
System Administration Guide: Volume 2

Sybase IQ
15.1

DOCUMENT ID: DC00800-01-1510-02

LAST REVISED: November 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks
listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

System Administration Guide: Volume 2 iii

About This Book ... ix

CHAPTER 1 Using Procedures and Batches ... 1
Overview of procedures ... 2
Benefits of procedures ... 2
Introduction to procedures ... 2

Creating procedures.. 3
Altering procedures ... 4
Calling procedures .. 4
Copying procedures in Sybase Central 5
Deleting procedures .. 5
Permissions to execute procedures .. 5
Returning procedure results in parameters 6
Returning procedure results in result sets 6

Introduction to user-defined functions .. 7
Creating user-defined functions .. 7
Calling user-defined functions ... 7
Dropping user-defined functions ... 8
Permissions to execute user-defined functions......................... 8

Introduction to batches ... 9
Control statements ... 9

Using compound statements... 10
Declarations in compound statements 10
Atomic compound statements ... 10

Structure of procedures.. 10
SQL statements allowed in procedures................................... 11
Declaring parameters for procedures...................................... 11
Passing parameters to procedures ... 12
Passing parameters to functions ... 12

Returning results from procedures... 12
Returning a value using the RETURN statement.................... 12
Returning results as procedure parameters 13
Returning result sets from procedures 13
Returning multiple result sets from procedures....................... 13

Contents

iv Sybase IQ

Returning variable result sets from procedures....................... 14
Using cursors in procedures .. 14

Cursor management overview .. 14
Cursor positioning ... 14
Using cursors on SELECT statements in procedures 15

Errors and warnings in procedures .. 15
Default error handling in procedures 16
Error handling with ON EXCEPTION RESUME...................... 16
Default handling of warnings in procedures 16
Using exception handlers in procedures 17
Nested compound statements and exception handlers 17

Using the EXECUTE IMMEDIATE statement in procedures 18
Transactions and savepoints in procedures................................... 18
Tips for writing procedures... 18

Hiding the contents of procedures, functions, and views 19
Statements allowed in batches .. 20

Using SELECT statements in batches 20
Using IQ UTILITIES to create your own stored procedures........... 21

How IQ uses the IQ UTILITIES command 21
Requirements for using IQ UTILITIES..................................... 22
Choosing procedures to call.. 23
Numbers used by IQ UTILITIES.. 23
Testing your procedures.. 24

CHAPTER 2 Using OLAP.. 25
About OLAP ... 26

OLAP benefits ... 27
Understanding OLAP evaluation ... 27

GROUP BY clause extensions... 28
Group by ROLLUP and CUBE .. 29

Analytical functions .. 43
Simple aggregate functions... 44
Windowing... 44
Numeric functions.. 70

OLAP rules and restrictions ... 73
Additional OLAP examples .. 75

Example: Window functions in queries.................................... 75
Example: Window with multiple functions 77
Example: Calculate cumulative sum 77
Example: Calculate moving average....................................... 78
Example: ORDER BY results .. 79
Example: Multiple aggregate functions in a query................... 80
Example: Window frame comparing ROWS and RANGE....... 80
Example: Window frame excludes current row 81

Contents

System Administration Guide: Volume 2 v

Example:Window frame for RANGE 82
Example: Unbounded preceding and unbounded following 83
Example: Default window frame for RANGE........................... 84

BNF grammar for OLAP functions ... 85

CHAPTER 3 Sybase IQ as a Data Server.. 91
Client/server interfaces to Sybase IQ... 91

Configuring IQ Servers with iqdsedit 92
Sybase applications and Sybase IQ.. 95
Open Client applications and Sybase IQ................................. 95

Setting up Sybase IQ as an Open Server 96
System requirements .. 96
Starting the database server as an Open Server 96
Configuring your database for use with Open Client 97

Characteristics of Open Client and jConnect connections 97
Servers with multiple databases.. 98

CHAPTER 4 Accessing Remote Data ... 101
Sybase IQ and remote data ... 102

Requirements for accessing remote data.............................. 102
Working with remote servers... 103
Working with external logins.. 108
Working with proxy tables ... 109
Example: A join between two remote tables 111
Accessing multiple local databases....................................... 111
Sending native statements to remote servers 112
Using remote procedure calls (RPCs)................................... 112

Transaction management and remote data 112
Remote transaction management overview 113
Restrictions on transaction management 113

Internal operations ... 113
Query parsing.. 114
Query normalization .. 114
Query preprocessing ... 114
Server capabilities ... 114
Complete passthrough of the statement 115
Partial passthrough of the statement..................................... 115

Troubleshooting remote data access ... 115
Features not supported for remote data................................ 115
Case-sensitivity ... 116
Connectivity problems ... 116
General problems with queries.. 116
Queries blocked on themselves .. 116

Contents

vi Sybase IQ

Managing remote data access connections 117

CHAPTER 5 Server Classes for Remote Data Access................................... 119
Server classes overview .. 119
JDBC-based server classes... 119

Configuration notes for JDBC classes................................... 120
Server class sajdbc ... 120
Server class asejdbc ... 120

ODBC-based server classes.. 121
Defining ODBC external servers ... 121
Server class saodbc .. 122
Server class aseodbc .. 122
Server class db2odbc.. 123
Server class oraodbc... 123
Server class mssodbc ... 124
Server class odbc.. 124

CHAPTER 6 Automating Tasks Using Schedules and Events 127
Introduction to scheduling and event handling............................. 128
Understanding schedules... 128

Defining schedules .. 129
Understanding events .. 129

Choosing a system event .. 129
Defining trigger conditions for events 130

Understanding event handlers ... 131
Developing event handlers.. 131

Schedule and event internals... 132
How the database server checks for system events 132
How the database server checks for scheduled times 132
How event handlers are executed... 132

Scheduling and event handling tasks... 133
Adding a schedule or event to a database 133
Adding a manually-triggered event to a database................. 133
Triggering an event handler .. 133
Debugging an event handler ... 134
Retrieving information about an event or schedule 134

APPENDIX A Debugging Logic in the Database.. 135
Introduction to debugging in the database 135

Debugger features... 135
Requirements for using the debugger 136

Tutorial 1: Getting started with the debugger 136

Contents

System Administration Guide: Volume 2 vii

Lesson 1: Connect to a database and start the debugger 136
Tutorial 2: Debugging a stored procedure.................................... 137
Tutorial 3: Debugging a Java class .. 137

Preparing the database ... 137
Displaying Java source code into the debugger.................... 138
Set a breakpoint .. 138
Run the method... 139
Stepping through source code .. 139
Inspecting and modifying variables 140

Working with breakpoints ... 141
Working with variables ... 141
Writing debugger scripts .. 142

sybase.asa.procdebug.DebugScript class 142
sybase.asa.procdebug.IDebugAPI interface 143
sybase.asa.procdebug.IDebugWindow interface 147

Index ... 149

Contents

viii Sybase IQ

System Administration Guide: Volume 2 ix

About This Book

Subject Sybase® IQ is a high-performance decision support server designed
specifically for data warehouses and data marts. This book, System
Administration Guide: Volume 2, presents concepts and procedures
necessary for programming with Sybase IQ.

Audience This guide is for developers of applications that access data in Sybase IQ
databases. Familiarity with relational database systems and introductory
user-level experience with Sybase IQ is assumed. Use this guide with
other manuals in the documentation set.

Related Sybase IQ
documents

The Sybase IQ 15.1 documentation set includes:

• Release Bulletin provides information about last-minute changes to
the product and documentation.

• Installation and Configuration Guide provides platform-specific
instructions on installing, migrating to a new version, and configuring
Sybase IQ for a particular platform.

• Advanced Security in Sybase IQ covers the use of user encrypted
columns within the Sybase IQ data repository. You need a separate
license to install this product option.

• Error Messages lists Sybase IQ error messages referenced by Sybase
error code, SQLCode, and SQLState, and SQL preprocessor errors
and warnings.

• IMSL Numerical Library Users Guide: Volume 2 of 2 C Stat Library
contains a concise description of the IMSL C Stat Library time series
C functions. This book is only available to RAP – The Trading
Edition™ Enterprise users.

• Introduction to Sybase IQ includes hands-on exercises for those
unfamiliar with Sybase IQ or with the Sybase Central™ database
management tool.

• Large Objects Management in Sybase IQ explains storage and
retrieval of binary large objects (BLOBs) and character large objects
(CLOBs) within the Sybase IQ data repository. You need a separate
license to install this product option.

x Sybase IQ

• New Features in Sybase IQ 15.0 documents new features and behavior
changes for version 15.0.

• New Features Summary Sybase IQ 15.1 summarizes new features and
behavior changes for the current version.

• Performance and Tuning Guide describes query optimization, design, and
tuning issues for very large databases.

• Quick Start lists steps to build and query the demo database provided with
Sybase IQ for validating the Sybase IQ software installation. Includes
information on converting the demo database to multiplex.

• Reference Manual – Includes two reference guides to Sybase IQ:

• Reference: Building Blocks, Tables, and Procedures describes SQL,
stored procedures, data types, and system tables that Sybase IQ
supports.

• Reference: Statements and Options describes the SQL statements and
options that Sybase IQ supports.

• System Administration Guide – Includes two volumes:

• System Administration Guide: Volume 1 describes startup,
connections, database creation, population and indexing, versioning,
collations, system backup and recovery, troubleshooting, and
database repair.

• System Administration Guide: Volume 2 describes writing and
running procedures and batches, programming with OLAP, accessing
remote data, setting up IQ as an Open Server, scheduling and event
handling, programming with XML, and debugging.

• User-Defined Functions Guide provides information about the user-
defined functions, their parameters, and possible usage scenarios.

• Using Sybase IQ Multiplex tells how to use multiplex capability, designed
to manage large query loads across multiple nodes.

• Utility Guide provides Sybase IQ utility program reference
material, such as available syntax, parameters, and options.

Related SQL
Anywhere
documentation

Because Sybase IQ shares many components with SQL Anywhere Server, a
component of the SQL Anywhere® package, Sybase IQ supports many of the
same features as SQL Anywhere Server. The IQ documentation set refers you
to SQL Anywhere documentation, where appropriate.

Documentation for SQL Anywhere includes:

 About This Book

System Administration Guide: Volume 2 xi

• SQL Anywhere Server – Database Administration describes how to run,
manage, and configure SQL Anywhere databases. It describes database
connections, the database server, database files, backup procedures,
security, high availability, and replication with Replication Server®, as
well as administration utilities and options.

• SQL Anywhere Server – Programming describes how to build and deploy
database applications using the C, C++, Java, PHP, Perl, Python, and .NET
programming languages such as Visual Basic and Visual C#. This book
also describes a variety of programming interfaces such as ADO.NET and
ODBC.

• SQL Anywhere Server – SQL Reference provides reference information
for system procedures, and the catalog (system tables and views). It also
provides an explanation of the SQL Anywhere implementation of the SQL
language (search conditions, syntax, data types, and functions).

• SQL Anywhere Server – SQL Usage describes how to design and create
databases; how to import, export, and modify data; how to retrieve data;
and how to build stored procedures and triggers.

You can also refer to the SQL Anywhere documentation in the SQL
Anywhere 11.01 collection at Product Manuals at http://sybooks.sybase.com
and in DocCommentXchange at http://dcx.sybase.com/dcx_home.php.

Related SySAM
documents

Documentation for Sybase Software Asset Management (SySAM) includes:

• Sybase Software Asset Management (SySAM) 2 introduces asset
management concepts and provides instructions for establishing and
administering SySAM 2 licenses.

• SySAM 2 Quick Start Guide tells you how to get your SySAM-enabled
Sybase product up and running.

• FLEXnet Licensing End User Guide explains FLEXnet
Licensing for administrators and end users and describes how
to use the tools that are part of the standard FLEXnet
Licensing distribution kit from Sybase.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

xii Sybase IQ

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://certification.sybase.com/ucr/search.do.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

 About This Book

System Administration Guide: Volume 2 xiii

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Syntax conventions This documentation uses these conventions in syntax descriptions:

• Keywords SQL keywords are shown in UPPERCASE. However,
SQL keywords are case-insensitive, so you can enter keywords in any
case; SELECT, Select, and select are equivalent.

• Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown in italics.

xiv Sybase IQ

• Continuation Lines beginning with an ellipsis (...) are a continuation
of the statements from the previous line.

• Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (...). One or more list elements are
allowed. If multiple elements are specified, they must be separated by
commas.

• Optional portions Optional portions of a statement are enclosed by
square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

The square brackets indicate that the savepoint-name is optional. Do not
type the brackets.

• Options When none or only one of a list of items must be chosen, the
items are separated by vertical bars and the list enclosed in square
brackets. For example:

[ASC | DESC]

The square brackets indicate that you can choose ASC, DESC, or neither.
Do not type the brackets.

• Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces. For example:

QUOTES { ON | OFF }

The curly braces indicate that you must include either ON or OFF. Do not
type the brackets.

Typographic
conventions

Table 1 lists the typographic conventions used in this documentation.

Table 1: Typographic conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Item Description

Code SQL and program code appears in a monospaced (fixed-
width) font.

User entry Text entered by the user is shown in a monospaced (fixed-
width) font.

file names File names are shown in italic.

database objects Names of database objects, such as tables and procedures,
are shown in bold, sans serif type in print, and in italic
online.

 About This Book

System Administration Guide: Volume 2 xv

Sybase IQ 15.1 and the HTML documentation have been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Configuring your accessibility tool
You might need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPER CASE TEXT as initials, and Mixed Case Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool for information on using screen
readers.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

For a Section 508 compliance statement for Sybase IQ, go to Sybase
Accessibility at http://www.sybase.com/products/accessibility.

The demo database Sybase IQ includes scripts that create a demo database (iqdemo.db). Many of
the queries and code samples in this document use the demo database as a data
source.

The demo database contains internal information about a small company
(employees, departments, and financial data), as well as product and sales
information (products, sales orders, customers, and contacts).

See the Sybase IQ installation guide for your platform or talk to your system
administrator for more information about the demo database.

If you need help Each Sybase installation that has purchased a support contract has
one or more designated people who are authorized to contact
Sybase Technical Support. If you cannot resolve a problem using
the manuals or online help, please have the designated person
contact Sybase Techinical Support or the Sybase subsidiary in
your area.

xvi Sybase IQ

System Administration Guide: Volume 2 1

C H A P T E R 1 Using Procedures and Batches

About this chapter This chapter explains how you create procedures and batches for use with
Sybase IQ.

Procedures store procedural SQL statements in the database for use by all
applications. They enhance the security, efficiency, and standardization of
databases. User-defined functions are one kind of procedure that return a
value to the calling environment for use in queries and other SQL
statements. Batches are sets of SQL statements submitted to the database
server as a group. Many features available in procedures, such as control
statements, are also available in batches.

For many purposes, server-side JDBC provides a more flexible way to
build logic into the database than SQL stored procedures. See
“Introduction to JDBC” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL
Anywhere Data Access APIs > SQL Anywhere JDBC driver.

Contents Topic Page

Overview of procedures 2

Benefits of procedures 2

Introduction to procedures 2

Introduction to user-defined functions 7

Introduction to batches 9

Control statements 9

Structure of procedures 10

Returning results from procedures 12

Using cursors in procedures 14

Errors and warnings in procedures 15

Using the EXECUTE IMMEDIATE statement in procedures 18

Transactions and savepoints in procedures 18

Tips for writing procedures 18

Statements allowed in batches 20

Using IQ UTILITIES to create your own stored procedures 21

Overview of procedures

2 Sybase IQ

Overview of procedures
Procedures store procedural SQL statements in a database for use by all
applications. They can include control statements that allow repetition (LOOP
statement) and conditional execution (IF statement and CASE statement) of
SQL statements.

See “Procedure and trigger overview” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches.

Note Sybase IQ does not support triggers. Information on triggers in the SQL
Anywhere documentation can be ignored.

Benefits of procedures
Definitions for procedures appear in the database, separately from any one
database application. This separation provides a number of advantages.

See “Benefits of procedures and triggers” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches.

Introduction to procedures
To use procedures, know how to:

• Create procedures

• Call procedures from a database application

• Drop or remove procedures

• Control who has permission to use procedures

This section discusses these aspects of using procedures, and also describes
some of the different uses of procedures.

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 3

Two system stored procedures that are useful when working with stored
procedures are sp_iqprocedure and sp_iqprocparm. The sp_iqprocedure stored
procedure displays information about system and user-defined procedures in a
database. The sp_iqprocparm stored procedure displays information about
stored procedure parameters, including these columns:

• proc_name

• proc_owner

• parm_name

• parm_type

• parm_mode

• domain_name

• width, scale

• default

Creating procedures
Procedures are created using the CREATE PROCEDURE statement. You must
have RESOURCE authority to create a procedure.

See “Creating procedures” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches > Introduction to
procedures.

Sybase IQ example Note For examples, use the Sybase IQ demo database iqdemo.db. For
installation information, see “The demo database” on page xv.

create procedure new_dept(IN id INT, IN name CHAR(35),
IN head_id INT)

BEGIN

INSERT

INTO GROUPO.departments(DepartmentID, DepartmentName,
DepartmentHeadID)

values (id, name, head_id);

Introduction to procedures

4 Sybase IQ

END

Note To create a remote procedure in IQ, you must use the AT location-
string SQL syntax of CREATE PROCEDURE to create a proxy stored
procedure. This capability is currently certified on only Windows and Sun
Solaris. See “Using remote procedure calls (RPCs)” on page 112. The Create
Remote Procedure Wizard in Sybase Central is available only for remote
servers.

Altering procedures
You can modify an existing procedure using either Sybase Central or
Interactive SQL. You must have DBA authority or be the owner of the
procedure.

See “Altering procedures” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches > Introduction to
procedures.

For information on altering database object properties, see Chapter 4,
“Managing Databases.” in Introduction to Sybase IQ.

For information on granting or revoking permissions for procedures, see
“Granting permissions on procedures” and “Revoking user permissions” in
Chapter 8, “Managing User IDs and Permissions,”in the System
Administration Guide: Volume 1.

See also ALTER PROCEDURE statement and CREATE PROCEDURE
statement in Reference: Statements and Options.

Calling procedures
CALL statements invoke procedures. Procedures can be called by an
application program or by other procedures.

See “Calling procedures” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches > Introduction to
procedures.

Also see:

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 5

• CALL statement in Chapter 1, “SQL Statements,” in Reference:
Statements and Options.

• “Permissions to execute procedures” on page 5.

Copying procedures in Sybase Central
You can copy procedure codes from one database to another connected
database.

See “Copying procedures in Sybase Central” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Usage > Stored Procedures and Triggers > Using procedures, triggers, and
batches > Introduction to procedures.

Deleting procedures
Once you create a procedure, it remains in the database until someone
explicitly removes it. Only the owner of the procedure or a user with DBA
authority can drop the procedure from the database.

See “Deleting procedures” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches > Introduction to
procedures.

Permissions to execute procedures
A procedure is owned by the user who created it, and that user can execute it
without permission. Permission to execute the procedure can be granted to
other users using the GRANT EXECUTE command.

For example, the owner of the procedure new_dept allows another_user to

execute new_dept with the statement:

GRANT EXECUTE ON new_dept TO another_user

The following statement revokes permission to execute the procedure:

REVOKE EXECUTE ON new_dept FROM another_user

See “Granting permissions on procedures” in System Administration Guide:
Volume 1.

Introduction to procedures

6 Sybase IQ

Returning procedure results in parameters
Procedures return results to the calling environment in one of the following
ways:

• Individual values are returned as OUT or INOUT parameters.

• Result sets can be returned.

• A single result can be returned using a RETURN statement.

See “Returning procedure results in parameters” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Usage > Stored Procedures and Triggers > Using procedures, triggers, and
batches > Introduction to procedures.

Sybase IQ example Note For examples, use the Sybase IQ demo database iqdemo.db. For
installation information, see “The demo database” on page xv.

CREATE PROCEDURE SalaryList (IN department_id INT)

RESULT ("Employee ID" INT, "Salary" NUMERIC(20,3))

BEGIN

SELECT EmployeeID, Salary

FROM Employees

WHERE Employees.DepartmentID = department_id;

END

Returning procedure results in result sets
In addition to returning results to the calling environment in individual
parameters, procedures can return information in result sets. A result set is
typically the result of a query.

See “Returning procedure results in result sets” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Usage > Stored Procedures and Triggers > Using procedures, triggers, and
batches > Introduction to procedures.

Creating and selecting
from temporary tables

If a procedure dynamically creates and then selects the same temporary table
within a stored procedure, you must use the EXECUTE IMMEDIATE WITH
RESULT SET ON syntax to avoid “Column not found” errors.

For example:

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 7

CREATE PROCEDURE p1 (IN @t varchar(30))
BEGIN

EXECUTE IMMEDIATE
'SELECT * INTO #resultSet FROM ' || @t;
EXECUTE IMMEDIATE WITH RESULT SET ON
'SELECT * FROM #resultSet';

END

Introduction to user-defined functions
User-defined functions are a class of procedures that return a single value to the
calling environment. This section introduces creating, using, and dropping
user-defined functions.

Creating user-defined functions
You use the CREATE FUNCTION statement to create user-defined functions.
However, you must have RESOURCE authority.

See “Creating user-defined functions” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches >
Introduction to user-defined functions.

For a complete description of the CREATE FUNCTION syntax, including
performance considerations and differences between SQL Anywhere and IQ,
see Chapter 1, “SQL Statements,” in Reference: Statements and Options.

Calling user-defined functions
A user-defined function can be used, subject to permissions, in any place you
would use a built-in nonaggregate function.

See “Calling user-defined functions” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches > Introduction to user-
defined functions.

Introduction to user-defined functions

8 Sybase IQ

Sybase IQ example Note For examples, use the Sybase IQ demo database iqdemo.db. For
installation information, see “The demo database” on page xv.

SELECT fullname (GivenName, SurName)

FROM Employees;

fullname (GivenName, SurName)

Fran Whitney

Matthew Cobb

Philip Chin

...

Dropping user-defined functions
Once a user-defined function is created, it remains in the database until it is
explicitly removed.

See “Dropping user-defined functions” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches >
Introduction to user-defined functions.

Permissions to execute user-defined functions
A user-defined function is owned by the user who created it, and that user can
execute it without permission. The owner of a user-defined function can grant
permissions to other users with the GRANT EXECUTE command.

For example, the creator of the function fullname allows another_user to use
fullname with the statement:

GRANT EXECUTE ON fullname TO another_user

The following statement revokes permission to use the function:

REVOKE EXECUTE ON fullname FROM another_user

See “Granting permissions on procedures”in Chapter 8, “Managing User IDs
and Permissions,” System Administration Guide: Volume 1.

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 9

Introduction to batches
A simple batch consists of a set of SQL statements, separated by semicolons.
For example, the following statements form a batch that creates an Eastern
Sales department and transfers all sales representatives from Massachusetts
(MA) to that department.

See “Introduction to batches” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches.

Sybase IQ example Note For examples, use the Sybase IQ demo database iqdemo.db. For
installation information, see “The demo database” on page xv.

INSERT

INTO Departments (DepartmentID, DepartmentName)

VALUES (220, 'Eastern Sales') ;

UPDATE Employees

SET DepartmentID = 220

WHERE DepartmentID = 200

AND state = 'GA' ;

COMMIT ;

Control statements
There are a number of control statements for logical flow and decision making
in the body of the procedure or in a batch.

See “Control statements” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures and
Triggers > Using procedures, triggers, and batches.

 For complete descriptions of each, see the entries in Chapter 1, “SQL
Statements,” in Reference: Statements and Options.

Structure of procedures

10 Sybase IQ

Using compound statements
Compound statements can be nested, and combined with other control
statements to define execution flow in procedures or in batches.

See “Using compound statements” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches > Control statements.

Declarations in compound statements
Local declarations in a compound statement immediately follow the BEGIN
keyword. These local declarations exist only within the compound statement.

See “Declarations in compound statements” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches > Control
statements.

Atomic compound statements
An atomic statement is a statement that is executed completely or not at all.

See “Atomic compound statements” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches > Control statements.

Structure of procedures
The body of a procedure consists of a compound statement as discussed in
“Using compound statements” on page 10. A compound statement consists of
a BEGIN and an END, enclosing a set of SQL statements. Semicolons delimit
each statement.

The SQL statements that can occur in procedures are described in “SQL
statements allowed in procedures” on page 11.

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 11

SQL statements allowed in procedures
You can use almost all SQL statements within procedures, including the
following:

• SELECT, UPDATE, DELETE, INSERT, and SET VARIABLE

• The CALL statement to execute other procedures

• Control statements (see “Control statements” on page 9)

• Cursor statements (see “Using cursors in procedures” on page 14)

• Exception handling statements (see “Using exception handlers in
procedures” on page 17)

• The EXECUTE IMMEDIATE statement

Some SQL statements you cannot use within procedures include:

• CONNECT statement

• DISCONNECT statement

You can use COMMIT, ROLLBACK, and SAVEPOINT statements within
procedures with certain restrictions (see “Transactions and savepoints in
procedures” on page 18).

For details, see the Usage section for each SQL statement in Chapter 1, “SQL
Statements,” in Reference: Statements and Options.

Declaring parameters for procedures
Procedure parameters appear as a list in the CREATE PROCEDURE statement.
Parameter names must conform to the rules for other database identifiers such
as column names. They must have valid data types (see Chapter 3, “SQL Data
Types,” in Reference: Building Blocks, Tables, and Procedures), and must be
prefixed with one of the keywords IN, OUT or INOUT.

See “Declaring parameters for procedures” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches > The
structure of procedures and triggers.

Returning results from procedures

12 Sybase IQ

Passing parameters to procedures
You can take advantage of default values of stored procedure parameters with
either of two forms of the CALL statement.

See “Passing parameters to procedures” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches > The
structure of procedures and triggers.

Passing parameters to functions
User-defined functions are not invoked with the CALL statement, but are used
in the same manner that built-in functions are used.

See “Passing parameters to functions” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches > The
structure of procedures and triggers.

Returning results from procedures
Procedures can return results that are a single row of data, or multiple rows.
Results consisting of a single row of data can be passed back as arguments to
the procedure. Results consisting of multiple rows of data are passed back as
result sets. Procedures can also return a single value given in the RETURN
statement.

 For simple examples of how to return results from procedures, see
“Introduction to procedures” on page 2. For more detailed information, see the
following sections.

Returning a value using the RETURN statement
The RETURN statement returns a single integer value to the calling
environment, causing an immediate exit from the procedure.

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 13

See “Returning a value using the RETURN statement” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Returning results from procedures.

Returning results as procedure parameters
Procedures can return results to the calling environment in the parameters to
the procedure.

See “Returning results as procedure parameters” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Returning results from procedures.

Returning result sets from procedures
Result sets allow a procedure to return more than one row of results to the
calling environment.

