SYBASE

Company

System Administration Guide: Volume 2

Sybase IQ 15.3

DOCUMENT ID: DC00800-01-1530-01

LAST REVISED: May 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

AUAIBNCE ... 1
Using Procedures and Batchesccccvvvvviiiiciiiiie e, 3
Overview Of ProCedurescoovevvveiiiiiieeeeeeiiieeee e 3
Benefits of Proceduresccoovvvvviiiiiiiieeeeeiee e 3
Introduction to Proceduresveiiiiiiieeeeeeieieeeeeiiiens 4
Creating Procedurescouuvvieiiiieeeeeeeeeieeeenn 4
Altering ProCeduresuuvvviiiiiiiiiiiiiieeeeeeeeeeeee 5
Calling Procedurescoooeevveiiiiiiceeeiiiie e 5
Copying Procedures in Sybase Central 5
Deleting Proceduresccoovvvieiiieeeeiiiiiee e 6
Permissions to Execute Procedures...................... 6
Returning Procedure Results in Parameters......... 6
Returning Procedure Results in Result Sets......... 7
Introduction to User-Defined Functions........................... 7
Creating User-Defined Functions.............cccceeevenen. 7
Calling User-Defined Functions...............cccevvvvvnnnn.. 8
Dropping User-Defined Functions..............c.......... 8
Permissions to Execute User-Defined Functions
... 8
Introduction to BatCchescceeiiiiiiiiiieicie e, 9
Control StatemeNntScovvviiiiiieiiiiee e 9
Using Compound Statements............cccceeeeeeeeveennnn. 9
Declarations In Compound Statements............... 10
Atomic Compound Statements..............cccccvvvnnnnnn. 10
Structure of ProCedurescceeeiieeeiiieeeeeiiiiieee e 10
SQL Statements Allowed in Procedures.............. 10
Declaring Parameters for Procedures.................. 11
Passing Parameters to Procedures..................... 11
Passing Parameters to Functions......................... 11
Procedure ReSUIScoooeeviviiiiiii e, 11
System Administration Guide: Volume 2 iii

Contents

Returning a Value Using the RETURN

Statement ... 12
Returning Results as Procedure Parameters...... 12
Returning Result Sets from Procedures.............. 12
Returning Multiple Result Sets from Procedures

... 12
Returning Variable Result Sets from Procedures

... 12

CUursors in ProCedUresSccooviviiieiiiiiiiiee e 13
Cursor Management OVerviewcccceeeeeevennnnn. 13
CUrsor POSItIONINGcvvviiiiiiiiiiiiiiiieeeee e 13
Cursors and SELECT Statements in Procedures

... 13

Errors and Warnings in Procedures............ccccccvvvvvvnnnn. 14
Default Error Handling in Procedures.................. 14
Error Handling With ON EXCEPTION RESUME

... 14
Default Handling of Errors and Warnings in

ProCedurescoooviviiiiiiiiie e 14
Using Exception Handlers in Procedures............ 15
Nested Compound Statements and Exception

HandIers ... 15

Using the EXECUTE IMMEDIATE Statement In

Procedures........ccccoiiiiiii 15
Transactions and Savepoints in Procedures................. 15
Hiding the Contents of Procedures, Functions, and

VIBWS ...ttt e e e e e eeaees 16

Statements Allowed In Batchescccoeeiviiiviiiiiinnns 16
Using SELECT Statements in Batches................ 17

Using IQ UTILITIES to Create Your Own Stored

ProCeAUIESvvviiiee e 17
How IQ Uses the IQ UTILITIES Command......... 18
Choosing Procedures to Call...........ccccceveeeeeennnnnn. 18
Numbers Used by IQ UTILITIEScccoeevvnnns 19
Procedure Testingcccceuummmmmmimmiiiiiiiiiiiiiiiiiees 19

iv Sybase 1Q

Contents

USING OLAP oo 21
ADOUL OLAP L.ttt 21
OLAP BenefitScuuviiiiiiiiiiiiiieeeeeeeeie e, 22
OLAP Evaluationccccceuvuvimiiiiiiiiiiiiirieeeeeeeeeen 22
GROUP BY Clause EXteNnsionScccuvveiieeeeeeiiinnnnnnn. 24
Group by ROLLUP and CUBEcccevvvvvvnnnnnn. 25
Analytical FUNCHIONS ..., 36
Simple Aggregate Functionscccceevvvvvvvvnnnnns 37
WINAOWING e 37
Numeric FUNCLIONScoooiiiiiie 61
OLAP Rules and Restrictionscocevvviieeeeeeiiinnnnnn. 64
Additional OLAP EXamples.........coovvviiiiiiiiiiiiieeeeeeeeee, 65
Example: Window Functions in Queries.............. 66
Example: Window with multiple functions............. 67
Example: Calculate cumulative sum-.................... 67
Example: Calculate moving average.................... 68
Example: ORDER BY resultS........cccccccvvieieeennnn. 68
Example: Multiple aggregate functions in a
[0 U [T PPN 69
Example: Window frame comparing ROWS and
RANGEooviiiiiieieeee s 70
Example: Window frame excludes current row....70
Example: Window frame for RANGE 71
Example: Unbounded preceding and
unbounded following ..o, 72
Example: Default window frame for RANGE 72
BNF Grammar for OLAP Functions............ccccceeeeveennnnn. 73
Sybase IQ as a Data Servercccovvvvviiiiiiiiiiii e 81
Client/Server Interfaces to Sybase 1Qccccccvvvveeeen. 81
Configuring 1Q Servers with igdsedit.................... 81
Sybase Applications and Sybase 1Q 84
Open Client Applications and Sybase 1Q.............. 84
Sybase IQ as an Open Server.........ccccccceeevmimeeniinennnnns 85
System RequIrementSooovvvvvvvviiiiiiieeeeeeeeean, 85

System Administration Guide: Volume 2 %

Contents

Starting the Database Server as an Open Server

... 85
Configuring Your Database for Use with Open
ClieNt ... 86
Characteristics of Open Client and jConnect
CONNECHIONS ...ttt 86
Servers with Multiple Databases............cc.c......... 86
Accessing Remote Data ... 89
Sybase 1Q and Remote Data.........cccooveeevvvveeiiiiiiinnneennn. 89
Requirements for Accessing Remote Data.......... 89
RemMote SEervers ... 89
External LOgINSoovvvviviiiiiieeecceeeeiee e 94
Proxy Tables ... 95
Example: Join Between Two Remote Tables....... 97
Multiple Local Databasesccccoevveeeeeeiiiieeeennnnns 97
Send Native Statements to Remote Servers....... 97
Remote Procedure Calls (RPCS)ccevvvvvivnnnnes 97
Transaction Management and Remote Data................. 98
Remote Transaction Management Overview........ 98
Restrictions on Transaction Management............ 98
Internal OPErationseeeveeeieemiiiiiiee s 98
QUENY Parsingeeeieieeeieeeeiiiie e e e e 99
Query Normalizationcccceeiiniiiiiiiiiiiiines 99
Query PreproCessSingceeeeeeereeeeriiiiieeeeeeeeeeninnnnnn 99
Server CapabilitieS ... 99
Complete Passthrough of the Statement............. 99
Partial Passthrough of the Statement................ 100
Remote Data Access Troubleshooting 100
Features Not Supported For Remote Data......... 100
Case SeNSItIVILYoeeeeiiiiiiiie e, 100
Connectivity Problemscccccoiiiiiiiiiiiiiiins 100
General Problems with Queries............cccccceoe.... 101
Managing Remote Data Access Connections...101
Server Classes for Remote Data ACCESScccvvvveeeeeennnn. 103
Server Classes OVEIVIEWcvevvvevviiieeeeeiiiineeeeeeennnns 103

Vi Sybase 1Q

Contents

JDBC-based Server ClasSesccoooevvvvviieeeiiiiiineeeeennns 103
Configuration Notes for JDBC Classes.............. 103
Server Class sajdbcCcoooiiiiiiiiiie 103
Server Class asejdbC.........ccovvviiiiiieeeeveeeiiiin, 104

ODBC-based Server Classescccoeevvveeieeiiiiiieeiiinnns 105
ODBC External Servers........cccceeeeeeeevvevennnnnnnnn. 105
Server Class saodbcCcccoevvviiiiiiiiiiiiiiiiiiiinnes 105
Server Class aseodbC........cccoevvveieiiiiiiiiieiiiiiinns 106
Server Class db2odbcccooovvviiiiiiiiiiiiis 106
Server Class 0raodbCccooevvviiiiiiieeeeeeeiinnn, 106
Server Class mssodbC...........cvviiiiiieiiiieeiiiiinnn. 109
Server Class 0dbCcceeeiieiiiiiiicie e, 109

Automating Tasks Using Schedules and Events............. 111

Introduction to Scheduling and Event Handling 111

SChEAUIES ... 111
Defining Schedulesccoovviiiiiiiiiiieeeceees 111

BVENTS ..o 112
Choosing a System Event.............cccccceeeieeenennn, 112
Defining Trigger Conditions for Events................ 112

Event Handlersoooovviiiii i 113
Developing Event Handlersccoooeeeiieee. 113

Schedule and Event Internals.........ccccooeveeeeiiiieiiinnnnnnn. 113
How the Database Server Checks for System

EVENTS ..o 113
How the Database Server Checks for Scheduled

TIMES e 114
How Event Handlers are Executed..................... 114

Scheduling and Event Handling Tasks....................... 114
Adding a Schedule or Event to a Database........ 114
Adding a Manually-triggered Event To a

Databaseeiiiiiiiiiiiii 114
Triggering an Event Handlercccccvvvvvnnnn.. 115
Debugging an Event Handlercccuvveeee. 115
Retrieving Information about an Event or

Scheduleccoooviiiiiii 115

System Administration Guide: Volume 2 vii

Contents

Data Access Using JDBCcccooiiiiiiiiiiiieeeein e 117
JIDBC OVEIVIEW ...t 117
Choose JDBC DIiVErovviviiiiiieeeeeiiiiee e, 118
JDBC Program Structureccooeevveviiniiiinnennn, 119
Server-side JDBC Featuresccccoeveeevveevnnnnnn. 119
Differences Between Client- and Server-side
JDBC CONNECLiONSoveeeiiiiiiiiieeeeeeeiiie e 121
Establish JDBC Connections............cccovvvvvveeiiiiineennnn. 122
Connect From a JDBC Client Application Using
(Lo 1 =T o S 122
Establish Connection From a Server-side JDBC
ClaSS ..ovveeiiiiiiei e 126
Use JDBC to Access Dataccceuueieeieiiiiiieiiiiiineeees 128
Installing the JDBCExamples Class.................. 129
Using JDBC to Insert, Update, and Delete......... 129
Passing Arguments to Java Methods................. 131
Queries USiNg JDBCoovvviiiiiiiiiiiiieiis 132
Using Prepared Statements for More Efficient
ACCESS .. 133
Insert and Retrieve ObjecCtS.........ccccoevveevvvnnnnnnnn. 134
Sybase jConnect JIDBC Drivercccccvvvvvveeeeeeeeeeennn. 135
Versions of jConnect Supplied with Sybase 1Q
... 136
The jConnect Driver Filesccovvviiiieviiiinnnnnn. 136
Installing jConnect System Objects Into a
Databaseccevvviiviiiiiiiiiiiiiiiiiiiiiiis 136
Supply URL For the Server ..o 137
Distributed Applicationscccveiiiieiiiiiiiiie e, 139
Serializable Interfaces...........cccccceiiiiviiiiinieeeennnn, 140
Importing the Class On the Client Side............. 140
A Sample Distributed Application...................... 141
Debugging Logic in the Databasecccceeiieieeeeeeeeenn. 143
Introduction To Debugging In the Database................ 143
Debugger Featuresccceevvieevieeiiiiiiieeeeeeeenns 143
Requirements for Using the Debugger 143

viii Sybase 1Q

Contents

Tutorial 1: Getting Started With the Debugger 144
Lesson 1: Connect To a Database and Start the
DEDUGQET ...coieiiiiiiiiieeeeeeee 144
Tutorial 2: Debugging a stored procedure.................... 144
Tutorial 3: Debugging a Java Classccccocevevuees 144
Demo Database Java Example Classes............ 145
Displaying Java Source Code Into the Debugger
... 145
Setting a Breakpointeuviiiiiiiiieeiiiiiiiiiiins 145
Running the Methodccoiiiiiiiiiii s 146
Stepping Through Source Code.........cccceeeeeeeen. 146
Inspecting and Modifying Variables.................... 147
Breakpoints ... 148
View and Edit Variable Behavior............cccccccccceiiinnnnn. 148
Write Debugger SCrptScooooveeieeieeeeeeeee 148
sybase.asa.procdebug.DebugScript Class......... 148
sybase.asa.procdebug.IDebugAPI Interface...... 149
sybase.asa.procdebug.IDebugWindow
INTEITACE . evvveiei e 151
INEX oo 153

System Administration Guide: Volume 2 iX

Contents

X Sybase 1Q

Audience

Audience

This guide is for developers of applications that access data in Sybase® I1Q databases.

Familiarity with relational database systems and introductory user-level experience with
Sybase 1Q is assumed. Use this guide with other manuals in the documentation set.

System Administration Guide: Volume 2 1

Audience

2 Sybase 1Q

Using Procedures and Batches

Using Procedures and Batches

Create procedures and batches for use with Sybase 1Q.

Procedures store procedural SQL statements in the database for use by all applications. They
enhance the security, efficiency, and standardization of databases. User-defined functions are
one kind of procedure that return a value to the calling environment for use in queries and other
SQL statements.

For many purposes, server-side JDBC provides a more flexible way to build logic into the
database than SQL stored procedures. See SQL Anywhere 11.0.1 > SQL Anywhere Server -
Programming > SQL Anywhere Data Access APIs > SQL Anywhere JDBC driver >
Introduction to JDBC.

Batches are sets of SQL statements submitted to the database server as a group. Many features
available in procedures, such as control statements, are also available in batches.

Overview of Procedures

Procedures store procedural SQL statements in a database for use by all applications. They can
include control statements that allow repetition (LOOP statements) and conditional execution
(IF and CASE statements) of SQL statements.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Procedure and trigger overview.

Note: Sybase 1Q does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Benefits of Procedures

Definitions for procedures appear in the database separately from any one database
application. This separation provides a number of advantages.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Beneffits of procedures and triggers.

System Administration Guide: Volume 2 3

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/server-side-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/server-side-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/server-side-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptbn.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptbn.html

Using Procedures and Batches

Introduction to Procedures

This section discusses the available procedures and their functions.

Two system stored procedures that are useful when working with stored procedures are
sp_igprocedure and sp_igprocparm. The sp_igprocedure stored procedure displays
information about system and user-defined procedures in a database. The sp_igprocparm
stored procedure displays information about stored procedure parameters, including these
columns:

e proc_name
e proc_owner

e parm_name

e parm_type

e parm_mode

e domain_name
e width, scale

o default

See also
* Procedure Results on page 11

Creating Procedures

Procedures are created using the CREATE PROCEDURE statement. You must have
RESOURCE authority to create a procedure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Creating
proceadures.

Sybase I1Q Example

Note: For examples, use the Sybase 1Q demo database i gdeno. db.

CREATE PROCEDURE new_dept (I N id | NT,
I'N name CHAR(35),
IN head_i d I NT)

BEG N
| NSERT
I NTO GROUPO. depart nent s(Depart ment | D,
Depar t nent Nane,
Depar t nent Headl D)
val ues (id, name, head_id);
END

Note: To create a remote procedure in 1Q, you must use the AT | ocati on-stri ng SQL
syntax of CREATE PROCEDURE to create a proxy stored procedure. This capability is

4 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipcp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipcp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipcp.html

Using Procedures and Batches

currently certified on only Windows and Sun Solaris. The Create Remote Procedure Wizard in
Sybase Central is available only for remote servers.

Altering Procedures

You can modify an existing procedure using either Sybase Central or Interactive SQL. You
must have DBA authority or be the owner of the procedure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Altering
procedures.

For information on altering database object properties, see /ntroduction to Sybase 1Q >
Managing Databases > Managing Procedures.

For information on granting or revoking permissions for procedures, see System
Administration Guide: Volume 1 > Managing User IDs and Permissions > Managing
Individual User IDs and Permissions > Granting Permissions on Procedures in Interactive
SQL and System Administration Guide: Volume 1 > Managing User IDs and Permissions >
Managing Individual User IDs and Permissions > Revoking User Permissions in Interactive
SOL.

You can also modify procedures using the ALTER PROCEDURE statement.

Calling Procedures

CALL statements invoke procedures. Procedures can be called by an application program or by
other procedures.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Calling
procedures.

See also
» Permissions to Execute Procedures on page 6

Copying Procedures in Sybase Central
You can copy procedure codes from one database to another connected database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Copying
procedures in Sybase Central.

System Administration Guide: Volume 2 5

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/alteringprocedures.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/alteringprocedures.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/alteringprocedures.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/copyingprocedures-sc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/copyingprocedures-sc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/copyingprocedures-sc.html

Using Procedures and Batches

Deleting Procedures
Once you create a procedure, it remains in the database until someone explicitly removes it.
Only the owner of the procedure or a user with DBA authority can drop the procedure from the
database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Deleting
procequres.

Permissions to Execute Procedures

A procedure is owned by the user who created it and that user can execute it without
permission.

Permission to execute the procedure can be granted to other users using the GRANT EXECUTE
command. For example, the owner of the procedure new_dept allows another_user to
execute new_dept with the statement:

GRANT EXECUTE ON new_dept TO anot her _user

The following statement revokes permission to execute the procedure:
REVOKE EXECUTE ON new_dept FROM anot her _user
See System Administration Guide.: Volume 1 > Managing User I1Ds and Permissions >

Managing Individual User IDs and Permissions > Granting Permissions on Procedures in
Interactive SQL.

See also
e Calling Procedures on page 5

Returning Procedure Results in Parameters
Procedures return results to the calling environment.

Procedures return results in one of the following ways:

* Individual values are returned as OUT or INOUT parameters.

» Result sets can be returned.

« Asingle result can be returned using a RETURN statement.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and

Triggers > Using procedures, triggers, and batches > Introduction to procedures > Returning
procedure results in parameters.

Sybase 1Q example

Note: For examples, use the Sybase 1Q demo database i gdeno. db.

CREATE PROCEDURE Sal aryLi st (IN departnent _id | NT)
RESULT ("Enpl oyee I D' INT, "Salary" NUMERI C(20, 3))

6 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipdp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipdp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptipdp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprp.html

Using Procedures and Batches

BEA N

SELECT Enpl oyeel D, Sal ary

FROM Enpl oyees

WHERE Enpl oyees. Departnent| D = departnent _id;
END

Returning Procedure Results in Result Sets

Inaddition to returning results to the calling environment in individual parameters, procedures
can return information in result sets. A result set is typically the result of a query.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to procedures > Returning
procedure results in result sets.

Creating and Selecting from Temporary Tables

If a procedure dynamically creates and then selects the same temporary table within a stored
procedure, you must use the EXECUTE IMMEDIATE WITH RESULT SET ON syntax to avoid
Col utm not f ound errors.

For example:
CREATE PROCEDURE pl (IN @ varchar(30))
BEG N
EXECUTE | MVEDI ATE
" SELECT * | NTO #resultSet FROM' ||
EXECUTE | MVEDI ATE W TH RESULT SET ON
' SELECT * FROM #resultSet'; END

Introduction to User-Defined Functions

User-defined functions are a class of procedures that return a single value to the calling
environment. This section introduces creating, using, and dropping user-defined functions.

Creating User-Defined Functions

You use the CREATE FUNCTION statement to create user-defined functions. However, you
must have RESOURCE authority.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to user-defined functions >
Creating user-defined functions.

For a complete description of the CREATE FUNCTION syntax, including performance
considerations and differences between SQL Anywhere and 1Q, see Reference: Statements
and Options > SQL Statements > CREATE FUNCTION Statement.

System Administration Guide: Volume 2 7

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptiprs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifcf.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifcf.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifcf.html

Using Procedures and Batches

Calling User-Defined Functions

A user-defined function can be used, subject to permissions, in any place you would use a
built-in nonaggregate function.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to user-defined functions >
Calling user-defined functions.

Sybase 1Q example

Note: For examples, use the Sybase 1Q demo database i qdenvo. db.

SELECT ful | name (G venName, Sur Nane) FROM Enpl oyees;
fullname (GivenName, SurName)
Fran Whitney Matthew Cobb Philip Chin...

Dropping User-Defined Functions

Once a user-defined function is created, it remains in the database until it is explicitly
removed.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to user-defined functions >
Dropping user-defined functions.

Permissions to Execute User-Defined Functions

A user-defined function is owned by the user who created it, and that user can execute it
without permission.

The owner of a user-defined function can grant permissions to other users with the GRANT
EXECUTE command.

For example, the creator of the function f ul | name allows anot her _user to use
f ul I name with the statement:

GRANT EXECUTE ON ful | nane TO anot her _user

The following statement revokes permission to use the function:
REVOKE EXECUTE ON ful | name FROM anot her _user
See System Administration Guide.: Volume 1 > Managing User I1Ds and Permissions >

Managing Individual User IDs and Permissions > Granting Permissions on Procedures in
Interactive SQL.

8 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifca.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifdf.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifdf.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptifdf.html

Using Procedures and Batches

Introduction to Batches

A simple batch consists of a set of SQL statements, separated by semicolons.

For example, the following statements form a batch that creates an Eastern Sales department
and transfers all sales representatives from Massachusetts (MA) to that department.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to batches.

Sybase 1Q example

Note: For examples, use the Sybase 1Q demo database i qdeno. db.

| NSERT

I NTO Departnents (Departnentl D, Departnent Name)
VALUES (220, 'Eastern Sales') ;

UPDATE Enpl oyees

SET Departnent| D = 220
WHERE Departnentl D = 200
AND state = 'GA'

COWM T ;

Control Statements

There are a number of control statements for logical flow and decision making in the body of
the procedure or in a batch.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Control statements.

For complete descriptions of each, see the entries in Reference. Statements and Options >SQL
Statements.

Using Compound Statements

Compound statements can be nested, and combined with other control statements to define
execution flow in procedures or in batches.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Control statements > Using compound
Statements.

See also
o SQL Statements Allowed in Procedures on page 10
e Structure of Procedures on page 10

System Administration Guide: Volume 2 9

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptib.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/control.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/control.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstcs.html

Using Procedures and Batches

Transactions and Savepoints in Procedures on page 15

Declarations In Compound Statements

Local declarations in a compound statement immediately follow the BEGIN keyword. These
local declarations exist only within the compound statement.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Control statements > Declarations in
compound statements.

Atomic Compound Statements

An atomic statement is a statement that is executed completely or not at all.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using proceadures, triggers, and batches > Control statements > Atomic compound
Statements.

Structure of Procedures

The body of a procedure consists of a compound statement.

A compound statement consists of a BEGIN and an END, enclosing a set of SQL statements.
Semicolons delimit each statement.

See also

SQL Statements Allowed in Procedures on page 10
Transactions and Savepoints in Procedures on page 15
Using Compound Statements on page 9

SQL Statements Allowed in Procedures

You can use almost all SQL statements within procedures, including the following:

Some SQL statements you cannot use within procedures include:

SELECT, UPDATE, DELETE, INSERT, and SET VARIABLE
The CALL statement to execute other procedures

Control statements

Cursor statements

Exception handling statements

The EXECUTE IMMEDIATE statement

CONNECT statement
DISCONNECT statement

10

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstdc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstdc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstdc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstas.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstas.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstas.html

Using Procedures and Batches

You can use COMMIT, ROLLBACK, and SAVEPOINT statements within procedures with
certain restrictions.

See the Usage section for each statement in Reference: Statements and Options > SQL
Statements.

See also

e Structure of Procedures on page 10

» Transactions and Savepoints in Procedures on page 15
e Using Compound Statements on page 9

Declaring Parameters for Procedures
Procedure parameters appear as a list in the CREATE PROCEDURE statement.

Parameter names must conform to the rules for other database identifiers such as column
names. They must have valid data types , and must be prefixed with one of the keywords | N,
QUT or | NOUT.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > The structure of procedures and triggers
> Declaring parameters for procedures.

Passing Parameters to Procedures

You can take advantage of default values of stored procedure parameters with either of two
forms of the CALL statement.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > The structure of procedures and triggers
> Passing parameters to procedures.

Passing Parameters to Functions

UDFs are not invoked with the CALL statement, but are used in the same manner that built-in
functions are used.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > The structure of procedures and triggers
> Passing parameters to functions.

Procedure Results

Procedures can return results of either single or multiple rows of data.

Results consisting of a single row of data can be passed back as arguments to the procedure.
Results consisting of multiple rows of data are passed back as result sets. Procedures can also
return a single value given in the RETURN statement.

System Administration Guide: Volume 2 11

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstpp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstpp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptstpp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppcs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppfn.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppfn.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptppfn.html

Using Procedures and Batches

For simple examples of how to return results from procedures, see . For more detailed
information, see the following sections.

See also
« Introduction to Procedures on page 4

Returning a Value Using the RETURN Statement

The RETURN statement returns a single integer value to the calling environment, causing an
immediate exit from the procedure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning a value using the RETURN statement.

Returning Results as Procedure Parameters

Procedures can return results to the calling environment in the procedure's parameters.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning results as procedure parameters.

Returning Result Sets from Procedures

Result sets allow a procedure to return more than one row of results to the calling environment.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning result sets from procedures.

Returning Multiple Result Sets from Procedures

A procedure can return more than one result set to the calling environment.
The method for returning multiple result sets differs for dbisql and dbisglc.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning multiple result sets from procedures.

Returning Variable Result Sets from Procedures

The RESULT clause is optional in procedures. Omitting the result clause allows you to write
procedures that return different result sets, with different numbers or types of columns,
depending on how they are executed.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Returning results from procedures >
Returning variable result sets from procedures.

12

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrsr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrsr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrsr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmr.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptrrmrs.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-proctrig-sectb-5471523.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-proctrig-sectb-5471523.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-proctrig-sectb-5471523.html

Using Procedures and Batches

Cursors in Procedures

Cursors retrieve rows one at a time from a query or stored procedure with multiple rows in its
result set.

A cursor isahandle or an identifier for the query or procedure, and for a current position within
the result set.

Cursor Management Overview
Managing a cursor is similar to managing a file in a programming language.
See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and

Triggers > Using procedures, triggers, and batches > Using cursors in procedures and triggers
> Cursor management overview.

The sp_igcursorinfo stored procedure displays information about cursors currently open on
the server. For more information, see Reference: Building Blocks, Tables, and Procedures >
System Procedures> sp_igcursorinfo proceadure.

Cursor Positioning
Cursor positioning is extremely flexible.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Programming > Introduction to

Programming with SQL Anywhere > Using SQL in applications > Working with cursors >
Cursor positioning.

Note: Sybase 1Q treats the FI RST, LAST, and ABSOLUTE options as starting from the

beginning of the result set. It treats RELATI VE with a negative row count as starting from the
current position.

Cursors and SELECT Statements in Procedures

The TopCust oner Val ue procedure uses a cursor on a SELECT statement and is based on
the same query used in the Li st Cust oner Val ue procedure .

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Using cursors in procedures and triggers
> Using cursors on SELECT statements in proceaures.

System Administration Guide: Volume 2 13

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucov.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/cursor-positioning-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/cursor-positioning-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/cursor-positioning-sqlapp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucss.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucss.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptucss.html

Using Procedures and Batches

Errors and Warnings in Procedures

After an application program executes a SQL statement, it can examine a return code (or status
code) for errors.

The return code indicates whether the statement executed successfully or failed and gives the
reason for the failure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers.

Note: Sybase 1Q does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Default Error Handling in Procedures

Sybase 1Q handles errors that occur during a procedure execution.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Default error handling in procedures and triggers.

Note: Sybase 1Q does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Error Handling With ON EXCEPTION RESUME

The ON EXCEPTION RESUME clause is included in the CREATE PROCEDURE statement.

The procedure checks the statement when an error occurs. If the statement handles the error,
then the procedure does not return control to the calling environment when an error occurs.
Instead, it continues executing, resuming at the statement after the one causing the error.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Error handling with ON EXCEPTION RESUME.

Default Handling of Errors and Warnings in Procedures

Errors and warnings are handled differently in procedures.

The defaultaction for errors is to set a value for the SQLSTATEand SQL CODE variables, and
return control to the calling environment in the event of an error, the default action for
warnings is to set the SQLSTATE and SQLCODE values and continue execution of the
procedure.

14

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptew.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptew.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptew.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/on-exception-resume-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/on-exception-resume-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/on-exception-resume-proctrig.html

Using Procedures and Batches

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Default error handling of warnings in procedures and triggers.

Note: Sybase 1Q does not support triggers. You can ignore information about triggers in the
SQL Anywhere documentation.

Using Exception Handlers in Procedures

Certain types of errors can be intercepted and handled within a procedure, rather than passing
the error back to the calling environment. This is done through the use of an exception
handler.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Using exception handlers in procedures and triggers.

Note: Sybase 1Q does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

Nested Compound Statements and Exception Handlers

Nested compound statements can be use to give users more control over which statements
execute following an error and which do not.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Errors and warnings in procedures and
triggers > Nested compound statements and exception handlers.

Using the EXECUTE IMMEDIATE Statement In Procedures

The EXECUTE IMMEDIATE statement allows statements to be compiled inside procedures
using a combination of literal strings (in quotes) and variables.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Using the EXECUTE IMMEDIATE
Statement in procedures.

Transactions and Savepoints in Procedures

SQL statements in a procedure or trigger are part of the current transaction.

You can call several procedures within one transaction or have several transactions in one
procedure.

System Administration Guide: Volume 2 15

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewwh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewwh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewwh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/pteweh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/pteweh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/pteweh.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptewnc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptei.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptei.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ptei.html

Using Procedures and Batches

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Transactions and savepoints in
procedures and triggers.

Note: Sybase 1Q does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

For more information, see System Administration Guide: Volume 1 > Transactions and
Versioning > Savepoints within transactions.

See also

» SQL Statements Allowed in Procedures on page 10
e Structure of Procedures on page 10

e Using Compound Statements on page 9

Hiding the Contents of Procedures, Functions, and Views

In some cases, you may want to distribute an application and a database without disclosing the
logic contained in the procedures, functions, triggers and views.

As an added security measure, you can obscure the contents of these objects using the SET
HIDDEN clause of the ALTER PROCEDURE, ALTER FUNCTION, and ALTER VIEW
statements.

See "SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Hiding the contents of procedures,
functions, triggers and views.

Note: Sybase 1Q does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

For more information, see the ALTER FUNCTI ON statement, ALTER PROCEDURE
statement, and ALTER VI EWstatement in Reference: Statements and Optiors.

Statements Allowed In Batches

Most SQL statements are acceptable in batches, with some exceptions.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Statements allowed in procedures,
triggers, events, and batches.

Note: Sybase 1Q does not support triggers. Information on triggers in the SQL Anywhere
documentation can be ignored.

16

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tranp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tranp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tranp.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/hiding-calling-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/hiding-calling-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/hiding-calling-proctrig.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcas.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcas.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcas.html

Using Procedures and Batches

Using SELECT Statements in Batches
You can include one or more SELECT statements in a batch.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Statements allowed in procedures,
triggers, events, and batches > Using SELECT statements in batches.

Sybase IQ Example

Note: For examples, use the Sybase 1Q demo database i gdeno. db.

I F EXI STS(
SELECT * FROM SYSTAB
WHERE t abl e_name=' Enpl oyees')

THEN
SELECT Surnane AS Last Nane,
G venNane AS First Nane
FROM Enpl oyees;
SELECT Sur nane, G venNane
FROM Cust oners;
SELECT Surnane, G venNane
FROM Cont act s;
ELSE
MESSACE ' The Enpl oyees table does not exist'
TO CLI ENT;
END | F

Using IQ UTILITIES to Create Your Own Stored Procedures

The system stored procedures provided in Sybase 1Q are implemented in SQL, using the
methods described in the rest of this chapter.

You must use the local temporary table and IQ UTILITIES statement in exactly the same way as
system stored procedures:

Warning! Violating these rules can cause serious problems for your 1Q server or database.

All SQL code for procedures is encrypted and compiled into the shared library
l'i bigscriptsl5 r.sofileonUnixandigscriptsl15.dll file on Windows.

You can view the stored procedures code by using Sybase Central or by entering sp_helptext
‘owner.procname' in Interactive SQL.

The syntax for IQ UTILITIES is:

IQ UTILITIES MAININTO | ocal -t enp-t abl e- nane ar gunent s

The IQ UTILITIES command is only documented in Reference. Statements and Optionsto the
1Q monitor, because of the strict requirements for its use and the risk to system operations if it
is used incorrectly.

System Administration Guide: Volume 2 17

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcassl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcassl.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/bcassl.html

Using Procedures and Batches

You may want to create your own variants of some of these procedures. Among the ways you
might do this are:

1. Create a procedure that calls a system stored procedure.

2. Create a procedure that is independent of the system stored procedures but performs a
similar function.

3. Create a procedure that uses the same structure as the system stored procedures but
provides additional functionality. For example, you might want to display procedure
results in graphical form in a front-end tool or browser rather than as text.

4. If you choose the second or third option, you need to understand the 1Q UTILITIES
statement and the strict requirements for using it.

How 1Q Uses the IQ UTILITIES Command
IQ UTILITIES is the underlying statement that executes whenever you run most 1Q system
procedures. In most cases, users are unaware that IQ UTILITIES is executing. The only time 1Q
UTILITIES is issued directly by users is to run the 1Q buffer cache monitor.

IQ UTILITIES provides a systematic way to collect and report on information maintained in the
1Q system tables. There is no general user interface; you can only use IQ UTILITIES in the ways
that existing system procedures do.

System procedures declare local temporary tables in which they store information. They
execute 1Q UTILITIES to get the information from the system tables and store this information
in the local temporary table. The system procedures may simply report the information from
the local temporary table or perform additional processing.

In some system procedures, the 1Q UTILITIES statement includes a predefined number as one
of itsarguments. This number performs a specific function, for example, deriving a value from
information in the system tables. See for a list of the numbers used as IQ UTILITIES arguments.

Choosing Procedures to Call

You can safely use 1Q UTILITIES to create your own versions of documented system
procedures that report on information in the database.

