470

Using OLAP

 72 Sybase IQ

10 4 130 600
10 5 120 751
10 5 31 751
10 6 110 861
20 1 20 20
20 2 30 50
20 3 25 75
20 4 30 105
20 5 31 136
20 6 20 156
30 1 10 10
30 2 11 21
30 3 12 33
30 4 1 35
30 4 1 35

The query in this example is equivalent to:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
FROM sale
ORDER BY prod_id, month_num;

BNF Grammar for OLAP Functions
The Backus-Naur Form grammar outlines the specific syntactic support for the various ANSI
SQL analytic functions, many of which are implemented in Sybase IQ.

Grammar rule 1
<SELECT LIST EXPRESSION> ::=
 <EXPRESSION>
 | <GROUP BY EXPRESSION>
 | <AGGREGATE FUNCTION>
 | <GROUPING FUNCTION>
 | <TABLE COLUMN>
 | <WINDOWED TABLE FUNCTION>

Grammar rule 2
<QUERY SPECIFICATION> ::=
 <FROM CLAUSE>
 [<WHERE CLAUSE>]
 [<GROUP BY CLAUSE>]
 [<HAVING CLAUSE>]
 [<WINDOW CLAUSE>]
[<ORDER BY CLAUSE>]

Grammar rule 3
<ORDER BY CLAUSE> ::= <ORDER SPECIFICATION>

Using OLAP

System Administration Guide: Volume 2 73

Grammar rule 4
<GROUPING FUNCTION> ::=
 GROUPING <LEFT PAREN> <GROUP BY EXPRESSION>
 <RIGHT PAREN>

Grammar rule 5
<WINDOWED TABLE FUNCTION> ::=
 <WINDOWED TABLE FUNCTION TYPE> OVER <WINDOW NAME OR
 SPECIFICATION>

Grammar rule 6
<WINDOWED TABLE FUNCTION TYPE> ::=
 <RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
 | ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
 | <WINDOW AGGREGATE FUNCTION>

Grammar rule 7
<RANK FUNCTION TYPE> ::=
 RANK | DENSE RANK | PERCENT RANK | CUME_DIST

Grammar rule 8
<WINDOW AGGREGATE FUNCTION> ::=
 <SIMPLE WINDOW AGGREGATE FUNCTION>
 | <STATISTICAL AGGREGATE FUNCTION>

Grammar rule 9
<AGGREGATE FUNCTION> ::=
 <DISTINCT AGGREGATE FUNCTION>
 | <SIMPLE AGGREGATE FUNCTION>
 | <STATISTICAL AGGREGATE FUNCTION>

Grammar rule 10
<DISTINCT AGGREGATE FUNCTION> ::=
 <BASIC AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <DISTINCT> <EXPRESSION> <RIGHT PAREN>
 | LIST <LEFT PAREN> DISTINCT <EXPRESSION>
 [<COMMA> <DELIMITER>]
 [<ORDER SPECIFICATION>] <RIGHT PAREN>

Grammar rule 11
<BASIC AGGREGATE FUNCTION TYPE> ::=
 SUM | MAX | MIN | AVG | COUNT

Grammar rule 12
<SIMPLE AGGREGATE FUNCTION> ::=
 <SIMPLE AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <EXPRESSION> <RIGHT PAREN>

Using OLAP

 74 Sybase IQ

 | LIST <LEFT PAREN> <EXPRESSION> [<COMMA>
 <DELIMITER>]
 [<ORDER SPECIFICATION>] <RIGHT PAREN>

Grammar rule 13
<SIMPLE AGGREGATE FUNCTION TYPE> ::= <SIMPLE WINDOW AGGREGATE
FUNCTION TYPE>

Grammar rule 14
<SIMPLE WINDOW AGGREGATE FUNCTION> ::=
 <SIMPLE WINDOW AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <EXPRESSION> <RIGHT PAREN>
| GROUPING FUNCTION

Grammar rule 15
<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
 <BASIC AGGREGATE FUNCTION TYPE>
 | STDDEV | STDDEV_POP | STDDEV_SAMP
 | VARIANCE | VARIANCE_POP | VARIANCE_SAMP

Grammar rule 16
<STATISTICAL AGGREGATE FUNCTION> ::=
 <STATISTICAL AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <DEPENDENT EXPRESSION> <COMMA> <INDEPENDENT
 EXPRESSION> <RIGHT PAREN>

Grammar rule 17
<STATISTICAL AGGREGATE FUNCTION TYPE> ::=
 CORR | COVAR_POP | COVAR_SAMP | REGR_R2 |
 REGR_INTERCEPT | REGR_COUNT | REGR_SLOPE |
 REGR_SXX | REGR_SXY | REGR_SYY | REGR_AVGY |
 REGR_AVGX

Grammar rule 18
<WINDOW NAME OR SPECIFICATION> ::=
 <WINDOW NAME> | <IN-LINE WINDOW SPECIFICATION>

Grammar rule 19
<WINDOW NAME> ::= <IDENTIFIER>

Grammar rule 20
<IN-LINE WINDOW SPECIFICATION> ::= <WINDOW SPECIFICATION>

Grammar rule 21
<WINDOW CLAUSE> ::= <WINDOW WINDOW DEFINITION LIST>

Using OLAP

System Administration Guide: Volume 2 75

Grammar rule 22
<WINDOW DEFINITION LIST> ::=
 <WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>
 } . . .]

Grammar rule 23
<WINDOW DEFINITION> ::=
 <NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

Grammar rule 24
<NEW WINDOW NAME> ::= <WINDOW NAME>

Grammar rule 25
<WINDOW SPECIFICATION> ::=
 <LEFT PAREN> <WINDOW SPECIFICATION> <DETAILS> <RIGHT
 PAREN>

Grammar rule 26
<WINDOW SPECIFICATION DETAILS> ::=
 [<EXISTING WINDOW NAME>]
 [<WINDOW PARTITION CLAUSE>]
 [<WINDOW ORDER CLAUSE>]
 [<WINDOW FRAME CLAUSE>]

Grammar rule 27
<EXISTING WINDOW NAME> ::= <WINDOW NAME>

Grammar rule 28
<WINDOW PARTITION CLAUSE> ::=
 PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

Grammar rule 29
<WINDOW PARTITION EXPRESSION LIST> ::=
 <WINDOW PARTITION EXPRESSION>
 [{ <COMMA> <WINDOW PARTITION EXPRESSION> } . . .]

Grammar rule 30
<WINDOW PARTITION EXPRESSION> ::= <EXPRESSION>

Grammar rule 31
<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Using OLAP

 76 Sybase IQ

Grammar rule 32
<WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

Grammar rule 33
<WINDOW FRAME UNIT> ::= ROWS | RANGE

Grammar rule 34
<WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW FRAME
BETWEEN>

Grammar rule 35
<WINDOW FRAME START> ::=
 UNBOUNDED PRECEDING
 | <WINDOW FRAME PRECEDING>
 | CURRENT ROW

Grammar rule 36
<WINDOW FRAME PRECEDING> ::= <UNSIGNED VALUE SPECIFICATION>
PRECEDING

Grammar rule 37
<WINDOW FRAME BETWEEN> ::=
 BETWEEN <WINDOW FRAME BOUND 1> AND <WINDOW FRAME
 BOUND 2>

Grammar rule 38
<WINDOW FRAME BOUND 1> ::= <WINDOW FRAME BOUND>

Grammar rule 39
<WINDOW FRAME BOUND 2> ::= <WINDOW FRAME BOUND>

Grammar rule 40
<WINDOW FRAME BOUND> ::=
 <WINDOW FRAME START>
 | UNBOUNDED FOLLOWING
 | <WINDOW FRAME FOLLOWING>

Grammar rule 41
<WINDOW FRAME FOLLOWING> ::= <UNSIGNED VALUE SPECIFICATION>
FOLLOWING

Grammar rule 42
<GROUP BY EXPRESSION> ::= <EXPRESSION>

Using OLAP

System Administration Guide: Volume 2 77

Grammar rule 43
<SIMPLE GROUP BY TERM> ::=
 <GROUP BY EXPRESSION>
 | <LEFT PAREN> <GROUP BY EXPRESSION> <RIGHT PAREN>
 | <LEFT PAREN> <RIGHT PAREN>

Grammar rule 44
<SIMPLE GROUP BY TERM LIST> ::=
 <SIMPLE GROUP BY TERM> [{ <COMMA> <SIMPLE GROUP BY
 TERM> } . . .]

Grammar rule 45
<COMPOSITE GROUP BY TERM> ::=
 <LEFT PAREN> <SIMPLE GROUP BY TERM>
 [{ <COMMA> <SIMPLE GROUP BY TERM> } . . .]
 <RIGHT PAREN>

Grammar rule 46
<ROLLUP TERM> ::= ROLLUP <COMPOSITE GROUP BY TERM>

Grammar rule 47
<CUBE TERM> ::= CUBE <COMPOSITE GROUP BY TERM>

Grammar rule 48
<GROUP BY TERM> ::=
 <SIMPLE GROUP BY TERM>
 | <COMPOSITE GROUP BY TERM>
 | <ROLLUP TERM>
 | <CUBE TERM>

Grammar rule 49
<GROUP BY TERM LIST> ::=
 <GROUP BY TERM> [{ <COMMA> <GROUP BY TERM> } …]

Grammar rule 50
<GROUP BY CLAUSE> ::= GROUP BY <GROUPING SPECIFICATION>

Grammar rule 51
<GROUPING SPECIFICATION> ::=
 <GROUP BY TERM LIST>
 | <SIMPLE GROUP BY TERM LIST> WITH ROLLUP
 | <SIMPLE GROUP BY TERM LIST> WITH CUBE
 | <GROUPING SETS SPECIFICATION>

Using OLAP

 78 Sybase IQ

Grammar rule 52
<GROUPING SETS SPECIFICATION> ::=
 GROUPING SETS <LEFT PAREN> <GROUP BY TERM LIST>
 <RIGHT PAREN>

Grammar rule 53
<ORDER SPECIFICATION> ::= ORDER BY <SORT SPECIFICATION LIST>
 <SORT SPECIFICATION LIST> ::= <SORT SPECIFICATION>
 [{ <COMMA> <SORT SPECIFICATION> } . . .]
 <SORT SPECIFICATION> ::= <SORT KEY>
 [<ORDERING SPECIFICATION>] [<NULL ORDERING>]
 <SORT KEY> ::= <VALUE EXPRESSION>
 <ORDERING SPECIFICATION> ::= ASC | DESC
 <NULL ORDERING> := NULLS FIRST | NULLS LAST

See also
• Distribution Functions on page 59

• OLAP Benefits on page 22

• OLAP Evaluation on page 22

• Ranking Functions on page 48

• Statistical Aggregate Functions on page 54

• Windowing on page 37

• Windowing Aggregate Functions on page 52

Using OLAP

System Administration Guide: Volume 2 79

Using OLAP

 80 Sybase IQ

Sybase IQ as a Data Server

Sybase IQ supports client application connections through either ODBC or JDBC. This
chapter describes how to use Sybase IQ as a data server for client applications.

With certain limitations, Sybase IQ may also appear to certain client applications as an Open
Server.This chapter also briefly describes the restrictions for creating and running these
applications.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data
Access APIs > Sybase Open Client API > Open Client architecture.

The facilities described in this chapter do not provide remote data access for IQ users on
Windows and Sun Solaris systems. Remote data access is provided by Component Integration
Services (CIS), the core interoperability feature of OmniConnect™.

Client/Server Interfaces to Sybase IQ
To simplify, use a Sybase application or a third-party client application with Sybase IQ.

An understanding of how these pieces fit together may be helpful for configuring your
database and setting up applications. This section explains how the pieces fit together. For
more details about third-party client applications, see the Installation and Configuration
Guide.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Open Clients, Open Servers, and TDS.

Configuring IQ Servers with iqdsedit
Sybase IQ can communicate with other Adaptive Servers, Open Server applications, and
client software on the network.

Clients can talk to one or more servers, and servers can communicate with other servers via
remote procedure calls. In order for products to interact with one another, each needs to know
where the others reside on the network. This network service information is stored in the
interfaces file.

Note: Sybase IQ provides versions of Open Client utilities that have limited functionality to
enable INSERT...LOCATION, including:

• iqisql
• iqdsedit
• iqdscp (UNIX only)
• iqocscfg (Windows only)

Sybase IQ as a Data Server

System Administration Guide: Volume 2 81

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-openclient-secta-3841059.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-openclient-secta-3841059.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/open-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/open-tds.html

The Interfaces File
When you use an Open Client™ program to connect to a database server, the program looks up
the server name in the interfaces file and then connects to the server using the address.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > The interfaces
file.

iqdsedit Database Administration Utility
The iqdsedit utility allows you to configure the interfaces file (interfaces or SQL.ini).

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Using the DSEdit
utility.

Starting iqdsedit
On Windows, the iqdsedit executable is in the %SYBASE%\IQ-15_3\bin32 or %SYBASE
%\IQ-15_3\bin64 directories, which is automatically added to your path during
installation.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Starting DSEdit.

Opening a Directory Services Session
You can add, modify, or delete entries for servers, including Sybase IQ servers in the Select
Directory Service window.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Opening a directory
services session.

Adding a Server Entry
The server entry appears in the Server field. To specify the attributes of the server, you must
modify the entry.

The server name entered here does not need to match the name provided on the Sybase IQ
command line. The server address, not the server name, is used to identify and locate the
server.

The server name field is purely an identifier for Open Client. For Sybase IQ, if the server has
more than one database loaded, the IQDSEDIT server name entry identifies which database to
use.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Adding a server
entry.

Sybase IQ as a Data Server

 82 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/interfaces-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/interfaces-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/interfaces-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/using-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/using-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/using-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/opening-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/opening-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/opening-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-dsedit-configuring-tds.html

Adding or Changing a Server Address
Once you have entered a Server Name, you need to modify the Server Address to complete the
interfaces file entry.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Adding or changing
the server address.

Port number
The port number you enter must match the port specified on the Sybase IQ database server
command line. The default port number for the Sybase IQ server is 2638.

The following are valid server address entries:

elora,2638
123.85.234.029,2638

See also
• Starting the Database Server as an Open Server on page 85

Verifying a Server Address
On Windows, you can verify your network connection by using the Ping server command
from the Server Object menu.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Verifying the server
address.

Renaming a Server Entry
You can rename server entries from the dsedit session window.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Renaming a server
entry.

Deleting Server Entries
You can delete server entries from the dsedit session window.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Deleting server
entries.

Sybase IQ as a Data Server

System Administration Guide: Volume 2 83

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/address-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/address-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/address-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/verifying-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/verifying-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/verifying-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/renaming-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/renaming-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/renaming-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/deleting-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/deleting-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/deleting-dsedit-configuring-tds.html

Sybase Applications and Sybase IQ
The ability of Sybase IQ to act as an Open Server enables Sybase applications such as
OmniConnect to work with Sybase IQ.

To use the Open Client libraries, the client application must use only the supported system
tables, views, and stored procedures.

OmniConnect support
Sybase OmniConnect provides a unified view of disparate data within an organization,
allowing users to access multiple data sources without having to know what the data looks like
or where it is located. In addition, OmniConnect performs heterogeneous joins of data across
the enterprise, enabling cross-platform table joins of targets such as DB2, Sybase Adaptive
Server® Enterprise, SQL Anywhere, Oracle, and VSAM.

Using the Open Server interface, Sybase IQ can act as a data source for OmniConnect.

Open Client Applications and Sybase IQ
You can build Open Client applications to access data in Sybase IQ base tables using the Open
Client libraries directly from a C or C++ programming environment such as PowerSoft Power
++™. If such applications reference catalog tables, views, or system stored procedures, these
objects must be supported by both Adaptive Server Enterprise (Transact-SQL™ syntax) and
Sybase IQ.

See Reference: Building Blocks, Tables, and Procedures > Appendix A, "Compatibility with
Other Sybase Databases.

Configuring Open Client
When connecting to Sybase IQ using Open Client or when using the INSERT...LOCATION
syntax, you can set various Open Client configuration parameters in an Open Client runtime
configuration (.cfg) file.

For example, you can change the maximum default number of connections, which is
controlled by the value of the CS_MAX_CONNECT option.

The application name for INSERT...LOCATION is Sybase IQ. (The space between the
words is required.) This application name is set at the Open Client connection level, not at the
Open Client context level. For details about using an Open Client runtime configuration file
and the options available, see the Open Client Client-Library C Reference Manual.

To have the .cfg take effect, stop and restart the Sybase IQ server. You may also specify
certain configuration parameters in the INSERT...LOCATION command line. Parameters set in
INSERT...LOCATION are superseded by parameters set in the configuration file.

When used as a remote server, Sybase IQ supports Tabular Data Steam (TDS) password
encryption. The Sybase IQ server accepts a connection with an encrypted password sent by the
client. For information on connection properties to set for password encryption, see Open

Sybase IQ as a Data Server

 84 Sybase IQ

Server 15.5 > Open Client Client-Library/C Reference Manual > Client-Library Topics >
Security features > Adaptive Server Enterprise security features > Security handshaking:
encrypted password.

