Clusters Users Guide

Adaptive Server® Enterprise
15.7
PART 1 CONFIGURING THE CLUSTER EDITION

CHAPTER 1 An Overview of the Cluster Edition 3
 What is the Cluster Edition? ... 3
 Adaptive Server integrated clusterware 6
 The cluster coordinator .. 7
 The quorum device ... 8
 Database devices in the Cluster Edition 8
 Private installation versus shared installation 10
 Backup Server in the Cluster Edition 11
 How the Cluster Edition enhances the nonclustered edition 12
 Using interconnected networks in the cluster 13
 Monitoring links between instances 14
 Suggested deployment scenarios ... 16
 HA failover for OLTP applications 17
 Horizontal scalability for DSS reporting applications 18
 Horizontal scalability for OLTP applications 18
 New client technologies in the Cluster Edition 19
 Support for replication ... 20

CHAPTER 2 Client Applications and Client/ Server Interaction 23
 Open Client .. 24
 Enabling failover in Client-Library applications 25
 Client/server interaction ... 26
 Login redirection .. 26
 Connection migration ... 28
 Context migration ... 30
 Extended high-availability failover 32
 Using isql in a clustered environment 34
 Using remote procedure calls in a clustered environment 34
 RPCs where the remote server is a cluster 35
 RPCs where the local server is a cluster 35
 RPCs where local and remote servers are instances in the same
Contents

- Cluster ... 35
- `sp_serveroption` .. 35
- Reconnecting clients when a node loses power 36

CHAPTER 3 Using Security with a Clustered Environment 39

- Using encrypted columns in a clustered environment........................ 39
- Using SSL in a clustered environment .. 39
- Specifying a common name with `sp_listener` 40
- Using LDAP as a directory service.. 41
 - LDAP directory services versus the Sybase interfaces file 42
 - The `libtcl*.cfg` file ... 45
 - Enabling LDAP directory services .. 46
 - Adding a server to the directory services 47
 - Multiple directory services .. 49
 - Encrypting the password .. 49
 - Performance ... 50
- Migrating from the interfaces file to LDAP 50
- Using LDAP directory services with the shared-disk cluster ... 51

CHAPTER 4 Using Monitoring Tables in a Clustered Environment 55

- Monitoring tables for clusters .. 55
- Configuring the system view ... 56
- Configuring monitoring tables .. 57
- Managing the message pipe .. 57
- Changes for RPCs .. 58
- Monitoring tables specific to the Cluster Edition 58
- Monitoring tables that return identical information for all instances ... 58
- Monitoring tables that return specific instance information 59

CHAPTER 5 Using Backup Server in a Clustered Environment 61

- Nodes joining cluster during a dump 61
- Multiple Backup Servers ... 62
- Configuring Cluster Edition to use multiple Backup Servers ... 63
- Starting and stopping Backup Servers 65
- Backing up to media ... 65
- Changes to stored procedures ... 66

CHAPTER 6 Managing the Workload .. 67

- Logical cluster resources ... 68
- The system logical cluster .. 69
- Setting up a logical cluster .. 70
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating a logical cluster</td>
<td>70</td>
</tr>
<tr>
<td>Adding instances to a logical cluster</td>
<td>72</td>
</tr>
<tr>
<td>Adding routes to a logical cluster</td>
<td>72</td>
</tr>
<tr>
<td>Starting a logical cluster</td>
<td>73</td>
</tr>
<tr>
<td>Assigning routing rules</td>
<td>73</td>
</tr>
<tr>
<td>Routing rules</td>
<td>74</td>
</tr>
<tr>
<td>Configuring logical cluster attributes</td>
<td>74</td>
</tr>
<tr>
<td>The open logical cluster</td>
<td>75</td>
</tr>
<tr>
<td>Down-routing mode</td>
<td>76</td>
</tr>
<tr>
<td>System-view attribute</td>
<td>77</td>
</tr>
<tr>
<td>Start-up mode</td>
<td>78</td>
</tr>
<tr>
<td>Failover mode</td>
<td>78</td>
</tr>
<tr>
<td>Fail_to_any attribute</td>
<td>79</td>
</tr>
<tr>
<td>Load profile attribute</td>
<td>79</td>
</tr>
<tr>
<td>Login distribution mode</td>
<td>79</td>
</tr>
<tr>
<td>Action release</td>
<td>80</td>
</tr>
<tr>
<td>Gather mode</td>
<td>80</td>
</tr>
<tr>
<td>Roles</td>
<td>81</td>
</tr>
<tr>
<td>Configuring failover</td>
<td>81</td>
</tr>
<tr>
<td>Adding failover resources</td>
<td>82</td>
</tr>
<tr>
<td>Managing logical clusters</td>
<td>83</td>
</tr>
<tr>
<td>User tasks and logical clusters</td>
<td>83</td>
</tr>
<tr>
<td>Managing the workload manager thread</td>
<td>83</td>
</tr>
<tr>
<td>Viewing information about a logical cluster</td>
<td>84</td>
</tr>
<tr>
<td>Creating and dropping a logical cluster</td>
<td>86</td>
</tr>
<tr>
<td>Adding resources to a logical cluster</td>
<td>86</td>
</tr>
<tr>
<td>Dropping resources from a logical cluster</td>
<td>87</td>
</tr>
<tr>
<td>Adding, moving, and dropping routes</td>
<td>87</td>
</tr>
<tr>
<td>Migrating connections</td>
<td>87</td>
</tr>
<tr>
<td>Administering failover, failback, and planned downtime</td>
<td>88</td>
</tr>
<tr>
<td>Cluster and instance states</td>
<td>89</td>
</tr>
<tr>
<td>How states change</td>
<td>90</td>
</tr>
<tr>
<td>Asynchronous commands and logical cluster states</td>
<td>91</td>
</tr>
<tr>
<td>Using action descriptors</td>
<td>92</td>
</tr>
<tr>
<td>An example: scheduling and rescheduling a failover</td>
<td>93</td>
</tr>
<tr>
<td>Using failover, failback, online, offline, and deactivate</td>
<td>94</td>
</tr>
<tr>
<td>Distributing the workload</td>
<td>95</td>
</tr>
<tr>
<td>Workload metrics</td>
<td>95</td>
</tr>
<tr>
<td>Creating a user metric</td>
<td>96</td>
</tr>
<tr>
<td>Weighting the workload metrics</td>
<td>97</td>
</tr>
<tr>
<td>Load thresholds</td>
<td>97</td>
</tr>
<tr>
<td>Load profiles</td>
<td>98</td>
</tr>
<tr>
<td>Using the sample load profiles</td>
<td>98</td>
</tr>
<tr>
<td>Creating and configuring your own load profile</td>
<td>99</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adaptive Server Enterprise Cluster Edition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creating the load profile</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Building the load profile</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Associating the load profile with a logical cluster</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Changing a load profile</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Troubleshooting</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 7 Cluster Cache Configuration</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Global caches</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Local caches</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Creating and configuring named data caches</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Getting information about named caches</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Creating a new cache</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Configuring and using multiple buffer pools</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>sp_poolconfig</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Moving memory between buffer pools</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Changing the wash size of a pool</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Changing a pool’s local asynchronous prefetch percentage</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Dropping a buffer pool</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Binding objects to named caches</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Syntax for binding objects</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Getting information about bound caches</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Dropping cache bindings</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Modifying the configuration file</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Format of a local named cache</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Extra line in local cache entries</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Deleted named cache with global configuration</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Named cache with local configuration</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Deleted entries with valid configuration</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Creating a local configuration in the presence of a global configuration</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Limitations</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 8 Using Temporary Databases</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Types of temporary databases</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Local temporary databases</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Summary information</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Creating temporary databases</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Creating local system temporary databases</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Creating local and global user temporary databases</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Binding users and applications to temporary databases</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Creating and managing temporary database groups</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>What you can bind</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>How the session binding is determined</td>
<td>136</td>
</tr>
</tbody>
</table>
Contents

Creating and managing bindings ... 137
Displaying group and binding information 138
Dropping temporary databases ... 138
Restrictions for temporary databases 139
Private device support for local databases 141
Using private devices for temporary data 142
Creating private devices using disk init 142
Reinitializing private devices using disk reinit 142
Dropping private devices using sp_dropdevice 143
Displaying private device information using sp_helpdevice ... 143
Using create database and alter database with a private device . 146
Using disk refit ... 146

CHAPTER 9 Running Job Scheduler in a Clustered Environment 149
Installing and configuring Job Scheduler 149
Running Job Scheduler in a clustered environment 150
Shutting down Job Scheduler .. 150

CHAPTER 10 Instance Recovery ... 153
Single-instance recovery ... 153
Single transaction log ... 154
Multiple simultaneous failure .. 154
Enabling multiple simultaneous failover 155
Recovery algorithm ... 156

CHAPTER 11 Additional Topics .. 159
Locks ... 160
Deadlocks .. 160
Retention locks ... 160
Cluster lock requests and task request status 161
Memory ... 161
Thresholds .. 162
dbcc thresholds output .. 162
dbcc dbtable output .. 162
dbcc dbrepair with remap option 162
dbcc dbrepair with newthreshold option 163
Cluster interprocess communication 164
Distributed checkpoints ... 164
Quorum device heartbeat .. 165
Configuring the quorum device heartbeat 165
Contents

Using InfiniBand ... 166
Setting the buffer space .. 166
Configuring InfiniBand in a cluster 167
Private installation mode ... 167
Maintaining the server configuration files 168
Using Java in a clustered environment 170
Adding space to an archive database 171
Distributed transactions on a shared-disk cluster 171
Using DTM on the shared-disk cluster 172
The cluster as the resource manager 172
Handling requests on nonowner instances 173
Handling instance failures ... 174
Transaction coordination with ASTC 174
The impact of connection migration 175
Configuration and system issues 176
Support for mount and unmount commands 178
Using sp_showplan ... 178

CHAPTER 12 Using the Cluster Edition with the Veritas Cluster Server 179
Supported platforms, requirements, and limitations 182
Installing and configuring the Cluster Edition on VCS 183
Installing the Cluster Edition .. 184
Creating a new Adaptive Server cluster for Storage Foundation integration ... 185
Converting an existing cluster to use SF for Sybase CE 186
Managing a cluster under VCS control 187
Starting and stopping instances 188
Adding and removing instances 188
Increasing the number of user connections 188
Changing the character set or sort order 189
Membership modes .. 190
Determining the membership mode 190
Changing membership mode ... 190
Understanding failure scenarios 191
VCS troubleshooting .. 192
Cluster Edition fails to start ... 193
Veritas log: "Sybase home directory does not exist" 194
Instance log: "failed to bind to socket" 194
Instance log: "Membership service failed to receive initial message from Veritas cluster membership after 301 seconds. Exiting..." 195
Instance log: "Failed to open quorum device 'device_path'. OS error 13, 'Permission denied'" .. 196
Instance log: "basis_dsizecheck: attempt to open device
'device_path' failed, system error is: Permission denied 196
Instance log: “The configuration area in master device appears to be corrupt.” ... 196
Veritas log: “Path not found” .. 197
VCS shuts down the instance after it starts and issues resource
faults ... 197
VCS cannot shut down the instance resource 199
Resource faults for VCS groups .. 199
VCS fails to start .. 200

CHAPTER 13 Troubleshooting ... 203
Verifying the cluster environment ... 204
Restarting the cluster using a dataserver binary from an earlier version
205
Errors accessing disk devices .. 206
Verifying the cluster is down ... 207
Creating cluster using sybcluster fails with error -131 208
Cluster creation fails leaving files in $SYBASE directory 208
Unified Agent starts but sybcluster connect fails 209
Disk devices in use .. 209
Instances fail to join the cluster .. 210
Private interconnect failure .. 210
Client connection failover fails ... 210
Client fails to reconnect to alternate high availability servers 211
sybcluster cannot connect if all connections use SSL 211
jConnect sample disables HA .. 212
PC-Client installation - java.lang.NoClassDefFound Error 212
The cluster entry “name” did not contain any servers 213
After password change, sybcluster cannot manage the cluster... 213
Agent “cannot be found” ... 215
Sybase Central cannot register the AMCP plug-in 215
UAF plug-in register error .. 215
Data on disk unavailable: problems affecting database creation 216
Access permission to devices is denied after enabling I/O fencing 217
sybcluster cannot find interfaces file 217
IBM errors ... 218
Asynchronous I/O not enabled .. 218
Incorrect permissions on device .. 218
Another machine using device ... 219
Error running chdev .. 220

CHAPTER 14 Administering Clusters with the Adaptive Server Plug-in 221
Managing a shared-disk cluster .. 221
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutting the cluster down</td>
<td>266</td>
</tr>
<tr>
<td>Dropping a cluster</td>
<td>267</td>
</tr>
<tr>
<td>Managing an instance</td>
<td>267</td>
</tr>
<tr>
<td>Displaying information about the instance</td>
<td>267</td>
</tr>
<tr>
<td>Adding an instance</td>
<td>268</td>
</tr>
<tr>
<td>Verifying the instance</td>
<td>269</td>
</tr>
<tr>
<td>Changing the default instance</td>
<td>269</td>
</tr>
<tr>
<td>Changing instance properties</td>
<td>270</td>
</tr>
<tr>
<td>Shutting an instance down</td>
<td>270</td>
</tr>
<tr>
<td>Dropping an instance</td>
<td>271</td>
</tr>
<tr>
<td>Enabling sybcluster after manually creating the cluster</td>
<td>271</td>
</tr>
<tr>
<td>Creating and managing auxiliary servers</td>
<td>272</td>
</tr>
<tr>
<td>Creating auxiliary servers</td>
<td>272</td>
</tr>
<tr>
<td>Dropping auxiliary servers</td>
<td>272</td>
</tr>
<tr>
<td>Displaying listening port information</td>
<td>273</td>
</tr>
<tr>
<td>Changing listening port information</td>
<td>274</td>
</tr>
<tr>
<td>Upgrading the server</td>
<td>274</td>
</tr>
<tr>
<td>PART 2 GENERAL CONFIGURATION ISSUES</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 16 Configuring the Operating System</td>
<td>277</td>
</tr>
<tr>
<td>Using the stty setting</td>
<td>277</td>
</tr>
<tr>
<td>Restoring correct permissions</td>
<td>278</td>
</tr>
<tr>
<td>File descriptors and user connections</td>
<td>278</td>
</tr>
<tr>
<td>For Linux</td>
<td>278</td>
</tr>
<tr>
<td>For Sun Solaris</td>
<td>278</td>
</tr>
<tr>
<td>For HP-UX</td>
<td>279</td>
</tr>
<tr>
<td>Displaying current soft and hard limits</td>
<td>279</td>
</tr>
<tr>
<td>Increasing the soft limit</td>
<td>279</td>
</tr>
<tr>
<td>Increasing the hard limit</td>
<td>280</td>
</tr>
<tr>
<td>Sample program</td>
<td>281</td>
</tr>
<tr>
<td>Adjusting the client connection timeout period</td>
<td>282</td>
</tr>
<tr>
<td>For Sun Solaris</td>
<td>282</td>
</tr>
<tr>
<td>For Linux</td>
<td>282</td>
</tr>
<tr>
<td>For HP-UX</td>
<td>282</td>
</tr>
<tr>
<td>Checking for hardware errors</td>
<td>283</td>
</tr>
<tr>
<td>For Sun Solaris</td>
<td>283</td>
</tr>
<tr>
<td>For Linux</td>
<td>283</td>
</tr>
<tr>
<td>For HP-UX</td>
<td>283</td>
</tr>
<tr>
<td>Monitoring the use of operating system resources</td>
<td>284</td>
</tr>
<tr>
<td>A sample C shell maintenance script</td>
<td>284</td>
</tr>
</tbody>
</table>
Contents

CHAPTER 17 Customizing Localization for the Cluster Edition
- Overview of localization support .. 287
- Language modules.. 288
- Default character sets for servers ... 288
- Supported character sets .. 290
- Character set conversion ... 294
 - Conversions between server and client 295
- Sort orders ... 295
 - Available sort orders.. 296
- Language modules... 299
 - Installing a new language module ... 299
 - Message languages .. 299
- Localization .. 300
 - Localization directories.. 300
 - About the directory .. 301
 - About the charsets directory.. 301
 - About the locales.dat file ... 301
- Changing the localization configuration 304
 - Cluster Edition localization .. 304
 - Backup Server localization .. 305
 - Sort orders... 306
 - Character sets... 307
 - charset utility ... 309

CHAPTER 18 Adding Optional Functionality to the Cluster Edition
- Adding auditing .. 311
- Audit system devices and databases .. 311
- Running auditinit with the Cluster Edition.............................. 312
- Preinstallation tasks for auditing devices 313
- Installing auditing... 313
- Installing online help for Transact-SQL syntax............................. 319
 - Online syntax help: sp_syntax... 319
 - Default device for the sybsyntax database............................ 320
 - Installing sybsyntax ... 320

CHAPTER 19 Logging Error Messages and Events
- Cluster Edition error logging... 323
- Enabling and disabling error logging ... 324
- Setting error log paths .. 324
 - Setting the Cluster Edition error log path 325
 - Managing messages ... 325
 - Logging user-defined messages ... 326
 - Logging auditing events ... 326
CHAPTER 20 Setting Up Communications Across the Network 329

- How the Cluster Edition determines which directory service entry to use 330
- How a client uses directory services .. 331
- Creating a directory services entry ... 331
- Supported directory drivers ... 332
- Contents of an interfaces file .. 332
- Heterogeneous and homogeneous environments 333
- Understanding the format of the interfaces file 335
 - Components of an interfaces file 336
- Creating a master interfaces file ... 338
 - Using dsedit or dscp to create a master interfaces file 338
 - Using a text editor to create a master interfaces file 338
- Configuring interfaces files for multiple networks 339
 - Configuring the server for multiple network handlers 339
 - Configuring the client connections 340
 - Configuring for query port backup 342
- IPv6 support .. 343
 - Understanding IPv6 ... 343
 - IPv6 infrastructure .. 344
 - Starting the Cluster Edition as IPv6-aware 345
- Troubleshooting ... 346
 - Server fails to start ... 346
 - Error when executing an ESP ... 347

Index .. 349
This part describes the procedures for configuring Adaptive Server® to run in a clustered environment.
CHAPTER 1

An Overview of the Cluster Edition

What is the Cluster Edition?

The Cluster Edition allows you to configure multiple Adaptive Servers to run as a shared-disk cluster. Multiple machines connect to a shared set of disks and a high-speed private interconnection (for example, a gigabit ethernet), allowing Adaptive Server to “scale” using multiple physical and logical hosts.

In the cluster environment, each machine is referred to as a node and each Adaptive Server as an instance. Connected instances form a cluster, working together to manage a single set of databases on the shared disks. In each case, the instances present as a single system, with all data accessible from any instance. The Cluster Edition assigns SPIDs that are unique to the cluster, so the SPID identifies a single process across all instances in the cluster.

In the clustered system shown in Figure 1-1, clients connect to a shared-disk cluster named “mycluster,” which includes the “ase1”, “ase2”, “ase3”, and “ase4” instances running on machines “blade1”, “blade2”, “blade3”, and “blade4”, respectively. In this example, a single instance resides on each node.
What is the Cluster Edition?

Figure 1-1: Key cluster-aware components

If one cluster member fails, its workload can be transferred to surviving cluster members. For example, if “ase1” fails, clients connected to that instance can fail over to any of the remaining active instances. See Figure 1-2 on page 5.
Note The Cluster Edition can handle multiple failures if they do not happen concurrently, and can recover fully from the initial failure before a subsequent failure occurs.

Figure 1-2: How the cluster handles failure

Applications run on multiple instances with shared data.

All instances provide service to a single database store.

“mycluster” shared-disk cluster

Clustered databases

Quorum disk
What is the Cluster Edition?

Adaptive Server integrated clusterware

The Cluster Edition clusterware is integrated directly into Adaptive Server. No external clusterware is required to run Adaptive Server. Some of the components are new for the Cluster Edition; others are cluster-aware extensions of the existing Adaptive Server infrastructure. Figure 1-3 illustrates these components.

Figure 1-3: Key cluster-aware components of an instance

<table>
<thead>
<tr>
<th>An instance in the Cluster Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster logging recovery</td>
</tr>
<tr>
<td>Cluster lock management</td>
</tr>
<tr>
<td>Cluster space/threshold</td>
</tr>
<tr>
<td>Workload manager</td>
</tr>
<tr>
<td>Buffer cache coherency</td>
</tr>
<tr>
<td>Object coherency</td>
</tr>
</tbody>
</table>

DBMS layer

| Single system presentation |
| Cluster membership service |
| Cluster event service |
| Cluster interprocess communication (CIPC) |
| Basis I/O and platform abstraction |
| Interconnection I/O abstraction |

Adaptive Server kernel

<table>
<thead>
<tr>
<th>Operating system and device drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
</tr>
</tbody>
</table>

The Adaptive Server kernel

These are new, native cluster infrastructure components.

- Cluster membership service – manages cluster membership and detects and handles instance failure.
• Cluster interprocess communication (CIPC) – provides messaging services and an interconnection abstraction layer that allows the instances to communicate with each other via redundant pathways.

• Cluster event service – supports a generic event-publishing and subscription mechanism for cluster-wide events.

DBMS layer

These key components in the Adaptive Server DBMS layer have been extended to work in the Cluster Edition environment:

• Buffer cache coherency – handles coherency issues related to the shared buffer cache and supports cache-to-cache transfer for allocation pages, index pages, data pages, object allocation map (OAM), and global allocation map (GAM) pages.

• Cluster lock manager – supports distributed locking for coherency control across the cluster.

• Cluster logging and recovery – handles logging from all instances, and failover database recovery.

• Cluster space and threshold – handles space and threshold management in distributed environment.

• Object coherency – handles coherency issues related to sharing and transferring metadata and global variables. Object coherency must serialize updates to shared objects and make the latest changes available to all instances in the cluster.

• Workload manager – an Adaptive Server module that provides application-level management of resource allocation, availability, and load distribution.

The cluster coordinator

The cluster coordinator handles specific tasks related to membership management and recovery. Any instance attempting to join an existing cluster first contacts the cluster coordinator.

There are no start-up parameters to indicate that a particular instance is the cluster coordinator, and you do not configure the cluster coordinator any differently than any other instance in the cluster. Initially, the cluster coordinator is the first instance you start. If the cluster coordinator exits, another instance dynamically assumes the coordinator role.
What is the Cluster Edition?

The quorum device

The quorum device includes configuration information for the cluster and is shared by all cluster members. The quorum device must be on a raw partition and must be accessible to all nodes that host cluster instances.

Adaptive Server Cluster Edition uses the quorum disk for:

- A location to perform cluster membership management, including voting and arbitration for members joining
- A persistent place to store configuration data used by instances and the UAF
- A communications medium and synchronization point

The quorum device includes information about:

- The name of the cluster, the number of instances in the cluster, the path to the directories containing the interfaces file, log files, master device, and other required configuration information
- Cluster view records that indicate the state (up or down) of each instance in the cluster
- The area that Adaptive Server uses to determine the proper cluster membership when an instance failure is detected

Create the quorum device when you configure the cluster (see the Installation Guide). After the initial configuration, use sybcluster or the qrmutil utility to back up, restore, and reconfigure the quorum device. See the Utility Guide for more information.

Database devices in the Cluster Edition

In the Cluster Edition, database devices—except those private devices that are used by local user temporary databases—must be raw devices (also known as character devices). You cannot use block devices as database devices because they can buffer disk writes at individual hardware nodes, causing data inconsistency among cluster instances.

You can create private devices on block devices. Private devices are used only by local user temporary databases. See your operating system documentation for more information about configuring raw devices.
You can create local user temporary databases on private devices, but you must create local system temporary databases on shared devices. For the Cluster Edition, you can use less expensive, local file system devices (block devices) for managing the storage needs of temporary data in the cluster. These devices are added as private devices and can only be used by local user temporary databases. See Chapter 8, “Using Temporary Databases.”

For example, on Linux systems the path /dev/sda is a block device and should not be used. However you can bind this block device to a raw device such as /dev/raw/raw1.

On Linux systems, you can distinguish character (raw) devices with the file type displayed using the command. Block devices include a b as the file type and character (raw) devices have a c as the file type:

```
[joeadministrator@isles ~]$ ls -l /dev/sda
brw-rw----  1 root disk 8, 0 Nov 29 06:15 /dev/sda

[joeadministrator@isles ~]$ ls -l /dev/raw/raw1
crw-------  1 sybase sybase 162, 1 Nov 29 12:17 /dev/raw/raw1
```

On Solaris systems, the path /dev/dsk/c0t0d0s1 is a block device and should not be used. However, you can access this same storage as a character device with the path /dev/rdsk/c0t0d0s1. Using an ls -l command on the character device indicates raw at the end of the symbolic link:

```
janeadministrator% ls -l /dev/dsk/c0t0d0s1
lrwxrwxrwx   1 root     root          49 Apr 23  2007 /dev/dsk/c0t0d0s1 ->
../devices/pci@780/pci@0/pci@9/scsi@0/sd@0,0:b

janeadministrator% ls -l /dev/rdsk/c0t0d0s1
lrwxrwxrwx   1 root     root          53 Apr 23  2007 /dev/rdsk/c0t0d0s1 ->
../devices/pci@780/pci@0/pci@9/scsi@0/sd@0,0:b,raw
```

On HP Itanium systems, the path /dev/disk/disk4 is a block device and should not be used. However, you can access this same storage as a character device with the path /dev/rdisk/disk4. You can distinguish character (raw) devices with the file type displayed using the ls -l command. Block devices include a b as the file type and character (raw) devices have a c as the file type:

```
[jphui@hpiastr1-HP-UX]:/> ls -l /dev/disk/disk4
brw-r-----   1 bin        sys          3 0x000000 Feb 23 11:40 /dev/disk/disk4

[jphui@hpiastr1-HP-UX]:/> ls -l /dev/rdisk/disk4
crw-rw-rw-   1 bin        sys         23 0x000000 Feb 23 11:40 /dev/rdisk/disk4
```

On IBM AIX systems, you can distinguish character (raw) devices with the file type displayed using the ls -l command. Block devices include a b as the file type and character (raw) devices have a c as the file type. The path /dev/hdiskl is a block device and should not be used. However, you can access this same storage as a character device with the path /dev/rhdiskl:

```
[jphui@hpiastr1-HP-UX]:/> ls -l /dev/hdiskl
brw-r-----   1 bin        sys          3 0x00000000 Feb 23 11:40 /dev/hdiskl

[jphui@hpiastr1-HP-UX]:/> ls -l /dev/rhdiskl
```
What is the Cluster Edition?

Database devices in the Cluster Edition must support SCSI-3 persistent group reservations (SCSI PGRs). The Cluster Edition uses SCSI PGRs to guarantee data consistency during cluster membership changes. Sybase® cannot guarantee data consistency on disk subsystems that do not support SCSI PGRs (Sybase does support this configuration for test and development environments where data corruption is tolerated).

PGRs are a feature of the SCSI-3 protocol. However many storage area networks (SANs) that employ less expensive SATA disks still provide this functionality. Contact your storage vendor to verify your system supports SCSI-3 Persistent Group Reservation.

See the installation guide for your platform for additional information about devices and I/O fencing.

Note I/O fencing is not supported on Solaris non-global zones.

Private installation versus shared installation

You can choose whether to configure your cluster using a shared or private installation:

- Shared installation – requires a shared file system created using a Network File System (NFS) or a cluster file system. A cluster created using a shared installation supports a single $SYBASE installation directory, Adaptive Server home directory, and server configuration file.
Private installation – supports a separate $SYBASE installation directory, Adaptive Server home directory, and server configuration file for each instance. Parity among the server configuration files is maintained by the master configuration file on the quorum device.

Note Sybase recommends that you use LDAP as your directory service when using a private installation.

The cluster input file contains an entry that identifies whether the installation mode is shared or private:

```
installation mode = private | shared
```

You can find instructions for setting up a private or shared installation in `sybcluster`, Adaptive Server online help documentation, and in the installation guide for your platform. See also “Private installation mode” on page 167 for instructions on how to maintain the server configuration file when using private installation mode.

Backup Server in the Cluster Edition

The Cluster Edition allows you to configure multiple Backup Servers to perform dump and load operations. `dump` and `load` commands are routed to the appropriate Backup Server, depending on how you configured the cluster:

- **Dedicated** – each instance in the cluster is assigned a specific Backup Server.
- **Round robin** – instances are not assigned a specific Backup Server, but when they perform a dump or load, the cluster assigns a Backup Server for the job according to availability.

You can elect to have a single Backup Server (named `SYB_BACKUP`) for the cluster. See Chapter 5, “Using Backup Server in a Clustered Environment.”
How the Cluster Edition enhances the nonclustered edition

With the Cluster Edition, Sybase extends its support of symmetric multiprocessing (SMP), nonclustered servers and introduces an Adaptive Server that can work in a shared-disk environment.

You can group multiple nonclustered servers to provide a single-system view of shared databases that delivers improved reliability and ease of management.

A group of loosely coupled Adaptive Servers, each of which can function as a nonclustered server, work together to provide the user with a single database system image.

The Adaptive Servers in the cluster jointly manage a single installation of Adaptive Server databases residing on shared-disk devices.

The primary advantages of the Cluster Edition architecture are:

- Improved availability – the shared-disk nature of the architecture means that applications can continue to run as long as a single cluster member remains viable, even after several others have failed.

- Simple management – does not require data repartition as cluster membership changes, because data is shared by all instances.

Note The Cluster Edition provides a distributed architecture. Internode communication takes place via a network interconnection, not, as with nonclustered Adaptive Server, via shared memory (high-speed system memory). Applications that minimize internode messaging yield the best performance in the Cluster Edition environment.
Using interconnected networks in the cluster

The Cluster Edition allows you to configure one or two interconnected networks between instances in the cluster. Although one interconnected network is sufficient, two interconnected networks allow for a redundant and more robust cluster. The interconnected networks form a series of logical links between every instance in the cluster. These links send messages between instances and are monitored by the Cluster Edition. If any failures are detected, the Cluster Edition reroutes traffic over the alternate networks between the instances.

An interconnection link may fail for various reasons: a physical failure such as a cable that is disconnected or broken, a power supply failure, such as a piece of network infrastructure equipment, or a software failure within the networking stack. The Cluster Edition detects these failures by monitoring the traffic flow between instances. Each instance monitors the messages sent over the various links. A link is considered operational as long as there are incoming messages.

An instance may not always send messages because the node has failed or the link is down. If a particular instance in the cluster is quiet, the Cluster Edition initiates an active probing mechanism to determine if the node supporting the instance can be contacted using the network link. This mechanism ensures that periods of inactivity do not falsely trigger a link failure and subsequent switching event.

If a link is flagged as inoperable, periodic attempts are made to establish if the link has been restored so normal operations can be resumed without manual intervention.

Note Link monitoring is automatically implemented when more than one network is defined in the Cluster Edition.
Monitoring links between instances

The monCIPCLinks monitoring table monitors the state of the links between instances in the cluster. monCIPCLinks includes two states for each link: “passive” and “active.”

Note A logical cluster and each instance in the cluster can have different states.

- A logical cluster has an overall, or global, state that determines, for example, whether the cluster is offline or online.
- Each instance has a state that describes the state of that particular instance as it is perceived by a logical cluster.

See “Cluster and instance states” on page 89 for a detailed description of cluster “states.”

The “passive” state is used to monitor day-to-day messages sent over the links. The Cluster Edition gathers the active state when there is no message traffic over the link. The status of the link is described as a “state,” and each state has an age associated with it, in milliseconds. The states include “Up,” “Down,” and “In doubt”. The state is “In doubt” when messages are not sent between the instances.

When the cluster is healthy, regular internode traffic is used to determine the state of the link. This is referred to as passive monitoring, and maintains the link’s passive state. If the monitoring that determines the state occurs during a period of inactivity in the cluster, the defined state may become stale and unreliable (that is, a state that is determined to be Up during a period of inactivity may in fact be Down, but the inactivity prevents the monCIPCLinks table from showing this in the result set). This inactive state is described in the PassiveState column as “In doubt.” Once a link is marked as “In doubt,” the active link state monitoring it is triggered and the value described by the ActiveState column is valid.

Each of the active and passive states have an age associated with them, showing when the state was last updated. If the normal traffic is sufficient to maintain the link state, the active state is not updated and the age value associated with this state becomes large. The large value indicates that the associated state may no longer accurately represent the true state of the link.

If instances are not sending messages, the PassiveState is listed as In doubt, but the ActiveState shows the actual state: Up, In doubt, or Down.
This example shows a two-node cluster in which both links are running and have traffic flowing between them. Because the `PassiveStateAge` is 0 for all links, you can assume the output is a true reflection of the link state:

<table>
<thead>
<tr>
<th>InstanceID</th>
<th>LocalInterface</th>
<th>RemoteInterface</th>
<th>PassiveState</th>
<th>PassiveStateAge</th>
<th>ActiveState</th>
<th>ActiveStateAge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ase2</td>
<td>ase2</td>
<td>Up</td>
<td>0</td>
<td>Up</td>
<td>10300</td>
</tr>
<tr>
<td>2</td>
<td>blade2</td>
<td>blade1</td>
<td>Up</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>ase1</td>
<td>ase2</td>
<td>In doubt</td>
<td>13600</td>
<td>Up</td>
<td>400</td>
</tr>
<tr>
<td>1</td>
<td>blade1</td>
<td>blade2</td>
<td>Up</td>
<td>13500</td>
<td>Up</td>
<td>700</td>
</tr>
</tbody>
</table>

This example shows the same two-node cluster after the primary interconnected network fails. The `PassiveState` value for the link between the network endpoints “ase1” and “ase2” is “In doubt”, and the value for the `PassiveStateAge` is “large” (indicating that the `ActiveState` represents the true state of the links). The `ActiveState` value is younger and shows the links as “Down”:

<table>
<thead>
<tr>
<th>InstanceID</th>
<th>LocalInterface</th>
<th>RemoteInterface</th>
<th>PassiveState</th>
<th>PassiveStateAge</th>
<th>ActiveState</th>
<th>ActiveStateAge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ase2</td>
<td>ase1</td>
<td>In doubt</td>
<td>13500</td>
<td>Down</td>
<td>700</td>
</tr>
<tr>
<td>2</td>
<td>blade2</td>
<td>blade1</td>
<td>Up</td>
<td>0</td>
<td>Up</td>
<td>700</td>
</tr>
<tr>
<td>1</td>
<td>ase1</td>
<td>ase2</td>
<td>In doubt</td>
<td>13500</td>
<td>Down</td>
<td>400</td>
</tr>
<tr>
<td>1</td>
<td>blade1</td>
<td>blade2</td>
<td>Up</td>
<td>13600</td>
<td>Up</td>
<td>400</td>
</tr>
</tbody>
</table>

Note There is a slight delay between the failure of a link and the time the active state truly reflects the state of the link.
Suggested deployment scenarios

Ignore any state with the value “large” for ActiveStateAge since this indicates the link is old and the value may be inaccurate. When the link state is old and the value for ActiveStateAge is “large”, active monitoring is triggered by the absence of messages, but has not yet determined the link state.

Note When you set up both primary and secondary interconnected networks in your cluster input file, do not restart the cluster unless both interconnected networks are running.

Suggested deployment scenarios

In general, the Cluster Edition supports the scenarios described in this section, except those that include the features listed in the Release Bulletin for your platform.

Most users considering clustered database architectures have these objectives:

- Increased availability – if a node fails, other nodes in the cluster continue to run and the database continues to be available.

- Increased manageability – multiple applications and databases can be consolidated into a single cluster, thus reducing management complexity and introducing economies of scale.

- Increased scalability – support for multiple nodes that allow clustered databases to scale beyond the limits imposed by single-node environments. Commonly referred to as “vertical scalability,” this means increasing the processing capacity of a single node by adding more CPUs, memory, host bus adaptors (HBAs), network interface cards (NICs), and so on.

- Reduced total cost of ownership – software that can be deployed on industry-standard, nonproprietary hardware, thereby reducing the cost of purchase, maintenance, and support.
HA failover for OLTP applications

If you currently run a production environment using high availability (HA) capabilities, replace those currently provided by Sybase Failover in either active-passive (standby) or active-active (companion) configurations, or the operating system–provided clusterware (for example, Sun Cluster and Veritas Cluster) with one of the Cluster Edition scenarios described below.

Choose and configure a failover scenario that best represents what your company would want given the service-level agreement requirements of the application and financial constraints.

- **1:1 active-passive**
 Cluster nodes and instances are set up in pairs with an idle (passive) node and instance that wait for the corresponding active node to fail. This scenario is cost effective only in extreme environments where requirements do not tolerate service degradation in any failover scenario—including multiple failures.

- **1:1 active-active**
 Cluster nodes and instances are set up in pairs, and each pair services a separate application and database (instance) while monitoring each other in “companion mode” in case the other fails. Although this scenario mimics the current Sybase HA option and provides full utilization of resources, service levels during failed-over processing degrades unless you maintain resource capacity during normal processing that is low enough (less than 50%) to provide sufficient capacity for a single instance to run the workload of both.

- **N:1 (N active nodes covered by a single passive standby node)**
 This scenario provides a single passive standby node and instance to monitor an arbitrary number of active instances. This is the most cost-effective scenario; multiple node failures that fail instances over to a single node can lead to a level of service degradation that can make this scenario unacceptable. Configure the passive node with addition capacity (for example, CPUs and memory) to mitigate the degradation in the most likely failover scenarios.

- **N:M (N active nodes and instances covered by M passive standby nodes)**
This model provides an arbitrary number (M) of passive standby instances to monitor an arbitrary number (N) of active instances. This option reduces costs while covering most typical failure scenarios. The choice of the number of passive standby nodes is typically driven by cost, system-level mean time between failures (MTBF) statistics, and the business impact of running at degraded service levels in a multiple-node failure scenario. In most failure scenarios, you can configure passive nodes with additional capacity to mitigate this degradation.

Horizontal scalability for DSS reporting applications

if you have applications in which the online activity consists primarily of large-scale reports and decision support systems (DSS) querying from a large user population, consider creating a multiple-node cluster in which all Adaptive Server instances service these same applications.

When organizing this system, pay attention to:

- The scalability of users, queries, and response time as the workload expands from one to N nodes.
- The load distribution of clients across instances and their relationship to instance capacity and performance.

Horizontal scalability for OLTP applications

Applications that are read-and write-intensive—such as online transaction processing (OLTP) applications—traditionally pose challenges for scalability because of resource contention while maintaining the ACID properties of a database system. The horizontal scalability of OLTP applications when using shared-disk cluster technology adds additional challenges because of the data coherency and messaging that is required across the server instances in a shared-disk cluster. The physics of computers and networking does not allow OLTP applications to scale infinitely on a shared-disk cluster. As the number of nodes and the load and number of users increase, the amount of internode messaging necessary to maintain buffer coherency across the nodes increases exponentially.
The best method for scaling OLTP workloads on a shared-disk cluster is to partition the application and data into mutually exclusive sets (that is, to separate the data to different databases) to avoid processing coordination across server instances and access the data for an application from the same instance. Because of this, you must carefully consider how you partition “data” at a database level to eliminate the log and data contention across the participating instances. You can facilitate access to this segmented “data” through a single instance with logical clustering and workload management.

Logical clusters allow you to allocate distinct instances to different applications or workloads, logically enabling these groups of data to operate under a single cluster. This reduces inter-instance access and, combined with dedicated temporary databases for each of the instances, helps to deploy an OLTP application in the Cluster Edition that supports continuous data availability.

New client technologies in the Cluster Edition

The Cluster Edition supports a single-system presentation. That is, multiple instances that make up the cluster appear to clients as a single system. New client technologies allow clients to connect logically to a cluster while remaining connected physically to individual instances. This logical connection allows Adaptive Server to redirect the client to various instances in the cluster and to dynamically provide the client with high-availability failover data. See Chapter 2, “Client Applications and Client/Server Interaction,” and New Features Open Server 15.0 and SDK 15.0 for Microsoft Windows, Linux, and UNIX.

New client technologies include:

- Login redirection – when the client reconnects to another instance in the cluster.
- Connection migration – when an established connection moves to another instance in the cluster.
- Extended high-availability failover – allows the client to fail over multiple times until it finds the first available or least-loaded instance.
Support for replication

The Cluster Edition supports replication using Replication Server and the RepAgent thread. A clustered database can be a source or a destination in a Sybase clustered system. You can perform all of the tasks, such as configuring RepAgent or marking tables for replication, from any instance in the cluster. Replication status is coherent across the entire cluster.

Configuring the RepAgent

When you configure a primary database in a clustered system, the server name you specify should be the cluster name. You can display the cluster name using `select @@servername`.

The syntax for `sp_config_rep_agent` does not require a cluster or instance name. By default, both the Cluster Edition and the nonclustered Adaptive Server edition assume the value of `select @@servername`. In the Cluster Edition, this statement returns the current cluster name. For example:

```
1> select @@servername
2> go

---------------------------
MYCLUSTER
```

Starting the RepAgent

By default, RepAgent starts on the coordinator.

However, you can configure RepAgent to start on any instance in the cluster. For example, to configure RepAgent on the primary database `pdb` to always start on the “ase2” instance, enter:

```
sp_config_rep_agent pdb, "cluster instance name", "ase2"
```

After configuration, you must restart RepAgent using `sp_start_rep_agent` for the new configuration to take effect.

To return to the default behavior with RepAgent always starting on the coordinator, enter:

```
sp_config_rep_agent pdb, "cluster instance name", "coordinator"
```

When an instance starts on its node, it checks if databases are configured to start on its node. If yes, and if the database is marked to start automatically, the RepAgent starts.

When the coordinator starts, it starts all RepAgents not configured to start on a specific instance. If the coordinator fails, or is stopped with a graceful shutdown, a RepAgent starts on the new coordinator.
If a RepAgent is configured to start on a specific instance other than the coordinator, and this instance is shutdown or fails, the RepAgent starts on the coordinator.

Note The Cluster Edition does not support Adaptive Server Enterprise Replicator, which requires the unsupported dbcc logtransfer interface.
Support for replication
CHAPTER 2

Client Applications and Client/Server Interaction

This chapter describes client/server interaction and how to modify applications that make Open Client/Client-Library calls to support clusters. It describes using isql in a shared-disk cluster environment.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Client</td>
<td>24</td>
</tr>
<tr>
<td>Enabling failover in Client-Library applications</td>
<td>25</td>
</tr>
<tr>
<td>Client/server interaction</td>
<td>26</td>
</tr>
<tr>
<td>Using isql in a clustered environment</td>
<td>34</td>
</tr>
<tr>
<td>Using remote procedure calls in a clustered environment</td>
<td>34</td>
</tr>
<tr>
<td>Reconnecting clients when a node loses power</td>
<td>36</td>
</tr>
</tbody>
</table>

Note DB-Library can connect to an instance in a shared-disk cluster, but does not support the Sybase shared-disk or high-availability functionality.

The version of Open Client™, jConnect™ for JDBC™, ODBC, OLE DB, and ADO.NET that ships with the Cluster Edition supports:

- Login redirection – the ability of an instance to redirect an incoming client connection to another instance prior to acknowledging the login. Login redirection occurs during the login sequence. The client application does not receive notification that it was redirected.
- Connection migration – occurs when an existing client is transferred from one instance of a cluster to another. See “Connection migration” on page 28 for information about when migration can occur, and connection criteria.
- Extended high-availability failover – in an extended failover configuration, Adaptive Server provides a list of failover addresses to “high-availability-aware” clients when they connect. This allows high-availability-aware clients or applications to failover multiple times if the instance to which they are connected fails.
These clients are not required to have a HAFAILOVER entry in their interfaces file or directory services. However, if they do have an HAFAILOVER entry in their interfaces file or directory services, the clients continue to use this entry until Adaptive Server sends them a list of failover addresses or servers to connect to. The clients always use the latest list Adaptive Server provides.

To implement login redirection and connection migration, make sure the application uses a current copy of the client libraries:

- If the application is linked to shared libraries – include the new client libraries in the library search path before the old libraries.
- If the application is statically linked – relink the application.

Use the CS_PROP_MIGRATABLE connection property to enable or disable connection migration. CS_PROP_MIGRATABLE is on by default. See the Client Library Reference Manual.

To implement extended failover, make sure the application uses a current copy of the client libraries and that you have enabled high availability. See Using Sybase Failover in a High Availability System for information about enabling high availability.

For information about using the failover features with jConnect, ODBC, OLE DB, and ADO.NET Driver, see “New Features Open Server 15.0 and SDK 15.0 for Microsoft Windows, Linux, and UNIX”.

Open Client

Login redirection, connection migration, and extended high availability failover are supported for these versions:

- Login redirection – Open Client version 15.0
- Extended high availability – OCS version 15.0 ESD #3
- Migration – OCS version 15.0, ESD #8

The SDK component that supports these versions is OpenClient/Client-Library.
Enabling failover in Client-Library applications

Any existing application can connect to the Cluster Edition. However, to use extended high-availability (HA) capabilities, you may need to change application code.

- For existing HA applications based on existing Adaptive Server HA functionality, no application code changes are required.
- Existing non-HA applications may benefit from some aspects of the HA capabilities of the Cluster Edition with no code changes, or minor ones. However, in these cases, failover is not transparent: the application receives an error message when failover is first detected. The user must resubmit the batch or transaction to initiate failover.

To enable failover for non-HA applications:

- For `isql`, specify the `-Q` option when connecting to Adaptive Server.
- For applications linked with Client-Library, set a corresponding connection property that enables failover.

To make failover transparent to users, the application must actively check for failover error status, and automatically resubmit the batch or transaction.

In all cases, you must update the Client-Library version used by the application to use the cluster-related HA capabilities.

To enable failover in Client-Library applications:

1. Set the CS_HFAILOVER property at either the context or the connection level using the `ct_config` or `ct_conProps` Client-Library API calls:

   ```c
   ct_config (context, action, CS_HFAILOVER, buf, buflen, &outlen);
   ct_conProps (connection, action, CS_HFAILOVER, buf, buflen, &outlen);
   ```

 See the `Client-Library/C Reference Manual` for more information about the CS_HFAILOVER property.

2. If you attempt to connect to an instance that is down, behavior is the same as with a nonclustered Adaptive Server: Client-Library tries all the query entries for the instance name in the interfaces file until one of them works, or it has none left to try. Include query lines in the client-side interfaces file for all instances. Applications can connect to the cluster, which is represented by a series of interfaces file query entries. For information about the interfaces file, see the `Cluster Edition Installation Guide`.
When a successful failover occurs, the Client-Library issues a return value named CS_RET_HAFAILOVER, which is specific to several Client-Library API calls, including:

```c
ret = ct_results(cmd, result_type)
ret = ct_send(cmd)
```

CS_RET_HAFAILOVER is returned from the API call during a synchronous connection (a routine that requires a server response and blocks until the response is received). In an asynchronous connection (a routine that requires a server response returns CS_PENDING immediately), these APIs issue CS_PENDING, and the callback function returns CS_RET_HAFAILOVER. Depending on the return code, the customer can perform the required processing, set up the context, and send the next command to be executed.

Rebuild your applications using the Open Client SDK with a version that is at least equal to the version of the Open Client SDK shipped with the Cluster Edition.

See Using Sybase Failover in a High Availability System for information about configuring applications for high availability.

Client/server interaction

The features in this section, which use Open Client 15.0 libraries, are enabled automatically.

Login redirection

Login redirection occurs at login time when an instance tells a client to log in to another instance because of load considerations.

You do not need to perform any additional configuration for client redirection.

Login redirection is used by the Adaptive Server workload manager to send incoming connections to specific instances based on the logical cluster configuration and the cluster’s current workload.
If you attempt to connect to an instance that is down, behavior is the same as with a nonclustered Adaptive Server: the client tries all entries in the directory service of a given server until it can connect successfully. Because of this, your server entries in the directory service should contain connection information for all instances in the cluster.

This example includes the Adaptive Servers “ase1,” “ase2,” “ase3,” and “ase4,” on machines “blade1,” “blade2,” “blade3,” and “blade4,” running in the cluster “mycluster.”

```
ase1
  query tcp ether blade1 19786
ase2
  query tcp ether blade2 19786
ase3
  query tcp ether blade3 19786
ase4
  query tcp ether blade4 19786
mycluster
  query tcp ether blade1 19786
  query tcp ether blade2 19786
  query tcp ether blade3 19786
  query tcp ether blade4 19786
```

For example, if a client connects to cluster “mycluster,” it first tries to connect to the “ase1” instance. If “ase1” is down, it tries the next entry in the interfaces file, “ase2”, and so on. After a successful connection, the workload manager may redirect the client to another instance based on workload rules.

Although instances are tried in the order specified in the interfaces file, it can take a considerable amount of time for a connection attempt to fail when hosts or the network are unreachable or down. You can expedite the retry attempt by adding a login timeout to the connection information.

In the example above, if you specified a login timeout interval that is shorter than the default for the connecting client, the client could attempt to connect to instance “ase2” more quickly.

Connection properties for login redirection

Set the connections properties to configure login redirection:

- `CS_PROP_REDIRECT` – enables and disables login redirection
Client/server interaction

- **CS_DS_RAND_OFFSET** – disables or enables making first query entry randomly retrieved from the directory service lookup for `ct_connect`. By default, this property is set to false.

 See the *Client Library Reference Manual*.

Connection migration

Connection migration occurs when an existing client is transferred from one instance of a cluster to another. For example, a connection may migrate because the instance to which it is currently connected is brought down for maintenance, or it may migrate for load balancing. The transfer is transparent to the client application. Connection migration allows the cluster to balance the load throughout the logical cluster.

Connection migration allows the workload manager to gracefully move existing connections between instances during administrative failover, failback, or logical clusters going offline. The workload manager can use migration for dynamic load distribution, during which some existing connections are migrated between instances to more evenly distribute load.

Connection migration is enabled automatically when an instance uses the Open Client 15.0. client libraries. You do not need to perform any additional configuration for connection migration.

Difference between migration and failover

Migration is a planned, controlled event that Adaptive Server requests. Failover is an unplanned event that occurs after an Adaptive Server crash or network disconnect.

Applications are not aware of—and you do not need to write code for—migration. However, you must specifically code applications for failover support.

Migration restores the full session context on the new instance. Failover does not; it is up to the application to restore its own context.

When can migration occur?

The workload manager can initiate a migration when a request can successfully be sent to a client. Specifically, migration can occur:

- To connections that have completed their login:
• After an instance receives a new batch from the client, but before the batch is parsed and executed
• After an instance completes the processing of a client batch but before it sends a final completion to the client.
• When an instance is not executing any batch on behalf of the client.
• According to the workload manager’s algorithm. The Work load Manager may migrate certain clients for load balancing or because the current instance is being brought down for maintenance.
• When a connection’s context accommodates migration. The workload manager targets connections for migration, but these connections migrate only when their context allows this. In particular, no migration can occur inside a transaction.

Note Connection migration is not supported for connections executing Java. See “Using Java in a clustered environment” on page 170.

Migrated contexts

The source instance propagates the client’s full context to the destination instance when it has successfully completed the migration, and the destination instance retrieves the context.

The client’s full context is restored after the migration is complete, making migration completely transparent to the client. However, a migrated connection acquires a new spid.

The client’s context consists of the following elements:
• The name of the current database
• Any pending batch of commands if the migration occurs in pre-batch mode
• The client’s login record
• The client’s language and character sets
• The client’s capabilities
• Any monitor counters and statistic
• Any roles
• Any set options
Client/server interaction

- Trace flags 3604 and 3605

Criteria for migration

Migration is an asynchronous event: a request is issued for the task to migrate, and the task migrates only when it reaches a quiescent state. For the Cluster Edition, a quiescent state is one that:

- Is not executing a query batch
- Has no open transactions
- Has no session-level temporary tables
- Has no declared cursors
- Has not changed its password since its initial connection
- Has not run set user or set proxy
- Is not bound to an engine using the logical process manager
- Is not using ASE Active Messaging
- Is not a logical connection associated with an inbound site handler
- Has not kept a database open in single-user mode.

Context migration

When Adaptive Server migrates an existing connection to another instance, it must also migrate some of the context from the existing connection, such as the current database and set options.

Configuring a client migration

The idle migration timer and session idle timer configuration parameters control when idle clients migrate. The sum of these two parameters determines the upper limit for the number of seconds during which migration is expected to complete.

The default setting for idle migration timer is 60, measured in seconds. The default setting for session idle timer is 600, measured in seconds.
CHAPTER 2 Client Applications and Client/Server Interaction

If you set idle migration timer to 0, the instance closes the connection on which a migration request was issued immediately after it sends the migration request. If you set session idle timer to 0, the instance invalidates any idle migration not completed before idle migration timer expires.

Setting session idle timer to a high value increases the chance for idle connections to migrate successfully. However, the instance must preserve the contexts of the migrating clients for a long time. It also means that setting both idle migration timer and session idle timer to 0 disables migration. See the System Administration Guide: Volume 1.

The examples below describe various configurations for idle migration timer and session idle timer.

- If an instance issues a migration request against an idle client that cannot process asynchronous notifications, and the user or the application issues a command on the client before the expiration of the idle migration timer, the client migrates immediately and the command is executed on the destination instance.

 “Read ahead” clients read any pending data from the network before the application requests it.

- The instance closes the connection to the client, if the following are all true:
 - Both idle migration timer and session idle timer are set to their default values.
 - An instance issues a migration request against an idle, non read-ahead client.
 - The client remains idle for the duration of idle migration timer.

- If a command is issued on the client during the first 600 seconds (default value of idle migration timer) following the closure of the connection by the instance, the client migrates successfully and the command is executed on the target instance.

- An instance closes the connection to the client if the following are true:
 - Both idle migration timer and session idle timer are set to their default values.
 - An instance issues a migration request against an idle, non read-ahead client.
 - No command is issued against the client before the expiration of the idle migration timer.
Client/server interaction

- An instance invalidates the migration if the following are true:
 - Both idle migration timer and session idle timer are set to their default values.
 - An instance issues a migration request against an idle, non-read-ahead client.
 - No command is issued against the client before idle migration timer expires.

 The client attempts to migrate as soon as it detects the migration request, because a command is issued. However, the instance rejects the migration request and the client tries to continue on the initial instance. Because the connection to the instance is closed (idle migration timer timed out), the client attempts an HA failover if it has HA capability, otherwise, it reports a disconnect to the application.

 idle migration timer set to 0, session idle timer set to 600
 If an instance issues a migration request against an idle, non-read-ahead client, the instance closes the connection to the client immediately after sending the migration request. If a command is issued against the client during the initial 600 seconds, the client migrates successfully, otherwise, it fails in the same manner described in the previous bullet.

 idle migration timer set to 60, session idle timer set to 0
 The instance issues a migration request against an idle, non-read-ahead client. If a command is issued against the client before idle migration timer expires, the client migrates successfully. However, if no command is issued before idle migration timer expires, the client can migrate, since session idle timer is set to 0.

 idle migration timer and session idle timer set to 0
 If both parameters are set to 0, neither instance migrates clients.

Extended high-availability failover

Adaptive Server provides a list of failover addresses to “HA-aware” clients when they connect. This allows high-availability-aware clients or applications to failover multiple times whenever the instance to which it is connected becomes unavailable. If the instance has not sent a failover list to the client, the client uses the HAFAILOVER entry information in the interfaces file.

This example allows an HA-aware client to failover if there is a network failure during login before the instance sends the extended high-availability list:

```
ase1
    query tcp ether bladel 19786
```
ASE2
 query tcp ether blade2 19786

MYCLUSTER
 query tcp ether blade1 19786
 query tcp ether blade2 19786
 hafailover mycluster

The HAFAILOVER entry should use the cluster alias as the server name since a client application tries each query line until it establishes a connection to an instance in the cluster.

Extended failover requires Open Client 15.0, ESD #3 or later. The client libraries in the Cluster Edition contain ESD #8.

Open Client uses the CS_PROP_EXTENDEDFAILOVER property for extended failover. See the Client-Library/C Reference Manual for more information.

Differences between HA failover and failover in clusters

From the client side, enabling high availability means the application receives the error code CS_RET_HAFAILOVER during a network failure, and the client library automatically reconnects to a server. In high availability, the application again attempts to connect first to the original server, and then tries the secondary server (as set in the interfaces file entry for the primary server) if the connection fails. If you use the Open Client libraries shipped with the Cluster Edition, the instance sends a failover target list to the client. The application uses this list to determine where to connect when the instance fails.

Whether you use high availability or the Cluster Edition, failover can occur at any point.
Using *isql* in a clustered environment

By default, you can use *isql* to connect to an Adaptive Server instance in a shared-disk cluster environment. However, to connect to an Adaptive Server instance in a shared-disk cluster and turn on high-availability failover or extended high-availability failover for the client, you must start *isql* using the -Q option.

Note Although *isql* -Q can use the extended high-availability capabilities, it is not transparent: when an instance fails, *isql* receives an error and you must resubmit the batch or transaction.

See the *Utility Guide*.

Using remote procedure calls in a clustered environment

Remote procedure calls (RPCs) allow clients to initiate stored procedures on a remote server. The remote server runs the system procedure in its context as if it was requested by a local client, and sends back results to the original server over the network.

In addition to server-to-server RPCs, the Cluster Edition includes three additional classes of RPCs. The first class involves an RPC where the remote server is a cluster. The second class involves an RPC where the local, or originating, server is a cluster instance. The third class involves an RPC where both the local and remote servers are instances in the same cluster.

In earlier versions of Adaptive Server, the default value for cis rpc handling was 0. In the Cluster Edition, the default value is 1, which forces RPC handling to use Component Integration Service (CIS) as the default RPC handling mechanism instead of the site handler.

A cluster instance identifies itself to remote servers using the name of the cluster, not the name of the instance. The @@servername global variable returns the name of the cluster.
RPCs where the remote server is a cluster

Because the Cluster Edition supports a single-system image, using a cluster as a remote server has minimal impact on the server sending the RPC request.

If the server sending the RPC is using cis rpc handling, the cluster perceives the inbound request as a regular client connection. The workload manager attempts to route the RPC to the appropriate instance and logical cluster based on the configured routing rules. The workload manager rules may dictate login redirection, as long as the initiating server indicates that it supports login redirection. Adaptive Server 15.0 and later support login redirection for RPC requests.

If the initiating server uses site handlers, the cluster workload manager is bypassed and the RPC runs in the system logical cluster of the instance that accepted the connection.

RPCs where the local server is a cluster

The Cluster Edition does not support outbound RPCs through site handlers, and, by default, uses CIS RPC handling. Because outbound RPCs from a cluster are identified using the name of the cluster, configure remote servers to accept RPCs from the cluster, rather than from the individual instances.

RPCs where local and remote servers are instances in the same cluster

Instances in a cluster occasionally use RPCs for intra-cluster communication. When the cluster is started, Adaptive Server automatically adds each cluster instance to the sysservers table, and removes any cluster instances from sysservers that are no longer in the cluster definition. This is also done when instances are dynamically added and dropped at runtime. These sysservers entries have the cluster instance status bit set. Because intra-cluster RPCs are intended for specific instances, the sysservers entries do not have the enable login redirection status bit set.

sp_serveroption

The sp_serveroption system procedure includes the enable login redirection and cluster instance options.
Reconnecting clients when a node loses power

enable login redirection

sp_serveroption enable login redirection determines if incoming RPC requests may be sent to another instance in the cluster. The syntax is:

```
sp_serveroption instance_name, 'enable login redirection', [ true | false ]
```

where:

- **instance_name** – is the name of the instance for which you are setting enable login redirection. This instance must be included in sysservers, and is automatically included for all instances.

