SYBASE

Company

Performance and Tuning Series: Query
Processing and Abstract Plans

Adaptive Server® Enterprise
15.7

DOCUMENT ID: DC00743-01-1570-01
LAST REVISED: September 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

CHAPTER 1

CHAPTER 2

Understanding QUery ProCesSingccccevvvrerirereereeeeieesscennenenenens 1
(O 181=T Vo] 011140174~ SRR PERRR 3
Factors analyzed in optimizing qQUErIescccccevveeeviiciiiieeeeenn, 5
Transformations for query optimizationcccccceeevvivcviineeeenn, 6
Handling search arguments and useful indexes 10
HandliNg JOINSuuiiiiieiiiie e 12
OpPtiMIZAtioN GOAIS.......coiiiiiiiiiie e 15
Limiting the time spent optimizing a qUeryccccceeevervvveeeen. 16
ParalleliSMooviiee e 17
OPtMIZALION ISSUES ...ttt ettt e e 17
Lava query eXecution ENGINEceeeeeeeiiireereeeeeeeiinreeeaeeesesennnns 20
Lava qQUETY PlanSc.cceciiiiiiiieiee et e e e e 21
How update operations are performed...........cccccoevcvvvevieeeeiiicinnnn, 27
DIreCt UPAAtESvvvveieeee it 27
Deferred UPAates.........coovcvviiiiiee et e e 30
Deferred iNdeX INSEIScccueiiiiiiiiiie e 31
Restrictions on update modes through joinsccccccovvivvieeen. 33
OptiMIZING UPAALESvveiiiiieiiiiiiieie e 34
Using sp_sysmon while tuning updatescccccceeevviirinnenn. 36
USING SNOWPIANeeiiiiiiiie e 37
Displaying a qUErY Plan........oocuviieiiieiiiiiiiieee e 37
Query plans in Adaptive Server Enterprise 15.0 and later 38
Using set showplan with NOEXECcccuvvviiiiiiiiiiiiiii e, 39
Statement-level QULPUL ...t 44
QuErY Plan SNAPEccociiiiie e a7
Query plan OPErators.........ccceeviiciiieieee e 52
EMIT OPEIALONueeeieeieeeeeieieeieeeeeeeeeeeeeeeeeeeseeseseensesnsesnsennnesnnnnes 52
ST OF 2N\ 0] o1=] = 1o] (R 52
FROM Cache mMeSSAgEe.......cuuviveeeeeeiiiiiiiee e e e eiirreee e e e e 52
FROM OF LIST .ttt 53
FROM TABLE ... 54

(Wl g]To] g le] 1] =100 (= F PP PPPPP PP 90
UNION ALL OPEIator ...cceeeeeeeeeeeeeeeeeeeeeeee e 90

Performance and Tuning Series: Query Processing and Abstract Plans iii

Contents

MERGE UNION 0peratorcccccvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 91
HASH UNION ...ttt 91
SCALAR AGGREGATE OpEerator.........cccceeeeeeriannansesaesssaeeeenns 93
RESTRICT OPEIatOrcceviiiiiiiieeieeeeeeeeeeeeeeee e 94
1O g o] 011 = 1o] (PRSPPI 94
STORE OPEIALONuuuuuuueieieeeueeeeeeeeeeeeeeenenennnesennensnsssennnsnnsesssnnes 95
SEQUENCER OPEIatOrcvvveeveeieeieieieeeeeneeeeeeenneesseennnnnnnenenees 97
REMOTE SCAN OPErator........cccuvveiiiiiieieiieeeeeeeeeeeeeeeeeeeeeeeeeeeees 99
SCROLL OPEIALOFuuuuueeeeeeeueeeeeeerneeeeeeenennnseeennnnnsnnsennsnnnnessennes 99

RID JOIN OPEIratOr......cccvviiiiiiiiiiiiiiiiiiiieiieeee e 100
SQLFILTER OPEratorccoeie s 102
EXCHANGE OPerator.......cccooeeeiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeee 104
INSTEAD-OF TRIGGER Operators........ccooeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn 106
INSTEAD-OF TRIGGER 0perator.........cccvevveeiveeiiieeinieeeen 107
CURSOR SCAN OPEratorccooeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 108
deferred_index and deferred_varcol messages.................... 110
CHAPTER 3 Displaying Query Optimization Strategies and Estimates....... 111
set commands for text format messagescccccevveeevvicivivneeneennn, 111
set commands for XML format messages.........cccccceevivcvvvvnenneennn. 112
Using show_execio_xml to diagnose query plans................. 114
Showing cached plans in XMLcccccvvvieeiiiiiiiiiiee e 116
DiagnostiC USAQE SCENANOSuvuvrieeeiiiiiiiiirieeessiiriiaeeeaeeesennsseeees 119
Permissions for set Commandsccoocvveeiniiiee e 122
Analyzing dynamic parameterscccuuveeveeeeeiniiiiiieeee e 122
Dynamic parameter example analysisccccccevvviiiineeennn. 123
CHAPTER 4 Finding Slow RunNning QUErIESccoouiiiiiiiiiieiieee e 125
Saving diagnostics to a trace file.......ccccccovviiiiiiien 125
Set options that save diagnostic information to a trace file ... 127
Which sessions are being traced?cccoccceveiiiiiiiiiiiecnnnn, 128
RebiNdiNG @ tracCecccvvveiiee i 129
Displaying SQL tEXL.....uuuvieeeiiiiiiieiee et e e s e e e e nnnaees 129
Retaining session SEttNGSc..vveviveeiiiiiiiieiee e 132
CHAPTER 5 Parallel QUEry ProCeSSiNguueeiiieieeieeiiiiiiieeeereeeeeeeessesnnnneeeens 133
Vertical, horizontal, and pipelined parallelismcccccvveeen.. 133
Queries that benefit from parallel processing..........ccccccvvveeeeiinnns 134
Enabling paralleliSmcoociiiiiiieciicciiec e 135
numMber of WOrKer PrOCESSESccccevvvivviiiiieeeeiiiiiieeee e 135
max parallel degree........ccuvvvviieiiiiiie e 136
Max resource granuUIaritycccccoevivivieeneeeeniiiiieee e 136

iv Adaptive Server Enterprise

Contents

CHAPTER 6

CHAPTER 7

Performance and Tuning Series: Query Processing and Abstract Plans

max repartition degreeccuvvveeeeeeeiiiiiiieee e 137
max scan parallel degreecccveeeeiciiiiieee e 138
prod-consumer overlap factorcccccveeeiiicciieecce e, 138

min pages for parallel SCancccocvviiiieiii s 138
max query parallel degreeccccccovviiiiiieiiee i 139
Controlling parallelism at the session levelccccveeeiieiiiiinns 139
set command eXamples ... 140
Controlling query paralleliSmoevveiiiiiiiiie e, 141
Query-level parallel clause examples.........cccccoovviiiiiieeniinnns 141
Using parallelism selectivelyceeeeviiiiiiiiieieeccieeee e 141
Using parallelism with large numbers of partitions....................... 143
When parallel query results differ..........cccccceeeeeviici e, 144
Queries that use Set roWCOUNt.......ccoceiiiiiiieieieceeceeeeeeeeee e, 145
Queries that set local variablesccccoooiiiiiiiiiiiiiiiiinn. 145
Understanding parallel query plans.........cccccceevviiciiieeeee e, 146
Adaptive Server parallel query execution model...........ccccvveeeeennn. 148
EXCHANGE OPEratOr........uuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 148
Using parallelism in SQL operationscccvvevveeeniiivvneenn. 154
Partition eliminationcocceviiiieiiiiee e 197
Partition SKEWcoiiiiiiiiiiiiiie e 198
Why queries do not run in parallel...........ccccovceeiiiiiiiiinenennn, 199
Runtime adjustmentc.cevvveeiiiciieee e 199
Recognizing and managing runtime adjustments 200
Eager and Lazy AQQregationcccccvvieeeeiiee e cciiieineee e 203
OVEIVIBW ...ttt ettt ettt a e bt e e s snbae e e s nneeee s 203
Eager aggregation..........ccuveeeieeeiiiciiiieee e 204
Aggregation and qUErY ProCESSINGuvvvrreeeeiiiiiiireieeeesiiiiireeeeaeens 205
EXAMPIES ...vvviiiiee et 208
Using eager aggregationuveeeieeeniiiiieieeee e 215
Enabling eager aggregationcoocvvvveeeeeeeiniiiiiiee e 215
Checking for eager aggregationcccvevveeeviiniiinneeeees i 215
Forcing eager aggregation with abstract plans 218
Controlling Optimizationcccoooiiiiiiiiiiiee e 221
Special optimizing teChNIQUEScuvviiieiiiiiiiiiiee e 221
Viewing current optimizer SEttNGSeevvveeriiiiiiieiieee e 222
Setting the optimization level...........cccoviiiiiiiiiiiieee 225
Optimizer Diagnostic ULIlitYccccuviiieeeeeiiiiiiiiec e 229
Configuring Adaptive Server to run sp_opt_querystats......... 230
RuNNing sp_opt_qUerystatS..........cccccvvvivieeeeeeiiiiiiiee e 230
Specifying query processor ChOICES..........cccuvvevveeeeiiiciiieeiee e, 231
Specifying table order in joiNScvvvvvieeeiiiee e 232

Contents

Specifying the number of tables considered by the query processor..

233
SPeCifying QUEIY INAEXueviiiiiiiiiiiiiiee e 234
Specifying 1/O SIZ€ IN @ QUETY.....ccevuviiieee et 236
Index type and large 1/O Size.........cccvveeeeeiiiiciiiiiec e, 237
When prefetch specification cannot be followed 238
setting prefetCh.....eeee 239
Specifying cache Strategycccvvveeieeiiiiiiiiiiiee e 239
In select, delete, and update statements..............ccccvvveeeeeennn. 240
Controlling large 1/0 and cache strategies..........cccovcvvvveeiieeniinnns 241
Getting information on cache strategies............ccccvvvieeniinns 241
ASYNCNIONOUS 10Q SEIVICEvvviiiiiiiiiiiiiiiiee et 241
Understanding the user log cache (ULC) architecture 243
When to USE ALSooiiiiiii e 243
USING the ALS ..o 244
Enabling and disabling merge joinsccccccceeeeeiiiiiiiiieee e 244
Enabling and disabling hash joins...........ccccccceiiiiiciiiiiec e, 245
Enabling and disabling join transitive closureccccccccceevvneee. 245
Controlling literal parameterization.............cccccvvveeveeeiiiccivineeeeeenn, 246
Suggesting a degree of parallelism for a query........cccccceevveeiiinns 248
Query level parallel clause examples.......ccccccovvvvvieeieeeniinnns 250
OptiMIZation GOAIS.......cc.uvviiieiiiiiiie e 250
Setting optimization goalscccccvviviiiiiiiiee e 251
OptiMIZation CrHLEIAevvviiee et 252
Limiting optimization time ... 255
Controlling parallel optimizationccccooviiiiiiieeeiiiiiiiieee s 256
numMber of WOrKer ProCESSEScceevvviiiiiiiieeeeiiiiiieeee e 257
Specifying the number of worker processes available for parallel
PrOCESSING ..vvvvvvieeeeeiiiireeeeeeesestitareeaaessasstrareeaaeesannreaeees 257
max resource granularity.........cccceeeeecuiieeeee e eecciiieee e 257
max repartition degreevvveeeiiceiiieeeie e 258
Concurrency optimization for small tablesccccovvvieeiiinnns 258
Changing the locking SChemecccccvviieeee e 259
CHAPTER 8 Optimization fOr CUISOISuiuiiiiiiiiieae e 261
DEfiNItION ...ceeiiiiieie e 261
Set-oriented versus row-oriented programming 262
EXAMPIE . 263
Resources required at each stageooccvvvveeieeiiiiiiiieennee s 264
Memory use and eXECULE CUISOISovvurrreereeesiinnrieeeeaennns 266
CUISON MOTES.....ciieiiiiiie ettt e e 266
Index use and requirements for CUrSOrS..........ccccvvvveeeeiieciiveeeeennn. 267
Allpages-locked tablesccccvveeiieeiiiiiiiie e, 267
Data-only-locked tables............cccvviiiieeiiiiciiee e, 268

Vi Adaptive Server Enterprise

Contents

Comparing performance with and without cursors...................... 269
Sample stored procedure without a Cursor...........ccccceeeeeiiens 269
Sample stored procedure with @ CUISOr...........ccccvvvveeeeesiinnnns 270
Cursor versus noncursor performance comparison 271

Locking with read-0only CUISOrS........coueviiiiiiiiieiieeeiiiieeee e 272

Isolation levels and CUISOrS..........ccvviiiiiee i 273

Partitioned heap tables and CUrSOrS........ccccccceeviiniiiiieiiee e, 274

Optimizing tiPS fOr CUISOIS....cciiiiiiiiiiiiiiee e 274
Optimizing for cursor selects using a Cursorccccceevvves 275
Using union instead of or clauses or in listsccccccvvvee. 275
Declaring the cursor's inteNnt.........ccoocvvvvveeeeeeiiiiiiieee e 275
Specifying column names in the for update clause............... 276
USING SEE CUISOI TOWSccoiiiiiieeeeee e s ciiiveee e e e e s sinrraee e e e e e nanees 277
Keeping cursors open across commits and rollbacks 277
Opening multiple cursors on a single connection.................. 278

CHAPTER 9 Query Processing MetriCS 279

OVEIVIBW ...ttt e e 279

Executing QP MEetriCS.....ccciiiiiiiiiiiie it 280

ACCESSING MELIICS ..vvvvviiieiiiiiiiieie ettt 280
SYSQUETYMELIICS VIEW ...vvvviieeeeiiiiiiiiiiee e e esiiiieeee e e siiianeeee s 280

USING MELHCS .oveiieeiiiiiiiiie ettt e s sanbreee s 282
EXAMPIES...ciiiiiiiiiiiiee e 283

Clearing MELIICS ...vvviieii e s e e e e e annes 284

Restricting query metrics Capture...........ooecvvveeeieeesiiiiiiieeee e 285

Understanding the UID in SySQUErymetrics..........cccocvveeeeiinvvnnnnn. 286

CHAPTER 10 Using Statistics to Improve Performance..........cccccocvvvveveneeennn. 287

Statistics maintained in Adaptive Server.........ccccccvvvcvveeeeeeeniiinnns 287

Importance of StatiStiCSvvvvieeiiiiciiiice e 288
Nonbinary character set histogram interpolation................... 289

Updating StatiStiCSuuviieiiiiiiiiiieie e 290
Adding statistics for unindexed columnsc..cccoovcvvveeneenn, 290
Limitations for updating statistics on proxy tables and views 291
update statistics CommMaNdScccvvveviieeiiiiiiiiiie e 291
Using sampling for update statistiCS............cccvveeeieeiniiiiiineenn. 293

Automatically updating StatiStiCsueevvieriiiiiiiiiiie e, 294
datachange fUNCLIONoocuviiieiiie s 295

Configuring automatic update StatistiCsccccceevvivcviiieereeeniinnns 297
Using Job Scheduler to update statisticsccccccoeevvvneenn. 297
Examples of updating statistics with datachange.................. 299

Column statistics and statistics maintenance...............ccccceeveuveeen. 300

Creating and updating column StatistiCscccccevvvvviiiiereeeniinnns 302

Performance and Tuning Series: Query Processing and Abstract Plans Vii

CHAPTER 11

CHAPTER 12

Viii

When additional statistics may be useful...............ccccvvveereenn. 303

Adding statistics for a column with update statistics.............. 305
Adding statistics for minor columns with update index statistics ..
305
Adding statistics for all columns with update all statistics...... 306
Choosing step numbers for histograms..........ccccccv i, 306
Choosing a step NUMDBEr...........covviiiiiiii s 307
Scan types, sort requirements, and l0CKiNg.............coccvveviieennnnnns 307
Sorts for unindexed or nonleading columnscccceeviiunns 308
Locking, scans, and sorts during update index statistics....... 308
Locking, scans and sorts during update all statistics............. 309
Using the with consumers Clauseccccvvveveeeeiiiiiiieeneeenn, 309
Reducing the impact of update statistics on concurrent processes
309
Using the delete statistics command............cccccceeviiiiiieeeeeeninns 310
When row counts may be iNacCuratecccovcvereririerennneenenns 311
Introduction to Abstract Plans..........ccccoiiiiiiiiiiiiiiiiiiceeeeeen 313
OVEIVIBW......teie ettt ettt e s e 313
Managing abstract plansccccccv i 314
Relationship between query text and query plans..........ccccceeeee.n. 315
Limits of options for influencing query plans............ccccceeeeenn. 315
Full versus partial plans.........ccccceviiiiii e 316
Creating a partial plan..........cccovviieeiiiiie e 317
ADBStract plan groUpPS........ooovieiieee i 318
How abstract plans are associated with queriescccccueee..... 318
Abstract plans in cached statements...........cccccccovvviiieeneeennn. 319
Creating and Using Abstract Plans.........ccccoccvvveeveee e, 321
Using set commands to capture and associate plans.................. 321
Enabling plan capture mode with set plan dump................... 322
Associating queries with stored plans...........cccccccoeeviiivivenn.n. 323
Using replace mode during plan capture...........ccccceevvvivveneen. 323
Using dump, load, and replace modes simultaneously 324
Compile-time changes for some set parameters.................. 326
set plan exists Check OPtioN...........vvviiiiiiiii s 327
Using other set options with abstract plans.........cccccccvvviiiiiennnnn, 328
Using show_abstract_plan to view plans..........cccccccvviivinnenn. 328
USING SNOWPIANvvviiieeciiiiiie e 329
USING NOEXECuiiiiiiieeeiiitiieee e e e e s setiree s e e e e s snnraae e e e e e s s snnnnaaees 329
USIiNG TMEONIY .. 330
USINgG fOrCEPIaN......uviiiee i 330
Server-wide abstract plan capture and association modes.......... 330

Adaptive Server Enterprise

CHAPTER 13

CHAPTER 14

Creating plans using SQL........cccoviiiiiiiieieeeiiiiiiieee e eeiiriee e 331

Using create plan...........ooccvveeeiee i 331
Using the plan clausecccvveeeeiiiiciiiiee s 333
Abstract Query Plan GUIide.........ccccuviiieiiiiiiiiiieee e 335
OVEIVIBW......teee ettt ettt e s e s 335
Abstract plan [anguagecoooviiiiiiiieeein e 336
Identifying tableS........ccuvviiiiiii 339
Identifying INAEXESuvviiiiiiiii e 341
SPecifying JOIN OFAENcciiiiiiiiiiiiiee e 341
Specifying the JoiN type ... 345
Specifying partial plans and hintsc.ccccoecei i, 346
Creating abstract plans for subqueries.............ccccvvvveeeiiinns 349
Abstract plans for materialized processing of views.............. 356
Abstract plans for queries containing aggregates.................. 357
Abstract plans for queries containing unioNns.............ccceeee..... 358
Using abstract plans when queries need ordering................. 359
Specifying the reformatting strategyccccccevvvvviieeinienninninns 360
Specifying the OR Strategyevveveeiiiiiiiiiiieee e 361
When the store operator is not specifiedcoecvvveerennn. 361
Abstract plans for parallel processing.........ccccccceviiiiiiieeiennnn, 361
Tips on writing abstract plansoccvvvveeeiiiiie e, 363
Using abstract plans at the query level..........ccccoviiiiniiinnen, 363
Operator name alignment for abstract plan and optimizer criteria
365

Extending the optimizer criteria set syntaxcccccvveeennn. 366
Comparing plans before and after...........occcvvvveeieeiiiiciiie s 366
Effects of enabling server-wide capture mode....................... 367
Time and space to COpY Plansccccceevivcviieeeie e 368
Abstract plans for stored proCedures..........ccovvvvveevieeniiniiineeieeen 368
Procedures and plan ownershipcccccoovvviiiiiiieniiniiiieneeen, 369
Procedures with variable execution paths and optimization.. 369

Ad hoc queries and abstract plansccccccvvvviieiiiienniiieeeen 370
Managing Abstract Plans with System Procedures................. 373
Managing an abstract plan groupccccceeviviiieeiiee i, 373
Creating @ GrOUPvveeeiiee i iiiiiieet e e e s et e e e e s s e siiereeeaee s s annees 373
Dropping @ grOUP ..ceeeiieeiiiieiieessisiiireetae e s snsiiieeeeee e s snneeeeeeaee s 374
Getting information about a groupcccccvveev e 374
RENAMING @ GrOUP ..o evviiiieeee ettt e sire e e e e senrrane e e 376
Finding abstract plans ... 377
Managing individual abstract planscccccccoccvivevieeeiiiccinieeeen, 377
VIeWING @ PIaNooooiiiiiiiercc e 378

Performance and Tuning Series: Query Processing and Abstract Plans iX

Copying a plan to another groupcccccvvvveeeeeeiiciiiieeee e 378

Dropping an individual abstract plan..........cccccccceeiiiiiiiiennennn, 379
Comparing two abstract plansccccccoecvvviieeie i 379
Changing an existing planccccccoeviiiiiiiiieee e 380
Managing all plans in @ grouUp.......ccccooevveiiiiiee e 381
Copying all plans in @ groupcceeeeeiniiiiieenee e 381
Comparing all plans in @ groupccccovvvivviieeeeeenniiiiiiieee e 382
Dropping all abstract plans in a groupccccecevevviiiviveeeenenn, 384
Importing and exporting groups of plansccccecccceiiiiiiiieneenn, 385
Exporting plans to a usertablecccccceevviiiieeie i, 385
Importing plans from a user tableccccoccvveeeiiiiiiiienennn, 385
.. 387

Adaptive Server Enterprise

CHAPTER 1

Performance and Tuning Series: Query Processing and Abstract Plans

Understanding Query Processing

This chapter provides an overview of the query processor in Adaptive
Server® Enterprise.

Topic Page
Query optimizer 3
Optimization goals 15
Parallelism 17
Optimization issues 17
Lava query execution engine 20

The query processor is designed to process queries you specify. The
processor yields highly efficient query plans that execute using minimal
resources, and ensure that results are consistent and correct.

To process a query efficiently, the query processor uses:

e The specified query

e Statistics about the tables, indexes, and columns named in the query
« Configurable variables

The query processor has to execute several steps, using several modules,
to successfully process a query:

Figure 1-1: : Query processor modules
1: Parser
L ™ | 2:Normalization
-
3. Preprocessor

4: Optimizer
v

5: Code generator
v

6: Procedura execution engine |

6: Query execution
engine

The parser converts the text of the SQL statement to an internal
representation called a query tree.

Thisquery treeisnormalized. Thisinvolves determining column and table
names, transforming the query treeinto conjugate normal form (CNF), and
resolving datatypes. At this point, you can determineif the statement may
benefit from using the statement cache.

The preprocessor transforms the query tree for some types of SQL
statements, such as SQL statements with subqueries and views, to amore
efficient query tree.

The optimizer analyzes the possible combinations of operations (join
ordering, access and join methods, parallelism) to execute the SQL
statement, and selects an efficient one based on the cost estimates of the
alternatives.

The code generator converts the query plan generated by the optimizer
into a format more suitable for the query execution engine.

The procedural engine executes command statements such as create table,
execute procedure, and declare cursor directly. For data manipulation
language (DML) statements, such as select, insert, delete, and update, the
engine sets up the execution environment for all query plansand callsthe
guery execution engine.

The query execution engine executes the ordered steps specified in the
query plan provided by the code generator.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Query optimizer

The query optimizer provides speed and efficiency for online transaction
processing (OLTP) and operational decision-support systems (DSS)
environments. You can choose an optimization strategy that best suits your
query environment.

The query optimizer is self-tuning, and requires fewer interventions than
versions of Adaptive Server Enterprise ealier than 15.0. It relies infrequently
on worktables for materialization between steps of operations; however, the
query optimizer may use more worktables when it determines that hash and
merge operations are more effective.

Some of the key featuresin the release 15.0 query optimizer include support
for:

* New optimization techniques and query execution operator supports that
enhance query performance, such as:

« On-the-fly grouping and ordering operator support using in-memory
sorting and hashing for queries with group by and order by clauses

e hash and merge join operator support for efficient join operations

* index union andindex intersection strategiesfor querieswith predicates
on different indexes

Table 1-1 on page 4 is alist of optimization techniques and operator
support provided in Adaptive Server Enterprise. Many of these techniques
map directly to the operators supported in the query execution. See“Lava
query execution engine” on page 20.

« Improved index selection, especially for joins with or clauses, and joins
with and search arguments (SARGs) with mismatched but compatible
datatypes

* Improved costing that employsjoin histograms to prevent inaccuracies that
might otherwise arise due to data skews in joining columns

* New cost-based pruning and timeout mechanismsin join ordering and plan
strategies for large, multiway joins, and for star and snowflake schema
joins

* New optimization techniques to support data and index partitioning

(building blocks for parallelism) that are especially beneficial for very
large data sets

* Improved query optimization techniques for vertical and horizontal
parallelism. See Chapter 5, “Parallel Query Processing.”

Performance and Tuning Series: Query Processing and Abstract Plans 3

Query optimizer

operator

e Improved problem diagnosis and resolution through:
e Searchable XML format trace outputs

e Detailed diagnostic output from new set commands. See Chapter 3,
“Displaying Query Optimization Strategies and Estimates.”

Table 1-1: Optimization operator support
Description

hash join

Determines whether the query optimizer may use the hash join algorithm. hash join
may consume more runtimeresources, but isval uablewhen thejoining columns do not
have useful indexes or when arelatively large number of rows satisfy the join
condition, compared to the product of the number of rowsin the joined tables.

hash union distinct

Determines whether the query optimizer may use the hash union distinct a gorithm,
which isinefficient if most rows are distinct.

merge join

Determines whether the query optimizer may use the merge join algorithm, which
relieson ordered input. merge join ismost valuable when input is ordered on the merge
key, for example, from an index scan. merge join is less valuable if sort operators are
required to order input.

merge union all

Determines whether the query optimizer may use the merge agorithm for union all.
merge union all maintains the ordering of the result rows from the union input. merge
union all is particularly valuable if the input is ordered and a parent operator (such as
merge join) benefits from that ordering. Otherwise, merge union all may require sort
operators that reduce efficiency.

merge union distinct

Determines whether the query optimizer may use the merge agorithm for union.
merge union distinct is sSimilar to merge union all, except that duplicate rows are not
retained. merge union distinct requires ordered input and provides ordered output.

nested-loop-join

The nested-loop-join algorithm is the most common type of join method and is most
useful in simple OLTP queries that do not require ordering.

append union all

Determines whether the query optimizer may use the append algorithm for union all.

distinct hashing

Determines whether the query optimizer may use a hashing algorithm to eliminate
duplicates, which is very efficient when there are few distinct values compared to the
number of rows.

distinct sorted

Determines whether the query optimizer may use a single-pass algorithm to eliminate
duplicates. distinct sorted relies on an ordered input stream, and may increase the
number of sort operatorsif itsinput is not ordered.

group-sorted

Determines whether the query optimizer may use an on-the-fly grouping agorithm.
group-sorted relies on an input stream sorted on the grouping columns, and it preserves
this ordering in its output.

distinct sorting

Determines whether the query optimizer may use the sorting algorithm to eliminate
duplicates. distinct sorting is useful when theinput is not ordered (for example, if there
isno index) and the output ordering generated by the sorting algorithm could benefit;
for example, in amerge join.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

operator

Description

group hashing

Technique

Determines whether the query optimizer may use agroup hashing algorithmto process
aggregates.

Description

multi table store ind

Determines whether the query optimizer may use reformatting on the result of a
multiple table join. Using multi table store ind may increase the use of worktables.

opportunistic distinct view

Determines whether the query optimizer may use a more flexible algorithm when
enforcing distinctness.

index intersection

Factors analyzed

Performance and Tuning Series: Query Processing and Abstract Plans

Determines whether the query optimizer may use the intersection of multiple index
scans as part of the query plan in the search space.

in optimizing queries

Query plans consist of retrieval tactics and an ordered set of execution steps,
which retrieve the data needed by the query. In devel oping query plans, the
query optimizer examines:

e Thesize of each table in the query, both in rows and data pages, and the
number of OAM and allocation pages to be read.

e Theindexesthat exist on thetablesand columnsused in the query, thetype
of index, and the height, number of leaf pages, and cluster ratios for each
index.

e Theindex coverage of the query; that is, whether the query can be satisfied
by retrieving data from the index |leaf pages without accessing the data
pages. Adaptive Server can use indexes that cover queries, even if no
where clauses are included in the query.

e Thedensity and distribution of keysin the indexes.

e Thesizeof the available data cache or caches, the size of 1/0 supported by
the caches, and the cache strategy to be used.

e Thecost of physical and logical reads; that is, reads of physical 1/0 pages
from the disk, and of logical 1/0 reads from main memory.

e join clauses, with the best join order and join type, considering the costs and
number of scans required for each join and the usefulness of indexesin
limiting the 1/0.

Query optimizer

* Whether building aworktable (an internal, temporary table) with an index
on thejoin columnsisfaster than repeated table scansif there are no useful
indexes for theinner table in ajoin.

» Whether the query contains a max or min aggregate that can use an index
to find the value without scanning the table.

» Whether data or index pages must be used repeatedly, to satisfy a query
such as ajoin, or whether afetch-and-discard strategy can be employed
because the pages need to be scanned only once.

For each plan, the query optimizer determines the total cost by computing the
costs of logical and physical 1/0s, and CPU processing. If there are proxy
tables, additional network related costs are evaluated as well. The query
optimizer then selects the cheapest plan.

The query processor for Adaptive Server versions 15.0.2 and later defersthe
optimization of statementsin astored procedure until it executesthe statement.
This benefits the query processor because the values for local variables are
available for optimization for their respective statements.

Earlier versions of Adaptive Server used default guesses for selectivity
estimates on predicates using local variables.

Transformations for query optimization

After aquery isparsed and preprocessed, but before the query optimizer begins
itsplan analysis, the query istransformed to increase the number of clausesthat
can be optimized. The transformation changes made by the optimizer are
transparent unlessthe output of such query tuning tools asshowplan, dbcc(200),
statistics io, or the set commandsis examined. If you run queries that benefit
from the addition of optimized search arguments, the added clausesarevisible.
In showplan output, it appears as“Keysare” messagesfor tablesfor which you
specify no search argument or join.

Search arguments converted to equivalent arguments

The optimizer looks for query clauses to convert to the form used for search
arguments. These are listed in Table 1-2.

6 Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Table 1-2: Search argument equivalents

Clause

Conversion

between

Converted to >= and <= clauses. For example, between 10 and 20
is converted to >= 10 and <= 20.

like

If the first character in the pattern is a constant, like clauses may
be converted to greater than or lessthan queries. For example, like
"sm%" becomes >="sm" and < "sn".

If thefirst character isawildcard, aclause such aslike "%x" cannot
use an index for access, but histogram values can be used to
estimate the number of matching rows.

in(values_list)

Convertedtoalist of or queries, that is, int_col in (1, 2, 3) becomes
int_col = 1 or int_col = 2 or int_col = 3. The maximum number of
eementsin an in-list is 1025

Search argument transitive closure applied where applicable

The optimizer appliestransitive closure to search arguments. For example, the
following query joinstitles and titleauthor on title_id and includes a search
argument on titles.title_id:

select au_lname,
from titles t,
where t.title id =

title

titleauthor ta,
ta.title id
and a.au id = ta.au id
and t.title id = “T81002"

authors a

This query isoptimized asif it also included the search argument on
titleauthor.title_id:

select au_ lname,
from titles t,
where t.title id =

title
titleauthor ta,
ta.title id

authors a

and a.au_id = ta.au id
and t.title id = “T81002”
and ta.title id = “T81002"

With this additional clause, the query optimizer can use index statistics on
titles.title_id to estimate the number of matching rows in the titleauthor table.
The more accurate cost estimates improve index and join order selection.

equi-join predicate transitive closure applied where applicable

The optimizer appliestransitive closure to join columns for anormal equi-join.
Thefollowing query specifiesthe equi-join of t1.c11 andt2.c21, and the equi-join
of t2.c21 and t3.¢31:

Performance and Tuning Series: Query Processing and Abstract Plans 7

Query optimizer

select *

from tl, t2, t3

where tl.cll = t2.c21
and t2.c21 = t3.c31
and t3.c31 = 1

Without join transitive closure, the only join orders considered are (t1, t2, t3),
(t2, t1, t3), (t2, t3, t1),and (3, t2, t1). By adding the join on t1.c11 = t3.31, the
query processor expands the list of join ordersto include: (t1, t3, t2) and (13, t1,
t2). Search argument transitive closure appliesthe condition specified by t3.c31
=1 to thejoin columns of t1 and t2.

Similarly, equi-join transitive closure is also applied to equi-joins with or
predicates as follows:

select *

from R, S

where R.a = S.a

and (R.a = 5 OR S.b = 6)

The query optimizer infers that this would be equivalent to:

select *

from R, S

where R.a = S.a

and (S.a = 5 or S.b = 6)

The or predicate could be evaluated on the scan of S and possibly be used for
an or optimization, thereby effectively using the indexes of S.

Another example of join transitive closureisits application to compex SARGs,
so that a query such as:

select *
from R, S
where R.a = S.a and (R.a + S.b = 6)

istransformed and inferred as:

select *

from R, S

where R.a = S.a
and (S.a + S.b = 6)

The complex predicate could be evaluated on the scan of S, resulting in
significant performance improvements due to early result set filtering.

Transitive closure is used only for normal equi-joins, as shown. join transitive
closureis not performed for:

* Non-equi-joins; for example, t1.c1 > t2.c2

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

e Outer joins, for example, t1.c11 *=t2.c2, or left join Or right join
e Joins across subquery boundaries

« Joinsused to check referential integrity or the with check option on views

Note Asof Adaptive Server Enterprise 15.0, thesp_configure optiontoturnon
or off join transitive closure and sort merge join is discontinued. Whenever
applicable, join transitive closure is aways applied in Adaptive Server
Enterprise 15.0 and later.

Predicate transformation and factoring to provide additional optimization paths

Predicate transformation and factoring increases the number of choices
available to the query processor. It adds optimizable clausesto a query by
extracting clauses from blocks of predicates linked with or into clauses linked
by and. The additional optimized clauses mean there are more access paths
availablefor query execution. The original or predicates are retained to ensure
query correctness.

During predicate transformation:

1 Simple predicates (joins, search arguments, and in lists) that are an exact
match in each or clause are extracted. In the query in step 3, below, this
clause matches exactly in each block, so it is extracted:

t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query uses
between 15in both query blocks (though the end ranges are different). The
equivalent clauseis extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all termsthat reference
the sametablearetreated asasingle predicate during expansion. Both type
and price are columnsin thetitles table, so the extracted clauses are:

(type = "travel" and price >=15 and price <= 30)
or
(type = "business" and price >= 15 and price <= 50)

3 inlistsand or clauses are extracted. If there are multiplein listsfor atable
within ablocks, only the first is extracted. The extracted lists for the
sample query are:

Performance and Tuning Series: Query Processing and Abstract Plans 9

Query optimizer

p.pub_id in (“P220”, “P583”, “P780")
or
p.pub_id in (“P651", “P066", “P629")

Since these steps can overlap and extract the same clause, duplicates are
eliminated.

Each generated term is examined to determine whether it can be used as
an optimized search argument or ajoin clause. Only those terms that are
useful in query optimization are retained.

The additional clauses are added to the query clauses specified by the user.

For example, all clauses optimized in this query are enclosed in the or
clauses:

select p.pub id, price
from publishers p, titles t

where (
t.pub id = p.pub_ id
and type = “travel"
and price between 15 and 30
and p.pub_id in (“P220", “P583", “P780")
)
or (
t.pub id = p.pub_ id
and type = “business"
and price between 15 and 50
and p.pub _id in (“P651", “P066", “P629")

)

Predicate transformation pulls clauses linked with and from blocks of clauses
linked with or, such as those shown above. It extracts only clauses that occur
in al parenthesized blocks. If the example above had a clause in one of the
blocks linked with or that did not appear in the other clause, that clause would
not be extracted.

Handling search arguments and useful indexes

It isimportant that you distinguish between where and having clause predicates
that can be used to optimizethe query and those that are used later during query
processing to filter the returned rows.

10 Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

You can use search arguments to determine the access path to the data rows
when a column in the where clause matches an index key. The index can be
used to locate and retrieve the matching data rows. Once the row has been
located in the data cache or has been read into the data cache from disk, any
remaining clauses are applied.

For example, if the authors table has on an index on au_Iname and another on
city, either index can be used to locate the matching rows for this query:

select au_lname, city, state
from authors

where city = “Washington"
and au_lname = “Catmull"

The query optimizer uses statistics, including histograms, the number of rows
inthetable, theindex heights, and the cluster ratiosfor theindex and data pages
to determinewhichindex providesthe cheapest access. Theindex that provides
the cheapest access to the data pages is chosen and used to execute the query,
and the other clauseis applied to the data rows once they have been accessed.

Nonequality operators

The non-equality operators, < > and !=, are special cases. The query optimizer
checks whether it should cover nonclustered indexes if the column isindexed,
and uses a nonmatching index scan if an index covers the query. However, if
the index does not cover the query, the table is accessed through arow ID
lookup of the data pages during the index scan.

Examples of search argument optimization

Shown below are examples of clauses that can be fully optimized. If there are
statistics on these columns, they can be used to help estimate the number of
rowsthe query will return. If there areindexes on the columns, the indexes can
be used to access the data.

au_lname = “Bennett"

price >= $12.00

advance > $10000 and advance < $20000
au_lname like "Ben%" and price > $12.00

These search arguments cannot be optimized unless afunctional index is built

on them:
advance * 2 = 5000 /*expression on column side
not permitted */
substring(au lname,1,3) = "Ben" /* function on

Performance and Tuning Series: Query Processing and Abstract Plans 11

Query optimizer

Handling joins

column name */
These two clauses can be optimized if written in this form:

advance = 5000/2
au_lname like "Ben%"

Consider this query, with the only index on au_lname:

select au_lname, au_fname, phone
from authors
where au lname = “Gerland”
and city = "San Francisco"

The clause qualifies as a search argument:
au_lname = “Gerland"
e Thereisanindex on au_lname
» Thereare no functions or other operations on the column name.
» The operator is avalid search argument operator.

This clause matches all the criteria above except thefirst; thereisno index on
the city column. In this case, the index on au_Iname is used for the query. All
data pages with a matching last name are brought into cache, and each
matching row is examined to see if the city matches the search criteria.

The query optimizer processesjoin predicatesthe sameway it processes search
arguments, in that it uses statistics, number of rowsin the table, index heights,
and the cluster ratiosfor theindex and data pagesto determinewhich index and
join method provides the cheapest access. In addition, the query optimizer also
uses join density estimates derived from join histograms that give accurate
estimates of qualifying joining rowsand the rowsto be scanned in the outer and
inner tables. The query optimizer also must decide on the optimal join ordering
that will yield the most efficient query plan. The next sections describe the key
techniques used in processing joins.

Join density and join histograms

12

The query optimizer uses a cost model for joins that uses table-normalized
histograms of the joining attributes. This technique givesan exact valuefor the
skewed values (that is, frequency count) and uses the range cell densitiesfrom
each histogram to estimate the cell counts of corresponding range cells.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

The join density is dynamically computed from the “join histogram,” which
considers the joining of histograms from both sides of the join operator. The
first histogram join occurs typically between two base tables when both
attributes have histograms. Every histogram join creates a new histogram on
the corresponding attribute of the parent join's projection.

The outcome of the join histogram technique is accurate join selectivity
estimates, even if data distributions of the joining columns are skewed,
resulting in superior join orders and performance.

Expression histogramming selectivity estimates

Versions of Adaptive Server earlier than 15.0.2 used default “ guesses’ for
selectivity estimates.

Adaptive Server versions 15.0.2 and later apply histogramming estimates to
single column predicatesif the histogram exists on the column. Thisresultsin
more accurate row estimates, and improves the join order selection for query
plans.

In this example, if the expression is very selective, it may be better to place
tablet1 at the beginning of the join order:

select * from tl,t2 where substring(tl.charcol, 1, 3)
= "LMC" and tl.al = t2.b

Joins with mixed datatypes

A basic requirement is the ability to build keys for index lookups whenever
possible, without regard to mixed datatypes of any of thejoin predicatesversus
the index key. Consider the following query:

create table Tl (cl int, c¢2 int)
create table T2 (¢l int, c¢2 float)
create index il on T1(c2)

create index il on T2 (c2)

select * from T1l, T2 where T1l.c2=T2.c2

Assumethat T1.c2 isof typeint and hasan index on it, and that T2.c2 is of type
float with an index.

Performance and Tuning Series: Query Processing and Abstract Plans 13

Query optimizer

Aslong as datatypes are implicitly convertible, the query optimizer can use
index scans to process the join. In other words, the query optimizer uses the
column value from the outer table to position the index scan on the inner table,
even when the lookup value from the outer table has a different datatype than
the respective index attribute of the inner table.

Joins with expressions and or predicates

join ordering

14

See “Predi cate transformation and factoring to provide additional
optimization paths” on page 9 for description of how the query optimizer
handles joins with expressions and or predicates.

One of the key tasks of the query optimizer isto generate a query plan for join
queries so that the order of the relations in the joins processed during query
execution is optimal. Thisinvolves elaborate plan search strategies that can
consume significant time and memory. The query optimizer uses several
effective techniques to obtain the optimal join ordering. The key techniques
are:

» Useof agreedy strategy to obtain aninitial good ordering that can be used
as an upper boundary to prune out other, subsequent join orderings. The
greedy strategy employs join row estimates and the nested-loop-join
method to arrive at the initial ordering.

* Anexhaustive ordering strategy follows the greedy strategy. In this
strategy, apotentially better join ordering replaces the join ordering
obtained in the greedy strategy. This ordering may employ any join
method.

» Useof extensive cost-based and rule-based pruning techniques eliminates
undesirable join orders from consideration. The key aspect of the pruning
technique is that it always compares partial join orders (the prefix of a
potential join ordering) against the best complete join ordering to decide
whether to proceed with the given prefix. This significantly improves the
time required determine an optimal join order.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

e Thequery optimizer can recognize and process star or snowflake schema
joins and process their join ordering in the most efficient way. A typical
star schemajoin involvesalarge Fact table that has equi-join predicates that
join it with several Dimension tables. The Dimension tables have no join
predicates connecting each other; that is, there are no joins between the
Dimension tables themselves, but there are join predicates between the
Dimension tables and the Fact table. The query optimizer employs special
join ordering techniques during which the large Fact table is pushed to the
end of the join order and the Dimension tables are pulled up front, yielding
highly efficient query plans. The query optimizer does not, however, use
thistechniqueif the star schemajoins contain subqueries, outer joins, Or or
predicates.

Optimization goals

Optimization goal sare aconvenient way to match query demandswith the best
optimization techniques, thus ensuring optimal use of the optimizer’stime and
resources. The query optimizer allows you to configure three types of
optimization goal's, which you can specify at threetiers: server level, session
level, and query level.

Set the optimization goal at the desired level. The server-level optimization
goal isoverridden at the session level, which is overridden at the query level.

These optimization goalsallow you to choose an optimization strategy that best
fits your query environment:

* allrows_mix — the default goal, and the most useful goal in a mixed-query
environment. allows_mix balances the needs of OLTP and DSS query
environments.

e allrows_dss —the most useful goal for operational DSS queries of medium
to high complexity. Currently, thisgoal is provided on an experimental
basis.

e allrows_oltp —the optimizer considers only nested-loop joins.
At the server level, use sp_configure. For example:

sp_configure "optimization goal", 0, "allrows mix"
At the session level, use set plan optgoal. For example:

set plan optgoal allrows dss

Performance and Tuning Series: Query Processing and Abstract Plans 15

Optimization goals

Limiting the time

16

At the query level, use a select or other DML command. For example:

select * from A order by A.a plan
"(use optgoal allrows dss)"

In general, you can set query-level optimization goals using select, update, and
delete statements. However, you cannot set query-level optimization goalsin
pureinsert statements, although you can set optimization goalsin insert...select
Statements.

spent optimizing a query

Long-running and complex queries can be time-consuming and costly to
optimize. The timeout mechanism helps to limit that time while supplying a
satisfactory query plan. The query optimizer provides a mechanism by which
the optimizer can limit the time taken by long-running and complex queries;
timing out allows the query processor to stop optimizing when it is reasonable
to do so.

The optimizer triggers timeout during optimization when both these
circumstances are met:

e At least one complete plan has been retained as the best plan, and
e The user configured timeout percentage limit has been exceeded.

You can limit the amount of time Adaptive Server spends optimizing a query
at every level, using the optimization timeout limit parameter, which you can set
to anyvalue between 0 and 1000. optimization timeout limit represents the
percentage of estimated query execution time that Adaptive Server must spend
to optimize the query. For example, specifying avalue of 10 tells Adaptive
Server to spend 10% of the estimated query execution time in optimizing the
query. Similarly, avalue of 1000 tells Adaptive Server to spend 1000% of the
estimated query execution time, or 10 times the estimated query execution
time, in optimizing the query.

See Chapter 5, “ Setting Configuration Parameters,” in the System
Administartion Guide for more information about optimization timeout limit.

A largetimeout value may be useful for optimization of stored procedureswith
complex queries. Generally, longer optimization time of the stored procedures
yields better plans; the longer optimization time can be amortized over severa
executions of the stored procedure.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

A small timeout value may be used when you want afaster compilation time
from complex ad hoc queries that normally take along time to compile.
However, for most queries, the default timeout value of 10 should suffice.

Use sp_configure to set the optimization timeout limit configuration parameter
at the server level. For example, to limit optimization time to 10% of total
guery processing time, enter:

sp_configure “optimization timeout limit", 10
Use set to set timeout at the session level:
set plan opttimeoutlimit <n>
where n isany integer between 0 and 4000.
Use select to limit optimization time at the query level:
select * from <table> plan " (use opttimeoutlimit <n>)"

where n isany integer between 0 and 1000.

Parallelism

Adaptive Server supports horizontal and vertical parallelism for query
execution. Vertical parallelism is the ability to run multiple operators at the
same time by employing different system resources such as CPUs, disks, and
so on. Horizontal parallelism isthe ability to run multiple instances of an
operator on the specified portion of the data.

See Chapter 5, “Parallel Query Processing,” for amore detailed discussion of
parallel query optimization in Adaptive Server.

Optimization issues

Although the query optimizer can efficiently optimize most queries, these
issues may effect the optimizer’s efficiency:

« |f statistics have not been updated recently, the actual data distribution
may not match the values used to optimize queries.

Performance and Tuning Series: Query Processing and Abstract Plans 17

Optimization issues

The rows referenced by a specified transaction may not fit the pattern
reflected by the index statistics.

Anindex may access alarge portion of the table.
where clauses (SARGS) are written in aform that cannot be optimized.
No appropriate index exists for a critical query.

A stored procedure was compiled before significant changes to the
underlying tables were performed.

No statistics exists for the SARG or joining columns.

These situations highlight the need to follow some best practicesthat allow the
query optimizer to perform at its full potential:

Creating search Follow these guidelines when you write search arguments for your queries:

arguments

18

Avoid functions, arithmetic operations, and other expressions on the
column side of search clauses. When possible, move functions and other
operations to the expression side of the clause.

Use as many search arguments as you can, to give the query processor as
much as possible to work with.

If aquery has more than 400 predicatesfor atable, put the most potentially
useful clauses near the beginning of the query, since only thefirst 102
SARGs on each table are used during optimization. (All of the search
conditions are used to qualify the rows.)

Queriesusing > (greater than) may perform better if you can rewrite them
to use >= (greater than or equal to). For example, this query, with an index
onint_col, usesthe index to find the first value where int_col equals 3, and
then scansforward to find the first value that is greater than 3. If there are
many rowswhereint_col equals 3, the server must scan many pagesto find
the first row whereint_col is greater than 3:

select * from tablel where int col > 3
It is more efficient to write the query thisway:
select * from tablel where int col >= 4

This optimization is more difficult with character strings and floating-
point data.

Check the showplan output to see which keys and indexes are used.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Use of SQL derived
tables

Tuning according to
object sizes

e Ifanindex isnot being used when you expect it to be, use output from the
set commands in Table 3-1 on page 112 to see whether the query
processor is considering the index.

Queriesexpressed asasingle SQL statement exploit the query processor better
than queries expressed in two or more SQL statements. SQL-derived tables
enable you to express, in asingle step, what might otherwise require several
SQL statementsand temporary tables, especially whereintermediate aggregate
results must be stored. For example:

select dt_1.* from
(select sum(total sales)
from titles west group by total sales)
dt_1(sales_sum),
(select sum(total sales)
from titles east group by total sales)
dt 2 (sales_sum)
where dt_1.sales _sum = dt_2.sales sum

Here, aggregate results are obtained from the SQL derivedtablesdt_1 anddt_2,
and ajoin is computed between the two SQL derived tables. Everything is
accomplished in asingle SQL statement.

For more information, see Chapter 9, “SQL Derived Tables,” in the Transact-
SQL User's Guide.

To understand query and system behavior, know the sizes of your tables and
indexes. At several stages of tuning work, you need size data to:

* Understand statistics i/o reports for a specific query plan.

« Understand the query processor's choice of query plan. The Adaptive
Server cost-based query processor estimates the physical and logical 1/0
reguired for each possible access method and sel ects the cheapest method.

« Determine object placement, based on the sizes of database objectsand on
the expected /O patterns on the objects.

To improve performance, distribute database objects across physical
devices, so that reads and writesto disk are evenly distributed.

Object placement is described in the Performance and Tuning Series:
Physical Database Tuning.

* Understand changes in performance. If objects grow, their performance
characteristics can change. For example, consider atablethat is heavily
used and is usually 100 percent cached. If the table growstoo large for its
cache, queries that access the table can suffer poor performance. Thisis
particularly true of joins that require multiple scans.

Performance and Tuning Series: Query Processing and Abstract Plans 19

Lava query execution engine

Do capacity planning. Whether you are designing a new system or
planning for the growth of an existing system, you must know the space
requirements to plan for physical disks and memory needs.

Understand output from sp_sysmon reports on physical 1/0.

See the System Administration Guide: Volume 2 for more information on
sizing.

Lava query execution engine

In Adaptive Server, al query plans are submitted to the procedural execution
enginefor execution. The Procedural Execution Engine drives execution of the
query plan by:

20

Executing simple SQL statements such as set, while, and goto directly.

Calling out to the utility modules of the query plan to execute create table
and create index and other utility commands.

Setting up the context for and driving the execution of stored procedures
and triggers.

Setting up the execution context and calling the query execution engineto
execute query plansfor select, insert, delete, and update statements.

Setting up the cursor execution context for cursor open, fetch, and close
statements, and calling the query execution engine to execute these
Statements.

Doing transaction processing and post execution cleanup.

To support the demands of today’s applications, the query execution enginefor
Adaptive Server 15.0 and later has been completely rewritten. With a new
guery execution engine and query optimizer in place, the procedural execution
engine in Adaptive Server 15.0 and later passes al query plans generated by
the new query optimizer to the Lava query execution engine.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

The Lava query execution engine executes Lava query plans. All query plans
chosen by the optimizer are compiled into Lava query plans. However, SQL
statementsthat are not optimized, such asset or create, are compiled into query
plans like those in versions of Adaptive Server earlier than 15.0, and are not
executed by the Lava query execution engine. Non-Lavaquery plansare either
executed by the procedural execution engine or by utility modulescalled by the
procedural engine. Adaptive Server version 15.0 and later has two distinct
kinds of query plans and thisis clearly seen in the showplan output (see
Chapter 3, “Displaying Query Optimization Strategies and Estimates”).

Lava query plans

A Lavaquery planisbuilt as an upside down tree of Lava operators: Thetop

Lavaoperator can have one or more child operators, whichinturn can have one
or more child operators, and so on, thus building a bottom-up tree of operators.
The exact shape of the tree and the operatorsin it are chosen by the optimizer.

An example of alLavaquery plan for this query is shown in Figure 1-2:

Select o.id from sysobjects o, syscolumns c
where 0.id <= 1 and o.id < 2

Performance and Tuning Series: Query Processing and Abstract Plans 21

Lava query execution engine

22

Figure 1-2: Lava query plan

Emit

NestedLoopJoin

IndexScan IndexScan
sysobjects(0) syscolumns(c)

The Lava query plan for this query consists of four Lava operators. The top
operator isan Emit (also called Root) operator that dispatches the results of
query execution either by sending the rowsto the client or by assigning values
to local variables.

The only child operator of the Emit is aNestedLoopJoin (NL Join)that usesthe
nested loop join algorithm tojoin the rows coming fromitstwo child operators,
(2) the Scan of sysobjects and (2) the scan of syscolumns.

Since the optimizer optimizes all select, insert, delete and update Statements,
these are always compiled into Lava query plans and executed by the Lava
query engine.

Some SQL statements are compiled into hybrid query plans. Such plans have
multiple steps, some of which are executed by the Utility modules, and afinal
step that isa Lava query plan. An exampleisthe select into statement; select
into is compiled into a two-step query plan:

* create table creates the target table of the statement.

* A Lavaquery planto insertsthe rowsinto the target table. To execute this
query plan, the Procedural Execution Engine calls the create table utility
to execute the first step to create the table.

Then the procedural engine calls the Lava query execution engine to execute
the Lava query plan to select and insert the rows into the target table.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Lava operators

The two other SQL statements that generate hybrid query plans are alter table
(but only when data copying is required) and reorg rebuild.

A Lavaquery plan isaso generated and executed to support bep. The support
for bep in Adaptive Server has always been in the bep utility. Now, in version
15.0 and later, the bep utility generates aLava query plan and callsthe Lava
guery execution engine to execute the plan.

See Chapter 2, “Using showplan” for more examples of Lava query plans.

Lava query plans are built of Lava operators. Each Lava operator is a self-
contained software object that implements one of the basic physical operations
that the optimizer uses to build query plans. Each Lava operator has five
methods that can be called by its parent operator. These five methods
correspond to the five phases of query execution:

* Acquire
* Open

* Next

. Close,

o Release

Because the Lava operators all provide the same methods (that is, the same
API), they can be interchanged like building blocks in a Lava query plan. For
example, you can replace the NLJoin operator in Figure 1-2 with a MergeJoin
operator or a HashJoin operator without impacting any of the other three
operatorsin the query plan.

The Lava operators that can be chosen by the optimizer to build Lava query
plans arelisted in Table 1-3:

Table 1-3: Lava operators

Operator Description

BulkOp Executes the part of bcp processing that is done in the Lava query engine. Only found
in query plansthat are created by the bep utility, not those created by the optimizer.

CacheScanOp Reads rows from an in-memory table.

DelTextOp Deletes text page chains as part of alter table drop column processing.

DeleteOp Deletes rows from alocal table.

Deletes rows from a proxy table when the entire SQL statement cannot be shipped to
the remote server. See also RemoteScanOp.

Performance and Tuning Series: Query Processing and Abstract Plans 23

Lava query execution engine

Operator

Description

EmitOp (RootOp)

Routes query execution result rows. Can send resultsto the client or assign result values
to local variables or fetch into variables. An EmitOp is alwaysthe top operator inaLava
query plan.

EmitExchangeOp Routes result rows from a subplan that is executed in parallel to the ExchangeOp in the
parent plan fragment. EmitExchangeOp always appears directly under an ExchangeOp.
See Chapter 5, “Parallel Query Processing.”

GroupSortedOp Performs vector aggregation (group by) when the input rows are already sorted on the

(Aggregation) group-by columns. See also HashVectorAggOp.

GroupSorted (Distinct)

Eliminates duplicate rows. Requirestheinput rowsto be sorted on all columns. Seealso
HashDistinctOp and SortOp (Distinct).

HashVectorAggOp Performs vector aggregation (group by). UsesaHash algorithm to group theinput rows,
SO no requirements on ordering of the input rows. See also GroupSortedOp
(Aggregation).

HashDistinctOp Eliminates duplicate rows using a hashing algorithm to find duplicate rows. See also
GroupSortedOp (Distinct) and SortOp (Distinct).

HashJoinOp Performs ajoin of two input row streams using the HashJoin algorithm.

HashUnionOp Performs aunion operation of two or moreinput row streams using a hashing algorithm
to find and eliminate duplicate rows. See a'so MergeUnionOp and UnionAllOp.

InsScrollOp Implements extra processing needed to support insensitive scrollable cursors. See also
SemilnsScrollOp.

InsertOp Inserts rowsto alocal table.

Inserts rows to a proxy table when the entire SQL statement cannot be shipped to the
remote server. See aso RemoteScanOp.

MergeJoinOp Performs ajoin of two streams of rows that are sorted on the joining columns using the
mergejoin agorithm.

MergeUnionOp Performs aunion or union all operation on two or more sorted input streams. Guarantees
that the output stream retains the ordering of the input streams. See also HashUnionOp
and UnionAllOp.

NestedLoopJoinOp Performs ajoin of two input streams using the NestedLoopJoin agorithm.

NaryNestedLoopJoinOp | Performsajoin of three or more input streams using an enhanced NestedLoopJoin
algorithm. This operator replaces aleft-deep tree of NestedLoopJoin operators and can
lead to significant performance improvements when rows of some of the input streams
can be skipped.

OrScanOp Insertsthein or or values into an in-memory table, sorts the values, and removes the
duplicates.Then returns the values, one at atime. Only used for SQL statementswithin
clauses or multiple or clauses on the same column.

PtnScanOp Reads rows from alocal table (partitioned or not) using either atable scan or an index
scan to access the rows.

RIDJoinOp Receives one or more row identifiers (RIDs) from its | eft-child operator and callson its
right-child operator (PtnScanOp) to find the corresponding rows. Used only on SQL
statements with or clauses on different columns of the same table.

24 Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Operator

Description

RIFilterOp (Direct)

Drivesthe execution of asubplan to enforce referential integrity constraintsthat can be
checked on arow-by-row basis.

Appearsonly in insert, delete, or update queries on tables with referential integrity
constraints.

RIFilterOp (Deferred)

Drives the execution of a sub-plan to enforce referential integrity constraints that can
only be checked after all rows that are affected by the query have been processed.

RemoteScanOp

Accesses proxy tables. The RemoteScanOp can:
* Read rows from asingle proxy table for further processing in a Lava query plan on
thelocal host.

» Passcomplete SQL statementsto aremote host for execution: insert, delete, update,
and select statements. In this case, the Lava query plan consists of an EmitOp with a
RemoteScanOp asitsonly child operator.

» Passan arbitrarily complex query plan fragment to a remote host for execution and
read in the result rows (function shipping).