Note: Password encryption requires Open Client 15.0. TDS password encryption requires
Open Client 15.0 ESD #7 or later.

To enable the Sybase IQ server to accept a jConnect connection with an encrypted password,
set the jConnect ENCRYPT_PASSWORD connection property to true.

Sybase IQ as an Open Server
This section describes how to set up an Sybase IQ server to receive connections from Open
Client applications.

System Requirements
There are separate requirements at the client and server for using Sybase IQ as an Open Server.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Setting up SQL Anywhere as an Open Server >
System requirements.

Note: When connecting to a remote Sybase IQ from a local SQL Anywhere Enterprise server
using OmniConnect, use these server classes:

• To connect to Sybase IQ 12 or later, use server classes asaodbc and sajdbc.

• To connect to Sybase IQ 11.x, use server class asiq.

Starting the Database Server as an Open Server
If you want to use Sybase IQ as an Open Server, you must ensure that it is started using the
TCP/IP protocol.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Setting up SQL Anywhere as an Open Server >
Starting the database server as an Open Server.

Every application using TCP/IP on a machine uses a distinct TCP/IP port, so that network
packets are sent to the correct application. The default port for Sybase IQ is port 2638, which is
used for shared memory communications. You can specify a different port number:

start_iq -x tcpip{port=2629} -n myserver iqdemo.db

See also
• Adding or Changing a Server Address on page 83

Sybase IQ as a Data Server

System Administration Guide: Volume 2 85

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/system-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/system-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/system-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-configuring-tds.html

Configuring Your Database for Use with Open Client
Your database must be Sybase IQ 12.0 or later.

If you are using Sybase IQ together with Adaptive Server Enterprise, ensure that your
database is created for maximum compatibility with Adaptive Server Enterprise.

When connecting to Sybase IQ as an Open Server, applications frequently assume services
they expect under Adaptive Server Enterprise are provided. These services are not always
present.

See Reference: Building Blocks, Tables, and Procedures > Appendix A, "Compatibility with
Other Sybase Databases".

Characteristics of Open Client and jConnect Connections
When Sybase IQ is serving applications over TDS, it automatically sets relevant database
options to values that are compatible with SQL Anywhere Server default behavior. These
options are set temporarily, for the duration of the connection only. The client application can
override these options at any time.

Note: Sybase IQ does not support the ANSI_BLANKS, FLOAT_AS_DOUBLE, and
TSQL_HEX_CONSTANT options.

Although Sybase IQ allows longer user names and passwords, TDS client user names and
passwords cannot exceed 30 bytes. If your password or user ID is longer than 30 bytes,
attempts to connect over TDS (for example, using jConnect) return an Invalid user ID
or password error.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Setting up SQL Anywhere as an Open Server >
Characteristics of Open Client and jConnect connections.

Note: ODBC applications, including Interactive SQL applications, automatically set certain
database options to values mandated by the ODBC specification. This overwrites settings by
the LOGIN_PROCEDURE database option. For details and a workaround, see Reference:
Statements and Options > LOGIN_PROCEDURE option.

Servers with Multiple Databases
Using Open Client Library, you can connect to a specific database on a server containing
multiple databases.

• Set up entries in the interfaces file for the server.

• Use the -n parameter on the start_iq command to set up a shortcut for the database name.

Sybase IQ as a Data Server

 86 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/osg-connect.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/osg-connect.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/osg-connect.html

• Specify the -S database_name parameter with the database name on the isql command.
This parameter is required whenever you connect.

You can run the same program against multiple databases without changing the program itself
by putting the shortcut name into the program and merely changing the shortcut definition.

For example, the following interfaces file excerpt defines two servers, live_sales
and test_sales:

live_sales

 query tcp ether myhostname 5555
 master tcp ether myhostname 5555

test_sales

 query tcp ether myhostname 7777
 master tcp ether myhostname 7777

Start the server and set up an alias for a particular database. The following command sets
live_sales equivalent to salesbase.db:

start_iq -n sales_live <other parameters> -x \ ‘tcpip{port=5555}’
salesbase.db -n live_sales

To connect to the live_sales server:

isql -Udba -Psql -Slive_sales

A server name may only appear once in the interfaces file. Because the connection to
Sybase IQ is now based on the database name, the database name must be unique. If all your
scripts are set up to work on salesbase database, you will not have to modify them to work
with live_sales or test_sales.

Sybase IQ as a Data Server

System Administration Guide: Volume 2 87

Sybase IQ as a Data Server

 88 Sybase IQ

Accessing Remote Data

Sybase IQ can access data located on separate servers, both Sybase and non-Sybase, as if the
data were stored on the local server.

Sybase IQ and Remote Data
SQL Anywhere remote data access gives you access to data in other data sources. You can use
this feature to migrate data into a SQL Anywhere database. You can also use the feature to
query data across databases.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Characteristics of Open Client and jConnect connections.

Requirements for Accessing Remote Data
There are several basic elements required to access remote data.

Remote table mappings
Sybase IQ presents tables to a client application as if all the data in the tables were stored in the
database to which the application is connected.

Internally, when Sybase IQ executes a query involving remote tables, it determines the storage
location and accesses the remote location to retrieve data.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Remote table mappings.

Server Classes
A server class is assigned to each remote server. The server class specifies the access method
used to interact with the server. Different types of remote servers require different access
methods.

The server classes provide Sybase IQ detailed server capability information. Sybase IQ
adjusts its interaction with the remote server based on those capabilities.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Server classes.

Note: OMNI JDBC classes are not supported with IPv6.

Remote Servers
Before remote objects can be mapped to a local proxy table, define the remote server where the
remote object is located.

Accessing Remote Data

System Administration Guide: Volume 2 89

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161644.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161644.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161646.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161646.html

Create Remote Servers
Use the CREATE SERVER statement to set up remote server definitions.

For some systems, including Sybase IQ and SQL Anywhere, each data source describes a
database, so a separate remote server definition is needed for each database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Create remote servers
using the CREATE SERVER statement.

Loading Remote Data Without Native Classes
Load data by using DirectConnect.

Native classes use DirectConnect to access remote data sources:

• On 64-bit UNIX platforms
• On 32-bit platforms where no ODBC driver is available (for example, Microsoft SQL

Server)

Loading MS SQL Server Data into an IQ Server on UNIX
This remote data example loads MS SQL Server data into an IQ server on UNIX.

For this example, assume that:

• An Enterprise Connect Data Access (ECDA) server named mssql exists on UNIX host
myhostname, port 12530.

• The data is to be retrieved from an MS SQL server named 2000 on host myhostname, port
1433.

1. Using DirectConnect documentation, configure DirectConnect for your data source.

2. Make sure that ECDA server (mssql) is listed in the Sybase IQ interfaces file:

mssql
master tcp ether myhostname 12530
query tcp ether myhostname 12530

3. Add a new user, using the user ID and password for server mssql:

isql -Udba -Psql -Stst_iqdemo
grant connect to chill identified by chill
grant dba to chill

4. Log in as the new user to create a local table on Sybase IQ:

isql -Uchill -Pchill -Stst_iqdemo
create table billing(status char(1), name varchar(20), telno int)

5. Insert data:

insert into billing location ‘mssql.pubs’ { select * from
billing }

Accessing Remote Data

 90 Sybase IQ

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-defining-omni-using.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-defining-omni-using.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-defining-omni-using.html

Querying Data Without Native Classes
Follow these guidelines to query data without native classes.

1. Configure ASE/CIS with a remote server and proxy to connect via DirectConnect. For
example, use DirectConnect for Oracle to the Oracle server.

2. Configure Sybase IQ with a remote server using the ASEJDBC class to the ASE server.
(The ASEODBC class is unavailable because there is no 64-bit Unix ODBC driver for
ASE.)

3. Use the CREATE EXISTING TABLE statement to create proxy tables pointing to the proxy
tables in ASE which in turn point to Oracle.

Querying Remote Data Using DirectConnect and Proxy Table from UNIX
Query data using DirectConnect.

This example shows how to access MS SQL Server data. For this example, assume the
following:

• A Sybase IQ server on host myhostname, port 7594.
• An Adaptive Server Enterprise server on host myhostname, port 4101.
• An Enterprise Connect Data Access (ECDA) server exists named mssql on host

myhostname, port 12530.
• The data is to be retrieved from an MS SQL server named 2000 on host myhostname, port

1433.

Setting Up Adaptive Server Enterprise to Query MS SQL Server
Set up Adaptive Server and Component Integration Services (CIS) to query MS SQL Server
through DirectConnect.

For this example, assume that the server name is jones_1207.

1. Add an entry to the ASE interfaces file to connect to mssql:

mssql

master tcp ether hostname 12530

query tcp ether hostname 12530

2. Enable CIS and remote procedure call handling from the ASE server. For example, if CIS
is already enabled as the default:

sp_configure 'enable cis'

Parameter Name Default Memory Used Config Value Run Value

enable cis 1 0
1 1

(1 row affected)
(return status=0)

Accessing Remote Data

System Administration Guide: Volume 2 91

sp_configure 'cis rpc handling', 1

Parameter Name Default Memory Used Config Value Run Value

enable cis 0 0
0 1

(1 row affected)
Configuation option changed. The SQL Server need not be restarted
since the option is dynamic.

You may need to restart Adaptive Server Enterprise server after enabling CIS remote
procedure call handling in older versions such as Sybase IQ 12.5.

3. Add the DirectConnect server to the ASE server’s SYSSERVERS system table.

sp_addserver mssql, direct_connect, mssql

Adding server 'mssql', physical name 'mssql'
Server added.
(Return status=0)

4. Create the user in Adaptive Server Enterprise that will be used in Sybase IQ to connect to
ASE.
sp_addlogin tst, tsttst

Password correctly set.
Account unlocked. New login created.
(return status = 0)

grant role sa_role to tst
use tst_db
sp_adduser tst

New user added.
(return status = 0)

5. Add an external login from the master database:
use master
sp_addexternlogin mssql, tst, chill, chill

User 'tst' will be known as 'chill' in remote server 'mssql'.
(return status = 0)

6. Create an ASE proxy table as the added user from the desired database:
isql -Utst -Ttsttst
use test_db
create proxy_table billing_tst at 'mssql.pubs..billing'
select * from billing_tst

status name telno
------ ----------- -----
D BOTANICALLY 1
B BOTANICALL 2
(2 rows affected)

Accessing Remote Data

 92 Sybase IQ

Setting up Sybase IQ to Connect to the ASE Server
Follow these steps to query Adaptive Server Enterprise data.

1. Add an entry to the Sybase IQ interfaces file:

jones_1207
master tcp ether jones 4101
query tcp ether jones 4101

2. Create the user to connect to ASE:

grant connect to tst identified by tsttst
grant dba to tst

3. Log in as the added user to create the 'asejdbc' server class and add external login:

isql -Utst -Ptsttst -Stst_iqdemo
create SERVER jones_1207 CLASS 'asejdbc' USING 'jones:4101/tst_db'
create existing table billing_iq at
'jones_1207.tst_db..billing_txt'
select * from billing_iq

status name telno
------ ----------- -----
D BOTANICALLY 1
B BOTANICALL 2
(2 rows affected)

Delete Remote Servers
Use Sybase Central or a DROP SERVER statement to delete a remote server from the
ISYSSERVER system table.

All remote tables defined on that server must already be dropped for this action to succeed.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Delete remote
servers.

Alter Remote Servers
Use the ALTER SERVER statement to modify the attributes of a server. These changes do not
take effect until the next connection to the remote server.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Alter remote servers.

List the Remote Tables On a Server
When configuring Sybase IQ, it is helpful to have access to a list of the remote tables available
on a particular server.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > List the remote tables
on a server.

Accessing Remote Data

System Administration Guide: Volume 2 93

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/deleting-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/deleting-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/deleting-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/altering-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/altering-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161660.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161660.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161660.html

See also Reference: Building Blocks, Tables, and Procedures > sp_remote_tables system
procedure .

List Remote Server Capabilities
The sp_servercaps procedure displays information about a remote server's capabilities.
Sybase IQ uses this capability information to determine how much of a SQL statement can be
passed to a remote server.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > List remote server
capabilities.

See also Reference: Building Blocks, Tables, and Procedures > sp_servercaps system
procedure.

External Logins
Sybase IQ uses the names and passwords of its clients when it connects to a remote server on
behalf of those clients. However, this behavior can be overridden by creating external logins.

External logins are alternate login names and passwords that are used when communicating
with a remote server.

When Sybase IQ connects to the remote server, INSERT...LOCATION uses the remote login for
the user ID of the current connection, if a remote login has been created with CREATE
EXTERNLOGIN and the remote server has been defined with a CREATE SERVER statement. If
the remote server is not defined, or a remote login has not been created for the user ID of the
current connection, IQ connects using the user ID and password of the current connection. For
more information and an example of INSERT...LOCATION using a remote login, see
Reference: Statements and Options > INSERT statement.

If you are using an integrated login, the Sybase IQ name and password of the Sybase IQ client
is the same as the database login ID and password that the Sybase IQ userid maps to in
syslogins.

Create External Logins
Only the DBA account or an account with USER ADMIN authority can add or modify an
external login.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Create external
logins.

For more information, see Reference: Statements and Options > SQL Statements > CREATE
EXTERNLOGIN Statement.

Accessing Remote Data

 94 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161662.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161662.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161662.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-logins-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-logins-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-logins-omni-using.html

Drop External Logins
Use the DROP EXTERNLOGIN statement to remove external logins from the Sybase IQ
system tables.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Drop external logins.

For more information, see Reference: Statements and Options > SQL Statements > DROP
EXTERNLOGIN Statement.

Proxy Tables
Location transparency of remote data is enabled by creating a local proxy table that maps to
the remote object.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with proxy tables.

Specify Proxy Table Locations
The AT keyword is used with both CREATE TABLE and CREATE EXISTING TABLE to define
the location of an existing object.

The location string has four components that are separated by either a period or a semicolon.
Semicolons allow filenames and extensions to be used in the database and owner fields.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with proxy tables > Specify proxy table
locations.

Example
The following example illustrate the use of location strings:

• Sybase IQ:

'testiq..DBA.employee'

Create Proxy Tables
The CREATE EXISTING TABLE statement creates a proxy table that maps to an existing table
on the remote server.

Sybase IQ derives the column attributes and index information from the object at the remote
location.

Example
To create a proxy table named p_employee on the current server to a remote table named
employee on the server named iqdemo1, use the following syntax:

CREATE EXISTING TABLE p_employee
AT 'iqdemo1..DBA.employee'

Accessing Remote Data

System Administration Guide: Volume 2 95

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/dropping-logins-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/dropping-logins-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/proxy-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/proxy-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/locations-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/locations-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/locations-defining-omni-using.html

See Reference: Statements and Options > CREATE EXISTING TABLE statement.

CREATE TABLE Statement
The CREATE TABLE statement creates a new table on the remote server, and defines the proxy
table for that table when you use the AT option.

Columns are defined using Sybase IQ data types. Sybase IQ automatically converts the data
into the remote server's native types.

If you use the CREATE TABLE statement to create both a local and remote table, and then
subsequently use the DROP TABLE statement to drop the proxy table, the remote table is also
dropped. You can, however, use the DROP TABLE statement to drop a proxy table created
using the CREATE EXISTING TABLE statement. In this case, the remote table is not dropped.

Example
The following statement creates a table named Employees on the remote server iqdemo1,
and creates a proxy table named members that maps to the remote location:

CREATE TABLE members
(membership_id INTEGER NOT NULL,
member_name CHAR(30) NOT NULL,
office_held CHAR(20) NULL)
AT 'iqdemo1..DBA.Employees'

For more information, see Reference: Statements and Options > INSERT statement.

List the Columns On a Remote Table
The sp_remote_columns system procedure produces a list of the columns on a remote table
and a description of those data types.

If you are entering a CREATE EXISTING TABLE statement and you are specifying a column
list, it may be helpful to get a list of the columns that are available on a remote table.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with proxy tables > List the columns on a
remote table.

Accessing Remote Data

 96 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/listing-proxy-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/listing-proxy-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/listing-proxy-omni-using.html

For more information, see Reference: Building Blocks, Tables, and Procedures > System
Procedures > System Stored Procedures > Catalog Stored Procedures > sp_remote_columns
System Procedure.

Example: Join Between Two Remote Tables
The figure illustrates the remote Sybase IQ tables employee and department in the
demo database, mapped to the local server named testiq.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Join remote tables.

Multiple Local Databases
A Sybase IQ server may have several local databases running at one time. By defining tables in
other local Sybase IQ databases as remote tables, you can perform cross-database joins.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Join tables from multiple local databases.

Send Native Statements to Remote Servers
Use the FORWARD TO statement to send one or more statements to the remote server in its
native syntax.

This statement can be used in two ways.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Send native statements to remote servers.