See “Returning result sets from procedures” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches >
Returning results from procedures.

Returning multiple result sets from procedures
A procedure can return more than one result set to the calling environment.

The method for returning multiple result sets differs for dbisql and dbisqlc.

See “Returning multiple result sets from procedures” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Returning results from procedures.

Using cursors in procedures

14 Sybase IQ

Returning variable result sets from procedures
The RESULT clause is optional in procedures. Omitting the result clause
allows you to write procedures that return different result sets, with different
numbers or types of columns, depending on how they are executed.

See “Returning variable result sets from procedures” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Returning results from procedures.

For information about the DESCRIBE statement, see Chapter 1, “SQL
Statements,” in Reference: Statements and Options.

Using cursors in procedures
Cursors retrieve rows one at a time from a query or stored procedure with
multiple rows in its result set. A cursor is a handle or an identifier for the query
or procedure, and for a current position within the result set.

Cursor management overview
Managing a cursor is similar to managing a file in a programming language.

See “Cursor management overview” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches > Using cursors in
procedures and triggers.

The sp_iqcursorinfo stored procedure displays information about cursors
currently open on the server. For more information, see “sp_iqcursorinfo
procedure” in Chapter 7, “System Procedures,” in Reference: Building Blocks,
Tables, and Procedures.

Cursor positioning
A cursor can be positioned in a variety of places.

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 15

See “Cursor positioning” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - Programming > Introduction to
Programming with SQL Anywhere > Using SQL in applications > Working
with cursors.

Note Sybase IQ treats the FIRST, LAST, and ABSOLUTE options as starting
from the beginning of the result set. It treats RELATIVE with a negative row
count as starting from the current position.

Using cursors on SELECT statements in procedures
The following procedure uses a cursor on a SELECT statement. It illustrates
several features of the stored procedure language, and is based on the same
query used in the ListCustomerValue procedure described in “Returning result
sets from procedures”.

See “Using cursors on SELECT statements in procedures” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Using cursors in procedures and triggers.

Errors and warnings in procedures
After an application program executes a SQL statement, it can examine a
return code (or status code). This return code indicates whether the statement
executed successfully or failed and gives the reason for the failure.

See “Errors and warnings in procedures and triggers” in SQL Anywhere Server
- SQL Usage.

Note Sybase IQ does not support triggers. Information on triggers in the SQL
Anywhere documentation can be ignored.

Errors and warnings in procedures

16 Sybase IQ

Default error handling in procedures
This section describes how Sybase IQ handles errors that occur during a
procedure execution, if you have no error handling built in to the procedure.

See “Default error handling in procedures and triggers” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Errors and warnings in procedures and triggers.

Note Sybase IQ does not support triggers. Information on triggers in the SQL
Anywhere documentation can be ignored.

Error handling with ON EXCEPTION RESUME
If the ON EXCEPTION RESUME clause is included in the CREATE
PROCEDURE statement, the procedure checks the following statement when
an error occurs. If the statement handles the error, then the procedure does not
return control to the calling environment when an error occurs. Instead, it
continues executing, resuming at the statement after the one causing the error.

See “Error handling with ON EXCEPTION RESUME” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Errors and warnings in procedures and triggers.

Default handling of warnings in procedures
Errors and warnings are handled differently. While the default action for errors
is to set a value for the SQLSTATE and SQLCODE variables, and return
control to the calling environment in the event of an error, the default action for
warnings is to set the SQLSTATE and SQLCODE values and continue
execution of the procedure.

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 17

See “Default error handling of warnings in procedures and triggers” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Stored Procedures and Triggers > Using procedures, triggers,
and batches > Errors and warnings in procedures and triggers.

Note Sybase IQ does not support triggers.You can ignore information about
triggers in the SQL Anywhere documentation.

Using exception handlers in procedures
You may want to intercept certain types of errors and handle them within a
procedure, rather than pass the error back to the calling environment. This is
done through the use of an exception handler.

See “Using exception handlers in procedures and triggers” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Errors and warnings in procedures and triggers.

Note Sybase IQ does not support triggers. Information on triggers in the SQL
Anywhere documentation can be ignored.

Nested compound statements and exception handlers
You can use nested compound statements to give you more control over which
statements execute following an error and which do not.

See “Nested compound statements and exception handlers” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Stored Procedures and Triggers > Using procedures, triggers, and batches
> Errors and warnings in procedures and triggers.

Using the EXECUTE IMMEDIATE statement in procedures

18 Sybase IQ

Using the EXECUTE IMMEDIATE statement in
procedures

The EXECUTE IMMEDIATE statement allows statements to be built up inside
procedures using a combination of literal strings (in quotes) and variables.

See “Using the EXECUTE IMMEDIATE statement in procedures” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Stored Procedures and Triggers > Using procedures, triggers,
and batches.

Transactions and savepoints in procedures
SQL statements in a procedure or trigger are part of the current transaction.
You can call several procedures within one transaction or have several
transactions in one procedure.

See “Transactions and savepoints in procedures and triggers” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Stored Procedures and Triggers > Using procedures, triggers,
and batches.

Note Sybase IQ does not support triggers. Information on triggers in the SQL
Anywhere documentation can be ignored.

For more information, see:

• “Savepoints within transactions” in Chapter 10, “Transactions and
Versioning,” in System Administration Guide: Volume 1

• Chapter 10, “Transactions and Versioning,” in System Administration
Guide: Volume 1

Tips for writing procedures
This section provides some pointers for developing procedures. The following
subjects are discussed in this topic:

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 19

• Checking if you need to change he command delimiter

• Remembering to delimit statements within your procedure

• Using fully-qualified names for tables in procedures

• Specifying dates and times in procedures

 For more information on dates and times, see “Date and time data types”
in Chapter 3, “SQL Data Types,”in Reference: Building Blocks, Tables,
and Procedures.

• Verifying procedure input arguments are passed correctly

For information on determining the destination of the MESSAGE
statement output, see MESSAGE statement in Chapter 1, “SQL
Statements,” in Reference: Statements and Options.

See “Tips for writing procedures” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Using procedures, triggers, and batches.

Note Sybase IQ does not support triggers. Information on triggers in the SQL
Anywhere documentation can be ignored.

Hiding the contents of procedures, functions, and views
In some cases, you may want to distribute an application and a database
without disclosing the logic contained within procedures, functions, triggers
and views. As an added security measure, you can obscure the contents of these
objects using the SET HIDDEN clause of the ALTER PROCEDURE, ALTER
FUNCTION, and ALTER VIEW statements.

See “Hiding the contents of procedures, functions, triggers and views” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Stored Procedures and Triggers > Using procedures, triggers,
and batches.

Note Sybase IQ does not support triggers. Information on triggers in the SQL
Anywhere documentation can be ignored.

Statements allowed in batches

20 Sybase IQ

For more information, see ALTER FUNCTION statement, ALTER
PROCEDURE statement, and ALTER VIEW statement in Reference:
Statements and Options.

Statements allowed in batches
Most SQL statements are acceptable in batches, with some exceptions.

See “Statements allowed in procedures, triggers, events, and batches” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Stored Procedures and Triggers > Using procedures, triggers,
and batches.

Note Sybase IQ does not support triggers. Information on triggers in the SQL
Anywhere documentation can be ignored.

Using SELECT statements in batches
You can include one or more SELECT statements in a batch.

See “Using SELECT statements in batches” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Using procedures, triggers, and batches.

Sybase IQ example Note For examples, use the Sybase IQ demo database iqdemo.db. For
installation information, see “The demo database” on page xv.

EIF EXISTS(SELECT *

FROM isystab

WHERE table_name='Employees')

THEN

SELECT Surname AS LastName,

emp_fname AS FirstName

FROM Employees;

SELECT Surname, GivenName

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 21

FROM Customers;

SELECT Surname, GivenName

FROM Contacts;

END IF

Using IQ UTILITIES to create your own stored
procedures

The system stored procedures provided in Sybase IQ are implemented in SQL,
using the methods described in the rest of this chapter. You may want to create
your own variants of some of these procedures. Among the ways you might do
this are:

• Create a procedure that calls a system stored procedure.

• Create a procedure that is independent of the system stored procedures but
performs a similar function.

• Create a procedure that uses the same structure as the system stored
procedures but provides additional functionality. For example, you might
want to display procedure results in graphical form in a front-end tool or
browser rather than as text.

If you choose the second or third option, you need to understand the IQ
UTILITIES statement and the strict requirements for using it.

How IQ uses the IQ UTILITIES command
IQ UTILITIES is the underlying statement that executes whenever you run most
IQ system procedures. In most cases, users are unaware that IQ UTILITIES is
executing. The only time IQ UTILITIES is issued directly by users is to run the
IQ buffer cache monitor.

IQ UTILITIES provides a systematic way to collect and report on information
maintained in the IQ system tables. There is no general user interface; you can
only use IQ UTILITIES in the ways that existing system procedures do.

Using IQ UTILITIES to create your own stored procedures

22 Sybase IQ

System procedures declare local temporary tables in which they store
information. They execute IQ UTILITIES to get the information from the system
tables and store this information in the local temporary table. The system
procedures may simply report the information from the local temporary table
or perform additional processing.

In some system procedures, the IQ UTILITIES statement includes a predefined
number as one of its arguments. This number performs a specific function, for
example, deriving a value from information in the system tables. See Table 1-
1 on page 24 for a list of the numbers used as IQ UTILITIES arguments.

Requirements for using IQ UTILITIES
The requirements discussed throughout this chapter also apply when writing
stored procedures using IQ UTILITIES; there are also several crucial
requirements.

If you use IQ UTILITIES in your procedure, you must use this statement in
exactly the same way that existing procedures use it. In particular, you must:

• Declare a local temporary table in which you store results from the
procedure. This table must have exactly the same schema as in the system
stored procedures, including column names, column width, column order,
data types, precision, and so on.

• Issue an EXECUTE IMMEDIATE command to execute IQ UTILITIES and
store its results in the temporary table.

• Where the IQ UTILITIES statement includes a number, you must use
exactly the same number as in the system stored procedures, for exactly
the same purpose. You cannot create your own numbers or change the way
in which existing numbers are used.

In other words, you must use the local temporary table and IQ UTILITIES
statement in exactly the same way as system stored procedures:

• Do not eliminate columns or add extra columns.

• Do not alter the contents of the table used in the system procedures. Users
who call your procedure may also call other procedures that use the same
table.

 Warning! Violating these rules can cause serious problems for your IQ server
or database.

CHAPTER 1 Using Procedures and Batches

System Administration Guide: Volume 2 23

IQ system procedures are in the file iqprocs.sql in the scripts directory of your
IQ installation directory.

The syntax for IQ UTILITIES is:

IQ UTILITIES MAIN INTO local-temp-table-name arguments

For examples of how this command is used, refer to the iqprocs.sql file.

The IQ UTILITIES command is only documented in Reference: Statements and
Options to the IQ monitor, because of the strict requirements for its use and the
risk to system operations if it is used incorrectly.

The numbers in IQ system procedures are fixed. They do not change from
release to release, although new numbers may be added in future releases.

Give your procedures a different name from the system procedures.

Choosing procedures to call
You can safely use IQ UTILITIES to create your own versions of documented
system procedures that report on information in the database. For example,
sp_iqspaceused displays information about used and available space available
in the IQ main and IQ temporary stores. Check the owner of the procedure you
create from a system stored procedure to be sure your version of the procedure
has the correct owner.

Do not create your own versions of system procedures that control IQ
operations. Modifying procedures that control IQ operations can lead to serious
problems.

Numbers used by IQ UTILITIES
The following table lists the numbers used as arguments in the IQ UTILITIES
command and the system procedure where each number is used. For
information on the function of these procedures, see Chapter 7, “System
Procedures,” in Reference: Building Blocks, Tables, and Procedures.

Using IQ UTILITIES to create your own stored procedures

24 Sybase IQ

Table 1-1: IQ UTILITIES values used in system procedures

Testing your procedures
Always test your procedures in a development environment first. Testing
procedures before you run them in a production environment helps maintain
the stability of your IQ server and database.

Number Procedure Comments

10000 sp_iqtransaction

20000 sp_iqconnection and
sp_iqmpxcountdbremote

30000 sp_iqspaceused

40000 sp_iqspaceinfo

50000 sp_iqlocks

60000 sp_iqmpxversionfetch Do Not Use

70000 sp_iqmpxdumptlvlog

80000 sp_iqcontext

100000 sp_iqindexfragmentation

110000 sp_iqrowdensity

System Administration Guide: Volume 2 25

C H A P T E R 2 Using OLAP

About this chapter OLAP (online analytical processing) is an efficient method of data
analysis on information stored in a relational database. Using OLAP you
can analyze data on different dimensions, acquire result sets with
subtotaled rows, and organize data into multidimensional cubes, all in a
single SQL query. You can also use filters to drill down into the data,
returning result sets quickly. This chapter describes the SQL/OLAP
functionality that Sybase IQ supports.

Note The tables shown in OLAP examples are available in the iqdemo
database.

Contents Topic Page

About OLAP 26

GROUP BY clause extensions 28

Analytical functions 43

Simple aggregate functions 44

Windowing 44

 Ranking functions 58

 Windowing aggregate functions 62

 Statistical aggregate functions 64

 Distribution functions 67

Numeric functions 70

OLAP rules and restrictions 73

Additional OLAP examples 75

BNF grammar for OLAP functions 85

About OLAP

26 Sybase IQ

About OLAP
Extensions to the ANSI SQL standard to include complex data analysis were
introduced as an amendment to the 1999 SQL standard. Sybase IQ added
portions of these SQL enhancements provides additional comprehensive
support for the extensions.

These analytic functions, which offer the ability to perform complex data
analysis within a single SQL statement, are facilitated by a category of
software technology named online analytical processing (OLAP). Its functions
are shown in the following list:

• GROUP BY clause extensions – CUBE and ROLLUP

• Analytical functions:

• Simple aggregates – AVG, COUNT, MAX, MIN, and SUM, STDDEV and
VARIANCE

Note You can use simple aggregate functions, except Grouping(), with
an OLAP windowed function.

• Window functions:

• Windowing aggregates – AVG, COUNT, MAX, MIN, and SUM

• Ranking functions – RANK, DENSE_RANK, PERCENT_RANK,
and NTILE

• Statistical functions – STDDEV, STDDEV_SAMP, STDDEV_POP,
VARIANCE, VAR_POP, VAR_SAMP, REGR_AVGX,
REGR_AVGY, REGR_COUNT, REGR_INTERCEPT, REGR_R2,
REGR_SLOPE, REGR_SXX, REGR_SXY, REGR_SYY, CORR,
COVAR_POP, COVAR_SAMP, CUME_DIST,
EXP_WEIGHTED_AVG, and WEIGHTED_AVG.

• Distribution functions – PERCENTILE_CONT and
PERCENTILE_DISC

• Numeric functions – WIDTH_BUCKET, CEIL, and LN, EXP, POWER,
SQRT, and FLOOR

Some database products provide a separate OLAP module that requires you to
move data from the database into the OLAP module before analyzing it. By
contrast, Sybase IQ builds OLAP features into the database itself, making
deployment and integration with other database features, such as stored
procedures, easy and seamless.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 27

OLAP benefits
OLAP functions, when combined with the GROUPING, CUBE, and ROLLUP
extensions, provide two primary benefits. First, they let you perform
multidimensional data analysis, data mining, time series analyses, trend
analysis, cost allocations, goal seeking, ad hoc multidimensional structural
changes, nonprocedural modeling, and exception alerting, often with a single
SQL statement. Second, the window and reporting aggregate functions use a
relational operator, called a window that can be executed more efficiently than
semantically equivalent queries that use self-joins or correlated subqueries.
The result sets you obtain using OLAP can have subtotal rows and can be
organized into multidimensional cubes. See “Windowing” on page 44.

Moving averages and moving sums can be calculated over various intervals;
aggregations and ranks can be reset as selected column values change; and
complex ratios can be expressed in simple terms. Within the scope of a single
query expression, you can define several different OLAP functions, each with
its own partitioning rules.

Understanding OLAP evaluation
OLAP evaluation can be conceptualized as several phases of query execution
that contribute to the final result. You can identify OLAP phases of execution
by the relevant clause in the query. For example, if a SQL query specification
contains window functions, the WHERE, JOIN, GROUP BY, and HAVING
clauses are processed first. Partitions are created after the groups defined in the
GROUP BY clause and before the evaluation of the final SELECT list in the
query’s ORDER BY clause.

For the purpose of grouping, all NULL values are considered to be in the same
group, even though NULL values are not equal to one another.

The HAVING clause acts as a filter, much like the WHERE clause, on the results
of the GROUP BY clause.

Consider the semantics of a simple query specification involving the SQL
statements and clauses, SELECT, FROM, WHERE, GROUP BY, and HAVING
from the ANSI SQL standard:

1 The query produces a set of rows that satisfy the table expressions present
in the FROM clause.

2 Predicates from the WHERE clause are applied to rows from the table.
Rows that fail to satisfy the WHERE clause conditions (do not equal true)
are rejected.

GROUP BY clause extensions

28 Sybase IQ

3 Except for aggregate functions, expressions from the SELECT list and in
the list and GROUP BY clause are evaluated for every remaining row.

4 The resulting rows are grouped together based on distinct values of the
expressions in the GROUP BY clause, treating NULL as a special value in
each domain. The expressions in the GROUP BY clause serve as partition
keys if a PARTITION BY clause is present.

5 For each partition, the aggregate functions present in the SELECT list or
HAVING clause are evaluated. Once aggregated, individual table rows are
no longer present in the intermediate result set. The new result set consists
of the GROUP BY expressions and the values of the aggregate functions
computed for each partition.

6 Conditions from the HAVING clause are applied to result groups. Groups
are eliminated that do not satisfy the HAVING clause.

7 Results are partitioned on boundaries defined in the PARTITION BY clause.
OLAP windows functions (rank and aggregates) are computed for result
windows.

Figure 2-1: SQL processing for OLAP

See “Grammar rule 2” on page 85. See also “BNF grammar for OLAP
functions” on page 85.

GROUP BY clause extensions
Extensions to the GROUP BY clause let application developers write complex
SQL statements that:

• Partition the input rows in multiple dimensions and combine multiple
subsets of result groups.

• Create a “data cube,” providing a sparse, multi dimensional result set for
data mining analyses.

• Create a result set that includes the original groups, and optionally
includes a subtotal and grand-total row.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 29

OLAP Grouping() operations, such as ROLLUP and CUBE, can be
conceptualized as prefixes and subtotal rows.

Prefixes A list of prefixes is constructed for any query that contains a GROUP BY
clause. A prefix is a subset of the items in the GROUP BY clause and is
constructed by excluding one or more of the rightmost items from those in the
query’s GROUP BY clause. The remaining columns are called the prefix
columns.

ROLLUP example 1 In the following ROLLUP example query, the GROUP
BY list includes two variables, Year and Quarter:

SELECT year (OrderDate) AS Year, quarter(OrderDate)
AS Quarter, COUNT(*) Orders

FROM SalesOrders
GROUP BY ROLLUP(Year, Quarter)
ORDER BY Year, Quarter

The query’s two prefixes are:

• Exclude Quarter – the set of prefix columns contains the single column
Year.

• Exclude both Quarter and Year – there are no prefix columns.

Note The GROUP BY list contains the same number of prefixes as items.

Group by ROLLUP and CUBE
Two important syntactic shortcuts exist to concisely specify common grouping
for prefixes. The first of these patterns is called ROLLUP, and the second is
called CUBE.

GROUP BY clause extensions

30 Sybase IQ

Group by ROLLUP

The ROLLUP operator requires an ordered list of grouping expressions to be
supplied as arguments, as in the following syntax.

SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [, …]
| ROLLUP (expression [, …])]

GROUPING takes a column name as a parameter and returns a Boolean value
as listed in Table 2-1.

Table 2-1: Values returned by GROUPING with the ROLLUP operator

ROLLUP first calculates the standard aggregate values specified in the GROUP
BY clause. Then ROLLUP moves from right to left through the list of grouping
columns and creates progressively higher-level subtotals. A grand total is
created at the end. If n is the number of grouping columns, then ROLLUP
creates n+1 levels of subtotals.

ROLLUP and subtotal
rows

ROLLUP is equivalent to a UNION of a set of GROUP BY queries. The result
sets of the following queries are identical. The result set of GROUP BY (A, B)
consists of subtotals over all those rows in which A and B are held constant. To
make a union possible, column C is assigned NULL.

If the value of the result is GROUPING returns

NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a ROLLUP operation 0 (FALSE)

A stored NULL 0 (FALSE)

This SQL syntax... Defines the following sets...

GROUP BY ROLLUP (A, B, C); (A, B, C)

(A, B)

(A)

()

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 31

Subtotal rows can help you analyze data, especially if there are large amounts
of data, different dimensions to the data, data contained in different tables, or
even different databases altogether. For example, a sales manager might find
reports on sales figures broken down by sales representative, region, and
quarter to be useful in understanding patterns in sales. Subtotals for the data
give the sales manager a picture of overall sales from different perspectives.
Analyzing this data is easier when summary information is provided based on
the criteria that the sales manager wants to compare.

With OLAP, the procedure for analyzing and computing row and column
subtotals is invisible to users. Figure 2-2 shows conceptually how Sybase IQ
creates subtotals:

Figure 2-2: Subtotals

1 This step yields an intermediate result set that has not yet considered the
ROLLUP.

2 Subtotals are evaluated and attached to the result set.

3 The rows are arranged according to the ORDER BY clause in the query.

NULL values and
subtotal rows

When rows in the input to a GROUP BY operation contain NULL, there is the
possibility of confusion between subtotal rows added by the ROLLUP or CUBE
operations and rows that contain NULL values that are part of the original input
data.

The Grouping() function distinguishes subtotal rows from others by taking a
column in the GROUP BY list as its argument, and returning 1 if the column is
NULL because the row is a subtotal row, and 0 otherwise.

This ROLLUP query...
Is equivalent to this query without
ROLLUP...

SELECT A, B, C,
SUM(D)

FROM T1
GROUP BY ROLLUP (A, B,

C);

SELECT *
FROM (T1 (SELECT A, B, C, SUM(D)
GROUP BY A, B, C) UNION ALL (SELECT

A, B, NULL, SUM(D) GROUP BY A,
B) UNION ALL (SELECT A, NULL,
NULL, SUM(D) GROUP BY A)
UNION ALL (SELECT NULL, NULL,
NULL, SUM(D)))

GROUP BY clause extensions

32 Sybase IQ

The following example includes Grouping() columns in the result set. Rows
are highlighted that contain NULL as a result of the input data, not because
they are subtotal rows. The Grouping() columns are highlighted. The query is
an outer join between the employee table and the sales_order table. The query
selects female employees who live in either Texas, New York, or California.
NULL appears in the columns corresponding to those female employees who
are not sales representatives (and therefore have no sales).

Note For examples, use the Sybase IQ demo database iqdemo.db. For
installation information, see “The demo database” on page xv.

SELECT Employees.EmployeeID as EMP, year(OrderDate) as
YEAR, count(*) as ORDERS, grouping(EMP) as
GE, grouping(YEAR) as GY
FROM Employees LEFT OUTER JOIN SalesOrders on
Employees.EmployeeID =

SalesOrders.SalesRepresentative
WHERE Employees.Sex IN ('F') AND Employees.State
IN ('TX', 'CA', 'NY')

GROUP BY ROLLUP (YEAR, EMP)
ORDER BY YEAR, EMP

The following result set is from the query.

EmployeeID YEAR Orders GE GY
------ ---- ------ -- --
NULL NULL 1 1 0
NULL NULL 165 1 1
1090 NULL 1 0 0
NULL 2000 98 1 0
667 2000 34 0 0
949 2000 31 0 0
1142 2000 33 0 0
NULL 2001 66 1 0
667 2001 20 0 0
949 2001 22 0 0
1142 2001 24 0 0

For each prefix, a subtotal row is constructed that corresponds to all rows in
which the prefix columns have the same value.

To demonstrate ROLLUP results, examine the example query again:

SELECT year (OrderDate) AS Year, quarter
(OrderDate) AS Quarter, COUNT (*) Orders

FROM SalesOrders

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 33

GROUP BY ROLLUP (Year, Quarter)
ORDER BY Year, Quarter

In this query, the prefix containing the Year column leads to a summary row for
Year=2000 and a summary row for Year=2001. A single summary row for the
prefix has no columns, which is a subtotal over all rows in the intermediate
result set.

The value of each column in a subtotal row is as follows:

• Column included in the prefix – the value of the column. For example, in
the preceding query, the value of the Year column for the subtotal over
rows with Year=2000 is 2000.

• Column excluded from the prefix – NULL. For example, the Quarter
column has a value of NULL for the subtotal rows generated by the prefix
consisting of the Year column.

• Aggregate function – an aggregate over the values of the excluded
columns.

Subtotal values are computed over the rows in the underlying data, not
over the aggregated rows. In many cases, such as SUM or COUNT, the
result is the same, but the distinction is important in the case of statistical
functions such as AVG, STDDEV, and VARIANCE, for which the result
differs.

Restrictions on the ROLLUP operator are:

• The ROLLUP operator supports all of the aggregate functions available to
the GROUP BY clause except COUNT DISTINCT and SUM DISTINCT.

• ROLLUP can only be used in the SELECT statement; you cannot use
ROLLUP in a subquery.

• A grouping specification that combines multiple ROLLUP, CUBE, and
GROUP BY columns in the same GROUP BY clause is not currently
supported.

• Constant expressions as GROUP BY keys are not supported.

For the general format of an expression, see “Expressions,” Chapter 2, “SQL
Language Elements,” in Reference: Building Blocks, Tables, and Procedures.

GROUP BY clause extensions

34 Sybase IQ

ROLLUP example 2 The following example illustrates the use of ROLLUP
and GROUPING and displays a set of mask columns created by GROUPING.
The digits 0 and 1 displayed in columns S, N, and C are the values returned by
GROUPING to represent the value of the ROLLUP result. A program can
analyze the results of this query by using a mask of “011” to identify subtotal
rows and “111” to identify the row of overall totals.

SELECT size, name, color, SUM(quantity),
GROUPING(size) AS S,
GROUPING(name) AS N,
GROUPING(color) AS C

FROM Products
GROUP BY ROLLUP(size, name, color) HAVING (S=1 or N=1
or C=1)
ORDER BY size, name, color;

The results from the above query:

size name color SUM S N C

---- ----- ------ --- - - -

(NULL) (NULL) (NULL) 496 1 1 1

Large (NULL) (NULL) 71 0 1 1

Large Sweatshirt (NULL) 71 0 0 1

Medium (NULL) (NULL) 134 0 1 1

Medium Shorts (NULL) 80 0 0 1

Medium Tee Shirt (NULL) 54 0 0 1

One size fits all (NULL) (NULL) 263 0 1 1

One size fits all Baseball Cap (NULL) 124 0 0 1

One size fits all Tee Shirt (NULL) 75 0 0 1

One size fits all Visor (NULL) 64 0 0 1

Small (NULL) (NULL) 28 0 1 1

Small Tee Shirt (NULL) 28 0 1 1

Note In the Rollup Example 2 results, the SUM column displays as
SUM(products.quantity).