RestrictOp

Eval uates expressions.

SQFilterOp

Drives the execution of a subplan to execute one or more subqueries.

ScalarAggOp

Performs scalar aggregation, such as aggregates without group by.

SemilnsScrollOp

Performs extra processing to support semi-insensitive scrollable cursors. See also
InsScrollOp.

SequencerOp

Enforces sequential execution of different sub-plansin the query plan.

SortOp

Sortsits input rows based upon specified keys.

SortOp (Distinct)

Sortsits input and removes duplicate rows. See also HashDisitnctOp and
GroupSortedOp (Distinct).

StoreOp Creates and coordinates the filling of aworktable, and creates a clustered index on the
worktable if required. StoreOp can only have an InsertOp as a child; the InsertOp
popul ates the worktable.

UnionAllOp Performsaunion all operation on two or moreinput streams. See also HashUnionOp and
MergeUnionOp.

UpdateOp Changesthevaueof columnsin rows of alocal table or of aproxy tablewhentheentire
update statement cannot be sent to the remote server. See a'so RemoteScanOp.

ExchangeOp Enables and coordinates parallel execution of Lava query plans. The ExchangeOp can

be inserted between almost any two Lava operators in aquery plan to divide the plan
into sub-plans that can be executed in parallel. See Chapter 5, “Parallel Query
Processing.”

Lava query execution

Execution of aLava query plan involves five phases:

Performance and Tuning Series: Query Processing and Abstract Plans 25

Lava query execution engine

Acquire — acquires resources needed for execution, such as memory
buffers and creating worktables.

Open — prepares to return result rows.
Next — generates the next result row.

Close — cleans up; for example, notifies the access layer that scanning is
complete or truncates worktables

Release — releases resources acquired during Acquire, such as memory
buffers, drops worktables.

Each Lava operator has a method with the same name as the phase, which is
invoked for each of these phases.

Figure 1-2 on page 22 demonstrates query plan execution:

26

Acquire phase

The acquire method of the Emit operator is invoked. The Emit operator
calls Acquire of its child, the NLJoin operator, which in turn calls Acquire
onitsleft-child operator (theindex scan of sysobjects) and then onitsright
child operator (the index scan of syscolumns).

Open phase

The Open method of the Emit operator isinvoked. The Emit operator calls
Open on the NLJoin operator, which calls Open only on its left-child
operator.

Next phase

The Next method of the Emit operator isinvoked. Emit calls Next on the
NLJoin operator, which calls Next on its |eft child, the Index Scan of
sysobjects. Theindex scan operator readsthefirst row from sysobjectsand
returns it to the NLJoin operator. The NLJoin operator then calls the Open
method of itsright child operator, the Index Scan of syscolumns. Then the
NLJoin operator callsthe Next method of the Index Scan of syscolumnsto
get arow that matchesthe joining key of the row from sysobjects. When a
matching row has been found, it is returned to the Emit operator, which
sendsit back to the client. Repeated invocations of the Next method of the
Emit operator generate more result rows.

Close phase

After al rows have been returned, the Close method of the Emit operator
isinvoked, which in turn calls Close of the NLJoin operator, which in turn
calls Close on both of its child operators.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

e Release phase

The Release method of the Emit operator isinvoked and the calls to the
Release method of the other operatorsis propagated down the query plan.

After successfully completing the Release phase of execution, the Lava query
engine returns control to the Procedural Execution Engine for final statement
processing.

How update operations are performed

Direct updates

In-place updates

Adaptive Server handles updatesin different ways, depending on the changes
being made to the data and the indexes used to locate the rows. The two major
types of updates are deferred updates and direct updates. Adaptive Server
performs direct updates whenever possible.

Adaptive Server performs direct updatesin a single pass:

* Itlocatesthe affected index and data rows.

* It writesthelog records for the changes to the transaction log.

« It makes the changes to the data pages and any affected index pages.
There are three techniques for performing direct updates:

e In-place updates

e Cheap direct updates

e Expensive direct updates

Direct updates require less overhead than deferred updates and are generally
faster, as they limit the number of log scans, reduce logging, save traversal of
index B-trees (reducing lock contention), and save 1/O because Adaptive
Server does not have to refetch pages to perform modifications based on log
records.

Adaptive Server performsin-place updates whenever possible.

Performance and Tuning Series: Query Processing and Abstract Plans 27

How update operations are performed

When Adaptive Server performs an in-place update, subsequent rows on the
page are not moved; row | Dsremain the same and the pointersin the row offset
table are not changed.

For an in-place update, the following requirements must be met:
e Therow being changed cannot change its length.

e The column being updated cannot be the key, or part of the key, of a
clustered index on an allpages-locked table. Because therowsin a
clustered index on an allpages-locked table are stored in key order, a
change to the key almost always means that the row location is changed.

e Oneor moreindexes must be unique or must allow duplicates.

e The update statement satisfies the conditions listed in “Restrictions on
update modes through joins’ on page 33.

e The affected columns are not used for referential integrity.
e There cannot be atrigger on the column.
e Thetable cannot be replicated (via Replication Server).

Anin-place update is the fastest type of update because it makes a single
changeto the data page. It changes all affected index entries by deleting the old
index rows and inserting the new index row. In-place updates affect only
indexes whose keys are changed by the update, since the page and row
locations are not changed.

Cheap direct updates

28

If Adaptive Server cannot perform an update in place, it tries to perform a
cheap direct update—changing the row and rewriting it at the same offset on
the page. Subsequent rows on the page are moved up or down so that data
remains contiguous on the page, but row |Ds remain the same. The pointersin
the row offset table change to reflect the new locations.

A cheap direct update must meet these requirements:

» Thelength of the datain the row is changed, but the row still fits on the
same data page, or the row length is not changed, but thereisatrigger on
the table or the table is replicated.

» The column being updated cannot be the key, or part of the key, of a
clustered index. Because Adaptive Server stores the rows of a clustered
index in key order, a change to the key almost always means that the row
location is changed.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

e Oneor more indexes must be unique or must allow duplicates.

* Theupdate statement satisfies the conditions listed in “ Restrictions on
update modes through joins’ on page 33.

e The affected columns are not used for referential integrity.

Cheap direct updates are almost as fast as in-place updates. They require the
same amount of 1/0O, but dlightly more processing. Two changes are made to
the data page (the row and the offset table). Any changed index keys are
updated by deleting old values and inserting new values. Cheap direct updates
affect only indexes whose keys are changed by the update, since the page and
row ID are not changed.

Expensive direct updates

If the data does not fit on the same page, Adaptive Server performs an
expensive direct update, if possible. An expensive direct update deletes the
datarow, including al index entries, and then inserts the modified row and
index entries.

Adaptive Server uses atable scan or an index to find the row in its original
location and then del etes the row. If the table has a clustered index, Adaptive
Server uses the index to determine the new location for the row; otherwise,
Adaptive Server inserts the new row at the end of the heap.

An expensive direct update must meet these requirements:

e Thelength of adatarow is changed so that the row no longer fits on the
same data page, and the row is moved to a different page, or the update
affects key columns for the clustered index.

e Theindex used to find the row is not changed by the update.

e Theupdate statement satisfies the conditions listed in “ Restrictions on
update modes through joins’ on page 33.

e The affected columns are not used for referential integrity.

An expensive direct update is the slowest type of direct update. The delete is
performed on one data page, and the insert is performed on a different data
page. All index entries must be updated, since the row location is changed.

Performance and Tuning Series: Query Processing and Abstract Plans 29

How update operations are performed

Deferred updates

Adaptive Server uses deferred updates when direct update conditions are not
met. A deferred update is the slowest type of update.

In a deferred update, Adaptive Server:

L ocates the affected data rows, writing the log records for deferred delete
and insert of the data pages as rows are located.

Reads the log records for the transaction and performs the del etes on the
data pages and any affected index rows.

Reads the log records a second time, and performs all inserts on the data
pages, and inserts any affected index rows.

When deferred updates are required

30

Deferred updates are always required for:

Updates that use self-joins
Updates to columns used for self-referential integrity
Updates to atable referenced in a correlated subquery

Deferred updates are also required when:

An update moves arow to anew page whilethe tableis being accessed by
atable scan or a clustered index.

Duplicate rows are not allowed in the table, and there is no unique index
to prevent them.

Theindex used to find the data row is not unique, and the row is moved
because the update changes the clustered index key or because the new
row does not fit on the page.

Deferred updatesincur more overhead than direct updates because they require
Adaptive Server to reread the transaction log to make the final changesto the
data and indexes. Thisinvolves additional traversal of the index trees.

For example, if thereisaclustered index ontitle, this query performsadeferred

update:
update titles set title = "Portable C Software" where
title = "Designing Portable Software"

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Deferred index inserts

Adaptive Server performs deferred index updates when the update affects the
index used to access the table or when the update affects columnsin a unique
index. In this type of update, Adaptive Server:

+ Deletestheindex entriesin direct mode

« Updates the data page in direct mode, writing the deferred insert records
for the index

« Readsthelog records for the transaction and inserts the new valuesin the
index in deferred mode

Deferred index insert mode must be used when the update changes the index
used to find the row or when the update affects a unique index. A query must
update a single, qualifying row only once—deferred index update mode
ensuresthat arow isfound only once during the index scan and that the query
does not prematurely violate a uniqueness constraint.

The update in Figure 1-3 on page 32 changes only the last name, but the index
row is moved from one page to the next. To perform the update, Adaptive
Server:

1 Readsindex page 1133, deletestheindex row for “Greene” from that page,
and logs adeferred index scan record.

2 Changes“Green” to “Hubbard”’ on the data page in direct mode and
continues the index scan to see if more rows need to be updated.

3 Insertsthe new index row for “Hubbard” on page 1127.

Figure 1-3 shows the index and data pages prior to the deferred update
operation, and the sequence in which the deferred update changes the data and
index pages.

Performance and Tuning Series: Query Processing and Abstract Plans 31

How update operations are performed

Figure 1-3: Deferred index update

update employee
set Iname = "Hubbard"

where Iname = "Green" S
- c Page 1242
Before update: \ S 10 O’Leary
11 Ringer
9 5 9 E Page 1132 12 White
= = -~ = c Bennet |1421,1 13 Jenkins
Y 2 S O ch S Chan 1129,3
¥ o a X< Dull 1409,1 Page 1307
Page 1001 Page 1007 Edwards | 1018,5 14 | Hunter
Bennet | 1421,1 ?f;;et 1421, 15 | Smith
1007 16 Ringer
Karsen |1411,3 Greane 1307, \ Page 1133 17 | Greane
1009 1133 Greane |1307,4
Green 1421,2
Greene |1409,2 \ Page 1421
Page 1009 18 Bennet
Karsen |1411,3 19 | Green
1315 Page 1127 20
Hunter |1307,1| LYokgmoto
Jenkins | 12424 Page 1400
21 Dull
22 Greene
23 White
Root page Intermediate Leaf pages Data pages
Update steps Step 1: Write log Page 1133 %\
records, then Greane [1307,4 }’

delete index row. Greene [1409,2 |~——pu |"|

Page 1421
Step 2: Change ig Bennet
data page. .
20
Step 3: Read log, Page 1127
insert index row. Hubbard |1421,2

Hunter 1307,1
Jenkins [1242,4

32 Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Assume a similar update to the titles table:

update titles

set title = "Computer Phobic’s Manual",
advance = advance * 2

where title like "Computer Phob%"

This query shows a potential problem. If a scan of the nonclustered index on
the title column found “ Computer Phobia Manual,” changed thetitle, and
multiplied the advance by 2, and then found the new index row “ Computer
Phobic’'s Manua” and multiplied the advance by 2, the advance wold be very
skewed against the reality.

A deferred index delete may befaster than an expensivedirect update, or it may
be substantially dower, depending on the number of log recordsthat need to be
scanned and whether the log pages are still in cache.

During deferred update of a data row, there can be asignificant time interval
between the del ete of theindex row and theinsert of the new index row. During
thisinterval, there is no index row corresponding to the data row. If a process
scanstheindex during thisinterval at isolation level O, it doesnot returntheold
or new value of the data row.

Restrictions on update modes through joins

Updates and del etes that involve joins can be performed in direct,
deferred_varcal, or deferred_index mode when the table being updated is the
outermost table in the join order, or when it is preceded in the join order by
tables where only asingle row qualifies.

Joins and subqueries in update and delete statements

The use of the from clause to perform joinsin update and delete statementsisa
Transact-SQL extension to ANSI SQL. Subqueriesin ANSI SQL form can be
used in place of joins for some updates and del etes.

This example uses the from syntax to perform ajoin:

update tl set tl.cl = tl.cl + 50
from tl, t2

where tl.cl = t2.cl

and t2.c2 =1

The following example shows the equivalent update using a subquery:

update tl set cl = cl + 50

Performance and Tuning Series: Query Processing and Abstract Plans 33

How update operations are performed

where tl.cl in (select t2.cl
from t2
where t2.c2 = 1)

The update modethat isused for thejoin query depends on whether the updated
tableis the outermost query in the join order—if it is not the outermost table,
the update is performed in deferred mode. The update that uses a subquery is
always performed as adirect, deferred varcol, or deferred_index update.

For aquery that usesthe from syntax and performs adeferred update due to the
join order, use showplan and statistics io to determine whether rewriting the
guery using a subquery can improve performance. Not all queries using from
can be rewritten to use subqueries.

Deletes and updates in triggers versus referential integrity

Triggers that join user tables with the deleted or inserted tablesarerunin
deferred mode. If you are using triggers solely to implement referential
integrity, and not to cascade updates and deletes, then using declarative
referential integrity in place of triggers may avoid the penalty of deferred
updatesin triggers.

Optimizing updates

34

showplan messages provide information about whether an update is performed
in direct mode or deferred mode. If a direct update is not possible, Adaptive
Server updates the data row in deferred mode. There are times when the
optimizer cannot know whether adirect update or a deferred update will be
performed, so two showplan messages are provided:

» The"deferred _varcol” message shows that the update may change the
length of the row because a variable-length column isbeing updated. If the
updated row fits on the page, the update is performed in direct mode; if the
update does not fit on the page, the update is performed in deferred mode.

» The"deferred_index” messageindicatesthat the changesto the datapages
and the deletes to the index pages are performed in direct mode, but the
inserts to the index pages are performed in deferred mode.

These types of direct updates depend on information that is available only at
runtime, since the page actually has to be fetched and examined to determine
whether the row fits on the page.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Designing for direct updates

When you design and code your applications, be aware of the differences that
can cause deferred updates. To help avoid deferred updates:

« Create at least one unique index on the table to encourage more direct
updates.

e Whenever possible, use nonkey columnsin the where clause when
updating a different key.

* If youdo not use null values in your columns, declare them as not null in
your create table statement.

Effects of update types and indexes on update modes

Table 1-4 on page 36 shows how indexes affect the update mode for three
different types of updates. In all cases, duplicate rows are not allowed. For the
indexed cases, the index isontitle_id. The three types of updates are:

e Update of avariable-length key column:;

update titles set title_id = value
where title id = "T1234"

e Update of afixed-length nonkey column:

update titles set pub date = value
where title id = "T1234"

* Update of avariable-length nonkey column:

update titles set notes = value
where title id = "T1234"

Table 1-4 shows how auniqueindex can promote amore efficient update mode
than a nonunique index on the same key. Pay particular attention to the
differences between direct and deferred in the shaded areas of the table. For
example, with aunique clustered index, all of these updates can be performed
in direct mode, but they must be performed in deferred mode if the index is
nonunique.

For atable with a nonunique clustered index, a unique index on any other
columnin thetable providesimproved update performance. In some cases, you
may want to add an IDENTITY column to atable to include the column as a
key in an index that would otherwise be nonunique.

Performance and Tuning Series: Query Processing and Abstract Plans 35

How update operations are performed

Table 1-4: Effects of indexing on update mode

Update to:

Variable-length Fixed-length Variable-length
Index key column column
No index N/A direct deferred_varcol
Clustered, unique direct direct direct
Clustered, not unique deferred deferred deferred
Clustered, not unique, with auniqueindex on another deferred direct deferred_varcol
column
Nonclustered, unique deferred_varcol direct direct
Nonclustered, not unique deferred_varcol direct deferred_varcol

If thekey for anindex isfixed length, the only differencein update modesfrom
those shown in the table occurs for nonclustered indexes. For a nonclustered,

nonunigue index, the update modeisdeferred_index for updatesto the key. For
anonclustered, unique index, the update mode s direct for updates to the key.

If thelength of varchar or varbinary is close to the maximum length, use char or
binary instead. Each variable-length column adds row overhead and increases
the possibility of deferred updates.

Using max_rows_per_page to reduce the number of rows allowed on a page
increases direct updates, because an update that increases the length of a
variable-length column may still fit on the same page.

For more information on using max_rows_per_page, see the Performance and
Tuning Series: Physical Database Tuning.

Using sp_sysmon while tuning updates

36

You can use showplan to determine whether an update is deferred or direct, but
showplan does not give you detailed information about the type of deferred or
direct update. Output fromthesp_sysmon or Adaptive Server Monitor supplies
detailed statistics about the types of updates performed during asample
interval.

Run sp_sysmon asyou tune updates, and look for reduced numbers of deferred
updates, reduced locking, and reduced 1/0.

See the Performance and Tuning Series. Monitoring Adaptive Server with
Sp_sysmon.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

This chapter describesthe messages printed by the showplan utility, which
displays the query plan in atext-based format for each SQL statement in

abatch or stored procedure.
Topic Page
Displaying aquery plan 37
Statement-level output 44
Query plan shape 47
Union operators 90
INSTEAD-OF TRIGGER operators 106

Displaying a query plan
To see query plans, use:
set showplan on
To stop displaying query plans, use:
set showplan off
You can use showplan in conjunction with other set commands.

To display query plans for a stored procedure, but not execute them, use
the set fmtonly command.

See Chapter 12, “ Creating and Using Abstract Plans,” for information on
how options interact.

Note Do not use set noexec with stored procedures—compilation and
execution does not occur and you do not receive the necessary output.

Performance and Tuning Series: Query Processing and Abstract Plans 37

Displaying a query plan

Query plans in Adaptive Server Enterprise 15.0 and later

Adaptive Server traditionally classifies Transact-SQL statements into two
groups:

e Optimizable. For example, this query is optimizable because it has many
relations (tables):

select * from tl, t2, t3, t4
where tl.cl = t2.cl and .
order by t3.c4

The query processor requiresthejoin order, type of join, search arguments,
and ordering to be optimized.

* Nonoptimizable. Utility commands like update statistics and dbcc are not
optimized.

In Adaptive Server version 15.0 and later the optimizer and most of the
execution engine was rewritten. The utility commands currently generate
nearly identical showplan output compared with earlier versions. However,
versions 15.0 and later generate new showplan output for optimizable
Statements.

Some of the new features of the query plans that showplan must display
include:

» Plan elements— query plans can be composed from over thirty different
operators.

» Plan shape — query plans are upside-down trees of operators. In general,
more operatorsin aquery plan result in more combinations of possibletree
shapes. Query plansin version 15.0 and later can be more complex than
those found in earlier versions. Nested indentation is provided to assist in
visualizing the tree shape of these query plans.

* Subplansthat are executed in parallel.

Why do | get different query plans for the same query?

The query processor may return a different query plan depending on whether
you configure set plan optgoal for allrows_oltp, allrows_mix, Or allrows_dss
(unless you force a plan with forceplan):

» allrows_oltp —the query processor uses the nested-loop join operator.

38 Adaptive Server Enterprise

CHAPTER 2 Using showplan

e allrows_mix —thequery processor allows both nested-loop joinsand merge
joins. The query processor measures their relative costs to determine
which join it uses.

e allrows_dss —the query processor uses nested-loop, merge-, or hash-joins.
The query processor measures their relative costs to determine which join
it uses.

Using set showplan with noexec

You can use set noexec With set showplan on to view a query plan without
executing the query. For example, this query prints the query plan but also
executes the queries, which might be time consuming:

set showplan on

go

select * from really big table

select * from really really big table

go

However, if you include set noexec, you can view the query plan without
running the query.

Stored procedures are compiled when they are first used, or if the resultant
compiled planis aready in use by another session, so set noexec can have
unexpected results, and Sybase® recommends that you use set fmtonly on
instead. If you include a stored proceduresinside another stored procedure, the
second stored procedure is not run when you enable set noexec. For example,
if you create two stored procedures:

create procedure sp B
as
begin
select * from authors
end

and

create procedure sp A
as
begin
select * from titles
execute sp_ B
end

Performance and Tuning Series: Query Processing and Abstract Plans 39

Using set showplan with noexec

Individually, their query plans look like this:

set showplan on
sp_B
QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is EXECUTE.
QUERY PLAN FOR STATEMENT 1 (at line 4).

STEP 1

The type of query is SELECT.
1 operator(s) under root
|ROOT : EMIT Operator (VA = 1)
|

| | SCAN Operator (VA = 0)
| | FROM TABLE

| | titles

| | Table Scan.

| | Forward Scan.

| | Positioning at start of table.

| | Using I/O Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy for data pages.

If you enable set noexec:

set noexec on

go

set showplan on
go

exec proc A

go

Adaptive Server produces no showplan output for procedure B because noexec
isenabled, so Adaptive Server isnot actually executing or compiling procedure
B, and does not print any showplan output. If noexec was not enabled, Adaptive
Server would have compiled and printed plans for both A and B stored
procedures.

But if you use set fmtonly on:

use pubs2
go
create procedure sp_ B
as
begin
select * from authors

40 Adaptive Server Enterprise

CHAPTER 2 Using showplan

end

go

create procedure sp A

as

begin
select * from titles
execute sp B

end

go

set showplan on

go

set fmtonly on

go

QUERY PLAN FOR STATEMENT 1

STEP 1

The type of query is SET OPTION ON.

sp_B
go

QUERY PLAN FOR STATEMENT 1

STEP 1

The type of query is EXECUTE.

QUERY PLAN FOR STATEMENT 1

STEP 1

The type of query is SELECT.

(at line 1).

(at line 1).

(at line 4).

1 operator (s) under root

|ROOT:EMIT Operator (VA

SCAN Operator
FROM TABLE
authors

(VA

Forward Scan.

Positioning at start of table.
Using I/0 Size 2 Kbytes for data pages.

I
I
I
| | Table Scan.
[
[
I
I

1)

0)

With LRU Buffer Replacement Strategy for data pages.

Performance and Tuning Series: Query Processing and Abstract Plans

41

Using set showplan with noexec

au_id

au_lname
phone address

au_fname

city state country postalcode

(0 rows affected)
(return status = 0)

sp_A
go

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is EXECUTE.

QUERY PLAN FOR STATEMENT 1 (at line 4).

STEP 1

The type of query is SELECT.
1 operator(s) under root
|ROOT : EMIT Operator (VA = 1)
|

| | SCAN Operator (VA = 0)

| | FROM TABLE

| | titles

| | Table Scan.

| | Forward Scan.

| | Positioning at start of table.

| | Using I/O Size 2 Kbytes for data pages.
.

With LRU Buffer Replacement Strategy for data pages.

QUERY PLAN FOR STATEMENT 2 (at line 5).

STEP 1
The type of query is EXECUTE.

title id

42

title

Adaptive Server Enterprise

CHAPTER 2 Using showplan

type pub_id price advance
total sales

notes

pubdate contract

(0 rows affected)

QUERY PLAN FOR STATEMENT 1 (at line 4).

STEP 1

The type of query is SELECT.
1 operator(s) under root
|ROOT:EMIT Operator (VA = 1)
|

| | SCAN Operator (VA = 0)

| | FROM TABLE

| | authors

| | Table Scan.

| | Forward Scan.

| | Positioning at start of table.

| | Using I/0 Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy for data pages.

au_id au_lname au_fname
phone address
city state country postalcode

Both stored procedures are run and you see the resulting showplan output.

Performance and Tuning Series: Query Processing and Abstract Plans 43

Statement-level output

Statement-level output

Thefirst section of showplan output for each query plan presents statement-
level information, including the statement and line number in the batch or
stored procedure of the query for which the query plan was generated:

QUERY PLAN FOR STATEMENT N (at line N).

This message may be followed by a series of messages that apply to the
statement’s entire query plan. If the query plan was generated using an abstract
plan about how the abstract plan was forced:

* If anexplicit abstract plan was given by a plan clause in the SQL
statement, the messageis:

Optimized using the Abstract Plan in the PLAN clause.

» If anabstract plan has been internally generated (that is, for alter table and
reorg commands that are executed in parallel), the messageis:

Optimized using the forced options (internally
generated Abstract Plan).

» If anew statement is cached, the output includes:

STEP 1

The type of query is EXECUTE.
Executing a newly cached statement.

» |If acached statement is reused, the output includes:

STEP 1

The type of query is EXECUTE.
Executing a previously cached statement.

» If the query recompiles the statement, the output includes:

QUERY PLAN IS RECOMPILED DUE TO SCHEMACT.

THE RECOMPILED QUERY PLAN IS:

QUERY PLAN FOR STATEMENT 1 (at line 1)

e |If an abstract plan has been retrieved from sysqueryplans because
automatic abstract plan usage is enabled, the messageis:

44 Adaptive Server Enterprise

CHAPTER 2 Using showplan

Optimized using an Abstract Plan (ID : N).

« Ifthequery planisaparallel query plan, the following message showsthe
number of processes (coordinator plusworker) that are required to execute
the query plan:

Executed in parallel by coordinating process and N
worker processes.

« If the query plan was optimized using simulated statistics, this message
appears next:

Optimized using simulated statistics.

e The output includes va= which indicates the virtual address for the
operator, and the order in which each operator is executed. The query
processor starts at VA=0. Generally, scan nodes (leaf nodes) are executed
first.

Note The va= inthe showplan output is available for Adaptive Server
version 15.0.2 ESD #2 and later. You will not see va= in earlier versions
of Adaptive Server.

e Adaptive Server uses a scan descriptor for each database object that is
accessed during query execution. By default, each connection (or each
worker process for parallel query plans) has 28 scan descriptors. If the
query plan requires accessto morethan 28 database objects, auxiliary scan
descriptors are allocated from a global pool. If the query plan uses
auxiliary scan descriptors, this message is printed, showing the total
number required:

Auxiliary scan descriptors required: N

e Thismessage shows the total number of operators appearing in the query
plan:

N operator(s) under root

* The next message shows the type of query for the query plan. For query
plans, the query type is select, insert, delete, or update:

The type of query is SELECT.

« Afinal statement-level messageis printed at the end of showplan output if
Adaptive Server is configured to enable resource limits. The message
displays the optimizer’s total estimated cost of logical and physical 1/0:

Total estimated I/0 cost for statement N (at line M) :
X.

Performance and Tuning Series: Query Processing and Abstract Plans 45

Statement-level output

The following query, with showplan output, shows some of these messages:

use pubs2

go

set showplan on

go

select stores.stor name, sales.ord num

from stores, sales, salesdetail

where salesdetail.stor id = sales.stor id

and stores.stor id = sales.stor id

plan " (m_join (i _scan salesdetailind salesdetail)

(m join (i scan salesind sales) (sort (t_scan stores))))"

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

STEP 1
The type of query is SELECT.

6 operator (s) under root
ROOT:EMIT Operator (VA = 6)

MERGE JOIN Operator (Join Type: Inner Join) (VA = 5)
Using Worktable3 for internal storage.

Key Count: 1

Key Ordering: ASC

| SCAN Operator (VA = 0)

| FROM TABLE

| salesdetail

| Index : salesdetailind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table will not be read.
| Using I/0 Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

MERGE JOIN Operator (Join Type: Inner Join) (VA = 4)
Using Worktable2 for internal storage.

Key Count: 1

Key Ordering: ASC

| SCAN Operator (VA = 1)
| FROM TABLE
| sales

| Table Scan.

46 Adaptive Server Enterprise

CHAPTER 2 Using showplan

Forward Scan.

Positioning at start of table.

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

| SORT Operator (VA = 3)
| Using Worktablel for internal storage.

| SCAN Operator (VA = 2)

| FROM TABLE

| stores

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

After the statement level output, the query plan appears. The showplan output
of the query plan consists of two components:

e Thenamesof the operators (some provide additional information) to show
which operations are being executed in the query plan.

e Vertical bars (the“|” symbol) with indentation to show the shape of the
query plan operator tree.

Query plan shape

The position of each operator in the tree determinesits order of execution.
Execution startsdown the left-most branch of thetree and proceedsto theright.
To illustrate execution, this section steps through the execution of the query
plan for the example in the previous section. Figure 2-1 shows a graphical
representation of the query plan.

Performance and Tuning Series: Query Processing and Abstract Plans 47

Query plan shape

48

Figure 2-1: Query plan

EMIT
VA=

MERGE JOIN (1)
Inner join
VA=

SCAN
salesdetailind

Inner join
VA= VA=
SCAN
sales
VA=

SCAN

stores

VA=

MERGE JOIN (2)

SORT
VA=

To generate aresult row, the EMIT operator calls for arow from its child, the
MERGE JOIN operator (1), which callsfor arow from itsleft child, the scan
operator for salesdetailind. When EMIT receives arow from itsleft child,
MERGE JOIN operator (1) callsfor arow fromitsright child, MERGE JOIN
operator (2). MERGE JOIN operator (2) callsfor arow from itsleft child, the

SCAN operator for sales.

When it receives arow from its left child, MERGE JOIN operator (2) callsfor
arow from itsright child, the scax operator. The scan operator is a data-
blocking operator. That is, it needs all of itsinput rows before it can sort them,
so the sorT operator keeps calling for rows fromits child, the scan operator
for stores, until al rows have been returned. Then the SorRT operator sorts
the rows and passes the first row to the MERGE JOIN operator (2).

Adaptive Server Enterprise

CHAPTER 2 Using showplan

TheMERGE JOIN operator (2) keeps calling for rows from either the left or
right child operators until it gets two rows that match on the joining keys. The
matching row is then passed up to MERGE JOIN operator (1). MERGE JOIN
operator (1) also callsfor rows from its child operators until amatch is found,
which is then passed up to the EMIT operator to be returned to the client. In
effect, the operators are processed using a | eft-deep postfix recursive strategy.

Figure 2-2 shows a graphical representation of an alternate query plan for the
same example query. Thisquery plan containsall of the same operators, but the
shape of the tree is different.

Figure 2-2: Alternate query plan

EMIT
VA=

MergeJoinOp(1)

Inner join
VA=
MergeJoinOp(2) ScanOp
Inner join salesdetailind
VA= VA=
ScanOp SortOp
sales VA=
VA= /
ScanOp
stores
VA=

The showplan output corresponding to the query plan in Figure 2-2 is:

QUERY PLAN FOR STATEMENT 1 (at line 1).
6 operator(s) under root

The type of query is SELECT.

Performance and Tuning Series: Query Processing and Abstract Plans 49

Query plan shape

ROOT:EMIT Operator

50

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

| SCAN Operator

| FROM TABLE

| sales

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| stores

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator

| FROM TABLE

| salesdetail

| Index : salesdetailind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table will not be read.
| Using I/0 Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

The showplan output conveys the shape of the query plan by using indentation
and the pipe (“|") symboal to indicate which operators are under which and
which ones are on the same or different branches of the tree. There are two
rules to interpreting the tree shape:

e Thepipe“|" symbolsform avertical line that starts at the operator’s name
and continue down past all of the operators that are under it on the same
branch.

e Child operators are indented to the left for each level of nesting.

Using theserules, the shape of the query planin Figure 2-2 can bederived from
the previous showplan output with the following steps:

1 TheRrooT or EMIT operator is at the top of the query plan tree.

2 MERGE JOIN operator (1) istheleft child of the rooT. The vertical line
that startsat MERGE JOIN operator (1) travelsdown thelength of theentire
output, so all of the other operators are below MERGE JOIN operator (1)
and on the same branch.

3 Theleft child operator of the MERGE JOIN operator (1) iISMERGE JOIN
operator (2).

4 Thevertica linethat starts at MERGE JOIN operator (2) travels down past
aSCAN, asorT, and another scan operator beforeit ends. These operators
are all nested as a subbranch under MERGE JOIN operator (2).

5 Thefirst scan under MERGE JOIN operator (2) isitsleft child, the scan
of the sales table.

6 The sorT operator istheright child of MERGE JOIN operator (2) and the
scan of the stores table isthe only child of the SorT operator.

7 Below the output for the scan of the stores table, several vertical lines
end. Thisindicates that a branch of the tree has ended.

8 The next output isfor the scan of the salesdetail table. It has the same
indentation asMERGE JOIN operator (2), indicating that it is on the same
level. Infact, this scan istheright child of MERGE JOIN operator (1).

Note Most operators are either unary or binary. That is, they have either a
single child operator or two child operators directly beneath. Operators that
have more than two child operators are called “nary”. Operators that have no
children are leaf operatorsin the tree and are termed “nullary.”

Performance and Tuning Series: Query Processing and Abstract Plans 51

Query plan shape

Another way to get a graphical representation of the query plan isto use the
command set statistics plancost on. See Adaptive Server Reference Manual:
Commands for more information. This command is used to compare the
estimated and actual costsinaquery plan. It printsits output asasemigraphical
tree representing the query plan tree. It isavery useful tool for diagnosing
query performance problems.

Query plan operators

EMIT operator

SCAN operator

The query plan operators, and a description of each, arelisted in Table 1-3 on
page 23. This section contains additional messages that give more detailed
information about each operator.

The EMIT operator appears at the top of every query plan. Em1T isthe root of
the query plan tree and always has exactly one child operator. The EMIT
operator routes the result rows of the query by sending them to the client (an
application or another Adaptive Server instance) or by assigning values from
the result row to local variables or fetch into variables.

The scan operator reads rows into the query plan and makes them available
for further processing by the other operators in the query plan. The scan
operator isaleaf operator; that is, it never has any child operators. The scan
operator can read rows from multiple sources, so the showplan message
identifying it is always followed by a FrRoM message to identify what kind of
SCAN is being performed. The FROM messages are; FROM CACHE, FROM OR,
FROM LIST, and FROM TABLE.

FROM cache message

52

This message shows that a CACHE SCAN operator isreading asingle-row in-
memory table.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

FROM or LIST

Anor list hasas many as N rows; onefor each distinct or or In value specified
in the query.

The first message shows that an or scan is reading rows from an in-memory
table that contains values from an 1IN list or multiple or clauses on the same
column. The or list appearsonly in query plansthat use the special or strategy
for in lists. The second message shows the maximum number of rows (N) that
the in-memory table can have. Since or list eliminates duplicate values when
filling thein-memory table, N may belessthan the number of values appearing
in the SQL statement. As an example, the following query generates a query
plan with the special or strategy and an or list:

select s.id from sysobjects s where s.id in (1, 0, 1, 2, 3)
go

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

4 operator(s) under root
ROOT:EMIT Operator (VA = 4)
NESTED LOOP JOIN Operator (VA = 3) (Join Type: Inner Join)

| SCAN Operator (VA = 2)
| FROM OR List
| OR List has up to 5 rows of OR/IN values.

RESTRICT Operator (VA
| SCAN Operator (VA
| FROM TABLE
| sysobjects
| s
| Using Clustered Index.
| Index : csysobjects
| Forward Scan.

| Positioning by key.

|

|

|

|

|

I

ey
e
C)
e
®
C)

Index contains all needed columns. Base table will not be read.
Keys are:

id ASC

Using I/0 Size 2 Kbytes for index leaf pages.

With LRU Buffer Replacement Strategy for index leaf pages.

Performance and Tuning Series: Query Processing and Abstract Plans 53

Query plan shape

FROM TABLE

54

Thisexample hasfive valuesin the 1x list, but only four are distinct, so the or
list puts only the four distinct valuesin itsin-memory table. In the example
query plan, the or list isthe left-child operator of the NESTED LOOP JOIN
operator and a scaN operator istheright child of the NESTED LoOP JOIN
operator. When this plan executes, the NESTED LOOP JOIN operator callsthe
or command to return arow fromitsin-memory table, then the NESTED LoOP
JOIN operator callson the scan operator to find all matching rows (one at a
time), using the clustered index for lookup. This example query plan is much
more efficient than reading all of the rows of sysobjects and comparing the
value of sysobjects.id in each row to the five valuesin the In list.

FROM TABLE showsthat a PARTITION SCAN operator isreading a database
table. A second message gives the table name, and, if thereis a correlation
name, it is printed on the next line. Under the FROM TABLE message in the
previous example output, sysobjects is the table name and s is the correlation
name. The previous exampl e also shows additional messages under the FrROM
TABLE message. These messages give more information about how the
PARTITION SCAN operator isdirecting the accesslayer of Adaptive Server to
get the rows from the table being scanned.

The messages below indicate whether the scan is atable scan or an index scan:
* Table Scan—therows arefetched by reading the pages of the table.

* Using Clustered Index —aclusteredindex isused to fetch the rows
of thetable.

* Index: indexname—an index isused to fetch the table rows. If this message
isnot preceded by “using clustered index,” anonclusteredindexis
used. indexname is the name of the index that will be used.

These messages indicate the direction of atable or index scan. The scan
direction depends on the ordering specified when the indexes were created and
the order specified for columnsin the order by clause or other useful orderings
that can be exploited by operators further up in the query plan (for example, a
sorted ordering for a merge-join strategy).

Backward scans can be used when the order by clause contains the ascending
or descending qualifiers on index keys, exactly opposite of those in the create
index clause.

Forward scan

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Backward scan

The scan-direction messages are followed by positioning messages, which
describe how access to atable or to the leaf level of an index takes place:

e Positioning at start of table —atablescanthat startsat thefirst
row of the table and goes forward.

e Positioning at end of table —atablescanthat startsat thelast row
of the table and goes backward.

* Positioning by key—theindex isused to position the scan at the first
qualifying row.

* Positioning at index start/positioning at index end—these
messages are similar to the corresponding messagesfor table scans, except
that an index is being scanned instead of atable.

If the scan can be limited dueto the nature of the query, thefollowing messages
describe how:

* Scanning only the last page of the table —appearswhenthe
scan uses an index and is searching for the maximum value for scalar
aggregation. If theindex is on the column whose maximum is sought, and
theindex values are in ascending order, the maximum value will be on the

last page.

o Scanning only up to the first qualifying row—appearswhen
the scan uses an index and is searching for the minimum value for scalar
aggregation.

Note If theindex key is sorted in descending order, the above messages for
minimum and maximum aggregates are reversed.

In some cases, the index being scanned contains all of the columns of thetable
that are needed in the query. In such a case, this message is printed:

Index contains all needed columns. Base table will not
be read.

If an index contains all the columns needed by the query, the optimizer may
choose an Index Scan Over aTable Scan even though there are no useful
keys on the index columns. The amount of 1/0 required to read the index can
be significantly less than that required to read the base table. Index scans that
do not require base table pages to be read are called covered index scans.

If an index scan is using keysto position the scan, this message prints:

Performance and Tuning Series: Query Processing and Abstract Plans 55

Query plan shape

I/O size messages

use pubs2
go

56

Keys are:
Key <ASC/DESC>

This message shows the names of the columns used as keys (each key on its
own output line) and showstheindex ordering onthat key : Asc for ascending
and pesc for descending.

After the messages that describe the type of access being used by the scan
operator, messages about the 1/0 sizes and buffer cache strategy are printed.

The I/O messages are:
Using I/0 size N Kbtyes for data pages.
Using I/0 size N Kbtyes for index leaf pages.

These messages report the |/O sizesused in the query. Possible |/O sizesare 2,
4, 8, and 16 kilobytes.

If the table, index, or database used in the query uses a data cache with large
1/O pooals, the optimizer can choose large I/O. It can chooseto use one 1/O size
for reading index leaf pages, and a different size for data pages. The choice
depends on the pool size avail able in the cache, the number of pagesto beread,
the cache bindings for the objects, and the cluster ratio for the table or index

pages.
Either (or both) of these messages can appear in the showplan output for a SCaN
operator. For atable scan, only the first messageis printed; for acovered index

scan, only the second message is printed. For an Index Scan that requires
base table access, both messages are printed.

After each 1/O size message, a cache strategy message is printed:

With <LRU/MRU> Buffer Replacement Strategy for data
pages.

With <LRU/MRU> Buffer Replacement Strategy for index
leaf pages.

In an LRU replacement strategy, the most recently accessed pages are
positioned in the cache to be retained as long as possible. Inan MRU
Replacement Strategy, the most recently accessed pages are positioned in the
cache for quick replacement.

Sample I/0 and cache messages are shown in the following query:

Adaptive Server Enterprise

CHAPTER 2 Using showplan

set showplan on

go
select au_fname, au_lname, au_id from authors
where au_lname = "Williams"

go
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.

1)

ROOT:EMIT Operator (VA

0)

| SCAN Operator (VA

| FROM TABLE

| authors

| Index : aunmind

| Forward Scan.

| Positioning by key.

| Keys are:

| au_lname ASC

| Using I/O0 Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.
The scan operator of the authors table uses the index aunmind, but must also
read the base table pagesto get al of therequired columnsfrom authors. Inthis
example, there are two 1/0O size messages, each followed by the corresponding

buffer replacement message.

There are two kinds of table scan operators that have their own messages—
therID scan and the LoG ScCAN.

RID scan

Therositioning by Row IDentifier (RID) scanisfoundonlyinquery
plansthat use the second or strategy that the optimizer can choose, the general
or strategy. The general or strategy may be used when multiple or clauses are
present on different columns. An example of a query for which the optimizer
can choose a general or strategy and its showplan output is:

use pubs2

go
set showplan on

Performance and Tuning Series: Query Processing and Abstract Plans 57

Query plan shape

go
select id from sysobjects where id = 4 or name = 'foo'

QUERY PLAN FOR STATEMENT 1 (at line 1).
6 operator (s) under root

The type of query is SELECT.

ROOT:EMIT Operator (VA = 6)

RID JOIN Operator (VA = 5)
Using Worktable2 for internal storage.

HASH UNION Operator has 2 children.
Using Worktablel for internal storage.

| SCAN Operator (VA = 0)

| FROM TABLE

| sysobjects

| Using Clustered Index.

| Index : csysobjects

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table will not be read.
| Keys are:

| id asc

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

| SCAN Operator (VA = 1)

| FROM TABLE

| sysobjects

| Index : ncsysobjects

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table will not be read.
| Keys are:

| name ASC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

RESTRICT Operator (VA = 4) (0) (0) (0) (11) (0)

| SCAN Operator (VA = 3)
| FROM TABLE

58 Adaptive Server Enterprise

CHAPTER 2 Using showplan

Log Scan

sysobjects

Using Dynamic Index.

Forward Scan.

Positioning by Row IDentifier (RID).

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

In thisexample, thewhere clause containstwo disunctions, each on adifferent
column (id and name). There areindexes on each of these columns (csysobjects
and ncsysobjects), S0 the optimizer chose a query plan that uses an index scan
to find all rows whoseid column is 4 and another index scan to find all rows
whose name is “foo.”

Since it is possible that a single row has both an ID of 4 and a name of “foo,”

that row would appear twicein theresult set. To eliminate these duplicaterows,
the index scans return only the row identifiers (RIDs) of the qualifying rows.

Thetwo streams of RIDsare concatenated by the Hasa uNION operator, which
also removes any duplicate RIDs.

]The stream of unique RIDs is passed to the RID JOIN operator. Therid join
operator creates aworktable and fills it with a single-column row with each
RID. TherID JOIN operator then passesits worktable of RIDstothe RID
SCAN operator. TheRID SCAN operator passes the worktable to the access
layer, where it is treated as a keyless nonclustered index and the rows
corresponding to the RIDs are fetched and returned.

The last scan in the showplan output isthe RID scan. As can be seen from
the example output, the RID SCAN output contains many of the messages
aready discussed above, but it also containstwo messagesthat are printed only
for therID scan:

e Using Dynamic Index —indicatesthe scan isusingtheworktablewith
RIDs that was built during execution by the RID JOIN operator as an
index to locate the matching rows.

* Positioning by Row Identifier (RID) —indicatestherowsare
being located directly by the RID.

Log Scan appearsonly intriggersthat accessinserted or deleted tables. These
tables are dynamically built by scanning the transaction log when thetrigger is
executed. Triggers are executed only after insert, delete, or update queries
modify atable with atrigger defined on it for the specific query type. The
following exampleisadelete query on thetitles table, which hasadel etetrigger
called deltitle defined onit:

Performance and Tuning Series: Query Processing and Abstract Plans 59

Query plan shape

use pubs2

go
set showplan on

go

delete from titles where title id = 'xxxx'

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is DELETE.

2 operator(s) under root
|ROOT:EMIT Operator (VA = 2)

DELETE Operator (VA = 1)
The update mode is direct.

| SCAN Operator (VA = 0)

| FROM TABLE

| titles

| Using Clustered Index.

| Index : titleidind

| Forward Scan.

| Positioning by key.

| Keys are:

| title id AscC

| Using I/O Size 2 Kbytes for data pages.
| With LRU Buffer Replacement Strategy for data pages.

TO TABLE

titles
Using I/0 Size 2 Kbytes for data pages.

The showplan output up to this point is for the actual delete query. The output
below isfor the trigger, deltitle.

QUERY PLAN FOR STATEMENT 1 (at line 5).
STEP 1

The type of query is COND.

6 operator (s) under root

ROOT:EMIT Operator (VA = 6)

60 Adaptive Server Enterprise

CHAPTER 2 Using showplan

RESTRICT Operator (VA = 5) (0) (0) (0) (5) (0)

SCALAR AGGREGATE Operator (VA = 4)
Evaluate Ungrouped COUNT AGGREGATE.

Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

MERGE JOIN Operator (Join Type: Inner Join)

SORT Operator (VA = 1)
Using Worktablel for internal storage.

| SCAN Operator (VA = 0)

| FROM TABLE

| titles

| Log Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With MRU Buffer Replacement Strategy for data pages.

| SCAN Operator (VA = 2)

| FROM TABLE

| salesdetail

| Index : titleidind

| Forward Scan.

| Positioning at index start.
|

read.

| | | | Using I/O Size 2 Kbytes for index leaf pages.

Index contains all needed columns.

Base table will not be

| | | | With LRU Buffer Replacement Strategy for index leaf pages.

QUERY PLAN FOR STATEMENT 2 (at line 8).

STEP 1
The type of query is ROLLBACK TRANSACTION.

QUERY PLAN FOR STATEMENT 3 (at line 9).

STEP 1
The type of query is PRINT.

QUERY PLAN FOR STATEMENT 4 (at line 0).

STEP 1
The type of query is GOTO.

Performance and Tuning Series: Query Processing and Abstract Plans

61

Query plan shape

The procedure that defines the deltitle trigger consists of four SQL statements.
Use sp_helptext deltitle to display the text of deltitle. The first statement in
deltitle has been compiled into a query plan, the other three statements are
compiled into legacy query plansand are executed by the procedural execution
engine, not the query execution engine.

The showplan output for the scan operator for thetitles tableindicatesthat itis
doing a scan of the log by printing Log Scan.

DELETE, INSERT, and UPDATE operators

use pubs2

go

set showplan on
go

The DELETE, INSERT, and UPDATE operators usually have only one child
operator. However, they can have as many astwo additional child operatorsto
enforce referential integrity constraints and to deallocate text data in the case
of alter table drop of atext column.

These operators modify data by inserting, deleting, or updating rows belonging
to atarget table.

Child operators of DML operators can be SCAN operators, JOIN operators, or
any data streaming operator.

The data modification can be done using different update modes, as specified
by this message:
The Update Mode is <Update Modes.

The table update mode may be direct, deferred, deferred for an
index, Of deferred for a variable column. Theupdate modefor a
worktable is always direct.

The target table for the data modification is displayed in this message:

TO TABLE
<Table Name>

Also displayed isthe /O size used for the data modification:
Using I/0 Size <N> Kbytes for data pages.

The next example uses the DELETE operator:

delete from authors where postalcode = '90210'

QUERY PLAN FOR STATEMENT 1 (at line 1).

62

Adaptive Server Enterprise

CHAPTER 2 Using showplan

STEP 1
The type of query is DELETE.

2 operator(s) under root
ROOT:EMIT Operator (VA = 2)

DELETE Operator (VA = 1)
The update mode is direct.

| SCAN Operator (VA = 0)

| FROM TABLE

| authors

| Table Scan.

| Forward Scan.

| Positioning at start of table.
|
|

TO TABLE
authors
Using I/0 Size 4 Kbytes for data pages.

TEXT DELETE operator

Using I/0 Size 4 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

Another type of query plan where DELETE, INSERT, and UPDATE Operator can
have more than one child operator isthe alter table drop textcol command,
where textcol isthe name of a column whose datatype is text, image, Or unitext.
This version of command used the TEXT DELETE operator in its query plan.

For example:

use tempdb

go

create table tl (¢l int, c¢2 text, c¢3 text)
go

set showplan on

go

alter table tl drop c2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Optimized using the Abstract Plan in the PLAN clause.

STEP 1
The type of query is ALTER TABLE.

Performance and Tuning Series: Query Processing and Abstract Plans

63

Query plan shape

5 operator (s) under root
ROOT:EMIT Operator (VA = 5)

INSERT Operator (VA = 52)
The update mode is direct.

RESTRICT Operator (VA

1) (0) (0) (3) (0) (0)

|
|
| | SCAN Operator (VA = 0)
| | FROM TABLE
I B
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data pages.
TEXT DELETE Operator

The update mode is direct.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | | SCAN Operator (VA = 3)
| | | FROM TABLE
I I I =
| | | Table Scan.
| | | Forward Scan.
| | | Positioning at start of table.
| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for data pages.
|
| TO TABLE
| #syb altab
| Using I/O Size 2 Kbytes for data pages.
One of the two text columnsin t1 is dropped, using the alter table command.
Theshowplan output has the appearance of aselect into query plan becausealter
table internally generated a select into query plan.

The INSERT operator callsonitsleft child operator, the scan of t1, to read the
rows of t1, and builds new rows with only the c1 and c3 columns inserted into
#syb_altab. When all the new rows have been inserted into #syb_altab, the
INSERT operator calls onitsright child, the TEXT DELETE operator, to delete
the text page chains for the c2 columns that have been dropped from t1.

Postprocessing replaces the original pages of t1 with those of #syb_altab to
complete the alter table command.

64 Adaptive Server Enterprise

CHAPTER 2 Using showplan

The TEXT DELETE operator appears only in alter table commands that drop
some, but not all text columnsof atable, and it ways appearsastheright child

of an INSERT operator.

The TEXT DELETE operator displays the update mode message, exactly like

the INSERT, UPDATE, and DELETE operators.

Query plans for referential integrity enforcement

When the INSERT, UPDATE, and DELETE operators are used on atable that has
one or more referential integrity constraints, the showplan output also shows
the DIRECT RI FILTER and DEFERRED RI FILTER child operators of the
DML operator. Thetype of referential integrity constraint determines whether

one or both of these operators are present.

Thefollowing exampleisfor aninsert into thetitles table of the pubs3 database.
Thistable has a column called pub_id that references the pub_id column of the
publishers table. The referential integrity constraint on titles.pub_id requires
that every value that isinserted into titles.pub_id must have a corresponding

valuein publishers.pub_id.
The query and its query plan are:

use pubs3
go
set showplan on

insert into titles values ("AB1234", "Abcdefg", "test",

10, null, getdate(),1)
QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is INSERT.

4 operator(s) under root
ROOT:EMIT Operator (VA = 3)
INSERT Operator (VA = 2)

The update mode is direct.

|
|
|
| | SCAN Operator (VA = 1)
| | FROM CACHE

|

|

|DIRECT RI FILTER Operator has 1 children.

Performance and Tuning Series: Query Processing and Abstract Plans

1000.00,

65

Query plan shape

| SCAN Operator (VA = 0)

| FROM TABLE

| publishers

| Index : publishers 6240022232

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table will not be
read.

| | Keys are:

| | pub_id AsC

| | Using I/O Size 2 Kbytes for index leaf pages.

| | With LRU Buffer Replacement Strategy for index leaf pages.

TO TABLE
titles
Using I/0 Size 2 Kbytes for data pages.

In the query plan, the INSERT operator’s | eft child operator isa CACHE SCAN,
which returns the row of valuesto be inserted into titles. The INSERT
operator’sright childisaDIRECT RI FILTER operator.

TheDIRECT RI FILTER Operator executes a scan of the publishers tableto
find arow with avalue of pub_id that matchesthe value of pub_id to beinserted
into titles. If amatching row isfound, theDIRECT RI FILTER operator allows
the insert to proceed, but if a matching value of pub_id isnot found in
publishers, the DIRECT RI FILTER operator abortsthe command.

Inthisexample, theDIRECT RI FILTER cancheck and enforcethereferential
integrity constraint on titles for each row that isinserted, asit isinserted.

Thenext example showsaDpIRECT RI FILTER operatinginadifferent mode,
together with aDEFERRED RI FILTER Operator:

use pubs3

go

set showplan on

go

update publishers set pub id = '0001"'
QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is UPDATE.

13 operator (s) under root

ROOT:EMIT Operator (VA = 13)

66 Adaptive Server Enterprise

CHAPTER 2 Using showplan

UPDATE Operator (VA = 1)
The update mode is deferred_index.

| SCAN Operator (VA = 0)

| FROM TABLE

| publishers

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

DIRECT RI FILTER Operator (VA = 7) has 1 children.

INSERT Operator (VA = 6)
The update mode is direct.

SQFILTER Operator (VA = 5) has 2 children.

| SCAN Operator (VA = 2)

|
|
|
| | FROM CACHE
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Run subquery 1 (at nesting level 0).

|

| | QUERY PLAN FOR SUBQUERY 1 (at nesting level 0 and at
line 0).

Non-correlated Subquery.
Subquery under an EXISTS predicate.

SCALAR AGGREGATE Operator (VA = 4)
Evaluate Ungrouped ANY AGGREGATE.
Scanning only up to the first qualifying row.

| SCAN Operator (VA = 3)
| FROM TABLE
| titles

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement strategy for data
pages.

| | | | END OF QUERY PLAN FOR SUBQUERY 1.

Performance and Tuning Series: Query Processing and Abstract Plans 67

Query plan shape

68

TO TABLE
Worktablel.

SCAN

Operator (VA = 8)

FROM TABLE
Worktablel.
Table Scan.

Positioning at start of table.
Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

|
|
|
|
| Forward Scan.
|
|
|

Run subquery 1 (at nesting level 0).

QUERY PLAN FOR SUBQUERY 1

Non-correlated Subquery.
Subquery under an EXISTS predicate.

END OF

TO TABLE
publishers
Using I/0 Size

SCALAR AGGREGATE Operator (VA = 10)
Evaluate Ungrouped ANY AGGREGATE.
Scanning only up to the first qualifying row.

SCAN Operator (VA = 9)

FROM TABLE

publishers

Index : publishers 6240022232
Forward Scan.

Positioning by key.

DEFERRED RI FILTER Operator has (VA = 12) 1 children.

SQFILTER Operator (VA = 11) has 2 children.

(at nesting level 0 and at line 0).

Index contains all needed columns. Base table will

not be read.
Keys are:
pub_id ASC

Using I/0 Size 2 Kbytes for index leaf pages.
With LRU Buffer Replacement Strategy for index leaf

pages.

QUERY PLAN FOR SUBQUERY 1.|

2 Kbytes for data pages.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

JOIN operators

The referential integrity constraint on titles requires that for every value of
titles.pub_id there must exist a value of publishers.pub_id. However, this
example query is changing the values of publisher.pub_id, so a check must be
made to maintain the referential integrity constraint.

The example query can change the value of publishers.pub_id for several rows
in publishers, so acheck to make sure that all of the values of titles.pub_id still
exist in publisher.pub_id cannot be done until all rows of publishers have been
processed.

This example calls for deferred referential integrity checking: as each row of
publishers is read, the UPDATE operator calls upon the DIRECT RI FILTER
operator to searchtitles for arow with the samevalue of pub_id asthe value that
is about to be changed. If arow isfound, it indicates that this value of pub_id
must still exist in publishers to maintain the referential integrity constraint on
titles, so the value of pub_id isinserted into WorkTable1l.

After all of therows of publishers have been updated, the urDATE operator calls
uponthe DEFERRED RI FILTER operator to executeitssubquery to verify that
all of thevaluesin Worktablel still existin publishers. Theleft child operator of
the DEFERRED RI FILTER iSascan which readsthe rowsfrom Worktablel.
Theright child isa sQFILTER operator that executes an existence subquery to
check for amatching valuein publishers. If amatching valueis not found, the
command is aborted.

The examplesin this section used simple referential integrity constraints,
between only two tables. Adaptive Server allows up to 192 constraints per
table, so it can generate much more complex query plans. When multiple
constraints must be enforced, thereis still only asingle DIRECT RI FILTER
Or DEFERRED RI FILTER operator inthe query plan, but these operators can
have multiple subplans, one for each constraint that must be enforced.

Adaptive Server provides four primary JoIN operator strategies: NESTED
LOOP JOIN, MERGE JOIN,HASH JOIN, and NARY NESTED LOOP JOIN,
which isavariant of NESTED LoOP JOIN. Inversions earlier than 15.0,
NESTED LOOP JOIN wasthe primary JOIN strategy. MERGE JOIN was also
available, but was, by default, not enabled.

Each go1n operator is described in further detail below, including a general
description of the each algorithm. These descriptions give a high-level
overview of the processing required for each JoIn strategy.

Performance and Tuning Series: Query Processing and Abstract Plans 69

Query plan shape

NESTED LOOP JOIN

NESTED LOOP JOIN, the simplest join strategy, is abinary operator with the
left child forming the outer data stream and the right child forming the inner
data stream.

For every row from the outer data stream, the inner data stream is opened.
Often, the right child is a scan operator. Opening the inner data stream
effectively positionsthe scan on thefirst row that qualifiesall of the searchable
arguments.

The qualifying row isreturned to the NESTED LOOP JOIN'S parent operator.
Subsequent callsto the join operator continue to return qualifying rows from
theinner stream.

After the last qualifying row from the inner stream is returned for the current
outer row, the inner streamis closed. A call is made to get the next qualifying
row from the outer stream. The values from this row provide the searchable
arguments used to open and position the scan on the inner stream. This process
continues until the NESTED LoOOP JOIN'sleft child returnsEnd Of Scan.

-- Collect all of the title ids for books written by "Bloom".
select ta.title id
from titleauthor ta, authors a
where a.au _id = ta.au id
and au_lname = "Bloom"

go

QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1

The type of query is SELECT.