For example, sp_igspaceused displays information about used and available space available
in the 1Q main and 1Q temporary stores. Check the owner of the procedure you create from a
system stored procedure to be sure your version of the procedure has the correct owner.

Do not create your own versions of system procedures that control 1Q operations. Modifying
procedures that control 1Q operations can lead to serious problems.

18 Sybase 1Q

Numbers Used by 1Q UTILITIES

Using Procedures and Batches

The following table lists the numbers used as arguments in the IQ UTILITIES command and the
system procedure where each number is used.

For information on the function of these procedures, see Reference: Building Blocks, Tables,
and Procedures > System Procedures.

Table 1. 1Q UTILITIES values used in system procedures

Number Procedure Comments
10000 sp_igtransaction
20000 sp_igconnection and sp_igmpxcountd-
bremote
30000 sp_igspaceused
40000 sp_igspaceinfo
50000 sp_iglocks
60000 sp_igmpxversionfetch Do Not Use
70000 sp_igmpxdumptlviog
80000 sp_iqcontext
100000 sp_igindexfragmentation
110000 sp_igrowdensity

Procedure Testing

Always test your procedures in a development environment first. Test procedures before you
run them in a production environment to help maintain the stability of your 1Q server and

database.

System Administration Guide: Volume 2

19

Using Procedures and Batches

20 Sybase 1Q

Using OLAP

Using OLAP

OLAP (online analytical processing) is an efficient method of data analysis of information
stored in a relational database.

Using OLAP you can analyze data on different dimensions, acquire result sets with subtotaled
rows, and organize data into multidimensional cubes, all in a single SQL query. You can also
use filters to drill down into the data, returning result sets quickly. This chapter describes the
SQL/OLAP functionality that Sybase 1Q supports.

Note: The tables shown in OLAP examples are available in the i gdeno database.

About OLAP

The analytic functions, which offer the ability to perform complex data analysis within a
single SQL statement, are facilitated by a category of software technology named online
analytical processing (OLAP). Its functions are shown in the following list:

e GROUP BY clause extensions — CUBE and ROLLUP
< Analytical functions:
« Simple aggregates — AVG, COUNT, MAX, MIN, and SUM, STDDEV and VARIANCE

Note: You can use simple aggregate functions, except Grouping(), with an OLAP
windowed function.
* Window functions:
< Windowing aggregates — AVG, COUNT, MAX, MIN, and SUM
« Ranking functions — RANK, DENSE_RANK, PERCENT_RANK, and NTILE
» Statistical functions — STDDEV, STDDEV_SAMP, STDDEV_POP, VARIANCE,
VAR_POP, VAR_SAMP, REGR_AVGX, REGR_AVGY, REGR_COUNT,
REGR_INTERCEPT, REGR_R2, REGR_SLOPE, REGR_SXX, REGR_SXY,
REGR_SYY, CORR, COVAR_POP, COVAR_SAMP, CUME_DIST,
EXP_WEIGHTED_AVG, and WEIGHTED_AVG.
« Distribution functions — PERCENTILE_CONT and PERCENTILE_DISC
* Numeric functions — WIDTH_BUCKET, CEIL, and LN, EXP, POWER, SQRT, and
FLOOR

Extensions to the ANSI SQL standard to include complex data analysis were introduced as an
amendment to the 1999 SQL standard. Sybase 1Q added portions of these SQL enhancements
provides additional comprehensive support for the extensions.

Some database products provide a separate OLAP module that requires you to move data from
the database into the OLAP module before analyzing it. By contrast, Sybase 1Q builds OLAP

System Administration Guide: Volume 2 21

Using OLAP

features into the database itself, making deployment and integration with other database
features, such as stored procedures, easy and seamless.

OLAP Benefits

OLAP functions, when combined with the GROUPING, CUBE, and ROLLUP extensions,
provide two primary benefits.

First, they let you perform multidimensional data analysis, data mining, time series analyses,
trend analysis, cost allocations, goal seeking, ad hoc multidimensional structural changes,
nonprocedural modeling, and exception alerting, often with a single SQL statement. Second,
the window and reporting aggregate functions use a relational operator, called a windowthat
can be executed more efficiently than semantically equivalent queries that use self-joins or
correlated subqueries. The result sets you obtain using OLAP can have subtotal rows and can
be organized into multidimensional cubes. See .

Moving averages and moving sums can be calculated over various intervals; aggregations and
ranks can be reset as selected column values change; and complex ratios can be expressed in
simple terms. Within the scope of a single query expression, you can define several different
OLAP functions, each with its own partitioning rules.

See also

 Distribution Functions on page 59

* OLAP Evaluation on page 22

» Ranking Functions on page 48

» Slatistical Aggregate Functions on page 54

» Windowing on page 37

» Windowing Aggregate Functions on page 52

e BNF Grammar for OLAP Functions on page 73

OLAP Evaluation

OLAP evaluation can be conceptualized as several phases of query execution that contribute
to the final result.

You can identify OLAP phases of execution by the relevant clause in the query. For example, if
a SQL query specification contains window functions, the WHERE, JOIN, GROUP BY, and
HAVING clauses are processed first. Partitions are created after the groups defined in the
GROUP BY clause and before the evaluation of the final SELECT list in the query’s ORDER
BY clause.

For the purpose of grouping, all NULL values are considered to be in the same group, even
though NULL values are not equal to one another.

The HAVING clause acts as a filter, much like the WHERE clause, on the results of the GROUP
BY clause.

22 Sybase 1Q

Using OLAP

Consider the semantics of a simple query specification involving the SQL statements and
clauses, SELECT, FROM, WHERE, GROUP BY, and HAVING from the ANSI SQL standard:

1. The query produces a set of rows that satisfy the table expressions present in the FROM
clause.

2. Predicates from the WHERE clause are applied to rows from the table. Rows that fail to
satisfy the WHERE clause conditions (do not equal true) are rejected.

3. Except for aggregate functions, expressions from the SELECT list and in the list and
GROUP BY clause are evaluated for every remaining row.

4. The resulting rows are grouped together based on distinct values of the expressions in the
GROUP BY clause, treating NULL as a special value in each domain. The expressions in
the GROUP BY clause serve as partition keys if a PARTITION BY clause is present.

5. For each partition, the aggregate functions present in the SELECT list or HAVING clause
are evaluated. Once aggregated, individual table rows are no longer present in the
intermediate result set. The new result set consists of the GROUP BY expressions and the
values of the aggregate functions computed for each partition.

6. Conditions from the HAVING clause are applied to result groups. Groups are eliminated
that do not satisfy the HAVING clause.

7. Results are partitioned on boundaries defined in the PARTITION BY clause. OLAP
windows functions (rank and aggregates) are computed for result windows.

Figure 1: SQL processing for OLAP

GROUP DRDER
Tabla FROM WHERE HAVING Analyt
= = BY = YIE L en| pisTiNeT | = gy
data clause clause clause clausa Funetlnns clause
See . See also .
See also

« Distribution Functions on page 59

* OLAP Benefits on page 22

e Ranking Functions on page 48

» Statistical Aggregate Functions on page 54

e Windowing on page 37

» Windowing Aggregate Functions on page 52

e BNF Grammar for OLAP Functions on page 73

System Administration Guide: Volume 2 23

Using OLAP

GROUP BY Clause Extensions

Extensions to the GROUP BY clause let application developers write complex SQL statements

that:

 Partition the input rows in multiple dimensions and combine multiple subsets
groups.

of result

« Create a “data cube,” providing a sparse, multi dimensional result set for data mining

analyses.

» Create aresult set that includes the original groups, and optionally includes a subtotal and

grand-total row.

OLAP Grouping() operations, such as ROLLUP and CUBE, can be conceptualized as prefixes

and subtotal rows.

Prefixes

A list of prefixesis constructed for any query that contains a GROUP BY clause. A prefix is a
subset of the items in the GROUP BY clause and is constructed by excluding one or more of the
rightmost items from those in the query’s GROUP BY clause. The remaining columns are

called the prefix columns.

ROLLUP example 1—In the following ROLLUP example query, the GROUP BY list includes

two variables, Yearand Quarter.

SELECT year (OrderDate) AS Year, quarter(OrderDate)
AS Quarter, COUNT(*) Orders

FROM Sal esOrders

GROUP BY ROLLUP(Year, Quarter)

CRDER BY Year, Quarter

The query’s two prefixes are:

« Exclude Quarter — the set of prefix columns contains the single column Year .

» Exclude both Quarter and Year — there are no prefix columns.

Year Quarter Orders

Exclude __] (NULL) NULL) 548
Quarter and Year prefix =000 THOLD) 280
2000 1 87
Exclude 2000 2 77
Quarter prefix 2000 3 o1
2000 4 125

2001 TNULL] 268 |
2001 1 139
2001 2 118
2001 3 10

Note: The GROUP BY list contains the same number of prefixes as items.

24

Sybase 1Q

Using OLAP

Group by ROLLUP and CUBE
ROLLUP and CUBE are syntactic shortcuts that specify common grouping prefixes.

Group by ROLLUP

The ROLLUP operator requires an ordered list of grouping expressions to be supplied as
arguments.

ROLLUP syntax.

SELECT ...[GROUPING (col um-nane) ...]
GROUPBY [expression [, .]
| ROLLUP (expression [, .]) 1]

GROUPING takes a column name as a parameter and returns a Boolean value as listed in the
following table:

Table 2. Values returned by GROUPING with the ROLLUP operator

If the value of the result is GROUPING returns
NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a ROLLUP operation 0 (FALSE)

A stored NULL 0 (FALSE)

ROLLUP first calculates the standard aggregate values specified in the GROUP BY clause.
Then ROLLUP moves from right to left through the list of grouping columns and creates
progressively higher-level subtotals. A grand total is created at the end. If 7is the number of
grouping columns, then ROLLUP creates /#+1 levels of subtotals.

This SQL syntax... Defines the following sets...
GROUP BY ROLLUP (A, B, O; (A, B, C)

(A B)

(A)

0

ROLLUP and subtotal rows

ROLLUP is equivalent to a UNION of a set of GROUP BY queries. The result sets of the
following queries are identical. The result set of GROUP BY (A, B) consists of subtotals over
all those rows in which A and B are held constant. To make a union possible, column C is
assigned NULL.

System Administration Guide: Volume 2 25

Using OLAP

This ROLLUP query...

Is equivalent to this query without ROLLUP...

sel ect year (order-
date) as year, quar-
ter(orderdate) as
Quarter, count(*) O -
dersfrom Sal esOr -
dersgroup by Rollup
(year, quarter)order

Select null,null, count(*) Oders
from Sal esOrdersuni on al | SELECT
year (orderdate) AS YEAR, NULL,
count (*) Orders from Sal esOr -

der sGROUP BY year (orderdate) union
al | SELECT year (orderdate) as YEAR,
quarter(orderdate) as QUATER,

by year, quarter count (*) Orders from Sal esOr -

der sGROUP BY year (orderdate), quar-

ter (orderdate)

Subtotal rows can help you analyze data, especially if there are large amounts of data, different
dimensions to the data, data contained in different tables, or even different databases
altogether. For example, a sales manager might find reports on sales figures broken down by
sales representative, region, and quarter to be useful in understanding patterns in sales.
Subtotals for the data give the sales manager a picture of overall sales from different
perspectives. Analyzing this data is easier when summary information is provided based on
the criteria that the sales manager wants to compare.

With OLAP, the procedure for analyzing and computing row and column subtotals is invisible
to users.

Figure 2: Subtotals

™ (2) ©
- 1 ~ Variables arranged
by ORDER BY

clause

Subtotals attached to
result set

Query calculated

1. This step yields an intermediate result set that has not yet considered the ROLLUP.
2. Subtotals are evaluated and attached to the result set.
3. The rows are arranged according to the ORDER BY clause in the query.

NULL values and subtotal rows

When rows in the input to a GROUP BY operation contain NULL, there is the possibility of
confusion between subtotal rows added by the ROLLUP or CUBE operations and rows that
contain NULL values that are part of the original input data.

The Grouping() function distinguishes subtotal rows from others by taking a column in the
GROUP BY list as its argument, and returning 1 if the column is NULL because the row is a
subtotal row, and O otherwise.

The following example includes Grouping() columns in the result set. Rows are highlighted
that contain NULL as a result of the input data, not because they are subtotal rows. The

26

Sybase 1Q

Using OLAP

Grouping() columns are highlighted. The query is an outer join between the Enpl oyees
table and the Sal esOr der s table. The query selects female employees who live in Texas,
New York, or California. NULL appears in the columns corresponding to those female
employees who are not sales representatives (and therefore have no sales).

Note: For examples, use the Sybase 1Q demo database i qdeno. db.

SELECT Enpl oyees. Enpl oyeel D as EMP, year (OrderDate) as
YEAR, count(*) as ORDERS, groupi ng(EMP) as
GE, groupi ng(YEAR) as GY
FROM Enpl oyees LEFT OUTER JO N Sal esOrders on
Enpl oyees. Enpl oyeel D = Sal esOrders. Sal esRepresentati ve
WHERE Enpl oyees. Sex IN (' F') AND Enpl oyees. State
IN ("TX, "CA, '"NY)

GROUP BY ROLLUP (YEAR, EMP)

CRDER BY YEAR, EMP

The preceding query returns:

EMP YEAR ORDERS GE GY
NULL NULL 5 1 0
NULL NULL 169 1 1
102 NULL 1 0 0
309 NULL 1 0 0
1062 NULL 1 0 0
1090 NULL 1 0 0
1507 NULL 1 0 0
NULL 2000 98 1 0
667 2000 34 0 0
949 2000 31 0 0
1142 2000 33 0 0
NULL 2001 66 1 0
667 2001 20 0 0
949 2001 22 0 0
1142 2001 24 0 0

For each prefix, a subtotal rowis constructed that corresponds to all rows in which the prefix
columns have the same value.

To demonstrate ROLLUP results, examine the example query again:

SELECT year (OrderDate) AS Year, quarter
(OrderDate) AS Quarter, COUNT (*) Orders
FROM Sal esOr der s
GROUP BY RCLLUP (Year, Quarter)
ORDER BY Year, Quarter

In this query, the prefix containing the Year column leads to a summary row for Year=2000
and a summary row for Year=2001. A single summary row for the prefix has no columns,
which is a subtotal over all rows in the intermediate result set.

The value of each column in a subtotal row is as follows:

System Administration Guide: Volume 2 27

Using OLAP

e Column included in the prefix — the value of the column. For example, in the preceding
query, the value of the Year column for the subtotal over rows with Year=2000 is 2000.

* Column excluded from the prefix — NULL. For example, the Quar t er column has a
value of NULL for the subtotal rows generated by the prefix consisting of the Year column.

« Aggregate function — an aggregate over the values of the excluded columns.
Subtotal values are computed over the rows in the underlying data, not over the aggregated
rows. In many cases, such as SUM or COUNT, the result is the same, but the distinction is
important in the case of statistical functions such as AVG, STDDEV, and VARIANCE, for
which the result differs.

Restrictions on the ROLLUP operator are:

e The ROLLUP operator supports all of the aggregate functions available to the GROUP BY
clause except COUNT DISTINCT and SUM DISTINCT.

e ROLLUP can only be used in the SELECT statement; you cannot use ROLLUP in a
subquery.

« A grouping specification that combines multiple ROLLUP, CUBE, and GROUP BY
columns in the same GROUP BY clause is not currently supported.

« Constant expressions as GROUP BY keys are not supported.

For the general format of an expression, see Reference. Building Blocks, Tables, and
Procedures > Expressions and Reference. Building Blocks, Tables, and Procedures > SQL
Language Elements.

ROLLUP example 2—The following example illustrates the use of ROLLUP and GROUPING
and displays a set of mask columns created by GROUPING. The digits 0 and 1 displayed in
columns S, N, and C are the values returned by GROUPING to represent the value of the
ROLLUP result. A program can analyze the results of this query by using a mask of “011” to
identify subtotal rows and “111” to identify the row of overall totals.

SELECT size, nane, color, SUMquantity),
GROUPI NG(si ze) AS S,
GROUPI NG nane) AS N,
GROUPI NG col or) AS C

FROM Pr oduct s

GROUP BY ROLLUP(size, name, color) HAVING (S=1 or N=1 or C=1)
ORDER BY si ze, name, col or;

The preceding query returns;

si ze nane col or SUM S N C
('NULL) ('NULL) ('NULL) 496 1 1 1
Lar ge ('NULL) ('NULL) 71 0 1 1
Lar ge Sweat shi rt (NULL) 71. 0 0 1
Medi um ('NULL) ('NULL) 134 0 1 1
Medi um Shorts ('NULL) 80 0 0 1
Medi um Tee Shirt (NULL) 54 0 0 1
One size fits all (NULL) (NULL) 263 0 1 1
One size fits all Baseball Cap (NULL) 124 0 0 1
One size fits all Tee Shirt ('NULL) 75 0 0 1

Sybase 1Q

Using OLAP

One size fits all Visor (NULL) 64 0 0 1
Smal | (NULL) (NULL) 28 0 1 1
Smal | Tee Shirt (NULL) 28 0 1 1

Note: In the Rollup Example 2 results, the SUM column displays as
SUM(products.quantity).

ROLLUP example 3—The following example illustrates the use of GROUPING to distinguish
stored NULL values and “NULL” values created by the ROLLUP operation. Stored NULL

values are then displayed as [NULL] in column pr od_i d, and “NULL” values created by
ROLLUP are replaced with ALL in column PROD_I DS, as specified in the query.

SELECT year (Shi pDate) AS Year,
Product I D, SUM quantity)AS OSum

CASE
VWHEN GROUPI N&(Year) = 1
THEN " ALL'
ELSE
CAST(Year AS char(8))
END,
CASE
VWHEN GROUPI NG(ProductI D) = 1
THEN " ALL'
ELSE
CAST(Product | Das char (8))
END

FROM Sal esOrder|tens
GROUP BY ROLLUP(Year, ProductlD) HAVI NG OSum > 36
ORDER BY Year, ProductlD;

The preceding query returns;

Year ProductlD OSum ...(Year)... ...(ProductlD)...
NULL NULL 28359 ALL ALL
2000 NULL 17642 2000 ALL
2000 300 1476 2000 300
2000 301 1440 2000 301
2000 302 1152 2000 302
2000 400 1946 2000 400
2000 401 1596 2000 401
2000 500 1704 2000 500
2000 501 1572 2000 501
2000 600 2124 2000 600
2000 601 1932 2000 601
2000 700 2700 2000 700
2001 NULL 10717 2001 ALL
2001 300 888 2001 300
2001 301 948 2001 301
2001 302 996 2001 302
2001 400 1332 2001 400
2001 401 1105 2001 401
2001 500 948 2001 500
2001 501 936 2001 501
2001 600 936 2001 600

System Administration Guide: Volume 2 29

Using OLAP

2001 601 792 2001 601
2001 700 1836 2001 700

ROLLUP example 4—The next example query returns data that summarizes the number of
sales orders by year and quarter.

SELECT year (OrderDate) AS Year,

quarter(OrderDate) AS Quarter, COUNT (*) Orders

FROM Sal esOr der s

GROUP BY RCOLLUP (Year, Quarter)
ORDER BY Year, Quarter

The following figure illustrates the query results with subtotal rows highlighted in the result
set. Each subtotal row contains a NULL value in the column or columns over which the
subtotal is computed.

Year Quarter Orders
(UNoLD (NULL) 648 |
(27 2000 (NULL) 380 |
(2000 1 87

3) 2000 2 77
L 2000 3 91
- 2000 4 235
(2) 2001 (NULL) 268 |
/3y 2001 1 139
= 2001 2 119
2001 3 10

Row [1] represents the total number of orders across both years (2000, 2001) and all quarters.
This row contains NULL in both the Year and Quar t er columns and is the row where all
columns were excluded from the prefix.

Note: Every ROLLUP operation returns a result set with one row where NULL appears in each
column except for the aggregate column. This row represents the summary of each column to
the aggregate function. For example, if SUM were the aggregate function in question, this row
would represent the grand total of all values.

Row [2] represent the total number of orders in the years 2000 and 2001, respectively. Both
rows contain NULL in the Quar t er column because the values in that column are rolled up
to give a subtotal for Year . The number of rows like this in your result set depends on the
number of variables that appear in your ROLLUP query.

The remaining rows marked [3] provide summary information by giving the total number of
orders for each quarter in both years.

ROLLUP example 5—This example of the ROLLUP operation returns a slightly more
complicated result set, which summarizes the number of sales orders by year, quarter, and

30

Sybase 1Q

Using OLAP

region. In this example, only the first and second quarters and two selected regions (Canada
and the Eastern region) are examined.

SELECT year (OrderDate) AS Year, quarter(OrderDate)AS Quarter,

region, COUNT(*) AS Order sFROM Sal esOrders WHERE region I N

(' Canada',' Eastern') AND quarter IN (1, 2)GROUP BY RCOLLUP (Year,
Quarter, Region)ORDER BY Year, Quarter, Region

The following figure illustrates the result set from the above query. Each subtotal row contains
a NULL in the column or columns over which the subtotal is computed.

Year Quarter Region Orders
CH {NULL) {NULL {NULL) 183 |
—| 2000 {(NULL) {NULL) 68 |
2000 1 {(NULL) 36
2000 1 Canada 3
2000 1 Eastern 33
f;?} 2000 2 (NULL) 32
I 2000 2 Canada 3
2000 2 Eastern 29
—| 2001 {NULL) {NULL) 115 |
2001 1 (NULL) 57
2001 1 Canada 11
2001 1 Eastern 46
2001 2 (NULL) 58
2001 2 Canada 4
2001 2 Eastern 54

Row [1] is an aggregate over all rows and contains NULL in the Year , Quart er, and
Regi on columns. The value inthe Or der s column of this row represents the total number of
orders in Canada and the Eastern region in quarters 1 and 2 in the years 2000 and 2001.

The rows marked [2] represent the total number of sales orders in each year (2000) and (2001)
in quarters 1 and 2 in Canada and the Eastern region. The values of these rows [2] are equal to
the grand total represented in row [1].

The rows marked [3] provide data about the total number of orders for the given year and
quarter by region.

System Administration Guide: Volume 2 31

Using OLAP

Year Quarter Region Orders
{NULL) (NULL (NULL) 183
2000 (NULL) (NULL) 68
2000 1 (NULL) 36
2000 1 Canada 3
/ 2000 1 Eastern a3
/ 2000 2 (NULL) 32
/ 2000 2 Canada 3
(3) 2000 2 Eastern 29
2001 {NULL) (NULL) 115
2001 1 (NULL) 57
2001 1 Canada 11
2001 1 Eastern 46
2001 2 (NULL) 58
2001 2 Canada 4
2001 2 Eastern 54

The rows marked [4] provide data about the total number of orders for each year, each quarter,
and each region in the result set.

Year Quarter Region Orders
(NULL) (NULL (NULL) 183
2000 (NULL) (NULL) 68
2000 1 (NULL) 36
2000 1 Canada 3
2000 1 Eastern a3
2000 2 (NULL) 32
2000 2 Canada 3
2000 2 Eastern 29
2001 (NULL) (NULL) 115
2001 1 (NULL) 57
2001 1 Canada 11
2001 1 Eastern 46
2001 2 (NULL) 58
2001 2 Canada 4
2001 2 Eastern 54

32

Sybase 1Q

Using OLAP

Group by CUBE
The CUBE operator in the GROUP BY clause analyzes data by forming the data into groups in
more than one dimension (grouping expression).

CUBE requires an ordered list of dimensions as arguments and enables the SELECT statement
to calculate subtotals for all possible combinations of the group of dimensions that you specify
in the query and generates a result set that shows aggregates for all combinations of values in
selected columns.

CUBE syntax:

SELECT ...[GROUPING (col um-nane) ...]
GROUPBY [expression [, .]
| CUBE (expression [,.])]

GROUPING takes a column name as a parameter, and returns a Boolean value as listed in the
following table:

Table 3. Values returned by GROUPING with the CUBE operator

If the value of the result is GROUPING returns
NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a CUBE operation 0 (FALSE)

A stored NULL 0 (FALSE)

CUBE is particularly useful when your dimensions are not a part of the same hierarchy.

This SQL syntax... Defines the following sets...
GROUP BY CUBE (A, B, O; (A, B,C)

(A, B)

(A C)

(A)

(B,C)

(B)

©)

0

Restrictions on the CUBE operator are:

« The CUBE operator supports all of the aggregate functions available to the GROUP BY
clause, but CUBE is currently not supported with COUNT DISTINCT or SUM DISTINCT.

System Administration Guide: Volume 2 33

Using OLAP

e CUBE is currently not supported with the inverse distribution analytical functions,
PERCENTILE_CONT and PERCENTILE_DISC.

e CUBE can only be used in the SELECT statement; you cannot use CUBE in a SELECT
subquery.

* A GROUPING specification that combines ROLLUP, CUBE, and GROUP BY columns in
the same GROUP BY clause is not currently supported.

» Constant expressions as GROUP BY keys are not supported.

Note: CUBE performance diminishes if the size of the cube exceeds the size of the temp
cache.

GROUPING can be used with the CUBE operator to distinguish between stored NULL values
and NULL values in query results created by CUBE.

See the examples in the description of the ROLLUP operator for illustrations of the use of the
GROUPING function to interpret results.

All CUBE operations return result sets with at least one row where NULL appears in each
column except for the aggregate columns. This row represents the summary of each column to
the aggregate function.

CUBE example 1—The following queries use data from a census, including the state
(geographic location), gender, education level, and income of people. The first query contains
a GROUP BY clause that organizes the results of the query into groups of rows, according to
the values of the columns st at e, gender, and educat i on in the table census and
computes the average income and the total counts of each group. This query uses only the
GROUP BY clause without the CUBE operator to group the rows.

SELECT State, Sex as gender, Departnentl D,

COUNT(*) , CAST(ROUND(AVE Sal ary), 2) AS NUMERI C(18, 2)) AS AVERAGEFROM

enpl oyees WHERE state IN (' MA' , 'CA)GROUP BY State, Sex,
Depart nent | DORDER BY 1, 2;

The results from the above query:

state gender DepartnmentlD COUNT() AVERAGE
CA F 200 2 58650. 00
CA M 200 1 39300. 00

Use the CUBE extension of the GROUP BY clause, if you want to compute the average income
in the entire census of state, gender, and education and compute the average income in all
possible combinations of the columns st at e, gender, and educat i on, while making
only a single pass through the census data. For example, use the CUBE operator if you want to
compute the average income of all females in all states, or compute the average income of all
people in the census according to their education and geographic location.

When CUBE calculates a group, a NULL value is generated for the columns whose group is
calculated. The GROUPING function must be used to distinguish whethera NULL isa NULL
stored in the database or a NULL resulting from CUBE. The GROUPING function returns 1 if
the designated column has been merged to a higher level group.

34 Sybase 1Q

Using OLAP

CUBE example 2—The following query illustrates the use of the GROUPING function with
GROUP BY CUBE.

SELECT case groupi ng(State) WHEN 1 THEN ' ALL' ELSE St at eEND AS
c_state, case grouping(sex) WHEN 1 THEN ' ALL' ELSE Sex end AS
c_gender, case groupi ng(Departnentl D)WHEN 1 THEN ' ALL' ELSE

cast (Departnent| D as char(4)) endAS c_dept, COUNT(*),

CAST(ROUND(AVGE(sal ary), 2) ASNUMERI C(18, 2)) AS AVERAGEFROM enpl oyees
WHERE state IN (" MA'" , 'CA) GROUP BY CUBE(state, sex,

Depart nent | D) ORDER BY 1, 2, 3;

The results of this query are shown below. The NULLs generated by CUBE to indicate a
subtotal row are replaced with ALL in the subtotal rows, as specified in the query.
c_state c_gender c_dept COUNT() AVERAGE

ALL ALL 200 3 52200. 00
ALL ALL ALL 3 52200. 00
ALL F 200 2 58650. 00
ALL F ALL 2 58650. 00
ALL M 200 1 39300. 00
ALL M ALL 1 39300. 00
CA ALL 200 3 52200. 00
CA ALL ALL 3 52200. 00
CA F 200 2 58650. 00
CA F ALL 2 58650. 00
CA M 200 1 39300. 00
CA M ALL 1 39300. 00

CUBE example 3—In this example, the query returns a result set that summarizes the total
number of orders and then calculates subtotals for the number of orders by year and quarter.

Note: As the number of variables that you want to compare increases, the cost of computing
the cube increases exponentially.
SELECT year (OrderDate) AS Year, quarter(OrderDate) AS Quarter, COUNT

(*) O dersFROM Sal esOr der sGROUP BY CUBE (Year, Quarter) ORDER BY Year,
Quarter

The figure that follows represents the result set from the query. The subtotal rows are
highlighted in the result set. Each subtotal row has a NULL in the column or columns over
which the subtotal is computed.

System Administration Guide: Volume 2 35

Using OLAP

Year Quarter Orders
(1 (NuLg (NULL) 648 |
(2]~ (NULD) i 226
(NULL) 2 196
(NULL) 3 101
_1___(NULL) 4 125
(3] 2000 NUOLD) 380 |
2000 1 87
2000 2 77
2000 3 91
2000 4 125
2001 (NULL) 268 |
2001 1 139
2001 2 119
2001 3 10

The first highlighted row [1] represents the total number of orders across both years and all
quarters. The value in the Or der s column is the sum of the values in each of the rows marked
[3]. Itis also the sum of the four values in the rows marked [2].

The next set of highlighted rows [2] represents the total number of orders by quarter across
both years. The two rows marked by [3] represent the total number of orders across all quarters
for the years 2000 and 2001, respectively.

Analytical Functions

Sybase 1Q offers both simple and windowed aggregation functions that offer the ability to
perform complex data analysis within a single SQL statement.

You can use these functions to compute results for queries such as “What is the quarterly
moving average of the Dow Jones Industrial average,” or “List all employees and their
cumulative salaries for each department.” Moving averages and cumulative sums can be
calculated over various intervals, and aggregations and ranks can be partitioned, so aggregate
calculation is reset when partition values change. Within the scope of a single query
expression, you can define several different OLAP functions, each with its own arbitrary
partitioning rules. Analytical functions can be broken into two categories:

« Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM summarize data
over a group of rows from the database. The groups are formed using the GROUP BY
clause of the SELECT statement.

» Unary statistical aggregate functions that take one argument include STDDEV,
STDDEV_SAMP, STDDEV_POP, VARIANCE, VAR_SAMP, and VAR_POP.

36

Sybase 1Q

Using OLAP

Both the simple and unary categories of aggregates summarize data over a group of rows from
the database and can be used with a window specification to compute a moving window over a
result set as it is processed.

Note: The aggregate functions AVG, SUM, STDDEV, STDDEV_POP, STDDEV_SAMP,
VAR_POP, VAR_SAMP, and VARIANCE do not support binary data types Bl NARY and
VARBI NARY.

Simple Aggregate Functions

Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM summarize data over a
group of rows from the database.

The groups are formed using the GROUP BY clause of the SELECT statement. These
aggregates are allowed only in the select list and in the HAVING and ORDER BY clauses of a
SELECT statement.

Note: With the exception of Grouping() functions, both the simple and unary aggregates can
be used in a windowing function that incorporates a <window clause> in a SQL query
specification (a window) that conceptually creates a moving window over a result set as it is
processed.

See Reference. Building Blocks, Tables, and Procedures > SQL Functions > Aggregate
functions.

Windowing
A major feature of the ANSI SQL extensions for OLAP is a construct called a window. This
windowing extension lets users divide result sets of a query (or a logical partition of a query)
into groups of rows called partitions and determine subsets of rows to aggregate with respect
to the current row.

You can use three classes of window functions with a window: ranking functions, the row
numbering function, and window aggregate functions.
<W NDOWNED TABLE FUNCTI ON TYPE> :: =

<RANK FUNCTI ON TYPE> <LEFT PAREN> <RI GHT PAREN>

| ROW NUMBER <LEFT PAREN> <RI GHT PAREN>
| <W NDOW AGGREGATE FUNCTI ON\>

Windowing extensions specify a window function type over a window name or specification
and are applied to partitioned result sets within the scope of a single query expression. A
window partition is a subset of rows returned by a query, as defined by one or more columns in
a special OVER clause:

ol ap_function() OVER (PARTITION BY col 1, col2...)

Windowing operations let you establish information such as the ranking of each row within its
partition, the distribution of values in rows within a partition, and similar operations.

System Administration Guide: Volume 2 37

Using OLAP

Windowing also lets you compute moving averages and sums on your data, enhancing the
ability to evaluate your data and its impact on your operations.

An OLAP window’s three essential parts

The OLAP windows comprise three essential aspects: window partitioning, window ordering,
and window framing. Each has a significant impact on the specific rows of data visible in a
window at any point in time. Meanwhile, the OLAP OVER clause differentiates OLAP
functions from other analytic or reporting functions with three distinct capabilities:

« Defining window partitions (PARTITION BY clause).
e Ordering rows within partitions (ORDER BY clause).
» Defining window frames (ROWS/RANGE specification).

To specify multiple windows functions, and to avoid redundant window definitions, you can
specify a name for an OLAP window specifications. In this usage, the keyword, WINDOW, is
followed by at least one window definition, separated by commas. A window definition
includes the name by which the window is known in the query and the details from the
windows specification, which lets you to define window partitioning, ordering, and framing:

<W NDOW CLAUSE> :: = <W NDOW DEFI NI TI ON LI ST>

<W NDOW DEFI NI TION LI ST> :: =
<W NDOW DEFI NI TION> [{ <COWMA> <W NDOW DEFI NI TI ON>

P]

<W NDOW DEFI NI TI ON> : : =
<NEW W NDOW NAME> AS <W NDOW SPECI FI CATI ON>

<W NDOW SPECI FI CATI ON DETAI LS> :: =
[<EXI STI NG W NDOW NAME>]
[<W NDOW PARTI TI ON CLAUSE>]
[<W NDOW ORDER CLAUSE>]
[<W NDOW FRAVE CLAUSE>]

For each row in a window partition, users can define a window frame, which may vary the
specific range of rows used to perform any computation on the current row of the partition. The
current row provides the reference point for determining the start and end points of the
window frame.

Window specifications can be based on either a physical number of rows using a window
specification that defines a window frame unit of ROWS or a logical interval of a numeric
value, using a window specification that defines a window frame unit of RANGE.