Remote Procedure Calls (RPCs)
Sybase IQ users can issue procedure calls to remote servers that support the feature.

Sybase IQ, SQL Anywhere, and Adaptive Server Enterprise, as well as Oracle and DB2,
support this feature. Issuing a remote procedure call is similar to using a local procedure call.

Create Remote Procedures
Use one of the procedures to issue a remote procedure call.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Using remote procedure calls (RPCs) > Create remote
procedures.

Accessing Remote Data

System Administration Guide: Volume 2 97

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/example-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/example-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessing-mult-local-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessing-mult-local-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/passthrough-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/passthrough-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161688.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161688.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161688.html

Transaction Management and Remote Data
Transactions provide a way to group SQL statements so that they are treated as a unit—either
all work performed by the statements is committed to the database, or none of it is.

Transaction management with remote tables is handled somewhat differently than it is for
local Sybase IQ tables. Transaction management for remote tables is handled for the most part
as it is in SQL Anywhere, although there are some differences.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Creating Databases >
Using transactions and isolation levels.

For a general discussion of transactions in Sybase IQ, see System Administration Guide:
Volume 1 > Transactions and Versioning.

Remote Transaction Management Overview
The method for managing transactions involving remote servers uses a two-phase commit
protocol.

Sybase IQ implements a strategy that ensures transaction integrity for most scenarios.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Transaction management and remote data > Remote
transaction management overview.

Restrictions on Transaction Management
Transaction management has savepoints and nested statement restrictions.

Restrictions on transaction management are:

• Savepoints are not propagated to remote servers.
• If nested BEGIN TRANSACTION and COMMIT TRANSACTION statements are included in

a transaction that involves remote servers, only the outermost set of statements is
processed. The innermost set, containing the BEGIN TRANSACTION and COMMIT
TRANSACTION statements, is not transmitted to remote servers.

Internal Operations
This section describes the underlying steps that SQL Anywhere performs on remote servers
on behalf of client applications.

Accessing Remote Data

 98 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-transact.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-transact.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161694.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161694.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161694.html

Query Parsing
When a statement is received from a client, the database server parses it. The database server
raises an error if the statement is not a valid SQL Anywhere SQL statement.

Query Normalization
In query normalization, referenced objects are verified and data type compatibility is checked.

For example, consider this query:

SELECT *
FROM t1
WHERE c1 = 10

The query normalization stage verifies that table t1 with a column c1 exists in the system
tables. It also verifies that the data type of column c1 is compatible with the value 10. If the
column's data type is DATETIME, for example, this statement is rejected.

Query Preprocessing
Query preprocessing prepares the query for optimization.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations > Query preprocessing.

Server Capabilities
Each remote server defined to Sybase IQ has a set of capabilities associated with it. These
capabilities are stored in the syscapabilities system table.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations > Server capabilities.

Complete Passthrough of the Statement
The most efficient way to handle a statement is usually to pass as much of the original
statement as possible to the remote server involved.

By default, Sybase IQ attempts to pass off as much of the statement as possible. In many cases,
this is the complete statement as originally given to Sybase IQ.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations > Complete passthrough of the
statement.

Accessing Remote Data

System Administration Guide: Volume 2 99

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161699.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161699.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161701.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161701.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161703.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161703.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161703.html

Partial Passthrough of the Statement
If a statement contains references to multiple servers, or uses SQL features not supported by a
remote server, the query is decomposed into simpler parts.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations > Partial passthrough of the
statement.

Remote Data Access Troubleshooting
This section provides some suggestions for troubleshooting access to remote servers.

Features Not Supported For Remote Data
Some features are never supported by Sybase IQ. Others are supported only for local data.

Sybase IQ has the following additions to the SQL Anywhere list:

• Java data types are not supported.
• When using Component Integration Services (CIS) in certain geographic regions,

connection attempts return the error

No Suitable Driver

.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > Features not
supported for remote data.

Case Sensitivity
The case-sensitivity setting of your Sybase IQ database should match the settings used by any
remote servers accessed.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > Case
sensitivity.

Connectivity Problems
To verify you can connect to a remote server, perform a simple passthrough statement to a
remote server to check your connectivity and remote login configuration.

For example:

FORWARD TO testiq {select @@version}

Accessing Remote Data

 100 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161706.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161706.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161706.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/features-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/features-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/features-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161710.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161710.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161710.html

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > Connectivity
tests.

General Problems with Queries
If you are faced with some type of problem with the way Sybase IQ is handling a query against
a remote table, it is usually helpful to understand how Sybase IQ is executing that query.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > General
problems with queries.

Managing Remote Data Access Connections
If you access remote databases via ODBC, the connection to the remote server is given a
name.

The name can be used to drop the connection as one way to cancel a remote request.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > Managing
remote data access connections via ODBC.

Accessing Remote Data

System Administration Guide: Volume 2 101

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-51617101.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-51617101.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-51617101.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161712.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161712.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161712.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessrd-s-5888241.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessrd-s-5888241.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessrd-s-5888241.html

Accessing Remote Data

 102 Sybase IQ

Server Classes for Remote Data Access

This chapter describes how Sybase IQ interfaces with various server classes.

Server Classes Overview
The behavior of a remote connection is determined by the server class in the CREATE SERVER
statement. The server classes give Sybase IQ detailed server capability information.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access.

JDBC-based Server Classes
JDBC-based server classes are used when Sybase IQ internally uses a Java virtual machine
and jConnect™ for JDBC™ 5.5 to connect to the remote server.

The JDBC-based server classes are:

• Sybase IQ, and SQL Anywhere
• Sybase SQL Anywhere and Adaptive Server Enterprise (version 10 and later).

Configuration Notes for JDBC Classes
When you access remote servers defined with JDBC-based classes, consider the optimum
performance, remote server access and remote server connection.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server classes >
Configuration notes for JDBC classes.

Server Class sajdbc
No special requirements exist for the configuration of Sybase IQ or SQL Anywhere data
source.

Parameter Value in the CREATE SERVER Statement
The USING parameter in the CREATE SERVER statement takes the form
hostname:portnumber [/databasename].

Where:

• hostname – The machine that the remote server is running on

Server Classes for Remote Data Access

System Administration Guide: Volume 2 103

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4214988.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4214988.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4214988.html

• portnumber – The TCP/IP port number that the remote server is listening on. The default
port number that an Sybase IQ listens on is 2638.

• databasename – The Sybase IQ database that the connection will use. This is the name
specified in the -n switch when the server was started, or in the DBN (DatabaseName)
connection parameter.

Sybase IQ Example
To configure Sybase IQ server named testiq that is located on the machine apple and
listening on port number 2638, use:

CREATE SERVER testiq
CLASS 'sajdbc'
USING 'apple:2638'

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server classes > Server class
sajdbc > USING parameter in the CREATE SERVER statement.

Server Class asejdbc
A server with server class asejdbc can be Adaptive Server Enterprise or SQL Anywhere
Version 10 and later.

While Adaptive Server Enterprise data sources generally require no special configuration,
ASE 15.5 requires the jConnect-6_0 metadata stored procedures and tables. See Accessing
Remote Data > Server Classes for Remote Data Access > JDBC-based Server Classes >
Server Class aseodbc > Installing jConnect 6.0 Metadata.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server classes > Server class
asejdbc.

Data Type Conversions
When you issue a CREATE TABLE statement to create a proxy table, Sybase IQ automatically
converts the data types to the corresponding Adaptive Server Enterprise data types.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server classes > Server class
asejdbc.

Installing jConnect 6.0 Metadata
Proxy tables for Adaptive Server Enterprise 15.5 data require jConnect 6.0 metadata.

Without jConnect 6.0 metadata, a CREATE EXISTING TABLE statement may return the error
SQL Anywhere Error -667: Could not access column information
for the table.

Using isql:

Server Classes for Remote Data Access

 104 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/using-parameter-value-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/using-parameter-value-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/using-parameter-value-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html

1. Connect to your Adaptive Server Enterprise database.

2. Enter a command in this format:

isql -I<path to interfaces>
-Usa -P
-S<ASE_server>
-i$SYBASE/jConnect-6_0/sp/sql_server15.0.sql

ODBC-based Server Classes
Sybase IQ supports a variety of ODBC-based server classes.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes.

ODBC External Servers
The most common method of defining an ODBC-based server is to base it on an ODBC data
source.

To do this, you must create a data source name (DSN) in the ODBC Administrator.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Defining
ODBC external servers.

Sybase IQ example
A connection to Sybase IQ may be as follows:

CREATE SERVER testiq
CLASS 'asaodbc'
USING 'driver=adaptive server IQ 12.0;
eng=testasaiq;dbn=iqdemo;links=tcpip{}'

For more information on creating ODBC data sources for Sybase IQ, see System
Administration Guide: Volume 1 > Sybase IQ Connections > ODBC Data Sources.

Server Class saodbc
To access SQL Anywhere database servers that support multiple databases, create an ODBC
data source name defining a connection to each database. Issue a CREATE SERVER statement
for each of these ODBC data source names.

A server with server class saodbc is one of:

• Sybase IQ version 12 or later
• SQL Anywhere

No special requirements exist for the configuration of a SQL Anywhere or Sybase IQ data
source.

Server Classes for Remote Data Access

System Administration Guide: Volume 2 105

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4215004.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4215004.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4215004.html

Server Class aseodbc
Sybase IQ requires the local installation of the Adaptive Server Enterprise ODBC driver and
Open Client connectivity libraries to connect to a remote Adaptive Server with class
aseodbc. However, the performance is better than with the asejdbc class.

A server with server class aseodbc is:

• Adaptive Server Enterprise
• SQL Anywhere (version 10 and later)

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class aseodbc.

Server Class db2odbc
A server with server class db2odbc is IBM DB2.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class db2odbc.

Server Class oraodbc
A server using server class oraodbc is Oracle version 10.0 or higher.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class oraodbc.

Sybase IQ to Oracle Data Type Mappings
When you use a CREATE TABLE statement to create a remote table on an Oracle server,
Sybase IQ converts the IQ data types to corresponding Oracle data types:

Table 5. Data mappings to a new remote Oracle table

Sybase IQ data type Oracle data type

BIGINT NUMBER(20,0)

BINARY(n) if (n > 255) LONG RAW else RAW(n)

BIT NUMBER(1,0)

CHAR(n) If (n > 255) LONG else VARCHAR(n)

CHARACTER VARYING(n) VARCHAR2(n)

CHARACTER(n) VARCHAR2(n)

Server Classes for Remote Data Access

 106 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/aseodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/aseodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/aseodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/db2odbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/db2odbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/db2odbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html

Sybase IQ data type Oracle data type

DATE DATE

DATETIME DATE

DECIMAL(prec, scale) NUMBER(prec, scale)

DOUBLE FLOAT

FLOAT FLOAT

INT NUMBER(11,0)

LONG BINARY LONG RAW

LONG VARCHAR LONG or CLOB

MONEY NUMBER(19,4)

NUMERIC(prec, scale) NUMBER(prec, scale)

REAL FLOAT

SMALLDATETIME DATE

SMALLINT NUMBER(5,0)

SMALLMONEY NUMBER(10,4)

TIME DATE

TIMESTAMP DATE

TINYINT NUMBER(3,0)

UNIQUEIDENTIFIERSTR CHAR(36)

UNSIGNED BIGINT NUMBER(20,0)

UNSIGNED INT NUMBER(11,0)

UNSIGNED INTEGER NUMBER(11,0)

VARBINARY(n) if (n > 255) LONG RAW else RAW(n)

VARCHAR(n) VARCHAR2(n)

Server Classes for Remote Data Access

System Administration Guide: Volume 2 107

Oracle to Sybase IQ Data Mappings
When you use a CREATE EXISTING statement to create a proxy table to an existing Oracle
table, IQ converts the Oracle data types to corresponding IQ data types.

Table 6. Data mappings to existing Oracle tables

Oracle data type IQ data type

BFILE LONG BINARY

BLOB LONG BINARY

CHAR(n) CHAR(n)

CLOB LONG VARCHAR

DATE TIMESTAMP

DEC(prec, scale) NUMERIC(prec, scale)

DECIMAL(prec, scale) NUMERIC(prec, scale)

DOUBLE PRECISION DOUBLE

FLOAT DOUBLE

INT NUMERIC(38,0)

INTEGER NUMERIC(38,0)

NCHAR(n) NCHAR(n)

NCLOB LONG NVARCHAR

NUMBER(prec, scale) NUMERIC(prec, scale)

NUMERIC(prec, scale) NUMERIC(prec, scale)

NVARCHAR2(n) VARCHAR(n)

RAW(n) VARBINARY(n)

REAL DOUBLE

SMALLINT NUMERIC(38,0)

TIMESTAMP TIMESTAMP

VARCHAR2(n) VARCHAR(n)

Note:

• Sybase IQ lets you map proxy tables to Oracle views. Because Oracle identifiers always
appear in upper case letters, you must use upper-case letters to create or refer to any proxy
table that you map to an Oracle view.

Server Classes for Remote Data Access

 108 Sybase IQ

• See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class oraodbc.

Server Class mssodbc
A server with server class mssodbc is Microsoft SQL Anywhere version 6.5, Service Pack 4.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class mssodbc.

Server Class odbc
ODBC data sources that do not have their own server class use server class odbc. You can use
any ODBC driver.

The latest versions of Microsoft ODBC drivers can be obtained through the Microsoft Data
Access Components (MDAC) distribution found at the Microsoft Download Center. The
Microsoft driver versions listed are part of MDAC 2.0.

Microsoft Excel (Microsoft 3.51.171300)
Each Excel workbook is considered to be a database that holds several tables.

Tables are mapped to sheets in a workbook. When you configure an ODBC data source name
in the ODBC driver manager, you specify a default workbook name associated with that data
source, however, when you issue a CREATE TABLE statement, you can override the default
and specify a workbook name in the location string.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class odbc > Microsoft Excel (Microsoft 3.51.171300).

Microsoft Foxpro (Microsoft 3.51.171300)
You can store Foxpro tables together inside a single Foxpro database file (.dbc), or you can
store each table in its own separate .dbf file.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class odbc > Microsoft FoxPro (Microsoft 3.51.171300).

Lotus Notes SQL 2.0 (2.04.0203)
You can obtain Lotus Notes SQL 2.0 (2.04.0203) driver from the Lotus Web site.

Read the documentation that comes with it for an explanation of how Notes data maps to
relational tables. You can easily map IQ tables to Notes forms.

Server Classes for Remote Data Access

System Administration Guide: Volume 2 109

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/msodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/msodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/msodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/excel-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/excel-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/excel-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/foxpro-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/foxpro-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/foxpro-odbc-omni-server.html

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class odbc > Lotus Notes SQL 2.0.

Setting Up IQ to Access the Address Sample File
Set up IQ to access the address sample file.

1. Create an ODBC data source using the NotesSQL driver.

The database will be the sample names file c:\notes\data\names.nsf. The Map
Special Characters option should be turned on. For this example, the Data Source Name is
my_notes_dsn.

2. Create an IQ server:

CREATE SERVER names
CLASS 'odbc'
USING 'my_notes_dsn'

3. Map the Person form into an IQ table:

CREATE EXISTING TABLE Person
AT 'names...Person'

4. Query the table

SELECT * FROM Person

Server Classes for Remote Data Access

 110 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/lotus-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/lotus-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/lotus-odbc-omni-server.html

Automating Tasks Using Schedules and
Events

This chapter describes how to use scheduling and event handling features of Sybase IQ to
automate database administration and other tasks.

Introduction to Scheduling and Event Handling
Many database administration tasks are best carried out systematically.

For example, a regular backup procedure is an important part of proper database
administration procedures.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Introduction to using
schedules and events.

Schedules
By scheduling activities you can ensure that a set of actions is executed at a set of preset times.
The scheduling information and the event handler are both stored in the database itself.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding schedules.

Sybase IQ Example

Note: For examples, use the Sybase IQ demo database iqdemo.db.

Create table OrderSummary(c1 date, c2 int);create event
Summarizeschedulestart time '6:00 pm'on ('Mon', 'Tue', 'Wed', 'Thu',
'Fri')handlerbegin insert into DBA.OrderSummary select
max(OrderDate), count(*) from GROUPO.SalesOrders where OrderDate =
current dateend

Defining Schedules
For flexibility, schedule definitions are made up of several components.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding schedules >
Defining schedules.

Automating Tasks Using Schedules and Events

System Administration Guide: Volume 2 111

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/introduction-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/introduction-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/introduction-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/parts-understanding-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/parts-understanding-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/parts-understanding-events.html

Events
The database server tracks several kinds of system events. Event handlers are triggered when
the system event is checked by the database server, and satisfies a provided trigger
condition.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding system
events.

Choosing a System Event
Sybase IQ tracks several system events. Each system event provides a hook on which you can
hang a set of actions.

The database server tracks the events for you, and executes the actions (as defined in the event
handler) when needed.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding system
events.