3 operator(s)

ROOT:EMIT Operator

70

under root

(va = 3)

NESTED LOOP JOIN Operator (Join Type: Inner Join)

SCAN Operator (VA = 0)
FROM TABLE
authors

a

Index :

aunmind

Forward Scan.
Positioning by key.
Keys are:

Adaptive Server Enterprise

CHAPTER 2 Using showplan

MERGE JOIN

au_lname ASC
Using I/0 Size 2 Kbytes for index leaf pages.
With LRU Buffer Replacement Strategy for index leaf pages.
Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

SCAN Operator (VA = 1)
FROM TABLE
titleauthor

Using Clustered Index.

: taind

Forward Scan.
Positioning by key.
Keys are:
au_id AsC
Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

The authors table isjoined with the titleauthor table. A NESTED LOOP JOIN
strategy has been chosen. The NESTED LOOP JOIN operator’stypeis”Inner
Join.” Firgt, the authors table is opened and positioned on the first row (using
the aunmind index) containing an I_name value of “Bloom.” Then, the
titleauthor tableis opened and positioned on thefirst row with an au_id equal to
the au_id value of the current authors’ row using the clustered index “taind.” If
thereis no useful index for lookups on the inner stream, the optimizer may
generate areformatting strategy.

Generally, aNESTED LOOP JOIN strategy is effective when there is a useful
index available for qualifying the join predicates on the inner stream.

TheMERGE JOIN operator isabinary operator. Theleft and right children are
the outer and inner data streams, respectively. Both data streams must be sorted
onthe MERGE JOIN'Skey values.

First, arow from the outer stream isfetched. ThisinitializestheMERGE JOIN'S
join key values. Then, rows from the inner stream are fetched until arow with
key values that match or are greater than (less than if key columnis
descending) is encountered. If the join key matches, the qualifying row is
passed on for additional processing, and a subseguent next call to the MERGE
JOIN operator continues fetching from the currently active stream.

Performance and Tuning Series: Query Processing and Abstract Plans 71

Query plan shape

If the new values are greater than the current comparison key, these valuesare
used as the new comparison join key while fetching rows from the other
stream. This process continues until one of the data streams is exhausted.

Generally, the MERGE JOIN strategy is effective when a scan of the data
streamsrequiresthat most of the rows must be processed, and that, if any of the
input streams are large, they are already sorted on the join keys.

select ta.title id

from titleauthor ta, authors a
where a.au_id = ta.au id

and au_lname = "Bloom"

go
QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1
The type of query is EXECUTE.
Executing a newly cached statement.

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

3 operator(s) under root
ROOT:EMIT Operator (VA = 3)

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

SORT Operator

SCAN Operator
FROM TABLE
authors
a
Index : aunmind
Forward Scan.
Positioning by key.
Keys are:
au_lname ASC

72

Using Worktablel for internal storage.

Using I/0 Size 2 Kbytes for index leaf pages.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

| | With LRU Buffer Replacement Strategy for index leaf pages.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator
| FROM TABLE

| titleauthor

| ta

| Index : auidind

| Forward Scan.

| Positioning at index start.

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.
| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

Inthisexample, asort operator istheleft child, or outer stream. The datasource
for the sort operator is the authors table. The sort operator is required because
the authors table has no index on au_id that would otherwise provide the
necessary sorted order. A scan of thetitleauthor tableisthe right child/inner
stream. The scan usesthe auidind index, which provides the necessary ordering
for the MERGE JOIN strategy.

A row isfetched from the outer stream (the authors tableisthe original source)
to establish an initial join key comparison value. Then rows are fetched from
the titleauthor table until arow with ajoin key equal to or greater than the
comparison key is found.

Inner stream rows with matching keys are stored in a cache in case they need
to be refetched. These rows are refetched when the outer stream contains
duplicate keys. When atitleauthor.au_id value that is greater than the current
join key comparison valueisfetched, theMERGE JOIN operator startsfetching
from the outer stream until ajoin key value equal to or greater than the current
titteauthor.au_id value is found. The scan of the inner stream resumes at that
point.

TheMERGE JOIN operator’sshowplan output containsamessageindicating the
worktable to be used for the inner stream’s backing store. The worktableis
written to if the inner rows with duplicate join keys no longer fitsin cached
memory. The width of a cached row islimited to 64 kilobytes.

Performance and Tuning Series: Query Processing and Abstract Plans 73

Query plan shape

HASH JOIN

TheHasH JOIN operator isabinary operator. Theleft child generatesthe build
input stream. The right child generates the probe input stream. The build setis
generated by completely draining the build input stream when the first row is
requested from the HASH JOIN operator. Every row isread from the input
stream and hashed into an appropriate bucket using the hash key.

If there is not enough memory to hold the entire build set, then a portion of it
spillsto disk. This portion is referred to as a hash partition and should not be
confused with table partitions. A hash partition consists of a collection of hash
buckets. After the entireleft child's stream has been drained, the probe input is
read.

Each row from the probe set is hashed. A lookup is donein the corresponding
build bucket to check for rows with matching hash keys. This occursiif the
build set’s bucket is memory resident. If it has been spilled, the probe row is
written to the corresponding spilled probe partition. When a probe row’s key
matches a build row’s key, then the necessary projection of the two row’s
columns s passed up for additional processing.

Spilled partitions are processed in subsequent recursive passes of the HASH
Jo1N agorithm. New hash seeds are used in each pass so that the datais
redistributed across different hash buckets. Thisrecursive processing continues
until the last spilled partition is completely memory resident. When a hash
partition from the build set contains many duplicates, the HASH JoIN operator
reverts back to NESTED LOOP JOIN processing.

Generally, the HASH JOIN strategy isgood in cases where most of the rows
from the source sets must be processed and there are no inherent useful
orderings on the join keys or there are no interesting orderings that can be
promoted to calling operators (for example, an order by clause on thejoin key).
HASH JoINs perform particularly well if one of the data setsis small enough
to be memory resident. In this case, no spilling occurs and no 1/0 is needed to
perform that HASH JoIN algorithm.

select ta.title id

from titleauthor ta, authors a

where a.au_id = ta.au id

and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 2).

3 operator(s) under root

The type of query is SELECT.

74 Adaptive Server Enterprise

CHAPTER 2 Using showplan

ROOT:EMIT Operator

SCAN Operator

FROM TABLE
authors
a
Index : aunmind
Forward Scan.
Positioning by key.
Keys are:
au_lname ASC
Using I/0 Size 2 Kbytes for
With LRU Buffer Replacement
Using I/0 Size 2 Kbytes for
With LRU Buffer Replacement

SCAN Operator

FROM TABLE

titleauthor

ta

Index : auidind

Forward Scan.

Positioning at index start.
Using I/0 Size 2 Kbytes for
With LRU Buffer Replacement
Using I/0 Size 2 Kbytes for
With LRU Buffer Replacement

HASH JOIN Operator (Join Type: Inner Join)
Using Worktablel for internal storage.

index leaf pages.

Strategy for index leaf pages.
data pages.

Strategy for data pages.

index leaf pages.

Strategy for index leaf pages.
data pages.

Strategy for data pages.

In this example, the source of the build input stream is an index scan of

author.aunmind.

Only rows with an au_Iname value of “Bloom™ are returned from this scan.
These rows are then hashed on their au_id value and placed into their
corresponding hash bucket. After theinitial build phaseiscompleted, the probe
stream is opened and scanned. Each row from the source index,
titleauthor.auidind, is hashed on the au_id column. The resulting hash valueis
used to determine which bucket in the build set should be searched for
matching hash keys. Each row from the build set’s hash bucket is compared to
the probe row’s hash key for equality. If the row matches, the titleauthor.au_id
column isreturned to the EMIT operator.

Performance and Tuning Series: Query Processing and Abstract Plans 75

Query plan shape

TheHASH JOIN operator’sshowplan output contains a messageindicating the
worktable to be used for the spilled partition’s backing store. The input row
width islimited to 64 kilobytes.

NARY NESTED LOOP JOIN operator

TheNARY NESTED LOOP JOIN Strategy isnever evaluated or chosen by the
optimizer. It is an operator that is constructed during code generation. If the
compiler finds series of two or more left-deep NESTED LOOP JOINS, it
attempts to transform them into aNARY NESTED LOOP JOIN operator. Two
additional requirements allow for transformation scan; each NESTED LOOP
JOIN operator hasan “inner join” type and the right child of each NESTED
LOOP JOIN iSaSCAN operator. A RESTRICT operator is permitted above the
SCAN operator.

NARY NESTED LOOP JOIN execution has a performance benefit over the
execution of a series of NESTED LOOP JOIN operators. The example below
demonstrates afundamental difference between the two methods of execution.

With a series of NESTED LOOP JOIN, ascan may eliminate rows based on
searchable argument valuesinitialized by an earlier scan. That scan may not be
the one that immediately preceded the failing scan. With a series of NESTED
LOOP JOINS, the previous scan would be completely drained although it has
no effect on the failing scan. This could result in a significant amount of
needless I/0. With NARY NESTED LOOP JOINS, the next row fetched comes
from the scan that produced the failing searchable argument value, whichisfar
more efficient.

select a.au_id, au_fname, au_lname

from titles t, titleauthor ta, authors a
where a.au_id = ta.au id

and ta.title id = t.title id

and a.au_id = t.title id

and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

4 operator(s) under root
|ROOT:EMIT Operator (VA = 4)

|
| |N-ARY NESTED LOOP JOIN Operator (VA = 3) has 3 children.

76 Adaptive Server Enterprise

CHAPTER 2 Using showplan

| SCAN Operator (VA = 0)

| FROM TABLE

| authors

| a

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator (VA = 1)

| FROM TABLE

| titleauthor

| ta

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

SCAN Operator (VA = 2)
FROM TABLE

titles

t

Index : titles 6720023942
Forward Scan.

Positioning by key.

Keys are:

title id ASC

Using I/0 Size 2 Kbytes for index leaf pages.

With LRU Buffer Replacement Strategy for index leaf pages.

Figure 2-3 depicts a series of NESTED LOOP JOINS.

Performance and Tuning Series: Query Processing and Abstract Plans

Index contains all needed columns. Base table will not be read.

77

Query plan shape

Figure 2-3: Emit operator tree with Nested loop joins

Emit
(VA=6)

/

NestLoopJoin

InnerJoin
(VA=5)
NestLoopJoin IndexScan
InnerJoin titleidind (t2)
(VA =23) (VA=4)
IndexScan Restrict
aunmid (a) (0) (0) (4) (0)
(VA=0) (VA=2)
IndexScan
auidind (ta)

(VA=1)
All query processor operators are assigned a virtual address. The linesin
Figure 2-3 with va = report the virtual address for a given operator.

Theeffectivejoin order isauthors, titleauthor, titles. A RESTRICT operator isthe
parent operator of the scan on titleauthors. This plan istransformed into the
NARY NESTED LOOP JOIN plan below:

78 Adaptive Server Enterprise

CHAPTER 2 Using showplan

Figure 2-4: NARY NESTED LOOP JOIN operator

EMIT
(VA=6)

/

NaryNLJoin

(VA=4) \
/ NaryNLJoin

(VA =4)
IndexScan /
(VA = 0) \

i STRIC
aunmid (a) R(I%/AT:R Iz) T NaryNLJoin
}) (0) (4) (0) / (VA =4)
IndexScan IndexScan
(VA =1) (VA=3)
auidind(ta) titleidind(t)

The transformation retains the original join order of authors, titleauthor, and
titles. In this example, the scan of titles has two searchable arguments on it—
ta.title_id = t.title_id and a.au_id = t.title_id. So, the scan of titles fails because of
the searchabl e argument value established by the scan of titleauthor, or it fails
because of the searchabl e argument val ue established by the scan of authors. If
no rows are returned from a scan of titles because of the searchable argument
value set by the scan of authors, there is no point in continuing the scan of
titleauthor. For every row fetched from titleauthor, the scan of titles fails. It is
only when anew row is fetched from authors that the scan of titles might
succeed. Thisiswhy NARY NESTED LOOP JOINS have beenimplemented;
they eliminate the useless draining of tables that have no impact on the rows
returned by successive scans.

In the example, theNARY NESTED LOOP JOIN operator closesthe scan of
titleauthor, fetches a new row from authors, and repositions the scan of
titleauthor based on the au_id fetched from authors. Again, this can be a
significant performance improvement as it eliminates the needless draining of
the titleauthor table and the associated 1/O that could occur.

Performance and Tuning Series: Query Processing and Abstract Plans 79

Query plan shape

semijoin

The semijoinisavariant of NESTED LOOP JOIN operator, and includes the
NESTED LOOP JOIN operator initsresult set. When you make a semi-join
between two tables, Adaptive Server returns the rows from the first table that
contain one or more matches in the second table (aregular join returns the
matching rows from the first table only once). That is, instead of scanning a
table to return all matching values, an semijoin returns rows when it finds the
first matching value and then stops processing. Semijoins are also known as
“existence joins.”

For example, if you perform a semijoin on thetitles and titleauthor tables:

select title

from titles

where title id in (select title id from titleauthor)
and title like "A Tutorial%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

4 operator(s) under root

|ROOT:EMIT Operator (VA = 4)

80

NESTED LOOP JOIN Operator (VA = 3) (Join Type: Left Semi Join)
RESTRICT Operator (VA = 1) (0) (0) (0) (6) (0)

| SCAN Operator (VA
| FROM TABLE

| titles

| Index : titleind
| Forward Scan.

| Positioning by key.
|

|

|

|

|

|

0)

|
|
|
|
|
|
|
|
| Keys are:

| title ASC

| Using I/0 Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.
| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator (VA = 2)

| FROM TABLE

| titleauthor

| Index : titleidind

Adaptive Server Enterprise

CHAPTER 2 Using showplan

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table will not be read.
| Keys are:

| title id ASC

| Using I/0 Size 2 Kbytes for index leaf pages.

| with LRU Buffer Replacement Strategy for index leaf pages.

Distinct operators

There are three unary operators you can use to enforce distinctness: GrRoup
SORTED Distinct, SORT Distinct, and HASH Distinct. Each has
advantages and disadvantages. The optimizer chooses an efficient distinct
operator with respect to its use within the entire query plan’s context.

See Table 1-3 on page 23 for alist and description of all query processor
operators.

GROUP SORTED Distinct operator

You can usethe GROUP SORTED Distinct operator to apply distinctness.
GROUP SORTED Distinct requiresthat theinput stream isalready sorted on
the distinct columns. It reads a row from its child operator and initializes the
current distinct columns’ values to be filtered.

Therow isreturned to the parent operator. When the GROUP SORTED operator
is called again to fetch another row, it fetches another row from its child and
comparesthe valuesto the current cached values. If thevalueisaduplicate, the
row is discarded and the child is called again to fetch a new row.

This process continues until anew distinct row isfound. The distinct columns
valuesfor this row are cached and are used later to eliminate nondistinct rows.
The current row is returned to the parent operator for further processing.

TheGROUP SORTED Distinct operator returnsasorted stream. The fact that
it returns a sorted and distinct data stream are propertiesthat the optimizer can
use to improve performance in additional upstream processing. The GROUP
SORTED Distinct operator isanonblocking operator. It returnsadistinct row
to its parent as soon as it is fetched. It does not require the entire input stream
to be processed beforeit can start returning rows. The following query collects
distinct last and first author’s names:

select distinct au lname, au_ fname
from authors
where au lname = "Bloom"

Performance and Tuning Series: Query Processing and Abstract Plans 81

Query plan shape

QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1

The type of query is SELECT.

2 operator(s) under root

ROOT:EMIT Operator (VA = 2)

|GROUP SORTED Operator (VA = 1)
|Distinct

SCAN Operator (VA = 0)
FROM TABLE
authors
Index : aunmind
Forward Scan.
Positioning by key.
Index contains all needed columns. Base table will not be read.
Keys are:
au_lname ASC
Using I/0 Size 2 Kbytes for index leaf pages.
With LRU Buffer Replacement Strategy for index leaf pages.

TheGROUP SORTED Distinct operator ischosen inthisquery planto apply
the distinct property because the scan operator isreturning rowsin sorted order
for thedistinct columnsau_lname andau_fname. GROUP SORTED incursno 1/O
and minimal CPU overhead.

You can usethe GROUP SORTED Distinct operator to implement vector
aggregation. See “Vector aggregation operators’ on page 84. The showplan
output printstheline pistinct toindicate that this GROUP SORTED
Distinct operator isimplementing the distinct property.

SORT Distinct operator

The SORT Distinct operator doesnot require that itsinput stream is already
sorted on the distinct key columns. It isablocking operator that drainsits child
operator’sstream and sortsthe rows asthey areread. A distinct row isreturned
to the parent operator after all rows have been sorted. Rows are returned sorted
onthedistinct key columns. Aninternal worktableisused asabacking storein
case the input set does not fit entirely in memory.

QUERY PLAN FOR STATEMENT 1 (at line 1)

82

Adaptive Server Enterprise

CHAPTER 2 Using showplan

STEP 1

The type of query is SELECT.

2 operator(s)

ROOT:EMIT Operator

under root

(VA = 2)

| SORT Operator
| Using Worktablel for internal storage.

SCAN Operator
FROM TABLE
authors
Table Scan.
Forward Scan.
Positioning at start of table.
Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

The scan of the authors table does not return rows sorted on the distinct key
columns. Thisrequiresthat a SORT Distinct operator be used rather than a
GROUP SORTED Distinct operator. The SORT operator’s distinct key
columns are au_Iname and au_fname. The showplan output indicates that
Worktablel is used for disk storage in case the input set does not fit entirely in
memory.

HASH Distinct operator

TheHASH Distinct operator does not require that itsinput set be sorted on
the distinct key columns. It is a nonblocking operator. Rows are read from the
child operator and are hashed on the distinct key columns. This determinesthe
row’s bucket position. The corresponding bucket is searched to see if the key
already exists. Therow is discarded if it contains a duplicate key, and another
row is fetched from the child operator. The row is added to the bucket if no
duplicate distinct key already exists and the row is passed up to the parent
operator for further processing. Rowsare not returned sorted on the distinct key
columns.

TheHASH Distinct operator isgenerally used when the input set is not
already sorted on thedistinct key columns or when the optimizer cannot usethe
ordering coming out of the distinct processing later in the plan.

select distinct au_lname, au_fname

from authors

where city = "Oakland"

go

Performance and Tuning Series: Query Processing and Abstract Plans 83

Query plan shape

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

2 operator(s) under root
ROOT:EMIT Operator (VA = 2)

HASH DISTINCT Operator (VA = 1)
Using Worktablel for internal storage.

SCAN Operator (VA = 0)
FROM TABLE

authors

Table Scan.

Positioning at start of table.

|
|
|
|
| Forward Scan.
|
|
|

Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

Inthisexample, the output of the authors table scanisnot sorted. The optimizer
can choose either a SORT Distinct OF HASH Distinct operator strategy.
The ordering provided by a SORT Distinct strategy isnot useful anywhere
elsein the plan, so the optimizer will probably choose anAsSH Distinct
strategy. The optimizer’s decision is ultimately based on cost estimates. The
HASH Distinct istypically less expensive for unsorted input streams can
eliminaterowson thefly for resident partitions. The SORT Distinct operator
cannot eliminate any rows until the entire data set has been sorted.

The showplan output for theHASH Distinct operator reportsthat Worktablel
will beused. A worktableisneeded in case the distinct row result set cannot fit
in memory. In that case, partially processed groups are written to disk.

Vector aggregation operators

84

There are three unary operators used for vector aggregation. They are the
GROUP SORTED COUNT AGGREGATE, the HASH VECTOR AGGREGATE, andthe
GROUP INSERTING Operators.

See Table 1-3 on page 23 for alist and description of all query processor
operators.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

GROUP SORTED COUNT AGGREGATE operator

TheGROUP SORTED COUNT AGGREGATE honblocking operator isavariant of
the GROUP SORTED Distinct operator described in “ GROUP SORTED
Distinct operator” on page 81. The GROUP SORTED COUNT AGGREGATE
operator requires that input set to be sorted on the group by columns. The
algorithm isvery similar to that of GROUP SORTED Distinct.

A row isread from the child operator. If the row isthe start of anew vector, its
grouping columns are cached and the aggregation results are initialized.

If the row belongs to the current group being processed, the aggregate
functions are applied to the aggregate results. When the child operator returns
arow that startsanew group or End Of Scan, the current vector and its
aggregated values are returned to the parent operator.

Thefirst row inthe GROUP SORTED COUNT AGGREGATE Operator isreturned
after an entire group is processed, where the first row in the GROUP SORTED

Distinct operator isreturned at the start of anew group. This example
collectsalist of all cities with the number of authors that live in each city.

select city, total authors = count (*)
from authors

group by city

plan

" (group_sorted

(sort (scan authors))

)ll

QUERY PLAN FOR STATEMENT 1 (at line 1).

Optimized using the Abstract Plan in the PLAN clause.

STEP 1
The type of query is SELECT.

3 operator(s) under root
ROOT:EMIT Operator (VA = 3)

GROUP SORTED Operator (VA = 2)
Evaluate Grouped COUNT AGGREGATE.

|
|
|
| | SORT Operator (VA = 1)

| | Using Worktablel for internal storage.
|

|

|

|
| | SCAN Operator (VA = 0)
| | FROM TABLE

Performance and Tuning Series: Query Processing and Abstract Plans

85

Query plan shape

authors

Table Scan.

Forward Scan.

Positioning at start of table.

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

In this query plan, the scan of authors does not return rows in grouping order.
A SORT operator is applied to order the stream based on the grouping column
city. At thispoint, aGROUP SORTED COUNT AGGREGATE Operator can be
applied to evaluate the count aggregate.

TheGROUP SORTED COUNT AGGREGATE operator showplan output reportsthe
aggregate functions being applied as:

| Evaluate Grouped COUNT AGGREGATE.

HASH VECTOR AGGREGATE operator

select city,

from authors
group by city

TheHASH VECTOR AGGREGATE operator isablocking operator. All rowsfrom
the child operator must be processed before the first row from the Hasu
VECTOR AGGREGATE operator can bereturnedto itsparent operator. Other than
this, the algorithm is similar to the HASH Distinct operator’s algorithm.

Rows are fetched from the child operator. Each row is hashed on the query’s
grouping columns. The bucket that is hashed is searched to seeif the vector
already exists.

If the group by values do not exi<t, the vector isadded and the aggregate values
areinitialized using this first row. If the group by values do exist, the current
row isaggregated to the existing values. Thisexample collectsalist of al cities
with the number of authors that livein each city.

total authors = count (*)

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

2 operator(s)

ROOT:EMIT Operator

86

under root

(VA = 2)

| HASH VECTOR AGGREGATE Operator (VA = 1)

| GROUP BY

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Evaluate Grouped COUNT AGGREGATE.
Using Worktablel for internal storage.
Key Count: 1

|

|

|

|

| | SCAN Operator (VA = 0)

| | FROM TABLE

| | authors

| | Table Scan.

| | Forward Scan.

| | Using I/0 Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy for data pages.
In this query plan, the HASH VECTOR AGGREGATE operator reads all of the
rows from its child operator, which is scanning the authors table. Each row is
checked to seeif thereisalready an entry bucket entry for the current city value.
If thereis not, a hash entry row is added with the new city grouping value and
the count result isinitialized to 1. If there is already a hash entry for the new
row’s city value, the aggregation function is applied. In this case, the count
result isincriminated.

The showplan output prints a group by message specifically for the HasH
VECTOR AGGREGATE operator, then prints the grouped aggregation messages:

| Evaluate Grouped COUNT AGGREGATE.

The showplan output reports used to store spilled groups and unprocessed
rows:

| Using Worktablel for internal storage.

GROUP INSERTING

GROUP INSERTING isahblocking operator. All rows from the child operator
must be processed before the first row can be returned from the croup
INSERTING.

GROUP INSERTING islimited to 31 or fewer columnsin the group by clause.
The operator starts by creating a worktable with a clustered index of the
grouping columns. As each row is fetched from the child, alookup into the
work tableis done based on the grouping columns. If no row isfound, then the
row isinserted. This effectively creates anew group and initializesits
aggregate values. If arow isfound, the new aggregate val ues are updated based
on evaluating the new values. The GROUP INSERTING operator returns rows
ordered by the grouping columns.

select city, total authors = count (*)
from authors
group by city

Performance and Tuning Series: Query Processing and Abstract Plans 87

Query plan shape

plan
' (group inserting (i_scan auidind authors))'

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

STEP 1
The type of query is SELECT.

2 operator(s)
|ROOT:EMIT Operator (VA = 2)

under root

GROUP INSERTING Operator (VA = 1)

GROUP BY

Evaluate Grouped COUNT AGGREGATE
Using Worktablel for internal storage.

SCAN Operator (VA = 0)

FROM TABLE
authors

Forward Scan.

Positioning at start of table.

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

|
|
|
| Table Scan.
|
|
|
|

In this exampl e, the group inserting operator starts by building aworktable
with a clustered index keyed on the city column. The group inserting operator
proceeds to drain the authors table. For each row, alookup is done on the city
value. If thereis no row in the aggregation worktable with the current city
value, then the row isinserted. This creates a new group for the current city
value with aninitialized count value. If the row for the current city valueis
found, then an evaluation is done to increment the COUNT AGGREGATE value.

compute by message

88

Processing isdone in the EMIT operator, and requiresthat the EMIT operator’s
input stream be sorted according to any order by requirementsin the query. The
processing issimilar to what is done in the GROUP SORTED AGGREGATE
operator.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

select city

from authors
order by city

Each row read from the child is checked to seeif it startsanew group. If it does
not, aggregate functions are applied as appropriate to the query’s requested
groups. If anew group is started, the current group and its aggregated val ues
are returned to the user. A new group isthen started and its aggregate values
areinitialized from the new row’s values. This example collectsan ordered list
of al cities and reports a count of the number of entries for each city after the
city list.

compute count (city) by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1

The type of query is SELECT.

2 operator(s)

under root

Emit with Compute semantics

ROOT:EMIT Operator (VA = 2)

| SORT Operator (VA = 1)
| Using Worktablel for internal storage.

SCAN Operator (VA = 0)

FROM TABLE

authors

Table Scan.

Forward Scan.

Positioning at start of table.

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

Inthisexample, the EMIT operator’sinput stream is sorted on the city attribute.
For each row, the compute by count value isincremented. When a new city
valueisfetched, the current city’s values and associated count valueisreturned
to the user. The new city value becomes the new compute by grouping value
and its count isinitialized to one.

Performance and Tuning Series: Query Processing and Abstract Plans 89

Union operators

Union operators

UNION ALL operator

TheuNION ALL operator merges several compatible input streams without
performing any duplicate elimination. Every data row that enters the unzon
ALL operator isincluded in the operator’s output stream.

TheuNION ALL operator isanary operator that displays this message:
UNION ALL OPERATOR has N children.

N is the number of input streams into the operator.

This example demonstrates the use of UNION ALL:

select * from sysindexes where id < 100
union all
select * from sysindexes where id > 200

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

3 operator(s) under root
ROOT:EMIT Operator (VA = 3)

|UNION ALL Operator (VA = 2) has 2 children.

|
|
|
|

| SCAN Operator (VA = 0)
| FROM TABLE

| sysindexes

| Using Clustered Index.
| Index : csysindexes
| Forward Scan.

| Positioning by key.
| Keys are:

| 4id asc

| Using I/0 Size 2 Kbytes for index leaf pages.

| Wwith LRU Buffer Replacement Strategy for index leaf pages.
| Using I/0 Size 2 Kbytes for data pages.

| Wwith LRU Buffer Replacement Strategy for data pages.

90 Adaptive Server Enterprise

CHAPTER 2 Using showplan

| SCAN Operator (VA = 1)
| FROM TABLE

| sysindexes

| Using Clustered Index
| Index : csysindexes
| Forward scan.

| Positioning by key.
| Keys are:

| 1id asc

| Using I/0 Size 2 Kbytes for index leaf pages.

| with LRU Buffer Replacement Strategy for index leaf pages.
| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

TheuNION ALL operator startsby fetching al rowsfrom itsleftmost child. In
thisexample, it returns all of the sysindexes rowswith an ID lessthan 100. As
each child operator’s datastream is emptied, the uNTON ALL operator moves
on to the child operator immediately to itsright. This stream is opened and
emptied. This continues until the last (the Nth) child operator is emptied.

MERGE UNION operator

The MERGE UNION operator performs aUNION ALL Operation on several
sorted compatible data streams and eliminates duplicates within these streams.

The MERGE UNION Operator isanary operator that displays this message:
MERGE UNION OPERATOR has <N> children.

<n> isthe number of input streams into the operator.

HASH UNION

TheHASH UNION operator uses Adaptive Server hashing algorithmsto
simultaneously perform auNIoN ALL operation on severa data streams and
hash-based duplicate elimination.

TheHASH UNION operator isanary operator that displays this message:
HASH UNION OPERATOR has <N> children.

<N> isthe number of input streams into the operator.

Performance and Tuning Series: Query Processing and Abstract Plans 91

Union operators

HASH UNION aso displaysthe name of the worktableit uses, in this format:

HASH UNION OPERATOR Using Worktable <X> for internal
storage.

Thisworktable is used by the HAsH UNTON Operator to temporarily store data
for the current iteration that cannot be processed in the memory currently
available.

This example demonstrates the use of HASH UNION:

select * from sysindexes
union
select * from sysindexes

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

3 operator(s) under root
ROOT:EMIT Operator (VA = 3)

HASH UNION Operator has 2 children.
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| sysindexes

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

SCAN Operator (VA = 1)
| FROM TABLE
| sysindexes

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

92 Adaptive Server Enterprise

CHAPTER 2 Using showplan

SCALAR AGGREGATE operator

select count (*)

The SCALAR AGGREGATE operator keeps track of running information about
an input datastream, such asthe number of rowsin the stream, or the maximum
value of agiven column in the stream.

TheSCALAR AGGREGATE operator printsalist of up to 10 messagesdescribing
the scalar aggregation operations it executes. The message has the following
format:

Evaluate Ungrouped <Type of Aggregate> Aggregate

<Type of Aggregate> canbeany of thefollowing: count, sum, average, min,
max, any, once-unique, count-unique, sum-unique, average-unique, Or once.

The following query performsa SCALAR AGGREGATE (that is, unwrapped)
aggregation on the authors table in the pubs2 database:

from authors

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP

1

The type of query is SELECT.

2 operator(s)

ROOT:EMIT Operator

under root

(VA = 2)

SCALAR AGGREGATE Operator (VA = 1)
Evaluate Ungrouped COUNT AGGREGATE.

SCAN Operator (VA =0)
FROM TABLE

authors
Index

aunmind

Forward Scan.

Positioning at index start.

Index contains all needed columns. Base table will not be read.
Using I/O Size 4 Kbytes for index leaf pages.

With LRU Buffer Replacement Strategy for index leaf pages.

ThesSCALAR AGGREGATE messageindicatesthat the query to beexecutedisan
ungrouped count aggregation.

Performance and Tuning Series: Query Processing and Abstract Plans 93

Union operators

RESTRICT operator

The RESTRICT operator isaunary operator that eval uates expressions based
on column values. The RESTRICT operator isassociated with multiple column
evaluations lists that can be processed before fetching a row from the child
operator, after fetching arow from the child operator, or to compute the value
of virtual columns after fetching arow from the child operator.

SORT operator

The sorT operator has only one child operator within the query plan. Itsrole
isto generate an output data stream from the input stream, using a specified

sorting key.

The sorT operator may execute a streaming sort when possible, but may also
have to store results temporarily into aworktable. The sorT operator displays

the worktable's name in this format:

Using Worktable<N> for internal storage.

where <~N> isanumeric identifier for the worktable within the showplan output.

Here is an example of asimple query plan using a SORT operator and a

worktable:

select au_id from authors order by postalcode

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1

The type of query is SELECT.

2 operator(s) under root

ROOT:EMIT Operator (VA = 2)

| SORT Operator (VA = 1)
| Using Worktablel for internal storage.

94

SCAN Operator (VA = 0)

FROM TABLE

authors

Table Scan.

Forward Scan.

Positioning at start of table.

Using I/0 Size 4 Kbytes for data pages.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

| | with LRU Buffer Replacement Strategy for data pages.

STORE operator

The sorT operator drainsits child operator and sorts the rows. In this caseg, it
sorts each row fetched from the authors table using the postalcode attribute. If
all of the rowsfit into memory, then no datais spilled to disk. But, if the input
data’'s size exceeds the available buffer space, then sorted runs are spilled to
disk. These runs are recursively merged into larger sorted runs until there are
fewer runs than there are available buffers to read and merge the runs with.

The STORE operator is used to create aworktable, fill it, and possibly create an
index onit. As part of the execution of a query plan, the worktable is used by
other operatorsin the plan. A SEQUENCER operator guarantees that the plan
fragment corresponding to the worktable and potential index creation is
executed before other plan fragments that use the worktable. Thisisimportant
when aplan is executed in parallel, because execution processes operate
asynchronously.

Reformatting strategies use the sSTORE operator to create aworktable with a
clustered index on it.

If the STORE operator is used for areformatting operation, it prints this
message:

Worktable <X> created, in <L> locking mode for
reformatting.

Thelocking mode < L> hasto be one of “allpages,” “ datapages,” or “ datarows.”
The sTORE operator also prints this message:
Creating clustered index.

If the STORE operator is not used for a reformatting operation, it prints this
message:

Worktable <X> created, in <L> locking mode.

The following example applies to the sSTORE operator, as well asto the
SEQUENCER Operator.

select * from bigun a, bigun b where a.c4 = b.c4 and a.c2 < 10

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

STEP 1

Performance and Tuning Series: Query Processing and Abstract Plans 95

Union operators

The type of query is SELECT.

7 operator (s) under root

ROOT:EMIT Operator (VA = 7)

SEQUENCER Operator (VA = 6) has 2 children.

STORE Operator (VA = 5)
Worktablel created, in allpages locking mode, for REFORMATTING.
Creating clustered index.

INSERT Operator (VA = 4)
The update mode is direct.

| SCAN Operator (VA = 0)

| FROM TABLE

| bigun

| b

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

TO TABLE (VA = 3)
Worktablel.

NESTED LOOP JOIN (Join Type: Inner Join) (VA = 7)

| SCAN Operator (VA = 2)

| FROM TABLE

| bigun

| a

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0O Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

| SCAN Operator (VA = 1)
| FROM TABLE

| Worktablel.

| Using Clustered Index.
| Forward Scan.

| Positioning key.

96 Adaptive Server Enterprise

CHAPTER 2 Using showplan

| | | | Using I/O Size 2 Kbytes for data pages.
| | | | with LRU Buffer Replacement Strategy for data pages.

In the exampl e plan shown above, the sSTORE operator isused in areformatting
strategy. It islocated directly below the SEQUENCER operator in the leftmost
child of the SEQUENCER operator.

The STORE operator creates Worktable1, whichisfilled by the INSERT operator
below it. The STORE operator then createsaclustered index on Worktablel. The
index isbuilt on the join key b.c4.

SEQUENCER operator

The SEQUENCER operator is anary operator used to sequentially execute each
the child plansbelow it. The SEQUENCER operator isused in reformatting plans,
and certain aggregate processing plans.

The SEQUENCER operator executes each of its child subplans, except for the
rightmost one. Once all the left child subplans are executed, the rightmost
subplan is executed.

The SEQUENCER operator displays this message:
SEQUENCER operator has N children.
select * from tabl a, tab2 b where a.c4 = b.c4 and a.c2 < 10

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

STEP 1
The type of query is SELECT.

7 operator(s) under root

ROOT:EMIT Operator (VA = 7)

SEQUENCER Operator (VA = 6) has 2 children.

STORE Operator (VA = 5)

Worktablel created, in allpages locking mode, for REFORMATTING.

Creating clustered index.

INSERT Operator (VA = 4)
The update mode is direct.

| SCAN Operator (VA = 0)

Performance and Tuning Series: Query Processing and Abstract Plans 97

Union operators

| FROM TABLE

| tab2

| b

| Table Scan.

| Forward Scan.
| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

TO TABLE
Worktablel.

NESTED LOOP JOIN Operator (Join Type: Inner Join) (VA = 3)

| SCAN Operator (VA = 2)

| FROM TABLE

| tabl

| a

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator (VA = 1)

| FROM TABLE

| Worktablel.

| Using Clustered Index.

| Forward Scan.

| Positioning by key.

| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

In this example, the SEQUENCER operator implements a reformatting strategy.
The leftmost branch of the SEQUENCER operator creates a clustered index on
Worktablel. This branch is executed and closed before the SEQUENCER
operator proceeds to the next child operator. The SEQUENCER operator arrives
at the rightmost child, opens, and begins to drain it, returning rows back to its
parent operator. The design intent of the SEQUENCER operator is for operators
in the rightmost branch to use the worktables created in the preceding outer
branches of the SEQUENCER operator. In this example, Worktablel isused in a
nested-loop join strategy. The scan of Worktablel is positioned by akey on its
clustered index for each row that comes from the outer scan of tab1.

98 Adaptive Server Enterprise

CHAPTER 2 Using showplan

REMOTE SCAN operator

The REMOTE SCAN operator sends a SQL query to aremote server for
execution. It then processes the results returned by the remote server, if any.
REMOTE SCAN displaysthe formatted text of the SQL query it handles.

REMOTE SCAN hasO0 or 1 child operators.

SCROLL operator

The scroLL operator encapsulates the functionality of scrollable cursorsin
Adaptive Server. Scrollable cursors may be insensitive, meaning that they
display a snapshot of their associated data, taken when the cursor is opened, or
semi-sensitive, meaning that the next rows to be fetched are retrieved from the
live data.

The scrROLL operator is aunary operator that displays this message:
SCROLL OPERATOR (Sensitive Type: <T>)
The type may be insensitive or semi-sensitive.

Thisisan example of a plan featuring an insensitive scrollable cursor:

declare CI insensitive scroll cursor for
select au_lname, au_id from authors

go
set showplan on
go

open CI

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1

The type of query is OPEN CURSOR CI.

QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1

The type of query is DECLARE CURSOR.

2 operator (s) under root

ROOT:EMIT Operator

(VA = 2)

| SCROLL Operator (Sensitive Type: Insensitive) (VA = 1)

Performance and Tuning Series: Query Processing and Abstract Plans 99

Union operators

Using Worktablel for internal storage.

SCAN Operator (VA = 0)

FROM TABLE
authors
Table Scan.

Forward Scan.

Positioning at start of table.

Using I/0 Size 4 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

The scroLL operator is the child operator of the root EMIT operator, and its
only childisthe scan operator on the authors table. sCcROLL message specifies
that the CI cursor is insensitive.

Scrollable cursor rows areinitially cached in memory. Worktablel isused asa
backing store for this cache when the amount of data processed exceeds the
cache's physical memory limits.

RID JOIN operator

100

TheRrID JOIN operator isabinary operator that joinstwo data streams, based
on row |Ds generated for the same source table. Each datarow in a SQL table
isassociated with auniquerow ID (RID). Think of arid-join as a special case
of aself-join query. The left child fills aworktable with the set of uniquely
qualifying RIDs. The RIDs are the result of applying adistinct filter to the
RIDsreturned from two or more disparate index cases of the same sourcetable.

TheRrRID JOIN Operator isused to implement the general or strategy. The
genera-or strategy is often used when a query’s predi cate contains a collection
of digunctions that can be qualified by different indexes on the sametable. In
thiscase, each index is scanned based on the predicatesthat can be qualified by
that index. For each index row that qualifies, aRID isreturned.

The returned RIDs are processed for uniqueness so that the same row is not
returned twice, which might happen if two or more of the disjunctions qualify
the same row.

TheRrID JOIN operator insertsthe unique RIDs into aworktable. The
worktable of unique RIDs is passed to the scan operator in the rid-join’s right
branch. The access methods can iteratively fetch the next RID to be processed
directly from the worktable, and look up the associated row. Thisrow isthen
returned to the RID JOIN parent operator.

TherID JOIN Operator displays this message:

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Using Worktable <N> for internal storage.
Thisworktable is used to store the unique RIDs generated from the left child.

The following example demonstrates the showplan output for theRID JoIN
operator.

select * from tabl a where a.cl = 10 or a.c3 = 10

QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1

The type of query is SELECT.

6 operator(s)

under root.

ROOT:EMIT Operator (VA = 6)

RID JOIN Operator (VA = 5)
Using Worktable2 for internal storage.

HASH UNION Operator (VA = 6) has 2 children.
Key Count: 1

SCAN Operator (VA = 0)

FROM TABLE

tabl

a

Index:tablidx

Forward Scan.

Positioning by key.

Index contains all needed columns. Base table will not be read.
Keys are:

cl ASC

Using I/0 Size 2 Kbytes for index leaf pages.

With LRU Buffer Replacement Strategy for index leaf pages.

SCAN Operator (VA = 4)

FROM TABLE

tabl

a

Index:tablidx2

Forward Scan.

Positioning by key.

Index contains all needed columns. Base table will not be read.
Keys are:

c3 ASC

Performance and Tuning Series: Query Processing and Abstract Plans 101

Union operators

Using I/O Size 2 yvtes for index leaf pages.
i / i Kb £ ind leaf
With LRU Buffer Replacement Strategy for index leaf pages.
ith ff 1 bid ind leaf

RESTRICT Operator (VA = 3)

| SCAN Operator (VA = 2)

| FROM TABLE

| tabl

| a

| Using Dynamic Index.

| Forward Scan.

| Positioning by Row IDentifier (RID).

| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

In thisexample, theindex tablidx isscanned to get all RIDsfromtabl that have
acl vaueof 10. Adaptive Server scanstablidx2 to get all RIDsfrom tab1 that
have a c3 value of 10.

The HASH UNION operator is used to eliminate duplicate RIDs. There are
duplicate RIDsfor any tab1 rowswhere both c¢1 and ¢3 rowshave avalue of 10.

TherID JOIN Operator insertsal of the returned rowsinto Worktable2.
Worktable2 is passed to the scan of tab1 after it has been completely filled. The
access methods fetch the first RID, look up the associated row, and return it to
therID JOIN operator. On subsequent callsto the tabl’s scan operator, the
access methods fetch the next RID to be processed and return its associated
row.

SQLFILTER operator

102

The SQLFILTER operator isanary operator that executes subqueries. Its
leftmost child representsthe outer query, and the other children represent query
plan fragments associated with one or more subqueries.

The leftmost child generates correlation values that are substituted into the
other child plans.

The sQLFILTER operator displays this message:
SQFILTER Operator has <N> children.
This exampleillustrates the use of SQLFILTER:

select pub name from publishers
where pub id =
(select distinct titles.pub id from titles

Adaptive Server Enterprise

CHAPTER 2 Using showplan

where publishers.pub id = titles.pub id
and price > $1000)

QUERY PLAN FOR STATEMENT 1 (at line 1).

4 operator(s) under root

STEP 1
The type of query is SELECT.

4 operator(s) under root
ROOT:EMIT Operator (VA = 4)
SQFILTER Operator (VA = 3) has 2 children.

| SCAN Operator (VA = 0)

| FROM TABLE

| publishers

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0O Size 8 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

Run subquery 1 (at nesting level 1)

QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3)

Subguery under an EXPRESSION predicate.

SCALAR AGGREGATE Operator (VA = 2)
Evaluate Ungrouped ONCE-UNIQUE AGGREGATE

| SCAN Operator (VA = 1)

| FROM TABLE

| titles

| Table Scan.

| Forward Scan.

| Postitioning at start of table.

| Using I/O Size 8 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Correlated Subguery
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| END OF QUERY PLAN FOR SUBQUERY 1

Performance and Tuning Series: Query Processing and Abstract Plans 103

Union operators

The sQLFILTER operator hastwo children in this example. The leftmost child
isthe query’s outer block. It isasimple scan of the publishers table. The right
childisused to evaluate the query’s subquery. sQLFILTER fetch rowsfromthe
outer block. For every row from the outer block, SQLFILTER invokestheright
child to evaluate the subquery. If the subquery evaluates to TRUE, arow is
returned to the SQLFILTER'S parent operator.

EXCHANGE operator

The EXCHANGE operator isaunary operator that encapsulates parallel
processing of Adaptive Server SQL queries. EXCHANGE can be located almost
anywhere in a query plan and divides the query plan into plan fragments. A
plan fragment isaquery plan treethat isrooted at an EMIT Or EXCHANGE : EMIT
operator and has |eavesthat are SCAN or EXCHANGE operators. A serial planis
aplan fragment that is executed by a single process.

An EXCHANGE operator’s child operator is always an EXCHANGE : EMIT
operator. EXCHANGE : EMIT iSthe root of anew plan fragment. An EXCHANGE
operator has an associated server process called the Beta processthat actsasa
local execution coordinator for the EXCHANGE operator’s worker processes.
Worker processes execute the plan fragment as directed by the parent
EXCHANGE operator and its Beta process. The plan fragment is often executed
inaparallel fashion, using two or more processes. The EXCHANGE operator and
Beta process coordinate activities, including the exchange of data between the
fragment boundaries.

The topmost plan fragment, rooted at an EMIT operator rather than an
EXCHANGE : EMIT operator, is executed by the Alpha process. The Alpha
process isaconsumer process associated with the user connection. The Alpha
processisthe global coordinator of all of the query plan’sworker processes. It
isresponsiblefor initially setting up all of the plan fragment’sworker processes
and eventually freeing them. It manages and coordinates all of the fragment’s
worker processesin the case of an exception.

The EXCHANGE operator displays this message:

Executed in parallel by N producer and P consumer processes.

104

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Thenumber of producersrefersto the number of worker processesthat execute
the plan fragment located beneath the ExCHANGE operator. The number of
consumers refers to the number of worker processes that execute the plan
fragment that containsthe ExCHANGE operator. The consumers processthe data
passed to them by the producers. Datais exchanged between the producer and
consumer processes through a pipe set up in the EXCHANGE operator. The
producer’s EXCHANGE : EMIT operator writes rows into the pipe while
consumers read rows from this pipe. The pipe mechanism synchronizes
producer writes and consumer reads such that no datais lost.

This exampleillustrates a parallel query in the master database against the
system table sysmessages:

use master

go

set showplan on

go

select count (*) from sysmessages tl plan '(t scan tl) (prop tl (parallel 4))

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the forced options (internally generated Abstract Plan).
Executed in parallel by coordinating process and 4 worker processes.

4 operator(s) under root
The type of query is SELECT.

ROOT:EMIT Operator
|SCALAR AGGREGATE Operator
| Evaluate Ungrouped COUNT AGGREGATE.

| | EXCHANGE Operator
| |Executed in parallel by 4 Producer and 1 Consumer processes.

EXCHANGE: EMIT Operator

| SCAN Operator

| FROM TABLE

| sysmessages

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 4-way hash scan.

| Using I/O Size 4 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

Performance and Tuning Series: Query Processing and Abstract Plans 105

INSTEAD-OF TRIGGER operators

There are two plan fragments in this example. The first fragment in any plan,
parallel or not, isaways rooted by an EMIT operator. Thefirst fragment inthis
exampleconsistsof the EMIT, SCALAR AGGREGATE, and EXCHANGE operators.
Thisfirst fragment is always executed by the single Alpha process. In this
example, it also acts as the Beta process responsible for managing the
EXCHANGE operator’s worker processes.

The second plan fragment is rooted at the EXCHANGE : EMIT operator. Itsonly
child operator isthe scan operator. The scan operator isresponsible for
scanning the sysmessages table. The scan is executed in parallel:

Executed in parallel with a 4-way hash scan

Thisindicates that each worker processis responsible for approximately a
quarter of the table. Pages are assigned to the worker processes based on
having the data page ID.

The EXCHANGE : EMIT operator writes datarowsto the consumersby writing to
apipe created by its parent EXCHANGE operator. In this example, the pipeisa
four-to-one demultiplexer, and include several pipe types that perform quite
different behaviors.

INSTEAD-OF TRIGGER operators

There are two operators associated with the instead-of triggers feature:
INSTEAD-OF TRIGGER and CURSOR SCAN. Theinstead-of trigger featureis
available as of Adaptive Server version 15.0.2. The instead-of trigger feature
uses pseudotables, which alow the user to apply specific actions for inserts,
deletes, and updates on views, when these actions would otherwise have been
ambiguous.

106 Adaptive Server Enterprise

CHAPTER 2 Using showplan

INSTEAD-OF TRIGGER operator

The INSTEAD-OF TRIGGER operator appearsonly in query plansfor insert,
update, or delete statements on aview that has an instead-of trigger created
upon it. Its function is to create and fill the inserted and deleted pseudotables
that are used in the trigger to examine the rows that would have been modified
by the original insert, update, or delete query. The only purpose of the query
planthat containsan INSTEAD-OF TRIGGER operator istofill theinserted and
deleted tables—the actual operation of the original SQL statement is never
attempted on the view referenced in the statement. Rather, itisup to thetrigger
to perform the updates to the view’s underlying tables based on the data
available in the inserted and deleted pseudo tables.

The following is an example of the INSTEAD-OF TRIGGER operator’'s

showplan output:

create table tl12 (c0 int primary key, cl int null, c¢2 int null)

go

create view tl2view as select cl,c2 from tl2
go

create trigger vl2updtrg on tl2view

instead of update as

select * from deleted

go

update tl2view set cl = 3

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT.

2 operator(s) under root
ROOT:EMIT Operator (VA = 1)

|INSTEAD—OF TRIGGER Operator
| Using Worktablel for internal storage.
| Using Worktable2 for internal storage.

| SCAN Operator (VA = 0)

| FROM TABLE

| t12

| Table Scan.

| Forward Scan.

| Positioning at start of table.

Performance and Tuning Series: Query Processing and Abstract Plans

107

INSTEAD-OF TRIGGER operators

| | | Using I/O Size 2 Kbytes for data pages.
| | | with LRU Buffer Replacement Strategy for data pages.

In this exampl e, the v12updtrig instead-of trigger is defined on thet12view. The
update to the t12view results in the creation of the INSTEAD-OF TRIGGER
operator. The INSTEAD-OF TRIGGER Operator creates two worktables.
Worktablel and Worktable2 are used to hold the inserted and deleted rows,
respectively. These worktables are unique in that they persist across
statements. Trigger execution results in the following showplan lines getting
printed.

QUERY PLAN FOR STATEMENT 1 (at line 3).

STEP 1
The type of query is SELECT.

1 operator(s) under root
|ROOT:EMIT Operator (VA = 1)

|
| |SCAN Operator (VA = 0)
| | FROM CACHE

The showplan statement output above is for the trigger’s statement, select *
from deleted. The rows to be deleted from the view were inserted into the
“deleted” cache when the initial update statement was executed. Then, the
trigger scans the table to report what rows would have been deleted from the
t12view View.

CURSOR SCAN operator

The CURSOR SCAN operator only appears in positioned delete or update (that
is, delete view-name where current of cursor_name) statements on a view that
has an instead-of trigger created upon it. As such, it appears only as a child
operator of the INSTEAD-OF TRIGGER operator. A positioned delete or update
accessesonly therow onwhich the cursor is currently positioned. The CURSOR
SCAN operator reads the current row of the cursor directly from the EMIT
operator of the query plan for the fetch cursor statement. These values are
passed to the INSTEAD-OF TRIGGER operator to be inserted into the inserted
or deleted pseudo tables (this example uses the same tabl e as the previous
example).

declare cursl cursor for select * from tl2view
go

108 Adaptive Server Enterprise

CHAPTER 2 Using showplan

open cursl

go
fetch cursil

cl c2

(1 row affected)

set showplan on

go

update tl2view set cl = 3
where current of cursl

QUERY PLAN FOR STATEMENT (at line 1).

STEP 1
The type of query is SELECT.

2 operator(s) under root
ROOT:EMIT Operator (VA = 2)

|

|

| |INSTEAD-OF TRIGGER Operator (VA = 1)

| | Using Worktablel for internal storage.
| | Using Worktable2 for internal storage.
||
||
|

|CURSOR SCAN Operator (VA = 0)
| FROM EMIT OPERATOR

The showplan output in this exampleisidentical to that from the previous

INSTEAD-OF TRIGGER operator example, with one exception. A CURSOR
SCAN operator appears as the child operator of the INSTEAD-OF TRIGGER
operator rather than a scan of the view's underlying tables.

The CURSOR SCAN gets the values to be inserted into the pseudo tables by
accessing the result of the cursor fetch. Thisis conveyed by the FRoM EMIT
OPERATOR MeSsage.

QUERY PLAN FOR STATEMENT 1 (at line 3).

STEP 1
The type of query is SELECT.

1 operator(s) under root

|ROOT : EMIT Operator (VA = 1)

Performance and Tuning Series: Query Processing and Abstract Plans 109

INSTEAD-OF TRIGGER operators

| SCAN Operator (VA = 0)
| FROM CACHE

The showplan statement above is for the trigger’s statement. It isidentical to
the output in the INSTEAD-OF TRIGGER example.

deferred_index and deferred_varcol messages

110

The update mode is deferred varcol.

The update mode is deferred index.

These showplan messagesindicate that Adaptive Server may processan update
command as a deferred index update.

Adaptive Server usesdeferred varcol mode when updating one or more
variable-length columns. This update may be donein deferred or direct mode,
depending on information that is available only at runtime.

Adaptive Server usesdeferred index mode when the index is unique or
may change as part of the update. In this mode, Adaptive Server deletes the
index entriesin direct mode but inserts them in deferred mode.

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization
Strategies and Estimates

This chapter describes the messages printed by the query optimization
options of the set command.

Topic Page
set commands for text format messages 11
set commands for XML format messages 112
Diagnostic usage scenarios 119
Permissions for set commands 122

set commands for text format messages

Either the query optimizer or the query execution layer can generate
diagnostic output. To generate diagnostic output in text format, use:

set option
{ {show | show_lop | show_managers | show_log_props |
show_parallel | show_histograms | show_abstract_plan |
show_search_engine | show_counters | show_best_plan |
show_code_gen | show_pio_costing | show_lio_costing |
show_pll_costing | show_elimination | show_missing_stats}
{normal | brief | long | on | off} }...

Note Each option specified must be followed by one of normal, brief, long,
on, or off. on and normal are equivalent. Each show option must include
one of these choices (normal, brief, and so on); specify more than one
optionin asingle set option command by separating each option or choice
pair with commas.

See “Diagnostic usage scenarios’ on page 119 for examples of using the
set options.

Performance and Tuning Series: Query Processing and Abstract Plans 111

set commands for XML format messages

Table 3-1: Optimizer set commands for text format messages

Option Definition

show Shows a reasonabl e collection of details, where the collection depends on the choice of
{normal | brief | long | on | off}

show_lop Shows the logical operators used

show_managers

Shows the data structure managers used during optimization

show_log_props

Shows the logical properties evaluated

show_parallel

Shows details of parallel query optimization

show_histograms

Shows the processing of histograms associated with SARG/join columns

show_abstract_plan

Shows the details of an abstract plan

show_search_engine

Shows the details of the join-ordering algorithm

show_counters

Shows the optimization counters

show_best_plan

Shows the details of the best query plan selected by the optimizer

show_code_gen

Shows details of code generation

show_pio_costing

Shows estimates of physical input/output (reads/writes from/to the disk)

show_lio_costing

Shows estimates of logical input/output (reads/writes from/to memory)

show_pll_costing

Shows estimates relating to costing for parallel execution

show_elimination

Shows partition elimination

show_missing_stats

Shows details of useful statistics missing from SARG/join columns

set commands for XML format messages

112

You can regenerate diagnostics as an XML document. This makesit easier for
front-end toolsto interpret a document. You can use the native XPath query
processor inside Adaptive Server to query this output if the XML option is
enabled.

Either the query optimizer or the query execution layer can generate
diagnostics output. To generate an XML document for the diagnostic output,
use this set plan command:

set plan for
{show_exec_xml, show_opt_xml, show_execio_xml,
show_lop_xml, show_managers_xml, show_log_props_xml,
show_parallel_xml, show_histograms_xml, show_final_plan_xml,
show_abstract_plan_xml, show_search_engine_xml,
show_counters_xml, show_best_plan_xml, show_pio_costing_xml,
show_lio_costing_xml, show_elimination_xml}
to {client | message} on

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

Option

Definition

show_exec_xml

Gets the compiled plan output in XML, showing each of the query plan operators.

show_opt_xml

Gets optimizer diagnostic output, which shows the different components such as
logical operators, output from the managers, some of the search engine diagnostics,
and the best query plan.

show_execio_xml

Gets the plan output along with estimated and actual 1/0s. show_execio_xml also
includes the query text.

show_lop_xml

Gets the output logical operator treein XML.

show_managers_xml

Shows the output of the different component managers during the preparation phase
of the query optimizer.

show_log_props_xml

Showsthe logical properties for a given equivalence class (one or more groups of
relations in the query).

show_parallel_xml

Shows the diagnostics related to the optimizer while generating parallel query plans.

show_histograms_xml

Shows diagnostics related to histograms and the merging of histograms.

show_final_plan_xml

Gets the plan output. Does not include the estimated and actual 1/Os.
show_final_plan_xml includes the query text.

show_abstract_plan_xml

Shows the generated abstract plan.

show_search_engine_xml

Shows diagnostics related to the search engine.

show_counters_xml

Shows plan object construction/destruction counters.

show_best_plan_xml

Shows the best planin XML.

show_pio_costing_xml

Shows actual physical input/output costing in XML.

show_lio_costing_xml

Shows actual logical input/output costing in XML.

show_elimination_xml

Shows partition elimination in XML.

client When specified, output is sent to the client. By default, thisistheerror log. When trace
flag 3604 is active, however, output is sent to the client connection.
message When specified, output is sent to an internal message buffer.

Performance and Tuning Series: Query Processing and Abstract Plans

To turn an option off, specify:

set plan for
{show_exec_xml, show_opt_xml, show_execio_xml, show_lop_xml,
show_managers_xml, show_log_props_xml, show_parallel_xml,
show_histograms_xml,show_final_plan_xml
show_abstract_plan_xml, show_search_engine_xml,
show_counters_xml, show_best_plan_xml, show_pio_costing_xml,
show_lio_costing_xml, show_elimination_xml} off

You need not specify the destination stream when turning the option off.

When message is specified, the client application must get the diagnostics
from the buffer using a built-in function called showplan_in_xmi(query_num).

113

set commands for XML format messages

query_num refers to the number of queries that are cached in the buffer.
Currently, amaximum of 20 queries are cached in the buffer. The cache stops
collecting query plans when it reaches 20 queries; it ignores the rest of the
query plans. However, the message buffer continues to collect query plans.
After 20 queries, you can display the message buffer only in its entirety by
using avalue of 0.