Within OLAP windowing operations, you can use the following functional categories:

« Ranking functions

* Windowing aggregate functions
» Statistical aggregate functions
 Distribution functions

38 Sybase 1Q

Using OLAP

See also

 Distribution Functions on page 59

* OLAP Benefits on page 22

* OLAP Evaluationon page 22

e Ranking Functions on page 48

o Statistical Aggregate Functions on page 54

» Windowing Aggregate Functions on page 52

e BNF Grammar for OLAP Functions on page 73

Window Partitioning
Window partitioning is the division of user-specified result sets (input rows) using a
PARTITION BY clause.

A partition is defined by one or more value expressions separated by commas. Partitioned data
is also implicitly sorted and the default sort order is ascending (ASC).

<W NDOW PARTI TI ON CLAUSE> :: =
PARTI TI ON BY <W NDOW PARTI TI ON EXPRESSI ON LI ST>

If a window partition clause is not specified, then the input is treated as single partition.

Note: The term partition as used with analytic functions, refers only to dividing the set of
result rows using a PARTITION BY clause.

A window partition can be defined based on an arbitrary expression. Also, because window
partitioning occurs after GROUPING (if a GROUP BY clause is specified), the result of any
aggregate function, such as SUM, AVG, and VARIANCE, can be used in a partitioning
expression. Therefore, partitions provide another opportunity to perform grouping and
ordering operations /n addition fothe GROUP BY and ORDER BY clauses; for example, you
can construct queries that compute aggregate functions over aggregate functions, such as the
maximum SUM of a particular quantity.

You can specify a PARTITION BY clause, even if there is no GROUP BY clause.

See also
e Window Framing on page 40
e Window Ordering on page 39

Window Ordering
Window ordering is the arrangement of results (rows) within each window partition using a
window order clause, which contains one or more value expressions separated by commas.

If a window order clause is not specified, the input rows could be processed in an arbitrary
order.

<W NDOW ORDER CLAUSE> ::= <ORDER SPECI FI CATI O\>

System Administration Guide: Volume 2 39

Using OLAP

The OLAP window order clause is different from the ORDER BY clause that can be appended
to a nonwindowed query expression.

The ORDER BY clause in an OLAP function, for example, typically defines the expressions
for sorting rows within window partitions; however, you can use the ORDER BY clause
without a PARTITION BY clause, in which case the sort specification ensures that the OLAP
function is applied to a meaningful (and intended) ordering of the intermediate result set.

An order specification is a prerequisite for the ranking family of OLAP functions; it is the
ORDER BY clause, not an argument to the function itself, that identifies the measures for the
ranking values. In the case of OLAP aggregates, the ORDER BY clause is not required in
general, but it is a prerequisite to defining a window frame. This is because the partitioned
rows must be sorted before the appropriate aggregate values can be computed for each frame.

The ORDER BY clause includes semantics for defining ascending and descending sorts, as
well as rules for the treatment of NULL values. By default, OLAP functions assume an
ascending order, where the lowest measured value is ranked 1.

Although this behavior is consistent with the default behavior of the ORDER BY clause that
ends a SELECT statement, it is counterintuitive for most sequential calculations. OLAP

calculations often require a descending order, where the highest measured value is ranked 1;
this requirement must be explicitly stated in the ORDER BY clause with the DESC keyword.

Note: Ranking functions require a <window order clause> because they are defined only over
sorted input. As with an <order by clause> in a <query specification>, the default sort
sequence is ascending.

The use of a <window frame unit> of RANGE also requires the existence of a <window order
clause>. In the case of RANGE, the <window order clause> may only consist of a single
expression.

See also
» Window Framing on page 40
e Window Partitioning on page 39

Window Framing

For nonranking aggregate OLAP functions, you can define a window frame with a window
frame clause, which specifies the beginning and end of the window relative to the current
row.

<W NDOW FRAME CLAUSE> :: =

<W NDOW FRAME UNI T>
<W NDOW FRAME EXTENT>

This OLAP function is computed with respect to the contents of a moving frame rather than
the fixed contents of the whole partition. Depending on its definition, the partition has a start
row and an end row, and the window frame slides from the starting point to the end of the
partition.

40

Sybase 1Q

Using OLAP

Figure 3: Three-row moving window with partitioned input

Partition A
H
: Cument Row iSIiding Window

Current I

Partition @

=

s

B

a

i ;
Partition C

UNBOUNDED PRECEDING and FOLLOWING

Window frames can be defined by an unbounded aggregation group that either extends back to
the beginning of the partition (UNBOUNDED PRECEDING) or extends to the end of the
partition (UNBOUNDED FOLLOWING), or both.

UNBOUNDED PRECEDING includes all rows within the partition preceding the current
row, which can be specified with either ROWS or RANGE. UNBOUNDED FOLLOWING
includes all rows within the partition following the current row, which can be specified with
either ROWS or RANGE.

The value FOLLOWING specifies either the range or number of rows following the current
row. If ROWS is specified, then the value is a positive integer indicating a number of rows. If
RANGE is specified, the window includes any rows that are less than the current row plus the
specified numeric value. For the RANGE case, the data type of the windowed value must be
comparable to the type of the sort key expression of the ORDER BY clause. There can be only
one sort key expression, and the data type of the sort key expression must allow addition.

The value PRECEDING specifies either the range or number of rows preceding the current
row. If ROWS is specified, then the value is a positive integer indicating a number of rows. If
RANGE is specified, the window includes any rows that are less than the current row minus
the specified numeric value. For the RANGE case, the data type of the windowed value must

System Administration Guide: Volume 2 41

Using OLAP

be comparable to the type of the sort key expression of the ORDER BY clause. There can be
only one sort key expression, and the data type of the sort key expression must allow
subtraction. This clause cannot be specified in second bound group if the first bound group is
CURRENT ROW or value FOLLOWING.

The combination BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING provides an aggregate over an entire partition, without the need to construct a
join to a grouped query. An aggregate over an entire partition is also known as a reporting
aggregate.

CURRENT ROW concept

In physical aggregation groups, rows are included or excluded based on their position relative
to the current row, by counting adjacent rows. The current row is simply a reference to the next
row in a query’s intermediate results. As the current row advances, the window is reevaluated
based on the new set of rows that lie within the window. There is no requirement that the
current row be included in a window.

If awindow frame clause is not specified, the default window frame depends on whether or not
a window order clause is specified:

 If the window specification contains a window order clause, the window’s start point is
UNBOUNDED PRECEDING, and the end point is CURRENT ROW, thus defining a varying-
size window suitable for computing cumulative values.

 If the window specification does not contain a window order clause, the window’s start
pointis UNBOUNDED PRECEDING, and the end pointis UNBOUNDED FOLLOWING, thus
defining a window of fixed size, regardless of the current row.

Note: A window frame clause cannot be used with a ranking function.

You can also define a window by specifying a window frame unit that is row-based (rows
specification) or value-based (range specification).

<W NDOW FRAME UNI T> ::= ROAS | RANGE
<W NDOW FRAME EXTENT> ::= <W NDOW FRAME START> | <W NDOW FRAME
BETWEEN>

When a window frame extent specifies BETWEEN, it explicitly provides the beginning and
end of a window frame.

If the window frame extent specifies only one of these two values then the other value defaults
to CURRENT ROW.

Row-based window frames—In the example rows [1] through [5] represent a partition; each
row becomes the current row as the OLAP window frame slides forward. The frame is defined
as Between Current Row And 2 Following, so each frame includes a maximum of three rows
and a minimum of one row. When the frame reaches the end of the partition, only the current
row is included. The shaded areas indicate which rows are excluded from the frame at each
step.

42

Sybase 1Q

Using OLAP

Figure 4. Row-based window frames

Current Roa
Current Rowy +1 Current Rowy
Currernt Rovy +2 Current Row +1 Current Roa
Currert Rawe+2 Current Row +1 Current Rowe
Current Row'+2 Current Rowe +1 Current R

o W R =

The window frame imposes the following rules:

e When row [1] is the current row, rows [4] and [5] are excluded.

« When row [2] is the current row, rows [5] and [1] are excluded.

e When row [3] is the current row, rows [1] and [2] are excluded.

* When row [4] is the current row, rows [1], [2], and [3] are excluded.

« When row [5] is the current row, rows [1], [2], [3], and [4] are excluded.

The following diagram applies these rules to a specific set of values, showing the OLAP AVG
function that would be calculated for each row. The sliding calculations produce a moving
average with an interval of three rows or fewer, depending on which row is the current row:

Row ‘ Dimension | Measure OLAP AV G
1 A 10 533
2 A 50 Y w900
3 A 100 — ___,_:ff_' 240
4 A 120 1 ___—#310
5 A 500 } }——+500

The following example demonstrates a sliding window:

SELECT di nensi on, neasure,
AVG neasure) OVER(partition BY di nension
ORDER BY neasur e
ROA5 BETWEEN CURRENT ROW and 2 FOLLOW NG)
AS ol ap_avg
FROM . ..

The averages are computed as follows:

e Row [1] = (10 + 50 + 100)/3

e Row [2] = (50+ 100 + 120)/3

« Row [3] = (100 + 120 + 500)/3

e Row [4] = (120 + 500 + NULL)/3

* Row [5] = (500 + NULL + NULL)/3

Similar calculations would be computed for all subsequent partitions in the result set (such as,
B, C, and so on).

System Administration Guide: Volume 2 43

Using OLAP

If there are no rows in the current window, the result is NULL, except for COUNT.

See also

Window Ordering on page 39
Window Partitioning on page 39

ROWS

The window frame unit ROWS defines a window in the specified number of rows before or
after the current row, which serves as the reference point that determines the start and end of a
window.

Each analytical calculation is based on the current row within a partition. To produce
determinative results for a window expressed in rows, the ordering expression should be
unique.

The reference point for all window frames is the current row. The SQL/OLAP syntax provides
mechanisms for defining a row-based window frame as any number of rows preceding or
following the current row or preceding and following the current row.

The following list illustrates common examples of a window frame unit:

Rows between unbounded preceding and current row — specifies a window whose start
pointis the beginning of each partition and the end point is the current row and is often used
to construct windows that compute cumulative results, such as cumulative sums.

Rows between unbounded preceding and unbounded following — specifies a fixed
window, regardless of the current row, over the entire partition. The value of a window
aggregate function is, therefore, identical in each row of the partition.

Rows between 1 preceding and 1 following — specifies a fixed-sized moving window over
three adjacent rows, one each before and after the current row. You can use this window
frame unit to compute, for example, a 3-day or 3-month moving average.

Be aware of meaningless results that may be generated by gaps in the windowed values
when using ROWS. If the set of values is not continuous, consider using RANGE instead
of ROWS, because a window definition based on RANGE automatically handles adjacent
rows with duplicate values and does not include other rows when there are gaps in the
range.

Note: In the case of a moving window, it is assumed that rows containing NULL values
exist before the first row, and after the last row, in the input. This means that in a 3-row

moving window, the computation for the last row in the input—the current rowv— includes
the immediately preceding row and a NULL value.

Rows between current row and current row — restricts the window to the current row only.
Rows between 1 preceding and 1 preceding — specifies a single row window consisting

only of the preceding row, with respect to the current row. In combination with another

window function that computes a value based on the current row only, this construction
makes it possible to easily compute deltas, or differences in value, between adjacent rows.

44

Sybase 1Q

Using OLAP

See also
e RANGE on page 45

RANGE

Range-based window frames—The SQL/OLAP syntax supports another kind of window
frame whose limits are defined in terms of a value-based—or range-based—set of rows, rather
than a specific sequence of rows.

Value-based window frames define rows within a window partition that contain a specific
range of numeric values. The OLAP function’s ORDER BY clause defines the numeric column
to which the range specification is applied, relative to the current row’s value for that column.
The range specification uses the same syntax as the rows specification, but the syntax is
interpreted in a different way.

The window frame unit, RANGE, defines a window frame whose contents are determined by
finding rows in which the ordering column has values within the specified range of value
relative to the current row. This is called a logical offset of a window frame, which you can
specify with constants, such as “3 preceding,” or any expression that can be evaluated to a
numeric constant. When using a window defined with RANGE, there can be only a single
numeric expression in the ORDER BY clause.

Note: ORDER BY key must be a numeric data in RANGE window frame

For example, a frame can be defined as the set of rows with yearvalues some number of years
preceding or following the current row’s year:

ORDER BY year ASC range BETWEEN CURRENT ROW and 1 PRECEDI NG
In the above example query, 1 preceding means the current row’s yearvalue minus 1.

This kind of range specification is inclusive. If the current row’s yearvalue is 2000, all rows in
the window partition with year values 2000 and 1999 qualify for the frame, regardless of the
physical position of those rows in the partition. The rules for including and excluding value-
based rows are quite different from the rules applied to row-based frames, which depend
entirely on the physical sequence of rows.

Put in the context of an OLAP AVG() calculation, the following partial result set further
demonstrates the concept of a value-based window frame. Again, the frame consists of rows
that:

e Have the same year as the current row

* Have the same year as the current row minus 1

Ronw Dirmenzion ‘faar Measure Olap_awg

1 A 1909 10000 10000
2 A 2001 5000 3000
3 A 2001 1000 3000
4 A 2002 12000 5250
b A 2002 3000 5250

The following query demonstrates a range-based window definition:

System Administration Guide: Volume 2 45

Using OLAP

SELECT di nensi on, year, neasure,
AVGE measur e) OVER(PARTI TI ON BY di nmensi on
CRDER BY year ASC
range BETVEEN CURRENT ROW and 1 PRECEDI NG
as ol ap_avg
FROM . ..

The averages are computed as follows:

* Row [1] = 1999; rows [2] through [5] are excluded; AVG = 10,000/1

e Row [2] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2

e Row [3] =2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2

* Row [4] = 2002; row [1] is excluded; AVG = 21,000/4

* Row [5] = 2002; row [1] is excluded; AVG = 21,000/4

Ascending and descending order for value -based frames—The ORDER BY clause for an
OLAP function with a value-based window frame not only identifies the numeric column on

which the range specification is based; it also declares the sort order for the ORDER BY values.
The following specification is subject to the sort order that precedes it (ASC or DESC):

RANGE BETWEEN CURRENT ROW AND n FOLLOW NG
The specification 7 FOLLOWING means:

e Plus nif the partition is sorted in default ascending order (ASC)
e Minus nif the partition is sorted in descending order (DESC)

For example, assume that the year column contains four distinct values, from 1999 to 2002.
The following table shows the default ascending order of these values on the left and the
descending order on the right:

ORDER BY year ASC ORDER BY year DESC
1333 2002
2000 2001
2001 2000
2002 1009

If the current row is 1999 and the frame is specified as follows, rows that contain the values
1999 and 1998 (which does not exist in the table) are included in the frame:

ORDER BY year DESC range BETWEEN CURRENT ROW and 1 FOLLOW NG

Note: The sort order of the ORDER BY values is a critical part of the test for qualifying rows in
a value-based frame; the numeric values alone do not determine exclusion or inclusion.

Using an unbounded window—T he following query produces a result set consisting of all of
the products accompanied by the total quantity of all products:
SELECT id, description, quantity,

SUM quantity) OVER () AS total
FROM pr oduct s;

46

Sybase 1Q

Using OLAP

Computing deltas between adjacent rows—Using two windows—aone over the current row
and the other over the previous row—provides a direct way of computing deltas, or changes,
between adjacent rows.

SELECT Enpl oyeel D, Surnanme, SUM sal ary)

OVER(ORDER BY BirthDate rows between current row and current row)
AS curr, SUM Sal ary)

OVER(ORDER BY BirthDate rows between 1 preceding and 1 precedi ng)
AS prev, (curr-prev) as delta

FROM Enpl oyees

WHERE State IN ("MA', '"AZ', 'CA', 'CO) AND Departmentl|D>10
ORDER BY Enpl oyeel D, Sur nane;

The results from the query:

Enpl oyeel D Sur nane curr prev delta

148 Jor dan 51432. 000191
Bertrand 29800. 000 39300. 000
- 9500. 000278 Mel ki seti an 48500. 000
42300. 000 6200. 000299 Over bey
39300. 000 41700. 750 -2400. 750318
Cr ow 41700. 750 45000. 000

- 3299. 250586 Col eman 42300. 000
46200. 000 - 3900. 000690 Poi tras
46200. 000 29800. 000 16400. 000703
Martinez 55500. 800 51432. 000
4068. 800949 Savari no 72300. 000
55500. 800 16799. 2001101 Prest on
37803. 000 48500. 000 -10697. 0001142
d ark 45000. 000 72300. 000

- 27300. 000

Although the window function SUM() is used, the sum contains only the salary value of either
the current or previous row because of the way the window is specified. Also, the pr ev value
of the first row in the result is NULL because it has no predecessor; therefore, the del t a is
NULL as well.

In each of the examples above, the function used with the OVER() clause is the SUM()
aggregate function.

See also
* ROWSon page 44

Explicit and Inline Window Clauses
SQL OLAP provides two ways of specifying a window in a query:

» The explicit window clause lets you define a window that follows a HAVING clause. You
reference windows defined with those window clauses by specifying their names when
you invoke an OLAP function, such as:

SUM(...) OVER w2

System Administration Guide: Volume 2 a7

Using OLAP

» The inline window specification lets you define a window in the SELECT list of a query
expression. This capability lets you define your windows in a window clause that follows
the HAVING clause and then reference them by name from your window function
invocations, or to define them along with the function invocations.

Note: If you use an inline window specification, you cannot name the window. Two or
more window function invocations in a single SELECT list that use identical windows
must either reference a named window defined in a window clause or they must define
their inline windows redundantly.

Window function example—The following example shows a window function. The query
returns a result set that partitions the data by department and then provides a cumulative
summary of employees’ salaries, starting with the employee who has been at the company the
longest. The result set includes only those employees who reside in Massachusetts. The
column Sum _Sal ar y provides the cumulative total of employees’ salaries.

SELECT Departnentl D, Surname, StartDate, Salary, SUM Sal ary) OVER
(PARTI TI ON BY Departnment| D ORDER BYstartdate rows between unbounded
precedi ng andcurrent row) AS sum sal ar yFROM Enpl oyeesWHERE State | N
("CA') AND DepartmentI D I N (100, 200) ORDER BY Departnentl| D,

The following result set is partitioned by department.

Departnent| D Surname start_date sal ary sum sal ary
200 Over bey 1987- 02- 19
39300. 000 39300. 000

200 Savari no 1989- 11- 07
72300. 000 111600. 000

200 C ark 1990- 07- 21
45000. 000 156600. 000

Ranking Functions

Ranking functions let you compile a list of values from the data set in ranked order, as well as
compose single-statement SQL queries that fulfil requests such as, “Name the top 10 products
shipped this year by total sales,” or “Give the top 5% of salespersons who sold orders to at least
15 different companies.”

SQL/OLAP defines five functions that are categorized as ranking functions:

<RANK FUNCTI ON TYPE> : : =
RANK | DENSE_RANK | PERCENT_RANK | ROW NUMBER | NTILE

Ranking functions let you compute a rank value for each row in a result set based on the order
specified in the query. For example, a sales manager might need to identify the top or bottom
sales people in the company, the highest- or lowest-performing sales region, or the best- or
worst-selling products. Ranking functions can provide this information.

See also
 Distribution Functions on page 59

48

Sybase 1Q

Using OLAP

* OLAP Benefits on page 22

e OLAP Evaluation on page 22

o Statistical Aggregate Functions on page 54

e Windowing on page 37

» Windowing Aggregate Functions on page 52

* BNF Grammar for OLAP Functions on page 73

RANK() Function
The RANK function returns a number that indicates the rank of the current row among the rows
in the row’s partition, as defined by the ORDER BY clause.

The first row in a partition has a rank of 1, and the last rank in a partition containing 25 rows is
25. RANK is specified as a syntax transformation, which means that an implementation can
choose to actually transform RANK into its equivalent, or it can merely return a result
equivalent to the result that transformation would return.

In the following example, ws1 indicates the window specification that defines the window
named wl.

RANK() OVER ws

is equivalent to:

(COUNT (*) OVER (ws RANGE UNBOUNDED PRECEDI NG)
- COUNT (*) OVER (ws RANGE CURRENT ROW) + 1)

The transformation of the RANK function uses logical aggregation (RANGE). As aresult, two
or more records that are tied—or have equal values in the ordering column—nhave the same
rank.The next group in the partition that has a different value has a rank that is more than one
greater than the rank of the tied rows. For example, if there are rows whose ordering column
values are 10, 20, 20, 20, 30, the rank of the first row is 1 and the rank of the second row is 2.
The rank of the third and fourth row is also 2, but the rank of the fifth row is 5. There are no
rows whose rank is 3 or 4. This algorithm is sometimes known as sparse ranking.

See also Reference. Building Blocks, Tables, and Procedures > SQL Functions > RANK
function [Analytical].

DENSE RANK() Function
DENSE_RANK DENSE_RANK returns ranking values without gaps.

The values for rows with ties are still equal, but the ranking of the rows represents the positions
of the clusters of rows having equal values in the ordering column, rather than the positions of
the individual rows. As in the RANK example, where rows ordering column values are 10, 20,
20, 20, 30, the rank of the first row is still 1 and the rank of the second row is still 2, as are the
ranks of the third and fourth rows. The last row, however, is 3, not 5.

DENSE_RANK is computed through a syntax transformation, as well.
DENSE_RANK() OVER ws

System Administration Guide: Volume 2 49

Using OLAP

is equivalent to:

COUNT (DI STINCT ROV (expr_1, . . ., expr_n))
OVER (ws RANGE UNBOUNDED PRECEDI NG)

In the above example, expr_Ithrough expr_nrepresent the list of value expressions in the sort
specification list of window w1.

See also Reference: Building Blocks, Tables, and Procedures > SQL Functions >
DENSE_RANK function [Analytical].

PERCENT RANK() Function
The PERCENT_RANK function calculates a percentage for the rank, rather than a fractional
amount, and returns a decimal value between 0 and 1.

PERCENT_RANK returns the relative rank of a row, which is a number that indicates the
relative position of the current row within the window partition in which it appears. For
example, in a partition that contains 10 rows having different values in the ordering columns,
the third row is given a PERCENT_RANK value of 0.222 ..., because you have covered 2/9
(22.222...%) of rows following the first row of the partition. PERCENT_RANK of a row is
defined as one less than the RANK of the row divided by one less than the number of rows in the
partition, as seen in the following example (where “ANT” stands for an approximate numeric
type, such as REAL or DOUBLE PRECI SI ON).

PERCENT_RANK() OVER ws

is equivalent to:

CASE
WHEN COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
PRECEDI NG AND UNBOUNDED FOLLOW NG) = 1
THEN CAST (0 AS ANT)

ELSE
(CAST (RANK () OVER (ws) AS ANT) -1 /
(COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
PRECEDI NG AND UNBOUNDED FOLLOWNG) - 1)
END

See also Reference: Building Blocks, Tables, and Procedures > SQL Functions >
PERCENT_RANK function [Analytical].

ROW_NUMBER() Function
The ROW_NUMBER function returns a unique row number for each row.

If you define window partitions, ROW_NUMBER starts the row numbering in each partition at
1, and increments each row by 1. If you do not specify a window partition, ROW_NUMBER
numbers the complete result set from 1 to the total cardinality of the table.

The ROW_NUMBER function syntax is:

ROW_NUMBER() OVER ([PARTITION BY Wi ndow partition] ORDERBYw ndow
orderi ng)

50

Sybase 1Q

Using OLAP

ROW_NUMBER does not require an argument, but you must specify the parentheses.
The PARTITION BY clause is optional. The OVER (ORDER_BY) clause cannot contain a
window frame ROWS/RANGE specification.

Ranking Examples
These are some of the ranking functions examples:

Ranking example 1—The SQL query that follows finds the male and female employees from
California, and ranks them in descending order according to salary.

SELECT Surnane, Sex, Salary, RANK() OVER (

ORDER BY Sal ary DESC) as RANK FROM Enpl oyees

VWHERE State IN (' CA") AND Departnment| D =200
ORDER BY Sal ary DESC;

The results from the above query:

Sur nane Sex Sal ary RANK
Savari no F 72300.000 1
Cl ark F 45000. 000 2
Over bey M 39300. 000 3

Ranking example 2—Using the query from the previous example, you can change the data by
partitioning it by gender. The following example ranks employees in descending order by
salary and partitions by gender:

SELECT Surname, Sex, Salary, RANK() OVER (PARTITION BY Sex

ORDER BY Sal ary DESC) AS RANK FROM Enpl oyees

VWHERE State IN (' CA', 'AZ') AND Departnent!D IN (200, 300)
ORDER BY Sex, Sal ary DESC;

The results from the above query:

Sur nane Sex Sal ary RANK
Savari no F 72300. 000 1
Jor dan F 51432.000 2
d ark F 45000. 000 3
Col eman M 42300.000 1
Over bey M 39300. 000 2

Ranking example 3—This example ranks a list of female employees in Californiaand Texasin
descending order according to salary. The PERCENT_RANK function provides the cumulative
total in descending order.

SELECT Surnane, Salary, Sex, CAST(PERCENT_RANK() OVER

(ORDER BY Sal ary DESC) AS nuneric (4, 2)) AS RANK

FROM Enpl oyees WHERE State IN ('CA', 'TX') AND Sex ='F
ORDER BY Sal ary DESC;

The results from the above query:

System Administration Guide: Volume 2 51

Using OLAP

Sur nane sal ary sex RANK
Savari no 72300. 000 F 0.00
Snmith 51411. 000 F 0. 33
C ark 45000. 000 F 0. 66
Garcia 39800. 000 F 1.00

Ranking example 4—You can use the PERCENT_RANK function to find the top or bottom
percentiles in the data set. This query returns male employees whose salary is in the top five
percent of the data set.

SELECT * FROM (SELECT Surnane, Sal ary, Sex,

CAST(PERCENT_RANK() OVER (ORDER BY sal ary DESC) as
nuneric (4, 2)) AS percent

FROM Enpl oyees WHERE State IN (' CA') AND sex ='F) AS
DT where percent > 0.5

ORDER BY Sal ary DESC;

The results from the above query:

Sur nane sal ary sex per cent

Cl ark 45000. 000 F 1.00

Ranking example 5—This example uses the ROW_NUMBER function to return row numbers
for each row in all window partitions. The query partitions the Enpl oyees table by
department 1D, and orders the rows in each partition by start date.

SELECT Departnent|I D dI D, StartDate, Salary |,

ROW NUMBER() OVER(PARTI TI ON BY dI D ORDER BY St art Dat e)
FROM Enpl oyees ORDER BY 1, 2;

The results from the above query are:

diD StartDate Sal ary Row_numnber ()
100 1984-08-28 47500. 000 1
100 1985-01-01 62000. 500 2
100 1985-06-17 57490. 000 3
100 1986-06-07 72995. 000 4
100 1986-07-01 48023. 690 5
200 1985-02-03 38500. 000 1
200 1985-12-06 54800. 000 2
200 1987-02-19 39300. 000 3
200 1987-07-10 49500. 000 4
500 1994-02-27 24903. 000 9

Windowing Aggregate Functions

Windowing aggregate functions let you manipulate multiple levels of aggregation in the same
query.

For example, you can list all quarters during which expenses are less than the average. You can
use aggregate functions, including the simple aggregate functions AVG, COUNT, MAX, MIN,

52

Sybase 1Q

Using OLAP

and SUM, to place results—possibly computed at different levels in the statement—on the
same row. This placement provides a means to compare aggregate values with detail rows
within a group, avoiding the need for a join or a correlated subquery.

These functions also let you compare nonaggregate values to aggregate values. For example, a
salesperson might need to compile a list of all customers who ordered more than the average
number of a product in a specified year, or a manager might want to compare an employee’s
salary against the average salary of the department.

If a query specifies DISTINCT in the SELECT statement, then the DISTINCT operation is
applied after the window operator. A window operator is computed after processing the
GROUP BY clause and before the evaluation of the SELECT list items and a query’s ORDER
BY clause.

Windowing aggregate example 1—This query returns a result set, partitioned by year, that
shows a list of the products that sold higher-than-average sales.

SELECT * FROM (SELECT Surnane AS E _nane, Departnent| D ASDept,
CAST(Sal ary AS numeric(10,2)) AS Sal, CAST(AVG Sal) OVER(PARTI TI ON
BY Department| D) ASnuneric(10, 2)) AS Average,

CAST(STDDEV_POP(Sal) OVER(PARTI TI ON BY Departnent| D) AS
nuneric(10, 2)) ASSTD_DEVFROM Enpl oyeesGROUP BY Dept, E nane, Sal) AS
derived_t abl e WHERESal > (Aver age+STD_DEV) ORDER BY Dept, Sal,

E nane;

The results from the query:

E name Dept Sal Aver age STD_DEV
Lul | 100 87900. 00 58736. 28
16829. 59Sheffiel d 100 87900. 00
58736. 28 16829. 59Scot t 100
96300. 00 58736. 28 16829. 59Sterling
200 64900. 00 48390. 94
13869. 59Savari no 200 72300. 00
48390. 94 13869. 59Kel | y 200
87500. 00 48390. 94 13869. 59Shea
300 138948. 00 59500. 00
30752. 39Bl ai ki e 400 54900. 00
43640. 67 11194. 02Norri s 400
61300. 00 43640. 67 11194. 02Evans
400 68940. 00 43640. 67
11194. 02Marti nez 500 55500. 80
33752. 20 9084. 49

For the year 2000, the average number of orders was 1,787. Four products (700, 601, 600, and
400) sold higher than that amount. In 2001, the average humber of orders was 1,048 and 3
products exceeded that amount.

Windowing aggregate example 2—This query returns a result set that shows the employees
whose salary is one standard deviation greater than the average salary of their department.
Standard deviation is a measure of how much the data varies from the mean.

System Administration Guide: Volume 2 53

Using OLAP

SELECT * FROM (SELECT Surnane AS E nane, DepartnentlD AS
Dept, CAST(Sal ary AS nuneric(10,2)) AS Sal,
CAST(AVG Sal) OVER(PARTI TI ON BY dept) AS
nunmeric(10, 2)) AS Average, CAST(STDDEV_POP(Sal)
OVER(PARTI TI ON BY dept) AS nuneric(10,2)) AS
STD_DEV
FROM Enpl oyees
GROUP BY Dept, E_nane, Sal) AS derived_table WHERE
Sal > (Aver age+STD _DEV)
ORDER BY Dept, Sal, E_nane;

Every department has at least one employee whose salary significantly deviates from the
mean, as shown in these results:

E name Dept Sal Aver age STD_DEV
Lul | 100 87900.00 58736. 28 16829. 59
Sheffield 100 87900.00 58736. 28 16829. 59
Scot t 100 96300.00 58736. 28 16829. 59
Sterling 200 64900.00 48390.94 13869. 59
Savari no 200 72300.00 48390.94 13869. 59
Kel |y 200 87500.00 48390.94 13869. 59
Shea 300 138948.00 59500. 00 30752. 39
Bl ai ki e 400 54900.00 43640.67 11194. 02
Morri s 400 61300.00 43640.67 11194. 02
Evans 400 68940.00 43640.67 11194. 02
Marti nez 500 55500.80 33752.20 9084. 49

Employee Scott earns $96,300.00, while the average salary for department 100 is $58,736.28.
The standard deviation for department 100 is 16,829.00, which means that salaries less than
$75,565.88 (58736.28 + 16829.60 = 75565.88) fall within one standard deviation of the mean.

See also

 Distribution Functions on page 59

* OLAP Benefits on page 22

* OLAP Evaluation on page 22

e Ranking Functions on page 48

» Slatistical Aggregate Functions on page 54

» Windowing on page 37

e BNF Grammar for OLAP Functions on page 73

Statistical Aggregate Functions

The ANSI SQL/OLAP extensions provide a number of additional aggregate functions that
permit statistical analysis of numeric data. This support includes functions to compute
variance, standard deviation, correlation, and linear regression.

Standard deviation and variance
The SQL/OLAP general set functions that take one argument include those appearing in bold
in this syntax statement:

54

Sybase 1Q

Using OLAP

<SI MPLE W NDOW AGGREGATE FUNCTI ON TYPE> :: =
<BASI C AGGREGATE FUNCTI ON TYPE>
| STDDEV | STDDEV_POP | STDDEV_SAWP
| VAR ANCE | VARI ANCE PCP | VAR ANCE SAWP

e STDDEV_POP — computes the population standard deviation of the provided value
expression evaluated for each row of the group or partition (if DISTINCT is specified, each
row that remains after duplicates are eliminated), defined as the square root of the
population variance.

e STDDEV_SAMP — computes the population standard deviation of the provided value
expression evaluated for each row of the group or partition (if DISTINCT is specified, each
row that remains after duplicates are eliminated), defined as the square root of the sample
variance.

e VAR_POP - computes the population variance of value expression evaluated for each row
of the group or partition (if DISTINCT is specified, each row that remains after duplicates
are eliminated), defined as the sum of squares of the difference of value expression from
the mean of value expression, divided by the number of rows (remaining) in the group or
partition.

* VAR_SAMP - computes the sample variance of value expression evaluated for each row of
the group or partition (if DISTINCT is specified, each row that remains after duplicates are
eliminated), defined as the sum of squares of the difference of value expression, divided by
one less than the number of rows (remaining) in the group or partition.

These functions, including STDDEV and VARIANCE, are true aggregate functions in that they
can compute values for a partition of rows as determined by the query’s ORDER BY clause. As
with other basic aggregate functions such as MAX or MIN, their computation ignores NULL
values in the input. Also, regardless of the domain of the expression being analyzed, all
variance and standard deviation computation uses |EEE double-precision floating point. If the
input to any variance or standard deviation function is the empty set, then each function returns
NULL as its result. If VAR_SAMP is computed for a single row, it returns NULL, while
VAR_POP returns the value 0.

Correlation
The SQL/OLAP function that computes a correlation coefficient is:

e CORR - returns the correlation coefficient of a set of number pairs.

You can use the CORR function either as a windowing aggregate function (where you specify
a window function type over a window name or specification) or as a simple aggregate
function with no OVER clause.

Covariance
The SQL/OLAP functions that compute covariances include:

e COVAR_POP - returns the population covariance of a set of number pairs.
* COVAR_SAMP - returns the sample covariance of a set of number pairs.

System Administration Guide: Volume 2 55

Using OLAP

The covariance functions eliminate all pairs where expressionl or expression2 has a null
value.