Defining Trigger Conditions for Events
Each event definition has a system event associated with it. It also has one or more trigger
conditions.

The event handler is triggered when the trigger conditions for the system event are satisfied.

Note: The trigger conditions associated with Sybase IQ events are not the same as SQL
Anywhere or Adaptive Server Enterprise triggers, which execute automatically when a user
attempts a specified data modification statement on a specified table.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding system events
> Defining trigger conditions for events.

Sybase IQ Example

Note: For examples, use the Sybase IQ demo database iqdemo.db.

create event SecurityCheck
type ConnectFailed
handler
begindeclare num_failures int;declare mins int;

insert into FailedConnections(log_time)values (current
timestamp);
select count(*) into num_failuresfrom FailedConnectionswhere

Automating Tasks Using Schedules and Events

 112 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/defining-trigger-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/defining-trigger-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/defining-trigger-events.html

log_time >= dateadd(minute, -5,
 current timestamp);if(num_failures >= 3) then
 select datediff(minute, last_notification, current
timestamp) into mins from Notification;
 if(mins > 30) then update Notification set
last_notification = current timestamp; call
xp_sendmail(recipient='DBAdmin', subject='Security
Check',"message"= 'over 3 failed connections in last 5
minutes') end ifend ifend

Event Handlers
Event handlers execute on a separate connection from the action that triggered the event, and
so do not interact with client applications. They execute with the permissions of the creator of
the event.

Developing Event Handlers
Event handlers, whether for scheduled events or for system event handling, contain compound
statements, and are similar in many ways to stored procedures. You can add loops, conditional
execution, and so on, and you can use the Sybase IQ debugger to debug event handlers.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding system events
> Developing event handlers.

The EVENT_PARAMETER function provides context information for event handlers. See
Reference: Building Blocks, Tables, and Procedures.

For an example on using event handling, see System Administration Guide: Volume 1 >
Automating Tasks Using Schedules and Events > Managing user accounts and connections.

Schedule and Event Internals
This section describes how the database server processes schedules and event definitions.

How the Database Server Checks for System Events
Events are classified according to their event type, as specified directly in the CREATE EVENT
statement.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Schedule and event intervals
> How the database server checks for system events.

Automating Tasks Using Schedules and Events

System Administration Guide: Volume 2 113

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/developing-scheduling-newaspen.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/developing-scheduling-newaspen.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/developing-scheduling-newaspen.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-internals-events.html

How the Database Server Checks for Scheduled Times
The calculation of scheduled event times is done when the database server starts, and each
time a scheduled event handler completes.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Schedule and event intervals
> How the database server checks for scheduled events.

How Event Handlers are Executed
When an event handler is triggered, a temporary internal connection is made, on which the
event handler is executed.

The handler is not executed on the connection that caused the handler to be triggered, and
consequently statements such as MESSAGE … TO CLIENT, which interact with the client
application, are not meaningful within event handlers.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Event handling tasks >
Adding an event to a database.

Scheduling and Event Handling Tasks
This section collects together tasks related to automating schedules and events.

Adding a Schedule or Event to a Database
You can add schedules and events in Sybase Central and by using SQL.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Event handling tasks >
Adding an event to a database.

Adding a Manually-triggered Event To a Database
If you create an event handler without a schedule or system event to trigger it, it is executed
only when manually triggered.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Event handling tasks >
Adding a manually-triggered event to a database .

Alter events using the ALTER EVENT statement. See Reference: Statements and Options.

Automating Tasks Using Schedules and Events

 114 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/schedule-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/schedule-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/schedule-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/handlers-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/handlers-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/handlers-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-manual-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-manual-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-manual-tasks-events.html

Triggering an Event Handler
Any event handler can be manually triggered, as well as executed as a result of a schedule or
system event. You may find it useful to manually trigger events during development of event
handlers, and also, for certain events, in production environments.

For example, you may have a monthly sales report scheduled, but from time to time you may
want to obtain a sales report for a reason other than the end of the month.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Event handling tasks >
Triggering an event handler.

For more information on triggering, see the TRIGGER EVENT statement in Reference:
Statements and Options.

Debugging an Event Handler
Debugging is a regular part of any software development. Event handlers can be debugged
during the development process.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Event handling tasks >
Debugging an event handler.

Retrieving Information about an Event or Schedule
Sybase IQ stores information about events, system events, and schedules in the system tables
SYSEVENT, SYSEVENTTYPE, and SYSSCHEDULE.

When you alter an event using the ALTER EVENT statement, you specify the event name and,
optionally, the schedule name. When you trigger an event using the TRIGGER EVENT
statement, you specify the event name.

You can list event names by querying the system table SYSEVENT. For example:

SELECT event_id, event_name FROM SYSEVENT

You can list schedule names by querying the system table SYSSCHEDULE. For example:

SELECT event_id, sched_name FROM SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

Automating Tasks Using Schedules and Events

System Administration Guide: Volume 2 115

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/triggering-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/triggering-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/triggering-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/debugging-task-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/debugging-task-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/debugging-task-events.html

Automating Tasks Using Schedules and Events

 116 Sybase IQ

Data Access Using JDBC

This appendix describes how to use JDBC to access data.

JDBC can be used both from client applications and inside the database. Java classes using
JDBC provide a more powerful alternative to SQL stored procedures for incorporating
programming logic in the database.

JDBC Overview
JDBC provides a SQL interface for Java applications: if you want to access relational data
from Java, you do so using JDBC calls.

Rather than a thorough guide to the JDBC database interface, this appendix provides some
simple examples to introduce JDBC and illustrates how you can use it inside and outside the
server. As well, this appendix provides more details on the server-side use of JDBC, running
inside the database server.

The examples illustrate the distinctive features of using JDBC in Sybase IQ. For more
information about JDBC programming, see any JDBC programming book.

JDBC and Sybase IQ
You can use JDBC with Sybase IQ in the following ways:

• Java client applications can make JDBC calls to Sybase IQ. The connection takes place
through the Sybase jConnect JDBC driver or through the iAnywhere JDBC driver.
In this appendix, the phrase client application applies both to applications running on a
user's machine and to logic running on a middle-tier application server.

• JDBC in the server Java classes installed into a database can make JDBC calls to access
and modify data in the database, using an internal JDBC driver.

The focus in this appendix is on server-side JDBC.

JDBC Resources

• Required Software
You need TCP/IP to use the Sybase jConnect driver.
The Sybase jConnect driver may already be available, depending on your installation of
Sybase IQ.

See also
• The jConnect Driver Files on page 136

Data Access Using JDBC

System Administration Guide: Volume 2 117

Choose JDBC Driver
Two JDBC drivers are provided for Sybase IQ:

Table 7.

Driver Defintion

jConnect This driver is a 100% pure Java driver. It com-
municates with Sybase IQ using the TDS client/
server protocol.

iAnywhere JDBC driver This driver communicates with Sybase IQ using
the Command Sequence client/server protocol.
Its behavior is consistent with ODBC, embedded
SQL, and OLE DB applications.

For jConnect documentation, see jConnect for JDBC.

When choosing which driver to use, you may want to consider the following factors:

• Features—Both drivers are JDK 2 compliant. The iAnywhere JDBC driver provides fully-
scrollable cursors, which are not available in jConnect.

• Pure Java—The jConnect driver is a pure Java solution. The iAnywhere JDBC driver
requires the Sybase IQ or Adaptive Server Anywhere ODBC driver and is not a pure Java
solution.

• Performance—The iAnywhere JDBC driver provides better performance for most
purposes than the jConnect driver.

• Compatibility—The TDS protocol used by the jConnect driver is shared with Adaptive
Server Enterprise. Some aspects of the driver's behavior are governed by this protocol, and
are configured to be compatible with Adaptive Server Enterprise.

Both drivers are available on Windows 95/98/Me and Windows NT/2000/2003/XP, as well as
supported UNIX and Linux operating systems.

JDBC Considerations
Consider the following when running Java applications:

• An issue exists when connecting to a Sybase IQ 12.5 server through dbisql Java using the
iAnywhere JDBC driver. For details, see System Administration Guide: Volume 1 >
Troubleshooting Hints > Data truncation or data conversion error.

• Java applications running in Sybase IQ run slower than when run outside in a Sun Java
Virtual Machine (JVM). Despite this limitation, Sybase recommends that you tune your
applications by increasing the available memory for IQ JVM use with the database options
JAVA_HEAP_SIZE and JAVA_NAMESPACE_SIZE in Reference: Statements and
Options > Database Options > JAVA_HEAP_SIZE.

Data Access Using JDBC

 118 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.help.jconnjdbc.6.05/title.htm

JDBC Program Structure
JDBC program structure has a sequenece of events.

The following sequence of events typically occur in JDBC applications:

• Create a Connection object—Calling a getConnection class method of the
DriverManager class creates a Connection object, and establishes a connection with a
database.

• Generate a Statement object—The Connection object generates a Statement object.
• Pass a SQL statement—A SQL statement that executed within the database environment

passes to the Statement object. If the statement is a query, this action returns a ResultSet
object.
The ResultSet object contains the data returned from the SQL statement, but exposes it
one row at a time (similar to the way a cursor works).

• Loop over the rows of the result set—The next method of the ResultSet object performs
two actions:
• The current row (the row in the result set exposed through the ResultSet object)

advances one row.
• A Boolean value (true/false) returns to indicate whether there is, in fact, a row to

advance to.
• For each row, retrieve the values—Values are retrieved for each column in the ResultSet

object by identifying either the name or position of the column. You can use the getDate
method to get the value from a column on the current row.

Java objects can use JDBC objects to interact with a database and get data for their own use, for
example to manipulate or for use in other queries.

Server-side JDBC Features
JDBC 1.2 is part of JDK 1.1. JDBC 2.0 is part of Java 2 (JDK 1.2).

Java in the database supplies a subset of the JDK version 1.1, so the internal JDBC driver
supports JDBC version 1.2.

The internal JDBC driver (asajdbc) makes some features of JDBC 2.0 available from
server-side Java applications, but does not provide full JDBC 2.0 support.

The JDBC classes in the java.sql package that is part of the Java in the database support are at
level 1.2. Server-side features that are part of JDBC 2.0 are implemented in the
sybase.sql.ASA package. To use JDBC 2.0 features you must cast your JDBC objects into the
corresponding classes in the sybase.sql.ASA package, rather than the java.sql package.
Classes that are declared as java.sql are restricted to JDBC 1.2 functionality only.

The classes in sybase.sql.ASA are as follows:

Data Access Using JDBC

System Administration Guide: Volume 2 119

JDBC class Sybase internal driver class

java.sql.Connection sybase.sql.ASA.SAConnection

java.sql.Statement sybase.sql.ASA.SAStatement

java.sql.PreparedStatement sybase.sql.ASA.SAPreparedStatement

java.sql.CallableStatement sybase.sql.ASA.SACallableStatement

java.sql.ResultSetMetaData sybase.sql.ASA.SAResultSetMetaData

java.sql.ResultSet sybase.sql.SAResultSet

java.sql.DatabaseMetaData sybase.sql.SADatabaseMetaData

The following function provides a ResultSetMetaData object for a prepared statement
without requiring a ResultSet or executing the statement. This function is not part of the JDBC
standard.

ResultSetMetaData sybase.sql.ASA.SAPreparedStatement.describe()

JDBC 2.0 Restrictions
The following classes are part of the JDBC 2.0 core interface, but are not available in the
sybase.sql.ASA package:

• java.sql.Blob
• java.sql.Clob
• java.sql.Ref
• java.sql.Struct
• java.sql.Array
• java.sql.Map

The following JDBC 2.0 core functions are not available in the sybase.sql.ASA package:

Class in syb-
ase.sql.ASA

Missing functions

SAConnection java.util.Map getTypeMap()

void setTypeMap(java.util.Map map)

SAPreparedStatement void setRef(int pidx, java.sql.Ref r)

void setBlob(int pidx, java.sql.Blob b)

void setClob(int pidx, java.sql.Clob c)

void setArray(int pidx, java.sql.Array a)

Data Access Using JDBC

 120 Sybase IQ

Class in syb-
ase.sql.ASA

Missing functions

SACallableStatement Object getObject(pidx, java.util.Map map)

java.sql.Ref getRef(int pidx)

java.sql.Blob getBlob(int pidx)

java.sql.Clob getClob(int pidx)

java.sql.Array getArray(int pidx)

SAResultSet Object getObject(int cidx, java.util.Map map)

java.sql.Ref getRef(int cidx)

java.sql.Blob getBlob(int cidx)

java.sql.Clob getClob(int cidx)

java.sql.Array getArray(int cidx)

Object getObject(String cName, java.util.Map map)

java.sql.Ref getRef(String cName)

java.sql.Blob getBlob(String cName)

java.sql.Clob getClob(String cName)

java.sql.Array getArray(String cName)

Differences Between Client- and Server-side JDBC Connections
A difference between JDBC on the client and in the database server lies in establishing a
connection with the database environment.

• Client side—In client-side JDBC, establishing a connection requires the Sybase jConnect
JDBC driver. Passing arguments to the DriverManager.getConnection establishes the
connection. The database environment is an external application from the perspective of
the client application.

• Server-side—When using JDBC within the database server, a connection already exists. A
value of jdbc:default:connection passes to DriverManager.getConnection, which
provides the JDBC application with the ability to work within the current user connection.
This is a quick, efficient and safe operation because the client application has already
passed the database security to establish the connection. The user ID and password, having
been provided once, do not need to be provided again. The asajdbc driver can only connect
to the database of the current connection.

You can write JDBC classes in such a way that they can run both at the client and at the server
by employing a single conditional statement for constructing the URL. An external
connection requires the machine name and port number, while the internal connection
requires jdbc:default:connection.

Data Access Using JDBC

System Administration Guide: Volume 2 121

Establish JDBC Connections
This section presents classes that establish a JDBC database connection from a Java
application.

Connect From a JDBC Client Application Using jConnect
If you wish to access database system tables (database metadata) from a JDBC application,
you must add a set of jConnect system objects to your database.

If you wish to access database system tables (database metadata) from a JDBC application,
you must add a set of jConnect system objects to your database. Asajdbc shares the same
stored procedures for database metadata support with jConnect. These procedures are
installed to all databases by default. The iqinit switch -i prevents this installation.

The -i switch is common to iqinit and the SQL Anywhere utility dbinit. For descriptions of the
-i switch, see SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Administering Your Database > Database administration utilities > Initialization utility
(dbinit).

The following complete Java application is a command-line application that connects to a
running database, prints a set of information to your command line, and terminates.

Establishing a connection is the first step any JDBC application must take when working with
database data.

See also
• Establish Connection From a Server-side JDBC Class on page 126
• Sybase jConnect JDBC Driver on page 135
• Running the External Connection Example on page 125
• A Sample Distributed Application on page 141

External Connection Example Code
The source code for the methods used to make a connection.

The source code can be found in the main method and the ASAConnect method of the file
JDBCExamples.java in the C:\Documents and Settings\All Users
\SybaseIQ\samples\SQLAnywhere\JDBC directory on Windows or $SYBASE/
IQ-15_3/samples/sqlanywhere/JDBC on UNIX under your Sybase IQ installation
directory:

// Import the necessary classes
import java.sql.*; // JDBC
import com.sybase.jdbc.*; // Sybase jConnect
import java.util.Properties; // Properties
import sybase.sql.*; // Sybase utilities
import asademo.*; // Example classes

Data Access Using JDBC

 122 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dbinit.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dbinit.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dbinit.html

private static Connection conn;
public static void main(String args[]) {

 conn = null;
 String machineName;
 if (args.length != 1) {
 machineName = "localhost";
 } else {
 machineName = new String(args[0]);
 }

 ASAConnect("dba", "sql", machineName);
 if(conn!=null) {
 System.out.println("Connection successful");
 }else{
 System.out.println("Connection failed");
 }

 try{
 serializeVariable();
 serializeColumn();
 serializeColumnCastClass();
 }
 catch(Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }
}
private static void ASAConnect(String UserID,
 String Password,
 String Machinename) {
 // uses global Connection variable

 String _coninfo = new String(Machinename);

 Properties _props = new Properties();
 _props.put("user", UserID);
 _props.put("password", Password);

 // Load the Sybase Driver
 try {
 Class.forName("com.sybase.jdbc.SybDriver").newInstance();

 StringBuffer temp = new StringBuffer();
 // Use the Sybase jConnect driver...
 temp.append("jdbc:sybase:Tds:");
 // to connect to the supplied machine name...
 temp.append(_coninfo);
 // on the default port number for ASA...
 temp.append(":2638");
 // and connect.
 System.out.println(temp.toString());
 conn = DriverManager.getConnection(temp.toString() , _props);
 }

Data Access Using JDBC

System Administration Guide: Volume 2 123

 catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

How the External Connection Example Works
The external connection example is a Java command-line application.

Importing Packages
The application requires several libraries, which are imported in the first lines of
JDBCExamples.java:

• The java.sql package contains the Sun Microsystems JDBC classes, which are required
for all JDBC applications. You'll find it in the classes.zip file in your Java
subdirectory.