ROLLUP example 3 The following example illustrates the use of
GROUPING to distinguish stored NULL values and “NULL” values created by
the ROLLUP operation. Stored NULL values are then displayed as [NULL] in
column prod_id, and “NULL” values created by ROLLUP are replaced with
ALL in column PROD_IDS, as specified in the query.

SELECT year(ShipDate) AS Year, ProductID, SUM(quantity)

AS OSum, CASE WHEN GROUPING(Year) = 1 THEN 'ALL' ELSE

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 35

CAST(Year AS char(8)) END, CASE WHEN

GROUPING(ProductID) = 1 THEN 'ALL' ELSE CAST(ProductID

as char(8)) END

FROM SalesOrderItems

GROUP BY ROLLUP(Year, ProductID) HAVING OSum > 36

ORDER BY Year, ProductID;

The results from the above query:

Year ProductID 0SumPROD_IDS
--------- ------- --- ---------- --------
NULL NULL 28359 ALL ALL
2000 NULL 17642 2000 ALL
2000 300 1476 2000 300
2000 301 1440 2000 301
2000 302 1152 2000 302
2000 400 1946 2000 400
2000 401 1596 2000 401
2000 500 1704 2000 500
2000 501 1572 2000 501
2000 600 2124 2000 600
2000 601 1932 2000 601
2000 700 2700 2000 700
2001 NULL 10717 2001 ALL
2001 300 888 2001 300
2001 301 948 2001 301
2001 302 996 2001 302
2001 400 1332 2001 400
2001 401 1105 2001 401
2001 500 948 2001 500
2001 501 936 2001 501
2001 600 936 2001 600
2001 601 792 2001 601
2001 700 1836 2001 700

ROLLUP example 4 The next example query returns data that summarizes
the number of sales orders by year and quarter.

SELECT year (OrderDate) AS Year, quarter

(OrderDate) AS Quarter, COUNT (*) Orders

FROM SalesOrders

GROUP BY ROLLUP (Year, Quarter)

GROUP BY clause extensions

36 Sybase IQ

ORDER BY Year, Quarter

The following figure illustrates the query results with subtotal rows highlighted
in the result set. Each subtotal row contains a NULL value in the column or
columns over which the subtotal is computed.

Row [1] represents the total number of orders across both years (2000, 2001)
and all quarters. This row contains NULL in both the Year and Quarter columns
and is the row where all columns were excluded from the prefix.

Note Every ROLLUP operation returns a result set with one row where NULL
appears in each column except for the aggregate column. This row represents
the summary of each column to the aggregate function. For example, if SUM
were the aggregate function in question, this row would represent the grand
total of all values.

Row [2] represent the total number of orders in the years 2000 and 2001,
respectively. Both rows contain NULL in the Quarter column because the
values in that column are rolled up to give a subtotal for Year. The number of
rows like this in your result set depends on the number of variables that appear
in your ROLLUP query.

The remaining rows marked [3] provide summary information by giving the
total number of orders for each quarter in both years.

ROLLUP example 5 This example of the ROLLUP operation returns a
slightly more complicated result set, which summarizes the number of sales
orders by year, quarter, and region. In this example, only the first and second
quarters and two selected regions (Canada and the Eastern region) are
examined.

SELECT year(OrderDate) AS Year, quarter(OrderDate)

AS Quarter, region, COUNT(*) AS Orders

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 37

FROM SalesOrders WHERE region IN ('Canada',

'Eastern') AND quarter IN (1, 2)

GROUP BY ROLLUP (Year, Quarter, Region)

ORDER BY Year, Quarter, Region

The following figure illustrates the result set from the above query. Each
subtotal row contains a NULL in the column or columns over which the
subtotal is computed.

Row [1] is an aggregate over all rows and contains NULL in the Year, Quarter,
and Region columns. The value in the Orders column of this row represents the
total number of orders in Canada and the Eastern region in quarters 1 and 2 in
the years 2000 and 2001.

The rows marked [2] represent the total number of sales orders in each year
(2000) and (2001) in quarters 1 and 2 in Canada and the Eastern region. The
values of these rows [2] are equal to the grand total represented in row [1].

GROUP BY clause extensions

38 Sybase IQ

The rows marked [3] provide data about the total number of orders for the
given year and quarter by region.

The rows marked [4] provide data about the total number of orders for each
year, each quarter, and each region in the result set.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 39

Group by CUBE

The CUBE operator in the GROUP BY clause analyzes data by forming the data
into groups in more than one dimension (grouping expression). CUBE requires
an ordered list of dimensions as arguments and enables the SELECT statement
to calculate subtotals for all possible combinations of the group of dimensions
that you specify in the query and generates a result set that shows aggregates
for all combinations of values in selected columns.

CUBE syntax:

SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [,…]
| CUBE (expression [,…])]

GROUPING takes a column name as a parameter, and returns a Boolean value
as listed in Table 2-2.

Table 2-2: Values returned by GROUPING with the CUBE operator

CUBE is particularly useful when your dimensions are not a part of the same
hierarchy.

Restrictions on the CUBE operator are:

• The CUBE operator supports all of the aggregate functions available to the
GROUP BY clause, but CUBE is currently not supported with COUNT
DISTINCT or SUM DISTINCT.

If the value of the result is GROUPING returns

NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a CUBE operation 0 (FALSE)

A stored NULL 0 (FALSE)

This SQL syntax... Defines the following sets...

GROUP BY CUBE (A, B, C); (A, B, C)

(A, B)

(A, C)

(A)

(B, C)

(B)

(C)

()

GROUP BY clause extensions

40 Sybase IQ

• CUBE is currently not supported with the inverse distribution analytical
functions, PERCENTILE_CONT and PERCENTILE_DISC.

• CUBE can only be used in the SELECT statement; you cannot use CUBE in
a SELECT subquery.

• A GROUPING specification that combines ROLLUP, CUBE, and GROUP
BY columns in the same GROUP BY clause is not currently supported.

• Constant expressions as GROUP BY keys are not supported.

Note CUBE performance diminishes if the size of the cube exceeds the size of
the temp cache.

GROUPING can be used with the CUBE operator to distinguish between stored
NULL values and NULL values in query results created by CUBE.

See the examples in the description of the ROLLUP operator for illustrations of
the use of the GROUPING function to interpret results.

 All CUBE operations return result sets with at least one row where NULL
appears in each column except for the aggregate columns. This row represents
the summary of each column to the aggregate function.

CUBE example 1 The following queries use data from a census, including
the state (geographic location), gender, education level, and income of people.
The first query contains a GROUP BY clause that organizes the results of the
query into groups of rows, according to the values of the columns state, gender,
and education in the table census and computes the average income and the
total counts of each group. This query uses only the GROUP BY clause without
the CUBE operator to group the rows.

SELECT State, Sex as gender, DepartmentID, COUNT(*),

CAST(ROUND(AVG(Salary),2) AS NUMERIC(18,2))

AS AVERAGE

FROM Employees WHERE state IN ('MA' , 'CA')

GROUP BY State, Sex, DepartmentID

ORDER BY 1,2;

The results from the above query:

state gender DepartmentID COUNT(*) AVERAGE
----- ------ ------- -------- --------
CA F 200 2 58650.00
CA M 200 1 39300.00

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 41

Use the CUBE extension of the GROUP BY clause, if you want to compute the
average income in the entire census of state, gender, and education and
compute the average income in all possible combinations of the columns state,
gender, and education, while making only a single pass through the census data.
For example, use the CUBE operator if you want to compute the average
income of all females in all states, or compute the average income of all people
in the census according to their education and geographic location.

When CUBE calculates a group, a NULL value is generated for the columns
whose group is calculated. The GROUPING function must be used to
distinguish whether a NULL is a NULL stored in the database or a NULL
resulting from CUBE. The GROUPING function returns 1 if the designated
column has been merged to a higher level group.

CUBE example 2 The following query illustrates the use of the GROUPING
function with GROUP BY CUBE.

SELECT case grouping(State) WHEN 1 THEN 'ALL' ELSE State

END AS c_state, case grouping(sex) WHEN 1 THEN 'ALL'

ELSE Sex end AS c_gender, case grouping(DepartmentID)

WHEN 1 THEN 'ALL' ELSE cast(DepartmentID as char(4)) end

AS c_dept, COUNT(*), CAST(ROUND(AVG(salary),2) AS

NUMERIC(18,2))AS AVERAGE

FROM employees WHERE state IN ('MA' , 'CA')

GROUP BY CUBE(state, sex, DepartmentID)

ORDER BY 1,2,3;

The results of this query are shown below. The NULLs generated by CUBE to
indicate a subtotal row are replaced with ALL in the subtotal rows, as specified
in the query.

c_state c_gender c_dept COUNT(*) AVERAGE
------- -------- ------- ----- --------
ALL ALL 200 3 52200.00
ALL ALL ALL 3 52200.00
ALL F 200 2 58650.00
ALL F ALL 2 58650.00
ALL M 200 1 39300.00
ALL M ALL 1 39300.00
CA ALL 200 3 52200.00
CA ALL ALL 3 52200.00
CA F 200 2 58650.00
CA F ALL 2 58650.00

GROUP BY clause extensions

42 Sybase IQ

CA M 200 1 39300.00
CA M ALL 1 39300.00

CUBE example 3 In this example, the query returns a result set that
summarizes the total number of orders and then calculates subtotals for the
number of orders by year and quarter.

Note As the number of variables that you want to compare increases, the cost
of computing the cube increases exponentially.

SELECT year (OrderDate) AS Year, quarter

(OrderDate) AS Quarter, COUNT (*) Orders

FROM SalesOrders

GROUP BY CUBE (Year, Quarter)

ORDER BY Year, Quarter

The figure that follows represents the result set from the query. The subtotal
rows are highlighted in the result set. Each subtotal row has a NULL in the
column or columns over which the subtotal is computed.

The first highlighted row [1] represents the total number of orders across both
years and all quarters. The value in the Orders column is the sum of the values
in each of the rows marked [3]. It is also the sum of the four values in the rows
marked [2].

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 43

The next set of highlighted rows [2] represents the total number of orders by
quarter across both years. The two rows marked by [3] represent the total
number of orders across all quarters for the years 2000 and 2001, respectively.

Analytical functions
Sybase IQ offers both simple and windowed aggregation functions that offer
the ability to perform complex data analysis within a single SQL statement.
You can use these functions to compute results for queries such as “What is the
quarterly moving average of the Dow Jones Industrial average,” or “List all
employees and their cumulative salaries for each department.” Moving
averages and cumulative sums can be calculated over various intervals, and
aggregations and ranks can be partitioned, so aggregate calculation is reset
when partition values change. Within the scope of a single query expression,
you can define several different OLAP functions, each with its own arbitrary
partitioning rules. Analytical functions can be broken into two categories:

• Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM
summarize data over a group of rows from the database. The groups are
formed using the GROUP BY clause of the SELECT statement.

• Unary statistical aggregate functions that take one argument include
STDDEV, STDDEV_SAMP, STDDEV_POP, VARIANCE, VAR_SAMP, and
VAR_POP().

Both the simple and unary categories of aggregates summarize data over a
group of rows from the database and can be used with a window specification
to compute a moving window over a result set as it is processed.

Note The aggregate functions AVG, SUM, STDDEV, STDDEV_POP,
STDDEV_SAMP, VAR_POP, VAR_SAMP, and VARIANCE do not support binary
data types BINARY and VARBINARY.

Analytical functions

44 Sybase IQ

Simple aggregate functions
Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM
summarize data over a group of rows from the database. The groups are formed
using the GROUP BY clause of the SELECT statement. These aggregates are
allowed only in the select list and in the HAVING and ORDER BY clauses of a
SELECT statement.

Note With the exception of Grouping() functions, both the simple and unary
aggregates can be used in a windowing function that incorporates a <window
clause> in a SQL query specification (a window) that conceptually creates a
moving window over a result set as it is processed. See “Windowing” on page
44.

See “Aggregate functions,” Chapter 4, “SQL Functions,” in Reference:
Building Blocks, Tables, and Procedures.

Windowing
A major feature of the ANSI SQL extensions for OLAP is a construct called a
window. This windowing extension let users divide result sets of a query (or a
logical partition of a query) into groups of rows called partitions and determine
subsets of rows to aggregate with respect to the current row.

You can use three classes of window functions with a window: ranking
functions, the row numbering function, and window aggregate functions.

<WINDOWED TABLE FUNCTION TYPE> ::=
<RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
| ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
| <WINDOW AGGREGATE FUNCTION>

See also “Grammar rule 6” on page 85.

Windowing extensions specify a window function type over a window name or
specification and are applied to partitioned result sets within the scope of a
single query expression. A window partition is a subset of rows returned by a
query, as defined by one or more columns in a special OVER clause:

olap_function() OVER (PARTITION BY col1, col2...)

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 45

Windowing operations let you establish information such as the ranking of
each row within its partition, the distribution of values in rows within a
partition, and similar operations. Windowing also lets you compute moving
averages and sums on your data, enhancing the ability to evaluate your data and
its impact on your operations.

An OLAP window’s
three essential parts

The OLAP windows comprise three essential aspects: window partitioning,
window ordering, and window framing. Each has a significant impact on the
specific rows of data visible in a window at any point in time. Meanwhile, the
OLAP OVER clause differentiates OLAP functions from other analytic or
reporting functions with three distinct capabilities:

• Defining window partitions (PARTITION BY clause). See “Window
partitioning” on page 46.

• Ordering rows within partitions (ORDER BY clause). See “Window
ordering” on page 47.

• Defining window frames (ROWS/RANGE specification). See “Window
framing” on page 48.

To specify multiple windows functions, and to avoid redundant window
definitions, you can specify a name for an OLAP window specifications. In this
usage, the keyword, WINDOW, is followed by at least one window definition,
separated by commas. A window definition includes the name by which the
window is known in the query and the details from the windows specification,
which lets you to define window partitioning, ordering, and framing:

<WINDOW CLAUSE> ::= <WINDOW DEFINITION LIST>

<WINDOW DEFINITION LIST> ::=
<WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>
} . . .]

<WINDOW DEFINITION> ::=
<NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

<WINDOW SPECIFICATION DETAILS> ::=
[<EXISTING WINDOW NAME>]
[<WINDOW PARTITION CLAUSE>]
[<WINDOW ORDER CLAUSE>]
[<WINDOW FRAME CLAUSE>]

For each row in a window partition, users can define a window frame, which
may vary the specific range of rows used to perform any computation on the
current row of the partition. The current row provides the reference point for
determining the start and end points of the window frame.

Analytical functions

46 Sybase IQ

Window specifications can be based on either a physical number of rows using
a window specification that defines a window frame unit of ROWS or a logical
interval of a numeric value, using a window specification that defines a
window frame unit of RANGE. See “Window framing” on page 48.

Within OLAP windowing operations, you can use the following functional
categories:

• “Ranking functions” on page 58

• “Windowing aggregate functions” on page 62

• “Statistical aggregate functions” on page 64

• “Distribution functions” on page 67

Window partitioning

Window partitioning is the division of user-specified result sets (input rows)
using a PARTITION BY clause. A partition is defined by one or more value
expressions separated by commas. Partitioned data is also implicitly sorted and
the default sort order is ascending (ASC).

<WINDOW PARTITION CLAUSE> ::=
PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

If a window partition clause is not specified, then the input is treated as single
partition.

Note The term partition as used with analytic functions, refers only to
dividing the set of result rows using a PARTITION BY clause.

A window partition can be defined based on an arbitrary expression. Also,
because window partitioning occurs after GROUPING (if a GROUP BY clause
is specified), the result of any aggregate function, such as SUM, AVG, and
VARIANCE, can be used in a partitioning expression. Therefore, partitions
provide another opportunity to perform grouping and ordering operations in
addition to the GROUP BY and ORDER BY clauses; for example, you can
construct queries that compute aggregate functions over aggregate functions,
such as the maximum SUM of a particular quantity.

You can specify a PARTITION BY clause, even it there is no GROUP BY clause.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 47

Window ordering

Window ordering is the arrangement of results (rows) within each window
partition using a window order clause, which contains one or more value
expressions separated by commas. If a window order clause is not specified,
the input rows could be processed in an arbitrary order.

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

The OLAP window order clause is different from the ORDER BY clause that
can be appended to a nonwindowed query expression. See “Grammar rule 31”
on page 87.

The ORDER BY clause in an OLAP function, for example, typically defines the
expressions for sorting rows within window partitions; however, you can use
the ORDER BY clause without a PARTITION BY clause, in which case the sort
specification ensures that the OLAP function is applied to a meaningful (and
intended) ordering of the intermediate result set.

An order specification is a prerequisite for the ranking family of OLAP
functions; it is the ORDER BY clause, not an argument to the function itself,
that identifies the measures for the ranking values. In the case of OLAP
aggregates, the ORDER BY clause is not required in general, but it is a
prerequisite to defining a window frame. (See “Window framing” on page 48.)
This is because the partitioned rows must be sorted before the appropriate
aggregate values can be computed for each frame.

The ORDER BY clause includes semantics for defining ascending and
descending sorts, as well as rules for the treatment of NULL values. By default,
OLAP functions assume an ascending order, where the lowest measured value
is ranked 1.

Although this behavior is consistent with the default behavior of the ORDER
BY clause that ends a SELECT statement, it is counterintuitive for most
sequential calculations. OLAP calculations often require a descending order,
where the highest measured value is ranked 1; this requirement must be
explicitly stated in the ORDER BY clause with the DESC keyword.

Note Ranking functions require a <window order clause> because they are
defined only over sorted input. As with an <order by clause> in a <query
specification>, the default sort sequence is ascending.

The use of a <window frame unit> of RANGE also requires the existence of a
<window order clause>. In the case of RANGE, the <window order clause>
may only consist of a single expression. See “Window framing.”

Analytical functions

48 Sybase IQ

Window framing

For nonranking aggregate OLAP functions, you can define a window frame
with a window frame clause, which specifies the beginning and end of the
window relative to the current row.

<WINDOW FRAME CLAUSE> ::=
<WINDOW FRAME UNIT>
<WINDOW FRAME EXTENT>

This OLAP function is computed with respect to the contents of a moving
frame rather than the fixed contents of the whole partition. Depending on its
definition, the partition has a start row and an end row, and the window frame
slides from the starting point to the end of the partition.

Figure 2-3: Three-row moving window with partitioned input

UNBOUNDED
PRECEEDING and
FOLLOWING

Window frames can be defined by an unbounded aggregation group that either
extends back to the beginning of the partition (UNBOUNDED PRECEDING)
or extends to the end of the partition (UNBOUNDED FOLLOWING), or both.

UNBOUNDED PRECEDING includes all rows within the partition preceding
the current row, which can be specified with either ROWS or RANGE.
UNBOUNDED FOLLOWING includes all rows within the partition following
the current row, which can be specified with either ROWS or RANGE. See
“ROWS” on page 50 and “RANGE” on page 53.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 49

The value FOLLOWING specifies either the range or number of rows
following the current row. If ROWS is specified, then the value is a positive
integer indicating a number of rows. If RANGE is specified, the window
includes any rows that are less than the current row plus the specified numeric
value. For the RANGE case, the data type of the windowed value must be
comparable to the type of the sort key expression of the ORDER BY clause.
There can be only one sort key expression, and the data type of the sort key
expression must allow addition.

The value PREDCEEDING specifies either the range or number of rows
preceding the current row. If ROWS is specified, then the value is a positive
integer indicating a number of rows. If RANGE is specified, the window
includes any rows that are less than the current row minus the specified
numeric value. For the RANGE case, the data type of the windowed value must
be comparable to the type of the sort key expression of the ORDER BY clause.
There can be only one sort key expression, and the data type of the sort key
expression must allow subtraction. This clause cannot be specified in second
bound group if the first bound group is CURRENT ROW or value
FOLLOWING.

The combination BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING provides an aggregate over an entire partition,
without the need to construct a join to a grouped query. An aggregate over an
entire partition is also known as a reporting aggregate.

CURRENT ROW
concept

In physical aggregation groups, rows are included or excluded based on their
position relative to the current row, by counting adjacent rows. The current row
is simply a reference to the next row in a query’s intermediate results. As the
current row advances, the window is reevaluated based on the new set of rows
that lie within the window. There is no requirement that the current row be
included in a window.

If a window frame clause is not specified, the default window frame depends
on whether or not a window order clause is specified:

• If the window specification contains a window order clause, the window’s
start point is UNBOUNDED PRECEDING, and the end point is CURRENT
ROW, thus defining a varying-size window suitable for computing
cumulative values.

Analytical functions

50 Sybase IQ

• If the window specification does not contain a window order clause, the
window’s start point is UNBOUNDED PRECEDING, and the end point is
UNBOUNDED FOLLOWING, thus defining a window of fixed size,
regardless of the current row.

Note A window frame clause cannot be used with a ranking function.

You can also define a window by specifying a window frame unit that is row-
based (rows specification) or value-based (range specification).

<WINDOW FRAME UNIT> ::= ROWS | RANGE

<WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW
FRAME BETWEEN>

When a window frame extent specifies BETWEEN, it explicitly provides the
beginning and end of a window frame.

If the window frame extent specifies only one of these two values then the other
value defaults to CURRENT ROW.

ROWS

The window frame unit, ROWS, defines a window in the specified number of
rows before or after the current row, which serves as the reference point that
determines the start and end of a window. Each analytical calculation is based
on the current row within a partition. To produce determinative results for a
window expressed in rows, the ordering expression should be unique.

The reference point for all window frames is the current row. The SQL/OLAP
syntax provides mechanisms for defining a row-based window frame as any
number of rows preceding or following the current row or preceding and
following the current row.

The following list illustrates common examples of a window frame unit:

• Rows between unbounded preceding and current row – specifies a window
whose start point is the beginning of each partition and the end point is the
current row and is often used to construct windows that compute
cumulative results, such as cumulative sums.

• Rows between unbounded preceding and unbounded following – specifies
a fixed window, regardless of the current row, over the entire partition. The
value of a window aggregate function is, therefore, identical in each row
of the partition.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 51

• Rows between 1 preceding and 1 following – specifies a fixed-sized
moving window over three adjacent rows, one each before and after the
current row. You can use this window frame unit to compute, for example,
a 3-day or 3-month moving average. See Figure 2-3 on page 48.

Be aware of meaningless results that may be generated by gaps in the
windowed values when using ROWS. If the set of values is not
continuous, consider using RANGE instead of ROWS, because a window
definition based on RANGE automatically handles adjacent rows with
duplicate values and does not include other rows when there are gaps in
the range.

Note In the case of a moving window, it is assumed that rows containing
NULL values exist before the first row, and after the last row, in the input.
This means that in a 3-row moving window, the computation for the last
row in the input—the current row— includes the immediately preceding
row and a NULL value.

• Rows between current row and current row – restricts the window to the
current row only.

• Rows between 1 preceding and 1 preceding – specifies a single row
window consisting only of the preceding row, with respect to the current
row. In combination with another window function that computes a value
based on the current row only, this construction makes it possible to easily
compute deltas, or differences in value, between adjacent rows. See
“Computing deltas between adjacent rows” on page 55.

Row-based window frames In the example in Figure 2-4, rows [1] through
[5] represent a partition; each row becomes the current row as the OLAP
window frame slides forward. The frame is defined as Between Current Row
And 2 Following, so each frame includes a maximum of three rows and a
minimum of one row. When the frame reaches the end of the partition, only the
current row is included. The shaded areas indicate which rows are excluded
from the frame at each step in Figure 2-4.

Figure 2-4: Row-based window frames

The window frame in Figure 2-4 imposes the following rules:

Analytical functions

52 Sybase IQ

• When row [1] is the current row, rows [4] and [5] are excluded.

• When row [2] is the current row, rows [5] and [1] are excluded.

• When row [3] is the current row, rows [1] and [2] are excluded.

• When row [4] is the current row, rows [1], [2], and [3] are excluded.

• When row [5] is the current row, rows [1], [2], [3], and [4] are excluded.

The following diagram applies these rules to a specific set of values, showing
the OLAP AVG function that would be calculated for each row. The sliding
calculations produce a moving average with an interval of three rows or fewer,
depending on which row is the current row:

The following example demonstrates a sliding window:

SELECT dimension, measure,
AVG(measure) OVER(partition BY dimension

ORDER BY measure
ROWS BETWEEN CURRENT ROW and 2 FOLLOWING)
AS olap_avg

FROM ...

The averages are computed as follows:

• Row [1] = (10 + 50 + 100)/3

• Row [2] = (50+ 100 + 120)/3

• Row [3] = (100 + 120 + 500)/3

• Row [4] = (120 + 500 + NULL)/3

• Row [5] = (500 + NULL + NULL)/3

Similar calculations would be computed for all subsequent partitions in the
result set (such as, B, C, and so on).

If there are no rows in the current window, the result is NULL, except for
COUNT.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 53

RANGE

Range-based window frames The previous example, Row-based window
frames, demonstrates one among many row-based window frame definitions.
The SQL/OLAP syntax also supports another kind of window frame whose
limits are defined in terms of a value-based—or range-based—set of rows,
rather than a specific sequence of rows.

Value-based window frames define rows within a window partition that
contain a specific range of numeric values. The OLAP function’s ORDER BY
clause defines the numeric column to which the range specification is applied,
relative to the current row’s value for that column. The range specification uses
the same syntax as the rows specification, but the syntax is interpreted in a
different way.

The window frame unit, RANGE, defines a window frame whose contents are
determined by finding rows in which the ordering column has values within the
specified range of value relative to the current row. This is called a logical
offset of a window frame, which you can specify with constants, such as “3
preceding,” or any expression that can be evaluated to a numeric constant.
When using a window defined with RANGE, there can be only a single
numeric expression in the ORDER BY clause.

Note ORDER BY key must be a numeric data in RANGE window frame

For example, a frame can be defined as the set of rows with year values some
number of years preceding or following the current row’s year:

ORDER BY year ASC range BETWEEN CURRENT ROW and 1
PRECEDING

In the above example query, 1 preceding means the current row’s year value
minus 1.

This kind of range specification is inclusive. If the current row’s year value is
2000, all rows in the window partition with year values 2000 and 1999 qualify
for the frame, regardless of the physical position of those rows in the partition.
The rules for including and excluding value-based rows are quite different
from the rules applied to row-based frames, which depend entirely on the
physical sequence of rows.

Put in the context of an OLAP AVG() calculation, the following partial result
set further demonstrates the concept of a value-based window frame. Again,
the frame consists of rows that:

• Have the same year as the current row

Analytical functions

54 Sybase IQ

• Have the same year as the current row minus 1

The following query demonstrates a range-based window definition:

SELECT dimension, year, measure,
AVG(measure) OVER(PARTITION BY dimension

ORDER BY year ASC
range BETWEEN CURRENT ROW and 1 PRECEDING)
as olap_avg

FROM ...