You can use the covariance functions either as windowing aggregate functions (where you
specify a window function type over a window name or specification) or as simple aggregate
functions with no OVER clause.

Cumulative distribution
The SQL/OLAP function that calculates the relative position of a single value among a group
of rows is CUME_DIST.

The window specification must contain an ORDER_BY clause.

Composite sort keys are not allowed in the CUME_DIST function.

Regression analysis

The regression analysis functions calculate the relationship between an independent variable
and a dependent variable using a linear regression equation. The SQL/OLAP linear regression
functions include:

e REGR_AVGX — computes the average of the independent variable of the regression line.

* REGR_AVGY - computes the average of the dependent variable of the regression line.

* REGR_COUNT - returns an integer representing the number of nonnull number pairs used
to fit the regression line.

e REGR_INTERCEPT — computes the y-intercept of the regression line that best fits the
dependent and independent variables.

e REGR_R2 - computes the coefficient of determination (the goodness-of-fir statistic) for
the regression line.

* REGR_SLOPE — computes the slope of the linear regression line fitted to nonnull pairs.

* REGR_SXX — returns the sum of squares of the independent expressions used in a linear
regression model. Use this function to evaluate the statistical validity of the regression
model.

e REGR_SXY —returns the sum of products of the dependent and independent variables. Use
this function to evaluate the statistical validity of the regression model.

e REGR_SYY —returns values that can evaluate the statistical validity of a regression model.

You can use the regression analysis functions either as windowing aggregate functions (where
you specify a window function type over a window name or specification) or as simple
aggregate functions with no OVER clause.

Weighted OLAP aggregates
The weighted OLAP aggregate functions calculate weighted moving averages:

e EXP_WEIGHTED_AVG - calculates an exponentially weighted moving average.
Weightings determine the relative importance of each quantity comprising the average.
Weights in EXP_WEIGHTED_AVG decrease exponentially. Exponential weighting applies

56

Sybase 1Q

Using OLAP

more weight to the most recent values and decreases the weight for older values, while still
applying some weight

e WEIGHTED_AVG - calculates a linearly weighted moving average where weights
decrease arithmetically over time. Weights decrease from the highest weight for the most
recent data points, down to zero for the oldest data point.

The window specification must contain an ORDER_BY clause.

Nonstandard database industry extensions
Non-ANSI SQL/OLAP aggregate function extensions used in the database industry include
FIRST_VALUE, MEDIAN, and LAST_VALUE.

* FIRST_VALUE - returns the first value from a set of values.
e MEDIAN - returns the median from an expression.
e LAST_VALUE - returns the last value from a set of values.

The FIRST_VALUE and LAST_VALUE functions require a window specification. You can use
the MEDIAN function either as windowing aggregate function (where you specify a window
function type over a window name or specification) or as a simple aggregate function with no
OVER clause.

See also

 Distribution Functions on page 59

* OLAP Benefits on page 22

* OLAP Evaluation on page 22

e Ranking Functions on page 48

» Windowing on page 37

» Windowing Aggregate Functions on page 52

e BNF Grammar for OLAP Functions on page 73

Interrow Functions
The interrow functions, LAG and LEAD, provide access to previous or subsequent values in a
data series, or to multiple rows in a table.

Interrow functions also partition simultaneously without a self-join. LAG provides access to a
row at a given physical offset prior to the CURRENT ROW in the table or partition. LEAD
provides access to a row at a given physical offset after the CURRENT ROW in the table or
partition.

LAG and LEAD syntax is identical. Both functions require an OVER (ORDER_BY) window
specification. For example:

LAG (value_expr) [, offset [, default]]) OVER ([PARTITIONBY w ndow
partition] ORDERBYWw ndow orderi ng)

and:

System Administration Guide: Volume 2 57

Using OLAP

LEAD (val ue_expr) [, offset [, default]]) OVER ([PARTITIONBY w ndow
partition] ORDERBYw ndow orderi ng)

The PARTITION BY clause in the OVER (ORDER_BY) clause is optional. The OVER
(ORDER_BY) clause cannot contain a window frame ROWS/RANGE specification.

value_expris a table column or expression that defines the offset data to return from the table.
You can define other functions in the value_expr, with the exception of analytic functions.

For both functions, specify the target row by entering a physical offset. The offsetvalue is the
number of rows above or below the current row. Enter a nonnegative numeric data type
(entering a negative value generates an error). If you enter 0, Sybase 1Q returns the current
row.

The optional defaultvalue defines the value to return if the offsetvalue goes beyond the scope
of the table. The default value of defaultis NULL. The data type of default must be implicitly
convertible to the data type of the value_exprvalue, or Sybase 1Q generates a conversion
error.

LAG example 1—The inter-row functions are useful in financial services applications that
perform calculations on data streams, such as stock transactions. This example uses the LAG
function to calculate the percentage change in the trading price of a particular stock. Consider
the following trading data from a fictional table called st ock_t r ades:

traded at synbol price
2009-07-13 06:07:12 SQ 15. 84
2009-07-13 06:07:13 TST 5.75
2009-07-13 06:07: 14 TST 5. 80
2009-07-13 06:07: 15 SQL 15. 86
2009-07-13 06:07:16 TST 5.90
2009-07-13 06:07: 17 SQ 15. 86

Note: The fictional st ock_t r ades table is not available in the i gdeno database.

The query partitions the trades by stock symbol, orders them by time of trade, and uses the
LAG function to calculate the percentage increase or decrease in trade price between the
current trade and the previous trade:

sel ect stock_synbol as ' Stock',
traded_at as 'Date/ Time of Trade',
trade_price as 'Price/Share',
cast ((((trade_price
- (lag(trade_price, 1)
over (partition by stock_synbol
order by traded_at)))
/ trade_price)
* 100.0) as nuneric(5, 2))
as '% Price Change vs Previous Price’
from stock_trades
order by 1, 2

58

Sybase 1Q

Using OLAP

The query returns these results:

St ock Dat e/ Ti me of Trade Price/ % Price Change_vs

synbol Shar e Previous Price
SQL 2009-07-13 06:07:12 15.84 NULL
SQL 2009-07-13 06:07:15 15.86 0.13
SQL 2009-07-13 06:07:17 15.86 0.00
TST 2009-07-13 06:07:13 5.75 NULL
TST 2009-07-13 06:07:14 5.80 0.87
TST 2009-07-13 06:07:16 5.90 1.72

The NULL result in the first and fourth output rows indicates that the LAG function is out of
scope for the first row in each of the two partitions. Since there is no previous row to compare
to, Sybase 1Q returns NULL as specified by the default variable.

Distribution Functions
SQL/OLAP defines several functions that deal with ordered sets.

The two inverse distribution functions are PERCENTILE_CONT and PERCENTILE_DISC.
These analytical functions take a percentile value as the function argument and operate on a
group of data specified in the WITHIN GROUP clause or operate on the entire data set.

These functions return one value per group. For PERCENTILE_DISC (discrete), the data type
of the results is the same as the data type of its ORDER BY item specified in the WITHIN
GROUP clause. For PERCENTILE_CONT (continuous), the data type of the results is either
numeric, if the ORDER BY item in the WITHIN GROUP clause is a numeric, or double, if the
ORDER BY item is an integer or floating point.

The inverse distribution analytical functions require a WITHIN GROUP (ORDER BY) clause.
For example:

PERCENTILE_CONT (expressionl)
WITHIN GROUP (ORDERBY expression2 [ASC | DESC |)

The value of expressionl must be a constant of numeric data type and range from 0 to 1
(inclusive). If the argument is NULL, then a “wrong argument for percentile” error is returned.
If the argument value is less than 0, or greater than 1, then a “data value out of range” error is
returned.

The ORDER BY clause, which must be present, specifies the expression on which the
percentile function is performed and the order in which the rows are sorted in each group. This
ORDERBY clause is used only within the WITHIN GROUP clause and is 7otan ORDER BY for
the SELECT statement.

The WITHIN GROUP clause distributes the query result into an ordered data set from which the
function calculates a result.

System Administration Guide: Volume 2 59

Using OLAP

The value expressionZis a sort specification that must be a single expression involving a
column reference. Multiple expressions are not allowed and no rank analytical functions, set
functions, or subqueries are allowed in this sort expression.

The ASC or DESC parameter specifies the ordering sequence as ascending or descending.
Ascending order is the default.

Inverse distribution analytical functions are allowed in a subquery, a HAVING clause, a view, or
a union. The inverse distribution functions can be used anywhere the simple nonanalytical
aggregate functions are used. The inverse distribution functions ignore the NULL value in the
data set.

PERCENTILE_CONT example—This example uses the PERCENTILE_CONT function to
determine the 10th percentile value for car sales in a region using the following data set:

sal es regi on deal er _nane
900 Nor t heast Bost on

800 Nor t heast Wor cest er
800 Nor t heast Provi dence
700 Nor t heast Lowel |

540 Nor t heast Nat i ck

500 Nor t heast New Haven
450 Nor t heast Hartford
800 Nor t hwest SF

600 Nor t hwest Seattle
500 Nor t hwest Port | and
400 Nor t hwest Dubl i n

500 Sout h Houst on
400 Sout h Austin

300 Sout h Dal | as

200 Sout h Dover

In the following example query, the SELECT statement contains the PERCENTILE_CONT
function:

SELECT regi on, PERCENTI LE_CONT(O0. 1)
W THI N GROUP (ORDER BY Product| D DESC)
FROM Vi ewSal esOr der sSal es GROUP BY regi on;

The result of the SELECT statement lists the 10th percentile value for car sales in a region:

regi on percentile_cont
Canada 601.0
Central 700.0
East ern 700.0
Sout h 700.0
West ern 700.0

PERCENTILE_DISC example—This example uses the PERCENTILE_DISC function to
determine the 10th percentile value for car sales in a region, using the following data set:

60

Sybase 1Q

Using OLAP

sal es regi on deal er _nane
900 Nor t heast Bost on

800 Nor t heast Wor cest er
800 Nor t heast Provi dence
700 Nor t heast Lowel |

540 Nor t heast Nat i ck

500 Nor t heast New Haven
450 Nor t heast Hartford
800 Nor t hwest SF

600 Nor t hwest Seattle
500 Nor t hwest Port | and
400 Nor t hwest Dubl i n

500 Sout h Houst on
400 Sout h Austin

300 Sout h Dal | as

200 Sout h Dover

In the following query, the SELECT statement contains the PERCENTILE_DISC function:

SELECT regi on, PERCENTILE DI SC(0.1) WTH N GROUP
(ORDER BY sal es DESC)
FROM car Sal es GROUP BY regi on;

The result of the SELECT statement lists the 10th percentile value for car sales in each region:

regi on percentile_cont
Nor t heast 900
Nor t hwest 800
Sout h 500

For more information about the distribution functions, see Reference. Building Blocks,
Tables, and Procedures > SQL Functions > PERCENTILE CONT function [Analytical]and
PERCENTILE_DISC function [Analytical].

See also

e OLAP Benefits on page 22

e OLAP Evaluation on page 22

e Ranking Functions on page 48

» Slatistical Aggregate Functions on page 54

e Windowing on page 37

o Windowing Aggregate Functions on page 52

e BNF Grammar for OLAP Functions on page 73

Numeric Functions

OLAP numeric functions supported by Sybase 1Q include CEILING (CEIL is an alias), EXP
(EXPONENTIAL is an alias), FLOOR, LN (LOG is an alias), SQRT, and WIDTH_BUCKET.

<nuneric value function> :: =
<natural |ogarithnr
| <exponential function>

System Administration Guide: Volume 2 61

Using OLAP

<power function>
<square root>

<fl oor function>
<cei ling function>

<wi dt h bucket function>

Table 4. Numeric value functions and syntax

Numeric value function

Syntax

Natural logarithm

LN (numeric-expression)

Exponential function

EXP (numeric-expression)

Power function

POWER (numeric-expressionl, numeric-expressionZ)

Square root

SQRT (numeric-expression)

Floor function

FLOOR (numeric-expression)

Ceiling function

CEILING (numeric-expression)

Width bucket function

WIDTH_BUCKET (expression, min_value, max_value,

num_buckets)

The semantics of the numeric value functions are:

LN - returns the natural logarithm of the argument value. Raises an error condition if the
argument value is 0 or negative. LN is a synonym for LOG.

EXP —returns the value computed by raising the value of e(the base of natural logarithms)
to the power specified by the value of the argument.

POWER - returns the value computed by raising the value of the first argument to the
power specified by the value of the second argument. If the first argument is 0 and the
second is O, returns one. If the firstargument is 0 and the second is positive, returns 0. If the
first argument is 0 and the second argument is negative, raises an exception. If the first
argument is negative and the second is not an integer, raises an exception.

SQRT —returns the square root of the argument value, defined by syntax transformation to
“POWER (expression, 0.5).”

FLOOR - returns the integer value nearest to positive infinity that is not greater than the
value of the argument.

CEILING - returns the integer value nearest to negative infinity that is not less than the
value of the argument. CEIL is a synonym for CEILING.

WIDTH_BUCKET function

The WIDTH_BUCKET function is somewhat more complicated than the other numeric value
functions. It accepts four arguments: “live value,” two range boundaries, and the number of
equal-sized (or as nearly so as possible) partitions into which the range indicated by the
boundaries is to be divided. WIDTH_BUCKET returns a number indicating the partition into
which the live value should be placed, based on its value as a percentage of the difference

62

Sybase 1Q

Using OLAP

between the higher range boundary and the lower boundary. The first partition is partition
number one.

To avoid errors when the live value is outside the range of boundaries, live values that are less
than the smaller range boundary are placed into an additional first bucket, bucket zero, and live
values that are greater than the larger range boundary are placed into an additional last bucket,
bucket N+1.

0 1 2 3 4 5 o |wec C 4

T
WBB2

For example, WIDTH_BUCKET (14, 5, 30, 5) returns 2 because:

* (30-5)/51is 5, so the range is divided into 5 partitions, each 5 units wide.

« Thefirst bucket represents values from 0.00% to 19.999 ...%; the second represents values
from 20.00% to 39.999 ...%; and the fifth bucket represents values from 80.00% to
100.00%.

« Thebucket chosen is determined by computing (5*(14-5)/(30-5)) + 1 — one more than the
number of buckets times the ratio of the offset of the specified value from the lower value to
the range of possible values, which is (5*0/25) + 1, which is 2.8. This value is the range of
values for bucket number 2 (2.0 through 2.999 ...), so bucket number 2 is chosen.

WIDTH_BUCKET example

The following example creates a ten-bucket histogram on the credi t _I i mi t column for
customers in Massachusetts in the sample table and returns the bucket number (“Credit
Group”) for each customer. Customers with credit limits greater than the maximum value are
assigned to the overflow bucket, 11:

Note: This example is for illustration purposes only and was not generated using the igdemo
database.

SELECT custoner_id, cust_last_nanme, credit_lint,
W DTH BUCKET(credit_limt, 100, 5000, 10) "Credit
G oup”
FROM custonmers WHERE territory = ' MA
ORDER BY "Credit G oup";

CUSTOVER | D CUST_LAST NAME CREDIT_LIMT Credit G oup

825 Dr eyf uss 500 1
826 Bar ki n 500 1
853 Pal i n 400 1
827 Si egel 500 1
843 Cat es 700 2

System Administration Guide: Volume 2 63

Using OLAP

844 Jul i us 700 2
835 East wood 1200 3
840 Elliott 1400 3
842 Stern 1400 3
841 Boyer 1400 3
837 St ant on 1200 3
836 Ber enger 1200 3
848 a nos 1800 4
847 Streep 5000 11

When the bounds are reversed, the buckets are open-closed intervals. For example:
WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket number 1 is (4000, 5000],
bucket number 2 is (3000, 4000], and bucket number 5 is (0, 1000]. The overflow bucket is
numbered 0 (5000, +infinity), and the underflow bucket is numbered 6 (-infinity, 0].

See also

Reference: Building Blocks, Tables, and Procedures > SQL Functions > BIT LENGTH
function [String], EXP function [Numeric], FLOOR function [Numeric], POWER function
[Numeric], SQRT function [Numeric], and WIDTH_BUCKET function [Numerical].

OLAP Rules and Restrictions

The following provides an overview for the rules and restrictions that govern OLAP
functionality.

OLAP functions can be used
Sybase 1Q provides SQL OLAP functions with rules, restrictions and limitations.

* Inthe SELECT list

e Inexpressions

* As arguments of scalar functions

* Inthefinal ORDER BY clause (by using aliases or positional references to OLAP functions
elsewhere in the query)

OLAP functions cannot be used
OLAP functions cannotbe used under these conditions:

* In subqueries.

 In the search condition of a WHERE clause.

« Asarguments for SET (aggregate) functions. For example, the following expression is
invalid:
SUM RANK() OVER(ORDER BY dol | ars))

« Awindowed aggregate cannot be an argument to argument to another unless the inner one
was generated within a view or derived table. The same applies to ranking functions.

» Window aggregate and RANK functions are not allowed in a HAVING clause.

64

Sybase 1Q

Using OLAP

* Window aggregate functions should not specify DISTINCT.

« Window function cannot be nested inside of other window functions.
» Inverse distribution functions are not supported with the OVER clause.
e Outer references are not allowed in a window definition clause.

* Correlation references are allowed within OLAP functions, but correlated column aliases
are not allowed.

Columns referenced by an OLAP function must be grouping columns or aggregate functions
from the same query block in which the OLAP function and the GROUP BY clause appear.
OLAP processing occurs after the grouping and aggregation operations and before the final
ORDER BY clause is applied; therefore, it must be possible to derive the OLAP expressions
from those intermediate results. If there is no GROUP BY clause in a query block, OLAP
functions can reference other columns in the select list.

Sybase IQ limitations
The Sybase 1Q limitations with SQL OLAP functions are:

» User-defined functions in a window frame definition are not supported.

» The constants used in a window frame definition must be unsigned numeric value and
should not exceed the value of maximum Bl G | NT 2631,

* Window aggregate functions and RANK functions cannot be used in DELETE and UPDATE
statements.

* Window aggregate and RANK functions are not allowed in subqueries.

e CUME_DIST is currently not supported.

« Grouping sets are currently not supported.

« Correlation and linear regression functions are currently not supported.

Additional OLAP Examples

This section provides additional examples using the OLAP functions.

Both start and end points of a window may vary as intermediate result rows are processed. For
example, computing a cumulative sum involves a window with the start point fixed at the first
row of each partition and an end point that slides along the rows of the partition to include the
current row.

As another example, both the start and end points of the window can be variable yet define a
constant number of rows for the entire partition. Such a construction lets users compose
queries that compute moving averages; for example, a SQL query that returns a moving three-
day average stock price.

System Administration Guide: Volume 2 65

Using OLAP

Example: Window Functions in Queries

This query lists all products shipped in July and August 2005 and the cumulative shipped
quantity by shipping date:
SELECT p.id, p.description,
SUM s. quantity) OVER (PARTI TI ON BY producti d ORDER BYs. shi pdate rows
bet ween unbounded precedi ng andcurrent

JO N Products p on(s.ProductlD =p.id) WHERE s. Shi pDat e BETWEEN
' 2001- 05-01' and' 2001-08-31' AND s.quantity > 400RDER BY p. i d;

The results from the above query:
I D

description quantity
302 Crew Neck 60
400 Cotton Cap 60
400 Cotton Cap 48
401 Wbol cap 48
401 Wbol cap 60
401 Wbol cap 48
500 doth Visor 48
501 Plastic Visor 60
501 Plastic Visor 48
501 Plastic Visor 48
501 Plastic Visor 60
601 Zi pped Sweatshirt 60
700 Cotton Shorts 72
700 Cotton Shorts 48

s.quantity,

ship_date
2001-07-02
2001- 05- 26
2001-07- 05
2001- 06- 02
2001- 06- 30
2001-07-09
2001- 06- 21
2001- 05- 03
2001- 05- 18
2001- 05- 25
2001-07- 07
2001-07-19
2001- 05- 18
2001-05- 31

s. shi pdat e,

sum quantity

row) FROM Sal esOrderltens s

In this example, the computation of the SUM window function occurs after the join of the two
tables and the application of the query’s WHERE clause. The query uses an inline window
specification that specifies that the input rows from the join is processed as follows:

1
2.
3.

Partition (group) the input rows based on the value of the pr od_i d attribute.
Within each partition, sort the rows by the shi p_dat e attribute.

For each row in the partition, evaluate the SUM() function over the quantity attribute, using
a sliding window consisting of the first (sorted) row of each partition, up to and including

the current row.

An alternative construction for the query is to specify the window separate from the functions
that use it. This is useful when more than one window function is specified that are based on
the same window. In the case of the query using window functions, a construction that uses the

window clause (declaring a window identified by cumulative) is as follows:

SELECT p.id, p.description,
OVER(cunul ati ve ROA5 BETVEEN UNBOUNDED PRECEDI NG and CURRENT ROW)
curul ative FROM Sal esOrderltems s JON Products p On (s.ProductlD

=p. i d) WHERE s. shi pdat e BETWEEN *‘ 2001- 07- 01’

s.quantity,

s. shi pdat e,

SUM s. quanti ty)

and ‘ 2001-08- 31" W ndow

cunul ative as (PARTI TI ON BY s. producti d ORDER BY s. shi pdat e) ORDER BY
p.id;

66

Sybase 1Q

Using OLAP

The window clause appears before the ORDER BY clause in the query specification. When
using a window clause, the following restrictions apply:

» The inline window specification cannot contain a PARTITION BY clause.
« The window specified within the window clause cannot contain a window frame clause.

<W NDOW FRAME CLAUSE> : : =
<W NDOW FRAME UNI T>
<W NDOW FRANME EXTENT>
 Either the inline window specification, or the window specification specified in the
window clause, can contain a window order clause, but not both.

<W NDOW CRDER CLAUSE> ::= <ORDER SPECI FI CATI ON>

Example: Window with multiple functions
This query defines a single (named) window and compute multiple function results over it:

SELECT p.ID, p.Description, s.quantity, s.ShipDate, SUMs. Quantity)
OVER ws1l, M N(s.quantity) OVER ws1FROM Sal esOrderltens s JON
Products p ON (s.ProductlD =p.1 D) WHERE s. Shi pDat e BETWEEN

' 2000- 01- 09" AND 2000-01-17" AND s. Quantity > 40 wi ndow ws1l

AS(PARTI TI ON BY productid ORDER BY shi pdate rowsbetween unbounded
precedi ng and current row) ORDER BY p.i d;

The results from the above query:

ID Description quantity shi pDat e SUM MN
400 Cotton Cap 48 2000-01-09 48 48
401 Wbol cap 48 2000-01-09 48 48
500 Cloth Visor 60 2000-01-14 60 60
500 Cloth Visor 60 2000-01-15 120 60
501 Plastic Visor 60 2000-01-14 60 60

Example: Calculate cumulative sum

This query calculates a cumulative sum of salary per department and ORDER BY
start _date.

SELECT dept _id, start_date, nane, salary,
SUM sal ary) OVER (PARTI TI ON BY dept _id ORDER BY
start _date ROANS BETWEEN UNBOUNDED PRECEDI NG AND
CURRENT ROW

FROM enpl

ORDER BY dept _id, start_date;

The results from the above query:

Departnent| D start_date nane sal ary sum
(sal ary)
100 1996- 01- 01 Anna
18000 18000
100 1997-01-01 M ke

System Administration Guide: Volume 2 67

Using OLAP

28000
100
100
100
100
200
200
200
200
300
300
300

46000

1998-01-01
1998-02-01
1998-03-12
1998-12-01
1998-01-01
1998-01- 20
1998-02-01
1999-01-10
1998-03-12
1998-12-01
1999-01-10

Example: Calculate moving average

Scot t

Ant oni a

Adam

Any
Jef f
Tim
Jim
Tom
Sandy
Li sa
Pet er

29000
22000
25000
18000
18000
29000
22000
28000
55000
38000
48000

75000
97000

122000
140000

18000
47000
69000
97000
55000
93000
141000

This query generates the moving average of sales in three consecutive months. The size of the
window frame is three rows: two preceding rows plus the current row. The window slides from
the beginning to the end of the partition.

SELECT prod_id, nonth_num sales,
(PARTI TI ON BY prod_i d ORDER BY nont h_num ROAB

BETWEEN 2 PRECEDI NG AND CURRENT ROW

FROM sal e WHERE rep_i d

1

ORDER BY prod_id, nmonth_num

The results from the above query:
prod_id

P WONRFRPOUORARWNRFRPOORWNE

Example: ORDER BY results

avg(sal es)

AVGE sal es) OVER

In this example, the top ORDER BY clause of a query is applied to the final results of awindow
function. The ORDER BY in awindow clause is applied to the input data of a window function.

SELECT prod_id, nonth_num sales,
(PARTI TION BY prod_i d ORDER BY nont h_num ROAS

BETWEEN 2 PRECEDI NG AND CURRENT ROW

AVG sal es) OVER

68

Sybase 1Q

Using OLAP

FROM sal e WHERE rep_id =1
ORDER BY prod_i d desc, nonth_num

The results from the above query:

prod_id rmonth_num sal es avg(sal es)
30 1 10 10. 00
30 2 11 10. 50
30 8 12 11. 00
30 4 1 8. 00
20 1 20 20. 00
20 2 30 25.00
20 8 25 25.00
20 4 30 28. 33
20 5 31 28. 66
20 6 20 27.00
10 1 100 100. 00
10 2 120 110. 00
10 3 100 106. 66
10 4 130 116. 66
10 5 120 116. 66
10 6 110 120. 00

Example: Multiple aggregate functions in a query
This example calculates aggregate values against different windows in a query.

SELECT prod_id, nonth_num sales, AV sal es) OVER
(W51 ROWS BETWEEN 1 PRECEDI NG AND 1 FOLLON NG AS
CAvg, SUM sal es) OVER(WS1 ROANS BETWEEN UNBOUNDED
PRECEDI NG AND CURRENT ROW AS CSum

FROM sal e WHERE rep_id = 1 W NDOW W51 AS (PARTI TI ON BY
prod_id

ORDER BY nont h_num)

ORDER BY prod_id, nonth_num

The results from the above query:

prod_id rmonth_num sal es CAvg CSum
10 1 100 110.00 100
10 2 120 106. 66 220
10 3 100 116.66 320
10 4 130 116.66 450
10 5 120 120.00 570
10 6 110 115.00 680
20 1 20 25.00 20
20 2 30 25.00 50
20 3 25 28.33 75
20 4 30 28. 66 105
20 5 31 27.00 136
20 6 20 25.50 156
30 1 10 10. 50 10
30 2 11 11. 00 21

System Administration Guide: Volume 2 69

Using OLAP

30 3 12 8.00 33
30 4 1 6.50 34

Example: Window frame comparing ROWS and RANGE

This query compares ROWS and RANGE. The data contain duplicate ROWS per the ORDER
BY clause.

SELECT prod_id, nonth_num sales, SUMsal es) OVER
(ws1l RANGE BETWEEN 2 PRECEDI NG AND CURRENT ROW AS
Range_sum SUM sal es) OVER
(wsl ROWNS BETWEEN 2 PRECEDI NG AND CURRENT ROW AS
Row_sum
FROM sal e wi ndow ws1 AS (PARTI TI ON BY prod_id ORDER BY
nmont h_num
ORDER BY prod_id, nonth_num

The results from the above query:

prod_id nonth_num sales Range_sum Row_sum

10 1 100 250 100
10 1 150 250 250
10 2 120 370 370
10 3 100 470 370
10 4 130 350 350
10) 120 381 350
10 5 31 381 281
10 6 110 391 261
20 1 20 20 20
20 2 30 50 50
20 3 25 75 75
20 4 30 85 85
20 5 31 86 86
20 6 20 81 81
30 1 10 10 10
30 2 11 21 21
30 3 12 33 33
30 4 1 25 24
30 4 1 25 14

Example: Window frame excludes current row

In this example, you can define the window frame to exclude the current row. The query
calculates the sum over four rows, excluding the current row.

SELECT prod_id, nonth_num sales, sun(sales) OVER
(PARTI TI ON BY prod_i d ORDER BY nont h_num RANGE
BETWEEN 6 PRECEDI NG AND 2 PRECEDI NG

FROM sal e

ORDER BY prod_id, nonth_num

The results from the above query:

prod_id nont h_num sal es sun(sal es)

70 Sybase 1Q

Using OLAP

10 1 100 (NULL)
10 1 150 (NULL)
10 2 120 (NULL)
10 3 100 250
10 4 130 370
10 5 120 470
10 5 31 470
10 6 110 600
20 1 20 (NULL)
20 2 30 (NULL)
20 3 25 20
20 4 30 50
20 5 31 75
20 6 20 105
30 1 10 (NULL)
30 2 11 (NULL)
30 3 12 10
30 4 1 21
30 4 1 21

Example: Window frame for RANGE

This query illustrates the RANGE window frame. The number of rows used in the summation
is variable.

SELECT prod_id, nonth_num sales, SUMsal es) OVER
(PARTI TION BY prod_id ORDER BY nont h_num RANGE
BETWEEN 1 FOLLOW NG AND 3 FOLLOW NG

FROM sal e

ORDER BY prod_id, nonth_num

The results from the above query:

prod_id nmont h_num sal es sun(sal es)
10 1 100 350
10 1 150 350
10 2 120 381
10 3 100 391
10 4 130 261
10 5 120 110
10 5 31 110
10 6 110 ('NULL)
20 1 20 85
20 2 30 86
20 3 25 81
20 4 30 51
20 5 31 20
20 6 20 ('NULL)
30 1 10 25
30 2 11 14
30 3 12 2
30 4 1 ('NULL)
30 4 1 ('NULL)

System Administration Guide: Volume 2 71

Using OLAP

Example: Unbounded preceding and unbounded following

In this example, the window frame can include all rows in the partition. The query calculates

max(sales) sale over the entire partition (no duplicate rows in a month).

SELECT prod_id, nonth_num sales, SUMsal es) OVER
(PARTI TI ON BY prod_i d ORDER BY nont h_num ROAB

BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOW NG

FROM sal e WHERE rep_id = 1
ORDER BY prod_id, nmonth_num

The results from the above query:

prod_id nont h_num sal es
10 1 100
10 2 120
10 3 100
10 4 130
10 5 120
10 6 110
20 1 20
20 2 30
20 3 25
20 4 30
20 5 31
20 6 20
30 1 10
30 2 11
30 3 12
30 4 1

The query in this example is equivalent to:
SELECT prod_id, nonth_num sales,

(PARTI TI ON BY prod_id)
FROM sal e WHERE rep_id =1
ORDER BY prod_id, nonth_num

SUM sal es)

SUM sal es) OVER

Example: Default window frame for RANGE

This query illustrates the default window frame for RANGE:

SELECT prod_id, nmonth_num sales,

SUM sal es) OVER

(PARTI TI ON BY prod_i d ORDER BY nont h_num)

FROM sal e
ORDER BY prod_id, nonth_num

The results from the above query:

prod_id nmont h_num sal es
10 1 100
10 1 150
10 2 120
10 3 100

SUM sal es)

72

Sybase 1Q

Using OLAP

10 4 130 600
10 5 120 751
10 5 31 751
10 6 110 861
20 1 20 20
20 2 30 50
20 3 25 75
20 4 30 105
20 5 31 136
20 6 20 156
30 1 10 10
30 2 11 21
30 3 12 33
30 4 1 35
30 4 1 35

The query in this example is equivalent to:

SELECT prod_id, nonth_num sales, SUMsal es) OVER
(PARTI TI ON BY prod_i d ORDER BY nont h_num RANGCE
BETWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW

FROM sal e

ORDER BY prod_id, nonth_num

BNF Grammar for OLAP Functions

The Backus-Naur Form grammar outlines the specific syntactic support for the various ANSI
SQL analytic functions, many of which are implemented in Sybase 1Q.