• Imported from com.sybase.jdbc, the Sybase jConnect JDBC driver is required for all
applications that connect using jConnect. You'll find it in the jdbcdrv.zip file in your
Java subdirectory.

• The application uses a property list. The java.util.Properties class is required to handle
property lists. You'll find it in the classes.zip file in your Java subdirectory.

• The sybase.sql package contains utilities used for serialization. You'll find it in the
asajdbc.zip file in your Java subdirectory.

• The asademo package contains example classes used in some examples. You'll find it in
the asademo.jar file in your java subdirectory.

The Main Method
Each Java application requires a class with a method named main, which is the method
invoked when the program starts. In this simple example, JDBCExamples.main is the only
method in the application.

The JDBCExamples.main method carries out the following tasks:

• Processes the command-line argument, using the machine name if supplied. By default,
the machine name is localhost, which is appropriate for the personal database server.

• Calls the ASAConnect method to establish a connection.
• Executes several methods that scroll data to your command line.

The ASAConnect Method
The JDBCExamples.ASAConnect method carries out the following tasks:

• Connects to the default running database using Sybase jConnect.
• Class.forName loads jConnect. Using the newInstance method works around issues

in some browsers.

Data Access Using JDBC

 124 Sybase IQ

• The StringBuffer statements build up a connection string from the literal strings and
the supplied machine name provided on the command line.

• DriverManager.getConnection establishes a connection using the connection string.
• Returns control to the calling method.

Running the External Connection Example
This section describes how to run the external connection example

1. From a system command prompt, change to the Sybase IQ installation directory.

2. Change to the IQ-15_3/java subdirectory

3. Ensure that your CLASSPATH environment variable includes the current directory (.) and
the imported zip files. For example, from a command prompt (the following should be
entered all on one line):

set classpath=..\java\jdbcdrv.zip;.;..\java
\asajdbc.zip;asademo.jar

The default zip file name for Java is classes.zip. For classes in any file named
classes.zip, you only need the directory name in the CLASSPATH variable, not the
zip-file name itself. For classes in files with other names, you must supply the zip file
name.

You need the current directory in the CLASSPATH to run the example.

4. Ensure the database is loaded onto a database server running TCP/IP. You can start such a
server on your local machine using the following command (from the IQ-15_3/
samples/sqlanywhere subdirectory):

On UNIX: start_iq .../iqdemo

On Windows: start_iq ...\iqdemo

5. Enter the following at the command prompt to run the example:

java JDBCExamples

If you wish to try this against a server running on another machine, you must enter the
correct name of that machine. The default is localhost, which is an alias for the current
machine name.

6. Confirm that a list of people and products appears at your command prompt.

If the attempt to connect fails, an error message appears instead. Confirm that you have
executed all the steps as required. Check that your CLASSPATH is correct. An incorrect
CLASSPATH results in a failure to locate a class.

See also
• Establish Connection From a Server-side JDBC Class on page 126
• Connect From a JDBC Client Application Using jConnect on page 122
• Sybase jConnect JDBC Driver on page 135

Data Access Using JDBC

System Administration Guide: Volume 2 125

Establish Connection From a Server-side JDBC Class
SQL statements in JDBC are built using the createStatement method of a Connection object.
Even classes running inside the server need to establish a connection to create a Connection
object.

Establishing a connection from a server-side JDBC class is more straightforward than
establishing an external connection. Because a user already connected executes the server-
side class, the class simply uses the current connection.

Notes on JDBC Connections

• Autocommit behavior—The JDBC specification requires that, by default, a COMMIT is
performed after each data modification statement. Currently, the server-side JDBC
behavior is to commit. You can control this behavior using a statement such as the
following:
conn.setAutoCommit(false) ;

where conn is the current connection object.
• Connection defaults—From server-side JDBC, only the first call to

getConnection("jdbc:default:connection") creates a new connection with the default
values. Subsequent calls return a wrapper of the current connection with all connection
properties unchanged. If you set AutoCommit to OFF in your initial connection, any
subsequent getConnection calls within the same Java code return a connection with
AutoCommit set to OFF.
You may wish to ensure that closing a connection resets connection properties to their
default values, so subsequent connections are obtained with standard JDBC values. The
following type of code achieves this:
Connection conn = DriverManager.getConnection("");
boolean oldAutoCommit = conn.getAutoCommit();
try {
 // do code here
}
finally {
 conn.setAutoCommit(oldAutoCommit);
}

This discussion applies not only to AutoCommit, but also to other connection properties
such as TransactionIsolation and is ReadOnly.

See also
• Connect From a JDBC Client Application Using jConnect on page 122

• Sybase jConnect JDBC Driver on page 135

• Running the External Connection Example on page 125

Data Access Using JDBC

 126 Sybase IQ

Server-side Connection Example Code
This is an example source code for server-side connection.

You can find the source code in the InternalConnect method of JDBCExamples.java in
the C:\Documents and Settings\All Users\SybaseIQ\samples
\SQLAnywhere\JDBC directory under your Sybase IQ installation directory:

public static void InternalConnect() {
 try {
 conn = DriverManager.getConnection("jdbc:default:connection");
 System.out.println("Hello World");
 }
 catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

How the Server-side Connection Example Works
In this simple example, InternalConnect() is the only method used in the application.

The application requires only one of the libraries (JDBC) imported in the first line of the
JDBCExamples.java class. The others are for external connections. The package named
java.sql contains the JDBC classes.

The InternalConnect() method carries out the following tasks:

1. Connects to the default running database using the current connection:
• DriverManager.getConnection establishes a connection using a connection string of

jdbc:default:connection.
2. Prints Hello World to the current standard output, which is the server window.

System.out.println carries out the printing.
3. If there is an error in the attempt to connect, an error message appears in the server window,

together with the place where the error occurred.
The try and catch instructions provide the framework for the error handling.

4. The class terminates.

Running the Server-side Connection Example
This section describes how to run the server-side connection example.

1. If you have not already done so, compile the JDBCExamples.java file. If you are
using the JDK, you can do the following in the C:\Documents and Settings
\All Users\SybaseIQ\samples\SQLAnywhere\JDBC directory under your
Sybase IQ installation directory from a command prompt:

javac JDBCExamples.java

Data Access Using JDBC

System Administration Guide: Volume 2 127

2. Start a database server using the demo database. You can start such a server on your local
machine using the following command (from the /ASIQ-12_7/java subdirectory):

On UNIX: start_iq .../iqdemo

On Windows: start_iq ...\iqdemo

The TCP/IP network protocol is not necessary in this case, since you are not using
jConnect. However, you must have at least 8 Mb of cache available to use Java classes in
the database.

3. Install the class into the demo database. Once connected to the demo database, you can do
this from Interactive SQL using the following command:

INSTALL JAVA NEW
FROM FILE 'C:\Documents and Settings\All Users\SybaseIQ\samples
\SQLAnywhere\JDBC\JDBCExamples.class'

where path is the path to your installation directory.

You can also install the class using Sybase Central. While connected to the demo database,
open the Java Objects folder and double-click Add Class. Then follow the instructions in
the wizard.

4. You can now call the InternalConnect method of this class just as you would a stored
procedure:

CALL JDBCExamples>>InternalConnect()

The first time a Java class is called in a session, the internal Java virtual machine must be
loaded. This can take a few seconds.

5. Confirm that the message Hello World prints on the server screen.

Use JDBC to Access Data
Java applications that hold some or all classes in the database have significant advantages over
traditional SQL stored procedures. At an introductory level, however, it may be helpful to use
the parallels with SQL stored procedures to demonstrate the capabilities of JDBC.

In the following examples, we write Java classes that insert a row into the Department
table.

As with other interfaces, SQL statements in JDBC can be either static or dynamic. Static SQL
statements are constructed in the Java application, and sent to the database. The database
server parses the statement, and selects an execution plan, and executes the statement.
Together, parsing and selecting an execution plan are referred to as preparing the statement.

If a similar statement has to be executed many times (many inserts into one table, for example),
there can be significant overhead in static SQL because the preparation step has to be executed
each time.

Data Access Using JDBC

 128 Sybase IQ

In contrast, a dynamic SQL statement contains placeholders. The statement, prepared once
using these placeholders, can be executed many times without the additional expense of
preparing.

In this section we use static SQL. Dynamic SQL is discussed in a later section.

Miscellaneous JDBC Notes

• Access permissions—Like all Java classes in the database, classes containing JDBC
statements can be accessed by any user. There is no equivalent of the GRANT EXECUTE
statement that grants permission to execute procedures, and there is no need to qualify the
name of a class with the name of its owner.

• Execution permissions—Java classes are executed with the permissions of the connection
executing them. This behavior is different to that of stored procedures, which execute with
the permissions of the owner.

Installing the JDBCExamples Class
This section describes how to install the JDBCExamples.class and prepare for the JDBC
examples in the remainder of this appendix.

Sample Code
The code fragments in this section are taken from the complete class C:\Documents and
Settings\All Users\SybaseIQ\samples\SQLAnywhere\JDBC
\JDBCExamples.java, under your installation directory.

Installing JDBCExamples Cass

1. If you have not already done so, install the JDBCExamples.class file into the demo
database.

2. Once connected to the demo database from Interactive SQL, enter the following command
in the SQL Statements pane:

INSTALL JAVA NEW
FROM FILE 'C:\Documents and Settings\All Users\SybaseIQ\samples
\SQLAnywhere\JDBC\JDBCExamples.class'

where path is the path to your installation directory.

You can also install the class using Sybase Central. While connected to the demo database,
open the Java Objects folder and double-click Add Java Class or JAR. Then follow the
instructions in the wizard.

Using JDBC to Insert, Update, and Delete
The Statement object executes static SQL statements. You execute SQL statements such as
INSERT, UPDATE, and DELETE, which do not return result sets, using the executeUpdate

Data Access Using JDBC

System Administration Guide: Volume 2 129

method of the Statement object. Statements such as CREATE TABLE and other data
definition statements can also be executed using executeUpdate.

The following code fragment illustrates how JDBC carries out INSERT statements. It uses an
internal connection held in the Connection object named conn. The code for inserting values
from an external application using JDBC would need to use a different connection, but
otherwise would be unchanged.

public static void InsertFixed() {
 // returns current connection
 conn = DriverManager.getConnection("jdbc:default:connection");
 // Disable autocommit
 conn.setAutoCommit(false);

 Statement stmt = conn.createStatement();

 Integer IRows = new Integer(stmt.executeUpdate
 ("INSERT INTO Department (dept_id, dept_name)"
 + "VALUES (201, 'Eastern Sales')"
));
 // Print the number of rows updated
 System.out.println(IRows.toString() + "row inserted");
 }

Note: This code fragment is part of the InsertFixed method of the JDBCExamples class. On
Windows you can build this class using build.bat in C:\Documents and
Settings\All Users\SybaseIQ\samples\SQLAnywhere\JDBC.

• The setAutoCommit method turns off the AutoCommit behavior, so changes are only
committed if you execute an explicit COMMIT instruction.

• The executeUpdate method returns an integer, which reflects the number of rows affected
by the operation. In this case, a successful INSERT would return a value of one (1).

• The integer return type converts to an Integer object. The Integer class is a wrapper around
the basic int data type, providing some useful methods such as toString().

• The Integer IRows converts to a string to be printed. The output goes to the server window.

Running the JDBC Insert example
Create a very simple JDBC class.

1. Using Interactive SQL, connect to the demo database as user ID dba.

2. Ensure the JDBCExamples class has been installed. It is installed together with the other
Java examples classes.

3. Call the method as follows:

CALL JDBCExamples>>InsertFixed()

4. Confirm that a row has been added to the department table.

SELECT *
FROM department

Data Access Using JDBC

 130 Sybase IQ

The row with ID 201 is not committed. You can execute a ROLLBACK statement to remove
the row.

Passing Arguments to Java Methods
The InsertFixed method can be expand to illustrate how arguments are passed to Java
methods.

The following method uses arguments passed in the call to the method as the values to insert:

public static void InsertArguments(
 String id, String name) {
try {
 conn = DriverManager.getConnection(
 "jdbc:default:connection");

String sqlStr = "INSERT INTO Department "
 + " (dept_id, dept_name)"
 + " VALUES (" + id + ", '" + name + "')";

 // Execute the statement
 Statement stmt = conn.createStatement();
 Integer IRows = new
Integer(stmt.executeUpdate(sqlStr.toString()));

 // Print the number of rows updated
 System.out.println(IRows.toString() + " row inserted");
 }
 catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

Using a Java Method with Arguments

• The two arguments are the department id (an integer) and the department name (a string).
Here, both arguments pass to the method as strings, because they are part of the SQL
statement string.

• The INSERT is a static statement and takes no parameters other than the SQL itself.
• If you supply the wrong number or type of arguments, you receive the Procedure Not

Found error.

1. If you have not already installed the JDBCExamples.class file into the demo
database, do so.

2. Connect to the demo database from Interactive SQL, and enter the following command:

call JDBCExamples>>InsertArguments('203', 'Northern Sales')

3. Verify that an additional row has been added to the Department table:

SELECT *
FROM Department

Data Access Using JDBC

System Administration Guide: Volume 2 131

4. Roll back the changes to leave the database unchanged:

ROLLBACK

Queries Using JDBC
The Statement object executes static queries, as well as statements that do not return result
sets. For queries, you use the executeQuery method of the Statement object. This returns the
result set in a ResultSet object.

The following code fragment illustrates how queries can be handled within JDBC. The code
fragment places the total inventory value for a product into a variable named inventory. The
product name is held in the String variable prodname. This example is available as the Query
method of the JDBCExamples class.

The example assumes an internal or external connection has been obtained and is held in the
Connection object named conn. It also assumes a variable

public static void Query () {
int max_price = 0;
 try{
 conn = DriverManager.getConnection(
 "jdbc:default:connection");

 // Build the query
 String sqlStr = "SELECT id, unit_price "
 + "FROM product" ;

 // Execute the statement
 Statement stmt = conn.createStatement();
 ResultSet result = stmt.executeQuery(sqlStr);

 while(result.next()) {
 int price = result.getInt(2);
 System.out.println("Price is " + price);
 if(price > max_price) {
 max_price = price ;
 }
 }
 }
 catch(Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 return max_price;
 }

Running the Example
Once you have installed the JDBCExamples class into the demo database, you can execute
this method using the following statement in Interactive SQL:

select JDBCExamples>>Query()

Data Access Using JDBC

 132 Sybase IQ

Notes

• The query selects the quantity and unit price for all products named prodname. These
results are returned into the ResultSet object named result.

• There is a loop over each of the rows of the result set. The loop uses the next method.
• For each row, the value of each column is retrieved into an integer variable using the getInt

method. ResultSet also has methods for other data types, such as getString, getDate, and
getBinaryString.
The argument for the getInt method is an index number for the column, starting from 1.
Data type conversion from SQL to Java is carried out according to the information in
“Java / SQL data type conversion” in the “SQL Data Types” chapter of the Sybase IQ
Reference Manual.

• Sybase IQ supports bidirectional scrolling cursors. However, JDBC provides only the next
method, which corresponds to scrolling forward through the result set.

• The method returns the value of max_price to the calling environment, and Interactive
SQL displays it in the Results pane.

See also
• Distributed Applications on page 139
• Insert and Retrieve Objects on page 134

Using Prepared Statements for More Efficient Access
If you use the Statement interface, you parse each statement you send to the database,
generate an access plan, and execute the statement. The steps prior to actual execution are
called preparing the statement.

You can achieve performance benefits if you use the PreparedStatement interface. This
allows you to prepare a statement using placeholders, and then assign values to the
placeholders when executing the statement.

Using prepared statements is particularly useful when carrying out many similar actions, such
as inserting many rows.

For more information on prepared statements, see Reference: Statements and Options > SQL
Statements > PREPARE statement [ESQL].

Example
The following example illustrates how to use the PreparedStatement interface, although
inserting a single row is not a good use of prepared statements.

The following method of the JDBCExamples class carries out a prepared statement:

public static void JInsertPrepared(int id, String name) try {
 conn = DriverManager.getConnection(
 "jdbc:default:connection");

Data Access Using JDBC

System Administration Guide: Volume 2 133

 // Build the INSERT statement
 // ? is a placeholder character
 String sqlStr = "INSERT INTO Department "
 + "(dept_id, dept_name) "
 + "VALUES (? , ?)" ;

 // Prepare the statement
 PreparedStatement stmt = conn.prepareStatement(sqlStr);

 stmt.setInt(1, id);
 stmt.setString(2, name);
 Integer IRows = new Integer(
 stmt.executeUpdate());

 // Print the number of rows updated
 System.out.println(IRows.toString() + " row inserted");
 }
 catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

Running the example
Once you have installed the JDBCExamples class into the demo database, you can execute
this example by entering the following statement:

call JDBCExamples>>InsertPrepared(
 202, 'Eastern Sales')

The string argument is enclosed in single quotes, which is appropriate for SQL. If you invoked
this method from a Java application, use double quotes to delimit the string.