Valid valuesfor query_numare 1 - 20, -1, and O (zero). A value of -1 refersto
the last XML doc in the cache; avalue of 0 refers to the entire message buffer.

The message buffer may overflow. If this occurs, thereis no way to log all of
the XML document, which may result in apartial and invalid XML document.

When the message buffer is accessed using showplan_in_xml, the buffer is
emptied after execution.

You may want to use set textsize to set the maximum text size, as the XML
document is printed as a text column and the document is truncated if the
column is not large enough. For example, set the text size to 100000 bytes
using:

set textsize 100000

When set plan isissued with off, all XML tracing isturned off if all of the trace
options have been turned off. Otherwise, only specified options are turned off.
Other options previously turned on are still valid and tracing continues on the
specified destination stream. When you issue another set plan option, the
previous options are joined with the current options, but the destination stream
is switched unconditionally to a new one.

Using show_execio_xml to diagnose query plans

114

show_execio_xml includes diagnostic information that you may find can be
helpful for investigating problematic queries. Information from
show_execio_xml includes:

» Theversion level of the query plan. Each version of the plan is uniquely
identified. Thisisthefirst version of the plan:

<planVersion>1l.0</planVersions>

e The statement number in a batch or stored procedure, along with the line
number of the statement in the original text. Thisis statement number 2,
but line number 6, in the query:

<statementNum>2</statementNum>

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

<lineNum>6</1lineNum>

e Theabstract plan for the query. For example, thisis the abstract plan for
the query select * from titles:

<abstractPlans>
<! [CDATA[>
(1 scan titleidind titles) (prop titles (parallel 1
) (prefetch 8) (lru))
11>

</abstractPlan>
e Thelogical 1/0O, physical 1/0, and CPU costs:

<costs>
<lio> 2 </lio>
<pio> 2 </pio>
<cpu> 18 </cpu>
</costs>

You can estimate the total costs with thisformula (the 25, 2, and 0.1 are
constants):

25X pio+2 X lio+0.1 X cpu

« The estimated execution resource usage, including the number of threads
and auxiliary scan descriptors used by the query plan.

e Thenumber of plansthe query engine viewed and the plansit determined
were valid, the total time the query spent in the query engine (in
milliseconds), the time the query engine took to determine the first legal
plan, and the amount of procedure cache used during the optimization
process.

<optimizerMetricss>
<optTimeMs>6</optTimeMs>
<optTimeToFirstPlanMs>3</optTimeToFirstPlanMs>
<plansEvaluated>l</plansEvaluateds>
<plansValid>l</plansvValids>
<procCacheBytes>140231</procCacheBytes>
</optimizerMetrics>

¢ Thelast time update statistics was run on the current table and whether the
guery engine used an estimation constant for agiven column that it could
have estimated better if statistics were available. This section includes
information about columns with missing statistics:

<optimizerStatistics>
<statInfo>
<objName>titles</objName>

Performance and Tuning Series: Query Processing and Abstract Plans 115

set commands for XML format messages

<columnStats>
<column>title id</column>
<updateTime>Oct 5 2006 4:40:14:730PM</updateTime>
</columnStatss>
<columnStats>
<column>title</columns>
<updateTime>Oct 5 2006 4:40:14:730PM</updateTime>
</columnStatss>
</statInfo>

</optimizerStatistics>

» Anoperator tree that includes table and index scans with information
about cache strategies and 1/0 sizes (inserts, updates, and deletes have the
same information for the target table). The operator tree also shows
whether updates are performed in “direct” or “deferred” mode. The
exchange operator includesinformation about the number of producer and
consumer processes the query used.

<TableScan>

<VA>0</VA>
<est>

<rowCnt>18</rowCnt>

<lio>2</lio>

<pio>2</pio>

<rowSz>218.5555</rowSz>
</est>
<varNo>0</varNo>
<objName>titles</objName>
<scanType>TableScan</scanType>
<partitionInfo>

<partitionCount>l</partitionCounts>
</partitionInfo>
<scanOrder> ForwardScan </scanOrders>
<positioning> StartOfTable </positionings>
<dataIOSizeInKB>8</dataIOSizeInKB>
<dataBufReplStrategy> LRU </dataBufReplStrategy>

</TableScan>

Showing cached plans in XML

show_cached_plan_in_xml helps track the query performance in the statement
cache. For agiven query, show_cached_plan_in_xml, identified by itsobject ID
or SSQLID and PlaniID, returns:

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

* Theheader section, which containsinformation about the cache statement,
such asthe statement 1D, object ID and the text:

<?xml version="1.0" encoding="UTF-8"?>

<query>
<statementId>1328134997</statementIds>

<text>

<! [CDATA[SQL Text: select name from sysobjects where id = 10]]>

</texts>

If PlanID is set to 0, show_cached_plan_in_xml displays output for all
available plans associated with the cached statement.

e The plan section which contains the plan 1D and these subsections:

e Parameter —returnsthe plan status, the parameters used to compilethe
query, and the parameter values that caused the sowest performance.

<planId>1ll</planIds>

<planStatus> available </planStatus>
<execCount>1371</execCount>
<maxTime>3</maxTime>
<avgTime>0</avgTime>
<compileParameters/>
<execParameters/>

e opTree—returns the operatorstree, row count, and logical 1/0 (lio)
and physical 1/O (pio) estimates for every operator. the opTree sub-
section returns query plan and optimizer estimates such aslio, pio and
row count

Thisis an example of an output for the Emit operator.

<opTree>
<Emit>
<VA>1</VA>
<est>
<rowCnt>10</rowCnt>
<lio>0</lio>
<pio>0</pio>
<rowSz>22.54878</rowSz>
</est>
<act>
<rowCnt>1</rowCnts>
</acts>
<aritys>l</arity>
<IndexScans>
<VA>0</VA>
<est>

Performance and Tuning Series: Query Processing and Abstract Plans 117

set commands for XML format messages

118

<rowCnt>10</rowCnt>

<lio>0</lio>

<pio>0</pio>

<rowSz>22.54878</rowSz>
</est>
<acts>

<rowCnt>1l</rowCnts>

<lio>3</lio>

<pio>0</pio>
</act>
<varNo>0</varNo>
<objName>sysobjects</objName>
<scanType>IndexScan</scanType>
<indName>csysobjects</indName>
<indId>3</indId>
<scanOrder> ForwardScan </scanOrder>
<positioning> ByKey </positionings>
<perKey>

<keyCol>id</keyCol>

<keyOrder> Ascending </keyOrder>
</perKey>
<indexI0SizeInKB>2</indexI0SizeInKB>
<indexBufReplStrategy> LRU </indexBufReplStrategy>
<dataIOSizeInKB>2</dataI0OSizeInKB>
<dataBufReplStrategy> LRU </dataBufReplStrategy>

</IndexScan>

</Emits>
<opTree>

<Emit>
<Details>
<VA>5</VA>

execTree — returns the query plan with the operator internal details.
Details vary, depending on the operator. Thisis an example of an
output for the Emit operator.

<Vtuple Label="Output Vtuple">
<collection Label="Columns (#2)">

<Column>

<0x0x1462d2838) type:GENERIC TOKEN len:0 offset:0

valuebuf:0x(nil)

status: (0x00000008 (STATNULL))

(constant :0x0x1462d24c0 type:INT4 len:4 maxlen:4 constat: (0x0004
(VARIABLE), 0x0002 (PARAM)))
</Columns>

<Column>

(0x0x1462d2878) type:GENERIC TOKEN len:0 offset:0

valuebuf:0x(nil)

status: (0x00000008 (STATNULL))

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

(constant:0x0x1462d26e8 type:INT4 len:4 maxlen:4 constat:
(VARIABLE), 0x0002 (PARAM))

</Column>

<Collection>

<Collection Label="Evals">

<EVAL>

constp: 0x0x1462d2290 status: 0 E ASSIGN
</EVAL>

<EVAL>

constp: 0x0x1462d2348 status: 0 E_ASSIGN
</EVAL>

<EVAL>

constp: 0x(nil) status: 0 E_END

</EVAL>

</Collection>

</Vtuple>

</Detailss>

Diagnostic usage scenarios

Scenario A

(0x0004

For the following examples, if dbcc traceon(3604) is set, trace information is

sent to the client’s connection. If dbcc traceon (3605) is set, trace information
is sent to the error log. For Adaptive Server versions 15.0.2 and later, you can
use the set switch on. For example:

set switch on 3604
set switch on 3605

Optimization tracing options (dbcc traceon/off(302,310,317)) from versions of
Adaptive Server earlier than 15.0 are no longer supported.

Use dbcc traceon(3604) Or set switch on print_output_to_client to direct trace
output to the client process that would otherwise go to the error log. Use dbcc
traceon(3605) or set switch on print_output_to_errorlog to direct output to the
error log aswell asto the client process.

To send the execution plan XML to the client as trace output, use:
set plan for show exec xml to client on
Then run the queries for which the plan is wanted:

select id from sysindexes where id < 0

Performance and Tuning Series: Query Processing and Abstract Plans 119

Diagnostic usage scenarios

Scenario B

Scenario C

Scenario D

120

To get the execution plan, use the showplan_in_xml function. You can get the
output from the last query, or from any of the first 20 queriesin abatch or
stored procedure.

set plan for show _opt xml to message on
Run the query as:

select id from sysindexes where id < 0
select name from sysobjects where id > 0

go

select showplan in xml (0)

go
The example generates two XML documents as text streams. You can run an
XPath query over this built-in aslong as the XML option is enabled in
Adaptive Server.

select xmlextract("/", showplan in xml(-1))

go
This allows the XPath query “/” to be run over the XML doc produced by the
last query.

To set multiple options:

set plan for show_exec_xml, show _opt xml to client on
go

select name from sysobjects where id > 0

go
This sets up the output from the optimizer and the query execution engine to
send the result to the client, asis done in normal tracing.

set plan for show exec xml off

go

select name from sysobjects where id > 0
go

The optimizer’s diagnostics are till available, as show_opt_xml isleft on.

When running a set of queriesin abatch, you can ask for the optimizer plan for
the last query.

set plan for show opt xml to message on
go

declare @v int

select @v = 1

select name from sysobjects where id = @v

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

Scenario E

go

select showplan in xml (-1)
go

showplan_in_xml() can also be part of the same batch asit works the same way.
Any message for the showplan_in_xml() function isignored for logging.

To create a stored procedure:

create proc PP as

declare @v int

select @v = 1

select name from sysobjects where id = ev
go

exec PP
go

select showplan in xml (-1)
go

If the stored procedure calls another stored procedure, and the called stored
procedure compiles, and optimizer diagnostics are turned on, you get the
optimizer diagnostics for the new set of statementsaswell. The sameistrueif
show_execio_xml isturned on and only the called stored procedure is executed.

To query the output of the showplan_in_xml() function for the query execution
plan, which isan XML doc:

set plan for show_exec_xml to message on
go

select name from sysobjects
go

select case when
'/Emit/Scan[@Label="Scan:myobjectss”]' xmltest
showplan in xml (-1)

then “PASSED” else "FAILED" end

go

set plan for show exec_xml off
go

Performance and Tuning Series: Query Processing and Abstract Plans 121

Permissions for set commands

Scenario F

Use show_final_plan_xml to configure Adaptive Server to display the query
plan as XML output. This output does not include the actual L10 costs, PIO
costs, or the row counts. Once show_final_plan_xml is enabled, you can select
the query plan from the last run query (which hasaquery ID of -1). To enable
show_final_plan_xml:

set plan for show final plan xml to message on
Run your query, for example:

use pubs2

go

select * from titles
go

Select the query plan for the last query run using the showplan_in_xml
parameter:

select showplan in xml (-1)

Permissions for set commands

The sa_role has full access to the set commands described above.

For other users, the system administrator must grant and revoke new set tracing
permissionsto alow set option and set plan for XML, aswell asdbcc traceon/off
(3604,3605).

For more information, see the grant command description in Adaptive Server
Reference Manual: Commands.

Analyzing dynamic parameters

122

Adaptive Server lets you analyze dynamic parameters (which areindicated by
question marks) before running a query, helping you avoid inefficient query
plans.

Analyze dynamic parameters using:

* @@Iwpid global variable — returns the object ID of the most recently
prepared lightweight procedure that corresponds to a dynamic SQL
prepare Statement.

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

e @@plwpid global variable—returnstheobject ID of the next most recently
prepared lightweight procedure that corresponds to a dynamic SQL
prepare statement.

e show_dynamic_params_in_xml| —displaysinformation about parametersin
dynamic SQL statements. See the Reference Manual: Blocks.

Using the value provided by @ @plwpid as the value for the
show_dynamic_params_in_xml object_id parameter, Adaptive Server displays
information about the dynamic parameters in the query. Continue refining the
parameters until you find the ones that provide you with the best query plan.

Disable the statement cache before you analyze dynamic parameters for a
query. The statement cache reuses query plans to avoid compilation.

The output of show_dynamic_params_in_xml is similar to:

< !ELEMENT query (parameter¥*)s>

< !ELEMENT parameter (number, type, column?)>
< !ELEMENT number (#PCDATA) >

< !ELEMENT type (#PCDATA) >

<!ELEMENT column (#PCDATA) >

The root element of the document is <query>, which can have zero or more
<parameters elements. Each <parameter> e ement includes:

e number —thedynamic parameter's position in the statement (starting at 1).
e type —thedatatype.

e column —the name of atable and column (in the format table.column)
associated with the dynamic parameter, if such an association exists. If no
association exists, there is no column information in the output.

Dynamic parameter example analysis
A typical use case for analyzing dynamic parametersis:
1 Disable statement cache:
set statement cache off

2 Prepare the statement to be examined that contains the dynamic
parameters.

3 Sdlect @@plwpid to determinethe object 1D of themost recent lightweight
procedure.

Performance and Tuning Series: Query Processing and Abstract Plans 123

Analyzing dynamic parameters

4 Run show_dynamic_params_in_xml using the value of @ @plwpid as the
value for object_id, and displaying the result in the local variable named
xmldoc1.

5 Closethe statement.
6 Enable the statement cache:
set statement cache on

7 Analyzetheresultsin xmidoc1, and select values for the parameters.

124 Adaptive Server Enterprise

CHAPTER 4 Finding Slow Running Queries

Topic Page
Saving diagnosticsto atracefile 125
Displaying SQL text 129
Retaining session settings 132

Adaptive Server includes the set show_sqltext, set tracefile, and set
export_options parameters that enable you to collect diagnostic
information about poorly-running queries without having to previously
enable showplan or other investigatory parameters.

Saving diagnostics to a trace file

Once enabled, set tracefile savesall SQL text for the current session to the
specified file, each SQL text batch appending to the previous batch.

The syntax to enable tracing is.

set tracefile file_name [off] [for spid
The syntax to disabletracing is:

set tracefile off [for spid]
Where:

Performance and Tuning Series: Query Processing and Abstract Plans 125

Saving diagnostics to a trace file

Examples

126

set tracefile

file_name —isthefull path to thefilein which you are saving the SQL text.
If you do not specify adirectory path, Adaptive Server createsthefilein
$SYBASE.

Note If file_name contains specia characters (“:”, “/”, and so on) other
than numbers and letters, you must include file_name in quotes. For
example, this file_name must be in quotes because of the“/” for the
directory structure:

set tracefile '/tmp/mytracefile.txt' for 25

If file_name does not contain specia characters and you want to saveit to
$SYBASE, it does not require quotes. For example, thisfile_name does not
need to be in quotes:

set tracefile mytracefile.txt

off — disables the tracing for this session or spid.

spid — server process ID whose SQL text you want saved to atracefile.
Only the users with the SA or SSO role can enable tracing for other spids.
You cannot save the SQL text for system tasks (such as the housekeeper
or the port manager).

This example opens atrace file named sql_text_file for the the current
session:

' /var/sybase/REL1502/text dir/sql text file'

Subsequent outputs from set showplan, set statistics io, and dbcc
traceon(100) are saved in sgl_text file.

This example does not specify adirectory path, so thetracefileissaved in
$SYBASE/sql_text file:

set tracefile 'sqgl text file' for 11
Any SQL run on spid 11 is saved to this tracefile.
This example saves the SQL text for spid 86:

set tracefile
' /var/sybase/REL1502/text dir/sql text file' for 86

This example disables set tracefile:

set tracefile off

These are the restrictions for set tracefile:

Adaptive Server Enterprise

CHAPTER 4 Finding Slow Running Queries

e You cannot save the SQL text for system tasks (such as the housekeeper
or the port manager).

e You must have the sa or sso roles, or be granted set tracing permission, to
run enable or disable tracing.

e settracefile is not allowed to open an existing file as a tracefile.

e During an SA or SSO session, if you enable set tracfile for a specific spid,
all subsequent tracing commands executed take effect on that spid, not the
SA or SSO spid.

e |f Adaptive Server runs out of file space while writing the tracefile, it
closes the file and disables the tracing.

e If anisql session starts tracing for aspid, but theisgl session quits without
disabling the tracing, another isgl session can begin tracing this spid.

e Tracing occurs for the session for which it is enabled only, not for the
session that enabled it.

* You cannot trace more than one session at atime from a single sa or sso
session. If you attempt to open atracefile for a session for which thereis
aready atrace file open, Adaptive Server issuesthis error message:
tracefile is already open for this session.

e You cannot trace the same session from multiple sa or sso sessions.

e Thefile storing the trace output is closed when the session being traced
quits or when you disable tracing.

- Before you alocate resources for tracing, keep in mind that each tracing
requires one file descriptor per engine.

Set options that save diagnostic information to a trace file

You can use set tracefile in combination with other set commands and options
that provide diagnostic information for a better understanding of slow-running
gueries. These are the set commands and options that save diagnostic
information to afile:

* setshow_sqltext [on | off]
* setshowplan [on | off]
* set statistics io [on | off]

* set statistics time [on | off]

Performance and Tuning Series: Query Processing and Abstract Plans 127

Saving diagnostics to a trace file

* set statistics plancost [on | off]

These are the set options:

* set option show [normal | brief | long | on | off]

* setoption show_lop [normal | brief | long | on | off]

* set option show_parallel [normal | brief | long | on | off]

* set option show_search_engine [normal | brief | long | on | off]
* set option show_counters [normal | brief | long | on | off]

* set option show_managers [normal | brief | long | on | off]

* set option show_histograms [normal | brief | long | on | off]

* set option show_abstract_plan [normal | brief | long | on | off]
* setoption show_best_plan [normal | brief | long | on | off]

* setoption show_code_gen [normal | brief | long | on | off]

* set option show_pio_costing [normal | brief | long | on | off]

* setoption show_lio_costing [normal | brief | long | on | off]

* setoption show_log_props [normal | brief | long | on | off]

* set option show_elimination [normal | brief | long | on | off]

Which sessions are being traced?

Use sp_helpapptrace to determine which sessions Adaptive Server is tracing.
sp_helpapptrace returns the server process |Ds (spids) for all the sessions
Adaptive Server istracing, the spids of the sessionstracing them, and the name
of the tracefile.

The syntax for sp_helpapptrace is:
sp_helpapptrace
sp_helpapptrace returns these columns;
e traced_spid — spid of the session you are tracing.

e tracer_spid — spid of the session that traced_spid istracing. Prints “ exited”
if the tracer_spid session has exited.

e trace_file — full path to the tracefile.

128 Adaptive Server Enterprise

CHAPTER 4 Finding Slow Running Queries

For example:
sp_helpapptrace
traced spid tracer spid trace file
11 exited /tmp/myfilel
13 14 /tpcc/sybase.15 0/myfile2

Rebinding a trace

If a session istracing another session, but quits without disabling the tracing,
Adaptive Server allows a new session to rebind with the earlier trace. This
means that a sa or sso is not required to finish every trace they start, but can
start atrace session, quit, and then rebind to this trace session

Displaying SQL text

set show_sqltext allows you to print the SQL text for ad-hoc queries, stored
procedures, cursors, and dynamic prepared statements. You do not need to
enable the set show_sqltext before you execute the query (as you do with
commands like set showplan on) to collect diagnostic information for a SQL
session. Instead you can enable it while the commands are running to help
determine which query is performing poorly and diagnose their problems.

Before you enable show_sqltext, you must first enable dbcc traceon to display
the output to standard out:

dbcc traceon(3604)

The syntax for set show_sqltext is:
set show_sqltext {on | off}

For example, this enables show_sqltext:
set show_sgltext on

Once set show_sqltext is enabled, Adaptive Server printsall SQL text to
standard out for each command or system procedure you enter. Depending on
the command or system procedure you run, this output can be extensive.

For example, if yourunsp_who, Adaptive Server printsall SQL text associated
with this system procedure (the output is abbreviated for space purposes):

Performance and Tuning Series: Query Processing and Abstract Plans 129

Displaying SQL text

sp_who

2007/02/23 02:18:25.77

SQL Text: sp_who

Sproc: sp_who, Line: 0

Sproc: sp_who, Line: 20

Sproc: sp_who, Line: 22

Sproc: sp_who, Line: 25

Sproc: sp_who, Line: 27

Sproc: sp_who, Line: 30

Sproc: sp_who, Line: 55

Sproc: sp _who, Line: 64

Sproc: sp_autoformat, Line: 0
Sproc: sp_autoformat, Line: 165
Sproc: sp_autoformat, Line: 167
Sproc: sp_autoformat, Line: 177
Sproc: sp_autoformat, Line: 188

Sproc: sp_autoformat, Line: 326

Sproc: sp_autoformat, Line: 332

SQL Text: INSERT

#colinfo_af (colid, colname,usertype, type, typename, collength, maxlength, autoform
at,selected, selectorder, asname, mbyte) SELECT
c.colid,c.name, t.usertype, t.type,t.name,case when c.length < 80 then 80 else
c.length end,0,0,0,0,c.name, 0 FROM tempdb.dbo.syscolumns c, tempdb.dbo.systypes
t WHERE c.id=1949946031 AND c.usertype=t.usertype

Sproc: sp_autoformat, Line: 333

Sproc: sp_autoformat, Line: 334

Sproc: sp_autoformat, Line: 535
Sproc: sp_autoformat, Line: 0

Sproc: sp_autoformat, Line: 393
Sproc: sp_autoformat, Line: 395

Sproc: sp_autoformat, Line: 686

Sproc: sp_autoformat, Line: 688

SQL Text: UPDATE #colinfo af SET maxlength= (SELECT

isnull (max (isnull (char length (convert (varchar (80),£fid)),4)),1) FROM
#wholresult), autoformat = 1, mbyte=case when usertype in (24, 25, 34, 35) then
1 else 0 end WHERE colname='fid'

Sproc: sp_autoformat, Line: 689

Sproc: sp_autoformat, Line: 690

Sproc: sp_autoformat, Line: 815

Sproc: sp_autoformat, Line: 818

SQL Text: SELECT

fid=right (space (80) +isnull (convert (varchar (80) ,fid), 'NULL'),3),

130 Adaptive Server Enterprise

CHAPTER 4 Finding Slow Running Queries

spid=right (space (80) +isnull (convert (varchar (80) ,spid), 'NULL') , 4),
status=SUBSTRING (convert (varchar (80) ,status),1,8),
loginame=SUBSTRING (convert (varchar (80) , loginame) , 1,8
origname=SUBSTRING (convert (varchar (80) ,origname), 1,8
hostname=SUBSTRING (convert (varchar (80) ,hostname) , 1,8
blk spid=right (space (80)+isnull (convert (varchar (80),
dbname=SUBSTRING (convert (varchar (80) ,dbname) ,1,6),
tempdbname=SUBSTRING (convert (varchar (80) , tempdbname) ,1,10),
cmd=SUBSTRING (convert (varchar (80) ,cmd) ,1,17),

block xloid=right (space(80)+isnull (convert (varchar (80),block xloid), 'NULL'),1
1) FROM #wholresult order by fid, spid, dbname

’

’

)
)
).
blk _spid), 'NULL'),8),

Sproc: sp_autoformat, Line: 819
Sproc: sp_autoformat, Line: 820
Sproc: sp_autoformat, Line: 826
Sproc: sp_who, Line: 68
Sproc: sp _who, Line: 70

fid spid status loginame origname hostname blk spid dbname
tempdbnamecmd block xloid

0 2 sleeping NULL NULL NULL 0 master tempdb
DEADLOCK TUNE 0

0 3 sleeping NULL NULL NULL 0 master tempdb
ASTC HANDLER 0

0 4 sleeping NULL NULL NULL 0 master tempdb
CHECKPOINT SLEEP 0

0 5 sleeping NULL NULL NULL 0 master tempdb
HK WASH 0

0 6 sleeping NULL NULL NULL 0 master tempdb
HK GC 0

0 7 sleeping NULL NULL NULL 0 master tempdb
HK CHORES 0

0 8 sleeping NULL NULL NULL 0 master tempdb
PORT MANAGER 0

0 9 sleeping NULL NULL NULL 0 master tempdb
NETWORK HANDLER 0

0 10 sleeping NULL NULL NULL 0 master tempdb
LICENSE HEARTBEAT O

0 1 running sa sa echo 0 master tempdb
INSERT 0

(10 rows affected)
(return status = 0)

Performance and Tuning Series: Query Processing and Abstract Plans 131

Retaining session settings

To disable show_sqltext, enter:
set show_sqgltext off

Restrictions for * You must have the sa or sso rolesto run show_sgltext.
show_sqltext

* You cannot use show_sqltext to print the SQL text for triggers.

* You cannot use show_sqltext to show a binding variable or a view name.

Retaining session settings

Adaptive Server’s default behavior isto reset any set parameter changes that
are set by atrigger or system procedure after they finish running. Enabling set
export_options allows you to export the session settings set by a system
procedure or trigger to the parent (or issuer) of the stored procedure or trigger.

In this example, Adaptive Server exports set showplan on to outer_proc, but
does not exported it to a parent stored procedure:

create proc inner proc

as
set showplan on
select * from titles
set export options on

go

create proc outer proc
as

exec inner proc

go

132 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Thischapter provides an in-depth description of parallel query processing.

Topic Page
Vertical, horizontal, and pipelined parallelism 133
Queriesthat benefit from parallel processing 134
Enabling parallelism 135
Controlling parallelism at the session level 139
Controlling query parallelism 141
Using parallelism selectively 141
Using parallelism with large numbers of partitions 143
When parallel query results differ 144
Understanding parallel query plans 146
Adaptive Server parald query execution model 148

Vertical, horizontal, and pipelined parallelism

Adaptive Server supports horizontal and vertical parallelism for query
execution. Vertical parallelism isthe ability to run multiple operators
simultaneously by employing different system resources such as CPUs,
disks, and so on. Horizontal parallelism is the ability to run multiple
instances of an operator on the specified portion of the data.

The way you partition your data greatly affects the efficiency horizontal
parallelism. The logical partitioning of datais useful in operational
decision-support systems (DSS) queries where large volumes of data are
being processed.

See Chapter 10, “Partitioning Tables and Indexes,” in the Transact-SQL
User’s Guide and the Performance and Tuning Series: Physical Database
Tuning guide for amore detailed discussion of partitioning on Adaptive
Server. Understanding different types of partitioning is a prerequisite to
understanding this chapter.

Performance and Tuning Series: Query Processing and Abstract Plans 133

Queries that benefit from parallel processing

Adaptive Server also supports pipelined parallelism. Pipelining is aform of
vertical parallelismin which intermediate results are piped to higher operators
inaquery tree. The output of one operator isused asinput for another operator.
The operator used as input can run simultaneously with the operator feeding
thedata, whichisan essential elementin pipelined parallelism. Use parallelism
only when multiple resources like disks and CPUs are available. Using
parallelism can be detrimental if your system is not configured for resources
that can work in tandem. In addition, data must be spread across disk resources
inaway that closely ties the logical partitioning of the data with the physical
partitioning on parallel devices. The biggest challenge for aparalld systemis
to control the correct granularity of parallelism. If parallelism istoo finely
grained, communication and synchronization overhead can offset any benefit
that is obtained from parallel operations. Making parallelism too coarse does
not permit proper scaling.

Queries that benefit from parallel processing

134

When Adaptive Server is configured for parallel query processing, the query
optimizer evaluates each query to determine whether it is eligible for parallel
execution. If itiseligible, and if the optimizer determinesthat aparallel query
plan can deliver results faster than a serial plan, the query is divided into plan
fragments that are processed simultaneously. The results are combined and
delivered to the client in a shorter period of time than it takesto process the
query serially as a single fragment.

Parallel query processing can improve the performance of:

* select statementsthat scan large numbersof pagesbut return relatively few
rows, such as table scans or clustered index scans with grouped or
ungrouped aggregates.

» Tablescansor clustered index scansthat scan alarge number of pages, but
have where clauses that return only asmall percentage of rows.

» select statements that include union, order by, or distinct, Since these query
operations can make use of parallel sorting or parallel hashing.

» select statementswhere areformatting strategy is chosen by the optimizer,
since these can popul ate worktables in parallel and can make use of
parallel sorting.

* join queries.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Commands that return large, unsorted result sets are unlikely to benefit from
parallel processing due to network constraints. In most cases, results can be
returned from the database faster than they can be merged and returned to the
client over the network.

Parallel DMLs like insert, delete, and update are not supported and so do not
benefit from parallelism.

Enabling parallelism

To configure Adaptive Server for parallelism, enable the number of worker
processes and max parallel degree parameters.

To gain optimal performance, be aware of other configuration parameters that
affect the quality of plans generated by Adaptive Server.

number of worker processes

Before you enable parallelism, configure the number of worker processes (also
referred to as threads) available for Adaptive Server by setting the
configuration parameter number of worker processes. Sybase recommends that
you set the value for number of worker processes to one and a half times the
total number required at peak load. You can calculate an approximate number
using the max parallel degree configuration parameter, which indicates thetotal
number of worker processes that can be used for any query. Depending on the
number of connections to the Adaptive Server and the approximate number of
queries that are run simultaneously, you can use this rule to roughly estimate
the value for the number of worker processes that may be needed at any time:

[number of worker processes] = [max parallel degree] X [the number of
concurrent connections wanting to run queriesin parallel] X [1.5]

For example, to set the number of worker processes to 40:
sp_configure "number of worker processes", 40

Any runtime adjustment for the number of threads may have a negative effect
on query performance. Adaptive Server always tries to optimize thread usage,
but it may have already committed to aplan that needsincreased resources, and
therefore does not guarantee a linear scaledown when it runs with fewer
threads.

Performance and Tuning Series: Query Processing and Abstract Plans 135

Enabling parallelism

If the query processor has insufficient worker processes, the processor triesto
adjust the query plan during runtime. If aminimal number of worker processes
are required but unavailable, the query aborts with this error message:

Insufficient number of worker processes to execute the
parallel query. Increase the value of the configuration
parameter ‘number of worker processes’

max parallel degree

Usethemax parallel degree configuration parameter to configure the maximum
amount of parallelism for a query. This parameter determines the maximum
number of threads Adaptive Server uses when processing a given query. For
example, to set max parallel degree to 10, enter:

sp_configure "max parallel degree", 10

Unlike versions of Adaptive Server earlier than 15.0, this parameter’svalueis
not entirely enforced by the query optimizer. A complete enforcement process
isexpensivein terms of optimization time. Adaptive Server comes closeto the
desired setting of max parallel degree and exceedsit only for semantic reasons.

max resource granularity

136

The value of max resource granularity configures the maximum percentage of
system resources a query can use. In Adaptive Server version 15.0 and later,
max resource granularity affectsonly procedure cache. By default, max resource
granularity is 10%. However, this value is not enforced at execution time; it is
only aguide for the query optimizer. The query engine can avoid memory-
intensive strategies, such as hash-based algorithms, when max resource
granularity is set to alow value.

To set max resource granularity to 5%, enter:
sp_configure "max resource granularity", 5

If the the query processor’s seach engine has consumed more than the
configured percentage of procedure cache, and if it hasfound at least one full
plan, the search engine times out and uses the current best plan for the query.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

If the query processor does not find a full plan before reaching the value for
max resource granularity as a percentage of procedure cache, the search engine
continues to search until it finds the next full plan. However, if the search
engine reaches 50% of the complete procedure cache and finds no plan, it
aborts the query compilation to avoid shutting down the server.

max repartition degree

Adaptive Server must dynamically repartition intermediate data to match the
partitioning scheme of another operand or to perform an efficient partition
elimination. max repartition degree controls the amount of dynamic
repartitioning Adaptive Server can do. If the value of max repartition degree is
too high, the number of intermediate partitions becomes too large and the
system becomes flooded with worker processes that compete for resources,
which eventually degrades performance. The value for max repartition degree
enforces the maximum number of partitions created for any intermediate data.
Repartitioning is a CPU-intensive operation. The value of max repartition
degree should not exceed the total number of Adaptive Server engines.

If al tables and indexes are unpartitioned, Adaptive Server uses the value for
max repartition degree to provide the number of partitionsto create as aresult
of repartitioning the data. When the valueis set to 1, which is the default case,
the value of max repartition degree is set to the number of online engines.

Use max repartition degree when using the force option to perform a parallel
scan on atable or index.

select * from customers (parallel)

For example, if the customers tableisunpartitioned and the force optionisused,
Adaptive Server triesto find the inherent partitioning degree of that table or
index, which in thiscaseis 1. It uses the number of engines configured for the
server, or whatever degreeis best based on the number of pagesin the table or
index that does not exceed the value of max repartition degree.

To set max repartition degree t0 5:

sp_configure "max repartition degree", 5

Performance and Tuning Series: Query Processing and Abstract Plans 137

Enabling parallelism

max scan parallel degree

The max scan parallel degree configuration parameter is used only for
backward compatibility, when the datain a partitioned table or index is highly
skewed. If the value of this parameter is greater than 1, Adaptive Server uses
thisvalueto do ahash-based scan. Thevalue of max scan parallel degree cannot
exceed the value of max parallel degree.

prod-consumer overlap factor

prod-consumer overlap factor affects how much pipelined parallelism can be
created in aquery plan. The default value is 20%, which means that if two
operatorsin a parent-child relationship are run by separate worker processes,
thereisa20% overlap. Theremaining 80% of the operation is sequential. This
affects the way in which Adaptive Server costs two plan fragments. Consider
the example of a scan operator under a grouping operation. In such a case, if
the scan operator takes N1 seconds and grouping operations take N2 seconds,
the response time of the two operatorsis:

0.2 * max (N1, N2) + 0.8 * (N1 + N2)

In setting this parameter, consider the number of online engines on which
Adaptive Server is running and the complexity of the queriesto berun. Asa
general rule, use thread resources to scan on multiple partitions first. Then, if
there are unused thread resources, use them to speed up vertical pipelined
parallelism. Do not exceed a value of 50.

min pages for parallel scan

138

max pages for parallel scan controls the tables and indexes that can be accessed
in parallel. If the number of pagesin atableis below thisvalue, thetableis
accessed serially. The default value is 200 pages; page size is not relevant.
Although the tables and indexes of the table are accessed serially, Adaptive
Server triesto repartition the data, if that is appropriate, and to use parallelism
above the scans, if that is appropriate.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

max query parallel degree

max query parallel degree defines the number of worker processesto use for a
given query. This parameter isrelevant only if you do not want to enable
parallelism globally. You must configure the number of worker processesto a
value greater than zero, but max query parallel degree must be set to 1.

When max query parallel degree is set to avalue greater than 1, queries are not
compiled to use parallelism. Instead, you can specify parallel hints, using
abstract plans to compile one or more queries using parallelism.

Use use parallel N to define how much parallelism isto be used for agiven
query. Alternatively, use create plan to specify the query and the number of
worker processes to use for it.

Controlling parallelism at the session level

Parameter

The set options |et you restrict the degree of parallelism on a session basis, in
stored procedures, or in triggers. These options are useful for tuning
experiments with parallel queries and can also be used to restrict noncritical
queriestorunin serial, so that worker processes remain available for other
tasks.

Table 5-1: Session-level parallelism control parameters
Function

parallel_degree

Sets the maximum number of worker processes for aquery in asession, stored procedure,
or trigger. Overridesthe max parallel degree configuration parameter, but must belessthan
or equd to the value of max parallel degree.

scan_parallel_degree

Sets the maximum number of worker processes for a hash-based scan during a specific
session, stored procedure, or trigger. Overridesthe max scan parallel degree configuration
parameter and must be less than or equal to the value of max scan parallel degree.

resource_granularity

Overrides the global value max resource granularity and setsit to a session-specific value,
which influences whether Adaptive Server uses memory-intensive operations.

repartition_degree

Setsthevalue of max repartition degree for asession. Thisisthe maximum degreetowhich
any intermediate data stream is be repartitioned for semantic purposes.

Performance and Tuning Series: Query Processing and Abstract Plans 139

Controlling parallelism at the session level

If you specify a value that istoo large for any of the set options, the value of
the corresponding configuration parameter is used, and a message reports the
valuethat isin effect. While set parallel_degree, set scan_parallel_degree, set
repartition_degree, Or set resource_granularity isin effect during a session, the
plansfor any stored proceduresthat you executeare not placed in the procedure
cache. Procedures executed with these set options in effect may produce less
than optimal plans.

set command examples

This example restricts all queries started in the current session to 5 worker
processes:

set parallel degree 5

While this command isin effect, any query on a table with more than 5
partitions cannot use a partition-based scan.

To remove the session limit, use:
set parallel degree 0
or.
set scan parallel degree 0
To run subsequent queriesin serial mode, use:
set parallel degree 1
or.
set scan parallel degree 1

To set resource granularity to 25% of the total resources available in the
system, use:

set resource granularity 25

The sameistrue for repartition degree as well; you can set it to avalue of 5. It
cannot, however, exceed the value of max parallel degree.

set repartition degree 5

140 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Controlling query parallelism

The parallel extension to the from clause of a select command allows usersto
suggest the number of worker processes used in aselect statement. The degree
of parallelism that you specify cannot be more than the value set with
sp_configure or the session limit controlled by aset command. If you specify a
higher value, the specification isignored, and the optimizer uses the set or
sp_configure limit.

The syntax for the select statement is:
select ...

from tablename [([index index_name]
[parallel [degree_of_parallelism | 1]]
[prefetch size] [Irujmru])],
tablename [([index index_name]
[parallel [degree_of_parallelism | 1]
[prefetch size] [Irujmru])] ...

Query-level parallel clause examples

To specify the degree of parallelism for asingle query, include paraliel after
the table name. This example executes in serial:

select * from huge table (parallel 1)

This example specifies the index to use in the query, and sets the degree of
paralelismto 2:

select * from huge table (index ncix parallel 2)

Using parallelism selectively

Not al queries benefit from parallelism. In general, the optimizer determines
which queries will not benefit from parallelism and attempts to run them
serially. When the query processor makes errorsin such cases, it isusually
because of skewed statistics or incorrect costing as a result of imperfect
modeling. Experience will show you whether queries are running better or
worse, and you can decide to keep parallel on or off.

If you keep parallel on, and have identified the queries you want to runin serial
mode, you can attach an abstract plan hint, asfollows:

Performance and Tuning Series: Query Processing and Abstract Plans 141

Using parallelism selectively

142

select count (*) from sysobjects
plan “(use parallel 1)”

The same effect is achieved by creating a query plan:

create plan “select count(*) from sysobjects”
“use parallel 1”

If, however, you notice that parallelismisresource-intensive or that it does not
generate query plansthat performwell, useit selectively. To enable parallelism
for selected complex queries:

1 Set the number of worker processes to a number greater than zero, based
on the guidelinesin “number of worker processes’ on page 135. For
example, to configure 10 worker processes, execute:

sp_configure “number of worker processes”, 10

2 Set max query parallel degree to avalue greater than 1. Asastarting point,
set it to what you would have used for max parallel degree:

sp_configure “max query parallel degree”, 10

3 Thepreferred way to force aquery to use a parallel planisto usethe
abstract plan syntax:

use parallel N

where N isless than the value of max query parallel degree.
To write a query that uses a maximum of 5 threads, use:

select count (*), S1.id from sysobjects S1, sysindexes S2
where S1.id = S2.id

group by S1.id

plan

“(use parallel 5)”

This query tellsthe optimizer to use 5 worker processes, if it can. the only
drawback to this approach is that you must alter the actual queriesin the
application. To avoid this, use create plan:

create plan

“select count(*), Sl.id from sysobjects S1, sysindexes S2
where S1.id = S2.id

group by S1.id”

“(use parallel 5)”

To turn the abstract plan load option on globally, enter:

sp_configure “abstract plan load”, 1

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

See “Creating and Using Abstract Plans’ on page 321 for more
information about using abstract plans.

Using parallelism with large numbers of partitions

Theinformation in this section also applies when partitioning is configured for
manageability, and when partitions are created on physical or logical devices
that exhibit little or no parallelism.

For the purpose of this discussion, you have decided to partition atable using
range partitioning that represents each week of ayear. Theissue hereisthat the
query optimizer does not know how the underlying disk system will respond to
a52-way parallel scan. The optimizer must determine the best way to scan the
table. If there are enough worker processes configured, the optimizer uses 52

threadsto scan the table, which may well cause serious performanceissues and
be even slower than a serial scan.

To prevent this, first find out exactly how much parallelismis supported. If you
know the devices that are used for thistable, you can use the following
command on a UNIX system, where the underlying device is called /dev/xx:

time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &
Assume that time records as x.
Now run two of the same commands concurrently:

time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &
time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &

Thistime, assumethat timeisy. In alinear scae-up, x isthe same asy, which
is probably impossible to achieve. The following identity may suffice:
X <=y <= (N*x)/k

Where N isthe number of simultaneous sessions started and k is a constant that
identifies an acceptable improvement level. A good approximation of k might
be 1.4, which saysthat parallel scanisallowed aslong asit delivers 40% better
metrics than a serial scan.

Performance and Tuning Series: Query Processing and Abstract Plans 143

When parallel query results differ

When parallel

144

Table 5-2: Parallel scan metrics

Performanc
Number of threads | e metrics Acceptable for k=1.4
1 200s
2 245s 245 <= (200*2)/1.4; i.e. 245<=285.71
4 560s 560 <= (200*4)/1.4; i.e. 560<=571.42
5 725s 725 <= (200*5)/1.4; i.e. 725<=714.28

Table 5-2 shows that the disk subsystem did not perform well after four
concurrent accesses; the performance numberswent below the acceptable limit
established by k. In general, read enough data blocks to allow for any skewed
readings.

Having established that 4 threadsis optimal, provide this hint by binding it to
the object using sp_chgattribute in this way:

sp_chgattribute <tablename>, “plidegree”, 4

Thistellsthe query optimizer to use amaximum of four threads. It may choose
fewer than four threadsiif it does not find enough resources. The same
mechanism can be applied to an index. For example, if anindex called auth_ind
exists on authors and you want to use two threads to accessit, use:

sp_chgattribute “authors.auth_ind”, “plidegree”, 4

You must run sp_chgatttribute from the current database.

query results differ

When aquery does not include scalar aggregates or require afinal sorting step,
aparallel query might return resultsin a different order from the same query
runin serial, and subsequent executions of the same query in parallel might
return results in different orders. The relative speed of the different worker
processes|eadsto differencesin result-set ordering. Each parallel scan behaves
differently, dueto pagesalready in cache, lock contention, and so forth. Parallel
queries always return the same set of results, just not in the same order.

Note If you need a dependable ordering of results, use order by, or run the
query in serial mode.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

In addition, due to the pacing effects of multiple worker processesreading data
pages, two types of queries accessing the samedatamay return different results
when an aggregate or afinal sort is not done. They are:

* Queriesthat use set rowcount

e Queriesthat select acolumninto alocal variable without sufficiently
restrictive query clauses

Queries that use set rowcount

The set rowcount option stops processing from continuing after a certain
number of rowsare returned to the client. With serial processing, theresultsare
consistent in repeated executions as long as the query plans are the same. In
serial mode, given the same query plan, the samerows arereturned in the same
order for agiven rowcount value, because a single process reads the data pages
in the same order every time. With parallel queries, the order of the resultsand
the set of rowsreturned can differ, because worker processes may access pages
sooner or later than other processes. To get consistent results, either use a
clause that performs afinal sort step, or run the query in serial.

Queries that set local variables
This query setsthe value of alocal variable in a select statement:

select @tid = title_id from titles
where type = "business"

Thewhere clause matches multiple rowsin thetitles table, so thelocal variable
isalways set to the value from the last matching row returned by the query. The
valueisalwaysthe samein serial processing, but for parallel query processing,
the results depend on which worker process finisheslast. To achieve a
consistent result, use a clause that performs afinal sort step, execute the query
in serial mode, or add clauses so that the query arguments select only single
rows.

Performance and Tuning Series: Query Processing and Abstract Plans 145

Understanding parallel query plans

Understanding parallel query plans

146

The key to understanding parallel query processing in Adaptive Server isto
understand the basic building blocksin a parallel query plan.

Note SeeChapter 2, “Using showplan,” which explainshow to display aquery
plan in atext-based format for each SQL statement in a batch or stored
procedure.

A compiled query plan contains atree of execution operators that closely
resembl es the relational semantics of the query. Each query operator
implements arelational operation using a specific algorithm. For example, a
query operator called the nested-loop join implements the relational join
operation. In Adaptive Server, the primary operator for parallelismisthe
exchange operator, which isa control operator that does not implement any
relational operation. An exchange operator is to create new worker processes
that can handle afragment of the data. During optimization, Adaptive Server
strategically placesthe exchange operator to create operator tree fragmentsthat
canrunin parallel. All operators found below the exchange operator (down to
the next exchange operator) are executed by worker threads that clone the
fragment of the operator treeto producedatain parallel. The exchange operator
can then redistribute this data to the parent operator above it in the query plan.
The exchange operator handles the pipelining and rerouting of data.

In the following sections, the word “degree” is used in two different contexts.
When “degree N” of atable or index isreferred to, it references the number of
partitions contained in atable or index. When the “ degree of an operation” or
“the degree of a configuration parameter” is referred to, it references the
number of partitions generated in the intermediate data stream.

The following example shows how operators in the query processor work in
seria with the following query run in the pubs2 database. The tabletitles is
hash-partitioned three ways on the column pub_id.

select * from titles
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator (s) under root

The type of query is SELECT.

ROOT:EMIT Operator

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

| SCAN Operator

| FROM TABLE

| titles

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data

pages.

Asthis exampleillustrates, thetitles table is being scanned by the scan
operator, the detail s of which appear in the showplan output. The emit operator
reads the data from the scan operator and sends it to the client application. A
given query can create an arbitrarily complex tree of such operators.

When parallelism turned on, Adaptive Server can perform asimple scanin
parallel using the exchange operator above the scan operator. exchange
produces three worker processes (based on the three partitions), each of which
scans the three disjointed parts of the table and sends the output to the
consumer process. The emit operator at the top of the tree does not know that
the scans are donein parallél.

Example A:

select * from titles

Executed in parallel by coordinating process and 3 worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1 Consumer processes.

EXCHANGE: EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| titles

| Table Scan.

| Forward Scan.

| Positioning at start of table.

Performance and Tuning Series: Query Processing and Abstract Plans 147

Adaptive Server parallel query execution model

| | | | Executed in parallel with a 3-way partition scan.
| | | | Using I/O Size 2 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy for data pages.

The operator called EXCHANGE: EMIT isplaced under an EXCHANGE operator
to funnel data. See “EXCHANGE operator” on page 148.

Adaptive Server parallel query execution model

One of the key components of the parallel query execution model isthe
EXCHANGE operator. You can see it in the showplan output of a query.

EXCHANGE operator

The ExCHANGE operator marks the boundary between a producer and a
consumer operator (the operators bel ow the EXCHANGE operator produce data
and those above it consume data). Example A, which showed parallel scan of
thetitlestable (select * from titles),the EXCHANGE: EMIT andthescan
operator produce data. Thisis shown briefly.

select * from titles
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)

|Executed in parallel by 3 Producer and 1 Consumer
processes.
EXCHANGE:EMIT Operator

RESTRICT Operator

FROM TABLE

|
| titles
| Table Scan.

|
|
| | SCAN Operator
|
|
|

148 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

In this example, one consumer process reads data from a pipe (which is used
as amedium to transfer data across process boundaries) and passes the data to
the emit operator, which in turn routes the result to the client. The exchange
operator al so spawnsworker processes, which are called producer threads. The
exchange:emit operator writes the data into a pipe managed by the exchange
operator.

Figure 5-1: Binding of thread to plan fragments in query plan

One
Clonsumer
Erat processes
Frocess Boundary
Hehgi3in l)
Y
Ewmiifchg Three
Y T Froducear

Pipe management

Pracesses
[
Sean JJ
ﬁ- - fi:j‘

Figure 5-1 shows the process boundary between a producer and a consumer
process. There are two plan fragments in this query plan. The plan fragment
with the scan and the exchange:emit operators are cloned three ways and then
athree-to-oneexchange operator writesit into apipe. The emit operator and the
exchange operator are run by a single process, which meansthereisasingle
clone of that plan fragment.

Thefour types of pipes managed by the exchange operator are distinguished by
how they split and merge data streams. You can determine which type of pipe
is being managed by the exchange operator by looking at its description in the
showplan output, where the number of producers and consumers are shown.
The four pipe types are described below.

Performance and Tuning Series: Query Processing and Abstract Plans 149

Adaptive Server parallel query execution model

Many-to-one

One-to-many

Many-to-many

Replicated exchange
operators

150

In this case, the exchange operator spawns multiple producer threads and has
one consumer task that reads the data from a pipe, to which multiple producer
threads write. The exchange operator in the previous example implements a
many-to-one exchange. A many-to-one exchange operator can be
order-preserving and this technique is employed particularly when doing a
parallel sort for an order by clause and the resultant data stream merged to
generate the final ordering. The showplan output shows more than one
producer process and one consumer process.

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1
Consumer processes

Inthiscase, thereisone producer and multiple consumer threads. The producer
thread writes datato multiple pipes according to a partitioning scheme devised
at query optimization, and then routes data to each of these pipes. Each
consumer thread reads data from one of the assigned pipes. Thiskind of data
split can preserve the ordering of the data. The showplan output shows one
producer process and more than one consumer processes.

|EXCHANGE Operator (Repartitioned)
| Executed in parallel by 1 Producer
and 4 Consumer processes

Many-to-many means there are multiple producers and multiple consumers.
Each producer writesto multiple pipes, and each pipe has multiple consumers.
Each stream iswritten to a pipe. Each consumer thread reads data from one of
the assigned pipes.

| EXCHANGE Operator (Repartitioned)
|Executed in parallel by 3 Producer and 4
Consumer processes

In this case, the producer thread writes al of its data to each pipe that the
exchange operator configures. The producer thread makes a number of copies
of the source data (the number is specified by the query optimizer) equal to the
number of pipesin the exchange operator. Each consumer thread reads data
from one of the assigned pipes. The showplan output shows this as follows:

| EXCHANGE (Replicated)
|Executed in parallel by 3 Producers and 4
Consumer processes

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Worker process model

A parallel query planis composed of different operators, at least one of which
is an exchange operator. At runtime, a parallel query plan is bound to a set of
server processes that, together, execute the query plan in a parallel fashion.

The server process associated with the user connection is called the alpha
process because it is the source process from which parallel executionis
initiated. In particular, each worker process involved in the execution of the
parallel query plan is spawned by the alpha process.

In addition to spawning worker processes, the alpha processinitializes all the
worker processes involved in the execution of the plan, and creates and
destroys the pipes necessary for worker processes to exchange data. The alpha
processis, in effect, the global coordinator for the execution of aparalel query
plan.

At runtime, Adaptive Server associates each exchange operator intheplan with
a set of worker processes. The worker processes execute the query plan
fragment located immediately below the exchange operator.

For the query in Example A, represented in “ EXCHANGE operator” on page
148, the exchange operator is associated with three worker processes. Each
worker process executesthe plan fragment made of the exchange:emit operator
and of the scan operator.

Performance and Tuning Series: Query Processing and Abstract Plans 151

Adaptive Server parallel query execution model

Figure 5-2: Query execution plan with one exchange operator

Alpha process
S Proces
Emit
¥
Hchg (3to 1)
F ¥
Emit¥chg Three worker
T “._fnmn:esses
T A—
I
moah

—

titles (3 partitions)

Each exchange operator isalso associated with aserver process named the beta
process, which can be either the alpha process or a worker process. The beta
process associated with a given exchange operator isthe local coordinator for
the execution of the plan fragment bel ow the exchange operator. Intheexample
above, the beta process is the same process as the alpha process, because the
plan to be executed has only one level of exchange operators.

Next, use this query to illustrate what happens when the query plan contains
multiple exchange operators:

select count (*),pub id, pub date
from titles
group by pub_id, pub date

152 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Figure 5-3: Query execution plan with two exchange operators

ROOTEMIT Cperator
[EXCHANGE Operator ‘e 1444
|Exxected in paralle] by fe.) ; Alpha
| 2 Producer and I Consumer processes. processes
| .
| |[EXCHANGE:EMIT Cyperator bCLETEETYY
| ot Xchg-1(2to Two worker
| | HASH VECTOR AGGREGATE ..a' a . F%ic%%s)es
Operator » [} - d
| | | GROUPBY - s T4=Beta
| | | EXCHANGE Opersior FmitXchg | provess for
| | | |Executed in pavallel by ‘.. L hg-2
|| | |3 Producer and2 Conzumer », L .,."* .'
pProcesses. . HﬂSllGl"q,Hilillg -~
"
L |
L1 a X X
| | | | [EXCHANGE:EMIT Cperator '-' - "
SRR neearereanep| Lchel (o
= s o
NRRREE: = EmitXchg
['1 1111 Table Sean. o
[| || | | Executed in paraiiel with -' Y T PrETTTLL
[T 1| 3-wap partition e, ®

Sl

There are two levels of exchange operators marked as EXCHANGE-1 and
EXCHANGE-2 in Figure 5-3. Worker process T4 is the beta process
associated with the exchange operator EXCHANGE-2.

The beta process locally orchestrate execution of the plan fragment below the
exchange operator; it dispatches query plan information that is needed by the
worker processes, and synchronizes the execution of the plan fragment.

A process involved in the execution of a parallel query plan that is neither the
alpha process nor a beta processis called a gamma process.

A given paralel query planis bound at runtime to a unique alpha process, to
one or more beta processes, and to at least one gamma process. Any Adaptive
Server parallel plan needs at |east two different processes (alpha and gamma)
to be executed in parallel.

To find out the mapping between exchange operators and worker processes, as
well asto figure out which processis the alpha process, and which processes
are the beta processes, use dbcc traceon(516):

Performance and Tuning Series: Query Processing and Abstract Plans 153

Adaptive Server parallel query execution model

ALFA thread spid: 17
XCHG = 2 <- refers to Xchg-2
Comp Count = 2 Exec Count = 2
Range Adjustable
Consumer XCHG = 5
Parent thread spid: 34 <- refers to T4
Child thread 0: spid:37 <- refers to T1
Child thread 1: spid: 38 <- refers to T2
Child thread 2: spid: 36 <- refers to T3
Scheduling level: 0
XCHG = 5 <- refers to Xchg-1
Comp Count = 3 Exec Count = 3
Bounds Adjustable
Consumer XCHG -1
Parent thread spid: 17 <- refers to Alpha
Child thread 0: spid: 34 <- refers to T4
Child thread 1: spid: 35 <- refers to T5

Scheduling level: 0

Using parallelism in SQL operations

Partition tables or indexes in any way that best reflects the needs of your
application. Sybase recommends that you put partitions on segments that use
different physical disks so that enough I/O parallelismis present. For example,
you can have awell-defined partition based on hashing of certain columnsof a
table, or certain ranges, or alist of values ascribed to a partition. Hash, range,
and list partitions belong to the category of “semantic-based” partitioning—
given arow, you can determine to which partition the row belongs.

Round-robin partitioning has no semantics associated with its partitioning. A
row can occur in any of its partitions. The choice of columns to partition and
the type of partitioning used can have a significant impact on the performance
of the application. Think of partitions as alow-cardinality index; the columns
on which partitioning must be defined are based on the queriesin the
application.

154 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

The query processing engine and its operators take advantage of the Adaptive
Server partitioning strategy. Partitioning defined on table and indexesiscalled
static partitioning. In addition, Adaptive Server dynamically repartitions data
to match the needs for relational operations like joins, vector aggregation,
distincts, unions, and so on. Repartitioning is done in streaming mode and no
storageis associated with it. Repartitioning is not the same as issuing the alter
table repartition command, where static repartitioning is done.

A query plan consists of query execution operators. In Adaptive Server,
operators belong to one of two categories:

e Attribute-insensitive operators include scans, union alls, and scalar
aggregation. Underlying partitions do not affect attribute-insensitive
operators.

e Attribute-sensitive operators (for example, join, distinct, union, and vector
aggregation) allow for an operation on agiven amount of datato be broken
into asmaller number of operations on smaller fragments of the datausing
semantics-based partitioning. Afterwards, a simple union all provides the
final result set. The union all isimplemented using a many-to-one
exchange operator.

Thefollowing sections discuss these two classes of operators. The examplesin
these sections use the following table with enough data to trigger parallel
processing.

create table RA2(al int, a2 int, a3 int)

Parallelism of attribute-insensitive operation

Table scan

Serial table scan

This section discusses the attribute-insensitive operations, which include scans
(serial and parallel), scalar aggregations, and union alls.

For horizontal parallelism, either at least one of the tablesin the query must be
partitioned, or the configuration parameter max repartition degree must be
greater than 1. If max repartition degree is set to 1, Adaptive Server usesthe
number of online engines as a hint. When Adaptive Server runs horizontal
parallelism, it runs multiple versions of one or more operatorsin parallel. Each
clone of an operator works on its partition, which can be statically created or
dynamically built at execution.

Thefollowing example bel ow shows the serial execution of aquery where the
table RA2 is scanned using the table scan operator. The result of this operation
is routed to the emit operator, which forwards the result to the client.

Performance and Tuning Series: Query Processing and Abstract Plans 155

Adaptive Server parallel query execution model

select * from RA2
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data

pages.

In versions earlier than 15.0, Adaptive Server did not try to scan an
unpartitioned tablein parallel using ahash-based scan unlessaforce optionwas
used. Figure 5-4 shows a scan of an allpages-locked table executed in serial
mode by a single task T1. The task follows the page chain of the table to read
each page, while doing physical 1/0 if the needed pages are not in the cache.

Figure 5-4: Serial task scans data pages

Single page chain

N >

C

Parallel table scan You can force aparallel table scan of an unpartitioned table using the Adaptive
Server force option. In this case, Adaptive Server uses a hash-based scan.