Grammar rule 1

<SELECT LI ST EXPRESSI ON> :: =
<EXPRESS| ON>
| <GROUP BY EXPRESSI O\>
| <AGGREGATE FUNCTI ON>
| <GROUPI NG FUNCTI ON>
| <TABLE COLUWN>
| <W NDOWED TABLE FUNCTI ON>

Grammar rule 2

<QUERY SPECI FI CATI ON> ;@ =
<FROM CLAUSE>
[<WHERE CLAUSE>]
[<GROUP BY CLAUSE>]
[<HAVI NG CLAUSE>]
[<W NDOW CLAUSE>]
[<ORDER BY CLAUSE>]

Grammar rule 3
<ORDER BY CLAUSE> :: = <ORDER SPECI FI CATI O\>

System Administration Guide: Volume 2 73

Using OLAP

Grammar rule 4

<GROUPI NG FUNCTI ON> @@ =
GROUPI NG <LEFT PAREN> <GROUP BY EXPRESSI ON>
<RI GHT PAREN>

Grammar rule 5

<W NDOWED TABLE FUNCTI ON> :: =
<W NDOVED TABLE FUNCTI ON TYPE> OVER <W NDOW NAME OR
SPECI FI CATI ON>

Grammar rule 6

<W NDOWED TABLE FUNCTI ON TYPE> :: =
<RANK FUNCTI ON TYPE> <LEFT PAREN> <RI GHT PAREN>
| ROW NUMBER <LEFT PAREN> <RI GHT PAREN>
| <W NDOW AGCREGATE FUNCTI ON>

Grammar rule 7

<RANK FUNCTI ON TYPE> :: =
RANK | DENSE RANK | PERCENT RANK | CUVE_DI ST

Grammar rule 8

<W NDOW AGCREGATE FUNCTI ON> @@ =
<SI MPLE W NDOW AGGREGATE FUNCTI ON>
| <STATI STI CAL AGGREGATE FUNCTI ON>

Grammar rule 9

<AGGREGATE FUNCTION> :: =
<DI STI NCT AGGREGATE FUNCTI ON>
| <SI MPLE AGCREGATE FUNCTI ON>
| <STATI STI CAL AGGREGATE FUNCTI ON>

Grammar rule 10

<DI STI NCT AGGREGATE FUNCTI ON> :: =
<BASI C AGGREGATE FUNCTI ON TYPE> <LEFT PAREN>
<Dl STI NCT> <EXPRESS| ON> <RI GHT PAREN>
| LIST <LEFT PAREN> DI STI NCT <EXPRESSI O\>
[<COWRA> <DELIM TER>]
[<ORDER SPECI FI CATI ON> | <RI GHT PAREN>

Grammar rule 11

<BASI C AGGREGATE FUNCTI ON TYPE> : : =
SUM| MAX | MN | AVG | COUNT

Grammar rule 12

<SI MPLE AGGREGATE FUNCTI ON> @ : =
<SI MPLE AGCREGATE FUNCTI ON TYPE> <LEFT PAREN>
<EXPRESSI ON> <RI GHT PAREN>

74 Sybase 1Q

Using OLAP

| LIST <LEFT PAREN> <EXPRESSI ON> [<COMVA>
<DELI M TER>]
[<ORDER SPECI FI CATI ON>] <RI GHT PAREN>

Grammar rule 13

<SI MPLE AGGREGATE FUNCTI ON TYPE> ::= <SI MPLE W NDOW AGGREGATE
FUNCTI ON TYPE>

Grammar rule 14

<SI MPLE W NDOW AGGREGATE FUNCTI ON> @@ =
<SI MPLE W NDOW AGGREGATE FUNCTI ON TYPE> <LEFT PAREN>
<EXPRESSI ON> <RI GHT PAREN>

| GROUPI NG FUNCTI ON

Grammar rule 15

<SI MPLE W NDOW AGGREGATE FUNCTI ON TYPE> : : =
<BASI C AGGREGATE FUNCTI ON TYPE>
| STDDEV | STDDEV_POP | STDDEV_SAWP
| VAR ANCE | VARI ANCE PCP | VARI ANCE SAMWP

Grammar rule 16

<STATI STI CAL AGGREGATE FUNCTI ON> : : =
<STATI STI CAL AGGREGATE FUNCTI ON TYPE> <LEFT PAREN>
<DEPENDENT EXPRESS| ON> <COVVA> <| NDEPENDENT
EXPRESSI ON> <RI GHT PAREN>

Grammar rule 17

<STATI STI CAL AGGREGATE FUNCTI ON TYPE> : : =
CORR | COVAR POP | COVAR SAWP | REGR R2 |
REGR | NTERCEPT | REGR COUNT | REGR SLOPE |
REGR SXX | REGR SXY | REGR SYY | REGR AVGY |
REGR_AVGX

Grammar rule 18

<W NDOW NAME OR SPECI FI CATION> @ : =
<W NDOW NAME> | <I N-LI NE W NDOW SPECI FI CATI ON>

Grammar rule 19
<W NDOW NAME> :: = <I| DENTI FI ER>

Grammar rule 20
<|I N- LI NE W NDOW SPECI FI CATI ON> : : = <W NDOW SPECI FI CATI ON>

Grammar rule 21
<W NDOW CLAUSE> :: = <W NDOW W NDOW DEFI NI TI ON LI ST>

System Administration Guide: Volume 2 75

Using OLAP

Grammar rule 22

<W NDOW DEFI NI TI ON LI ST> :: =
<W NDOW DEFI NI TION> [{ <COWRA> <W NDOW DEFI NI TI ON>

P]

Grammar rule 23

<W NDOW DEFI NI TI ON> @ : =
<NEW W NDOW NAME> AS <W NDOW SPECI FI CATI ON>

Grammar rule 24
<NEW W NDOW NAME> : : = <W NDOW NAME>

Grammar rule 25

<W NDOW SPECI FI CATI ON> : : =
<LEFT PAREN> <W NDOW SPECI FI CATI ON> <DETAI LS> <RI GHT
PAREN>

Grammar rule 26

<W NDOW SPECI FI CATI ON DETAI LS> : : =
[<EXI STI NG W NDOW NAME>]
[<W NDOW PARTI TI ON CLAUSE>]
[<W NDOW ORDER CLAUSE>]

[<W NDOW FRAVE CLAUSE>]

Grammar rule 27
<EXI STI NG W NDOW NAME> : : = <W NDOW NAME>

Grammar rule 28

<W NDOW PARTI TI ON CLAUSE> :: =
PARTI TI ON BY <W NDOW PARTI TI ON EXPRESSI ON LI ST>

Grammar rule 29

<W NDOW PARTI TI ON EXPRESS| ON LI ST> :: =
<W NDOW PARTI TI ON EXPRESSI ON>
[{ <COVMA> <W NDOW PARTI TI ON EXPRESSION> } . . .]

Grammar rule 30
<W NDOW PARTI TI ON EXPRESSI ON> : : = <EXPRESSI ON>

Grammar rule 31
<W NDOW ORDER CLAUSE> :: = <ORDER SPECI FI CATI O\>

76 Sybase 1Q

Using OLAP

Grammar rule 32

<W NDOW FRAME CLAUSE> :: =
<W NDOW FRAME UNI T>
<W NDOW FRAME EXTENT>

Grammar rule 33
<W NDOW FRAME UNI T> ::= ROAS5 | RANGE

Grammar rule 34

<W NDOW FRAME EXTENT> ::= <W NDOW FRAME START> | <W NDOW FRAME
BETWEEN>

Grammar rule 35

<W NDOW FRAME START> : : =
UNBOUNDED PRECEDI NG
| <W NDOW FRAMVE PRECEDI NG>
| CURRENT ROW

Grammar rule 36

<W NDOW FRAME PRECEDI NG> :: = <UNSI GNED VALUE SPECI FI CATI ON>
PRECEDI NG

Grammar rule 37

<W NDOW FRAME BETVEEN> :: =
BETWEEN <W NDOW FRAME BOUND 1> AND <W NDOW FRAME
BOUND 2>

Grammar rule 38
<W NDOW FRAME BOUND 1> ::= <W NDOW FRANME BOUND>

Grammar rule 39
<W NDOW FRAME BOUND 2> ::= <W NDOW FRAME BOUND>

Grammar rule 40

<W NDOW FRAME BOUND> :: =
<W NDOW FRAME START>
| UNBOUNDED FOLLOW NG
| <W NDOW FRAME FOLLOW NG

Grammar rule 41

<W NDOW FRAME FOLLOW NG> :: = <UNSI GNED VALUE SPECI FI CATI ON>
FOLLOW NG

Grammar rule 42
<GROUP BY EXPRESSI ON> :: = <EXPRESSI O\>

System Administration Guide: Volume 2 77

Using OLAP

Grammar rule 43

<SI MPLE GROUP BY TERWM> :: =
<GROUP BY EXPRESSI ON>
| <LEFT PAREN> <GROUP BY EXPRESSI ON> <RI GHT PAREN>
| <LEFT PAREN> <RI GHT PAREN>

Grammar rule 44

<SI MPLE GROUP BY TERM LI ST> :: =
<SI MPLE GROUP BY TERW> [{ <COMVA> <S| MPLE GROUP BY
TERV> } . . .]

Grammar rule 45

<COVPCSI TE GROUP BY TERW> :: =
<LEFT PAREN> <S| MPLE GROUP BY TERM>
[{ <COMWA> <SI MPLE GROUP BY TERWM> } . . .]
<RI GHT PAREN>

Grammar rule 46
<ROLLUP TERM> ::= ROLLUP <COWOSI TE GROUP BY TERW

Grammar rule 47
<CUBE TERM> ::= CUBE <COWGCSI TE GROUP BY TERW-

Grammar rule 48

<GROUP BY TERW> :: =
<SI MPLE CGROUP BY TERM>
| <COwWPCSI TE GROUP BY TERM>
| <ROLLUP TERM>
| <CUBE TERM>

Grammar rule 49

<GROUP BY TERM LI ST> :: =
<GROUP BY TERW> [{ <COWA> <GROUP BY TERW> } ...]

Grammar rule 50
<GROUP BY CLAUSE> ::= GROUP BY <GROUPI NG SPECI FI CATI ON>

Grammar rule 51

<GROUPI NG SPEC! FI CATION> : @ =
<CGROUP BY TERM LI ST>
| <SI MPLE GROUP BY TERM LI ST> W TH RCOLLUP
| <SI MPLE GROUP BY TERM LI ST> W TH CUBE
| <GROUPI NG SETS SPECI FI CATI ON>

78

Sybase 1Q

Using OLAP

Grammar rule 52

<GROUPI NG SETS SPECI FI CATION> :: =
GROUPI NG SETS <LEFT PAREN> <GROUP BY TERM LI ST>
<RI GHT PAREN>

Grammar rule 53

<ORDER SPECI FI CATI ON> :: = ORDER BY <SORT SPECI FI CATI ON LI ST>
<SCORT SPECI FI CATI ON LI ST> ::= <SORT SPECI FI CATI ON>
<COWA> <SORT SPECI FI CATION> } . . .]
<SCORT SPECI FI CATI ON> :: = <SORT KEY>
[<ORDERI NG SPECI FI CATION>] [<NULL ORDERI NG]
<SORT KEY> ::= <VALUE EXPRESSI O\>
<ORDERI NG SPECI FI CATI ON> :: = ASC | DESC
<NULL ORDERI NG> : = NULLS FI RST | NULLS LAST

See also

 Distribution Functions on page 59

* OLAP Benefits on page 22

* OLAP Evaluation on page 22

e Ranking Functions on page 48

» Slatistical Aggregate Functions on page 54

» Windowing on page 37

« Windowing Aggregate Functions on page 52

System Administration Guide: Volume 2 79

Using OLAP

80 Sybase 1Q

Sybase IQ as a Data Server

Sybase IQ as a Data Server

Sybase 1Q supports client application connections through either ODBC or JDBC. This
chapter describes how to use Sybase 1Q as a data server for client applications.

With certain limitations, Sybase 1Q may also appear to certain client applications as an Open
Server.This chapter also briefly describes the restrictions for creating and running these
applications.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data
Access APIs > Sybase Open Client APl > Open Client architecture.

The facilities described in this chapter do not provide remote data access for 1Q users on
Windows and Sun Solaris systems. Remote data access is provided by Component Integration
Services (CIS), the core interoperability feature of OmniConnect™.

Client/Server Interfaces to Sybase I1Q
To simplify, use a Sybase application or a third-party client application with Sybase 1Q.

An understanding of how these pieces fit together may be helpful for configuring your
database and setting up applications. This section explains how the pieces fit together. For
more details about third-party client applications, see the /nstallation and Configuration
Guide.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Open Clients, Open Servers, and TDS.

Configuring 1Q Servers with igdsedit

Sybase 1Q can communicate with other Adaptive Servers, Open Server applications, and
client software on the network.

Clients can talk to one or more servers, and servers can communicate with other servers via
remote procedure calls. In order for products to interact with one another, each needs to know
where the others reside on the network. This network service information is stored in the
interfaces file.

Note: Sybase 1Q provides versions of Open Client utilities that have limited functionality to
enable INSERT...LOCATION, including:

e iqgisql

e igdsedit

* igdscp (UNIX only)
 igocscfg (Windows only)

System Administration Guide: Volume 2 81

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-openclient-secta-3841059.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-openclient-secta-3841059.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/open-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/open-tds.html

Sybase IQ as a Data Server

The Interfaces File
When you use an Open Client™ program to connect to a database server, the program looks up
the server name in the interfaces file and then connects to the server using the address.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > The interfaces
file.

igdsedit Database Administration Utility
The igdsedit utility allows you to configure the interfaces file (interfaces or SQL.ini).

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Using the DSEdit
utility.

Starting igdsedit

On Windows, the igdsedit executable is in the ¥SYBASE% | Q 15_3\ bi n32 or “SYBASE
% 1 Q 15_3\ bi n64 directories, which is automatically added to your path during
installation.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Starting DSEdit.

Opening a Directory Services Session
You can add, modify, or delete entries for servers, including Sybase 1Q servers in the Select
Directory Service window.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Opening a directory
services session.

Adding a Server Entry
The server entry appears in the Server field. To specify the attributes of the server, you must
modify the entry.

The server name entered here does not need to match the name provided on the Sybase 1Q
command line. The server address, not the server name, is used to identify and locate the
server.

The server name field is purely an identifier for Open Client. For Sybase 1Q, if the server has
more than one database loaded, the IQDSEDIT server name entry identifies which database to
use.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Adding a server
entry.

82

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/interfaces-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/interfaces-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/interfaces-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/using-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/using-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/using-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/opening-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/opening-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/opening-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-dsedit-configuring-tds.html

Sybase IQ as a Data Server

Adding or Changing a Server Address
Once you have entered a Server Name, you need to modify the Server Address to complete the
interfaces file entry.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Adding or changing
the server address.

Port number
The port number you enter must match the port specified on the Sybase 1Q database server
command line. The default port number for the Sybase 1Q server is 2638.

The following are valid server address entries:

el ora, 2638
123. 85. 234. 029, 2638

See also
» Slarting the Database Server as an Open Serveron page 85

Verifying a Server Address
On Windows, you can verify your network connection by using the Ping server command
from the Server Object menu.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Verifying the server
address.

Renaming a Server Entry
You can rename server entries from the dsedi t session window.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Renaming a server
entry.

Deleting Server Entries
You can delete server entries from the dsedi t session window.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Configuring Open Servers > Deleting server
entries.

System Administration Guide: Volume 2 83

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/address-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/address-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/address-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/verifying-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/verifying-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/verifying-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/renaming-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/renaming-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/renaming-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/deleting-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/deleting-dsedit-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/deleting-dsedit-configuring-tds.html

Sybase IQ as a Data Server

Sybase Applications and Sybase 1Q

The ability of Sybase 1Q to act as an Open Server enables Sybase applications such as
OmniConnect to work with Sybase 1Q.

To use the Open Client libraries, the client application must use only the supported system
tables, views, and stored procedures.

OmniConnect support

Sybase OmniConnect provides a unified view of disparate data within an organization,
allowing users to access multiple data sources without having to know what the data looks like
or where it is located. In addition, OmniConnect performs heterogeneous joins of data across
the enterprise, enabling cross-platform table joins of targets such as DB2, Sybase Adaptive
Server® Enterprise, SQL Anywhere, Oracle, and VSAM.

Using the Open Server interface, Sybase 1Q can act as a data source for OmniConnect.

Open Client Applications and Sybase 1Q
You can build Open Client applications to access data in Sybase 1Q base tables using the Open
Client libraries directly from a C or C++ programming environment such as PowerSoft Power
++™. If such applications reference catalog tables, views, or system stored procedures, these
objects must be supported by both Adaptive Server Enterprise (Transact-SQL™ syntax) and
Sybase 1Q.

See Reference: Building Blocks, Tables, and Procedures > Appendix A, "Compatibility with
Other Sybase Databases.

Configuring Open Client

When connecting to Sybase 1Q using Open Client or when using the INSERT...LOCATION
syntax, you can set various Open Client configuration parameters in an Open Client runtime
configuration (. cf g) file.

For example, you can change the maximum default number of connections, which is
controlled by the value of the CS_MAX_CONNECT option.

The application name for INSERT...LOCATION is Sybase | Q (The space between the
words is required.) This application name is set at the Open Client connection level, not at the
Open Client context level. For details about using an Open Client runtime configuration file
and the options available, see the Open Client Client-Library C Reference Manual.

To have the . cf g take effect, stop and restart the Sybase 1Q server. You may also specify
certain configuration parameters in the INSERT...LOCATION command line. Parameters set in
INSERT...LOCATION are superseded by parameters set in the configuration file.

When used as a remote server, Sybase 1Q supports Tabular Data Steam (TDS) password
encryption. The Sybase 1Q server accepts a connection with an encrypted password sent by the
client. For information on connection properties to set for password encryption, see Open

84 Sybase 1Q

Sybase IQ as a Data Server

Server 15.5 > Open Client Client-Library/C Reference Manual > Client-Library Topics >
Security features > Adaptive Server Enterprise security features > Security handshaking:
encrypted password.

Note: Password encryption requires Open Client 15.0. TDS password encryption requires
Open Client 15.0 ESD #7 or later.

To enable the Sybase 1Q server to accept a jConnect connection with an encrypted password,
set the jConnect ENCRYPT_PASSWORD connection property to true.

Sybase IQ as an Open Server

This section describes how to set up an Sybase 1Q server to receive connections from Open
Client applications.

System Requirements
There are separate requirements at the client and server for using Sybase 1Q as an Open Server.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Setting up SQL Anywhere as an Open Server >
System requirements.

Note: When connecting to a remote Sybase 1Q from a local SQL Anywhere Enterprise server
using OmniConnect, use these server classes:

» To connect to Sybase 1Q 12 or later, use server classes asaodbc and saj dbc.
e To connect to Sybase 1Q 11.x, use server class asi g.

Starting the Database Server as an Open Server

If you want to use Sybase 1Q as an Open Server, you must ensure that it is started using the
TCP/IP protocol.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Setting up SQL Anywhere as an Open Server >
Starting the database server as an Open Server.

Every application using TCP/IP on a machine uses a distinct TCP/IP port, so that network
packets are sent to the correct application. The default port for Sybase 1Q is port 2638, which is
used for shared memory communications. You can specify a different port number:

start_iq -x tcpi p{port=2629} -n nyserver iqdeno.db

See also
» Adding or Changing a Server Address on page 83

System Administration Guide: Volume 2 85

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/system-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/system-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/system-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-configuring-tds.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/starting-configuring-tds.html

Sybase IQ as a Data Server

Configuring Your Database for Use with Open Client
Your database must be Sybase 1Q 12.0 or later.

If you are using Sybase 1Q together with Adaptive Server Enterprise, ensure that your
database is created for maximum compatibility with Adaptive Server Enterprise.

When connecting to Sybase 1Q as an Open Server, applications frequently assume services
they expect under Adaptive Server Enterprise are provided. These services are not always
present.

See Reference: Building Blocks, Tables, and Procedures > Appendix A, "Compatibility with
Other Sybase Databases”.

Characteristics of Open Client and jConnect Connections

When Sybase 1Q is serving applications over TDS, it automatically sets relevant database
options to values that are compatible with SQL Anywhere Server default behavior. These
options are set temporarily, for the duration of the connection only. The client application can
override these options at any time.

Note: Sybase 1Q does not support the ANSI _ BLANKS, FLOAT_AS DOUBLE, and
TSQL_HEX CONSTANT options.

Although Sybase 1Q allows longer user names and passwords, TDS client user names and
passwords cannot exceed 30 bytes. If your password or user ID is longer than 30 bytes,
attempts to connect over TDS (for example, using jConnect) returnan | nval i d user 1D
or passwor d error.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Replication
> Using SQL Anywhere as an Open Server > Setting up SQL Anywhere as an Open Server >
Characteristics of Open Client and jConnect connections.

Note: ODBC applications, including Interactive SQL applications, automatically set certain
database options to values mandated by the ODBC specification. This overwrites settings by
the LOG N_PROCEDURE database option. For details and a workaround, see Reference:
Statements and Options > LOGIN PROCEDURE option.

Servers with Multiple Databases

Using Open Client Library, you can connect to a specific database on a server containing
multiple databases.

e Setupentriesinthei nt er f aces file for the server.
« Use the -n parameter on the start_iq command to set up a shortcut for the database name.

86 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/osg-connect.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/osg-connect.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/osg-connect.html

Sybase IQ as a Data Server

» Specify the -S database name parameter with the database name on the isql command.
This parameter is required whenever you connect.

You can run the same program against multiple databases without changing the program itself
by putting the shortcut name into the program and merely changing the shortcut definition.

For example, the following i nt er f aces file excerpt defines two servers, | i ve_sal es
andt est _sal es:
live sal es

query tcp ether nyhostnanme 5555
master tcp ether nyhostnane 5555

test _sal es

query tcp ether nyhostname 7777
master tcp ether nyhostnane 7777

Start the server and set up an alias for a particular database. The following command sets
I i ve_sal es equivalent to sal esbase. db:

start_iqg -n sales_live <other paraneters> -x \ ‘tcpip{port=5555}’

sal esbase.db -n live_sal es

To connecttothel i ve_sal es server:

isql -Udba -Psql -Slive_sales

A server name may only appear once in the i nt er f aces file. Because the connection to
Sybase 1Q is now based on the database name, the database name must be unique. If all your

scriptsare setuptoworkon sal esbase database, you will not have to modify them to work
withl i ve_sal es ortest _sal es.

System Administration Guide: Volume 2 87

Sybase IQ as a Data Server

88 Sybase 1Q

Accessing Remote Data

Accessing Remote Data

Sybase 1Q can access data located on separate servers, both Sybase and non-Sybase, as if the
data were stored on the local server.

Sybase IQ and Remote Data

SQL Anywhere remote data access gives you access to data in other data sources. You can use
this feature to migrate data into a SQL Anywhere database. You can also use the feature to
query data across databases.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Characteristics of Open Client and jConnect connections.

Requirements for Accessing Remote Data
There are several basic elements required to access remote data.

Remote table mappings
Sybase 1Q presents tables to a client application as if all the data in the tables were stored in the
database to which the application is connected.

Internally, when Sybase 1Q executes a query involving remote tables, it determines the storage
location and accesses the remote location to retrieve data.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Remote table mappings.

Server Classes

A server classis assigned to each remote server. The server class specifies the access method
used to interact with the server. Different types of remote servers require different access
methods.

The server classes provide Sybase 1Q detailed server capability information. Sybase 1Q
adjusts its interaction with the remote server based on those capabilities.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Server classes.

Note: OMNI JDBC classes are not supported with IPv6.

Remote Servers

Before remote objects can be mapped to a local proxy table, define the remote server where the
remote object is located.

System Administration Guide: Volume 2 89

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161644.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161644.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161646.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161646.html

Accessing Remote Data

Create Remote Servers
Use the CREATE SERVER statement to set up remote server definitions.

For some systems, including Sybase 1Q and SQL Anywhere, each data source describes a
database, so a separate remote server definition is needed for each database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Create remote servers
using the CREATE SERVER statement.

Loading Remote Data Without Native Classes
Load data by using DirectConnect.

Native classes use DirectConnect to access remote data sources:

e On 64-bit UNIX platforms
e On 32-bit platforms where no ODBC driver is available (for example, Microsoft SQL
Server)

Loading MS SOL Server Data into an 1Q Server on UNIX
This remote data example loads MS SQL Server data into an 1Q server on UNIX.

For this example, assume that:

* An Enterprise Connect Data Access (ECDA) server named /mssqg/ exists on UNIX host
myhostname, port 12530.

e Thedatais to be retrieved from an MS SQL server named 2000 0on host myhostname, port
1433.

1. Using DirectConnect documentation, configure DirectConnect for your data source.
2. Make sure that ECDA server (mssqgl) is listed in the Sybase 1Q interfaces file:

nssql
master tcp ether nyhostname 12530
query tcp ether nyhostnanme 12530

3. Add a new user, using the user ID and password for server mssgf

i sql -Udba -Psql -Stst_iqdeno
grant connect to chill identified by chill
grant dba to chill

4, Log in as the new user to create a local table on Sybase 1Q:

isql -Uchill -Pchill -Stst_iqdeno
create table billing(status char(1), nane varchar(20), telno int)

5. Insert data:

insert into billing |ocation ‘nssqgl.pubs’ { select * from
billing }

90

Sybase 1Q

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-defining-omni-using.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-defining-omni-using.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-defining-omni-using.html

Accessing Remote Data

Querying Data Without Native Classes
Follow these guidelines to query data without native classes.

1. Configure ASE/CIS with a remote server and proxy to connect via DirectConnect. For
example, use DirectConnect for Oracle to the Oracle server.

2. Configure Sybase 1Q with a remote server using the ASEJDBC class to the ASE server.
(The ASEODBC class is unavailable because there is no 64-bit Unix ODBC driver for
ASE.)

3. Use the CREATE EXISTING TABLE statement to create proxy tables pointing to the proxy
tables in ASE which in turn point to Oracle.

Querying Remote Data Using DirectConnect and Proxy Table from UNIX
Query data using DirectConnect.

This example shows how to access MS SQL Server data. For this example, assume the
following:

* A Sybase IQ server on host myhostname, port 7594.
* An Adaptive Server Enterprise server on host myhostname, port 4101.

« An Enterprise Connect Data Access (ECDA) server exists named /ssg/on host
myhostname, port 12530.

» Thedataisto be retrieved from an MS SQL server named 2000 on host myhostname, port
1433.

Setting Up Adaptive Server Enterprise to Query MS SQL Server
Set up Adaptive Server and Component Integration Services (CIS) to query MS SQL Server
through DirectConnect.

For this example, assume that the server name is jones 1207.

1. Add an entry to the ASE interfaces file to connect to mssqg/f
nssql
master tcp ether hostname 12530

query tcp ether hostnanme 12530

2. Enable CIS and remote procedure call handling from the ASE server. For example, if CIS
is already enabled as the default:

sp_configure 'enable cis'
Par amet er Name Default Menmory Used Config Val ue Run Val ue

enabl e cis 1 0
1 1

(1 row affected)
(return status=0)

System Administration Guide: Volume 2 91

Accessing Remote Data

sp_configure 'cis rpc handling', 1
Paramet er Nanme Default Menmory Used Config Val ue Run Val ue

enabl e cis 0 0
0 1

(1 row affected)
Configuati on option changed. The SQL Server need not be restarted
since the option is dynanic.

You may need to restart Adaptive Server Enterprise server after enabling CIS remote
procedure call handling in older versions such as Sybase 1Q 12.5.

. Add the DirectConnect server to the ASE server’s SYSSERVERS system table.

sp_addserver nmssql, direct_connect, mssql

Addi ng server 'nssql', physical nane 'nssql’
Server added.
(Return status=0)

. Create the user in Adaptive Server Enterprise that will be used in Sybase 1Q to connect to

ASE.
sp_addl ogin tst, tsttst

Password correctly set.
Account unl ocked. New | ogi n creat ed.
(return status = 0)

grant role sa_role to tst
use tst_db
sp_adduser tst

New user added.
(return status = 0)

. Add an external login from the master database:

use master
sp_addexternl ogin nssql, tst, chill, chill

User 'tst' will be known as 'chill' in renote server 'nmssql’
(return status = 0)

. Create an ASE proxy table as the added user from the desired database:

isgl -Ust -Ttsttst
use test _db

create proxy_table billing_tst at 'nssqgl.pubs..billing
select * frombilling_ tst

st at us name tel no

D BOTANI CALLY 1

B BOTANI CALL 2

(2 rows affected)

92

Sybase 1Q

Accessing Remote Data

Setting up Sybase IQ to Connect to the ASE Server
Follow these steps to query Adaptive Server Enterprise data.

1. Add an entry to the Sybase 1Q interfaces file:

j ones_1207
master tcp ether jones 4101
query tcp ether jones 4101

2. Create the user to connect to ASE:

grant connect to tst identified by tsttst
grant dba to tst

3. Log in as the added user to create the ‘asejdbc' server class and add external login:

isql -Ust -Ptsttst -Stst_igdeno
create SERVER jones_1207 CLASS 'asej dbc' USING'jones: 4101/tst_db'

create existing table billing_iq at
"jones_1207.tst_db..billing_txt'

select * frombilling_iq

st at us name tel no
D BOTANI CALLY 1

B BOTANI CALL 2

(2 rows affected)

Delete Remote Servers
Use Sybase Central or a DROP SERVER statement to delete a remote server from the
| SYSSERVER system table.

All remote tables defined on that server must already be dropped for this action to succeed.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Delete remote
servers.

Alter Remote Servers
Use the ALTER SERVER statement to modify the attributes of a server. These changes do not
take effect until the next connection to the remote server.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Alter remote servers.

List the Remote Tables On a Server
When configuring Sybase 1Q, it is helpful to have access to a list of the remote tables available
on a particular server.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > List the remote tables
on a server.

System Administration Guide: Volume 2 93

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/deleting-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/deleting-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/deleting-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/altering-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/altering-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161660.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161660.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161660.html

Accessing Remote Data

See also Reference. Building Blocks, Tables, and Procedures > sp_remote_tables system
procedure .

List Remote Server Capabilities

The sp_servercaps procedure displays information about a remote server's capabilities.
Sybase 1Q uses this capability information to determine how much of a SQL statement can be
passed to a remote server.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > List remote server
capabilities.

See also Reference. Building Blocks, Tables, and Procedures > sp_servercaps system
procedure.

External Logins

Sybase 1Q uses the names and passwords of its clients when it connects to a remote server on
behalf of those clients. However, this behavior can be overridden by creating external logins.

External logins are alternate login names and passwords that are used when communicating
with a remote server.

When Sybase 1Q connects to the remote server, INSERT...LOCATION uses the remote login for
the user ID of the current connection, if a remote login has been created with CREATE
EXTERNLOGIN and the remote server has been defined with a CREATE SERVER statement. If
the remote server is not defined, or a remote login has not been created for the user ID of the
current connection, 1Q connects using the user ID and password of the current connection. For
more information and an example of INSERT...LOCATION using a remote login, see
Reference: Statements and Options > INSERT statement.

If you are using an integrated login, the Sybase 1Q name and password of the Sybase 1Q client
is the same as the database login ID and password that the Sybase 1Q userid maps to in
sysl ogi ns.

Create External Logins
Only the DBA account or an account with USER ADMIN authority can add or modify an
external login.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Create external
logins.

For more information, see Reference. Statements and Options > SQL Statements > CREATE
EXTERNLOGIN Statement.

94

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161662.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161662.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161662.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-logins-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-logins-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/creating-logins-omni-using.html

Accessing Remote Data

Drop External Logins
Use the DROP EXTERNLOGIN statement to remove external logins from the Sybase 1Q
system tables.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers > Drop external 1ogins.

For more information, see Reference: Statements and Options > SQL Statements > DROP
EXTERNLOGIN Statement.

Proxy Tables
Location transparency of remote data is enabled by creating a local proxy table that maps to
the remote object.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with proxy tables.

Specify Proxy Table Locations
The AT keyword is used with both CREATE TABLE and CREATE EXISTING TABLE to define
the location of an existing object.

The location string has four components that are separated by either a period or a semicolon.
Semicolons allow filenames and extensions to be used in the database and owner fields.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with proxy tables > Specify proxy table
locations.

Example

The following example illustrate the use of location strings:
e Sybase 1Q:

"testiq..DBA enpl oyee'

Create Proxy Tables

The CREATE EXISTING TABLE statement creates a proxy table that maps to an existing table
on the remote server.

Sybase 1Q derives the column attributes and index information from the object at the remote
location.

Example
To create a proxy table named p_enpl oyee on the current server to a remote table named
enpl oyee on the server named i qdenol, use the following syntax:

CREATE EXI STI NG TABLE p_enpl oyee
AT 'iqdenol. . DBA. enpl oyee’

System Administration Guide: Volume 2 95

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/dropping-logins-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/dropping-logins-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/proxy-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/proxy-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/locations-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/locations-defining-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/locations-defining-omni-using.html

Accessing Remote Data

Local 1Q Server igdemo server

ampioyes
tahle

i oy e
O

Proxy

\Tables

See Reference. Statements and Options > CREATE EXISTING TABLE statement.

CREATE TABLE Statement
The CREATE TABLE statement creates a new table on the remote server, and defines the proxy
table for that table when you use the AT option.

Columns are defined using Sybase 1Q data types. Sybase 1Q automatically converts the data
into the remote server's native types.

If you use the CREATE TABLE statement to create both a local and remote table, and then
subsequently use the DROP TABLE statement to drop the proxy table, the remote table is also
dropped. You can, however, use the DROP TABLE statement to drop a proxy table created
using the CREATE EXISTING TABLE statement. In this case, the remote table is not dropped.

Example
The following statement creates a table named Enpl oyees on the remote serveri qdenol,
and creates a proxy table named nenber s that maps to the remote location:

CREATE TABLE nenbers

(nmenbership_id | NTEGER NOT NULL,
nmenber _name CHAR(30) NOT NULL,
of fice_held CHAR(20) NULL)

AT 'iqgdenol.. DBA. Enpl oyees'

For more information, see Reference: Statements and Options > INSERT statement.
List the Columns On a Remote Table

The sp_remote_columns system procedure produces a list of the columns on a remote table
and a description of those data types.

If you are entering a CREATE EXISTING TABLE statement and you are specifying a column
list, it may be helpful to get a list of the columns that are available on a remote table.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with proxy tables > List the columns on a
remote table.

96

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/listing-proxy-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/listing-proxy-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/listing-proxy-omni-using.html

Accessing Remote Data

For more information, see Reference. Building Blocks, Tables, and Procedures > System
Procedures > System Stored Procedures > Catalog Stored Procedures > sp_remote_columns
System Procedure.

Example: Join Between Two Remote Tables

The figure illustrates the remote Sybase IQ tables enpl oyee and depart nment inthe
demo database, mapped to the local server namedt esti q.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Join remote tables.

Multiple Local Databases

A Sybase 1Q server may have several local databases running at one time. By defining tables in
other local Sybase 1Q databases as remote tables, you can perform cross-database joins.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Join tables from multiple local databases.

Send Native Statements to Remote Servers

Use the FORWARD TO statement to send one or more statements to the remote server in its
native syntax.

This statement can be used in two ways.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Send native statements to remote servers.

Remote Procedure Calls (RPCs)
Sybase 1Q users can issue procedure calls to remote servers that support the feature.

Sybase 1Q, SQL Anywhere, and Adaptive Server Enterprise, as well as Oracle and DB2,
support this feature. Issuing a remote procedure call is similar to using a local procedure call.

Create Remote Procedures
Use one of the procedures to issue a remote procedure call.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Using remote procedure calls (RPCs) > Create remote
procedures.

System Administration Guide: Volume 2 97

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/example-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/example-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessing-mult-local-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessing-mult-local-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/passthrough-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/passthrough-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161688.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161688.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161688.html

Accessing Remote Data

Transaction Management and Remote Data

Transactions provide a way to group SQL statements so that they are treated as a unit—either
all work performed by the statements is committed to the database, or none of it is.

Transaction management with remote tables is handled somewhat differently than it is for
local Sybase 1Q tables. Transaction management for remote tables is handled for the most part
as itis in SQL Anywhere, although there are some differences.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Creating Databases >
Using transactions and isolation levels.

For a general discussion of transactions in Sybase 1Q, see System Administration Guide:
Volume 1 > Transactions and Versioning.

Remote Transaction Management Overview

The method for managing transactions involving remote servers uses a two-phase commit
protocol.

Sybase 1Q implements a strategy that ensures transaction integrity for most scenarios.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Transaction management and remote data > Remote
transaction management overview.

Restrictions on Transaction Management

Transaction management has savepoints and nested statement restrictions.
Restrictions on transaction management are:

» Savepoints are not propagated to remote servers.