The averages are computed as follows:

• Row [1] = 1999; rows [2] through [5] are excluded; AVG = 10,000/1

• Row [2] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2

• Row [3] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2

• Row [4] = 2002; row [1] is excluded; AVG = 21,000/4

• Row [5] = 2002; row [1] is excluded; AVG = 21,000/4

Ascending and descending order for value-based frames The ORDER
BY clause for an OLAP function with a value-based window frame not only
identifies the numeric column on which the range specification is based; it also
declares the sort order for the ORDER BY values. The following specification
is subject to the sort order that precedes it (ASC or DESC):

RANGE BETWEEN CURRENT ROW AND n FOLLOWING

The specification n FOLLOWING means:

• Plus n if the partition is sorted in default ascending order (ASC)

• Minus n if the partition is sorted in descending order (DESC)

For example, assume that the year column contains four distinct values, from
1999 to 2002. The following table shows the default ascending order of these
values on the left and the descending order on the right:

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 55

If the current row is 1999 and the frame is specified as follows, rows that
contain the values 1999 and 1998 (which does not exist in the table) are
included in the frame:

ORDER BY year DESC range BETWEEN CURRENT ROW and 1
FOLLOWING

Note The sort order of the ORDER BY values is a critical part of the test for
qualifying rows in a value-based frame; the numeric values alone do not
determine exclusion or inclusion.

Using an unbounded window The following query produces a result set
consisting of all of the products accompanied by the total quantity of all
products:

SELECT id, description, quantity,
SUM(quantity) OVER () AS total

FROM products;

Computing deltas between adjacent rows Using two windows—one over
the current row and the other over the previous row—provides a direct way of
computing deltas, or changes, between adjacent rows.

SELECT EmployeeID, Surname, SUM(salary) OVER (ORDER BY
BirthDate rows between current row and current row)

AS curr, SUM(Salary) OVER (ORDER BY BirthDate rows

between 1 preceding and 1 preceding) AS prev, (curr

-prev) as delta

FROM Employees WHERE State IN ('MA', 'AZ', 'CA', 'CO')
AND DepartmentID>10

ORDER BY EmployeeID, Surname;

The results from the query:

EmployeeID Surname curr prev delta
------ --------- -------- --------- ----------
148 Jordan 51432.000

191 Bertrand 29800.000 39300.000 -9500.000

278 Melkisetian 48500.000 42300.000 6200.000

299 Overbey 39300.000 41700.750 -2400.750

318 Crow 41700.750 45000.000 -3299.250

Analytical functions

56 Sybase IQ

586 Coleman 42300.000 46200.000 -3900.000

690 Poitras 46200.000 29800.000 16400.000

703 Martinez 55500.800 51432.000 4068.800

949 Savarino 72300.000 55500.800 16799.200

1101 Preston 37803.000 48500.000 -10697.000

1142 Clark 45000.000 72300.000 -27300.000

Although the window function SUM() is used, the sum contains only the salary
value of either the current or previous row because of the way the window is
specified. Also, the prev value of the first row in the result is NULL because it
has no predecessor; therefore, the delta is NULL as well.

In each of the examples above, the function used with the OVER() clause is the
SUM() aggregate function.

Explicit and inline window clauses

SQL OLAP provides two ways of specifying a window in a query:

• The explicit window clause lets you define a window that follows a
HAVING clause. You reference windows defined with those window
clauses by specifying their names when you invoke an OLAP function,
such as:

SUM (...) OVER w2

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 57

• The inline window specification lets you define a window in the SELECT
list of a query expression. This capability lets you define your windows in
a window clause that follows the HAVING clause and then reference them
by name from your window function invocations, or to define them along
with the function invocations.

Note If you use an inline window specification, you cannot name the
window. Two or more window function invocations in a single SELECT
list that use identical windows must either reference a named window
defined in a window clause or they must define their inline windows
redundantly.

Window function example The following example shows a window
function. The query returns a result set that partitions the data by department
and then provides a cumulative summary of employees’ salaries, starting with
the employee who has been at the company the longest. The result set includes
only those employees who reside in Massachusetts. The column Sum_Salary
provides the cumulative total of employees’ salaries.

SELECT DepartmentID, Surname, StartDate, Salary,

SUM(Salary) OVER (PARTITION BY DepartmentID ORDER BY

startdate rows between unbounded preceding and

current row) AS sum_salary

FROM Employees

WHERE State IN ('CA') AND DepartmentID IN (100, 200)

ORDER BY DepartmentID;

The following result set is partitioned by department.

DepartmentID Surname start_date salary sum_salary

------------ ----------- ------------ ---------- -----------

200 Overbey 1987-02-19 39300.000 39300.000

200 Savarino 1989-11-07 72300.000 111600.000

200 Clark 1990-07-21 45000.000 156600.000

Analytical functions

58 Sybase IQ

Ranking functions

Ranking functions let you compile a list of values from the data set in ranked
order, as well as compose single-statement SQL queries that answer questions
such as, “Name the top 10 products shipped this year by total sales,” or “Give
the top 5% of salespersons who sold orders to at least 15 different companies.”
The functions include RANK(), DENSE_RANK(), PERCENT_RANK(), and
NTILE() with a PARTITION BY clause. See “Ranking functions” on page 58.

SQL/OLAP defines four functions that are categorized as ranking functions:

<RANK FUNCTION TYPE> ::=
RANK | DENSE RANK | PERCENT RANK | NTILE

Ranking functions let you compute a rank value for each row in a result set
based on the order specified in the query. For example, a sales manager might
need to identify the top or bottom sales people in the company, the highest- or
lowest-performing sales region, or the best- or worst-selling products. Ranking
functions can provide this information.

RANK() function

The RANK function returns a number that indicates the rank of the current row
among the rows in the row’s partition, as defined by the ORDER BY clause. The
first row in a partition has a rank of 1, and the last rank in a partition containing
25 rows is 25. RANK is specified as a syntax transformation, which means that
an implementation can choose to actually transform RANK into its equivalent,
or it can merely return a result equivalent to the result that transformation
would return.

In the following example, ws1 indicates the window specification that defines
the window named w1.

RANK() OVER ws

is equivalent to:

(COUNT (*) OVER (ws RANGE UNBOUNDED PRECEDING)
- COUNT (*) OVER (ws RANGE CURRENT ROW) + 1)

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 59

The transformation of the RANK function uses logical aggregation (RANGE).
As a result, two or more records that are tied—or have equal values in the
ordering column—have the same rank.The next group in the partition that has
a different value has a rank that is more than one greater than the rank of the
tied rows. For example, if there are rows whose ordering column values are 10,
20, 20, 20, 30, the rank of the first row is 1 and the rank of the second row is 2.
The rank of the third and fourth row is also 2, but the rank of the fifth row is 5.
There are no rows whose rank is 3 or 4. This algorithm is sometimes known as
sparse ranking.

See also “RANK function [Analytical],” Chapter 4, “SQL Functions,” in
Reference: Building Blocks, Tables, and Procedures.

DENSE_RANK() function

Although RANK returns duplicate values in the ranking sequence when there
are ties between values, DENSE_RANK returns ranking values without gaps.
The values for rows with ties are still equal, but the ranking of the rows
represents the positions of the clusters of rows having equal values in the
ordering column, rather than the positions of the individual rows. As in the
RANK example, where rows ordering column values are 10, 20, 20, 20, 30, the
rank of the first row is still 1 and the rank of the second row is still 2, as are the
ranks of the third and fourth rows. The last row, however, is 3, not 5.

DENSE_RANK is computed through a syntax transformation, as well.

DENSE_RANK() OVER ws

is equivalent to:

COUNT (DISTINCT ROW (expr_1, . . ., expr_n))
OVER (ws RANGE UNBOUNDED PRECEDING)

In the above example, expr_1 through expr_n represent the list of value
expressions in the sort specification list of window w1.

See also “DENSE_RANK function [Analytical],” Chapter 4, “SQL
Functions,” in Reference: Building Blocks, Tables, and Procedures.

Analytical functions

60 Sybase IQ

PERCENT_RANK() function

The PERCENT_RANK function calculates a percentage for the rank, rather than
a fractional amount, and returns a decimal value between 0 and 1. In other
words, PERCENT_RANK returns the relative rank of a row, which is a number
that indicates the relative position of the current row within the window
partition in which it appears. For example, in a partition that contains 10 rows
having different values in the ordering columns, the third row is given a
PERCENT_RANK value of 0.222 …, because you have covered 2/9
(22.222...%) of rows following the first row of the partition. PERCENT_RANK
of a row is defined as one less than the RANK of the row divided by one less
than the number of rows in the partition, as seen in the following example
(where “ANT” stands for an approximate numeric type, such as REAL or
DOUBLE PRECISION).

PERCENT_RANK() OVER ws

is equivalent to:

CASE
WHEN COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING) = 1
THEN CAST (0 AS ANT)
ELSE
(CAST (RANK () OVER (ws) AS ANT) -1 /
(COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING) - 1)

END

See also PERCENT_RANK function [Analytical] in Chapter 4, “SQL
Functions,” in Reference: Building Blocks, Tables, and Procedures.

Ranking examples

Ranking example 1 The SQL query that follows finds the male and female
employees from Utah, and ranks them in descending order according to salary.

SELECT Surname, Salary, Sex, RANK() OVER (ORDER BY

Salary DESC) AS Rank

FROM Employees WHERE State IN ('CA') AND DepartmentID
=200

ORDER BY Salary DESC;

The results from the above query:

Surname salary sex rank
--------- -------- --- ----

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 61

Scott 96300.000 M 1
Lull 87900.000 M 2
Pastor 74500.000 F 3
Shishov 72995.000 F 4
Samuels 37400.000 M 19

Ranking example 2 Using the query from Ranking example 1, you can
change the data by partitioning it by gender. The following example ranks
employees in descending order by salary and partitions by gender:

SELECT Surname, Salary, Sex, RANK() OVER (PARTITION

BY Sex ORDER BY Salary DESC) AS RANK

FROM Employees WHERE State IN ('CA', 'AZ') AND
DepartmentID

IN (200, 300)

ORDER BY Sex, Salary DESC;

The results from the above query:

Surname salary sex rank
--------- --------- --- ----
Savarino 72300.000 F 1
Clark 45000.000 F 2
Overbey 39300.000 M 3

Ranking example 3 This example ranks a list of female employees in
California and Texas in descending order according to salary. The
PERCENT_RANK function provides the cumulative total in descending order.

SELECT Surname, Salary, Sex, CAST(PERCENT_RANK() OVER

(ORDER BY Salary DESC) AS numeric (4, 2)) AS RANK

FROM Employees WHERE State IN ('CA', 'TX') AND Sex ='F'

ORDER BY Salary DESC;

The results from the above query:

Surname salary sex percent
--------- --------- --- ----------
Savarino 72300.000 F 0.00
Smith 51411.000 F 0.33
Clark 45000.000 F 0.66
Garcia 39800.000 F 1.00

Analytical functions

62 Sybase IQ

Ranking example 4 You can use the PERCENT_RANK function to find the
top or bottom percentiles in the data set. This query returns male employees
whose salary is in the top five percent of the data set.

SELECT * FROM (SELECT Surname, Salary, Sex,

CAST(PERCENT_RANK() OVER (ORDER BY salary DESC) as

numeric (4, 2)) AS percent

FROM Employees WHERE State IN ('CA') AND sex ='F') AS

DT where percent > 0.5

ORDER BY Salary DESC;

The results from the above query:

Surname salary sex percent
--------- ---------- --- ---------
Clark 45000.000 F 1.00

Windowing aggregate functions

Windowing aggregate functions let you manipulate multiple levels of
aggregation in the same query. For example, you can list all quarters during
which expenses are less than the average. You can use aggregate functions,
including the simple aggregate functions AVG, COUNT, MAX, MIN, and SUM,
to place results—possibly computed at different levels in the statement—on
the same row. This placement provides a means to compare aggregate values
with detail rows within a group, avoiding the need for a join or a correlated
subquery.

These functions also let you compare nonaggregate values to aggregate values.
For example, a salesperson might need to compile a list of all customers who
ordered more than the average number of a product in a specified year, or a
manager might want to compare an employee’s salary against the average
salary of the department.

If a query specifies DISTINCT in the SELECT statement, then the DISTINCT
operation is applied after the window operator. A window operator is computed
after processing the GROUP BY clause and before the evaluation of the
SELECT list items and a query’s ORDER BY clause.

Windowing aggregate example 1 This query returns a result set, partitioned
by year, that shows a list of the products that sold higher-than-average sales.

SELECT * FROM (SELECT Surname AS E_name, DepartmentID AS

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 63

Dept, CAST(Salary AS numeric(10,2)) AS Sal,

CAST(AVG(Sal) OVER(PARTITION BY DepartmentID) AS

numeric(10, 2)) AS Average, CAST(STDDEV_POP(Sal)

OVER(PARTITION BY DepartmentID) AS numeric(10,2)) AS

STD_DEV

FROM Employees

GROUP BY Dept, E_name, Sal) AS derived_table WHERE

Sal> (Average+STD_DEV)

ORDER BY Dept, Sal, E_name;

The results from the query:

E_name Dept Sal Average STD_DEV
-------- ----- -------- ------- --------
Lull 100 87900.00 58736.28 16829.59

Sheffield 100 87900.00 58736.28 16829.59

Scott 100 96300.00 58736.28 16829.59

Sterling 200 64900.00 48390.94 13869.59

Savarino 200 72300.00 48390.94 13869.59

Kelly 200 87500.00 48390.94 13869.59

Shea 300 138948.00 59500.00 30752.39

Blaikie 400 54900.00 43640.67 11194.02

Morris 400 61300.00 43640.67 11194.02

Evans 400 68940.00 43640.67 11194.02

Martinez 500 55500.80 33752.20 9084.49

For the year 2000, the average number of orders was 1,787. Four products
(700, 601, 600, and 400) sold higher than that amount. In 2001, the average
number of orders was 1,048 and 3 products exceeded that amount.

Windowing aggregate example 2 This query returns a result set that shows
the employees whose salary is one standard deviation greater than the average
salary of their department. Standard deviation is a measure of how much the
data varies from the mean.

SELECT * FROM (SELECT Surname AS E_name, DepartmentID AS
Dept, CAST(Salary AS numeric(10,2)) AS Sal,
CAST(AVG(Sal) OVER(PARTITION BY dept) AS

Analytical functions

64 Sybase IQ

numeric(10, 2)) AS Average, CAST(STDDEV_POP(Sal)
OVER(PARTITION BY dept) AS numeric(10,2)) AS
STD_DEV

FROM Employees
GROUP BY Dept, E_name, Sal) AS derived_table WHERE

Sal> (Average+STD_DEV)
ORDER BY Dept, Sal, E_name;

Every department has at least one employee whose salary significantly
deviates from the mean, as shown in these results:

E_name Dept Sal Average STD_DEV
-------- ---- -------- -------- --------
Lull 100 87900.00 58736.28 16829.59
Sheffield 100 87900.00 58736.28 16829.59
Scott 100 96300.00 58736.28 16829.59
Sterling 200 64900.00 48390.94 13869.59
Savarino 200 72300.00 48390.94 13869.59
Kelly 200 87500.00 48390.94 13869.59
Shea 300 138948.00 59500.00 30752.39
Blaikie 400 54900.00 43640.67 11194.02
Morris 400 61300.00 43640.67 11194.02
Evans 400 68940.00 43640.67 11194.02
Martinez 500 55500.80 33752.20 9084.49

Employee Scott earns $96,300.00, while the average salary for department 100
is $58,736.28. The standard deviation for department 100 is 16,829.00, which
means that salaries less than $75,565.88 (58736.28 + 16829.60 = 75565.88)
fall within one standard deviation of the mean.

Statistical aggregate functions

The ANSI SQL/OLAP extensions provide a number of additional aggregate
functions that permit statistical analysis of numeric data. This support includes
functions to compute variance, standard deviation, correlation, and linear
regression.

Standard deviation
and variance

The SQL/OLAP general set functions that take one argument include those
appearing in bold in this syntax statement:

<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
<BASIC AGGREGATE FUNCTION TYPE>
| STDDEV | STDDEV_POP | STDDEV_SAMP
| VARIANCE | VARIANCE_POP | VARIANCE_SAMP

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 65

• STDDEV_POP – computes the population standard deviation of the
provided value expression evaluated for each row of the group or partition
(if DISTINCT is specified, each row that remains after duplicates are
eliminated), defined as the square root of the population variance.

• STDDEV_SAMP – computes the population standard deviation of the
provided value expression evaluated for each row of the group or partition
(if DISTINCT is specified, each row that remains after duplicates are
eliminated), defined as the square root of the sample variance.

• VAR_POP – computes the population variance of value expression
evaluated for each row of the group or partition (if DISTINCT is specified,
each row that remains after duplicates are eliminated), defined as the sum
of squares of the difference of value expression from the mean of value
expression, divided by the number of rows (remaining) in the group or
partition.

• VAR_SAMP – computes the sample variance of value expression evaluated
for each row of the group or partition (if DISTINCT is specified, each row
that remains after duplicates are eliminated), defined as the sum of squares
of the difference of value expression, divided by one less than the number
of rows (remaining) in the group or partition.

These functions, including STDDEV and VARIANCE, are true aggregate
functions in that they can compute values for a partition of rows as determined
by the query’s ORDER BY clause. As with other basic aggregate functions such
as MAX or MIN, their computation ignores NULL values in the input. Also,
regardless of the domain of the expression being analyzed, all variance and
standard deviation computation uses IEEE double-precision floating point. If
the input to any variance or standard deviation function is the empty set, then
each function returns NULL as its result. If VAR_SAMP is computed for a
single row, it returns NULL, while VAR_POP returns the value 0.

Correlation The SQL/OLAP function that computes a correlation coefficient is:

• CORR – returns the correlation coefficient of a set of number pairs.

You can use the CORR function either as a windowing aggregate function
(where you specify a window function type over a window name or
specification) or as a simple aggregate function with no OVER clause.

Covariance The SQL/OLAP functions that compute covariances include:

• COVAR_POP – returns the population covariance of a set of number pairs.

• COVAR_SAMP – returns the sample covariance of a set of number pairs.

Analytical functions

66 Sybase IQ

The covariance functions eliminate all pairs where expression1 or expression2
has a null value.

You can use the covariance functions either as windowing aggregate functions
(where you specify a window function type over a window name or
specification) or as simple aggregate functions with no OVER clause.

Cumulative
distribution

The SQL/OLAP function that calculates the relative position of a single value
among a group of rows is CUME_DIST.

The window specification must contain an ORDER_BY clause.

Composite sort keys are not allowed in the CUME_DIST function.

Regression analysis The regression analysis functions calculate the relationship between an
independent variable and a dependent variable using a linear regression
equation. The SQL/OLAP linear regression functions include:

• REGR_AVGX – computes the average of the independent variable of the
regression line.

• REGR_AVGY – computes the average of the dependent variable of the
regression line.

• REGR_COUNT – returns an integer representing the number of nonnull
number pairs used to fit the regression line.

• REGR_INTERCEPT – computes the y-intercept of the regression line that
best fits the dependent and independent variables.

• REGR_R2 – computes the coefficient of determination (the goodness-of-
fir statistic) for the regression line.

• REGR_SLOPE – computes the slope of the linear regression line fitted to
nonnull pairs.

• REGR_SXX – returns the sum of squares of the independent expressions
used in a linear regression model. Use this function to evaluate the
statistical validity of the regression model.

• REGR_SXY – returns the sum of products of the dependent and
independent variables. Use this function to evaluate the statistical validity
of the regression model.

• REGR_SYY – returns values that can evaluate the statistical validity of a
regression model.

You can use the regression analysis functions either as windowing aggregate
functions (where you specify a window function type over a window name or
specification) or as simple aggregate functions with no OVER clause.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 67

Weighted OLAP
aggregates

The weighted OLAP aggregate functions calculate weighted moving averages:

• EXP_WEIGHTED_AVG – calculates an exponentially weighted moving
average. Weightings determine the relative importance of each quantity
comprising the average. Weights in EXP_WEIGHTED_AVG decrease
exponentially. Exponential weighting applies more weight to the most
recent values and decreases the weight for older values, while still
applying some weight

• WEIGHTED_AVG – calculates a linearly weighted moving average where
weights decrease arithmetically over time. Weights decrease from the
highest weight for the most recent data points, down to zero for the oldest
data point.

The window specification must contain an ORDER_BY clause.

Nonstandard
database industry
extensions

Non-ANSI SQL/OLAP aggregate function extensions used in the database
industry include FIRST_VALUE, MEDIAN, and LAST_VALUE.

• FIRST_VALUE – returns the first value from a set of values.

• MEDIAN – returns the median from an expression.

• LAST_VALUE – returns the last value from a set of values.

The FIRST_VALUE and LAST_VALUE functions require a window
specification. You can use the MEDIAN function either as windowing aggregate
function (where you specify a window function type over a window name or
specification) or as a simple aggregate function with no OVER clause.

Distribution functions

SQL/OLAP defines several functions that deal with ordered sets. The two
inverse distribution functions are PERCENTILE_CONT and
PERCENTILE_DISC. These analytical functions take a percentile value as the
function argument and operate on a group of data specified in the WITHIN
GROUP clause or operate on the entire data set.

These functions return one value per group. For PERCENTILE_DISC (discrete),
the data type of the results is the same as the data type of its ORDER BY item
specified in the WITHIN GROUP clause. For PERCENTILE_CONT
(continuous), the data type of the results is either numeric, if the ORDER BY
item in the WITHIN GROUP clause is a numeric, or double, if the ORDER BY
item is an integer or floating point.

The inverse distribution analytical functions require a WITHIN GROUP
(ORDER BY) clause. For example:

Analytical functions

68 Sybase IQ

PERCENTILE_CONT (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

The value of expression1 must be a constant of numeric data type and range
from 0 to 1 (inclusive). If the argument is NULL, then a “wrong argument for
percentile” error is returned. If the argument value is less than 0, or greater than
1, then a “data value out of range” error is returned.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. This ORDER BY clause is used only within the WITHIN
GROUP clause and is not an ORDER BY for the SELECT statement.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates a result.

The value expression2 is a sort specification that must be a single expression
involving a column reference. Multiple expressions are not allowed and no
rank analytical functions, set functions, or subqueries are allowed in this sort
expression.

The ASC or DESC parameter specifies the ordering sequence as ascending or
descending. Ascending order is the default.

Inverse distribution analytical functions are allowed in a subquery, a HAVING
clause, a view, or a union. The inverse distribution functions can be used
anywhere the simple nonanalytical aggregate functions are used. The inverse
distribution functions ignore the NULL value in the data set.

PERCENTILE_CONT example This example uses the PERCENTILE_CONT
function to determine the 10th percentile value for car sales in a region using
the following data set:

sales region dealer_name
----- --------- -----------
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 69

300 South Dallas
200 South Dover

In the following example query, the SELECT statement contains the
PERCENTILE_CONT function:

SELECT region, PERCENTILE_CONT(0.1)
WITHIN GROUP (ORDER BY ProductID DESC)
FROM ViewSalesOrdersSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales
in a region:

region percentile_cont
--------- ---------------
Canada 601.0
Central 700.0
Eastern 700.0
South 700.0
Western 700.0

PERCENTILE_DISC example This example uses the PERCENTILE_DISC
function to determine the 10th percentile value for car sales in a region, using
the following data set:

sales region dealer_name
----- --------- -----------
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

In the following query, the SELECT statement contains the PERCENTILE_DISC
function:

Analytical functions

70 Sybase IQ

SELECT region, PERCENTILE_DISC(0.1) WITHIN GROUP
(ORDER BY sales DESC)

FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales
in each region:

region percentile_cont
--------- ---------------
Northeast 900
Northwest 800
South 500

For more information about the distribution functions, see
“PERCENTILE_CONT function [Analytical]” and “PERCENTILE_DISC
function [Analytical],” in Chapter 4, “SQL Functions,” in Reference: Building
Blocks, Tables, and Procedures.

Numeric functions
OLAP numeric functions supported by Sybase IQ include CEILING (CEIL is an
alias), EXP (EXPONENTIAL is an alias), FLOOR, LN (LOG is an alias), SQRT,
and WIDTH_BUCKET.

<numeric value function> :: =
<natural logarithm>

| <exponential function>
| <power function>
| <square root>
| <floor function>
| <ceiling function>
| <width bucket function>

The syntax for each supported numeric value function is shown in Table 2-3.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 71

Table 2-3: Numeric value functions and syntax

The semantics of the numeric value functions are:

• LN – returns the natural logarithm of the argument value. Raises an error
condition if the argument value is 0 or negative. LN is a synonym for LOG.

• EXP – returns the value computed by raising the value of e (the base of
natural logarithms) to the power specified by the value of the argument.

• POWER – returns the value computed by raising the value of the first
argument to the power specified by the value of the second argument. If
the first argument is 0 and the second is 0, returns one. If the first argument
is 0 and the second is positive, returns 0. If the first argument is 0 and the
second argument is negative, raises an exception. If the first argument is
negative and the second is not an integer, raises an exception.

• SQRT – returns the square root of the argument value, defined by syntax
transformation to “POWER (expression, 0.5).”

• FLOOR – returns the integer value nearest to positive infinity that is not
greater than the value of the argument.

• CEILING – returns the integer value nearest to negative infinity that is not
less than the value of the argument. CEIL is a synonym for CEILING.

WIDTH_BUCKET
function

The WIDTH_BUCKET function is somewhat more complicated than the other
numeric value functions. It accepts four arguments: “live value,” two range
boundaries, and the number of equal-sized (or as nearly so as possible)
partitions into which the range indicated by the boundaries is to be divided.
WIDTH_BUCKET returns a number indicating the partition into which the live
value should be placed, based on its value as a percentage of the difference
between the higher range boundary and the lower boundary. The first partition
is partition number one.

Numeric value function Syntax

Natural logarithm LN (numeric-expression)

Exponential function EXP (numeric-expression)

Power function POWER (numeric-expression1, numeric-
expression2)

Square root SQRT (numeric-expression)

Floor function FLOOR (numeric-expression)

Ceiling function CEILING (numeric-expression)

Width bucket function WIDTH_BUCKET (expression, min_value,
max_value, num_buckets)

Analytical functions

72 Sybase IQ

To avoid errors when the live value is outside the range of boundaries, live
values that are less than the smaller range boundary are placed into an
additional first bucket, bucket zero, and live values that are greater than the
larger range boundary are placed into an additional last bucket, bucket N+1.

For example, WIDTH_BUCKET (14, 5, 30, 5) returns 2 because:

• (30-5)/5 is 5, so the range is divided into 5 partitions, each 5 units wide.