156 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Hash-based table
scans

Partitioned-based
table scans

Figure 5-5 shows how three worker processes divide the work of accessing
data pages from an allpages-locked table during a hash-based table scan. Each
worker process performs alogical 1/0 on every page, but each process
examines rows on one-third of the pages, asindicated by differently shaded
lines. Hash-based table scans are used only if the user forces aparallel degree.
See “Partition skew” on page 198.

With one engine, the query still benefitsfrom parallel access because onework
process can execute while others wait for 1/0O. If there are multiple engines,
some of the worker processes can be running simultaneously.

Figure 5-5: Multiple worker processes scans unpartitioned table

Multiple worker processes

Hash-based scansincrease the logical 1/O for the scan, since each worker
process must access each page to hash on the page ID. For a data-only-locked
table, hash-based scans hash either on the extent ID or the allocation page ID,
so that only asingle worker process scans a page and logical 1/0 does not
increase.

If you partition this table as follows:

alter table RA2 partition by range(al, a2)
(pl values <= (500,100), p2 values <= (1000, 2000))

With the following query, Adaptive Server may choose a parallel scan of the
table. Parallel scan is chosen only if there are sufficient pages to scan and the
partition sizes are similar enough that the query will benefit from parallelism.

select * from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2

Performance and Tuning Series: Query Processing and Abstract Plans 157

Adaptive Server parallel query execution model

158

worker processes.

3 operator(s)

under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE:EMIT Operator

SCAN Operator

FROM TABLE
RA2
Table Scan.
Forward Scan.
Positioning at start of table.
Executed in parallel with a 2-way
partition scan.
Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy
for data pages.

After partitioning the table, showplan output includestwo additional operators,
exchange and exchange:emit. This query includes two worker processes, each
of which scans a given partition and passes the data to the exchange:emit
operator, asillustrated in Figure 5-1 on page 149.

Figure 5-6 shows how a query scans atable that has three partitions on three
physical disks. With a single engine, this query can benefit from parallel
processing because oneworker process can execute while others sleep, waiting
for 1/O or waiting for locks held by other processes to be released. If multiple
enginesare avail able, theworker processes can run simultaneously on multiple
engines. Such a configuration can perform extremely well.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Table on 3
partiti ons

Index scan

Global nonclustered
indexes

Noncovered scan of
global nonclustered
index using hashing

Figure 5-6: Multiple worker processes access multiple partitions

/_ data dewl data dew? data dew3

Indexes, like tables, can be partitioned or unpartitioned. Local indexes inherit
the partitioning strategy of the table. Each local index partition scans datain
only one partition. Global indexes have a different partitioning strategy from
the base table; they reference one or more partitions.

Adaptive Server supports global indexes that are nonclustered and
unpartitioned for all table partitioning strategies. Global indexes are supported
for compatibility with Adaptive Server versions earlier than 15.0; they are also
useful in OLTP environments. The index and the data partitions can reside on
the same or different storage areas.

To create an unpartitioned global nonclustered index on table RA2, which is
partitioned by range, enter:

create index RA2 NC1 on RA2(a3)
This query has a predicate that uses the index key of a3:

select * from RA2 where a3 > 300
QUERY PLAN FOR STATEMENT 1 (at line 1).

The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)

Performance and Tuning Series: Query Processing and Abstract Plans 159

Adaptive Server parallel query execution model

160

|Executed in parallel by 3 Producer and 1

Consumer processes.

EXCHANGE: EMIT Operator

SCAN Operator

FROM TABLE

RA2

Index : RA2 NC1

Forward Scan.

Positioning by key.

Keys are:

a3 ASC

Executed in parallel with a 3-way
hash scan.

Using I/0 Size 2 Kbytes for index
leaf pages.

With LRU Buffer Replacement Strategy
for index leaf pages.

Using I/0 Size 2 Kbytes for data

pages.

With LRU Buffer Replacement Strategy
for data pages.

Adaptive Server uses an index scan using theindex RA2_NC1 using three
producer threads spawned by the exchange operator. Each producer thread
scans all qualifying leaf pages and uses a hashing algorithm on the row ID of
the qualifying data and accesses the data pages to which it belongs. The
parallelismin this case is exhibited at the data page level.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Figure 5-7: Hash-based parallel scan of global nonclustered index

Index Pages

Data Pages

Legend for Figure 5-7:

Fages read by worker process
T1, T2, T3

FPages read by wrorker process T 1

FPages read by wrorker pprocess T2

FPages read by wrorker process T3

If the query does not need to access the data page, then it does not execute in
parallel. However, the partitioning columns must be added to the query;
therefore, it becomes a noncovered scan:

select a3 from RA2 where a3 > 300

Performance and Tuning Series: Query Processing and Abstract Plans 161

Adaptive Server parallel query execution model

Covered scan using
nonclustered global
index

162

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

3 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE: EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1

| Forward Scan.

| Positioning by key.

| Keys are:

| a3 ASC

| Executed in parallel with a 2-way hash

scan.

| | | Using I/O Size 2 Kbytes for index leaf
pages.

| | | With LRU Buffer Replacement Strategy for
index leaf pages.

| | | Using I/0O Size 2 Kbytes for data pages.

| | | With LRU Buffer Replacement Strategy for

data pages.

If there is anonclustered index that includes the partitioning column, thereis
no reason for Adaptive Server to access the data pages and the query executes
in serial:

create index RA2 NC2 on RA2(a3,al,a2)

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).
1 operator(s) under root

The type of query is SELECT.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Clustered index scans

Local indexes

Clustered indexes on
partitioned tables

Nonclustered indexes
on partitioned tables

ROOT:EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table
will not be read.

| Keys are:

| a3 AsC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index
leaf pages.

With aclustered index on an all-pages-locked table, ahash-based scan strategy
is not permitted. The only allowable strategy is a partitioned scan. Adaptive
Server uses a partitioned scan if that is necessary. For adata-only-locked table,
aclustered index isusually aplacement index, which behaves asanonclustered
index. All discussions pertaining to a nonclustered index on an all-pages-
locked table apply to a clustered index on a data-only-locked table as well.

Adaptive Server supports clustered and nonclustered local indexes.

Local clustered indexes allow multiple threads to scan each data partition in
parallel, which can greatly improve performance. To take advantage of this
parallelism, use a partitioned clustered index. On alocal index, datais sorted
separately within each partition. The information in each data partition
conformsto the boundaries established when the partitionswere created, which
makes it possible to enforce unique index keys across the entire table.

Unique, clustered local indexes have the following restrictions:
e Index columns must include all partition columns.

¢ Partition columns must have the sasme order as the index definition's
partition key.

e Unique, clustered local indexes cannot be included on around-robin table
with more than one partition.

Adaptive Server supports local, nonclustered indexes on partitioned tables.

Thereis, however, adlight difference when using local indexes. When doing a
covered index scan of alocal nonclustered index, Adaptive Server can still use
aparallel scan because the index pages are partitioned as well.

Performance and Tuning Series: Query Processing and Abstract Plans 163

Adaptive Server parallel query execution model

To illustrate the difference, this example creates alocal nonclustered index:

create index RA2 NC2L on RA2(a3,al,a2) local index

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

3 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE:EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base

table will not be read.

| | | Keys are:

| | | a3 AscC

| | | Executed in parallel with a 2-way
partition scan.

| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy
for index leaf pages.

Sometimes, Adaptive Server chooses a hash-based scan on alocal index. This
occurs when a different parallel degreeis needed or when the datain the
partition is skewed such that a hash-based parallel scan is preferred.

164 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Scalar aggregation

The Transact-SQL scalar aggregation operation can be donein serial orin
paralel.

Two-phased scalar aggregation

Inaparalel scalar aggregation, the aggregation operation is performed in two
phases, using two scalar aggregate operators. Inthefirst phase, the lower scalar
aggregation operator performs aggregation on the data stream. The result of
scalar aggregation from the first phase is merged using a many-to-one
exchange operator, and this stream is aggregated a second time.

In case of acount(*) aggregation, the second phase aggregation performs a
scalar sum. Thisis highlighted in the showplan output of the next example.

select count(*) from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

5 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

Performance and Tuning Series: Query Processing and Abstract Plans 165

Adaptive Server parallel query execution model

Serial aggregation

166

| | | | | Executed in parallel with a
2-way partition scan.
| | | | | Using I/O Size 2 Kbytes for data
pages.
| | | | | With LRU Buffer Replacement
Strategy for data pages.

Adaptive Server may also choose to do the aggregation in serial. If the amount
of datato be aggregated is not enough to guarantee a performance advantage,
aserial aggregation may be the preferred technique. In case of a serial
aggregation, the result of the scan is merged using a many-to-one exchange
operator. Thisis shown in the example below, where a selective predicate has
been added to minimize the amount of data flowing into the scalar aggregate
operator. In such acase, it probably does not make sense to do the aggregation
inparallel.

select count (*) from RA2 where a2 = 10

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer
and 1 Consumer processes.

EXCHANGE: EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

union all

Parallel union all

partition scan.

| | | | Using I/O Size 2 Kbytes for data
pages.

| | | | With LRU Buffer Replacement
Strategy for data pages.

union all operators are implemented using a physical operator by the same
name. union all isafairly simple operation and should be used in parallel only
when the query is moving alot of data.

The only condition to generating aparallel union all isthat each of its operands
must be of the same degree, irrespective of the type of partitioning they have.
The following example (using table HA2) shows a union all operator being
processed in parallel. The position of the exchange operator above the union all
operator signifiesthat it is being processed by multiple threads:

create table HA2 (al int, a2 int, a3 int)
partition by hash(al, a2) (pl, p2)

select * from RA2
union all
select * from HA2
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.
The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer and 1 Consumer
processes.
EXCHANGE :EMIT Operator

|

|

|

| | |UNION ALL Operator has 2 children.
|

|

|

|
| | SCAN Operator
| | FROM TABLE

Performance and Tuning Series: Query Processing and Abstract Plans 167

Adaptive Server parallel query execution model

Serial union all

168

[N N
| | | | Table Scan.

| | | | Executed in parallel with a 2-way
partition scan.

| SCAN Operator

| FROM TABLE

| HA2

| Table Scan.

| | | | Executed in parallel with a 2-way
partition scan.

In the next example, the data from each side of the union operator is restricted
by selective predicates on either side. The amount of data being sent through
the union all operator is small enough that Adaptive Server decides not to run
the unionsin parallel. Instead, each scan of the tables RA2 and HA2 are
organized by putting 2-to-1 exchange operators on each side of the union. The
resultant operands are then processed in parallel by the union all operator:

select * from RA2

where a2 > 2400

union all

select * from HA2

where a3 in (10,20)

Executed in parallel by coordinating process and 4
worker processes.

7 operator (s) under root

The type of query is SELECT.

ROOT:EMIT Operator
|UNION ALL Operator has 2 children.
I | EXCHANGE Operator (Merged)
|

|Executed in parallel by 2 Producer and 1
Consumer processes.

| | | EXCHANGE : EMIT Operator

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in parallel with a 2-way
partition scan.

| | EXCHANGE Operator (Merged)
| |Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| HA2

| Table Scan.

| Executed in parallel with a 2-way
partition scan.

Parallelism of attribute-sensitive operation

join

Tables with same
useful partitioning

Attribute-sensitive operations include joins, vector aggregations, and unions.

If twotablesarejoinedin parallel, Adaptive Server triesto use semantics-based
partitioning to make the join more efficient, depending on the amount of data
being joined and the type of partitioning that each of the operands have. If the
amount of datato be joined is small, but the number of pagesto scan for each
of thetablesis quite significant, Adaptive Server seridlizesthe parallel streams
from each side and the join is done in serial mode. In this case, the query
optimizer determinesthat it is suboptimal to run ajoin operation in parallel. In
general, one or both of the operands used for the join operators may be any
intermediate operator, like another join or agrouping operator, but the examples
used show only scans as operands.

The partitioning of each operand of ajoinisuseful only with respect to the join
predicate. If two tables have the same partitioning, and the partitioning
columns are a subset of the join predicate, the tables are said to be
equipartitioned. For example, if you create another table, RB2, which is
partitioned similarly to that of RA2, using the following command:

Performance and Tuning Series: Query Processing and Abstract Plans 169

Adaptive Server parallel query execution model

170

create table RB2 (bl int, b2 int, b3 int)
partition by range (bl,b2)
(pl values <= (500,100), p2 values <= (1000, 2000))

Then join RB2 with RA2; the scans and thejoin can be donein parallel without
additional repartitioning. Adaptive Server can join the first partition of RA2
with the first partition of RB2, then join the second partition of RA2 with the
second partition of RB2. Thisis called an equipartitioned join and is possible
only if the two tablesjoin on columns al, bl and a2, b2 as shown below:

select * from RA2, RB2
where al = bl and a2 = b2 and a3 < 0

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

7 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer
and 1 Consumer processes.

|
| | EXCHANGE : EMIT Operator
|
|

| |NESTED LOOP JOIN Operator
(Join Type: Inner Join)

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a
2-way partition scan.

|
| | RESTRICT Operator
|
|

| | SCAN Operator

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

One of the tables with
useful partitioning

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a
2-way partition scan.

The exchange operator is shown above the nested-loop join. Thisimplies that
exchange spawnstwo producer threads: thefirst scansthefirst partition of RA2
and RB2 and performs the nested-loop join; the second scans the second
partition of RA2 and RB2 to do the nested-loop join. The two threads merge the
results using a many-to-one (in this case, two-to-one) exchange operator.

In this example, the table RB2 is repartitioned to a three-way hash partitioning
on column b1 using the alter table command.

alter table RB2 partition by hash(bl) (pl, p2, p3)
Now, take a dightly modified join query as shown below:
select * from RA2, RB2 where al = bl

The partitioning on table RA2 is not useful because the partitioned columns are
not asubset of thejoining columns (that is, given avaluefor thejoining column
al, you cannot specify the partition to which it belongs). However, the
partitioning on RB2 is hel pful becauseit matchesthejoining columnbl of RB2.
Inthiscase, the query optimizer repartitionstable RA2 to match the partitioning
of RB2 by using hash partitioning on column al of RA2 (the joining column,
which isfollowed by a three-way merge join). The many-to-many (two-to-
three) exchange operator above the scan of RA2 does this dynamic
repartitioning. Theexchange operator abovethe merge join operator mergesthe
result using a many-to-one (three-to-one, in this case) exchange operator. The
showplan output for this query is shown in the following example:

select * from RA2, RB2 where al = bl

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5
worker processes.

10 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1 Consumer

Performance and Tuning Series: Query Processing and Abstract Plans 171

Adaptive Server parallel query execution model

172

processes.

| EXCHANGE : EMIT Operator

|MERGE JOIN Operator (Join Type: Inner

Join)

Using Worktable3 for internal storage.

Key Count:
Key Ordering: ASC

| SORT Operator

1

|Using Worktablel for internal storage.

| SORT Operator

|EXCHANGE Operator (Repartitioned)
|Executed in parallel by 2 Producer
and 3 Consumer processes.

EXCHANGE : EMIT Operator

RESTRICT Operator

SCAN Operator

FROM TABLE

RA2

Table Scan.

Forward Scan.
Positioning at start
of table.

Executed in parallel
with a 2-way
partition scan.

|Using Worktable2 for internal storage.

SCAN Operator
FROM TABLE
RB2

Forward Scan.

Positioning at start of table.
Executed in parallel with a
3-way partition scan.

|
|
|
| Table Scan.
|
|
|

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Both tables with
useless partitioning

The next example uses ajoin where the native partitioning of the tables on both
sides is useless. The partitioning on table RA2 is on columns (a1,a2) and that
of RB2 ison (b1). Thejoin predicate ison different sets of columns, and the
partitioning for both tables does not help at all. One option isto dynamically
repartition both sides of the join. By repartitioning table RA2 using aM-to-N
(two-to-three) exchange operator, Adaptive Server chooses column a3 of table
RA2 for repartitioning, asitisinvolved in thejoin with table RB2. For identical
reasons, table RB2 is also repartitioned three ways on column b3. The
repartitioned operands of the join are equipartitioned with respect to the join
predicate, which means that the corresponding partitions from each side will
join. In general, when repartitioning needs to be done on both sides of the join
operator, Adaptive Server employs a hash-based partitioning scheme.

select * from RA2, RB2 where a3 = b3

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 8
worker processes.

12 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1 Consumer
processes.

| EXCHANGE : EMIT Operator

| |MERGE JOIN Operator
(Join Type: Inner Join)
Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

| SORT Operator
|Using Worktablel for internal
storage.

| | | | | EXCHANGE Operator (Repartitioned)

| | | | |Executed in parallel by 2
Producer and 3 Consumer
processes.

Performance and Tuning Series: Query Processing and Abstract Plans 173

Adaptive Server parallel query execution model

174

EXCHANGE: EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at
start of table.

| | | | | | | | Executed in

parallel with

a 2-way

partition scan.

| | | | SORT Operator

| | | |Using Worktable2 for internal
storage.

[N

| | | | | EXCHANGE Operator (Repartitioned)

| | | | |Executed in parallel by 3
Producer and 3 Consumer
processes.

EXCHANGE: EMIT Operator

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

| Positioning at start
of table.

| | | | | | | Executed in parallel

with a 3-way

partition scan.

In general, dl joins, including nested-loop, merge, and hash joins, behavein a
similar way. nested-loop joins display one exception, which is that the inner
side of anested-loop join cannot be repartitioned. This limitation occurs
because, in the case of anested-loop join, a column value for the joining
predicate is pushed from the outer side to the inner side.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Replicated join A replicated join is useful when an index nested-loop join needs to be used.
Consider the case where alarge tabl e has auseful index on the joining column,
but useless partitioning, and joins to asmall table that is either partitioned or
not partitioned. The small table can be replicated N ways to that of the inner
table, where N isthe number of partitions of the large table. Each partition of
thelargetableisjoined with the small table and, because no exchange operator
is needed on the inner side of the join, an index nested-loop join is allowed.

create table big table(bl int, b2 int, b3 int)
partition by hash(b3) (pl, p2)

create index big table ncl on big table(bl)
create table small table(sl int, a2 int, s3 int)

select * from small table, big table
where small table.sl = big table.bl

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3
worker processes.

7 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1
Consumer processes.

|

| | EXCHANGE : EMIT Operator

|

| | |NESTED LOOP JOIN Operator (Join Type:
Inner Join)

| | | | EXCHANGE Operator (Replicated)
| | | |Executed in parallel by 1 Producer
and 2 Consumer processes.

EXCHANGE:EMIT Operator

| SCAN Operator
| FROM TABLE

Performance and Tuning Series: Query Processing and Abstract Plans 175

Adaptive Server parallel query execution model

Parallel reformatting

176

| | | small table
| | | Table Scan.

| SCAN Operator

| FROM TABLE

| big table

| Index : big table ncl

| Forward Scan.

| Positioning by key.

| Keys are:

| bl AscC

| Executed in parallel with a
2-way hash scan.

Parallel reformatting is especially useful when you are working with a
nested-loop join. Usually, reformatting refers to materializing the inner side of
anested join into aworktable, then creating an index on the joining predicate.
With parallel queries and nested-loop join, reformatting is also helpful when
there is no useful index on the joining column or nested-loop join isthe only
viable option for a query because of the server/session/query level settings.
Thisisan important option for Adaptive Server. The outer side may have
useful partitioning and, if not, it can be repartitioned to create that useful
partitioning. But for the inner side of a nested-loop join, any repartitioning
means that the table must be reformatted into a worktable that uses the new
partitioning strategy. The inner scan of anested-loop join must then accessthe
worktable.

In this next example, partitioning for tables RA2 and RB2 is on columns (a1,
a2) and (b1, b2) respectively. The query is run with merge and hash join turned
off for the session.

select * from RA2, RB2 where al = bl and a2 = b3
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 12
worker processes.
17 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator
| SEQUENCER Operator has 2 children.

| | EXCHANGE Operator (Merged)

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

| |Executed in parallel by 4 Producer

and 1 Consumer processes.

EXCHANGE : EMIT Operator

| STORE Operator

Worktablel created,

in allpages

locking mode, for REFORMATTING.
Creating clustered index.

INSERT Operator

The update mode is direct.

| EXCHANGE Operator
(Repartitioned)

|Executed in parallel by
2 Producer and 4
Consumer processes.

TO TABLE
Worktablel.

| EXCHANGE Operator (Merged)
| Executed in parallel by 4 Producer
and 1 Consumer processes.

| EXCHANGE : EMIT Operator

EXCHANGE:EMIT Operator

RESTRICT Operator

SCAN Operator

FROM TABLE

RB2

Table Scan.

Executed in
parallel
with a
2-way
partition
scan.

|NESTED LOOP JOIN Operator

Performance and Tuning Series: Query Processing and Abstract Plans

177

Adaptive Server parallel query execution model

Serial join

178

(Join Type: Inner Join)

| | | | | EXCHANGE Operator (Repartitioned)

| | | | | Executed in parallel by 2
Producer and 4 Consumer
processes.

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in
parallel with
a 2-way
partition scan.

| | SCAN Operator

| | FROM TABLE

| | Worktablel.

| | Using Clustered Index.
| | Forward Scan.

| | Positioning by key.

The segquence operator executes all of its child operators but the last, before
executing the last child operator. In this case, the sequence operator executes
the first child operator, which reformats table RB2 into a worktable using a
four-way hash partitioning on columns b1 and b3. Thetable RA2 isalso
repartitioned four ways to match the stored partitioning of the worktable.

Sometimes, it may not make senseto run ajoin in paralel because of the
amount of datathat needsto be joined. If you run aquery similar to that of the
earlier join queries, but now have predicates on each of the tables (RA2 and
RB2) such that the amount of datato be joined is not enough, the join may be
donein serial mode. In such acase, it does not matter how these tables are
partitioned. The query still benefits from scanning the tables in paralel.

select * from RA2, RB2 where al=bl and a2 = b2
and a3 = 0 and b2 = 20

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

worker processes.

11 operator (s)

under root

The type of query is SELECT.

ROOT:EMIT Operator

MERGE JOIN Operator (Join Type: Inner Join)

Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

SORT Operator
Using Worktablel for internal storage.

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and

1 Consumer processes.

EXCHANGE : EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in parallel with
a 2-way partition scan.

| SORT Operator
|Using Worktable2 for internal storage.

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and

1 Consumer processes.

EXCHANGE : EMIT Operator

RESTRICT Operator

| FROM TABLE
| RB2

|
|
| | SCAN Operator
|
|

Performance and Tuning Series: Query Processing and Abstract Plans 179

Adaptive Server parallel query execution model

| | | | | | Table Scan.
| | | | | | Executed in parallel with
a 2-way partition scan.

Semijoins Semijoins, which result from flattening of in/exist subqueries, behave the same
way asregular inner joins. However, replicated joinsare not used for semijoins,
because an outer row can match more than one time in such a situation.

Outer joins In terms of parallel processing for outer joins, replicated joins are not
considered. Everything else behavesin a similar way as regular inner joins.
One other point of differenceisthat no partition elimination is done for any
tablein an outer join that belongs to the outer group.

Vector aggregation

Vector aggregation refers to queries with group-bys. There are different ways
Adaptive Server can perform vector aggregation. The actual algorithmsare not
described here; only the technique for parallel evaluation is shown in the
following sections.

In-partitioned vector If any base or intermediate relation requires agrouping and is partitioned on a

aggregation subset, or the same columns as that of the columns in the group by clause, the
grouping operation can be done in parallel on each of the partitions and the
resultant grouped streams merged using a simple N-to-1 exchange. Thisis
because a given group cannot appear in more than one stream. The same
restriction applies to grouping over any SQL query aslong asyou use
semanti cs-based partiti oning on the grouping columns or asubset of them. This
method of parallel vector aggregation is called in-partitioned aggregation.

The following query uses a parallel in-partitioned vector aggregation since
range partitioning is defined on the columns a1 and a2, which also happensto
be the column on which the aggregation is needed.

select count(*), al, a2 from RA2 group by al,a2
QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and

180 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

1 Consumer processes.

EXCHANGE: EMIT Operator

HASH VECTOR AGGREGATE Operator

GROUP BY

Evaluate Grouped COUNT AGGREGATE.
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way

partition scan.
| | | | Using I/O Size 2 Kbytes for data
pages.

| | | | With LRU Buffer Replacement

Strategy for data pages.

Repartitioned vector Sometimes, the partitioning of the table or the intermediate results may not be

aggregation useful for the grouping operation. It may still be worthwhile to do the grouping
operation in paralléel by repartitioning the source data to match the grouping
columns, then applying the parallel vector aggregation. Such ascenariois
shown below, where the partitioning is on columns (a1, a2), but the query
reguires a vector aggregation on column ail.

select count(*), al from RA2 group by al
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4

worker processes.

6 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator (Merged)

|Executed in parallel by 2 Producer and 1 Consumer
processes.

Performance and Tuning Series: Query Processing and Abstract Plans 181

Adaptive Server parallel query execution model

Two-phased vector
aggregation

182

EXCHANGE :EMIT Operator

|HASH VECTOR AGGREGATE Operator

| GROUP BY

| Evaluate Grouped COUNT AGGREGATE.

| Using Worktablel for internal storage.
|

|

|

|EXCHANGE Operator (Repartitioned)
|Executed in parallel by 2 Producer
and 2 Consumer processes.

EXCHANGE:EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of
table.

| | | | | | Executed in parallel with

a 2-way partition scan.

For the query in the previous example, repartitioning may be expensive.
Another possibility isto do afirst level of grouping, merge the datausing a
N-to-1 exchange operator, then do another level of grouping. Thisiscalled a
two-phased vector aggregation. Depending on the number of duplicatesfor the
grouping column, Adaptive Server can reduce the cardinality of the data
streaming through the N-to-1 exchange, which reduces the cost of the second
level of grouping.

select count(*), al from RA2 group by al
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2

worker processes.

5 operator (s) under root

The type of query is SELECT.
ROOT:EMIT Operator

|HASH VECTOR AGGREGATE Operator

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

GROUP BY
Evaluate Grouped SUM OR AVERAGE AGGREGATE.
Using Worktable2 for internal storage.

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and
1 Consumer processes.

EXCHANGE: EMIT Operator

| HASH VECTOR AGGREGATE Operator

| GROUP BY

| Evaluate Grouped COUNT AGGREGATE.

| Using Worktablel for internal
storage.

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in parallel with
a 2-way partition scan.

Serial vector As with some of the earlier examples, if the amount of data flowing into the

aggregation grouping operator is restricted by using a predicate, executing that query in
parallel may not make much sense. In such acase, the partitions are scanned in
parallel and an N-to-1 exchange operator is used to serialize the stream
followed by a serial vector aggregation:

select count(*), al, a2 from RA2

where al between 100 and 200

group by al, a2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and

2 worker processes.

4 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator
|HASH VECTOR AGGREGATE Operator

| GROUP BY
| Evaluate Grouped COUNT AGGREGATE.

Performance and Tuning Series: Query Processing and Abstract Plans 183

Adaptive Server parallel query execution model

distinct

Queries with an in list

184

| Using Worktablel for internal storage.

| | EXCHANGE Operator (Merged)
| | Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Positioning at start of table.

| Executed in parallel with a 2-way
partition scan.

You cannot always group on the partitioning columns, or take advantage of a
tablethat is already partitioned on the grouping columns. The query optimizer
determines if it is better to repartition and perform the grouping in parallel, or
merge the data stream in a partitioned table and do the grouping in seria or a
two-phased aggregation.

Queries with distinct operations are the same as grouped vector aggregation
without the aggregation part. For example:

select distinct al, a2 from RA2
issame as.
select al, a2 from RA2 group by al, a2

All of the methodol ogiesthat are applicableto vector aggregates are applicable
here as well.

Adaptive Server uses an optimized technique to handle aniin list. Thisisa
common SQL construct. So, aconstruct like:

col in (valuel, value2,..valuek)
issame as.
col = valuel OR col = value2 OR col = valuek

Thevaluesinthein list are put into a special in-memory table and sorted for
removal of duplicates. Thetableisthen joined back with the base table using an
index nested-loop join. The following example illustrates this with two values
inthein list that correspond to two valuesin the or list:

SCAN Operator
FROM OR List
OR List has up to 2 rows of OR/IN values.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

select * from RA2 where a3 in (1425, 2940)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

6 operator(s)

under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer and 1
Consumer processes.

|
| | EXCHANGE : EMIT Operator
|
|

| |NESTED LOOP JOIN Operator (Join Type:

Inner Join)

| SCAN Operator

| FROM OR List

| OR List has up to 2 rows of OR/IN
values.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1

| Forward Scan.

| Positioning by key.

| Keys are:

| a3 AsC

| Executed in parallel with a
2-way hash scan.

Performance and Tuning Series: Query Processing and Abstract Plans 185

Adaptive Server parallel query execution model

Queries with or
clauses

186

Adaptive Server takes adisjunctive predicate like an or clause and applies each
side of the disjunction separately to qualify a set of row IDs (RIDs). The set of
conjunctive predicates on each side of the disjunction must beindexable. Also,
the conjunctive predicates on each side of the disjunction cannot have further
disjunction within them; that is, it makes little sense to use an arbitrarily deep
nesting of disunctive and conjunctive clauses. In the next example, a
disjunctive predicate is taken on the same column (you can have predicates on
different columns as long as you have indexes that can do inexpensive scans),
but the predicates may qualify an overlapping set of datarows. Adaptive Server
usesthe predicates on each side of the digjunction separately and qualifies a set
of row IDs. These row IDs are then subjected to duplicate elimination.

select a3 from RA2 where a3 = 2955 or a3 > 2990

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

8 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE : EMIT Operator

RID JOIN Operator
Using Worktable2 for internal storage.

HASH UNION Operator has 2 children.
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1

| Forward Scan.

| Positioning by key.

| Index contains all needed
columns.Base table will not
be read.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Keys are:
a3 ASC

Executed in parallel with a
2-way hash scan.

SCAN Operator

FROM TABLE

RA2

Index : RA2 NC1

Forward Scan.

Positioning by key.

Index contains all needed
columns. Base table will
not be read.

Keys are:

a3 ASC

Executed in parallel with a

2-way hash scan.

RESTRICT Operator

SCAN Operator

FROM TABLE

RA2

Using Dynamic Index.
Forward Scan.

Positioning by Row IDentifier

(RID.)

Using I/0 Size 2 Kbytes for
data pages.

With LRU Buffer Replacement

Strategy for data pages.

Two separate index scans are employed using the index RA2_NC1, which is
defined on the column a3. The qualified set of row 1Ds are then checked for

duplicate row IDs, and finally, joined back to the base table. Note the line

Positioning by Row Identifier (RID). You can usedifferentindexes
for each side of the digjunction, depending on what the predicates are, as long

asthey are indexable. One way to easily identify thisisto run the query

separately with each side of the digjunction to make surethat the predicates are
indexable. Adaptive Server may not choose an index intersection if it seems
more expensive than a single scan of thetable.

Performance and Tuning Series: Query Processing and Abstract Plans

187

Adaptive Server parallel query execution model

Queries with an order If aquery requires sorted output because of the presence of an order by clause,

by clause Adaptive Server can apply the sort in parallel. First, Adaptive Server triesto
avoid the sort if there is some inherent ordering available. If Adaptive Server
isforced to do the sort, it seesif the sort can be donein parallel. To do that,
Adaptive Server may repartition an existing data stream or it may use the
existing partitioning scheme, then apply the sort to each of the constituent
streams. The resultant datais merged using an N-to-1 order, preserving the
exchange operator.

select * from RA2 order by al, a2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and
1 Consumer processes.

EXCHANGE: EMIT Operator

| SORT Operator

| Using Worktablel for internal storage.

|

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Positioning at index start.

| Executed in parallel with a
2-way partition scan.

Depending upon the volume of datato be sorted, and the available resources,
Adaptive Server may repartition the data stream to a higher degree than the
current degree of the stream, so that the sort operation is faster. The degrees of
sorting depends on whether the benefit obtained from doing the sort in parall el
far outweighs the overheads of repartitioning.

188 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Subqueries

Adaptive Server uses different methods to reduce the cost of processing
subqueries. Parallel optimization depends on the type of subquery:

Materialized subqueries — parallel query methods are not considered for
the materialization step.

Flattened subqueries — parallel query optimization is considered only
when the subquery is flattened to aregular inner join or asemijoin.

Nested subqueries — parallel operations are considered for the outermost
query block in a query containing a subquery; the inner, nested queries
alwaysexecute serially. Thismeansthat all tablesin nested subqueries are
accessed serially. In the following example, the table RA2 is accessed in
parallel, but the result is that the table is serialized using atwo-to-one
exchange operator before accessing the subquery. ThetableRB2 insidethe
subquery is accessed in parallel.

select count (*) from RA2 where not exists
(select * from RB2 where RA2.al = bl)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2

worker processes.

8 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

SQFILTER Operator has 2 children.
| EXCHANGE Operator (Merged)

|Executed in parallel by 2 Producer
and 1 Consumer processes.

EXCHANGE:EMIT Operator

| RESTRICT Operator

Performance and Tuning Series: Query Processing and Abstract Plans 189

Adaptive Server parallel query execution model

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Executed in parallel with
a 2-way partition scan.

|
| | Run subquery 1 (at nesting level 1).
|
I

QUERY PLAN FOR SUBQUERY 1 (at nesting
level 1 and at line 2).

Correlated Subquery.
Subgquery under an EXISTS predicate.

|SCALAR AGGREGATE Operator

| Evaluate Ungrouped ANY AGGREGATE.

| Scanning only up to the first
qualifying row.

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

END OF QUERY PLAN FOR SUBQUERY 1.

The following example shows an in subquery flattened into a semijoin.
Adaptive Server convertsthisinto aninner join to provide greater flexibility in
shuffling the tables in the join order. As seen below, the table RB2, which was
originally in the subquery, is now being accessed in parallel.

select * from RA2 where al in (select bl from RB2)
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5

worker processes.

10 operator (s) under root

The type of query is SELECT.

ROOT:EMIT Operator

190 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

| EXCHANGE Operator (Merged)

|Executed in parallel by 3 Producer and 1 Consumer

processes.

Performance and Tuning Series: Query Processing and Abstract Plans

| EXCHANGE : EMIT Operator

| |MERGE JOIN Operator (Join Type: Inner Join)

Using Worktable3 for internal storage.

Key Count:
Key Ordering: ASC

| SORT Operator

1

| Using Worktablel for internal

| SORT Operator

storage.

SCAN Operator
FROM TABLE

Table Scan.
Executed in parallel with a
3-way partition scan.

|
|
| RB2
|
|

| Using Worktable2 for internal
storage.

| EXCHANGE Operator (Merged)

| Executed in parallel by 2
Producer and 3 Consumer
processes.

EXCHANGE:EMIT Operator

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Positioning at
index start.

| Executed in
parallel with

191

Adaptive Server parallel query execution model

select into clauses

192

a 2-way
partition scan.

Querieswith select into clauses create anew tablein which to storethe query’s
result set. Adaptive Server optimizes the base query portion of a select into
command in the same way it does a standard query, considering both parallel
and serial access methods. A select into statement that is executed in parallel:

e Createsthe new table using the columns specified in the select into
statement.

e CreatesN partitionsin the new table, where N isthe degree of parallelism
that the optimizer chooses for the insert operation in the query.

» Populates the new table with query results, using N worker processes.

e Unpartitions the new table, if no specific destination partitioning is
required.

Performing a select into statement in parallel requires more steps than an
equivalent serial query plan. Thisisasimple select into donein parallel:

select * into RAT2 from RA2
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.
4 operator(s) under root
The type of query is INSERT.
ROOT:EMIT Operator
| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

| INSERT Operator

| The update mode is direct.
|

|

| SCAN Operator

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way
partition scan.

RAT2
Using I/0 Size 2 Kbytes for data

pages.

|
| TO TABLE
|
|

Adaptive Server does not try to increase the degree of the stream coming from
the scan of table RA2, and uses it to do a paralléel insert into the destination
table. Thedestination tableisinitially created using round-robin partitioning of
degree two. After the insert, the table is unpartitioned.

If the data set to be inserted is not big enough, Adaptive Server may choose to
insert this datain serial. The scan of the source table can still be donein
parallel. The destination table is then created as an unpartitioned table.

The select into allows destination partitioning to be specified. In such a case,
the destination table is created using that partitioning, and Adaptive Server
finds the most optimal way to insert data. If the destination table must be
partitioned the same way as the source data, and there is enough data to insert,
the insert operator executesin parallel.

The next example showsthe same partitioning for source and destination table,
and demonstrates that Adaptive Server recognizes this scenario and chooses
not to repartition the source data.

select * into new table

partition by range(al, a2)

(pl values <= (500,100), p2 values <= (1000, 2000))
from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2

worker processes.

4 operator(s) under root

The type of query is INSERT.

ROOT:EMIT Operator

Performance and Tuning Series: Query Processing and Abstract Plans 193

Adaptive Server parallel query execution model

| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE:EMIT Operator

INSERT Operator
The update mode is direct.

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way
partition scan.

RRA2
Using I/0 Size 16 Kbytes for data
pages.

|
| TO TABLE
|
|

If the source partiti oning does not match that of the destination table, the source
data must be repartitioned. Thisisillustrated in the next example, where the
insert isdone in parallel using two worker processes after the datais
repartitioned using a 2-to-2 exchange operator that converts the data from
range partitioning to hash partitioning.

select * into HHA2

partition by hash(al, a2)

(pl, p2)

from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 4

worker processes.

6 operator (s) under root

The type of query is INSERT.

ROOT:EMIT Operator

194 Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1

insert/delete/update

Consumer processes.

EXCHANGE :EMIT Operator

INSERT Operator

The update mode is direct.

|EXCHANGE OperatorEXCHANGE Operator (
Merged)

|Executed in parallel by 2 Producer
and 2 Consumer processes.

EXCHANGE : EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a
2-way partition scan.

TO TABLE

HHA2

Using I/0 Size 16 Kbytes for data
pages.

insert, delete, and update operations are donein serial in Adaptive Server.
However, tables other than the destination table used in the query to qualify
rows to be deleted or updated, can be accessed in parallel.

delete from RA2

where exists

(select * from RB2

where RA2.al = bl and RA2.a2 = b2)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3
worker processes.

Performance and Tuning Series: Query Processing and Abstract Plans 195

Adaptive Server parallel query execution model

196

9 operator (s) under root
The type of query is DELETE.
ROOT:EMIT Operator

DELETE Operator
The update mode is deferred.

NESTED LOOP JOIN Operator (Join Type: Inner Join)

SORT Operator
Using Worktablel for internal storage.

| EXCHANGE Operator (Merged)
| Executed in parallel by 3 Producer
and 1 Consumer processes.

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

| Positioning at start of

table.

| | | | | | | Executed in parallel with
a 3-way partition scan.

| | | | | | | Using I/O Size 2 Kbytes
for data pages.

| | | | | | | wWith LRU Buffer Replacement

Strategy for data pages.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1

| Forward Scan.

| Positioning by key.

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

| | | Keys are:
| | | a3 AsC

|
|
|
| TO TABLE
| Ra2

| Using I/0 Size 2 Kbytes for data pages.

Thetable RB2, which is being deleted, is scanned and deleted in serial.
However, table RA2 was scanned in parallel. The same scenario istrue for

update or insert statements.

Partition elimination

One of the advantages of semantic partitioning isthat the query processor may
be able to take advantage of this and be able to disqualify range, hash, and list
partitions at compiletime. With hash partitions, only equality predicates can be
used, whereas for range and list partitions, equality and in-equality predicates
can be used to eliminate partitions. For example, consider table RA2 with its
semantic partitioning defined on columns a1, a2 where (p1 values <=
(500,100) and p2 values <= (1000, 2000)). If there are predicates on columns
al or columnsail, a2, then it would be possible to do some partition
elimination. For example, this statement does not qualify any data:

select * from RA2 where al > 1500
You can see thisin the showplan output.

QUERY PLAN FOR STATEMENT 1 (at line 1).
SCAN Operator
FROM TABLE

[Eliminated Partitions : 1 2 1]
Index : RA2 NC2L

g

Thephrase Eliminated Partitions identifiesthe partition in accordance
with how it was created and assigns an ordinal number for identification. For
table RA2, the partition represented by p1 where (a1, a2) <= (500, 100) is
considered to be partition number one and p2 where (a1, a2) > (500, 100) and
<= (1000, 2000) isidentified as partition number two.

Consider an equality query on a hash-partitioned table where al keysin the
hash partitioning have an equality clause. This can be shown by taking table
HA2, which is hash-partitioned two ways on columns (a1, a2). The ordinal
numbersrefer to the order in which partitionsarelisted in the output of sp_help.

Performance and Tuning Series: Query Processing and Abstract Plans 197

Adaptive Server parallel query execution model

Partition skew

198

select * from HA2 where al = 10 and a2 = 20

| SCAN Operator

| FROM TABLE

| HA2

| [Eliminated Partitions : 1]
| Table Scan.

Partition skew plays an important part in determining whether a parallel
partitioned scan can be used. Adaptive Server partition skew is defined as the
ratio of the size of the largest partition to the average size of a partition.
Consider atablewith four partitions of sizes 20, 20, 35, and 80 pages. The size
of the average partition is (20 + 20 + 35 + 85)/4 = 40 pages. The biggest
partition has 85 pages so partition skew is calculated as 85/40 = 2.125. In
partitioned scans, the cost of doing a parallel scan is as expensive as doing the
scan on the largest partition. Instead, a hash-based partition may turn out to be
fast, as each worker process may hash on a page number or an allocation unit
and scan its portion of the data. The penalty paid in terms of loss of
performance by skewed partitionsis not aways at the scan level, but rather as
more complex operatorslike several join operationsare built over thedata. The
margin of error increases exponentially in such cases.

Run sp_help on atable to see the partition skews:

sp_help HA2

name type partition type partitions partition keys
HA2 base table hash 2 al, a2
partition name partition id pages segment

create date

HA2 752002679 752002679 324 default
Aug 10 2005 2:05PM
HA2 768002736 768002736 343 default

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

Aug 10 2005 2:05PM

Partition Conditions

Avg pages Max_ pages Min pages Ratio (Max/Avg)

Ratio (Min/Avg)

333 343 324 1.030030

0.972973

Alternatively, you can calculate skew by querying the systabstats system
catalog, where the number of pagesin each partition islisted.

Why queries do not run in parallel
Adaptive Server runs aquery in serial when:

Runtime adjustment

Thereis not enough data to benefit from parallel access.
The query contains no equijoin predicates like:

select * from RA2, RB2
where al > bl

There are not enough resources, such as thread or memory, to run aquery
inparallel.

Uses a covered scan of aglobal nonclustered index.

Tables and indexes are accessed inside a nested subquery that cannot be
flattened.

If there are not enough worker processes available at runtime, the execution
engine attempts to reduce the number of worker processes used by the
exchange operators present in the plan:

Performance and Tuning Series: Query Processing and Abstract Plans 199

Adaptive Server parallel query execution model

First, by attempting to reduce the worker process usage of certain
exchange operators in the query plan without resorting to serial
recompilation of the query. Depending on the semantics of the query plan,
certain exchange operators are adjustable and some are not. Some are
limited in the way they can be adjusted.

Parallel query plans need a minimum number of worker processesto run.
When enough worker processes are not available, the query is recompiled
serialy. When recompilation isimpossible, the query is aborted and the
appropriate error message is generated.

It does so in two ways:

Adaptive Server supports serial recompilation for al:

Ad hoc select queries, except select into, alter table, and execute immediate
queries.

Stored procedures, except select into and alter table queries.

Recognizing and managing runtime adjustments

Adaptive Server provides two mechanismsto help you observe runtime
adjustments of query plans:

set process_limit_action allows you to abort batches or procedures when
runtime adjustments take place.

showplan prints an adjusted query plan when runtime adjustments occur,
and showplan is effect.

Using set process_limit_action

200

Use process_limit_action with the set command to monitor the use of adjusted
query plans at a session or stored procedure level. When you set
process_limit_action to “abort,” Adaptive Server recordserror 11015 and aborts
the query, if an adjusted query planisrequired. When you set
process_limit_action to “warning,” Adaptive Server recordserror 11014 but still
executes the query. For exampl e, this command aborts the batch when a query
isadjusted at runtime:

set process_limit_action abort

Adaptive Server Enterprise

CHAPTER 5 Parallel Query Processing

By examining the occurrences of errors 11014 and 11015 in the error log, you
can determine the degree to which Adaptive Server uses adjusted query plans
instead of optimized query plans. To remove the restriction and allow runtime
adjustments, use:

set process limit action quiet

See set in the Reference Manual: Commands.

Using showplan

When you use showplan, Adaptive Server displays the optimized plan for a
given query before it runs the query. When the query plan involves parallel
processing, and aruntime adjustment is made, showplan displaysthis message,
followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN IS BEING USED FOR STATEMENT 1
BECAUSE NOT ENOUGH WORKER PROCESSES ARE CURRENTLY
AVAILABLE.

ADJUSTED QUERY PLAN:

When using set notexec, Adaptive Server does not attempt to execute a query,
so runtime plans are never displayed.

Reducing the likelihood of runtime adjustments

To reduce the number of runtime adjustments, increase the number of worker
processesthat areavailableto parallel queries. You can do thiseither by adding
more total worker processes to the system or by restricting or eliminating
parallel execution for noncritica queries, using either:

e setparallel_degree to set session-level limitson the degree of parallelism,
or

e Thequery-level parallel 1 and parallel N clausesto limit the worker process
usage of individual statements.

To reduce the number of runtime adjustmentsfor system procedures, recompile
the procedures after changing the degree of parallelism at the server or session
level. See sp_recompile in Adaptive Server Reference Manual: Procedures.

Performance and Tuning Series: Query Processing and Abstract Plans 201

Adaptive Server parallel query execution model

202 Adaptive Server Enterprise

CHAPTER 6

Overview

Vector aggregation

Eager and Lazy Aggregation

This chapter discusses eager and lazy aggregation in Adaptive Server.

Topic Page
Overview 203
Aggregation and query processing 205
Examples 208
Using eager aggregation 215

Aggregate processing is one of the most useful operationsin DBMS
environments. It summarizes large amounts of data with an aggregated
value, including:

e The minimum, maximum, sum, or average value of acolumnina
specified set of rows

* The count of rows that match a condition
e Other statistical functions

In SQL, aggregate processing is performed using the aggregation
functions min(), max(), count(), sum(), and avg(), and group by and having
clauses. The SQL language implements two aggregate processing types,
vector aggregation and scalar aggregation. A select-project-join (SPJ)
query illustrates these two types of aggregate processing:

select rl1l, sl
from r, s
where r2 = s2

In vector aggregation, the SPJ result set is grouped on the group by clause
expressions, and then the select clause aggregation functions are applied
to each group. The query produces one result row per group:

select rl, sum (s1)
from r, s

Performance and Tuning Series: Query Processing and Abstract Plans 203

Overview

where r2 = s2
group by rl

Scalar aggregation In scalar aggregation, thereisno group by clause and the entire SPIresult set is
aggregated, as a single group, by the same select clause aggregate functions.
The query produces a single result row:

select sum (s1)
from r, s
where r2 = s2

Eager aggregation

Eager aggregation transforms the internal representation of queries such as
those discussed above, and processes them as if the aggregation is performed
incrementally: first locally, over each table, producing intermediate aggregate
results over smaller local subgroups, and then globally after the join, thus
combining the local aggregation results to produce the final result set.

These queries, which return the same result set over any data set, are derived
table SQL-level rewrites of the vector and scalar aggregation examples above.
They illustrate the eager aggregation transformations that Adaptive Server
performs on the internal representation of the queries.

Vector aggregation select rl, sum(sum sl * count r)
from
(select
rl,r2,
count _r = count (*)
from r
group by rl,r2
)gr
(select
s2,
sum_sl = sum(sl)
from s
group by s2
)gs
where r2-s2
group by rl

Scalar aggregation select sum(sum_sl * count r)
from
(select
r2,

204 Adaptive Server Enterprise

CHAPTER 6 Eager and Lazy Aggregation

count _r = count (*)
from r
group by r2
)gr
(select
s2,
sum_sl = sum(sl)
from s
group by s2
)gs
where r2 = s2

Eager aggregation plans are generated and costed by the optimizer, and can be
chosen as the best plan. This form of advanced query optimization can result
in orders of magnitude of performance gain, relative to the original SQL query.

Aggregation and query processing

From the perspective of query processing (QP), aggregation can be both a
costly operation, and an operation whose placement has an important impact
on query performance.

« Aggregation generally computes an aggregated value. Vector aggregation
is costly, compared to scalar aggregation, as rows must be grouped
together to obtain the aggregated result over a group; thisimplies, in
general, areordering of the rows through sorting or hashing, both costly
operations.

» Aggregating after applying cardinality-reducing operators (such asfilters)
to the input set reduces the cost of aggregation and can thus improve
overall query performance.

» Aggregating before applying cardinality-increasing operators (such as
joins and unions) to the input set reduces the cost of aggregation and can
thus improve overal query performance.

* Aggregating early can reduce the costs of parent operators through
reducing their input set cardinality, and can thusimprove overall query
performance.

* Aggregation can dramatically reduce the cardinality of theinput set inthe
result set, when the grouping columns have relatively few distinct value
combinations.

Performance and Tuning Series: Query Processing and Abstract Plans 205

Aggregation and query processing

206

» Some properties of the aggregation’sinput set, as already grouped (for
example, when the aggregation is ordered on the grouping columns),
reduce the cost of vector aggregation; in scalar aggregation, rows ordered
on the aggregated column allow computing a min or max without
accessing each input row.

« Plan fragment physical properties have a big impact on aggregation cost.

The naive QP implementation of aggregation places the scalar or vector
aggregate operator, as indicated by the SQL query, over the SPJ part of its
query block. However, there are algebraic transformations that preserve the
semantics of the query and allow aggregation at other places in the operators
tree:

» Pushing the aggregation down toward the leaves, to aggregate early
(called eager aggregation).

» Pulling the aggregation up toward the root, to aggregate late (called lazy
aggregation).

Plans obtained through such transformations differ greatly in performance.
More importantly to distributed query processing (DQP), the cardinality of
intermediate results can be greatly reduced by eager aggregation. Such orders-
of-magnitude cardinality reduce cross-node data transfer cost, thus removing
the main shortcoming of DQP as opposed to traditional QP.

Adaptive Server 15.0.2 and later implements eager aggregation over theleaves
of aquery plan, which means over the scan operators.
This query illustrates the QP implications of eager aggregation:

select rl, sum(sl)
from r,s

where r2 = s2
group by rl

Adaptive Server Enterprise

CHAPTER 6 Eager and Lazy Aggregation

Figure 6-1: Typical query execution plan

GroupHashing: r1; sum(sl)

¢

MergeJoin: r2=s2

AN

IndScan: ir2, r IndScan: is2, s

The two index scans, on r(r2) and s(s2) provide the orderings needed by the
“r2=s2" merge join. Hash-based grouping is done over the join, as the query
specifiesit.

The optimizer also generates query plans that perform eager aggregation, also
called the push-down of grouping, early grouping, or eager grouping. The SQL
representation of the transform using derived tablesis:

select rl, sum(sum sl * cnt r)

from
(select rl, r2, cnt_r = count (*)
from r
group by rl, r2
) as gr
(select s2, sum sl = sum(sl)
from s
group by s2
) as gs
where r2 = s2

group by rl

Performance and Tuning Series: Query Processing and Abstract Plans 207

Examples

Examples

Online data archiving

208

Figure 6-2: Possible eager aggregation plan

GroupHashing: rl; sum(sum_sl*cnt_r)

¢

MergeJoin: r2=s2

VAN

GroupSorted: rl, r2; GroupSorted: s2;
cnt_r = count(*) cnt_s1 = sum(s1)
IndScan: ir21, r IndScan: is2, s

The two eager GroupSorted operators group on the local grouping columns.
GroupSorted operators apply to any column projected out for areason other
than that it is an aggregation function argument. These columns include:

e Themain grouping columnsin the group by clause
e Columns needed by predicates not yet applied

To place the cheap GroupSorted operator, the child plan fragment must provide
ordering on all thelocal grouping columns; hencethe ir21 indexon r (r2,
rl).

The most compelling reason to implement eager aggregation is online data
archiving, which is adistributed query processing (DQP) installation where
recent OLTP read-write datais on an Adaptive Server and historical read-only
datais on another server, either Adaptive Server or ASIQ.

The following view, v, offers decision support system (DSS) applications
transparent access to local Adaptive Server datain ase_tab and, through the
Component Integration Services (CIS) proxy_asiqg_tab, to remote historical
dataon an ASIQ server.

Adaptive Server Enterprise

CHAPTER 6 Eager and Lazy Aggregation

create view v (vl, v2)

as

select al, a2 from ase_tab

union all

select gl, g2 from proxy asiqg tab

The DSS applications ignore the distributed nature of the data and use such
union-in-view tablesasthe basetablesof their complex queries, typically using

aggregation:

select tl, sum(vl)
from t,v

where t2=v2

group by tl

After view and union resolution, the following operator tree is obtained:

Figure 6-3: SQL query rewrite

group:tl;sum(vl)

'

join:t2=v2

¥

t union

SN

ase_tab proxy _aseq_tab

Asthistree usesaCl S proxy table, the ClSlayer usesaspecialized remote scan
operator to generate and ship a plan fragment to the remote site.

Performance and Tuning Series: Query Processing and Abstract Plans 209

Examples

210

Figure 6-4: Suboptimal classical CIS behavior

GROUP "select
- - . ql, q2
from
% ASE asiq tab
JOIN
‘ -
scan: t uniong
A/\/:\
scan: Scan.
ase tab proxy_asig t

.

—| ASIQ \

/

As such, this mechanism is suboptimal: the entire history tableis shipped
through the CIS layer to the Adaptive Server side, incurring a large network
cost; furthermove, the advanced ASIQ bitmap-based grouping algorithms are

not used.

Adaptive Server Enterprise

CHAPTER 6 Eager and Lazy Aggregation

Figure 6-5: Classical processing of aggregation

Grouping done here, on the ASE side,
according to the semantic of the query.

Intermediate operators:
* Block the grouping pushdown
* Need to switch with grouping

Scan: ase tab Scan: proxy_asiq_tab

Grouping needed here, onthe ASIQ side:
* ASIQ uses bitmap
e Lessresult data

I deally, transformations are performed on the operators tree and grouping on
the ASIQ side, so that only aggregated datais transferred.

Performance and Tuning Series: Query Processing and Abstract Plans 211

Examples

Figure 6-6:

Desired aggregation processing layout

Grouping completed here, according to
the semantic of the query.

Intermediate operatorsthat preserve
the semantics

group

~ o ASIQ

Scan: proxy_asiq_tab

Scan: ase tab

Eager grouping that preserves
the semantics

In this example, there are two operators between the group and the CIS proxy:

ajoin and aunion. The next transform pushes grouping below the join and the
union, achieving eager aggregation:

212 Adaptive Server Enterprise

CHAPTER 6 Eager and Lazy Aggregation

Figure 6-7: Eager aggregation

group

Y

join Eager Aggregation achieved

A

Scan: t union

o

group group \
/
o ; |
Scan: ase tab \\ Scan: proxy_asiqg_tab| /
N - _ d

P
— -

~

Grouping is now adjacent to the CIS proxy. The CIS layer can now send a
grouped query to ASIQ and return aggregated data.

Performance and Tuning Series: Query Processing and Abstract Plans 213

Examples

Figure 6-8: Optimal CIS behavior with eager aggregation

ASE E’ select g2,

sum(ql) —
group / from
asiq_tab v
group by g2
group
Y

scan:
asiq_tab

Scan: K /
\ ase tab /

DSS/DQP The efficient execution of complex aggregated DSS queries in a distributed
environment is a challenge not only in online data archivings; it is, in general,
ageneric DSS/DQP problem in online data archiving DSS/DQP:

» Atypica query involves complex joins and unions, and aggregation is
performed at the top of the query tree.

» Thedataisdistributed across the nodes, and the intermediate results must
be shipped from a producer node to a consumer node for further
processing.

Single-node DSS Although the examples above are for DQPin general, and online dataarchiving
in particul ar, the eager aggregation performance impact goes beyond shipping
intermediate results between DQP nodes.

Eager aggregation enhances the performance of aggregated complex queries
by reducing intermediate result sets. Since aggregated complex queries are
typical, eager aggregation enhances Adaptive Server performancein all DSS
applications.

214 Adaptive Server Enterprise

CHAPTER 6 Eager and Lazy Aggregation

Using eager aggregation

Eager aggregation isan internal query processing feature. You need not change
anything at the SQL level when you enable eager aggregation; queriesthat use
aggregation have eager aggregation-based plans automatically enumerated and
costed by the optimizer.

Enabling eager aggregation

Eager aggregationiscontrolled by theadvanced_aggregation optimizer setting,
which is off by default in all optimization goals except allrows_dss, whereit is
on. Eager aggregation can be enabled, disabled, or reset to the optimizer goal’s
default value at either the connection or query level.

For example, to enable at the connection level:
set advanced aggregation on
To enable at the query level:

select rl, sum (s1)

from r, s

where r2 = s2

group by rl

plan

" (use advanced aggregation on)"

Alternatively, if the optimization goal is set to allrows_dss, eager aggregation
isimplicitly enabled. In this example, an abstract plan sets allrows_dss at the
query level:

select rl, sum (sl)

from r, s

where r2 = s2

group by rl

plan

"(use optgoal allrows dss)"

Checking for eager aggregation

When eager aggregation is enabled, the optimizer determines cost, depending
on whether the estimated cheapest plan uses eager aggregation or not.

Performance and Tuning Series: Query Processing and Abstract Plans 215

Using eager aggregation

Output from the showplan aggregation:

1> select rl, sum(sl)
2> from r, s

3> where r2=s2

4> group by ril

5> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
STEP 1
The type of query is SELECT.
6 operator (s) under root
|ROOT:EMIT Operator
|
HASH VECTOR AGGREGATE Operator
GROUP BY
Evaluate Grouped SUM OR AVERAGE AGGREGATE.
Using Worktable2 for internal storage.
Key Count: 1

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktablel for internal storage.
Key Count: 1
Key Ordering: ASC

GROUP SORTED Operator
Evaluate Grouped COUNT AGGREGATE.

| SCAN Operator

| FROM TABLE

| =

| Index : ir21

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table will not be read.
| Using I/0 Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

GROUP SORTED Operator
Evaluate Grouped SUM OR AVERAGE AGGREGATE.

| SCAN Operator

| FROM TABLE

| s

| Index : is21

| Forward Scan.

| Positioning at index start.