- **true** – means the instance can redirect incoming RPC requests to another instance in the cluster.

- **false** – means the instance cannot redirect RPC requests.

By default, enable login redirection is enabled. (You must have the sa_role to run sp_serveroption.)

cluster instance

cluster instance identifies sysservers entries that store instance information, where **instance_name** is the name of the instance you are adding.

```
sp_serveroption instance_name, 'cluster instance', [ true | false ]
```

By default, **cluster_instance** is disabled (set to false) for each remote server.

The Cluster Edition automatically manages the sysservers rows for instances in the local cluster. You need not manually set or clear the **cluster instance flag**.

Reconnecting clients when a node loses power

If the network cable is removed from a machine or if a node to which a client is connected loses its power, the client-side socket becomes unreachable. The client socket waits, without results, for a reply from the server or waits for the cluster to issue a send operation.

In the situation in Figure 2-1, a client application is connected to “big_cluster”, which consists of “Node1” and “Node2” on which instances “ASECE1” and “ASECE2” are running, respectively. A client application is connected to instance “ASECE1” running on “Node1”.

If the power is disconnected from “Node1”, the client application waits for contact from the node. The only way to avoid this situation is to configure the client application to assume the node is down after a specified amount of time. It then connects to another node in the cluster.
The operating system network detects a crash, disconnects the clients, and fails over the sockets from the remote side of the connection.

To reduce the time required to detect when a cluster loses a host or when a public network is disconnected from a node running an instance, you can:

- Set TCP `keepalive` to a reasonable value on the host on which the client is running.

- Set the client application’s timeout value.

The TCP `keepalive` parameter eventually marks the client socket as failed. However, because the default value of the TCP `keepalive` value is a long amount of time (in some systems it may be set to as long as two hours), it may be three or more hours before the client-side sockets fail over. Setting `keepalive` to a small value (several minutes) may not be practical for large organizations, but you can set `keepalive` to a period of time that is appropriate for your site, that works with the HAFAILOVER capabilities.

Set TCP `keepalive` on client machines. The appropriate values vary, depending on the operating system you use. See your client’s operating system documentation for more information.

Figure 2-1: Unplugged node

[Diagram showing a network with two nodes, ASECE1 and ASECE2, connected to a public network. One node (Node 2) is unplugged.]

- **Node 2**
 - ASECE2
 - Public network

- **Node 1**
 - ASECE1
 - “big_cluster”
 - Node is unplugged

- **Client application**

Setting TCP `keepalive` to a shorter value

Clusters Users Guide 37
Reconnecting clients when a node loses power

If you are testing for client timeouts, set the values for the parameters in the first two columns of Table 2-1 to a few minutes, and set the values for the parameters in the third column to a low number.

Table 2-1: Setting TCP keepalive

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Amount of time parameter waits before probing the connection</th>
<th>Amount of time between probes for parameter</th>
<th>Maximum amount of time or attempts for parameter to probe connections before dropping them</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris</td>
<td>N/A tcp_keepalive_interval measured in milliseconds</td>
<td>N/A tcp_keepalive_probes measured as absolute number</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>tcp_keepalive_time measured in seconds</td>
<td>tcp_keepalive_intvl measured in seconds</td>
<td>tcp_keepalive_probes measured as absolute number</td>
</tr>
<tr>
<td>Windows XP</td>
<td>KeepAliveTime measured in seconds</td>
<td>KeepAliveInterval measured in seconds</td>
<td>TCPMaxDataRetransmissions measured as absolute number</td>
</tr>
<tr>
<td>HP-UX</td>
<td>tcp_time_wait_interval measured in milliseconds</td>
<td>tcp_keepalive_interval measured in milliseconds</td>
<td>tcp_keepalive_kill measured in milliseconds</td>
</tr>
</tbody>
</table>

Set client's timeout value

There are two different timeout properties you can set for Client-Library program connections:

- **CS_LOGIN_TIMEOUT** – determines how long the client waits to connect to an unreachable host.
- **CS_TIMEOUT** – determines how long a client waits for commands to complete.

Based on how you configure the timeout event, the client either fails or fails over to another node.

You can configure clients to set the Client-Library CS_TIMEOUT parameter to determine how long to wait before they time out.

You must set the CS_TIMEOUT and CS_LOGIN_TIMEOUT parameters or the *isql* `-t` and `-l` parameters for clients to fail over during a sudden loss of power to the node.

For more information about the Client-Library parameters CS_TIMEOUT and CS_LOGIN_TIMEOUT, see the *Client-Library/C Reference Manual*. For information about CS_HAFAILOVER, see “Client/server interaction” on page 26.

For information about using the *isql* `-t` and `-l` parameters, see the *Adaptive Server Enterprise Utility Guide*.
CHAPTER 3 Using Security with a Clustered Environment

This chapter discusses configuring security in a clustered environment.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using encrypted columns in a clustered environment</td>
<td>39</td>
</tr>
<tr>
<td>Using SSL in a clustered environment</td>
<td>39</td>
</tr>
<tr>
<td>Using LDAP as a directory service</td>
<td>41</td>
</tr>
</tbody>
</table>

For information about auditing, see “Adding auditing” on page 311.

Using encrypted columns in a clustered environment

You cannot:

- Create encryption keys in local temporary databases
- Set the system encryption password in local temporary databases

See the User Guide for Encrypted Columns

Using SSL in a clustered environment

The Cluster Edition allows the server name specified in the directory service entry to be different from the common name the SSL server certificate uses for performing an SSL handshake. This allows you to use a fully-qualified domain name for the SSL certificate common name (for example server1.bigcompany.com) and use the same certificate for multiple servers.

To add a common name to the interfaces file, use this format:
Using SSL in a clustered environment

ase1
 master tcp ether host_name port_number ssl="CN='common_name'"
 query tcp ether host_name port_number ssl="CN='common_name'"
ase2
 master tcp ether host_name port_number ssl="CN='common_name'"
 query tcp ether host_name port_number ssl="CN='common_name'"
ase3
 master tcp ether host_name port_number ssl="CN='common_name'"
 query tcp ether host_name port_number ssl="CN='common_name'"
mycluster
 query tcp ether host_name port_number ssl="CN='common_name'"
 query tcp ether host_name port_number ssl="CN='common_name'"
 query tcp ether host_name port_number ssl="CN='common_name'"

Where common_name is the fully-qualified domain name for the cluster node. common_name can include white space. Instances defined in the interfaces file may or may not use the same common name.

Note You can add only one SSL certificate to a master database. Because each instance in a cluster shares the same disk, they all use the same path for the SSL server certificate. Sybase recommends that all instances use the same common name.

For example, this is a sample interfaces file entry for cluster mycluster:

ase1
 master tcp ether blade1 19786 ssl="CN='ase1.big server 1.com'"
 query tcp ether blade1 19786 ssl="CN='ase1.big server 1.com'"
ase2
 master tcp ether blade2 19886 ssl="CN='ase1.big server 1.com'"
 query tcp ether blade2 19886 ssl="CN='ase1.big server 1.com'"
ase3
 master tcp ether blade3 19986 ssl="CN='ase1.big server 1.com'"
 query tcp ether blade3 19986 ssl="CN='ase1.big server 1.com'"
mycluster
 query tcp ether blade1 19786 ssl="CN='ase1.big server 1.com'"
 query tcp ether blade2 19886 ssl="CN='ase1.big server 1.com'"
 query tcp ether blade3 19986 ssl="CN='ase1.big server 1.com'"

Specifying a common name with sp_listener

sp_listener includes the CN=common_name parameter, which allows you to specify a common name for the SSL certificate. The syntax is:
sp_listener 'command', '[protocol:]machine_name:port_number:
 "CN=common_name", 'engine_number'

Where CN=common_name is used only if you specify ssltcp as the protocol. If included, it uses the specified common_name to validate the common_name in the SSL certificate. If you do not include CN=common_name, Adaptive Server uses server_name to validate the common name in the SSL certificate.
CN=common_name must match the common name entry in the certificate. If you include a fully-qualified domain name in the certificate, it must match the CN=common_name.

The attribute name “CN” is case insensitive, but the attribute value for the common name is case sensitive. For example, the attribute name may be “CN,” “Cn,” or “cn.”

For example, this specifies the common name asel.big server 1.com:

sp_listener 'start','ssltcp:blade1:17251:"CN=asel.big server 1.com"','0'

See the Adaptive Server Reference Manual for more information about sp_listener.

Using LDAP as a directory service

Adaptive Server uses directory services to establish client and RPC connections over the network. This chapter provides information about using LDAP directory services to establish connections.

Lightweight Directory Access Protocol (LDAP) is an industry standard for accessing directory services. Directory services allow components to look up information by a distinguished name (DN) from an LDAP server that stores and manages server, user, and software information that is used throughout the enterprise or over a network.

The LDAP server can be located on a different platform from the one on which Adaptive Server or the clients are running. LDAP defines the communication protocol and the contents of messages exchanged between clients and servers. Messages are operators, such as client requests for read, write and query, and server responses, including data-format information.

The LDAP server stores and retrieves information about:

- Adaptive Server, such as IP address, port number, and network protocol
- Security mechanisms and filters
Using LDAP as a directory service

- High availability companion server name

The LDAP server can be configured with these access restrictions:
- Anonymous authentication – all data is visible to any user.
- User name and password authentication – Adaptive Server uses the user name and password for UNIX platforms:
 - $SYBASE/$SYBASE_OCS/config/libtcl.cfg on 32-bit platforms
 - $SYBASE/$SYBASE_OCS/config/libtcl64.cfg on 64-bit platforms

User name and password authentication properties establish and end a session connection to an LDAP server.

Note The user name and password that are passed to the LDAP server for user authentication purposes are distinct and different from those used to access Adaptive Server.

When an LDAP server is specified in the `libtcl.cfg` `libtcl64.cfg` or `libtcl64.cfg` file (collectively the `libtcl*.cfg` file), the server information is searched for using the ordered list of directory services from the `libtcl*.cfg` file. If the information is not found there, it then searches the interfaces file.

For the Cluster Edition, an interfaces file may be set in the quorum file. When the quorum file specifies an interfaces file, the Cluster Edition ignores the directory services specified in `libtcl*.cfg` files.

If multiple directory services are supported in a server, then the order in which they are searched is specified in `libtcl*.cfg`. You cannot specify the search order with the `dataserver` command-line option. See “Multiple directory services” on page 49.

LDAP directory services versus the Sybase interfaces file

The LDAP driver implements directory services for use with an LDAP server. LDAP directories are an infrastructure that provide:
- A network-based alternative to the traditional Sybase interfaces file
- A single, hierarchical view of information, including users, software, resources, networks, files, and so on

Table 3-1 highlights the differences between the Sybase interfaces file and an LDAP server.
CHAPTER 3 Using Security with a Clustered Environment

Table 3-1: interfaces file versus LDAP directory services

<table>
<thead>
<tr>
<th>interfaces file</th>
<th>Directory services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform-specific</td>
<td>Platform-independent</td>
</tr>
<tr>
<td>Specific to each Sybase installation</td>
<td>Centralized and hierarchical</td>
</tr>
<tr>
<td>Contains separate master and query entries</td>
<td>One entry for each server that is accessed by both clients and servers</td>
</tr>
<tr>
<td>Cannot store metadata about the server</td>
<td>Stores metadata about the server</td>
</tr>
</tbody>
</table>

LDAP directory services support more attributes than the Sybase interfaces file. These attributes can include server version, server status, and so on. See Table 3-2 for a list of attributes.

Note LDAP is only supported with reentrant libraries. You must use `isql_r`, instead of `isql`, when connecting to a server using LDAP directory services.

Table 3-2 lists the Sybase LDAP directory entries.

Table 3-2: Sybase LDAP directory definitions

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Value type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ditbase</td>
<td>string</td>
<td>DIT base for object tree. If the <code>libtcl.cfg</code> file is specified, the <code>interfaces</code> file is ignored. The <code>libtcl.cfg</code> file can be overridden with <code>ct_con_prop()</code> for a specified connection.</td>
</tr>
<tr>
<td>dn</td>
<td>Character string</td>
<td>Distinguished name. Must be unique name that identifies the object.</td>
</tr>
<tr>
<td>sybaseVersion</td>
<td>Integer</td>
<td>Server version number.</td>
</tr>
<tr>
<td>sybaseServername</td>
<td>Character string</td>
<td>Server name.</td>
</tr>
<tr>
<td>sybaseService</td>
<td>Character string</td>
<td>Service type: Sybase Adaptive Server, Sybase SQL Server, or ASE.</td>
</tr>
<tr>
<td>sybaseStatus</td>
<td>Integer</td>
<td>Status: 1 = Active, 2 = Stopped, 3 = Failed, 4 = Unknown.</td>
</tr>
<tr>
<td>sybaseAddress</td>
<td>String</td>
<td>Each server address includes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protocol: TCP, NAMEPIPE, SPX DECNET (entry is case sensitive).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Address: any valid address for the protocol type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note <code>dscp</code> splits this attribute into Transport type and Transport address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Filter: None, ssl, or ssl="CN=common_name"</td>
</tr>
<tr>
<td>sybaseSecurity (optional)</td>
<td>String</td>
<td>Security OID (object ID).</td>
</tr>
</tbody>
</table>
Using LDAP as a directory service

The traditional interfaces file with TCP connection and a failover machine looks like:

```
looey
    master tcp ether huey 5000
    query tcp ether huey 5000
    hafailover secondary
```

An example of an LDAP entry with TCP and a failover machine looks like:

```
dn: sybaseServername=foobar, dc=sybase, dc=com
objectClass: sybaseServer
sybaseVersion: 1500
sybaseServername: foobar
sybaseService: ASE
sybaseStatus: 4
sybaseAddress: TCP#1#foobar 5000
sybaseRetryCount: 12
sybaseRetryDelay: 30
sybaseHAServername: secondary
```

All entries in the LDAP directory service are called entities. Each entity has a distinguished name (DN) and is stored in a hierarchical tree structure based on its DN. This tree is called the directory information tree (DIT). Client applications use a DIT base to specify where entities are stored. See “The libtcl*.cfg file” on page 45.

In the example above, the entry describes an Adaptive Server named “foobar” listening on a TCP connection with a port number of 5000. The value 1, located between TCP and 5000, means the entry is used for both QUERY and MASTER entries. This value should always be 1 for an LDAP directory service. This entity also specifies a retry count of 12 (times) and a retry delay of 30 (seconds). Once a client has found an address where a server responds, the login dialog between the client and the server begins.

You can find a complete list of Sybase’s LDAP directory schema in UNIX $SYBASE/$SYBASE_OCS/config.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Value type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sybaseRetryCount</td>
<td>Integer</td>
<td>This attribute is mapped to CS_RETRY_COUNT, which specifies the number of times that ct_connect retries the sequence of network addresses associated with a server name.</td>
</tr>
<tr>
<td>sybaseRetryDelay</td>
<td>Integer</td>
<td>This attribute is mapped to CS_LOOP_DELAY, which specifies the delay, in seconds, that ct_connect waits before retrying the entire sequence of addresses.</td>
</tr>
<tr>
<td>sybaseHAServername</td>
<td>String</td>
<td>A secondary server for failover protection. (optional)</td>
</tr>
</tbody>
</table>
In the same directory, there is also a file called `sybase-schema.conf`, which contains the same schema, but uses a Netscape-specific syntax.

Since LDAP supports multiple entries for each attribute, each address attribute must contain the address of a single server, including protocol, access type, and address. See `sybaseAddress` in Table 3-2.

For example, this is an LDAP entry for an Windows server listening on two addresses, with different connection protocols:

```plaintext
sybaseAddress = TCP#1#TOEJAM 4444
sybaseAddress = NAMEPIPE#1#pipe\sybase\query
```

Note Each entry in the address field is separated by the # character.

You can edit these entries with `dsedit`. See “Adding a server to the directory services” on page 47.

To ensure cross-platform compatibility for all Sybase products, the protocol and address attribute fields should be in a platform- and product-independent format.

The `libtcl*.cfg` file

You use the `libtcl*.cfg` file to specify the LDAP server name, port number, DIT base, user name, and password to authenticate the connection to an LDAP server.

The purpose of the `libtcl*.cfg` file is to provide configuration information such as driver, directory, and security services for Open Client/Open Server and Open Client/Open Server-based applications. 32-bit utilities (such as `dsedit`) look up the `libtcl.cfg`, while 64-bit applications use the `libtcl64.cfg` file for configuration information.

You should edit both the `libtcl.cfg` and the `libtcl64.cfg` files to ensure compatibility between 32- and 64-bit applications.

The default `libtcl.cfg` file is located in `$SYBASE/$SYBASE_OCS/config`.

If LDAP is specified in the `libtcl.cfg` file, the interfaces file is not used.

Note Open Client/Open Server applications that use the `-l` option at start-up override the `libtcl.cfg` file and use the interfaces file.
Using LDAP as a directory service

In its simplest form, the libtcl.cfg file is in this format:

```
DIRECTORY
ldap=libsybdldap.dll ldapurl
```

where the `ldapurl` is defined as:

```
ldap://host:port/ditbase
```

The following LDAP entry, using these same attributes, is an anonymous connection and only works only if the LDAP server allows read-only access.

```
ldap=libsybdldap.dll ldap://seashore/d=sybase,dc=com
```

You can specify a user name and password in the libtcl.cfg file as extensions to the LDAP URL to enable password authentication at connection time.

Enabling LDAP directory services

To use a directory service, you must:

1. Configure the LDAP server according to the vendor-supplied documentation.
2. Add the location of the LDAP libraries to the Unix load library path environment variable for your platform.
3. Configure the libtcl.cfg file to use directory services.

Use any standard ASCII text editor to:

- Remove the semicolon (;) comment markers from the beginning of the LDAP URL lines in the libtcl.cfg file under the `[DIRECTORY]` entry.
- Add the LDAP URL under the `[DIRECTORY]` entry. See Table 3-3 for supported LDAP URL values.

Warning! The LDAP URL must be on a single line.

```
file libtcl.cfg:
ldap=libsybdldap.so ldap://host:port/ditbase??scope??bindname=username?password
```

```
file libtcl64.cfg
ldap=libsybdldap64.so
ldap://host:port/ditbase??scope??bindname=username?password
```
For example:

[DIRECTORY]

ldap=libsybdldap.so ldap://huey:11389/dc=sybase,dc=com???one??
bindname=cn=Manager,dc=sybase,dc=com?secret

“one” indicates the scope of a search that retrieves entries one level below the DIT base.

Table 3-3 defines the keywords for the ldapurl variables.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>host (required)</td>
<td>The host name or IP address of the machine running the LDAP server</td>
<td>None</td>
</tr>
<tr>
<td>port</td>
<td>The port number that the LDAP server is listening on</td>
<td>389</td>
</tr>
<tr>
<td>ditbase (required)</td>
<td>The default DIT base</td>
<td>None</td>
</tr>
<tr>
<td>username</td>
<td>Distinguished name (DN) of the user to authenticate</td>
<td>NULL (anonymous authentication)</td>
</tr>
<tr>
<td>password</td>
<td>Password of the user to be authenticated</td>
<td>NULL (anonymous authentication)</td>
</tr>
</tbody>
</table>

4 Verify that the appropriate environment variable points to the required third-party libraries. The Netscape LDAP SDK libraries are located in $SYBASE/$SYBASE_OCS/lib3p or lib3p64. The Unix load library path environment variable must point to this directory.

5 Add your server entry to the LDAP server using dscp or dsedit. See “Adding a server to the directory services” on page 47.

Adding a server to the directory services

Warning! Most LDAP servers have an ldapadd utility for adding directory entries. Sybase recommends you use dsedit instead since it has built-in semantic checks that generic tools do not provide.

Each server entry is made up of a set of attributes. When you add or modify a server entry, you are prompted for information about server attributes. Some attributes are provided by default, others require user input. When a default value is provided, it appears in brackets “[]”. See Table 3-2 on page 43 for accepted values.
Adding a server entry to the directory service using *dsedit*

Before you can add, delete, or modify an LDAP server entry, you must add the LDAP URL to the *libtcl.cfg* file. See “The *libtcl*.cfg file” on page 45.

Use *dsedit* to add a server to the directory service:

1. Source *SYBASE.csh* or *SYBASE.sh* to set the environment variables.
2. *cd* to *$SYBASE/$SYBASE_OCS/bin*.
3. Execute *dsedit*.
4. Select LDAP from the list of servers, and click OK.
5. Click Add New Server Entry.
6. Enter:
 - The server name – this is required.
 - The security mechanism – optional. This is the name of the high-availability failover server, if you have one.
7. Click Add New Network Transport and:
 - Select the transport type.
 - Enter the host name.
 - Enter the port number.
 - (Optional) enter the SSL filter string.
8. Click OK two times to edit *dsedit*.

To view the server entries, enter the following URL in Netscape, http://host:port/ditbase??one.

For example:

```
ldap://huey:11389/dc=sybase,dc=com??one
```

Note Microsoft Internet Explorer does not recognize LDAP URLs.

Multiple directory services

Any type of LDAP service, whether it is an actual server or a gateway to other LDAP services, is called an LDAP server.

You can specify multiple directory services for high-availability failover protection. Not every directory service in the list needs to be an LDAP server.

For example:

```bash
[DIRECTORY]
ldap=libsybdldap.so ldap://test:389/dc=sybase,dc=com
ldap=libsybdldap.so ldap://huey:11389/dc=sybase,dc=com
```

In this example, if the connection to test:389 fails, the connection fails over to the LDAP server on huey:11389 is attempted. Different vendors employ different DIT base formats.

Encrypting the password

Entries in the `libtcl.cfg` file are in human-readable format. Sybase provides a `pwdcrypt` utility for basic password encryption. `pwdcrypt` employs a simple algorithm that, when applied to keyboard input, generates an encrypted value that can be substituted for the password. `pwdcrypt` is located in `$SYBASE/$SYBASE_OCS/bin`.

From the `$SYBASE/$SYBASE_OCS` directory, enter:

```
bin/pwdcrypt
```

Enter your password twice when prompted.

`pwdcrypt` generates an encrypted password. For example:

```
0x01312a775ab9d5c71f99f05f7712d2ced218d0ae1ce78868d0e8669313d1bc4c706
```

Copy and paste the encrypted password into the `libtcl.cfg` file using any standard ASCII-text editor. Before encryption, the file entry appears as:

```c
ldap=libsybdldap.so
ldap://seashore/dc=sybase,dc=com??one??bindname=uid=Manager,dc=sybase, dc=com?password
```
Using LDAP as a directory service

Replace the password with the encrypted string:

```plaintext
ldap=libsybdldap.so
ldap://seashore/dc=sybase,dc=com??one??bindname=uid=Manager,dc=sybase,dc=com?
0x01312a775ab9d5c71f99f05f7712d2cedc218d0ae1ce78868d0e8669313d1bc4c706
```

Warning! Even if your password is encrypted, you should still protect it using file-system security.

Performance

Performance when using an LDAP server may be slower than when using an interfaces file because the LDAP server requires time to make a network connection and retrieve data. Since this connection is made when Adaptive Server is started, changes in performance will be seen at login time, if at all. During normal system load, the delay should not be noticeable. During high system load with many connections, especially repeated connections with short duration, the overall performance difference of using an LDAP server versus the traditional interfaces file might be noticeable.

Migrating from the **interfaces** file to LDAP

There is no direct method to upgrade an existing server using the `interfaces` file to one that uses lightweight directory services. To upgrade an earlier version of Adaptive Server to Adaptive Server version 15.0, see the installation guide for your platform.

Once you have upgraded the server, you can configure your server to use LDAP service.

1. Shut down the server. For information about starting and stopping clusters, see the *Users Guide to Clusters*. For shared memory servers, see the configuration guide for Adaptive Server 15.0, Chapter 2, “Starting and Stopping Servers.”

2. Edit the `$SYBASE/$SYBASE_OCS/config/libtcl.cfg` or `libtcl64.cfg` file to add the directory service. See “Enabling LDAP directory services” on page 46.
3 Use dsedit or dscp to add the server, cluster, and instance entries for clustered servers to the directory service. See “Adding a server to the directory services” on page 47.

4 Use qrmutil to verify that the interfaces directory attributes in the cluster quorum file is empty for the cluster and instance definitions. For example, to show the values in the quorum file, enter:

```bash
$SYBASE/$SYBASE_ASE/bin/qrmutil --quorum-dev=path_to_your_quorum --display=config
```

You must reset the value if a path is defined for the `interface_dir` attribute on any instance, or for the cluster. Specifying this attribute with a path value forces the instance to use the interfaces file and overrides the information in the `libtcl.cfg` and `libtcl64.cfg` files.

For example, use these qrmutil commands to reset the value of the `interface_dir` attributes. The value for `interface_dir` is two single quotes, meaning an empty string.

```bash
$SYBASE/$SYBASE_ASE/bin/qrmutil --quorum-dev=path_to_your_quorum --interface_dir=''

$SYBASE/$SYBASE_ASE/bin/qrmutil --quorum-dev=path_to_your_quorum --instance= name_of_instance_to_reconfig --interface_dir=''
```

5 Restart your server or cluster.

Using LDAP directory services with the shared-disk cluster

The Cluster Edition can use LDAP directory services to specify its cluster and instance entries. You must specify an empty string for the `interface_dir` attribute in the cluster’s quorum file. Do not use the `dataserver` parameter `-i interfaces_path` to specify the path to the interfaces file.

If you do not specify a value for `interface_dir`, the Cluster Edition uses the ordered list of directory services defined in the `$SYBASE/OCS-15_0/config/libtcl64.cfg` (for 64-bit servers and clients), or `$SYBASE/OCS-15_0/config/libtcl.cfg` (for 32-bit servers and clients). After the server searches the directory services defined in `libtcl64.cfg`, the interfaces file in the default location is searched.

Open Client applications can use LDAP directory service to store cluster and instance server entries. For example, for a cluster named “mycluster” with two instances (“ase1” and “ase2”), the interfaces looks like:
Using LDAP as a directory service

You must use dsedit or dscp to add equivalent LDAP directory service entries for the server names "ase", "ase2", and "mycluster" to the LDAP directory service. See “Adding a server to the directory services” on page 47. For more information about dsedit and dscp, see the Utility Guide.

Clients can connect to any instance in the cluster using the cluster name (in this example, “mycluster”) or an instance-specific server name (“ase1” or “ase2”).

When SSL is used for clients to connect to a nonclustered Adaptive Server using SSL, the SSL filter is placed after the port number in the interfaces file. The directory service includes the common name, which you added with dsedit or from hand-editing. Typically, one SSL certificate with one common name is used for the entire cluster, rather than one for each instance. See “Using SSL in a clustered environment” on page 39.

This example adds the SSL filter to an interfaces file entry for the cluster “mycluster”:

```
mycluster
    query tcp ether blade1 10945 ssl="cn=mycluster.domain.com"
    query tcp ether blade2 10955 ssl="cn=mycluster.domain.com"
```

Entries added to an LDAP directory service must specify the common name with the SSL filter, ssl="cn=mycluster.domain.com".

For example, this dscp session adds the example entry above for cluster “mycluster”:

```
% dscp
>> open ldap
ok
Session 1 ldap>> add mycluster
Service: [ASE]
```
Transport Type: [tcp]
Transport Address: blade1 10945 ssl="cn=mycluster.domain.com"
Transport Type: [tcp]
Transport Address: blade2 10955 ssl="cn=mycluster.domain.com"
Transport Type: [tcp]
Transport Address:
Security Mechanism [] :
HA Failoverserver:
Retry Count:
Retry Delay:
Added mycluster

Session 1 ldap>> read mycluster

DIT base for object: dc=domain,dc=com
Distinguish name: sybaseServername=mycluster, dc=domain,dc=com
Server Entry Version: 15001
Server Name: mycluster
Server Service: ASE
Server Status: 4 (Unknown)
Server Address:
Transport Type: tcp
Transport Address: yellowstar 2521 ssl="cn=mycluster.domain.com"
Transport Type: tcp
Transport Address: yellowstar 2525 ssl="cn=mycluster.domain.com"

Session 1 ldap>> quit
Using LDAP as a directory service
Using Monitoring Tables in a Clustered Environment

This chapter lists the monitor tables for the clustered Adaptive Server, and how to configure and manage them. See the Reference Manual: Tables for column and datatype descriptions for these tables.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring tables for clusters</td>
<td>55</td>
</tr>
</tbody>
</table>

Monitoring tables for clusters

In a clustered environment, monitoring tables report on a per-instance basis instead of returning a cluster-wide result. This allows you to monitor the activities of processes and queries across the cluster to get a better understanding of the statistics for objects that may be opened on more than one instance and resource usage on each instance in the cluster. For example, if you query the monitoring tables about a table, this table may be opened or accessed by more than one instance in the cluster, so the descriptors for this table—and the associated statistics—may be in memory on the instance. Statistics are not aggregated for the cluster. The statistical results for all instances are returned as a unioned result set with rows collected from each instance. Each instance is identified in the result set with a row in the InstanceID column.
Monitoring tables for clusters

Configuring the system view

The system_view is a session-specific setting that allows you to control the scope of monitoring data that queries return from the monitoring tables, sysprocesses, sp_who, and other commands. When you set system_view to cluster, queries on the monitoring tables return data from all active instances in the cluster. When you set system_view to instance, queries on the monitoring tables return data only for processes or objects that are active on the instance to which the client is connected.

Use the set command to configure the scope of the session:

```
set system_view {instance | cluster | clear}
```

where:

- instance – returns statistics for the local instance only. Cross-cluster requests are not sent to any other instance in the cluster.
- cluster – returns statistics for all instances in the cluster.
- clear – returns the system view to the configured default.

This example modifies the session settings so queries on the monitoring tables return data only for the instance to which the client is connected:

```
set system_view instance
```

This example modifies the session settings so queries on the monitoring tables return data for the cluster:

```
set system_view cluster
```

This example clears the current setting of the system view and returns system view to the default setting.

```
set system_view clear
```

If you do not specify an InstanceID when you query a monitoring table or call a monitoring table RPC, the instance uses the current system_view configuration.

The session system view is inherited from its host logical cluster. Selecting the @@system_view global variable to determine the current system view.
CHAPTER 4 Using Monitoring Tables in a Clustered Environment

Configuring monitoring tables

Use configuration parameters for the monitoring tables to determine their cluster-wide or instance-only behavior. By default, all monitoring table configuration values are applied cluster-wide.

Managing the message pipe

These parameters determine how the cluster and instances manages the memory used to store the data for the historical monitoring tables:

- deadlock pipe max messages
- errorlog pipe max messages
- sql text pipe max messages
- plan text pipe max messages
- statement pipe max messages

You can configure these parameters globally for the cluster and individually for each instance. These parameters allocate memory for the pipe. An instance can dynamically add memory to the pipe but cannot dynamically remove memory from the pipe, so if you reduce the size of the parameter, you must restart the instance for the new pipe size to take effect.

Below are some algorithms for determining the size for the parameters.

- For an individual instance, the memory required for the each pipe configuration is:
 \[\text{configuration_value} \times \text{number_of_engines} \]

- To globally set the memory for each pipe configuration:
 \[\text{configuration_value} \times \text{number_of_engines} \times \text{number_of_instances} \]

- If you have set the value for pipe configurations differently for each instance, then the amount of memory required for the cluster is:
 \[(\text{instance}_1_value \times \text{number_of_engines}) + (\text{instance}_2_value \times \text{number_of_engines}) + \ldots + (\text{instance}_n_value \times \text{number_of_engines}) \]
Changes for RPCs

If you invoke an RPC but do not include the InstanceID as a parameter, the monitoring tables use the system view setting to determine how to report the statistics. If you have set the system view setting to instance, all data gathering is local. If you have set the system view setting to cluster, the monitoring tables communicate with instances forming the instances in the cluster, not the logical cluster.

Monitoring tables specific to the Cluster Edition

Some monitoring tables provide information for both the clustered and nonclustered Adaptive Server. Table 4-1 lists the monitoring tables that provide information exclusively for the clustered Adaptive Server.

Table 4-1: Monitoring tables specifically for the Cluster Edition

<table>
<thead>
<tr>
<th>monClusterCacheManager</th>
<th>monTempdbActivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>monPCM</td>
<td>monSysLoad</td>
</tr>
<tr>
<td>monDBRecovery</td>
<td>monLogicalCluster</td>
</tr>
<tr>
<td>monDBRecoveryLRTypes</td>
<td>monLogicalClusterinstance</td>
</tr>
<tr>
<td>monCMSFailover</td>
<td>monLogicalClusterRoute</td>
</tr>
<tr>
<td>monFailoverRecovery</td>
<td>monLogicalClusterAction</td>
</tr>
<tr>
<td>monCLMObjectActivity</td>
<td>monProcessMigration</td>
</tr>
<tr>
<td>monCIPC</td>
<td>monWorkloadProfile</td>
</tr>
<tr>
<td>monCIPCEndpoints</td>
<td>monWorkloadRaw</td>
</tr>
<tr>
<td>monCIPCLinks</td>
<td>monWorkloadPreview</td>
</tr>
<tr>
<td>monCIPCMesh</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring tables that return identical information for all instances

Table 4-2 describes monitoring tables that return the same information for all instances.
CHAPTER 4 Using Monitoring Tables in a Clustered Environment

Table 4-2: monitoring tables that include the same information for all instances

<table>
<thead>
<tr>
<th>Table name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monMon</td>
<td>Metadata view is identical on all instances.</td>
</tr>
<tr>
<td>monTableColumns</td>
<td>Metadata view is identical on all instances.</td>
</tr>
<tr>
<td>monTableParameters</td>
<td>Metadata view is identical on all instances.</td>
</tr>
<tr>
<td>monTables</td>
<td>Metadata view is identical on all instances.</td>
</tr>
<tr>
<td>monWaitClassInfo</td>
<td>List of descriptions is identical on all instances.</td>
</tr>
<tr>
<td>monWaitEventInfo</td>
<td>List of descriptions is identical on all instances.</td>
</tr>
</tbody>
</table>

Monitoring tables that return specific instance information

Table 4-3 lists monitoring tables that contain the InstanceID column.

Table 4-3: monitoring tables with InstanceID column

<table>
<thead>
<tr>
<th>Table name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monCachePool</td>
<td>monDeviceIO</td>
</tr>
<tr>
<td>monCachedProcedures</td>
<td>monErrorLog</td>
</tr>
<tr>
<td>monDeadLock</td>
<td>monIOLequeue</td>
</tr>
<tr>
<td>monEngine</td>
<td>monLocks</td>
</tr>
<tr>
<td>monLicense</td>
<td>monNetworkIO</td>
</tr>
<tr>
<td>monOpenDatabases</td>
<td>monOpenObjectActivity</td>
</tr>
<tr>
<td>monOpenPartitionActivity</td>
<td>monOpenObjectActivity</td>
</tr>
<tr>
<td>monProcess</td>
<td>monProcedureCache</td>
</tr>
<tr>
<td>moProcessLookup</td>
<td>monProcessActivity</td>
</tr>
<tr>
<td>monProcessObject</td>
<td>monProcessNetIO</td>
</tr>
<tr>
<td>monProcessSQLText</td>
<td>monProcessProcedures</td>
</tr>
<tr>
<td>monProcessWaits</td>
<td>monProcessStatement</td>
</tr>
<tr>
<td>monResourceUsage</td>
<td>monProcessWorkerThread</td>
</tr>
<tr>
<td>monSysPlanText</td>
<td>monState</td>
</tr>
<tr>
<td>monSysStatement</td>
<td>monSysSQLText</td>
</tr>
<tr>
<td>monSysWorkerThread</td>
<td>monSysWaits</td>
</tr>
<tr>
<td>monCachedObject</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring tables for clusters
CHAPTER 5 Using Backup Server in a Clustered Environment

This chapter discusses issues related to using Backup Server with a cluster.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes joining cluster during a dump</td>
<td>61</td>
</tr>
<tr>
<td>Multiple Backup Servers</td>
<td>62</td>
</tr>
</tbody>
</table>

Nodes joining cluster during a dump

Earlier versions of the Cluster Edition did not allow nodes to join or leave the cluster during a database or transaction log dump. Any instances started during a dump waited until the dump finished before completing its start-up, and instances waited until the dump was complete before shutting down.

For Cluster Edition 15.0.3 and later, nodes—and the instances running on them—can join or leave the cluster while another instance runs dump database or dump transaction.

Nodes can join and leave the cluster only during phase one of dump database. The phases are displayed during the dump database command:

Backup Server: 3.43.1.1: Dump phase number 1 completed.
Backup Server: 3.43.1.1: Dump phase number 2 completed.
Backup Server: 3.43.1.1: Dump phase number 3 completed.

If a node attempts to join or leave during phase two or phase three of dump database, it waits to join until dump database completes.

Nodes may leave a cluster politely during a database dump from a normal shutdown.

Once you configure multiple Backup Servers for the cluster, you need not perform any additional configuration to enable nodes to join or leave the cluster during a dump database or dump transaction.
Multiple Backup Servers

Versions of the Cluster Edition earlier than 15.0.3 used a single Backup Server for the cluster, which was a potential bottle neck for dump and load commands.

Cluster Edition version 15.0.3 and later allows a cluster to use multiple Backup Servers with one of these methods:

- Dedicated method – each instance is assigned a specific Backup Server.
- Round-robin method – at the time of the dump or load command, the Cluster Edition assigns the instance a Backup Server from a group according to availability.
- A single Backup Server named SYB_BACKUP

The Cluster Edition stores information about all Backup Servers in sys.servers. When you issue a dump or load command from any instance, the Cluster Edition searches sys.servers for the name Backup Server entry, SYB_BACKUP. If it finds the SYB_BACKUP entry pointing to a srvnetname entry of $DEDICATED or $ROUNDROBIN, it uses the appropriate Backup Server to perform the dump or load operation.

For example, the “snack” cluster is configured to use the dedicated method, and includes an instance named “cupcake.” Because the SYB_BACKUP entry points to “$dedicated,” the cluster uses the cupcake_BS Backup Server to perform any dump or load:

<table>
<thead>
<tr>
<th>srvid</th>
<th>srvstatus</th>
<th>srvname</th>
<th>srvclass</th>
<th>srvsecmech</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>SYB_BACKUP</td>
<td>$dedicated</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>NULL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>cupcake</td>
<td>7</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>cupcake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>cupcake_BS</td>
<td>cupcake_BS</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>cupcake_BS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>cookie</td>
<td>7</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>cookie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>cookie_BS</td>
<td>cookie_BS</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>cookie_BS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the snack cluster was configured for the round-robin method, the cupcake instance would use the first available Backup Server to perform dump and loads.
CHAPTER 5 Using Backup Server in a Clustered Environment

When you upgrade, the Cluster Edition adds entries for all Backup Servers to sysservers.

Entries for Backup Servers are removed from sysservers when you remove an instance from the cluster.

Configuring Cluster Edition to use multiple Backup Servers

Use sp_addserver to add additional Backup Servers:

```
sp_addserver instance_name_BS, NULL, instance_name
```

For example, this adds the cookie_BS entry to sysservers:

```
sp_addserver cookie_BS, NULL, cookie
```

You must insert interfaces file entries for each of the Backup Servers before you can start them. See Chapter 5, “Setting Up Communications Across the Network,” in the Configuration Guide for information about editing the interfaces file.

Using the dedicated method

To configure the Cluster Edition for a dedicated method, use:

```
sp_addserver 'SYB_BACKUP', NULL, '$DEDICATED'
```

Each instance in a cluster configured for a dedicated Backup Server method must include a Backup Server.

When a user connects to instance “cookie” using isql and issues a dump or load command, instance cat finds the SYB_BACKUP entry in sysservers pointing to the '$DEDICATED' keyword. If the specified Backup Server ('cookie_BS') is not running, the Cluster Edition automatically restarts this Backup Server.

Using the round-robin method

To configure the Cluster Edition for a round-robin method, use:

```
sp_addserver 'SYB_BACKUP', NULL, '$ROUNDROBIN'
```

Once you configure the Cluster Edition to use the round-robin method, the Cluster Edition selects a Backup Server for a dump or load command according to which Backup Server that is performing the least amount of work.
For example, if a user connects to instance Inst1 from isql and issues a dump command from this session, instance Inst1 checks the SYB_BACKUP entry in sys.servers, and finds that it points to keyword $ROUNDROBIN. If Inst1_BS is busy performing another task, the Cluster Edition moves to the next Backup Server, Inst2_BS. If Inst2_BS is available, with no jobs running on it, this Backup Server performs the dump, and its index is incremented to indicate that it is busy and unavailable for work. However, if Inst2_BS is busy, the Cluster Edition moves to the next Backup Server, and so on until it finds a free Backup Server.

On the other hand, if the connection attempt to Inst2_BS fails, then the enable backupserver HA parameter governs whether or not the Backup Server is restarted automatically or the next available Backup Server is attempted. An error is reported only if all configured Backup Servers are unavailable.

If you set enable backupserver HA to true and configure Backup Server for a round robin policy, you must enable all nodes to start any Backup Server in the cluster. This is necessary to allow another node to perform the dump or load duties if the initial node fails on which you issued the command. To enable all nodes to start any Backup Server, include entries for all Backup Servers in the interfaces file.

For example, Big_Cluster uses a round-robin policy, and includes instances Node_1, Node_2, and Node_3. The interfaces file entry for instance Node_1 must include entries for Backup Servers running on nodes Node_2 and Node_3 in case the round robin policy select either of these as the replacement node if Node_1 fails:

```
Node_1_BS
  master tcp ether Node_1 5004
  query tcp ether Node_1 5004
  master tcp ether Node_2 5006
  query tcp ether Node_2 5006
  master tcp ether Node_3 5008
  query tcp ether Node_3 5008

Node_2_BS
  master tcp ether Node_1 5004
  query tcp ether Node_1 5004
  master tcp ether Node_2 5006
  query tcp ether Node_2 5006
  master tcp ether Node_3 5008
  query tcp ether Node_3 5008

Node_3_BS
  master tcp ether Node_1 5004
```

Adaptive Server Enterprise Cluster Edition
Alternatively, you can start Backup Servers manually on the node on which you are issuing the dump or load command.

Starting and stopping Backup Servers

sybcluster and the Adaptive Server plug-in automatically start Backup Servers when you use these utilities to create them. See the *Utility Guide* for information about starting and stopping Backup Servers with sybcluster. See the online help for information about Starting Backup Server with the Adaptive Server plug-in.

Start Backup Servers manually with the `startserver` command. The `startserver` command requires the Backup Server to have a runserver file. This starts the MOUSE_BS Backup Server:

```
startserver -f RUN_MOUSE_BS
```


Use the `shutdown` `server_name` command to shut down any Backup Server. For example:

```
shutdown MOUSE_BS
```

Shutdown all active Backup Servers by specifying the SYB_BACKUP Backup Server:

```
shutdown SYB_BACKUP
```

Backing up to media

Back up objects for the Cluster Edition the same as back up objects in a nonclustered Adaptive Server. See the *System Administration Guide, Volume 2*.

```
Changes to stored procedures

sp_addserver

sp_addserver adds the keywords $DEDICATED and $ROUNDROBIN as a parameter for setting the Backup Server method. See “Configuring Cluster Edition to use multiple Backup Servers” on page 63.

sp_dumpoptimize and sp_helpserver

When the SYB_BACKUP entry in sysservers points to the keywords $DEDICATED or $ROUNDROBIN, the Cluster Edition runs these system procedures for all active Backup Servers in the cluster:

- sp_dumpoptimize
- sp_helpserver

sp_volchanged

sp_volchanged allows you to include the name of a specific Backup Server. The syntax is:

    sp_volchanged session_id, devname, action[, fname[, vname][, backup_server_name]]

For example, this specifies that a volume change request is made on Backup Server Inst3_BS:

    sp_volchanged 5, "db1.dmp", "proceed", "Inst3_BS"

If you do not include the name of a Backup Server with the $DEDICATED or $ROUNDROBIN method, sp_volchanged raises an error.
This chapter describes how to manage the workload and provide failover for applications accessing the Cluster Edition.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical cluster resources</td>
<td>68</td>
</tr>
<tr>
<td>The system logical cluster</td>
<td>69</td>
</tr>
<tr>
<td>Setting up a logical cluster</td>
<td>70</td>
</tr>
<tr>
<td>Assigning routing rules</td>
<td>73</td>
</tr>
<tr>
<td>Configuring logical cluster attributes</td>
<td>74</td>
</tr>
<tr>
<td>Configuring failover</td>
<td>81</td>
</tr>
<tr>
<td>Managing logical clusters</td>
<td>83</td>
</tr>
<tr>
<td>Administering failover, failback, and planned downtime</td>
<td>88</td>
</tr>
<tr>
<td>Distributing the workload</td>
<td>95</td>
</tr>
<tr>
<td>Using the sample load profiles</td>
<td>98</td>
</tr>
<tr>
<td>Creating and configuring your own load profile</td>
<td>99</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>102</td>
</tr>
</tbody>
</table>

The Cluster Edition workload manager can customize workload management and failover for each of your business applications so that each performs most efficiently. The logical cluster is the container that allows the workload manager to provide individualized working environments.

A logical cluster is an abstract representation of one or more instances in a physical shared-disk cluster. Each logical cluster has a set of instances it runs on and can have a set of instances to which it fails over. Routing rules direct incoming connections to specific logical clusters based on an application, user login, or server alias supplied by the client. Other rules can restrict a logical cluster to bound connections or allow any authenticated connection to access it.
By creating logical clusters on top of the physical cluster, you can partition applications with different workloads on the same system. The workload is managed at the application level, which means that you can manage incoming connections, failover policies, load distribution strategies, and planned downtime according to how each of your applications use the system.

The system administrator manages the workload using the Adaptive Server plug-in to Sybase Central or the command-line options described in this chapter. The system administrator:

- Configures and manages a logical cluster. This includes creating and dropping logical clusters, adding or removing instances from the cluster, modifying failover rules, starting and stopping the cluster or instances in the cluster, configuring routing rules, and so on.
- Selects or configures load profiles that the system uses to determine the current relative workload.
- Monitors instances in the cluster and the workload on each instance.

**Logical cluster resources**

A logical cluster is assigned resources from the physical cluster:

- Instances – are a logical cluster’s base instances, which means that they are started when a logical cluster starts and that a failback restores them.
- Failover resources – are an ordered list of instances on which a logical cluster is to run should one or more of the base instances fail. Any instance in the physical cluster can be a failover resource. Workload management capabilities let you group and configure resources to specify failover order and precedence.
The system logical cluster

When you create a shared-disk cluster, Adaptive Server automatically creates a system logical cluster for it. The system logical cluster provides a logical cluster representation for daemons and enables management of certain tasks. It represents the physical cluster, contains all the instances of the physical cluster, and has the same name as the physical cluster. All background tasks, such as checkpoint and housekeeper, run on the system logical cluster. Special rules apply to the system logical cluster. Upon creation, this new system logical cluster is granted the open property, which means that all unbound connections are routed to it.

System administrators typically do not interact with the system logical cluster. However, the following do apply to the system logical cluster:

- Routing rules. For example, you can route logins used by system administrators to the system logical cluster.
- The open property.
- System view setting.
- The load profile.
- Login distribution mode.

The following do not apply to the system logical cluster:

- Failover resources and rules
- Commands that:
  - Create or drop resources of a logical cluster
  - Migrate, fail over, and fail back instances
  - Change a logical cluster or instance state
  - Change failover mode settings
  - Change start-up mode settings
  - Set the down routing mode
Setting up a logical cluster

There are many possible options for configuring a logical cluster; the basic steps for setting up a working logical cluster are:

1. Create a logical cluster.
2. Add instances.
3. Assign routing rules.
4. Start a logical cluster.

In this example, we will create three logical clusters for the “mycluster” physical cluster: “SalesLC,” “HRLC,” and “CatchallLC”.

Creating a logical cluster

Note: You can also use the Adaptive Server plug-in to create logical clusters. See “Adding a logical cluster” on page 243.

Create a logical cluster using `sp_cluster logical, "create"`.

For example, suppose a physical cluster called “mycluster” that contains four instances: “ase1”, “ase2”, “ase3”, and “ase4”. We create three logical clusters:

- “SalesLC” – to handle applications and logins from the Sales Department.
- “HRLC” – to handle applications and logins from the Human Resources Department.
- “CatchallLC” – to use later for an open logical cluster.

To create “SalesLC”, “HRLC”, and “CatchallLC”, enter:

```
sp_cluster logical, "create", SalesLC
sp_cluster logical, "create", HRLC
sp_cluster logical, "create", CatchallLC
```
All instances provide service to a single database store.
Adding instances to a logical cluster

Add instances to the cluster using `sp_cluster logical, "add"`.

Add two instances to the mission-critical “SalesLC”:

```
sp_cluster logical, "add", SalesLC, instance, ase1
sp_cluster logical, "add", SalesLC, instance, ase2
```

Add a single instance to “HRLC”:

```
sp_cluster logical, "add", HRLC, instance, ase3
```

Add a single instance to “CatchallLC”:

```
sp_cluster logical, "add", CatchallLC, instance, ase4
```

Adding routes to a logical cluster

Use `sp_cluster logical, "add"` to route clients to a target logical cluster. See “Assigning routing rules” on page 73.

For example, to route the applications “field_sales” and “sales_reports” to “SalesLC,” enter:

```
sp_cluster logical, "add", SalesLC, route, application, "field_sales;sales_reports"
```

To route the login name “sales_web_user,” which is used by several sales applications via the Internet, to “SalesLC,” enter:

```
sp_cluster logical, "add", SalesLC, route, login, sales_web_user
```

To route all clients using human resources applications to “HRLC”, enter an alias route:

```
sp_cluster logical, "add", HRLC, route, alias, HR_SERVER
```

**Note** Make sure that you include each server alias in the client’s directory service, and that those query entries specify an address on which the physical cluster is listening.

For example, to set up an alias for the client’s directory service:

```
ase1
 query tcp ether bladel 19786
```
ase2
    query tcp ether blade2 19786
ase3
    query tcp ether blade3 19786
ase4
    query tcp ether blade4 19786
mycluster
    query tcp ether blade1 19786
    query tcp ether blade2 19786
    query tcp ether blade3 19786
    query tcp ether blade4 19786
HR_SERVER
    query tcp ether blade1 19786
    query tcp ether blade2 19786
    query tcp ether blade3 19786
    query tcp ether blade4 19786


Starting a logical cluster

To start a logical cluster, which places it in the online state, use sp_cluster logical, "online".

For example, to start “SalesLC” and “HRLC,” enter:

```
sp_cluster logical, "online", SalesLC
sp_cluster logical, "online", HRLC
```

Assigning routing rules

Each client connection to a shared-disk cluster is associated with a logical cluster. That association can be based on a routing rule; it can also be based on the lack of a routing rule, which means the connection is routed to the open logical cluster.
If the connection cannot be directed to a logical cluster, either because the target logical cluster is offline or the client does not support login redirection, the connection can be handled according to the target logical cluster’s down-routing mode. See “Down-routing mode” on page 76 for information about specifying down-routing rules.

**Routing rules**

Routing rules direct incoming client connections to the appropriate logical cluster. Once a connection is routed to a logical cluster, an Adaptive Server task entered for that route can be administered by logical cluster management capabilities.

There are three types of routing rules, or bindings. Each binding uses the name in the TDS login record.

Binding routes are listed in the order of precedence, from highest to lowest. Thus, a login route takes precedence over an application route, which takes precedence over an alias route.

- Login routes – establish a relationship between an Adaptive Server login and a logical cluster.
- Application routes – establish a relationship between an application name and a logical cluster.
- Alias routes – associate a server name with a logical cluster. Applications can choose a logical cluster from server aliases placed in the interfaces file. These aliases use unique server names.

The alias entry can point anywhere in the physical cluster. The workload manager sends it to the correct instances via login redirection.

**Configuring logical cluster attributes**

Every logical cluster possesses a set of attributes, or properties, that control different aspects of logical cluster behavior. Each attribute has a default value. You can accept the default value or change it to best suit your application environment.

To view the current settings for logical cluster attributes, use `sp_cluster logical, "show"`. See “Viewing information about a logical cluster” on page 84.
Use `sp_cluster logical` to manage these attributes:

- **Open** – specifies a logical cluster to which clients without a specific routing plan are directed.
- **System view** – specifies whether monitoring and informational tools such as `sp_who`, `sp_lock`, and monitoring tables describe an instance in the cluster or the whole cluster.
- **Start-up mode** – specifies whether a logical cluster must be started automatically or manually.
- **Down-routing mode** – specifies how client connections are routed if a logical cluster designated by the routing rule is not available.
- **Failover mode** – how and when failover instances are brought online.
- **Fail-to-any** – specifies whether any instance can be a failover resource or only a designated instance can be a failover resource.
- **Load profile** – provides a series of weighted metrics for determining the relative workload on an instance in a logical cluster.
- **Login distribution mode** – specifies how Adaptive Server distributes connections when a logical cluster spans multiple instances.
- **Action release** – releases and clears these logical cluster actions—online, offline, failover, and failback—either manually or automatically after they are completed or cancelled.
- **Gather mode** – collects groups of connections to a different logical cluster either manually or automatically when one of these predefined actions occurs—online, add route, alter route, or drop route.
- **Roles** – indicates whether the logical cluster is “system”, “open”, or "none" if the logical cluster is neither.

### The open logical cluster

All connections not routed to a logical cluster via an explicit routing rule are routed to the current open logical cluster. When you create a new cluster, the system logical cluster is automatically designated the open logical cluster. You can reset the open attribute for another logical cluster. However, only one open logical cluster can exist per physical cluster.

To specify a new open logical cluster, use `sp_cluster logical, "set"`. For example, to designate “CatchallLC” as the open logical cluster, enter:
Configuring logical cluster attributes

sp_cluster logical, "set", CatchallLC, "open"

When you reset the open attribute for a new logical cluster, Adaptive Server automatically turns off the open attribute for the old open logical cluster.

You can use the open property with the down-routing mode to reserve one or more instances for the exclusive use of a specific logical cluster.

Down-routing mode

Routing rules direct incoming client connections to the appropriate logical cluster. See “Assigning routing rules” on page 73. However, routing rules do not specify how connections should be handled when the target logical cluster is offline, or when redirection is required and the connection does not support redirection.

Note The Client-Library property CS_PROP_REDIRECT determines whether a client connection supports login redirection. By default, the value of CS_PROP_REDIRECT is true, and the client connection supports login redirection. See the Client-Library/C Reference Manual.

You can specify a down-routing mode to direct connections when routing rules cannot be applied.

You can also use this attribute to reserve certain instances for specific connections. See “Resource reservation” on page 77.

Use sp_cluster logical, "set" to configure the down-routing mode. Values are:

- system – sends unroutable connections to the system logical cluster. system ensures the highest availability as the system logical cluster is always online for every instance. This is the default setting.

- open – sends unroutable connections to the open logical cluster. If the connection cannot be sent to the open logical cluster, or the connection does not support redirection, Adaptive Server applies the down-routing mode of the open logical cluster.

- disconnect – disconnects unroutable connections. This setting can enforce resource reservation by disconnecting clients that cannot be served by instances in the target logical cluster. See “Resource reservation” on page 77.

For example, to set the down-routing mode to open for “SalesLC”, enter:
sp_cluster logical, "set", SalesLC, down_routing, "open"

This example ensures that, if “SalesLC” is unavailable, clients bound to that logical cluster are routed to the open logical cluster.

Resource reservation

You can use the open property in conjunction with the disconnect down-routing mode to reserve one or more instances for the exclusive use of a specific logical cluster. Suppose, for example, that you want to reserve instance “ase3” for the exclusive use of the “HRLC” logical cluster:

1. Set the open property to a logical cluster that does not include “ase3.”
2. Set the down-routing mode of the open logical cluster to disconnect so that even clients that do not support redirection cannot access it.

Only connections with routing rules specifying “HRLC” can connect to “ase3.”

System-view attribute

The system_view attribute controls how you see the cluster when using system stored procedures such as sp_who and sp_lock, or viewing monitor tables, fake tables, and so on. You can set the system_view attribute so Adaptive Server displays information about the current instance or the physical cluster.

For example, to set the system view for the instance:

```
sp_cluster logical, "set", SalesLC, system_view, instance
```

To set the system view for the cluster:

```
sp_cluster logical, "set", SalesLC, system_view, cluster
```

Setting the system view at a logical cluster level provides a default value for connections in a logical cluster. See the Reference Manual: Procedures.

**Note** The system_view attribute is an administrative tool. Its current value does not affect the way applications perceive a logical cluster, its databases, or database objects.
Configuring logical cluster attributes

Start-up mode

The start-up mode attribute specifies whether a logical cluster starts automatically when the cluster starts, or whether the administrator starts it manually.

- In automatic mode, a logical cluster starts when any of its base instances come online following a cluster restart. Failover instances automatically come online if other failover instances are currently online. This is the default value.
- In manual mode, a logical cluster comes online only after the administrator executes the online command.

For example, to change the start-up mode for “SalesLC” to manual, enter:

```
sp_cluster logical, "set", SalesLC, startup, manual
```
**Fail_to_any attribute**

The fail_to_any attribute determines whether a logical cluster can fail over to any instance in the cluster, or only to designated failover instances. This attribute becomes important only if designated failover instances cannot be brought online.

Set the fail_to_any attribute using `sp_cluster logical, "set"`. Values are:

- **true** – specifies that the system always selects other instances to act as failovers as long as any other instances in the cluster are online and available. This is the default value.
- **false** – specifies that only designated failover instances can be used.

For example, to turn off the fail_to_any attribute for “SalesLC”, enter:

```
sp_cluster logical, "set", SalesLC, fail_to_any, false
```

**Load profile attribute**

Adaptive Server uses the load profile to provide a load score for each instance in a logical cluster. The load score determines when the workload manager directs connections to other instances to help balance the workload. You can use the sample load profiles tested and provided by Sybase or configure your own. See “Load profiles” on page 98 more information.

**Login distribution mode**

The login distribution mode lets you specify how connections are distributed in logical clusters with multiple instances. The login distribution mode does not affect single-instance logical clusters.

Values are:

- **affinity** – specifies that the instance accepting a connection retains it as long as the target logical cluster is running on that instance.
  - If the load profile specifies a load threshold, and the load on the instance is too high, the workload manager redirects the connection to the least loaded instance in a logical cluster.
  - If the target logical cluster is not running on the instance, the workload manager redirects the connection to the least loaded instance in a logical cluster.
Configuring logical cluster attributes

- **round-robin** – specifies that incoming connections are distributed in a round-robin fashion among the instances hosting a logical cluster. For example, if “SalesLC” is running on “ase1” and “ase2”, the workload manager sends the first connection to “ase1,” the next to “ase2”, and so on. Load scores are not included in the algorithm.

**Note** The Cluster Edition does not perform load-based redirection (affinity or round-robin) for connections with the sa_role. However, sa_role connections are redirected if a route directs them to a logical cluster running on another instance.

Sybase recommends Sybase recommends affinity mode for transactional applications with short, frequent connections, and round-robin mode for read-mostly applications where an application server establishes a persistent pool of connections to Adaptive Server.

**Action release**

Action release clears all logical cluster actions—online, offline, failover, and failback—either manually or automatically after these actions are completed or cancelled. To enable or disable automatic clearing of logical cluster actions, the syntax is:

```
sp_cluster logical, "set", "lc_name", "action_release",
{"automatic" | "manual"}
```

To manually clear all actions for a logical cluster, the syntax is:

```
sp_cluster logical, "action", "lc_name", "release", "all"
```

**Gather mode**

Gather mode lets you gather all qualified connections on the system, or those connecting to an open logical cluster, and move them to another logical cluster using defined routing rules. Gather mode can automatically move the connections when a predefined action, such as online, add route, alter route, or drop route, occurs, or you can gather connections manually. Adaptive Server then looks for all connections that match the routing rules for the affected logical cluster, and migrates them to the specified logical cluster.

To manually gather the connections and move them to a named logical cluster, the syntax is:
sp_cluster logical, "gather", "lc_name"

To enable or disable the automatic gathering of connections, the syntax is:
sp_cluster logical, "set", "lc_name", "gather", { "automatic" | "manual" }

See also, “Migrating connections” on page 87.

Roles

The logical cluster role values are “system”, “open”, and “none”:

- System – indicates that that named logical cluster is the system logical cluster. See “The system logical cluster” on page 69.
- Open – indicates that the named logical cluster is the logical cluster to which clients are directed if they do not have a specific routing plan. To make a logical cluster the open logical cluster, see “The open logical cluster” on page 75.
- None – indicates that the logical cluster is neither the system nor the open logical cluster.

To view the current role of the logical cluster, the syntax is:
sp_logical cluster, "show", "lc_name"

Configuring failover

Any instance in a physical cluster can be a failover resource. Logical cluster failover rules do not impact infrastructure, lock remastering, or recovery. You can configure logical cluster failover by specifying:

- Failover resources – specific instances or groups of instances to which failover occurs.
- The failover mode – determines whether failover occurs for individual members of a logical cluster or only for the cluster as a whole. See “Failover mode” on page 78.
- The fail_to_any attribute – determines whether failover occurs only to designated failover resources or to any other instance if the designated failover resources are unavailable. See “Fail_to_any attribute” on page 79.
Configuring failover

When you create a logical cluster, default settings for the fail_to_any attribute ensure that if a base instance fails, it is immediately replaced with another instance. This is the simplest failover strategy, and it is adequate for many sites.

If your site requires finer control of failover resources, you can change the default settings and direct failover to specific instances or groups of instances.

You can create up to 31 failover groups for each logical cluster. By grouping failover instances, you can give preference to specific failover groups. For example, you can ensure that instances in group 1 are considered before instances in group 2, and so on. The workload manager chooses failover instances within the group according to workload: instances with the lighter load are chosen first.

Instances can be a member of only one failover group per logical cluster. Thus, if instance “ase4” is in failover group 1 for “SalesLC”, it cannot also be in failover group 2 for “SalesLC”. However, “ase4” can simultaneously be in failover group 1 for “SalesLC”, failover group 2 for “HRLC”, and a base instance for “CatchallLC”.

When the workload manager needs to activate failover instances, it looks first in group 1, then in group 2, and so on until the failover condition is satisfied. If it cannot activate a configured failover resource, the workload manager checks the fail_to_any parameter configuration. If fail_to_any is true, the workload manager attempts to satisfy failover using any available instance. If fail_to_any is false, failover does not occur.

Adding failover resources

Use sp_cluster logical, "add" to add failover resources to a logical cluster. You cannot add failover resources to the system logical cluster.

Each time you use sp_cluster logical, "add" to add failover resources, Adaptive Server creates one or more failover groups.

If you add one or more failover instances, separating multiple instances with semicolons, Adaptive Server places all instances in a single group.

For example, to add “ase3” as a failover group to “SalesLC”, enter:

```
sp_cluster logical, "add", SalesLC, failover, ase3
```

You can also add failover instances to existing failover groups. For example, suppose “ase3” is a member of failover group 1. To add “ase4” to failover group 1, enter:
sp_cluster logical, "add", SalesLC, failover, ase4, "1"

To view failover resource information, including the failover group ID, use
sp_cluster logical, "show".

Managing logical clusters

This section describes how to manage logical clusters.

User tasks and logical clusters

Each Adaptive Server task (SPID) runs inside a logical cluster. The lcid column
in sysprocesses is a logical cluster ID that is hosting a given task. This ID can
be passed to the lc_name() built-in function to determine the name of the
corresponding logical cluster.

An individual task may run the lc_name() built-in to determine the current
logical cluster.

Managing the workload manager thread

The workload manager thread is a system-service thread that runs on each
instance. When an instance starts, it automatically spawns the workload
manager thread. This thread spends most of its time sleeping, but wakes up
periodically to handle a logical cluster action, gather workload metrics,
calculate the load on each instance, send load information to all instances, and
other management duties.

You can view information about the workload manager by querying
sysprocesses and monProcesses, using sp_who, and using other Adaptive
Server capabilities for monitoring processes.

You may want to change the default value for maximum memory usage for the
workload manager (see “Setting memory requirements for the workload
manager” on page 84). Otherwise, the workload manager requires no
maintenance.
Managing logical clusters

Setting memory requirements for the workload manager

Set the “workload manager cache size” configuration parameter to specify the maximum amount of memory that the workload manager can use. All memory used by the workload manager comes from the memory pool sized by workload manager cache size.

Connection migration consumes memory from this pool; each configured logical cluster, route, and load profile consumes memory from this pool. Actions resulting from commands such as failover and failback consume memory from this pool and continue to do so until the action is released.

Estimate the memory usage based on these guidelines:

- Four memory pages for each concurrent migrating connection
- One page for three logical clusters
- One page for two load profiles
- One page for 30 routes
- One page for 12 actions

Use sp_configure to set the maximum value of the memory pool in increments of 2K pages. For example, to set the value of workload manager cache size to 100 2K pages, enter:

```
sp_configure "workload manager cache size", 100
```

workload_manager_size is dynamic; you need not restart the server. The default value is 80, or 160KB.

The default value is sufficient for most installations. If you anticipate migrating a logical cluster with many concurrent connections, you may need to increase the size of the memory pool.

Viewing information about a logical cluster

To view information about a logical cluster, you can:

- Use the built-in functions lc_name( ), lc_id( ), instance_name( ), and instance_id( ).
- Use the global variables @@clusternname, @@instancename, and @@instanceid.
- Query the monitor tables.
• Use `sp_cluster logical, show`.

**Querying the monitor tables**

The following monitor tables provide information about a logical cluster, the workload, and the workload profile:

- `monLogicalCluster` – provides summary information about the system’s logical clusters.
- `monLogicalClusterInstance` – provides information about each instance in the system’s logical clusters.
- `monLogicalClusterRoute` – provides information about configured routes.
- `monLogicalClusterAction` – provides information about actions in the system’s logical clusters.
- `monWorkload` – provides the workload scores for each instance for each load profile.
- `monWorkloadProfile` – provides information about each load profile.

You can use Transact-SQL commands to query these tables for information. See the *Reference Manual: Tables* for a complete description of each of the monitor tables.

**Using `sp_cluster logical, "show"`**

You can use `sp_cluster logical, "show"` to:

- View summary information about a specific logical cluster or all logical clusters. For example, to view information about “SalesLC”, enter:
  
  ```sql
 sp_cluster logical, "show", SalesLC
  ```

  To view information about all logical clusters, enter:
  
  ```sql
 sp_cluster logical, "show"
  ```

- View information about actions. For example, to view information about all completed actions, enter:
  
  ```sql
 sp_cluster logical, "show", NULL, action, complete
  ```

  To retrieve information about cancelled actions for “SalesLC”, enter:
  
  ```sql
 sp_cluster logical, "show", SalesLC, action, cancelled
  ```
Managing logical clusters

To retrieve information about active actions for Sales LC, enter:

```sql
sp_cluster logical, "show", SalesLC, action, active
```

- View information about configured routes. You can query on a particular application, login, alias, or combination of these.

To view information about the “sales_web_user” login route to “SalesLC”, enter:

```sql
sp_cluster logical, "show", SalesLC, route, login, sales_web_user
```

For complete syntax and usage information for `sp_cluster logical, "show"`, see the Reference Manual: Procedures.

Creating and dropping a logical cluster

- To create a logical cluster, use `sp_cluster logical, "create"`. For example, to create “FinanceLC”, enter:

  ```sql
 sp_cluster logical, "create", FinanceLC
  ```

- To drop a logical cluster, use `sp_cluster logical, "drop"`. A logical cluster must be offline or inactive before it can be dropped. `sp_cluster logical, "drop"` deletes the cluster and all routes, resources, and attributes associated with the cluster.

  For example, to drop “FinanceLC”, enter:

  ```sql
 sp_cluster logical, "drop", FinanceLC, cluster
  ```

Adding resources to a logical cluster

Use `sp_cluster logical, "add"` to add resources to a logical cluster. You can add:

- Base instances – see examples in “Adding instances to a logical cluster” on page 72.

- Failover instances – see examples in “Adding failover resources” on page 82.
Dropping resources from a logical cluster

Use `sp_cluster logical, "drop"` to drop one or more resources from a logical cluster. A base instance or a failover instance must be offline before it can be dropped.

You can drop:

- **Base instances** – for example, to drop instance “ase2” from “SalesLC”, enter:
  ```
 sp_cluster logical, "drop", SalesLC, instance, ase2
  ```

- **Failover instances** – for example, to drop failover instances “ase3” and “ase4” from “SalesLC”, enter:
  ```
 sp_cluster logical, "drop", SalesLC, failover, "ase3;ase4"
  ```

Adding, moving, and dropping routes

- To add a route, use `sp_cluster logical, "add"`. For example, to add a route for the logins “accounting” and “projects” to “SalesLC”, enter:
  ```
 sp_cluster logical, "add", SalesLC, route, login, "accounting;projects"
  ```

- To move a route from one logical cluster to another, use `sp_cluster logical, "alter"`. For example, to create a route to “My LC” using the alias “SalesLC”, and then move the route from “My LC” to “Your LC”, enter:
  ```
 sp_cluster logical, "add", My_LC, route, alias, SalesLC
 sp_cluster logical, "alter", Your_LC, route, alias, SalesLC
  ```

- To drop a route, use `sp_cluster logical, "drop"`. For example, to drop the login “projects” from “SalesLC”, enter:
  ```
 sp_cluster logical, "drop", SalesLC, route, login, projects
  ```

Migrating connections

Use `sp_cluster connection "migrate"` to:
Migrate the logical cluster or instance on which a connection (or another task) is running.

Migrate an application or login to a logical cluster or instance for which it is not routed.

For example, this migrates the connection with a spid of 73 to the SalesLC logical cluster.

```
sp_cluster connection, "migrate", SalesLC, NULL, "73"
```


Use `sp_cluster logical` to set a manual or automatic migration to another logical cluster or gather groups of connections to another logical cluster when predefined events occur. You can “gather” all qualified connections on the system or logical cluster to a designated logical cluster using the defined routing rules. The Cluster Edition looks for all connections that match the routing rules for this logical cluster, and migrates them to the specified logical cluster.

The syntax is:

```
sp_cluster logical, 'gather', lc_name
sp_cluster logical 'set', lc_name, 'gather', 'automatic | manual'
```

This gathers all the defined connections to the SalesLC logical cluster:

```
sp_cluster logical, 'gather', SalesLC
```

This sets the gathering to “manual” for the SalesLC logical cluster:

```
sp_cluster logical 'set', SalesLC, 'gather' 'manual'
```


---

### Administering failover, failback, and planned downtime

You can manually change the state of a logical cluster and its instances using `sp_cluster logical, "action"`, when the action is one of:

- failover
- failback
- online
- offline
• deactivate

Cluster and instance states

A logical cluster and each instance in the cluster can have different states.

• A logical cluster has an overall, or global, state that determines, for example, whether the cluster is offline or online.

• A logical cluster also has an instance state that describes the state of a particular instance as it is perceived by a logical cluster. For example, an online logical cluster may be online on its base instances and offline on its failover instances. This state may be independent of the actual Adaptive Server state, as a logical cluster may be offline on an instance that is actually up and running.

There are five states that are visible to the user. These states apply to a logical cluster state as well as the instance state. Table 6-1 describes each state at the global and instance levels.

Table 6-1: Logical cluster states

<table>
<thead>
<tr>
<th>State</th>
<th>At the global level</th>
<th>At the instance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>online</td>
<td>A logical cluster is online and running on one or more instances.</td>
<td>The online logical cluster is accepting and managing connections on the current instance.</td>
</tr>
<tr>
<td>offline</td>
<td>A logical cluster is not running on any instance.</td>
<td>A logical cluster is not running on the current instance, which cannot accept connections or consume resources.</td>
</tr>
<tr>
<td>inactive</td>
<td>Similarly to the offline state, a logical cluster is not running on any instance. Inactive logical clusters are not started automatically and do not participate in failover. The cluster achieves the inactive state only through the deactivate command. Once inactive, the cluster comes online only through the online command.</td>
<td>A logical cluster is not running on the current instance, which cannot accept connections or consume resources. In addition, the inactive instance cannot fail over and is not brought online after an automatic start-up. This state is achieved only via the deactivate command.</td>
</tr>
<tr>
<td>failed</td>
<td>Similarly to the offline state, a logical cluster is not running on any instance. A logical cluster moves to the failed state when its active instances are shutdown with nowait or encounter a system failure when no failure resources are available.</td>
<td>A logical cluster is not running on the current instance, which cannot accept connections or consume resources. The failed state is reached via a shutdown with nowait or system failure.</td>
</tr>
</tbody>
</table>
Administering failover, failback, and planned downtime

Cluster and instance states can change:

- Manually, when you execute a state change using the online, offline, failover, and failback commands; and sometimes with the action command
- Automatically, as a result of system changes

The initial state of the cluster or instance can dictate whether or not a state change is valid, and even the final state. Table 6-2 shows how different actions, executed manually, and states interact. States are described in rows; actions are described in columns. Each cell represents the new state when an action is applied to a logical cluster or instance in the initial state.

### Table 6-2: Interaction of action and state

<table>
<thead>
<tr>
<th>State</th>
<th>At the global level</th>
<th>At the instance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>time_wait</td>
<td>A transition state between online and offline or inactive. An online logical cluster must enter the time_wait state before becoming offline or inactive. During this time, any new connections are routed according to the down-routing mode, and existing connections migrate or disconnect.</td>
<td>A transition state between online and offline or inactive. When a logical cluster is online for an instance, it must enter the time_wait state before becoming offline or inactive. In the time_wait state, no new connections can be routed to a logical cluster or instance, but existing connections continue to run until they migrate or disconnect.</td>
</tr>
</tbody>
</table>

How states change

States can also change as the result of system changes. Table 6-3 shows the effects of different system changes on the state of the cluster or instance.

### Table 6-3: Interaction of action and state

<table>
<thead>
<tr>
<th>State</th>
<th>At the global level</th>
<th>At the instance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>offline</td>
<td>online</td>
<td>time_wait</td>
</tr>
<tr>
<td>Offline</td>
<td>offline/time_wait</td>
<td>offline/time_wait</td>
</tr>
<tr>
<td>Failback instance</td>
<td>online</td>
<td>online/time_wait</td>
</tr>
<tr>
<td>Failback cluster</td>
<td>online/time_wait</td>
<td>offline/time_wait</td>
</tr>
<tr>
<td>Failover instance</td>
<td>online</td>
<td>online/time_wait</td>
</tr>
<tr>
<td>Failover cluster</td>
<td>online/time_wait</td>
<td>offline/time_wait</td>
</tr>
<tr>
<td>Cancel action</td>
<td>online</td>
<td>online/time_wait</td>
</tr>
<tr>
<td>Modify wait</td>
<td>time_wait</td>
<td>time_wait</td>
</tr>
<tr>
<td>Deactivate</td>
<td>inactive</td>
<td>inactive/time_wait</td>
</tr>
</tbody>
</table>
### Asynchronous commands and logical cluster states

The `sp_cluster` logical commands `deactivate`, `failback`, `failover`, and `offline` are asynchronous. They stop an online instance that may have existing transactions. These transactions must be handled before the instance can actually be taken offline or made inactive. As a consequence, these commands can be allowed to complete at a later time and context.

When you execute any of these commands, the target instance is placed in the `time_wait` state, and no longer accepts new connections.

Each asynchronous command provides three “wait” options for handling existing transactions. Values are:

- **wait** – lets existing connections remain for a specified period of time, for example five minutes. Connections that support migration migrate as soon as they are quiescent. Connections that do not support migration disconnect when they become quiescent. HA-aware clients fail over; clients that are not HA-aware disconnect. Connections remaining after the specified time are terminated.

- **until** – lets existing connections remain until a specified time, for example 12:30 p.m. Otherwise, `until` and `wait` handle connections in the same way.

---

**Note** Logical cluster states are not retained following a total cluster restart. For example, suppose you execute the `offline` command for a logical cluster that is in automatic start-up mode. The cluster is in the online state after you restart it.

---

<table>
<thead>
<tr>
<th>Instance joins cluster</th>
<th>offline</th>
<th>online</th>
<th>time_wait</th>
<th>failed</th>
<th>inactive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>online if automatic start-up is configured</td>
<td></td>
<td></td>
<td>online if automatic start-up is enabled</td>
<td></td>
</tr>
</tbody>
</table>

| Graceful shutdown      | time_wait |        |           |        |          |
|                        |           |        |           |        |          |

| System failure         | failed    |failed |          |        |          |
|                        |           |        |           |        |          |

| Shutdown with nowait   | failed    | failed |          |        |          |
|                        |           |        |           |        |          |

| Failover selection     | online    |        |           |        |          |
|                        |           |        |           |        |          |
Administering failover, failback, and planned downtime

- **nowait** – terminates existing connections immediately. Connections that support migration must migrate immediately, or they are terminated.

**Note** If you do not specify a wait option when executing an `sp_cluster logical` asynchronous command, Adaptive Server assumes an infinite wait.

When the last connection using the instance disconnects, the instance state changes from time_wait to offline or inactive.

**Using action descriptors**

Action descriptors let you track or change an action.

When an asynchronous command seeks to stop one or more instances, it generates an action descriptor. The action descriptor tracks the action, the wait option, and target instances in the time_wait state. You can view information about an action descriptor by querying the `monLogicalCLusterAction` table or executing `sp_cluster logical, "show", NULL, action`.

An action can be “active” or “complete.” An action is active when at least one target instance remains in the time_wait state. An action is complete when all target instances are no longer in the time_wait state.

Using `sp_cluster logical, action`, you can manage action descriptors using these options:

- **cancel** – terminates active actions. Instances in the time_wait state due to that action return to the online state. Existing connections remain, even if they were marked for migration or termination.

  If the command that resulted in the creation of the action brought instances online, they remain online. For example, if an action results in the cancellation of a failover from s1 to f1, f1 remains online.

- **modify_wait** – changes the wait option (see “Asynchronous commands and logical cluster states” on page 91) and time associated with an active action. For example, if an action is created with a 10-minute wait, use `modify_wait` to change:
  - The time delay to 20 minutes
  - The time delay to the actual clock time of 4:30 p.m.
  - The wait option to `nowait`
• `release` – removes a completed action from the `monLogicalClusterAction` table.

Completed actions remain in the `monLogicalClusterAction` table so you can track their status. However, completed actions consume memory from the workload manager cache. Execute the `release` command after an action completes to free this memory.

**Note** Action information is stored in memory only. Restarting the full cluster clears all actions from the `monLogicalClusterAction` table.

**An example: scheduling and rescheduling a failover**

You can execute an administrative failover for a cluster or an instance. The cluster or instance fails over to previously configured failover resources.

In this example, we fail over the “SalesLC” cluster, scheduling the failover for 2 a.m. So that we can later track or change the action, we also include the syntax that outputs an action handle:

```sql
declare @out_handle varchar(15)
execute sp_cluster logical, "failover", SalesLC, cluster, NULL, until, "02:00:00", @handle = @out_handle output
```

Suppose the command outputs the action handle “1234”, and SalesLC enters the time_wait state. All new connections migrate to the failover resources. Any existing connections remaining after 2 a.m. are terminated, and “SalesLC” enters the offline state.

Suppose we find that we must migrate all connections immediately. We can use the action handle to reschedule an immediate failover. Enter:

```sql
sp_cluster logical, "failover", SalesLC, modify_time, "1234", nowait
```
Using failover, failback, online, offline, and deactivate

failover

fails over a logical cluster's base resources to its failover resources. Failover resources must be set up previously using `sp_cluster logical, "add"`. When initiating a partial-cluster failover, specify a list of base resources that are to fail over, and a list of failover resource to which the base instances will fail over.

For example, you can fail over a portion of a logical cluster to a set of previously configured failover resources. Here, “SalesLC” is running on instances “ase1” and “ase3.” To keep “SalesLC” running on “ase2”, but fail over “ase1” to the previously defined failover resource “ase3”, enter:

```
sp_cluster logical, "failover", SalesLC, instance, ase1, ase3
```

In this example, the `no wait` option has been specified, which, by default, specifies an infinite wait.

failback

fails back a logical cluster from its failover resources to its base resources. When initiating a partial-cluster failback, you specify a list of failover resources that are to fail back and a list of base resources to which the failover instances will fail back.

In this example, we incrementally fail back “SalesLC”, which is running on “ase3”, so that “SalesLC” runs on “ase1.” We specify a 2-minute wait.

```
declare @out_handle varchar(15)
exe
```

execute

```
sp_cluster logical, "failback", SalesLC, instance, ase3, ase1, wait, "00:02:00", @handle = @out_handle
```

output

online

starts a logical cluster or instances in a logical cluster, placing them in the online state.

For example, to start SalesLC on “ase1”, enter:

```
sp_cluster logical, "online", SalesLC, ase1
```
See “Starting a logical cluster” on page 73 for more examples.

**offline**

 offline stops logical clusters or instances in the online or active state.

For example, to take “SalesLC” offline, wait 5 minutes, and store the action in an action handle in a local variable, enter:

```sql
declare @out_handle varchar(15)
execute
sp_cluster logical, "offline", SalesLC, cluster, wait,
00:05:00, @handle=@out_handle output
```

**deactivate**

 deactivate is identical to offline, except it puts the cluster or instance in the inactive state. See “offline” on page 95.

**Distributing the workload**

Each instance has a workload manager thread that is responsible for calculating the load on the current instance and sending that information to the other instances in the cluster. The workload manager is a system-service thread; it is spawned when the instance starts.

Adaptive Server uses a workload measurement algorithm to calculate a load score for each instance. This load score is a unitless number that can be compared with other load scores to determine relative workloads. Thus, you can compare load scores across a cluster or at different times for a particular cluster. A load score is meaningful only when compared to other load scores.

**Workload metrics**

The workload manager recalculates load scores every 15 seconds, using the load scores (and the resulting statistics) to compare the relative workloads for all instances in the cluster. The workload manager uses the statistics to populate the monitoring tables. The statistics are per-instance: the workload manager does not track per-SPID statistics.
Distributing the workload

Use `workload_metric` to update the value of the user metric for an instance, which is used to calculate the total load score of an instance. You can include `workload_metric` in a user-defined stored procedure, trigger, or an externally triggered script. The instances recalculate the load score every 15 seconds.

When calculating a load score, Adaptive Server considers five system-defined metrics and, optionally, one user-supplied metric.

- User connections – the capacity of an instance to accept a new connection, based on resource availability.
- CPU utilization – the capacity of an instance to accept additional work.
- Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
- I/O load – outstanding asynchronous I/Os.
- Engine deficit – the difference in the number of online engines among instances in the cluster.

**Note** Engine deficit is measurable only when instances in the cluster have unequal numbers of engines. In this scenario, engine deficit adds a metric for maximum relative capacity to the load score.

- User metric – an optional metric specific to the user’s environment. Use `workload_metric` to supply its value. See “Creating a user metric.”

The load score is calculated with this formula:

\[
	ext{Load score} = \frac{\text{ConnectionsWeight} \times \text{ConnectionsLoad}}{100} + \frac{\text{CPUWeight} \times \text{CPULoad}}{100} + \frac{\text{RunQueueWeight} \times \text{RunQueueLoad}}{100} + \frac{\text{UserDefinedWeight} \times \text{UserDefinedLoad}}{100} + \frac{\text{EngineWeight} \times \text{EngineLoad}}{100} + \frac{\text{IOWeight} \times \text{IOLoad}}{100}
\]

Creating a user metric

You can add a site-specific metric to the workload measurement algorithm using the `workload_metric` built-in function. In a typical example, you might monitor response time using an external monitor, and then insert the response-time values into the algorithm.
Adaptive Server normalizes system-supplied metrics before including them in the workload algorithm. For compatibility, you must normalize the user-supplied metric as well. For example, if the maximum acceptable response time is 5 seconds and the measured response time is 2 seconds, the normalized value is 40 (2 is 40% of 5), which can be entered into the workload algorithm using `workload_metric`.

Weighting the workload metrics

Each component of the load score is weighted according to importance. The metric values are normalized, and the results are summed to give each instance an overall load score. Sybase supplies default values that are sufficient for most sites, but if you are including a site-specific metric, you may want to adjust the weights using `sp_cluster profile`.

Use Sybase Central or `sp_cluster` to enter and adjust the weighting factors, which are visible to the system administer to customize the Workload Profiles.

Load thresholds

Adaptive Server uses the load score for each instance to determine:

- How best to distribute incoming connections – login redirection.
- Whether to migrate existing connections – dynamic load distribution.

Load distribution is performed only for a logical cluster running on multiple instances. The Sybase load distribution strategy is to redirect work when one instance is overloaded and other instances are available. It does not seek to maintain perfectly balanced load scores. As a result, Adaptive Server maintains load thresholds for login redirection and dynamic load distribution. The load threshold is the percentage difference between the load on the current instance and the load on the least loaded instance currently participating in a logical cluster. That value must be met before Adaptive Server redirects a login or migrates an existing connection.

Adaptive Server maintains separate load thresholds for login redirection and connection migration. Typically, the login redirection threshold is lower than that for connection migration. You can use `sp_cluster profile` to configure the load thresholds when creating a load profile.
Using the sample load profiles

Hysteresis value

The load threshold tells Adaptive Server when to redirect connections from an overloaded instance to the least loaded instance. The hysteresis value guards against migration when the threshold value is met, but the actual load scores are too low to require migration.

For example, suppose the load score on the current instance is 2 and that of the least loaded instance is 1. The percentage difference is 100%, which meets the load threshold, but the actual load scores are so low migration is not appropriate.

Load profiles

Load profiles consolidate all configurable aspects of the workload scoring system into a single named entity.

You can assign different load profiles to different logical clusters in the same physical cluster, thus enabling multiple applications with diverse workloads within the same physical cluster. You can also share the same load profile among multiple logical clusters.

For example, a shared-disk cluster can simultaneously host a DSS-based logical cluster that is primarily read-only and an OLTP logical cluster that handles frequent writes. The optimum thresholds for login redirection and connection migration for these two clusters may be very different. The ability to assign specific load profiles to each logical cluster allows each cluster to function more efficiently.

Note Adaptive Server gathers load statistics for each instance without regard to logical cluster. Thus, if two logical clusters run on the same instance, they will have the same raw data for that instance. However, each logical cluster will interpret and use that data according to its own load profile.

Sybase provides a preconfigured profile created for an OLTP environment. You can also create your own load profiles using sp_cluster profile.

Using the sample load profiles

Sybase provides two sample load profiles:
sybase_profile_oltp – is configured for OLTP environments. It tries to keep all connections on the same instance by disabling load-based login distribution and dynamic-load distribution. Emphasis is placed on requeue depth, which is a good predictor of response time.

sybase_profile_dss – is configured for primarily read-only, DSS environments. It uses load-based login distribution and dynamic load distribution to distribute load across multiple instances, but places emphasis on balancing CPU usage and user connections.

Table 6-4 lists the metrics for sybase_profile_oltp and sybase_profile_dss.

<table>
<thead>
<tr>
<th>Workload metric</th>
<th>&quot;sybase_profile_oltp&quot;</th>
<th>&quot;sybase_profile_dss&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile ID</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>User connections</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>CPU utilization</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Run-queue length</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>I/O load</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Engine deficit</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>User weight (not used)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Login threshold</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Dynamic threshold</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Creating and configuring your own load profile

To create and configure your own load profile:

1. Create the empty load profile.
2. Build the load profile by specifying individual metric weights and thresholds.
3. Associate the load profile with a logical cluster.

Creating the load profile

Build the empty load profile using sp_cluster profile, "create". For example, to create the profile "my_profile", enter:
Creating and configuring your own load profile

sp_cluster profile, "create", my_profile

Building the load profile

Build the load profile by specifying:

- A weight for each of the metrics that make up the load profile
- Load distribution thresholds

Specifying weights for load profile metrics

Use `sp_cluster profile, "set"` to configure weights for each of the metrics covered in the load profile:

- User connections
- CPU busy
- Run-queue length
- I/O load
- Engine deficit
- User metric (optional, see “Creating a user metric” on page 96)

See “Workload metrics” on page 95 for a description of the workload metrics.

Set each metric individually using values between 0 and 255. For example, to set weights for “my_profile”, enter:

```
sp_cluster profile, "set", my_profile, weight, "user connections", "0"
sp_cluster profile, "set", my_profile, weight, "cpu busy", "20"
sp_cluster profile, "set", my_profile, weight, "run queue", "30"
sp_cluster profile, "set", my_profile, weight, "io load", "10"
sp_cluster profile, "set", my_profile, weight, "engine deficit", "10"
sp_cluster profile, "set", my_profile, weight, "user`
Specifying load distribution thresholds

Set load distribution thresholds values between 0 and 100 using `sp_cluster profile, "set"`. A value of zero (0) disables that aspect of load distribution. You can set separate load thresholds for:

- Login redirection
- Dynamic load distribution
- The hysteresis value

For example, to turn off dynamic load distribution in “my_profile,” enter:

```
sp_cluster profile, "set", my_profile, threshold, "dynamic", "0"
```

To set the login redirection threshold to 30 for “my_profile,” enter:

```
sp_cluster profile, "set", my_profile, threshold, "login", "30"
```

To set the hysteresis value to 20 for “my_profile,” enter:

```
sp_cluster profile, "set", my_profile, threshold, "hysteresis", "20"
```

Associating the load profile with a logical cluster

To associate a load profile with a logical cluster, use `sp_cluster logical, "set"`. For example, to associate the profile “my_profile” with “SalesLC,” enter:

```
sp_cluster logical, "set", SalesLC, load_profile, my_profile
```

Changing a load profile

Each logical cluster is associated with a load profile, either a system load profile or a user-created load profile. To change the load profile, associate the new load profile with a logical cluster.

For example, to change the load profile for “SalesLC” from “my_profile” to “sybase_profile_oltp,” enter:
sp_cluster logical, "set", SalesLC, load_profile, sybase_profile_oltp

You can then drop the old load profile. For example, to drop “my_profile,” enter:

sp_cluster profile, "drop", my_profile

Troubleshooting

Sybase provides several trace flags that you can use to troubleshoot the workload manager.

Table 6-5: Trace flags for the workload manager

<table>
<thead>
<tr>
<th>Trace flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16403</td>
<td>Traces SPID through connection to and disconnection from a logical cluster.</td>
</tr>
<tr>
<td>16404</td>
<td>Traces routes and route resolution.</td>
</tr>
<tr>
<td>16406</td>
<td>Traces client redirection and migration.</td>
</tr>
<tr>
<td>16414</td>
<td>Traces changes in a logical cluster state machines, including transitions from online to offline and so on.</td>
</tr>
</tbody>
</table>
CHAPTER 7

Cluster Cache Configuration

This chapter presents the mechanics of configuring and using named data caches in a Cluster Edition environment.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global caches</td>
<td>103</td>
</tr>
<tr>
<td>Local caches</td>
<td>104</td>
</tr>
<tr>
<td>Creating and configuring named data caches</td>
<td>105</td>
</tr>
<tr>
<td>Configuring and using multiple buffer pools</td>
<td>115</td>
</tr>
<tr>
<td>Binding objects to named caches</td>
<td>120</td>
</tr>
<tr>
<td>Modifying the configuration file</td>
<td>122</td>
</tr>
<tr>
<td>Limitations</td>
<td>126</td>
</tr>
</tbody>
</table>

Cluster cache configuration defines multiple named caches to have local or global caches according to application needs. This feature allows cluster instances to have local caches. Objects can be bound to local or global caches. Multiple buffer pool support provides better access performance to named cache support, by facilitating large I/Os.

Users can also partition an application to localize access of application data to a particular instance serving that application.

Global caches

Global caches are defined for every instance in a cluster. For a global cache, the attributes like cache size, buffer pool setting, are system configuration table, and all instances in a cluster read from this entry to create the cache on their respective instances.
Local caches

It is possible to change such attributes as cache size, buffer pool settings, of a global cache to be instance-specific. If a particular instance has local settings, the cache is created using them. If the instance has no local definition, it uses a global definition to create the cache. In other words, instances that have local definitions override the global definitions and settings.

Note You can increase the size of local and global caches dynamically, but you cannot reduce them dynamically.

Local caches

Your application can define local caches for each instance in the cluster, to cater to the instance’s specific needs and to bind the cache to an object. A global definition is not required for each instance-specific cache in the cluster.

Local caches are instance-specific. You can tailor their configuration to the needs of the instance or the logical cluster to which the instance belongs. Sybase recommends that you partition applications across instances within a cluster when a particular application usually runs in a particular instance. This maximizes the benefits of local caches, as you can configure them specifically for a particular application’s access patterns.

An object can be bound to only one cache, either local or global, at any particular instance. If you do not bind the object to any cache, or in case of failover, where an instance-specific cache is not configured, it uses the default data cache. To aid efficient access, Adaptive Server maintains binding information on every instance.

Note A local cache definition on any instance overrides any global definition at that instance.
Creating and configuring named data caches

sp_cacheconfig creates and configures both global and local data caches. When Adaptive Server is installed, it contains a single global cache called the default data cache.

Getting information about named caches

You can see information about caches by entering:

```sql
sp_cacheconfig
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default data cache</td>
<td>Active</td>
<td>Global,Default</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
</tbody>
</table>

Creating a new cache

The maximum data cache size is limited only by the amount of available memory on your system. The memory required to create the new cache is taken from the Adaptive Server global memory.

When the cache is created:

- It has a default wash size.
- The asynchronous prefetch size is set to the value of global asynchronous prefetch limit.
- It has only the default buffer pool.
Creating and configuring named data caches

sp_cacheconfig

Definition

Creates a new named cache. This syntax is extended from that of nonclustered Adaptive Server. It provides an extra option to specify the instance name for the local configuration at the end of the syntax. If you do not specify the instance name, the configuration is global.

Syntax

```
sp_cacheconfig "[cachename [,cache_size [P|K|M|G]]
[ ,logonly | mixed ] [ ,strict | relaxed ]]
[, "cache_partition = [1|2|4|8|16|32|64]"
[, "instance instance_name"]
```

Parameters

- **cachename**

 is the name of the data cache to be created or configured. Cache names must be unique, and can be up to 30 characters long. A cache name does not have to be a valid Adaptive Server identifier, that is, it can contain spaces and other special characters.

- **cache_size**

 is the size of the data cache to be created or, if the cache already exists, the new size of the data cache. The minimum size of a cache is 256 times the logical page size of the server. Size units can be specified with P for pages, K for kilobytes, M for megabytes, or G for gigabytes. The default is K. For megabytes and gigabytes, you can specify floating-point values. The cache size is in multiples of the logical page size.

- **logonly | mixed**

 – specifies the type of cache.

- **strict | relaxed**

 – specifies the cache replacement policy.

- **cache_partition**

 – specifies the number of partitions to create in the cache.

Example assumptions

The following examples assume a shared-disk cluster named MYCLUSTER, which contains two instances:

- **SALES_INSTANCE**
- **HR_INSTANCE**

Creating a named cache

We can create a named cache log_sales of size 100M which is specific to instance SALES_INSTANCE. Executing `sp_cacheconfig` on instance SALES_INSTANCE displays this output:

```
sp_cacheconfig 'log_sales','100M','instance SALES_INSTANCE'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
By default, an isql connection has a cluster view. All instance-specific caches are displayed at any instance. For example, instance HR_INSTANCE displays information about cache log_sales, which is the instance-specific cache for SALES_INSTANCE. If you want HR_INSTANCE to see only the list of the local caches specific to this instance, and the global caches, set the system view to instance.

Executing sp_cacheconfig on instance HR_INSTANCE displays:

set system_view instance
go

Cache Name Status Type Config Value Run Value
----------- ------ ----- ----------- -----------
default data cache Active Global,Default 0.00 Mb 8.00 Mb

Total 0.00 Mb 8.00 Mb

(by default, an isql connection has a cluster view. All instance-specific caches are displayed at any instance. For example, instance HR_INSTANCE displays information about cache log_sales, which is the instance-specific cache for SALES_INSTANCE. If you want HR_INSTANCE to see only the list of the local caches specific to this instance, and the global caches, set the system view to instance.)
Creating and configuring named data caches

Restricting the output of cache information to instance level

To display caches at instance SALES_INSTANCE, execute:

```sql
sp_cacheconfig 'instance SALES_INSTANCE'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default data cache</td>
<td>Active</td>
<td>Global,Default</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

Total 100.00 Mb 108.00 Mb

This output displays both local and global configurations of instance SALES_INSTANCE.

Querying the existence of named caches

To find out whether a specified cache already exists. Executing `sp_cacheconfig` on instance SALES_INSTANCE displays this output:

```sql
sp_cacheconfig 'instance SALES_INSTANCE'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

Total 100.00 Mb 100.00 Mb

This output displays.
Using Adaptive Server syntax to create global caches

This cache is created at all instances and memory is allocated at all instances for a global cache. To create global cache `tempdb_cache`, run `sp_cacheconfig` at instance `SALES_INSTANCE`:

```sql
sp_cacheconfig 'tempdb_cache', '100M'
g
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default data cache</td>
<td>Active</td>
<td>Global,Default</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

Total: 200.00 Mb 208.00 Mb

```
IO Size Wash Size Config Size Run Size APF Percent
-------- ------------- ------------ ------------ -----------
2 Kb 1638 Kb 0.00 Mb 8.00 Mb 10
```
Creating and configuring named data caches

Creating a named cache with a single global and multiple local configurations All cache operations can be executed from any instance. For example, to create a bigger named cache, tempdb_cache, at SALES_INSTANCE, we can connect to instance HR_INSTANCE and execute:

```
sp_cacheconfig 'tempdb_cache','150M', 'instance SALES_INSTANCE'
```

Executing `sp_cacheconfig` at instance SALES_INSTANCE displays:

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default data cache</td>
<td>Active</td>
<td>Global,Default</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td>SALES_INSTANCE:log_hr</td>
<td>Active</td>
<td>Mixed</td>
<td>150.00 Mb</td>
<td>150.00 Mb</td>
</tr>
<tr>
<td>SALES_INSTANCE:tempdb_cache</td>
<td>Active</td>
<td>Mixed</td>
<td>150.00 Mb</td>
<td>150.00 Mb</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>350.00 Mb</td>
<td>408.00 Mb</td>
</tr>
</tbody>
</table>

Cache: default data cache, Status: Active, Type: Global,Default
Config Size: 0.00 Mb, Run Size: 8.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

Cache: tempdb_cache, Status: Active, Type: Global,Mixed
Config Size: 100.00 Mb, Run Size: 150.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

Cache: SALES_INSTANCE:log_hr, Status: Active, Type: Mixed
Config Size: 150.00 Mb, Run Size: 100.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

Cache: SALES_INSTANCE:tempdb_cache, Status: Active, Type: Mixed
Config Size: 150.00 Mb, Run Size: 150.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

110 Adaptive Server Enterprise Cluster Edition
Chapter 7 Cluster Cache Configuration

IO Size Wash Size Config Size Run Size APF Percent

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kb</td>
<td>30720 Kb</td>
<td>0.00 Mb</td>
<td>150.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>

{return status = 0}

Note The local configuration of the named cache tempdb_cache overrides the global configuration.

For example, if you set the system view to cluster, Adaptive Server may display all the configurations for a named cache, and you should ignore run values of any configuration which is not valid at that instance. For example, SALES_INSTANCE has a valid local configuration, cache tempdb_cache. Therefore, you should ignore the run values for global configuration.

Similarly, HR_INSTANCE has a valid global configuration. Therefore you should ignore the run values for local configuration of tempdb_cache that are related to SALES_INSTANCE at instance HR_INSTANCE.

Adding memory to an existing cache

To add memory, use the syntax documented in the *Reference Manual: Procedures*. The additional memory you allocate is added to the Adaptive Server page size pool. For example, the smallest size for a pool is 2K in a server with a logical page size of 2K. If the cache is partitioned, the additional memory is divided equally among the partitions.

Note If adding memory to an existing global cache fails at an instance, but succeeds at least one other instance, the server treats the operation as successful at the cluster-wide level. It is thus possible to have different run values for a global cache, but a single configuration value for the cache. `sp_cacheconfig` shows the run values of a global cache from the `syscurconfigs` entry of the current instance.

To increase tempdb_cache size to 200MB, in instance HR_INSTANCE, execute the following. Executing `sp_cacheconfig 'tempdb_cache'` on instance HR_INSTANCE displays this output:

```
sp_cacheconfig 'tempdb_cache', '200M'
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>200.00 Mb</td>
<td>200.00 Mb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total 200.00 Mb</td>
<td>200.00 Mb</td>
</tr>
</tbody>
</table>
Creating and configuring named data caches

You can also increase the cache size of a local cache using the instance option documented on “sp_cacheconfig” on page 106.

Allocating space for a new cache If Adaptive Server cannot allocate the amount of memory you request, it allocates all available memory and issues an error message, telling you how many kilobytes have been allocated dynamically.

However, this memory is not allocated until you restart Adaptive Server. Adaptive Server notifies you of insufficient space, either because memory is unavailable, or because of resource constraints, which system administrators should ensure are temporary. If this behavior persists, a subsequent restart may fail.

For example, if the maximum memory is 700MB, tempdb_cache is 100MB, making the server’s total logical memory 600MB, and you attempt to add 100MB to tempdb_cache, the additional memory fits into maximum memory. However, if the server can allocate only 90MB, it allocates this amount dynamically, but the size field of the cache in the configuration file is updated to 100MB. On a subsequent restart, since Adaptive Server obtains memory for all data caches at once, the size of pub_cache is 100MB.

Decreasing a cache When you reduce a cache size, restart Adaptive Server. For example, to decrease the size of tempdb_cache to 100M, use the following.

```
sp_cacheconfig 'tempdb_cache', '100M'
go
```

```
Cache Name  Status Type     Config Value  Run Value
------------ ---------- ------------ ------------
tempdb_cache Active Global,Mixed  100.00 Mb 200.00 Mb
-------------------------- Total  100.00 Mb 200.00 Mb
```

Executing `sp_cacheconfig 'tempdb_cache', '100M'` on instance HR_INSTANCE displays:

```
Cache: tempdb_cache, Status: Active, Type: Global,Mixed
    Config Size: 100.00 Mb, Run Size: 200.00 Mb
    Config Replacement: strict LRU, Run Replacement: strict LRU
    Config Partition: 1, Run Partition: 1
```
CHAPTER 7 Cluster Cache Configuration

After restarting Adaptive Server and executing the command on HR_INSTANCE:

```sql
sp_cacheconfig 'tempdb_cache'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Size</th>
<th>Run Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

Deleting a named cache
To delete a named cache completely, reset its size to 0:

```sql
sp_cacheconfig 'tempdb_cache','0'
g`
Creating and configuring named data caches

```
-- tempdb_cache Active Global,Mixed 100.00 Mb 100.00 Mb
 ------------ ----------- -----------
 Total 100.00 Mb 100.00 Mb

Cache: tempdb_cache, Status: Active, Type: Global,Mixed
 Config Size: 100.00 Mb, Run Size: 100.00 Mb
 Config Replacement: strict LRU, Run Replacement: strict LRU
 Config Partition: 1, Run Partition: 1
 IO Size Wash Size Config Size Run Size APF Percent
 -------- ------------- ------------ ------------ -----------
 2 Kb 20480 Kb 0.00 Mb 100.00 Mb 10
(return status = 0)
```

Changing the cache type  To reserve a cache for use only by the transaction log, change the cache type to logonly. This change is dynamic. To create a logonly cache at HR_INSTANCE, enter the following. Executing `sp_cacheconfig 'log_hr', 'instance HR_INSTANCE'` displays this output:

```
sp_cacheconfig 'log_hr', 'logonly', 'instance HR_INSTANCE'

Cache Name Status Type Config Value Run Value
------------------ ------ -------- ------------ ------------
HR_INSTANCE:log_hr Active Log Only 150.00 Mb 150.00 Mb
 ------------ -----------
 Total 150.00 Mb 150.00 Mb

Cache: HR_INSTANCE:log_hr, Status: Active, Type: Log Only
 Config Size: 150.00 Mb, Run Size: 150.00 Mb
 Config Replacement: strict LRU, Run Replacement: strict LRU
 Config Partition: 1, Run Partition: 1
 IO Size Wash Size Config Size Run Size APF Percent
 -------- ------------- ------------ ------------ -----------
 2 Kb 30720 Kb 0.00 Mb 150.00 Mb 10
(return status = 0)
```

Configuring cache replacement policy  If a cache is dedicated to a table or an index, and the cache has little or no buffer replacement when the system reaches a stable state, you can set the relaxed LRU (least recently used) replacement policy. The relaxed LRU replacement policy can improve performance for caches where there is little or no buffer replacement occurring, and for most log caches. To set relaxed replacement policy:

```
sp_cacheconfig 'log_sales', 'relaxed', 'instance SALES_INSTANCE'
go
```
Cache Name | Status | Type | Config Value | Run Value
------------- | ------ | ----- | ------------ | ------------
SALES_INSTANCE:log_sales | Active | Mixed | 100.00 Mb | 100.00 Mb

Total 100.00 Mb 100.00 Mb

Cache: SALES_INSTANCE:log_sales, Status: Active, Type: Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: relaxed LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

IO Size | Wash Size | Config Size | Run Size | APF Percent
-------- | ------------- | ------------ | ---------- | ------------
2 Kb | 20480 Kb | 0.00 Mb | 100.00 Mb | 10

(return status = 0)

**Note** Setting the cache replacement policy is not dynamic and requires you to restart Adaptive Server.

### Configuring and using multiple buffer pools

Use `sp_poolconfig` to create multiple buffer pools.

**sp_poolconfig**

**Description**

Creates multiple buffer pools.

**Syntax**

```
sp_poolconfig cache_name [, "mem_size [P|K|M|G]", "config_poolK"
[, "affected_poolK"]] [, 'instance instance_name']
```

**Parameters**

- `cache_name` – the name of an existing data cache.
- `mem_size` – the size of the memory pool to be created, or the new total size for an existing pool with the specified I/O size. The minimum size of a pool is 256 logical server pages. Specify size units with P for pages, K for kilobytes, M for megabytes, or G for gigabytes. The default unit is kilobytes.
- `config_pool` – the I/O size performed in the memory pool where the memory is allocated or removed. Valid I/O sizes are multiples of the logical page size, up to eight times the amount of the logical page size.
Configuring and using multiple buffer pools

- affected_pool – the size of I/O performed in the memory pool where the memory is deallocated, or the pool’s attributes, such as wash size and prefetch limit, are modified. If affected_pool is not specified, the memory is taken from the lowest logical page size memory pool.

Examples

Creating a 4K pool for named cache

Executing `sp_poolconfig 'tempdb_cache'` on instance SALES_INSTANCE displays:

```
sp_poolconfig 'tempdb_cache','25M','4K'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

(1 row affected)

Total 100.00 Mb 100.00 Mb

Creating a pool configuration for local caches

You can create an 8K pool for named cache 'log_hr'. Executing `sp_poolconfig 'tempdb_cache'` on instance HR_INSTANCE displays:

```
sp_poolconfig 'log_hr','50M','8K','instance HR_INSTANCE'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR_INSTANCE:log_hr</td>
<td>Active</td>
<td>Log Only</td>
<td>150.00 Mb</td>
<td>150.00 Mb</td>
</tr>
</tbody>
</table>

(1 row affected)

Total 150.00 Mb 150.00 Mb

(116)
Moving memory between buffer pools

To create a new 8K pool and take memory from a 4K pool rather than from a default pool:

```sql
sp_poolconfig 'tempdb_cache','8M','8K','4K'
go
```

```sql
sp_poolconfig 'tempdb_cache'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1 row affected)

Total 100.00 Mb 100.00 Mb

Changing the wash size of a pool

The wash size is the point in the cache at which Adaptive Server writes dirty pages to disk for a memory pool.
Configuring and using multiple buffer pools

`sp_poolconfig cache_name, 'affected_poolK ', 'wash=size[P|K|M|G]', [instance 'instancename']`

To change the wash size of an 8K pool of named cache “log_hr” to 12480K, execute `sp_poolconfig 'log_hr'` on instance HR_INSTANCE to display:

```
sp_poolconfig 'log_hr', '8K', 'wash=12480K', 'instance HR_INSTANCE'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR_INSTANCE:log_hr</td>
<td>Active</td>
<td>Log Only</td>
<td>150.00 Mb</td>
<td>150.00 Mb</td>
</tr>
</tbody>
</table>

(1 row affected)

Total 150.00 Mb 150.00 Mb

Changing a pool’s local asynchronous prefetch percentage

Local asynchronous prefetch is the percentage of buffers in the pool that can be used to hold buffers read into cache by asynchronous prefetch, but that have not yet been used. To change a pool’s asynchronous prefetch percentage:

`sp_poolconfig cache_name, "affected_poolK", "local async prefetch limit=percent"

To change the local synchronous prefetch of named cache log_sales, execute `sp_poolconfig 'log_sales'` on instance SALES_INSTANCE to display:

```
sp_poolconfig 'log_sales', '2K', 'local async prefetch limit=20', 'instance SALES_INSTANCE'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

(1 row affected)
Asynchronous writes during allpages page split

If a dump database command is active during a page split, the Cluster Edition issues a synchronous write on the new page the split produces.

Dropping a buffer pool

You can drop a buffer pool by setting its size to 0. The memory from this pool is added to the default pool. To drop pool 4k from named cache tempdb_cache, at instance SALES_INSTANCE:

```sql
sp_poolconfig 'tempdb_cache','0','4K'
go
sp_poolconfig 'tempdb_cache'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

(1 row affected)

Total 100.00 Mb 100.00 Mb

---

Cache: tempdb_cache, Status: Active, Type: Global,Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>8Kb</td>
<td>1632 Kb</td>
<td>8.00 Mb</td>
<td>8.00 Mb</td>
<td>10</td>
</tr>
<tr>
<td>2Kb</td>
<td>18840 Kb</td>
<td>0.00 Mb</td>
<td>92.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>

(return status = 0)
Binding objects to named caches

sp_bindcache assigns a database, table, index, text object, or image object to a cache. Before you can bind an entity to a cache:

- The named cache must exist, and its status must be “Active.”
- The database or database object must exist.
- You can bind tables, indexes, or objects only from the database where they are stored.
- To bind system tables, including the transaction log table syslogs, the database must be in single-user mode.
- You must bind a database from the master database.
- You must bind a database, user table, index, text object, or image object to a cache of type “Mixed.” Only the syslogs table can be bound to a cache of type “Log Only.”
- To bind an object to a cache, you must own the object or the database, or have system administrator status.
- Binding objects to caches is dynamic.

Note Cache binding or unbinding for local system temporary databases is not dynamic, and the owner-instance must be restarted for the bindings to take effect. Cache binding or unbinding for other temporary databases, including the global system temporary database, are dynamic.

Syntax for binding objects

Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp_bindcache cache_name, dbname</td>
</tr>
<tr>
<td>[, [owner.] tablename [, indexname</td>
</tr>
</tbody>
</table>

Parameters

- owner – optional if the table is owned by “dbo”.

Examples

To bind a database SALES to a named cache sales_cache, enter:

sp_bindcache 'sales_cache', 'SALES'
Usage

Cache binding is valid for the entire cluster. There is no instance-specific cache binding. If you bind an object to a local cache, the instance that has the cache configured for it uses that cache, and all other instances use the default data cache.

**Note** For complete documentation of `sp_bindcache`, see the Reference Manual: Procedures.

Getting information about bound caches

`sp_helpcache` provides information about a cache and the entities bound to it when you provide the cache name.

For example:

```
sp_helpcache 'sales_cache'
```

```

Cache Name Config Size Run Size Overhead

sales_cache:SALES_INSTANCE 50.00 Mb 50.00 Mb 6.39 Mb
(1 row affected)
```

```
------------Cache Binding Information: -------
Cache Name Entity Name Type Index Name Status
---------- ----------- ---- ----------
sales_cache SALES database V
(return status = 0)
```


Dropping cache bindings

There are two commands to drop cache bindings:

- `sp_unbindcache` unbinds a single entity from a cache.
- `sp_unbindcache_all` unbinds all objects bound to a cache.

**Syntax**

```
sp_unbindcache dbname [, [owner.] tablename [, indexname | "text only"]]
```

**Example**

To drop the cache binding of database 'sales':

```
sp_unbindcache_all 'sales'
```
Modifying the configuration file

sp_unbindcache 'SALES'

Usage

- When you drop a cache binding to an object, all the pages currently in memory are cleared from the cache.
- You cannot run sp_unbindcache_all on a named cache when there are system or remote local temporary databases bound to the cache. Instead, use sp_unbindcache to unbind each of these databases first, then run sp_unbindcache_all.

Modifying the configuration file

The named caches section in the configuration file accommodates instance information. The cache section of a global cache is similar to nonclustered Adaptive Server output.

The following definition is from the configuration file in a nonclustered Adaptive Server environment:

```
[Named Cache:tempdb_cache]
 cache size = 100M
 cache status = mixed cache
 cache replacement policy = DEFAULT
 local cache partition number = DEFAULT

[2K I/O Buffer Pool]
 pool size = DEFAULT
 wash size = DEFAULT
 local async prefetch limit = DEFAULT
```

Format of a local named cache

The following shows the format of a local named cache:

```
[Named Cache:log_sales]
 [Instance: SALES_INSTANCE]
 cache size = 100M
 cache status = mixed cache
 cache replacement policy = DEFAULT
 local cache partition number = DEFAULT

[2K I/O Buffer Pool]
 [Instance: SALES_INSTANCE]
```
The global definition should be declared first in the configuration file, and then the local definition. The server does not start otherwise. An instance-specific pool configuration on a named cache, for example, is not permitted if there is no corresponding instance-specific cache configuration. The following example is illegal:

```plaintext
[Named Cache: tempdb_cache]
cache size = 100M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[2K I/O Buffer Pool]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT

[instance: SALES_INSTANCE]
pool size = DEFAULT
wash size = 40960K
local async prefetch limit = DEFAULT
```

Extra line in local cache entries

Local caches and buffer pool definitions have an extra line ([Instance: SALES_INSTANCE]), which tells you that the configuration belongs to the instance SALES_INSTANCE. If a named cache has both global and local configurations, the cache section of the configuration file shows:

```plaintext
[Named Cache: tempdb_cache]
cache size = 100M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[Instance: SALES_INSTANCE]
cache size = 150M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[2K I/O Buffer Pool]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT
```
Modifying the configuration file

[Instance: SALES_INSTANCE]
pool size = DEFAULT
wash size = 40960k
local async prefetch limit = DEFAULT

Deleted named cache with global configuration

When a named cache is deleted, the cache configuration entry resembles:

[Named Cache: tempdb_cache]
cache size = 100M
cache status = deleted
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[2K I/O Buffer Pool]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT

Named cache with local configuration

If the named cache is configured locally, the cache section entry resembles:

[Named Cache: tempdb_cache]
[Instance: SALES_INSTANCE]
cache size = 100M
cache status = deleted
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[2K I/O Buffer Pool]
[Instance: SALES_INSTANCE]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT

Deleted entries with valid configuration

The configuration file should contain no deleted entries that still have at least
one valid configuration, such as the following cache section entry:

[Named Cache: tempdb_cache]
Creating a local configuration in the presence of a global configuration

When you create a local configuration of a named cache in the presence of global configurations, all pool entries are replicated for local configuration. For example, you may have the following global configuration:

```
cache size = 100M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[Instance: SALES_INSTANCE]
cache size = 150M
cache status = deleted
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[2K I/O Buffer Pool]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT
[Instance: SALES_INSTANCE]
pool size = DEFAULT
wash size = 40960K
local async prefetch limit = DEFAULT
```

If you create a local configuration with size 120M on this global configuration, the cache section of the configuration file resembles the following:

```
cache size = 100M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[Instance: SALES_INSTANCE]
cache size = 150M
cache status = deleted
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[2K I/O Buffer Pool]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT
[Instance: SALES_INSTANCE]
pool size = DEFAULT
wash size = 40960K
local async prefetch limit = DEFAULT
```
Limitations

- If a named cache has only local configurations and objects bound to it, you cannot create a global cache configuration. You see error 19817. For example:

```
sp_cacheconfig 'SALES', '200M', 'instance SALES_INSTANCE'
go
sp_bindcache 'SALES','SALES_DB'
go
sp_cacheconfig 'SALES', '300m'
go

Error 19817, "New configuration on cache 'SALES' is not permitted."
```
To avoid this situation in the example above, unbind all objects bound to cache “SALES”. Create a new configuration for cache “SALES”, and bind the objects again.

- To avoid physical lock deadlocks, the index pages in the Cluster Edition do not use large pool support.
This chapter describes local and global temporary databases, how to create and manage them, and how to bind logins or applications to a temporary database or group of temporary databases. This chapter also describes private devices, how to create and manage them, and how to use them for local user temporary databases.

Temporary databases provide storage for temporary tables and other temporary working storage needs. The Cluster Edition supports both local and global temporary databases. Local temporary databases can be accessed only by the owning instance, and are used primarily to store session-specific private temporary objects: #tables, worktables, and fake tables. Global temporary databases can be accessed by all instances in the cluster and are used to store temporary objects that can exist beyond the current session.

The Cluster Edition supports:

- Local system temporary databases
- Local user temporary databases
- Global user temporary databases
- The global system temporary database (dbid of 2)

Temporary databases are inherited from the model database with these database options set:

- select into/bulkcopy
- trunc log on chkpt

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of temporary databases</td>
<td>130</td>
</tr>
<tr>
<td>Creating temporary databases</td>
<td>133</td>
</tr>
<tr>
<td>Binding users and applications to temporary databases</td>
<td>135</td>
</tr>
<tr>
<td>Restrictions for temporary databases</td>
<td>139</td>
</tr>
<tr>
<td>Private device support for local databases</td>
<td>141</td>
</tr>
</tbody>
</table>
Types of temporary databases

A guest user is automatically added to the temporary database, and all users are granted create table permission.

Types of temporary databases

Local temporary databases

There are two kinds of local temporary databases:

- Local user temporary databases
- Local system temporary databases

The Cluster Edition lets you create temporary databases for each instance in the cluster. An instance-specific temporary database is called a local temporary database; the instance owning the local temporary database is called its owner instance.

Each local temporary database is bound to a particular instance and can be accessed only from that instance. You must create a local system temporary database for each instance in the cluster. Creation of local user temporary databases is optional.

Local user temporary databases

You can create multiple local user temporary databases for each instance and then bind applications or logins to an individual local user temporary database or group of temporary databases.

Local system temporary databases

A local system temporary database is the required default temporary database for each instance. You configure it when the cluster is configured or when a new instance is added to the cluster. The instance stores all session-specific temporary objects (such as # tables and worktables) in this database unless you create and use local user temporary databases for the instance. You must create local system temporary databases on shared storage. See also “Using private devices for temporary data” on page 142.
In a nonclustered Adaptive Server environment, the system temporary database \texttt{tempdb} (dbid 2) is added to the default temporary database group. In the Cluster Edition, the local system temporary database is not part of the default group for the instance. The local system temporary database is assigned to a session only if the default group for the current instance is empty and no other bindings have been specified.