• The first bucket represents values from 0.00% to 19.999 …%; the second
represents values from 20.00% to 39.999 …%; and the fifth bucket
represents values from 80.00% to 100.00%.

• The bucket chosen is determined by computing (5*(14-5)/(30-5)) + 1 —
one more than the number of buckets times the ratio of the offset of the
specified value from the lower value to the range of possible values, which
is (5*0/25) + 1, which is 2.8. This value is the range of values for bucket
number 2 (2.0 through 2.999 …), so bucket number 2 is chosen.

WIDTH_BUCKET
example

The following example creates a ten-bucket histogram on the credit_limit
column for customers in Massachusetts in the sample table and returns the
bucket number (“Credit Group”) for each customer. Customers with credit
limits greater than the maximum value are assigned to the overflow bucket, 11:

Note This example is for illustration purposes only and was not generated
using the iqdemo database.

SELECT customer_id, cust_last_name, credit_limit,
WIDTH_BUCKET(credit_limit, 100, 5000, 10) "Credit
Group"
FROM customers WHERE territory = 'MA'
ORDER BY "Credit Group";

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group

----------- -------------- ------------ ------------

825 Dreyfuss 500 1

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 73

826 Barkin 500 1

853 Palin 400 1

827 Siegel 500 1

843 Oates 700 2

844 Julius 700 2

835 Eastwood 1200 3

840 Elliott 1400 3

842 Stern 1400 3

841 Boyer 1400 3

837 Stanton 1200 3

836 Berenger 1200 3

848 Olmos 1800 4

847 Streep 5000 11

When the bounds are reversed, the buckets are open-closed intervals. For
example: WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket
number 1 is (4000, 5000], bucket number 2 is (3000, 4000], and bucket number
5 is (0, 1000]. The overflow bucket is numbered 0 (5000, +infinity), and the
underflow bucket is numbered 6 (-infinity, 0].

See also “BIT_LENGTH function [String],” “EXP function [Numeric],” “FLOOR
function [Numeric],” “POWER function [Numeric],” “SQRT function
[Numeric],” and “WIDTH_BUCKET function [Numerical],” Chapter 4,
“SQL Functions,” in Reference: Building Blocks, Tables, and Procedures.

OLAP rules and restrictions
OLAP functions can
be used

Within SQL queries, OLAP functions can be used:

• In the SELECT list

• In expressions

• As arguments of scalar functions

• In the final ORDER BY clause (by using aliases or positional references to
OLAP functions elsewhere in the query)

OLAP functions
cannot be used

OLAP functions cannot be used under these conditions:

• In subqueries.

• In the search condition of a WHERE clause.

• As arguments for SET (aggregate) functions. For example, the following
expression is invalid:

OLAP rules and restrictions

74 Sybase IQ

SUM(RANK() OVER(ORDER BY dollars))

• A windowed aggregate cannot be an argument to argument to another
unless the inner one was generated within a view or derived table. The
same applies to ranking functions.

• Window aggregate and RANK functions are not allowed in a HAVING
clause.

• Window aggregate functions should not specify DISTINCT.

• Window function cannot be nested inside of other window functions.

• Inverse distribution functions are not supported with the OVER clause.

• Outer references are not allowed in a window definition clause.

• Correlation references are allowed within OLAP functions, but correlated
column aliases are not allowed.

Columns referenced by an OLAP function must be grouping columns or
aggregate functions from the same query block in which the OLAP function
and the GROUP BY clause appear. OLAP processing occurs after the grouping
and aggregation operations and before the final ORDER BY clause is applied;
therefore, it must be possible to derive the OLAP expressions from those
intermediate results. If there is no GROUP BY clause in a query block, OLAP
functions can reference other columns in the select list.

Sybase IQ limitations The Sybase IQ limitations with SQL OLAP functions are:

• User-defined functions in a window frame definition are not supported.

• The constants used in a window frame definition must be unsigned
numeric value and should not exceed the value of maximum BIG INT 263-1.

• Window aggregate functions and RANK functions cannot be used in
DELETE and UPDATE statements.

• Window aggregate and RANK functions are not allowed in subqueries.

• CUME_DIST is currently not supported.

• Grouping sets are currently not supported.

• Correlation and linear regression functions are currently not supported.

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 75

Additional OLAP examples
This section provides additional examples using the OLAP functions.

Both start and end points of a window may vary as intermediate result rows are
processed. For example, computing a cumulative sum involves a window with
the start point fixed at the first row of each partition and an end point that slides
along the rows of the partition to include the current row. See Figure 2-3 on
page 48.

As another example, both the start and end points of the window can be
variable yet define a constant number of rows for the entire partition. Such a
construction lets users compose queries that compute moving averages; for
example, a SQL query that returns a moving three-day average stock price.

Example: Window functions in queries
Consider the following query, which lists all products shipped in July and
August 2005 and the cumulative shipped quantity by shipping date:

SELECT p.id, p.description, s.quantity, s.shipdate,
SUM(s.quantity) OVER (PARTITION BY productid ORDER BY

s.shipdate rows between unbounded preceding and

current row)

FROM SalesOrderItems s JOIN Products p on

(s.ProductID =

p.id) WHERE s.ShipDate BETWEEN '2001-05-01' and

'2001-08-31' AND s.quantity > 40

ORDER BY p.id;

The results from the above query:

ID description quantity ship_date sum quantity
--- ----------- -------- --------- ------------
302 Crew Neck 60 2001-07-02 60
400 Cotton Cap 60 2001-05-26 60
400 Cotton Cap 48 2001-07-05 108
401 Wool cap 48 2001-06-02 48
401 Wool cap 60 2001-06-30 108
401 Wool cap 48 2001-07-09 156
500 Cloth Visor 48 2001-06-21 48
501 Plastic Visor 60 2001-05-03 60

Additional OLAP examples

76 Sybase IQ

501 Plastic Visor 48 2001-05-18 108
501 Plastic Visor 48 2001-05-25 156
501 Plastic Visor 60 2001-07-07 216
601 Zipped Sweatshirt 60 2001-07-19 60
700 Cotton Shorts 72 2001-05-18 72
700 Cotton Shorts 48 2001-05-31 120

In this example, the computation of the SUM window function occurs after the
join of the two tables and the application of the query’s WHERE clause. The
query uses an inline window specification that specifies that the input rows
from the join is processed as follows:

1 Partition (group) the input rows based on the value of the prod_id attribute.

2 Within each partition, sort the rows by the ship_date attribute.

3 For each row in the partition, evaluate the SUM() function over the quantity
attribute, using a sliding window consisting of the first (sorted) row of
each partition, up to and including the current row. See Figure 2-3 on
page 48.

An alternative construction for the query is to specify the window separate
from the functions that use it. This is useful when more than one window
function is specified that are based on the same window. In the case of the
query using window functions, a construction that uses the window clause
(declaring a window identified by cumulative) is as follows:

SELECT p.id, p.description, s.quantity, s.shipdate,
SUM(s.quantity) OVER(cumulative ROWS BETWEEN UNBOUNDED
PRECEDING and CURRENT ROW) cumulative

FROM SalesOrderItems s JOIN Products p On (s.ProductID
=p.id)

WHERE s.shipdate BETWEEN ‘2001-07-01’ and ‘2001-08-31’

Window cumulative as (PARTITION BY s.productid ORDER BY
s.shipdate)

ORDER BY p.id;

The window clause appears before the ORDER BY clause in the query
specification. When using a window clause, the following restrictions apply:

• The inline window specification cannot contain a PARTITION BY clause.

• The window specified within the window clause cannot contain a window
frame clause. From “Grammar rule 32” on page 87:

<WINDOW FRAME CLAUSE> ::=

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 77

<WINDOW FRAME UNIT>
<WINDOW FRAME EXTENT>

• Either the inline window specification, or the window specification
specified in the window clause, can contain a window order clause, but not
both. From “Grammar rule 31” on page 87:

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Example: Window with multiple functions
To define a single (named) window and compute multiple function results over
it:

SELECT p.ID, p.Description, s.quantity, s.ShipDate,

SUM(s.Quantity) OVER ws1, MIN(s.quantity) OVER ws1

FROM SalesOrderItems s JOIN Products p ON (s.ProductID =

p.ID) WHERE s.ShipDate BETWEEN '2000-01-09' AND

'2000-01-17' AND s.Quantity > 40 window ws1 AS

(PARTITION BY productid ORDER BY shipdate rows

between unbounded preceding and current row)

ORDER BY p.id;

The results from the above query:

ID description quantity ship_date sum min
--- ----------- -------- ----------- --- ---
400 Cotton Cap 48 2000-01-09 48 48
401 Wool cap 48 2000-01-09 48 48
500 Cloth Visor 60 2000-01-14 60 60
500 Cloth Visor 60 2000-01-15 120 60
501 Plastic Visor 60 2000-01-14 60 60

Example: Calculate cumulative sum
This query calculates a cumulative sum of salary per department and ORDER
BY start_date.

SELECT DepartmentID, start_date, name, salary,
SUM(salary) OVER (PARTITION BY DepartmentID ORDER BY
start_date ROWS BETWEEN UNBOUNDED PRECEDING AND

Additional OLAP examples

78 Sybase IQ

CURRENT ROW)
FROM emp1
ORDER BY DepartmentID, start_date;

The results from the above query:

DepartmentID start_date name salary sum
(salary)

------- ---------- ---- ------ ---------
100 1996-01-01 Anna 18000 18000
100 1997-01-01 Mike 28000 46000
100 1998-01-01 Scott 29000 75000
100 1998-02-01 Antonia 22000 97000
100 1998-03-12 Adam 25000 122000
100 1998-12-01 Amy 18000 140000
200 1998-01-01 Jeff 18000 18000
200 1998-01-20 Tim 29000 47000
200 1998-02-01 Jim 22000 69000
200 1999-01-10 Tom 28000 97000
300 1998-03-12 Sandy 55000 55000
300 1998-12-01 Lisa 38000 93000
300 1999-01-10 Peter 48000 141000

Example: Calculate moving average
This query generates the moving average of sales in three consecutive months.
The size of the window frame is three rows: two preceding rows plus the
current row. The window slides from the beginning to the end of the partition.

SELECT prod_id, month_num, sales, AVG(sales) OVER
(PARTITION BY prod_id ORDER BY month_num ROWS
BETWEEN 2 PRECEDING AND CURRENT ROW)

FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales avg(sales)
------- --------- ------ ----------
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00
20 1 20 20.00

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 79

20 2 30 25.00
20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00

Example: ORDER BY results
In this example, the top ORDER BY clause of a query is applied to the final
results of a window function. The ORDER BY in a window clause is applied to
the input data of a window function.

SELECT prod_id, month_num, sales, AVG(sales) OVER
(PARTITION BY prod_id ORDER BY month_num ROWS
BETWEEN 2 PRECEDING AND CURRENT ROW)

FROM sale WHERE rep_id = 1
ORDER BY prod_id desc, month_num;

The results from the above query:

prod_id month_num sales avg(sales)
------- --------- ----- ----------
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00
20 1 20 20.00
20 2 30 25.00
20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00

Additional OLAP examples

80 Sybase IQ

Example: Multiple aggregate functions in a query
This example calculates aggregate values against different windows in a query.

SELECT prod_id, month_num, sales, AVG(sales) OVER
(WS1 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS
CAvg, SUM(sales) OVER(WS1 ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW) AS CSum

FROM sale WHERE rep_id = 1 WINDOW WS1 AS (PARTITION BY
prod_id

ORDER BY month_num)
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales CAvg CSum
------- --------- ----- ---- ----
10 1 100 110.00 100
10 2 120 106.66 220
10 3 100 116.66 320
10 4 130 116.66 450
10 5 120 120.00 570
10 6 110 115.00 680
20 1 20 25.00 20
20 2 30 25.00 50
20 3 25 28.33 75
20 4 30 28.66 105
20 5 31 27.00 136
20 6 20 25.50 156
30 1 10 10.50 10
30 2 11 11.00 21
30 3 12 8.00 33
30 4 1 6.50 34

Example: Window frame comparing ROWS and RANGE
This query compares ROWS and RANGE. The data contain duplicate ROWS
per the ORDER BY clause.

SELECT prod_id, month_num, sales, SUM(sales) OVER
(ws1 RANGE BETWEEN 2 PRECEDING AND CURRENT ROW) AS

Range_sum, SUM(sales) OVER
(ws1 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS

Row_sum
FROM sale window ws1 AS (PARTITION BY prod_id ORDER BY

month_num)

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 81

ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales Range_sum Row_sum
------- --------- ----- ---------- -------
10 1 100 250 100
10 1 150 250 250
10 2 120 370 370
10 3 100 470 370
10 4 130 350 350
10 5 120 381 350
10 5 31 381 281
10 6 110 391 261
20 1 20 20 20
20 2 30 50 50
20 3 25 75 75
20 4 30 85 85
20 5 31 86 86
20 6 20 81 81
30 1 10 10 10
30 2 11 21 21
30 3 12 33 33
30 4 1 25 24
30 4 1 25 14

Example: Window frame excludes current row
In this example, you can define the window frame to exclude the current row.
The query calculates the sum over four rows, excluding the current row.

SELECT prod_id, month_num, sales, sum(sales) OVER
(PARTITION BY prod_id ORDER BY month_num RANGE
BETWEEN 6 PRECEDING AND 2 PRECEDING)

FROM sale
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales sum(sales)
------- --------- ----- ----------
10 1 100 (NULL)
10 1 150 (NULL)
10 2 120 (NULL)
10 3 100 250
10 4 130 370
10 5 120 470

Additional OLAP examples

82 Sybase IQ

10 5 31 470
10 6 110 600
20 1 20 (NULL)
20 2 30 (NULL)
20 3 25 20
20 4 30 50
20 5 31 75
20 6 20 105
30 1 10 (NULL)
30 2 11 (NULL)
30 3 12 10
30 4 1 21
30 4 1 21

Example:Window frame for RANGE
This query illustrates the RANGE window frame. The number of rows used in
the summation is variable.

SELECT prod_id, month_num, sales, SUM(sales) OVER
(PARTITION BY prod_id ORDER BY month_num RANGE
BETWEEN 1 FOLLOWING AND 3 FOLLOWING)

FROM sale
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales sum(sales)
------- --------- ----- ----------
10 1 100 350
10 1 150 350
10 2 120 381
10 3 100 391
10 4 130 261
10 5 120 110
10 5 31 110
10 6 110 (NULL)
20 1 20 85
20 2 30 86
20 3 25 81
20 4 30 51
20 5 31 20
20 6 20 (NULL)
30 1 10 25
30 2 11 14
30 3 12 2

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 83

30 4 1 (NULL)
30 4 1 (NULL)

Example: Unbounded preceding and unbounded following
In this example, the window frame can include all rows in the partition. The
query calculates max(sales) sale over the entire partition (no duplicate rows in
a month).

SELECT prod_id, month_num, sales, SUM(sales) OVER
(PARTITION BY prod_id ORDER BY month_num ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales max(sales)
------- --------- ----- ----------
10 1 100 680
10 2 120 680
10 3 100 680
10 4 130 680
10 5 120 680
10 6 110 680
20 1 20 156
20 2 30 156
20 3 25 156
20 4 30 156
20 5 31 156
20 6 20 156
30 1 10 34
30 2 11 34
30 3 12 34
30 4 1 34

The query in this example is equivalent to:

SELECT prod_id, month_num, sales, SUM(sales) OVER
(PARTITION BY prod_id)

FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

Additional OLAP examples

84 Sybase IQ

Example: Default window frame for RANGE
This query illustrates the default window frame for RANGE:

SELECT prod_id, month_num, sales, SUM(sales) OVER
(PARTITION BY prod_id ORDER BY month_num)

FROM sale
ORDER BY prod_id, month_num;

The results from the above query:

prod_id month_num sales max(sales)
------- --------- ----- ----------
10 1 100 250
10 1 150 250
10 2 120 370
10 3 100 470
10 4 130 600
10 5 120 751
10 5 31 751
10 6 110 861
20 1 20 20
20 2 30 50
20 3 25 75
20 4 30 105
20 5 31 136
20 6 20 156
30 1 10 10
30 2 11 21
30 3 12 33
30 4 1 35
30 4 1 35

The query in this example is equivalent to:

SELECT prod_id, month_num, sales, SUM(sales) OVER
(PARTITION BY prod_id ORDER BY month_num RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

FROM sale
ORDER BY prod_id, month_num;

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 85

BNF grammar for OLAP functions
The following Backus-Naur Form grammar outlines the specific syntactic
support for the various ANSI SQL analytic functions, many of which are
implemented in Sybase IQ.

Grammar rule 1 <SELECT LIST EXPRESSION> ::=
<EXPRESSION>
| <GROUP BY EXPRESSION>
| <AGGREGATE FUNCTION>
| <GROUPING FUNCTION>
| <TABLE COLUMN>
| <WINDOWED TABLE FUNCTION>

Grammar rule 2 <QUERY SPECIFICATION> ::=
<FROM CLAUSE>
[<WHERE CLAUSE>]
[<GROUP BY CLAUSE>]
[<HAVING CLAUSE>]
[<WINDOW CLAUSE>]

[<ORDER BY CLAUSE>]

Grammar rule 3 <ORDER BY CLAUSE> ::= <ORDER SPECIFICATION>

Grammar rule 4 <GROUPING FUNCTION> ::=
GROUPING <LEFT PAREN> <GROUP BY EXPRESSION>
<RIGHT PAREN>

Grammar rule 5 <WINDOWED TABLE FUNCTION> ::=
<WINDOWED TABLE FUNCTION TYPE> OVER <WINDOW NAME OR
SPECIFICATION>

Grammar rule 6 <WINDOWED TABLE FUNCTION TYPE> ::=
<RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
| ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
| <WINDOW AGGREGATE FUNCTION>

Grammar rule 7 <RANK FUNCTION TYPE> ::=
RANK | DENSE RANK | PERCENT RANK | CUME_DIST

Grammar rule 8 <WINDOW AGGREGATE FUNCTION> ::=
<SIMPLE WINDOW AGGREGATE FUNCTION>
| <STATISTICAL AGGREGATE FUNCTION>

Grammar rule 9 <AGGREGATE FUNCTION> ::=
<DISTINCT AGGREGATE FUNCTION>
| <SIMPLE AGGREGATE FUNCTION>
| <STATISTICAL AGGREGATE FUNCTION>

Grammar rule 10 <DISTINCT AGGREGATE FUNCTION> ::=
<BASIC AGGREGATE FUNCTION TYPE> <LEFT PAREN>

BNF grammar for OLAP functions

86 Sybase IQ

<DISTINCT> <EXPRESSION> <RIGHT PAREN>
| LIST <LEFT PAREN> DISTINCT <EXPRESSION>
[<COMMA> <DELIMITER>]
[<ORDER SPECIFICATION>] <RIGHT PAREN>

Grammar rule 11 <BASIC AGGREGATE FUNCTION TYPE> ::=
SUM | MAX | MIN | AVG | COUNT

Grammar rule 12 <SIMPLE AGGREGATE FUNCTION> ::=
<SIMPLE AGGREGATE FUNCTION TYPE> <LEFT PAREN>
<EXPRESSION> <RIGHT PAREN>
| LIST <LEFT PAREN> <EXPRESSION> [<COMMA>
<DELIMITER>]
[<ORDER SPECIFICATION>] <RIGHT PAREN>

Grammar rule 13 <SIMPLE AGGREGATE FUNCTION TYPE> ::= <SIMPLE WINDOW
AGGREGATE FUNCTION TYPE>

Grammar rule 14 <SIMPLE WINDOW AGGREGATE FUNCTION> ::=
<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> <LEFT PAREN>
<EXPRESSION> <RIGHT PAREN>

| GROUPING FUNCTION

Grammar rule 15 <SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
<BASIC AGGREGATE FUNCTION TYPE>
| STDDEV | STDDEV_POP | STDDEV_SAMP
| VARIANCE | VARIANCE_POP | VARIANCE_SAMP

Grammar rule 16 <STATISTICAL AGGREGATE FUNCTION> ::=
<STATISTICAL AGGREGATE FUNCTION TYPE> <LEFT PAREN>
<DEPENDENT EXPRESSION> <COMMA> <INDEPENDENT
EXPRESSION> <RIGHT PAREN>

Grammar rule 17 <STATISTICAL AGGREGATE FUNCTION TYPE> ::=
CORR | COVAR_POP | COVAR_SAMP | REGR_R2 |
REGR_INTERCEPT | REGR_COUNT | REGR_SLOPE |
REGR_SXX | REGR_SXY | REGR_SYY | REGR_AVGY |
REGR_AVGX

Grammar rule 18 <WINDOW NAME OR SPECIFICATION> ::=
<WINDOW NAME> | <IN-LINE WINDOW SPECIFICATION>

Grammar rule 19 <WINDOW NAME> ::= <IDENTIFIER>

Grammar rule 20 <IN-LINE WINDOW SPECIFICATION> ::= <WINDOW
SPECIFICATION>

Grammar rule 21 <WINDOW CLAUSE> ::= <WINDOW WINDOW DEFINITION LIST>

Grammar rule 22 <WINDOW DEFINITION LIST> ::=
<WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>
} . . .]

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 87

Grammar rule 23 <WINDOW DEFINITION> ::=
<NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

Grammar rule 24 <NEW WINDOW NAME> ::= <WINDOW NAME>

Grammar rule 25 <WINDOW SPECIFICATION> ::=
<LEFT PAREN> <WINDOW SPECIFICATION> <DETAILS> <RIGHT
PAREN>

Grammar rule 26 <WINDOW SPECIFICATION DETAILS> ::=
[<EXISTING WINDOW NAME>]
[<WINDOW PARTITION CLAUSE>]
[<WINDOW ORDER CLAUSE>]
[<WINDOW FRAME CLAUSE>]

Grammar rule 27 <EXISTING WINDOW NAME> ::= <WINDOW NAME>

Grammar rule 28 <WINDOW PARTITION CLAUSE> ::=
PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

Grammar rule 29 <WINDOW PARTITION EXPRESSION LIST> ::=
<WINDOW PARTITION EXPRESSION>
[{ <COMMA> <WINDOW PARTITION EXPRESSION> } . . .]

Grammar rule 30 <WINDOW PARTITION EXPRESSION> ::= <EXPRESSION>

Grammar rule 31 <WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Grammar rule 32 <WINDOW FRAME CLAUSE> ::=
<WINDOW FRAME UNIT>
<WINDOW FRAME EXTENT>

Grammar rule 33 <WINDOW FRAME UNIT> ::= ROWS | RANGE

Grammar rule 34 <WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW
FRAME BETWEEN>

Grammar rule 35 <WINDOW FRAME START> ::=
UNBOUNDED PRECEDING
| <WINDOW FRAME PRECEDING>
| CURRENT ROW

Grammar rule 36 <WINDOW FRAME PRECEDING> ::= <UNSIGNED VALUE
SPECIFICATION> PRECEDING

Grammar rule 37 <WINDOW FRAME BETWEEN> ::=
BETWEEN <WINDOW FRAME BOUND 1> AND <WINDOW FRAME
BOUND 2>

Grammar rule 38 <WINDOW FRAME BOUND 1> ::= <WINDOW FRAME BOUND>

Grammar rule 39 <WINDOW FRAME BOUND 2> ::= <WINDOW FRAME BOUND>

Grammar rule 40 <WINDOW FRAME BOUND> ::=

BNF grammar for OLAP functions

88 Sybase IQ

<WINDOW FRAME START>
| UNBOUNDED FOLLOWING
| <WINDOW FRAME FOLLOWING>

Grammar rule 41 <WINDOW FRAME FOLLOWING> ::= <UNSIGNED VALUE
SPECIFICATION> FOLLOWING

Grammar rule 42 <GROUP BY EXPRESSION> ::= <EXPRESSION>

Grammar rule 43 <SIMPLE GROUP BY TERM> ::=
<GROUP BY EXPRESSION>
| <LEFT PAREN> <GROUP BY EXPRESSION> <RIGHT PAREN>
| <LEFT PAREN> <RIGHT PAREN>

Grammar rule 44 <SIMPLE GROUP BY TERM LIST> ::=
<SIMPLE GROUP BY TERM> [{ <COMMA> <SIMPLE GROUP BY
TERM> } . . .]

Grammar rule 45 <COMPOSITE GROUP BY TERM> ::=
<LEFT PAREN> <SIMPLE GROUP BY TERM>
[{ <COMMA> <SIMPLE GROUP BY TERM> } . . .]
<RIGHT PAREN>

Grammar rule 46 <ROLLUP TERM> ::= ROLLUP <COMPOSITE GROUP BY TERM>

Grammar rule 47 <CUBE TERM> ::= CUBE <COMPOSITE GROUP BY TERM>

Grammar rule 48 <GROUP BY TERM> ::=
<SIMPLE GROUP BY TERM>
| <COMPOSITE GROUP BY TERM>
| <ROLLUP TERM>
| <CUBE TERM>

Grammar rule 49 <GROUP BY TERM LIST> ::=
<GROUP BY TERM> [{ <COMMA> <GROUP BY TERM> } …]

Grammar rule 50 <GROUP BY CLAUSE> ::= GROUP BY <GROUPING SPECIFICATION>

Grammar rule 51 <GROUPING SPECIFICATION> ::=
<GROUP BY TERM LIST>
| <SIMPLE GROUP BY TERM LIST> WITH ROLLUP
| <SIMPLE GROUP BY TERM LIST> WITH CUBE
| <GROUPING SETS SPECIFICATION>

Grammar rule 52 <GROUPING SETS SPECIFICATION> ::=
GROUPING SETS <LEFT PAREN> <GROUP BY TERM LIST>
<RIGHT PAREN>

Grammar rule 53 <ORDER SPECIFICATION> ::= ORDER BY <SORT SPECIFICATION
LIST>

<SORT SPECIFICATION LIST> ::= <SORT SPECIFICATION>
[{ <COMMA> <SORT SPECIFICATION> } . . .]

CHAPTER 2 Using OLAP

System Administration Guide: Volume 2 89

<SORT SPECIFICATION> ::= <SORT KEY>
[<ORDERING SPECIFICATION>] [<NULL ORDERING>]
<SORT KEY> ::= <VALUE EXPRESSION>
<ORDERING SPECIFICATION> ::= ASC | DESC
<NULL ORDERING> := NULLS FIRST | NULLS LAST

BNF grammar for OLAP functions

90 Sybase IQ

System Administration Guide: Volume 2 91

C H A P T E R 3 Sybase IQ as a Data Server

About this chapter Sybase IQ supports client application connections through either ODBC
or JDBC. This chapter describes how to use Sybase IQ as a data server for
client applications.

With certain limitations, Sybase IQ may also appear to certain client
applications as an Open Server.This chapter also briefly describes the
restrictions for creating and running these applications.

See “Open Client architecture” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL
Anywhere Data Access APIs > Sybase Open Client API.