216 Adaptive Server Enterprise

CHAPTER 6 Eager and Lazy Aggregation

(2

1>
2>
1>
2>
3>
4>
5>

| | | | Index contains all needed columns. Base table will not be read.
| | | | Using I/0 Size 2 Kbytes for index leaf pages.
| | | | with LRU Buffer Replacement Strategy for index leaf pages.

rows affected)

Asthe query performs vector aggregation over the join of r and s, the hash
vector aggregate operator at the top of the query treeis expected in all cases.
However, the group sorted operators over the scans of r and of s are not part of
the query; they perform the eager aggregation.

When advanced_aggregation is off, the plan does not contain the eager
aggregation operators group sorted:

set advanced aggregation off
go

select rl, sum(sl)

from r, s

where r2=s2

group by rl

go

QUERY PLAN FOR STATEMENT 1 (at line 1).
STEP 1

The type of query is SELECT.

4 operator(s) under root

| ROOT:EMIT Operator

HASH VECTOR AGGREGATE Operator

GROUP BY

Evaluate Grouped SUM OR AVERAGE AGGREGATE.
Using Worktable2 for internal storage.

Key Count: 1

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktablel for internal storage.
Key Count: 1
Key Ordering: ASC

| SCAN Operator
| FROM TABLE

| ¢

| Index : ir21
| Forward Scan.

Performance and Tuning Series: Query Processing and Abstract Plans 217

Using eager aggregation

| Positioning at index start.

| Index contains all needed columns. Base table will not be read.
| Using I/0 Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

| SCAN Operator
| FROM TABLE

| s

| Index : is21

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table will not be read.
| Using I/0 Size 2 Kbytes for index leaf pages.

| with LRU Buffer Replacement Strategy for index leaf pages.

(2 rows affected)

Forcing eager aggregation with abstract plans

The optimizer opportunistically enumerates the cheap GroupSorted-based
eager aggregation plans when the child plan fragment provides an ordering on
the local grouping columns.

This limitation avoids increasing the optimization search space and time.
However, in some cases hash-based eager aggregation produces the cheapest
plan. abstract plans can be used in such cases to force eager aggregation.
advanced_grouping must be enabled to use such an abstract plan; otherwise the
eager aggregation abstract plan is rejected.

In the example above, if r has no index on (r1, r2), and if r islarge but has few
r1--r2 distinct pairs of values, a hash join with eager grouping over r isthe best
plan, forced by this abstract plan:

1> select rl, sum(sl)
2> from r, s

3> where r2=s2

4> group by ril

5> plan

6> " (group hashing

7> (h_join

8> (group_hashing
9> (t_scan r)

218 Adaptive Server Enterprise

CHAPTER 6 Eager and Lazy Aggregation

10>)

11> (t_scan s)
12>)

13>)"

14> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.
STEP 1
The type of query is SELECT.
5 operator(s) under root
|ROOT:EMIT Operator
|
HASH VECTOR AGGREGATE Operator
GROUP BY
Evaluate Grouped SUM OR AVERAGE AGGREGATE.
Using Worktable3 for internal storage.
Key Count: 1| |
|HASH JOIN Operator (Join Type: Inner Join)
| Using Worktable2 for internal storage.
Key Count: 1

HASH VECTOR AGGREGATE Operator

GROUP BY

Evaluate Grouped COUNT AGGREGATE.
Using Worktablel for internal storage.
Key Count: 2

|
|
|
|
|
|
| |SCAN Operator
| | FROM TABLE
| |«

| | Table Scan.
| | Forward Scan.

| | Positioning at start of table.

| | Using I/0 Size 2 Kbytes for data pages.

| | with LRU Buffer Replacement Strategy for data pages.
| SCAN Operator
| FROM TABLE

| s

| Table Scan.

| Forward Scan.
| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

|
|
|
|
|
|
|
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
1
r

Performance and Tuning Series: Query Processing and Abstract Plans 219

Using eager aggregation

(2 rows affected)

The hash vector aggregate operator eagerly aggregates the scan of r, as
requested by the abstract plan.

220 Adaptive Server Enterprise

CHAPTER 7

Controlling Optimization

This chapter describes query processing options that affect the query
processor’s choice of join order, index, 1/O size, and cache strategy.

Topic Page
Specia optimizing techniques 221
Specifying query processor choices 231
Specifying table order in joins 232
Specifying the number of tables considered by the query processor | 233
Specifying query index 234
Specifying 1/0 size in aquery 236
Specifying cache strategy 239
Controlling large I/O and cache strategies 241
Asynchronous log service 241
Enabling and disabling merge joins 244
Enabling and disabling join transitive closure 245
Controlling literal parameterization 246
Suggesting a degree of parallelism for a query 248
Concurrency optimization for small tables 258

Special optimizing techniques

Sybase recommends that, before using the tool s discussed in this chapter,
you read the Performance and Tuning Series: Basics. It will help you

understand the material in this chapter.

Use the optimization techniques with caution, asthey alow you to
override the decisions made by the Adaptive Server query processor and
if misused, can have an extremely negative effect on performance. You

should understand the impact on the performance of both your individual
query and the possible implications for overall system performance.

Performance and Tuning Series: Query Processing and Abstract Plans

221

Viewing current optimizer settings

Viewing current optimizer settings

222

In most situations, Adaptive Server advanced, cost-based query processor
produces excellent query plans. However, there are times when the query
processor does not choose the proper index for optimal performance, or
chooses a suboptimal join order, and you must control the access methods for
the query. The optimization techniques alow you to take that control.

In addition, while you are tuning, you may want to see the effects of adifferent
joinorder, I/O size, or cache strategy. Some of the optimization optionslet you
specify query processing or access strategy without costly reconfiguration.

Adaptive Server provides tools and query clauses that affect query
optimization and advanced query analysistoolsthat |et you understand why the

query processor makes the choices that it does.

Note Thischapter suggestsworkaroundsfor certain optimization problems. If
the workarounds do not adequately address these problems, call Sybase
Technical Support.

sp_options allows you to view the current optimizer settings for these options:

set plan dump / load
set plan exists check
set forceplan

set plan optgoal

set [optCriteria]

set plan opttimeoutlimit
set plan replace

set statistics simulate
set metrics_capture
set prefetch

set parallel_degree number

set process_limit_action

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

set resource_granularity number
set scan_parallel_degree number

set repartition_degree number

sp_options queries the sysoptions fake table, which stores information about
each set option, itscategory, and its current and default settings. sysoptions also
contains a bitmap that provides detailed information for each option

The syntax for sp_options is:

sp_options [[show | help
[, option_name | category_name |null
[, dfit | non_dflt | null
[spid] 1111

where:

show — lists the current and default values of all options, grouped
according to their category. Issuing sp_options show with an option name
specified showsyou the current and default valuefor theindividual option.
You can also specify asession ID, and whether you want to view options
with default settings or options with nondefault settings.

help — show usage information. Achieve the same result by issuing
sp_options with no parameters.

null — indicates the option for which you want to view the settings.

dfit | non_dfit | null —indicates whether to show optionswith default settings
or to show options with non-default settings.

spid — specifies the session ID. Use the session ID to view other session
settings.

For example, to display the current optimizer settings shown below, enter:

sp_options show
Category: Query Tuning
name

currentsetting defaultsetting scope

optlevel

ase_default
optgoal

allrows mix
opttimeoutlimit

10
repartition degree

ase_current 3
allrows mix 3
10 2

Performance and Tuning Series: Query Processing and Abstract Plans 223

Viewing current optimizer settings

1 1 2
scan_parallel degree

0 1 2
resource_granularity

10 10 2

outer join costing: outer join row counts and histogramming

0 0 7
join duplicate estimates: avoid overestimates of dups in joins
0 0 7
imdb costing: 0 PIO costing for scans for in-memory database
1 1 7
auto_temptable stats: auto generation of statistics for #temptables
0 0 7
use_mixed dt_sarg under_specialor: allow special OR in case of mixed
0 0 7
timeout cart product: timeout queries involving cartesian product and more
0 0 7

(81 rows affected)

See Adaptive Server Reference Manual: Procedures.
Any user can query sysoptions:

You can also use string manipulation or a cast. For example, if an optionis
numeric, you can query sysoptions by entering:

if (isnumeric(currentsetting))
select@int_val = convert(int, currentsetting)

else
select@char_val = currentsetting

For moreinfomation about sysoptions, see Adaptive Server Reference Manual:
Tables.

224 Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

Setting the optimization level

By default, Adaptive Server does not enable some performance related
optimizer settings, and you must enable them using the set command. Because
these optimizer settings are not enabled, any applications already running
efficiently are not effected by, nor benefit from, optimizer changes when
upgrading to the latest version of Adaptive Server.

Adaptive Server allows you to set the optimization level globally (that is, the
optimization levels are set across the server) and at the session level. Enabling
these changes increases query performance for many applications, though
Sybase recommends additional performance testing.

Use the @@optlevel global variable to determine the current optimization
level settings:

select @@optlevel

The optimization settings are organized according to which optimization
changesare availablefor each Adaptive Server release. Table 7-1 describesthe

settings:
Table 7-1: Opimization level
Parameter Description
ase_current Enables all optimizer changes through the current release
ase_default Disables all optimizer changes since version 1503 ESD #1
asel503esd2 Enables all optimizer changes through version 15.0.3 ESD #2
asel503esd3 Enables all optimizer changes through version 15.0.3 ESD #3

These optimization level criteriaare enabled by default:

Performance and Tuning Series: Query Processing and Abstract Plans 225

Viewing current optimizer settings

226

Table 7-2: Optimization criteria enabled by default

Setting Description

cr421607 Support NULL=NULL merge and hash join keys

cr467566 Allow abstract plans and statement caches to work together

cr487450 Improves distinct costing for multitable outer joins and
semijoins

cr497066 Infer the nullability of isnull by observing its parameters

cr500736 Support nocase sort order columnsin merge join and hash
join keys

cr531199 Increase the number of useful nested loop join plansthe
optimizer considereds

cr534175 Compute group by worktables in nested subqueries only
once, when possible

cr544485 Mark subquery join predicates with distinct view as SARGs

cr545059 Reduce buffer manager optimization sort usage

cr545180 Avoid reformating with no SARGs if a useful index exists

cr545379 Disallow reformatting on user-forced index scan

cr545585 Covered iscan CPU costing too expensive

cr545653 Avoid inner table buffer estimate starvation

cr545771 Improve multi-table outer join and semijoin costing

cr546125 Allow anonunique index scan for implicitly updatable
Cursors

cr552795 Eliminate unnecessary duplicate rows during reformatting

cr562947 Allow cursor table scans

data_page_prefetch_
costing

Adds clustered row bias

mru_buffer_costing

Wash size buffer limit for MRU

These optimization level criteria are enabled when you enable ase1503esd2:

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

Table 7-3: Optimization criteria enabled with ase1503esd2

Setting Description
cr556728 Facilitate merge joins between small tables
cr559034 Avoid preferring non-covering over covered index

Scans

allow_wide_top_sort

Allow top sorts to exceed max row size

avoid_bmo_sorts

Avoid sorts used only for buffer manager
optimization

conserve_tempdb_space

Keep estimated temporary databases below
resource granularity

distinct_exists_transform

Transform distinct to semi-join

join_duplicate_estimates

Avoid overestimates of join duplicates

outer_join_costing

Outer join row counts and histogramming

search_engine_timeout_factor | Open cursor command takes along time with a

complex select statement

timeout_cart_product

Timeout queries involving cartesian product and
more than 5 tables.

Table 7-4 lists optimization criteria that are enabled when you enable
asel503esd3 Or ase_current

Table 7-4: Optimization criteria enabled with ase1503esd3 and

ase_current
Setting

Description

auto_template_stats

Automatically generate statistics for
temporary tables

use_mixed_dt_sarg_under_specialor | Allow special or for mixed datatype SARGs

inaninor or list

These optimization criteria are off by default:

Table 7-5: Optimization criteria that are disabled by default

Setting

Description

full_index_filter

Eliminate noncovered full index scan strategies

no_stats_distinctness

Allow duplicate estimates without statistics

Set the optimization and criterialevels using one of these methods:

e Atthesession level —use set plan optlevel to set the optimization level for
the current session. This configures the session to use the al optimization
changes up through the current version of Adaptive Server:

set plan optlevel ase current

Performance and Tuning Series: Query Processing and Abstract Plans 227

Viewing current optimizer settings

e Forindividua logins—use sp_maodifylogin to set the optimization level for
logins. sp_modifylogin calls auser-created stored procedure the definesthe
optimization level. For example, if you create this stored procedure to
enable the ase1503esd2 optimization level, but disable the optimization
level for cr545180:

create proc login proc

as

set plan optlevel asel503esd2
set cr545180 off

go

You may apply these optimization settings to any login. This applies the
settings from login_proc to user joe:

sp_modifylogin joe, 'login script', login proc

e Acrossthe server — use the sp_configure “optimizer level” parameter to set
the optimization level globally. This sets enablesall optimizer changes up
to the current version of Adaptive Server:

sp_configure 'optimizer level', 0, 'ase current'

» Within an abstract plan — use the optlevel abstract plan to set the optimizer
level. Thisexampleenablesall optimizer changesup to the current version
of Adaptive Server for the current plan:

select name from sysdatabases
plan ' (use optlevel ase current)'

» During asession with the set command — use the set command to change
the optimizer criterialevel for the current session. Optimizer criteria
changes may improve the performance for some queries while
deteriorating others. You may find better performance by applying the
optimizer criterialevel at afine grain level (perhaps at the query level).
Adaptive Server denotes some optimizer criterialevels by their CR
numbers, while other more recent optimizer changes are specified with
descriptive names. Use sp_options to view thelist of available optionsin
the current release. This enables the optimization criteria for CR 545180:

228 Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

set CR545180 on

Note When you enable an optimization criteria, Adaptive Server retains
the previous optimization level.

Optimizer Diagnostic Utility

The sp_opt_querystats System procedure | ets you analyze the query plan
generated by the Adaptive Server optimizer and the factors that influenced its
choice of aquery plan. This analysis may help determineif elementsin the
query or the execution environment affect how Adaptive Server executes the
guery and its performance. You need not run the selected query to perform the
analysis.

sp_opt_querystats output includes:

* The query plan generated by showplan

« Enabled trace flags and switches

« |/O activity for the query generated by set statistics io

* Missing statistics found for any of the tablesinvolved in the query
e Theestimated plan cost calculated by the optimizer

e Thefina plan and cost estimations calcul ated by the optimizer

e Theabstract plan for the query

* Theresult of the query if theresult set is executed (for example, if noexec
is not on)

* Thelogical operator tree for the query generated by set option show
* Query execution time generated by set statistics time

« After you execute the query, the query execution time generated by set
statistics time

Performance and Tuning Series: Query Processing and Abstract Plans 229

Optimizer Diagnostic Utility

Configuring Adaptive Server to run sp_opt_querystats
1 Install the Job Scheduler. See the Job Scheduler Users Guide.

Note Thismay require that you restart Adaptive Server.

2 If Adaptive Server is unnamed, set the server name then restart Adaptive
Server:

sp_addserver server name, local

3 Anyloginthat runssp_opt_querystats must havethejs_user_role role, and
must use a non-Null password to log in to Adaptive Server.

sp_opt_querystats require the sa_role:
grant role role name to login name

4 Create an external login on the loopback server for all users who run
Sp_opt_querystats:

sp_addexternlogin loopback, <login>, <passwords,
<password>

5 Sybase recommends that you set the value for maximum job output to
1000000 to ensure that Job Scheduler can capture al diagnostic output for
your queries.

Note If sp_opt_querystats truncates the output, increase the value for
maximum job output. Increasing this value consumes no additional
resources.

Running sp_opt_querystats

Log into Adaptive Server using the login that hasthejs_user_role. Run
sp_opt_querystats to analyze a query (the diagnostic information begins with
the phrase [BEGIN QUERY ANALYSIS] and endswith [END QUERY
ANALYSIS]).

The syntax is:

sp_opt_querystats "query_text" | help [, "diagnostic_options" | null
[, database_name]]

For example:

sp_opt_querystats "select * from pubs2..authors where

230 Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

au_id = "172-32-1176"

See the Reference Manual: Procedures.

Specifying query processor choices

Adaptive Server lets you specify these optimization choices by including
commands in aquery batch or in the text of the query:

e Theorder of tablesinajoin

e The number of tables evaluated at one time during join optimization
e Theindex used for atable access

* Thel/Osize

e The cache strategy

e Thedegree of parallelism

Under some circumstances, the query processor does not choose the best plan.
Occasionally, the plan choosen by the query processor is only slightly more
expensive than the “best” plan, so you must weigh the cost of maintaining
forced options against the slower performance of aless than optimal plan.

The commandsto specify join order, index, 1/0 size, or cache strategy, coupled
with the query-reporting commandslike statistics io and showplan, can help you
determine why the query processor makes its choices.

Warning! Usethe options described in this chapter with caution. Forced query
plans may be inappropriate in some situations and may cause poor
performance. If you include these optionsin your applications, regularly check
query plans, 1/0 statistics, and other performance data.

These options are generally intended for use as tools for tuning and
experimentation, not as long-term solutions to optimization problems.

Performance and Tuning Series: Query Processing and Abstract Plans 231

Specifying table order in joins

Specifying table order in joins

232

Adaptive Server optimizesjoin ordersto minimize I/O. In most cases, the order
that the query processor chooses does not match the order of the from clauses
inyour select command. To force Adaptive Server to accesstablesin the order
they arelisted, use:

set forceplan [on|off]

The query processor still chooses the best access method for each table. If you
use forceplan and specify ajoin order, the query processor may use different
indexesontablesthan it would with adifferent table order, or it may not be able
to use existing indexes.

You might use this command as a debugging aid if other query analysistools
lead you to suspect that the query processor is not choosing the best join order.
Always verify that the order you are forcing reduces 1/0 and logical reads by
using set statistics io on and comparing 1/0 both with and without forceplan.

If you use forceplan, your routine performance maintenance checks should
include verifying that the queries and proceduresthat use forceplan still require
the option to improve performance.

You can include forceplan in the text of stored procedures.

set forceplan forces only join order, and not join type. Thereis no command for
specifying the join type; you can disable merge joins at the server or session
level.

You can disable hash joins at the session level. Also remember that an abstract
plan alows full plan specification, including join order and join types.

See Chapter 12, “Creating and Using Abstract Plans,” and “Enabling and
disabling merge joins’ on page 244.
Forcing join order has these risks:

» Misuse can lead to extremely expensive queries. Always test the query
thoroughly with statistics io, and with and without forceplan.

* It requires maintenance. You must regularly check queries and stored
procedures that include forceplan. Also, each new version of Adaptive
Server may eliminate the problems that lead you to incorporate index
forcing, so check all queriesthat use forced query plans each time anew
version isinstaled.

Before you use forceplan:

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

e Check the showplan output to determine whether index keys are used as
expected.

e Useset option show normal to look for other optimization problems.
* Run update statistics on the index.

« Useupdate statistics to add statistics for search arguments on unindexed
search clausesin the query, especially for search arguments that match
minor keys in compound indexes.

e Useset option show_missing_stats on to |ook for columns that may need
statistics.

e |If the query joins more than four tables, use set table count, which may
result in an improved join order.

See“ Specifying the number of tables considered by the query processor”
on page 233.

Specifying the number of tables considered by the
query processor

In versions earlier than 15.0, Adaptive Server optimized joins by considering
two to four permutations at atime. Versions 15.0 and later do not limit the
query processor to two or four permutations. Instead, the new search engine
introduces a timeout mechanism to avoid excessive time spent optimizing a
guery. The set table count setting discussed later in this section still affects the
initial join order looked at by the search engine, and thus affects the final join
order when timeout does occur. If you suspect that an inefficient join order is
being chosen when the search engine times out, use set table count to increase
the number of tables that are considered, which affects the initial join order
considered by the search engine in starting the permutation.

Adaptive Server till optimizes joins by considering permutations of two to
four tables at atime, but if you suspect that an inefficient join order is being
chosen for ajoin query, use set table count to increase the number of tablesthat
are considered at the sametime:

set table count int_value

Valid values are 0 though 8; 0 restores the default behavior.

For example, to specify four-at-a-time optimization, use;

Performance and Tuning Series: Query Processing and Abstract Plans 233

Specifying query index

set table count 4

Asyou decrease the value, you reduce the chance that the query processor
considersall possiblejoin orders. Increasing the number of tables considered at
one time during join ordering can greatly increase thetime it takesto optimize
aquery.

Since the time it takes to optimize the query is increased with each additional
table, set table count ismost useful when the execution savings from improved
join order outweighs the extra optimizing time. Some examples are:

» If you think that a more optimal join order can shorten total query
optimization and execution time, especially for stored proceduresthat you
expect to be executed many times once a plan is in the procedure cache

* When saving abstract plansfor later use

Usesstatistics time to check parseand compiletime, and statistics io to verify that
the improved join order is reducing physical and logical 1/0.

If increasing the table count produces an improvement in join optimization, but
unacceptably increases CPU time, rewrite the from clause in the query,
specifying the tables in the join order indicated by showplan output, and use
forceplan to run the query. Be sure that your routine performance maintenance
checksinclude verifying that the join order you are forcing still improves
performance.

Specifying query index

234

You can use the (index index_name clause in select, update, and delete
statementsto specify theindex to use for aquery. You can also force aquery to
perform atable scan by specifying the table name. The syntax is:

select select_list
from table_name [correlation_name]
(index {index_name | table_name })
[, table_name ...]
where ...

delete table_name
from table_name [correlation_name]
(index {index_name | table_name}) ...

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

update table_name set col_name = value
from table_name [correlation_name]
(index {index_name | table_name})...

For example:

select pub name, title
from publishers p, titles t (index date type)
where p.pub _id = t.pub id
and type = "business"
and pubdate > "1/1/93"

Specifying anindex in aquery may be hel pful when you suspect that the query
processor is choosing asuboptimal query plan. When you do specify the index:

e Always check statistics io for the query to see whether the index you
choose requires less 1/0 than the query processor’s choice.

« Testafull rangeof valid valuesfor the query clauses, especialy if you are:
e Tuning queries on tables that have skewed data distribution

e Performing range queries, since the access methods for these queries
are sensitive to the size of therange

Use (index index_name only after testing when you are certain that the query
performs better with the specified index option. Once you include an index
specification in a query, regularly verify that the resulting planis still better
than other choices made by the query processor.

If aunclustered index has the same name as the table, specifying atable name
causesthe unclustered index to be used. You can force atable scan using select
select _list from tablename (0).

Specifying indexes has these risks:

e Changesin the distribution of data could make the forced index less
efficient than other choices.

« Dropping theindex meansthat all queries and procedures that specify the
index print an informational message indicating that the index does not
exist. The query is optimized using the best alternative access method.

« Increased maintenance, since you must periodically check all queries
using this option. Also, each new version of Adaptive Server may
eliminate the problems that lead you to incorporate index forcing, so you
should check all queries using forced indexes each time you install a new
version.

Performance and Tuning Series: Query Processing and Abstract Plans 235

Specifying I/O size in a query

e Theindex must exist at the time the query using it is optimized. You
cannot create an index and then use it in aquery in the same batch.

Before specifying an index in queries:

e Check showplan output for the “Keys are” message to be sure that the
index keys are being used as expected.

* Usedbcc traceon(3604) or set option show normal to look for other
optimization problems.

* Run update statistics on the index.

» If theindex isacompositeindex, run update statistics on the minor keysin
the index, if they are used as search arguments. This can greatly improve
query processor cost estimates. Creating statistics for other columns
frequently used for search clauses can also improve estimates.

e Use set option show_missing_stats on to look for columns that may need
statistics.

Specifying I/O size in a query

236

If your Adaptive Server isconfigured for large I/Osin the default data cache or
in named data caches, the query processor may decide to use large I/O for:

* Queriesthat scan entire tables

» Range queriesusing clustered indexes, such as queriesusing >, <, > x and
<Y, between, and like “charstring %"

* Queriesthat scan alarge number of index leaf pages

If the cache used by the table or index is configured for 16K /O, asingle I/O
can read up to 8 pages simultaneously. Each named data cache can have several
pools, each with adifferent 1/0O size. Specifying the I/O size in a query causes
the 1/O for that query to take place in the pool that is configured for that size.

Seethe System Administration Guide: Volume 2 for information on configuring
named data caches.

To specify an 1/0O size that is different from the one chosen by the query
processor, add the prefetch specification to theindex clause of a select, delete,
or update statement. The syntax is:

select select_list
from table_name

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

([index {index_name | table_name}]
prefetch size)
[, table_name ...]
where ...

delete table_name from table_name
([index {index_name | table_name}]
prefetch size)

update table_name set col_name = value
from table_name
([index {index_name | table_name}]
prefetch size)

Thevalid prefetch size depends on the page size. If no pool of the specified size
existsin the data cache used by the object, the query processor choosesthe best
available size.

If thereisaclustered index on au_Iname, this query performs 16K /O whileit
scans the data pages:

select *
from authors (index au names prefetch 16)
where au lname like "Sm%"

If aquery normally performs large I/O, and you want to check its1/0
performance with 2K /O, you can specify asize of 2K:

select type, avg(price)
from titles (index type price prefetch 2)
group by type

Note Referencetolargel/Osareona2K logical page size server. If you have
an 8K page size server, the basic unit for the 1/0Ois 8K. If you have a 16K page
size server, the basic unit for the 1/0 is 16K.

Index type and large 1/O size

When you specify an 1/0 size with prefetch, the specification can affect both
the data pages and the leaf-level index pages. Table 7-6 shows the effects.

Performance and Tuning Series: Query Processing and Abstract Plans 237

Specifying I/O size in a query

Table 7-6: Access methods and prefetching

Access method Large I/O performed on
Table scan Data pages
Clustered index Data pages only, for allpages-locked tables

Data pages and leaf-level index pages for
data-only-locked tables

Nonclustered index Data pages and leaf pages of nonclustered index

showplan reports the 1/0 size used for both data and leaf-level pages.
See “1/0 size messages’ on page 56.

When prefetch specification cannot be followed

238

In most cases, when you specify an I/O size in aquery, the query processor
incorporates the 1/0 size into the query’s plan. However, there are times when
the specification cannot be followed, either for the query as awhole or for a
single, large 1/O request.

You cannot use large I/O for the query if:

» Thecacheisnot configured for 1/0 of the specified size. The query
processor substitutes the best size available.

» sp_cachestrategy has been used to disable large 1/0 for the table or index.
You cannot use large I/O for asingle buffer if:

» Any of the pagesincluded in that 1/O request are in another pool in the
cache.

» Thepageison thefirst extent in an allocation unit. This extent holds the
allocation page for the allocation unit, and only seven data pages.

* No buffersare available in the pool for the requested 1/0 size.

When alarge 1/0 cannot be performed, Adaptive Server performs 2K 1/O on
the specific page or pagesin the extent that are needed by the query.

To determine whether the prefetch specification is followed, use showplan to
display the query plan and statistics io to see the results on 1/O for the query.
sp_sysmon reports on the large I/Os requested and denied for each cache.

See the Performance and Tuning Series. Monitoring Adaptive Server with
Sp_sysmon.

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

setting prefetch

By default, aquery useslarge /0O whenever alarge 1/O pool is configured and
the query processor determines that large 1/0O would reduce the query cost. To
disable large 1/0 during a session, Use:

set prefetch off
To reenable large 1/O, use:
set prefetch on

If large 1/O isturned off for an object using sp_cachestrategy, set prefetch on
does not override that setting.

If large /O isturned off for asession using set prefetch off, you cannot override
the setting by specifying a prefetch size as part of aselect, delete, or insert
Statement.

The set prefetch command takes effect in the same batch in which it isrun, so
you canincludeit in astored procedure to affect the execution of the queriesin
the procedure.

Specifying cache strategy

For queries that scan atable’s data pages or the leaf level of an unclustered
index (covered queries), the Adaptive Server query processor chooses one of
two cache replacement strategies: the fetch-and-discard, most-recently used
(MRU) strategy or the least recently used (LRU) strategy.

See the Performance and Tuning Series: Physical Database Tuning.
The query processor may choose the MRU strategy for:

e Any query that performs table scans

e A range query that uses a clustered index

e A covered query that scans the leaf level of a nonclustered index

e Aninner table in anested-loop join, if the inner table islarger than the
cache

e The outer table of a nested-loop join, since it needs to be read only once
« Bothtablesin amerge join.

To affect the cache strategy for objects:

Performance and Tuning Series: Query Processing and Abstract Plans 239

Specifying cache strategy

e Specify Iru or mru in aselect, update, or delete statement
» Usesp_cachestrategy to disable or reenable the mru strategy

If you specify the MRU strategy, and a page is already in the data cache, the
pageis placed at the MRU end of the cache, rather than at the wash marker.

Specifying the cache strategy affects only data pages and the leaf pages of
indexes. Root and intermediate pages always use the LRU strategy.

In select, delete, and update statements

You can use Iru or mru in aselect, delete, or update command to specify the l/O
size for the query. (You get only sizes based on caches you have configured
correctly. For example, if you specify 4K but Adaptive Server does not use a
4K page size, the command returns 2K):

select select_list
from table_name
(index index_name prefetch size [Iru|mru])
[, table_name ...]
where ...

delete table_name from table_name (index index_name
prefetch size [Iru|mru]) ...

update table_name set col_name = value
from table_name (index index_name
prefetch size [lrujmru]) ...

For example, to add the L RU replacement strategy to a 16K 1/0O specification,
enter:

select au_ lname, au_ fname, phone
from authors (index au names prefetch 16 lru)

See “ Specifying 1/0 sizein aquery” on page 236.

240 Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

Controlling large 1/0 and cache strategies

Status bitsin the sysindexes table identify whether you should consider atable
or anindex for large 1/0 prefetch or for MRU replacement strategy. By defaullt,
both are enabled. To disable or reenable these strategies, use sp_cachestrategy:
sp_cachestrategy dbname , [ownername.]tablename

[, indexname | "text only" | "table only"

[, { prefetch | mru }, { "on" | "off"}]]
For example, to turn off the large I/O prefetch strategy for the au_name_index
of the authors table, enter:

sp_cachestrategy pubtune, authors, au name index,
prefetch, "off"

To reenable MRU replacement strategy for the titles table:

sp_cachestrategy pubtune, titles, "table only",
mru, "on"

Only a system administrator or the object owner can change or view the cache
strategy status of an object.

Getting information on cache strategies

To see the cache strategy that isin effect for a given object, execute
sp_cachestrategy, with the database and object name:

sp_cachestrategy pubtune, titles
object name index name large IO MRU

titles NULL ON ON

showplan output shows the cache strategy used for each object, including
worktables.

Asynchronous log service

Asynchronous log service (ALS) increases scalability in Adaptive Server and
provides higher throughput in logging subsystems for high-end symmetric
multiprocessor systems.

Performance and Tuning Series: Query Processing and Abstract Plans 241

Asynchronous log service

242

You cannot use AL S if you have fewer than four engines; if you attempt to do
so, with fewer than 4 online engines an error message appears.

You can enable, disable, or configure ALS using the sp_dboption stored
procedure;

sp_dboption <db Name>, "async log service',
"true|false"

After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "mydb", "async log service", "true"
use mydb
checkpoint

You can use the checkpoint to identify the one or more databases or use an all
clause:

checkpoint [all | [dbname[, dbname[, dbname.....]]]
Todisable ALS, enter:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Before you disable AL S, make sure there are no active usersin the database. If
there are active usersin the database when you disable ALS, you seethis error

message
Error 3647: Cannot put database in single-user mode.

Wait until all users have logged out of the database and
issue a CHECKPOINT to disable "async log service'.

Use sp_helpdb to see whether ALS is enabled in a specified database:

sp_helpdb "mydb"
mydb 3.0 MB sa 2
July 09, 2002
select into/bulkcopy/pllsort, trunc log on chkpt,
async log service

For more information on these stored procedures, see the Adaptive Server
Reference Manual: Procedures.

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

Understanding the user log cache (ULC) architecture

The Adaptive Server logging architecture features the user log cache, or ULC,
by which each task owns its own log cache. No other task can write to this
cache, and the task continues writing to the user log cache whenever a
transaction generates alog record. When the transaction commits or aborts, or
when the log cache fills up, the UL C is flushed to the common log cache,
shared by all the current tasks, which is then written to the disk.

Flushing the ULC isthefirst part of acommit or abort operation, requiring the
following steps, each of which can cause delay or increase contention:

1
2
3

When to use ALS

Obtaining alock on the last og page.
Allocating new log pagesif necessary.
Copying the log records from the UL C to the log cache.

The processes in steps 2 and 3 require you to hold alock on the last log
page, which prevents any other tasks from writing to the log cache or
performing commit or abort operations.

Flush the log cacheto disk.

Step 4 requires repeated scanning of the log cacheto i ssue write commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which thelog is bound. Under alarge transaction load, contention on this
spinlock can be significant.

You can enable AL S on any specified database that has at least one of the
following performanceissues, if your system runsfour or more online engines:

Task Management

Heavy contention on the last log page

You can tell that the last log pageisunder contention when the sp_sysmon
output in the Task Management Report section shows asignificantly high
value. For example:

)

per sec per xact count % of total

Log Semaphore Contention 58.0 0.3 34801 73.1%

Performance and Tuning Series: Query Processing and Abstract Plans 243

Enabling and disabling merge joins

Using the ALS

e Underutilized bandwidth in the log device

Note Use ALSonly when you identify asingle database with high transaction
requirements, since setting AL S for multiple databases may cause unexpected
variations in throughput and response times. To configure ALS on multiple
databases, first check that throughput and response times are satisfactory.

Two threads scan the dirty buffers (buffers full of data not yet written to the
disk), copy the data, and write it to the log. These threads are:

» Theuser log cache (ULC) flusher — The ULC flusher is a system task
thread that is dedicated to flushing the user log cache of atask into the
genera log cache. When atask is ready to commit, the user entersa
commit request into the flusher queue. Each entry has ahandle, by which
the UL C flusher can access the UL C of the task that queued the request.
The UL C flusher task continuously monitors the flusher queue, removing
requests from the queue and servicing them by flushing UL C pagesinto
the log cache.

» Thelog writer — Once the UL C flusher has finished flushing the ULC
pages into the log cache, it queues the task request into a wakeup queue.
Thelog writer patrolsthe dirty buffer chaininthelog cache, issuing awrite
command if it finds dirty buffers, and monitorsthe wakeup queue for tasks
whose pages are al written to disk. Since the log writer patrols the dirty
buffer chain, it knows when a buffer isready to write to disk.

Enabling and disabling merge joins

244

By default, merge joins are enabled at the server level, for allrows mix and for
allrows_dss optgoal, and are disabled at the server level for other optgoals,
including allrows_oltp. When mergejoinsare disabled, the server costsonly the
other join types that are not disabled. To enable merge joins server-wide, set
enable merge join to 1. The enable sort-merge joins and JTC configuration
parameter from versions of Adaptive Server earlier than 15.0 does not affect
the 15.0 and later query processor.

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

The command set merge_join on overrides the server level to allow use of
merge joinsin a session or stored procedure.

To enable merge joins, use:
set merge join on
To disable merge joins, use:

set merge join off

Enabling and disabling hash joins

By default, hash joins are enabled only when you run allrows_dss optgoal. To
override the server level setting, and allow use of hash join in asession or
stored procedure, use set hash_join on.

To enable hash joins, use:

set hash join on
To disable hash joins, use:

set hash join off

Enabling and disabling join transitive closure

In Adaptive Server version 15.0 and later, join transitive closure is always on
and cannot be disabled. The search engine uses the timeout mechanism to
avoid excessive optimization time. Although the timeout setting no longer
affects the actual use of transitive closure for the query processor, it can still
affect theinitial join order with which the search engine beginsthe permutation
when thetimeout occurs. You may find this discussion useful when you suspect
that a suboptimal join order is being chosen at timeout.

By default, join transitive closure is not enabled at the server level, sinceit can
increase optimization time. You can enable join transitive closure at a session
level with set jtc on. The session-level command overrides the server-level
setting for the enable sort-merge joins and JTC configuration parameter
(available for versions of Adaptive Server earlier than 15.0).

Performance and Tuning Series: Query Processing and Abstract Plans 245

Controlling literal parameterization

For queries that execute quickly, even when several tables are involved, join
transitive closure may increase optimization time with little improvement in
execution cost. For example, with join transitive closure applied to this query,
the number of possible joinsis multiplied for each added table;

select * from tl1, t2, t3, t4, ... tN
where tl.cl = t2.cl

and tl.cl = t3.cl

and tl.cl td.cl

and tl.cl

EN.cl

For joins on very large tables, however, the additional optimization time
involved in costing the join orders added by join transitive closure may result in
ajoin order that greatly improves the response time.

Use set statistics time to see how long Adaptive Server takes to optimize the
query. If running querieswith set jtc on greatly increases optimization time, but
also improves query execution by choosing a better join order, check the
showplan, set option show_search_engine normal, Or set option show_search_engine
long output. Explicitly add the useful join orders to the query text. Run the
query without join transitive closure, and get the improved execution time,
without the increased optimization time of examining all possible join orders
generated by join transitive closure.

You can also enable join transitive closure and save abstract plans for queries
that benefit. If you then execute those queries with loading from the saved
plans enabled, the saved execution plan is used to optimize the query, making
optimization time extremely short.

See Performance and Tuning: Optimizer and Abstact Plans for more
information on using abstract plans and configuring join transitive closure
server-wide.

Controlling literal parameterization

246

Adaptive Server version 15.0.1 and later allow you to automatically convert
literal valuesin SQL queries to parameter descriptions (similar to variables).

To enable or disable enable literal autoparam server-wide, use:

sp_configure "enable literal autoparam”, [0 | 1]

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

Where 1 automatically converts literal valuesto parameter descriptions, and 0
(the default) disables the feature.

Set literal parameterization at the session level using:
set literal_autoparam [off | on]

In versions of Adaptive Server earlier than 15.0.1, two queries that were
identical except for one or more literal values resulted in the statement cache
storing two separate query plans, or two additional rows, in sysqueryplans. For
example, the query plansfor these queries were stored separately, even though
they are almost identical:

select count (*) from titles where total sales > 100
select count (*) from titles where total sales > 200

Examples If you enable automatic literal parameterization, the SQL text of the select
count (*) examplereferred to above is converted to:

select count (*) from titles where total sales > @@@V0_INT

Where eeevo_1NT iSsaninternally generated name for the parameter that
represents the literal values 100 and 200.

All instances of literal valuesin the SQL text are replaced by internally
generated parameters. For example:

select substring(name, 3, 4) from sysobjects where name in
('systypes', 'syscolumns')

is transformed to:

select substring(name, 3, 4) from sysobjects where name in
(@@@V0_VCHAR1, @@@V1 VCHAR1)

Any combination of values that replace the literals, 3, 4, systypes and
syscolumns iStransformed to the same SQL text with the same parameters
and shares the same query plan when you enable the statement cache.

Automatic literal parameterization:

* Reduces compilation time on the second—and subseguent—executions of
the query, regardless of the literal valuesin the query.

* Reduces the amount of SQL text storage space, including memory usage
in the statement cache and the number of rows in sysqueryplans for
abstract plans and query metrics.

* Reduces the amount of procedure cache used to store query plans.

e Occursautomatically within Adaptive Server, when enabled: you need not
change the applications that submit the queries to Adaptive Server.

Performance and Tuning Series: Query Processing and Abstract Plans 247

Suggesting a degree of parallelism for a query

Usage issues for automatic literal parameterization include:

Adaptive Server parameterizes the literals only for select, delete, update,
and insert. For insert statements, Adaptive Server parameterizesonly insert
... select statements, not insert ... values statements.

Adaptive Server does not parameterize literals in queries that include a
derived table.

Adaptive Server does not parameterize queriessimilarto select id + 1
from sysobjects group by id + 10lselect id + 1 from
sysobjects order by id + 1 becauseof theexpressions(“id + 17)
in the group by and order by clauses.

Adaptive Server does not cache SQL statements with text longer than
16384 bytes in the statement cache (SQL statements over 16K are not
cached). Transforming literals in the SQL statement into variables can
significantly expand the size of the SQL text (especially if therewasa
large number of literals). Enabling automatic literal parameterization may
result in Adaptive Server not caching some SQL statements that it would
otherwise have cached.

If two SQL statements are the same except that their literal values have
different datatypes, they are not transformed into matching SQL texts. For
example, the following two SQL statements return the same results, but
are parameterized differently because they use the different datatypes:

select name from sysobjects where id = 1
select name from sysobjects where id = 1.0

The parameterized versions of these statements are:

select name from sysobjects where id = @@@V0_ INT
select name from sysobjects where id

@@@V0_NUMERIC

Suggesting a degree of parallelism for a query

248

Theparallel and degree_of parallelism extensionsto thefrom clause of aselect
command allow usersto restrict the number of worker processes used in ascan.

For a parallel partition scan to be performed, the degree of parallelism must
be equal to or greater than the number of partitions. For a parallel index scan,

specify any value for the degree_of parallelism.

The syntax for the select statement is:

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

select...
[from {tablename}

[(index index_name
[parallel [degree_of parallelism | 1]]
[prefetch size] [Irujmru])],

{tablename} [([index_name]
[parallel [degree_of parallelism | 1]

[prefetch size] [lru|mru])] ...

Table 7-7 shows how to combine the index and parallel keywords to obtain
serial or parallel scans.

Table 7-7: Optimizer hints for serial and parallel execution

Use: To specify a:

(index tablename parallel N) Parallel partition scan

(index index_name parallel N) Parallel index scan

(index tablename parallel 1) Serial table scan

(index index_name parallel 1) Serial index scan

(parallel N) Parallel scan, with the choice of table or index scan left to the optimizer
(parallel 1) Serial scan, with the choice of table or index scan left to the optimizer

When you specify the parallel degree for atable in amergejoin, it affects the
degree of parallelism used for both the scan of the table and the merge join.

You cannot use the parallel option if you have disabled parallel processing
either at the session level with the set parallel_degree 1 command, or at the
server level with the parallel degree configuration parameter. The parallel
option cannot override these settings.

If you specify adegree of parallelismthat is greater than the maximum
configured degree of parallelism, Adaptive Server ignores the hint.

The optimizer ignores hints that specify aparallel degreeif any of the
following conditionsis true:

* Thefrom clauseis used in the definition of a cursor.

e parallelisusedinthefrom clause of aninner query block of asubquery, and
the optimizer does not move the table to the outermost query block during
subquery flattening.

e Thetableisaview, asystem table, or avirtua table.
e Thetableistheinner table of an outer join.

e The query specifies exists, min, or max on the table.

Performance and Tuning Series: Query Processing and Abstract Plans 249

Optimization goals

The value for the max scan parallel degree configuration parameter is set
tol.

An unpartitioned clustered index is specified or isthe only parallel option.
A nonclustered index is covered.
The query is processed using the OR strategy.

The select statement is used for an update or insert.

Query level parallel clause examples

To specify the degree of parallelism for asingle query, include parallel after the
table name. This example executesin serial:

select * from titles (parallel 1)

This example specifiestheindex to be used in the query, and sets the degree of
parallelismto 5:

select * from titles
(index title id clix parallel 5)
where ...

To force atable scan, use the table name instead of the index name.

Optimization goals

Adaptive Server lets you choose a query optimization goal that best suitsyour
guery environment:

250

fastfirstrow — optimizes queries so that Adaptive Server returnsthefirst few
rows as quickly as possible.

allrows_oltp — optimizes queries so that Adaptive Server uses alimited
number of optimization criteria (described in “ Optimization criteria’ on
page 252) to find agood query plan. allrows_oltp is most useful for purely
OLTP queries.

allrows_mixed — optimizes queries so that Adaptive Server uses most
available optimization techniques, including merge_join and parallel, to
find the best query plan. allrows_mixed, which is the default strategy, is
most useful in a mixed-query environment.

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

e allrows_dss — optimizes queries so that Adaptive Server usesall available
optimization techniquesto find the best query plan, including hash join,
advanced aggregates processing, and bushy tree plan. allrows_dss is most
useful in a DSS environment.

Setting optimization goals

At the server level

At the session level

At the query level

You can set the optimization goal at the server, session, or query level. The
server-level optimization goal is overridden at the session level, which is
overridden at the query level—which means you can set a different
optimization goal at each level.

To set the optimization goal at the server level, you can:
e Usethe sp_configure command

* Modify the optimization goal configuration parameter in the Adaptive
Server configuration file

For example, to set the optimization level for the server to fastfirstrow, enter:
sp_configure "optimization goal", 0, "fastfirstrow"

To set the optimization goal at the session level, use set plan optgoal. For
example, to modify the optimization goal for the session to allrows, enter:

set plan optgoal allrows oltp
To verify the current optimization goal at the session level, enter:
select @@optgoal

To set the optimization goal at the query level, use the select or other DML
command. For exampl e, to change the optimization goal to allrows_oltp for the
current query, enter:

select * from A order by A.a plan " (use optgoal allrows oltp)"

At the query level only, you can specify the number of rows that Adaptive
Server quickly returns when you set fastfirstrow as the optimization goal. For
example, enter:

select * from A order by A.a plan " (use optgoal fastfirstrow 5)"

Some exceptions

In general, you can set query-level optimization goalsusing select, update, and
delete statements. However:

e You cannot set query-level optimization goals in pure insert statements,
although you can set optimization goalsin select ... insert statements.

Performance and Tuning Series: Query Processing and Abstract Plans 251

Optimization criteria

e fastfirstrow is relevant only for select statements; it incurs an error when
used with other DML statements.

Optimization criteria

You can set specific optimization criteriafor each session. The optimization
criteriarepresent specific algorithms or relational techniques that may or may
not be considered when Adaptive Server creates a query plan. By setting
individual optimization criteria on or off, you can fine-tune the query plan for
the current session.

Note Each optimization goal has default settings for each optimization
criterion. Resetting optimization criteriamay interfere with the default settings
of the current optimization goal and produce an error message—although
Adaptive Server applies the new setting.

Sybase recommends that you set individual optimization criteria only rarely
and with caution if you must fine-tune a particular query. Overriding
optimization goal settings can overly complicate query administration. Always
set optimization criteriaafter setting any existing session level optgoal setting;
an explicit optgoal setting may return an optimization criteriato its default
value.

See “Default optimization criteria’ on page 254.

Setting optimization Use the set command to enable or disable individual criteria.
criena For example, to enable the hash join algorithm, enter:
set hash join 1
To disable the hash join algorithm, enter:
set hash join 0
To enable one option and disable another, enter:

set hash join 1, merge join 0

Criteria descriptions Most criteriadescribed here decideswhether aparticular query engine operator
can be used in the final plan chosen by the optimizer.

The optimization criteria are;

252 Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

e hash_join —determines whether the query processor may use the hash join
algorithm. Hash joins may consume more runtime resources, but are
valuable when the joining columns do not have useful indexes or when a
relatively large number of rows satisfy the join condition, compared to the
product of the number of rows in the joined tables.

e hash_union_distinct — determines whether the query processor may usethe
hash union distinct algorithm, which is not efficient if most rows are
distinct.

e merge_join — determines whether the query processor may use the merge
join algorithm, which relies on ordered input. merge_join is most valuable
wheninput is ordered on the merge key—for example, from an index scan.
merge_join is less valuableif sort operators are required to order input.

e merge_union_all — determines whether the query processor may use the
merge algorithm for union all. merge_union_all maintains the ordering of
the result rows from the union input. merge_union_all is particularly
valuable if theinput is ordered and a parent operator (such as mergejoin)
benefits from that ordering. Otherwise, merge_union_all may require sort
operators that reduce efficiency.

e merge_union_distinct — determines whether the query processor may use
the merge algorithm for union. merge_union_distinct is similar to
merge_union_all, except that duplicate rows are not retained.
merge_union_distinct requires ordered input and provides ordered output.

e multi_table_store_ind — determines whether the query processor may use
reformatting on the result of amultiple table join. Using
multi_tablet_store_ind may increase the use of worktables.

* nl_join —determines whether the query processor may use the nested-loop-
join agorithm.

e opportunistic_distinct_view — determines whether the query processor may
use a more flexible algorithm when enforcing distinctness.

e parallel_query — determines whether the query processor may use parallel
query optimization.

e store_index — determines whether the query processor may use
reformatting, which may increase the use of worktables.

e append_union_all — determines whether the query processor may use the
append union all agorithm.

Performance and Tuning Series: Query Processing and Abstract Plans 253

Optimization criteria

Default optimization
criteria

254

* bushy_search_space — determines whether the query processor may use
bushy-tree-shaped query plans, which may increase the search space, but
provide more query plan options to improve performance.

e distinct_hashing — determines whether the query processor may use a
hashing algorithm to eliminate duplicates, which is very efficient when
there are few distinct values compared to the number of rows.

» distinct_sorted — determines whether the query processor may use asingle-
pass algorithm to eliminate duplicates. distinct_sorted relies on an ordered
input stream, and may increase the number of sort operatorsif itsinputis
not ordered.

» group-sorted — determines whether the query processor may use an on-the-
fly grouping algorithm. group-sorted relieson aninput stream sorted onthe
grouping columns, and it preserves this ordering in its output.

» distinct_sorting — determines whether the query processor may use the
sorting algorithm to eliminate duplicates. distinct_sorting is useful when
the input is not ordered (for example, if there is no index) and the output
ordering generated by the sorting algorithm could benefit; for example, in
amergejoin.

e group_hashing — determines whether the query processor may use agroup
hashing algorithm to process aggregates.

» index_intersection — determines whether the query processor may use the
intersection of multiple index scans as part of the query plan in the search
space.

If al the algorithms of arelational operator are disabled, the query processor
reenables a default algorithm. For example, if al join algorithms (nl_join,
m_join, and h_join) are disabled, the query processor enables nl_join.

The query processor can also reenable nl_join for semantic reasons: for
example, if the joining tables are not connected through equijoins.

Each optimization goal— fastfirstrow, allrows_oltp, allrows_mixed,
allrows_dss—has a default setting (on (1)or off (0)) for each optimization
criterion. For example, the default setting for merge_join is off (0) for
fastfirstrow and allrows_oltp, and on (1) for allrows_mixed and allrows_dss. See
Table 7-8 for alist of default settings for each optimization criteria.

Sybase recommends that you reset the optimization goal and evaluate
performance before changing optimization criteria. Change optimization
criteriaonly if you must fine-tune a particular query.

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

Table 7-8: Default settings for optimization criteria
Optimization criteria | fastfirstrow | allrows_oltp | allrows_mixed | allrows_dss
1

append_union_all 1 1

bushy_search_space

distinct_sorted

distinct_sorting

group_hashing

group_sorted

hash_join

hash_union_distinct

index_intersection

merge_join

merge_union_all

multi_gt_store_ind

nl_join

opp_distinct_view

parallel_query

RlRrlRkr|lrlolr|lolo|rlolrlkrlkrlkrlo
Rlo|lr|lrlolr|lolo|r|olrlkrlkrlkrlo
RlRrlRrlRrlolkr| R oOR OlRIRIR R O|R
RlRrlRrlRrRrRR R RRPRRPRRPR R RR

store_index

Limiting optimization time

You can use the optimization timeout limit configuration parameter to restrict the
amount of time Adaptive Server spends optimizing a query. optimization
timeout limit specifiesthe amount of time Adaptive Server can spend optimizing
aquery as a percentage of the total time spent processing the query.

Thetimeout is activated only if:
e Atleast one complete plan has been retained as the best plan, and
e The optimization timeout limit has been exceeded.

Use sp_configure to set optimization timeout limit at the server level. For
example, to limit optimization time to 10 percent of total query processing
time, enter:

sp_configure “optimization timeout limit”, 10
To set optimization timeout limit at the session level, use:

set plan optimeoutlimit n

Performance and Tuning Series: Query Processing and Abstract Plans 255

Controlling parallel optimization

This command overrides the server setting.
The default value is 10 percent; you can specify any value from 1 to 1000.

At the server level, there is a separate configuration parameter, optimization
timeout limit, for the server-level default timeout value within stored procedure
compilations. The default value is 40 percent; you can specify any value from
1 to 4000.

For more information about optimization timeout limit, see “Limiting the time
spent optimizing a query” on page 16.

Controlling parallel optimization

Thegoal of executing queriesin parallel isto get thefastest responsetime, even
if it involves more total work from the server.

To enable and control parallel processing, Adaptive Server provides these
configuration parameters:

* number of worker processes
* max parallel degree

* max resource granularity

* max repartition degree

With the exception of number of worker processes, each of these parameterscan
be set at the server and the session level. To view the current session-level
value of aparameter, use the select command. For example, to view the current
value of max resource granularity, enter:

select @@resource granularity

Note When set or viewed at the session level, these parameters do not include
“ max."

256 Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

number of worker processes

Use number of worker processes to specify the maximum number of worker
processes that Adaptive Server can use at any one time for all simultaneously
running paralel queries.

number of worker processes isa server-wide configuration parameter only; use
sp_configure to set the parameter. For example, to set the maximum number of
worker processes to 200, enter:

sp_configure “number of worker processes”, 200

Specifying the number of worker processes available for parallel

processing

Use max parallel degree to specify the maximum number of worker processes
allowed per query. You can configure max parallel degree at the server or the
session level.

For example, to set max parallel degree to 60 at the server level, enter:
sp_configure “max parallel degree”, 60

To set max parallel degree to 60 at the session level, enter:
set parallel degree 60

Thevalue of max parallel degree must be equal to or lessthan the current value
of number of worker processes. Setting max parallel degree to 1 turnsoff parallel
processing—Adaptive Server scans al tables and indexes serially. To enable
parallel partition scans, set max parallel degree equal to or greater than the
number of partitionsin the table you are querying.

max resource granularity

Use max resource granularity to specify the percentage of total memory that
Adaptive Server can allocate to asingle query. You can set the parameter at the
server or session level.

For example, to set max resource granularity to 35 percent at the server level,
enter:

sp_configure “max resource granularity”, 35

To set max resource granularity to 35 percent at the session level, enter:

Performance and Tuning Series: Query Processing and Abstract Plans 257

Concurrency optimization for small tables

set resource granularity 35

Thevalueof thisparameter can affect the query optimizer’schoice of operators
for aquery. If max resource granularity is set low, many hash- and sort-based
operators cannot be chosen. max resource granularity al so affectsthe scheduling
algorithm.

max repartition degree

Use max repartition degree to suggest a number of worker processes that the
guery processor can use to partition a data stream. You can set max repartition
degree at the server or query level.

Note The value of max repartition degree is a suggestion only; the query
processor decides the optimal number.

max repartition degree is most useful when the tables being queried are not
partitioned, but partitioning the resultant data stream may improve
performance by allowing concurrent SQL operations.

For example, to set max repartition degree to 15 at the server level, enter:
sp_configure “max repartition degree”, 15

To set max repartition degree to 15 at the session level, enter:
set repartition degree 15

The value of max repartition degree cannot exceed the current value of max
parallel degree. Sybase recommends that you set the value of this parameter
equal to or less than the number of CPUs or disk systemsthat can work in
parallel.

Concurrency optimization for small tables

258

For data-only-locked tables of 15 pages or fewer, Adaptive Server does not
consider atable scan if there is a useful index on the table. Instead, it always
chooses the cheapest index that matches any search argument that can be
optimized in the query. The locking required for an index scan provides higher
concurrency and reduces the chance of deadlocks, although slightly more I/0
may be required than for atable scan.

Adaptive Server Enterprise

CHAPTER 7 Controlling Optimization

If concurrency on small tablesis not an issue, and you want to optimizethel/O
instead, use sp_chgattribute to disable this optimization. For example, to turn
off concurrency optimization for atable:

sp_chgattribute tiny lookup table,
“concurrency opt threshold”, 0

With concurrency optimization disabled, the query processor can choose table
scans when they require fewer 1/0s.

You can also increase the concurrency optimization threshold for atable. This
command sets the concurrency optimization threshold for atable to 30 pages:

sp_chgattribute lookup table,
“concurrency opt_ threshold”, 30

The maximum value for the concurrency optimization threshold is 32,767.
Setting the value to -1 enforces concurrency optimization for atable of any
size; this setting may be useful when atable scan is chosen over indexed
access, and the resulting locking results in increased contention or deadlocks.

The current setting is stored in systabstats.conopt_thld and is printed as part of
optdiag output.

Changing the locking scheme

Concurrency optimization affects only data-only-locked tables. Table 7-9
shows the effect of changing the locking scheme.

Table 7-9: Effects of alter table on concurrency optimization settings

Changing from Effect on stored value
Allpages to data-only Set to 15, the default
Data-only to alpages Setto 0

One data-only scheme to another Configured value retained

Performance and Tuning Series: Query Processing and Abstract Plans 259

Concurrency optimization for small tables

260 Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

This chapter discusses performance issues related to cursors. Cursors are
amechanism for accessing the results of a SQL select statement one row
at atime (or several rows, if you use set cursors rows). Since cursors use
adifferent model from ordinary set-oriented SQL , the way cursors use

memory and hold locks has performance implications for your

applications. In particular, cursor performance issuesinclude locking at
the page and at the table level, network resources, and overhead of

processing instructions.

Topic Page
Definition 261
Resources required at each stage 264
Cursor modes 266
Index use and requirements for cursors 267
Comparing performance with and without cursors 269
Locking with read-only cursors 272
Isolation levels and cursors 273
Partitioned heap tables and cursors 274
Optimizing tips for cursors 274

Definition

A cursor isasymbolic name that is associated with a select statement. It
enables you to access the results of aselect statement one row at atime.

Figure 8-1 shows a cursor accessing the authors table.

Performance and Tuning Series: Query Processing and Abstract Plans

261

Definition

Cursor with select * from

Figure 8-1: Cursor example

Result set

authors where state = 'KY’ » A978606525 Marcello Duncan KY

A937406538 Carton Nita KY

- A1525070956Porczyk Howard KY

Programming can:

- Examine arow
- Take an action
values

A913907285 Bier Lane KY
based on row

You can think of acursor asa“handle” on the result set of aselect statement.
It enables you to examine and possibly manipulate one row at atime.

Set-oriented versus row-oriented programming

262

SQL was conceived as a set-oriented language. Adaptive Server is extremely
efficient when it works in set-oriented mode. Cursors are required by ANSI
SQL standards; when they are needed, they are very powerful. However, they
can have a negative effect on performance.

For example, this query performstheidentical action on all rowsthat match the
condition in the where clause:

update titles
set contract = 1
where type = ’'business’

The optimizer finds the most efficient way to perform the update. In contrast,
a cursor would examine each row and perform single-row updatesif the
conditions were met. The application declares a cursor for aselect statement,
opensthe cursor, fetches arow, processesit, goesto the next row, and so forth.
The application may perform quite different operations depending on the
valuesinthe current row, and the server’soverall use of resourcesfor the cursor
application may be less efficient than the server’s set level operations.
However, cursors can provide more flexibility than set-oriented programming.