Insert and Retrieve Objects
As an interface to relational databases, JDBC is designed to retrieve and manipulate
traditional SQL data types.

Sybase IQ also provides abstract data types in the form of Java classes. The way you access
these Java classes using JDBC depends on whether you want to insert or retrieve the objects.

See also
• Distributed Applications on page 139

• Queries Using JDBC on page 132

Retrieve Objects
You can retrieve objects and their fields and methods by:

• Accessing methods and fields—Java methods and fields can be included in the select-list
of a query. A method or field then appears as a column in the result set, and can be accessed
using one of the standard ResultSet methods, such as getInt, or getString.

Data Access Using JDBC

 134 Sybase IQ

• Retrieving an objec—If you include a column with a Java class data type in a query select
list, you can use the ResultSet getObject method to retrieve the object into a Java class.
You can then access the methods and fields of that object within the Java class. Java objects
can only be stored in the Catalog Store.

Insert Objects
From a server-side Java class, you can use the JDBC setObject method to insert an object into
a column with Java class data type.

You can insert objects using a prepared statement. For example, the following code fragment
inserts an object of type MyJavaClass into a column of table T:

java.sql.PreparedStatement ps =
 conn.prepareStatement("insert T values(?)");
ps.setObject(1, new MyJavaClass());
ps.executeUpdate();

An alternative is to set up a SQL variable that holds the object and then to insert the SQL
variable into the table.

Sybase jConnect JDBC Driver
If you wish to use JDBC from a client application or applet, you must have Sybase jConnect to
connect to Sybase IQ databases.

Depending on the installation package you received, Sybase IQ may or may not include
Sybase jConnect. You must have jConnect in order to use JDBC from client applications. You
can use server-side JDBC without jConnect.

For a full description of jConnect and its use with Sybase IQ, see the jConnect documentation
available in the online books or from the jConnect web site

Note: Before you can use jConnect in your application, load the driver by entering the
statement:

Class.forName("com.sybase.jdbc.SybDriver").newInstance();

Using the newInstance method works around issues in some browsers.

See also
• Establish Connection From a Server-side JDBC Class on page 126

• Connect From a JDBC Client Application Using jConnect on page 122

• Running the External Connection Example on page 125

Data Access Using JDBC

System Administration Guide: Volume 2 135

http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

Versions of jConnect Supplied with Sybase IQ
Sybase IQ provides two versions of the Sybase jConnect JDBC driver:

• Full version—If you choose to install jConnect, a jConnect subdirectory is added to your
Sybase IQ installation. This holds a directory tree with all jConnect files.

• Zip file—The Remote Data Access features, and the Java debugger, both use jConnect to
connect to the database. A zip file of the basic jConnect classes is provided to enable
jConnect use even without the full development version of the driver.

The jConnect Driver Files
The Sybase jConnect driver is installed into a set of directories under the jConnect
subdirectory of your Sybase IQ installation. If you have not installed jConnect, you can use the
jdbcdrv.zip file installed into the Java subdirectory.

Classpath Setting for jConnect
For your application to use jConnect, the jConnect classes must be in your CLASSPATH
environment variable at compile time and run time, so the Java compiler and Java runtime can
locate the necessary files.

For example, the following command adds the jConnect driver class path to an existing
CLASSPATH environment variable where path is your Sybase IQ installation directory.

set classpath=%classpath%;path\jConnect\classes

The following alternative command adds the jdbcdrv.zip file to your CLASSPATH.

set classpath=%classpath%;path\java\jdbcdrv.zip

Importing the jConnect Classes
The classes in jConnect are all in the com.sybase package. The client application needs to
access classes in com.sybase.jdbc. For your application to use jConnect, you must import
these classes at the beginning of each source file:

import com.sybase.jdbc.*

See also
• JDBC Overview on page 117

Installing jConnect System Objects Into a Database
If you wish to use jConnect to access system table information (database metadata), you must
add the jConnect system objects to your database.

By default, the jConnect system objects are added to a database for any database created using
version 12.7, and to any database upgraded to version 12.7.

You can choose to add the jConnect objects to the database either when creating or upgrading,
or at a later time.

Data Access Using JDBC

 136 Sybase IQ

You can install the jConnect system objects from Interactive SQL.

Adding the jConnect System Objects To a Version 12.7 Database From Sybase
Central:

1. Connect to the database from Sybase Central as a user with DBA authority.

2. In the left pane of the main Sybase Central viewer, right-click the database icon and choose
Re-Install jConnect Meta-data Support from the popup menu.

Adding the jConnect System Objects To a Version 12.7 Database From
Interactive SQL
Connect to the database from Interactive SQL as a user with DBA authority, and enter the
following command in the SQL Statements pane:

read path\scripts\jcatalog.sql

where path is your Sybase IQ installation directory.

Note: You can also use a command prompt to add the jConnect system objects to a version
12.7 database. At the command prompt, type:

dbisql -c "uid=user;pwd=pwd" path\scripts\jcatalog.sql

where user and pwd identify a user with DBA authority, and path is your Sybase IQ installation
directory.

Supply URL For the Server
To connect to a database via jConnect, you need to supply a Universal Resource Locator
(URL) for the database.

An example given in the section is as follows:

StringBuffer temp = new StringBuffer();
// Use the Sybase jConnect driver...
temp.append("jdbc:sybase:Tds:");
// to connect to the supplied machine name...
temp.append(_coninfo);
// on the default port number for ASA...
temp.append(":2638");
// and connect.
System.out.println(temp.toString());
conn = DriverManager.getConnection(temp.toString() , _props);

The URL is put together in the following way:

jdbc:sybase:Tds:machine-name:port-number

The individual components are include:

• jdbc:sybase:Tds—The Sybase jConnect JDBC driver, using the TDS application protocol.

Data Access Using JDBC

System Administration Guide: Volume 2 137

• machine-name—The IP address or name of the machine on which the server is running. If
you are establishing a same-machine connection, you can use localhost, which means
the current machine.

• port number—The port number on which the database server listens. The port number
assigned to Sybase IQ is 2638. Use that number unless there are specific reasons not to do
so.

The connection string must be less than 253 characters in length.

Specify Database On a Server
Each Sybase IQ server may have one or more databases loaded at a time. The URL as
described above specifies a server, but does not specify a database. The connection attempt is
made to the default database on the server.

You can specify a particular database by providing an extended form of the URL in one of the
following ways.

Using the ServiceName Parameter
jdbc:sybase:Tds:machine-name:port-number?ServiceName=DBN

The question mark followed by a series of assignments is a standard way of providing
arguments to a URL. The case of ServiceName is not significant, and there must be no spaces
around the = sign. The DBN parameter is the database name.

Using the RemotePWD Parameter
A more general method allows you to provide additional connection parameters such as the
database name, or a database file, using the RemotePWD field. You set RemotePWD as a
Properties field using the setRemotePassword() method.

Here is sample code that illustrates how to use the field.

sybDrvr = (SybDriver)Class.forName(
 "com.sybase.jdbc2.jdbc.SybDriver").newInstance();
props = new Properties();
props.put("User", "DBA");
props.put("Password", "SQL");
sybDrvr.setRemotePassword(
 null, "dbf=asiqdemo.db", props);
Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost", props);

Using the database file parameter DBF, you can start a database on a server using jConnect. By
default, the database is started with autostop=YES. If you specify a DBF or DBN of utility_db,
then the utility database will automatically be started.

For information on the utility database, see System Administration Guide: Volume 1 >
Overview of Sybase IQ System Administration and Managing User IDs and Permissions.

IQ specific connection parameters from TDS clients should be specified in RemotePWD.

Data Access Using JDBC

 138 Sybase IQ

This example shows how to specify IQ specific connection parameters, where myconnection
becomes the IQ connection name:
p.put(“RemotePWD“,“,,CON=myconnection”);

where myconnection becomes the IQ connection name.

Distributed Applications
In a distributed application, parts of the application logic run on one machine, and parts run on
another machine. With Sybase IQ, you can create distributed Java applications, where part of
the logic runs in the database server, and part on the client machine.

Sybase IQ is capable of exchanging Java objects with an external, Java client.

Having the client application retrieve a Java object from a database is the key task in a
distributed application This section describes how to accomplish that task.

Features of Distributed Applications
There are two other methods in JDBCExamples.java that use distributed computing:

• serializeVariable—This method creates a native Java object referenced by a SQL variable
on the database server and passes it back to the client application.

• serializeColumnCastClass—This method is like the serializeColumn method, but
demonstrates how to reconstruct subclasses. The column that is queried (JProd from the
product table) is of data type asademo.Product. Some of the rows are asademo.Hat,
which is a subclass of the Product class. The proper class is reconstructed on the client
side.

Requirements for Distributed Applications
There are two tasks in building a distributed application.

• Any class running in the server must implement the Serializable interface. This is very
simple.

• The client-side application must import the class, so the object can be reconstructed on the
client side.

These tasks are described in the following sections.

See also
• Insert and Retrieve Objects on page 134

• Queries Using JDBC on page 132

Data Access Using JDBC

System Administration Guide: Volume 2 139

Serializable Interfaces
Objects pass from the server to a client application in serialized form. For an object to be sent
to a client application, it must implement the Serializable interface. Fortunately, this is a very
simple task.

The Serializable interface contains no methods and no variables. Serializing an object
converts it into a byte stream which allows it to be saved to disk or sent to another Java
application where it can be reconstituted, or deserialized.

A serialized Java object in a database server, sent to a client application and deserialized, is
identical in every way to its original state. Some variables in an object, however, either don't
need to be or, for security reasons, should not be serialized. Those variables are declared using
the keyword transient, as in the following variable declaration.

transient String password;

When an object with this variable is deserialized, the variable always contains its default
value, null.

Custom serialization can be accomplished by adding writeObject() and readObject() methods
to your class.

For more information about serialization, see Sun Microsystems' Java Development Kit
(JDK).

Implementing the Serializable Interface
Implementing the Serializable interface amounts to simply declaring that your class can be
serialized.
Add the words implements java.io.Serializable to your class definition.

For example, the Product class in the in $SADIR/samples/asa/java/asademo
(UNIX) or %SADIR%\samples\asa\java\asademo (Windows) subdirectory
implements the Serializable interface by virtue of the following declaration:

public class Product implements java.io.Serializable

Importing the Class On the Client Side
On the client side, any class that retrieves an object has to have access to the proper class
definition to use the object.

To use the Product class, which is part of the asademo package, you must include the
following line in your application:

import asademo.*

The asademo.jar file must be included in your CLASSPATH for this package to be
located.

Data Access Using JDBC

 140 Sybase IQ

A Sample Distributed Application
The JDBCExamples.java class contains three methods that illustrate distributed Java
computing. These are all called from the main method.

Here is the getObjectColumn method from the JDBCExamples class.

private static void getObjectColumn() throws Exception {
// Return a result set from a column containing
// Java objects
 asademo.ContactInfo ci;
 String name;
 String sComment ;

 if (conn != null) {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(
 "SELECT JContactInfo FROM jdba.contact"
);
 while (rs.next()) {
 ci = (asademo.ContactInfo)rs.getObject(1);
 System.out.println("\n\tStreet: " + ci.street +
 "City: " + ci.city +
 "\n\tState: " + ci.state +
 "Phone: " + ci.phone +
 "\n");
 }
 }
 }

The getObject method is used in the same way as in the internal Java case.

See also
• Connect From a JDBC Client Application Using jConnect on page 122

Data Access Using JDBC

System Administration Guide: Volume 2 141

Data Access Using JDBC

 142 Sybase IQ

Debugging Logic in the Database

This appendix describes how to use the Sybase debugger to assist in developing SQL stored
procedures and event handlers, as well as Java stored procedures.

Introduction To Debugging In the Database
You can use the debugger during the development.

You can use the following objects:

• SQL stored procedures, event handlers, and user-defined functions.
• Java stored procedures in the database.

Debugger Features
You can use the debugger during the development of SQL stored procedures, triggers, event
handlers, and user-defined functions.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Introduction to the SQL
Anywhere debugger.

Requirements for Using the Debugger
To use the debugger, you need:

• Permissions—You must either have DBA authority or be granted permissions in the
SA_DEBUG group. This group is automatically added to all databases when they are
created.

• Source code for Java classes—The source code for your application must be available to
the debugger. For Java classes, the source code is held on a directory on your hard disk. For
stored procedures, the source code is held in the database.

• Compilation options—To debug Java classes, they must be compiled so that they contain
debugging information. For example, if you are using the Sun Microsystems JDK
compiler javac.exe, the Java classes must be compiled using the -g command-line
option.

Note: The Sybase IQ demo database is iqdemo.db.

Debugging Logic in the Database

System Administration Guide: Volume 2 143

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-debugging-secta-5473570.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-debugging-secta-5473570.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-debugging-secta-5473570.html

Tutorial 1: Getting Started With the Debugger
These tutorials describe how to start the debugger, how to connect to a database, and how to
debug a Java class.

Lesson 1: Connect To a Database and Start the Debugger
This tutorial shows you how to start the debugger, connect to a database, and attach to a
connection for debugging. It uses the Sybase IQ demo database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Tutorial: Getting started
with the debugger > Lesson 1: Connect to a database and start the debugger.

Tutorial 2: Debugging a stored procedure
This tutorial describes a sample session for debugging a stored procedure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Tutorial: Getting started
with the debugger > Lesson 2: Debug a stored procedure.

Tutorial 3: Debugging a Java Class
In this tutorial, you call JDBCExamples.Query() from Interactive SQL (dbisql), interrupt the
execution in the debugger, and trace through the source code for this method.

The JDBCExamples.Query() method executes the following query against the demo
database:

SELECT ID, UnitPrice
FROM Products

It then loops through all the rows of the result set, and returns the one with the highest unit
price.

You must compile classes with the javac -g option to debug them. The sample classes are
compiled for debugging.

Note: To use the Java examples, you must have the Java example classes installed into the
demo database.

Debugging Logic in the Database

 144 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-connect-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-connect-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-connect-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-procedure-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-procedure-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-procedure-javadebug.html

Demo Database Java Example Classes
If you intend to run Java examples, install the Java example classes into the demo database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data
Access APIs > SQL Anywhere JDBC driver > Using JDBC to access data > Preparing for the
examples.

Displaying Java Source Code Into the Debugger
The debugger looks in a set of locations for source code files with .java extension.

The Java Source Code Path window holds a list of directories in which the debugger looks for
Java source code. Java rules for finding packages apply. The debugger also searches the
current CLASSPATH for source code.

1. Select Sybase IQ 15 in left folder view.

2. In Sybase Central, select Mode > Debug.

3. When prompted to select the user to debug, specify * for all users and click OK.

4. From the debugger interface, select Debug > Set Java Source Code Path.

5. Enter the path to the java subdirectory of your Sybase IQ installation directory. For
example, if you installed Sybase IQ in %IQDIR15%, enter:

%IQDIR15%\java

6. Click Browse Folder to select from a list of folders or individual files where the debugger
looks for Java source.

7. Click Browse File to locate a file to add to the list.

8. Click OK, and close the window.

Setting a Breakpoint
You can set a breakpoint at the beginning of the Query() method. When the method is invoked,
execution stops at the breakpoint.

1. In the Source Code window, scroll down until you see the beginning of the Query()
method, near the end of the class, starting with:

public static int Query() {

2. Click the green indicator to the left of the first line of the method, until it is red. The first
line of the method is:

int max_price = 0;

Repeatedly clicking the indicator toggles its status. After setting the breakpoint, the Java
class does not need to be recompiled.

Debugging Logic in the Database

System Administration Guide: Volume 2 145

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/preparing-using-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/preparing-using-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/preparing-using-jdbc.html

Running the Method
You can invoke the Query() method from Interactive SQL (dbisql), and see its execution
interrupted at the breakpoint.

1. Start Interactive SQL. Connect to the demo database as used ID DBA and password
sql.

The connection appears in the debugger Connections window list.

2. To invoke the method, enter the following command in Interactive SQL:

SELECT JDBCExamples.Query()

The query does not complete. Instead, execution is stopped in the debugger at the
breakpoint. In Interactive SQL, the Stop button is active. In the debugger Source window,
the red arrow indicates the current line.

You can now step through source code and carry out debugging activities in the debugger.

Stepping Through Source Code
From the previous section, the debugger should have stopped executing
JDBCExamples.Query() at the first statement in the method:

1. Choose Debug > Step Over, or press F10 to step to the next line in the current method. Try
this two or three times.

2. Click at the end of the following line using the mouse, and choose Debug > Run To Cursor,
or press CTRL + F10 to run to that line and break:

3. Select the following line (line 292) and press F9 to set a breakpoint on that line:

return max_price;

An asterisk appears in the left column to mark the breakpoint. Press F5 to execute to that
breakpoint.

4. Try different methods of stepping through the code. End with F5 to complete the
execution.

When you have completed the execution, the Interactive SQL data window displays the
value 24.