* Ifnested BEGIN TRANSACTION and COMMIT TRANSACTION statements are included in
a transaction that involves remote servers, only the outermost set of statements is
processed. The innermost set, containing the BEGIN TRANSACTION and COMMIT
TRANSACTION statements, is not transmitted to remote servers.

Internal Operations

This section describes the underlying steps that SQL Anywhere performs on remote servers
on behalf of client applications.

98

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-transact.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-transact.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161694.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161694.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161694.html

Accessing Remote Data

Query Parsing
When a statement is received from a client, the database server parses it. The database server
raises an error if the statement is not a valid SQL Anywhere SQL statement.

Query Normalization
In query normalization, referenced objects are verified and data type compatibility is checked.

For example, consider this query:

SELECT *

FROM t 1

WHERE c1 = 10

The query normalization stage verifies that table t 1 with acolumn cl exists in the system
tables. It also verifies that the data type of column c1 is compatible with the value 10. If the
column's data type is DATETI ME, for example, this statement is rejected.

Query Preprocessing
Query preprocessing prepares the query for optimization.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations > Query preprocessing.

Server Capabilities
Each remote server defined to Sybase 1Q has a set of capabilities associated with it. These
capabilities are stored in the syscapabilities system table.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations > Server capabilities.

Complete Passthrough of the Statement

The most efficient way to handle a statement is usually to pass as much of the original
statement as possible to the remote server involved.

By default, Sybase 1Q attempts to pass off as much of the statement as possible. In many cases,
this is the complete statement as originally given to Sybase 1Q.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations > Complete passthrough of the
Sstatement.

System Administration Guide: Volume 2 99

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161699.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161699.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161701.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161701.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161703.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161703.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161703.html

Accessing Remote Data

Partial Passthrough of the Statement

If a statement contains references to multiple servers, or uses SQL features not supported by a
remote server, the query is decomposed into simpler parts.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations > Partial passthrough of the
Statement.

Remote Data Access Troubleshooting

This section provides some suggestions for troubleshooting access to remote servers.

Features Not Supported For Remote Data
Some features are never supported by Sybase 1Q. Others are supported only for local data.

Sybase 1Q has the following additions to the SQL Anywhere list:

« Java data types are not supported.

« When using Component Integration Services (CIS) in certain geographic regions,
connection attempts return the error

No Suitable Driver

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > Features not
supported for remote data.

Case Sensitivity

The case-sensitivity setting of your Sybase 1Q database should match the settings used by any
remote servers accessed.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > Case
sensitivity.

Connectivity Problems

To verify you can connect to a remote server, perform a simple passthrough statement to a
remote server to check your connectivity and remote login configuration.

For example:
FORWARD TO testiq {sel ect @ersion}

100 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161706.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161706.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161706.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/features-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/features-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/features-omni-using.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161710.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161710.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161710.html

Accessing Remote Data

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > Connectivity

tests.

General Problems with Queries
If you are faced with some type of problem with the way Sybase I1Q is handling a query against
a remote table, it is usually helpful to understand how Sybase IQ is executing that query.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > General

problems with queries.

Managing Remote Data Access Connections
If you access remote databases via ODBC, the connection to the remote server is given a
name.
The name can be used to drop the connection as one way to cancel a remote request.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access > Managing
remote data access connections via ODBC.

System Administration Guide: Volume 2 101

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-51617101.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-51617101.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-51617101.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161712.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161712.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-accessrd-sectb-5161712.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessrd-s-5888241.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessrd-s-5888241.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/accessrd-s-5888241.html

Accessing Remote Data

102 Sybase 1Q

Server Classes for Remote Data Access

Server Classes for Remote Data Access

This chapter describes how Sybase 1Q interfaces with various server classes.

Server Classes Overview

The behavior of aremote connection is determined by the server class in the CREATE SERVER
statement. The server classes give Sybase 1Q detailed server capability information.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access.

JDBC-based Server Classes

JDBC-based server classes are used when Sybase 1Q internally uses a Java virtual machine
and jConnect™ for JDBC™ 5.5 to connect to the remote server.

The JDBC-based server classes are:

e Sybase I1Q, and SQL Anywhere
» Sybase SQL Anywhere and Adaptive Server Enterprise (version 10 and later).

Configuration Notes for JDBC Classes

When you access remote servers defined with JDBC-based classes, consider the optimum
performance, remote server access and remote server connection.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server classes >
Configuration notes for JDBC classes.

Server Class sajdbc

No special requirements exist for the configuration of Sybase 1Q or SQL Anywhere data
source.

Parameter Value in the CREATE SERVER Statement
The USING parameter in the CREATE SERVER statement takes the form
hostname:portnumber [/databasename].

Where:

* hostname — The machine that the remote server is running on

System Administration Guide: Volume 2 103

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4214988.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4214988.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4214988.html

Server Classes for Remote Data Access

* portnumber —The TCP/IP port number that the remote server is listening on. The default
port number that an Sybase 1Q listens on is 2638.

+ databasename— The Sybase 1Q database that the connection will use. This is the name
specified in the -n switch when the server was started, or in the DBN (DatabaseName)
connection parameter.

Sybase I1Q Example

To configure Sybase 1Q server named t est i q that is located on the machine apple and
listening on port number 2638, use:

CREATE SERVER testiq

CLASS ' saj dbc'
USI NG ' appl e: 2638"

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server classes > Server class
safdbc > USING parameter in the CREATE SERVER statement.

Server Class asejdbc

A server with server class asejdbc can be Adaptive Server Enterprise or SQL Anywhere
Version 10 and later.

While Adaptive Server Enterprise data sources generally require no special configuration,
ASE 15.5 requires the jConnect-6_0 metadata stored procedures and tables. See Accessing
Remote Data > Server Classes for Remote Data Access > JDBC-based Server Classes >
Server Class aseodbc > Installing jConnect 6.0 Metadata.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server classes > Server class
asefabc.

Data Type Conversions
When you issue a CREATE TABLE statement to create a proxy table, Sybase 1Q automatically
converts the data types to the corresponding Adaptive Server Enterprise data types.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server classes > Server class
asefabc.

Installing [Connect 6.0 Metadata
Proxy tables for Adaptive Server Enterprise 15.5 data require jConnect 6.0 metadata.

Without jConnect 6.0 metadata, a CREATE EXISTING TABLE statement may return the error
SQ. Anywhere Error -667: Could not access columm information
for the table.

Using isql:

104 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/using-parameter-value-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/using-parameter-value-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/using-parameter-value-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/asejdbc-jdbc-omni-server.html

Server Classes for Remote Data Access

1. Connect to your Adaptive Server Enterprise database.
2. Enter a command in this format:

isql -l<path to interfaces>

-Usa -P

- S<ASE_server >

- i $SYBASE/ j Connect - 6_0/ sp/ sql _server 15. 0. sql

ODBC-based Server Classes

Sybase 1Q supports a variety of ODBC-based server classes.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes.

ODBC External Servers

The most common method of defining an ODBC-based server is to base it on an ODBC data
source.

To do this, you must create a data source name (DSN) in the ODBC Administrator.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Defining
ODBC external servers.

Sybase 1Q example

A connection to Sybase 1Q may be as follows:
CREATE SERVER testiq

CLASS ' asaodbc’

USI NG ' driver=adaptive server |1Q 12.0;
eng=t est asai q; dbn=i qdeno; | i nks=t cpi p{}"'

For more information on creating ODBC data sources for Sybase 1Q, see System
Administration Guide: Volume 1 > Sybase 1Q Connections > ODBC Data Sources.

Server Class saodbc

To access SQL Anywhere database servers that support multiple databases, create an ODBC
data source name defining a connection to each database. Issue a CREATE SERVER statement
for each of these ODBC data source names.

A server with server class saodbc is one of:

e Sybase IQ version 12 or later
* SQL Anywhere

No special requirements exist for the configuration of a SQL Anywhere or Sybase 1Q data
source.

System Administration Guide: Volume 2 105

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4215004.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4215004.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-servclassrd-sectb-4215004.html

Server Classes for Remote Data Access

Server Class aseodbc

Sybase 1Q requires the local installation of the Adaptive Server Enterprise ODBC driver and
Open Client connectivity libraries to connect to a remote Adaptive Server with class
aseodbc. However, the performance is better than with the asej dbc class.

A server with server class aseodbc is:

» Adaptive Server Enterprise
* SQL Anywhere (version 10 and later)

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class aseodbe.

Server Class db2odbc

A server with server class db2odbc is IBM DB2.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class db2odbc.

Server Class oraodbc

A server using server class oraodbc is Oracle version 10.0 or higher.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class oraodbc.

Sybase 1Q to Oracle Data Type Mappings
When you use a CREATE TABLE statement to create a remote table on an Oracle server,
Sybase 1Q converts the 1Q data types to corresponding Oracle data types:

Table 5. Data mappings to a new remote Oracle table

Sybase IQ data type Oracle data type

BIGINT NUMBER(20,0)

BINARY (n) if (n > 255) LONG RAW else RAW(n)
BIT NUMBER(1,0)

CHAR(n) If (n > 255) LONG else VARCHAR(n)
CHARACTER VARYING(n) VARCHAR2(n)

CHARACTER(n) VARCHAR2(n)

106

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/aseodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/aseodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/aseodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/db2odbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/db2odbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/db2odbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html

Server Classes for Remote Data Access

Sybase IQ data type

Oracle data type

DATE

DATE

DATETIME

DATE

DECIMAL (prec, scale)

NUMBER(prec, scale)

DOUBLE FLOAT
FLOAT FLOAT

INT NUMBER(11,0)
LONG BINARY LONG RAW
LONG VARCHAR LONG or CLOB
MONEY NUMBER(19,4)

NUMERIC(prec, scale)

NUMBER(prec, scale)

REAL FLOAT
SMALLDATETIME DATE
SMALLINT NUMBER(5,0)
SMALLMONEY NUMBER(10,4)
TIME DATE
TIMESTAMP DATE
TINYINT NUMBER(3,0)
UNIQUEIDENTIFIERSTR CHAR(36)
UNSIGNED BIGINT NUMBER(20,0)
UNSIGNED INT NUMBER(11,0)
UNSIGNED INTEGER NUMBER(11,0)

VARBINARY (n)

if (n > 255) LONG RAW else RAW(n)

VARCHAR(n)

VARCHAR2(n)

System Administration Guide: Volume 2

107

Server Classes for Remote Data Access

Oracle to Sybase |Q Data Mappings
When you use a CREATE EXISTING statement to create a proxy table to an existing Oracle
table, 1Q converts the Oracle data types to corresponding IQ data types.

Table 6. Data mappings to existing Oracle tables

Oracle data type IQ data type
BFILE LONG BINARY
BLOB LONG BINARY
CHAR(n) CHAR(n)

CLOB LONG VARCHAR
DATE TIMESTAMP

DEC(prec, scale)

NUMERIC(prec, scale)

DECIMAL (prec, scale)

NUMERIC(prec, scale)

DOUBLE PRECISION DOUBLE

FLOAT DOUBLE

INT NUMERIC(38,0)
INTEGER NUMERIC(38,0)
NCHAR(n) NCHAR(n)

NCLOB LONG NVARCHAR

NUMBER(prec, scale)

NUMERIC(prec, scale)

NUMERIC(prec, scale)

NUMERIC(prec, scale)

NVARCHAR2(n) VARCHAR(n)

RAW(n) VARBINARY (n)

REAL DOUBLE

SMALLINT NUMERIC(38,0)

TIMESTAMP TIMESTAMP

VARCHAR2(n) VARCHAR(n)
Note:

« Sybase I1Q lets you map proxy tables to Oracle views. Because Oracle identifiers always
appear in upper case letters, you must use upper-case letters to create or refer to any proxy
table that you map to an Oracle view.

108 Sybase 1Q

Server Classes for Remote Data Access

e See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class oraodbce.

Server Class mssodbc
A server with server class mssodbc is Microsoft SQL Anywhere version 6.5, Service Pack 4.
See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk

Operations > Server classes for remote data access > ODBC-based server classes > Server
class mssodbe.

Server Class odbc

ODBC data sources that do not have their own server class use server class odbc. You can use
any ODBC driver.

The latest versions of Microsoft ODBC drivers can be obtained through the Microsoft Data
Access Components (MDAC) distribution found at the Microsoft Download Center. The
Microsoft driver versions listed are part of MDAC 2.0.

Microsoft Excel (Microsoft 3.51.171300)
Each Excel workbook is considered to be a database that holds several tables.

Tables are mapped to sheets in a workbook. When you configure an ODBC data source name
in the ODBC driver manager, you specify a default workbook name associated with that data
source, however, when you issue a CREATE TABLE statement, you can override the default
and specify a workbook name in the location string.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class odbc > Microsoft Excel (Microsoft 3.51.171300).

Microsoft Foxpro (Microsoft 3.51.171300)
You can store Foxpro tables together inside a single Foxpro database file (. dbc), or you can
store each table in its own separate . dbf file.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class odbc > Microsoft FoxPro (Microsoft 3.51.171300).

Lotus Notes SQL 2.0 (2.04.0203)
You can obtain Lotus Notes SQL 2.0 (2.04.0203) driver from the Lotus Web site.

Read the documentation that comes with it for an explanation of how Notes data maps to
relational tables. You can easily map 1Q tables to Notes forms.

System Administration Guide: Volume 2 109

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/oraodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/msodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/msodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/msodbc-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/excel-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/excel-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/excel-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/foxpro-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/foxpro-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/foxpro-odbc-omni-server.html

Server Classes for Remote Data Access

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > ODBC-based server classes > Server
class odbce > Lotus Notes SQL 2.0.

Setting Up 10 to Access the Address Sample File
Set up 1Q to access the address sample file.

1. Create an ODBC data source using the NotesSQL driver.

The database will be the sample names file c: \ not es\ dat a\ nanmes. nsf. The Map
Special Characters option should be turned on. For this example, the Data Source Name is
my _notes_dsn.

2. Create an 1Q server:

CREATE SERVER nanes
CLASS ' odbc'
USI NG ' ny_not es_dsn'

3. Map the Person form into an IQ table:

CREATE EXI STI NG TABLE Per son
AT 'nanes. .. Person'

4, Query the table
SELECT * FROM Per son

110 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/lotus-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/lotus-odbc-omni-server.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/lotus-odbc-omni-server.html

Automating Tasks Using Schedules and Events

Automating Tasks Using Schedules and
Events

This chapter describes how to use scheduling and event handling features of Sybase IQ to
automate database administration and other tasks.

Introduction to Scheduling and Event Handling

Many database administration tasks are best carried out systematically.

For example, a regular backup procedure is an important part of proper database
administration procedures.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using scheaules and events > Introduction to using
schedules and events.

Schedules

By scheduling activities you can ensure that a set of actions is executed at a set of preset times.
The scheduling information and the event handler are both stored in the database itself.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using scheaules and events > Understanding schedules.

Sybase I1Q Example

Note: For examples, use the Sybase 1Q demo database i qdeno. db.

Create table OrderSunmary(cl date, c2 int);create event

Sunmari zeschedul estart time '6: 00 pmon (' Mon', 'Tue', 'Wed', 'Thu',
"Fri')handl erbegin insert into DBA OrderSunmary sel ect
max(OrderDate), count(*) from GROUPO Sal esOrders where OrderDate =
current dateend

Defining Schedules
For flexibility, schedule definitions are made up of several components.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding schedules >
Defining schedules.

System Administration Guide: Volume 2 111

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/introduction-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/introduction-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/introduction-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/parts-understanding-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/parts-understanding-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/parts-understanding-events.html

Automating

Tasks Using Schedules and Events

Events

The database server tracks several kinds of system events. Event handlers are triggered when
the system event is checked by the database server, and satisfies a provided #rigger
condition.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding system
events.

Choosing a System Event

Sybase 1Q tracks several system events. Each system event provides a hook on which you can
hang a set of actions.

The database server tracks the events for you, and executes the actions (as defined in the event
handler) when needed.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using scheaules and events > Understanding System
events.

Defining Trigger Conditions for Events

Each event definition has a system event associated with it. It also has one or more trigger
conditions.

The event handler is triggered when the trigger conditions for the system event are satisfied.

Note: The trigger conditions associated with Sybase 1Q events are not the same as SQL
Anywhere or Adaptive Server Enterprise triggers, which execute automatically when a user
attempts a specified data modification statement on a specified table.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding system events
> Defining trigger conditions for events.

Sybase I1Q Example

Note: For examples, use the Sybase 1Q demo database i gdeno. db.

create event SecurityCheck

type Connect Fai |l ed

handl er

begi ndecl are num failures int;declare mns int;

insert into Fail edConnections(log_tine)values (current
ti mestamp);
select count(*) into numfailuresfrom Fail edConnecti onswhere

112

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/defining-trigger-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/defining-trigger-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/defining-trigger-events.html

Automating Tasks Using Schedules and Events

log_tine >= dateadd(m nute, -5,
current timestanmp);if(numfailures >= 3) then

sel ect datediff(mnute, last_notification, current
timestanp) into mns from Notification;

if(mns > 30) then update Notification set
| ast _notification = current tinestanp; cal |
xp_sendrai | (recipi ent =" DBAdnmi n', subj ect =" Security
Check' , "nmessage" = "over 3 failed connections in last 5
m nutes') end ifend ifend

Event Handlers

Event handlers execute on a separate connection from the action that triggered the event, and
so do not interact with client applications. They execute with the permissions of the creator of
the event.

Developing Event Handlers

Event handlers, whether for scheduled events or for system event handling, contain compound
statements, and are similar in many ways to stored procedures. You can add loops, conditional
execution, and so on, and you can use the Sybase 1Q debugger to debug event handlers.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Understanding system events
> Developing event handlers.

The EVENT_PARAMETER function provides context information for event handlers. See
Reference: Building Blocks, Tables, and Procedures.

For an example on using event handling, see System Administration Guide: Volume 1 >
Automating Tasks Using Schedules and Events > Managing user accounts and connections.

Schedule and Event Internals

This section describes how the database server processes schedules and event definitions.

How the Database Server Checks for System Events

Events are classified according to their event type, as specified directly in the CREATE EVENT
statement.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Scheaule and event intervals
> How the database server checks for system events.

System Administration Guide: Volume 2 113

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/developing-scheduling-newaspen.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/developing-scheduling-newaspen.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/developing-scheduling-newaspen.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/events-internals-events.html

Automating

Tasks Using Schedules and Events

How the Database Server Checks for Scheduled Times

The calculation of scheduled event times is done when the database server starts, and each
time a scheduled event handler completes.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Schedule and event intervals
> How the database server checks for scheduled events.

How Event Handlers are Executed

When an event handler is triggered, a temporary internal connection is made, on which the
event handler is executed.

The handler is not executed on the connection that caused the handler to be triggered, and
consequently statements such as MESSAGE ... TO CLIENT, which interact with the client
application, are not meaningful within event handlers.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using schedules and events > Event handling tasks >
Adding an event to a database.

Scheduling and Event Handling Tasks

This section collects together tasks related to automating schedules and events.

Adding a Schedule or Event to a Database

You can add schedules and events in Sybase Central and by using SQL.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using scheaules and events > Event handling tasks >
Adding an event to a database.

Adding a Manually-triggered Event To a Database

If you create an event handler without a schedule or system event to trigger it, it is executed
only when manually triggered.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using scheaules and events > Event handling tasks >
Adding a manually-triggered event to a database .

Alter events using the ALTER EVENT statement. See Reference. Statements and Options.

114

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/schedule-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/schedule-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/schedule-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/handlers-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/handlers-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/handlers-internals-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-scheduling-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-manual-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-manual-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/adding-manual-tasks-events.html

Automating Tasks Using Schedules and Events

Triggering an Event Handler

Any event handler can be manually triggered, as well as executed as a result of a schedule or
system event. You may find it useful to manually trigger events during development of event
handlers, and also, for certain events, in production environments.

For example, you may have a monthly sales report scheduled, but from time to time you may
want to obtain a sales report for a reason other than the end of the month.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using scheaules and events > Event handling tasks >
Triggering an event handler.

For more information on triggering, see the TRI GGER EVENT statement in Reference.
Statements and Options.

Debugging an Event Handler

Debugging is a regular part of any software development. Event handlers can be debugged
during the development process.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration > Maintaining
Your Database > Automating tasks using scheaules and events > Event handling tasks >
Debugging an event handler.

Retrieving Information about an Event or Schedule

Sybase 1Q stores information about events, system events, and schedules in the system tables
SYSEVENT, SYSEVENTTYPE, and SYSSCHEDULE.

When you alter an event using the ALTER EVENT statement, you specify the event name and,
optionally, the schedule name. When you trigger an event using the TRIGGER EVENT
statement, you specify the event name.

You can list event names by querying the system table SYSEVENT. For example:
SELECT event _id, event_nanme FROM SYSEVENT

You can list schedule names by querying the system table SYSSCHEDUL E. For example:
SELECT event _id, sched_nane FROM SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

System Administration Guide: Volume 2 115

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/triggering-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/triggering-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/triggering-tasks-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/debugging-task-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/debugging-task-events.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/debugging-task-events.html

Automating Tasks Using Schedules and Events

116 Sybase 1Q

Data Access Using JDBC

Data Access Using JDBC

This appendix describes how to use JDBC to access data.

JDBC can be used both from client applications and inside the database. Java classes using
JDBC provide a more powerful alternative to SQL stored procedures for incorporating
programming logic in the database.

JDBC Overview

JDBC provides a SQL interface for Java applications: if you want to access relational data
from Java, you do so using JDBC calls.

Rather than a thorough guide to the JDBC database interface, this appendix provides some
simple examples to introduce JDBC and illustrates how you can use it inside and outside the
server. As well, this appendix provides more details on the server-side use of JDBC, running
inside the database server.

The examples illustrate the distinctive features of using JDBC in Sybase 1Q. For more
information about JDBC programming, see any JDBC programming book.

JDBC and Sybase 1Q
You can use JDBC with Sybase 1Q in the following ways:

« Java client applications can make JDBC calls to Sybase 1Q. The connection takes place
through the Sybase jConnect JDBC driver or through the iAnywhere JDBC driver.

In this appendix, the phrase client application applies both to applications running on a
user's machine and to logic running on a middle-tier application server.

« JDBC in the server Java classes installed into a database can make JDBC calls to access
and modify data in the database, using an internal JDBC driver.

The focus in this appendix is on server-side JDBC.

JDBC Resources

* Required Software
You need TCP/IP to use the Sybase jConnect driver.

The Sybase jConnect driver may already be available, depending on your installation of
Sybase 1Q.

See also
e The jConnect Driver Files on page 136

System Administration Guide: Volume 2 117

Data Access Using JDBC

Choose JDBC Driver

Two JDBC drivers are provided for Sybase 1Q:

Table 7.

Driver Defintion

jConnect This driver is a 100% pure Java driver. It com-
municates with Sybase 1Q using the TDS client/
server protocol.

iAnywhere JDBC driver This driver communicates with Sybase 1Q using
the Command Sequence client/server protocol.
Its behavior is consistent with ODBC, embedded
SQL, and OLE DB applications.

For jConnect documentation, see jConnect for JDBC.

When choosing which driver to use, you may want to consider the following factors:

Features—Both drivers are JDK 2 compliant. The iAnywhere JDBC driver provides fully-
scrollable cursors, which are not available in jConnect.

Pure Java—The jConnect driver is a pure Java solution. The iAnywhere JDBC driver
requires the Sybase 1Q or Adaptive Server Anywhere ODBC driver and is not a pure Java
solution.

Performance—The iAnywhere JDBC driver provides better performance for most
purposes than the jConnect driver.

Compatibility—The TDS protocol used by the jConnect driver is shared with Adaptive
Server Enterprise. Some aspects of the driver's behavior are governed by this protocol, and
are configured to be compatible with Adaptive Server Enterprise.

Both drivers are available on Windows 95/98/Me and Windows NT/2000/2003/XP, as well as
supported UNIX and Linux operating systems.

JDBC Considerations
Consider the following when running Java applications:

An issue exists when connecting to a Sybase 1Q 12.5 server through dbisql Java using the
iAnywhere JDBC driver. For details, see System Administration Guide: Volume 1 >
Troubleshooting Hints > Data truncation or data conversion error.

Java applications running in Sybase IQ run slower than when run outside in a Sun Java
Virtual Machine (JVM). Despite this limitation, Sybase recommends that you tune your
applications by increasing the available memory for IQ JVM use with the database options
JAVA HEAP_SI ZE and JAVA NAMESPACE_SI ZE in Reference. Statements and
Options > Database Options > JAVA_HEAP_SIZE.

118

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.help.jconnjdbc.6.05/title.htm

Data Access Using JDBC

JDBC Program Structure
JDBC program structure has a sequenece of events.

The following sequence of events typically occur in JDBC applications:

» Create a Connection object—Calling a getConnection class method of the
DriverManager class creates a Connection object, and establishes a connection with a
database.

» Generate a Statement object—The Connection object generates a Statement object.

» Pass a SQL statement—A SQL statement that executed within the database environment
passes to the Statement object. If the statement is a query, this action returns a ResultSet
object.

The ResultSet object contains the data returned from the SQL statement, but exposes it
one row at a time (similar to the way a cursor works).

» Loop over the rows of the result set—The next method of the ResultSet object performs
two actions:

« The current row (the row in the result set exposed through the ResultSet object)
advances one row.

* A Boolean value (true/false) returns to indicate whether there is, in fact, a row to
advance to.

» For each row, retrieve the values—\Values are retrieved for each column in the ResultSet
object by identifying either the name or position of the column. You can use the getDate
method to get the value from a column on the current row.

Java objects can use JDBC objects to interact with a database and get data for their own use, for
example to manipulate or for use in other queries.

Server-side JDBC Features
JDBC 1.2 is part of JDK 1.1. JDBC 2.0 is part of Java 2 (JDK 1.2).

Java in the database supplies a subset of the JDK version 1.1, so the internal JDBC driver
supports JDBC version 1.2.

The internal JDBC driver (asaj dbc) makes some features of JDBC 2.0 available from
server-side Java applications, but does not provide full JDBC 2.0 support.

The JDBC classes in the java.sql package that is part of the Java in the database support are at
level 1.2. Server-side features that are part of JDBC 2.0 are implemented in the
sybase.sql.ASA package. To use JDBC 2.0 features you must cast your JDBC objects into the
corresponding classes in the sybase.sql.ASA package, rather than the java.sql package.
Classes that are declared as java.sql are restricted to JDBC 1.2 functionality only.

The classes in sybase.sql.ASA are as follows:

System Administration Guide: Volume 2 119

Data Access Using JDBC

JDBC class

Sybase internal driver class

java.sgl.Connection

sybase.sql. ASA.SAConnection

java.sgl.Statement

sybase.sql. ASA.SAStatement

java.sql.PreparedStatement

sybase.sql.ASA.SAPreparedStatement

java.sgl.CallableStatement

sybase.sql. ASA.SACallableStatement

java.sgl.ResultSetMetaData

sybase.sql. ASA.SAResultSetMetaData

java.sgl.ResultSet

sybase.sql.SAResultSet

java.sql.DatabaseMetaData

sybase.sql.SADatabaseMetaData

The following function provides a ResultSetMetaData object for a prepared statement
without requiring a ResultSet or executing the statement. This function is not part of the JDBC
standard.

Resul t Set Met aDat a sybase. sql . ASA. SAPr epar edSt at enent . descri be()

JDBC 2.0 Restrictions
The following classes are part of the JDBC 2.0 core interface, but are not available in the
sybase.sql.ASA package:

java.sql.Blob
java.sql.Clob
java.sgl.Ref
java.sql.Struct
java.sql.Array
java.sql.Map

The following JDBC 2.0 core functions are not available in the sybase.sql.ASA package:

Class in syb-
ase.sql.ASA

Missing functions

SAConnection

java.util.Map getTypeMap()
void setTypeMap(java.util.Map map)

SAPreparedStatement

void setRef(int pidx, java.sql.Ref r)
void setBlob(int pidx, java.sql.Blob b))
void setClob(int pidx, java.sql.Clob ¢)
void setArray(int pidx, java.sql.Array a)

120

Sybase 1Q

Data Access Using JDBC

Class in syb- Missing functions
ase.sql.ASA
SACallableStatement Object getObject(pidx, java.util. Map map)

java.sql.Ref getRef(int pidx)
java.sgl.Blob getBlob(int pidx)
java.sql.Clob getClob(int pidx)
java.sql.Array getArray(int pidx)

SAResultSet Object getObject(int cidx, java.util.Map map)
java.sgl.Ref getRef(int cidx)

java.sql.Blob getBlob(int cidx)

java.sgl.Clob getClob(int cidx)

java.sgl.Array getArray(int cidx)

Object getObject(String cName, java.util.Map map)
java.sgl.Ref getRef(String cName)

java.sql.Blob getBlob(String cName)

java.sgl.Clob getClob(String cName)

java.sql.Array getArray(String cName)

Differences Between Client- and Server-side JDBC Connections

A difference between JDBC on the client and in the database server lies in establishing a
connection with the database environment.

« Clientside—In client-side JDBC, establishing a connection requires the Sybase jConnect
JDBC driver. Passing arguments to the DriverManager.getConnection establishes the
connection. The database environment is an external application from the perspective of
the client application.

» Server-side—When using JDBC within the database server, a connection already exists. A
value of jdbc:default:connection passes to DriverManager.getConnection, which
provides the JDBC application with the ability to work within the current user connection.
This is a quick, efficient and safe operation because the client application has already
passed the database security to establish the connection. The user ID and password, having
been provided once, do not need to be provided again. The asajdbc driver can only connect
to the database of the current connection.

You can write JDBC classes in such a way that they can run both at the client and at the server
by employing a single conditional statement for constructing the URL. An external
connection requires the machine name and port number, while the internal connection
requires jdbc:default:connection.

System Administration Guide: Volume 2 121

Data Access Using JDBC

Establish JDBC Connections

This section presents classes that establish a JDBC database connection from a Java
application.

Connect From a JDBC Client Application Using jConnect

If you wish to access database system tables (database metadata) from a JDBC application,
you must add a set of jConnect system objects to your database.

If you wish to access database system tables (database metadata) from a JDBC application,
you must add a set of jConnect system objects to your database. Asajdbc shares the same
stored procedures for database metadata support with jConnect. These procedures are
installed to all databases by default. The iginit switch -i prevents this installation.

The -i switch is common to iginit and the SQL Anywhere utility dbinit. For descriptions of the
-i switch, see SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Administering Your Database > Database administration utilities > Initialization utility
(abinit).

The following complete Java application is a command-line application that connects to a
running database, prints a set of information to your command line, and terminates.

Establishing a connection is the first step any JDBC application must take when working with
database data.

See also

e Establish Connection From a Server-side JDBC Class on page 126
o Sybase jConnect JDBC Driveron page 135

* Running the External Connection Example on page 125

» A Sample Distributed Application on page 141

External Connection Example Code
The source code for the methods used to make a connection.

The source code can be found in the main method and the ASAConnect method of the file
JDBCExanpl es. j avainthe C:\ Docunments and Settings\All Users

\ Sybasel Q sanpl es\ SQLAnywher e\ JDBC directory on Windows or $SYBASE/

| @ 15_3/ sanpl es/ sqgl anywher e/ JDBCon UNIX under your Sybase 1Q installation
directory:

/1 lInport the necessary cl asses
i mport java.sql.?*;

i mport com sybase. j dbc. *;

i mport java.util.Properties;

i nport sybase. sql . *;

i nport asadeno. *;

JDBC

Sybase j Connect
Properties
Sybase utilities
Exanpl e cl asses

A
—~——— — —

122

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dbinit.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dbinit.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbadmin_en11/dbinit.html

Data Access Using JDBC

private static Connection conn;
public static void main(String args[]) {

conn = nul | ;
String machi neNane;
if (args.length I=1) {
machi neNane = "| ocal host";
} else {
machi neName = new String(args[0]);
}

ASAConnect ("dba", "sql", nmachi neNane);
if(conn!=null) {
System out. println("Connection successful");
}el se{
Systemout. println("Connection failed");
}

try{
serializeVariable();

seriali zeCol um();
seri al i zeCol umCast d ass();

}
catch(Exception e) {
Systemout.printin("Error: " + e.getMessage());
e.printStackTrace();
}
}

}
private static void ASAConnect(String Userl D,

String Password,
String Machi nenane) {
/1 uses gl obal Connection variable

String _coninfo = new String(Mchi nename);

Properties _props = new Properties();
_props.put("user", UserlD);
_props. put (" password", Password);

/1 Load the Sybase Driver

try {
Cl ass. for Name(" com sybase. j dbc. SybDri ver"). newl nst ance();

StringBuffer tenmp = new StringBuffer();

/1 Use the Sybase j Connect driver. ..

tenp. append("j dbc: sybase: Tds: ") ;

/1 to connect to the supplied machi ne nane...

t enp. append(_coni nf o) ;

/1 on the default port nunber for ASA. ..

tenp. append(": 2638");

/'l and connect.

Systemout.printin(tenp.toString());

conn = DriverManager. get Connection(tenp.toString() , _props);

}

System Administration Guide: Volume 2 123

Data Access Using JDBC

catch (Exception e) {
Systemout.printin("Error: " + e.getMessage());
e.printStackTrace();

}
}

How the External Connection Example Works
The external connection example is a Java command-line application.

Importing Packages
The application requires several libraries, which are imported in the first lines of
JDBCExanpl es. j ava:

» The java.sql package contains the Sun Microsystems JDBC classes, which are required
for all JDBC applications. You'll find it in the cl asses. zi p file in your Java
subdirectory.

* Imported from com.sybase.jdbc, the Sybase jConnect JDBC driver is required for all
applications that connect using jConnect. You'll find itin the j dbcdr v. zi p file in your
Java subdirectory.

» The application uses a property list. The java.util.Properties class is required to handle
property lists. You'll find it in the cl asses. zi p file in your Java subdirectory.

» The sybase.sql package contains utilities used for serialization. You'll find it in the
asaj dbc. zi p file in your Java subdirectory.

« The asademo package contains example classes used in some examples. You'll find it in
the asadeno. j ar fileinyourj ava subdirectory.

The Main Method

Each Java application requires a class with a method named main, which is the method
invoked when the program starts. In this simple example, JDBCExamples.main is the only
method in the application.

The JDBCExamples.main method carries out the following tasks:

» Processes the command-line argument, using the machine name if supplied. By default,
the machine name is /focalhost, which is appropriate for the personal database server.