\textbf{Note} For the Cluster Edition, the default temporary database assigned to a session is a local temporary database for the instance, not the system \texttt{tempdb} (with a dbid of 2). You may need to modify applications that, in a nonclustered environment assumed the default assigned temporary database as system \texttt{tempdb} (with a dbid of 2) in their actions, so that these actions are now applied to the assigned local temporary database.

For example, in a nonclustered Adaptive Server, if an application truncates the log of the default temporary database by:

\begin{verbatim}
dump tran tempdb with truncate_only
\end{verbatim}

In the Cluster Edition, you must modify the application to truncate the log of the default assigned temporary database:

\begin{verbatim}
declare @tempdbname varchar(30)
select @tempdbname = db_name(@@tempdbid)
dump tran @tempdbname with truncate_only
\end{verbatim}

\textbf{Separate user log cache for a session’s temporary database}

The Cluster Edition supports multiple temporary databases, such as user local temporary databases, system local temporary databases, and global temporary databases (that is, \texttt{tempdb}).

The Cluster Edition supports a separate user log cache only for the session’s temporary database, and not for any other temporary databases.

The session’s temporary database can be a:

- User local temporary database
- System local temporary database
- Global temporary database when the cluster is in \texttt{tempdb} configuration mode
Types of temporary databases

During tempdb configuration, when local system or local user temporary databases do not exist, the session’s default temporary database is the system tempdb (with a database ID of 2). You cannot use a separate user log cache for the system tempdb during its configuration.

Global temporary databases

The system automatically creates a global system temporary database (dbid 2) when the master device is created. You can create additional global temporary databases.

You can access global temporary databases from any instance in the cluster, which allows you to create temporary objects that can be shared across sessions on the same or different instances. You cannot create temporary objects such as # tables and worktables in them as global temporary databases cannot be assigned to a specific session.

Global temporary databases are identical to normal user databases with one exception: they are re-created every time the cluster starts. Global temporary databases provide standard logging, log flushing, I/O behavior, and runtime rollback features. They are supported primarily for backward compatibility with earlier versions of Adaptive Server.

All objects in the global temporary database are lost when the cluster shuts down. However, should an instance fail, the instance failover recovery step recovers the objects in global temporary databases as well, which ensures that objects created during a session on the failed instance continue to be available from surviving instances. The global temporary database ensures that temporary shareable workspace continues to exist as long as even one instance in the cluster is active.

Note Applications created since Adaptive Server 12.5.0.3 may create shareable tables in user-created temporary databases. To enable existing applications to continue to work with the Cluster Edition, user-created temporary databases that include these shareable tables need to be dropped and recreated as global temporary databases with the same names.

Summary information

Table 8-1 summarizes the basic characteristics of these databases.
Table 8-1: Characteristics of temporary databases

<table>
<thead>
<tr>
<th>Feature</th>
<th>Local system temporary database</th>
<th>Local user temporary database</th>
<th>Global user temporary database</th>
<th>Global system temporary database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported temporary database objects</td>
<td>Both session-specific temporary objects and regular database objects.</td>
<td>Both session-specific temporary objects and regular database objects.</td>
<td>Regular database objects only, no session specific temporary objects.</td>
<td>Regular database objects only, no session specific temporary objects*</td>
</tr>
<tr>
<td>Recovery</td>
<td>Re-created when owning instance restarts.</td>
<td>Re-created when owning instance restarts.</td>
<td>Re-created when the cluster restarts, and transactionally recovered when an instance fails.</td>
<td>Re-created when the cluster restarts, and transactionally recovered when an instance fails</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Accessible from owning instance only, but it must be created on a shared device so that it can be created and dropped from other instances.</td>
<td>Accessible from owning instance only.</td>
<td>Accessible from any instance</td>
<td>Accessible from any instance</td>
</tr>
<tr>
<td>Creation</td>
<td>User-created, one (required) for each instance.</td>
<td>User-created, zero or more for each instance.</td>
<td>User-created, zero or more for the cluster.</td>
<td>System-generated (dbid = 2), one for the cluster</td>
</tr>
<tr>
<td>Binding allowed?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Storage (shared or private devices)</td>
<td>Shared storage only</td>
<td>Both shared and local storage</td>
<td>Shared storage only</td>
<td>Shared storage only</td>
</tr>
</tbody>
</table>

* During tempdb configuration mode, the global system temporary database acts like a local system temporary database to the boot coordinator, and thus supports both session-specific temporary objects and regular database objects.

Creating temporary databases

In the Cluster Edition, each cluster has a global system temporary database, and each instance in the cluster has a local system temporary database. Other temporary databases are optional. The global system temporary database is created when you install Adaptive Server. This section describes how to create the other temporary databases.
Creating temporary databases

Sybase recommends that you create temporary databases of a similar size to allow applications to access each instance without regard to temporary space requirements.

Creating local system temporary databases

You must create a local system temporary database for each instance during the initial start-up of the cluster and later on whenever you add an instance to the cluster. Create the local system temporary database on a shared device. You can create or drop a local system temporary database from any instance, but you can access it only from the owning instance.

Create local system temporary databases using the Adaptive Server plug-in or sybcluster. See the installation guide for your platform.

Creating local and global user temporary databases

You can create local and global user temporary databases at any time.

You must create a local user temporary database from the owning instance. For example, to create the local temporary database local_temp1 on ase1, enter:

```sql
create temporary database local_temp1
 for instance ase1 on default = 50
```

You can create a global user temporary database from any instance in the cluster. For example, to create the global temporary database global_tempdb1 on ase1, log in to ase1 and enter:

```sql
create global temporary database global_tempdb1
 on default = 50
```

**Note** The `create database` phrase for instance `instance_name` is optional. If you do not include this phrase, Adaptive Server creates the temporary database for the current instance. See the *Reference Manual: Commands* for a description of its complete syntax.
Binding users and applications to temporary databases

You can use `sp_tempdb` to bind logins and applications to temporary databases or temporary database groups, and to create temporary database groups in both the nonclustered Adaptive Server and the Cluster Edition. In the Cluster Edition, which supports both local and global temporary databases, you can bind logins or applications to local user temporary databases or temporary database groups, but not to global temporary databases.

The default temporary database group is system-generated and always present. It is empty unless you use `sp_tempdb` to add local temporary databases to it.

**Note** In the Cluster Edition, the system temporary database `tempdb` (dbid 2) is a global system temporary database, and is not a member of the default group. This behavior is different from that of the system temporary database `tempdb` (dbid 2) in the nonclustered Adaptive Server. In the nonclustered Adaptive Server, the system temporary database `tempdb` is, by default, a member of the default group.

The `sp_tempdb` user interface includes the option `unbindall_gr`, which removes all bindings to the specified group in either the nonclustered Adaptive Server or the Cluster Edition. In addition, the `unbind` option includes an `instance_name` parameter that is specific to the Cluster Edition.

Creating and managing temporary database groups

Creating and managing temporary database groups is the same all editions of Adaptive Server.

**Note** In the Cluster Edition, the local system temporary database is not a member of the default group.

- To create a temporary database group, use `sp_tempdb create`. For example, to create a temporary database group named `tempdbgroup1`:
  ```bash
 sp_tempdb "create", "tempdbgroup1"
  ```
- To drop a temporary database group, use `sp_tempdb drop`. For example, to drop the temporary database group named `tempdbgroup1`:
  ```bash
 sp_tempdb "drop", "tempdbgroup1"
  ```
To add a database to a temporary database group, use `sp_tempdb add`. For example, to add database `local_tempdb1` to the temporary database group named `tempdbgroup1`:

```sql
sp_tempdb "add", "local_tempdb1", "tempdbgroup1"
```

To remove a database from a temporary database group, use `sp_tempdb remove`. For example, to remove database `local_tempdb1` from the temporary database group named `tempdbgroup1`:

```sql
sp_tempdb "remove", "local_tempdb1", "tempdbgroup1"
```

See the *Reference Manual, Procedures* for complete syntax and usage information for `sp_tempdb`.

**What you can bind**

You can bind:

- A user login or application to multiple local user temporary databases, but only to one database per instance.
  
  For example, you can bind “sa” to `local_tempdb1` on “ase1” and `local_tempdb2` on “ase2”, but you cannot also bind “sa” to `local_tempdb3` on “ase1”.

- A user login or application to only one database group. Temporary database groups are visible from all instances.
  
  For example, if you bind `isql` to the default group, you cannot also bind `isql` to another temporary database group.

- A user login or application to individual temporary databases or a temporary database group, but not to both.
  
  For example, if “sa” is bound to `local_tempdb1` on “ase1”, it cannot also be bound to the default group.

**How the session binding is determined**

When a session is initiated, Adaptive Server checks to see if a binding is applicable. If more than one binding is applicable, the Cluster Edition determines which binding is used based on the following algorithm. Only one binding is supported per session.
1 If a binding exists for the current login, that binding is used. Otherwise, the Cluster Edition searches for a binding for the current application. If both are found, use the binding for the login: a login binding takes precedence over an application binding.

For example, if user “sa” is bound to tempdb1 on instance “ase1”, and isql is bound to tempdb2 on “ase1”, then, when user “sa” uses isql to initiate a session on “ase1”, only the “sa” user binding is used.

**Note** If the first binding fails, the Cluster Edition automatically assigns a member of the default group. The Cluster Edition does not search for another binding.

2 If the binding is to a database, the database is assigned. If the binding is to a database group, a member database from the current instance, selected in a round-robin fashion, is assigned. Local temporary databases that are members of a group can be assigned only to a session established on the owner instance. They cannot be assigned to a session on another instance using the group binding.

3 If a binding is not found or an assignment cannot be made, an assignment is attempted for a member of the default group—selected in a round-robin fashion.

4 If an assignment cannot be made to a member of the default group, the assignment is made to the local system temporary database.

**Creating and managing bindings**

*sp_tempdb bind* binds a login or application to a local temporary database or database group. For example, to bind the “sa” login to the default group, enter:

```
sp_tempdb "bind", "LG", "sa", "GR", "default"
```

To bind isql to local_tempdb1 on ase1, enter:

```
sp_tempdb "bind", "AP", "isql", "DB", "local_tempdb1"
```

*sp_tempdb unbind* removes one or more bindings. For the Cluster Edition, this command includes an instance_name parameter that lets you drop the binding to a particular local temporary database.

For example, to unbind isql from local_tempdb2 on “ase2”, enter:
Binding users and applications to temporary databases

```sql
sp_tempdb "unbind", "AP", "isql", NULL, "ase2"
```

**Note** If `isql` is bound to a database group, the above command removes the binding for the group. If multiple database bindings exist for `isql`, the above command removes only the binding for “ase2”; bindings to temporary databases on other instances are unaffected.

To unbind a user login or application from a database group or any temporary databases, use the `unbind` parameter with only the login or application name. For example, to remove the binding for the "sa" login:

```sql
sp_tempdb "unbind", "lg", "sa"
```

To unbind all logins and applications to a particular group, use `sp_tempdb unbindall_gr`. For example, to remove all bindings to `tempdbgroup1`, enter:

```sql
sp_tempdb "unbindall_gr", "tempdbgroup1"
```

To unbind all login and application bindings to a particular database, use `sp_tempdb unbindall_db`. For example, to unbind all bindings to `localtempdb1`, enter:

```sql
sp_tempdb "unbindall_db", "localtempdb1"
```

### Displaying group and binding information

To display a list of existing groups, group members, and login and application bindings, use `sp_tempdb show`. For example, to view the members of the temporary database group “tempdbgroup1” and their owner instances, enter:

```sql
sp_tempdb "show", "gr" "tempdbgroup1"
```

To display a list of active sessions assigned a temporary database, use `sp_tempdb who`. For example, to displays active session assigned the temporary database “localtempdb1”, enter:

```sql
sp_tempdb "who", "localtempdb1"
```

### Dropping temporary databases

Some restrictions apply to dropping temporary databases:
Dropping all but the last local system temporary database

Because a local system temporary database is always in use if its owner instance is running, you cannot drop a local system temporary database while its owner instance is running.

To drop a local system temporary database, shut down the instance, and then drop the local system temporary database from another instance.

Dropping the last local system temporary database

To drop the local system temporary database of the last instance:

1. Use `sp_tempdb_markdrop` to mark the database to be dropped. For example, if `ase3_tdb1` is the last local system temporary database, mark it with this command:

   ```sql
 sp_tempdb_markdrop ase3_tdb1
   ```

2. Shut down and restart the last instance. The local system temporary database marked for “drop” is not used.

3. Drop the temporary database from this instance.

Restrictions for temporary databases

In the Cluster Edition:

- Attempting to access a local temporary database owned by another instance results in this error:

  ```plaintext
 Error Number : 969
 You can access database '<local-tempdbname>' only from its owner instance '<owner-instance-name>'. You cannot access local temporary databases from non-owner instances except to use CREATE DATABASE and DROP DATABASE with local system temporary databases.
  ```

In general, you must execute stored procedures and commands that access a local temporary database from the owner instance. Alternatively, you can use the following methods to execute the operation on a local temporary database of a remote instance:
Restrictions for temporary databases

- Use `connect to instance_name` to connect to the owner instance before you access any of the local temporary databases.

- Use `sp_remotesql` to send the Transact-SQL statement to the remote instance. For example, to execute a query on local temporary database `local_tempdb_ase1` owned by instance `ase1`:

  \[ \text{sp_remotesql "ase1", "select * from local_tempdb_ase1..sysobjects"} \]

- For stored procedures, you can execute the procedure specifying the instance name. For example, to execute `sp_spaceused` on `local_tempdb_ase1` for instance “ase1”:

  \[ \text{ase1.local_tempdb_ase1.dbo.sp_spaceused} \]

  **Note** Use `db_instanceid` to determine the owner instance ID of a local temporary database.

- Some stored procedures and commands that perform operations on all databases in a nonclustered Adaptive Server, may skip these operations on remote local temporary databases in the Cluster Edition. To make sure these operations occur in all databases, execute the operation again for each of the skipped databases from the owner instance.

  For example, if you execute `sp_dbcc_faultreport` without specifying a database name, it skips remote local temporary databases from the fault report.

- You cannot grant or revoke user-defined roles to users of a local temporary database.

- You cannot grant or revoke permissions on objects in a local temporary database.

- You cannot use a local temporary database as the default database for any login; any attempt to do so causes `sp_addlogin` and `sp_modifylogin` to fail.

- You cannot include a referential integrity constraint that references a column on a local temporary database except from a table on the same local temporary database. `create table`, `alter table`, and `create schema` fail when they attempt to create a reference to a column on a local temporary database from a different database.
You cannot encrypt a column with an encryption key located in a local temporary database unless the table resides on the same local temporary database. create table and alter table fail when they attempt to encrypt a column with an encryption key located on the local temporary database and the table resides in another database.

You cannot specify database recovery order for any local system temporary database. Local system temporary databases are user-created, but they are always recovered with system databases.

You cannot use sp_configure to change configuration options from inside the local temporary database context.

**Private device support for local databases**

The Cluster Edition allows you to use inexpensive storage, such as local disks and file system devices, to provide instance-specific temporary space needs. You can use such storage, created as a private device, to create instance-specific local user temporary databases on the private device. However, do not use private devices for local system temporary databases. Local system temporary databases must be created on shared storage.

In the Cluster Edition, a private device is owned and accessed by one cluster instance only. That a device is private is a logical attribute; the physical path to the device may or may not be accessible from a non-owner instance.

In the sysdevices table, a private device is identified by the bitmap status2 column, and the instance that owns the device by the instanceid column of the row belonging to the device.

An instance can own many private devices, but a private device is owned by a single instance.

A private device can be used only for local user temporary databases, on the instance that owns the device. It cannot be used as default storage; if you invoke sp_diskdefault on a private device, the stored procedure fails and an error message appears.

A private device cannot be mirrored, unmirrored, or remirrored.
Using private devices for temporary data

To achieve optimal performance of temporary data in the Cluster Edition, Sybase recommends that you use fast local disks for local user temporary databases. Local system temporary databases must be created on shared storage. To limit the use of shared storage for temporary data:

1. Create one or more private devices on local disks.
2. Create one or more local user temporary databases on the private devices.
3. Add these local user temporary databases to the default temporary database group.

A user connection that has no explicit temporary-database binding will be assigned a member database from the default group. This limits the use of local system temporary databases created on shared storage to internal system tasks while all user connections use local user temporary databases created on fast local disks.

Creating private devices using disk init

Use disk init to create a private device. disk init includes an optional instance parameter that marks the device private to an instance.

This example creates a device named private_dev1 that is private to the cluster1_1 instance:

```
disk init
 name = "private_dev1",
 physname = "/usr/u/sybase/data/private_dev1.dat",
 vdevno = 2, size = 5102, instance = "cluster1_1"
```

You can execute a disk init command from any of the instances in the cluster. The command is shipped to the owning instance internally. The owning instance, however, must be up and running to process the command. If it is not, the command fails and the private device is not created.

Reinitializing private devices using disk reinit

As part of the procedure for restoring the master database, use disk reinit to restore the private device entries in the master database sysdevices table. disk reinit includes the optional instance parameter, which marks a device as private to an instance.
This example restores the `private_dev1` device as a private device for the instance `cluster1_1` in the master database `sysdevices` table:

```
disk reinit
 name = "private_dev1"
 physname = "/usr/u/sybase/data/private_dev1.dat"
 vdevno = 2, size = 5120, instance = "cluster1_1"
```

You can execute this command from any instance in the cluster. If the owning instance is up and running, the command is shipped to it.

If the owning instance is not up and running, `disk reinit` inserts a row in `sysdevices`, corresponding to the device, but does not activate it until the instance is running. This is useful when devices must be restored before issuing `disk refit`.

**Note** Take extra care regarding the parameters you pass when you restore a private device for an instance that is not running. Adaptive Server cannot verify the physical path of a private device in such cases; it is assumed that the user provides a valid physical path.

---

### Dropping private devices using `sp_dropdevice`

Use `sp_dropdevice` to drop a private device. You can execute this procedure from any instance in the cluster. However, it fails to drop a private device if the owning instance is not running. For details about using `sp_dropdevice`, see the *Reference Manual: Procedures*.

### Displaying private device information using `sp_helpdevice`

`sp_helpdevice` reports whether or not a device is private. If the device is private, `sp_helpdevice` prints the name of the instance in the cluster that owns the private device.

In this example, `regular_dev` is a regular shareable device, while `private_dev1` is a private device owned by instance `cluster1_1`.

```
1> sp_helpdevice
2> go
device_name physical_name description
regular_dev
private_dev1
```

143
Private device support for local databases

<table>
<thead>
<tr>
<th>status cntrltype vdevno</th>
<th>vpn_low</th>
<th>vpn_high</th>
</tr>
</thead>
<tbody>
<tr>
<td>master</td>
<td>/remote/percy_dev/user1/sdc-DBs/master.dat</td>
<td>file system device, special, dsync on, directio off, default disk, physical disk, 512.00 MB, Free: 351.00 MB</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>private_dev1</td>
<td>/percy_dev/user1/sdc-DBs/private_dev1.dat</td>
<td>file system device, special, private 'cluster1_1', MIRROR DISABLED, non serial writes, dsync off, directio on, physical disk, 2.00 MB</td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td>0</td>
</tr>
<tr>
<td>regular_dev1</td>
<td>/percy_dev/user1/sdc-DBs/dev1.dat</td>
<td>file system device, special, dsync off, directio on, physical disk, 2.0 MB</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>tapedump1</td>
<td>/dev/nst0</td>
<td>unknown device type, disk, dump device</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>tapedump2</td>
<td>/dev/nst1</td>
<td>unknown device type, tape, 625 MB, dump device</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>

(5 rows affected)
(return status = 0)

If disk refit is pending on a device, sp_helpdevice reflects it in its output.

In this example, 'regular_dev' is a regular shareable device, while 'private_dev1' and 'private_dev2' are private devices owned by instance 'cluster1_1'. Further disk refit is pending on 'private_dev1'.

1> sp_helpdevice
2> go
device_name
   physical_name
### Clusters Users Guide

#### CHAPTER 8 Using Temporary Databases

<table>
<thead>
<tr>
<th>description</th>
<th>status</th>
<th>cntrltyp e</th>
<th>vdevno</th>
<th>vpn_low</th>
<th>vpn_high</th>
<th>-------</th>
</tr>
</thead>
<tbody>
<tr>
<td>file system device, special,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>directio on, physical disk,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>default disk, physical disk,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512.00 MB, Free: 351.00 MB</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>262143</td>
<td>1050</td>
</tr>
</tbody>
</table>

**master**

```
> remote/percy_dev/user1/sdc-DBs/master.dat
file system device, special, dsync on, directio off, default disk, physical disk, 512.00 MB, Free: 351.00 MB
```

**private_dev1**

```
> /percy_dev/user1/sdc-DBs/private_dev1.dat
file system device, special, private 'cluster1_1', REFIT PENDING, MIRROR DISABLED, nonserial writes, dsync off, directio on, physical disk, 2.00
```

**private_dev2**

```
> /percy_dev/user1/sdc-DBs/private_dev2.dat
file system device, special, private 'cluster1_1', MIRROR DISABLED, nonserial writes, dsync off, directio on, physical disk, 2.00
```

**regular_dev1**

```
> /percy_dev/user1/sdc-DBs/dev1.dat
file system device, special, dsync off, directio on, physical disk, 2.00
```

**tapedump1**

```
> /dev/nst0
unknown device type, disk, dump device
```

**tapedump2**

```
> /dev/nst1
unknown device type, tape, 625 MB, dump device
```

(6 rows affected)

(return status = 0)
Private device support for local databases

Using create database and alter database with a private device

Since a private device belongs to only one instance in the cluster, it can be used only for local user temporary databases on the instance that owns the private device. When a private device is used to create or extend a database or its log, unless it is for a local user temporary database of the instance that owns the device, create database or alter database fails and an error message appears.

Using disk refit

If there are no private devices in the cluster, disk refit operates as usual.

If there are one or more private devices in the cluster, disk refit becomes a two-phased operation:

- Phase One performs disk refit only for those devices accessible to the instance that initiated the command—regular shareable devices and private devices owned by that instance.
- Phase Two performs disk refit only for the private devices of the instances in the cluster, one instance at a time. disk refit is complete only when both these phases are completed successfully.

Executing disk refit when there are private devices in the cluster

You must restore the sysdevices table correctly before you execute disk refit. Use the disk reinit command to add regular or private devices for any missing device entry in the sysdevices table.

For more information on restoring sysdevices, see the System Administration Guide, Volume 2.

1. Restart the cluster in single-user mode. This is done by starting an instance in the cluster with the -m option. Single-user mode requires only one instance running in the cluster, and no other active connections to the cluster. You must set trace flag 3608.

2. Issue the disk refit command on the instance. This removes all rows in sysdatabases and sysusages, and rebuilds parts of them from the devices in sysdevices, which are either regular sharable devices accessible by all instances in the cluster, or are private to this instance. At the end of Phase One, the cluster is shut down.
Adaptive Server prints messages at the end of Phase One that indicate whether disk refit is complete. If it is not, Adaptive Server also prints messages to inform the user which other instances in the cluster have private devices and must perform Phase Two.

Alternatively, you can use sp_refit_admin 'status' to find instances with private devices on which disk refit has not yet run.

A sample output:

```
1> sp_refit_admin 'status'
2> go
You need to run DISK REFIT on the following instances to refit their private devices.

<table>
<thead>
<tr>
<th>instance</th>
<th>device</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster1_1</td>
<td>private_dev1</td>
<td>REFIT</td>
</tr>
</tbody>
</table>

(1 row affected)
(return status = 0)
```

For each instance that have private devices and which still have to run disk refit:

- Start the instance using the `-m` option and trace flag 3608.
Private device support for local databases

- Issue disk refit on that instance.

disk refit rebuilds sysdatabases and sysusages rows for private devices owned by this instance. When Phase Two for the instance is successfully completed, the cluster shuts down.

4 Even if you see no errors while executing disk refit, you must check the consistency of sysdatabases and sysusages before resuming normal operation. “Troubleshooting” on page 203 contains sample SQL statements that help to check and fix common problems encountered by disk refit.

5 Resume normal operation.
CHAPTER 9

Running Job Scheduler in a Clustered Environment

This chapter describes how to run Job Scheduler in a shared-disk cluster environment. For information about installing, starting, and configuring Job Scheduler, see the Job Scheduler Users Guide.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing and configuring Job Scheduler</td>
<td>149</td>
</tr>
<tr>
<td>Running Job Scheduler in a clustered enviroment</td>
<td>150</td>
</tr>
<tr>
<td>Shutting down Job Scheduler</td>
<td>150</td>
</tr>
<tr>
<td>Redirecting scheduled jobs</td>
<td>150</td>
</tr>
</tbody>
</table>

The Cluster Edition allows you to run the Job Scheduler in a shared-disk cluster environment. A single Job Scheduler services all job scheduling requests originating from all instances in the cluster. Job Scheduler runs on the boot coordinator.

If you manually start the Job Scheduler after the cluster is started, the cluster selects the coordinator to host the Job Scheduler.

Installing and configuring Job Scheduler

The coordinator instance running the Job Scheduler is also known as the “Job Scheduler instance.” To set up and start the Job Scheduler, follow directions in Chapter 2, “Configuring and Running Job Scheduler,” in the Job Scheduler Users Guide. See the installation guide for your platform for instructions for installing and configuring Job Scheduler in the Cluster Edition.
Running Job Scheduler in a clustered environment

If a user performs a Job Scheduler action on an instance other than the Job Scheduler instance, the instance issues a request to the Job Scheduler instance. The Job Scheduler processes the request and sends the reply back to the requesting instance.

Shutting down Job Scheduler

Shutting down the Job Scheduler in a shared-disk cluster is the same as shutting it down in a nonclustered Adaptive Server configuration.

From the Adaptive Server Sybase Central plug-in:

1. From any Adaptive Server instance, right-click the Scheduled Jobs folder (the Scheduled Jobs folder appears under each instance, and each instance can initiate all Job Scheduler commands from the plug-in).
2. Select Administer to open the Job Scheduler Administration dialog.
3. From the Task Configuration tab, select Stop.

From the command line, run:

```
use sybmgmtdb

sp_js_wakeup "stop_js", 1

sp_js_wakeup "stop_js", 1
```

Redirecting scheduled jobs

When the Job Scheduler agent attempts to connect to an instance to execute a scheduled job and the instance is too busy, the Workload Manager may redirect the connection to another instance, so any instance in the cluster can perform the scheduled jobs. This happens automatically and does not require you to reconfigure Job Scheduler.

Generally speaking, the Workload Manager takes care of login redirection. You can affect how connections are redirected by setting rules at the logical cluster level. However, if you do not want a scheduled job to be redirected, set the new job property that allows redirection:
• From Adaptive Server plug-in – unselect the Allow Redirection option in the Job Properties dialog box.

The default behavior is to allow the Workload Manager to redirect a scheduled job connection according to the workload rules that exist at the time the connection is made.

• From the command line – set the redirection property no_conn_redirection when you create or modify a job. For example, to set the property for a job named find_old_logins using sp_sjobcreate, enter:

```sql
sp_sjobcreate @name='jname=find_old_logins',
@option='jcmd=exec
sp_find_old_logins,jproperties=no_conn_redirection=true'
```
Redirecting scheduled jobs
CHAPTER 10

Instance Recovery

This chapter describes support for cluster instance failure, both single and multiple. Cluster Editions earlier than 15.5 support only single-instance failure; Sybase versions 15.5 and later support multiple simultaneous failures.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-instance recovery</td>
<td>153</td>
</tr>
<tr>
<td>Multiple simultaneous failure</td>
<td>154</td>
</tr>
<tr>
<td>Recovery algorithm</td>
<td>156</td>
</tr>
</tbody>
</table>

Single-instance recovery

The Cluster Edition provides failover recovery, during which time the database remains online and can be used. However, if you request data that was modified by the failed instance, and must be recovered, the user process is blocked until the data is brought to a consistent state by the failover recovery process.

The Cluster Edition supports:

- Recovery that occurs at cluster start-up, which is the same as the nonclustered Adaptive Server recovery that happens when you perform a cold restart of the server.
- Failover recovery, which recovers data that a failed instance modified while other instances were using the same database in a shared-disk cluster. In this chapter, “failover” refers to an instance failover, not a client connection failover.

Recovery begins when the cluster membership service detects a failure. The recovery event handler on the coordinator instance recovers the system databases. Then surviving instances (including the coordinator instance) recover the user databases in parallel. One of the PCM threads on each instance performs the recovery task. Other threads on the coordinator instance, as well as other instances, pursue other activities.
Multiple simultaneous failure

If trace flag 3483 is on, distributed failover recovery is disabled, and user databases are recovered in serial order by the recovery event handler on the coordinator instance.

Processes trying to access data modified by the failed instance are blocked until recovery is complete.

The Cluster Edition recovers user databases in the order specified by their database IDs (dbid), and does not use any user-defined recovery order during instance failover recovery.

Single transaction log

There is only one log per database for the cluster, and it is logically partitioned. A log record marker for the Cluster Edition contains the instance ID, which internally scans log records logged by specific instances, especially during failover recovery. A checkpoint log record always has an instance ID with a value of zero, so it is always included in the log scan, regardless of the instance ID specified in the log scan.

Multiple simultaneous failure

In versions 15.5 and later, the Cluster Edition supports multiple simultaneous instance failures, when more than one instance fails within a single cluster view, but the cluster remains online and provides the same failover recovery as it does when a single instance fails.

The Cluster Edition provides a configuration parameter, cluster redundancy level, that allows a database administrator to set the maximum number of recoverable simultaneous instance failures for the cluster.
Enabling multiple simultaneous failover

The number of recoverable failed instances is the cluster redundancy level (CRL), which is also the name of the configuration parameter that determines this value: cluster redundancy level. The CRL is the maximum number of instances that can fail simultaneously while allowing recovery to proceed concurrently with other activity. If the number of failed instances exceeds the maximum number specified by the configuration parameter, the cluster shuts down.

When the CRL is configured to a number greater than 1, the lock replication in the cluster is also increased. The CRL is at the physical cluster level, and always takes precedence over a failover logical cluster configuration; in other words, your CRL cannot exceed the number of physical instances in your cluster.

cluster redundancy level is a static, cluster parameter with a default value of 1. Its minimum allowed value is 1, and its maximum allowed value is one less than the 'maximum number of instances' specified in the cluster.cfg or quorum file. If one or more instances leave the cluster, the value of cluster redundancy level remains the same.

cluster redundancy level is an sp_configure parameter:

```
sp_configure 'cluster redundancy level', config_value
```

Failover recovery recovers data modified by a failed instance while other instances are using the same database. With a CRL of 1 (the default), Adaptive Server maintains at least two copies of each lock in the cluster. Thus, if one instance fails, one copy of the lock remains, so that Adaptive Server can mark the data modified by the failed instance. Similarly, with a CRL of “n,” Adaptive Server has at least “n+1” copies of each lock in the cluster, and can perform failover recovery for “n” simultaneous failovers.

For the cluster to start, the value of cluster redundancy level must be at least one less than the value of maximum number of instances as specified in cluster.cfg or the quorum file. Thus, the cluster cannot start if you set either of these:

- The value of maximum number of instances to a value that is equal to or less than the value of cluster redundancy level, or
- The value of cluster redundancy level to a value equal to or greater than the value of maximum number of instances

Set cluster redundancy level before starting the cluster. If you change its value during runtime, you must restart the cluster.
Performance limitations and the cluster redundancy level

When the CRL value increases, so does the number of simultaneous instance failures a cluster can support. However, an increase in the CRL value also causes an increase in messaging traffic, as there are multiple copies of a lock in the cluster. An increase in overhead is required to maintain this redundancy level.

For example, other configuration parameters, such as number of locks and cache size also need more resources for CRL values greater than 1, which means you must increase max memory for the same number of locks value. CRL is resource-intensive, even though Adaptive Server performs the overhead value computations transparently.

Sybase recommends that you set a cluster redundancy level of 1 unless multiple instance failure is common.

Recovery algorithm

The internal database recovery process in a nonclustered Adaptive Server is similar to that of the Cluster Edition. The same phases are necessary for single and multiple instance failure recovery.

<table>
<thead>
<tr>
<th>Table 10-1: Recovery steps for clustered and nonclustered servers</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonclustered recovery phases</strong></td>
</tr>
<tr>
<td>1) Estimate recoverable log boundaries – the recoverable log is from the oldest active transaction recorded in the recovery checkpoint to the end of the log.</td>
</tr>
<tr>
<td>2) Analysis – scans the recoverable log forward, from the oldest active transaction to the end of the log, builds recovery information as incomplete transactions and so on. This information is used in the redo, undo, and post-undo passes.</td>
</tr>
<tr>
<td>3) Redo – scans the recoverable log forward, and re-executes operations specified by log records, as needed.</td>
</tr>
<tr>
<td>4) Reserve compensation log record space to undo incomplete transactions on the failed instance.</td>
</tr>
</tbody>
</table>
### Nonclustered recovery phases

- **4) Undo** – works from the end of the log back to the beginning of the oldest incomplete transaction, and undoes operations specified by log records for incomplete transactions. For each transaction, Adaptive Server logs a compensation log record.

- **5) Post-undo** – logs a checkpoint record on the database, fills free space count recovery information (threshold recovery), and clears caches.

### Cluster Edition recovery phases

- **6) Undo** – also, logical locks for incomplete transactions are released as completed.

- **7) Fill free space information (threshold manager recovery).**

- **8) Post-undo** – flushes all dirty buffers on the recovery instance. The Cluster Edition does not perform a checkpoint after instance failover recovery.

---

Recovery algorithm
Additional Topics

This chapter describes some elements of cluster architecture in greater detail. Many topics describe cluster-specific aspects of features available in both the clustered and nonclustered Adaptive Server.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locks</td>
<td>160</td>
</tr>
<tr>
<td>Memory</td>
<td>161</td>
</tr>
<tr>
<td>Thresholds</td>
<td>162</td>
</tr>
<tr>
<td>Cluster interprocess communication</td>
<td>164</td>
</tr>
<tr>
<td>Distributed checkpoints</td>
<td>164</td>
</tr>
<tr>
<td>Quorum device heartbeat</td>
<td>165</td>
</tr>
<tr>
<td>Using InfiniBand</td>
<td>166</td>
</tr>
<tr>
<td>Private installation mode</td>
<td>167</td>
</tr>
<tr>
<td>Using Java in a clustered environment</td>
<td>170</td>
</tr>
<tr>
<td>Adding space to an archive database</td>
<td>171</td>
</tr>
<tr>
<td>Distributed transactions on a shared-disk cluster</td>
<td>171</td>
</tr>
<tr>
<td>Support for mount and unmount commands</td>
<td>178</td>
</tr>
<tr>
<td>Using sp_showplan</td>
<td>178</td>
</tr>
</tbody>
</table>

Many subsystems of nonclustered Adaptive Server work in a shared-disk cluster environment; others have been developed specifically for the Cluster Edition. These subsystems are:

- Lock manager
- Buffer manager
- Cluster interprocess communication (CIPC)
- Recovery (start time and failover handling)
Locks

All database data and metadata objects can be accessed and cached by any instance in the cluster. As a consequence, these objects are subject to distributed locking and cache coherency enforcement, as are runtime global data structures and variables.

The cluster lock manager (CLM) provides distributed locking services for sharing globally accessible and cacheable objects. The CLM creates and queues locks on behalf of locking requests. It arbitrates locking requests for access rights from any instance to any global object in the shared-disk cluster environment.

Locks can have task, transaction, or instance ownership. Locks managed by the local lock manager have task or transaction ownership. Locks managed by the CLM have instance ownership; they are shared among all processes or transactions on that instance, and are retained until another instance requests a conflicting lock mode.

Deadlocks

For all-pages locking in a nonclustered edition of Adaptive Server, if the server fails to acquire a page lock, it retries the attempt instead of waiting for the lock (which can cause a deadlock). The deadlock retries configuration parameter determines the number of retries Adaptive Server attempts.

The Cluster Edition includes a physical lock, which ensures page consistency across nodes. However, a physical lock is not included in the deadlock detection mechanism, so a server cannot detect a deadlock.

The Cluster Edition retries failed attempts to acquire a lock. However, when the server exceeds the value for deadlock retries, it fails or rolls back the query instead of waiting on the lock and risking an undetected deadlock.

Retention locks

The Cluster Edition also uses retention locks, which are cluster-wide locks granted to instances in the cluster with ownership shared among all processes on the instances. Ownership of a retention lock is retained until another instance claims a conflicting lock mode, or the resource associated with the lock is claimed by another instance. The use of retention locks reduces the need to acquire and release locks, and thus reduces intra-instance messaging.
The Cluster Edition uses several different retention locks.

All locks are retention locks.

**Cluster lock requests and task request status**

In the Cluster Edition, a task lock request triggers the cluster lock request, but once the cluster lock request is made, the cluster lock request is independent of task request status.

Suppose, for example, the task requesting the lock leaves before the lock is granted at the cluster level. This could happen if the lock times out or the task is killed. In such a case, the output of `sp_lock`, for the instance owning the cluster lock, continues to show “-blk”—indicating a blocking process, even though there may be no task waiting for the lock—until the instance owning the cluster lock releases downgrades it.

**Memory**

The Cluster Edition requires more memory than a standalone SMP Adaptive Server. The additional memory supports internode messaging and cluster locking.

- You can configure the memory for internode messaging using the CIPC regular message pool size configuration parameter. The default value is 8MB.

- To support distributed cache coherency, the Cluster Edition automatically configures locks for buffer caches and system descriptors when an instance starts.

Each buffer in the data cache is automatically configured with a physical lock. The overhead for each physical lock is approximately 24.6% for databases with 2KB pages and 12.3% for databases with 4KB pages. Thus, for a 100M data cache, the additional memory overhead for physical locking is 24MB for 2KB pages and 12MB for 4KB pages.

The overhead for system descriptors averages about 1.5KB per open object. For best performance, the lock hashtable size parameter is automatically tuned to 8 locks per bucket. For a large cache configuration, lock hashtable size may be automatically tuned to several megabytes.
Thresholds

A user-created stored procedure executes when free space on a segment drops below the threshold maintained by Adaptive Server.

All databases have a last-chance threshold on the log segment, which is an estimate of the number of free log pages that are required to back up and truncate the transaction log. The last-chance threshold (LCT) is a defined amount of available space; a specified number of free pages on a log segment.

The LCT also defines the action to be taken when the amount of space falls below the specified threshold value. This threshold monitors free space within a database, preventing the transaction log from running out of space.

When you add a threshold to a segment, you must specify the stored procedure used to monitor this threshold. By default, Adaptive Server uses sp_thresholdaction for the last-chance threshold.

For users, threshold maintenance in cluster processing is indistinguishable from that of a nonclustered Adaptive Server. However, there are some changes in dbcc commands, described below.

**dbcc thresholds output**

dbcc thresholds prints segment structure. The Clustered Edition output differs because segment structure itself is changed. For example, the sg_below and sg_above threshold pointers for the segment are numbers that specify the positions of the two thresholds in the dbt_thresholds array.

**dbcc dbtable output**

dbcc dbtable prints the dbt_thrmgr_info, which contains cluster threshold management data, and prints the segment structures in the table.

**dbcc dbrepair with remap option**

dbcc dbrepair with remap:

- Rebuilds the disk map in dbtable
- Recalculates the segment free page counts
Sets up the thresholds in each segment according to the threshold levels on the segment and the total free page count.

You can use `dbcc dbrepair` with `remap` to specify either the segment number or segment name, but you can specify only one segment at a time to remap.

If you do not specify the segment to remap, Adaptive Server remaps all the segments in the database. You can use the optional parameters at the end of `dbcc dbrepair` to specify the segment for remapping.

`dbcc dbrepair` includes the option `fixalloc`; to use both `remap` and `fixalloc`, add `remap` before `fixalloc`. Adaptive Server version 15.1.1 allows you to specify the segment number or segment name at the end of this command. This example specifies the log segment for the `pubs2` database:

```
 dbcc dbrepair(pubs2,"remap","fixalloc", -1,"logsegment")
```

To remap the log segment in the `pubs2` database without using `fixalloc`, enter:

```
 dbcc dbrepair(pubs2, "remap",NULL, -1,"logsegment")
```

To remap all segments in the `pubs2` database, use:

```
 dbcc dbrepair(pubs2, "remap")
```

`dbcc dbrepair` with the `remap` option is used by `sp_addsegment`, `sp_dropsegment`, `sp_modifysegment`, `sp_extendsegment`, `sp_logdevice`, and `sp_placeobject`. For more information on these stored procedures, and on `dbcc dbrepair`, see the most recent version of the *Adaptive Server Enterprise Reference Manual: Commands*.

### dbcc dbrepair with newthreshold option

`dbcc dbrepair` with `newthreshold`:

- Loads thresholds in a database, from `systhresholds` to `dbtable->dbt_thresholds`.
- Sets up the threshold pointers in each segment according to the levels of the thresholds on the segment, and the segment free page count.
- Specifies the segment name or number, and reads all thresholds in `systhresholds` into `dbt_thresholds`. Only `dbt_thresholds` segment’s thresholds are set up according to the thresholds that belong to the `dbt_thresholds` segment and the segment free page count.
Cluster interprocess communication

dbcc dbrepair with newthreshold is used by sp_addthreshold, sp_droothreshold, and sp_modifythreshold. For more information about these stored procedures and complete documentation of dbcc dbrepair, see the most recent version of the *Adaptive Server Enterprise Reference Manual: Commands*.

Cluster interprocess communication

Cluster interprocess communication (CIPC) is a critical subsystem in the cluster architecture. Most cluster subsystems use CIPC to communicate with other instances in the cluster.

*Note* A high-speed CIPC network is necessary to gain acceptable Cluster Edition performance.

Tasks running on instances within the cluster use CIPC to communicate with other tasks in other instances in the cluster. CIPC information specified in the cluster input file and stored on the quorum device is used to connect all instances in the cluster. Within the input file, CIPC supports a primary and an optional secondary interconnect. The secondary interconnection, if present, is used for buffer-cache transfers, reducing the load on the primary interconnection.

Distributed checkpoints

Checkpoints control recovery in both nonclustered Adaptive Server and Cluster Edition systems, but the process for which they supply the transaction information differs. In the Cluster Edition, the oldest active transaction found is the oldest active transaction across the entire cluster, and dirty buffers are flushed on all clustered instances.

In both types of processing, Adaptive Server finds the oldest active transaction information at the time the checkpoint record is logged, uses it as a cutoff point, and writes the checkpoint record to the log. The dirty buffers are then flushed, up to the current flush sequence number. This checkpoint record is registered as a recovery checkpoint only after all the dirty buffers are flushed.
Quorum device heartbeat

Periodically, each instance in the cluster “checks in” with the quorum device, creating a quorum device heartbeat that enables instances to monitor the status of the cluster. Instances use the device heartbeat to:

- Determine if the quorum device is accessible. If an instance fails to write the heartbeat to the quorum device, the instance may have lost its storage area network (SAN) link, or it may be blocked from the cluster devices.
- Read the heartbeat values from the quorum disk while it is starting. If the instance detects no changes in the heartbeat after a configured period of time, the instance determines the cluster is not running.

Instances do not use the quorum heartbeat to detect instance failure.

Configuring the quorum device heartbeat

You can configure how often the heartbeat happens and the number of times an instance attempts to detect the quorum heartbeat before it assumes the quorum device is not functioning with the quorum heartbeat interval and the quorum heartbeat retries configuration parameters, respectively.

**quorum heartbeat interval**

The quorum heartbeat interval configuration parameter specifies the number of seconds between quorum heartbeats. The default is 5, so each instance writes a quorum heartbeat once every 5 seconds. The minimum value is 1 second and the maximum value is 60 seconds.

Most sites need not tune this configuration parameter. Setting quorum heartbeat interval to a lower number increases the heartbeat overhead, but speeds the detection of a lost disk link, so instances terminate more quickly if they are blocked or have lost their SAN link. Setting quorum heartbeat interval to a higher value reduces the heartbeat overhead, but delays the detection of a lost disk link. The amount of overhead caused by the heartbeat depends on the performance of your disk subsystem.

**quorum heartbeat retries**

The quorum heartbeat retries configuration parameter specifies the number of times an instance attempts to detect a quorum heartbeat before determining that the quorum device is no longer running, and exiting. The default is 2 (the instance terminates after the third consecutive quorum heartbeat failure because the first two failed). The minimum value is 0, indicating that the instance should terminate upon the first quorum heartbeat failure, and the maximum value is 32,768.
Using InfiniBand

Tuning this to a lower number causes an instance to fail over more quickly when access to the quorum device is lost, potentially improving application recovery times. Tuning this to a higher number degrades application recovery, reducing the chances that a transient disk access problem causes an instance failure.

Using InfiniBand

Adaptive Server 15.0.1 and later supports InfiniBand (IPoIB) for internal communication between nodes in a cluster.

**Note** InfiniBand is not supported on HPIA systems for the Cluster Edition.

To use InfiniBand:
- Configure the host channel adaptor (HCA)
- Use a InfiniBand software stack
- For Linux, the Cluster Edition requires OFED 1.2 from OpenFabrics
- InfiniBand software comes with Solaris 10

**Note** Solaris 10 includes InfiniBand. See your operating system documentation for information about installing and configuring InfiniBand.

Setting the buffer space

The Cluster Edition must have sufficient buffering space to ensure adequate performance, particularly on faster interconnects. The default values for buffer space on Linux and Solaris systems are too small for gigabit Ethernet and InfiniBand. You must modify them to ensure adequate networking performance.

Configuring buffer space

**Linux**

Use a command similar to the following to set the buffer space to an appropriate size on your system:
/sbin/sysctl -w net.core.rmem_max=value
/sbin/sysctl -w net.core.wmem_max=value

On most platforms, the default value for rmem_max is set to about 128KB, which is too small for the Cluster Edition. Increase rmem_max to the largest value your platform allows (1 megabyte is a good starting value):

/sbin/sysctl -w net.core.rmem_max=1048576

Solaris

Use a command similar to the following to set the buffer space to an appropriate size on your system:

ndd -set /dev/udp udp_max_buf value

**Configuring InfiniBand in a cluster**

After you configure the host channel adapter (HCA), the /etc/hosts file includes a corresponding host name and IP address. Use this host name or IP address when Adaptive Server plug-in or sybcluster asks for this information during the cluster configuration. If you manually configure the cluster, add the IP address.

**Private installation mode**

When you install and create your cluster, you choose whether to configure the cluster in shared or private installation mode:

- Shared installation – supports a shared file system created using a Network File System (NFS) or a cluster file system. A cluster created using a shared installation supports a single $SYBASE installation directory, Adaptive Server home directory, and server configuration file.

- Private installation – requires a separate $SYBASE installation directory, Adaptive Server home directory, and server configuration file for each instance. Parity among server configuration files is maintained by the master configuration file on the quorum device.

**Note** Sybase recommends that you use LDAP as your directory service when using a private installation.

If the installation mode is private, the cluster input file automatically contains this entry:
**Private installation mode**

```
installation mode = private
```

If the installation mode is shared, the cluster input file automatically contains this entry:

```
installation mode = shared
```

See the installation guide for your platform for instructions about installing and configuring the cluster in private or shared installation mode.

**Maintaining the server configuration files**

A configuration file version number tracks the most recent copy of the server configuration file. This information is stored on the quorum device and in each server configuration file. Every time a new configuration file to the quorum device, the version number is incremented and Adaptive Server dumps the new server configuration file and version number to each instance.

Use `qrmutil` to view the current version number of any configuration file:

```
qurmutil --quorum-dev=/dev/raw/raw101 --ase-config-version
```

See the *Utility Guide* for the complete syntax.

**Changing configuration options at runtime**

While an instance is running, you can us `sp_configure` to update server configuration options. If an option changes, Adaptive Server automatically updates the master configuration file, increments the version number, updates the `sysconfigures` table, and instructs all instances to dump a new copy of the configuration file.

When using `sp_configure` with the Cluster Edition:

- Configure an instance-specific value that applies only to the instance to which you are currently connected.
- Configuration options that are “strictly cluster-wide”—that is, the small group of configuration options that are the same on all instances—cannot be made instance-specific.
- Reconfiguring a cluster-wide value does not overwrite an instance-specific configuration.
If an instance is not running during the configuration process, its configuration file and version number are not updated. You can either let Adaptive Server detect this when the instance starts (see “If the version numbers do not match at start-up” on page 169), or you can check the version number and dump a new copy from the quorum device:

```
qrmutil --quorum-dev=/dev/raw/raw101 --ase-config-version
```

```
qrmutil --quorum-dev=/dev/raw/raw101 --ase-config-extract=mycluster.cfg
```

**Manually changing the configuration file**

You can manually change the configuration file when the configuring instance is not running:

1. Extract the configuration file. For example:
   
   ```
 qrmutil --quorum/dev/raw/raw101 --ase-config-extract=mycluster.cfg
   ```

2. Edit the configuration file:
   
   ```
 vi mycluster.cfg
   ```

3. Restart the instance.

When you restart the instance, Adaptive Server automatically increments the version number, updates the `sysconfigures` table with the new version number, writes the new configuration file to the local directory and to the quorum device, and instructs all instances to dump a new copy of the configuration file from the quorum device.

**Note** When the configuring instance is not running but the coordinator is running, you can change instance-specific parameters but not cluster-wide parameters.

**If the version numbers do not match at start-up**

Adaptive Server checks the file version number when each instance is started. The version number in the server configuration file must match the version number that is stored on the quorum device. If the file version numbers do not match, Adaptive Server prints an error message, extracts the latest copy of the configuration file from the quorum disk to the local file system, and aborts the instance start-up.
At this point, you can decide whether to restart the instance using the latest configuration file, or you can manually edit the file and then restart the instance.

- If the version numbers now match, and there has been no change to the configuration file, you can successfully restart the instance.

- If you edit the configuration file, the version numbers match, but the content of the configuration file has now changed. Restart the instance: Adaptive Server automatically increments the version number, updates the sysconfigures table with the new version number, writes the new configuration file to the local directory and to the quorum device, and instructs all instances to dump a new copy of the configuration file from the quorum device.

**Recommended configurations**

Sybase recommends that:

- You do not manually change the “config file version” parameter in the server configuration file. This should remain a server-generated number.

- You update configuration file parameters only on the start-up instance. If you update configuration file parameters on another instance, when that instance starts up it will generate a new configuration file that will remove all user changes from other instances.

**Using Java in a clustered environment**

Adaptive Server supports third-party Java Virtual Machines (JVMs), such as the Sun Java 2 Platform, Standard Edition (J2SE), in the clustered environment. See the installation guide for your platform for instructions on how to install the Sybase Java components on the Adaptive Server CE. See *Java in Adaptive Server Enterprise* for a complete description of how to use Java on Adaptive Server.

In general, you can use Java in the same way in clustered and nonclustered environments. These differences apply:

- In the Cluster Edition, connection migration is not supported for connections executing Java.
If a connection fails, a connection executing Java fails over to another instance as configured. After failover, existing SQL batch processes and Java are executed again automatically.

- Adaptive Server handles static data in different ways, depending on whether or not the JVM is shared or private.
  - In the Cluster Edition, each node has its own JVM – static data is not shareable between nodes. If a node goes down, the JVM goes down as well, and all work on the JVM is lost. You must reapply any extant SQL batch processes.
  - The nonclustered edition of Adaptive Server 15.0.3 shares a single JVM across all engines and connections – static data is sharable for classes loaded from a common class loader.
  - In Adaptive Server 15.0.2 and earlier, each client connection has its own private Sybase JVM – static data is not supported across clients.

**Adding space to an archive database**

In general, access to an archive database is handled the same in both clustered and nonclustered Adaptive Server. In either scenario, when an archive database runs out of space, you can use the `alter database` command to add space to the archive database.

In a clustered Adaptive Server, run `alter database` from the same node that is updating the archive database. If you run `alter database` from a different node, Adaptive Server prints an error message with the number of the node that is actually updating the archive database.

This capability is available for Adaptive Server versions 15.5 and later.

**Distributed transactions on a shared-disk cluster**

With version 15.5 and later, Adaptive Server supports distributed transaction management (DTM) on its clustered architecture. DTM on the Cluster Edition:

- Is fully compliant with the X/Open XA protocol when it acts as the resource manager (RM), without additional services, such as XA-Server.
Distributed transactions on a shared-disk cluster

- Ensures consistent commit or rollback for transactions that update Adaptive Server data via remote procedure calls (RPCs) and Component Integration Services (CIS).
- Can be part of distributed transactions coordinated by other Adaptive Server installations using the Adaptive Server Transaction Coordination (ASTC) mechanism.
- Can coordinate distributed transactions across multiple Adaptive Server installations using the ASTC mechanism.

Note: The Cluster Edition does not support the Microsoft Distributed Transaction Coordinator (MSDTC) proprietary protocol.

Using DTM on the shared-disk cluster

In general, the user interface for distributed transactions is the same in the Adaptive Server clustered environment as in the nonclustered environment, but some cluster-specific issues described in this section must be kept in mind. Applications using DTM on a nonclustered Adaptive Server can use the same applications on a clustered Adaptive Server. See Using Adaptive Server Distributed Transaction Management Features.

The cluster as the resource manager

Although the cluster comprises multiple Adaptive Servers, it must provide a single system view to the user. Accordingly, each application must view the complete cluster as the single RM; individual instances should not be considered as separate RMs.

For example, when making a remote procedure call on a cluster, use the cluster name as the RM:

```
exec cluster_name.dbname.owner.procedure_name
```

Make sure that the transaction manager (TM) performing XA transactions on a cluster uses the cluster name as the logical resource manager (LRM) name in the XA configuration file. Do not use the instance name. See the XA Interface Integration Guide for CICCS, Encina, and TUXEDO for more information about XA configuration.
Similarly, applications using jConnect to run XA transactions need to use the cluster name when creating XADatasource objects. For example:

```java
XADataSource xads = (XADataSource)
 ctx.lookup("server_name=cluster_name");
```

Although the cluster is named as the RM, each transaction runs on a single instance (the owner instance) in the cluster, and the state of the transaction is maintained only on that instance. A running transaction cannot migrate between instances in the cluster. All Transact-SQL statements and transaction commit processing execute only on the instance that owns the transaction.

### Handling requests on nonowner instances

Some distributed transaction mechanisms, such as X/Open-XA protocols, are not connection-oriented, and allow applications to issue commands on different connections. As a result, requests to resume work on a suspended transaction branch can be issued on a nonowner instance. Likewise, requests for commit processing can be issued on a connection to a nonowner instance.

In a clustered Adaptive Server, such requests issued on nonowner instances require special processing.

When a request is issued on a nonowner instance, the clustered Adaptive Server determines the owner instance for the transaction, and then migrates the connection to the owner instance with the help of the connectivity libraries. The connection migration is transparent to the application. After a successful connection migration, the request is processed on the owner instance.


ASTC transactions do not need connection migration. The ASTC mechanism requires that all Transact-SQL statements and the commit processing for transactions are issued on the same connection.
Handling instance failures

X/Open-XA and ASTC protocols do not allow the RM to unilaterally commit or abort a prepared transaction without instructions from the TM. The RM must retain a prepared transaction until it is apprised of the transaction’s end status from the TM. However, an instance in the cluster can fail when a transaction branch is running on it. The cluster coordinator reinstatiates the prepared transaction of the failed instance during failover recovery. Once the transaction is reinstatiated on the cluster coordinator, the TM can commit or roll back the transaction.

Note The commands that commit or roll back the reinstatiated transaction can land on an instance other than the current owner instance. In this scenario:

- For XA transactions – the server migrates the connection to the owner instance, which processes the request.
- For ASTC transactions – the instance receiving the commit or rollback command acts as a proxy by forwarding the request to the owner instance for processing and then sending the reply to the TM.

Only prepared transaction branches on the failed instance are reinstatiated during failover recovery. If a transaction branch running on a failed instance is not yet prepared, the clustered Adaptive Server rolls back its work during failover recovery.

Transaction coordination with ASTC

The clustered Adaptive Server, like the nonclustered Adaptive Server, uses the ASTC mechanism to coordinate a distributed transaction that spans multiple Adaptive Server installations. Transaction coordination services are transparent to the client executing the distributed transaction. When a local client transaction executes an RPC or updates data via CIS, the coordination service creates a new transaction name for the remote work and propagates that transaction to the subordinate remote server. When the local client commits or rolls back the local transaction, Adaptive Server coordinates that request with each of the subordinate servers to ensure that the remote transactions are committed or rolled back as well.
The clustered Adaptive Server executes special ASTC_HANDLER tasks to handle failures such as connection termination, a remote server failure, or a local server failure. The ASTC_HANDLER propagates the end status of the transaction to the remote participants after recovering from the failure condition. ASTC_HANDLER tasks are executed on each instance in the cluster. In the case of failures, an ASTC_HANDLER task on an instance propagates the end status to the remote participant only for the distributed transaction started on that instance. An ASTC_HANDLER task on the cluster coordinator has the additional work of handling the remote participants of the transaction from the previous start-up of the cluster or the remote participants on an instance when that instance leaves the cluster.

The impact of connection migration

For XA transactions, the Adaptive Server cluster uses connection migration to handle requests on nonowner instances.

Connection migration and performance

Connection migration can negatively affect performance as it requires:

• Terminating an existing connection on a nonowner instance
• Creating a new connection to the instance running the transaction
• Saving context information on the existing connection, and then restoring this information on the owner instance following connection migration

To reduce the negative affect of connection migration on performance:

• Use logical clusters and workload manager capabilities to bind XA transactions to a specific instance in the cluster so that connection migration is not needed. See Chapter 6, “Managing the Workload.”
• Modify applications to avoid unnecessary disconnections and reconnections.

When connections cannot migrate

On occasion, an application can issue a request on a connection that is in a state that does not allow migration. See “Criteria for migration” on page 30.
For example, a connection cannot migrate if an application connects to an instance, and before issuing the request to perform an operation on the transaction, uses the connection to create a temporary table. If such a connection is to a nonowner instance, Adaptive Server cannot process the request, and the application receives a protocol-specific error code. In the case of X/Open-XA protocols, the TM receives XAER_RMERR as a return status, which indicates that the cluster has not processed the XA command. The transaction has not rolled back; it is still running on the owner instance.

Address this error by reissuing the command on a different connection. XAER_RMERR is a generic error that is returned in many error situations. You can use the functions xact_connmigrate_check and xact_owner_instance to determine if the XAER_RMERR error is due to a connection that cannot migrate. See “Configuration and system issues” on page 176.

To avoid XAER_RMERR errors due to nonmigratable connections:

- Do not use the connections used for XA applications for general use, as a connection can be left in a state that does not allow it to migrate.
- Use trace flag 3960 to avoid an XAER_RMERR error for commit and rollback commands issued on nonmigratable connections to nonowner instances. When you use trace flag 3960, the nonowner instance acts as proxy between the TM and the owner instance by forwarding the request from the TM to the owner instance, and then sending the reply to the TM.

Configuration and system issues

See Using Adaptive Server Distributed Transaction Management Features for general information about configuring and administered DTM. This section describes configuration and administration issues that are specific to DTM on the clustered Adaptive Server.

- When configuring the cluster for DTM, specify the cluster name as the RM. Make sure your applications use the cluster name in ASTC RPCs and in TM configuration.
- The DTM-relevant configuration parameters (enable DTM, enable xact coordination, and strict dtm enforcement) are cluster-static in the clustered Adaptive Server. If you change the values of these parameters, you must restart the cluster for them to take effect.
The `instanceid` column in the `syscoordinations` and `systransactions` system tables identifies the owner instance of the transaction. An `instanceid` with a value of zero (0) indicates the owner instance has been shut down or has failed, and that the cluster coordinator is now the owner instance of the transaction.