Figure 8-2 shows the stepsinvolved in using cursors. The function of cursors
isto get to the middle box, where the user or application code examines a row
and decides what to do, based on its values.

Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

Figure 8-2: Cursor flowchart

(Declarevcursor)

— > Open cursor

5 Fetch row

Process row

(Examine/Update/Delete)

Y

Close cursor

< Deallocate cursor)

—<

[12]

‘ 72}
=
o

Example

Here isa simple example of a cursor with the “Process Rows” step shown
above in pseudocode:

declare biz_book cursor
for select * from titles
where type = ’'business’
go
open biz book
go
fetch biz book
go
/* Look at each row in turn and perform
** various tasks based on values,

Performance and Tuning Series: Query Processing and Abstract Plans 263

Resources required at each stage

** and repeat fetches, until
** there are no more rows

*/

close biz_book

go

deallocate cursor biz book
go

Depending on the content of the row, the user might delete the current row:
delete titles where current of biz book
or update the current row:

update titles set title="The Rich
Executive’s Database Guide"
where current of biz book

Resources required at each stage

Cursors use memory and require locks on tables, data pages, and index pages.
When you open a cursor, memory is allocated to the cursor and to store the
query plan that is generated. While the cursor is open, Adaptive Server holds
intent table locks and sometimes row or page locks. Figure 8-3 shows the
duration of locks during cursor operations.

264 Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

Figure 8-3: Resource use by cursor statement

(Declare cursor)
— (Open cursor)
—>< Fetch row)
Process row
(Examine/Update/Delet Table
Row locks
or (intent); / Memory
Yes page Some
locks ow or
No page
locks
‘< Close cursor)

(Deallocate cursor)

The memory resource descriptionsin Figure 8-3 and Table 8-1 refer to ad hoc
cursorsfor queries sent by isqgl or Client-Library™. For other kinds of cursors,
the locks are the same, but the memory allocation and deallocation differ
somewhat depending on the type of cursor being used, as described in
“Memory use and execute cursors’ on page 266.

Table 8-1: Locks and memory use for isql and Client-Library client

cursors

Cursor

command Resource use

declare cursor When a cursor is declared, Adaptive Server uses only enough memory to store the query text.

Performance and Tuning Series: Query Processing and Abstract Plans 265

Cursor modes

Cursor
command

Resource use

open

When acursor isopened, Adaptive Server allocates memory to the cursor and to storethe query
plan that is generated. The server optimizes the query, traverses indexes, and sets up memory
variables. The server does not access rows yet, unlessit needs to build worktables. However, it
does set up therequired table-level locks (intent locks). Row and pagelocking behavior depends
on theisolation level, server configuration, and query type.

See the Performance and Tuning Series: Locking and Concurrency Control for more
information.

fetch

When afetch is executed, Adaptive Server gets the row(s) required and reads specified values
into the cursor variables or sends the row to the client. If the cursor needs to hold lock on rows
or pages, the locks are held until afetch moves the cursor off the row or page or until the cursor
isclosed. Thelock is either ashared or an update lock, depending on how the cursor is written.

close

When acursor is closed, Adaptive Server rel eases the locks and some of the memory allocation.
You can open the cursor again, if necessary.

deallocate cursor

When a cursor is deallocated, Adaptive Server rel eases the rest of the memory resources used
by the cursor. To reuse the cursor, declare it again.

Memory use and execute cursors

The descriptions of declare cursor and deallocate cursor in Table 8-1 refer to ad
hoc cursors that are sent by isql or Client-Library. Other kinds of cursors
allocate memory differently:

» For cursorsthat are declared on stored procedures, only asmall amount of
memory is allocated at declare cursor time. Cursors declared on stored
proceduresare sent using Client-Library or the precompiler and are known
as execute cursors.

» For cursors declared within a stored procedure, memory is already
available for the stored procedure, and the declare statement does not
require additional memory.

Cursor modes

266

There are two cursor modes: read-only and update. Asthe names suggest, read-
only cursors can only display data from a select statement; update cursors can
be used to perform positioned updates and del etes.

Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

Read-only mode uses shared page or row locks. If read committed with lock is
set to 0, and the query runs at isolation level 1, it uses instant duration locks,
and does not hold the page or row locks until the next fetch.

Read-only modeisin effect when you specify for read only or when the cursor’s
select statement uses distinct, group by, union, or aggregate functions, and in
some cases, an order by clause.

Update mode uses update page or row locks. It isin effect when:
e You specify for update.

« Theselect statement does not include distinct, group by, union, asubguery,
aggregate functions, or the at isolation read uncommitted clause.

e You specify shared.
If column_name list is specified, only those columns are updatable.

See the Performance and Tuning Series: Locking and Concurrency Control for
more information.

Specify the cursor mode when you declare the cursor. If the select statement
includes certain options, the cursor is not updatable even if you declareit for
update.

Index use and requirements for cursors

When aquery is used in acursor, it may require or choose different indexes
than the same query used outside of a cursor.

Allpages-locked tables

For read-only cursors, queries at isolation level O (dirty reads) require aunique
index. Read-only cursors at isolation level 1 or 3 should produce the same
guery plan as the select statement outside of a cursor.

Theindex requirementsfor updatabl e cursors mean that updatabl e cursors may
use different query plans than read-only cursors. Updatable cursors have these
indexing requirements:

« If thecursor is not declared for update, a uniqueindex is preferred over a
table scan or a nonunique index.

Performance and Tuning Series: Query Processing and Abstract Plans 267

Index use and requirements for cursors

e If thecursor is declared for update without afor update of list, a unique
index isrequired on allpages-locked tables. An error israised if no unique
index exists.

e If thecursor is declared for update with afor update of list, then only a
unique index without any columns from the list can be chosen on an
allpages-locked table. An error israised if no unique index qualifies.

When cursors are involved, an index that contains an IDENTITY columnis
considered unique, even if theindex is not declared unique. In some cases,
IDENTITY columns must be added to indexes to make them unique, or the
optimizer might beforced to choose a suboptimal query plan for acursor query.

Data-only-locked tables

In data-only-locked tables, fixed row 1Ds are used to position cursor scans, so
unique indexes are not required for dirty reads or updatable cursors. The only
causefor different query plansin updatable cursorsisthat table scans are used
if columns from only useful indexes are included in the for update of list.

Table scans to avoid the Halloween problem

The Halloween problem is an update anomaly that can occur when a client
using a cursor updates a column of the cursor result-set row, and that column
defines the order in which the rows are returned from the table. For example,
if acursor wasto use an index on last_name, first_name, and update one of
these columns, the row could appear in the result set a second time.

To avoid the Halloween problem on data-only-locked tables, Adaptive Server
chooses a table scan when the columns from an otherwise useful index are
included in the column list of afor update clause.

For implicitly updatable cursors declared without a for update clause, and for
cursors where the column list in the for update clause is empty, cursors that
update acolumn in the index used by the cursor may encounter the Halloween
problem.

268 Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

Comparing performance with and without cursors

This section examines the performance of a stored procedure written two
different ways:

* Without acursor —this procedure scans the table three times, changing the
price of each book.

* With acursor — this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor

Thisis an example of a stored procedure without cursors:

/*
* %
* %
* %
* %
* %
* %
* %
* %

* %

*/

Increase the prices of books in the
titles table as follows:

If current price is <= $30, increase it by 20%
If current price is > $30 and <= $60, increase
it by 10%

If current price is > $60, increase it by 5%

All price changes must take effect, so this is
done in a single transaction.

create procedure increase price

as

/* start the transaction */
begin transaction
/* first update prices > $60 */
update titles
set price = price * 1.05
where price > $60

/* next, prices between $30 and $60 */
update titles

set price = price * 1.10
where price > $30 and price <= $60

/* and finally prices <= $30 */
update titles
set price = price * 1.20

Performance and Tuning Series: Query Processing and Abstract Plans 269

Comparing performance with and without cursors

where price <= $30

/* commit the transaction */
commit transaction

return

Sample stored procedure with a cursor

270

This procedure performs the same changes to the underlying table as the
procedure written without a cursor, but it uses cursors instead of set-oriented
programming. As each row is fetched, examined, and updated, alock isheld
on the appropriate data page. Also, as the comments indicate, each update
commits asit is made, since thereisno explicit transaction.

/* Same as previous example, this time using a
** cursor. Each update commits as it is made.
*/

create procedure increase price cursor

as

declare @price money

/* declare a cursor for the select from titles */
declare curs cursor for

select price

from titles

for update of price

/* open the cursor */
open curs

/* fetch the first row */
fetch curs into @price

/* now loop, processing all the rows
** @@sglstatus = 0 means successful fetch

** @@sglstatus = 1 means error on previous fetch
** @@sglstatus = 2 means end of result set reached
*/

while (@@sglstatus != 2)

begin

/* check for errors */
if (@ee@sglstatus = 1)
begin
print "Error in increase price"

Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

return
end

/* next adjust the price according to the
** criteria

*/

if e@eprice > $60

select @price = @price * 1.05
else

if @price > $30 and @price <= $60
select @price = @price * 1.10
else

if @price <= $30

select @price = @price * 1.20

/* now, update the row */
update titles

set price = @price

where current of curs

/* fetch the next row */
fetch curs into eprice
end

/* close the cursor and return */
close curs
return

Which procedure do you think will have better performance, onethat performs
three table scans or one that performs a single scan viaa cursor?

Cursor versus noncursor performance comparison

Table 8-2 shows statistics gathered against a 5000-row table. The cursor code
takes over 4 times longer, even though it scans the table only once.

Table 8-2: Sample execution times against a 5000-row table

Procedure Access method Time
increase_price Uses three table scans 28 seconds
increase_price_cursor Uses cursor, single table scan 125 seconds

Results from tests like these can vary widely. They are most pronounced on
systemsthat have busy networks, alarge number of active database users, and
multiple users accessing the same table.

Performance and Tuning Series: Query Processing and Abstract Plans 271

Locking with read-only cursors

In addition to locking, cursors involve more network activity than set
operations and incur the overhead of processing instructions. The application
program needs to communicate with Adaptive Server regarding every result
row of the query. Thisiswhy the cursor code took much longer to complete
than the code that scanned the table three times.

Cursor performance issues include:

e Locking at the page and table level

* Network resources

e Overhead of processing instructions

If there is a set-level programming equivalent, it may be preferable, eveniif it
involves multiple table scans.

Locking with read-only cursors

272

Hereisapiece of cursor code you can useto display thelocksthat are set up at
each point in the life of a cursor. The following example uses an allpages-
locked table. Execute the codein Figure 8-4, and pause at the arrowsto execute
sp_lock and examine the locks that are in place.

Figure 8-4: Read-only cursors and locking experiment input

declare cursl cursor for

select au id, au_Iname, au_fname
from authors
where au_id like’ 15%'

for read only
go <
open cursl
go |
fetch cursl
go]
fetch cursl
go 100 (==
close cursl
go <
deallocate cursor cursl
go

Table 8-3 shows the results.

Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

Table 8-3: Locks held on data and index pages by cursors

Event Data page

After declare No cursor-related locks.

After open Shared intent lock on authors.

After first fetch Shared intent lock on authors and shared page lock on a page in authors.

After 100 fetches Shared intent lock on authors and shared page lock on a different page in authors.
After close No cursor-related locks.

If you issue another fetch command after the last row of the result set has been
fetched, the locks on the last page are released, so there will be no cursor-
related locks.

With a data-only-locked table:

e Ifthecursor query runsat isolation level 1, and read committed with lock is
set to 0, you do not see any page or row locks. The values are copied from
the page or row, and the lock isimmediately released.

e If read committed with lock isset to 1 or if the query runs at isolation level
2 or 3, you see either shared page or shared row locks at the point that
Table 8-3 indicates shared page |ocks. If the table uses datarows locking,
the sp_lock report includes the row ID of the fetched row.

Isolation levels and cursors

The query plan for a cursor is compiled and optimized when the cursor is
opened. You cannot open acursor and then use set transaction isolation level to
change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those using
other isolation levels, you cannot open acursor at isolation level 0 and open or
fetch fromit at level 1 or 3. Similarly, you cannot open a cursor at level 1 or 3
and then fetch from it at level 0. Attempts to fetch from acursor at an
incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must
deallocate the cursor before changing isolation levels. The effects of changing
isolation levels while the cursor is open are as follows:

e Attempting to close and reopen the cursor at another isolation level fails
with an error message.

Performance and Tuning Series: Query Processing and Abstract Plans 273

Partitioned heap tables and cursors

» Attempting to change isolation levels without closing and reopening the
cursor has no effect on the isolation level in use and does not produce an
error message.

You can include an at isolation clausein the cursor to specify anisolation level.
The cursor in the example below can be declared at level 1 and fetched from
level 0 because the query plan is compatible with theisolation level:

declare cprice cursor for
select title id, price
from titles
where type = "business"
at isolation read uncommitted

Partitioned heap tables and cursors

A cursor scan of an unpartitioned heap table can read all data up to and
including the final insertion made to that table, even if insertions took place
after the cursor scan started.

If aheap tableis partitioned, data can be inserted into one of the many page
chains. The physical insertion point may be before or after the current position
of acursor scan. This means that a cursor scan against a partitioned tableis not
guaranteed to scan the final insertions made to that table.

Note If cursor operations require all insertsto be made at the end of asingle
page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors

274

Here are several optimizing tips for cursors:

e Optimize cursor selects using the cursor, not an ad hoc query.
e Use union or union all instead of or clauses or in lists.

* Declarethe cursor’sintent.

» Specify column namesin the for update clause.

Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

e Fetch more than one row if you are returning rows to the client.
« Keep cursors open across commits and rollbacks.

e Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor

A standalone select statement may be optimized very differently than the same
select statement in an implicitly or explicitly updatable cursor. When you are
devel oping applications that use cursors, always check your query plans and
1/O statistics using the cursor, rather than using a standal one select. In
particular, index restrictions of updatable cursors require very different access
methods.

Using union instead of or clauses or in lists

Cursorscannot use the dynamicindex of row | Dsgenerated by the OR strategy.
Queries that use the OR strategy in standal one select statements usually
perform table scans using read-only cursors. Updatable cursors may need to
use a unique index and still require access to each data row, in sequence, in
order to evaluate the query clauses.

A read-only cursor using union creates aworktable when the cursor isdeclared,
and sorts it to remove duplicates. Fetches are performed on the worktable. A
cursor using union all can return duplicates and does not require aworktable.

Declaring the cursor’s intent

Alwaysdeclare acursor’sintent: read-only or updatable. Thisgivesyou greater
control over concurrency implications. If you do not specify the intent,
Adaptive Server decides for you, and very often it chooses updatable cursors.
Updatable cursors use update locks, thereby preventing other update locks or
exclusive locks. If the update changes an indexed column, the optimizer may
need to choose a table scan for the query, resulting in potentially difficult
concurrency problems. Be sure to examine the query plansfor queries that use
updatable cursors.

Performance and Tuning Series: Query Processing and Abstract Plans 275

Optimizing tips for cursors

Specifying column names in the for update clause

Adaptive Server acquires update locks on the pages or rows of all tables that
have columnslisted in thefor update clause of the cursor select statement. If the
for update clause isnot included in the cursor declaration, all tables referenced
in the from clause acquire update locks.

The following query includes the name of the column in the for update clause,
but acquires update locks only on thetitles table, since price is mentioned inthe
for update clause. The table uses allpages locking. The locks on authors and
titleauthor are shared page locks:

declare curs3 cursor

for

select au_ lname, au_ fname, price
from titles t, authors a,

titleauthor ta

where advance <= $1000
and t.title id = ta.title id
and a.au_id = ta.au id

for update of price

Table 8-4 shows the effects of:

» Omitting the for update clause entirely—no shared clause

e Omitting the column name from the for update clause

* Including the name of the column to be updated in the for update clause

» Adding shared after the name of the titles table while using for update of
price

Inthistable, the additional locks, or more restrictive locks for the two versions
of the for update clause are emphasized.

276 Adaptive Server Enterprise

CHAPTER 8 Optimization for Cursors

Table 8-4: Effects of for update clause and shared on cursor locking

Clause titles authors titleauthor
None sh_page on index

sh_pageondata sh_pageondata sh_page on data
for update updpage onindex updpage on index

updpageondata updpageondata updpage on data
for update of sh_page on index
price updpageondata sh pageondata sh_pageon data
for update of sh_page on index
price sh pageondata sh pageondata sh_page on data
+ shared

Using set cursor rows

The SQL standard specifiesaone-row fetch for cursors, which wastes network
bandwidth. Using the set cursor rows query option and Open Client’'s
transparent buffering of fetches, you can improve performance:

ct_cursor (CT_CURSOR_ROWS)

Be careful when you choose the number of rows returned for frequently
executed applications using cursors—tune them to the network.

See the Performance and Tuning Series. Basics for an explanation of this
process.

Keeping cursors open across commits and rollbacks

ANSI closes cursors at the conclusion of each transaction. Transact-SQL
provides the set option close on endtran for applications that must meet ANSI
behavior. By default, however, this option isturned off. Unless you must meet
ANSI requirements, leave this option off to maintain concurrency and
throughput.

If you must be ANSI-compliant, decide how to handle the effects on Adaptive
Server. Should you perform alot of updates or deletesin a single transaction?
Or should you keep the transactions short?

Performance and Tuning Series: Query Processing and Abstract Plans 277

Optimizing tips for cursors

If you choose to keep transactions short, closing and opening the cursor can
affect throughput, since Adaptive Server needs to rematerialize the result set
each time the cursor is opened. If you choose to perform more work in each
transaction, this can cause concurrency problems, since the query holds locks.

Opening multiple cursors on a single connection

Some devel opers simulate cursors by using two or more connections from DB-
Library™. One connection performsasel ect and the other performs updates or
deletes on the same tables. This has very high potential to create application
deadlocks. For example:

» Connection A holds a shared lock on a page. Aslong as there are rows
pending from Adaptive Server, ashared lock is kept on the current page.

» Connection B requests an exclusivelock on the same pages and then waits.

» The application waits for Connection B to succeed before invoking
whatever logic is needed to remove the shared lock. But this never
happens.

Since Connection A never requests alock that is held by Connection B, thisis
not a server-side deadl ock.

278 Adaptive Server Enterprise

CHAPTER 9 Query Processing Metrics

Topic Page
Overview 279
Executing QP metrics 280
Accessing metrics 280
Using metrics 282
Clearing metrics 284
Restricting query metrics capture 285
Understanding the UID in sysquerymetrics 286

Overview

Query processing (QP) metrics identify and compare empirical metric
valuesin query execution. When aquery is executed, it is associated with
a set of defined metrics that are the basis for comparison in QP metrics.

Captured metricsinclude:

* CPU executiontime—thetime, in milliseconds, it takesto execute the

query.

» Elapsedtime—thetime, in milliseconds, from after the compileto the

end of the execution.
e Logical I/0O —the number of logical 1/0 reads.
e Physical 1/0 —the number of physical I/O reads.

e Count —the number of times a query is executed.

e Abort count —the number of timesaquery is aborted by the resource

governor due to aresource limit being exceeded.

Each metric, except count and abort count, has three values: minimum,

maximum, and average.

Performance and Tuning Series: Query Processing and Abstract Plans

279

Executing QP metrics

Executing QP metrics

You can activate and use QP metrics at the server level or at the session level.

Attheserver level, usesp_configure with theenable metrics capture option. The
QP metrics for ad hoc statements are captured directly into a system catal og,
while the QP metrics for statementsin a stored procedure are saved in a
procedure cache. When the stored procedure or query in the statement cacheis
flushed, the respective captured metrics are written to the system catal og.

sp_configure "enable metrics capture", 1
At asession level, use set metrics_capture on/off:

set metrics_capture on/off

Accessing metrics

QP metrics are aways captured in the default group, which isgroup 1in each
respective database. Use sp_metrics ‘backup’ to move saved QP metrics from
the default running group to a backup group. Access metric information using
a select statement with order by against the sysquerymetrics view. See
“sysquerymetrics view” on page 280 for details.

You can also use a data manipulation language (DML) statement to sort the
metric information and identify the specific queriesfor eval uation. See Chapter
2, “Understand Component Integration Services,” in the Component
Integration Services Users Guide, which is part of the Adaptive Server
Enterprise documentation set. .

sysquerymetrics view

Field Definition
uid User ID
gid Group ID
id Unique ID

hashkey Hash key over the SQL query text

sequence | Sequence number for arow when multiple rows are required for the text of the SQL code

exec_min | Minimum execution time

280

Adaptive Server Enterprise

CHAPTER 9 Query Processing Metrics

Field Definition

exec_max | Maximum execution time

exec_avg | Average executiontime

elap_min Minimum elapsed time

elap_max | Maximum elapsed time

elap_avg | Average elapsed time

lio_min Minimum logical I/0

lio_max Maximum logical 1/0

lio_avg Average logical 1/0

pio_min Minimum physica 1/0

pio_max Maximum physica 1/0

pio_avg Average physica 1/0

cnt Number of times the query has been executed
abort_cnt | Number of times a query is aborted by the resource governor when aresource limit is exceeded
gtext Query text

Average values in this view are calculated using:

new_avg = (old avg * old count + new value)/ (old count + 1) = old avg +
round ((new_value - old avg)/(old count + 1))

Thisis an example of the sysquerymetrics view:

select * from sysquerymetrics

uid gid hashkey id sequence exec_min

exec_max exec_avg elap min elap max elap avg lio min
lio max lio avg pio min pio max pio_avg cnt abort cnt
gtext

1 1 106588469 480001710 0 0

0 0 16 33 25 4

4 4 0 4 2 2 0

select distinct cl from t _metricsl where c2 in (select c2 from t_metrics2)

The above example displays arecord for a SQL statement. The query text of
the statement is select distinct c1 from t_metrics1 where c2 in (select ¢c2 from
t_metrics2):

* Thisstatement has been executed twice so far (cnt = 2).

Performance and Tuning Series: Query Processing and Abstract Plans 281

Using metrics

Using metrics

282

e Theminimum elapsed timeis 16 milliseconds; the maximum el apsed time
is 33 milliseconds, and the average elapsed time is 25 milliseconds

e All the execution times are 0, and this may be due to the CPU execution
time being less than 1 millisecond.

e The maximum physical 1/O is 4, which is consistent with the maximum
logical 1/0. However, the minimum physical I/0 is 0 because datais
already in cache in the second run. The logical 1/0O, at 4, should be static
whether or not the dataisin memory

Use the information produced by QP metrics to identify:
* Query performance regression

* Most expensive query in abatch of running queries
* Most frequently run queries

When you have information on the queries that may be causing problems, you
can tune the queries to increase efficiency.

For example, identifying and fine-tuning an expensive query may be more
effective than tuning the cheaper ones in the same batch.

You can also identify the queries that are run most frequently, and fine-tune
them to increase efficiency.

Turning on query metrics may involve extra I/O for every query executed, so
there may be performance impact. However, also consider the benefits
mentioned above. You may want to gather statistical information from
monitoring tables instead of turning on metrics.

Both QP metrics and monitoring tables can be used to gather statistical
information. However, you can use QP metricsinstead of the monitoring tables
to gather aggregated historical query information in apersistent catal og, rather
than have transient information from the monitor tables.

Adaptive Server Enterprise

CHAPTER 9 Query Processing Metrics

Examples

You can use QP metrics to identify specific queries for tuning and possible
regression on performance.

Identifying the most expensive statement

Typically, to find the most expensive statement as the candidate for tuning,
sysquerymetrics provides CPU execution time, elapsed time, logical 10, and
physical 1/0 as options for measure. For example, atypical measure is based
onlogical 1/0. Use the following query to find the statements that incur too
many |0s as the candidates for tuning:

select lio avg, gtext from sysquerymetrics order by lio avg
lio avg gtext

2

select cl, c2 from t metricsl where cl = 333

4

select distinct cl from t metricsl where c2 in (select c2 from t metrics2)
6

select count (t_metricsl.cl) from t metricsl, t_metrics2,

t metrics3 where (t metricsl.c2 = t metrics2.c2 and

t metrics2.c2 = t metrics3.c2 and t metrics3.c3 = 0)

164

select min(cl) from t metricsl where c2 in (select t metrics2.c2 from
t_metrics2, t_metrics3 where (t_metrics2.c2 = t metrics3.c2 and t_metrics3.c3
= 1))

(4 rows affected)

The best candidate for tuning can be seen in the last statement of the above
results, which has the biggest value (164) for average logical 10.

Identifying the most frequently used statement for tuning

If aquery isused frequently, fine-tuning may improveits performance. Identify
the most frequently used query using the select statement with order by:

select elap avg, cnt, gtext from sysquerymetrics order by cnt
elap avg cnt
gtext

Performance and Tuning Series: Query Processing and Abstract Plans 283

Clearing metrics

select cl, c2 from t metricsl where cl = 333
16 2

select distinct ¢l from t metricsl where c2 in (select c2 from t metrics2)
24 3

select min(cl) from t metricsl where c2 in (select t metrics2.c2 from
t metrics2, t metrics3 where (t metrics2.c2 = t metrics3.c2 and t metrics3.c3
= 1))

78 4

select count (t metricsl.cl) from t metricsl, t metrics2, t metrics3 where
(t_ metricsl.c2 = t metrics2.c2 and t metrics2.c2 = t metrics3.c2 and
t metrics3.c3 = 0)

(4 rows affected)

The best candidate for tuning can be seen in the last statement of the above
results, which has the biggest value (78).

Identifying possible performance regression

In some cases, when a server is upgraded to a newer version, QP metrics may
be useful for comparing performance. To identify queriesthat may have some
degradation, after a server-version upgrade:

1 Back up the QP metrics from the old server into a backup group:
sp_metrics ‘backup’, ’'@gid’

2 Enable QP metrics on the new server:
sp_configure “enable metrics capture”, 1

3 Compare QP metrics output from the old and new serversto identify any
queries that may have regression problems.

Clearing metrics

Use sp_metrics ‘flush’ to flush all aggregated metrics in memory to the system
catalog.The aggregated metrics for al statementsin memory are set to zero.

sp_metrics ‘drop’, ‘@gid’ [, ‘@id’

284 Adaptive Server Enterprise

CHAPTER 9 Query Processing Metrics

To remove one entry, use:
sp_metrics ‘drop’, ‘<gid>’, ‘<id>’

You can al so usefilter to remove QP metrics from the system catal og, based on
some metrics conditions:

sp_metrics ‘filter’, ‘@gid’, [, ‘@predicate’]
This example deletes all QP metricsin group 1 wherelio_max < 100:

sp_metrics ‘filter’,’1l’,’lio _max < 100'

Restricting query metrics capture

These configuration parameters set the query metricsthreshold for captureinto
the catalog:

* metrics lio max
* metrics pio max
* metrics elap max
* metrics exec max

These parameters let you filter out trivial metrics before writing metrics
information to the catal og.

By default, these configuration parameters are set to 0 (off).
For example, to not capture those query plans for which lio islessthan 10, use:
sp_configure ‘metrics lio max’, 10

If you do not set any of these configuration parameters, Adaptive Server
captures the query metrics to the system tables. However, if you set any of
these configuration parameters, Adaptive Server uses only those nonzero
configuration parameters as threshol ds for determining whether to capture
guery metrics.

For example, if you set metrics elap max to a non-zero value, but no others,
query metrics are captured only if the elapsed timeis bigger than the
configured value. Because the other three configuration parameters are set to
0, they do not act as thresholds for capturing metrics.

Performance and Tuning Series: Query Processing and Abstract Plans 285

Understanding the UID in sysquerymetrics

Understanding the UID in sysquerymetrics

Example 1

Example 2

Example 3

286

Theuser ID (UID) of sysquerymetrics is 0 when all table namesin aquery that
are not qualified by user name are owned by the database owner.

select * from tl where cl =1

t1 isowned by database owner and is shared by different users. 0 isthe UID for
the entry into sysquerymetrics no matter which user issues the query.

select * from t2 where cl =1

In this case, t2 isowned by userl. user1’'s UID isused for the entry in
sysquerymetrics, since t2 isunqualified and is not owned by the database
owner.

select * from ul.t3 where cl =1
Here, t3 isowned by ul and is qualified by ul, so UID Ois used.

Thisincreasesthe sharing of metrics between user IDsto reduce the number of
entries in sysqueryplans. Aggregation of metrics for identical queries with
different user IDsis done automatically. Turn on trace flag 15361 to use the
UID of the user who issues the query.

Note QP metricsforinsert...selec, /update, delete statements are captured when
at least onetableisinvolved. ClS-related queries and insert...values statements
are not included.

Adaptive Server Enterprise

charTER 10 Using Statistics to Improve

Performance

Accurate statistics are essential to query optimization. In some cases,
adding statisticsfor columnsthat are not |eading index keysal so improves
query performance. This chapter explains how and when to use the
commands that manage statistics.

Statistics maintained in Adaptive Server
These key optimizer statistics are maintained in Adaptive Server:

Performance and Tuning Series:

Topic Page
Statistics maintained in Adaptive Server 287
Importance of statistics 288
Updating statistics 290
Automatically updating statistics 294
Configuring automatic update statistics 297
Column statistics and statistics maintenance 300
Creating and updating column statistics 302
Choosing step numbers for histograms 306
Scan types, sort requirements, and locking 307
Using the delete statistics command 310
When row counts may be inaccurate 311

Statistics per partition — table row count; table page count. An
unpartitioned table is considered to have one partition for the
purposes of the systabstats catalog. Statistics per partition can be

found in systabstats.

Query Processing and Abstract Plans

287

Importance of statistics

e Satisticsper index: index row count —index height; index leaf page count.
A local index has a separate systabstats row for each index partition. A
global index, which is considered a partitioned index with one partition,
has one systabstats row. Statistics per index: index row count can be found
in systabstats.

e Statistics per column: data distribution. Statistics per column be found in
sysstatistics.

e Statistics per group of column —density information. Statistics per group
of column can be found in sysstatistics.

e Statistics per partition —

e Column statistics—data distribution per column; density per group of
columns. Column statistics can be found in sysstatistics.

Throughout this chapter, density isastatistical measurement of the uniqueness
of agiven column’svalues, and ahistogram isastatistical representation of the
distribution of values of agiven column of the relation.

Importance of statistics

The Adaptive Server cost-based optimizer uses statistics about the tables,
indexes, partitions, and columns named in a query to estimate query costs. It
chooses the access method that the optimizer determines hasthe least cost. But
this cost estimate cannot be accurate if statistics are not accurate.

Some statistics, such as the number of pages or rowsin atable, are updated
during query processing. Other statistics, such as the histograms on columns,
are updated only when you execute update statistics, or when indexes are
created.

If your query is performing slowly and you seek help from Technical Support
or a Sybase newsgroup on the Internet, one of the first questionsyou arelikely
be asked is “Did you run update statistics?’ Use the optdiag command to see
when update statistics was last run for each column on which statistics exist:

Last update of column statistics: Aug 31 2004
4:14:17:180PM

288 Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

Another command you may need for statistics maintenance is delete statistics.
Dropping an index does not drop the statistics for that index. If the distribution
of keysin the columns changes after the index is dropped, but the statistics are
still used for some queries, the outdated statistics can affect query plans.

Histogram statistics from a global index are more accurate than histogram
statistics generated by alocal index. For alocal index, statistics are created on
each partition, and are then merged to create a global histogram using
approximations as to how overlapping histogram cells from each partition
should be combined. With a global index, the merge step, with merging
estimates, does not occur. |n most cases, thereis no issue with update statistics
on alocal index. However, if there are significant estimation errorsin queries
involving partitioned tables, histogram accuracy can be improved by creating
and dropping a global index on a column rather than updating the statistics on
alocal index.

Nonbinary character set histogram interpolation

Adaptive Server versions 15.0.2 and later allow selectivity estimates to have
the same accuracy as the binary character set, without requiring an excessive
number of histogram steps. Thisbenefitsquerieslike thefollowing, which uses
range predicates:

select * from tl where charcolumn > "LMCO0021" and
charcolumn <= "LMCOO029"

If ranges specified falls into the same histogram cell, Adaptive Server can
much more accurately estimate this selectivity.

In versions of Adaptive Server earlier than 15.0.2, only the default binary
character set benefited from histogram interpolation, which is used to estimate
the selectivity of range predicates. For all other character sets, Adaptive Server
made a selectivity estimate of 50 percent for a histogram cell. Thistypically
required Adaptive Server to use alarge number of histogram cellsfor character
column histograms to reduce the error associated with this estimate.

Performance and Tuning Series: Query Processing and Abstract Plans 289

Updating statistics

Updating statistics

Adding statistics

290

The update statistics command updates column-rel ated statistics such as
histograms and densities. Statistics must be updated on those columns where
the distribution of keysin the index changes in ways that affect the use of
indexes for your queries.

Running update statistics reguires system resources. Like other maintenance
tasks, Sybase recommends that you schedule it during at times when the load
on the server islight. In particular, update statistics requires table scans or |eaf -
level scans of indexes, may increase I/O contention, may use the CPU to
perform sorts, and uses the data and procedure caches. Use of these resources
can adversely affect queries running on the server.

Using the sampling feature can reduce resource requirements and allow more
flexibility when running this task.

Note Sampling does not affect the update statistics table_name index_name
parameters]. Sampling affects only update index statistics and update all
statistics on unindexed columns and update statistics table_name (column_list).

In addition, some update statistics commands require shared locks, which may
block updates. See“ Scan types, sort requirements, and locking” on page 307.

You can aso configure Adaptive Server to automatically run update statistics
at timesthat have minimal impact on the system resources. See“ Automatically
updating statistics’ on page 294.

for unindexed columns

When you create an index, a histogram is generated for the leading column in
the index. Examplesin earlier chapters have shown how statistics for other
columns can increase the accuracy of optimizer statistics.

Consider adding statistics for virtually all columns that are frequently used as
search arguments, as long as your maintenance schedul e allows time to keep
these statistics up to date.

In particular, adding statistics for minor columns of composite indexes can
greatly improve cost estimates when those columns are used in search
arguments or joins along with the leading index key.

Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

Limitations for updating statistics on proxy tables and views

If you create indexes on proxy tables, you may experience performance
degradation; you cannot run create index, because Adaptive Server cannot
propogate the command to the remote view. However, if you map the proxy
table to a user table, Adaptive Server can optimize the query plan by creating
indexes on the proxy tables’ join column.

If the number of rows returned by the view varies drastically from one
execution to another, performance degrades when you gather statistics on
proxy tables.

If you are using proxy tables or views, Sybase makes these recommendations:
< Do not run update statistics on proxy tables defined on views.

e If youran update statistics on a proxy table defined on a view, increase
performance by dropping, then re-creating the proxy table. You cannot use
delete statistics to remove the current statistics, because systabstats retains
the original row count.

e Convert the view to a permanent table.

e Try using the command line trace flag 318 (force reformatting).

update statistics commands

The update statistics commands create statistics, if there are none for a
particular column, or replaces existing statistics. Statistics are stored in the
systabstats and sysstatistics System tables:

update statistics table_name

[partition data_partition_name] [(column_list)] |
index_name [partition index_partition_name]]

[using step values]

[with consumers = consumers] [, sampling=percent]

update index statistics
table_name [[partition data_partition_name] |
[index_name [partition index_partition_name]]]
[using step values]
[with consumers = consumers] [, sampling=percent]

update all statistics table_name
[partition data_partition_name]
[sp_configure histogram tuning factor, <value>

update table statistics

Performance and Tuning Series: Query Processing and Abstract Plans 291

Updating statistics

292

table_name [partition data_partition_name]

delete [shared] statistics table_name

[partition data_partition_name]
[(column_name[, column_name] ...)]

For update statistics:

table_name—generates statisticsfor theleading columnin each index
on thetable.

table_name index_name — generates statistics for all columns of the
index.

partition_name — generates statistics for only this partition.

partition_nametable_name (column_name) — generates statistics for
this column of thistable on this partition.

table_name (column_name) — generates statistics for only this
column.

table_name (column_name, column_name...) —generates ahistogram
for the leading column in the set, and multicolumn density values for
the prefix subsets.

using step values —identifies the number of stepsused. The default is
20 steps. To change the default number of steps, use sp_configure.

sampling = percent — the numeric value of the sampling percentage,
such as 05 for 5%, 10 for 10%, and so on. The sampling integer is
between zero (0) and one hundred (100).

For update index statistics:

table_name— generates statisticsfor all columnsin all indexes on the
table.

partition_nametable_name—generatesstatisticsfor all columnsinall
indexes for the table on this partition.

table_nameindex_name — generates statistics for al columnsin this
index.

For update all statistics:

table_name — generates statistics for all columns of atable.

table_name partition_name — generates statisticsfor all columns of a
table on a partition.

Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

e using step values—identifies the number of stepsused. The defaultis
20 steps. To change the default number of steps, use sp_configure.

sp_configure syntax includesthe histogram tuning factor, which allows
agreater selection of the number of histogram steps. The default value
for histogram tuning factor is 20. See Chapter 5,4" Setting
Configuration Parameters’ in System Administration Guide: Volume
1 for information about sp_configure.

Using sampling for update statistics

The optimizer for Adaptive Server usesthe statistics on adatabaseto set up and
optimize queries. To generate optimal results, the statistics must be as current
as possible.

Run the update statistics commands against data sets, such astables, to update
information about the distribution of key values in specified indexes or
columns, for al columnsin anindex, or for all columnsin atable. The
commands revise histograms and density values for column-level statistics.
The results are then used by the optimizer to calculate the best query plan.

Run update statistics using a sampling method, which can reduce the I/O and
time when your maintenance window is small and the data set is large. If you
are updating alarge data set or table that isin constant use, being truncated and
repopulated, you may want to do a statistical sampling to reduce the time and
the size of the 1/0O. Because sampling does not update the density values, run a
full update statistics prior to using sampling for an accurate density value.

Use caution with sampling, since the results are not fully accurate. Balance
changes to histogram values against the savingsin 1/0.

Sampling does not update density values created by a non-sampling update
statistics command. Since the density changes very slowly, replacing an
accurate density with an approximation calculated by sampling usually does
not improvethe estimate. Density values created by asampling update statistics
command is updated. Sybase recommends that you use that one non-sampling
update statistics command to establish an accurate density, which can be
followed by numerous sampling update statistics commands. To have sampling
Update statistics update the density, delete the column statistics before using
update statistics with sampling.

When you are deciding whether or not to use sampling, consider the size of the
data set, the time constraints you are working with, and if the histogram
produced is as accurate as needed.

Performance and Tuning Series: Query Processing and Abstract Plans 293

Automatically updating statistics

The percentage to use when sampling depends on your needs. Test various
percentages until you receive aresult that reflects the most accurate
information on a particular data set; for example:

update statistics authors(auth id) with sampling = 5 percent

Set server-wide sampling percent using:
sp_configure 'sampling percent', 5

This command sets a server-wide sampling of 5% for update statistics that
allows you to execute update statistics without the sampling syntax. The
percentage can be between zero (0) and one hundred (100) percent.

Automatically updating statistics

294

The Adaptive Server cost-based query processor estimates the query costs
using the statistics for the tables, indexes, and columns named in a query. The
query processor chooses the access method it determines has the least cost.
However, this cost estimate cannot be accurateif the statistics are not accurate.
You can run update statistics to ensure that the statistics are current, however,
running update statistics has an associated cost because it consumes system
resources such as CPU, buffer pools, sort buffers, and procedure cache.

You can set update statistics to run automatically when it best suitsyour siteand
avoid runningit at timesthat hamper your system. Usethedatachange function
to determinethe best timefor you to run update statistics. datachange also helps
to ensure that you do not unnecessarily run update statistics. You can use the
Job Scheduler templates to determine the objects, schedules, priority, and
datachange thresholds that trigger update statistics, which ensures that critical
resources are used only when the query processor generates more efficient
plans.

Because update statistics iS a resource-intensive task, base the decision to run
update statistics on a specific set of criteria. Key parameters that can help you
determine a good time to run update statistics include:

» How much data characteristics have changed since you last ran update
statistics. Thisis known as the datachange parameter.

* Whether there are sufficient resources available to run update statistics.
These include resources such as the number of idle CPU cycles and
making sure that critical online activity does not occur during update
statistics.

Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

Data change is akey metric that helps you measure the amount of altered data
since you last ran update statistics, and is tracked by the datachange function.
Using thismetric and the criteriafor resource avail ability, you can automate the
process of running update statistics. Job Scheduler includes a mechanism to
automatically run update statistics. and also includes customizable templates
you can use to determine when to run update statistics. Theseinputsinclude all
parametersto update statistics, the datachange threshold values, and thetimeto
run update statistics. Job Scheduler runs update statistics at alow priority so it
does not affect critical jobs that are running concurrently.

datachange function

The datachange function measures the amount of change in the data
distribution since update statistics last ran. Specifically, it measuresthe number
of inserts, updates, and deletes that have occurred on the given object, partition,
or column, and helps you determine if running update statistics would benefit
the query plan.

The syntax for datachange is:
select datachange(object_name, partition_name, colname)

Where:

e object name—isthe object name. This object isassumed to bein the
current database. The object_name cannot be null.

e partition_name —is the data partition name. This can be anull value.

e colname—isthe column namefor which the datachange isrequested. This
can beanull value.

These parameters are all required.

datachange is expressed as apercentage of thetotal number of rowsinthetable
or partition (if the partition is specified). The percentage value can be greater
than 100 percent because the number of changes to an object can be much
greater than the number of rows in the table, particularly when the number of
deletes and updates to atable is very high.

The following set of examplesillustrate the various uses for the datachange
function. The examples use the following:

e Object nameis“0O.”

¢ Partition nameis“P”

Performance and Tuning Series: Query Processing and Abstract Plans 295

Automatically updating statistics

Passing a valid object,
partition, and column

name

Using null partition

datachange

names

datachange

Using null column
names

Null

datachange

partition and

column names

296

datachange

100

100

100

100

e Columnnameis“C.”

The value reported when you include the object, partition, and column nameis
determined by the datachange value for the specified column in the specified
partition divided by the number of rowsinthe partition. Theresult is expressed
as a percentage:

* (data change value for column C/ rowcount (P))

If you include anull partition name, the datachange value is determined by the
sum of the datachange valuefor the column across all partitions divided by the
number of rowsin the table. The result is expressed as a percentage:

* (Sum(data change value for (O, P(1-N) , C))/rowcount (0)
Where P(1-N) indicates that the value is summed over al partitions.

If you include null column names, the value reported by datachange is
determined by the maximum value of the datachange for all columnsthat have
histograms for the specified partition divided by the number of rowsin the
partition. The result is expressed as a percentage:

* (Max (data change value for (0, P, Ci))/rowcount (P)

Wherethe value of i variesthrough the columnswith histograms (for example,
formatid 102 in sysstatistics).

If you include null partition and column names, the value of datachange is
determined by the maximum value of the datachange for all columnsthat have
histograms summed across al partitions divided by the number of rowsin the
table. The result is expressed as a percentage:

* (Max(data change value for (0O, NULL, Ci))/rowcount (O)

Wherei is 1 through the total number of columns with histograms (for
example, formatid 102 in sysstatistics).

Thisillustrates datachange gathering statistics:

create table matrix(coll int, col2 int)
go

insert into matrix values (234, 560)

go

update statistics matrix(coll)

go

insert into matrix values(34,56)

go

select datachange ("matrix", NULL, NULL)
go

Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

50.000000

Thenumber of rowsinmatrix istwo. The amount of datathat has changed since
the last update statistics command is 1, so the datachange percentageis 100 *
1/2 = 50 percent.

datachange counters are all maintained in memory. These counters are
periodically flushed to disk by the housekeeper or when you run sp_flushstats.

Configuring automatic update statistics
Automatically update statistics by:
» Defining update statistics jobs with Job Scheduler
« Defining update statistics jobs as part of the self-managed installation
» Creating user-defined scripts
Creating user-defined scripts is not discussed in this document.

Using Job Scheduler to update statistics

Job Scheduler includes the update statistics template, which you can use to
create a job that runs update statistics on atable, index, column, or partition.
The datachange function determines when the amount of changein atable or
partition has reached the predefined threshold. You determine the valuefor this
threshold when you configure the template.

Templates:

* Run update statistics on specific tables, partitions, indexes, or columns.
The templates allow you to define the value for datachange at which you
want update statistics to run.

* Runupdate statistics at the server level, which configures Adaptive Server
to sweep through the available tablesin all databases on the server and
update statistics on al the tables, based on the threshold you determined
when creating your job.

To configure Job Schedul er to automate the process of running update statistics
(the chapters listed are from the Job Scheduler Users Guide:

Performance and Tuning Series: Query Processing and Abstract Plans 297

Configuring automatic update statistics

1 Install and set up Job Scheduler (Chapter 2, “ Configuring and Running Job
Scheduler”)

2 Install the stored procedures required for the templates (Chapter 4, “ Using
Templates to Schedule Jobs”).

3 Install thetemplates. Job Scheduler providesthetemplates specifically for
automating update statistics (Chapter 4, “Using Templates to Schedule
Jobs").

4 Configure the templates. The templates for automating update statistics
are in the Statistics Management folder.

5 Schedulethejob. After you have defined the index, column, or partition
you want tracked, you can also create a schedul e that determines when
Adaptive Server runsthejob, making sure that update statistics isrun only
when it does not impact performance.

6 ldentify successor failure. The Job Scheduler infrastructure allowsyou to
identify success or failure for the automated update statistic.

The template allows you to supply values for the various options of the update
statistics command such as sampling percent, number of consumers, steps, and
so on. Optionally, you can also provide threshold values for the datachange
function, page count, and row count. If you include these optional values, they
are used to determine when and if Adaptive Server should run update statistics.
If the current values for any of the tables, columns, indexes, or partitions
exceed the threshold values, Adaptive Server issues update statistics. Adaptive
Server detects that update statistics has been run on a column. Any query
referencing that table in the procedure cache is recompiled before the next
execution.

When does Adaptive There are many forms of the update statistics command (update statistics,

Server run update update index statistics, and so on); use these different forms depending on your
statistics? needs.

You must specify three thresholds: rowcount, pagecount, and datachange.
Although values of NULL or 0 are ignored, these values do not prevent the
command from running.

Table 10-1 describes the circumstances under which Adaptive Server
automatically runs update statistics, based on the parameter valuesyou provide.

Table 10-1: When does Adaptive Server automatically run update
statistics?
If the user | Action taken by Job Scheduler

Specifies adatachange threshold of zero or NULL ‘ Runs update statistics at the scheduled time.

298 Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

If the user

Action taken by Job Scheduler

Specifies a datachange threshold greater than zero
for atable only, and does not request the update
index statistics form

Getsadl theindexesfor thetable and getstheleading column
for each index. If the datachange value for any leading
column is greater than or equal to the threshold, run update
statistics.

Specifiesthreshold valuesfor thetableand index but
does not request the update index statistics form

Gets the datachange value for the leading column of the
index. If the datachange valueis greater than or equal to the
threshold, runs update statistics.

Specifies athreshold value for atable only, and
requests the update index statistics form

Getsall theindexesfor thetable and getsthe leading column
for each index. If the datachange value for any leading
column exceeds the threshold, runs update statistics.

Specifies threshold values for table and index and
requests the update index statistics form

Gets the datachange value for the leading column of the
index. If the datachange valueis greater than or equal to the
threshold, runs update statistics.

Specifies threshold values for atable and one or
more columns (ignores any indexes or requests for
the update index statistics form)

Gets the datachange value for each column. If the
datachange value for any column is greater than or equal to
the threshold, runs update statistics.

The datachange function compiles the number of changesin atable and
displaysthis as a percentage of the total number of rows in the table. You can
use this compiled information to create rules that determine when Adaptive
Server runs update statistics. The best time for thisto happen can be based on
any number of objectives:

* The percentage of changein atable

e Number of CPU cyclesavailable

e During a maintenance window

After update statistics runs, the datachange counter is reset to zero. The count
for datachange istracked at the partition level (not the object level) for inserts,
and deletes and at the column level for updates.

Examples of updating statistics with datachange

You can write scriptsthat check for the specified amount of changed data at the
column, table, or partition level. The time at which you decide to run update
statistics can be based on a number of variables collected by the datachange
function; CPU usage, percent change in atable, percent change in a partition,

and so on.

Performance and Tuning Series: Query Processing and Abstract Plans

299

Column statistics and statistics maintenance

In this example, the authors table is partitioned, and the user wants to run
update statistics when the data changes to the city column in the author_ptn2
partition are greater than or equal to 50%:

select @datachange = datachange ("authors", "author ptn2", "city")
if @datachange >= 50
begin

update statistics authors partition author ptn2(city)
end
go

The user can also specify that the script is executed when the systemisidle or
any other parameters.

In this example, the user triggers update statistics when the data changesto the
city column of the authors table are greater than or equal to 100% (the tablein
this example is not partitioned):

select @datachange = datachange ("authors",NULL, "city")
if @datachange > 100
begin
update statistics authors (city)
end

go

Column statistics and statistics maintenance

Histograms are kept on a per-column basis, rather than on a per-index basis.
This has certain implications for managing statistics:

» If acolumn appearsin more than oneindex, update statistics, update index
statistics, or create index updates the histogram for the column and the
density statistics for al prefix subsets.

update all statistics updates histograms for all columnsin atable.

» Dropping an index does not drop the statistics for the index, since the
optimizer can use column-level statistics to estimate costs, even when no
index exists.

To removethe statistics after dropping an index, you must explicitly delete
them using delete statistics.

300 Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

If the statistics are useful to the query processor, and to keep the statistics
without having an index, use update statistics, specifying the column
name, for indexes where the distribution of key values changes over time.

e Truncating atable does not delete the column-level statisticsin
sysstatistics. In many cases, tables are truncated and the same datais
reloaded.

Since truncate table does not del ete the column-level statistics, you need
not run update statistics after the tableisreloaded, if the datais the same.

If you reload the table with data that has a different distribution of key
values, run update statistics.

* You can drop and re-create indexes without affecting the index statistics,
by specifying 0 for the number of stepsinthewith statistics clauseto create
index. This create index command does not affect the statisticsin
sysstatistics:

create index title id ix on titles(title_id)
with statistics using 0 values

This allows you to re-create an index without overwriting statistics that
have been edited with optdiag.

e If two users attempt to create an index on the same table, with the same
columns, at the sametime, one of the commands may fail dueto an attempt
to enter a duplicate key value in sysstatistics.

* Executing update statistics on a column in a partition of a multipartition
table updates the statistics for that partition, but also updates the global
histogram for that column. Thisisdone by merging the histogramsfor that
column from each partition in arow-weighted fashion to arrive at aglobal
histogram for the column.

« Updating statistics on a multipartitioned table for a column, without
specifying a partition, updates the statistics for each partition of the table
for that column, and, as alast step, mergesthe partition histogramsfor the
column to create a global histogram for the column.

* Theoptimizer only usesthe global histogramsfor amultipartitioned table
during compilation, and does not read the partition histograms. This
approach avoids the overhead of merging partition histograms at
compilation time, and instead performs any merging work at DDL time.

Performance and Tuning Series: Query Processing and Abstract Plans 301

Creating and updating column statistics

Creating and updating column statistics

302

Creating statistics on unindexed columns can improve the performance of
many queries. The optimizer can use statistics on any column in awhere or
having clause to help estimate the number of rows from atable that match the
complete set of query clauses on that table.

Adding statisticsfor the minor columns of indexes and for unindexed columns
that are frequently used in search arguments can greatly improve the
optimizer’s estimates.

Maintaining alarge number of indexes during data modification can be
expensive. Every index for atable must be updated for each insert and delete to
the table, and updates can affect one or more indexes.

Generating statisticsfor acolumn without creating anindex givesthe optimizer
more information to use for estimating the number of pagesto beread by a
query, without the processing expense of index updates during data
modification.

The optimizer can apply statistics for any columns used in a search argument
of awhere or having clause, and for any column named in ajoin clause.

Use these commands to create and maintain column statistics:

* update statistics, when used with the name of a column, generates statistics
for that column without creating an index onit. See “ Adding statistics for
a column with update statistics” on page 305 for information about
syntax.

The optimizer can use these column statistics to more precisely estimate
the cost of queries that reference the column.

* update index statistics, when used with an index name, creates or updates
statistics for al columnsin an index. See “ Adding statistics for minor
columns with update index statistics” on page 305 for information about
syntax.

If used with atable name, update index statistics updates statistics for all
indexed columns.

* update all statistics creates or updates statistics for all columnsin atable.
See “Adding statistics for all columns with update all statistics’ on page
306 for information about syntax.

Good candidates for column statistics are:

» Columnsfrequently used as search argumentsin where and having clauses

Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

Columns included in a composite index, and which are not the leading
columnsin theindex, but which can hel p estimate the number of datarows
that need to be returned by a query

When additional statistics may be useful

Example 1

Example 2

To determine when additional statistics are useful, run queries using set option
commands and set statistics io. |f there are significant discrepancies between
the“rowsto bereturned” and I/O estimates displayed by set commandsand the
actual 1/0O displayed by statistics io, examine these queries for places where
additional statistics can improve the estimates. L ook especially for the use of
default density values for search arguments and join columns.

The set option show_missing_stats command prints the names of columns that
could have used histograms, and groups of columns that could have used
multiattribute densities. Thisis particularly useful in pointing out where
additional statistics can be useful.

set option show missing stats long

go

dbcc traceon(3604)

go

DBCC execution completed. If DBCC printed error
messages, contact a user with System Administrator (SA)
role.

select * from part, partsupp

where p partkey = ps partkey and p itemtype =
ps_itemtype

go

NO STATS on column part.p partkey

NO STATS on column part.p itemtype

NO STATS on column partsupp.pa itemtype

NO STATS on density set for E={p partkey, p_itemtype}
NO STATS on density set for F={ps partkey, ps_itemtype}

(200 rows affected)

You can get the same information using the show_final_plan_xml option. The
set plan usesthe client option and trace flag 3604 to get the output on the client
side. This differs from the way the message option of set plan is used.

dbcc traceon(3604)

DBCC execution completed. If DBCC printed error
messages, contact a user with System Administrator (SA)
role.

Performance and Tuning Series: Query Processing and Abstract Plans 303

Creating and updating column statistics

set plan for show final plan xml to client on
go
select * from part, partsupp
where p partkey = ps partkey and p itemtype =
ps_itemtype
go
<?xml version="1.0" encoding="UTF-8"7?>
<querys
<planVersion> 1.0 </planVersions>
<optimizerStatisticss>
<statInfo>
<objNames>part</objName>
<missingHistograms>
<column>p partkey</columns>
<column>p itemtype</columns>
</missingHistogram>
<missingDensity>
<column>p partkey</columns
<column>p itemtype</columns>
</missingDensity>
</statInfo>
<statInfo>
<objName>partsupp</objName>
<missingHistograms>
<column>ps_partkey</columns>
<column>ps_itemtype</column>
</missingHistogram>
<missingDensity>
<column>ps_ partkey</columns>
<column>ps_itemtype</columns>
</missingDensity>
</statInfo>
</optimizerStatisticss>

Use update statistics on part and partsupp to create statistics on p_partkey and
p_itemtype, thus creating a histogram on the leading column (p_partkey) and
the density (p_partkey, p_itemtype). Create a histogram on p_itemtype as well.
Use:

update statistics part(p_partkey, p itemtype)
go

update statistics part(p_ itemtype)

go

304 Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

Adding statistics

Since partsupp has a histogram on ps_partkey, you can create a histogram on
ps_itemtype and a density on (ps_itemtype, ps_partkey). The columns used for
density may be unordered.

update statistics partsupp (ps_itemtype, ps_ partkey)

If this procedure is successful, you will not seethe “NO STATS’ messages
shown in Example 1 when you run the query again.

for a column with update statistics

To add statistics for the price column in thetitles table, enter:
update statistics titles (price)

To specify the number of histogram steps for a column, use:

update statistics titles (price)
using 50 values

This command adds a histogram for the titles.pub_id column and generates

density values for the prefix subsets pub_id; pub_id, pubdate; and pub_id,
pubdate, title_id:

update statistics titles(pub_id, pubdate, title id)

However, this command does not create a histogram on pubdate and
title id, Sinceaseparate update statistics command is needed for every
column for which a histogram is desired.

Note Running update statistics with a table name updates histograms and
densities for leading columns for indexes only; it does not update the statistics
for unindexed columns. To maintain these statistics, run update statistics and
specify the column name, or run update all statistics.

Adding statistics for minor columns with update index statistics

To create or update statistics on all columnsin an index, use update index
statistics. The syntax is:
update index statistics

table_name [[partition data_partition_name] |
[index_name [partition index_partition_name]]]

Performance and Tuning Series: Query Processing and Abstract Plans 305

Choosing step numbers for histograms

[using step values |
[with consumers = consumers] [, sampling = percent]

Adding statistics for all columns with update all statistics

To create or update statistics on all columnsin atable, use update all statistics.
The syntax is:

update all statistics table_name
[partition data_partition_name]

Choosing step numbers for histograms

306

By default, each histogram has 20 steps, which provides good performance and
modeling for columns that have an even distribution of values. A higher
number of steps can increase the accuracy of 1/0 estimates for columns that:

e Have alarge number of highly duplicated values
e Have unequal or skewed distribution of values
» Arequeried using leading wildcards in like queries

The histogram tuning factor default of 20 automatically chooses a step value
between the current requested step value (default 20) and the increased steps
duetothefactor (20* 20 = 400) so that Adaptive Server automatically chooses
the optimal steps value to compensate for the above cases. Overriding the step
values should take into account the larger number of steps already introduced
by the histogram tuning factor.

Note If your database was updated from apre-11.9 version of Adaptive Server,
the number of steps defaults to the number of steps that were used on the
distribution page.

Increasing the number of steps beyond what is needed for good query
optimization can degrade Adaptive Server performance, largely due to the
amount of space that is required to store and use the statistics. Increasing the
number of steps:

» Increasesthe disk storage space required for sysstatistics

Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

« Increases the cache space needed to read statistics during query
optimization

e Requiresmore I/0, if the number of stepsisvery large

During query optimization, histograms use space borrowed from the procedure
cache. This spaceis released as soon as the query is optimized.

Choosing a step number

If your table has 5000 rows, and one value in the column that has only one
matching row, you may need to request 5000 steps to get a histogram that
includes afrequency cell for every distinct value. The actual number of steps
is not 5000; it is either the number of distinct values plus one (for dense
frequency cells), or twice the number of values plus one (for sparse frequency
cells).