» Calls the ASAConnect method to establish a connection.
« Executes several methods that scroll data to your command line.

The ASAConnect Method
The JDBCExamples.ASAConnect method carries out the following tasks:

« Connects to the default running database using Sybase jConnect.
* Class.forName loads jConnect. Using the newlnstance method works around issues
in some browsers.

124

Sybase 1Q

Data Access Using JDBC

e The StringBuffer statements build up a connection string from the literal strings and
the supplied machine name provided on the command line.
» DriverManager.getConnection establishes a connection using the connection string.
« Returns control to the calling method.

Running the External Connection Example
This section describes how to run the external connection example

1. From a system command prompt, change to the Sybase 1Q installation directory.
2. Changetothel Q 15 _3/j ava subdirectory
3. Ensure that your CLASSPATH environment variable includes the current directory (.) and

the imported zip files. For example, from a command prompt (the following should be
entered all on one line):

set classpath=..\java\jdbcdrv.zip;.;..\java
\ asaj dbc. zi p; asadenn. j ar

The default zip file name for Java is cl asses. zi p. For classes in any file named

cl asses. zi p, you only need the directory name in the CLASSPATH variable, not the
zip-file name itself. For classes in files with other names, you must supply the zip file
name.

You need the current directory in the CLASSPATH to run the example.

4. Ensure the database is loaded onto a database server running TCP/IP. You can start such a
server on your local machine using the following command (from the | @ 15_3/
sanpl es/ sql anywher e subdirectory):

OnUNIX:start _iq .../iqgdeno

On Windows: start_iq ...\iqgdenmo
5. Enter the following at the command prompt to run the example:
j ava JDBCExanpl es

If you wish to try this against a server running on another machine, you must enter the
correct name of that machine. The defaultis| ocal host , whichisanalias for the current
machine name.

6. Confirm that a list of people and products appears at your command prompt.

If the attempt to connect fails, an error message appears instead. Confirm that you have
executed all the steps as required. Check that your CLASSPATH is correct. An incorrect
CLASSPATH results in a failure to locate a class.

See also

e Establish Connection From a Server-side JDBC Class on page 126

e Connect From a JDBC Client Application Using jConnect on page 122
o Sybase jConnect JDBC Driveron page 135

System Administration Guide: Volume 2 125

Data Access Using JDBC

Establish Connection From a Server-side JDBC Class

SQL statements in JDBC are built using the createStatement method of a Connection object.
Even classes running inside the server need to establish a connection to create a Connection
object.

Establishing a connection from a server-side JDBC class is more straightforward than
establishing an external connection. Because a user already connected executes the server-
side class, the class simply uses the current connection.

Notes on JDBC Connections

Autocommit behavior—The JDBC specification requires that, by default, a COMMIT is
performed after each data modification statement. Currently, the server-side JDBC
behavior is to commit. You can control this behavior using a statement such as the
following:

conn. set Aut oCommit (false) ;

where conn is the current connection object.

Connection defaults—From server-side JDBC, only the first call to

getConnection("jdbc:default:connection") creates a new connection with the default
values. Subsequent calls return a wrapper of the current connection with all connection
properties unchanged. If you set AutoCommit to OFF in your initial connection, any
subsequent getConnection calls within the same Java code return a connection with
AutoCommit set to OFF.

You may wish to ensure that closing a connection resets connection properties to their
default values, so subsequent connections are obtained with standard JDBC values. The
following type of code achieves this:

Connection conn = DriverManager. get Connection("");
bool ean ol dAut oConmit = conn. get Aut oConmi t () ;

try {
/! do code here

}
finally {

conn. set Aut oConmmi t (ol dAut oCommi t);
}

This discussion applies not only to AutoCommit, but also to other connection properties
such as Transactionlsolation and is ReadOnly.

See also

Connect From a JDBC Client Application Using jConnect on page 122
Sybase jConnect JDBC Driveron page 135
Running the External Connection Example on page 125

126

Sybase 1Q

Data Access Using JDBC

Server-side Connection Example Code
This is an example source code for server-side connection.

You can find the source code in the InternalConnect method of JDBCExanpl es. j ava in
the C:\ Docunents and Settings\Al |l Users\ Sybasel Q sanpl es
\ SQLAnywher e\ JDBC directory under your Sybase 1Q installation directory:

public static void |Internal Connect() {
try {
conn = DriverManager. get Connecti on("j dbc: defaul t: connecti on");
Systemout.printin("Hello World");

}
catch (Exception e) {
Systemout.println("Error: " + e.getMessage());
e.printStackTrace();
}
}
}

How the Server-side Connection Example Works
In this simple example, InternalConnect() is the only method used in the application.

The application requires only one of the libraries (JDBC) imported in the first line of the
JDBCExanpl es. j ava class. The others are for external connections. The package named
java.sql contains the JDBC classes.

The InternalConnect() method carries out the following tasks:

1. Connects to the default running database using the current connection:

« DriverManager.getConnection establishes a connection using a connection string of
jdbc:default:connection.

2. PrintsHel | o Wor | d to the current standard output, which is the server window.
System.out.println carries out the printing.

3. Ifthereisanerrorinthe attemptto connect, an error message appears in the server window,
together with the place where the error occurred.
The try and catch instructions provide the framework for the error handling.

4. The class terminates.

Running the Server-side Connection Example
This section describes how to run the server-side connection example.

1. If you have not already done so, compile the JDBCExanpl es. j ava file. If you are
using the JDK, you can do the following in the C: \ Docunment s and Setti ngs
\Al'l Users\ Sybasel Q sanpl es\ SQLAnywher e\ JDBC directory under your
Sybase 1Q installation directory from a command prompt:

j avac JDBCExanpl es. j ava

System Administration Guide: Volume 2 127

Data Access Using JDBC

2. Start a database server using the demo database. You can start such a server on your local
machine using the following command (from the / ASI Q- 12_7/j ava subdirectory):

OnUNIX:start _iq .../iqgdenmo
On Windows: start_iq ...\iqgdenp

The TCP/IP network protocol is not necessary in this case, since you are not using
jConnect. However, you must have at least 8 Mb of cache available to use Java classes in
the database.

3. Install the class into the demo database. Once connected to the demo database, you can do
this from Interactive SQL using the following command:

| NSTALL JAVA NEW
FROM FI LE ' C:\ Docunents and Settings\Al | Users\Sybasel Q sanpl es
\ SQLAnywher e\ JDBC\ JDBCExanpl es. cl ass

where path is the path to your installation directory.

You can also install the class using Sybase Central. While connected to the demo database,
open the Java Objects folder and double-click Add Class. Then follow the instructions in
the wizard.

4. You can now call the InternalConnect method of this class just as you would a stored
procedure:

CALL JDBCExanpl es>>I nt er nal Connect ()
The first time a Java class is called in a session, the internal Java virtual machine must be
loaded. This can take a few seconds.

5. Confirm that the message Hel | o Wér | d prints on the server screen.

Use JDBC to Access Data

Java applications that hold some or all classes in the database have significant advantages over
traditional SQL stored procedures. At an introductory level, however, it may be helpful to use
the parallels with SQL stored procedures to demonstrate the capabilities of JDBC.

In the following examples, we write Java classes that insert a row into the Depar t ment
table.

As with other interfaces, SQL statements in JDBC can be either staticor dynamic. Static SQL
statements are constructed in the Java application, and sent to the database. The database
server parses the statement, and selects an execution plan, and executes the statement.
Together, parsing and selecting an execution plan are referred to as preparing the statement.

If asimilar statement has to be executed many times (many inserts into one table, for example),
there can be significant overhead in static SQL because the preparation step has to be executed
each time.

128 Sybase 1Q

Data Access Using JDBC

In contrast, a dynamic SQL statement contains placeholders. The statement, prepared once
using these placeholders, can be executed many times without the additional expense of
preparing.

In this section we use static SQL. Dynamic SQL is discussed in a later section.

Miscellaneous JDBC Notes

« Access permissions—L.ike all Java classes in the database, classes containing JDBC
statements can be accessed by any user. There is no equivalent of the GRANT EXECUTE
statement that grants permission to execute procedures, and there is no need to qualify the
name of a class with the name of its owner.

« Execution permissions—Java classes are executed with the permissions of the connection
executing them. This behavior is different to that of stored procedures, which execute with
the permissions of the owner.

Installing the JDBCExamples Class

This section describes how to install the JDBCExamples.class and prepare for the JDBC
examples in the remainder of this appendix.

Sample Code
The code fragments in this section are taken from the complete class C: \ Docunent s and

Settings\All Users\Sybasel Q sanpl es\ SQLAnywher e\ JDBC
\ JDBCExanpl es. j ava, under your installation directory.

Installing JDBCExamples Cass

1. If you have not already done so, install the JDBCExanpl es. cl ass file into the demo
database.

2. Once connected to the demo database from Interactive SQL, enter the following command
in the SQL Statements pane:

| NSTALL JAVA NEW
FROM FI LE ' C.\ Docunents and Settings\Al | Users\Sybasel Q sanpl es
\ SQLAnywher e\ JDBC\ JDBCExanpl es. cl ass'

where path is the path to your installation directory.

You can also install the class using Sybase Central. While connected to the demo database,
open the Java Objects folder and double-click Add Java Class or JAR. Then follow the
instructions in the wizard.

Using JDBC to Insert, Update, and Delete

The Statement object executes static SQL statements. You execute SQL statements such as
INSERT, UPDATE, and DELETE, which do not return result sets, using the executeUpdate

System Administration Guide: Volume 2 129

Data Access Using JDBC

method of the Statement object. Statements such as CREATE TABLE and other data
definition statements can also be executed using executeUpdate.

The following code fragment illustrates how JDBC carries out INSERT statements. It uses an
internal connection held in the Connection object named conn. The code for inserting values
from an external application using JDBC would need to use a different connection, but
otherwise would be unchanged.

public static void InsertFixed() {
/] returns current connection
conn = Driver Manager. get Connection("j dbc: def aul t: connecti on");
// Di sabl e aut oconmi t
conn. set Aut oConmit (fal se);

Statenent stnt = conn.createStatenment();

Integer I Rows = new | nteger(stnt.executeUpdate
("I NSERT | NTO Departnent (dept_id, dept_name)"
+ "VALUES (201, 'Eastern Sales')"

))
/1l Print the nunber of rows updated
Systemout.println(lRows.toString() + "row inserted");

}

Note: This code fragment is part of the InsertFixed method of the JDBCExamples class. On
Windows you can build this class using bui | d. bat in C:\ Docunents and
Settings\All Users\Sybasel Q sanpl es\ SQLAnywher e\ JDBC.

* The setAutoCommit method turns off the AutoCommit behavior, so changes are only
committed if you execute an explicit COMMIT instruction.

« The executeUpdate method returns an integer, which reflects the number of rows affected
by the operation. In this case, a successful INSERT would return a value of one (1).

« Theinteger return type converts to an Integer object. The Integer class is a wrapper around
the basic int data type, providing some useful methods such as toString().

« The Integer IRows converts to a string to be printed. The output goes to the server window.

Running the JDBC Insert example
Create a very simple JDBC class.

1. Using Interactive SQL, connect to the demo database as user ID dba.

2. Ensure the JDBCExamples class has been installed. It is installed together with the other
Java examples classes.

3. Call the method as follows:
CALL JDBCExanpl es>>l nsert Fi xed()
4. Confirm that a row has been added to the depar t nent table.

SELECT *
FROM depar t ment

130

Sybase 1Q

Data Access Using JDBC

The row with ID 201 is not committed. You can execute a ROLLBACK statement to remove
the row.

Passing Arguments to Java Methods

The InsertFixed method can be expand to illustrate how arguments are passed to Java
methods.

The following method uses arguments passed in the call to the method as the values to insert:

public static void | nsertArguments(
String id, String nane) {

try {
conn = Driver Manager . get Connecti on(
"j dbc: def aul t: connecti on");
String sqgl Str = "INSERT | NTO Depart nment "

+ " (dept_id, dept_name)"
+" VALUES (" + id+ ", '" +name + "')"

/| Execute the statenent
Statenent stnt = conn.createStatenent();
I nteger | Rows = new
I nteger(stnt.executeUpdate(sql Str.toString()));

[/ Print the number of rows updated
Systemout.println(lRows.toString() + " rowinserted");

}
catch (Exception e) {
Systemout.println("Error: " + e.getMessage());
e.print StackTrace();
}
}

Using a Java Method with Arguments

» The two arguments are the department id (an integer) and the department name (a string).
Here, both arguments pass to the method as strings, because they are part of the SQL
statement string.

e The INSERT is a static statement and takes no parameters other than the SQL itself.

 Ifyou supply the wrong number or type of arguments, you receive the Pr ocedur e Not
Found error.

1. If you have not already installed the JDBCExanpl es. cl ass file into the demo
database, do so.

2. Connect to the demo database from Interactive SQL, and enter the following command:
call JDBCExanpl es>>I nsert Argunents('203', 'Northern Sales')
3. Verify that an additional row has been added to the Department table:

SELECT *
FROM Depar t nent

System Administration Guide: Volume 2 131

Data Access Using JDBC

4. Roll back the changes to leave the database unchanged:
ROLLBACK

Queries Using JDBC

The Statement object executes static queries, as well as statements that do not return result
sets. For queries, you use the executeQuery method of the Statement object. This returns the
result set in a ResultSet object.

The following code fragment illustrates how queries can be handled within JDBC. The code
fragment places the total inventory value for a product into a variable named inventory. The
product name is held in the String variable prodname. This example is available as the Query
method of the JDBCExamples class.

The example assumes an internal or external connection has been obtained and is held in the
Connection object named conn. It also assumes a variable

public static void Query () {
int max_price = 0;
tryf
conn = Driver Manager . get Connecti on(
"jdbc: defaul t: connection");

/] Build the query
String sql Str = "SELECT id, unit_price "
+ "FROM product"

/| Execute the statenent
Statenent stnt = conn.createStatenment();
Resul t Set result = stnt.executeQuery(sql Str);

while(result.next()) {
int price = result.getlnt(2);
Systemout.printin("Price is " + price);
if(price > max_price) {

max_price = price ;
}

}

catch(Exception e) {
Systemout.println("Error: " + e.get Message());
e.printStackTrace();

}

return nmax_price;
}

Running the Example
Once you have installed the JDBCExamples class into the demo database, you can execute
this method using the following statement in Interactive SQL.:

sel ect JDBCExanpl es>>Query()

132 Sybase 1Q

Data Access Using JDBC

Notes

* The query selects the quantity and unit price for all products named prodname. These
results are returned into the ResultSet object named result.

« There is a loop over each of the rows of the result set. The loop uses the next method.

» Foreach row, the value of each column is retrieved into an integer variable using the getint
method. ResultSet also has methods for other data types, such as getString, getDate, and
getBinaryString.

The argument for the getint method is an index number for the column, starting from 1.
Data type conversion from SQL to Java is carried out according to the information in
“Java / SQL data type conversion” in the “SQL Data Types” chapter of the Sybase 1Q
Reference Manual.

» Sybase IQ supports bidirectional scrolling cursors. However, JDBC provides only the next
method, which corresponds to scrolling forward through the result set.

« The method returns the value of max_price to the calling environment, and Interactive
SQL displays it in the Results pane.

See also
» Distributed Applications on page 139
» Insert and Retrieve Objects on page 134

Using Prepared Statements for More Efficient Access

If you use the Statement interface, you parse each statement you send to the database,
generate an access plan, and execute the statement. The steps prior to actual execution are
called preparing the statement.

You can achieve performance benefits if you use the PreparedStatement interface. This
allows you to prepare a statement using placeholders, and then assign values to the
placeholders when executing the statement.

Using prepared statements is particularly useful when carrying out many similar actions, such
as inserting many rows.

For more information on prepared statements, see Reference. Statements and Options > SQL
Statements > PREPARE statement [ESQL].

Example
The following example illustrates how to use the PreparedStatement interface, although
inserting a single row is not a good use of prepared statements.

The following method of the JDBCExamples class carries out a prepared statement:

public static void JinsertPrepared(int id, String nanme) try {
conn = Driver Manager . get Connecti on(
"j dbc: def aul t: connection");

System Administration Guide: Volume 2 133

Data Access Using JDBC

/1 Build the | NSERT st atenent

/1 ? is a placehol der character

String sql Str = "I NSERT | NTO Depart nment
+ "(dept_id, dept_name)
+ "VALUES (?2, ?)" ;

/1 Prepare the statenment
PreparedSt at enent stnt = conn. prepareStatenent(sql Str);

stnt.setInt(1, id);
stnt.setString(2, nane);
I nteger I Rows = new | nteger (
st nt. execut eUpdate());

/1 Print the nunber of rows updated
Systemout.println(lRows.toString() + " row inserted");

catch (Exception e) {
Systemout.printin("Error: " + e.getMessage());
e.print StackTrace();

}
}

Running the example
Once you have installed the JDBCExamples class into the demo database, you can execute
this example by entering the following statement:

cal | JDBCExanpl es>>| nsert Prepar ed(
202, 'Eastern Sales')

The string argument is enclosed in single quotes, which is appropriate for SQL. If you invoked
this method from a Java application, use double quotes to delimit the string.

Insert and Retrieve Objects

As an interface to relational databases, JDBC is designed to retrieve and manipulate
traditional SQL data types.

Sybase 1Q also provides abstract data types in the form of Java classes. The way you access
these Java classes using JDBC depends on whether you want to insert or retrieve the objects.

See also
« Distributed Applications on page 139
* Queries Using JDBC on page 132

Retrieve Objects
You can retrieve objects and their fields and methods by:

» Accessing methods and fields—Java methods and fields can be included in the select-list
of aquery. A method or field then appears as a column in the result set, and can be accessed
using one of the standard ResultSet methods, such as getint, or getString.

134

Sybase 1Q

Data Access Using JDBC

« Retrieving an objec—If you include a column with a Java class data type in a query select
list, you can use the ResultSet getObject method to retrieve the object into a Java class.
You can then access the methods and fields of that object within the Java class. Java objects
can only be stored in the Catalog Store.

Insert Objects
From a server-side Java class, you can use the JDBC setObject method to insert an object into

a column with Java class data type.

You can insert objects using a prepared statement. For example, the following code fragment
inserts an object of type MyJavaClass into a column of table T:
java. sql . PreparedSt atenent ps =

conn. prepareStatenment ("insert T values(?)");

ps.set Obj ect(1, new MyJavad ass());
ps. execut eUpdat e() ;

An alternative is to set up a SQL variable that holds the object and then to insert the SQL
variable into the table.

Sybase jConnect JDBC Driver

If you wish to use JDBC from a client application or applet, you must have Sybase jConnect to
connect to Sybase 1Q databases.

Depending on the installation package you received, Sybase 1Q may or may not include
Sybase jConnect. You must have jConnect in order to use JDBC from client applications. You
can use server-side JDBC without jConnect.

For a full description of jConnect and its use with Sybase 1Q, see the jConnect documentation
available in the online books or from the jConnect web site

Note: Before you can use jConnect in your application, load the driver by entering the
statement:

Cl ass. for Name(" com sybase. j dbc. SybDri ver"). newl nstance();

Using the newInstance method works around issues in some browsers.

See also

e Establish Connection From a Server-side JDBC Class on page 126

e Connect From a JDBC Client Application Using jConnect on page 122
* Running the External Connection Example on page 125

System Administration Guide: Volume 2 135

http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

Data Access Using JDBC

Versions of jConnect Supplied with Sybase 1Q

The

Sybase 1Q provides two versions of the Sybase jConnect JDBC driver:

« Full version—If you choose to install jConnect, a jConnect subdirectory is added to your
Sybase 1Q installation. This holds a directory tree with all jConnect files.

« Zip file—The Remote Data Access features, and the Java debugger, both use jConnect to
connect to the database. A zip file of the basic jConnect classes is provided to enable
jConnect use even without the full development version of the driver.

jConnect Driver Files

The Sybase jConnect driver is installed into a set of directories under the j Connect
subdirectory of your Sybase 1Q installation. If you have not installed jConnect, you can use the
j dbcdrv. zi p file installed into the Java subdirectory.

Classpath Setting for jConnect

For your application to use jConnect, the jConnect classes must be in your CLASSPATH
environment variable at compile time and run time, so the Java compiler and Java runtime can
locate the necessary files.

For example, the following command adds the jConnect driver class path to an existing
CLASSPATH environment variable where pathis your Sybase 1Q installation directory.

set cl asspat h=%I asspat h% pat h\j Connect\ cl asses

The following alternative command adds the j dbcdrv. zi p file to your CLASSPATH.
set cl asspat h=%!| asspat h% pat h\j ava\j dbcdrv. zi p

Importing the jConnect Classes

The classes in jConnect are all in the com.sybase package. The client application needs to
access classes in com.sybase.jdbc. For your application to use jConnect, you must import
these classes at the beginning of each source file:

i mport com sybase. j dbc. *

See also
e JDBC Overviewon page 117

Installing jConnect System Objects Into a Database

If you wish to use jConnect to access system table information (database metadata), you must
add the jConnect system objects to your database.

By default, the jConnect system objects are added to a database for any database created using
version 12.7, and to any database upgraded to version 12.7.

You can choose to add the jConnect objects to the database either when creating or upgrading,
or at a later time.

136

Sybase 1Q

Data Access Using JDBC

You can install the jConnect system objects from Interactive SQL.

Adding the {Connect System Objects To a Version 12.7 Database From Sybase
Central:

1. Connect to the database from Sybase Central as a user with DBA authority.

2. Inthe left pane of the main Sybase Central viewer, right-click the database icon and choose
Re-Install jConnect Meta-data Support from the popup menu.

Adding the [Connect System Objects To a Version 12.7 Database From
Interactive SQL

Connect to the database from Interactive SQL as a user with DBA authority, and enter the
following command in the SQL Statements pane:

read path\scripts\jcatal og. sql

where path is your Sybase 1Q installation directory.

Note: You can also use a command prompt to add the jConnect system objects to a version
12.7 database. At the command prompt, type:

dbi sgl -c "uid=user; pwd=pwd" pat h\scripts\jcatal og. sql

where userand pwdidentify a user with DBA authority, and pathis your Sybase 1Q installation
directory.

Supply URL For the Server

To connect to a database via jConnect, you need to supply a Universal Resource Locator
(URL) for the database.

An example given in the section is as follows:

StringBuffer tenmp = new StringBuffer();

/'l Use the Sybase j Connect driver...

tenp. append("j dbc: sybase: Tds: ") ;

/1 to connect to the supplied machi ne nane...

t enp. append(_coni nf o) ;

/1 on the default port nunber for ASA. ..

tenp. append(": 2638");

/'l and connect.

Systemout.println(tenp.toString());

conn = Driver Manager . get Connecti on(tenp.toString() , _props);

The URL is put together in the following way:

j dbc: sybase: Tds: nachi ne- nane: port - nunber
The individual components are include:

« jdbc:sybase:Tds—The Sybase jConnect JDBC driver, using the TDS application protocol.

System Administration Guide: Volume 2 137

Data Access Using JDBC

* machine-name—The IP address or name of the machine on which the server is running. If
you are establishing a same-machine connection, you can use | ocal host , which means
the current machine.

e port number—The port number on which the database server listens. The port number
assigned to Sybase 1Q is 2638. Use that number unless there are specific reasons not to do
SO0.

The connection string must be less than 253 characters in length.

Specify Database On a Server

Each Sybase 1Q server may have one or more databases loaded at a time. The URL as
described above specifies a server, but does not specify a database. The connection attempt is
made to the default database on the server.

You can specify a particular database by providing an extended form of the URL in one of the
following ways.

Using the ServiceName Parameter
j dbc: sybase: Tds: nachi ne- nane: port - nunber ?Ser vi ceName=DBN

The question mark followed by a series of assignments is a standard way of providing
arguments to a URL. The case of ServiceName is not significant, and there must be no spaces
around the = sign. The DBN parameter is the database name.

Using the RemotePWD Parameter

A more general method allows you to provide additional connection parameters such as the
database name, or a database file, using the RemotePWD field. You set RemotePWD as a
Properties field using the setRemotePassword() method.

Here is sample code that illustrates how to use the field.

sybDrvr = (SybDriver)d ass. f or Nanmg(
"com sybase. j dbc2. j dbc. SybDriver"). new nstance();

props = new Properties();
props. put("User", "DBA");
props. put ("Password", "SQ");
sybDr vr. set Renpt ePasswor d(

nul I, "dbf=asi qdeno. db", props);
Connecti on con = Driver Manager. get Connecti on(

"j dbc: sybase: Tds: | ocal host", props);

Using the database file parameter DBF, you can start a database on a server using jConnect. By
default, the database is started with autostop=YES. If you specify a DBF or DBN of utility_db,
then the utility database will automatically be started.

For information on the utility database, see System Administration Guide.: Volume 1 >
Overview of Sybase 1Q System Administration and Managing User IDs and Permissions.

1Q specific connection parameters from TDS clients should be specified in RemotePWD.

138

Sybase 1Q

Data Access Using JDBC

This example shows how to specify 1Q specific connection parameters, where myconnection
becomes the 1Q connection name:

p. put (“ Renmot ePWD', “, , CON=nyconnecti on”) ;

where myconnection becomes the 1Q connection name.

Distributed Applications

Ina distributed application, parts of the application logic run on one machine, and parts run on
another machine. With Sybase 1Q, you can create distributed Java applications, where part of
the logic runs in the database server, and part on the client machine.

Sybase 1Q is capable of exchanging Java objects with an external, Java client.

Having the client application retrieve a Java object from a database is the key task in a
distributed application This section describes how to accomplish that task.

Features of Distributed Applications
There are two other methods in JDBCExanpl es. j ava that use distributed computing:

 serializeVariable—This method creates a native Java object referenced by a SQL variable
on the database server and passes it back to the client application.

 serializeColumnCastClass—This method is like the serializeColumn method, but
demonstrates how to reconstruct subclasses. The column that is queried (JProd from the
product table) is of data type asademo.Product. Some of the rows are asademo.Hat,
which is a subclass of the Product class. The proper class is reconstructed on the client
side.

Requirements for Distributed Applications
There are two tasks in building a distributed application.

* Any class running in the server must implement the Serializable interface. This is very
simple.

« Theclient-side application must import the class, so the object can be reconstructed on the
client side.

These tasks are described in the following sections.

See also
» Insert and Retrieve Objects on page 134
* Queries Using JDBC on page 132

System Administration Guide: Volume 2 139

Data Access Using JDBC

Serializable Interfaces

Obijects pass from the server to a client application in serializedform. For an object to be sent
to a client application, it must implement the Serializable interface. Fortunately, this is a very
simple task.

The Serializable interface contains no methods and no variables. Serializing an object
converts it into a byte stream which allows it to be saved to disk or sent to another Java
application where it can be reconstituted, or deserialized.

A serialized Java object in a database server, sent to a client application and deserialized, is
identical in every way to its original state. Some variables in an object, however, either don't
need to be or, for security reasons, should not be serialized. Those variables are declared using
the keyword transient, as in the following variable declaration.

transient String password;

When an object with this variable is deserialized, the variable always contains its default
value, null.

Custom serialization can be accomplished by adding writeObject() and readObject() methods
to your class.

For more information about serialization, see Sun Microsystems' Java Development Kit
(JDK).

Implementing the Serializable Interface

Implementing the Serializable interface amounts to simply declaring that your class can be
serialized.

Add the words implements java.io.Serializable to your class definition.

For example, the Product class in the in $SADI R/ sanpl es/ asa/ j ava/ asadenp
(UNIX) or “SADI R% sanpl es\ asa\ j ava\ asadeno (Windows) subdirectory
implements the Serializable interface by virtue of the following declaration:

public class Product inplements java.io.Serializable

Importing the Class On the Client Side

On the client side, any class that retrieves an object has to have access to the proper class
definition to use the object.

To use the Product class, which is part of the asademo package, you must include the
following line in your application:

i mport asadeno. *

The asadenv. j ar file must be included in your CLASSPATH for this package to be
located.

140

Sybase 1Q

Data Access Using JDBC

A Sample Distributed Application
The JDBCExanpl es. | ava class contains three methods that illustrate distributed Java
computing. These are all called from the main method.

Here is the getObjectColumn method from the JDBCExamples class.

private static void get QbjectColum() throws Exception {
/] Return a result set froma columm containing
/1 Java objects

asadeno. Cont act I nfo ci;

String nane;

String sComent ;

if (conn!=null) {
Statenent stnt = conn.createStatenent();
Resul t Set rs = stnt. executeQuery(
"SELECT JCont act | nfo FROM j dba. cont act"
)
while (rs.next()) {
ci = (asadeno. Contactlnfo)rs.getObject(1);

Systemout.printiln("\n\tStreet: " + ci.street +
"City: " +ci.city +
"\n\tState: " + ci.state +
"Phone: " + ci.phone +
"\n")
}
}
}

The getObject method is used in the same way as in the internal Java case.

See also
e Connect From a JDBC Client Application Using jConnect on page 122

System Administration Guide: Volume 2 141

Data Access Using JDBC

142 Sybase 1Q

Debugging Logic in the Database

Debugging Logic in the Database

This appendix describes how to use the Sybase debugger to assist in developing SQL stored
procedures and event handlers, as well as Java stored procedures.

Introduction To Debugging In the Database

You can use the debugger during the development.

You can use the following objects:

e SQL stored procedures, event handlers, and user-defined functions.
» Java stored procedures in the database.

Debugger Features

You can use the debugger during the development of SQL stored procedures, triggers, event
handlers, and user-defined functions.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Introduction to the SQL
Anywhere debugger.

Requirements for Using the Debugger
To use the debugger, you need:

« Permissions—You must either have DBA authority or be granted permissions in the
SA_DEBUG group. This group is automatically added to all databases when they are
created.

» Source code for Java classes—The source code for your application must be available to
the debugger. For Java classes, the source code is held on a directory on your hard disk. For
stored procedures, the source code is held in the database.

« Compilation options—To debug Java classes, they must be compiled so that they contain
debugging information. For example, if you are using the Sun Microsystems JDK
compiler j avac. exe, the Java classes must be compiled using the - g command-line
option.

Note: The Sybase 1Q demo database is igdemo.db.

System Administration Guide: Volume 2 143

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-debugging-secta-5473570.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-debugging-secta-5473570.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/ug-debugging-secta-5473570.html

Debugging Logic in the Database

Tutorial 1. Getting Started With the Debugger

These tutorials describe how to start the debugger, how to connect to a database, and how to
debug a Java class.

Lesson 1. Connect To a Database and Start the Debugger

This tutorial shows you how to start the debugger, connect to a database, and attach to a
connection for debugging. It uses the Sybase 1Q demo database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Tutorial: Getting started
with the debugger > Lesson 1. Connect to a database and start the debugger.

Tutorial 2: Debugging a stored procedure

This tutorial describes a sample session for debugging a stored procedure.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Tutorial: Getting started
with the debugger > Lesson 2. Debug a stored procedure.

Tutorial 3: Debugging a Java Class

In this tutorial, you call JIDBCExamples.Query() from Interactive SQL (dbisql), interrupt the
execution in the debugger, and trace through the source code for this method.

The JDBCExamples.Query() method executes the following query against the demo
database:

SELECT ID, UnitPrice
FROM Pr oduct s

It then loops through all the rows of the result set, and returns the one with the highest unit
price.

You must compile classes with the j avac - g option to debug them. The sample classes are
compiled for debugging.

Note: To use the Java examples, you must have the Java example classes installed into the
demo database.

144

Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-connect-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-connect-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-connect-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-procedure-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-procedure-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/tutorial-procedure-javadebug.html

Debugging Logic in the Database

Demo Database Java Example Classes
If you intend to run Java examples, install the Java example classes into the demo database.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data
Access APIs > SQL Anywhere JDBC driver > Using JDBC to access data > Preparing for the
examples.

Displaying Java Source Code Into the Debugger
The debugger looks in a set of locations for source code files with . j ava extension.

The Java Source Code Path window holds a list of directories in which the debugger looks for
Java source code. Java rules for finding packages apply. The debugger also searches the
current CLASSPATH for source code.

Select Sybase 1Q 15 in left folder view.

In Sybase Central, select Mode > Debug.

When prompted to select the user to debug, specify * for all users and click OK.

From the debugger interface, select Debug > Set Java Source Code Path.

Enter the path to the j ava subdirectory of your Sybase 1Q installation directory. For
example, if you installed Sybase 1Q in %4 QDI R15% enter:

% QDI R15% j ava

6. Click Browse Folder to select from a list of folders or individual files where the debugger
looks for Java source.

7. Click Browse File to locate a file to add to the list.
8. Click OK, and close the window.

o w DR

Setting a Breakpoint

You can set a breakpoint at the beginning of the Query() method. When the method is invoked,
execution stops at the breakpoint.

1. In the Source Code window, scroll down until you see the beginning of the Query()
method, near the end of the class, starting with:

public static int Query() {

2. Click the green indicator to the left of the first line of the method, until it is red. The first
line of the method is:

int max_price = 0;

Repeatedly clicking the indicator toggles its status. After setting the breakpoint, the Java
class does not need to be recompiled.

System Administration Guide: Volume 2 145

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/preparing-using-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/preparing-using-jdbc.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/preparing-using-jdbc.html

Debugging Logic in the Database

Running the Method

You can invoke the Query() method from Interactive SQL (dbisql), and see its execution
interrupted at the breakpoint.

1

Start Interactive SQL. Connect to the demo database as used ID DBA and password
sql .

The connection appears in the debugger Connections window list.

To invoke the method, enter the following command in Interactive SQL:

SELECT JDBCExanpl es. Query()

The query does not complete. Instead, execution is stopped in the debugger at the

breakpoint. In Interactive SQL, the Stop button is active. In the debugger Source window,
the red arrow indicates the current line.

You can now step through source code and carry out debugging activities in the debugger.

Stepping Through Source Code

From the previous section, the debugger should have stopped executing
JDBCExamples.Query() at the first statement in the method:

1

Choose Debug > Step Over, or press F10 to step to the next line in the current method. Try
this two or three times.

Click at the end of the following line using the mouse, and choose Debug > Run To Cursor,
or press CTRL + F10 to run to that line and break:

Select the following line (line 292) and press F9 to set a breakpoint on that line:
return max_price;

An asterisk appears in the left column to mark the breakpoint. Press F5 to execute to that
breakpoint.

Try different methods of stepping through the code. End with F5 to complete the
execution.