Two functions support DTM on clustered Adaptive Server:

- `xact_owner_instance(XID)` – returns the instance on which an external transaction is running.
- `xact_connmigrate_check(XID)` – determines whether the current connection can process an external transaction. The `XID` parameter is optional.

If an external transaction name (XID) is specified:

- Returns 1 if:
  - The connection is to the owner instance, or
  - The connection is to a nonowner instance, and the connection can migrate.
- Otherwise, returns 0.

If an XID is not specified:

- Returns 1 if the connection can migrate.
- Otherwise, returns 0.

If a cluster instance is running a distributed transaction branch, do not use the polite `shutdown instance_name` command to shut down the instance. Instead, use:

```
shutdown instance_name with nowait
```

The polite `shutdown instance_name` command can roll back regular user transactions running on an instance, but it cannot roll back distributed transaction branches in the prepared state. This means you can use the polite instance `shutdown` only if there is no active distributed transaction on the instance.
Support for mount and unmount commands

When the instance is shut down using the nowait option, it triggers a failover recovery that reinstatiates the prepared distributed transaction branches of the instance on the cluster coordinator. See also “Handling instance failures” on page 174.

**Note** Although you cannot use the polite shutdown instance_name command, you can use the polite shutdown cluster_name command, even if instances in the cluster have distributed transaction branches running on them.

Support for *mount* and *unmount* commands

With version Adaptive Server 15.5 and later, you can use the mount database and unmount database commands in a shared-disk cluster. If an instance fails while one of these commands is in progress, the command may abort. Reissue mount database or unmount database when the instance failover recovery is complete.

Using **sp_showplan**

You cannot use sp_showplan across multiple nodes of a shared-disk cluster. It is specific to a single connection to a node.
CHAPTER 12

Using the Cluster Edition with the Veritas Cluster Server

This chapter describes how to configure and use the Cluster Edition with the Veritas Storage Foundation for Sybase CE (SF for Sybase CE).

The integration of the Cluster Edition version 15.0.3 and later with the Veritas SF for Sybase CE allows the Cluster Edition to leverage the Veritas Storage Foundation storage management technologies, Cluster Server (VCS) application, and cluster management features.

**Note** Integrating the Cluster Edition version 15.0.3 with the SF for Sybase CE provides cluster availability and data integrity. Other versions of the Veritas Storage Foundation do not contain necessary integration components and should not be used.

The Cluster Edition with SF for Sybase CE includes:

- Storage Foundation Cluster File System – a generic clustered file system you can use with the Cluster Edition installation files (the files and directories located in $SYBASE), database devices, quorum devices, and other application files
- Cluster Volume Manager – creates the logical volumes the cluster nodes share
- Dynamic multipathing – improves storage availability and performance
Service group–based application management – provides monitoring and failover capabilities, and allows you to create dependencies between applications so that, if a component fails that the application requires (such as a disk volume), you can fail over the entire application.

Integrated management of multiple clusters, applications, and database servers using VCS agents and management consoles.

Support for hardware replication technologies and block-level replication using Veritas Volume Replicator.

The Cluster Edition and the SF for Sybase CE include two key elements of cluster operation: membership management and I/O fencing:

Membership management – the Cluster Edition and SF for Sybase CE maintain their own membership managers. The membership manager is responsible for:

- Coordinating logging in and logging off the cluster.
- Detecting failures.
- Determining which members of the cluster remain alive in the event of a communications loss (known as arbitration).
- Maintaining a consistent cluster view.

The Veritas Cluster Membership plug-in (VCMP) allows the Cluster Edition membership service to synchronize with the underlying Veritas membership manager, which avoids a situation where two membership managers are not coordinated, arbitrate a failure differently, and cause the cluster to shut down. Using the VCMP ensures that the Cluster Edition arbitrates in favor of instances that run on nodes within the Veritas membership view.

I/O fencing – so-called because the membership manager builds a fence around the data storage, and allows only instances or nodes that behave properly to perform writes. Use I/O fencing to prevent data corruption from uncooperative cluster members. The Cluster Editions and the SF for Sybase CE coordinate I/O fencing such that:

The

- SF for Sybase CE manages and performs all fencing, and
- The Cluster Edition can communicate to the SF for Sybase CE that a fencing action is necessary because of a Cluster Edition membership change.
Figure 12-1 describes the components that comprise the Cluster Edition and the SF for Sybase CE:

*Figure 12-1: Components in clustered Veritas system*

The components supplied by Sybase are:
- Cluster Edition – relational database server running on the node
- Quorum device – includes configuration information for the cluster and is shared by all cluster members
- Veritas Cluster Membership plug-in (VCMP) – receives membership change messages from VxFEND and communicates to the Cluster Edition’s membership service, which blocks membership changes until the VCMP permits it to proceed

The components supplied by Veritas are:
- LLT (low latency transport) – allows VCS to communicate across the cluster, detecting heartbeats and failures.
Supported platforms, requirements, and limitations

- GAB (global atomic broadcast) – coordinates the VCS membership. The LLT provides the GAB with information about failure events (for example, no heartbeat).
- CVM (cluster volume manager) – receives membership information from the GAB and coordinates with VxFEN.
- CFS (cluster file system) – a file system that can be simultaneously mounted and accessed by multiple nodes in a cluster. CFS uses a distributed lock manager to maintain consistency across nodes. CVM, with a storage area network (SAN), provides the underlying storage.
- VxFEN (kernel-side I/O fencing control) – VxFEN receives membership information from GAB and performs fencing, when appropriate.
- VxFEND (user space I/O fencing control daemon) – daemon running in the user space (as opposed to a running in the kernel) that communicates with VxFEN. During the membership change, VxFEN sends a message to VxFEND indicating a change of membership. VxFEND informs the Cluster Edition about the membership change through VCMP.
- VCS Agent – VCS monitoring agent for the Cluster Edition. If necessary, the VCS agent can trigger a host panic if the Cluster Edition fails. The VCS agent is also used by VCS to start and stop the Cluster Edition.

Supported platforms, requirements, and limitations

The Cluster Edition with the SF for Sybase CE is supported on these platforms:
- Solaris 10 on SPARC (Sun Sparc 64)
- Redhat Enterprise Linux 5 on x86_64 (Linux AMD 64)

See the Cluster Edition release bulletin and installation guide for your platform for information about required release levels, packages, and patches. See the Veritas Storage Foundation for Sybase CE Release Bulletin and Installation and Configuration Guide, both from Veritas, for a full list of SF for Sybase CE requirements.

The Cluster Edition runs in native or vcs mode. In native mode, the Cluster Edition does not coordinate with the cluster membership manager; in vcs mode the cluster membership manager cooperates with the Veritas clusterware. See “Membership modes” on page 190.

To use the Cluster Edition in vcs membership mode, you must:
• Install and configure SF for Sybase CE v5.0 on the host nodes.
• Make sure that all Cluster Edition storage, including the master device, user database devices, and the quorum device come from SF for Sybase CE managed storage. This can be either a CVM volume or a CFS file.
• Configure the Cluster Edition private networks for the same physical networks as the Veritas LLT links. See “Installing and configuring the Cluster Edition on VCS” on page 183.

Using the Cluster Edition in vcs membership mode includes these limitations:
• You cannot run more than one instance on a given hardware node, even if the instances are participating in different Adaptive Server clusters.
• You cannot have more than four instances or nodes in a cluster.
• Instance failures can cause a panic restart of a host node. Keep in mind that, if you plan to run unrelated, critical applications (including other nonclustered Adaptive Servers) on the same node, these applications are shut down when the node restarts.

Installing and configuring the Cluster Edition on VCS

To install and configure the Cluster Edition to run on the Veritas cluster subsystem, you must perform steps described in the Veritas documentation and in the following sections.

Perform steps 1 – 6 as described in the Veritas SF Sybase CE Installation and Configuration Guide:

1 Install and configure Veritas’s SF for Sybase CE.
2 Configure I/O fencing in Sybase mode.
3 Create a shared disk group, volume, and mount point for Adaptive Server binary installation ($SYBASE).
4 Create a shared disk group, volume, and mount point (if using CFS) for the Adaptive Server quorum device.
5 Create a shared disk group, volume, and mount point (if using CFS) for the Adaptive Server database devices.
6 Ensure the “sybase” user (or equivalent) has appropriate ownership and access for the storage in step 5.
Perform steps 7 and 8 as described in this book in sections “Installing the Cluster Edition” on page 184, “Creating a new Adaptive Server cluster for Storage Foundation integration” on page 185, and “Converting an existing cluster to use SF for Sybase CE” on page 186:

7 Install Adaptive Server Cluster Edition.

8 Create the Adaptive Server cluster or prepare an existing cluster for use.

   Perform step 9 as described in the *SF Sybase CE Installation and Configuration Guide*.

9 Using the SF for Sybase CE installer, create a VCS service group for your Adaptive Server cluster. This puts the cluster into *vcs* membership mode.

**Note** Once you configure the Cluster Edition in *vcs* membership mode, start the cluster as part of a VCS service group. If you start the Cluster Edition outside a VCS service group while in *vcs* mode, the Cluster Edition hangs and shuts down.

---

**Installing the Cluster Edition**

Perform the steps described in Chapter 3, “Creating and Starting the Cluster,” in the installation guide for your platform to create a cluster using SF for Sybase CE.

**Note** Install the Cluster Edition *before* you create the VCS service group.

Sybase recommends that you:

- Create the Cluster Edition in a shared installation instead of a private installation

- Create the release directory (`$SYBASE`) on an storage foundation cluster file system (SFCFS) mount point. Install the SF for Sybase CE prior to installing Cluster Edition. See the Veritas *SF Sybase CE Installation Guide*. 
Creating a new Adaptive Server cluster for Storage Foundation integration

Both sybcluster and the Adaptive Server plug-in automatically detect if the SF for Sybase CE is installed on the host node, and guide you to select the appropriate storage and network interconnects. When you create a cluster:

- All storage must be on SF for Sybase CE managed devices, using CVM controlled volumes or SFCFS file systems, with these restrictions:
  - If you access CVM controlled volumes directly, you must access them as raw (character) devices, using `/dev/vx/rdsn` (instead of `/dev/vx/dsk`)
  - You can place private devices added specifically for local temporary databases on local, non-SF for Sybase CE storage devices.
  - Do not use storage provided by non-Sybase CE versions of Veritas Storage Foundation. Do not use storage provided by SF for Sybase CE unless you configure the Cluster Edition for `vcs` membership mode. Adaptive Server cannot perform VxFEN-controlled I/O fencing in native mode as database corruption may result.
- Configure the VCMP socket path. By default, the VCMP uses `/tmp/vcmp_socket` to communicate with Veritas.
  a. Add this to the runserver file located in `$SYBASEASE-15_0/install/RUN_instance name`:
     ```bash
 export VCMP_SOCKET=new_vcmp_socket_path
     ```
     For example:
     ```bash
 export VCMP_SOCKET=/tmp/my_socket
     ```
  b. Modify the `vxfend` resource:
     ```bash
 hares -modify vxfend Arguments "%-m sybase -k new_vcmp_socket_path"
     ```
     For example:
     ```bash
 hares -modify vxfend Arguments "%-m sybase -k /tmp/my_socket"
     ```
     i.e.
- The Cluster Edition primary and secondary cluster interconnects must run over Veritas LLT managed networks. Determine which networks LLT uses from the `/etc/llttab` file. In this example, LLT runs over the `eth0` and `eth1` networks:
  ```bash
 [admin@sdcc2 ~]$ cat /etc/llttab
 set-node sdcc2
  ```
Installing and configuring the Cluster Edition on VCS

set-cluster 53
link eth0 eth-00:19:b9:b0:73:13 - ether - -
link eth1 eth-00:19:b9:b0:73:15 - ether - -

Note  Cluster Edition interconnects require that you configure IP addresses for the links. Because LLT does not require IP addresses, you may need to configure the interconnects separately. See your operating system documentation.

Determine the IP address assigned to a given network using the ifconfig command. You can use this address to configure either the primary or secondary cluster interconnect. In this example, the interface eth0 has an IPv4 address of 10.22.104.141:

```bash
[admin@sdcc2 ~]$ /sbin/ifconfig -a eth0
eth0 Link encap:Ethernet HWaddr 00:19:B9:B0:73:13
 inet addr:10.22.104.141 Bcast:10.22.104.255 Mask:255.255.255.0
 inet6 addr: fe80::219:b9ff:feb0:7313/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:19710010 errors:0 dropped:0 overruns:0 frame:0
 TX packets:11707065 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:7506123489 (6.9 GiB) TX bytes:1839949672 (1.7 GiB)
 Interrupt:169 Memory:f8000000-f8012100
```

Reset the cluster to vcs mode after you create the cluster.

Converting an existing cluster to use SF for Sybase CE

If you convert the Cluster Edition to work with the SF for Sybase CE, the Storage Foundation software must manage all database storage, and Cluster Edition interconnects must operate over LLT links.

Relocating database storage

How you move existing databases from non-Storage Foundation storage to Storage Foundation storage varies from site to site depending on the configuration and the size and number of the database devices involved.
Reconfiguring interconnects

To reconfigure interconnects:

1. Determine the proper IP address for the LLT links using the `ifconfig` command.
2. Shut down the cluster using the `shutdown cluster` command.
3. Use `qrmutil` to reconfigure the interconnects. Run this command for each instance in the cluster, using the appropriate instance name, primary and secondary addresses:

   ```
 qrmutil --quorum_dev=path_to_quorum_device --instance=instance_name --primary-address=address_of_primary_interconnect --secondary-address=address_of_secondary_interconnect
 ``

 This example configures the “ase1” instance to use a primary address of 192.168.0.1 and a secondary address of 192.168.0.2:

   ```
   qrmutil --quorum_dev=/sybase_cfs/quorum.dat --instance=ase1 --primary-address=192.168.0.1 --secondary-address=192.168.0.2
   ```

 As an alternative to running step 3 for each instance, you can extract the current configuration to a file (as in step 4), edit the file for each instance, and reload the file onto the quorum device using the `--load-config` parameter.

4. Use `qrmutil --extract-config` parameter to create a backup of the new cluster configuration. This example backs up the cluster configuration to the `quorum.bak` file:

   ```
   qrmutil --quorum_dev=/sybase_cfs/quorum.dat --extract-config=/sybase_cfs/quorum.bak
   ```


Managing a cluster under VCS control

You must place the Cluster Edition under VCS control by changing the Cluster Edition membership mode to `vcs` to activate software that allows the Cluster Edition and SF for Sybase CE to work together.

See the section “Configuring a Sybase ASE CE cluster under VCS control using the SF for Sybase CE installer” in the *SF Sybase CE Installation and Configuration Guide* for instructions on creating a VCS service group.
Starting and stopping instances

Although the Cluster Edition recognizes the Transact SQL shutdown cluster and shutdown cluster with nowait, the sybcluster shutdown commands, and the Adaptive Server plug-in start and stop selections while in vcs membership mode, Sybase recommends that you use the VCS agent to start and stop instances.

Start and stop an instance running in vcs membership mode using the corresponding VCS service group, which uses a VCS agent to start and stop the instance. Control the VCS agent with the VCS Cluster Manager (Java console) or the hagrp command line utility.

See “Administering the Sybase Agent” in the *SF Sybase CE Administrator's Guide*. For more information about the VCS agent and resource management, see the *Veritas Cluster Server User's Guide*.

Adding and removing instances

Adding an instance to the cluster or removing an instance from the cluster involves:

- Adding the host node to VCS or removing the host node from VCS (optional if removing an instance)
- Adding or removing the instance

You can perform the tasks in either order, but you cannot start the instance until both tasks are complete. See Chapter 14, “Administering Clusters with the Adaptive Server Plug-in,” and Chapter 15, “Administering Clusters Using sybcluster.” For information about adding a node to a VCS cluster, see “Adding a node to SF Sybase CE clusters” in the *SF Sybase CE Administrator's Guide*.

Increasing the number of user connections

When you increase the number of user connections, you must also increase the file descriptor limit. However, Veritas running over VCS does not propagate file descriptor limit changes from one user session to another. For example, if you change the file descriptor limits in your current session:

```
ulimit -n 8194
```
Subsequent UNIX sessions have the default setting (1024) for the number of file descriptors. Consequently, while the Veritas VCS manages the cluster and brings instances online, it logs into the Linux operating system as the user sybase (starting a new UNIX session), and uses the default value for the number of file descriptors.

To ensure that all sybase user sessions have the correct file descriptor limit, add the following lines to `/etc/security/limits.conf`:

```
    sybase hard nofile 8096
    sybase soft nofile 8096
```

Changing the character set or sort order

To change the charset or sort order:

2. Change the membership mode to native:
   ```
   qrmutil -Q quorum_file --membership-mode="native"
   ```
3. Restart a single instance in the cluster manually or with sybcluster.
4. To change the charset, run charset. For example:
   ```
   $SYBASE/ASE-15_0/bin/charset -Usa -P nocase.srt utf8
   ```
5. To change the sort order, reset the default `sortorder id` configuration parameter. For example:
   ```
   isql -Usa -P
   sp_configure 'default sortorder id', 101, 'utf8'
   ```
6. Shut down the cluster from `isql`
7. Restart an instance. Adaptive Server reconfigures the character set and sort order, and shuts down.
8. Change the membership mode back to VCS:
   ```
   qrmutil -Q quorum_file --membership-mode='vcs'
   ```
9. Restart the cluster using VCS commands.
Membership modes

The Cluster Edition version 15.0.3 and later includes two membership modes, native and vcs. The membership mode dictates whether the Cluster Edition’s internal membership manager (CMS) functions autonomously (in native mode, the default setting) or in cooperation with Veritas clusterware (in vcs mode).

Determining the membership mode

Use the `@@membershipmode` global variable and `sybcluster show membership mode` to determine the current membership mode. `@@membershipmode` and `sybcluster` return “vcs” if the Cluster Edition is running with the VCS cluster subsystem, and returns “native” if the Cluster Edition is running without the VCS cluster subsystem. For example:

```
select @@membershipmode
vcs
```

Changing membership mode

You need not generally change the membership mode because creating a VCS service group automatically changes an instance to vcs mode.

Use the `qrmutil --membership-mode` option to change the membership mode. The cluster must be shut down. The syntax is:

```
qrmutil --[-Q | quorum-dev=quorum_device] --membership-mode=mode
```

where:

- `vcs` – indicates the Cluster Edition is running with the VCS cluster subsystem
- `native` – indicates the Cluster Edition is running without the VCS cluster subsystem

For example:

```
qrmutil --quorum-dev=/dev/vx/rdsk/quorum_dg/quorumvol --membership-mode=vcs
```

To manually configure the Cluster Edition to load VCMP and activate the VCS integration, add `membership mode = vcs` to the cluster configuration file. After you add this line, the Cluster Edition starts as part of the VCS service group. To configure the Cluster Edition without the Veritas cluster subsystem, enter `membership mode = native` to the cluster configuration file.
This example sets the membership mode to vcs:

```plaintext
[cluster]
name = isles
max instances = 4
primary protocol = udp
master device = /sybase_cfs/data/master.dat
config file = /sybase_cfg/ASE-15_0/ase.cfg
interfaces path = /sybase_cfg/ASE-15_0/ase.cfg
membership mode = vcs
```

The Cluster Edition starts in native mode if you do not include vcs or native as the parameter for the membership mode = line, or if you do not include the line.

Changing the membership mode in the cluster configuration file has no affect after you generate the master database. After the master database is generated, use qrmutil to change the membership mode:

```plaintext
qrmutil --quorum-dev= quorum_path --membership-mode=[vcs|native]
```

Understanding failure scenarios

Because the Cluster Edition coordinates its membership changes with VCS and relies on the SF for Sybase CE to perform I/O fencing, the Cluster Edition membership manager waits for VCS to reconfigure its membership and perform I/O fencing. However, during some failures, Adaptive Server requires I/O fencing even if the situation does not result in a VCS membership reconfiguration. To acquire the I/O fencing, Adaptive Server passes a message through the quorum device to the VCS agent on the node to be fenced. When it receives the message, the VCS agent panics the node, which triggers a VCS reconfiguration.

How the VCS system reacts during a failure depends on the situation:

- Host node crashes – detected by VCS. VCS reconfigures cluster membership and performs I/O fencing from the failed node. The Cluster Edition receives the new membership from VCS and performs recovery.
- Host node hangs – results in a VCS LLT timeout and a Cluster Edition heartbeat timeout. VCS reconfigures and performs I/O fencing. The Cluster Edition receives the new membership from VCS and performs recovery. The node that is hanging cannot write to the shared storage and eventually panics.
VCS troubleshooting

- Instance fails or hangs – the remaining instances detect a heartbeat failure and perform membership arbitration. The cluster passes a message to the VCS agent on the host node on which the instance failed, which triggers a host node panic. From this point, the VCS acts in the manner described in the “Host node crashes” situation described above.

- Instance shutdown with nowait – the Cluster Edition does not trigger a VCS membership change in VCS membership mode.

- Loss of storage access – the Cluster Edition is unaffected if you configured multipathing and at least one path to storage remains viable. However, if all paths to storage are lost, VCS induces a host panic, which the cluster handles in the same manner described in “Host node crashes” above.

- Loss of interconnect – response depends on the availability of an alternate communication channel. Both Adaptive Server and VCS can switch traffic to an alternate channel. If Adaptive Server has no viable channels and VCS does, the cluster reacts in the manner described in “Instance fails or hangs,” above. If VCS has no viable channels, it acts in the manner described in the “Host node crashes” situation described above.

VCS troubleshooting

The information in the error log helps you determine the reason for a problem, and possible solutions. The default error log locations are:

- Cluster Edition – $SYBASE/SSYBASE_ASE/install/instance_name.log
- Veritas – /var/VRTSvcs/log/engine_A.log
- Linux – /var/log/messages
- Solaris – /var/adm/messages

Note Many of the problems listed below are resolved with Veritas commands (for example, hagrp and hares). See your Veritas documentation for syntax and usage information.
Cluster Edition fails to start

A number of problems can cause the Cluster Edition to not start.

The Cluster Edition creates a resource fault if VCS cannot start the Cluster Edition or detects that it is already running. Use the hagrp -clear command to clear the resource fault. This example clears the resource faults for an VCS group named “asegrp1”:

```
hagrp -clear asegrp1
```

VCS uses the *ps* command to locate the *dataserver* process: do not rename the *dataserver* binary.

Validate the *Home* attribute for the Cluster Edition resource using *hares -display*. *Home* must point to *$SYBASE* and the *dataserver* binary must be located in *$SYBASE/ASE-15_0/bin*. If *Home* does not point to the correct value, change the value using the *hares -modify* command.

VCS uses the *RUN_server_name* file to start the instances. If the *RUN_server_name* files do not exist, VCS uses the parameters defined in the *Home*, *Server*, and *Quorum_dev* variables to build the execution string that starts the instance:

```
HOME/ASE-15_0/bin/dataserver -s server_name -Q Quorum_dev
```

If you receive a resource fault, you should verify that:

- There is a separate *RUN_server_name* file for each instance in the cluster.
- The *RUN_server_name* files include the name of the instance as the suffix.
- Each *RUN_server_name* file is executable.
- Each *RUN_server_name* file contains the correct path to the *dataserver* binary.
- The *Quorum_dev* attribute value uses the correct path to an existing quorum device. Use *hares -display* to view the *Quorum_dev* value. This example assumes an VCS resource named “aseres1”:

```
hares -display aseres1 -attribute Quorum_dev
```

Use *hares -modify* to modify the path:

```
hares -modify aseres1 Quorum_dev /sybase/quorum
```

- The *Server* attributes correspond to the instance names. Use the *hares -display* command to verify the *Server* attributes. This example assumes an VCS resource named “aseres1”:

```
hares -display aseres1 -attribute Server
```
Use `hares -modify` to modify the value:

```
hares -modify areses1 Server ase1 -sys hpcblade1
```

- You have enabled the VCS resource using `hares -display`:

```
hares -display areses1 -attribute Enabled
```

If necessary, change it using `hares -modify`:

```
hares -modify areses1 Enabled 1
```

Veritas log: “Sybase home directory does not exist”

Veritas log: “Sybase home directory does not exist”

Because the Sybase home directory ($SYBASE) must exist on the CFS mount directory, if the CFS mount directory is not available, instances cannot start.

To verify that $SYBASE directory is available, validate that the ASE group is dependent on the cfsmount group using `hagrp -dep`:

```
hagrp -dep
```

If it is not currently dependent, use `hagrp -link` to reestablish the dependency:

```
hagrp -link asegrp1 cfsmount1 online local firm
```

Instance log: “failed to bind to socket”

Instance log: “failed to bind to socket”

This error occurs when an instance has a VCMP socket error. The “sybase” user must own the VCMP socket (/tmp/vcmp_socket) before it can read and write to the socket and communicate with VxFEN.

Use the `ls -l` UNIX command to validate that the “sybase” user owns `/tmp/vcmp_socket`:

```
ls -l /tmp/vcmp_socket
```

If the “sybase” user does not own `/tmp/vcmp_socket`, change the ownership using the UNIX `chown` command:

```
chown sybase /tmp/vcmp_socket
```
Instance log: “Membership service failed to receive initial message from Veritas cluster membership after 301 seconds. Exiting...”

Error occurs because an instance has a VCMP timeout. Causes, and their solutions, include:

- The VxFEND resource is unavailable when you bring the ASE group online. To verify VxFEND resource availability:

a. Take the VxFEND resource offline:

 \texttt{hares -offline vxfend -sys <server name>}

b. Bring the ASE group online:

 \texttt{hagrp -online ASE -sys <server name>}

- Another instance is using the socket. Use the UNIX ps command to validate that no other dataserver processes are running on the node:

 \texttt{ps -ef | grep dataserver}

- The VxFEND resource is not enabled. Use \texttt{hares -display} to validate that VxFEND is enabled:

 \texttt{hares -display vxfend -attribute Enabled}

 If it is not enabled, use \texttt{hares -modify}:

 \texttt{hares -modify vxfend Enabled 1}

- The ASE resource is not dependent on the VxFEND resource. Use \texttt{hares -dep} to validate the ASE resource dependency:

 \texttt{hares -dep}

 If it is not dependent, use \texttt{hares -link} to reestablish the dependency:

 \texttt{hares -link aseres1 vxfend}

- Another Adaptive Server or VxFEND resource conflicts with a resource startup. Use \texttt{hares -display} to validate that no other Adaptive Server or VxFEND resource is enabled:

 \texttt{hares -display}

 Use \texttt{hares -modify} to rectify any problems:

 \texttt{hares -modify ASE2 Enabled 0}
Instance log: “Failed to open quorum device ‘device_path’. OS error 13, 'Permission denied’”

Error occurs because permissions on the VCS raw volumes do not include access for the “sybase” user. Grant the “sybase” user read and write permission to the VCS volumes.

```
vxedit -g sybasedg set user=sybase group=sybase mode=660 quorum
vxedit -g sybasedg set user=sybase group=sybase mode=660 master
vxedit -g sybasedg set user=sybase group=sybase mode=660 sybasehome
```

Instance log: “basis_dsizecheck: attempt to open device ‘device_path’ failed, system error is: Permission denied”

Error occurs for the same reasons as error above. Rectify with the same steps.

Instance log: “The configuration area in master device appears to be corrupt.”

You may also see these messages in the Linux log:

```
Linux log: READ CAPACITY failed
Linux log: reservation conflict
Linux log: attempt to access beyond end of device
```

Error occurs when the master database is corrupted or the clustered file system causes hangs. This problem may occur because the disk array is not properly configured for Veritas. To rectify:

- Verify that the disk array firmware is up to date.
- (Linux only) Verify that the disk initialization format in the Veritas Volume Manager is sliced.
- Correct the disk array connection mode configuration settings so the logical unit numbers (LUNs) reserved for one host are visible to the other host, and verify the SCSI-3 fencing is properly enabled on the array. Generally, these settings are:
 - Set Host Mode Option = 19 (ON)
 - Set Host Mode Option = 254 (ON)
 - Set Host Mode Option = 186 (ON)
Set Host Mode Option = 60 (ON)
Host Mode = 0A
Path Switch Mode (Active/Active) = 1 (Enabled)
No_RSV_Conf Mode = 1 (Enabled)
Persistent RSV Cluster Mode = 1 (Enabled)
Unique Reserve Mode = 1 (Enabled)

See your Veritas documentation for settings specific to your operating system and hardware

Veritas log: “Path not found”

Error occurs because VCS cannot locate the UNIX sh command to start the dataserver binary. Veritas truncates the start of the $PATH environment variable, so verify that Veritas is locating the sh command. Check the value for $PATH and restart Veritas:

1 Check the value for $PATH
 echo $PATH

2 Change the value of $PATH to include the sh command:
 export PATH=/bin:/sbin:/usr/bin:/usr/sbin

3 Stop Veritas:
 Issue hastop -local

4 Restart Veritas:
 hastart

VCS shuts down the instance after it starts and issues resource faults

Use hagrp -clear to clear the resource faults. This command clears the resource faults for an VCS group named “asegrp1”:

 hagrp -clear asegrp1

This error may result in the instance writing a number of errors to the error log:
VCS troubleshooting

• **Failed to identify instance** – VCS is using the wrong name to start the instance. To rectify:
 - Verify that the each `RUN_server_name` file includes the correct path to the quorum device, and that the value for `server_name` is the same as the name of the instance.
 - Use `qrmutil` to validate the quorum configuration, specifically the instance and host names:
    ```
    qrmutil -Q quorum_path --display=all
    ```
 - **Shutdown with nowait detected** – VCS cannot determine if the instance is running. VCS uses the UNIX `ps` command with the server name in the execution string to verify whether an instance is running. To make sure the `ps` command can find each instance:
 - (Solaris only) Verify that the instance name in the `RUN_server_name` file appears within the first 80 characters
 - Use `hares -display` to verify that the `Server` attributes for the `ASE` resource. The `Server` attributes must correspond to the instance names. This example displays the instance names for the “aseres1” resource:
      ```
      hares -display aseres1 -attribute Server
      ```
 If necessary, use `hares -modify` to change the values:
    ```
    hares -modify aseres1 Server asel -sys hpcblade1
    ```
 If an instance requires a long time to start, Veritas may stop the dataserver process during startup and issue a resource fault. To prevent these resource faults, allow instances more time for startup by adjusting the following Sybase VCS monitoring parameters:
 - Adjust the time between monitor checks for the `ASE` resource. For example:
      ```
      hatype -modify Sybase MonitorInterval 60
      ```
 - Adjust the number of monitor checks to confirm the `ASE` resource is online. For example:
      ```
      hatype -modify Sybase OnlineWaitLimit 10
      ```
 - Adjust the number of failed monitor checks before issuing a resource fault for the `Sybase` resource. For example:
      ```
      hatype -modify Sybase ToleranceLimit 2
      ```
• Engine exited with signal 11 – the instance fails on the Linux platform. To rectify, reset the $LD_POINTER_GUARD$ environment variable in the RUN_server_name files:
 • On the SUSE platform, enter:

    ```bash
    export LD_POINTER_GUARD=1
    ```
 • On the RedHat platform issue:

    ```bash
    export LD_POINTER_GUARD=0
    ```

VCS cannot shutdown the instance resource

This problem occurs when VSC has trouble using `isql` to connect to an instance. VCS uses `isql` to connect and shut down instances. `isql` uses the interfaces file for the connection parameters. Validate that:

• The interfaces file is defined in the release directory ($SYBASE$) and is configured correctly.

• The interfaces file contains definitions for each defined instance.

• The release directory contains a `SYBASE.sh` or `SYBASE.csh` file and is configured correctly.

VCS uses the `SA` and `SApswd` commands with `isql` to connect and shut down instances. Use `hares -display` to verify the `SA` and `SApswd` attributes for the `ASE` resource:

```
hares -display aseres1 -attribute SA
hares -display aseres1 -attribute SApswd
```

If necessary, use `hares -modify` to change the attributes:

```
hares -modify aseres1 SA sa
hares -modify aseres1 SApswd ""
```

Resource faults for VCS groups

If you find resource faults from the `cfsmount` group:

• Use `hagrp -dep` to verify that the `cfsmount` group is dependent on the `cvm` and `cvmvoldg` groups:

```
hagrp -dep
```
VCS troubleshooting

Use hagrp -link to fix any dependencies:

```
hagrp -link cfsmount1 cvm online local firm
hares -link cfsmount1 cvmvoldg1
```

- Use vxdg list to verify that the VCS mount and volume disk groups are enabled on all nodes:

```
vxdg -o alldgs list
```

Use vxdg deport and import to re-enable:

```
vxdg deport disk_group_name
vxdg -s import disk_group_name
```

- Use vxdisk list to verify that the VCS mount and volume disks are online:

```
vxdisk list
hastop -local
```

If necessary, restart VCS on each node:

```
/etc/init.d/vxfen stop
/etc/init.d/vxfen start
hastart
```

- CFS mounts can fail because VCS volumes are in use. You may need to restart all nodes in the cluster to clear any conflicts. See your operating system documentation.

If you find resource faults from the `cvm_clus` group, use hares -dep to verify that this resource is dependent on the `cvm_vxconfigd` resource:

```
hares -dep
```

Use hares -link to fix any dependencies:

```
hares -link cvm_clus cvm_vxconfigd
```

If you find resource faults from the `vxfsckd` group, use hares -dep to verify that the this resource group is dependent on the `cvm_clus` resource:

```
hares -dep
```

Use hares -link to fix any dependencies:

```
hares -link vxfsckd cvm_clus
```

VCS fails to start

Occurs when a node cannot join the VCS cluster.
If you see this error in your Solaris or Linux error log, the node cannot join the cluster because VCS cannot start I/O fencing:

```
CVMCluster:???:monitor:node - state: out of cluster
```

- Use `vxdg list` to verify that the `vxfencoordg` disk group is enabled on all nodes:

```
vxdisk list
```

If the `vxfencoordg` disk group is not enabled, deport and re-import the group:

```
vxdg deport vxfencoorddg
vxdg -t import vxfencoorddg
```

- Use `vxdisk list` to verify that the `vxfencoordg` disks are online:

```
vxdisk list
```

If the `vxfencoordg` disks are not online, restart VCS on each node:

```
hastop -local
/etc/init.d/vxfen stop
/etc/init.d/vxfen start
hastart
```

- Use `vxfenadm -g` to verify reservations exist on the `vxfencoordg` disks:

```
vxfenadm -g
```

If the reservations do not exist, stop the VCS, use `vxfenclearpre` to clear the VCS reservations, and restart VCS:

```
hastop -local
/etc/init.d/vxfen stop
vxfenadm -g all -f /etc/vxfentab
vxfenclearpre
/etc/init.d/vxfen start
hastart
```

If a new node joins an existing cluster, you may need to use `gapconfig -x` to reapply the group membership configuration:

```
gapconfig -x
```

If you see this message in your Solaris or Linux error log, the Veritas configuration daemon cannot start:

```
ERROR: IPC Failure: Configuration daemon is not accessible
```

Clear and restart the configuration daemon:
VCS troubleshooting

vxconfigd -k
"vxiod set 10
"vxconfigd -m disable
"vxdctl init
"vxdctl initdmp
"vxdctl enable

If you see this error in your VCS error log, the disk group initialization failed when you ran vxdg init:

Device sda cannot be added to a CDS disk group

By default, vxdg initializes disks as CDS. Rerun the vxdg command with cds=off:

vxdg init disk_group cds=off
CHAPTER 13

Troubleshooting

This chapter provides instructions for troubleshooting common errors.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifying the cluster environment</td>
<td>204</td>
</tr>
<tr>
<td>Restarting the cluster using a dataserver binary from an earlier version</td>
<td>205</td>
</tr>
<tr>
<td>Errors accessing disk devices</td>
<td>206</td>
</tr>
<tr>
<td>Verifying the cluster is down</td>
<td>207</td>
</tr>
<tr>
<td>Creating cluster using sybcluster fails with error -131</td>
<td>208</td>
</tr>
<tr>
<td>Cluster creation fails leaving files in $SYBASE directory</td>
<td>208</td>
</tr>
<tr>
<td>Unified Agent starts but sybcluster connect fails</td>
<td>209</td>
</tr>
<tr>
<td>Disk devices in use</td>
<td>209</td>
</tr>
<tr>
<td>Instances fail to join the cluster</td>
<td>210</td>
</tr>
<tr>
<td>Private interconnect failure</td>
<td>210</td>
</tr>
<tr>
<td>Client connection failover fails</td>
<td>210</td>
</tr>
<tr>
<td>Client fails to reconnect to alternate high availability servers</td>
<td>211</td>
</tr>
<tr>
<td>sybcluster cannot connect if all connections use SSL</td>
<td>211</td>
</tr>
<tr>
<td>jConnect sample disables HA</td>
<td>212</td>
</tr>
<tr>
<td>PC-Client installation – java.lang.NoClassDefFound Error</td>
<td>212</td>
</tr>
<tr>
<td>The cluster entry “name” did not contain any servers</td>
<td>213</td>
</tr>
<tr>
<td>After password change, sybcluster cannot manage the cluster</td>
<td>213</td>
</tr>
<tr>
<td>Agent “cannot be found”</td>
<td>215</td>
</tr>
<tr>
<td>Sybase Central cannot register the AMCP plug-in</td>
<td>215</td>
</tr>
<tr>
<td>UAF plug-in register error</td>
<td>215</td>
</tr>
<tr>
<td>Data on disk unavailable: problems affecting database creation</td>
<td>216</td>
</tr>
<tr>
<td>Access permission to devices is denied after enabling I/O fencing</td>
<td>217</td>
</tr>
<tr>
<td>sybcluster cannot find interfaces file</td>
<td>217</td>
</tr>
<tr>
<td>IBM errors</td>
<td>218</td>
</tr>
</tbody>
</table>
Verifying the cluster environment

Many errors that occur using the Cluster Edition result from configuration problems in the cluster environment. Sybase recommends that before you configure your cluster:

- Verify that you have set your environment variables by sourcing the $SYBASE.csh or $SYBASE.sh file located in $SYBASE.

- Run dataserver -v from each node to verify that all required libraries are installed on the host.

 If any system libraries are missing, you see an operating system error, and the data server version number does not appear. Correct this problem before proceeding. If dataserver displays the version string without error, you can assume that all required system libraries are installed.

- Verify that each node in the cluster can read from and write to each database device. Use the operating system ls -l command to test whether you are able to read from and write to the devices using the dd operating system utility.

 To test the readability of a device:

 \[\text{dd if=<device path> of=/dev/null count=x} \]

 You should get a result similar to:

 \[
 \%\text{dd if=/dev/raw/raw123 of=/dev/null count=10}

 10+0 records in

 10+0 records out
 \]

 You can use the dd utility to test the writeability of your devices as well. However, you should do this only if there is no data in the devices to preserve.

- Run the ping utility to verify connectivity among all nodes. From each node, attempt to ping the host name or network address of every other node. Do this for each network to be used. For example, if your configuration uses a public and two private networks, verify that ping succeeds for all combinations of node and network address.

 Use the sybcluster 'show cluster config' parameter to determine the private interconnect addresses used by each instance. For example, if your cluster contains nodes node1 and node2, sybcluster displays information similar to this:

 \[
 \text{SYBCE}> \text{show cluster config}
 \]
** Cluster configuration for "SYBCE" **

Interface Path "/sybce"

Trace Flags:

There were no trace flags.

Maximum Instances "4"

Quorum "/dev/raw/raw23"

Master Device "/dev/raw/ra24"

logfile INSTANCE1 /sybce/ASE15_0/install/GATEST_INSTANCE1.log

run_parameters INSTANCE1

logfile INSTANCE2 /sybce/ASE-15_0/install/GATEST_INSTANCE2.log

run_parameters INSTANCE2

Primary Interconnect "udp"

Server[1] INSTANCE1 node1_priv 49152 49171

Server[2] INSTANCE2 node2_priv 49172 4919

This cluster includes interconnect network addresses node1_priv and node2_priv. From node1, execute ping node2_priv to verify that the address of the private network on node2 is accessible from node1. From node2, execute ping node1_priv to verify that the private network on node1 can be reached from node2.

If the ping command fails or error messages indicate a problem with the private network, check:

- The information contained in the /etc/hosts file
- The condition of the network cables, routers, or switches used by the private networks
- The names or IP addresses specified in the cluster configuration reported by the sybcluster “show cluster config” command

Restarting the cluster using a dataserver binary from an earlier version

The Cluster Edition does not start, and writes this message to the error log:

“Cluster is running with message version y. This version of ASE requires message version x,” if:

- You attempt to use different versions of the dataserver binary in the same running cluster.
- You apply an EBF or ESD without first gracefully shutting down a cluster using a previous version of the dataserver binary.
Errors accessing disk devices

Resolving the problem

Start an instance of the cluster using the old version of the \texttt{dataserver} binary, and then issue \texttt{shutdown cluster}.

Restart the cluster using the new version of the \texttt{dataserver} binary.

If the previous version of the \texttt{dataserver} binary is not available, you can resolve this error message by re-creating the quorum device.

Warning! These steps bypass Adaptive Server’s safety checks, and you must make sure no instances are running while you perform them.

1. Verify that all instances of the cluster are shut down.
2. Extract the cluster input file information using \texttt{qrmutil}:

   ```bash
   $SYBASE/ASE-15_0/bin/qrmutil --quorum_dev=path_to_quorum --extract_config=quorum.out
   ```

3. Start the Cluster Edition using the new \texttt{dataserver} binary, and rebuild the quorum device:

   ```bash
   dataserver --quorum_dev=path_to_quorum --instance=instance_name --buildquorum=force --cluster_input=quorum.out
   ```

4. Shut down the cluster
5. Start the cluster using normal procedures.

Warning! The \texttt{--buildquorum} or \texttt{--cluster_input} \texttt{dataserver} parameters are used only for these steps. Do not use them during subsequent cluster or instance restarts.

Errors accessing disk devices

All disk devices used by the Cluster Edition must be configured to be accessible from all the nodes in the cluster. The paths to these devices must be the same on all nodes, and the account used to start the cluster must have permission to read and write to all of the disk devices.

If the Cluster Edition reports that any of the devices cannot be accessed, verify from each node in the cluster that,
• The device paths specified when configuring the cluster are accessible from all nodes in the cluster.
• The account used to start the cluster has permission to read and write to these devices.
• The device paths are the same on all nodes in the cluster.
• Any symbolic links used to refer to the devices are correct.

Use the UNIX ls and ls -l commands to verify paths and file permissions. You can use the UNIX dd utility to verify that the devices can be read and written to by the Sybase account.

See “Verifying the cluster environment” on page 204.

Verifying the cluster is down

The sybcluster utility may not be able to determine whether or not the cluster is running if the cluster has crashed and left some status information in the quorum device in an inconsistent state. If you are uncertain about the status of the cluster, analyze each instance in the cluster to determine the cluster’s status.

1 Use isql to log in to each instance in the cluster.
2 Use sybcluster 'show cluster status' to view the status of each instance in the cluster.
3 If sybcluster does not report that the state of all instances is 'Up' and that the heartbeat is 'Yes', the instance may be down.
4 Use the UNIX 'ps' command on each node in the cluster to determine whether processes representing the dataserver program are running for each instance configured for that node.
5 After starting the first instance, issue sybcluster start cluster to start all remaining instances in the cluster.

If you determine the instances are not running, unlock the cluster and restart:

```plaintext
start instance instance_name unlock
```
Creating cluster using *sybcluster* fails with error -131

The *sybcluster* create cluster command may fail with error -131 and issue a message stating that the parent directory in which the raw devices are defined cannot be accessed:

INFO - Choosing the first instance to be created using the connected agent...
ERROR - Parent directory access error. The parent directory /dev/rdsk for the device can not be accessed. Please change the protection on the device and try again.
INFO - Create cluster error: -131

You may have incorrectly spelled the name of the raw device. Check the complete name of each raw device and verify that it is correct.

Cluster creation fails leaving files in $SYBASE directory

If the *sybcluster* create cluster command or the Sybase Central Adaptive Server plug-in Create Cluster Wizard terminates with an error condition, some files may be left in the cluster installation directory. Remove these files before attempting to create the cluster again:

1 Remove any entries for the cluster in the interfaces file in the installation directory.
2 Remove Unified Agent plug-in directories for each node from these locations:

 $SYBASE/UAF-2_5/nodes/node_name/plugins/cluster_name

3 Remove resource files with names ending in *.res from the $SYBASE directory.
4 Remove cluster definition files with names ending in *.inp from the $SYBASE directory.
5 Remove the intermediate RUN_instance_name file from $SYBASE/ASE-15_0/install.
6 Remove any error log files from $SYBASE/ASE-15_0/install.
7 Remove any instance configuration files from $SYBASE.
Only steps 1 and 2 are required before you can initiate another cluster creation operation. However, perform the other steps to reduce the number of files in the installation area.

Unified Agent starts but `sybcluster connect` fails

The `sybcluster 'connect'` command may fail because of incorrect network configuration information during the Unified Agent start-up or when executing the `sybcluster` command.

- Examine the Unified Agent log files for each agent in the cluster to determine whether any errors are reported opening the RMI listener for the agent. The agent log files are:

  ```
  $SYBASE/UAF-2.5/nodes/node_name/log/agent.log
  ```

- Specify the correct node names and listening port numbers for the `-F` parameter when starting `sybcluster`:

  ```
  sybcluster -U uafadmin -P -C MYCLUSTER
  -Fnode1:1234,node2:1234
  ```

Disk devices in use

On Linux, some devices are, by default, bound to a disk. If you attempt to create a cluster and inadvertently specify one of these devices, `disk init` fails and the Create Cluster wizard or `sybcluster` cannot create the cluster.

Before you start the Create Cluster wizard or a `sybcluster` session, check to make sure the disk device is available.

See “Verifying the cluster environment” on page 204.
Instances fail to join the cluster

Instances may fail to join the cluster because of problems with the private networks used to support interconnect communication. If one or more instances in the cluster fail to start:

- Examine the error logs for those instances that could not join to see if there are any messages indicating the network communication has failed. The error logs are located in $SYBASE/$SYBASE_ASE/install/instance_log
- Verify that all private networks used on the nodes used by the cluster are accessible from all nodes in the cluster. Use the ping utility to do this. See “Verifying the cluster environment” on page 204.
- Check for errors in the UAF agent logs.

Private interconnect failure

The cluster does not start if a private interconnect is not configured correctly. Use the operating system ping command to validate the private interconnect is working. If ping does not work, see your system administrator to enable the interconnection communication between various nodes.

See “Verifying the cluster environment” on page 204.

Client connection failover fails

This error occurs when a client connection failover fails when the client connects to the cluster using IP addresses and the nodes are not included in the local /etc/hosts or DNS.

Adaptive Server sends the failover instance addresses as they are listed in the cluster’s interfaces file. If the cluster’s interfaces file lists the instance network addresses as host names, Adaptive Server returns the host names to the client applications. However, the client application uses DNS or the /etc/hosts file to resolve the names of the hosts for the cluster instances, so if the clients do not have the host names in their /etc/hosts file or DNS server, failover is unsuccessful.
Verify that all nodes in the cluster are listed in the client systems’s DNS server or the client system’s /etc/hosts file.

Try using IP addresses rather than host names in the cluster’s interfaces file.

Client fails to reconnect to alternate high availability servers

Clients with DNS name resolution problems may fail to reconnect to an alternate high availability server when the instance to which it is connected fails, producing this message:

```
Connection to Sybase server has been lost, connection to the next available HA server also failed. All active transactions have been rolled back.
```

DNS name resolution issues occur when the client’s host cannot correctly resolve a *hostname* for the alternate instances. To determine if this error is produced by a DNS name resolution problem, issue a `ping hostname` command for each alternate instance in the high availability list, where *hostname* is the host on which the alternate servers reside. If the *hostname* cannot be resolved, or resolves to the wrong IP address, rectify the name resolution issue according to your system administration documentation.

sybcluster cannot connect if all connections use SSL

If all Adaptive Server listening ports use SSL, Adaptive Server issues this error message:

```
2008-03-20 10:42:46,260 ERROR [Timer-6] GA1:GA1_1:SQLConnect:270:Login Failure - The user "sa" and the entered password is not authorized to connect to the cluster.
```

Verify that there is a non-SSL connection for each instance in the cluster and that this connection is included in the interfaces file Unified Agent uses.
jConnect sample disables HA

The sample jConnect connection string for the Cluster Edition included in the *What's New in ESD #12* document for Open Client, Open Server, ODBC, jConnect, and ADO.NET for Adaptive Server version 15.0 is incorrect.

The sample connection string in the document is:

```
```

This string fails because the `JCONNECT_VERSION=6` parameter emulates the high availability companion server functionality. The JDBC driver causes a client Java exception when the client tries to use the jConnect driver's Failover property but does not have a hafailover server specified in the connection string.

This is the correct connection string:

```
```

PC-Client installation – java.lang.NoClassDefFound Error

Occurs on the Windows platform when you unpack the PC Client tar file using the MKS tar utility rather than the Winzip utility. On Windows platforms, the MKS tar utility truncates full path names, resulting in missing files.

This problem occurs on UNIX platforms if you do not use the GNU tar utility to untar the Adaptive Server installer.

For Windows platforms, always use the Winzip utility to unpack the installer. For UNIX platforms, always use GNU tar utility to untar the installer.
The cluster entry “name” did not contain any servers

If the quorum device is not accessible to the UAF agents, the following errors may occur when you issue the sybcluster start cluster and start instance commands:

```
start cluster
ERROR - The cluster entry SDCDEMO did not contain any servers
start instance INSTANCE1
ERROR - The cluster entry SDCDEMO did not contain any servers
```

- The UAF agent may not have permission to read the quorum device. Verify that you started the UAF agent under the proper user account and that this account has permission to both read and write the quorum device.
- sybcluster and the UAF agent are using an incorrect path to the quorum device on one or all nodes in the cluster. If you used symbolic links, verify that all links are correct on all nodes.
- Another process is preventing the UAF agent from reading the quorum device. This could be caused by functional problems or configuration errors in the disk storage system.

After password change, sybcluster cannot manage the cluster

sybcluster uses the UAF agent to connect to and perform operations on the cluster (for example, shutdown cluster). The UAF agent must log in to the cluster to do this. To log in, the UAF agent must use the correct sa login and password.

The sa login and password are stored in encrypted form in the UAF plug-in configure file for the cluster. Use sybcluster set cluster login to change the login and password that UAF uses to connect to the cluster.

Any time you change, Adaptive Server password, you must also change the UAF agent login.

Perform one of the following to change the login and password that UAF uses to connect to the cluster:
- Use sybcluster set cluster login to set the UAF login, password, or both. Connect to the cluster before issuing this command.

After password change, sybcluster cannot manage the cluster

The syntax is:

```
set cluster login sa-login [password sa-password]
```

- Use the Adaptive Server plug-in to modify the UAF plug-in:
 a. Connect to the cluster.
 b. From “Server Instances,” left-click an instance listed in the tree view pane.
 c. Select “Agents Attributes” from the right pane.
 d. Click the “password” row.
 e. Enter a new password for the agent managing the current instance.
 f. Repeat steps c – e for each instance in the cluster

- Edit the UAF configuration files.

Note You must shut down all cluster UAF agents before editing the `agent-plugin.xml` file.

The UAF Adaptive Server login and password are stored in:

```
$SYBASE/UAF-2_5/nodes/<node name>/plugins/
<cluster name>/agent-plugin.xml
```

For example:

```
<set-property property="ase.user" value="sa" />
<set-property
property="ase.password"
value="REVTe1NZVURYgFNNvbS5zdW4uY3J5cHRvLnByb32p2GVyL1bkpDRXtTWVVRn1jUEZPSkJoTT22QT0=" />
```

Note If the password tag is missing, add following steps a – f, above.

Enter the password in clear text. `passencrypt` generates an encrypted text string. Enter this `entire` string between the quotation marks in the password tag in the `agent-plugin.xml` file.

Generate the encrypted password:

```
$SYBASE/UAF-2_5/bin/passencrypt
```
Agent “cannot be found”

sybcluster show agents does not display all agents.

Often, host systems names in a cluster are similar. If you use sybcluster -F to specify the connections to each of the agents in your cluster, verify that each host system is spelled correctly, that you have specified port numbers, and that the port numbers are correct.

Sybase Central cannot register the AMCP plug-in

If you get this message when you attempt to register the AMCP plug-in (amcplugin.jar):

Could not read manifest.file

The installer has renamed the amcplugin.jar file to amcplugin.jar.installed to avoid overwriting existing files.

When you attempt to run registerAMCP from the command line, you see:

Error: Unable to find the AMC Plugin binary.
Please check that $SYBROOT has been set correctly and that the file
/AMCP/lib/amcplugin.jar' exists.

Rename amcplugin.jar.installed to amcplugin.jar.

UAF plug-in register error

You may see this error because of an existing cluster parameter value that is inconsistent with a newer configuration parameter:

2008-06-16 14:05:16,051 ERROR [main] Failed to register plugin
com.sybase.ase.cluster_15.0.1. Class
com.sybase.ua.plugins.ase.cluster.ASEClusterAgentPlugin not found. Ignored.
java.lang.ClassNotFoundException:
com.sybase.ua.plugins.ase.cluster.ASEClusterAgentPlugin

2008-06-16 14:05:16,063 WARN [main] Bootstrap completed with 1 error(s):

2008-06-16 14:05:16,064 WARN [main] Failed to register plugin
Data on disk unavailable: problems affecting database creation

com.sybase.ase.cluster_15.0.1. Class
com.sybase.ua.plugins.ase.cluster.ASEClusterAgentPlugin not found. Ignored.
java.lang.ClassNotFoundException:
com.sybase.ua.plugins.ase.cluster.ASEClusterAgentPlugin

If you get this error, it is likely that:

- The UAF agent will not start, and the agent.log file displays Bootstrap completed with x error(s): near the end of the file.
- You have created, dropped, and reconfigured the same cluster a number of times.

This error message appears in the agent.log file or in the terminal window if you did not execute the uafstartup.sh as a background process. Either:

- Clean up the older parameters that may be introducing the error, or
- Remove the cluster directory in $SYBASE_UA/nodes/<node_hostname>/plugins. You can permanently delete the folder or relocate it outside of the directory structure.

Note Do not remove the *snmp* and *sysam* folders.

After you have performed either of these steps, restart the UAF agent. You may have to manually redeploy the plug-in.

Note If the steps described above removed the cluster’s plugin directory from one of the nodes, use deploy plugin to re-create this directory. The cluster requires that each node of the cluster include a plugin directory.

Data on disk unavailable: problems affecting database creation

Disk labels are stored in block 0 of every disk. If raw data slices used for device creation start on block 0, they may overwrite the disk label and make data on the disk inaccessible.

Do not create raw disk slices that start on block 0.
Access permission to devices is denied after enabling I/O fencing

On Solaris systems, the UNIX user starting the Cluster Edition must have SYS_DEVICES inheritable privileges to access the raw devices (/dev/raw/raw# or /dev/rdsk/c##d##s##) used for databases and quorums.

The SYS_DEVICES privilege grants Adaptive Server the ability to execute SCSI-3 PGR commands used in I/O fencing. The UNIX user can be granted temporary or permanent SYS_DEVICES privileges:

- To grant temporary SYS_DEVICES privileges, add SYS_DEVICES privileges to the inheritable privilege set of the current user’s shell process:

 ppriv -s l+sys_devices $$

- To grant permanent SYS_DEVICES privileges, use the usermod UNIX command to add SYS_DEVICES to the inheritable privilege set of any user:

 usermod -K defaultpriv=basic,sys_devices user_login

sybcluster cannot find interfaces file

Sybcluster may report an error message, stating that it cannot find the interfaces file in a nonexistent directory:

ERROR - The interfaces file /remote/ase_cluster/sdclinux/UAF-2_5/bin/interfaces could not be found.

This error generally occurs when one or more UAF agents cannot access the quorum device. This may occur because:

- The quorum device does not exist at the configured location.
- The quorum device’s permissions do not allow the UAF agent to read or write data.

To resolve this issue, verify that:

1. You sourced the SYBASE.sh or SYBASE.csh files before starting the UAF agent on each node in the cluster.
2. The quorum device exists and that the login that was used to start the UAF agent has read and write permissions on it.
IBM errors

This section describes errors you may encounter when running the Cluster Edition on the IBM AIX operating system.

Asynchronous I/O not enabled

If asynchronous I/O is not enabled on IBM AIX when you attempt to start the Cluster Edition, the dataserver binary issues this error message and the Cluster Edition does not start:

```
exec(): 0509-036 Cannot load program dataserver because of the following errors:
0509-130 Symbol resolution failed for /usr/ccs/lib/libc.a[aio_64.o] because:
0509-136 Symbol kaio_rdwr64 (number 1) is not exported from dependent module /unix.
0509-136 Symbol listio64 (number 2) is not exported from dependent module /unix.
0509-136 Symbol acancel64 (number 3) is not exported from dependent module /unix.
0509-136 Symbol iosuspend64 (number 4) is not exported from dependent module /unix.
0509-136 Symbol aio_nwait (number 5) is not exported from dependent module /unix.
0509-136 Symbol aio_nwait64 (number 6) is not exported from dependent module /unix.
0509-136 Symbol aio_nwait_timeout (number 7) is not exported from dependent module /unix.
0509-136 Symbol aio_nwait_timeout64 (number 8) is not exported from dependent module /unix.
0509-026 System error: Error 0
0509-192 Examine .loader section symbols with the 'dump -Tv' command.
```

See your IBM AIX operating system documentation for information about enabling asynchronous I/O.

Incorrect permissions on device

If you do not have permission to manage raw devices on IBM AIX, the operating system issues this message when you attempt to start the Cluster Edition and the cluster does not start:

```
dopen: open '/dev/device_name', Not owner
```
• Grant the correct permissions (one of: PV_ROOT, PV_SU_, or PV_KER_RAS):

```bash
setsecattr -p iprivs=+PV_KER_RAS $$
```

These permissions are inherited by the Cluster Edition process when it starts.

• Grant a non-networked (NIS) user permission to run processes that manage devices:
 a. Create the user:
     ```bash
     mkuser sybase
     ```
 b. Create the role:
     ```bash
     mkrole authorizations=aix.device.manage.change
                    role_disk_access
     ```
 c. Assign the role to a user:
     ```bash
     chuser roles=role_disk_access
                    default_roles=role_disk_access sybase
     ```

Another machine using device

If the Cluster Edition does not have permission to access a device because a process on another machine is using the device, and the device can be used only by a single machine at a time, the operating system issues:

The IBM AIX SDC dataserver may fail to run with one of the following errors:

Quorum library error 1: Failed to open quorum device '/dev/disk_name'. OS error 16, 'Device busy'

Or:

```bash
dopen: open '/dev/disk_name', Device busy
```

The device must allow multiple servers simultaneous access. The database devices must have shared reservations where the reservation key is the instance ID defined in the cluster configuration file (for example, where ID = 1):

Change the device access restrictions for the quorum device on each machine in the cluster:

```bash
chdev -l device_name -a reserve_policy=no_reserve
```

For example, if a disk device is named /dev/hdisk1:

```bash
chdev -l /dev/hdisk1 -a reserve_policy=no_reserve
```
Run this command for each database device on each instance in the cluster to change the device access restrictions for a database device:

```
chdev -l device_name -a PR_key_value=instance_ID -a reserve_policy=PR_shared
```

For example, to change the device access restrictions for /dev/rhdisk2 on instance 1:

```
chdev -l hdisk2 -a PR_key_value=1 -a reserve_policy=PR_shared
```

Error running chdev

You may see this error when running the chdev command:

```
Method error (/usr/lib/methods/chgdisk):
  0514-047 Cannot access a device.
```

The device is currently in use. Shut down all processes accessing the device.
CHAPTER 14
Administering Clusters with the Adaptive Server Plug-in

The Adaptive Server plug-in for Sybase Central allows you to perform the administrative tasks for the cluster. For example, creating a cluster, adding an instance, starting and stopping a cluster or instance, creating or modifying logical clusters, administering workload management.

The Adaptive Server plug-in is used instead of the command line method.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing a shared-disk cluster</td>
<td>221</td>
</tr>
<tr>
<td>Managing multiple temporary databases</td>
<td>232</td>
</tr>
<tr>
<td>Managing the workload</td>
<td>237</td>
</tr>
<tr>
<td>Managing routes</td>
<td>250</td>
</tr>
</tbody>
</table>

For more information about using Sybase Central and the Adaptive Server plug-in, see Chapter 4, “Introduction to the Adaptive Server Plug-in for Sybase Central,” in the System Administration Guide.

Managing a shared-disk cluster

The Adaptive Server plug-in allows you to manage the shared-disk cluster environment from within Sybase Central.

You must have a Unified Agent running with a cluster agent Adaptive Server plug-in for all of the cluster management functionality to be available through the Adaptive Server plug-in. See “Enabling Unified Agent functions in the Adaptive Server plug-in” on page 223.
When you start Sybase Central, the main window opens, displaying the Adaptive Server plug-in, with the list of icons of the clusters and instances to which you have previously connected. If the cluster is running, a green triangle appears next to the cluster name.

If the cluster managed by Adaptive Server plug-in is not running, a red square appears in the server icon. If neither triangle nor square indicator is displayed, see the instructions for configuring the Adaptive Server plug-in and Unified Agent at “Starting a cluster” on page 228.

The fastest way to connect to a running cluster in the list is to right-click the cluster name and select Connect. The Adaptive Server plug-in uses the previous connection data to make the connection. If a cluster does not appear in the tree view, you can find it with Server Discovery or provide the cluster’s host and port, login name, and password information. Either method starts by clicking the Connect icon in the toolbar near the top of the Sybase Central window. If you know the required connection information, enter this into the appropriate fields in the Connect window. If you do not have the host and port number for the cluster or a cluster node, enter the login name and password and click the Find button. The Unified Agent searches for clusters and provide a list of those available. If the list does not include the cluster you are searching for, see “Changing server discovery settings” on page 223.

❖ Connecting to a cluster

1 Select Tools | Connect.
 If you are running multiple registered Sybase Central plug-ins, select the Adaptive Server plug-in.
2 Enter the login name you want to use to connect to the instance.
3 Enter the password for the login.
4 Select the cluster name from the Server Name list (which is populated with entries from the interfaces file for Linux, Solaris, IBM AIX, and HP-UX, and from sql.ini from Windows), or type in the host and port of a cluster node.
5 (Optional) Specify the host and port of an instance within the cluster.
6 Click OK.

❖ Shortcuts

- Right-click the cluster icon and select Connect.
Once you connect to the cluster, the cluster icon changes from grey to blue.

Disconnecting from a cluster with the toolbar

1. Select the icon of the cluster from which you want to disconnect.
2. Select File | Disconnect.

Shortcuts
- Right-click the shortcut icon for the cluster and select Disconnect.
- Select the cluster from which you want to disconnect. Select Disconnect from the toolbar.

Enabling Unified Agent functions in the Adaptive Server plug-in

1. Select Tools | Adaptive Server Enterprise | Preferences. On the Preferences tab, select: “Enable Unified Agent features,” “Check Server Status,” and “Use Agent Port Number.” The default UAF port is 9999. If you need to check UAF agents on a different port, enter this value here.

 You can change the UAF port number; the default is 9999.
2. Click OK. If the cluster is monitored by the UAF agent, a red square appears on the cluster icon if the cluster is not running. A green triangle appears on the cluster icon if the cluster is running.

Changing server discovery settings

You need not select a single discovery method. Server discovery searches all specified discovery methods.

1. Right-click the cluster’s name.
2. Select Connect.
3. From the Connect dialog box, select Settings.
4. Select the Server Discovery tab.
5. Select the discovery method.
 - JINI – an open architecture that enables developers to create network-centric services that are highly adaptive to change. JINI offers a standard lookup service for discovery.
Managing a shared-disk cluster

- User Datagram Protocol (UDP) – a network protocol that provides a procedure for application programs to send messages to other programs with a minimal protocol mechanism.

Note If only UDP is used, only servers on the same subnet as the one on which Sybase Central is running are discovered.

6 Click Add.

7 If you selected JINI in the previous step:
 - Select the host of the JINI server
 - Select either the default host and port or enter new ones

8 Click OK.

9 To add or edit a discovery filter, click Filters. Server Discovery uses only the selected filters for its search to specify a filter:
 a Click Add.
 b Select Enable this Filter.
 c Select the target you want filtered, Host, Name, OS, Platform, Port, Release type, Status, Version, Build Date.
 d Select the condition: contains, does not contain, is, is not, starts with, ends with.
 e Enter the condition string you want filtered.
 f Click OK.

10 Configure the Adaptive Server plug-in to discover clusters currently running on the system. Use
 - Remove – to remove a discovery service from the list.
 - Edit – to edit the settings for a current discovery service.
 - Up – to move the selected discovery service up the list.
 - Down – to move the selected discovery service down the list.

11 If you are using LDAP servers, select the LDAP pane:
 a Select the LDAP server name.
b. Use the gauge to set the search timeout period.
c. Enter the user name and password to log in to the nodes.
d. Select the nodes you want to log in to in the Select Cluster Nodes box.
e. Click OK.

Displaying cluster properties

To view the cluster properties, right-click the cluster name and select Properties. The Adaptive Server plug-in displays the Server Properties dialog box, which includes the General, Configuration, Log Space, Job Scheduler Server, Agent, Server Log, Cluster, and Localization tabs.

General properties tab

The General Properties tab displays this information about the Cluster Edition:

- Type – the edition of Adaptive Server.
- Version – version of the software.
- Release Type – whether the release is a Beta or Production version of the software.
- Platform – platform of machine running on the node.
- Host name – name of machine running on this node.
- Operating System – operating system running on the node.
- Build option – options specific to the currently running version of Adaptive Server.
- Build Date – date the dataserver binary was built.
- Character Set – currently configured default character set.
- Language – currently configured language.
- Sort Order – currently configured sort order.
- Status – status of the server, running or down.
Managing a shared-disk cluster

- ASE log file – location of the log file.

Cluster tab

The Cluster tab includes general information about the cluster, including:

- Maximum instances – maximum number of instances allowed for this cluster
- Installation mode – shared or private
- Membership mode – vcs or native
- Quorum device – location of the quorum device
- Master device – location of the master device

The Cluster tab includes a list of available instances, including their node names and port numbers.

Configuration tab

In the Cluster Creation Wizard, each instance uses the same server configuration file (`server_name.cfg`) to determine its configuration. By default, all instances in the cluster use the `cluster_name.cfg` file for cluster configuration. However, you can specify a different configuration file for when you configure the instance, allowing you to set different configuration values for different instances.

You can use the Configuration panel for clusters and instances.

To view the current configuration settings, right-click the cluster or instance name and select Configure. You can also select Properties and then select the Configuration panel.

For details about configuration parameters, see the *System Administration Guide*. For a discussion of configuration issues to consider when determining optimal settings, see the *Performance and Tuning Guide: Basics*. The following rules govern who can set configuration parameters:

- Logins assigned the system security officer (“sso_role”) role can reset:
 - allow updates
 - audit queue size
- The default character set id parameter is automatically set during the cluster installation and cannot be reset from within Sybase Central.
Logins assigned the system administration ("sa_role") role can reset all other parameters.

Parameters that require restart

Some configuration parameter values are dynamic, which means the parameter takes effect as soon as you reset the value. Others do not change until you restart the cluster (these are called static parameters). The Adaptive Server plug-in indicates whether the parameter requires a restart when you select the parameter name.

Dropping instance-specific configuration parameters

The Configuration panel for a clustered instance includes a Drop button, which is enabled only for instance-level configuration values, and does not appear on the cluster configuration property tab. Dropping a parameter means you drop it as an instance-specific setting independent of the cluster-wide value.

Drop is disabled until you change a value and select Apply. The next time you select this configuration parameter, Drop is enabled, and you can select it to drop the configuration parameter.

Setting configuration parameters

The Cluster Edition includes global and instance configuration parameters. Global configuration parameters affect the entire cluster, while instance configuration parameters affect only the instance on which they are set. To set global configuration parameters, open the Configuration tab for the cluster and select the name of the cluster, then select the configuration parameters to reset.

By default, instances use the global configuration values unless an instance setting overrides them.

Setting configuration parameters for an instance

1. Right-click the instance name you want to configure.
2. Select Configure (or select File | Properties, then click the Configuration tab).
3. Select the functional group to display, or select “All.”
4. Select the parameter you want to update. For a brief description of the selected parameter, read the Explanation box.
5. Enter the new value in the Value column of the table.
6. Click OK (or Apply if you are changing multiple configuration values).
• If the parameter takes effect immediately, it is listed in the Value column.
• If the parameter requires you to restart Adaptive Server, it is listed in the Pending Value column.

Log Space tab
The Log Space panel displays this information about the current log space for the cluster:
• Database (Instance) – name of the log space. If the log is specific for an instance, the instance name appears in parentheses. If there are no parentheses, the log is for the cluster.
• Total (MB) – total amount of log space available, in megabytes.
• Used (MB) – amount of log space currently used, in megabytes.
• Free (MB) – amount of free space available for the log, in megabytes.
• Used – percentage of the total space currently used.

Job Scheduler Server tab
The server you designate as a Job Scheduler server must have Job Scheduler installed on it. See the Job Scheduler User’s Guide for more information on installing Job Scheduler.

Localization tab
The Localization tab displays the current values for default language, charset, and sort order. You can change the default values and add or remove languages.

Starting a cluster
The Adaptive Server plug-in must have the unified agent features enabled to start the cluster. Clusters that are administered by an agent display a red square (if the cluster is not running) or green triangle (if the cluster is running) on the server icon by the cluster name. To start a cluster that is not running:

1 In the left pane of the tree view, right-click the cluster shortcut icon and select Start.
CHAPTER 14 Administering Clusters with the Adaptive Server Plug-in

2 Enter the Unified Agent login and password with administrative access to start the cluster.

3 A messages log window opens when the agent starts the server. The OK button is enabled when the cluster start process is completed.

4 The red square on the cluster icon turns to a green triangle, indicating the cluster is running.

Shutting down a cluster

Shutting down a cluster that is not connected:
1 Right-click the cluster icon to shut down.
2 Select Shut Down.
3 Click Yes to confirm the shut down.

Shutting down a cluster that is connected:
1 In the left pane of the tree view, right-click the cluster icon and select Shut Down.
2 Check the boxes to:
 • Shut down the cluster after processes have finished, and be notified if shutting down takes longer than one, five, or ten minutes, or
 • Shut down the cluster immediately.
3 Click Yes to shut down the cluster.

Dropping a cluster

Dropping a cluster allows a user to undo all the steps he or she performed to create a cluster. Dropping a cluster is different from removing a cluster from a server group. You can only drop clusters that are shut down.

Note You remove a cluster completely when you drop it. It is no longer available for restart.

To drop the cluster:
• Right-click the name of the cluster you want to drop.
Managing a shared-disk cluster

- Select Drop Cluster from the list.
- Enter the login for the managing agent (usually, uafadmin).
- Select OK.

Removing a server group

Removing a server group removes the server group’s cluster entry from the Adaptive Server plug-in. The cluster is unaffected.

To remove a cluster from the default group:
1. Right-click the cluster name and select Remove from Default.
2. Confirm the deletion by selecting the cluster name from the Confirm Delete dialog box and selecting Yes.

Displaying the status of a cluster

If the cluster is managed by a unified agent, the status is provided by the agent whether or not you are connected, but a connected cluster shows more detailed information.

In the tree view, click the Server Instances folder to view the instances in the right pane. Status details include:

- Instance – the name of the instances within the cluster.
- ID – the numerical order of the instance in the cluster.
- State – the current state of the cluster, online or offline.
- Address – the address of the instance in the cluster.
- Start Time – the time the cluster started.
- Connections Active – the number of connections.
- Engines Online – the number of engines.

Managing a clustered instance

This feature enables management of the instances in a cluster.
Adding an instance to a cluster

Before you can add an instance, the max instances parameter must have room for more instances, and a cluster-supported agent must run on the node on which you are creating the instance. You must know the host name and port number of the unified agent (UA).

1. Open the Server Instances folder in the left pane to display the server instances and options in the right pane.
2. Select Add Cluster Server Instance to open the Add Cluster Instance Server instance wizard.
3. Follow the steps in the wizard to add an instance to the cluster.
4. Click Finish. The new instance is listed under the Server Instances view.
5. Start the instance.

Dropping an instance from a cluster

You must shut down an instance before dropping it from the cluster. After you drop an instance, all temporary database definitions for that instance are dropped, including bindings and group memberships.

Note You cannot drop the last remaining instance of a cluster.

1. In the right pane, right-click the instance to be dropped and select Delete.
2. Click Yes. The instance is dropped from the cluster.

Displaying instance properties

The instance properties dialog includes information about the Sybase release directory (SYBASE), SYBASE_ASE, and the interfaces directory.

Starting an instance

Right-click the instance icon and select Start. A bar titled “Start in Progress” appears.
Managing multiple temporary databases

Once the instance is started, the state reads “online.”

Note If the instance takes longer to start than anticipated, you may need to manually refresh the folder to update the state of the instance.

Shutting down an instance

1. Right-click the instance icon and select Shut Down.
2. Select whether to:
 - Shut down the instance after all processes have finished, and be notified if shutting down takes longer than one, five, or ten minutes.
 - Shut down the instance immediately.
3. Click Yes. When the shut down is complete, the new status of the instance appears.

Creating shared database devices

A shared database device is accessible to all of the cluster instances. Select the Database Devices folder in the tree view

- Select Add Database Device to start the Add Database Device wizard.
- Follow the instructions in the wizard.
- Click Finish. The device appears in the right pane under the list of devices.

Managing multiple temporary databases

In the Cluster Edition there are four variations of temporary databases: global system, local system, global user-created, and local user-created.

To view temporary databases, select the Temporary Databases folder:

- Group view – lists the temporary database groups. Only local temporary databases can participate in temporary database groups.
- List View – displays the global temporary databases (not the local temporary databases).
Managing the local temporary databases

A local temporary database can be accessed only by the local instance. Other server instances within the cluster cannot access this temporary database.

To view the temporary databases:
1. Select the Server Instances folder
2. Select the name of the instance.
3. Select Local Temporary Databases

Right-click the temporary database name to configure and maintain your local temporary database. Select the option to:

- Open Interactive SQL – start a session with Interactive SQL.
- Check Consistency – follow the instructions on the wizard to run the database consistency checker (dbcc) on the temporary database.
- Checkpoint – select Yes to run a checkpoint on this database. Select Preview to view the currently running SQL.
- Display Statistics – follow the instructions on the wizard to run optdiag on the temporary database.
- Generate DDL – select Create Database DDL to view the currently running DDL. Select Exclude DDL to view list of objects that you can exclude from the DDL. Check the objects to exclude and select OK.
- Delete – select Delete to drop this temporary database. Select Yes to confirm. Because you cannot delete the last system temporary database, the Delete option is disabled if this is the only temporary database left.
- Properties – select the appropriate pane for information about:
 - General – describes the type of database, the database owner (select Change to change the database owner), the date the database was created, the last time the transaction log was dumped, whether the database has a guest user, the type of data cache, the default database location, and whether to resynchronize the proxy tables.
 - Devices – lists the currently configured database devices. Select:
 - Add – to add a device. Select Data or Transaction Log on the Device Size window, and specify the device size. Click OK to confirm.
 - Remove – remove the device.
Managing multiple temporary databases

- Edit – configure the device. The Device Size window lists the currently configured name, size, unused portion, current allocation, total space allocation, and allows you to add space to the device.
- Move Log – specify a new location for the log device.
- Properties – includes four panes describing general information, mirror device status, databases located on this device, and segment information.
- Usage – details the space the database uses. Select the unit in which to display the information: Pages, KB, MB, or GB.
- Transaction log – allows you to configure the bindings, log IO size, and segments that use last-chance thresholds.
- Options – lists the database options you can set for this database. Check or uncheck the options and click OK.
- Active sessions – displays SPID and login information for the sessions assigned to this database.

System temporary databases

You create the system temporary databases when you create the cluster or instances. You cannot remove global or local system temporary database. However, local system temporary databases are removed automatically when you delete the instance.

Adding a user-created global temporary database

In the Cluster Edition, you can create global temporary databases (available cluster-wide to all instances) and local temporary database (available to an individual instance).

1. Navigate to Databases | Temporary Databases | List View.
2. Select Add Temporary Database wizard.
3. Follow the instructions outlined in the wizard, clicking Next to go on to the next set of instructions and Back to return to a previous instruction.
4. Click Finish when you are done. The temporary database appears in the right pane under the list of databases.
Adding a user-created local temporary database

The user-created local temporary database can be accessed only by the owning instance:

1. In the right pane of the tree view, navigate to Server Instances | Instance_name | Local Temporary Databases.
2. Select Add Local Temporary Database.
3. Follow the instructions in the wizard to create a local temporary database.

Adding temporary databases to a group

To view the database groups, select Group View from the Temporary Databases folder.

Adding a group

Administrators create groups that contain local temporary databases. The default group is created by default. Sybase recommends that you create bindings on groups rather than on individual temporary databases for easier administration.

Select Group View from the Temporary Databases folder to view the Group folder.

1. From the tree view, navigate to Databases | Temporary Databases | Group view
2. Select Add Temporary Database Group
3. The Adaptive Server plug-in starts the Add Temporary Database Group wizard. Follow the instructions provided by the wizard to create a local temporary database group

Group properties

Right-click the group name and select Properties. Sybase Central displays the Bindings and Databases panes.

Databases pane

The Databases pane displays all current temporary databases in the group.

To add a temporary database to the group:

1. Select Add.
Managing multiple temporary databases

To add a temporary database to the group:

1. From the Add Temporary Database screen, select the name of the temporary database you want to add.
2. Click OK.

To remove a temporary database from the group:

1. Select the temporary database name.
2. Select Remove.
3. Click Yes.

Bindings pane

The Bindings pane displays the application and login bindings for the current group.

Binding a new application:

1. Select Bind Application.
2. Enter the application name and Click OK.

Binding a login:

1. Select Bind Login.
2. From the New Login Binding screen, select the login you want to bind.
3. Click OK.

Removing a currently bound application or login:

1. Select the application or login name.
2. Select Unbind.
3. Click Yes to confirm.

You can bind applications or logins to temporary databases or temporary database groups.

Viewing the current bindings:

1. Right-click the temporary database or temporary database group.

Unbinding a login or application:

1. Select the login or application from the list.
2. Click Unbind.
3. Select Yes to confirm.
Unbinding all logins and applications.

1. Click Unbind All.
2. Select Yes to confirm.

Managing the workload

Use the workload manager to view, create, and manipulate logical clusters, workload profiles, load scores, and routes.

Load profiles

Load profiles allow you to define the operating criteria for a logical cluster. These criteria are typically called “load score metrics,” with the value associated for each criteria rolled into a “score” for each instance in the logical cluster that uses the load profile. You can periodically compare load scores for different instances within a logical cluster to detect when the workload is undesirably skewed to one or more instances, or determine if an instance is under-utilized.

Instances included in multiple logical clusters can be impacted by multiple load profiles, so take care when associating instances with multiple logical clusters and when defining, and applying load profiles.

Note The Cluster Edition includes two system load profiles: sybase_profile_oltp for OLTP environments and sybase_profile_dss for DSS environments. You cannot modify or delete system load profiles. However, you can duplicate them and modify the duplicates to create your own load profiles.

The load profile status reports the:

- Name – the name for the load profile configuration.
- Type – the load profile type: system or user.
- Metric weights – relative weight assigned to each metric in the load profile. Metrics include:
 - User connections – displays the weight of users connected to the particular load profile.
Managing the workload

- CPU busy – displays the weight of CPUs that are currently busy.
- Run queue length – displays the weight of the run queue.
- IO load – displays the weight of the I/O load.
- Engine deficit – displays the weight of the engine deficit.
- Users – displays the weight for a metric the user chooses to measure.
- Thresholds – configured difference (as a percentage) in the load between two instances in a logical cluster at which point the following can occur:
 - Login redirection – used for connection-time load balancing and routing connections to a logical cluster. If necessary, an instance directs a client to stop the current login attempt and try connecting to instances it supplies as a list of available network addresses.
 - Dynamic migration – (also known as the hysteresis value) displays the dynamic migration configuration.
 - Minimum load score – load score necessary to trigger login redirection and dynamic migration.

Adding a load profile

1. Select Load Profiles from the Workload Management folder and select Add Load Profile.
2. Enter the name for your profile.
3. Select Next.
4. Adjust the load profile metric weights.

When a load profile is associated with a logical cluster, the workload manager calculates a load score for each instance in the logical cluster. This is calculated using the weight you entered for each metric, the raw value of each metric for the instance, and the workload measurement algorithm. See “Viewing workload status” on page 248.

The metrics measured by the server are:

- User connections – the capacity of an instance to accept a new connection, based on resource availability.
- CPU utilization – the capacity of an instance to accept additional work.
- Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
• I/O load – outstanding asynchronous I/Os.
• Engine deficit – the difference in the number of online engines among
 instances in the cluster.

Note Engine deficit is measurable only when instances in the cluster
have unequal numbers of engines. Engine deficit adds a metric for
maximum relative capacity to the load score.

• User metric – an optional customer-supplied metric specific to the
 user’s environment.

 Make sure the load scores you specify add up to 100. If they do not
 sum to 100, the workload manager uses the scores to create
 proportionate values that add to 100.

5 Select Next.

6 Enter values for:
 • Minimum Load Score – the load score is not a percentage, but is the
 minimum score the workload manager requires before it redirects
 work to other instances. The minimum load score is meaningful when
 compared to the load scores of other instances in the logical cluster
 using the load profile.
 • Login Redirection (%) – the load threshold for determining how best
 to distributed incoming connections.
 • Dynamic Connection Migration (%) – the load threshold that
 determines whether to distribute existing connections.

 The load threshold is the percentage difference between the load on the
 current instance and the load on the least-loaded instance currently
 participating in a logical cluster. That value must be met before the Cluster
 Edition redirects a login or migrates an existing connection.

 Note The percentages for Login Redirection and Dynamic Connection
 Migration are independent percentages, and do not need to add up 100.

7 Select Finish to create the load profile.

Deleting load profiles

To delete a load profile:
1. From the Workload Management | Load Profile folder, right-click the load profile name.
2. Select Delete.

Note You can delete only user-created load profiles.

Associating a load profile with a logical cluster

1. From the Workload Management | Logical Clusters folder, right-click the logical cluster name.
2. Select Properties.
3. Select the Load Profile tab.
5. (Optional) Select Preview Profiles to display a window that allows you to choose a profile and see how it will influence the weighted metric values for instances within the logical cluster.
 a. Highlight the load profile you want to associate with this logical cluster.
 b. Select Close.
 c. Select OK to exit from the Properties dialog box.
6. Select a load profile.
7. Select OK.
8. Select OK or Apply to associate the new load profile with the logical cluster.

General tab for load profiles

To view the load profile properties:

1. Select Load Profile from the Workload Management folder.
2. Right-click the load profile name and select Properties.

The General tab describes the load profile including its name and type (whether it is a system or user load profile).

See “Load profiles” on page 237.
Metric Weights tab

The Metric Weights tab describes the current weights applied to measurement metrics. If the weights do not sum to 100, the workload manager uses proportionate, adjusted values that do sum to 100.

- User connections – the capacity of an instance to accept a new connection, based on resource availability.
- CPU utilization – the capacity of an instance to accept additional work.
- Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
- I/O load – outstanding asynchronous I/Os.
- Engine deficit – the difference in the number of online engines among instances in the cluster.

Note Engine deficit is measurable only when instances in the cluster have unequal numbers of engines. Engine deficit adds a metric for maximum relative capacity to the load score.

- User metric – an optional customer-supplied metric specific to the user’s environment.

Make sure the load scores you specify add up to 100.

Thresholds tab

Use the Thresholds tab to view and change the threshold settings for the load profile. Enter values for:

- Minimum Load Score – the load score is not a percentage, but is the minimum score the workload manager requires before it redirects work to other instances. The minimum load score is meaningful when compared to the load scores of other instances in the logical cluster using the load profile.
- Login Redirection (%) – the load threshold for determining how best to distribute incoming connections.
- Dynamic Connection Migration (%) – the load threshold that determines whether to distribute existing connections.
Managing logical clusters

The Logical Clusters folder contains a list of defined logical clusters and a wizard to help you add new logical clusters. The right pane shows the following details:

- Cluster ID – displays the associated ID number for each logical cluster.
- Current state of the logical cluster – the connection status of the logical cluster, on- or offline.
- Connections – the number of active connections in the logical cluster.
- Base instances – the number of base instances in the logical cluster.
- Active base instances – displays the number of base instances currently active in the logical cluster.
- Failover instances – the number of instances that are configured for failover.
- Active failover instances – displays the number of active failover instances.
- Down routing mode – displays the down-routing configuration. One of:
 - system – sends unroutable connections to the system logical cluster. system ensures the highest availability as the system logical cluster is always online for every instance. This is the default setting.
 - open – sends unroutable connections to the open logical cluster. If the connection cannot be sent to the open logical cluster, or the connection does not support redirection, the instance applies the down-routing mode of the open logical cluster.
 - disconnect – disconnects unroutable connections. This setting can enforce resource reservation by disconnecting clients that cannot be served by instances in the target logical cluster.
- Failover mode – displays the failover mode configuration. The options are instance or group.
- Start-up mode – displays the start-up mode configuration: automatic (the option is unselected) or manual.
- System view – displays the system view configuration, instance or cluster.
• Roles – only the system-created logical cluster has the system role. By default, the open role is assigned to the system logical cluster. When the open role is assigned to a new logical cluster, the open role is removed from the logical cluster that previously owned that role.

• Load profile – displays the name of the load profile used for the cluster.

Adding a logical cluster

1 Right-click Add Logical Cluster.
2 Select Open.
3 Enter the cluster name and click Next.
4 Click Add to select the server instances you want to participate in the logical cluster. Click Next.
5 Add the failover server instances for the logical cluster. Click Next.
6 Enter the routed applications, logins, and aliases. You can also drop a route by first selecting the route.
7 To select a load profile other than the default, click Change, then click Next.
8 Set options for new logical cluster. Click Next.
9 Adaptive Server plug-in displays the summary. To make changes, use the Back button. When you are done click Finish.

Dropping a logical cluster

To drop a logical cluster, it must be offline.
1 Right-click the logical cluster and select Delete.
2 Click Yes.

Logical cluster properties

Right-click the logical cluster name and select Properties to view the logical cluster’s configuration.

See “Load profiles” on page 237.
Managing the workload

General tab

These options appear in the General tab:

- **System view** – determines how the logical cluster users view Cluster Edition, whether as an entire cluster, or as individual instances. This affects some queries and stored procedures. Select Instance or Cluster.

- **Automatically starts logical cluster** – select this option if you want this logical cluster to start when the cluster starts.

- **Failover mode** – determines whether the logical cluster fails over to another instance or a group:
 - **Instance** – the logical cluster to fail over one instance at a time.
 - **Group** – specifies that base instances are replaced only when all base instances fail, and that all failover instances then come online. For example, the failover mode for SalesLC is “group.” If base instance “ase1” fails, the cluster continues to run on base instance “ase2”. No failover instances are brought online. However, if both “ase1” and “ase2” fail, then the cluster runs on failover instances “ase3” and “ase4”.
 - **Fail-to-any** – permits the logical cluster to fail over even though no failover instances are available. The logical cluster fails over to any available physical instances in the cluster, based on load.

 Fail-to-any configures the logical cluster to fail over to any available instance, even if it is not defined as a failover instance within that logical cluster.

- **Down routing mode** – displays the down-routing configuration. One of:
 - **system** – sends unroutable connections to the system logical cluster. System ensures the highest availability as the system logical cluster is always online for every instance. This is the default setting.
 - **open** – sends unroutable connections to the open logical cluster. If the connection cannot be sent to the open logical cluster, or the connection does not support redirection, the instance applies the down-routing mode of the open logical cluster.
 - **disconnect** – disconnects unroutable connections. This setting can enforce resource reservation by disconnecting clients that cannot be served by instances in the target logical cluster.

- **Logical cluster roles** – the system role is automatically set to the “system logical cluster.” You cannot change this setting.
By default, the open role is assigned to the system logical cluster. You cannot grant the open role, and it is removed only if another logical cluster assumes that role.

Base Instances tab

The Base Instances tab lists the currently configured logical cluster instances.

- Select Add to add instances to the logical cluster.
- To remove an instance from the logical cluster:
 - Highlight the instance to remove. This instance must be offline before you can select it.
 - Select Remove.
 - Select Yes to confirm the deletion.
- Select Offline to bring an instance offline. You can specify whether to bring the instance offline immediately, or to bring it offline gradually, but to remind you after the specified period of time.
- Select Online to bring an offline instance online.
- Select Failover to fail over from this instance to another.

Adding an instance to a logical cluster

To add an instance to the logical cluster:

1. Click Add.
2. Highlight the instance you want to add
3. Click OK. These changes do not take effect until you click Apply or OK.

Failover Instances tab

Lists information about the currently configured failover instances, including:

- Name
- ID
- State
- Failover Group
Managing the workload

Adding a failover instance

To add a failover instance:

1. Click Add.

2. Select the failover group you want to configure from the Add Failover Instance to Logical Cluster window.

 Failover groups allow you to specify the order in which failover instances become active in the event of a failover. A group can have one or more instances.

3. Highlight the instance you want to configure as a failover instance from this list and click OK.

Load Profile tab

Lists information about the load profiles associated with the logical cluster:

- Name – name of the load profile associated with this logical cluster. Click Change to associate another load profile with this logical cluster.

- Type – displays the load profile type: system or user.

- Minimum Load Score – the minimum load score that activates a login redirection or migration.

- Metrics – includes a variety of statistics about the load profile, including:
 - User connections – the capacity of an instance to accept a new connection, based on resource availability.
 - CPU utilization – the capacity of an instance to accept additional work.
 - Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
 - I/O load – outstanding asynchronous I/Os.
 - Engine deficit – the difference in the number of online engines among instances in the cluster.
 - User metric – an optional customer-supplied metric specific to the user’s environment.
Weight – indicates how important a metric is to the load score. This is a relative measurement, and is based on an upper limit of 100. A metric with a weight of 0 has no value and is not used in calculating the load score, and a metric with a weight of 50 has one half the influence on the load score. If 5 metrics all have a weight of 20, each metric is equally important when calculating the load score.

• Thresholds – currently configured thresholds associated with this load profile.

Routes tab

This tab describes the routes for applications, logins, and aliases that are assigned to this logical cluster.

Adding an application route

1. Click Add Application Route.
2. Enter the application name and click OK.

Adding a login route

1. Click Add Login Route.
2. Select the login (or logins) for the route and click OK.

Adding an Alias route

1. Click Add Alias Route.
2. Enter the alias name.
3. Click OK.

Dropping routes

1. Select the route.
2. Click Drop Route.
3. Select Yes to confirm the deletion.
Viewing workload status

The Workloads folder displays a cluster-wide view of workload metrics on two tabs: Weighted Scores and Base Metric Values.

Select Workloads from the Workload Management folder in the tree view. The workload scores report the weighted and base scores.

Weighted Scores tab

Each instance tracks a set of load metrics. Load scores and metrics are computed for each combination of instance and logical cluster, and are determined by applying the logical cluster’s load profile to an instance’s workload statistics. The result is an overall load score and a set of weighted scores that represent the relative impact of specific instance attributes.

The Weighted Score tab displays the load score and weighted metric values for each instance and logical cluster combination. If an instance is associated with two logical clusters, there are two entries for that instance in the details tab.

The Weighted scores tab includes:

- **Instance** – name of the instance whose workload is represented.
- **Logical Cluster** – name of the logical cluster associated with the instance.
- **Load Profile** – the load profile assigned to the logical cluster.
- **Load score** – a computed value representing the overall load on the instance. Compare this unitless number across instances as a means of comparing workloads.
- **User connections** – the capacity of an instance to accept a new connection, based on resource availability.
- **CPU Busy** – a measurement of how busy the engines are, and provides the same information as `sp_sysmon`. Determines an instance’s capacity to accept additional work.
- **Run-queue length** – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
- **IO load** – measures outstanding asynchronous IOs, which indicates the relative IO saturation between instances.
Engine Deficit – measures the difference in online engines between instances. In a cluster where all the instances have the same number of engines there is no engine deficit. However, in a two-instance cluster where, for example, “instance1” has four engines and “instance2” has two engines, “instance1” has no engine deficit but “instance2” has a 50% deficit because it has half as many engines as “instance1.”

User – the weighted value of a metric you specified in the load profile.

Note Because each instance can be included in multiple logical clusters, each instance has one set of metric values for each logical cluster it belongs to.

Base Metric Values tab

The Base Metric Values tab displays all workload values for each instance in the cluster. Since each instance has only one set of values, regardless of how many logical clusters it participates in, one set of values is displayed for each instance.

- **Instance** – name of the instance.
- **% User Connections** – percentage of configured user connections in use.
- **% CPU busy** – percentage of time the instance was busy performing work. This is a one minute, moving average taken from all engines on the system.
- **% Run queue length** – base percentage of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
- **% IO load** – base percentage of outstanding asynchronous IOs
- **% Engine deficit** – the base percent difference in the number of online engines among instances in the cluster.
- **% User** – percentage value you provide for the user metric specified in the load profile.

Viewing workload status of an instance

The workload status is based on the load profile associated with the instance. The status displays raw values that indicate how taxed an instance is with regard to each metric area.

To view the workload status:
Managing routes

1. Click the Server Instances folder to display a list of instances in the right pane.

2. Right-click an instance name and select Workload Status. The workload status displays raw values indicating the amount of work each instance is performing for each metric area.
 - User connections – the capacity of an instance to accept a new connection, based on resource availability.
 - CPU busy - a measurement of how busy the engines are, and provides the same information as sp_sysmon. Determines an instance’s capacity to accept additional work. This is measured as a one-minute moving average.
 - Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time. This is measured as a one-minute moving average.
 - IO load – measures outstanding asynchronous I/Os, which indicates the relative IO saturation between instances. This is measured as a one-minute moving average.
 - Engine Deficit – measures the difference in online engines between instances. In a cluster where all the instances have the same number of engines, there is no engine deficit. However, in a two-instance cluster where, for example, “instance1” has four engines and “instance2” has two engines, “instance1” has no engine deficit but “instance2” has a 50% deficit because it has half as many engines as “instance1.”
 - User – the weighted value of a metric you specified with the workload_metric function.

 Note Because each instance can be included in multiple logical clusters, each instance will have one set of metric values for each logical cluster it is member to.

Managing routes

Routes allow you to direct client connections to specific logical clusters.
CHAPTER 14 Administering Clusters with the Adaptive Server Plug-in

Route properties

To view the current routes:

1 From the Workload Management | Logical Clusters folder, right-click the logical cluster name.
2 Select Properties.
3 Select the Routes tab.

The Routes General tab reports the:

- Name of the route.
- Route Type – displays the type of route: application, login, or alias.
- Logical Cluster – name of the logical cluster to which this route is associated.

To associate this route with another logical cluster, select another logical cluster name and click OK.

Creating a route

Use the Add Route wizard to create a route.

To start the wizard:

- Select Routes from the Workload Management folder.
- Double click on Add Route.
- Follow the instructions on the wizard to add a route.
Managing routes
CHAPTER 15

Administering Clusters Using sybcluster

sybcluster is an interactive utility that allows you to perform administrative tasks for the cluster from the command line.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using sybcluster</td>
<td>254</td>
</tr>
<tr>
<td>sybcluster and the Unified Agent Framework</td>
<td>256</td>
</tr>
<tr>
<td>Starting sybcluster</td>
<td>256</td>
</tr>
<tr>
<td>Creating a cluster</td>
<td>257</td>
</tr>
<tr>
<td>Connecting to the cluster</td>
<td>257</td>
</tr>
<tr>
<td>Starting the cluster</td>
<td>261</td>
</tr>
<tr>
<td>Managing the cluster</td>
<td>261</td>
</tr>
<tr>
<td>Managing an instance</td>
<td>267</td>
</tr>
<tr>
<td>Enabling sybcluster after manually creating the cluster</td>
<td>271</td>
</tr>
<tr>
<td>Creating and managing auxiliary servers</td>
<td>272</td>
</tr>
<tr>
<td>Upgrading the server</td>
<td>274</td>
</tr>
</tbody>
</table>

You can use sybcluster to create a cluster, add an instance, start and stop a cluster or instance, display status information, and so on. Alternatively, you can perform these tasks using the Adaptive Server plug-in for Sybase Central as described in Chapter 14, “Administering Clusters with the Adaptive Server Plug-in.”

You cannot manage temporary databases or logical clusters using sybcluster.

- To manage temporary databases, use the Adaptive Server plug-in or follow instructions in Chapter 8, “Using Temporary Databases.”
- To manage logical clusters, use the Adaptive Server plug-in or the sp_cluster logical and sp_cluster profile stored procedures described in Chapter 6, “Managing the Workload.”

For complete syntax and usage information for the sybcluster commands, see the Utility Guide.
Using sybcluster

Some sybcluster commands are available before you connect to a cluster; others are available only after you connect to a cluster, see Table 15-1.

The sybcluster prompt lets you know whether or not sybcluster is connected to a cluster, and the default cluster and instance if either or both of these have been set.

- When sybcluster is not connected to a cluster, the prompt is:

 >

- After you have connected to a cluster, the prompt becomes:

 `{cluster_name}>`

 For example:

 `mycluster>`

- If you declare a default instance, the prompt is:

 `{cluster_name instance_name}>`

 For example:

 `mycluster asel>`

<table>
<thead>
<tr>
<th>Command name</th>
<th>Description</th>
<th>Active before or after connecting to a cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>add backupserver</td>
<td>Configures one or more new Backup Servers on nodes in the cluster not currently configured for Backup Server.</td>
<td>After</td>
</tr>
<tr>
<td>add instance</td>
<td>Adds one new instance to the cluster.</td>
<td>After</td>
</tr>
<tr>
<td>connect</td>
<td>Connects to an existing cluster.</td>
<td>Before</td>
</tr>
<tr>
<td>create backupserver</td>
<td>Create Backup Server.</td>
<td>After</td>
</tr>
<tr>
<td>create cluster</td>
<td>Creates a new cluster.</td>
<td>Before</td>
</tr>
<tr>
<td>create xpserver</td>
<td>Creates an XP Server.</td>
<td>After</td>
</tr>
<tr>
<td>deploy plugin</td>
<td>Deploys the configuration information for a single instance of the cluster to the Unified Agent.</td>
<td>Before</td>
</tr>
<tr>
<td>diagnose {cluster</td>
<td>instance }</td>
<td>Performs a set of checks to ensure the cluster or instance is working properly.</td>
</tr>
<tr>
<td>disconnect</td>
<td>Closes all connections to the current cluster and returns the cluster to the unconnected state.</td>
<td>After</td>
</tr>
<tr>
<td>drop backupserver</td>
<td>Drops the Backup Server.</td>
<td>After</td>
</tr>
</tbody>
</table>
Command name | Description | Active before or after connecting to a cluster
---|---|---
drop cluster | Removes each instance from the cluster and deletes the cluster definition from the cluster configuration file. | After

drop xpserver | Drops the XP Server. | After

drop instance | Removes an instance from the cluster. | After

exit | Exits sybcluster. | Before or after

help | Lists the currently available sybcluster interactive commands. | Before or after

localize | Displays current values for default language, charset, and sort order. Allows you to change the default values and add or remove languages. | After

quit | Exits sybcluster. | Before or after

set backupserver | Changes the listening port number for Backup Server on one or more nodes. | After

set cluster | Sets properties for the cluster. | After

set instance | Sets properties for the instance. | After

set xpserver | Changes the listening port number for XP Server on one or more nodes. | After

show agents | Displays information about available UAF agents. | Before

show backupserver config | Displays the names of the nodes on which Backup Server is configured and the associated listening port number. | After

show cluster | Displays configuration, log, and status values for the cluster. | After

show instance | Displays information about an instance. | After

show membership mode | Displays the cluster’s current membership mode, which specifies whether or not the cluster supports Veritas Cluster Server integration. | After

show session | Displays current agent and discovery information. | After

show xpserver config | Displays the names of the instances and nodes on which XP Server is configured and the associated listening port number. | After

shutdown cluster | Shuts down the cluster by executing a Transact-SQL shutdown command for each instance in the cluster. | After

shutdown instance | Shuts down the instance by executing a Transact-SQL shutdown command. | After

start cluster | Starts all instances in the cluster. | After

start instance | Starts an instance in the cluster. | After

use | Sets the default instance. | After
sybcluster and the Unified Agent Framework

sybcluster uses the Unified Agent Framework (UAF) to provide remote management capabilities, in the form of runtime services for managing distributed Sybase resources. It offers a set of common services and enables Sybase processes, such as sybcluster and the Adaptive Server plug-in, to plug in to an agent to manage server resources and perform various operations.

Unified Agent servers can broadcast themselves on a subnet using UDP, or register themselves with a lookup server such as Jini or LDAP.

See the Users Guide to the Unified Agent and Management Console for detailed information about UAF.

Starting sybcluster

Start sybcluster from the command line. The simplest way is to enter:

```
sybcluster -U uafadmin -P
```

“uafadmin” is the default user name, and the default password is null or blank. You can also use authenticated Adaptive Server database user names and operating system user names. See “Authenticating the user” on page 257.

You can also start sybcluster and, at the same time, specify a cluster, identify a default instance, and connect to the Unified Agents on one or more nodes in the cluster. For example:
sybcluster -U uafadmin -P -C mycluster -I asel
-P "blade1:9999,blade2:9999,blade3:9999"

In this example, the -F option identifies the node and listening port for each
Unified Agent in the cluster. If you use this command often, you can create a
simple alias for it. For example:
sybcluster_mycluster

Creating a cluster

For instructions for creating a cluster using sybcluster, see the installation guide
for your platform.

Connecting to the cluster

You can connect to a cluster by specifying the required information when you
start sybcluster; you can also start sybcluster and connect to the cluster at a later
time using the connect command. You must connect to a cluster before starting
it.

When you install and configure the cluster, you also install and configure a
Unified Agent on each node in the cluster. When you start sybcluster, you must
provide an authenticated user name and password, and identify the Unified
Agents on one or more of the cluster’s nodes using a direct connect, or
discovery method. sybcluster can then plug in to the Unified Agents and
perform command, control, and discovery operations.

Authenticating the user

You can connect to the cluster using any UAF authenticated user name and
password. By default, the user name is “uafadmin”, and the default password
is a null or blank string. For example:
sybcluster -U uafadmin -P -C mycluster
Connecting to the cluster

Setting the user name and password

Sybase recommends that you change the default user name and change and then encrypt a new password. User name and password information for the UAF is stored in the `csi.properties` files located on each node in the cluster.

❖ Setting the user name

- Enter the new user name in the “username” property in the Simple Log Module section of each `$SYBASE/UAF-2_5/nodes/<node_name>/conf/csi.properties` file. For example:

```
# Simple Login Module
...
CSI.loginModule.2.options.username=newusername
CSI.loginModule.2.options.password=
CSI.loginModule.2.options.encrypted=false
CSI.loginModule.2.options.roles=uaAgentAdmin,uaPluginAdmin
```

Note Make sure you edit the `csi.properties` file in each node in the cluster.

❖ Encrypting and setting the password

1 Run `passencrypt`, located in `$SYBASE/UAF-2_5/bin`, to generate the encrypted password.

2 In the Simple Log Module section of each
 `$SYBASE/UAF-2_5/nodes/<node_name>/conf/csi.properties` file:

 1 Paste the encrypted value into the password property.
 2 Set the encrypted property to “true”. For example:

```
# Simple Login Module
...
CSI.loginModule.2.options.username=newusername
CSI.loginModule.2.options.password=REVTe1NZVUFgfWNvbS5zdW4uY3J5cHRvLnByb3ZpZGVyL1N1bkpDRXtTWVVBRn1nTUJjacVh5R3pnN09RSDJDN1NPUXhBPT0=
CSI.loginModule.2.options.encrypted=true
CSI.loginModule.2.options.roles=uaAgentAdmin,uaPluginAdmin
```

Note Make sure you edit the `csi.properties` file in each node in the cluster.
❖ Activating the new user name and password

- For the new user name and password to take effect, shut down and restart the Unified Agent on each node in the cluster.

Identifying the Unified Agents

You can identify the Unified Agents using a direct connect or discovery method either when you start sybcluster or later using the connect to interactive command.

Note If the cluster is running when you connect to it, you normally need to identify only one Unified Agent on one node in the cluster. To start the cluster or XP Server, however, you must identify the agent on each node in the cluster.

sybcluster always prompts you when additional information is required.

If you do not know the Unified Agent specifications for a cluster, use the sybcluster show agents command to discover available Unified Agents and clusters on your subnet.

You can connect directly to one or more agents by specifying the cluster node and port numbers for the Unified Agents responsible for managing the cluster. Some possible agent specifications are:

- Node name or names of the cluster and optional port numbers – allows you to specify an exact address. If you do not include a port number, sybcluster assumes a default value of 9999. For example, to specify agents on “blade1”, “blade2”, and “blade3” of “mycluster,” enter:

 sybcluster -U uafadmin -P -C mycluster
 -F "blade1:1234,blade2:2345,blade3:3456"

 To specify node and port numbers using connect after you have started sybcluster, enter:

 connect to mycluster -U uafadmin -P
 -F "blade1:1234,blade2:2345,blade3:3456"

- The domain of the node – lets you specify the exact address through the domain name. For example:

 sybcluster -U uafadmin -P -C mycluster
 -F "blade1.mydomain.com"
Connecting to the cluster

Using a discovery method

Sybcluster supports these three discovery methods that locate the agents and the discovery order:

- **User Datagram Protocol (UDP)** – is a broadcast discovery method in which sybcluster broadcasts a request and agents located on the same subnet respond. For example, to use UDP to look up the location of a node in “mycluster”, enter:

  ```
  sybcluster -U uafadmin -P -C mycluster -d "udp()"
  ```

 To perform discovery using `connect` after starting sybcluster, enter:

  ```
  connect to mycluster login uafadmin password " " discovery "udp()",
  jini(myjiniserver1:5678;myjiniserver2:1234)"
  ```

- **Jini server technology** – provides lookup capabilities. Each agent registers with the Jini server, which stores the location of each node and status information. To look up the location of an agent in “mycluster”, enter:

  ```
  sybcluster -U uafadmin -P -C mycluster -d "jini(myjiniserver:4564)"
  ```

 To perform discovery using `connect` after starting sybcluster, enter:

  ```
  connect to mycluster discovery "jini(myjiniserver:4564)"
  ```

- **LDAP technology** – provides lookup capabilities. Each agent registers with the LDAP server, which stores the location of each node and status information.

To look up the location of Unified Agents for “mycluster” using all three discovery methods, enter:

```
sybcluster -U uafadmin -P -C mycluster -d "udp(),jini(myjiniserver:4123),
ldap(myldapserver:6123)"
```
Starting the cluster

You must connect to the Unified Agent on each node in the target cluster before you can start the cluster. See “Connecting to the cluster” on page 257. Then, to start the cluster, enter:

```
start cluster
```

`sybcluster` prints a cluster description as it starts all instances in the cluster.

Managing the cluster

This section describes how to perform tasks that help you to manage the cluster and its environment.

Creating a cluster

Create a cluster using either `sybcluster` or the Adaptive Server plug-in. Either method prompts you for required information and creates the cluster for you. You can also create a cluster manually, performing all the tasks yourself.

See the `Installation Guide` for step-by-step instructions for creating a cluster using each of these methods.

Verifying the cluster

diagnose cluster performs a set of checks that ensures that the cluster is working properly. Enter:

```
diagnose cluster
```

diagnose cluster displays cluster information and checks to see if:

- A Unified Agent is running on all nodes in the cluster.
- The number of nodes in the cluster does not exceed the maximum instances in the cluster.
- The quorum device exists, and if not, checks to see if the directory has write permission.
Managing the cluster

- The interfaces file exists for all nodes, and that node names and port numbers do not conflict.
- The primary and secondary protocol specifications do not overlap.
- The Sybase home directories on each node are shared.

Displaying information about available Unified Agents

Use `show agents` to identify all the configured Unified Agents on your subnet, or narrow the search to show information about specific Unified Agents.

For example, to identify all Unified Agents, enter:

```
show agents
```

Sybcluster displays the direct connect address for each Unified Agent, its node and cluster name, and other relevant information.

You can display information about specific Unified Agents by restricting discovery or identifying the desired agents. For example, to view information about Unified Agents on “blade2” of “mycluster,” enter:

```
show agents agent "blade2:9999"
```

Displaying cluster information

This section describes how to use `sybcluster` to display information about the cluster, instances in the cluster, and the cluster environment. For complete syntax and usage information, see the Utility Guide.

You can perform the same tasks using the Adaptive Server plug-in. See Chapter 14, “Administering Clusters with the Adaptive Server Plug-in.”

- To show configuration information, primary and secondary protocol values, trace flags used, and the addresses for the quorum device and the master device, enter:

  ```
  show cluster config
  ```

To view formatted configuration information for the cluster, enter:

```
show cluster config template
```

- To show status and heartbeat information for each instance in the cluster, enter:

  ```
  show cluster agent
  ```
show cluster status

Status values are:

- Up
- Down
- Undefined
- Invalid
- Start
- Init
- Quiesce

- To show all log information, enter:
 show cluster log

You can limit the output by specifying:

- The error severity level, for example:
 show cluster log minseverity 5

- A date range for log entries:

 show cluster log startdate 03:31:08
 enddate 04:30:08

- A number of lines to display from the error log, working backwards from the most recent:

 show cluster log last 25

- To display all UAF and JDBC connections to the cluster, enter:
 show cluster connection

- To display general information about the cluster and detailed information about agent connections, enter:
 show session

- The Symantec Veritas Cluster Server (VCS) manages application services in a cluster environment. If VCS is supported at your site, you can enable VCS on your cluster. See your Veritas documentation. To find out whether VCS is enabled on your cluster, display the membership mode. Enter:

 show membership mode

Membership mode values are:
Managing the cluster

- **vcs** – the cluster supports VCS integration.
- **native** – the cluster does not support VCS.

See “Changing the membership mode” on page 266.

Changing cluster configuration values

You can change certain configuration values for the cluster using `set cluster` and other commands. Verify the cluster status by issuing `show cluster status`.

When the cluster is down, you can change:
- The maximum number of instances
- The active trace flags
- The primary or secondary protocol
- The membership mode

When the cluster is running, you can change:
- The login name or password the Unified Agent uses to log in to the cluster
- The default language, character set, and sort order for the cluster

For example, to change the maximum number of instances to 4 for “mycluster”, enter:

```
set cluster maxinst 4
```

To reset the primary protocol for the cluster to “udp”, enter:

```
set cluster primary protocol udp
```

Changing user names or passwords

`sybcluster` is a client program that connects to a Unified Agent that is configured to run the cluster. When you start `sybcluster`, you provide a login and password that enables `sybcluster` to log in to the Unified Agent. To change the value of the Unified Agent login or password, use the Agent Management Console Sybase Central plug-in. To encrypt the password, see “Setting the user name and password” on page 258.
For some operations, the Unified Agent must log in to the cluster. This occurs when sybcluster or Sybase Central issues a shutdown command or when the Unified Agent performs cluster heartbeat tasks to determine cluster status. For these tasks, the Unified Agent must use a login with sa_role. By default, the Unified Agent uses the “sa” login with no password. To change this password, use the sybcluster set cluster login command.

For example, to change the password for the “sa” login to “newpassword”, enter:

```
set cluster login sa password newpassword
```

The cluster must be running to perform this command.

See the Utility Guide for complete syntax and usage information.

Changing localization values

Use the sybcluster localize command to view the current values for language, character set, and sort order. After displaying the current default values, sybcluster localize prompts you to accept each of these values or change them. For example, to view current values without changing them, enter:

```
localize
```

Current default locale properties are:
Default Language - portuguese
Default Charset - mac
Default SortOrder - Binary ordering, for use with the Macintosh character set (mac).

Options for default Language are:
1. spanish
2. portuguese
3. german
4. us_english
5. thai
6. french
7. japanese
8. chinese
9. korean
10. polish

Enter the number representing the language to be set as defaults: [2]

Options for default charsets are:
1. gb18030
Managing the cluster

2. eucgb
3. utf8
Enter the number representing the charset to be set as default: 1

Options for sort orders are:
1. Binary ordering, for the EUC GB2312-80 character set (eucgb).
Enter the number representing the sort order to be set as default [1]

Do you want to install any language? [Y] n
Do you want to remove any language? [N]
The cluster mycluster was successfully localized with default language portuguese, charset gb18030, sortorder bin_eucgb.

To ensure consistency throughout the cluster, shut down and restart the cluster after changing any of the localization values.

Changing the membership mode

If VCS is supported at your site, you can enable VCS when you create the cluster. Use qrmutil or the Veritas utilities to change the membership mode. See the Utility Guide and your Veritas documentation.

Disconnecting from the cluster

To close all connections to the current cluster, enter:

disconnect

Shutting the cluster down

You can shut the cluster down gracefully, which allows transactions to complete before Adaptive Server shuts down each instance in the order specified in the cluster configuration file.

shutdown cluster

To shut down the cluster immediately, without waiting for transactions to complete, enter:
shutdown cluster nowait

Note If the cluster is running in Veritas Cluster Server (VCS) mode, make sure you shut down or start up servers and the cluster using VCS shutdown and start-up mechanisms. Do not use the sybcluster shutdown commands.

Dropping a cluster

Before you can drop a cluster, make sure that the cluster is in the Down state and the Unified Agents are running. Then, enter:

drop cluster

Adaptive Server removes cluster and instance entries from the interfaces file, deletes the cluster configuration file, marks the quorum disk as unused, deletes the log file, and shuts down and removes the cluster’s Unified Agent plug-ins. You must confirm each deletion.

Managing an instance

This section describes how to perform tasks that help you manage instances in the cluster.

Displaying information about the instance

Similarly to show cluster, show instance displays configuration, status, and log information about an instance.

- To show configuration information, including the name of the host node, primary and secondary network information, and the path to the log file, enter:

 show instance instance_name config

- To display status information, enter:

 show instance instance_name status

This command displays status information for the named instance:
Managing an instance

- Up
- Down
- Undefined
- Invalid
- Start
- Init
- Quiesce

- To show all log information, enter:

 `show instance instance_name log`

 You can limit the output by specifying:

 - The error severity level, for example:

 `show instance instance_name log minseverity 5`

 - A date range for log entries:

 `show instance instance_name log startdate 03:31:08 enddate 04:30:08`

 - A number of lines to display from the error log, working backwards from the most recent:

 `show instance instance_name log last 25`

Adding an instance

You can add an instance to the cluster either interactively, with `sybcluster` prompting you for required values, or by using an input file.

Note add instance creates a local system temporary database for the new instance. Make sure that there is sufficient space on the device.

If you add the instance interactively, Adaptive Server prompts for:

- The instance name, if one was not specified in the command statement
- The name of the node hosting the instance
- The port number of the Unified Agent on the node
The query port number
The primary and secondary address of the node
The primary and secondary port specifications

If you add the instance using an input file, make sure the file mirrors the format of the cluster input file (see the installation guide for your platform), although you need to include definitions only for the new instance. If auxiliary servers are defined, include port and other information required for configuring the auxiliary servers for the new instance.

For example, to add an instance using an input file, enter:

```
add instance new_instance file /$SYBASE/myfile
```

To add an instance interactively, enter:

```
add instance new_instance
```

Verifying the instance

diagnose instance performs a set of checks to insure that the instance is configured properly. For example, to verify the configuration for “ase1”, enter:

```
diagnose instance ase1
```

diagnose instance displays configuration information for the instance and verifies:

- The query port
- That a JDBC connection is available
- That the instance is available on the public network
- The minimum and maximum port numbers
- The primary and secondary protocol port ranges

Changing the default instance

Use the use command to set or change the default instance specified in the sybcluster command line. After the default instance has been set, you do not need to specify one in the command line for any interactive command. For example, enter:

```
use ase1
```
Managing an instance

You can override the default instance by including an instance name in an interactive command. However, doing so does not change the default designation.

To remove the default designation, omit the instance name. Enter:

```
use
```

Changing instance properties

You can use `set instance` to change certain properties for the instance. The instance must be in the Down state to use `set instance`. Verify status by issuing `show cluster status`.

Instance properties you can change are:

- The log path
- Arguments used for starting the instance
- The primary or secondary address of the instance
- The primary or secondary port range used by the instance

For example, to reset the primary port range from 6123 to 6126, enter:

```
set instance primary port 6123 6126
```

Shutting an instance down

You can shut an instance down gracefully, which allows transactions to complete. For example, to shut down “ase1”, enter:

```
shutdown instance ase1
```

To shut down the instance immediately, without waiting for transactions to complete, enter:

```
shutdown instance ase1 nowait
```

If you shut down the last instance in a cluster, the cluster status changes to down. If you shut down the instance on the node hosting the cluster coordinator, another node hosts the coordinator.
Dropping an instance

Before you can drop an instance, make sure the instance is in the down state and the cluster is in the up state. Then, enter:

```
drop instance instance_name
```

Adaptive Server deletes entries for the instance from the interfaces file and the quorum device, and notifies the cluster of the topology change. Confirm each deletion.

Note You cannot use `drop instance` to drop the last instance in a cluster. Rather, use `drop cluster`.

Enabling sybcluster after manually creating the cluster

Typically, a cluster is created using `sybcluster` or the Adaptive Server plug-in. In these cases, Adaptive Server automatically adds configuration information that allows `sybcluster` or the Adaptive Server plug-in to connect to the Unified Agent on each node. If you configure the cluster manually (as described in the *Installation Guide*), you must add that configuration information to the Unified Agents before you can use `sybcluster` or the Adaptive Server plug-in to manage the cluster.

You must first deploy the plug-in configuration information.

1. If you have not already done so, start the Unified Agents on the cluster. See Chapter 3, “Installing the Server and Starting the Cluster,” in the installation guide for your platform.

2. Deploy the plug-in. For example, to deploy the cluster agent plug-in information on the default cluster “mycluster”, enter:

```
deploy plugin agent "blade1,blade2,blade3"
```

You can specify the Unified Agents using any of the direct connect or discovery methods described in “Identifying the Unified Agents” on page 259.

After the agents are specified, Adaptive Server prompts you for the paths to:

- The quorum device
Creating and managing auxiliary servers

- The environment shell script
- The ASE home directory

Note You can use `sybcluster` or Adaptive Server plug-in to manage the cluster after deploying the plug-in to a single node in the cluster. However, to start the cluster, you must deploy the plug-in to all nodes in the cluster.

You can also use `deploy plugin` to update the values for an existing plug-in.

Creating and managing auxiliary servers

Use `sybcluster` to create, drop, configure port numbers, and display current port numbers for these auxiliary servers:

- Backup Server
- XP Server

Creating auxiliary servers

See the *Installation Guide* for instructions for creating Backup Server and XP Server using `sybcluster`. You can also use the Adaptive Server plug-in to create auxiliary servers.

See the *Utility Guide* for syntax and usage information.

If you create multiple Backup Servers, all instances in the cluster must have a Backup Server. You can create a single Backup Server for one or more nodes.

If you create XP Servers, you must create them for all instances in the cluster.

Dropping auxiliary servers

Use the `drop backupserver`, `drop monitorserver`, or `drop xpserver` to remove an auxiliary server from the cluster. The Cluster Edition prompts for confirmation before dropping a server.
If you have configured multiple Backup Servers for the cluster, you must drop all Backup Servers. If you have configured single Backup Servers, you can drop one or all of them. However, when you use drop monitorserver or drop xpserver, you drop all XP Servers from the cluster.

To drop all XP Servers from “mycluster”, enter:

 drop xpserver

Are you sure you want to drop the XP Servers from cluster "mycluster"? (Y or N): [N] y

The XP Servers have been dropped for all instances.

To drop the Backup Server from “blade2” of “mycluster” enter:

 drop backupserver

Do you want to drop the Backup Server from:
 1. Selected nodes
 2. Cluster

Enter choice: 1
Do you want to drop Backup Server from node "blade1"? [N] n
Do you want to drop Backup Server from node "blade2"? [N] y
Do you want to drop Backup Server from node "blade3"? [N] n

The Backup Server has been dropped.

Displaying listening port information

To display current listing port numbers for Backup Server or XP Server, use:

- show backupserver config
- show xpserver config

For example, to display Backup Server listening port information for “mycluster”, enter:

 show backupserver config

Backup Server is configured on the following nodes:
 1. blade1:5001
 3. blade3: 5003
Changing listening port information

To change a listening port for an auxiliary server, use:

- set backupserver
- set xspserv config

For example, to change the listening port number for Backup Server for instance “ase3” on “blade3”, enter:

```
set backupserver
```

Enter the Backup Server port number for instance "blade1": [6011] <CR>
Enter the Backup Server port number for instance "blade2": [6012] <CR>
Enter the Backup Server port number for instance "blade3": [6013] 6666

Upgrading the server

See the installation guide for your platform for instructions for upgrading Adaptive Server to the current version of the Cluster Edition.
General Configuration Issues

This part of the Clusters Users Guide describes general configuration issues for the Cluster Edition.
CHAPTER 16

Configuring the Operating System

This chapter discusses the operating system configuration settings that you can adjust after installing or upgrading the Cluster Edition. Unless stated otherwise, the information pertains to all supported UNIX platforms.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the stty setting</td>
<td>277</td>
</tr>
<tr>
<td>Restoring correct permissions</td>
<td>278</td>
</tr>
<tr>
<td>File descriptors and user connections</td>
<td>278</td>
</tr>
<tr>
<td>Adjusting the client connection timeout period</td>
<td>282</td>
</tr>
<tr>
<td>Checking for hardware errors</td>
<td>283</td>
</tr>
<tr>
<td>Monitoring the use of operating system resources</td>
<td>284</td>
</tr>
<tr>
<td>A sample C shell maintenance script</td>
<td>284</td>
</tr>
</tbody>
</table>

Using the *stty* setting

Setting the stty tostop option causes a background server to stop as soon as it tries to write to the terminal. To avoid this error, execute the following command before starting the Cluster Edition:

```
stty -tostop
```

If you are redirecting all Cluster Edition output to files, you do not have to change the stty setting.
Restoring correct permissions

Sybase software files and directories are installed with the correct access permissions. If you notice that the permissions are no longer correct, you can restore the correct permissions with the script `setperm_all`, located in the $SYBASE/$SYBASE_ASE/install directory.

File descriptors and user connections

The number of user connections used by the Cluster Edition cannot exceed the number of file descriptors available to the Cluster Edition on the operating system. When configuring user connections on the Cluster Edition, the System Administrator should take into account the number of file descriptors available per process. Although most of the open file descriptors are available for user connections, a few are used by the Cluster Edition for opening files and devices.

For Linux

The number of file descriptors per process is limited to 10,000. You can set the number of file descriptors using `ulimit`.

For Sun Solaris

For Sun Solaris, you can set both soft and hard limits for file descriptors. The soft limit can be increased up to the hard limit by the user, but the hard limit can be increased only by someone with “root” permissions. The soft limit determines the number of open file descriptors available to an Cluster Edition engine. The limit is 10,000.

Although most of the open file descriptors are available for user connections, a few are used by the Cluster Edition engines for opening files and devices.

See the *System Administration Guide* for additional information on user connections.
For HP-UX

The kernel parameters maxfiles and maxfiles_lim control the number of file descriptors available to any one process. The maximum number of file descriptors is 10,000 for 32-bit HP-UX systems and 60,000 for 64-bit HP-UX systems.

To display the current values for file descriptors, use the Korn or Bourne shell ulimit command:

```
ulimit -n
```

Displaying current soft and hard limits

To display the current soft limit, for C shells, enter:

```
limit descriptors
```

For Bourne shells, enter:

```
ulimit -n
```

To display the current hard limit for C shells, enter:

```
limit -h descriptors
```

For Bourne shells, enter:

```
ulimit -Hn
```

Increasing the soft limit

To increase the soft limit for C shells, enter:

```
limit descriptors n
```

For Bourne shells, enter:

```
ulimit -Sn new_value
```
where \(n \) is the current value for the soft limit, and \(new_value \) is the value to which you want to increase the soft limit.

Note You can use the preceding commands in your `RUN_server_name` file to increase the hard and soft limits. The `RUN_server_name` file is a Bourne shell script, be sure to use the Bourne shell versions of these commands in the `RUN_server_name` file.

Increasing the hard limit

To increase the hard limit, use a program like the sample program shown in “Sample program” on page 281.

- **Setting up the sample program to increase the hard limit**

 1. Use an ASCII editor to create `file_name.c` (where `file_name` is the name you give the file). Type the text shown in the sample in “Sample program” on page 281.

 2. Compile the file:

     ```
     cc file_name.c -o program_name
     ```

 where `file_name` is the name of the source file you created, and `program_name` is the name you want to give the program.

 3. Change the program’s permissions and ownership so that it will execute as “root”:

     ```
     chmod 755 program_name
     chown root program_name
     ```

 where `program_name` is the name of the compiled program.

 4. The “root” user can use the program to start the Cluster Edition with increased user connections by typing the following command at the operating system prompt:

     ```
     # program_name dataserver -d master_device_name
     ```

 where `program_name` is the name of the compiled program, and `master_device_name` is the full path of the Cluster Edition’s master device. Instead of typing the command at the operating system prompt, you can add `program_name` preceding the dataserver command line in the the Cluster Edition `RUN_server_name` file.
Sample program

Note This is an sample script; modify it as necessary.

The following example shows the source code that you can use to increase the hard limit:

```c
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
/*
 ** define MAX_CONNECTIONS to a number less than
 ** 10000. The number defined will then become the maximum
 ** number of connections allowed by an Adaptive Server.
 */
#define MAX_CONNECTIONS 9999
extern int errno;

main(argc,argv)
char **argv;
{
    struct rlimit rlp;
    uid_t uid;

    rlp.rlim_cur = MAX_CONNECTIONS;
    rlp.rlim_max = MAX_CONNECTIONS;
    /* set the number of open file descriptors to 
       MAX_CONNECTIONS */
    if (setrlimit (RLIMIT_Nofile,&rlp) == -1)
    {
        perror("setrlimit");
        exit(1);
    }
    /* reset the user id to disable superuser
       privileges */
    uid = getuid();
    setuid(uid);
    /* run the program indicated as arguments to 
       this program */
    execv(*++argv, argv);
}
```

For additional information on user connections, see the System Administration Guide.
Adjusting the client connection timeout period

The Cluster Edition uses the KEEPALIVE option of the TCP/IP protocol to detect clients that are no longer active. When a connection to a client is inactive for a period of time (the timeout period), the operating system sends KEEPALIVE packets at regular intervals. If it does not receive a response from the client machine for any of these packets, the operating system notifies the Cluster Edition that the client is no longer responding. The Cluster Edition then terminates the client’s connection.

The KEEPALIVE default timeout period is 2 hours (7,200,000 ms). To display the current time value, use the command for your platform as shown in the following sections.

For Sun Solaris

To display the timeout value, enter:

/usr/sbin/ndd -get /dev/tcp tcp_keepalive_interval

To reduce the timeout period to 15 minutes (900,000 ms.), enter:

/usr/sbin/ndd -set /dev/tcp tcp_keepalive_interval 900000

For Linux

To display the timeout value, enter:

/sbin/sysctl -e net.ipv4.tcp_keepalive_time

To reduce the timeout period to 15 minutes (900 seconds,) enter:

/sbin/sysctl -w net.ipv4tcp_keepalive_time=900

For HP-UX

To display the current timeout period value, enter:

/usr/contrib/bin/nettune -l

The tcp-keepstart parameter specifies the length of time (in seconds) that an idle connection is kept active before the system checks to see if the connection is no longer viable.
To change the timeout period, use the `nettune -s` command:

Checking for hardware errors

The following types of hardware error messages indicate problems that may lead to database corruption:

- Disk read, write, or retry errors
- Timeouts
- System panics
- Memory problems of any type

For Sun Solaris

Check the `/var/adm/messages` file on a regular basis. If any of the types of hardware errors described in the beginning of this section appear, use the Sun Microsystems diagnostic tool, `sundiag`, to check memory and disks. See the operating system documentation.

For Linux

Check the `/var/log/messages` file on a regular basis. See the operating system documentation.

For HP-UX

Check the `/var/adm/syslog/syslog.log` file on a regular basis. You can view the file directly, or you can use the HP-UX `dmesg` command. See the operating system documentation.
Monitoring the use of operating system resources

The *System Administration Guide* discusses maintaining the optimal number of server engines for your workload and system configuration. To determine the optimal number, monitor system and CPU usage.

Sun Solaris and Linux supply the following tools to help monitor performance:

- The `iostat` command reports the amount of I/O on terminals and hard disks and how CPU time is spent.
- The `vmstat` command monitors virtual memory usage.
- The `netstat` command monitors network status.
- The `ps` command gives an accurate snapshot of accumulated CPU time and usage for individual processes. This can be very helpful in determining the datasever-, engine-, and process-specific loading.
- The `time` command can be useful in determining the various user, system, and real-time resources used over a complete run.

For details about these tools, see your operating system documentation.

A sample C shell maintenance script

Running `dbcc` checks and performing database backups protect the integrity and recoverability of your Cluster Edition databases. The following sample C shell script calls several `isql` scripts to help you do this:

```bash
#!/bin/csh -f
if ( -e dbcc_mail.out) then
  rm dbcc_mail.out
endif
foreach i (*.dbcc)
  isql -Usa -Ppassword < $i > dbcc_out
  if ( `grep -c 'Msg 25[0-9]' dbcc_out` ) then
    echo "There are errors in" $i >> dbcc_mail.out
    cat dbcc_out >> dbcc_mail.out
  else
    echo "Backing up " $i:r >> dbcc_mail.out
    isql -Usa -Ppassword < $i:r.backup
  endif
end
mail -s "Backup Report" jjones < dbcc_mail.out
```
The first set of scripts (one for each database with a file name appended with
\texttt{.dbcc}) runs \texttt{dbcc checkalloc} and \texttt{dbcc checkdb} for each database and sends the
messages to an output file called \texttt{dbcc_out}.

For example, the script \texttt{master.dbcc} runs \texttt{dbcc} to check the \texttt{master} database:

\begin{verbatim}
 dbcc checkalloc (master)
 go
 dbcc checkdb (master)
 go
\end{verbatim}

The C shell script then runs the \texttt{grep} command to find 2500-level error
messages in the \texttt{dbcc} output. The results of the \texttt{grep} command go into an output
file called \texttt{dbcc_mail.out}.

Next, the script invokes an \texttt{isql} backup script for each database for which no
2500-level errors occurred and adds the “Backing up \textit{database_name}” line to
\texttt{dbcc_mail.out}. For example, the script \texttt{master.backup} backs up the \texttt{master}
database:

\begin{verbatim}
 use master
 go
 dump database master to master_dump
 go
\end{verbatim}

You may want to add appropriate \texttt{dump} transaction commands to your scripts.

If there are 2500-level error messages, the script does not back up the database.
At the end of the script, \texttt{dbcc_mail.out} is mailed to the System Administrator
“jjones,” who then has a record of fatal \texttt{dbcc} errors and successful backups.

You can tailor the sample shell and \texttt{isql} scripts to suit the needs of your
installation.

To have the scripts execute automatically, edit the \texttt{crontab} file, and add an entry
similar to this:

\begin{verbatim}
 00 02 * * * /usr/u/sybase/dbcc_ck 2>&1
\end{verbatim}

This example executes a C shell script called \texttt{dbcc_ck} every morning at 2:00
a.m.
A sample C shell maintenance script
Overview of localization support

Localization is the process of setting up an application to run in a particular language or country environment, including translated system messages and correct formats for date, time, and currency. The Cluster Edition supports localization for international customers and for customers with heterogeneous environments.

This support includes:

- Data processing support – the Cluster Edition comes with character set and sort order definition files it uses to process the characters used in different languages.

 Sybase provides support for the major languages in:

 - Western Europe
 - Eastern Europe
 - Middle East
Overview of localization support

- Latin America
- Asia
- Translated system messages – the Cluster Edition includes language modules for:
 - Brazilian Portuguese
 - Chinese (Simplified)
 - French
 - German
 - Japanese
 - Korean
 - Polish
 - Spanish
 - Thai

Language modules

The Cluster Edition stores its localized software messages in separate language modules.

When you install a language module, the installation program loads the messages, character set, and sort-order files that support the new language in the correct locations.

When you install the Cluster Edition and Backup Server, system messages in English are installed by default.

Default character sets for servers

The default character set is the character set in which data is encoded and stored on the Cluster Edition databases.
Changing the default language and character set

Warning! Make all changes to the character set and sort order for a new server before creating any user databases or making any changes to the Sybase-supplied databases. Changing the character set and sort order after data or data structures have been added to the Cluster Edition may require additional steps. To change the character set or sort order after you have added data, see the *System Administration Guide*.

sybcluster and the Adaptive Server plug-in create an instance with the following defaults:

- **us_english** language
- **iso_1** character set (on HP-UX platforms, use Roman8)
- Binary sort order

Changing the default character set for servers

You can select any character set as the default on the Cluster Edition, including character sets that are not the platform default character sets. Keep the following guidelines in mind when selecting a new default character set:

- To avoid conversion errors or overhead, determine the default character set based on the character set used by your clients.

 For example, if most of your clients use ISO 8859-1, you can minimize the amount of data conversion that has to occur by specifying ISO 8859-1.

- If your server is operating in a heterogeneous language environment, choose a character set that works with all the character sets needed. Often, this is Unicode (UTF-8).

Warning! Make all changes to the default character set and sort order for a new instance before creating any user databases or making any changes to the Sybase-supplied databases. Changing the character set and sort order after data or data structures have been added to the instance can cause incorrect behavior. To change the character set or sort order after you have added data, see the *System Administration Guide*.

Overview of localization support

Supported character sets

The following language, scripts and character sets are supported by the Cluster Edition:

• Arabic – see Table 17-1 on page 290.
• Baltic – see Table 17-2 on page 291.
• Chinese, Simplified – see Table 17-3 on page 291.
• Chinese, Traditional – see Table 17-4 on page 291
• Cyrillic – see Table 17-5 on page 291.
• Eastern European – see Table 17-6 on page 292.
• Greek – see Table 17-7 on page 292.
• Hebrew – see Table 17-8 on page 292.
• Japanese – see Table 17-9 on page 292.
• Korean – see Table 17-10 on page 292.
• Thai – see Table 17-11 on page 293.
• Turkish – see Table 17-12 on page 293.
• Unicode (which supports over 650 languages) – see Table 17-13 on page 293.
• Vietnamese – see Table 17-14 on page 293.
• Western European – see Table 17-15 on page 293.

The tables define each character set.

See “Character set conversion” on page 294.

Table 17-1 lists the Arabic character set:

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp864</td>
<td>PC Arabic</td>
</tr>
<tr>
<td>cp1256</td>
<td>Microsoft Windows Arabic</td>
</tr>
<tr>
<td>iso88596</td>
<td>ISO 8859-6 Latin/Arabic</td>
</tr>
</tbody>
</table>

Table 17-2 lists the Baltic character set:
Table 17-2: Baltic character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp1257</td>
<td>Microsoft Windows Baltic</td>
</tr>
</tbody>
</table>

Table 17-3 lists the simplified Chinese character set:

Table 17-3: Simplified Chinese character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eucgb</td>
<td>EUC GB encoding = Simplified Chinese character sets</td>
</tr>
<tr>
<td>cp936</td>
<td>Microsoft Simplified Chinese character sets</td>
</tr>
<tr>
<td>gb18030</td>
<td>PRC 18030 standard</td>
</tr>
</tbody>
</table>

Table 17-4 lists the traditional Chinese character set:

Table 17-4: Traditional Chinese character set

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp950</td>
<td>PC (Microsoft) Traditional Chinese</td>
</tr>
<tr>
<td>euccns</td>
<td>EUC CNS encoding = Traditional Chinese with extensions</td>
</tr>
<tr>
<td>big5</td>
<td>Big 5 Traditional Chinese</td>
</tr>
<tr>
<td>big5hk</td>
<td>Big 5 with HKSCS extensions</td>
</tr>
</tbody>
</table>

Table 17-5 lists the Cyrillic character set:

Table 17-5: Cyrillic character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp855</td>
<td>IBM PC Cyrillic</td>
</tr>
<tr>
<td>cp866</td>
<td>PC Russian</td>
</tr>
<tr>
<td>cp1251</td>
<td>Microsoft Windows 3.1 Cyrillic</td>
</tr>
<tr>
<td>iso88595</td>
<td>ISO 8859-5 Latin/Cyrillic</td>
</tr>
<tr>
<td>koi8</td>
<td>KOI-8 Cyrillic</td>
</tr>
<tr>
<td>mac_cyr</td>
<td>Macintosh Cyrillic</td>
</tr>
</tbody>
</table>

Table 17-6 lists the Eastern European character set:
Overview of localization support

Table 17-6: Eastern European character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp852</td>
<td>PC Eastern Europe</td>
</tr>
<tr>
<td>cp1250</td>
<td>Microsoft Windows 3.1 Eastern European</td>
</tr>
<tr>
<td>iso88592</td>
<td>ISO 8859-2 Latin-2</td>
</tr>
</tbody>
</table>

Table 17-7 lists the Greek character set:

Table 17-7: Greek character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp869</td>
<td>IBM PC Greek</td>
</tr>
<tr>
<td>cp1253</td>
<td>MS Windows Greek</td>
</tr>
<tr>
<td>greek8</td>
<td>HP GREEK8</td>
</tr>
<tr>
<td>iso88597</td>
<td>ISO 8859-7 Latin/Greek</td>
</tr>
<tr>
<td>macgrk2</td>
<td>Macintosh Greek</td>
</tr>
</tbody>
</table>

Table 17-8 lists the Hebrew character set:

Table 17-8: Hebrew character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp1255</td>
<td>Microsoft Windows Hebrew</td>
</tr>
<tr>
<td>iso88598</td>
<td>ISO 8859-8 Hebrew</td>
</tr>
</tbody>
</table>

Table 17-9 lists the Japanese character set:

Table 17-9: Japanese character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp932</td>
<td>IBM J-DBCS:CP897 + CP301 (Shift-JIS)</td>
</tr>
<tr>
<td>eucjis</td>
<td>EUC-JIS encoding</td>
</tr>
<tr>
<td>sjis</td>
<td>Shift-JIS (no extensions)</td>
</tr>
<tr>
<td>deckanji</td>
<td>DEC Kanji</td>
</tr>
</tbody>
</table>

Table 17-10 lists the Korean character set:

Table 17-10: Korean character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eucksc</td>
<td>EUC KSC Korean encoding = CP949</td>
</tr>
<tr>
<td>cp949</td>
<td>Ms Windows Korean</td>
</tr>
</tbody>
</table>

Table 17-11 lists the Thai character set:
Table 17-11: Thai client character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tis620</td>
<td>TIS-620 Thai standard</td>
</tr>
<tr>
<td>cp874</td>
<td>Microsoft Windows Thai</td>
</tr>
</tbody>
</table>

Table 17-12 lists the Turkish character set:

Table 17-12: Turkish character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp857</td>
<td>IBM PC Turkish</td>
</tr>
<tr>
<td>cp1254</td>
<td>Microsoft Windows Turkish</td>
</tr>
<tr>
<td>iso88599</td>
<td>ISO 8859-9 Latin-5 Turkish</td>
</tr>
<tr>
<td>turkish8</td>
<td>HP TURKISH8</td>
</tr>
<tr>
<td>macturk</td>
<td>Macintosh Turkish</td>
</tr>
</tbody>
</table>

Table 17-13 lists the Unicode character set:

Table 17-13: Unicode character set

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>utf8</td>
<td>Unicode UTF-8 encoding</td>
</tr>
</tbody>
</table>

Table 17-14 lists the Vietnamese character set:

Table 17-14: Vietnamese character set

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp1258</td>
<td>Microsoft Windows Vietnamese</td>
</tr>
</tbody>
</table>

Table 17-15 lists the Western European character set:

Table 17-15: Western European character set

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ascii8</td>
<td>US ASCII with 8-bit data, ISO 646</td>
</tr>
<tr>
<td>cp437</td>
<td>IBM CP437 - U.S. code set</td>
</tr>
<tr>
<td>cp850</td>
<td>IBM CP850 - European code set</td>
</tr>
<tr>
<td>cp860</td>
<td>PC Portuguese</td>
</tr>
<tr>
<td>cp858</td>
<td>cp850 with Euro support</td>
</tr>
<tr>
<td>cp1252</td>
<td>Microsoft Windows US (ANSI)</td>
</tr>
<tr>
<td>iso_1</td>
<td>ISO 8859-1 Latin-1</td>
</tr>
<tr>
<td>roman8</td>
<td>HP ROMAN8</td>
</tr>
<tr>
<td>iso15</td>
<td>ISO 8859-15 Latin-1 with Euro support</td>
</tr>
<tr>
<td>roman9</td>
<td>HP ROMAN8 with Euro support</td>
</tr>
<tr>
<td>mac</td>
<td>Macintosh Roman</td>
</tr>
</tbody>
</table>
Character set conversion

Backup Server passes messages to the Cluster Edition in the client’s language and in the Cluster Edition character set. The Cluster Edition then converts the messages and issues them in the client’s language and character set. Keep the following requirements in mind when selecting a character set:

- In a heterogeneous environment, the Cluster Edition and Backup Server may need to communicate with clients running on different platforms and using different character sets. To maintain data integrity, the server converts the code between the character sets.

- Unicode conversions exists for all native character sets. When converting between two native character sets, Unicode conversion uses Unicode as an intermediate character set. For example, to convert between the server default character set (CP 437), and the client character set (CP 860), CP 437 is first converted to Unicode; Unicode is then converted to CP 860. By default, Unicode conversion is used for character set conversion.

- Adaptive Server direct conversions support conversions between two native character sets of the same language group. For example, Adaptive Server supports conversion between CP 437 and CP 850, because both belong to the group 1 language group. To use the direct conversion, you must install the character set definition files on the server for all the character sets being used by your clients. To enable direct conversion, you must run `sp_configure 'enable unicode conversion', 0` to disable Unicode conversion.

If either the Cluster Edition or Backup Server does not support a client’s language or character set, that server issues a warning message. Errors also occur when the Backup Server character set is not compatible with the Cluster Edition character set.

For more information about supported conversions, see the *System Administration Guide*.
Conversions between server and client

If the Cluster Edition does not support the client’s language or character set, the client can connect with the server, but no character conversions occur.

When a localized client application connects to the Cluster Edition, the server checks to see if it supports the client’s language and character set.

- If the Cluster Edition supports the language, it automatically performs all character set conversions and displays its messages in the client’s language and character set.
- If the Cluster Edition does not support the language, it uses the user’s default language or the Cluster Edition’s default language.
- If the Cluster Edition does not support the character set, it issues a warning to the client, turns conversion off, and sets the language to U.S. English.

Sort orders

Each character set comes with one or more sort orders (collating sequences), which are either located in the sort-order definition files (.srt files) or installed in the system if it is a Unicode sort order. These files accompany the character set definition files and can be found in the same directory.

You can select a sort order for your data according to the needs at your site. However, the server can support only one sort order at a time, so select a sort order that will work for all of your clients.

Warning! Make all changes to the default character set and sort order for a new server before creating any user databases or making any changes to the Sybase-supplied databases. Changing the character set and sort order after data or data structures have been added to the Cluster Edition may cause incorrect behavior. To change the character set or sort order after you have added data, see the *System Administration Guide*.
Available sort orders

The sort order determines the collating sequence the Cluster Edition uses to order, compare, and index character data. Each character set comes with one or more sort orders.

Sort orders are located in sort order definition files (.srt files) that accompany your character set definition files.

Note Available sort orders vary according to the character set installed on the Cluster Edition.

You can see the available sort orders for your character set by looking in the .srt file for your language. Sort orders are stored in:

```
$SYBASE/charsets/<charset_name>/*.srt
```

To view available Unicode sort orders, run `sp_helpsort`. See “Localization directories” on page 300.

Table 17-16 describes available sort orders.

<table>
<thead>
<tr>
<th>Sort order name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary order</td>
<td>Sorts all data according to numeric byte values for that character set. Binary order sorts all ASCII uppercase letters before lowercase letters. Accented or ideographic (multibyte) characters sort in their respective standards order, which may be arbitrary. All character sets have binary order as the default. If binary order does not meet your needs, you can specify one of the other sort orders either at installation or at a later time by, using the charset utility.</td>
</tr>
<tr>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>Case sensitive. Sorts each uppercase letter before its lowercase counterpart, including accented characters. Recognizes the various accented forms of a letter and sorts them after the associated unaccented letter.</td>
</tr>
<tr>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>Case-insensitive dictionary sort order. Uppercase letters are equivalent to their lowercase counterparts and are intermingled in sorting results.</td>
</tr>
<tr>
<td>Dictionary order, case insensitive, accent insensitive</td>
<td>Case-insensitive dictionary sort order. Diacritical marks are ignored.</td>
</tr>
</tbody>
</table>
To see the sort orders that are available, use the charset utility to display the sort orders for the character sets you plan to use. For more information on unicode sort orders for UTF-8, see “Configuring Character Sets, Sort Orders, and Languages” in the *System Administration Guide*.

<table>
<thead>
<tr>
<th>Sort order name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dictionary order, case insensitive with preference</td>
<td>Case-insensitive dictionary sort order, with case preference for collating purposes. A word written with uppercase letters is equivalent to the same word written with lowercase letters. Uppercase and lowercase letters are distinguished only when you use an order by clause. The order by clause sorts uppercase letters before it sorts lowercase. Note Do not select this sort order unless your installation requires that uppercase letters be sorted before lowercase letters in otherwise equivalent strings for order by clauses. Using this sort order may reduce performance in large tables when the columns specified in an order by clause match the key of the table’s clustered index.</td>
</tr>
<tr>
<td>Alternate dictionary order, case sensitive</td>
<td>Case-sensitive alternate dictionary sort order with lowercase variants sorted before uppercase. Use with several of the Western European languages.</td>
</tr>
<tr>
<td>Alternate dictionary order, case insensitive, accent insensitive</td>
<td>Case-insensitive and accent-insensitive alternate dictionary sort order. Use with several of the Western European languages.</td>
</tr>
<tr>
<td>Alternate dictionary order, case insensitive, uppercase preference</td>
<td>Case-insensitive alternate dictionary sort order with uppercase preference. Use with several of the Western European languages.</td>
</tr>
<tr>
<td>Spanish dictionary order, case sensitive</td>
<td>Case-sensitive Spanish dictionary sort order. Use with Spanish and for most Latin American locales.</td>
</tr>
<tr>
<td>Spanish dictionary order, case insensitive</td>
<td>Spanish case-insensitive dictionary sort order. Use with Spanish and for most Latin American locales.</td>
</tr>
<tr>
<td>Spanish dictionary order case insensitive, accent insensitive</td>
<td>Spanish case-insensitive and accent-insensitive dictionary sort order. Use with Spanish and for most Latin American locales.</td>
</tr>
<tr>
<td>Scandinavian dictionary order, case sensitive</td>
<td>Case-sensitive dictionary sort order. Use with Scandinavian languages.</td>
</tr>
<tr>
<td>Scandinavian dictionary order, case insensitive, uppercase preference</td>
<td>Case-insensitive and accent-insensitive dictionary sorting, with uppercase preference. Use with Scandinavian languages.</td>
</tr>
</tbody>
</table>
Table 17-17 lists the available default Unicode sort orders.

Table 17-17: Default Unicode sort orders

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>defaultml</td>
<td>20</td>
<td>Default Unicode multi-lingual ordering</td>
</tr>
<tr>
<td>thaidict</td>
<td>21</td>
<td>Thai dictionary ordering</td>
</tr>
<tr>
<td>iso14651</td>
<td>22</td>
<td>Ordering as per ISO14651 standard</td>
</tr>
<tr>
<td>utf8bin</td>
<td>24</td>
<td>Ordering for UTF-16 that matches the UTF-8 binary</td>
</tr>
<tr>
<td>binary</td>
<td>25</td>
<td>Binary sort</td>
</tr>
<tr>
<td>altnoac</td>
<td>39</td>
<td>Alternate accent-insensitive</td>
</tr>
<tr>
<td>altdict</td>
<td>45</td>
<td>Alternate dictionary ordering</td>
</tr>
<tr>
<td>altnocsp</td>
<td>46</td>
<td>Alternate case-insensitive with preference</td>
</tr>
<tr>
<td>scandict</td>
<td>47</td>
<td>Scandinavian dictionary ordering</td>
</tr>
<tr>
<td>scanncsp</td>
<td>48</td>
<td>Scandinavian case-insensitive with preference</td>
</tr>
<tr>
<td>bin_utf8</td>
<td>50</td>
<td>UTF-8 binary sort order</td>
</tr>
<tr>
<td>dict</td>
<td>51</td>
<td>General-purpose dictionary ordering</td>
</tr>
<tr>
<td>nocase</td>
<td>52</td>
<td>General-purpose case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>nocasep</td>
<td>53</td>
<td>General-purpose case-insensitive with preference</td>
</tr>
<tr>
<td>noaccent</td>
<td>54</td>
<td>General-purpose accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>espdict</td>
<td>55</td>
<td>Spanish dictionary ordering</td>
</tr>
<tr>
<td>espncs</td>
<td>56</td>
<td>Spanish case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>espnoac</td>
<td>57</td>
<td>Spanish accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>rusnocs</td>
<td>59</td>
<td>Russian case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>cyrnocs</td>
<td>64</td>
<td>Cyrillic case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>elldict</td>
<td>65</td>
<td>Greek dictionary ordering</td>
</tr>
<tr>
<td>hundict</td>
<td>69</td>
<td>Hungarian dictionary ordering</td>
</tr>
<tr>
<td>hunnoac</td>
<td>70</td>
<td>Hungarian accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>hunnocs</td>
<td>71</td>
<td>Hungarian case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>turknoac</td>
<td>73</td>
<td>Turkish accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>cp932bin</td>
<td>129</td>
<td>CP932 binary sort order</td>
</tr>
<tr>
<td>dynix</td>
<td>130</td>
<td>GB pinyin sort order</td>
</tr>
<tr>
<td>gb2312bn</td>
<td>137</td>
<td>GB2312 binary sort order</td>
</tr>
<tr>
<td>cyrdict</td>
<td>140</td>
<td>Cyrillic dictionary sort order</td>
</tr>
<tr>
<td>turdict</td>
<td>155</td>
<td>Turkish dictionary sort order</td>
</tr>
<tr>
<td>euckscbn</td>
<td>161</td>
<td>EUCKSC binary sort order</td>
</tr>
<tr>
<td>gbpinyin</td>
<td>163</td>
<td>GB pinyin sort order</td>
</tr>
<tr>
<td>rusdict</td>
<td>165</td>
<td>Russian dictionary sort order</td>
</tr>
<tr>
<td>sjisbin</td>
<td>179</td>
<td>SJIS binary sort order</td>
</tr>
</tbody>
</table>
Language modules

If you want the Cluster Edition error messages to be displayed in a language other than U.S. English (us_english), you must install the appropriate language module.

When you install a new language module, installation automatically loads the language into the Sybase installation directory to support the new language. See “Localization directories” on page 300.

Installing a new language module

A full server installation includes all the language components automatically. If you did not select a full install, you must install additional language modules manually.

To install a new language module:

1. Load the language module software from the distribution media. You must load this software into the same directory in which you loaded the Cluster Edition.
2. Reconfigure the language and, if necessary, the character set and sort order for the Cluster Edition. See “Changing the localization configuration” on page 304.

Message languages

For messages, U.S. English is installed as the default language in the Cluster Edition. The following rules apply to language modules:

- During the Cluster Edition installation or reconfiguration, you can specify a default language other than U.S. English. However, you must have installed the language module for the language you specify.

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eucjisbn</td>
<td>192</td>
<td>EUCJIS binary sort order</td>
</tr>
<tr>
<td>big5bin</td>
<td>194</td>
<td>BIG5 binary sort order</td>
</tr>
</tbody>
</table>
Localization

- If your clients require the Cluster Edition messages in a language other than U.S. English, you must load the language module for those languages. Then, you can configure the Cluster Edition to the language used by your clients.

- If the Cluster Edition does not support messages in a client’s language, these clients receive messages in the server default language.

For example, if your client’s language is Latin, the Spanish language module is installed, and Spanish is specified as the Cluster Edition default language, the client receives messages in Spanish.

Localization

By default, the Cluster Edition and Backup Server configurations use the English locale settings, which include:

- Character set definition files for Western European character sets
- Sort-order definition files for Western European character sets
- U.S. English system message files

During the installation process or through reconfiguration, you can specify a different language, character set, and sort order.

Localization directories

Sybase localization configuration involves the following directories:

- locales
- charsets

The table below illustrates the structure of the localization files. It does not show a complete list of all the files.
CHAPTER 17 Customizing Localization for the Cluster Edition

About the directory

The $SYBASE/locales and $SYBASE/SSYBASE_ASE/locales directory contains a subdirectory for each available language. Each language subdirectory contains a subdirectory for each character set available with that language.

- The .loc files in these subdirectories enable the Cluster Edition or Backup Server to report errors in a specific language, encoded in a specific character set.

There are a variety of .loc files in each subdirectory. Most of these files contain translated error messages for a specific product or utility.

- The common.loc file in each subdirectory contains localized information, such as local date, time, and currency formatting, that is used by all products.

- The locales.dat file contains entries that associate platform-specific locale names with Sybase language and character set combinations.

About the charsets directory

The files in $SYBASE/charsets/charset_name contain information related to each particular character set, such as the definition of the character set and any sort orders available for that character set.

About the locales.dat file

You can edit the locales.dat file to:

- Change the default language or character set for a platform, or
• Add new associations between platform locale names and Sybase language and character set names.

Format of locales.dat file entries

Each entry in the locales.dat file links a platform-specific locale definition to a Sybase language and character set combination. Each entry has the following format:

```plaintext
locale = platform_locale, syb_language, syb_charset
```

where:

• **platform_locale** is the platform-specific keyword for a locale. For acceptable values, see your operating system documentation.

 When the locale being defined as the default for the site, **platform_locale** is “default.”

• **syb_language** is the name of the language directory to be used from within $SYBASE/locales/language_name.

• **syb_charset** is the character set name that determines the character set conversion method and identifies the directory location of the message files for clients from within $SYBASE/locales/language_name/charset_name.

For example, the following entry specifies that the default locale uses us_english for the language and iso_1 for the character set:

```plaintext
locale = default, us_english, iso_1
```

How client applications use locales.dat

Client applications use the locales.dat file to identify the language and character set to use. The connection process follows these steps:

1. When a client application starts, it checks the operating system locale setting and then checks the locales.dat file to see if that setting is appropriate for the Cluster Edition. For example, a locale entry for French can look like the following:

   ```plaintext
   locale = fr_FR, french, iso_1
   ```

2. When the client connects to the Cluster Edition, the language and character set information is passed to the Cluster Edition in the login record.
3 the Cluster Edition then uses:
 • The character set information, for example, iso_1, to identify the
 client’s character set and verify whether it can convert character data
 to this character set
 • The language (in the preceding example, French) and character set
 information to see if it has messages in the client’s language

Note The Cluster Edition software includes some locale entries already
defined in the locales.dat file. If these entries do not meet your needs, you can
either modify them or add new locale entries.

Editing the locales.dat file

Before beginning the edit, make a copy of the original file, in case you have
problems with the resulting edited version.

To edit the locales.dat file:
1 Open the locales.dat file copy in a text editor.
2 Find the section enclosed in brackets:
 • For Sun Solaris, [sun_svr4]
 • For HP, [hp ux]
 • For IBM, [aix]
3 Make sure the section contains an entry for the language (syb_language)
 and character set (syb_charset) combination that you want to use.

Note The value for platform_locale must match the value required by
your operating system. If the locales definitions in your system
configuration files do not match the Sybase locale definitions, your
applications will not run properly.

For example, if you want your Open Client messages to appear in French,
and the Cluster Edition is using the ROMAN8 character set, you would
check the locales.dat entries for your platform and look for the following
entry:

 locale = fr_FR, french, roman8

4 Add the required entry or modify an existing entry.
Changing the localization configuration

By default, the Cluster Edition and Backup Server configurations uses the English locale settings localization, which include:

- Character set definition files for Western European character sets
- Sort order definition files for Western European character sets
- us_english system message files

During the installation process and through reconfiguration, you can specify a different language, character set, and sort order.

Cluster Edition localization

Each language uses about 2MB of database space per module. If necessary, use the `alter database` command to increase the size of the master database before adding another language.

Note If you want to install more than one language on the Cluster Edition, and the master database is not large enough to manage more than one language, the transaction log may become too full. You can expand the master database only on the master device. See the *System Administration Guide*.

1. Source `SYBASE.csh` or `SYBASE.sh` if you have not set up the Sybase environment variables.
2. Use the `langinstall` utility to configure localization for the Cluster Edition:

```
$SYBASE/$SYBASE_ASE/bin/langinstall
```

This is the syntax for `langinstall`:

```
```

For example, to install the French language with the iso_1 default character set:

```
langinstall -Usa -P -Sserver_name french iso_1
```
CHAPTER 17 Customizing Localization for the Cluster Edition

Backup Server localization

You can change the Backup server language and character set by modifying the `RUN_<backup_server_name>` file. See the Utility Guide for more information on the `backupserver` command arguments.

Configuring the Cluster Edition for other character sets

To configure the Cluster Edition with the character set and sort order for your language, complete the following steps. Your system messages appear in the default language, English.

1 Use the `charset` utility to load the default character set and sort order.

To use `charset`, the server must be running and you must have System Administrator privileges. Use the `file name` of the sort order:

```
$SYBASE/$SYBASE_ASE/bin/charset -Usa -Ppassword -Sserver_name sort_order_file character_set
```

Replace `sort_order_file` with the name of the sort order file. See Table 17-18 on page 306. Replace `character_set` with the Sybase name for your character set. See Table 17-19 on page 307.

2 Use `charset` utility to load any additional character sets. See “charset utility” on page 309.

To use the Cluster Edition built-in character set conversions, load the character set definition files for all the character sets on your client platforms. If you are using the Unilib character set conversions, you do not need to do this.

3 Using `isql`, log in to your server as “sa” and select the master database.

```
1> use master
2> go
```

4 Use the ID of the sort order to configure your server for the new character set and sort order.

```
1> sp_configure "default sortorder_id", sort_order_id, "character_set"
2> sp_configure "default sortorder_id", sort_order_id, "character_set"
3> go
```

Replace `sort_order_id` with the ID for your sort order. See Table 17-18 on page 306. Replace `character_set` with the Sybase name for your character set. See Table 17-19 on page 307.
Changing the localization configuration

5 Shut down the cluster. You can use sybcluster, the Adaptive Server plug-in, or, if you configured the cluster manually, a command line option.

6 Restart any instance in the cluster using sybcluster or the Adaptive Server plug-in.

Note If you configured the cluster manually, use your normal process on UNIX systems to restart the instance. Typically, this means invoking the following `dataserver` command:

```bash
$SYBASE/$SYBASE_ASE/BIN/dataserver
   --quorum_dev=quorum_path --instance=instance_name
```

7 The instance starts, rebuilds all the system indexes, then shuts down. Restart a second time to bring the instance up in a stable state.

8 Check the cluster log file to verify that the charset and sortorder changes have completed successfully.

Sort orders

Table 17-18 describes the available sort orders. If your language does not appear, then there is no language-specific sort order for your language—use a binary sort order.

Table 17-18: Available sort orders

<table>
<thead>
<tr>
<th>Language or script</th>
<th>Sort orders</th>
<th>File name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>All languages</td>
<td>Binary order</td>
<td>binary.srt</td>
<td>50</td>
</tr>
<tr>
<td>Central European Czech, Slovak</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>czedit.srt</td>
<td>80</td>
</tr>
<tr>
<td>These sort orders work only with CP 852, CP 1250, and ISO 8859-2</td>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>czeocs.srt</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Dictionary order, case insensitive, accent insensitive</td>
<td>czenoac.srt</td>
<td>81</td>
</tr>
<tr>
<td>Cyrillic</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>cydict.srt</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>cynos.srt</td>
<td>64</td>
</tr>
<tr>
<td>English</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>dictiona.srt</td>
<td>51</td>
</tr>
<tr>
<td>French</td>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>nocase.srt</td>
<td>52</td>
</tr>
<tr>
<td>German</td>
<td>Dictionary order, case insensitive, accent sensitive, with preference</td>
<td>nocaespr.srt</td>
<td>53</td>
</tr>
<tr>
<td>These sort orders work with all Western European character sets.</td>
<td>Dictionary order, case insensitive, accent insensitive</td>
<td>noaccent.srt</td>
<td>54</td>
</tr>
<tr>
<td>Language or script</td>
<td>Sort orders</td>
<td>File name</td>
<td>ID</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>------------</td>
<td>----</td>
</tr>
<tr>
<td>English</td>
<td>Alternate dictionary order, case sensitive</td>
<td>alldict.srt</td>
<td>45</td>
</tr>
<tr>
<td>French</td>
<td>Alternate dictionary order, case sensitive, accent insensitive</td>
<td>altnoacc.srt</td>
<td>39</td>
</tr>
<tr>
<td>German</td>
<td>Alternate dictionary order, case sensitive, with preference</td>
<td>altnocsp.srt</td>
<td>46</td>
</tr>
<tr>
<td>Greek</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>elldict.srt</td>
<td>65</td>
</tr>
<tr>
<td>Hungarian</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>hundict.srt</td>
<td>69</td>
</tr>
<tr>
<td>Russian</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>rusdict.srt</td>
<td>58</td>
</tr>
<tr>
<td>Russian</td>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>rusnocs.srt</td>
<td>59</td>
</tr>
<tr>
<td>Scandinavian</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>scandict.srt</td>
<td>47</td>
</tr>
<tr>
<td>Spanish</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>espdict.srt</td>
<td>55</td>
</tr>
<tr>
<td>Spanish</td>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>espnocs.srt</td>
<td>56</td>
</tr>
<tr>
<td>Thai</td>
<td>Dictionary order</td>
<td>dictionary.srt</td>
<td>51</td>
</tr>
<tr>
<td>Turkish</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>turdict.srt</td>
<td>72</td>
</tr>
<tr>
<td>Thai</td>
<td>Dictionary order, case insensitive, accent insensitive</td>
<td>turnoac.srt</td>
<td>73</td>
</tr>
<tr>
<td>Thai</td>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>turnocs.srt</td>
<td>74</td>
</tr>
</tbody>
</table>

Character sets

Table 17-19 lists the supported character sets and their Sybase name.

Table 17-19: Sybase character set names

<table>
<thead>
<tr>
<th>Character sets</th>
<th>Sybase name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII 8</td>
<td>ascii_8</td>
</tr>
<tr>
<td>Big 5</td>
<td>big5</td>
</tr>
<tr>
<td>Big 5HK</td>
<td>big5hk</td>
</tr>
<tr>
<td>CP 437</td>
<td>cp437</td>
</tr>
<tr>
<td>CP 850</td>
<td>cp850</td>
</tr>
</tbody>
</table>
Changing the localization configuration

<table>
<thead>
<tr>
<th>Character sets</th>
<th>Sybase name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 852</td>
<td>cp852</td>
</tr>
<tr>
<td>CP 855</td>
<td>cp855</td>
</tr>
<tr>
<td>CP 857</td>
<td>cp857</td>
</tr>
<tr>
<td>CP 858</td>
<td>cp858</td>
</tr>
<tr>
<td>CP 860</td>
<td>cp860</td>
</tr>
<tr>
<td>CP 864</td>
<td>cp864</td>
</tr>
<tr>
<td>CP 866</td>
<td>cp866</td>
</tr>
<tr>
<td>CP 869</td>
<td>cp869</td>
</tr>
<tr>
<td>CP 874</td>
<td>cp874</td>
</tr>
<tr>
<td>CP 932</td>
<td>cp932</td>
</tr>
<tr>
<td>CP 936</td>
<td>cp936</td>
</tr>
<tr>
<td>CP 949</td>
<td>cp 949</td>
</tr>
<tr>
<td>CP 950</td>
<td>cp950</td>
</tr>
<tr>
<td>CP 1250</td>
<td>cp1250</td>
</tr>
<tr>
<td>CP 1251</td>
<td>cp1251</td>
</tr>
<tr>
<td>CP 1252</td>
<td>cp1252</td>
</tr>
<tr>
<td>CP 1253</td>
<td>cp1253</td>
</tr>
<tr>
<td>CP 1254</td>
<td>cp1254</td>
</tr>
<tr>
<td>CP 1255</td>
<td>cp1255</td>
</tr>
<tr>
<td>CP 1256</td>
<td>cp1256</td>
</tr>
<tr>
<td>CP 1257</td>
<td>cp1257</td>
</tr>
<tr>
<td>CP 1258</td>
<td>cp1258</td>
</tr>
<tr>
<td>DEC Kanji</td>
<td>deckanji</td>
</tr>
<tr>
<td>EUC-CNS</td>
<td>euccns</td>
</tr>
<tr>
<td>EUC-GB</td>
<td>eucgb</td>
</tr>
<tr>
<td>EUC-JIS</td>
<td>eucjis</td>
</tr>
<tr>
<td>EUC-KSC</td>
<td>eucksc</td>
</tr>
<tr>
<td>GB 18030</td>
<td>gb18030</td>
</tr>
<tr>
<td>GREEK8</td>
<td>greek8</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>iso_1</td>
</tr>
<tr>
<td>ISO 8859-2</td>
<td>iso88592</td>
</tr>
<tr>
<td>ISO 8859-5</td>
<td>iso88595</td>
</tr>
<tr>
<td>ISO 8859-6</td>
<td>iso88596</td>
</tr>
<tr>
<td>ISO 8859-7</td>
<td>iso88597</td>
</tr>
<tr>
<td>ISO 8859-8</td>
<td>iso88598</td>
</tr>
<tr>
<td>ISO 8859-9</td>
<td>iso88599</td>
</tr>
<tr>
<td>ISO 8859-15</td>
<td>iso15</td>
</tr>
</tbody>
</table>
Use the charset utility to load character sets and sort orders into the Cluster Edition. If you are using charset to load the default character set and sort order, this should be done only at the time of installation.

To change the default character set and sort order of the Cluster Edition, see the System Administration Guide.

Syntax

```
charset
[ -U username ]
[ -P password ]
[ -S server ]
[ -I interfaces ]
[ -v version ]
sort_order
[ charset ]
```

Table 17-20: Keywords and options for charsets

<table>
<thead>
<tr>
<th>Keywords and options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-U</td>
<td>If you are not already logged in to your operating system as “sa”, you must specify “-Usa” or “/username = sa” in the command line.</td>
</tr>
<tr>
<td>-P</td>
<td>Specifies the “sa” password on the command line. If not specified, the user is prompted for the “sa” password.</td>
</tr>
</tbody>
</table>
Changing the localization configuration

<table>
<thead>
<tr>
<th>Keywords and options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-S</code></td>
<td>Specifies the name of the server. If not specified, <code>charset</code> uses the <code>DSQUERY</code> environment variable to identify the server name. If there is no <code>DSQUERY</code> environment variable, <code>charset</code> attempts to connect to a server named “SYBASE.”</td>
</tr>
<tr>
<td><code>-I</code></td>
<td>Specifies the interfaces file to use. If not specified, <code>charset</code> uses the interfaces file in the SYBASE directory.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Causes the Sybase version string to be printed, then exits. Use with no other options specified.</td>
</tr>
<tr>
<td><code>sort_order</code></td>
<td>When <code>charset</code> is used to load the default character set and sort order, <code>sort_order</code> is a mandatory parameter specifying the name of the sort order file to be used by the Cluster Edition. When loading additional character sets, use <code>charset.loc</code> to indicate the name of the character set files.</td>
</tr>
<tr>
<td><code>charset</code></td>
<td>Specifies the directory of the character set to be used by the Cluster Edition.</td>
</tr>
</tbody>
</table>
CHAPTER 18

Adding Optional Functionality to the Cluster Edition

This chapter provides instructions for adding optional functionality to the Cluster Edition:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding auditing</td>
<td>311</td>
</tr>
<tr>
<td>Installing online help for Transact-SQL syntax</td>
<td>319</td>
</tr>
</tbody>
</table>

After you have installed the Sybase products on your system, see the product documentation for configuration and administration issues.

Adding auditing

Auditing is an important part of security in a database management system. Security-related system activity is recorded in an audit trail, which can be used to detect penetration of the system and misuse of resources. By examining the audit trail, the System Security Officer can inspect patterns of access to objects in databases and can monitor the activity of specific users. Audit records can be traced to specific users, enabling the audit system to act as a deterrent to users who are attempting to misuse the system.

A System Security Officer manages the audit system and is the only user who can start and stop auditing, set up auditing options, and process audit data.

Audit system devices and databases

The audit system includes several components. The main components are:

- The sybsecurity device and the sybsecurity database, which stores audit information
Adding auditing

- The audit trail, which consists of several audit devices and tables that you determine at configuration time
- The syslogs transaction log device, which stores transaction logs

The syssecurity device and database
The syssecurity device stores the syssecurity database. The syssecurity database is created as part of the auditing configuration process. It contains all the system tables in the model database, as well as a system table for keeping track of server-wide auditing options and system tables for the audit trail.

Tables and devices for the audit trail
The Cluster Edition stores the audit trail in system tables, named sysaudits_01 through sysaudits_08. At any given time, only one of the audit tables is current. The Cluster Edition writes all audit data to the current audit table. A System Security Officer can use sp_configure to set or change which audit table is current.

When you configure the Cluster Edition for auditing, you determine the number of audit tables for your installation. You can specify up to eight system tables (sysaudits_01 through sysaudits_08). Plan to use at least two or three system tables for the audit trail and to put each system table on its own device, separate from the master device. If you do this, you can use a threshold procedure that archives the current audit table automatically, before it fills up and switches to a new, empty table for subsequent audit records.

Device for syslogs systems table
During auditing configuration, you must specify a separate device for the syslogs system table, which contains the transaction log. The syslogs table, which exists in every database, contains a log of transactions that are executed in the database.

Running auditinit with the Cluster Edition

If you use auditinit with a nonclustered versions of Adaptive Server, auditinit starts the server if it is not already running. However the Cluster Edition requires that an instance is running before you use the auditinit utility. auditinit does not start the instance if it has not already started. If you attempt to log into a Cluster Edition with auditinit that is not started, auditinit displays this warning message:

Can not login to server because it is not running.
Please manually start the server and retry
Preinstallation tasks for auditing devices

Determine the location of the raw devices for the sybsecurity, syslogs, and sysaudits table devices. You will need to provide this information later.

Sybase recommends that you:

- Configure your system with the minimum number of auditing devices you require—you must configure at least three devices. You can add more auditing devices later with sp_addaudittable. For information, see the Reference Manual: Procedures.

- Install auditing tables and devices in a one-to-one ratio. Tables that share the same device will share the same upper threshold limit. These tables cannot be used sequentially when a device fills up, because they both reside on the same device.

- Install each auditing table on its own device. This enables you to set up a smoothly running auditing system with no loss of auditing records. With two auditing tables, when one fills up, you can switch to the other. With a third auditing table, if one device fails, the System Security Officer can install a new threshold procedure that changes the device rotation to skip the broken device until the device is repaired.

- Make the device larger than the table. When you use only three auditing tables and devices, the size of the table and the size of the device can be similar, because you can obtain more auditing capacity by adding more auditing tables and devices (up to eight). When you are working toward the upper table and device limit (six to eight), you may want to make the device considerably larger than the table. Then, you can expand the table size later towards the upper size of the device when a larger auditing capacity is desired, and few or no device additions are available.

Installing auditing

- Configuring the Cluster Edition for auditing

1. Source SYBASE.csh or SYBASE.sh file if you have not setup the Sybase environment variables.

2. Start auditinit at the UNIX prompt (the auditinit utility is located in $SYBASE/$SYBASE_ASE/install):

 $SYBASE/$SYBASE_ASE/install/auditinit

 auditinit displays the following menu:
Adding auditing

AUDITINIT
1. Release directory: /usr/u/sybase
2. Configure a Server product

3 Select Configure a Server Product.
4 Select Adaptive Server.
5 Select Configure an Existing Sybase Server.
6 Select the server to configure.
7 Provide the SA password for the server you selected.
8 From the Sybase Server Configuration screen, select Configure Auditing.

As you proceed through the menus in auditinit, you can change any default values that appear. As you finish each menu, press Ctrl+A to accept the defaults or changed values and move to the next menu.

CONFIGURE AUDITING
1. Configure auditing: no
2. Add a device for audit table(s)
3. Add a device for the audit database transaction log
4. Delete a device entry
5. Change a device entry

List of devices for the audit tables:
Logical name Physical name Segment name Table name Size

Device for the audit database transaction log:
Logical name Physical name Segment name Table name Size

9 From the Configure Auditing screen, select Configure Auditing.
auditinit redisplays the Configure Auditing menu with the value “yes” displayed for Configure Auditing.

10 Restart the Cluster Edition for the changes to take effect.

❖ Creating a device for an audit table
1 From the Configure Auditing screen, select Add a Device for Audit Table(s).

auditinit displays the following menu:

ADD/CHANGE A NEW DEVICE FOR AUDITING
1. sybsecurity physical device name:
2. Logical name of the device:
3. Size of the device (Meg):
4. Device size for auditing:

2. Select Sybase Physical Device Name.

To create a device for an audit table:

1. Enter the **full path** of the physical device (raw partition) that you located in “Preinstallation tasks for auditing devices” on page 313, where `path_to_partition` is the path to the raw partition for the device.

 Enter the physical name of the device to use for the audit database (default is " "):

 /dev/path_to_partition

 If you specify an operating system file, the following warning appears:

 WARNING: '/secret1/sybase_dr/install/aud1.dat' is a regular file which is not recommended for a Server device.

2. Press Return to acknowledge the warning.

 `auditinit` redisplay the Add/Change a New Device for Auditing menu, which displays the physical name of the device:

 ADD/CHANGE A NEW DEVICE FOR AUDITING
 1. sybase physical device name: /secret1/sybase_dr/install/aud1.dat
 2. Logical name of the device:
 3. Size of the device:
 4. Device size for auditing:

3. Proceed through the remaining items on this menu.

 Note The Size of the Device value must be equal to or greater than the Device Size for Auditing value. The Device Size for Auditing must be equal to the device size. If you are following Sybase auditing guidelines, you do not need to change the value displayed in Device Size for Auditing.

4. Press Ctrl+A to accept the settings. `auditinit` returns to the Configure Auditing menu and displays the device you have created.

CONFgure audITING
1. Configure auditing: yes
2. Add a device for audit table(s)
3. Add a device for the audit database transaction log
4. Delete a device entry
5. Change a device entry
Adding auditing

List of devices for the audit tables:
Logical name Physical name Segment name Table name Size
6. Audit_01' /secret1/sybase_dr/install/aud1.dat' sysaudits_01 5

5 To add multiple audit devices, repeat steps 1– 6.

You can add as many as eight devices. Sybase recommends adding three or more audit table devices.

After adding a device, auditinit returns to the Configure Auditing menu and displays all the devices you have created.

CONFIGURE AUDITING
1. Configure auditing: yes
2. Add a device for audit table(s)
3. Add a device for the audit database transaction log
4. Delete a device entry
5. Change a device entry

List of devices for the audit tables:
Logical name Physical name Segment name Table name Size
6. Audit_01' /secret1/sybase_dr/install/aud1.dat' sysaudits_01 5
7. Audit_02' /secret1/sybase_dr/install/aud2.dat' sysaudits_02 5

❖ Creating a device for the audit database transaction log

1 From the Configure Auditing menu, select Add a Device for the Audit Database Transaction Log.

auditinit displays the Add/Change a New Device for Auditing menu.

ADD/CHANGE A NEW DEVICE FOR AUDITING
1. sybsecurity physical device name:
2. Logical name of the device:
3. Size of the new device (Meg):
4. Device size for auditing:

2 Select Sybsecurity Physical Device Name.

auditinit prompts for the physical name and supplies you with a default, if available:

Enter the physical name of the device to use for the sybsecurity database (default is ''):
/dev/path_to_partition

where path_to_partition is the path to the raw partition for the device.

3 Enter the full path name of a physical device.

If you enter an operating system file name, the following warning appears:

WARNING: '/secret1/sybase_dr/install/audlog' is a regular file, which is not recommended for a Server device.

4 Press Return to acknowledge this warning.

auditinit displays the Add/Change a New Device for Auditing menu and the value you selected for the physical name of the device.

ADD/CHANGE A NEW DEVICE FOR AUDITING
1. sybsecurity physical device name:
 /secret1/sybase_dr/install/auditlog.dat
2. Logical name of the device:
3. Size of the device:
4. Device size for auditing:

5 Proceed through the remaining items on this menu. As you do so, be aware of the following:

- Sybase recommends a minimum size of 2MB for the size of the transaction log.
- auditinit displays the size in both Size of the Device and in Device Size for Auditing in the Add/Change a New Device for Auditing menu.
- The Device Size for Auditing default value is equal to the size of the device, based on the assumption that you may want to devote the entire device to log for the auditing task. If you want to use only a subset of the device, you can edit the Size of the Device value.

6 Press Ctrl+A to accept the settings displayed in the Add/Change a New Device for Auditing menu.

auditinit returns to the Configure Auditing menu and displays all the devices you have created.

CONFIGURE AUDITING
1. Configure auditing: yes
2. Add a device for audit table(s)
3. Add a device for the audit database transaction log
4. Delete a device entry
5. Change a device entry
Adding auditing

List of devices for the audit tables:

<table>
<thead>
<tr>
<th>Logical name</th>
<th>Physical name</th>
<th>Segment name</th>
<th>Table</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit_01</td>
<td>/secret1/sybase_dr/install/aud1.dat</td>
<td>sysaudits_01</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Audit_02</td>
<td>/secret1/sybase_dr/install/aud2.dat</td>
<td>sysaudits_02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>auditlog</td>
<td>/secret1/.../auditlog.dat</td>
<td>logsegment</td>
<td>syslogs</td>
<td>2</td>
</tr>
</tbody>
</table>

7 When you are ready to execute the audit configuration, press Ctrl+A. auditinit returns you to the Sybase Server Configuration screen.

8 Press Ctrl+A again. auditinit prompts with:

 Execute the Sybase Server Configuration now?

9 Enter “y” (yes).

 auditinit executes the tasks to install auditing. When the installation completes successfully, the following messages are displayed:

 Running task: install auditing capabilities.
 Done
 Auditing capability installed.
 Task succeeded: install auditing capabilities.
 Configuration completed successfully.
 Press <return> to continue.

Enabling auditing

After auditing is installed, no auditing occurs until a System Security Officer enables auditing with `sp_configure`. See the *System Administration Guide: Volume 1*.

- **Deleting a device entry**
 1. Select Delete a Device Entry from the Configure Auditing menu.
 2. Enter the number of the device to delete.
 3. Press return.

- **Changing a device entry**
 1. Select Change a Device Entry from the Configure Auditing menu.
 2. Enter the number of the device to change.

 auditinit displays the Add/Change a New Device for Auditing menu with information on the device you selected:

   ```
   ADD/CHANGE A NEW DEVICE FOR AUDITING
   1. sybsecurity physical device name: /secret1/sybase_dr/install/auditlog
   ```
2. Logical name of the device: aud.log
3. size of the new device (Meg): 5
4. Device size for auditing: 5

3 Select each remaining entry you want to change.
4 Press Ctrl+A to save the new entries.

Installing online help for Transact-SQL syntax

This section provides instructions for installing online help for Transact-SQL syntax.

Online syntax help: sp_syntax

The $SYBASE/$SYBASE_ASE/scripts directory contains scripts for installing the syntax help database, sybsyntax. You can retrieve this data with sp_syntax. For more information on sp_syntax, see the Reference Manual: Procedures.

The scripts directory contains one or more of the sp_syntax scripts shown in Table 18-1, depending on which Sybase products are included with your server:

<table>
<thead>
<tr>
<th>Table 18-1: sp_syntax installation scripts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>ins_syn_cl</td>
</tr>
<tr>
<td>ins_syn_esql</td>
</tr>
<tr>
<td>ins_syn_os</td>
</tr>
<tr>
<td>ins_syn_sql</td>
</tr>
</tbody>
</table>

All the Cluster Edition installations include the ins_syn_sql script. This script includes syntax information for Transact-SQL, the system procedures, and the Sybase utilities. When you execute this script, you install the SQL portion of the sybsyntax database.
You can install any of these scripts, depending on the need for Sybase information on your server. The first script you execute creates the sybsyntax database and the needed tables and indexes. Any scripts that you execute after the first one add to the existing information in the database. If you execute a script that was executed previously, the previously installed rows of information are deleted from the table in the database and then reinstalled.

Warning! The ins_syn_cl and ins_syn_os scripts conflict. If you execute both scripts, errors occur.

Default device for the sybsyntax database

The sybsyntax database requires 3MB on your database device. By default, the sybsyntax installation scripts install the sybsyntax database on the device that is designated as the default database device.

If you have not used sp_diskdefault to change the status of the master device (which is installed as the default disk) or to specify another default device, the scripts install sybsyntax on the master device. Sybase does not recommend this configuration because sybsyntax uses valuable space, which is best left available for future expansion of the master database.

To avoid installing sybsyntax on the master device, do one of the following:

- Use sp_diskdefault to specify a default device other than the master device. For information about sp_diskdefault, see the Reference Manual: Procedures.
- Modify each sybsyntax installation script that you plan to execute to specify a different device, as explained in the following section.

Installing sybsyntax

For each sybsyntax installation script you want to execute:

1. Determine the type (raw partition, logical volume, operating system file, and so on) and location of the device where you plan to store the sybsyntax database. You will need to provide this information later.

2. Make a copy of the original script. Be sure you can access this copy, in case you experience problems with the edited script.
3 Use a text editor to edit the script, if necessary, to change the default device from the master device to the device created in step 1. See “Default device for the sybsyntax database” on page 320.

- Comment out the following section, which specifies the default device:

```sql
/* create the database, if it does not exist */
if not exists (select name from sysdatabases
    where name = "sybsyntax")
begin
/* create the sybsyntax table if it doesn't exist */
/* is the space left on the default database
    devices > size of model? */
    if (select sum (high-low +1) from sysdevices where status & 1 = 1) - (select sum(size) from sysusages, sysdevices
        where vstart >= sysdevices.low
        and vstart <= sysdevices.high
        and sysdevices.status &1 = 1) >
    (select sum(sysusages.size) from sysusages
        where dbid = 3)
begin
    create database sybsyntax
end
else
begin
    print "There is not enough room on the default
devices to create the sybsyntax database."
    return
end
end
```

- After you have commented out this entire section, add a line like this to the script:

```sql
create database sybsyntax on device_name
```

where `device_name` is the name of the device where you want to install sybsyntax.

4 Execute the script with a command like the following:

```bash
isql -Usa -Ppassword -Sservername < $SYBASE/$SYBASE_ASE/scripts/ins_syn_sql
```

where `sa` is the user ID of the System Administrator, `password` is the System Administrator’s password, and `servername` is the Cluster Edition where you plan to install the database.
If you have set the DSQUERY environment variable to the *servername*,
you can replace the server name with $DSQUERY.

To ensure that you have installed the *sybsyntax* database and that it is
working correctly, use *isql* to log in to the server on which you installed the
database, and execute *sp_syntax*. For example:

```
isql -U usa -P password -S servername

1> sp_syntax *select*
2> go
```

The Cluster Edition displays a list of commands that contain the word or
word fragment “select.”
CHAPTER 19

Logging Error Messages and Events

This chapter describes how to use the error logging features of the Cluster Edition.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Edition error logging</td>
<td>323</td>
</tr>
<tr>
<td>Setting error log paths</td>
<td>324</td>
</tr>
<tr>
<td>Managing messages</td>
<td>325</td>
</tr>
</tbody>
</table>

Cluster Edition error logging

Each time the Cluster Edition starts, it writes information to a local error log file, called the Adaptive Server error log:

$SYBASE/$SYBASE_ASE/install/instance_name.log

This file:

- Stores information about the success or failure of each start-up attempt.
- Logs error and informational messages generated by the server during its operations.
- Remains open until you stop the server process.
- Contains startup messages from the Cluster Edition

The Cluster Edition includes the instance ID to the front of the error log header with this format:
Setting error log paths

instance id: engine number : family id: process id: date time

Note When you want to make more disk space available by reducing the size of the error log, stop the instance before deleting logged messages. The log file cannot release its memory space until the instance has stopped.

Enabling and disabling error logging

 Logging to the Cluster Edition error log is always enabled. However, when you create or modify a specific user-defined message, you can set it to be omitted from the log. See “Logging user-defined messages” on page 326.

Setting error log paths

The installation program sets the error log location in the Sybase installation directory when you configure a new Cluster Edition. Backup Server has its own error logs.

The default location for each server’s error log is:

• Cluster Edition: $SYBASE/$SYBASE_ASE/install/instance_name.log
• Backup Server: $SYBASE/$SYBASE_ASE/install/instance_name_back.log

At start-up, you can reset the name and location of the Cluster Edition error log file from the command line. Use the -e start-up parameter and value in the dataserver command to start the Cluster Edition. However, if you are using sybcluster to manage the cluster, you must use the sybcluster 'set instance logpath' parameter to change the location of the error log file for each instance.

Note Multiple instances cannot share the same error log.
Setting the Cluster Edition error log path

Note The Cluster Edition installer does not create `RUN_server` files. However, if you create a `RUN_server` file, you can add a new location for the error log.

If you do not provide a path to the error log, the Cluster Edition adds an error log according to the:

- Cluster input file errorlog location. This information is stored in the quorum device and used by the `dataserver` command.
- Default location for error logs. If you do not supply an error log path, a log file named `instance_name.log` is created in the current working directory for `dataserver`.

You can change the log location stored on the quorum device using the `qrmutil --errorlog` parameter or with `sybcluster 'set instance errorlog'`.

If you are starting the cluster instances using shell scripts, change the value of the `dataserver -e` parameter, which overrides other settings for the error log location.

Managing messages

When event logging is enabled, you can manage its functions in the following ways:

- Use `sp_addmessage` or `sp_altermessage` to control whether a specific user-defined message is logged in the Cluster Edition error log.

 For the complete syntax for `sp_addmessage` and `sp_altermessage`, see the *Reference Manual: Procedures*.

- Use configuration parameters to specify whether auditing events are logged. Auditing events pertain to a user’s success, `log audit logon success`, or failure, `log audit logon failure`, in logging in to the Cluster Edition.
Managing messages

Logging user-defined messages

You can specify whether a user-defined message is logged to the Cluster Edition error log. The Cluster Edition lets you make this determination for:

- New messages (sp_addmessage).
- Existing messages (sp_altermessage).

For more information about these commands and their parameters, see sp_addmessage and sp_altermessage in the Reference Manual: Procedures.

New messages

Include the with_log option in sp_addmessage when you add a new user-defined message to sysusermessages. This parameter sets the Cluster Edition to log the message each time that the message appears.

Existing messages

Include the with_log option in sp_altermessage to change an existing user-defined message. This parameter alters the reporting status of that message:

- TRUE – to enable logging.
- FALSE – to disable logging.

Logging auditing events

By default, the Cluster Edition does not log auditing events. However, you can use sp_configure parameters to specify whether the Cluster Edition is to log auditing events, such as logins, to the Cluster Edition error log.

Possible parameters and values are:

- log audit logon success at 1 – to enable logging of successful Cluster Edition logins:

  ```
  sp_configure "log audit logon success", 1
  ```

- log audit logon failure at 1 – to enable logging of unsuccessful Cluster Edition logins:

  ```
  sp_configure "log audit logon failure", 1
  ```

- Either parameter at 0 – to disable logging of that message type:
sp_configure "log audit logon success", 0
sp_configure "log audit logon failure", 0

For more information about sp_configure, see the *System Administration Guide: Volume 1.*
Setting Up Communications Across the Network

Each instance in a cluster can communicate with other Adaptive Servers, Open Server applications, and client software across a network. Clients can communicate with one or more servers, and servers can communicate with other servers via remote procedure calls.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How the Cluster Edition determines which directory service entry to use</td>
<td>330</td>
</tr>
<tr>
<td>How a client uses directory services</td>
<td>331</td>
</tr>
<tr>
<td>Creating a directory services entry</td>
<td>331</td>
</tr>
<tr>
<td>Supported directory drivers</td>
<td>332</td>
</tr>
<tr>
<td>Contents of an interfaces file</td>
<td>332</td>
</tr>
<tr>
<td>Heterogeneous and homogeneous environments</td>
<td>333</td>
</tr>
<tr>
<td>Understanding the format of the interfaces file</td>
<td>335</td>
</tr>
<tr>
<td>Creating a master interfaces file</td>
<td>338</td>
</tr>
<tr>
<td>Configuring interfaces files for multiple networks</td>
<td>339</td>
</tr>
<tr>
<td>IPv6 support</td>
<td>343</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>346</td>
</tr>
</tbody>
</table>

Directory services contains information about the network locations of servers. Directory services contain entries for all Adaptive Servers, Backup Servers, and other server products on the network.

In the Sybase client/server environment, a client can connect with an instance if it knows where the server resides on the network and if the server supports the client’s language or character set. When a client initiates a connection, it looks in its directory services for the network location of the target server.

Directory services list the name and address of every server, including Backup Server and XP Server. When you are using a client program, and you want to connect with a particular server, the client program looks up the server name in the directory services and connects to that server.
Servers also need network information. When a server starts up, it looks in its interfaces file to determine where to listen for client connection requests. In addition, each instance can take on a client role when it makes remote procedure calls to other instances.

Table 20-1: Where to find interfaces file tasks and topics

<table>
<thead>
<tr>
<th>Type of interfaces file</th>
<th>Task or topic</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIX server or client</td>
<td>Adding entries for multiple Cluster Edition installations</td>
<td>Adaptive Server Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>Creating a master interfaces file for multiple installations</td>
<td>“Creating a master interfaces file” on page 338</td>
</tr>
<tr>
<td></td>
<td>Configuring for multiple networks</td>
<td>“Configuring interfaces files for multiple networks” on page 339.</td>
</tr>
<tr>
<td></td>
<td>Reference information</td>
<td>“Understanding the format of the interfaces file” on page 335.</td>
</tr>
<tr>
<td>PC-client</td>
<td>Configuring a client</td>
<td>Installation Guide for your platform</td>
</tr>
<tr>
<td></td>
<td>Reference information and instructions for advanced tasks</td>
<td>Open Client and Open Server Programmer’s Supplement for your PC-client platform, or the appropriate Open Client documentation</td>
</tr>
<tr>
<td>Client platforms not listed</td>
<td>Configuring, reference information, and instructions for advanced tasks</td>
<td>Open Client and Open Server Programmer’s Supplement for your PC-client platform, or the appropriate Open Client documentation</td>
</tr>
</tbody>
</table>

How the Cluster Edition determines which directory service entry to use

Each instance uses directory services to determine the address at which it should listen for clients. When you start an instance, it performs the following steps:

1. It looks for the server name supplied in the command line `-s` option. If the server name is not supplied in the command line:
2. It determines its own name by checking the value of the DSLISTEN environment variable. If the DSLISTEN environment variable is not set, then it assumes that the server name is SYBASE.
3. Looks in directory services for an entry whose name matches the name found in the steps above.
4 It uses the network information provided by the directory services entry it has found to listen for client connections.

How a client uses directory services

When a client connects to a server it:

- Determines the name of the server either programmatically or by referring to the DSQUERY environment variable. If the application user has not set DSQUERY, the runtime value for the server name defaults to SYBASE.
- Looks in directory services for an entry whose name matches the name of the server.
- Uses the network information provided by the directory services entry to connect to the server. If the client cannot connect the first time, it makes additional attempts according to the delay and retry numbers indicated in directory services. If no matching entry is found, an error message is written to the client’s standard error file. If multiple networks are supported, the client attempts to connect using the information in the second network address entry for the server.

The Open Client documentation discusses client connections in much greater detail. See the Open/Client Programmer’s Supplement for your client platform or the appropriate Open/Client documentation.

Creating a directory services entry

The sybcluster utility creates a directory services entry for the cluster and for each instance when you create the cluster. You can also use the following Sybase utilities to edit the network information in directory services:

- dsedit – a GUI utility.
- dscp – a UNIX command line utility.

For details on using these utilities, see the Utility Guide.
Supported directory drivers

There are three supported drivers for UNIX:

- interfaces driver
- Lightweight Directory Services driver.
- Cell Directory Service (CDS) provided by Distributed Computing Environment (DCE)

This remainder of this chapter describes the interfaces file and provides specific configuration information for each supported UNIX platform. For information about LDAP drivers, Cell Directory Services, and for a comparison between interfaces files and LDAP directory services, see the Open Client/Server Configuration Guide for your platform.

Contents of an interfaces file

An interfaces file contains network information about all servers on your network, including instances, Backup Server, and XP Server, plus any other server applications such as Replication Server, and any other Open Server applications.

The network information in the file includes the server name, network name or address of the host machine, and the port, object, or socket number (depending on the network protocol) on which the server listens for queries. See “Understanding the format of the interfaces file” on page 335.

Each entry in an interfaces file can contain two types of lines:

- Master lines, which are used by server applications to listen for queries over the network. This information is called a listener service.
- Query lines, which are used by client applications to connect to servers over the network. This information is called a query service.

The network information contained in the master and query lines for a server may be identical because a server listens for connection requests on the same port that clients use to request connections.

A server needs master lines in its interfaces file. When servers act as clients to other servers, query lines are required for those servers.
A client’s interfaces file does not need a master line. It functions correctly with only a query line.

If you have more than one Adaptive Server or Cluster Edition installation, each server’s interfaces file should contain information about all servers on the network.

If all of your server products are running on the same platform, you can create one master interfaces file and copy that file to each machine. See “Creating a master interfaces file” on page 338.

If the host machine supports multiple networks, see “Configuring interfaces files for multiple networks” on page 339.

Heterogeneous and homogeneous environments

You can run the Cluster Edition and clients on the same platform or on different platforms.

If the platforms are different, each platform may require a different format and configuration for its interfaces file. Figure 20-1 illustrates how a PC client uses network information in its interfaces file (sql.ini) to connect to an instance running on UNIX, and how an instance uses its interfaces file to connect to another server during a remote procedure call.
If both a client and a server are running under UNIX, the same interfaces file is valid for both. Figure 20-2 illustrates how clients and instances running in a homogeneous environment can use copies of the interfaces file to establish connections. Because the two instances are running under the same operating system, they can use the same interfaces file or exact copies of the same file.
Understanding the format of the *interfaces* file

The following rules apply to the format of interfaces file entries:

- Each instance has only one entry, although there may be multiple lines in the entry.
- Each line that follows the *servername* line must begin with a space or a character tab.
- Each element on the line must be separated by a single space.
- Each entry is separated by a blank line.
- You can add comments to an interfaces file by adding a pound sign (#) at the beginning of the line and a line break at the end.

There are two interfaces file entry formats, TLI and TCP.

A TLI style entry looks like:
Understanding the format of the interfaces file

```
servername retry_attempts delay_interval
<tab>service_type api protocol device address filter
<tab>ha_failover servername

A TCP style entry looks like:

servername retry_attempts delay_interval
<tab>service_type protocol network machine port filter
<tab>ha_failover servername
```

Components of an interfaces file entry

Table 20-2 describes the components of an interfaces file entry.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>servername</td>
<td>Name of instance or Backup Server. Requirements for a server name are:</td>
</tr>
<tr>
<td></td>
<td>• The name cannot be more than 30 characters long.</td>
</tr>
<tr>
<td></td>
<td>• The first character must be a letter (ASCII a through z, A through Z).</td>
</tr>
<tr>
<td></td>
<td>• The characters that follow must be letters, numbers, or underscores (_).</td>
</tr>
<tr>
<td>retry_attempts (optional)</td>
<td>Number of times you want the client to try to connect to a server after initial failure. Default is 0.</td>
</tr>
<tr>
<td>delay_interval (optional)</td>
<td>Number of seconds between connection attempts. Default is 0.</td>
</tr>
<tr>
<td>service_type</td>
<td>Type of service defined by entry. Must be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• master</td>
</tr>
<tr>
<td></td>
<td>• query</td>
</tr>
<tr>
<td>api</td>
<td>Application programming interface available to the network. The supported value is tli.</td>
</tr>
<tr>
<td>protocol</td>
<td>Name of the network protocol. Protocol types available are:</td>
</tr>
<tr>
<td></td>
<td>• TCP/IP, represented by the letters “tcp”</td>
</tr>
<tr>
<td>network</td>
<td>Name of the network; not currently used by the Cluster Edition.</td>
</tr>
<tr>
<td></td>
<td>sybcluster enters “ether” as a placeholder.</td>
</tr>
<tr>
<td>host</td>
<td>Network name or address of server’s host machine.</td>
</tr>
<tr>
<td></td>
<td>• For TCP/IP, use either the host name or Internet address. Maximum size of entry is 32 bytes.</td>
</tr>
<tr>
<td></td>
<td>To determine the host name of a machine, log in to that machine and enter:</td>
</tr>
<tr>
<td></td>
<td>/bin/hostname</td>
</tr>
</tbody>
</table>
Component | Value
--- | ---
machine | Network name or address of server’s host machine.
You can use either the host name or Internet address. Maximum size of entry is 32 bytes.
To determine the host name of a machine, log in to that machine and enter: `/bin/hostname`

device | The network device endpoint.
For TCP networks, the device varies according to the vendor supplying the networking software. Check the vendor-specific documentation for the name of the device. Your network may provide multiple stream devices corresponding to different protocols in the TCP protocol suite. Choose the TCP streams device. Common TCP streams devices is `/dev/tcp`.

address for a TLI protocol entry | Address consists of:
- Address prefix, “x” for TLI.
- Network type, always 0002.
- Port number converted to four digits, hexadecimal. Must be a unique number between 1025 and 65535. Check the `/etc/services` file on each machine on the network to see what port numbers are in use. Enter the instance port number in a new section of `/etc/services` labeled “Sybase specific services.” You do not have to make this entry for the operating system to function properly, but the presence of the port number in the file may prevent other users from using the port number.
- IP network node address of the host machine converted to 8 digits, hexadecimal.
- Trailing zeros, optional, 16 digits.

port | A unique port number between 1025 and 65535. Check the `/etc/services` file on each machine on the network to see what port numbers are in use. Enter the instance port number in a new section of `/etc/services` labeled “Sybase specific services.” You do not have to make this entry for the operating system to function properly, but the presence of the port number in the file may prevent other users from using that port number.

ha_failover | An entry created in directory services or the interfaces file for high availability.

filter | The Cluster Edition supports Secure Socket Layers (SSL) as a filter which is appended to the master and query lines of the directory services. SSL is the standard for securing the transmission of sensitive information. For more information about SSL, see “Using SSL in a clustered environment” on page 39.
Creating a master interfaces file

A master interfaces file contains entries for all Sybase servers on the network. It can be used with every server and client connected to the network. By distributing copies of a master interfaces file, you can ensure that all Sybase products on the network interact with one another.

Distributing copies of one interfaces file (a master file) with entries for all instances is the easiest way to maintain consistency in the interfaces files in a homogeneous environment on a network.

You can make all changes to one version of the file and then copy the updated master file to all appropriate Sybase directories.

You can make a master file in one of two ways:

- Using dsedit or dscp
- Using a text editor

Using dsedit or dscp to create a master interfaces file

You can use the dsedit or dscp utility to create a master interfaces file, which you can then distribute to all servers. If you are not an experienced Sybase user, you may find that using dsedit or dscp is easier than using a text editor. Using dsedit or dscp also ensures that your interfaces file is consistent in format.

To create a master interfaces file with dsedit or dscp:

1. Select the interfaces file that contains the most complete, up-to-date information.
2. Begin a dsedit or dscp session in your latest Sybase installation to edit this interfaces file.
3. Add entries for any instances or Backup Servers that are not listed in this file.

For details on using these utilities, see the Utility Guide.

Using a text editor to create a master interfaces file

To construct a single master interfaces file from several individual interfaces files:
1 Concatenate the individual interfaces files.
2 Make a copy of the file.
3 Use an ASCII text editor to modify the copy of the concatenated file.

Note When you manually edit an *interfaces* file, be sure that, for each entry, each line following the first line begins with a `<tab>` character.

The following elements must be correct and unique in the resulting file:

- *servername* – each server entry in the *interfaces* file must be unique. The server name entries for each cluster, and for each instance within the cluster, must be unique within the interfaces file.
- A combination of the host machine’s network name or address and instance’s port or object number.
- If the original *interfaces* file was created when there was only one machine on the network, its entries may have the word “loghost” in place of the machine name (address). If *loghost* is present, replace it with the machine name.

Configuring interfaces files for multiple networks

On some platforms, the Cluster Edition can accommodate multiple networks. This allows instances to listen for clients over multiple network interfaces. You must add an entry for each network interface to the interfaces file.

Configuring the server for multiple network handlers

To configure multiple network listeners:

1 Define a unique host name for each network interface in your operating system’s host database.
2 In your interfaces file, use a text editor to add copies of the “master” line for your instance; one for each additional interface you want the server to listen on.
3 Include a unique host name on each line to configure a network handler for each network interface.
Port numbers within the interface need not be the same, but they can be. They fall under the same rules for naming and numeric range as the primary network interface.

Sample interfaces files for multiple network handlers

The following example shows an interfaces file for an instance with two network interfaces. The server host machine is known as SERV_CORPNET on the corporate network and SERV_ENGNET on the engineering network.

```
# PRODUCTION server with two network listeners
PRODUCTION	3	3
	master tcp ether SERV_CORPNET 4559
	query tcp ether SERV_CORPNET 4559
	master tcp ether SERV_ENGNET 5479
```

When the instance restarts, it spawns a network handler process for each master line in the entry that corresponds to the server’s DLISTEN value. Connections made on each interface are handled equally, as peers.

Configuring the client connections

When an instance’s client scans the interfaces file for a server name, the client uses the first “query” entry it encounters for the server’s entry. This makes configuring clients to use multiple network connections less straightforward than configuring the server ports. You have two choices:

- Use the same DSQUERY name for all clients. The interfaces files on the different machines contain different network names.
- Use different DSQUERY names for the clients. The interfaces files on all the machines are the same, but they contain multiple DSQUERY names.

Using one network-independent DSQUERY name

If uniform client DSQUERY naming is important, you can make the necessary changes in the network addressing of the clients in the interfaces file. You can install separate Sybase installation directories and distinct interfaces files on client file servers on each network to allow users to connect to the correct network address. Instead of altering the DSQUERY name the clients use, you maintain one DSQUERY name for all clients, on all networks, and alter each network’s interfaces file accordingly.
This method assumes that:

- You have complete control over what the Sybase installation clients see on each network.
- The interfaces file (at the very least) is *not* shared or copied among Sybase installations on different networks.

The interfaces file looks like the following example on the “engineering” network:

```
PRODUCTION<tab>3<tab>3
<tab>query tcp ether SERV_ENGNET 5470
<tab>master tcp ether SERV_CORPNET 4559
<tab>master tcp ether SERV_ENGNET 5479
```

The interfaces file looks like the following example on the “corporate” network:

```
PRODUCTION<tab>3<tab>3
<tab>query tcp ether SERV_CORPNET 4559
<tab>master tcp ether SERV_CORPNET 4559
<tab>master tcp ether SERV_ENGNET 5479
```

The “query” line in each file name is different, depending on the network to be used.

The full “master” entry is present in both files. This is allowed because only the instance will use the “master” lines. Assuming that the server host machine can see both networks (both host names are interchangeable), it does not matter which interfaces file is used for instance start-up.

Using different DSQUERY names

To use different DSQUERY names for each network listener:

1. Choose an additional server name.

 You can concatenate the original server name and the network name. For example, if your server is named PRODUCTION, you could choose the names PRODUCTION_network1 and PRODUCTION_network2.

2. Do one of the following:

 - For PC clients, use sqledit to create multiple sql.ini file entries for the server, one for each network. In the following example, you create one entry for PRODUCTION_network1 and one for PRODUCTION_network2. See the Open Client documentation for your client platform.
Configuring interfaces files for multiple networks

- For UNIX clients, you can edit the interfaces files with an ASCII text editor. From the server’s interfaces files, copy the server name line and the “master” line for each network into the client interfaces file. Add the appropriate server name for each entry, and change “master” to “query.”

Clients on each network must use the DSQUERY value that corresponds to the network the client is on. In the following example, either PRODUCTION_network1 or PRODUCTION_network2 can be used.

```
# Client entry for PRODUCTION on network1
PRODUCTION_network1<tab>3<tab>3<newline>
<tab>query tcp ether serv_corpnet 4559
# Client entry for PRODUCTION on network2
PRODUCTION_network2<tab>3<tab>3<newline>
<tab>query tcp ether serv_engnet 5479
```

Configuring for query port backup

Another use for multiple network interfaces is to provide a backup in case of network failure. If a client is connected to a server via two networks, the client can establish a connection via the second network if the first one goes down.

To configure an instance for query port backup:

1. Install multiple “master” and “query” lines in a server entry in the interfaces file.

2. An instance listens for connections at both ports. Clients looking for a host name and a port number for a connection to an instance try the port on each “query” line in order, until they establish a connection.

The following example shows how to configure a backup network that will be used only if the normal connection fails. The primary network is “corporate network” and backup is “engineering network.”

```
# PRODUCTION server with two network listeners
PRODUCTION<tab>3<tab>3<newline>
<tab>master tcp ether SERV_CORPNET 4559
<tab>master tcp ether SERV_ENGNET 5479
<tab>query tcp ether SERV_CORPNET 4559
<tab>query tcp ether SERV_ENGNET 5479
```
3 Configure PC-client interfaces files with the appropriate multiple “query” entries, as described in the Open Client documentation. For client interfaces files in a homogeneous environment, you can copy the entire interfaces file entry for the instance into the client interfaces file.

4 A connection on the secondary port occurs only if the corporate network is disabled, or if the corporate network interface on the host machine fails or is shut down due to a network-related failure.

IPv6 support

Understanding IPv6

IPv6 addressing terminology:

- Link-local address – an IPv6 address that is usable only over a single link.
- Site-local address – an IPv6 address that can be used within a single-site.
- Global address – an IPv6 address that can be used across the global Internet.

IPv6 application types:

- IPv6-unaware – an application that cannot handle IPv6 addresses.
- IPv6-aware – an application that can communicate with nodes that do not have IPv4 addresses. In some cases, this might be transparent to the application, for instance when the API hides the content and format of the actual addresses.
- IPv6-enabled – an application that, in addition to being IPv6-aware, takes advantage of some IPv6 features.
- IPv6-required – an application that requires some IPv6 features and cannot operate over IPv4.

IPv6 Infrastructure:
IPv6 infrastructure

Dual Stack infrastructure implements both IPv4 and IPv6. This is the recommended infrastructure implementation for using the Cluster Edition as an IPv6-aware server.

Sybase applications are IPv6-aware. All code to turn the Cluster Edition and the Open Client/Server components IPv6-aware was done using the IETF designed primitives, see “Creating or converting for IPv6-aware applications.” The following matrix lists the platform run-time requirements and the specific product and its release version:

<table>
<thead>
<tr>
<th>Platform</th>
<th>the Cluster Edition IPv6 awareness</th>
<th>Open Client/Server IPv6 awareness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Solaris 8 32- and 64-bit</td>
<td>12.5.3a and 15.0</td>
<td>12.5 and 15.0</td>
</tr>
<tr>
<td>HP-UX 11i(v1) 32- and 64-bit</td>
<td>12.5.3a and 15.0</td>
<td>12.5 and 15.0</td>
</tr>
<tr>
<td>Microsoft Server 2003</td>
<td>12.5.3a and 15.0</td>
<td>12.5 and 15.0</td>
</tr>
<tr>
<td>Linux RHEL 3.0</td>
<td>15.0</td>
<td>12.5 and 15.0</td>
</tr>
</tbody>
</table>

Many Sybase products that are Open Client/Server based like XP Server, Backup Server, Replication Server and Open Switch became automatically IPv6-aware due to the layered Open Client Transport Control Layer (CTlib->NETlib) which is IPv6-aware for network-socket operations. An important note is that any DBlib based Open Client product is not IPv6-aware.

For the Cluster Edition, being IPv6-aware is a complex issue because some components within the server are 3rd party components and are not yet IPv6-aware. To understand how this impacts the Cluster Edition, the following list shows all functional mechanisms of the Cluster Edition that are IPv6-aware with respect to the platform / release matrix above:

- Connection Handler
- RPC mechanisms
- Job Scheduler Task / Agent session connection
- Network Host API
- UDP Message support for sybsendmsg
- Component Integration Services connectivity
- Host / name resolving
The following functional mechanisms in the Cluster Edition do not support IPv6. These mechanisms in the Cluster Edition are IPv6-unaware:

- Java support
- License Management Server
- LDAP driver
- Private interconnect among various instances in cluster.

Starting the Cluster Edition as IPv6-aware

By default, the Cluster Edition is IPv6-unaware. You must start the Cluster Edition with trace flag 7841 to make it IPv6-aware. This causes the Cluster Edition to determine IPv6 availability and makes the Cluster Edition IPv6-aware.

See your network or IT specialist to configure your platforms and network infrastructure correctly for IPv6 support.

A second trace flag, 7815 can be set when you start the Cluster Edition which captures and logs address connection requests and host / name lookups.

The IPv6 Cluster Edition trace flags:

Before starting the Cluster Edition for IPv6-aware operations, make sure that your infrastructure is correctly set up. Once your operating system is correctly configured, you can configure and enable an IPv6 connection handler.

Configuring and enabling the IPv6 connection handler requires adding an additional DCL entry. A single Cluster Edition configuration can typically carry up to 32 connection handler assignments within the DCL.

For example if you have a Site-local setup with two domains administrated under the nameserver setup:

sybase.com - being responsible for all IPv4 networking applications
v6.sybase.com - being responsible for all IPv6 networking applications
The DCL entry for the Cluster Edition to start a cluster named “SYBASE” on the host “revival” for port 17100 looks similar to:

```
SYBASE
    master tcp ether revival.sybase.com 17100
    query tcp ether revival.sybase.com 17100
    master tcp ether revival.v6.sybase.com 17100
    query tcp ether revival.v6.sybase.com 17100
```

In the above example, when the Cluster Edition is started as IPv6-aware, it creates two connection handlers. One listens on port 17100 for incoming IPv4 client connection requests, and the other listens on port 17100 for incoming IPv6 client connection requests.

Troubleshooting

This section describes how to correct some common situations that may cause a server to not start.

Server fails to start

If a server fails to start with the following message, the port number specified in the interfaces file may be in use:

```
00:0000:00002:2003/09/22 12:37:23.63 kernel  network name SERV_CORPNET, type ether, port 4559, filter NONE
00:0000:00002:2003/09/22 12:37:23.65 kernel  ninit: bind, Address already in use
00:0000:00002:2003/09/22 12:37:23.68 server  Unable to initialize network 0
00:0000:000016:2003/09/22 16:11:35.46 server  SQL Server shutdown by request.
```

- **Investigating the port assignment**

 1. Look in the interfaces file to identify the port number assigned to the server.
2 Determine whether another process is using the same port number by entering:

```
netstat -a
```

If the port number is presented as a local address in the `netstat` output, you cannot use that port for the server. Another process is already using that port.

3 To verify that the server port is in use, start the server manually.

The server does not start if its assigned port number is already in use.

For information on starting servers manually, see the installation documentation for your platform and the *Utility Guide*.

❖ **If a stale server process is retaining use of the port number**

1 Do one of the following:
 - Use the operating system `kill` command to terminate the process.
 - Use another port number for the server by modifying the interfaces file.

2 Start the server manually to confirm that the port number is available.

For information on starting servers manually, see the installation documentation for your platform and the *Utility Guide*.

Error when executing an ESP

If you attempt to execute an ESP (extended stored procedure), you may see the following error:

```
00:00000:00008:1997/09/10 12:52:53.03 kernel XP Server failed to start. Try bringing up XP Server manually. Check SQL Server documentation for more information on how to bring XP Server up.
```

XP Server cannot start because the port number may be in use by another process. Use the `netstat` command described in the previous section to determine if the port number specified for XP Server is in use.

If you find no processes using the same port number, execute the ESP you attempted earlier. XP Server should start automatically.

If you find a process using the same port number, you can do one of the following:
• Change the interfaces file to use a new port number for the XP Server.
• Stop the process using the port number allotted to XP Server.

Restart the Cluster Edition, and execute the ESP that you attempted earlier. XP Server should start automatically.
Index

A

accented letters 296
action descriptors 92
Adaptive Server
character set, changing 289
client communications with 329
conversions between, and clients 295
default character set 289
default sort order 289
error log path 325
language, changing 289
naming in interfaces file 336
sort order 289
adding
a logical cluster in ASE plug-in 245
a logical clusters in ASE plug-in 243
an instance to a cluster in ASE plug-in 231
failover instances in ASE plug-in 246
load profiles in ASE plug-in 238
temporary databases to a group in ASE plug-in 235–237
user-created global temporary database in ASE plug-in 234
user-created local temporary database in ASE plug-in 235
adding an LDAP server 47
adding space, to an archive database 171
allow updates configuration parameter, setting 226
alter database command 171
alter database, using with private device 146
API component in interfaces file described 336
Arabic character sets 290
archive database 171
ASE plug-in
adding a logical cluster 245
adding a logical clusters 243
adding an instance to a cluster 231
adding failover instances 246
adding load profiles 238
adding temporary databases to a group 235–237
adding user-created global temporary database 234
adding user-created local temporary database 235
associating a load profile with a logical cluster 240
changing the server discovery settings 223
cluster properties 225
creating to a cluster 222
creating shared database devices 232
deleting load profiles 239
disconnecting from a cluster 223
displaying a cluster’s status 230
displaying the log space 228
dropping a cluster 229
dropping a logical clusters 243
dropping an instance from a cluster 231
enabling Unified Agent 223
failover instances 245
JINI discovery method 223
load profiles for logical clusters 246
logical cluster properties 243–247
managing a shared-disk cluster 221–232
managing local temporary databases 233–234
managing logical clusters 241–250
managing multiple temporary databases 232–237
managing the workload 237–250
metric weights 241
properties for routes 250
removing a server group 230
routes for logical clusters 247
setting configuration parameters 226
shutting down a cluster 229
shutting down an instance 232
starting a cluster 228
starting an instance 231
system temporary databases 234
thresholds 241
UDP discovery method 224
workload status for logical clusters 248–250
asynchronous commands 91
wait options 91
audit queue size, setting 226
audit system 311
audit trail
 overview 311
 system audit tables 312
auditing
 database for 312
 device for 312
 global options 312
 installing using the script 312
 process 312
 tables for tracking 312

B
Backup Server
 character sets 305
 configuring 300, 304
 base instances 68
 binary sort order 296
 binding
 dropping cache 121
 objects, syntax 120
 objects to named caches 120
 bound cache 120
 displaying information about 121
 dropping binding 121
 getting information about 121
 buffer cache coherency 7
 buffer pools
 changing prefetch percentage 118
 changing the wash size 117
 creating 115
 dropping 119
 moving memory between 117
 transferring memory between 117

C
 cache
 binding objects to named 120
 bound, getting information about 121
 dropping bindings 121

local named, format of 122
local, extra line in 123
named with global configuration, deleted 124
named with local configuration 124
cache configuration, clusters 103
changing
 character sets 289, 304
 languages 304
 sort order 304
character sets 294
 changing 289, 304
 client selection of 289
 code conversions and configuring 305
 converting between 294
databases and 295
default 288
 in a heterogeneous environment 294
 sort orders and 296
charsets directory 296, 300
 about the 301
Chinese character sets 291
 client applications 23–36
client interfaces files
 difference between client and server versions 332
 heterogeneous 333
 homogeneous 333
client/server interaction 26
 Adaptive Server communications with 329
 applications and locales.dat file 302
 conversion between, and server 295
default character set 289
 DSQUERY and 340
 file servers 340
cluster
 database devices 8
 DBMS layer 7
 definition 3
 interconnect networks 13–16
 lock manager 7
 logging and recovery 7
 membership service 6
 space and threshold 7
 storage of information 8
 cluster cache

Adaptive Server Enterprise Cluster Edition
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuring</td>
</tr>
<tr>
<td>definition</td>
</tr>
<tr>
<td>global</td>
</tr>
<tr>
<td>local</td>
</tr>
<tr>
<td>cluster coordinator</td>
</tr>
<tr>
<td>Cluster Edition</td>
</tr>
<tr>
<td>advantages of</td>
</tr>
<tr>
<td>associating a load profile with a logical cluster in ASE plug-in</td>
</tr>
<tr>
<td>changing the server discovery settings</td>
</tr>
<tr>
<td>configuring</td>
</tr>
<tr>
<td>connecting to with ASE plug-in</td>
</tr>
<tr>
<td>creating shared database devices in ASE plug-in</td>
</tr>
<tr>
<td>deleting load profiles in ASE plug-in</td>
</tr>
<tr>
<td>deployment scenarios</td>
</tr>
<tr>
<td>disconnecting from</td>
</tr>
<tr>
<td>disconnecting from using ASE plug-in</td>
</tr>
<tr>
<td>displaying a cluster’s status in ASE plug-in</td>
</tr>
<tr>
<td>displaying cluster properties</td>
</tr>
<tr>
<td>displaying the log space in ASE plug-in</td>
</tr>
<tr>
<td>dropping a cluster with ASE plug-in</td>
</tr>
<tr>
<td>dropping a logical clusters in ASE plug-in</td>
</tr>
<tr>
<td>dropping an instance from a cluster in ASE plug-in</td>
</tr>
<tr>
<td>failover instances in ASE plug-in</td>
</tr>
<tr>
<td>failover scenarios</td>
</tr>
<tr>
<td>load profiles for logical clusters in ASE plug-in</td>
</tr>
<tr>
<td>load profiles in ASE plug-in</td>
</tr>
<tr>
<td>logical cluster properties in ASE plug-in</td>
</tr>
<tr>
<td>managing</td>
</tr>
<tr>
<td>managing local temporary databases with ASE plug-in</td>
</tr>
<tr>
<td>managing logical clusters in ASE plug-in</td>
</tr>
<tr>
<td>managing multiple temporary databases with ASE plug-in</td>
</tr>
<tr>
<td>managing the workload in ASE plug-in</td>
</tr>
<tr>
<td>metric weights in ASE plug-in</td>
</tr>
<tr>
<td>new client technologies</td>
</tr>
<tr>
<td>properties for routes in ASE plug-in</td>
</tr>
<tr>
<td>removing a server group in ASE plug-in</td>
</tr>
<tr>
<td>routes for logical clusters in ASE plug-in</td>
</tr>
<tr>
<td>scenarios for DSS/reporting applications</td>
</tr>
<tr>
<td>scenarios for OLTP applications</td>
</tr>
<tr>
<td>setting configuration parameters with ASE plug-in</td>
</tr>
<tr>
<td>shutting down a cluster with ASE plug-in</td>
</tr>
<tr>
<td>shutting down an instance in ASE plug-in</td>
</tr>
<tr>
<td>starting a cluster with ASE plug-in</td>
</tr>
<tr>
<td>starting an instance in ASE plug-in</td>
</tr>
<tr>
<td>system temporary databases in ASE plug-in</td>
</tr>
<tr>
<td>thresholds in ASE plug-in</td>
</tr>
<tr>
<td>workload status for logical clusters in ASE plug-in</td>
</tr>
<tr>
<td>Cluster Edition vs nonclustered Adaptive Server</td>
</tr>
<tr>
<td>cluster event service</td>
</tr>
<tr>
<td>cluster interprocess communication (CIPC)</td>
</tr>
<tr>
<td>cluster lock manager (CLM)</td>
</tr>
<tr>
<td>clusterware</td>
</tr>
<tr>
<td>components</td>
</tr>
<tr>
<td>collating sequences. See sort orders</td>
</tr>
<tr>
<td>commands</td>
</tr>
<tr>
<td>alter database</td>
</tr>
<tr>
<td>create database</td>
</tr>
<tr>
<td>disk init</td>
</tr>
<tr>
<td>disk refit</td>
</tr>
<tr>
<td>disk reinit</td>
</tr>
<tr>
<td>common.loc file</td>
</tr>
<tr>
<td>communications between client and Adaptive Server</td>
</tr>
<tr>
<td>configuration</td>
</tr>
<tr>
<td>valid, with deleted entries</td>
</tr>
<tr>
<td>configuration file</td>
</tr>
<tr>
<td>modifying</td>
</tr>
<tr>
<td>configuration parameters, setting with ASE plug-in</td>
</tr>
<tr>
<td>configuring</td>
</tr>
<tr>
<td>Backup Server</td>
</tr>
<tr>
<td>character sets</td>
</tr>
<tr>
<td>Cluster Edition</td>
</tr>
<tr>
<td>immediate and restart</td>
</tr>
<tr>
<td>instance, roles required</td>
</tr>
<tr>
<td>multiple buffer pools</td>
</tr>
<tr>
<td>System Administrators and</td>
</tr>
<tr>
<td>configuring caches in a cluster</td>
</tr>
<tr>
<td>configuring Job Scheduler</td>
</tr>
<tr>
<td>configuring named cache</td>
</tr>
<tr>
<td>configuring the Cluster Edition on Veritas</td>
</tr>
<tr>
<td>connection migration</td>
</tr>
</tbody>
</table>
Index

criteria for 30
CS_PROP_MIGRATABLE property 24
migration 28
migration context 29
migration vs failover 28
connection redirection 23
context migration 30
conversions, Unicode character 290
converting a cluster for Veritas 186
converting between character sets 294
create database 146
create database, using with private device 146
creating
interfaces files 331, 338
interfaces files automatically 330
master interfaces files with dscp utility 338
master interfaces files with dsedit 338
master interfaces files with text editor 338
multiple buffer pools 115
private devices using disk init 142
creating a cluster for Veritas 185
creating Backup Server 272
CS_DS_RAND_OFFSET property 28
CS_HAFAILOVER property 25
CS_NOREDIRECT property 27
CS_PROP_EXTENDEDFAILOVER property 33
CS_PROP_MIGRATABLE property 24
CS_PROP_REDIRECT property 27
CS_RET_FAILOVER property 26
CS_RET_HAFAILOVER property 33
CTLIB API calls, modifying for failover 25
Cyrillic character sets 291
database devices in the cluster 8
databases 295
dbcc error messages 285
debg service type 336
default
character set for Adaptive Server 289
character set, changing 289
language for Adaptive Server 289
language, changing 289
sort order 289
delay_interval component in interfaces files 336
deleted entries with valid configuration 124
deployment scenarios 16
device component in interfaces files 337
dictionary sort orders 296
Scandinavian 297
Spanish 297
directories
charsets 296
charsets 301
localization 300
directory schema, LDAP 44
disconnecting from a cluster with ASE plug-in 223
disk init command 142
disk refit, executing on private device in cluster 146
disk refit, executing procedure with private device 146
disk refit, using with private device 146
disk reinit command 142
displaying
current file descriptors 278
information about logical cluster 84
private device information using sp_helpdevice 143
distributed checkpoints
Cluster Edition vs SMP 164
distributed transaction management
See also DTM
down-routing mode 76
disconnect command 76, 242, 244
open command 76, 242, 244
system command 76, 242, 244
values for 76
downtime
planning for 88, 93
dropping a buffer pool 119
dropping private devices using sp_dropdevice 143

D
data cache
 adding memory to 111
 allocating space for 112
 changing cache type 114
 configuring replacement policy 114
 decreasing size of 112
 deleting 113
data translation 287
database devices 320

Adaptive Server Enterprise Cluster Edition
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp</td>
</tr>
<tr>
<td>dscp utility</td>
</tr>
<tr>
<td>dsedit utility</td>
</tr>
<tr>
<td>DSQUERY environment variable</td>
</tr>
<tr>
<td>client connections and</td>
</tr>
<tr>
<td>multiple networks, using different values</td>
</tr>
<tr>
<td>DTM</td>
</tr>
<tr>
<td>ASTC mechanism</td>
</tr>
<tr>
<td>cluster as resource manager</td>
</tr>
<tr>
<td>cluster-specific issues</td>
</tr>
<tr>
<td>configuration issues</td>
</tr>
<tr>
<td>connection migration</td>
</tr>
<tr>
<td>handling errors</td>
</tr>
<tr>
<td>handling instance failures</td>
</tr>
<tr>
<td>nonowner instances</td>
</tr>
<tr>
<td>xact_conmigrate_check function</td>
</tr>
<tr>
<td>xact_owner_instance function</td>
</tr>
</tbody>
</table>

F

failover groups	82	
failover in **Sybase**	configuring	81
enabling	25	
modifying CTLIB API calls	25	
failover resource	81	
adding	82	
failure	handled by cluster	4
files		
common.loc | 301 |
configuration, modifying | 122 |
displaying current descriptors | 278 |
locales.dat | 301 |
localization | 288 |
localized error messages (.loc) | 301 |
servers | 340 |
sort order definition (.srt) files | 295 |
format | of local named cache | 122 |
formatting for local date, time, and currency | 301 |

G

| global cluster cache | 103 |
| global configuration | creating a local configuration in the presence of | 125 |
deleted named cache | 124 |
global temporary databases | 129, 132 |
adding user created in ASE plug-in | 234 |
creating | 134 |
globalization support, Sybase | 287, 300, 304 |
Greek character sets | 292 |

H

HAFAILOVER property	24, 33
hardware error messages	283
UNIX	283
Hebrew character sets	292
heterogeneous environments	289, 294
described	333
Adaptive Server Enterprise Cluster Edition

interfaces files and
homogeneous environments
described

interfaces files and

host component in interfaces files

host name
determining

HP-UX
network protocol

hysteresis value

I

I/O fencing

IBM RS/6000
network protocol

installing Job Scheduler

installing the Cluster Edition on Veritas

instance

adding to a cluster in ASE plug-in
definition

dropping from a cluster in ASE plug-in

shutting down in ASE plug-in

starting in ASE plug-in

instances, monitoring links

interconnect networks

interfaces files
described

interfaces files
Adaptive Server, naming in

Adaptive Server, used by

API component in

automatic creation of

client and server versions, differences in

clients, used by

contents of

creating automatically

creating master files with dsedit

creating master files with text editor

creating, for beginners

debug service type
default location
delay_interval component
device component
dether placeholder

heterogeneous environments and
homogeneous environments and

host component

location

loghost placeholder

machine component

master service type

multiple network listeners

multiple networks

network component

port component

protocol component

query port backup configuration

query service type

retry_attempt component

servername component

service_type component

spaces in

tab characters in

unique elements in entries

used by clients

international systems

support for

Sybase support for

iostat command

Sun Solaris

iso-Latin1 character set

isql utility

J

Java in a clustered environment

JINI discovery method

Job Scheduler

configuring

installing

redirecting jobs

running

shutting down

JVM

K

KEEPALIVE option, TCP/IP
kernel 6
 cluster components 6
Korean character sets 292

L
language modules 288, 299, 300
 installing new 299
 localization files 288
 memory requirements for 304
languages
 changing 304
 error reporting in specific 301
 selecting message 299
 translation support 287
Latin character sets 292
LDAP
 access restrictions 42
 adding a server 47
 defined 41
 directory definitions 43
 directory schema 44
 enabling 46
 libraries, environment variables 47
 multiple directory services 49
 sample entry 44
 server, using dsedit utility to add and modify 48
 specifying in libcl.cfg 45
 versus the interfaces file 42
ldapurl
 defined 46
ldapurl
 example 46
 keywords 47
letter case in sort orders 296
libcl*.cfg file 45
 format of 46
 location of 45
 password 49
 purpose of 45
limitations 126
limits for file descriptors 278
links
 between nodes 13–16
 monitoring between instances 14
listener service 332
load profile 98
 associating with logical cluster 101
 building 100
 creating 99
 in ASE plug-in 237
 load distribution threshold 101
 modifying 101
 samples 98
load threshold 97
 hysteresis value 98
loc files 301
local
 named cache 122
 named cache, format of 122
 local asynchronous prefetch percentage of pool,
 changing 118
 local cache
 extra line in entries 123
 local cluster cache 104
 local configuration
 creating, in presence of global configuration 125
 named cache 124
 local databases
 private device support 141
 local date, time, and currency formatting 301
 local system temporary databases 129, 130
 creating 134
 local temporary databases
 adding user created in ASE plug-in 235
 creating 134
 managing with ASE plug-in 233–234
 types 130
 local user temporary databases 130
locales directory 300
locales.dat file 301
localization 287
 changing the configuration 304
 common, information 301
locks 160
 cluster lock manager 160
 retention locks 160
log space displaying in ASE plug-in 228
loghost in interfaces files 339
logical cluster 241–250
 adding failover instances in ASE plug-in 246
adding in ASE plug-in 243, 245
adding instances to 72
adding resources 86
adding routes to 72, 87
associating a load profile with 240
attributes 74
creating a 70, 86
definition 67
displaying information about 84
dropping 86
dropping in ASE plug-in 243
dropping resources 87
dropping routes 87
failover instances in ASE plug-in 245
load profiles in ASE plug-in 246
properties in ASE plug-in 243–247
routes for logical clusters in ASE plug-in 247
routing rules 73
starting 73
workload status for logical clusters in ASE plug-in 248–250

logical cluster attributes
 down-routing mode 75, 76
 fail_to_any 75, 79, 81
 failover 75, 78, 81
 load profile 75, 79
 login distribution 75, 79
 open 75
 start-up 75, 78
 system_view 75, 77

logical cluster resources
 failover 68
 instances 68

logical cluster state 88
 action descriptors 92
 asynchronous commands 91
 changes 90
 commands affecting 94
 definitions 89
 global 14, 89
 instance 14, 89

login redirection 23, 26
 connection properties for 27
 directory service for 27

M

machine component in interfaces files 337
managing Veritas and the Cluster Edition 187
 adding and removing instances 188
 starting and stopping instances 188
master
 interfaces file 331, 338
 service type 336
membership mode 182, 190
 changing 190
 determining 190
 native 182
 vcs 182
memory
 moving between buffer pools 117
 requirements for workload manager 84
messages
 hardware errors 283
 selecting language for 299
metric weights in ASE plug-in 241
migration context
 elements of 29
monitor tables
 querying 85
monitoring
 operating system resources 283
mount database command 178
moving memory between buffer pools 117
multiple buffer pools, configuring and using 115
multiple directory services
 LDAP 49
multiple installations
 affecting interfaces files 333
 creating one interfaces file for 331, 338
multiple networks
 interfaces files and 331
 interfaces files for 339
 used as a backup in case of network failure 342

N

named cache
 binding objects to 120
 configuration file 122
 deleted with global configuration 124
Index

clusters users guide 357
local 122
with global configuration 124
named data cache 105
allocating space for 112
binding objects to 120
changing cache type 114
configuring replacement policy 114
creating 105
decreasing size of 112
deleting 113
displaying information about 105
naming requirements for servers 336
native membership mode 182

netstat command
Sun Solaris 284

network component in interfaces files 336
network protocols
Digital UNIX 336
HP-UX 336
IBM RS/6000 336
Sun Solaris 336
UnixWare 336

networks
backup connections and 342
DSQUERY and 341
failure of 343
interfaces files 329
multiple 331

node
definition 3

object coherency 7
online syntax help 319
Open Client 23
support levels 24
open logical cluster 75
operating system resources 283

parameters

functional groups 227
requiring restart 227
password encryption for libtcl*.cfg 49
pwdcrypt command 49

paths, error log 324
Pending Value column 228
permissions
restoring of 278
planning
downtime 88, 93
platform-specific locale names 301
pools
buffer, moving memory 117
changing local asynchronous prefetch percentage 118
changing wash size 117
dropping a buffer 119
port component in interfaces files 337
port numbers and interfaces files 339
private devices 141
private installation mode 167
protocol
component in interfaces files 336
SPX 336
TCP/IP 336

ps command
Sun Solaris 284
pwdcrypt command
location of 49
password encryption 49

q
qrmutil utility 168, 187, 190
query port backup configuration 342
query service type 332, 336
quorum device
description of 8

r
reconfiguring interconnects for Veritas 187
recovery 153

clusters users guide 357
Cluster Edition vs SMP 153
reinstantiating private devices using disk reinit 142
remote procedure calls (RPCs) 34
RepAgent thread 20
replication
 cluster support for 20
Replication Server 20
resource reservation 77
retention locks 160
retry_attempts component in interfaces files 336
roles
 configuring an instance 226
 resetting Configuration options 227
System Administrator 227
System Security Officer 227
roman8 character set 289
route properties in ASE plug-in 250
routing rules 73
 for aliases 74
 for applications 74
 for logins 74
 when using SSL 74
permissions 278
setting configuration parameters 227
shared database devices, creating in ASE plug-in 232
shared installation mode 167
SMP Adaptive Server versus Cluster Edition 12
sort order 295
 binary 296
 changing 289, 304
 character sets and 296
databases and 295
default for Adaptive Server 289
definition files 295
dictionary 296
letter case in 296
sp_bindcache stored procedure 120
sp_cacheconfig stored procedure 106
sp_dropdevice stored procedure 143
sp_helpdevice stored procedure 143
sp_poolconfig stored procedure 115, 116
sp_serveroption stored procedure 35
spaces in interfaces files 335
Spanish dictionary sort orders 297
SPID in logical cluster 83
SPX network protocol 83
srt files 295
stored procedures
 sp_bindcache 120
 sp_cacheconfig 106
 sp_dropdevice 143
 sp_helpdevice 143
 sp_poolconfig 115, 116
 sp_serveroption 35
stty settings 277
Sun Solaris
 iostat command 284
 netstat command 284
 network protocol 336
 ps command 284
 time command 284
timeout period 282
 vmstat command 284
sundiaq system diagnostic tool 283
supported platforms for Veritas and the Cluster Edition 182
Sybase 102
$SYBASE environment variable as default server name 339
Sybase globalization support 287, 300, 304

sybcluster
- adding an instance 268
- authenticating the user 257
- changing instance properties 270
- connecting to the cluster 257
- creating XP Server 272
- disconnecting from the cluster 266
- displaying cluster information 262
- displaying configuration values 264
- displaying instance information 267
- displaying session information 263
- dropping an instance 271
- dropping the cluster 267
- enabling sybcluster after manual creation 271
- identifying the Unified Agents 259
- list of commands 254
- performing cluster check 261
- restrictions 253
- setting the default instance 269
- shutting an instance down 270
- shutting the cluster down 266
- starting 254, 256, 261
- Unified Agent Framework and upgrading the server 274
- verifying an instance 269

sybsecurity database 312

sybsyntax database 319

symmetric multiprocessing (SMP) 12

sybclusters utility 253–274

system administrators
- configuring a cluster 227
- system audit tables 312
- system logical cluster
 - definition 69
 - open property 69
- system messages, translated 288
- system security officer
 - configuring an instance 226
- system temporary databases in ASE plug-in 234

Tab
- characters in *interfaces* files 335
- TCP/IP 282, 336
- **KEEPALIVE** option 282
- temporary databases 129–141
 - adding to a group in ASE plug-in 235–237
 - binding applications to 135, 136
 - binding users to 135, 136
 - characteristics of 132
 - creating 133
 - creating bindings 137
 - creating groups 135
 - definition 129
 - dropping 138
 - global 129
 - guidelines for using 139
 - inherited from model database 129
 - local 129
 - managing bindings 137
 - managing with ASE plug-in 232–237
 - session binding 136
- Thai character sets 293
- thresholds in ASE plug-in 241
- **time** command
 - Sun Solaris 284
- TLI protocol 336
- trace flags 102
- translated messages
 - error (.loc files) 301
 - system 288
- troubleshooting the workload manager 102
- troubleshooting Veritas and the Cluster Edition 192
 - cluster does not start 193
 - resource faults 197, 199
 - Veritas does not start 200
- Turkish character sets 293

U
- UDP discovery method 224
- Unicode
 - character conversion 290
- Unified Agent Framework 256
- Unified Agent, enabling 223
- UNIX
Index

hardware error messages 283
network protocol 336

UnixWare
network protocol 336
unmount database command 178
us_english language 289
user connections 278
User Datagram Protocol (UDP) 224
user-defined message 326

V

vcs membership mode 182
limitations of 183
requirements for 182
Veritas and the Cluster Edition 179–202
benefits of 179
components 181
configuring 183
converting a cluster 186
creating a cluster 185
I/O fencing 180
installing 183, 184
managing 187
membership management 180
reconfiguring interconnects 187
supported platforms for 182
Sybase components 181
troubleshooting 192
understanding failure scenarios 191
Veritas components 181
Veritas Sybase components 181
Veritas Cluster Membership plug-in (VCMP) 180
Veritas SF for Sybase CE 179
Veritas Storage Foundation 179
vmstat command
Sun Solaris 284

metrics 96
sample load profiles 98
troubleshooting 102
workload manager 7, 67–102
memory requirements 84
workload manager in ASE plug-in 237–250
workload metrics 96
CPU utilization 96
ingine deficit 96
I/O load 96
run-queue length 96
user connections 96
user-supplied metric 96
weighting of 97

X

xact_connnmigrate_check function 177
xact_owner_instance function 177

W

wash size of pool, changing 117
workload management 95–102
load profile 98
load threshold 97