The facilities described in this chapter do not provide remote data access
for IQ users on Windows and Sun Solaris systems. Remote data access is
provided by Component Integration Services (CIS), the core
interoperability feature of OmniConnect™. For information on remote
data access and proxy databases, see Chapter 4, “Accessing Remote
Data” and Chapter 5, “Server Classes for Remote Data Access.”

Contents

Client/server interfaces to Sybase IQ
To simplify, use a Sybase application or a third-party client application
with Sybase IQ, you need not know the details of connectivity interfaces
or network protocols. However, an understanding of how these pieces fit
together may be helpful for configuring your database and setting up
applications. This section explains how the pieces fit together. For more
details about third-party client applications, see the Installation and
Configuration Guide.

Topic Page

Client/server interfaces to Sybase IQ 91

Setting up Sybase IQ as an Open Server 96

Characteristics of Open Client and jConnect connections 97

Client/server interfaces to Sybase IQ

92 Sybase IQ

See “Open Clients, Open Servers, and TDS” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server.

Configuring IQ Servers with iqdsedit
Sybase IQ can communicate with other Adaptive Servers, Open Server
applications, and client software on the network. Clients can talk to one or
more servers, and servers can communicate with other servers via remote
procedure calls. In order for products to interact with one another, each needs
to know where the others reside on the network. This network service
information is stored in the interfaces file.

Note Sybase IQ provides versions of Open Client utilities that have limited
functionality to enable INSERT...LOCATION, including:

• iqisql

• iqdsedit

• iqdscp (UNIX only)

• iqocscfg (Windows only)

The interfaces file

When you use an Open Client™ program to connect to a database server, the
program looks up the server name in the interfaces file and then connects to the
server using the address.

See “The interfaces file” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - Database Administration > Replication >
Using SQL Anywhere as an Open Server > Configuring Open Servers.

Using the iqdsedit utility

The iqdsedit utility allows you to configure the interfaces file (interfaces or
SQL.ini).

CHAPTER 3 Sybase IQ as a Data Server

System Administration Guide: Volume 2 93

See “Using the DSEdit utility” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server > Configuring Open
Servers.

Starting iqdsedit

On Windows, the iqdsedit executable is in the SYBASE\IQ-15_1\bin32 or
SYBASE\IQ-15_1\bin64 directories, which is automatically added to your path
during installation.

See “Starting DSEdit” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - Database Administration > Replication >
Using SQL Anywhere as an Open Server > Configuring Open Servers.

Opening a Directory Services session

You can add, modify, or delete entries for servers, including Sybase IQ servers
in the Select Directory Service window.

See “Opening a directory services session” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server > Configuring Open
Servers.

Adding a server entry

The server entry appears in the Server field. To specify the attributes of the
server, you must modify the entry.

The server name entered here does not need to match the name provided on the
Sybase IQ command line. The server address, not the server name, is used to
identify and locate the server.

The server name field is purely an identifier for Open Client. For Sybase IQ, if
the server has more than one database loaded, the IQDSEDIT server name
entry identifies which database to use.

See “Adding a server entry” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server > Configuring Open
Servers.

Client/server interfaces to Sybase IQ

94 Sybase IQ

Adding or changing the server address

Once you have entered a Server Name, you need to modify the Server Address
to complete the interfaces file entry.

See “Adding or changing the server address” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server > Configuring Open
Servers.

Port number The port number you enter must match the port specified on the Sybase IQ
database server command line, as described in “Starting the database server as
an Open Server” on page 96. The default port number for the Sybase IQ server
is 2638.

The following are valid server address entries:

elora,2638
123.85.234.029,2638

Verifying the server address

On Windows, you can verify your network connection by using the Ping server
command from the Server Object menu.

See “Verifying the server address” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server > Configuring Open
Servers.

Renaming a server entry

You can rename server entries from the dsedit session window.

See “Renaming a server entry” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server > Configuring Open
Servers.

Deleting server entries

You can delete server entries from the dsedit session window.

CHAPTER 3 Sybase IQ as a Data Server

System Administration Guide: Volume 2 95

See “Deleting server entries” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server > Configuring Open
Servers.

Sybase applications and Sybase IQ
The ability of Sybase IQ to act as an Open Server enables Sybase applications
such as OmniConnect to work with Sybase IQ. To use the Open Client
libraries, the client application must use only the supported system tables,
views, and stored procedures.

OmniConnect support Sybase OmniConnect provides a unified view of disparate data within an
organization, allowing users to access multiple data sources without having to
know what the data looks like or where it is located. In addition, OmniConnect
performs heterogeneous joins of data across the enterprise, enabling cross-
platform table joins of targets such as DB2, Sybase Adaptive Server
Enterprise™, SQL Anywhere, Oracle, and VSAM.

Using the Open Server interface, Sybase IQ can act as a data source for
OmniConnect.

Open Client applications and Sybase IQ
You can build Open Client applications to access data in Sybase IQ base tables
using the Open Client libraries directly from a C or C++ programming
environment such as PowerSoft Power++™. If such applications reference
catalog tables, views, or system stored procedures, these objects must be
supported by both Adaptive Server Enterprise (Transact-SQL™ syntax) and
Sybase IQ.

See Appendix A, “Compatibility with Other Sybase Databases” in Reference:
Building Blocks, Tables, and Procedures.

Configuring Open Client

When connecting to Sybase IQ using Open Client or when using the
INSERT...LOCATION syntax, you can set various Open Client configuration
parameters in an Open Client runtime configuration (.cfg) file. For example,
you can change the maximum default number of connections, which is
controlled by the value of the CS_MAX_CONNECT option.

Setting up Sybase IQ as an Open Server

96 Sybase IQ

The application name for INSERT...LOCATION is Sybase IQ. (The space
between the words is required.) This application name is set at the Open Client
connection level, not at the Open Client context level. For details about using
an Open Client runtime configuration file and the options available, see the
Open Client Client-Library C Reference Manual.

To have the .cfg take effect, stop and restart the Sybase IQ server. You may also
specify certain configuration parameters in the INSERT...LOCATION command
line. Parameters set in INSERT...LOCATION are superseded by parameters set
in the configuration file.

Setting up Sybase IQ as an Open Server
This section describes how to set up an Sybase IQ server to receive connections
from Open Client applications.

System requirements
There are separate requirements at the client and server for using Sybase IQ as
an Open Server.

See “System requirements” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Replication > Using SQL Anywhere as an Open Server > Setting up SQL
Anywhere as an Open Server.

Note When connecting to a remote Sybase IQ from a local SQL Anywhere
Enterprise server using OmniConnect, use these server classes:

• To connect to Sybase IQ 12 or later, use server classes asaodbc and sajdbc.

• To connect to Sybase IQ 11.x, use server class asiq.

Starting the database server as an Open Server
If you wish to use Sybase IQ as an Open Server, you must ensure that it is
started using the TCP/IP protocol.

CHAPTER 3 Sybase IQ as a Data Server

System Administration Guide: Volume 2 97

See “Starting the database server as an Open Server” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database
Administration > Replication > Using SQL Anywhere as an Open Server >
Setting up SQL Anywhere as an Open Server.

Every application using TCP/IP on a machine uses a distinct TCP/IP port, so
that network packets are sent to the correct application. The default port for
Sybase IQ is port 2638, which is used for shared memory communications.
You can specify a different port number:

start_iq -x tcpip{port=2629} -n myserver iqdemo.db

Configuring your database for use with Open Client
Your database must be Sybase IQ 12.0 or later.

If you are using Sybase IQ together with Adaptive Server Enterprise, ensure
that your database is created for maximum compatibility with Adaptive Server
Enterprise.

When connecting to Sybase IQ as an Open Server, applications frequently
assume services they expect under Adaptive Server Enterprise are provided.
These services are not always present.

See Appendix A, “Compatibility with Other Sybase Databases” in Reference:
Building Blocks, Tables, and Procedures.

Characteristics of Open Client and jConnect
connections

When Sybase IQ is serving applications over TDS, it automatically sets
relevant database options to values that are compatible with SQL Anywhere
Server default behavior. These options are set temporarily, for the duration of
the connection only. The client application can override these options at any
time.

Note Sybase IQ does not support the ANSI_BLANKS, FLOAT_AS_DOUBLE, and
TSQL_HEX_CONSTANT options.

Characteristics of Open Client and jConnect connections

98 Sybase IQ

See “Characteristics of Open Client and jConnect connections” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
Database Administration > Replication > Using SQL Anywhere as an Open
Server > Setting up SQL Anywhere as an Open Server.

By default, the sp_iq_process_login system procedure performs Sybase IQ user
administration, and then calls sp_login_environment, which in turn calls
sp_tsql_environment for TDS connections.

Note ODBC applications, including Interactive SQL applications,
automatically set certain database options to values mandated by the ODBC
specification. This overwrites settings by the LOGIN_PROCEDURE database
option. For details and a workaround, see “LOGIN_PROCEDURE option” in
Reference: Statements and Options.

Servers with multiple databases
Using Open Client Library, you can connect to a specific database on a server
with multiple databases.

• Set up entries in the interfaces file for the server.

• Use the -n parameter on the start_iq command to set up a shortcut for the
database name.

• Specify the -S database_name parameter with the database name on the
isql command. This parameter is required whenever you connect.

You can run the same program against multiple databases without changing the
program itself by putting the shortcut name into the program and merely
changing the shortcut definition.

For example, the following interfaces file excerpt defines two servers,
live_sales and test_sales:

live_sales
 query tcp ether myhostname 5555
 master tcp ether myhostname 5555
test_sales
 query tcp ether myhostname 7777
 master tcp ether myhostname 7777

Start the server and set up an alias for a particular database. The following
command sets live_sales equivalent to salesbase.db:

CHAPTER 3 Sybase IQ as a Data Server

System Administration Guide: Volume 2 99

start_iq -n sales_live <other parameters> -x \
‘tcpip{port=5555}’ salesbase.db -n live_sales

To connect to the live_sales server:

isql -Udba -Psql -Slive_sales

A server name may only appear once in the interfaces file. Because the
connection to Sybase IQ is now based on the database name, the database name
must be unique. If all your scripts are set up to work on salesbase database, you
will not have to modify them to work with live_sales or test_sales.

Characteristics of Open Client and jConnect connections

100 Sybase IQ

System Administration Guide: Volume 2 101

C H A P T E R 4 Accessing Remote Data

About this chapter Sybase IQ can access data located on different servers, both Sybase and
non-Sybase, as if the data were stored on the local server.

Contents Topic Page

Sybase IQ and remote data 102

Transaction management and remote data 112

Internal operations 113

Troubleshooting remote data access 115

Sybase IQ and remote data

102 Sybase IQ

Sybase IQ and remote data
SQL Anywhere remote data access gives you access to data in other data
sources. You can use this feature to migrate data into a SQL Anywhere
database. You can also use the feature to query data across databases.

See “Characteristics of Open Client and jConnect connections” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Remote Data and Bulk Operations.

Requirements for accessing remote data
There are several basic elements required to access remote data.

Remote table mappings

Sybase IQ presents tables to a client application as if all the data in the tables
were stored in the database to which the application is connected. Internally,
when Sybase IQ executes a query involving remote tables, it determines the
storage location and accesses the remote location to retrieve data.

See “Remote table mappings” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data.

Server classes

A server class is assigned to each remote server. The server class specifies the
access method used to interact with the server. Different types of remote
servers require different access methods. The server classes provide Sybase IQ
detailed server capability information. Sybase IQ adjusts its interaction with
the remote server based on those capabilities.

See “Server classes” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data.

Note OMNI JDBC classes are not supported with IPv6.

CHAPTER 4 Accessing Remote Data

System Administration Guide: Volume 2 103

Working with remote servers
Before you can map remote objects to a local proxy table, define the remote
server where the remote object is located; this adds an entry to the
ISYSSERVER system table for the remote server.

Creating remote servers

Use the CREATE SERVER statement to set up remote server definitions.

 For some systems, including Sybase IQ and SQL Anywhere, each data source
describes a database, so a separate remote server definition is needed for each
database.

See “Create remote servers using the CREATE SERVER statement” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Remote Data and Bulk Operations > Accessing remote data >
Working with remote servers.

Loading remote data without native classes

You need to use DirectConnect to access remote data sources:

• On 64-bit UNIX platforms

• On 32-bit platforms where no ODBC driver is available (for example,
Microsoft SQL Server)

This section and the following one provide examples of loading and querying
data by means of DirectConnect.

Non-Sybase remote
data example

For this example, assume that:

• An Enterprise Connect Data Access (ECDA) server named mssql exists on
UNIX host myhostname, port 12530.

• The data is to be retrieved from an MS SQL server named 2000 on host
myhostname, port 1433.

❖ Loading MS SQL Server data into an IQ server on UNIX

1 Using DirectConnect documentation, configure DirectConnect for your
data source.

2 Make sure that ECDA server (mssql) is listed in the IQ interfaces file:

mssql
master tcp ether myhostname 12530
query tcp ether myhostname 12530

Sybase IQ and remote data

104 Sybase IQ

3 Add a new user, using the user id and password for server mssql:

isql -Udba -Psql -Stst_iqdemo
grant connect to chill identified by chill
grant dba to chill

4 Log in as the new user to create a local table on IQ:

isql -Uchill -Pchill -Stst_iqdemo
create table billing(status char(1), name
varchar(20), telno int)

5 Insert data:

insert into billing location ‘mssql.pubs’ { select *
from billing }

Querying data without native classes

 Currently the best approach to accessing non-Sybase data on 64-bit systems is
to do so indirectly, as follows:

1 Configure ASE/CIS with a remote server and proxy to connect via
DirectConnect. For example, use DirectConnect for Oracle to the Oracle
server.

2 Configure IQ with a remote server using the ASEJDBC class to the ASE
server. (The ASEODBC class is unavailable because there is no 64-bit
Unix ODBC driver for ASE.)

3 Use the CREATE EXISTING TABLE statement to create proxy tables
pointing to the proxy tables in ASE which in turn point to Oracle.

Querying remote data
using DirectConnect
and proxy table from
UNIX

This example shows how to access MS SQL Server data. For this example,
assume the following:

• A Sybase IQ server on host myhostname, port 7594.

• An Adaptive Server Enterprise server on host myhostname, port 4101.

• An Enterprise Connect Data Access (ECDA) server exists named mssql on
host myhostname, port 12530.

• The data is to be retrieved from an MS SQL server named 2000 on host
myhostname, port 1433.

CHAPTER 4 Accessing Remote Data

System Administration Guide: Volume 2 105

❖ Setting up Adaptive Server Enterprise for querying MS SQL Server

1 Set up Adaptive Server and Component Integration Services (CIS) to MS
SQL Server through DirectConnect. For example, assume that the server
name is jones_1207.

2 Add an entry to the ASE interfaces file to connect to mssql:

mssql

master tcp ether hostname 12530

query tcp ether hostname 12530

3 Enable CIS and remote procedure call handling from the ASE server. For
example, if CIS is already enabled as the default:

sp_configure ‘enable cis’

Parameter Name Default Memory Used Config Value Run Value

enable cis 1 0 1 1

(1 row affected)
(return status=0)

sp_configure ‘cis rpc handling’, 1

Parameter Name Default Memory Used Config Value Run Value

enable cis 0 0 0 1

(1 row affected)
Configuation option changed. The SQL Server need not be restarted since
the option is dynamic.

You may need to restart Adaptive Server Enterprise server after enabling
CIS remote procedure call handling in older versions such as Sybase IQ
12.5.

4 Add the DirectConnect server to the ASE server’s SYSSERVERS system
table.

sp_addserver mssql, direct_connect, mssql

Adding server ‘mssql’, physical name ‘mssql’
Server added.
(Return status=0)

5 Create the user in Adaptive Server Enterprise that will be used in Sybase
IQ to connect to ASE.

sp_addlogin tst, tsttst

Password correctly set.

Sybase IQ and remote data

106 Sybase IQ

Account unlocked. New login created.
(return status = 0)

grant role sa_role to tst
use tst_db
sp_adduser tst

New user added.
(return status = 0)

6 Add an external login from the master database:

use master
sp_addexternlogin mssql, tst, chill, chill

User ‘tst’ will be known as ‘chill’ in remote server
‘mssql’.
(return status = 0)

7 Create an ASE proxy table as the added user from the desired database:

isql -Utst -Ttsttst
use test_db
create proxy_table billing_tst at
‘mssql.pubs..billing’
select * from billing_tst

status name telno
------ ----------- -----
D BOTANICALLY 1
B BOTANICALL 2
(2 rows affected)

❖ Setting up Sybase IQ to connect to the ASE server

1 Add an entry to the IQ interfaces file:

jones_1207
master tcp ether jones 4101
query tcp ether jones 4101

2 Create the user to connect to ASE:

grant connect to tst identified by tsttst
grant dba to tst

3 Log in as the added user to create the ‘asejdbc’ server class and add
external login:

isql -Utst -Ptsttst -Stst_iqdemo
create SERVER jones_1207 CLASEE 'asejdbc' USING

CHAPTER 4 Accessing Remote Data

System Administration Guide: Volume 2 107

'jones:4101/tst_db'
create existing table billing_iq at
'jones_1207.tst_db..billing_txt'
select * from billing_iq

status name telno
------ ----------- -----
D BOTANICALLY 1
B BOTANICALL 2
(2 rows affected)

Deleting remote servers

You can use Sybase Central or a DROP SERVER statement to delete a remote
server from the ISYSSERVER system table. All remote tables defined on that
server must already be dropped for this action to succeed.

See “Delete remote servers” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data > Working with remote servers.

Altering remote servers

Use the ALTER SERVER statement to modify the attributes of a server. These
changes do not take effect until the next connection to the remote server.

See “Alter remote servers” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Working with remote servers.

Listing the remote tables on a server

When you are configuring Sybase IQ, you may find it helpful to have available
a list of the remote tables available on a particular server.

See “List the remote tables on a server” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data
and Bulk Operations > Accessing remote data > Working with remote servers.

See also sp_remote_tables system procedure in Reference: Building Blocks,
Tables, and Procedures.

Sybase IQ and remote data

108 Sybase IQ

Listing remote server capabilities

The sp_servercaps procedure displays information about a remote server's
capabilities. Sybase IQ uses this capability information to determine how much
of a SQL statement can be passed to a remote server.

See “List remote server capabilities” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data > Working with remote servers.

See also sp_servercaps system procedure in Reference: Building Blocks,
Tables, and Procedures.

Working with external logins
Sybase IQ uses the names and passwords of its clients when it connects to a
remote server on behalf of those clients. However, this behavior can be
overridden by creating external logins. External logins are alternate login
names and passwords that are used when communicating with a remote server.

When Sybase IQ connects to the remote server, INSERT...LOCATION uses the
remote login for the user ID of the current connection, if a remote login has
been created with CREATE EXTERNLOGIN and the remote server has been
defined with a CREATE SERVER statement. If the remote server is not defined,
or a remote login has not been created for the user ID of the current connection,
IQ connects using the user ID and password of the current connection. For
more information and an example of INSERT...LOCATION using a remote login,
see INSERT statement in Reference: Statements and Options.

If you are using an integrated login, the IQ name and password of the IQ client
is the same as the database login ID and password that the IQ userid maps to in
syslogins.

Creating external logins

Only the login name and the DBA account can add or modify an external login.

See “Create external logins” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data > Working with remote servers.

For more information, see CREATE EXTERNLOGIN statement in Reference:
Statements and Options.

CHAPTER 4 Accessing Remote Data

System Administration Guide: Volume 2 109

Dropping external logins

Use the DROP EXTERNLOGIN statement to remove external logins from the
Sybase IQ system tables.

For more information, see DROP EXTERNLOGIN statement in Reference:
Statements and Options.

See “Drop external logins” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data > Working with remote servers.

Working with proxy tables
Location transparency of remote data is enabled by creating a local proxy table
that maps to the remote object.

See “Working with proxy tables” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data.

Specifying proxy table locations

The AT keyword is used with both CREATE TABLE and CREATE EXISTING
TABLE to define the location of an existing object. This location string has four
components that are separated by either a period or a semicolon. Semicolons
allow filenames and extensions to be used in the database and owner fields.

See “Specify proxy table locations” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data > Working with proxy tables.

Example The following example illustrate the use of location strings:

• Sybase IQ:

'testiq..DBA.employee'

Creating proxy tables

The CREATE EXISTING TABLE statement creates a proxy table that maps to an
existing table on the remote server. Sybase IQ derives the column attributes and
index information from the object at the remote location.

Sybase IQ and remote data

110 Sybase IQ

Example To create a proxy table named p_employee on the current server to a remote
table named employee on the server named iqdemo1, use the following syntax:

CREATE EXISTING TABLE p_employee
AT 'iqdemo1..DBA.employee'

See CREATE EXISTING TABLE statement in Reference: Statements and
Options.

Using the CREATE TABLE statement

The CREATE TABLE statement creates a new table on the remote server, and
defines the proxy table for that table when you use the AT option. Columns are
defined using Sybase IQ data types. Sybase IQ automatically converts the data
into the remote server's native types.

If you use the CREATE TABLE statement to create both a local and remote table,
and then subsequently use the DROP TABLE statement to drop the proxy table,
the remote table is also dropped. You can, however, use the DROP TABLE
statement to drop a proxy table created using the CREATE EXISTING TABLE
statement. In this case, the remote table is not dropped.

Example The following statement creates a table named employee on the remote server
iqdemo1, and creates a proxy table named members that maps to the remote
location:

CREATE TABLE members
(membership_id INTEGER NOT NULL,
member_name CHAR(30) NOT NULL,
office_held CHAR(20) NULL)
AT 'iqdemo1..DBA.Employees'

For more information, see the INSERT statement in Reference: Statements and
Options.

CHAPTER 4 Accessing Remote Data

System Administration Guide: Volume 2 111

Listing the columns on a remote table

If you are entering a CREATE EXISTING TABLE statement and you are
specifying a column list, it may be helpful to get a list of the columns that are
available on a remote table. The sp_remote_columns system procedure
produces a list of the columns on a remote table and a description of those data
types.

See “List the columns on a remote table” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data
and Bulk Operations > Accessing remote data > Working with proxy tables.

For more information, see sp_remote_columns system procedure in the
Reference: Building Blocks, Tables, and Procedures.

Example: A join between two remote tables
The following figure illustrates the remote Sybase IQ tables employee and
department in the sample database, mapped to the local server named testiq.

See “Join remote tables” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data.

Accessing multiple local databases
A Sybase IQ server may have several local databases running at one time. By
defining tables in other local Sybase IQ databases as remote tables, you can
perform cross-database joins.

Transaction management and remote data

112 Sybase IQ

See “Join tables from multiple local databases” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Remote Data and Bulk Operations > Accessing remote data.

Sending native statements to remote servers
Use the FORWARD TO statement to send one or more statements to the remote
server in its native syntax. This statement can be used in two ways:

See “Send native statements to remote servers” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Remote Data and Bulk Operations > Accessing remote data.

Using remote procedure calls (RPCs)
Sybase IQ users can issue procedure calls to remote servers that support the
feature.

Sybase IQ, SQL Anywhere, and Adaptive Server Enterprise, as well as Oracle
and DB2, support this feature. Issuing a remote procedure call is similar to
using a local procedure call.

Creating remote procedures

Use one of the following procedures to issue a remote procedure call.

See “Create remote procedures” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data > Using remote procedure calls
(RPCs).

Transaction management and remote data
Transactions provide a way to group SQL statements so that they are treated as
a unit—either all work performed by the statements is committed to the
database, or none of it is.

CHAPTER 4 Accessing Remote Data

System Administration Guide: Volume 2 113

Transaction management with remote tables is handled somewhat differently
than it is for local IQ tables. Transaction management for remote tables is
handled for the most part as it is in SQL Anywhere, although there are some
differences.

See “Using transactions and isolation levels” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Creating Databases.

For a general discussion of transactions in Sybase IQ, see Chapter 10,
“Transactions and Versioning,” in System Administration Guide: Volume 1.

Remote transaction management overview
The method for managing transactions involving remote servers uses a two-
phase commit protocol. Sybase IQ implements a strategy that ensures
transaction integrity for most scenarios.

See “Remote transaction management overview” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Accessing remote data > Transaction management and remote data.

Restrictions on transaction management
Restrictions on transaction management are as follows:

• Savepoints are not propagated to remote servers.

• If nested BEGIN TRANSACTION and COMMIT TRANSACTION statements
are included in a transaction that involves remote servers, only the
outermost set of statements is processed. The innermost set, containing the
BEGIN TRANSACTION and COMMIT TRANSACTION statements, is not
transmitted to remote servers.

Internal operations
This section describes the underlying steps that SQL Anywhere performs on
remote servers on behalf of client applications.

Internal operations

114 Sybase IQ

Query parsing
When a statement is received from a client, the database server parses it. The
database server raises an error if the statement is not a valid SQL Anywhere
SQL statement.

Query normalization
The next step is called query normalization. During this step, referenced
objects are verified and some data type compatibility is checked.

For example, consider the following query:

SELECT *
FROM t1
WHERE c1 = 10

The query normalization stage verifies that table t1 with a column c1 exists in
the system tables. It also verifies that the data type of column c1 is compatible
with the value 10. If the column's data type is datetime, for example, this
statement is rejected.

Query preprocessing
Query preprocessing prepares the query for optimization.

See “Query preprocessing” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data > Internal operations.

Server capabilities
The previous steps are performed on all queries, both local and remote.

The following steps depend on the type of SQL statement and the capabilities
of the remote servers involved.

See “Server capabilities” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Internal operations.

CHAPTER 4 Accessing Remote Data

System Administration Guide: Volume 2 115

Complete passthrough of the statement
The most efficient way to handle a statement is usually to pass as much of the
original statement as possible to the remote server involved. By default, Sybase
IQ attempts to pass off as much of the statement as possible. In many cases, this
is the complete statement as originally given to Sybase IQ.

See “Complete passthrough of the statement” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Remote Data and Bulk Operations > Accessing remote data > Internal
operations.

Partial passthrough of the statement
If a statement contains references to multiple servers, or uses SQL features not
supported by a remote server, the query is decomposed into simpler parts.

See “Partial passthrough of the statement” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data
and Bulk Operations > Accessing remote data > Internal operations.

Troubleshooting remote data access
This section provides some hints for troubleshooting access to remote servers.

Features not supported for remote data
The following features are not supported on remote data. Some are never
supported by Sybase IQ. Others are supported only for local data. Sybase IQ
has the following additions to the SQL Anywhere list:

• Java data types are not supported.

• When using Component Integration Services (CIS) in certain geographic
regions, connection attempts return the error No Suitable Driver.

See “Features not supported for remote data” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Remote Data and Bulk Operations > Accessing remote data >
Troubleshooting remote data access.

Troubleshooting remote data access

116 Sybase IQ

Case-sensitivity
The case-sensitivity setting of your IQ database should match the settings used
by any remote servers accessed.