When you have completed the execution, the Interactive SQL data window displays the
value 24.

To move to the next breakpoint, add an F5.

When you have completed the execution, the Interactive SQL data window displays the
value 24.

The complete set of options for stepping through source code appear on the Run menu. You
can find more information in the debugger online Help.

146

Sybase 1Q

Debugging Logic in the Database

Inspecting and Modifying Variables

You can inspect the values of both local variables (declared in a method) and class static
variables in the debugger.

You can display class-level variables (static variables) in the Debugger window and inspect
their values. For more information, see the debugger online Help.

You can inspect the values of local variables in a method as you step through the code, to better
understand what is happening.

Note: To use the Java examples, you must have the Java example classes installed into the
demo database.

1. Set a breakpoint at the first line of the JDBCExamples.Query method. This line is as
follows:

int max_price = 0
2. In Interactive SQL, execute the method again:
SELECT JDBCExanpl es. Query()

The query executes only as far as the breakpoint.
3. Press F7 to step to the next line. The max_price variable has now been declared and
initialized to zero.

4, If the Locals window does not appear, choose Window > Locals to display it.

The Locals window shows that there are several local variables. max_price has a value of
zero. All other variables are listed as var i abl e not i n scope, which means they
are not yet initialized.

5. Inthe Locals window, double-click the Value column entry for max_price, and change the
value of max_price to 45.

The value 45 is larger than any other price. Instead of returning 24, the query now returns
45 as the maximum price.

6. In the Source window, press F7 repeatedly to step through the code. The values of the
variables appear in the Locals window. Step through until the stmt and result variables
have values.

7. Expand the result object by clicking the icon next to it, or by setting the cursor on the line
and pressing Enter. This displays the values of the fields in the object.

8. When you have experimented with inspecting and modifying variables, press F5 to
complete the execution of the query and finish the tutorial.

System Administration Guide: Volume 2 147

Debugging Logic in the Database

Breakpoints
Breakpoints control when the debugger interrupts execution of your source code.

SeeSQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Working with
breakpoints.

View and Edit Variable Behavior

The debugger lets you view and edit the behavior of your variables while stepping through
your code.

The debugger provides a Debugger Details pane, which displays the different kinds of
variables used in stored procedures. The Debugger Details pane appears at the bottom of
Sybase Central when Sybase Central is running in Debug mode.

See SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Debugging procedures, functions, triggers, and events > Working with variables.

Write Debugger Scripts

The debugger allows you to write scripts in the Java programming language. A script is a Java
class that extends the sybase.asa.procdebug.DebugScript class.

When the debugger runs a script, it loads the class and calls its run method. The first parameter
of the run method is a pointer to an instance of the class. This interface lets you interact with
and control the debugger.

You can compile scripts with a command such as the following:

javac -cl asspath %asany% pr ocdebug/ ProcDebug. j ar ; %€l asspat h%
myScri pt. Java.

sybase.asa.procdebug.DebugScript Class
The DebugScript class is as follows:

/1 Al debug scripts nust inherit fromthis class
package sybase. asa. procdebug;

abstract public class DebugScri pt

{
abstract public void run(|DebugAPl db, String args[]);

/*

148 Sybase 1Q

http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/breakpoints-working-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/breakpoints-working-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/breakpoints-working-javadebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/setting-breakpoints-procdebug.html
http://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.11.0.1/dbusage_en11/setting-breakpoints-procdebug.html

Debugging Logic in the Database

The run nethod is called by the debugger
- args will contain command |ine arguments
*/
public void OnEvent(int event) throws DebugError {}
/*
- Override the followi ng nmethods to process debug events
- NOTE: this nethod will not be called unless you call

DebugAPI . AddEvent Handl er(this);
*/

}

sybase.asa.procdebug.IDebugAPI Interface
The IDebugAPI interfaces is as follows:

package sybase. asa. procdebug;
i nport java.util.*;
public interface | DebugAPI

{

/]l Simulate Menu |tens

| DebugW ndow MenuOpenSour ceW ndow() throws DebugError;

| DebugW ndow MenuQpenCal | sW ndow() throws DebugError;

| DebugW ndow MenuQpenCl assesW ndow() throws DebugError;

| DebugW ndow MenuQpend assLi st Wndow() throws DebugError;
| DebugW ndow MenuOpenMet hodsW ndow() t hrows DebugError;

| DebugW ndow MenuQpenSt ati csW ndow() throws DebugError;

| DebugW ndow MenuQpenCat chW ndow() throws DebugError;

| DebugW ndow MenuOpenPr ocW ndow() throws DebugError;

| DebugW ndow MenuOpenCut put W ndow() throws DebugError;

| DebugW ndow MenuQpenBr eakW ndow() throws DebugError;

| DebugW ndow MenuQpenLocal sW ndow() throws DebugError;

| DebugW ndow MenuQpenl nspect Wndow() throws DebugError;

| DebugW ndow MenuOpenRowvar W ndow() throws DebugError;

| DebugW ndow MenuOpenQuer yW ndow() throws DebugError;

| DebugW ndow MenuQpenEval uat eW ndow() throws DebugError;
| DebugW ndow MenuQpend obal sW ndow() throws DebugError;

| DebugW ndow MenuOpenConnecti onW ndow() throws DebugError;
| DebugW ndow MenuQpenThr eadsW ndow() t hrows DebugError;

| DebugW ndow Get Wndow(String name) throws DebugError;

voi d MenuRunRestart () throws DebugError;
voi d MenuRunHome() throws DebugError;
voi d MenuRunGo() throws DebugError;

voi d MenuRunToCursor () throws DebugError;
voi d MenuRunl nterrupt() throws DebugError;
voi d MenuRunOver () throws DebugError;
voi d MenuRunlnto() throws DebugError;

voi d MenuRunl nt oSpeci al () throws DebugError;
voi d MenuRunQut () throws DebugError;

voi d MenuSt ackUp() throws DebugError;
voi d MenuSt ackDown() throws DebugError;
voi d MenuSt ackBotton{) throws DebugError;

System Administration Guide: Volume 2 149

Debugging Logic in the Database

voi d MenuFil eExit() throws DebugError;

voi d MenuFi |l eQpen(String name) throws DebugError;

voi d MenuFi | eAddSour cePat h(String what) throws DebugError;

voi d MenuSettingsLoadState(String file) throws DebugError;

voi d MenuSettingsSaveState(String file) throws DebugError;

voi d MenuW ndowTi | e() throws DebugError;

voi d MenuW ndowCascade() throws DebugError;

voi d MenuW ndowRefresh() throws DebugError;

voi d MenuHel pW ndow() throws DebugError;

voi d MenuHel pCont ents() throws DebugError;

voi d MenuHel pl ndex() throws DebugError;

voi d MenuHel pAbout () throws DebugError;

voi d MenuBr eakAt Cursor () throws DebugError;

voi d MenuBreakC earAll () throws DebugError;

voi d MenuBr eakEnabl eAl | () throws DebugError;

voi d MenuBr eakDi sabl eAl'l () throws DebugError;

voi d MenuSear chFi nd(| DebugW ndow w, String what) throws
DebugError;

voi d MenuSear chNext (| DebugW ndow w) throws DebugError;

voi d MenuSear chPrev(| DebugW ndow w) throws DebugError;

voi d MenuConnecti onLogi n() throws DebugError;

voi d MenuConnecti onRel easeSel ect ed() throws DebugError;

[/ output w ndow

voi d Qutputd ear();

void QutputLine(String line);

voi d Qut put Li neNoUpdate(String line);
voi d Qut put Updat e() ;

/] Java source search path

voi d Set SourcePath(String path) throws DebugError;
String Get SourcePath() throws DebugError;

/1 Catch java exceptions
Vect or Cet Cat ching();
voi d Catch(bool ean on, String nane) throws DebugError;

/| Dat abase connections

int ConnectionCount();

voi d ConnectionRel ease(int index);
voi d ConnectionAttach(int index);
String ConnectionName(int index);
voi d ConnectionSel ect(int index);

/1 Login to database

bool ean Loggedl n();

void Login(String url, String userld, String password, String
user ToDebug) throws DebugError;

voi d Logout ();

/1 Simul ate keyboard/ nobuse actions
voi d Del eteltemAt (| DebugWndow w, int row) throws DebugError;
voi d Doubl ed i ckOn(| DebugW ndow w, int row) throws DebugError;

/1 Breakpoints

150 Sybase 1Q

Debugging Logic in the Database

hj ect BreakSet(String where) throws DebugError;

void BreakC ear(Object b) throws DebugError;

voi d BreakEnabl e(Cbject b, bool ean enabl ed) throws DebugError;

voi d BreakSet Count(Object b, int count) throws DebugError;

int BreakGetCount(Cbject b) throws DebugError;

voi d BreakSet Condition(Object b, String condition) throws
DebugError;

String BreakGet Condition(Cbject b) throws DebugError;

Vect or CGetBreaks() throws DebugError;

/1 Scripting

voi d RunScript(String args[]) throws DebugError;
voi d AddEvent Handl er (DebugScript s);

voi d RenmoveEvent Handl er (DebugScript s);

/1 M scel | aneous

voi d Eval Run(String expr) throws DebugError;
voi d QueryRun(String query) throws DebugError;
voi d QueryMoreRows() throws DebugError;

Vect or Cet C assNanes();

Vect or CGet Procedur eNanes() ;

Vect or W ndowCont ent s(| DebugW ndow wi ndow) throws DebugError;
bool ean At Break();

bool ean | sRunni ng();

bool ean At StackTop();

bool ean At St ackBotton();

voi d Set StatusText(String nmsg);

String GetStatusText();

voi d Wit Cursor();

voi d d dCursor();

void Error(Exception x);

void Error(String nsg);

voi d Warning(String nsg);

String Ask(String title);

bool ean Menul sChecked(String cnd);

voi d MenuSet Checked(String cnd, bool ean on);
voi d Addl nspectlten{ String s) throws DebugError;

/1 Constants for DebugScript.OnEvent paraneter
public static final int EventBreak = O;

i
public static final int EventTerm nate = 1;
public static final int EventStep = 2;
public static final int Eventlnterrupt = 3;
public static final int EventException = 4;
public static final int EventConnect = 5;

b

sybase.asa.procdebug.lIDebugWindow Interface
The IDebugWindow interfaces is as follows:

Il this interface represents a debugger w ndow
package sybase. asa. procdebug;
public interface |DebugW ndow

{
public int GetSelected();

System Administration Guide: Volume 2 151

Debugging Logic in the Database

/*
get the currently selected row, or -1 if no selection
*/

publ i ¢ bool ean Set Sel ected(int i);
/*

set the currently selected row Ignored if i <0 or i > #rows
*/

public String StringAt(int row);
/*
get the String representation of the Nth row of the wi ndow.
Returns null if row > # rows
*/

public java.awt.Rectangl e GetPosition();
public void SetPosition(java.awt.Rectangle r);

/*
get/set the wi ndows position within the frame
*/
public void C ose();
/*
Cl ose (destroy) the wi ndow
*/

152 Sybase 1Q

Index
A

Adaptive Server Enterprise 15.5 104
Adaptive Server Enterprise server 93
Adaptive Server Enterprise servers 91
aggregate functions 37
statistical 54
STDDEV_POP 55
STDDEV_SAMP 55
VAR_POP 55
VAR_SAMP 55
ALLOW_NULLS_BY_DEFAULT option
Open Client 86
analytical functions 21
asajdbc server class 103
asaodbc server class 105
ascending order 46
ASEJDBC class 91
asejdbc server class 104
aseodbc server class 106
AT clause
CREATE EXISTING TABLE statement 95
atomic compound statements 10
autocommit mode

JDBC 126
B
batches

about 3, 9

SQL statements allowed 16
BEGIN TRANSACTION statement

remote data access 98
breakpoints

setting in a Java class 145

C

CALL statement
about 3
examples 5
parameters 11
syntax 9

CASE statement
syntax 9

case-sensitivity
remote access 100
CHAINED option
Open Client 86
CIS (Component Integration Services) 81
classes
importing 140
CLASSPATH environment variable
jConnect 136
setting 125
Client-Library
about 81
CLOSE statement
procedures 13
column information
inaccessible 104
COMMIT statement
compound statements 10
JDBC 126
procedures 15
remote data access 98
Component Integration Services 91
compound statements
atomic 10
declarations 10
using 9
computing deltas between adjacent rows 47
connecting
jConnect 138
connections
debugging 144
jConnect URL 137
JDBC 121, 122
JDBC client 122
JDBC defaults 126
JDBC example 126
JDBC examples 122
JDBC in the server 126
remote 98
CONTINUE_AFTER_RAISERROR option
Open Client 86
control statements
list9
CREATE EXISTING TABLE
error 104

Index

System Administration Guide: Volume 2

153

Index

CREATE EXISTING TABLE statement 91
using 95
CREATE PROCEDURE statement
examples 4
parameters 11
CREATE TABLE statement
proxy tables 96
CUBE operation 24, 25, 33
example 35
NULL 26
SELECT statement 33
current row 44
CURRENT ROW 41, 42
cursors
and LOOP statement 13
in procedures 13
on SELECT statements 13
procedures 13

D

data sources
external servers 105
database options
Open Client 86
databases
multiple 97
multiple on server 86
proxy 81
URL 138
DB-Library
about 81
debugger
about 143
connecting 144
features 143
getting started 144
requirements 143
tutorial 144
debugging
breakpoints 145
connection 144
event handlers 115
features 143
introduction 143
Java 144
permissions 143
requirements 143
stored procedures 144
DebugScript class 148

DECLARE statement
compound statements 10
procedures 13

deltas between adjacent rows, computing 47

descending order 46

DirectConnect 90, 91

DirectConnect for Oracle 91

distributed applications
about 139
example 141
requirements 139

distribution functions 21, 38, 59

driver
missing 100
DSEdit
entries 82
starting 82
using 82
E
encryption

hiding objects 16
TDS password 84, 85
Enterprise Connect Data Access 90, 91
error handling
ON EXCEPTION RESUME 14
errors
procedures 14
event handlers 113
debugging 115
triggering 115
events
retrieving a schedule name 115
retrieving an event name 115
system 112
trigger condition 112
examples
OLAP 65
exception handlers
procedures 15
EXECUTE IMMEDIATE statement
procedures 15
executeQuery method
about 132
executeUpdate method
about 129
extensions to GROUP BY clause 21, 24
external logins
about 94

154

Sybase 1Q

creating 94
dropping 95

F

FETCH statement
procedures 13
FOR statement
syntax 9
FORWARD TO statement 97
functions
aggregate 37
analytical 21, 36
correlation 55
covariance 55, 56
distribution 21, 59
inverse distribution 59
numeric 21
numerical 61
ordered sets 59
PERCENTILE_CONT function 59
PERCENTILE_DISC function 59
ranking 21, 48
reporting 52
simple aggregate 37
standard deviation 54
statistical 21
statistical aggregate 54
STDDEV_POP function 55
STDDEV_SAMP function 55
user-defined 7
VAR_POP function 55
VAR_SAMP function 55
variance 54
window 22, 52
windowing 37
windowing aggregate 21, 52

G

getConnection method
instances 126
GROUP BY
clause extensions 24
CUBE 25
ROLLUP 25
GROUP BY clause extensions 24
GROUPING function
NULL 26

ROLLUP operation 26

iAnywhere JDBC driver
choosing a JDBC driver 118
IDebugAPI interface 149
IDebugWindow 151
IF statement
syntax 9
import
jConnect 136
INSERT statement
JDBC 129, 131
objects 134, 135
interfaces
IDebugAPI 149
IDebugWindow 151
interfaces file 91, 93
configuring 82
inverse distribution functions 59
IP address
about 83
iqdsedit
using 82
ISOLATION_LEVEL option
Open Client 86

Java
about 143
about debugging 143
debugging 143, 144
JDBC 117
querying objects 139
Java data types
inserting 134
retrieving 134
Java debugger
requirements 143
tutorial 144
jcatalog.sql file
jConnect 136
jConnect
about 135
choosing a JDBC driver 118
CLASSPATH environment variable 136
connections 122, 126

Index

System Administration Guide: Volume 2

155

Index

database setup 136
installation 136
jdbcdrv.zip 136
packages 136
password encryption 85
system objects 136
URL 137
versions 136

jConnect 6.0 104

JDBC
about 117
applications overview 119
autocommit 126
client connections 122
client-side 121
connecting 122
connecting to a database 138
connection code 122
connection defaults 126
connections 121
data access 128
examples 122
features 119
INSERT statement 129, 131
jConnect 135
non-standard classes 119
overview 117
prepared statements 133
requirements 117
SELECT statement 132
server-side 121
server-side connections 126
version 119
ways to use 117

JDBC drivers
choosing 118
compatibility 118
performance 118

JDBCExamples class

libctl.cfg file

DSEDIT environment variable 82
localhost

machine name 83
logical offset of a window frame 45
LOOP statement

in procedures 13

syntax 9

M

managing
transactions 98
MS SQL 90
MS SQL Server 91
multiple databases
DSEDIT entries 82
joins 97

N

NULL
CUBE operation 26
ROLLUP operation 26
NULL values
example 26
NULL values and subtotal rows 26
numeric functions 21

O

objects
hiding 16
inserting 134
querying 139
retrieving 134, 139
OoDBC
external servers 105
server classes 105

about 129 OLAP 38
about 21
K aggregate functions 37
keywords analytical functions 21, 36
remote servers 100 benefits 22
CUBE operation 33
L current row 44
distribution functions 21, 38
LEAVE statement extensions to GROUP BY clause 21
syntax 9 functionality 21
156 Sybase 1Q

Grouping() 24

NULL values 26

numeric functions 21

ORDER BY clause 39
PARTITION BY clause 39
range 45

RANGE 38

ranking functions 21, 38
ROLLUP operator 25

rows 44

ROWS 38

semantic phases of execution 22
statistical aggregate functions 21
statistical functions 38

subtotal rows 25

using 22

window concept 38

window framing 38

window functions 22

window ordering 38

window partitioning 38, 39
window sizes 38

windowing extensions 37
windows aggregate functions 21

OLAP examples 65

ascending and descending order for value-
based frames 46

calculate cumulative sum 67

calculate moving average 68

computing deltas between adjacent rows 47

default window frame for RANGE 72

default window frame for ROW 71

multiple aggregate functions in a query 69

ORDER BY results 68

range-based window frames 45

row-based window frames 42

unbounded preceding and unbounded
following 72

unbounded window 46

using a window with multiple functions 67

window frame excludes current row 70

window frame with ROWS vs. RANGE 70

window functions 48

window functions in queries 66

OLAP functions

distribution 59
inter-row functions 57
numerical functions 61
ordered sets 59

ranking functions 48
statistical aggregate 54
windowing 37
windowing:aggregate functions 52
OmniConnect 81
support 84
ON EXCEPTION RESUME clause
about 14
online analytical processing
CUBE operator 33
functionality 21
NULL values 26
ROLLUP operator 25
subtotal rows 25
Open Client
configuring 81
interface 81
password encryption 84
Open Server
adding 81
addresses 83
architecture 81
starting 85
system requirements 85
OPEN statement
procedures 13
options
Open Client 86
ORDER BY clause 39, 40
sort order 46
ordered set functions 59
PERCENTILE_CONT 59
PERCENTILE_DISC 59
OVER clause 38

P

packages

jConnect 136
PARTITION BY clause 39
password

TDS encryption 84, 85
password encryption

jConnect 85

TDS 84, 85
PERCENTILE_CONT function 59
PERCENTILE_DISC function 59
performance

JDBC 133

JDBC drivers 118

Index

System Administration Guide: Volume 2

157

Index

permissions

debugging 143

procedures 6

user-defined functions 8
phases of execution 22
physical offset of a window frame 44
ping

testing Open Client 83
population variance function 55
prefixes 24

ROLLUP operation 25

subtotal rows 25
PREPARE statement

remote data access 98
prepared statements

JDBC 133
PreparedStatement interface

about 133
Procedure Not Found error

Java methods 131
procedures

about 3

benefits of 3

calling 5

creating 4

cursors 13

cursors in 13

debugging 144

default error handling 14

displaying information about 4

dropping 6

error handling 14

exception handlers 15

EXECUTE IMMEDIATE statement 15

execution permissions 6

multiple result sets from 12

owner 4

parameters 4, 11

result sets 7, 12

returning results 11, 12

returning results from 6

savepoints in 15

proxy tables 91
about 89, 95
creating 89, 95, 96
location 95
properties 95

Q

queries
JDBC 132
prefixes 24
subtotal rows 25
QUOTED_IDENTIFIER option
Open Client 86

R

range 45
logical offset of a window frame 45
window frame unit 40
window order clause 40
RANGE 38
range specification 42, 45
range-based window frames 45, 46
rank functions
example 51, 52
ranking functions 21, 38
requirements with OLAP 40
window order clause 40
remote data
location 95
non-Sybase 90
remote data access 81
case-sensitivity 100
internal operations 98
passthrough mode 97
remote servers 89
SQL Remote unsupported 100
troubleshooting 100
unsupported features 100
remote procedure calls

SQL statements allowed in 10 about 97
structure 10 remote servers
using 4 about 89
variable result sets from 12 altering 93
warnings 14 classes 103
creating 90
proxy databases 81 deleting 93
external logins 94
158 Sybase 1Q

listing properties 94
transaction management 98
remote tables
about 89
listing 93
listing columns 96
REMOTEPWD
using 138
Replication Server
support 84
reporting functions 52
example 53
requirements for using the debugger 143
reserved words
remote servers 100
restrictions
remote data access 100
result sets
multiple 12
procedures 7, 12
variable 12
RETURN statement
about 12
ROLLBACK statement
compound statements 10
procedures 15
ROLLUP operation 24, 25
example 30
NULL 26
SELECT statement 25
subtotal rows 25
ROLLUP operator 25
row specification 42
row-based window frames 42
rows 44
physical offset of a window frame 44
rows between 1 preceding and 1 following 44
rows between 1 preceding and 1 preceding 44
rows between current row and current row 44
rows between unbounded preceding and
current row 44
rows between unbounded preceding and
unbounded following 44
specification 45
subtotal rows 25
ROWS 38

S
SA_DEBUG group
debugger 143

Index

sample variance function 55
savepoints

procedures 15
schedules

definition components 111
scripts

IDebugAPI interface 149

IDebugWindow interface 151

writing debugger 148
scrollable cursors

JDBC support 118
security

hiding objects 16
SELECT statement

JDBC 132

objects 134
semantic phases of execution 22
serialization

distributed computing 141

objects 140
server address

DSEDIT 83
server classes

about 89

asajdbc 103

asaodbc 105

asejdbc 104

aseodbc 106

defining 89

ODBC 105
servers

multiple databases on 86
setAutocommit method

about 126
setObject method

using 141
simple aggregate functions 37
sort order of ORDER BY in range-based frames

46

sp_iqprocedure

information about procedures 4
sp_igprocparm

procedure parameters 4
SQL Remote

remote data access 100
sgl.ini file

configuring 82
SQLCODE variable

introduction 14

System Administration Guide: Volume 2

159

Index

SQLSTATE variable
introduction 14
standard deviation
functions 54
population function 55
sample function 55
starting databases
jConnect 138
statistical aggregate functions 54
statistical functions 38
aggregate 21
STDDEV_POP function 55
STDDEV_SAMP function 55
stored procedures
debugging 144

displaying information about 4

subtotal rows 25
construction 25
definition 25, 33
NULL values 26
ROLLUP operation 25

subtransactions
procedures 15

summary information
CUBE operator 33
summary rows
ROLLUP operation 25

SYBASE environment variable
DSEDIT 82

sysservers system table
remote servers 90

system events
trigger conditions 112

T

table names
local 95
tables
defining proxy 95, 96
listing remote 93
proxy 95
remote access 89
Tabular Data Stream (TDS)
about 81
TCP/IP
addresses 83
Open Server 85
TDS
password encryption 84, 85

See also Tabular Data Stream (TDS){
transaction management 98
transactions

managing 98

procedures 15

remote data access 98
trigger conditions

for system events 112
triggering event handlers 115
troubleshooting

remote data access 100

server address 83
TSQL_HEX_CONSTANT option

Open Client 86
TSQL_VARIABLES option

Open Client 86

U

UNBOUNDED FOLLOWING 41, 42
UNBOUNDED PRECEDING 41
UNBOUNDED PREDEDING 42
unbounded window, using 46
URL

jConnect 137
URL database

JDBC 138
user-defined functions

calling 8

creating 7

dropping 8

execution permissions 8

parameters 11

using 7
using unbounded windows 46

\%

value-based window frames 45
ascending and descending order 46
ORDER BY clause 46

VAR_POP function 55

VAR_SAMP function 55

variance functions 54

w

warnings
procedures 14

160

Sybase 1Q

WHILE statement
syntax 9

window
frame clause 40
operator 37
order clause 39, 40
ordering 38, 39

window frame unit 40, 44, 45
range 45
rows 44

window frames 38, 40
range based 45, 46
row based 42

window functions
aggregate 21, 38
distribution 38
framing 40
ordering 39

OVER clause 38

partitioning 39

ranking 38

statistical 38

window function type 37
window name or specification 37
window partition 37

window partitioning 38, 39

clause 39
GROUP BY operator 39

window sizes

RANGE 38
ROWS 38

windowing

aggregate functions 38, 52
extensions 37

functions 38

partitions 37

Index

System Administration Guide: Volume 2

161

Index

162 Sybase 1Q

	System Administration Guide: Volume 2
	Contents
	Audience
	Using Procedures and Batches
	Overview of Procedures
	Benefits of Procedures
	Introduction to Procedures
	Creating Procedures
	Altering Procedures
	Calling Procedures
	Copying Procedures in Sybase Central
	Deleting Procedures
	Permissions to Execute Procedures
	Returning Procedure Results in Parameters
	Returning Procedure Results in Result Sets

	Introduction to User-Defined Functions
	Creating User-Defined Functions
	Calling User-Defined Functions
	Dropping User-Defined Functions
	Permissions to Execute User-Defined Functions

	Introduction to Batches
	Control Statements
	Using Compound Statements
	Declarations In Compound Statements
	Atomic Compound Statements

	Structure of Procedures
	SQL Statements Allowed in Procedures
	Declaring Parameters for Procedures
	Passing Parameters to Procedures
	Passing Parameters to Functions

	Procedure Results
	Returning a Value Using the RETURN Statement
	Returning Results as Procedure Parameters
	Returning Result Sets from Procedures
	Returning Multiple Result Sets from Procedures
	Returning Variable Result Sets from Procedures

	Cursors in Procedures
	Cursor Management Overview
	Cursor Positioning
	Cursors and SELECT Statements in Procedures

	Errors and Warnings in Procedures
	Default Error Handling in Procedures
	Error Handling With ON EXCEPTION RESUME
	Default Handling of Errors and Warnings in Procedures
	Using Exception Handlers in Procedures
	Nested Compound Statements and Exception Handlers

	Using the EXECUTE IMMEDIATE Statement In Procedures
	Transactions and Savepoints in Procedures
	Hiding the Contents of Procedures, Functions, and Views
	Statements Allowed In Batches
	Using SELECT Statements in Batches

	Using IQ UTILITIES to Create Your Own Stored Procedures
	How IQ Uses the IQ UTILITIES Command
	Choosing Procedures to Call
	Numbers Used by IQ UTILITIES
	Procedure Testing

	Using OLAP
	About OLAP
	OLAP Benefits
	OLAP Evaluation

	GROUP BY Clause Extensions
	Group by ROLLUP and CUBE
	Group by ROLLUP
	Group by CUBE

	Analytical Functions
	Simple Aggregate Functions
	Windowing
	Window Partitioning
	Window Ordering
	Window Framing
	ROWS
	RANGE
	Explicit and Inline Window Clauses
	Ranking Functions
	RANK() Function
	DENSE_RANK() Function
	PERCENT_RANK() Function
	ROW_NUMBER() Function
	Ranking Examples
	Windowing Aggregate Functions
	Statistical Aggregate Functions
	Interrow Functions
	Distribution Functions

	Numeric Functions

	OLAP Rules and Restrictions
	Additional OLAP Examples
	Example: Window Functions in Queries
	Example: Window with multiple functions
	Example: Calculate cumulative sum
	Example: Calculate moving average
	Example: ORDER BY results
	Example: Multiple aggregate functions in a query
	Example: Window frame comparing ROWS and RANGE
	Example: Window frame excludes current row
	Example: Window frame for RANGE
	Example: Unbounded preceding and unbounded following
	Example: Default window frame for RANGE

	BNF Grammar for OLAP Functions

	Sybase IQ as a Data Server
	Client/Server Interfaces to Sybase IQ
	Configuring IQ Servers with iqdsedit
	The Interfaces File
	iqdsedit Database Administration Utility
	Starting iqdsedit
	Opening a Directory Services Session
	Adding a Server Entry
	Adding or Changing a Server Address
	Verifying a Server Address
	Renaming a Server Entry
	Deleting Server Entries

	Sybase Applications and Sybase IQ
	Open Client Applications and Sybase IQ
	Configuring Open Client

	Sybase IQ as an Open Server
	System Requirements
	Starting the Database Server as an Open Server
	Configuring Your Database for Use with Open Client

	Characteristics of Open Client and jConnect Connections
	Servers with Multiple Databases

	Accessing Remote Data
	Sybase IQ and Remote Data
	Requirements for Accessing Remote Data
	Remote table mappings
	Server Classes

	Remote Servers
	Create Remote Servers
	Loading Remote Data Without Native Classes
	Loading MS SQL Server Data into an IQ Server on UNIX

	Querying Data Without Native Classes
	Querying Remote Data Using DirectConnect and Proxy Table from UNIX
	Setting Up Adaptive Server Enterprise to Query MS SQL Server
	Setting up Sybase IQ to Connect to the ASE Server

	Delete Remote Servers
	Alter Remote Servers
	List the Remote Tables On a Server
	List Remote Server Capabilities

	External Logins
	Create External Logins
	Drop External Logins

	Proxy Tables
	Specify Proxy Table Locations
	Create Proxy Tables
	CREATE TABLE Statement
	List the Columns On a Remote Table

	Example: Join Between Two Remote Tables
	Multiple Local Databases
	Send Native Statements to Remote Servers
	Remote Procedure Calls (RPCs)
	Create Remote Procedures

	Transaction Management and Remote Data
	Remote Transaction Management Overview
	Restrictions on Transaction Management

	Internal Operations
	Query Parsing
	Query Normalization
	Query Preprocessing
	Server Capabilities
	Complete Passthrough of the Statement
	Partial Passthrough of the Statement

	Remote Data Access Troubleshooting
	Features Not Supported For Remote Data
	Case Sensitivity
	Connectivity Problems
	General Problems with Queries
	Managing Remote Data Access Connections

	Server Classes for Remote Data Access
	Server Classes Overview
	JDBC-based Server Classes
	Configuration Notes for JDBC Classes
	Server Class sajdbc
	Parameter Value in the CREATE SERVER Statement

	Server Class asejdbc
	Data Type Conversions
	Installing jConnect 6.0 Metadata

	ODBC-based Server Classes
	ODBC External Servers
	Server Class saodbc
	Server Class aseodbc
	Server Class db2odbc
	Server Class oraodbc
	Sybase IQ to Oracle Data Type Mappings
	Oracle to Sybase IQ Data Mappings

	Server Class mssodbc
	Server Class odbc
	Microsoft Excel (Microsoft 3.51.171300)
	Microsoft Foxpro (Microsoft 3.51.171300)
	Lotus Notes SQL 2.0 (2.04.0203)
	Setting Up IQ to Access the Address Sample File

	Automating Tasks Using Schedules and Events
	Introduction to Scheduling and Event Handling
	Schedules
	Defining Schedules

	Events
	Choosing a System Event
	Defining Trigger Conditions for Events

	Event Handlers
	Developing Event Handlers

	Schedule and Event Internals
	How the Database Server Checks for System Events
	How the Database Server Checks for Scheduled Times
	How Event Handlers are Executed

	Scheduling and Event Handling Tasks
	Adding a Schedule or Event to a Database
	Adding a Manually-triggered Event To a Database
	Triggering an Event Handler
	Debugging an Event Handler
	Retrieving Information about an Event or Schedule

	Data Access Using JDBC
	JDBC Overview
	Choose JDBC Driver
	JDBC Program Structure
	Server-side JDBC Features
	Differences Between Client- and Server-side JDBC Connections

	Establish JDBC Connections
	Connect From a JDBC Client Application Using jConnect
	External Connection Example Code
	How the External Connection Example Works
	Running the External Connection Example

	Establish Connection From a Server-side JDBC Class
	Server-side Connection Example Code
	How the Server-side Connection Example Works
	Running the Server-side Connection Example

	Use JDBC to Access Data
	Installing the JDBCExamples Class
	Sample Code
	Installing JDBCExamples Cass

	Using JDBC to Insert, Update, and Delete
	Running the JDBC Insert example

	Passing Arguments to Java Methods
	Using a Java Method with Arguments

	Queries Using JDBC
	Using Prepared Statements for More Efficient Access
	Insert and Retrieve Objects
	Retrieve Objects
	Insert Objects

	Sybase jConnect JDBC Driver
	Versions of jConnect Supplied with Sybase IQ
	The jConnect Driver Files
	Installing jConnect System Objects Into a Database
	Adding the jConnect System Objects To a Version 12.7 Database From Sybase Central:
	Adding the jConnect System Objects To a Version 12.7 Database From Interactive SQL

	Supply URL For the Server
	Specify Database On a Server

	Distributed Applications
	Serializable Interfaces
	Implementing the Serializable Interface

	Importing the Class On the Client Side
	A Sample Distributed Application

	Debugging Logic in the Database
	Introduction To Debugging In the Database
	Debugger Features
	Requirements for Using the Debugger

	Tutorial 1: Getting Started With the Debugger
	Lesson 1: Connect To a Database and Start the Debugger

	Tutorial 2: Debugging a stored procedure
	Tutorial 3: Debugging a Java Class
	Demo Database Java Example Classes
	Displaying Java Source Code Into the Debugger
	Setting a Breakpoint
	Running the Method
	Stepping Through Source Code
	Inspecting and Modifying Variables

	Breakpoints
	View and Edit Variable Behavior
	Write Debugger Scripts
	sybase.asa.procdebug.DebugScript Class
	sybase.asa.procdebug.IDebugAPI Interface
	sybase.asa.procdebug.IDebugWindow Interface

	Index