5. To move to the next breakpoint, add an F5.

When you have completed the execution, the Interactive SQL data window displays the
value 24.

The complete set of options for stepping through source code appear on the Run menu. You
can find more information in the debugger online Help.

Debugging Logic in the Database

 146 Sybase IQ

Inspecting and Modifying Variables
You can inspect the values of both local variables (declared in a method) and class static
variables in the debugger.

You can display class-level variables (static variables) in the Debugger window and inspect
their values. For more information, see the debugger online Help.

You can inspect the values of local variables in a method as you step through the code, to better
understand what is happening.

Note: To use the Java examples, you must have the Java example classes installed into the
demo database.

1. Set a breakpoint at the first line of the JDBCExamples.Query method. This line is as
follows:

int max_price = 0

2. In Interactive SQL, execute the method again:

SELECT JDBCExamples.Query()

The query executes only as far as the breakpoint.

3. Press F7 to step to the next line. The max_price variable has now been declared and
initialized to zero.

4. If the Locals window does not appear, choose Window > Locals to display it.

The Locals window shows that there are several local variables. max_price has a value of
zero. All other variables are listed as variable not in scope, which means they
are not yet initialized.

5. In the Locals window, double-click the Value column entry for max_price, and change the
value of max_price to 45.

The value 45 is larger than any other price. Instead of returning 24, the query now returns
45 as the maximum price.

6. In the Source window, press F7 repeatedly to step through the code. The values of the
variables appear in the Locals window. Step through until the stmt and result variables
have values.

7. Expand the result object by clicking the icon next to it, or by setting the cursor on the line
and pressing Enter. This displays the values of the fields in the object.

8. When you have experimented with inspecting and modifying variables, press F5 to
complete the execution of the query and finish the tutorial.

Debugging Logic in the Database

System Administration Guide: Volume 2 147

Breakpoints
Breakpoints control when the debugger interrupts execution of your source code.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Working with
breakpoints.

View and Edit Variable Behavior
The debugger lets you view and edit the behavior of your variables while stepping through
your code.

The debugger provides a Debugger Details pane, which displays the different kinds of
variables used in stored procedures. The Debugger Details pane appears at the bottom of
Sybase Central when Sybase Central is running in Debug mode.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Working with variables.

Write Debugger Scripts
The debugger allows you to write scripts in the Java programming language. A script is a Java
class that extends the sybase.asa.procdebug.DebugScript class.

When the debugger runs a script, it loads the class and calls its run method. The first parameter
of the run method is a pointer to an instance of the class. This interface lets you interact with
and control the debugger.

You can compile scripts with a command such as the following:

javac -classpath %asany%/procdebug/ProcDebug.jar;%classpath%
myScript.Java.

sybase.asa.procdebug.DebugScript Class
The DebugScript class is as follows:

// All debug scripts must inherit from this class

package sybase.asa.procdebug;

abstract public class DebugScript
{
 abstract public void run(IDebugAPI db, String args[]);
 /*

Debugging Logic in the Database

 148 Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/breakpoints-working-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/breakpoints-working-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/breakpoints-working-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/setting-breakpoints-procdebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/setting-breakpoints-procdebug.html

 The run method is called by the debugger
 - args will contain command line arguments
 */

 public void OnEvent(int event) throws DebugError {}
 /*
 - Override the following methods to process debug events
 - NOTE: this method will not be called unless you call
 DebugAPI.AddEventHandler(this);
 */

}

sybase.asa.procdebug.IDebugAPI Interface
The IDebugAPI interfaces is as follows:

package sybase.asa.procdebug;
import java.util.*;
public interface IDebugAPI

{
 // Simulate Menu Items

 IDebugWindow MenuOpenSourceWindow() throws DebugError;
 IDebugWindow MenuOpenCallsWindow() throws DebugError;
 IDebugWindow MenuOpenClassesWindow() throws DebugError;
 IDebugWindow MenuOpenClassListWindow() throws DebugError;
 IDebugWindow MenuOpenMethodsWindow() throws DebugError;
 IDebugWindow MenuOpenStaticsWindow() throws DebugError;
 IDebugWindow MenuOpenCatchWindow() throws DebugError;
 IDebugWindow MenuOpenProcWindow() throws DebugError;
 IDebugWindow MenuOpenOutputWindow() throws DebugError;
 IDebugWindow MenuOpenBreakWindow() throws DebugError;
 IDebugWindow MenuOpenLocalsWindow() throws DebugError;
 IDebugWindow MenuOpenInspectWindow() throws DebugError;
 IDebugWindow MenuOpenRowVarWindow() throws DebugError;
 IDebugWindow MenuOpenQueryWindow() throws DebugError;
 IDebugWindow MenuOpenEvaluateWindow() throws DebugError;
 IDebugWindow MenuOpenGlobalsWindow() throws DebugError;
 IDebugWindow MenuOpenConnectionWindow() throws DebugError;
 IDebugWindow MenuOpenThreadsWindow() throws DebugError;
 IDebugWindow GetWindow(String name) throws DebugError;

 void MenuRunRestart() throws DebugError;
 void MenuRunHome() throws DebugError;
 void MenuRunGo() throws DebugError;
 void MenuRunToCursor() throws DebugError;
 void MenuRunInterrupt() throws DebugError;
 void MenuRunOver() throws DebugError;
 void MenuRunInto() throws DebugError;
 void MenuRunIntoSpecial() throws DebugError;
 void MenuRunOut() throws DebugError;
 void MenuStackUp() throws DebugError;
 void MenuStackDown() throws DebugError;
 void MenuStackBottom() throws DebugError;

Debugging Logic in the Database

System Administration Guide: Volume 2 149

 void MenuFileExit() throws DebugError;
 void MenuFileOpen(String name) throws DebugError;
 void MenuFileAddSourcePath(String what) throws DebugError;
 void MenuSettingsLoadState(String file) throws DebugError;
 void MenuSettingsSaveState(String file) throws DebugError;
 void MenuWindowTile() throws DebugError;
 void MenuWindowCascade() throws DebugError;
 void MenuWindowRefresh() throws DebugError;
 void MenuHelpWindow() throws DebugError;
 void MenuHelpContents() throws DebugError;
 void MenuHelpIndex() throws DebugError;
 void MenuHelpAbout() throws DebugError;
 void MenuBreakAtCursor() throws DebugError;
 void MenuBreakClearAll() throws DebugError;
 void MenuBreakEnableAll() throws DebugError;
 void MenuBreakDisableAll() throws DebugError;
 void MenuSearchFind(IDebugWindow w, String what) throws
DebugError;
 void MenuSearchNext(IDebugWindow w) throws DebugError;
 void MenuSearchPrev(IDebugWindow w) throws DebugError;
 void MenuConnectionLogin() throws DebugError;
 void MenuConnectionReleaseSelected() throws DebugError;

 // output window
 void OutputClear();
 void OutputLine(String line);
 void OutputLineNoUpdate(String line);
 void OutputUpdate();

 // Java source search path

 void SetSourcePath(String path) throws DebugError;
 String GetSourcePath() throws DebugError;

 // Catch java exceptions
 Vector GetCatching();
 void Catch(boolean on, String name) throws DebugError;

 // Database connections
 int ConnectionCount();
 void ConnectionRelease(int index);
 void ConnectionAttach(int index);
 String ConnectionName(int index);
 void ConnectionSelect(int index);

 // Login to database
 boolean LoggedIn();
 void Login(String url, String userId, String password, String
userToDebug) throws DebugError;
 void Logout();

 // Simulate keyboard/mouse actions
 void DeleteItemAt(IDebugWindow w, int row) throws DebugError;
 void DoubleClickOn(IDebugWindow w, int row) throws DebugError;

 // Breakpoints

Debugging Logic in the Database

 150 Sybase IQ

 Object BreakSet(String where) throws DebugError;
 void BreakClear(Object b) throws DebugError;
 void BreakEnable(Object b, boolean enabled) throws DebugError;
 void BreakSetCount(Object b, int count) throws DebugError;
 int BreakGetCount(Object b) throws DebugError;
 void BreakSetCondition(Object b, String condition) throws
DebugError;
 String BreakGetCondition(Object b) throws DebugError;
 Vector GetBreaks() throws DebugError;

 // Scripting
 void RunScript(String args[]) throws DebugError;
 void AddEventHandler(DebugScript s);
 void RemoveEventHandler(DebugScript s);

 // Miscellaneous
 void EvalRun(String expr) throws DebugError;
 void QueryRun(String query) throws DebugError;
 void QueryMoreRows() throws DebugError;
 Vector GetClassNames();
 Vector GetProcedureNames();
 Vector WindowContents(IDebugWindow window) throws DebugError;
 boolean AtBreak();
 boolean IsRunning();
 boolean AtStackTop();
 boolean AtStackBottom();
 void SetStatusText(String msg);
 String GetStatusText();
 void WaitCursor();
 void OldCursor();
 void Error(Exception x);
 void Error(String msg);
 void Warning(String msg);
 String Ask(String title);
 boolean MenuIsChecked(String cmd);
 void MenuSetChecked(String cmd, boolean on);
 void AddInspectItem(String s) throws DebugError;

 // Constants for DebugScript.OnEvent parameter
 public static final int EventBreak = 0;
 public static final int EventTerminate = 1;
 public static final int EventStep = 2;
 public static final int EventInterrupt = 3;
 public static final int EventException = 4;
 public static final int EventConnect = 5;
};

sybase.asa.procdebug.IDebugWindow Interface
The IDebugWindow interfaces is as follows:

// this interface represents a debugger window
package sybase.asa.procdebug;
public interface IDebugWindow
{
 public int GetSelected();

Debugging Logic in the Database

System Administration Guide: Volume 2 151

 /*
 get the currently selected row, or -1 if no selection
 */

 public boolean SetSelected(int i);
 /*
 set the currently selected row. Ignored if i < 0 or i > #rows
 */

 public String StringAt(int row);
 /*
 get the String representation of the Nth row of the window.
Returns null if row > # rows
 */

 public java.awt.Rectangle GetPosition();
 public void SetPosition(java.awt.Rectangle r);
 /*
 get/set the windows position within the frame
 */

 public void Close();
 /*
 Close (destroy) the window
 */
}

Debugging Logic in the Database

 152 Sybase IQ

Index
A

Adaptive Server Enterprise 15.5 104
Adaptive Server Enterprise server 93
Adaptive Server Enterprise servers 91
aggregate functions 37

statistical 54
STDDEV_POP 55
STDDEV_SAMP 55
VAR_POP 55
VAR_SAMP 55

ALLOW_NULLS_BY_DEFAULT option
Open Client 86

analytical functions 21
asajdbc server class 103
asaodbc server class 105
ascending order 46
ASEJDBC class 91
asejdbc server class 104
aseodbc server class 106
AT clause

CREATE EXISTING TABLE statement 95
atomic compound statements 10
autocommit mode

JDBC 126

B

batches
about 3, 9
SQL statements allowed 16

BEGIN TRANSACTION statement
remote data access 98

breakpoints
setting in a Java class 145

C

CALL statement
about 3
examples 5
parameters 11
syntax 9

CASE statement
syntax 9

case-sensitivity
remote access 100

CHAINED option
Open Client 86

CIS (Component Integration Services) 81
classes

importing 140
CLASSPATH environment variable

jConnect 136
setting 125

Client-Library
about 81

CLOSE statement
procedures 13

column information
inaccessible 104

COMMIT statement
compound statements 10
JDBC 126
procedures 15
remote data access 98

Component Integration Services 91
compound statements

atomic 10
declarations 10
using 9

computing deltas between adjacent rows 47
connecting

jConnect 138
connections

debugging 144
jConnect URL 137
JDBC 121, 122
JDBC client 122
JDBC defaults 126
JDBC example 126
JDBC examples 122
JDBC in the server 126
remote 98

CONTINUE_AFTER_RAISERROR option
Open Client 86

control statements
list 9

CREATE EXISTING TABLE
error 104

Index

System Administration Guide: Volume 2 153

CREATE EXISTING TABLE statement 91
using 95

CREATE PROCEDURE statement
examples 4
parameters 11

CREATE TABLE statement
proxy tables 96

CUBE operation 24, 25, 33
example 35
NULL 26
SELECT statement 33

current row 44
CURRENT ROW 41, 42
cursors

and LOOP statement 13
in procedures 13
on SELECT statements 13
procedures 13

D
data sources

external servers 105
database options

Open Client 86
databases

multiple 97
multiple on server 86
proxy 81
URL 138

DB-Library
about 81

debugger
about 143
connecting 144
features 143
getting started 144
requirements 143
tutorial 144

debugging
breakpoints 145
connection 144
event handlers 115
features 143
introduction 143
Java 144
permissions 143
requirements 143
stored procedures 144

DebugScript class 148

DECLARE statement
compound statements 10
procedures 13

deltas between adjacent rows, computing 47
descending order 46
DirectConnect 90, 91
DirectConnect for Oracle 91
distributed applications

about 139
example 141
requirements 139

distribution functions 21, 38, 59
driver

missing 100
DSEdit

entries 82
starting 82
using 82

E
encryption

hiding objects 16
TDS password 84, 85

Enterprise Connect Data Access 90, 91
error handling

ON EXCEPTION RESUME 14
errors

procedures 14
event handlers 113

debugging 115
triggering 115

events
retrieving a schedule name 115
retrieving an event name 115
system 112
trigger condition 112

examples
OLAP 65

exception handlers
procedures 15

EXECUTE IMMEDIATE statement
procedures 15

executeQuery method
about 132

executeUpdate method
about 129

extensions to GROUP BY clause 21, 24
external logins

about 94

Index

 154 Sybase IQ

creating 94
dropping 95

F

FETCH statement
procedures 13

FOR statement
syntax 9

FORWARD TO statement 97
functions

aggregate 37
analytical 21, 36
correlation 55
covariance 55, 56
distribution 21, 59
inverse distribution 59
numeric 21
numerical 61
ordered sets 59
PERCENTILE_CONT function 59
PERCENTILE_DISC function 59
ranking 21, 48
reporting 52
simple aggregate 37
standard deviation 54
statistical 21
statistical aggregate 54
STDDEV_POP function 55
STDDEV_SAMP function 55
user-defined 7
VAR_POP function 55
VAR_SAMP function 55
variance 54
window 22, 52
windowing 37
windowing aggregate 21, 52

G

getConnection method
instances 126

GROUP BY
clause extensions 24
CUBE 25
ROLLUP 25

GROUP BY clause extensions 24
GROUPING function

NULL 26

ROLLUP operation 26

I

iAnywhere JDBC driver
choosing a JDBC driver 118

IDebugAPI interface 149
IDebugWindow 151
IF statement

syntax 9
import

jConnect 136
INSERT statement

JDBC 129, 131
objects 134, 135

interfaces
IDebugAPI 149
IDebugWindow 151

interfaces file 91, 93
configuring 82

inverse distribution functions 59
IP address

about 83
iqdsedit

using 82
ISOLATION_LEVEL option

Open Client 86

J

Java
about 143
about debugging 143
debugging 143, 144
JDBC 117
querying objects 139

Java data types
inserting 134
retrieving 134

Java debugger
requirements 143
tutorial 144

jcatalog.sql file
jConnect 136

jConnect
about 135
choosing a JDBC driver 118
CLASSPATH environment variable 136
connections 122, 126

Index

System Administration Guide: Volume 2 155

database setup 136
installation 136
jdbcdrv.zip 136
packages 136
password encryption 85
system objects 136
URL 137
versions 136

jConnect 6.0 104
JDBC

about 117
applications overview 119
autocommit 126
client connections 122
client-side 121
connecting 122
connecting to a database 138
connection code 122
connection defaults 126
connections 121
data access 128
examples 122
features 119
INSERT statement 129, 131
jConnect 135
non-standard classes 119
overview 117
prepared statements 133
requirements 117
SELECT statement 132
server-side 121
server-side connections 126
version 119
ways to use 117

JDBC drivers
choosing 118
compatibility 118
performance 118

JDBCExamples class
about 129

K
keywords

remote servers 100

L
LEAVE statement

syntax 9

libctl.cfg file
DSEDIT environment variable 82

localhost
machine name 83

logical offset of a window frame 45
LOOP statement

in procedures 13
syntax 9

M

managing
transactions 98

MS SQL 90
MS SQL Server 91
multiple databases

DSEDIT entries 82
joins 97

N

NULL
CUBE operation 26
ROLLUP operation 26

NULL values
example 26

NULL values and subtotal rows 26
numeric functions 21

O

objects
hiding 16
inserting 134
querying 139
retrieving 134, 139

ODBC
external servers 105
server classes 105

OLAP 38
about 21
aggregate functions 37
analytical functions 21, 36
benefits 22
CUBE operation 33
current row 44
distribution functions 21, 38
extensions to GROUP BY clause 21
functionality 21