See “Case sensitivity” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access.

Connectivity problems
To verify you can connect to a remote server, perform a simple passthrough
statement to a remote server to check your connectivity and remote login
configuration. For example:

FORWARD TO testiq {select @@version}

See “Connectivity tests” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Accessing remote data > Troubleshooting remote data access.

General problems with queries
If you are faced with some type of problem with the way Sybase IQ is handling
a query against a remote table, it is usually helpful to understand how Sybase
IQ is executing that query.

See “General problems with queries” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Accessing remote data > Troubleshooting remote data
access.

Queries blocked on themselves
If you access multiple databases on a single Sybase IQ or SQL Anywhere
server, you may need to increase the number of threads used by the database
server using the -gx command-line switch. By default, this switch is set to one
more than the number of CPUs on the machine.

CHAPTER 4 Accessing Remote Data

System Administration Guide: Volume 2 117

You must have enough threads available to support the individual tasks that are
being run by a query. Failure to provide the number of required tasks can lead
to a query becoming blocked on itself.

Note The -gx switch is not documented in the Utility Guide, as you do not
normally need to set it for an IQ database. For any purpose other than the one
described here, to increase the number of threads, set the -iqmt switch, which
controls the number of threads for IQ store operations.

Managing remote data access connections
If you access remote databases via ODBC, the connection to the remote server
is given a name. The name can be used to drop the connection as one way to
cancel a remote request.

See “Managing remote data access connections via ODBC” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Remote Data and Bulk Operations > Accessing remote data >
Troubleshooting remote data access.

Troubleshooting remote data access

118 Sybase IQ

System Administration Guide: Volume 2 119

C H A P T E R 5 Server Classes for Remote Data
Access

About this chapter This chapter describes how Sybase IQ interfaces with various server
classes.

Contents

Server classes overview
The behavior of a remote connection is determined by the server class in
the CREATE SERVER statement. The server classes give Sybase IQ
detailed server capability information.

See “Server classes for remote data access” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Usage > Remote Data and Bulk Operations.

JDBC-based server classes
JDBC-based server classes are used when Sybase IQ internally uses a Java
virtual machine and jConnect™ for JDBC™ 5.5 to connect to the remote
server. The JDBC-based server classes are:

• sajdbc Sybase IQ, and SQL Anywhere

• asejdbc Sybase SQL Anywhere and Adaptive Server Enterprise
(version 10 and later).

Topic Page

Server classes overview 119

JDBC-based server classes 119

ODBC-based server classes 121

JDBC-based server classes

120 Sybase IQ

Configuration notes for JDBC classes
When you access remote servers defined with JDBC-based classes, consider
the information in this topic:

See “Configuration notes for JDBC classes” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data
and Bulk Operations > Server classes for remote data access > JDBC-based
server classes.

Server class sajdbc
No special requirements exist for the configuration of Sybase IQ or SQL
Anywhere data source.

USING parameter value in the CREATE SERVER statement

The USING parameter in the CREATE SERVER statement takes the form
hostname:portnumber [/databasename], where:

• hostname The machine that the remote server is running on

• portnumber The TCP/IP port number that the remote server is listening
on. The default port number that an Sybase IQ listens on is 2638.

• databasename The Sybase IQ database that the connection will use.
This is the name specified in the -n switch when the server was started, or
in the DBN (DatabaseName) connection parameter.

Sybase IQ example To configure Sybase IQ server named testiq that is located on the machine
apple and listening on port number 2638, use:

CREATE SERVER testiq
CLASS 'sajdbc'
USING 'apple:2638'

See “USING parameter in the CREATE SERVER statement” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Remote Data and Bulk Operations > Server classes for remote
data access > JDBC-based server classes > Server class sajdbc.

Server class asejdbc
A server with server class asejdbc can be:

CHAPTER 5 Server Classes for Remote Data Access

System Administration Guide: Volume 2 121

• Adaptive Server Enterprise

• SQL Anywhere Version 10 and later

No special requirements exist for the configuration of an Adaptive Server
Enterprise data source.

See “Server class asejdbc” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server
classes.

Data type conversions

When you issue a CREATE TABLE statement to create a proxy table, Sybase IQ
automatically converts the data types to the corresponding Adaptive Server
Enterprise data types.

See “Server class asejdbc” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and Bulk
Operations > Server classes for remote data access > JDBC-based server
classes.

ODBC-based server classes
Sybase IQ supports a variety of ODBC-based server classes.

See “ODBC-based server classes” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Server classes for remote data access.

Defining ODBC external servers
The most common way of defining an ODBC-based server is to base it on an
ODBC data source. To do this, you must create a data source name (DSN) in
the ODBC Administrator.

See “Defining ODBC external servers” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data
and Bulk Operations > Server classes for remote data access > ODBC-based
server classes.

ODBC-based server classes

122 Sybase IQ

Sybase IQ example A connection to an Sybase IQ may be as follows:

CREATE SERVER testiq
CLASS 'asaodbc'
USING 'driver=adaptive server IQ 12.0;
eng=testasaiq;dbn=iqdemo;links=tcpip{}'

For more information on creating ODBC data sources for Sybase IQ, see
“Creating and editing ODBC data sources” in Chapter 3, “Sybase IQ
Connections,” in the System Administration Guide: Volume 1.

Server class saodbc
A server with server class saodbc is one of:

• Sybase IQ version 12 or later

• SQL Anywhere

No special requirements exist for the configuration of a SQL Anywhere or
Sybase IQ data source.

To access SQL Anywhere database servers that support multiple databases,
create an ODBC data source name defining a connection to each database.
Issue a CREATE SERVER statement for each of these ODBC data source
names.

Server class aseodbc
A server with server class aseodbc is:

• Adaptive Server Enterprise

• SQL Anywhere (version 10 and later)

Sybase IQ requires the local installation of the Adaptive Server Enterprise
ODBC driver and Open Client connectivity libraries to connect to a remote
Adaptive Server with class aseodbc. However, the performance is better than
with the asejdbc class.

See “Server class aseodbc” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Server classes for remote data access > ODBC-based
server classes.

CHAPTER 5 Server Classes for Remote Data Access

System Administration Guide: Volume 2 123

Server class db2odbc
A server with server class db2odbc is IBM DB2.

See “Server class db2odbc”in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Server classes for remote data access > ODBC-based
server classes.

Server class oraodbc
A server with server class oraodbc is Oracle version 8.0 or higher.

See “Server class oraodbc” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Server classes for remote data access > ODBC-based
server classes.

Use only Sybase IQ servers running on Windows to access Oracle data. There
is no 64-bit driver manager for Sybase IQ servers running on 64-bit UNIX
systems.

❖ Querying Oracle data using Sybase IQ servers on 64-bit UNIX

This process tells how to create the two sets of proxy tables needed to query
Oracle data in this situation.

1 Configure DirectConnect for Oracle to connect to Oracle.

2 Configure proxy tables in DirectConnect for Oracle.

3 Create a remote server in Sybase IQ using the ASEJDBC class to the
server and the port number for DirectConnect for Oracle.

4 Use a CREATE EXISTING TABLE statement to create a proxy table pointing
to the ASE proxy tables in DirectConnect for Oracle.

❖ Loading Oracle data using Sybase IQ servers on 64-bit UNIX

For best performance when loading large data, access the remote database with
a different method from that used for queries, as follows:

1 Create proxy tables in DirectConnect for Oracle.

2 Use the INSERT .. LOCATION statement to the proxy tables.

ODBC-based server classes

124 Sybase IQ

For details about INSERT .. LOCATION, see “Inserting from a different
database” in Chapter 7, “Moving Data In and Out of Databases,” in
System Administration Guide: Volume 1.

Server class mssodbc
A server with server class mssodbc is Microsoft SQL Anywhere version 6.5,
Service Pack 4.

See “Server class mssodbc” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Server classes for remote data access > ODBC-based
server classes.

Server class odbc
ODBC data sources that do not have their own server class use server class
odbc. You can use any ODBC driver.

The latest versions of Microsoft ODBC drivers can be obtained through the
Microsoft Data Access Components (MDAC) distribution found at the
Microsoft Download Center. The Microsoft driver versions listed are part of
MDAC 2.0.

Microsoft Excel (Microsoft 3.51.171300)

Each Excel workbook is logically considered to be a database that holds
several tables. Tables are mapped to sheets in a workbook. When you configure
an ODBC data source name in the ODBC driver manager, you specify a default
workbook name associated with that data source, however, when you issue a
CREATE TABLE statement, you can override the default and specify a
workbook name in the location string.

See “Microsoft Excel (Microsoft 3.51.171300)” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Remote Data and Bulk Operations > Server classes for remote data access
> ODBC-based server classes > Server class odbc.

CHAPTER 5 Server Classes for Remote Data Access

System Administration Guide: Volume 2 125

Microsoft Foxpro (Microsoft 3.51.171300)

You can store Foxpro tables together inside a single Foxpro database file
(.dbc), or you can store each table in its own separate .dbf file.

See “Microsoft FoxPro (Microsoft 3.51.171300)” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage
> Remote Data and Bulk Operations > Server classes for remote data access
> ODBC-based server classes > Server class odbc.

Lotus Notes SQL 2.0 (2.04.0203)

You can obtain this driver from the Lotus Web site. Read the documentation
that comes with it for an explanation of how Notes data maps to relational
tables. You can easily map IQ tables to Notes forms.

See “Lotus Notes SQL 2.0” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Remote Data and
Bulk Operations > Server classes for remote data access > ODBC-based
server classes > Server class odbc.

To set up Sybase IQ to access the Address sample file, follow this procedure.

❖ Setting up IQ to access the Address sample file

1 Create an ODBC data source using the NotesSQL driver.

The database will be the sample names file c:\notes\data\names.nsf. The
Map Special Characters option should be turned on. For this example, the
Data Source Name is my_notes_dsn.

2 Create an IQ server:

CREATE SERVER names
CLASS 'odbc'
USING 'my_notes_dsn'

3 Map the Person form into an IQ table:

CREATE EXISTING TABLE Person
AT 'names...Person'

4 Query the table

SELECT * FROM Person

ODBC-based server classes

126 Sybase IQ

System Administration Guide: Volume 2 127

C H A P T E R 6 Automating Tasks Using
Schedules and Events

About this chapter This chapter describes how to use scheduling and event handling features
of Sybase IQ to automate database administration and other tasks.

Contents Topic Page

Introduction to scheduling and event handling 128

Understanding schedules 128

Understanding events 129

Understanding event handlers 131

Schedule and event internals 132

Scheduling and event handling tasks 133

Introduction to scheduling and event handling

128 Sybase IQ

Introduction to scheduling and event handling
Many database administration tasks are best carried out systematically. For
example, a regular backup procedure is an important part of proper database
administration procedures.

See “Introduction to using schedules and events” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database
Administration > Maintaining Your Database > Automating tasks using
schedules and events.

Understanding schedules
By scheduling activities you can ensure that a set of actions is executed at a set
of preset times. The scheduling information and the event handler are both
stored in the database itself.

See “Understanding schedules” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events.

Sybase IQ example Note For examples, use the Sybase IQ demo database iqdemo.db. For
installation information, see “The demo database” on page xv.

Create table OrderSummary(c1 date, c2 int);

create event Summarize

schedule

start time '6:00 pm'

on ('Mon', 'Tue', 'Wed', 'Thu', 'Fri')

handler

begin

 insert into DBA.OrderSummary

 select max(OrderDate), count(*)

 from GROUPO.SalesOrders where OrderDate = current
date

end

CHAPTER 6 Automating Tasks Using Schedules and Events

System Administration Guide: Volume 2 129

Defining schedules
For flexibility, schedule definitions are made up of several components.

See “Defining schedules” in SQL Anywhere documentation in SQL Anywhere
11.0.1 > SQL Anywhere Server - Database Administration > Maintaining Your
Database > Automating tasks using schedules and events > Understanding
schedules.

Understanding events
The database server tracks several kinds of system events. Event handlers are
triggered when the system event is checked by the database server, and satisfies
a provided trigger condition.

See “Understanding system events” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events.

See also “Choosing a system event” on page 129, and “Defining trigger
conditions for events” on page 130.

Choosing a system event
Sybase IQ tracks several system events. Each system event provides a hook on
which you can hang a set of actions. The database server tracks the events for
you, and executes the actions (as defined in the event handler) when needed.

See “Understanding system events” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events.

Understanding events

130 Sybase IQ

Defining trigger conditions for events
Each event definition has a system event associated with it. It also has one or
more trigger conditions. The event handler is triggered when the trigger
conditions for the system event are satisfied.

Note The trigger conditions associated with Sybase IQ events are not the same
as SQL Anywhere or Adaptive Server Enterprise triggers, which execute
automatically when a user attempts a specified data modification statement on
a specified table.

See “Defining trigger conditions for events” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events >
Understanding system events.

Sybase IQ example Note For examples, use the Sybase IQ demo database iqdemo.db. For
installation information, see “The demo database” on page xv.

create event SecurityCheck
type ConnectFailed
handler
begin

declare num_failures int;

declare mins int;

insert into FailedConnections(log_time)

values (current timestamp);

select count(*) into num_failures

from FailedConnections

where log_time >= dateadd(minute, -5,
current timestamp);

if(num_failures >= 3) then
select datediff(minute, last_notification,

current timestamp) into mins

from Notification;

if(mins > 30) then

CHAPTER 6 Automating Tasks Using Schedules and Events

System Administration Guide: Volume 2 131

update Notification

set last_notification = current timestamp;

call xp_sendmail(recipient='DBAdmin',

subject='Security Check',"message"=

'over 3 failed connections in last 5 minutes')

end if

end if

end

Understanding event handlers
Event handlers execute on a separate connection from the action that triggered
the event, and so do not interact with client applications. They execute with the
permissions of the creator of the event.

Developing event handlers
Event handlers, whether for scheduled events or for system event handling,
contain compound statements, and are similar in many ways to stored
procedures. You can add loops, conditional execution, and so on, and you can
use the Sybase IQ debugger to debug event handlers.

See “Developing event handlers” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events >
Understanding system events.

For more information, see “EVENT_PARAMETER function [System]” in
Chapter 4, “SQL Functions,” in Reference: Building Blocks, Tables, and
Procedures.

For an example on using event handling, see “Managing IQ user accounts and
connections” in “Automating Tasks Using Schedules and Events,” in the
System Administration Guide: Volume 1.

Schedule and event internals

132 Sybase IQ

Schedule and event internals
This section describes how the database server processes schedules and event
definitions.

How the database server checks for system events
Events are classified according to their event type, as specified directly in the
CREATE EVENT statement.

See “How the database server checks for system events” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database
Administration > Maintaining Your Database > Automating tasks using
schedules and events > Schedule and event intervals.

How the database server checks for scheduled times
The calculation of scheduled event times is done when the database server
starts, and each time a scheduled event handler completes.

See “How the database server checks for scheduled events” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database
Administration > Maintaining Your Database > Automating tasks using
schedules and events > Schedule and event intervals.

How event handlers are executed
When an event handler is triggered, a temporary internal connection is made,
on which the event handler is executed. The handler is not executed on the
connection that caused the handler to be triggered, and consequently
statements such as MESSAGE … TO CLIENT, which interact with the client
application, are not meaningful within event handlers.

See “How event handlers are executed” in SQL Anywhere documentation in
SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events >
Schedule and event intervals.

CHAPTER 6 Automating Tasks Using Schedules and Events

System Administration Guide: Volume 2 133

Scheduling and event handling tasks
This section collects together tasks related to automating schedules and events.

Adding a schedule or event to a database
You can add schedules and events in Sybase Central and by using SQL.

See “Adding an event to a database” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events >
Event handling tasks.

For more information, see ALTER EVENT statement in Chapter 1, “SQL
Statements,” in the Reference: Statements and Options.

Adding a manually-triggered event to a database
If you create an event handler without a schedule or system event to trigger it,
it is executed only when manually triggered.

See “Adding a manually-triggered event to a database” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - Database
Administration > Maintaining Your Database > Automating tasks using
schedules and events > Event handling tasks.

For information on altering events, see ALTER EVENT statement in Chapter
1, “SQL Statements,” in Reference: Statements and Options.

Triggering an event handler
Any event handler can be manually triggered, as well as executed because of a
schedule or system event. You may find it useful to manually trigger events
during development of event handlers, and also, for certain events, in
production environments. For example, you may have a monthly sales report
scheduled, but from time to time you may want to obtain a sales report for a
reason other than the end of the month.

Scheduling and event handling tasks

134 Sybase IQ

See “Triggering an event handler” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events >
Event handling tasks.

For more information, see TRIGGER EVENT statement in Chapter 1, “SQL
Statements,” in Reference: Statements and Options.

Debugging an event handler
Debugging is a regular part of any software development. Event handlers can
be debugged during the development process.

See “Debugging an event handler” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Maintaining Your Database > Automating tasks using schedules and events >
Event handling tasks.

Retrieving information about an event or schedule
Sybase IQ stores information about events, system events, and schedules in the
system tables SYSEVENT, SYSEVENTTYPE, and SYSSCHEDULE. When you
alter an event using the ALTER EVENT statement, you specify the event name
and, optionally, the schedule name. When you trigger an event using the
TRIGGER EVENT statement, you specify the event name.

You can list event names by querying the system table SYSEVENT. For
example:

SELECT event_id, event_name FROM SYSEVENT

You can list schedule names by querying the system table SYSSCHEDULE. For
example:

SELECT event_id, sched_name FROM SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

System Administration Guide: Volume 2 135

A P P E N D I X A Debugging Logic in the
Database

About this appendix This appendix describes how to use the Sybase debugger to assist in
developing SQL stored procedures and event handlers, as well as Java
stored procedures.

Contents

Introduction to debugging in the database
You can use the debugger during the development of the following
objects:

• SQL stored procedures, event handlers, and user-defined functions.

• Java stored procedures in the database.

Debugger features
You can use the debugger during the development of SQL stored
procedures, triggers, event handlers, and user-defined functions.

See “Introduction to the SQL Anywhere debugger” in SQL Anywhere
documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Usage > Stored Procedures and Triggers > Debugging procedures,
functions, triggers, and events.

Topic Page

Introduction to debugging in the database 135

Tutorial 1: Getting started with the debugger 136

Tutorial 2: Debugging a stored procedure 137

Tutorial 3: Debugging a Java class 137

Writing debugger scripts 142

Tutorial 1: Getting started with the debugger

136 Sybase IQ

Requirements for using the debugger
To use the debugger, you need:

• Permissions You must either have DBA authority or be granted
permissions in the SA_DEBUG group. This group is automatically added
to all databases when they are created.

• Source code for Java classes The source code for your application
must be available to the debugger. For Java classes, the source code is held
on a directory on your hard disk. For stored procedures, the source code is
held in the database.

• Compilation options To debug Java classes, they must be compiled so
that they contain debugging information. For example, if you are using the
Sun Microsystems JDK compiler javac.exe, the Java classes must be
compiled using the -g command-line option.

Note The Sybase IQ demo database iqdemo.db. For installation information,
see “The demo database” on page xv.

Tutorial 1: Getting started with the debugger
These tutorials describe how to start the debugger, how to connect to a
database, and how to debug a Java class.

Lesson 1: Connect to a database and start the debugger
This tutorial shows you how to start the debugger, connect to a database, and
attach to a connection for debugging. It uses the Sybase IQ sample database.

Start the debugger

See “Lesson 1: Connect to a database and start the debugger” in SQL
Anywhere documentation in SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Stored Procedures and Triggers > Debugging procedures,
functions, triggers, and events > Tutorial: Getting started with the debugger.

APPENDIX A Debugging Logic in the Database

System Administration Guide: Volume 2 137

Tutorial 2: Debugging a stored procedure
This tutorial describes a sample session for debugging a stored procedure. It is
a continuation of “Tutorial 1: Getting started with the debugger” on page 136.

See “Lesson 2: Debug a stored procedure” in SQL Anywhere documentation
in SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored
Procedures and Triggers > Debugging procedures, functions, triggers, and
events > Tutorial: Getting started with the debugger.

Tutorial 3: Debugging a Java class
In this tutorial, you call JDBCExamples.Query() from Interactive SQL
(DBISQL), interrupt the execution in the debugger, and trace through the
source code for this method.

The JDBCExamples.Query() method executes the following query against the
sample database:

SELECT ID, UnitPrice
FROM Products

It then loops through all the rows of the result set, and returns the one with the
highest unit price.

You must compile classes with the javac -g option to debug them. The sample
classes are compiled for debugging.

Note To use the Java examples, you must have the Java example classes
installed into the sample database. See “Preparing the database” on page 137.

Preparing the database
If you intend to run Java examples, install the Java example classes into the
sample database.

See “Preparing for the examples” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere
Data Access APIs > SQL Anywhere JDBC driver > Using JDBC to access
data.

Tutorial 3: Debugging a Java class

138 Sybase IQ

Displaying Java source code into the debugger

❖ Displaying Java source code in the debugger

The debugger looks in a set of locations for source code files with .java
extension.

1 In Sybase Central, select Mode > Debug.

2 When prompted to select the user to debug, specify * for all users and click
OK.

3 From the debugger interface, select Debug > Set Java Source Code Path.

4 Enter the path to the java subdirectory of your Sybase IQ installation
directory. For example, if you installed Sybase IQ in %IQDIR15%, enter:

%IQDIR15%\java

5 Click OK, and close the window.

Locating Java source
code

The Java Source Code Path window holds a list of directories in which the
debugger looks for Java source code. Java rules for finding packages apply.
The debugger also searches the current CLASSPATH for source code.

For example, on Windows, if you add the paths %IQDIR15%\java and
c:\Java\src to the source path, and the debugger is trying to find a class called
iqdemo.Product, it looks for the source code in
%IQDIR15%\asa\java\asademo\Product.Java and c:\Java\src\my\
iqdemo\Product.Java

Set a breakpoint

❖ Setting a breakpoint in a Java class

You can set a breakpoint at the beginning of the Query() method. When the
method is invoked, execution stops at the breakpoint.

1 In the Source Code window, scroll down until you see the beginning of the
Query() method, near the end of the class, starting with:

public static int Query() {

2 Click the green indicator to the left of the first line of the method, until it
is red. The first line of the method is:

int max_price = 0;

APPENDIX A Debugging Logic in the Database

System Administration Guide: Volume 2 139

Repeatedly clicking the indicator toggles its status. After setting the
breakpoint, the Java class does not need to be recompiled.

Run the method
You can invoke the Query() method from Interactive SQL (DBISQL), and see
its execution interrupted at the breakpoint.

❖ Invoking the method from Interactive SQL

1 Start Interactive SQL. Connect to the sample database as used ID DBA and
password sql.

The connection appears in the debugger Connections window list.

2 To invoke the method, enter the following command in Interactive SQL:

SELECT JDBCExamples.Query()

The query does not complete. Instead, execution is stopped in the
debugger at the breakpoint. In Interactive SQL, the Stop button is active.
In the debugger Source window, the red arrow indicates the current line.

You can now step through source code and carry out debugging activities in the
debugger.

Stepping through source code
Following the previous section, the debugger should have stopped executing
JDBCExamples.Query() at the first statement in the method:

Examples Here are some steps you can try:

1 Step to the next line Choose Run > Step Over, or press F7 to step to the
next line in the current method. Try this two or three times.

2 Run to a selected line Select the following line using the mouse, and
choose Run > Run To Selected, or press F6 to run to that line and break:

max_price = price;

The red arrow moves to the line.

3 Set a breakpoint and execute to it Select the following line (line 292)
and press F9 to set a breakpoint on that line:

return max_price;

Tutorial 3: Debugging a Java class

140 Sybase IQ

An asterisk appears in the left column to mark the breakpoint. Press F5 to
execute to that breakpoint.

4 Experiment Try different methods of stepping through the code. End
with F5 to complete the execution.

When you have completed the execution, the Interactive SQL data
window displays the value 24.

5 Proceed to the next breakpoint To move to the next breakpoint, add an
F5 .

When you have completed the execution, the Interactive SQL data
window displays the value 24.

The complete set of options for stepping through source code appear on the
Run menu. You can find more information in the debugger online Help.

Inspecting and modifying variables
You can inspect the values of both local variables (declared in a method) and
class static variables in the debugger.

You can display class-level variables (static variables) in the debugger window,
and inspect their values. For more information, see the debugger online Help.

You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening.

Note To use the Java examples, you must have the Java example classes
installed into the sample database. See “Preparing the database” on page 137.

❖ Inspecting and modifying the value of a local variable

1 Set a breakpoint at the first line of the JDBCExamples.Query method. This
line is as follows:

int max_price = 0

2 In Interactive SQL, execute the method again:

SELECT JDBCExamples.Query()

The query executes only as far as the breakpoint.

3 Press F7 to step to the next line. The max_price variable has now been
declared and initialized to zero.

APPENDIX A Debugging Logic in the Database

System Administration Guide: Volume 2 141

4 If the Locals window does not appear, choose Window > Locals to display
it.

The Locals window shows that there are several local variables. max_price
has a value of zero. All other variables are listed as variable not in
scope, which means they are not yet initialized.

5 In the Locals window, double-click the Value column entry for max_price,
and change the value of max_price to 45.

The value 45 is larger than any other price. Instead of returning 24, the
query now returns 45 as the maximum price.

6 In the Source window, press F7 repeatedly to step through the code. The
values of the variables appear in the Locals window. Step through until the
stmt and result variables have values.

7 Expand the result object by clicking the icon next to it, or by setting the
cursor on the line and pressing Enter. This displays the values of the fields
in the object.

8 When you have experimented with inspecting and modifying variables,
press F5 to complete the execution of the query and finish the tutorial.

Working with breakpoints
Breakpoints control when the debugger interrupts execution of your source
code.

See “Working with breakpoints” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Debugging procedures, functions, triggers, and events.

Working with variables
The debugger lets you view and edit the behavior of your variables while
stepping through your code. The debugger provides a Debugger Details pane,
which displays the different kinds of variables used in stored procedures. The
Debugger Details pane appears at the bottom of Sybase Central when Sybase
Central is running in Debug mode.

Writing debugger scripts

142 Sybase IQ

See “Working with variables” in SQL Anywhere documentation in SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Usage > Stored Procedures
and Triggers > Debugging procedures, functions, triggers, and events.

Writing debugger scripts
The debugger allows you to write scripts in the Java programming language. A
script is a Java class that extends the sybase.asa.procdebug.DebugScript class.

When the debugger runs a script, it loads the class and calls its run method. The
first parameter of the run method is a pointer to an instance of the class. This
interface lets you interact with and control the debugger.

A debugger window is represented by the
“sybase.asa.procdebug.IDebugWindow interface” on page 147.