Index

 156 Sybase IQ

Grouping() 24
NULL values 26
numeric functions 21
ORDER BY clause 39
PARTITION BY clause 39
range 45
RANGE 38
ranking functions 21, 38
ROLLUP operator 25
rows 44
ROWS 38
semantic phases of execution 22
statistical aggregate functions 21
statistical functions 38
subtotal rows 25
using 22
window concept 38
window framing 38
window functions 22
window ordering 38
window partitioning 38, 39
window sizes 38
windowing extensions 37
windows aggregate functions 21

OLAP examples 65
ascending and descending order for value-

based frames 46
calculate cumulative sum 67
calculate moving average 68
computing deltas between adjacent rows 47
default window frame for RANGE 72
default window frame for ROW 71
multiple aggregate functions in a query 69
ORDER BY results 68
range-based window frames 45
row-based window frames 42
unbounded preceding and unbounded

following 72
unbounded window 46
using a window with multiple functions 67
window frame excludes current row 70
window frame with ROWS vs. RANGE 70
window functions 48
window functions in queries 66

OLAP functions
distribution 59
inter-row functions 57
numerical functions 61
ordered sets 59

ranking functions 48
statistical aggregate 54
windowing 37
windowing:aggregate functions 52

OmniConnect 81
support 84

ON EXCEPTION RESUME clause
about 14

online analytical processing
CUBE operator 33
functionality 21
NULL values 26
ROLLUP operator 25
subtotal rows 25

Open Client
configuring 81
interface 81
password encryption 84

Open Server
adding 81
addresses 83
architecture 81
starting 85
system requirements 85

OPEN statement
procedures 13

options
Open Client 86

ORDER BY clause 39, 40
sort order 46

ordered set functions 59
PERCENTILE_CONT 59
PERCENTILE_DISC 59

OVER clause 38

P
packages

jConnect 136
PARTITION BY clause 39
password

TDS encryption 84, 85
password encryption

jConnect 85
TDS 84, 85

PERCENTILE_CONT function 59
PERCENTILE_DISC function 59
performance

JDBC 133
JDBC drivers 118

Index

System Administration Guide: Volume 2 157

permissions
debugging 143
procedures 6
user-defined functions 8

phases of execution 22
physical offset of a window frame 44
ping

testing Open Client 83
population variance function 55
prefixes 24

ROLLUP operation 25
subtotal rows 25

PREPARE statement
remote data access 98

prepared statements
JDBC 133

PreparedStatement interface
about 133

Procedure Not Found error
Java methods 131

procedures
about 3
benefits of 3
calling 5
creating 4
cursors 13
cursors in 13
debugging 144
default error handling 14
displaying information about 4
dropping 6
error handling 14
exception handlers 15
EXECUTE IMMEDIATE statement 15
execution permissions 6
multiple result sets from 12
owner 4
parameters 4, 11
result sets 7, 12
returning results 11, 12
returning results from 6
savepoints in 15
SQL statements allowed in 10
structure 10
using 4
variable result sets from 12
warnings 14

proxy databases 81

proxy tables 91
about 89, 95
creating 89, 95, 96
location 95
properties 95

Q

queries
JDBC 132
prefixes 24
subtotal rows 25

QUOTED_IDENTIFIER option
Open Client 86

R

range 45
logical offset of a window frame 45
window frame unit 40
window order clause 40

RANGE 38
range specification 42, 45
range-based window frames 45, 46
rank functions

example 51, 52
ranking functions 21, 38

requirements with OLAP 40
window order clause 40

remote data
location 95
non-Sybase 90

remote data access 81
case-sensitivity 100
internal operations 98
passthrough mode 97
remote servers 89
SQL Remote unsupported 100
troubleshooting 100
unsupported features 100

remote procedure calls
about 97

remote servers
about 89
altering 93
classes 103
creating 90
deleting 93
external logins 94

Index

 158 Sybase IQ

listing properties 94
transaction management 98

remote tables
about 89
listing 93
listing columns 96

REMOTEPWD
using 138

Replication Server
support 84

reporting functions 52
example 53

requirements for using the debugger 143
reserved words

remote servers 100
restrictions

remote data access 100
result sets

multiple 12
procedures 7, 12
variable 12

RETURN statement
about 12

ROLLBACK statement
compound statements 10
procedures 15

ROLLUP operation 24, 25
example 30
NULL 26
SELECT statement 25
subtotal rows 25

ROLLUP operator 25
row specification 42
row-based window frames 42
rows 44

physical offset of a window frame 44
rows between 1 preceding and 1 following 44
rows between 1 preceding and 1 preceding 44
rows between current row and current row 44
rows between unbounded preceding and

current row 44
rows between unbounded preceding and

unbounded following 44
specification 45
subtotal rows 25

ROWS 38

S
SA_DEBUG group

debugger 143

sample variance function 55
savepoints

procedures 15
schedules

definition components 111
scripts

IDebugAPI interface 149
IDebugWindow interface 151
writing debugger 148

scrollable cursors
JDBC support 118

security
hiding objects 16

SELECT statement
JDBC 132
objects 134

semantic phases of execution 22
serialization

distributed computing 141
objects 140

server address
DSEDIT 83

server classes
about 89
asajdbc 103
asaodbc 105
asejdbc 104
aseodbc 106
defining 89
ODBC 105

servers
multiple databases on 86

setAutocommit method
about 126

setObject method
using 141

simple aggregate functions 37
sort order of ORDER BY in range-based frames

46
sp_iqprocedure

information about procedures 4
sp_iqprocparm

procedure parameters 4
SQL Remote

remote data access 100
sql.ini file

configuring 82
SQLCODE variable

introduction 14

Index

System Administration Guide: Volume 2 159

SQLSTATE variable
introduction 14

standard deviation
functions 54
population function 55
sample function 55

starting databases
jConnect 138

statistical aggregate functions 54
statistical functions 38

aggregate 21
STDDEV_POP function 55
STDDEV_SAMP function 55
stored procedures

debugging 144
displaying information about 4

subtotal rows 25
construction 25
definition 25, 33
NULL values 26
ROLLUP operation 25

subtransactions
procedures 15

summary information
CUBE operator 33

summary rows
ROLLUP operation 25

SYBASE environment variable
DSEDIT 82

sysservers system table
remote servers 90

system events
trigger conditions 112

T
table names

local 95
tables

defining proxy 95, 96
listing remote 93
proxy 95
remote access 89

Tabular Data Stream (TDS)
about 81

TCP/IP
addresses 83
Open Server 85

TDS
password encryption 84, 85

See also Tabular Data Stream (TDS)¶
transaction management 98
transactions

managing 98
procedures 15
remote data access 98

trigger conditions
for system events 112

triggering event handlers 115
troubleshooting

remote data access 100
server address 83

TSQL_HEX_CONSTANT option
Open Client 86

TSQL_VARIABLES option
Open Client 86

U

UNBOUNDED FOLLOWING 41, 42
UNBOUNDED PRECEDING 41
UNBOUNDED PREDEDING 42
unbounded window, using 46
URL

jConnect 137
URL database

JDBC 138
user-defined functions

calling 8
creating 7
dropping 8
execution permissions 8
parameters 11
using 7

using unbounded windows 46

V

value-based window frames 45
ascending and descending order 46
ORDER BY clause 46

VAR_POP function 55
VAR_SAMP function 55
variance functions 54

W

warnings
procedures 14

Index

 160 Sybase IQ

WHILE statement
syntax 9

window
frame clause 40
operator 37
order clause 39, 40
ordering 38, 39

window frame unit 40, 44, 45
range 45
rows 44

window frames 38, 40
range based 45, 46
row based 42

window functions
aggregate 21, 38
distribution 38
framing 40
ordering 39

OVER clause 38
partitioning 39
ranking 38
statistical 38
window function type 37
window name or specification 37
window partition 37

window partitioning 38, 39
clause 39
GROUP BY operator 39

window sizes
RANGE 38
ROWS 38

windowing
aggregate functions 38, 52
extensions 37
functions 38
partitions 37

Index

System Administration Guide: Volume 2 161

Index

 162 Sybase IQ

	System Administration Guide: Volume 2
	Contents
	Audience
	Using Procedures and Batches
	Overview of Procedures
	Benefits of Procedures
	Introduction to Procedures
	Creating Procedures
	Altering Procedures
	Calling Procedures
	Copying Procedures in Sybase Central
	Deleting Procedures
	Permissions to Execute Procedures
	Returning Procedure Results in Parameters
	Returning Procedure Results in Result Sets

	Introduction to User-Defined Functions
	Creating User-Defined Functions
	Calling User-Defined Functions
	Dropping User-Defined Functions
	Permissions to Execute User-Defined Functions

	Introduction to Batches
	Control Statements
	Using Compound Statements
	Declarations In Compound Statements
	Atomic Compound Statements

	Structure of Procedures
	SQL Statements Allowed in Procedures
	Declaring Parameters for Procedures
	Passing Parameters to Procedures
	Passing Parameters to Functions

	Procedure Results
	Returning a Value Using the RETURN Statement
	Returning Results as Procedure Parameters
	Returning Result Sets from Procedures
	Returning Multiple Result Sets from Procedures
	Returning Variable Result Sets from Procedures

	Cursors in Procedures
	Cursor Management Overview
	Cursor Positioning
	Cursors and SELECT Statements in Procedures

	Errors and Warnings in Procedures
	Default Error Handling in Procedures
	Error Handling With ON EXCEPTION RESUME
	Default Handling of Errors and Warnings in Procedures
	Using Exception Handlers in Procedures
	Nested Compound Statements and Exception Handlers

	Using the EXECUTE IMMEDIATE Statement In Procedures
	Transactions and Savepoints in Procedures
	Hiding the Contents of Procedures, Functions, and Views
	Statements Allowed In Batches
	Using SELECT Statements in Batches

	Using IQ UTILITIES to Create Your Own Stored Procedures
	How IQ Uses the IQ UTILITIES Command
	Choosing Procedures to Call
	Numbers Used by IQ UTILITIES
	Procedure Testing

	Using OLAP
	About OLAP
	OLAP Benefits
	OLAP Evaluation

	GROUP BY Clause Extensions
	Group by ROLLUP and CUBE
	Group by ROLLUP
	Group by CUBE

	Analytical Functions
	Simple Aggregate Functions
	Windowing
	Window Partitioning
	Window Ordering
	Window Framing
	ROWS
	RANGE
	Explicit and Inline Window Clauses
	Ranking Functions
	RANK() Function
	DENSE_RANK() Function
	PERCENT_RANK() Function
	ROW_NUMBER() Function
	Ranking Examples
	Windowing Aggregate Functions
	Statistical Aggregate Functions
	Interrow Functions
	Distribution Functions

	Numeric Functions

	OLAP Rules and Restrictions
	Additional OLAP Examples
	Example: Window Functions in Queries
	Example: Window with multiple functions
	Example: Calculate cumulative sum
	Example: Calculate moving average
	Example: ORDER BY results
	Example: Multiple aggregate functions in a query
	Example: Window frame comparing ROWS and RANGE
	Example: Window frame excludes current row
	Example: Window frame for RANGE
	Example: Unbounded preceding and unbounded following
	Example: Default window frame for RANGE

	BNF Grammar for OLAP Functions

	Sybase IQ as a Data Server
	Client/Server Interfaces to Sybase IQ
	Configuring IQ Servers with iqdsedit
	The Interfaces File
	iqdsedit Database Administration Utility
	Starting iqdsedit
	Opening a Directory Services Session
	Adding a Server Entry
	Adding or Changing a Server Address
	Verifying a Server Address
	Renaming a Server Entry
	Deleting Server Entries

	Sybase Applications and Sybase IQ
	Open Client Applications and Sybase IQ
	Configuring Open Client

	Sybase IQ as an Open Server
	System Requirements
	Starting the Database Server as an Open Server
	Configuring Your Database for Use with Open Client

	Characteristics of Open Client and jConnect Connections
	Servers with Multiple Databases

	Accessing Remote Data
	Sybase IQ and Remote Data
	Requirements for Accessing Remote Data
	Remote table mappings
	Server Classes

	Remote Servers
	Create Remote Servers
	Loading Remote Data Without Native Classes
	Loading MS SQL Server Data into an IQ Server on UNIX

	Querying Data Without Native Classes
	Querying Remote Data Using DirectConnect and Proxy Table from UNIX
	Setting Up Adaptive Server Enterprise to Query MS SQL Server
	Setting up Sybase IQ to Connect to the ASE Server

	Delete Remote Servers
	Alter Remote Servers
	List the Remote Tables On a Server
	List Remote Server Capabilities

	External Logins
	Create External Logins
	Drop External Logins

	Proxy Tables
	Specify Proxy Table Locations
	Create Proxy Tables
	CREATE TABLE Statement
	List the Columns On a Remote Table

	Example: Join Between Two Remote Tables
	Multiple Local Databases
	Send Native Statements to Remote Servers
	Remote Procedure Calls (RPCs)
	Create Remote Procedures

	Transaction Management and Remote Data
	Remote Transaction Management Overview
	Restrictions on Transaction Management

	Internal Operations
	Query Parsing
	Query Normalization
	Query Preprocessing
	Server Capabilities
	Complete Passthrough of the Statement
	Partial Passthrough of the Statement

	Remote Data Access Troubleshooting
	Features Not Supported For Remote Data
	Case Sensitivity
	Connectivity Problems
	General Problems with Queries
	Managing Remote Data Access Connections

	Server Classes for Remote Data Access
	Server Classes Overview
	JDBC-based Server Classes
	Configuration Notes for JDBC Classes
	Server Class sajdbc
	Parameter Value in the CREATE SERVER Statement

	Server Class asejdbc
	Data Type Conversions
	Installing jConnect 6.0 Metadata

	ODBC-based Server Classes
	ODBC External Servers
	Server Class saodbc
	Server Class aseodbc
	Server Class db2odbc
	Server Class oraodbc
	Sybase IQ to Oracle Data Type Mappings
	Oracle to Sybase IQ Data Mappings

	Server Class mssodbc
	Server Class odbc
	Microsoft Excel (Microsoft 3.51.171300)
	Microsoft Foxpro (Microsoft 3.51.171300)
	Lotus Notes SQL 2.0 (2.04.0203)
	Setting Up IQ to Access the Address Sample File

	Automating Tasks Using Schedules and Events
	Introduction to Scheduling and Event Handling
	Schedules
	Defining Schedules

	Events
	Choosing a System Event
	Defining Trigger Conditions for Events

	Event Handlers
	Developing Event Handlers

	Schedule and Event Internals
	How the Database Server Checks for System Events
	How the Database Server Checks for Scheduled Times
	How Event Handlers are Executed

	Scheduling and Event Handling Tasks
	Adding a Schedule or Event to a Database
	Adding a Manually-triggered Event To a Database
	Triggering an Event Handler
	Debugging an Event Handler
	Retrieving Information about an Event or Schedule

	Data Access Using JDBC
	JDBC Overview
	Choose JDBC Driver
	JDBC Program Structure
	Server-side JDBC Features
	Differences Between Client- and Server-side JDBC Connections

	Establish JDBC Connections
	Connect From a JDBC Client Application Using jConnect
	External Connection Example Code
	How the External Connection Example Works
	Running the External Connection Example

	Establish Connection From a Server-side JDBC Class
	Server-side Connection Example Code
	How the Server-side Connection Example Works
	Running the Server-side Connection Example

	Use JDBC to Access Data
	Installing the JDBCExamples Class
	Sample Code
	Installing JDBCExamples Cass

	Using JDBC to Insert, Update, and Delete
	Running the JDBC Insert example

	Passing Arguments to Java Methods
	Using a Java Method with Arguments

	Queries Using JDBC
	Using Prepared Statements for More Efficient Access
	Insert and Retrieve Objects
	Retrieve Objects
	Insert Objects

	Sybase jConnect JDBC Driver
	Versions of jConnect Supplied with Sybase IQ
	The jConnect Driver Files
	Installing jConnect System Objects Into a Database
	Adding the jConnect System Objects To a Version 12.7 Database From Sybase Central:
	Adding the jConnect System Objects To a Version 12.7 Database From Interactive SQL

	Supply URL For the Server
	Specify Database On a Server

	Distributed Applications
	Serializable Interfaces
	Implementing the Serializable Interface

	Importing the Class On the Client Side
	A Sample Distributed Application

	Debugging Logic in the Database
	Introduction To Debugging In the Database
	Debugger Features
	Requirements for Using the Debugger

	Tutorial 1: Getting Started With the Debugger
	Lesson 1: Connect To a Database and Start the Debugger

	Tutorial 2: Debugging a stored procedure
	Tutorial 3: Debugging a Java Class
	Demo Database Java Example Classes
	Displaying Java Source Code Into the Debugger
	Setting a Breakpoint
	Running the Method
	Stepping Through Source Code
	Inspecting and Modifying Variables

	Breakpoints
	View and Edit Variable Behavior
	Write Debugger Scripts
	sybase.asa.procdebug.DebugScript Class
	sybase.asa.procdebug.IDebugAPI Interface
	sybase.asa.procdebug.IDebugWindow Interface

	Index