You can compile scripts with a command such as the following:

javac -classpath
%asany%/procdebug/ProcDebug.jar;%classpath%
myScript.Java.

sybase.asa.procdebug.DebugScript class
The DebugScript class is as follows:

// All debug scripts must inherit from this class

package sybase.asa.procdebug;

abstract public class DebugScript
{
 abstract public void run(IDebugAPI db, String args[]
);
 /*
 The run method is called by the debugger
 - args will contain command line arguments
 */

 public void OnEvent(int event) throws DebugError {}
 /*

- Override the following methods to process debug

APPENDIX A Debugging Logic in the Database

System Administration Guide: Volume 2 143

events
- NOTE: this method will not be called unless you

call
DebugAPI.AddEventHandler(this);

 */

}

sybase.asa.procdebug.IDebugAPI interface
The IDebugAPI interfaces is as follows:

package sybase.asa.procdebug;
import java.util.*;
public interface IDebugAPI

{
 // Simulate Menu Items

 IDebugWindow MenuOpenSourceWindow() throws
DebugError;
 IDebugWindow MenuOpenCallsWindow() throws
DebugError;
 IDebugWindow MenuOpenClassesWindow() throws
DebugError;
 IDebugWindow MenuOpenClassListWindow() throws
DebugError;
 IDebugWindow MenuOpenMethodsWindow() throws
DebugError;
 IDebugWindow MenuOpenStaticsWindow() throws
DebugError;
 IDebugWindow MenuOpenCatchWindow() throws
DebugError;
 IDebugWindow MenuOpenProcWindow() throws DebugError;
 IDebugWindow MenuOpenOutputWindow() throws
DebugError;
 IDebugWindow MenuOpenBreakWindow() throws
DebugError;
 IDebugWindow MenuOpenLocalsWindow() throws
DebugError;
 IDebugWindow MenuOpenInspectWindow() throws
DebugError;
 IDebugWindow MenuOpenRowVarWindow() throws
DebugError;
 IDebugWindow MenuOpenQueryWindow() throws

Writing debugger scripts

144 Sybase IQ

DebugError;
 IDebugWindow MenuOpenEvaluateWindow() throws
DebugError;
 IDebugWindow MenuOpenGlobalsWindow() throws
DebugError;
 IDebugWindow MenuOpenConnectionWindow() throws
DebugError;
 IDebugWindow MenuOpenThreadsWindow() throws
DebugError;
 IDebugWindow GetWindow(String name) throws
DebugError;

 void MenuRunRestart() throws DebugError;
 void MenuRunHome() throws DebugError;
 void MenuRunGo() throws DebugError;
 void MenuRunToCursor() throws DebugError;
 void MenuRunInterrupt() throws DebugError;
 void MenuRunOver() throws DebugError;
 void MenuRunInto() throws DebugError;
 void MenuRunIntoSpecial() throws DebugError;
 void MenuRunOut() throws DebugError;
 void MenuStackUp() throws DebugError;
 void MenuStackDown() throws DebugError;
 void MenuStackBottom() throws DebugError;
 void MenuFileExit() throws DebugError;
 void MenuFileOpen(String name) throws DebugError;
 void MenuFileAddSourcePath(String what) throws
DebugError;
 void MenuSettingsLoadState(String file) throws
DebugError;
 void MenuSettingsSaveState(String file) throws
DebugError;
 void MenuWindowTile() throws DebugError;
 void MenuWindowCascade() throws DebugError;
 void MenuWindowRefresh() throws DebugError;
 void MenuHelpWindow() throws DebugError;
 void MenuHelpContents() throws DebugError;
 void MenuHelpIndex() throws DebugError;
 void MenuHelpAbout() throws DebugError;
 void MenuBreakAtCursor() throws DebugError;
 void MenuBreakClearAll() throws DebugError;
 void MenuBreakEnableAll() throws DebugError;
 void MenuBreakDisableAll() throws DebugError;
 void MenuSearchFind(IDebugWindow w, String what)
throws DebugError;
 void MenuSearchNext(IDebugWindow w) throws

APPENDIX A Debugging Logic in the Database

System Administration Guide: Volume 2 145

DebugError;
 void MenuSearchPrev(IDebugWindow w) throws
DebugError;
 void MenuConnectionLogin() throws DebugError;
 void MenuConnectionReleaseSelected() throws
DebugError;

 // output window
 void OutputClear();
 void OutputLine(String line);
 void OutputLineNoUpdate(String line);
 void OutputUpdate();

 // Java source search path

 void SetSourcePath(String path) throws DebugError;
 String GetSourcePath() throws DebugError;

 // Catch java exceptions
 Vector GetCatching();
 void Catch(boolean on, String name) throws
DebugError;

 // Database connections
 int ConnectionCount();
 void ConnectionRelease(int index);
 void ConnectionAttach(int index);
 String ConnectionName(int index);
 void ConnectionSelect(int index);

 // Login to database
 boolean LoggedIn();
 void Login(String url, String userId, String
password, String userToDebug) throws DebugError;
 void Logout();

 // Simulate keyboard/mouse actions
 void DeleteItemAt(IDebugWindow w, int row) throws
DebugError;
 void DoubleClickOn(IDebugWindow w, int row) throws
DebugError;

 // Breakpoints
 Object BreakSet(String where) throws DebugError;
 void BreakClear(Object b) throws DebugError;
 void BreakEnable(Object b, boolean enabled) throws

Writing debugger scripts

146 Sybase IQ

DebugError;
 void BreakSetCount(Object b, int count) throws
DebugError;
 int BreakGetCount(Object b) throws DebugError;
 void BreakSetCondition(Object b, String condition
) throws DebugError;
 String BreakGetCondition(Object b) throws
DebugError;
 Vector GetBreaks() throws DebugError;

 // Scripting
 void RunScript(String args[]) throws DebugError;
 void AddEventHandler(DebugScript s);
 void RemoveEventHandler(DebugScript s);

 // Miscellaneous
 void EvalRun(String expr) throws DebugError;
 void QueryRun(String query) throws DebugError;
 void QueryMoreRows() throws DebugError;
 Vector GetClassNames();
 Vector GetProcedureNames();
 Vector WindowContents(IDebugWindow window) throws
DebugError;
 boolean AtBreak();
 boolean IsRunning();
 boolean AtStackTop();
 boolean AtStackBottom();
 void SetStatusText(String msg);
 String GetStatusText();
 void WaitCursor();
 void OldCursor();
 void Error(Exception x);
 void Error(String msg);
 void Warning(String msg);
 String Ask(String title);
 boolean MenuIsChecked(String cmd);
 void MenuSetChecked(String cmd, boolean on);
 void AddInspectItem(String s) throws DebugError;

 // Constants for DebugScript.OnEvent parameter
 public static final int EventBreak = 0;
 public static final int EventTerminate = 1;
 public static final int EventStep = 2;
 public static final int EventInterrupt = 3;
 public static final int EventException = 4;
 public static final int EventConnect = 5;

APPENDIX A Debugging Logic in the Database

System Administration Guide: Volume 2 147

};

sybase.asa.procdebug.IDebugWindow interface
The IDebugWindow interfaces is as follows:

// this interface represents a debugger window
package sybase.asa.procdebug;
public interface IDebugWindow
{
 public int GetSelected();
 /*
 get the currently selected row, or -1 if no
selection
 */

 public boolean SetSelected(int i);
 /*
 set the currently selected row. Ignored if i <
0 or i > #rows
 */

 public String StringAt(int row);
 /*
 get the String representation of the Nth row of
the window. Returns null if row > # rows
 */

 public java.awt.Rectangle GetPosition();
 public void SetPosition(java.awt.Rectangle r);
 /*
 get/set the windows position within the frame
 */

 public void Close();
 /*
 Close (destroy) the window
 */
}

Writing debugger scripts

148 Sybase IQ

System Administration Guide: Volume 2 149

A
accessibility

documentation xiv
aggregate functions 44

statistical 64
STDDEV_POP 65
STDDEV_SAMP 65
VAR_POP 65
VAR_SAMP 65

ALLOW_NULLS_BY_DEFAULT option
Open Client 97

analytical functions 26
asajdbc server class 120
asaodbc server class 122
ascending order 54
asejdbc server class 120
aseodbc server class 122
AT clause

CREATE EXISTING TABLE statement 109
atomic compound statements 10
Automating 127

B
batches

about 1, 9
SQL statements allowed 20

BEGIN TRANSACTION statement
remote data access 113

breakpoints
setting in a Java class 138

C
CALL statement

about 2
examples 4

parameters 12
syntax 9

CASE statement
syntax 9

case-sensitivity
remote access 116

certifications
documentation

updated xii
CHAINED option

Open Client 97
CIS (Component Integration Services) 91
Client-Library

about 91
CLOSE statement

procedures 14
command delimiter

setting 18
COMMIT statement

compound statements 10
procedures 18
remote data access 113

compliance
section 508 xiv

components
certifications xii

compound statements
atomic 10
declarations 10
using 10

computing deltas between adjacent rows 55
connections

debugging 136
remote 113

CONTINUE_AFTER_RAISERROR option
Open Client 97

control statements
list 9

conventions
documentation xiii, xiv

Index

Index

150 Sybase IQ

syntax xiii
typographic xiv

CREATE EXISTING TABLE statement
using 109

CREATE PROCEDURE statement
examples 3
parameters 11

CREATE TABLE statement
proxy tables 110

CUBE operation 28, 29, 39
example 42
NULL 31
SELECT statement 39

CURRENT ROW 48, 49
current row 50
cursors

and LOOP statement 15
in procedures 15
on SELECT statements 15
procedures 14

D
data sources

external servers 121
database options

Open Client 97
databases

demo xv
multiple 111
multiple on server 98
proxy 91

dates
procedures 18

DB-Library
about 91

debugger
about 135
connecting 136
features 135
getting started 136
requirements 136
starting 136
tutorial 136

debugging

breakpoints 138
connection 136
event handlers 134
features 135
introduction 135
Java 137
permissions 136
requirements 136
stored procedures 137

DebugScript class 142
DECLARE statement

compound statements 10
procedures 14

deltas between adjacent rows, computing 55
demo database xv
descending order 54
distribution functions 26, 46, 67
documentation

accessibility features xiv
certifications xii
conventions xiii, xiv
on CD xi
online xi
SQL Anywhere x
Sybase IQ ix

driver
missing 115

DSEDIT
entries 93
starting 93
using 92

E
EBFs xiii
encryption

hiding objects 19
error handling

ON EXCEPTION RESUME 16
errors

procedures 15
event handlers 131

debugging 134
triggering 133

events 127–134

Index

System Administration Guide: Volume 2 151

retrieving a schedule name 134
retrieving an event name 134
system 129
trigger condition 129

examples
OLAP 75

exception handlers
procedures 17

EXECUTE IMMEDIATE statement
procedures 18

extensions to GROUP BY clause 26, 28
external logins

about 108
creating 108
dropping 109

F
Federal Rehabilitation Act

section 508 xiv
FETCH statement

procedures 14
FLOAT_AS_DOUBLE option

Open Client 97
FOR statement

syntax 9
FORWARD TO statement 112
functions

aggregate 44
analytical 26, 43
correlation 65
covariance 65, 66
distribution 26, 67
inverse distribution 67
numeric 26
numerical 70
ordered sets 67
PERCENTILE_CONT function 67
PERCENTILE_DISC function 67
ranking 26, 58
reporting 62
simple aggregate 44
standard deviation 64
statistical 26
statistical aggregate 64

STDDEV_POP function 65
STDDEV_SAMP function 65
user-defined 7
VAR_POP function 65
VAR_SAMP function 65
variance 64
window 27, 62
windowing 44
windowing aggregate 26, 62

G
Getting Started CD xi
GROUP BY

clause extensions 28
CUBE 29
ROLLUP 29

GROUP BY clause extensions 28
GROUPING function

NULL 31
ROLLUP operation 31

-gx option
threads 116

I
IDebugAPI interface 143
IDebugWindow 147
IF statement

syntax 9
Interactive SQL

command delimiter 18
interfaces

IDebugAPI 143
IDebugWindow 147

interfaces file
configuring 92

inverse distribution functions 67
IP address

about 94
ISOLATION_LEVEL option

Open Client 97

Index

152 Sybase IQ

J
Java

about 135
about debugging 135
debugging 135, 137

Java debugger
requirements 136
starting 136
tutorial 136

K
keywords

remote servers 115

L
LEAVE statement

syntax 9
libctl.cfg file

DSEDIT 93
localhost

machine name 94
logical offset of a window frame 53
LOOP statement

in procedures 15
syntax 9

M
maintenance

software xiii
maintenance, product xiii
managing

transactions 113
multiple databases

DSEDIT entries 93
joins 111

MySybase
creating personalized view xii
EBFs xiii

N
NULL

CUBE operation 31
ROLLUP operation 31

NULL values
example 32

NULL values and subtotal rows 31
numeric functions 26

O
objects

hiding 19
ODBC

external servers 121
server classes 121

OLAP 46
about 26
aggregate functions 44
analytical functions 26, 43
benefits 27
CUBE operation 39
current row 50
distribution functions 26, 46
extensions to GROUP BY clause 26
functionality 26
Grouping() 28
NULL values 31
numeric functions 26
ORDER BY clause 47
PARTITION BY clause 46
RANGE 46
range 53
ranking functions 26, 46
ROLLUP operator 30
ROWS 46
rows 50
semantic phases of execution 27
statistical aggregate functions 26
statistical functions 46
subtotal rows 30
using 27
window concept 45
window framing 45
window functions 27

Index

System Administration Guide: Volume 2 153

window ordering 45
window partitioning 45, 46
window sizes 46
windowing extensions 44
windows aggregate functions 26

OLAP examples 75
ascending and descending order for value-based

frames 54
calculate cumulative sum 77
calculate moving average 78
computing deltas between adjacent rows 55
default window frame for RANGE 84
default window frame for ROW 82
multiple aggregate functions in a query 80
ORDER BY results 79
range-based window frames 53
row-based window frames 51
unbounded preceding and unbounded following

83
unbounded window 55
using a window with multiple functions 77
window frame excludes current row 81
window frame with ROWS vs. RANGE 80
window functions 57
window functions in queries 75

OLAP functions
distribution 67
numerical functions 70
ordered sets 67
ranking functions 58
statistical aggregate 64
windowing 44

aggregate functions 62
OmniConnect 91

support 95
ON EXCEPTION RESUME clause

about 16
online analytical processing

CUBE operator 39
functionality 26
NULL values 31
ROLLUP operator 30
subtotal rows 30

Open Client
configuring 92
interface 91

Open Server
adding 92
addresses 94
architecture 91
starting 96
system requirements 96

OPEN statement
procedures 14

options
Open Client 97

ORDER BY clause 47, 48
sort order 55

ordered set functions 67
PERCENTILE_CONT 67
PERCENTILE_DISC 67

OVER clause 45

P
PARTITION BY clause 46
PERCENTILE_CONT function 67
PERCENTILE_DISC function 67
permissions

debugging 136
procedures 5
user-defined functions 8

phases of execution 27
physical offset of a window frame 50
ping

testing Open Client 94
population variance function 65
prefixes 29

ROLLUP operation 30
subtotal rows 30

PREPARE statement
remote data access 113

procedures
about 1
benefits of 2
calling 4
command delimiter 18
creating 3
cursors 14
cursors in 15
dates and times 18

Index

154 Sybase IQ

debugging 137
default error handling 16
displaying information about 3
dropping 5
error handling 15
exception handlers 17
EXECUTE IMMEDIATE statement 18
execution permissions 5
multiple result sets from 13
owner 3
parameters 3, 11, 12
result sets 6, 13
returning results 12, 13
returning results from 6
savepoints in 18
SQL statements allowed in 11
structure 10
table names 18
using 2
variable result sets from 14
warnings 16
writing 18

product manuals xi
proxy databases 91
proxy tables

about 102, 109
creating 102, 109, 110
location 109
properties 109

Q
queries

prefixes 29
subtotal rows 30

QUOTED_IDENTIFIER option
Open Client 97

R
RANGE 46
range 53

logical offset of a window frame 53
window frame unit 47

window order clause 47
range specification 50, 53
range-based window frames 53, 54
rank functions

example 60, 61, 62
ranking functions 26, 46

requirements with OLAP 47
window order clause 47

remote data
location 109

remote data access 91
case-sensitivity 116
internal operations 113
passthrough mode 112
remote servers 103
SQL Remote unsupported 115
troubleshooting 115
unsupported features 115

remote procedure calls
about 112

remote servers
about 103
altering 107
classes 119
creating 103
deleting 107
external logins 108
listing properties 108
transaction management 112

remote tables
about 102
listing 107
listing columns 111

Replication Server
support 95

reporting functions 62
example 62, 63

requirements for using the debugger 136
reserved words

remote servers 115
restrictions

remote data access 115
result sets

multiple 13
procedures 6, 13
variable 14

Index

System Administration Guide: Volume 2 155

RETURN statement
about 12

ROLLBACK statement
compound statements 10
procedures 18

ROLLUP operation 28, 29
example 36
NULL 31
SELECT statement 30
subtotal rows 30

ROLLUP operator 30
row specification 50
row-based window frames 51
ROWS 46
rows 50

physical offset of a window frame 50
rows between 1 preceding and 1 following 51
rows between 1 preceding and 1 preceding 51
rows between current row and current row 51
rows between unbounded preceding and current

row 50
rows between unbounded preceding and unbounded

following 50
specification 53
subtotal rows 30

S
SA_DEBUG group

debugger 136
sample variance function 65
savepoints

procedures 18
schedules 127–134

definition components 129
scripts

IDebugAPI interface 143
IDebugWindow interface 147
writing debugger 142

section 508
compliance xiv

security
hiding objects 19

semantic phases of execution 27
semicolon

command delimiter 18
server address

DSEDIT 94
server classes

about 102
asajdbc 120
asaodbc 122
asejdbc 120
aseodbc 122
defining 102
ODBC 121

servers
multiple databases on 98

simple aggregate functions 44
sort order of ORDER BY in range-based frames 55
sp_iqprocedure

information about procedures 3
sp_iqprocparm

procedure parameters 3
SQL Remote

remote data access 115
sql.ini file

configuring 92
SQLCODE variable

introduction 15
SQLSTATE variable

introduction 15
standard deviation

functions 64
population function 65
sample function 65

standards
section 508 compliance xiv

statistical aggregate functions 64
statistical functions 46

aggregate 26
STDDEV_POP function 65
STDDEV_SAMP function 65
stored procedures

debugging 137
displaying information about 3

subtotal rows 30
construction 30
definition 30, 39
NULL values 31
ROLLUP operation 30

Index

156 Sybase IQ

subtransactions
procedures 18

summary information
CUBE operator 39

summary rows
ROLLUP operation 30

SYBASE environment variable
DSEDIT 93

SyBooks CD xi
syntax

documentation conventions xiii
sysservers system table

remote servers 103
system events

trigger conditions 130

T
table names

local 109
procedures 18

tables
defining proxy 109, 110
listing remote 107
proxy 109
remote access 102

Tabular Data Stream (TDS)
about 91

TCP/IP
addresses 94
Open Server 96

TDS. See Tabular Data Stream (TDS)
times

procedures 18
transaction management 112
transactions

managing 113
procedures 18
remote data access 113

trigger conditions
for system events 130

triggering event handlers 133
troubleshooting

remote data access 115
server address 94

TSQL_HEX_CONSTANT option
Open Client 97

TSQL_VARIABLES option
Open Client 97

typographic
conventions xiv

typography
documentation xiii

U
UNBOUNDED FOLLOWING 48, 49
UNBOUNDED PRECEDING 48
UNBOUNDED PREDEDING 49
unbounded window, using 55
user-defined functions

calling 7
creating 7
dropping 8
execution permissions 8
parameters 12
using 7

using unbounded windows 55

V
value-based window frames 53

ascending and descending order 54
ORDER BY clause 54

VAR_POP function 65
VAR_SAMP function 65
variance functions 64
views

MySybase, creating personalized xii

W
warnings

procedures 16
WHILE statement

syntax 9
window

frame clause 48

Index

System Administration Guide: Volume 2 157

operator 44
order clause 47, 48
ordering 45, 47

window frame unit 47, 50, 53
range 53
rows 50

window frames 45, 48
range based 53, 54
row based 51

window functions
aggregate 26, 46
distribution 46
framing 48
ordering 47
OVER clause 45
partitioning 46
ranking 46
statistical 46
window function type 44
window name or specification 44
window partition 44

window partitioning 45, 46
clause 46
GROUP BY operator 46

window sizes
RANGE 46
ROWS 46

windowing
aggregate functions 46, 62
extensions 44
functions 46
partitions 44

158 Sybase IQ

	System Administration Guide: Volume 2
	About This Book
	CHAPTER 1 Using Procedures and Batches
	Overview of procedures
	Benefits of procedures
	Introduction to procedures
	Creating procedures
	Altering procedures
	Calling procedures
	Copying procedures in Sybase Central
	Deleting procedures
	Permissions to execute procedures
	Returning procedure results in parameters
	Returning procedure results in result sets

	Introduction to user-defined functions
	Creating user-defined functions
	Calling user-defined functions
	Dropping user-defined functions
	Permissions to execute user-defined functions

	Introduction to batches
	Control statements
	Using compound statements
	Declarations in compound statements
	Atomic compound statements

	Structure of procedures
	SQL statements allowed in procedures
	Declaring parameters for procedures
	Passing parameters to procedures
	Passing parameters to functions

	Returning results from procedures
	Returning a value using the RETURN statement
	Returning results as procedure parameters
	Returning result sets from procedures
	Returning multiple result sets from procedures
	Returning variable result sets from procedures

	Using cursors in procedures
	Cursor management overview
	Cursor positioning
	Using cursors on SELECT statements in procedures

	Errors and warnings in procedures
	Default error handling in procedures
	Error handling with ON EXCEPTION RESUME
	Default handling of warnings in procedures
	Using exception handlers in procedures
	Nested compound statements and exception handlers

	Using the EXECUTE IMMEDIATE statement in procedures
	Transactions and savepoints in procedures
	Tips for writing procedures
	Hiding the contents of procedures, functions, and views

	Statements allowed in batches
	Using SELECT statements in batches

	Using IQ UTILITIES to create your own stored procedures
	How IQ uses the IQ UTILITIES command
	Requirements for using IQ UTILITIES
	Choosing procedures to call
	Numbers used by IQ UTILITIES
	Testing your procedures

	CHAPTER 2 Using OLAP
	About OLAP
	OLAP benefits
	Understanding OLAP evaluation

	GROUP BY clause extensions
	Group by ROLLUP and CUBE
	Group by ROLLUP
	Group by CUBE

	Analytical functions
	Simple aggregate functions
	Windowing
	Window partitioning
	Window ordering
	Window framing
	Explicit and inline window clauses
	Ranking functions
	Windowing aggregate functions
	Statistical aggregate functions
	Distribution functions

	Numeric functions

	OLAP rules and restrictions
	Additional OLAP examples
	Example: Window functions in queries
	Example: Window with multiple functions
	Example: Calculate cumulative sum
	Example: Calculate moving average
	Example: ORDER BY results
	Example: Multiple aggregate functions in a query
	Example: Window frame comparing ROWS and RANGE
	Example: Window frame excludes current row
	Example:Window frame for RANGE
	Example: Unbounded preceding and unbounded following
	Example: Default window frame for RANGE

	BNF grammar for OLAP functions

	CHAPTER 3 Sybase IQ as a Data Server
	Client/server interfaces to Sybase IQ
	Configuring IQ Servers with iqdsedit
	The interfaces file
	Using the iqdsedit utility
	Starting iqdsedit
	Opening a Directory Services session
	Adding a server entry
	Adding or changing the server address
	Verifying the server address
	Renaming a server entry
	Deleting server entries

	Sybase applications and Sybase IQ
	Open Client applications and Sybase IQ
	Configuring Open Client

	Setting up Sybase IQ as an Open Server
	System requirements
	Starting the database server as an Open Server
	Configuring your database for use with Open Client

	Characteristics of Open Client and jConnect connections
	Servers with multiple databases

	CHAPTER 4 Accessing Remote Data
	Sybase IQ and remote data
	Requirements for accessing remote data
	Remote table mappings
	Server classes

	Working with remote servers
	Creating remote servers
	Loading remote data without native classes
	Querying data without native classes
	Deleting remote servers
	Altering remote servers
	Listing the remote tables on a server
	Listing remote server capabilities

	Working with external logins
	Creating external logins
	Dropping external logins

	Working with proxy tables
	Specifying proxy table locations
	Creating proxy tables
	Using the CREATE TABLE statement
	Listing the columns on a remote table

	Example: A join between two remote tables
	Accessing multiple local databases
	Sending native statements to remote servers
	Using remote procedure calls (RPCs)
	Creating remote procedures

	Transaction management and remote data
	Remote transaction management overview
	Restrictions on transaction management

	Internal operations
	Query parsing
	Query normalization
	Query preprocessing
	Server capabilities
	Complete passthrough of the statement
	Partial passthrough of the statement

	Troubleshooting remote data access
	Features not supported for remote data
	Case-sensitivity
	Connectivity problems
	General problems with queries
	Queries blocked on themselves
	Managing remote data access connections

	CHAPTER 5 Server Classes for Remote Data Access
	Server classes overview
	JDBC-based server classes
	Configuration notes for JDBC classes
	Server class sajdbc
	USING parameter value in the CREATE SERVER statement

	Server class asejdbc
	Data type conversions

	ODBC-based server classes
	Defining ODBC external servers
	Server class saodbc
	Server class aseodbc
	Server class db2odbc
	Server class oraodbc
	Server class mssodbc
	Server class odbc
	Microsoft Excel (Microsoft 3.51.171300)
	Microsoft Foxpro (Microsoft 3.51.171300)
	Lotus Notes SQL 2.0 (2.04.0203)

	CHAPTER 6 Automating Tasks Using Schedules and Events
	Introduction to scheduling and event handling
	Understanding schedules
	Defining schedules

	Understanding events
	Choosing a system event
	Defining trigger conditions for events

	Understanding event handlers
	Developing event handlers

	Schedule and event internals
	How the database server checks for system events
	How the database server checks for scheduled times
	How event handlers are executed

	Scheduling and event handling tasks
	Adding a schedule or event to a database
	Adding a manually-triggered event to a database
	Triggering an event handler
	Debugging an event handler
	Retrieving information about an event or schedule

	APPENDIX A Debugging Logic in the Database
	Introduction to debugging in the database
	Debugger features
	Requirements for using the debugger

	Tutorial 1: Getting started with the debugger
	Lesson 1: Connect to a database and start the debugger
	Start the debugger

	Tutorial 2: Debugging a stored procedure
	Tutorial 3: Debugging a Java class
	Preparing the database
	Displaying Java source code into the debugger
	Set a breakpoint
	Run the method
	Stepping through source code
	Inspecting and modifying variables

	Working with breakpoints
	Working with variables
	Writing debugger scripts
	sybase.asa.procdebug.DebugScript class
	sybase.asa.procdebug.IDebugAPI interface
	sybase.asa.procdebug.IDebugWindow interface

	Index