The sp_configure option histogram tuning factor automatically chooses alarger
number of steps, within parameters, when there are alarge number of highly
duplicated values.

Thedefault value of the histogram tuning factor is20in Adaptive Server version
15.0 and later. If the requested step count is 50, then update statistics can create
upto20* 50 = 1000 steps. Thislarger number of stepsisused only if histogram
distribution is skewed with a number of domain values that are highly
duplicated. However, for a unigue column, update statistics uses only 50 steps
to represent the histogram. To most efficiently use histograms, specify a
relatively low number of steps and allow the histogram tuning factor to
determine whether more steps would be useful for optimization. For example,
instead of specifying 1000 stepswith a default step count of 1000 to be used by
all histograms, it is better to specify 50 default steps and a histogram tuning
factor of 20. This allows Adaptive Server to determine the best step count,
within the range of 50 to 1000 steps, with which to represent the distribution.

Scan types, sort requirements, and locking

Table 10-2 shows the types of scans performed during update statistics, the
types of locks acquired, and when sorts are needed.

Performance and Tuning Series: Query Processing and Abstract Plans 307

Scan types, sort requirements, and locking

Table 10-2: Scans, sorts, and locking during update statistics

update statistics

specifying Scans and sorts performed Locking
Table name
Allpages-locked table Table scan, plus aleaf-level scan of each Level 1; shared intent tablelock,
nonclustered index shared lock on current page
Data-only-locked table Table scan, plus aleaf-level scan of each Level O; dirty reads
nonclustered index and the clustered index, if one
exists
Table name and clustered index name
Allpages-locked table Table scan Level 1; sharedintent tablelock,
shared lock on current page
Data-only-locked table Leaf level index scan Level O; dirty reads

Table name and nonclustered index name

Allpages-locked table Leaf level index scan Level 1; shared intent tablelock,
shared lock on current page
Data-only-locked table Leaf level index scan Level O; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable and sorts the Level 1; sharedintent tablelock,
worktable shared lock on current page
Data-only-locked table Table scan; creates a worktable and sorts the Level O; dirty reads
worktable

Sorts for unindexed or nonleading columns

For unindexed columns and columns that are not the leading columnsin
indexes, Adaptive Server performs a serial table scan, copying the column
valuesinto aworktable. It then sorts the worktable to build the histogram. The
sort is performed in serial, unless the with consumers clause is specified.

See Chapter 5, “Parallel Query Processing,”.

Locking, scans, and sorts during update index statistics

308

The update index statistics command generates a series of update statistics
operations that use the same locking, scanning, and sorting as the equivalent
index-level and column-level command. For example, if the salesdetail table
has a nonclustered index named sales_det_ix on salesdetail(stor_id, ord_num,
title_id), this command:

Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

update index statistics salesdetail
performs these update statistics operations:

update statistics salesdetail sales det ix
update statistics salesdetail (ord num)
update statistics salesdetail (title_ id)

Locking, scans and sorts during update all statistics

The update all statistics commands generate a series of update statistics
operations for each index on the table, followed by a series of update statistics
operations for all unindexed columns.

Using the with consumers clause

The with consumers clause for update statistics is designed for use on
partitioned tables on Redundant Array of Independent Disks (RAID) devices,
which appear to Adaptive Server asasingle 1/0O device, but can produce the
high throughput required for parallel sorting. See Chapter 5, “Parallel Query
Processing,” for information.

Reducing the impact of update statistics on concurrent processes

Since update statistics uses dirty reads (transaction isolation level 0) for
data-only-locked tables, you can execute it while other tasks are active on the
server; it does not block access to tables and indexes. Updating statistics for
leading columnsin indexes requires only aleaf-level scan of the index, and
does not require a sort, so updating statistics for these columns does not affect
concurrent performance very much.

However, updating statistics for unindexed and nonleading columns, which
require atable scan, worktable, and sort, can affect concurrent processing.

* Sortsare CPU-intensive. Use a serial sort, or asmall number of worker
processes to minimize CPU utilization. Alternatively, you can use
execution classes to set the priority for update statistics.

See the Performance and Tuning Series. Basics.

Performance and Tuning Series: Query Processing and Abstract Plans 309

Using the delete statistics command

The cache space required for merging sort runs is taken from the data
cache, and some procedure cache space is also required. Setting the
number of sort buffers to alow value reduces the space used in the buffer
cache.

If number of sort buffers is set to alarge value, it takes more space from the
data cache, and may also cause stored procedures to be flushed from the
procedure cache, since procedure cache space is used while merging
sorted values. There are approximately 100 bytes of procedure cache
needed for every row that can fit into the sort buffers specified. For
example, if 500 2K sort buffers are specified, and about 200 rows fit into
each 2K buffer, then 200 * 100 * 500 bytes of procedure cache are needed
to support the sort. Thisexample requires about 5000 2K procedure cache
buffers, if the entire 500 data cache buffers are filled by a sort run.

Creating the worktables for sorts also uses space in tempdb.

Using the delete statistics command

In versions of Adaptive Server earlier than 11.9, dropping an index removed
the distribution page for the index. As of version 11.9.2, maintaining
column-level statisticsisunder explicit user control, and the optimizer can use
column-level statistics even when an index does not exist. The delete statistics
command allows you to drop statistics for specific columns.

310

If you create an index and then decide to drop it becauseit isnot useful for data
access, or because of the cost of index maintenance during data modifications,
you must determine whether the:

Statistics on the index are useful to the optimizer.

Distribution of key valuesin the columns for thisindex are subject to
change over time as rows are inserted and deleted.

If the distribution of key values changes, run update statistics periodically
to maintain useful statistics.

This example deletes the statistics for the price column in the titles table:

Adaptive Server Enterprise

CHAPTER 10 Using Statistics to Improve Performance

delete statistics titles(price)

Note delete statistics removes rows only from sysstatistics; it does not remove
rowsfrom systabstats. You cannot delete the rowsin systabstats that described
partition row counts, cluster ratios, page counts, and so on. However, if you use
optdiag simulate statistics to add any simulated systabstats rowsto sysstatistics,
then those rows are del eted.

When row counts may be inaccurate

Row count values for the number of rows, number of forwarded rows, and
number of deleted rows may be inaccurate, especialy if query processing
includes many rollback commands. If workloads are extremely heavy, and the
housekeeper wash task does not run often, these statistics are more likely to be
inaccurate.

Running update statistics corrects countsin systabstats. \When the housekeeper
wash task runs, or when you execute sp_flushstats, row count values are saved
in systabstats.

Note You must set the configuration parameter housekeeper free write percent
to 1 or greater to enable housekeeper statistics flushing.

Running dbcc checktable or dbcc checkdb updates these row count valuesin
memory.

Performance and Tuning Series: Query Processing and Abstract Plans 311

When row counts may be inaccurate

312 Adaptive Server Enterprise

CHAPTER 11 Introduction to Abstract Plans

Topic Page
Overview 313
Managing abstract plans 314
Rel ationship between query text and query plans 315
Full versus partia plans 316
Abstract plan groups 318
How abstract plans are associated with queries 318

Overview

Adaptive Server can generate an abstract plan for a query, and save the
text and its associated abstract plan in the sysqueryplans system table.
Using arapid hashing method, incoming SQL queries can be compared to
saved query text, and if amatch isfound, the corresponding saved abstract
plan is used to execute the query.

An abstract plan describesthe execution plan for aquery using alanguage
created for that purpose. This language contains operators to specify the

choices and actions that can be generated by the optimizer. For example,
to specify an index scan on the titles table, using the index title_id_ix, the

abstract plan says:

(i_scan title id ix titles)

To use this abstract plan with a query, you can modify the query text and
add a pPLAN clause:

select * from titles where title_id = “On Liberty”
plan
“(i_scan title_id_ix titles)”

This alternative requires a change to the SQL text; however, the method
described in the first paragraph, that is, the sysqueryplans-based way to
givethe abstract plan of aquery, does not involve changing the query text.

Performance and Tuning Series: Query Processing and Abstract Plans 313

Managing abstract plans

Abstract plans provide ameans for system administrators and
performance tuners to protect the overall performance of a server from
changes to query plans. Changesin query plans can arise due to:

e Adaptive Server software upgrades that affect optimizer choices and
query plans

* New Adaptive Server features that change query plans

e Changing tuning options such as the parallel degree, table
partitioning, or indexing

The main purpose of abstract plansisto provide ameansto capture query
plans before and after major system changes. You can then compare sets
of before-and-after query plansto determinethe effects of changesonyour
queries. Other uses include:

e Searching for specific types of plans, such as table scans or
reformatting

e Searching for plansthat use particular indexes

e Specifying full or partial plansfor poorly performing queries

e Saving plansfor queries with long optimization times

Abstract plans provide an alternative to options that must be specified in
the batch or query to influence optimizer decisions. Using abstract plans,
you can influence the optimization of a SQL statement without modifing
the statement syntax. While matching query text to stored text requires

some processing overhead, using asaved plan reduces query optimization
overhead.

Managing abstract plans

314

A full set of system procedures all ows system administrators and database
owners to administer plans and plan groups. Individual users can view,
drop, and copy the plans for the queries that they have run.

See Chapter 14, “Managing Abstract Plans with System Procedures,” for
more information.

Adaptive Server Enterprise

CHAPTER 11 Introduction to Abstract Plans

Relationship between query text and query plans

For most SQL queries, there are many possible query execution plans.
SQL describes the desired result set, but does not describe how that result
set should be obtained from the database. Consider aquery that joinsthree
tables, such as:

select tl.cll, t2.c21
from tl, t2, t3
where tl.cll = t2.c21
and tl.cll = t3.c31

There are many different possible join orders, and depending on the
indexes that exist on the tables, many possible access methods, including
table scans, index scans, and the reformatting strategy. Each join may use
either anested-loop join or amerge join. These choices are determined by
the optimizer’s query costing al gorithms, and are not included in or
specified in the query itself.

When you capture the abstract plan, the query is optimized in the usual
way, except that the optimizer also generates an abstract plan, and saves
the query text and abstract plan in sysqueryplans.

Limits of options for influencing query plans
Adaptive Server provides other options for influencing optimizer choices:

e Session-level options such as set forceplan to force join order or set
parallel_degree to specify the maximum number of worker processes
to use for the query

« Optionsthat can beincluded in the query text to influence the index
choice, cache strategy, and parallel degree

There are some limitations to using set commands or adding hints to the
query text:

* Not all query plan steps can be influenced, for example, subquery
attachment.

e Some query-generating tools do not support the in-query options or
require all queriesto be vendor-independent.

Performance and Tuning Series: Query Processing and Abstract Plans 315

Full versus partial plans

Full versus partial plans

Abstract plans can be full plans, describing all query processing steps and
options, or they can be partial plans. A partial plan might specify that an
index isto be used for the scan of a particular table, without specifying
other access methods. For example:

316

select tl.cll, t2.c21
from tl, t2, t3

where tl.cll = t2.c21
and tl.cll = t3.c31
plan

“(i _scan t3_ c31 ix t3)”

The full abstract plan includes:

Thejoin type, nl_join for nested-loop joins, m_join for merge joins, or
h_join for hash joins.

Thejoin order.
The type of scan, t_scan for table scan or i_scan for index scan.

The name of the index chosen for the tables that are accessed via an
index scan.

The scan properties: the parallel degree, 1/0 size, and cache strategy
for each table in the query.

The abstract plan for the query above specifies the join order, the access
method for each table in the query, and the scan properties for each table:

select tl.cll, t2.c21
from tl, t2, t3

where tl.cll = t2.c21
and tl.cll = t3.c31
plan

“(i _scan t3_ c31 ix t3)”

(nl_join (nl join
(t _scan t2)
(i_scan tl _cll ix t1)
)

(i scan t3_c¢31 ix t3)

)

(prop t3
(parallel 1)

(prefetch 16)
(lru)

Adaptive Server Enterprise

CHAPTER 11 Introduction to Abstract Plans

)

(prop tl
(parallel 1)
(prefetch 16)
(lru)

)

(prop t2
(parallel 1)
(prefetch 16)
(lru)

)

If the abstract plan dump mode is on, the query text and the abstract plan
pair are saved in sysqueryplans:

select tl.cll, t2.c21
from tl, t2, t3

where tl.cll = t2.c21
and tl.cll = t3.c31
plan

“(i_scan t3_c31 ix t3)”

Creating a partial plan

When abstract plans are captured, full abstract plans are generated and
stored. You canwrite partial plansthat affect only asubset of the optimizer
choices. If the query above had not used the index on t3, but all other parts
of the query plan were optimal, you could create a partial plan for the
guery using the create plan command. This partia plan specifies only the
index choicefor t3:

create plan

"select tl.cll, t2.c21
from tl, t2, t3

where tl.cll = t2.c21
and tl.cll = t3.c31"

"(i scan t3_c¢31 ix t3)"

You can also create abstract plans with the plan clause for select, delete,
update, and other commands that can be optimized. If the abstract plan
dump mode is on, the query text and AP pair are saved in sysqueryplans.

See Chapter 12, “Creating and Using Abstract Plans,” for more
information.

Performance and Tuning Series: Query Processing and Abstract Plans 317

Abstract plan groups

Abstract plan groups

When you install Adaptive Server, there are two abstract plan groups:
* ap_stdout, used by default to capture plans
* ap_stdin, used by default for plan association

A system administrator can enable server-wide plan capture to ap_stdout,
so that all query plansfor al queries are captured. Server-wide plan
association uses queries and plans from ap_stdin. If some queries require
specially-tuned plans, they can be made available server-wide.

A system administrator or database owner can create additional plan
groups, copy plans from one group to another, and compare plansin two
different groups.

The capture of abstract plans and the association of abstract plans with
queries always happens within the context of the currently active plan
group. Users can use session-level set commands to enable plan capture
and association.

Some of the ways abstract plan groups can be used are:

» A query tuner can create abstract plansin a group created for testing
purposes without affecting plans for other users on the system

» Using plan groups, “before” and “after” sets of plans can be used to
determine the effects of system or upgrade changes on query
optimization.

See Chapter 12, “Creating and Using Abstract Plans,” for more
information on enabling the capture and association of plans.

How abstract plans are associated with queries

318

When an abstract plan is saved, al white space (tabs, multiple spaces, and
returns, except for returns that terminate a --style comment) in the query
istrimmed to a single space, and a hash-key value is computed for the
white-space trimmed SQL statement. The trimmed SQL statement and the
hash key are stored in sysqueryplans along with the abstract plan, aunique
plan ID, the user's ID, and the ID of the current abstract plan group.

Adaptive Server Enterprise

CHAPTER 11 Introduction to Abstract Plans

When abstract plan association is enabled, the hash key for incoming SQL
statements is computed, and this value is used to search for the matching
query and abstract plan in the current association group, with the
corresponding user ID. The full association key of an abstract plans
consists of:

e Theuser ID of the current user
e Thegroup ID of the current association group
e Thefull query text

Once amatching hash key is found, the full text of the saved query is
compared to the query to be executed, and used if it matches.

The association key combination of user ID, group ID, and query text
means that for a given user, there cannot be two queriesin the same
abstract plan group that have the same query text, but different query
plans.

Abstract plans in cached statements

In Adaptive Server version 15.7 and later, you can save abstract plan
information in the statement cache.

In this example, which includes an abstract plan, the hash table saves
select * from tl plan ' (use optgoal allrows mix)',aS
shown inthe sQL. TEXT line:

1> select * from tl plan ' (use optgoal allrows mix)'
2> go

1> dbcc prsglcache

2> go

Start of SSQL Hash Table at 0x0x1474c9050

Memory configured: 1000 2k pages Memory used: 17 2k pages

Bucket# 243 address 0x0x1474c9f80

SSQL_DESC 0x0x1474cd070
ssgl_name *ss0626156152_ 0290084701ss*

ssgl hashkey 0x0x114a575d ssqgl id 626156152
ssqgl suid 1 ssqgl uid 1 ssqgl dbid 1 ssqgl spid 0
ssgl status 0x0xa0 ssqgl parallel deg 1

Performance and Tuning Series: Query Processing and Abstract Plans 319

How abstract plans are associated with queries

ssqgl isolate 1 ssgl tranmode 32
ssgl keep 0 ssgl usecnt 1 ssgl pgcount 6
ssqgl optgoal allrows mix ssgl optlevel ase default

SQL TEXT: select * from tl plan ' (use optgoal allrows mix)'

End of SSQL Hash Table

320 Adaptive Server Enterprise

CHAPTER 12

Creating and Using Abstract
Plans

Use the set command to capture abstract plans and to associate incoming
SQL queries with saved plans. Any user can issue session-level
commands to capture and load plans during a session, and a system
administrator can enable server-wide abstract plan capture and
association. This chapter also describes how to specify abstract plans

using SQL.

Topic Page
Using set commands to capture and associate plans 321
set plan exists check option 327
Using other set options with abstract plans 328
Server-wide abstract plan capture and association modes 330
Creating plans using SQL 331

Using set commands to capture and associate plans

At the session level, any user can enable and disable capture and use of
abstract plans using the set plan dump and set plan load commands. set
plan replace determineswhether existing plansare overwritten by changed
plans.

Enabling and disabling abstract plan modes takes effect at the end of the
batch in which the command isincluded (similar to showplan). Therefore,
change the mode in a separate batch before you run your queries:

set plan dump on
go

/*queries to run*/
go

Performance and Tuning Series: Query Processing and Abstract Plans 321

Using set commands to capture and associate plans

Any set plan commands used in a stored procedure do not affect the
procedure (except those statements affected by deferred compilation) in
which they are included, but remain in effect after the procedure

compl etes.

Enabling plan capture mode with set plan dump

322

The set plan dump command activates and deactivates the capture of
abstract plans. You can save the plans to the default group, ap_stdout, by
using set plan dump with no group name:

set plan dump on

To start capturing plansin aspecific abstract plan group, specify the group
name. This example sets the group dev_plans as the capture group:

set plan dump dev_plans on

The group that you specify must exist before you issue the set command.
The system procedure sp_add_gpgroup creates abstract plan groups; only
the system administrator or database owner can create an abstract plan
group. Once an abstract plan group exists, any user can dump plansto the
group.

See “Creating agroup” on page 373 for information on creating a plan
group.

To deactivate the capturing of plans, use:
set plan dump off

You do not need to specify a group name to end capture mode. Only one
abstract plan group can be active for saving or matching abstract plans at
any onetime. If you are currently saving plansto agroup, turn off the plan
dump mode, and reenable it for the new group, as shown here;

set plan dump on /*save to the default group*/
go

/*some queries to be captured */

go

set plan dump off

go

set plan dump dev_plans on

go

/*additional queries*/

go

Adaptive Server Enterprise

CHAPTER 12 Creating and Using Abstract Plans

The use of the use database command while set plan dump isin effect
disables plan dump mode.

Associating queries with stored plans

The set plan load command activates and deactivates the association of
queries with stored abstract plans.

To start the association mode using the default group, ap_stdin, use:
set plan load on

To enable association mode using another abstract plan group, specify the
group name:

set plan load test plans on

Only one abstract plan group can be active for plan association at onetime.
If plan association is active for a group, deactivate the current group and
activate plan association for the new group, as shown here;

set plan load test plans on
go

/*some queries*/

go

set plan load off

go

set plan load dev_plans on
go

The use of the use database command while set plan load isin effect
disables plan load mode.

Using replace mode during plan capture

While plan capture mode is active, you can choose whether to have plans
for the same query replace existing plans by enabling or disabling set plan
replace. To activate plan replacement mode, use:

set plan replace on

Do not specify a group name with set plan replace; it affects the current
active capture group.

To disable plan replacement:

Performance and Tuning Series: Query Processing and Abstract Plans 323

Using set commands to capture and associate plans

set plan replace off

The use of the use database command while set plan replace isin effect
disables plan replace mode.

When to use replace mode

When you are capturing plans, and a query has the same query text as an
already-saved plan, the existing plan is not replaced unless replace mode
isenabled. If you have captured abstract plansfor specific queries, and you
are making physical changesto the database that affect optimizer choices,
replace existing plans for these changes to be saved.

Some actions that might require plan replacement are:

e Adding or dropping indexes, or changing keys or key ordering in
indexes

e Changing the partitioning on atable
e Adding or removing buffer pools
» Changing configuration parameters that affect query plans

In most cases, do not enabl e plan load. When plan association isactive, any
plan specifications are used as inputs to the optimizer. For example, if a
full query plan includes the prefetch property and an I/O size of 2K, and
you have created a16K pool and want to replace the prefetch specification
in the plan, do not enable plan load mode.

You may want to check query plans and replace some abstract plans as
data distribution changes in tables, or after rebuilds on indexes, updating
statistics, or changing the locking scheme.

Using dump, load, and replace modes simultaneously

You can have both plan dump and plan load mode active simultaneously,
with or without replace mode active.

Using dump and load to the same group

If you have enabled dump and load to the same group, without replace
mode enabled:

324 Adaptive Server Enterprise

CHAPTER 12 Creating and Using Abstract Plans

If avalid plan exists for the query, it isloaded and used to optimize
the query.

If aplan existsthat is not valid (for example, because an index has
been dropped), anew plan is generated and used to optimize the
query, but is not saved.

If only apartial plan exists, afull planis generated, but the existing
partial plan is not replaced

If aplan does not exist for the query, aplan is generated and saved.

With replace mode also enabled:

If avalid plan exists for the query, it isloaded and used to optimize
the query.

If the plan is not valid, a new plan is generated and used to optimize
the query, and the old plan is replaced.

If theplanisapartial plan, acomplete planisgenerated and used, and
the existing partial plan is replaced. The specifications in the partia
plan are used as input to the optimizer.

If aplan does not exist for the query, aplan is generated and saved.

Using dump and load to different groups

If you have dump enabled to one group, and load enabled from another
group, without replace mode enabled:

If avalid plan exists for the query in the load group, it is loaded and
used. The planis saved in the dump group, unless aplan for the query
aready existsin the dump group.

If the plan in theload group is not valid, anew planisgenerated. The
new plan is saved in the dump group, unless a plan for the query
already existsin the dump group.

If the plan in the load group isa partia plan, afull planis generated
and saved in the dump group, unless a plan already exists. The
specificationsin the partial plan are used as input to the optimizer.

If thereisno plan for the query in theload group, the plan is generated
and saved in the dump group, unless a plan for the query existsin the
dump group.

With replace mode active:

Performance and Tuning Series: Query Processing and Abstract Plans 325

Using set commands to capture and associate plans

« If avalid plan exists for the query in the load group, it is loaded and
used.

e If theplanintheload group is not valid, a new plan is generated and
used to optimize the query. The new plan is saved in the dump group.

e If theplanintheload group isa partia plan, afull plan is generated
and saved in the dump group. The specificationsinthe partial plan are
used as input to the optimizer.

e If aplan doesnot exist for the query in the load group, anew planis
generated. The new plan is saved in the dump group.

Compile-time changes for some set parameters

326

In Adaptive Server releases earlier than 15.0.2, the set parameters took
effect after the stored procedure was executed or recompiled. Adaptive
Server release 15.0.2 and later allows you to use optimizer set parameters
at compile time to affect the optimizer in stored procedures or batches.

Note This changed behavior may effect the composition of the result set.
Sybase recommends that you review the result set created by the 15.0.2
versions of the set parameters before using them in your production
systems.

You must reset the set parameter before returning from the stored
procedure or the execution of subsequent stored procedures may be
affected. If you intend to propogate this change to subsequent stored
procedures, use export_options parameter.

Adaptive Server changes the compile-time behavior for these parameters:
e (distinc_sorted

e distinct_sorting

e distinct_hashing

* group_sorted

* group_hashing

* bushy_space_search

* parallel_query

Adaptive Server Enterprise

CHAPTER 12 Creating and Using Abstract Plans

e order_sorting

* nl_join

* merge_join

* hash_join

* append_union_all

* merge_union_all

* merge_union_distinct

* hash_union_distinct

* store_index

* index_intersection

* index_union

* multi_table_store_ind

* opportunistic_distict_view
* advanced_aggregation

* replicated_partition

* group_inserting

* basic_optimization

* auto_query_tuning

e query_tuning_mem_limit
* query_tuning_time_limit

* setplan optgoal

set plan exists check option

Use the exists check mode during query plan association to speed
performance when users require abstract plans for fewer than 20 queries
from an abstract plan group. If asmall number of queriesrequire plansto
improve their optimization, enabling exists check mode speeds execution
of all queriesthat do not have abstract plans, because they do not check for
plansin sysqueryplans.

Performance and Tuning Series: Query Processing and Abstract Plans 327

Using other set options with abstract plans

When set plan load and set exists check are both enabled, the hash keysfor
up to 20 queriesintheload group are cached for the user. If the load group
contains more than 20 queries, exists check mode is disabled. Each
incoming query is hashed; if its hash key is not stored in the abstract plan
cache, then thereis no plan for the query and no search ismade. This
speeds the compilation of all queries that do not have saved plans.

The syntax is:
set plan exists check {on | off}
You must enable load mode before you enable plan hash-key caching.

A system administrator can configure server-wide plan hash-key caching
with the configuration parameter abstract plan cache. To enable server-
wide plan caching, use:

sp_configure "abstract plan cache", 1

Using other set options with abstract plans

You can combine other set tuning options with set plan dump,
show_abstract_plan, and set plan load.

Using show_abstract_plan to view plans

1>
2>
1>
2>

328

set option show_abstract_plan prints the optimal abstract plan currently
running on the TDS connection. It prints the plan after optimization and
before execution, and isthe only set option show_ command that does not
depend on trace flag 3604 or 3605.

Printing the final plan’s abstract plan is similar to viewing showplan
output: it provides information to the user, but the abstract plan is not
saved in sysqueryplans, and is not used if you use the apstract plan load
mode.

This example shows the optimal abstract plan currently running on the
TDS connection:

set option show abstract plan on

go
select rl, sum(sl)
from r, s

Adaptive Server Enterprise

CHAPTER 12 Creating and Using Abstract Plans

3> where r2=s2
4> group by ril
The Abstract Plan (AP) of the final query execution plan:

(group_sorted (nl join (i scan irl2 r) (i scan is21 s))) (prop r
(parallel 1) (prefetch 2) (lru)) (prop s (parallel 1) (prefetch 2)
(Iru))

To experiment with the optimizer behavior, this AP can be modified and then
passed to the optimizer using the PLAN clause:

SELECT/INSERT/DELETE/UPDATE ...

PLAN '(...)'.

rl

(2 rows affected)

Using showplan

When showplan isturned on, and abstract plan association mode has been
enabled with set plan load, showplan prints the plan ID of the matching
abstract plan at the beginning of the showplan output for the statement:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using an Abstract Plan (ID : 832005995).

If you run queries using the plan clause added to a SQL statement,
showplan displays:

Optimized using the Abstract Plan in the PLAN clause.

Using noexec

You can use noexec mode to capture abstract plans without actually
executing the queries. If noexec modeisin effect, queries are optimized
and abstract plans are saved, but no query results are returned.

To use noexec mode while capturing abstract plans, execute any needed
procedures (such as sp_add_gpgroup) and other set options (such as set
plan dump) before enabling noexec mode. The following example showsa
typical set of steps:

sp_add_gpgroup pubs_ dev
go

Performance and Tuning Series: Query Processing and Abstract Plans 329

Server-wide abstract plan capture and association modes

Using fmtonly

Using forceplan

set plan dump pubs_dev on

go

set noexec on

go

select type, sum(price) from titles group by type
go

A similar behavior can be obtained for capturing plansin stored
procedureswithout actually executing the stored procedures, using fmtonly

sp_add_gpgroup pubs_ dev
go

set plan dump pubs dev on
go

set fmtonly on

go

exec stored proc(...)

go

If set forceplan on isin effect, and query association is aso enabled for the
session, forceplan isignored if afull abstract plan is used to optimize the
query. If apartial plan does not completely specify the join order:

First, the tables in the abstract plan are ordered, as specified.
The remaining tables are ordered as specified in the from clause.

The two lists of tables are merged.

Server-wide abstract plan capture and association

modes

330

A system administrator can enable server-wide plan capture, association,
and replacement modes with these configuration parameters:

Adaptive Server Enterprise

CHAPTER 12 Creating and Using Abstract Plans

e abstract plan dump — enables dumping to the default abstract plans
capture group, ap_stdout.

e abstract plan load — enables |oading from the default abstract plans
loading group, ap_stdin.

e abstract plan replace —when plan dump modeis also enabled, enables
plan replacement.

e abstract plan cache — enables caching of abstract plan hash IDs;
abstract plan load must also be enabled. See “set plan exists check
option” on page 327.

By default, these configuration parameters are set to 0, which means that
capture and association modes are off. To enable a mode, set the
configuration valueto 1:

sp_configure "abstract plan dump", 1

Enabling any of the server-wide abstract plan modesis dynamic; you need
not restart the server.

Server-wide capture and association allows the system administrator to
capture al plansfor all userson aserver. You cannot override server-wide
modes at the session level.

Creating plans using SQL

Using create plan

You can directly specify the abstract plan for a query by:
e Using the create plan command

e Adding the plan clause to select, insert...select, update, delete and
return commands, and to if and while clauses

For information on writing plans, see Chapter 13, “ Abstract Query Plan
Guide.”

The create plan command specifies the text of a query, and the abstract
plan to save for the query.

This example creates an abstract plan:

Performance and Tuning Series: Query Processing and Abstract Plans 331

Creating plans using SQL

332

create plan

“select avg(price) from titles”
“(scalar_agg

(1_scan type price ix titles)

)II

Theplanissaved inthe current active plan group. You can also specify the
group name:

create plan
“select avg(price) from titles”
“(scalar agg
(i_scan type price ix titles)
) "
into dev_plans
If aplan already existsfor the specified query inthe current plan group, or
the plan group that you specify, you must first enable replace modein
order to overwrite the existing plan.

To seethe plan ID that is used for aplan you create, create plan can return
the ID asavariable. You must declare the variablefirst. This example
returns the plan ID:

create plan

“select avg(price) from titles”
“(scalar agg

(1_scan type price ix titles)
)II
into dev_plans
and set @id

select @id

When you use create plan, the query in the plan is not executed. This
means that:

» Thetext of the query isnot parsed, so the query is not checked for
valid SQL syntax.

» Theplansare not checked for valid abstract plan syntax.

» Theplans are not checked to determine whether they are compatible
with the SQL text.

To guard against errors and problems, immediately execute the specified
guery with showplan enabled.

Adaptive Server Enterprise

CHAPTER 12 Creating and Using Abstract Plans

Using the plan clause

You can use the plan clause with the following SQL statements to specify
the plan to use to execute the query:

e select

. insert...select

e delete
* update
o f

* while

* return

This exampl e specifies the plan to use to execute the query:

select avg(price) from titles
plan

“(scalar_agg
(i_scan type price ix titles

)II

When you specify an abstract plan for aquery, the query isexecuted using
the specified plan. If you have showplan enabled, this message is printed:

Optimized using the Abstract Plan in the PLAN clause.

When you use the plan clause with aquery, any errorsin the SQL text, the
plan syntax, and any mismatches between the plan and the SQL text are
reported as errors. For example, this plan uses the wrong abstract plan
operator for the query:

/* wrong operator! */
select * from tl1,t2
where cll = c21
plan
“ (union

(t_scan t1)

(t_scan t2)
)ll

This plan returns the following message:

Abstract Plan (AP) Warning: An error occurred while applying the AP:
(union (t_scan tl) (t_scan2))

to the SQL query:

select * from tl, t2

Performance and Tuning Series: Query Processing and Abstract Plans 333

Creating plans using SQL

where cll = c21

Failed to apply the top operator ‘union’ of the following AP fragment:

(union (t_scan tl) (t_scan t2))

The query contains no union that matches the ‘union’ AP operator at this point.
The following template can be used as a basis for a valid AP:

(also_enforce (join (also enforce (scan tl)) (also_enforce (scan t2)))

)

The optimizer will complete the compilation of this query; the query will be
executed normally.

Plans specified with the plan clause are saved in sysqueryplans only if plan
capture isenabled. If aplan for the query already existsin the current
capture group, enable replace mode to replace an existing plan.

334 Adaptive Server Enterprise

cuarTeErR 13 Abstract Query Plan Guide

This chapter covers some guidelines you can use in writing Abstract

Plans.
Topic Page
Overview 335
Tips on writing abstract plans 363
Using abstract plans at the query level 363
Comparing plans before and after 366
Abstract plans for stored procedures 368
Ad hoc queries and abstract plans 370

Overview

Abstract plans alow you to specify the desired execution plan of aquery.
Abstract plans provide an alternative to the session-level and query-level
optionsthat force ajoin order, or specify theindex, I/O size, or other query
execution options. The session-level and query-level options are
described in Chapter 12, “Creating and Using Abstract Plans.”

There are several optimization decisions that you cannot specify with set
commands or clausesin the query text, for example:

e Algorithmsthat implement a given relational operator; for example,
NLJ versus MJ versus HJ or GroupSorted versus GroupHashing versus
Grouplnserting

e Subquery attachment
e Thejoin order for flattened subqueries
¢ Reformatting

In many cases when issuing T-SQL commands, you cannot include set
commands or changethe query text. Abstract plans provide an aternative,
more complete method of influencing optimizer decisions.

Performance and Tuning Series: Query Processing and Abstract Plans 335

Overview

Abstract plans are relational algebra expressions that are not included in
the query text. They are stored in a system catal og and associated with
incoming queries based on the text of these queries.

Abstract plan language
Theabstract plan languageisarelational algebrathat usesthese operators:
» distinct —alogical operator describing duplicates elimination.

» distinct_sorted — a physical operator describing available
ordering-based duplicates elimination.

» distinct_sorting — a physical operator describing sorting-based
duplicates elimination.

» distinct_hashing — a physical operator describing hashing-based
duplicates elimination.

» group —alogical operator, describing vector aggregation.

» group_sorted — a physical operator describing the available
ordering-based vector aggregation.

» group_hashing —a physical operator describing hashing-based
vector aggregation.

» group_inserting —a physical operator describing clustered index
insertion-based vector aggregation.

* join —the generic join and a high-level logical join operator that
describes inner, outer and existence joins, using nested-loop joins,
merge joins, or hash joins.

* nl_join — specifying a nested-loop join, including all inner, outer,
and existencejoins.

* m_join —specifying amergejoin, including inner and outer joins.

* h_join — specifying a hash join, including al inner, outer, and
existencejoins.

* union —alogical union operator. It describes both the union and the
union all SQL constructs.

* append_union_all —aphysical operator implementing union all. It
appends the child result sets, one after the other.

336 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

e merge_union_all —aphysical operator implementing union all. It
merges the child result sets on the subset of the projection that is
ordered in each child, and preservesthat ordering.

e merge_union_distinct — a physical operator implementing union
[distinct]. A merge-based duplicates removal agorithm.

e hash_union_distinct —a physical operator implementing union
[distinct]. A merge-based duplicates removal agorithm.

e scalar_agg —alogical operator, describing scalar aggregation.

e scan —alogical operator that transforms a stored table in aflow of
rows, an abstract plan derived table. It allows partial plansthat do not
restrict the access method.

e i_scan —aphysical operator implementing scan. It directsthe
optimizer to use an index scan on the specified table.

e t_scan —aphysical operator implementing scan. It directs the
optimizer to use afull table scan on the specified table.

e m_scan —aphysical operator implementing scan. It directsthe
optimizer to use amultiindex table scan on the specified table,
either index union, index intersection, or both.

e store —aphysical operator describing the materialization of an
abstract plan derived table in a stored worktable.

e store_index —aphysical operator describing the materialization of an
abstract plan derived table in a clustered index stored worktable; the
optimizer chooses the useful key columns.

e sort—aphysical operator describing the sorting of an abstract plan
derived table; the optimizer chooses the useful key columns.

« nested —afilter describing the placement and structure of nested
subqueries.

e xchg —aphysical operator describing the on-the-fly repartitioning of
an abstract plan derived table. The abstract plan gives the target
degree, but the optimizer chooses the useful target partitioning.

These additional abstract plan keywords are used for grouping and

identification:

e sequence — groups the elements when a sequence requires multiple
steps.

e hints — groups a set of hintsfor a partia plan.

Performance and Tuning Series: Query Processing and Abstract Plans 337

Overview

e prop —introduces a set of scan properties for atable: prefetch, Irujmru
and parallel.

* table —identifies atable when correlation names are used, and in
subqueries or views.

e work_t—identifies aworktable.

e in—used with table to identify tables named in a subquery (subq) or
view (view).

» subg—used under the nested operator to indicate the attachment point
for anested subquery, and to introduce the subqueries' abstract plan.

All legacy abstract plan operators, such as g_join, are still accepted for
their new counterparts.

Queries, access methods, and abstract plans

For any specific table, there can be several access methods for a specific
query; index scans using different indexes, table scans, the OR strategy,
and reformatting.

This ssimple query has several choices of access methods:

select * from tl
where cll > 1000 and cl12 < 0

The following abstract plans specify three different access methods:
e Usetheindexi_cil1:
(1 scan i cl1 t1)
e Usetheindexi_c12:
(1 scan i cl2 t1)
* Doafull table scan:
(t_scan t1)

* Do amulti-scan; that is, the union or intersection of several indexes
of the table, according to the complex clause (hence the more
complex query used in this example):

select * from tl

where (cll > 1000 or c¢l2 < 0) and (cl2 > 1000 or cll2 < 0)
plan

“(m_scan tl1)”

338 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

Derived tables

Identifying tables

Abstract plans can be full plans, specifying all optimizer choicesfor a
query, or can specify asubset of the choices, such astheindex to usefor a
single table in the query, but not the join order for the tables. For example,
using apartial abstract plan, you can specify that the query above should
use someindex and let the optimizer choose betweeni_c11 andi_c12, but
not do afull table scan. The empty parentheses are used in place of the
index name;

(i_scan () t1)

In addition, the query could use either 2K or 16K 1/O, or be performed in
serial or parallel.

A derived table is defined by the evaluation of a query expression and
differsfrom aregular tableinthat it is neither described in system catalogs
nor stored on disk. In Adaptive Server, aderived table may be a SQL
derived table or an abstract plan derived table.

e A SQL derived table — defined by one or more tables through the
evaluation of aquery expression. A SQL derived tableisused in the
query expressioninwhichit isdefined and existsonly for theduration
of the query. See the Transact-SQL User’s Guide.

e An abstract plan derived table — a derived table used in query
processing, the optimization and execution of queries. An abstract
plan derived table differsfrom a SQL derived tableinthat it exists as
part of an abstract plan and isinvisible to the end user.

Abstract plans must name all of a query’s tables in a nonambiguous way,
such that a table named in the abstract can be linked to its occurrence in
the SQL query. In most cases, the table name is al that is needed. If the
query qualifies the table name with the database and owner name, these
are also needed to fully identify atable in the abstract plan. For example,
this example uses the unqualified table name;

select * from tl

The abstract plan also usesthe unqualified name, (t_scantl). If adatabase
name or owner name are provided in the query:

select * from pubs2.dbo.tl

Performance and Tuning Series: Query Processing and Abstract Plans 339

Overview

The abstract plan must use qualifications, (t_scan pubs2.dbo.tl).
However, the same table may occur several timesin the same query, asin
this example:

select * from tl a, tl b

Correlation names, a and b in the example above, identify the two tables
in SQL. In an abstract plan, the table operator associates each correlation
name with the occurrence of thetable:
(join
(t_scan (table (a t1)))
(t_scan (table (b t1)))
)

You can also use a briefer abstract plan, which uses only the correlation
names:
(join
(t_scan a)

(t_scan b)

)

Table names can a so be ambiguous in views and subqueries, so the table
operator isused for tablesin views and subqueries.

For subgueries, thein and subq operators qualify the name of thetablewith
its syntactical containment by the subquery. The sametable isused in the
outer query and the subquery in this example:

select *
from tl
where cll in (select c12 from tl where cll > 100)

The abstract plan identifies the tables unambiguoudly:

(join
(t_scan t1)
(1 scan 1 cl11l cl2 (table tl (in (subg 1))))

For views, thein and view operators provide the identification. The query
in this example references atable used in the view:

create view vl
as
select * from tl where cl2 > 100
select tl.cll from tl, vl
where tl.cl2 = vl.cll

Here is the abstract plan:

340 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

(join
(t_scan t1)
(i scan i cl2 (table tl (in (view v1))))

In abstract plans generated by Adaptive Server, the view or subquery-
qualified table names are generated only for the tables where they are
needed to remove name ambiguity. For other tables, only the nameis
generated.

In abstract plans created by the user, view or subquery-qualified tables
names are required in case of ambiguity; both syntaxes are accepted
otherwise.

Identifying indexes
Thei_scan operator requires two operands, the index name and the table
name, as shown here:

(i scan 1 _cl12 t1)

To specify that some index should be used, without specifying the index,
substitute empty parenthesis for the index name:

(i_scan () t1)

Specifying join order

Adaptive Server performsjoins of three or more tables by joining two of
the tables, and joining the abstract plan derived table from that join to the
next table in the join order. This abstract plan derived table is a flow of
rows, as from an earlier nested-loop join in the query execution.

This query joins three tables:

select *

from tl, t2, t3

where cll = c21
and cl2 = c31
and c22 = 0
and c¢32 = 100

This example shows the binary nature of the join algorithm, using join
operators. The plan specifies the join order t2, t1, t3:

Performance and Tuning Series: Query Processing and Abstract Plans 341

Overview

(join

(join
(scan t2)
(scan t1)

)

(scan t3)

)

The results of thet2-t1 join are then joined to t3. The scan operator in this
exampl e leaves the choice of table scan or index scan up to the optimizer.

Shorthand notation for joins

In general, an N-way |eft deep nested loopsjoin, with the order t1, t2, t3...,
tN-1, tN is described by:

(join

(join

(join
(join
(scan t1)
(scan t2)
)
(scan t3)

)

(scan tN-1)

)

(scan tN)

)

This notation can be used as shorthand for the nl_join operator:

(nl_join
(scan
(scan
(scan
(scan
(scan

342

tl)
£2)
£3)

tN-1)
tN)

Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

Join order examples

The optimizer could select among several plans for this three-way join
query:

select *

from tl, t2, t3

where cll = c21
and cl2 = c31
and c22 = 0
and c¢32 = 100

Here are afew examples:

e Usec22 asasearch argument on t2, join with t1 on c11, then with t3
onc31:

(nl join
(i _scan 1 _c22 t2)
(i scan i c11 t1)
(i scan i ¢31 t3)

)
e Usethe search argument on t3, and the join order t3, t1, t2;

(nl join
(i _scan 1 ¢32 t3)
(i _scan 1 c12 t1)
(i scan i c21 t2)

)

e Doafull tablescan of t2, if itissmall and fitsin cache, still using the
join order t3, t1, t2:

(nl join
(i _scan 1 ¢32 t3)
(i _scan 1 c12 t1)
(t_scan t2)

)

e Iftlisverylarge andt2 andt3 individually qualify alarge part of t1,
but together avery small part, this plan specifies a star join:
(nl join
(i _scan i c22 t2)

(i _scan 1 ¢332 t3)
(i scan 1 cl11 cl2 t1)

Performance and Tuning Series: Query Processing and Abstract Plans 343

Overview

Thejoin operators are generic in that they implement any of the outer
joins, inner joins, and existence joins; the optimizer chooses the correct
join semantics according to the query semantics.

Match between execution methods and abstract plans

There are somelimitsto join orders and join types, depending on the type
of query. One example is outer joins, such as:

select *
from tl left join t2
on cll = c21

Adaptive Server requiresthe outer member of the outer join to be the outer
table during join processing. Therefore, this abstract planisillegal:
(join
(scan t2)

(scan tl)

)

Attempting to use this plan resultsin an error message, the AP application
fails, and the optimizer makes the best attempt to finish compiling the

query.

Specifying join order for queries using views

You can use abstract plansto enforce thejoin order for merged views. This
example creates aview that performsajoin of t2 and t3:

create view v2
as

select *

from t2, t3
where c22 = c32

This query performs ajoin with the t2 in the view:

select * from tl, v2
where cll = c21
and c22 = 0

This abstract plan specifiesthe join order t2, 1, t3:

(nl join
(scan t2)
(scan t1)
(scan t3)

344 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

)

Since the table names are not ambiguous, the view qualification is not
needed. However, the following abstract plan is also legal and has the
same meaning:

(nl join
(scan (table t2(in(view v2))))
(scan t1)

(scan (table t3 (in (view v2))))

)
This example joins with t3 in the view:

select * from tl, v2
where cll = c31
and c¢32 = 100

This plan uses the join order t3, t1, t2:
(join
(scan t3)
(scan t1)

(scan t2)

)

Thisis an example where abstract plans can be used, if needed, to affect
the join order for a query, when set forceplan cannot.

Specifying the join type

Adaptive Server can perform nested-loop, merge, or hash joins. The join
operator leaves the optimizer free to choose the best join algorithm, based
on costing. To specify anested-loop join, use the ni_join operator; for a
merge join, use the m_join operator, and for ahash join, use the h_join
operator. Abstract plans captured by Adaptive Server always include the
operator that specifies the algorithm, and not the join operator.

This query specifies ajoin between t1 and t2:

select * from tl, t2
where cl2 = c21 and cl1l = 0

This abstract plan specifies a nested-loop join:

(nl join
(i scan 1 cl11 t1)
(i _scan 1 _c21 t2)

Performance and Tuning Series: Query Processing and Abstract Plans 345

Overview

)

The nested-loop plan usesthe index i_c11to limit the scan using the search
clause, and then performs the join with t2, using the index on the join
column.

This merge-join plan uses different indexes:
(m_join
(i scan i c12 t1)

(i scan i c21 t2)

)

The merge join uses the indexes on the join columns, i_c12 and i_c21, for
the merge keys. This query performs a full-merge join and no sort is
needed.

A mergejoin could also usetheindex oni_c11 to select only the matching
rows, but then a sort is needed to provide the needed ordering.
(m_join
(sort
(i scan 1 _cl11 t1)
)

(i scan i c21 t2)

)
Finally, this plan does a hash join and afull table scan on the inner side:

(h_join
(i scan 1 cl11 t1)
(t_scan t2)

Specifying partial plans and hints

Sometimes afull planisnot needed, for example, if the only problem with
aquery plan isthat the optimizer chooses a table scan instead of using a
nonclustered index, the abstract plan can specify only the index choice,
and leave the other decisions to the optimizer.

The optimizer could choose atable scan of t3 rather than usingi_c31 for
this query:

select *
from tl, t2, t3
where cll = c21

346 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

and cl2 < c31
and c22 = 0
and c¢32 = 100

The following plan, as generated by the optimizer, specifiesjoin order t2,
t1, t3. However, the plan specifies a table scan of t3:

(nl join
(i _scan i _c22 t2)
(i scan 1 _cl11 t1)
(t_scan t3)

)

Thisfull plan could be modified to specify the use of i_c31 instead:

(nl join
(i scan i c22 t2)
(i scan i cl11 t1)
(i scan i c¢31 t3)

)

However, specifying only a partial abstract plan isamore flexible
solution. As datain the other tables of that query evolves, the optimal join
order can change. The partial plan can specify just one partial plan item.
For the index scan of 3, the partial planis simply:

(i _scan 1 ¢31 t3)
The optimizer chooses the join order and the access methods for t1 and t2.

Abstract plans are partial by using logical operatorsinstead of physical
operators. For example, the following abstract plan is partial, although it
coversthe entire query, asit lets the optimizer choose the join algorithms
and the access methods:
(join

(scan t1)

(scan t2)

(scan t3)

)

Partial plans may also be incomplete at the top, in that the root of the
abstract plan may cover only a part of the query. If thisisthe case, the
optimizer completes the plan:

(nl join

(t_scan t1)
(t_scan t2)

Performance and Tuning Series: Query Processing and Abstract Plans 347

Overview

However, the plan fragment given in an abstract plan must be complete
down to the leafs. For example, the following abstract plan, which reads
“hash join tl outer to something” isillegal.
(h_join
(t_scan t1)
()

Grouping multiple hints

Sometimes more than one plan fragment is needed. For example, you
might want to specify that someindex should be used for each tablein the
query, but leave thejoin order up to the optimizer. When multiple hints are
needed, you can group them with the hints operator:

(hints
(i_scan () t1)
(i_scan () t2)
(i_scan () t3)

)

In this case, the role of the hints operator is purely syntactic; it does not
affect the ordering of the scans.

Thereare no limits on what may be given asahint. Partial join orders may
be mixed with partial access methods. This hint specifiesthat t2 is outer to
t1 in the join order, and that the scan of t3 should use an index, but the
optimizer can choose theindex for t3, the access methodsfor t1 and t2, and
the placement of t3 in the join order:

(hints
(join
(scan t2)
(scan t1)

)

(i _scan () t3)

Inconsistent and illegal plans using hints

It is possible to describe inconsistent plans using hints, such as this plan
that specifies contradictory join orders:
(hints
(join
(scan t2)

348 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

(scan tl)
)
(join
(scan t1)
(scan t2)

)

When the query associated with the plan is executed, the query cannot be
compiled, and an error israised.

Other inconsistent hints do not raise an exception, but may use any of the
specified access methods. This plan specifies both an index scan and a
table scan for the same table:

(hints
(t_scan t3)
(i _scan () t3)

)

In this case, either method may be chosen, and the behavior is
indeterminate.

Creating abstract plans for subqueries

Subqueries are resolved in several ways in Adaptive Server, and the
abstract plans reflect the query execution steps:

« Materialization —the subquery is executed and results are stored in a
worktableor internal variable. See* Materialized subqueries’ on page
350.

« Flattening —the query isflattened into ajoin with the tablesin the
main query. See “Flattened subqueries’ on page 350.

* Nesting—the subquery isexecuted once for each outer query row. See
“Nested subqueries’ on page 352.

Abstract plans do not alow the choice of the basic subquery resolution
method. Thisisarule-based decision and cannot be changed during query
optimization. Abstract plans, however, can be used to influence the plans
for the outer and inner queries. In nested subqueries, abstract plans can
also be used to choose where the subquery is nested in the outer query.

Performance and Tuning Series: Query Processing and Abstract Plans 349

Overview

Materialized subqueries
This query includes a noncorrelated subquery that can be materialized:

select *
from tl
where cll = (select count(*) from t2)

Thefirst step in the abstract plan materializes the scalar aggregate in the
subquery. The second step uses the result to scan t1:

(sequence
(scalar_agg
(i _scan 1 _c21 t2)
)

(1 scan i cl1 t1)

Flattened subqueries

Some subqueries can be flattened into joins. The join, nl_join, m_join, and
h_join operators leave it to the optimizer to detect when an existence join
is needed. For example, this query includes a subquery introduced with
exists:

select * from tl
where cl2 > 0
and exists (select * from t2
where tl.cll = c¢21 and c22 < 100)

The semantics of the query require an existencejoin betweent1 andt2. The
joinorder t1, t2 isinterpreted by the optimizer as a semijoin, with the scan
of t2 stopping on the first matching row of t2 for each qualifying row inti:
(join
(scan t1)

(scan t2)

)

Thejoin order t2, t1 requires other means to guarantee the duplicate
elimination:
(join
(distinct
(scan t2)

)

(scan tl1)

350 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

Using this abstract plan, the optimizer can decide to use:
e A uniqueindex ont2.c21, if oneexists, with aregular join.

e The unique reformatting strategy, if no unique index exists. In this
case, the query will probably use the index on c22 to select the rows
into aworktable.

e Theduplicate elimination sort optimization strategy, performing a
regular join and selecting the results into the worktable, then sorting
the worktable.

The abstract plan does not need to specify the creation and scanning of the
worktables needed for the last two options.

Example of changing the join order in a flattened subquery
The query can be flattened to an existence join:

select *
from tl, t2
where cll = c21
and c21 > 100
and exists (select * from t3 where c31 != tl.cll)

The“!=" correlation can make the scan of t3 rather expensive. If the join
order ist1, t2, the best placefor t3 inthe join order depends on whether the
join of t1 and t2 increases or decreases the number of rows, and therefore,
the number of times that the expensive table scan needs to be performed.
If the optimizer failsto find the right join order for t3, the following
abstract plan can be used when the join reduces the number of times that
t3 must be scanned:

(nl join
(scan t1)
(scan t2)
(scan t3)

)

If the join increases the number of times that t3 needs to be scanned, this
abstract plan performs the scans of 3 before the join:
(nl join
(scan tl)

(scan t3)
(scan t2)

Performance and Tuning Series: Query Processing and Abstract Plans 351

Overview

Nested subqueries
Nested subqueries can be explicitly described in abstract plansif:

» Theabstract plan for the subquery is provided.

» Thelocation at which the subquery attaches to the main query is
specified.

Abstract plans allow you to affect the query plan for the subquery, and to
change the attachment point for the subquery in the outer query.

The nested operator specifies the position of the subquery in the outer
query. Subqueries are* nested over” a specific abstract plan derived table.
The optimizer chooses a spot where all the correlation columns for the
outer query are available, and where it estimates that the subquery needs
to be executed the least number of times.

The following SQL statement contains a correlated expression subquery:

select *
from tl, t2
where cll = c21
and c21 > 100
and cl2 = (select c¢31 from t3
where c¢32 = tl.cll)

The abstract plan shows the subquery nested over the scan of t1:

(nl_join
(nested
(i scan i c12 t1)
(subg
(scalar _agg
(scan t3)
)
)
)
(i scan i c21 t2)

)

Aggregation isdescribed in Chapter 2, “Using showplan.” Thescalar_agg
abstract plan operator is necessary because all abstract plans, even partial
ones, must be complete down to the leafs.

352 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

Subquery identification and attachment

Subqueriesin the SQL query are matched against abstract plan subqueries
using their underlying tables. As tables are unambiguously identified, so
are the subqueries. For example:

select
(select cl1l1 from tl where cl2 = t3.c¢c32), c31
from t3
where
c32 > (select c22 from t2 where c21 = t3.c31)
plan
“ (nested
(nested
(t_scan t3)
(subg
(i_scan i_cll cl2 t1)
)
)
(subqg

(i scan i c21 t2)

)II

However, when table names are ambiguous, theidentity of the subquery is
needed to solve the table name ambiguity.

Subqueries are identified with numbers, in the order of their leading
opened parenthesis “(“.

This example has two subqueries; both refer to table ti:

select 1
from tl
where
cll not in (select cl12 from t1)
and cl1l1l not in (select c¢13 from tl)

In the abstract plan, the subquery which projects out of c12 isnamed “1”
and the subquery which projects out of c13 isnamed “2".

(nested
(nested
(t_scan t1)
(subg

(scalar_agg
(1 scan i cl1l cl2 (table tl (in (subg 1))))
)

Performance and Tuning Series: Query Processing and Abstract Plans 353

Overview

)
(subg
(scalar_agg
(1 scan i c13 (table tl (in (subg 2))))

)

In this query, the second subquery is nested in the first:

select * from tl
where ¢11 not in
(select cl12 from ti1
where c¢l1 not in
(select cl13 from t1)

In thiscase, the subquery that projectsout of c12 isalso named “1” and the
subquery that projects out of ¢13 is also named “2".

(nested
(t_scan tl
(subg
(scalar agg
(nested
(i scan i _cl2 (table tl (in (subg 1))))
(subg
(scalar agg
(i_scan i _c21 (table tl (in (subg 2))))

)

More subquery examples: reading ordering and attachment

The nested operator hasthe abstract plan derived table asthefirst operand
and the nested subquery as the second operand. This allows an easy
vertical reading of the join order and subquery placement:

select *
from tl, t2, t3
where cl2 = 0

and cll = c21

and c22 = c32
and 0 < (select c21 from t2 where c22 = tl.cll)

354 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

In the plan, the join order ist1, t2, t3, with the subquery nested over the

scan of t1:
(nl join
(nested
(i scan i c11 t1)
(subg

(t_scan (table t2 (in (subg 1)))
)
)
(i _scan 1 _c21 t2)
(i scan i ¢32 t3)

Modifying subquery nesting

If you modify the attachment point for asubquery, you must choose a point
at which all of the correlation columns are available.This query is
correlated to two of the tablesin the outer query:

select *
from tl, t2, t3
where cl2 = 0

and cll = c21

and c22 = c32
and 0 < (select c¢31 from t3 where c31 = tl.cll
and c32 = t2.c22)

This plan uses the join order t1, t2, t3, with the subquery nested over the
t1-t2 join:

(nl join
(nested
(nl join
(i_scan i_cll cl2 t1)
(1 _scan 1 c22 t2)
)
(subg
(t_scan (table t3 (in (subg 1))))
)
)
(i _scan 1 ¢332 t3)

)

Since the subquery requires columns from both outer tables, it would be
incorrect to nest it over the scan of t1 or the scan of t2; such errors are
silently corrected during optimization.

Performance and Tuning Series: Query Processing and Abstract Plans 355

Overview

However, the following abstract plan makes the legal request to nest the
subquery over the three-table join:

(nested
(nl_join
(1_scan
(1_scan
(1_scan

i cll cl2 t1)
i c22 t2)
i c32 t3)

)
(subg
(t_scan (table t3

(in (subg 1))))

)

Abstract plans for materialized processing of views

In most cases, view processing merges the view definition in the main
query. There are, however, cases when aview needsto be materialized, as
in the case of a self-join:

create view v3(cc31l, sum c32)
as

select c31, sum(c32)

from t3

group by c31

select *
from v3 a, v3 b
where a.c31l = b.c31

In such a case, the abstract plan exposes the worktable and the store
operator that materializesit. The two scans of the worktable are identified
through their correlation names:

(sequence
(store
(group_sorted
(i _scan 1 ¢31 t3)
)
)
(m_join
(sort
(t_scan
(sort
(t_scan (work t

(work t (a Worktable)))

(b Worktable)))
)

356 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

)

The handling of vector aggregation in an abstract plan is described in the
next section.

Abstract plans for queries containing aggregates
This query returns a scalar aggregate:
select max(cll) from t1

Thereisaphysical operator that implements scalar aggregation, therefore,
the optimizer has no choice. However, choosing anindex on c11 allowsthe
max() optimization:

(scalar agg
(i _scan icll t1)

)

Sincethe scalar aggregateisthetop abstract plan operator, removing it and
using the following partial plan has the same outcome:

(i _scan icll t1)

The scalar_agg abstract plan istypically needed when it is part of a
subquery and the abstract plan must cover the parent query as well.

Vector aggregation isdifferent, in that there are several physical operators
to implement the group logical operator, which means that the optimizer
has a choice to make. Thus, the abstract plan can forceit.

select max(cll)
from tl
group by cl2

The following abstract plan examples force each of the three vector
aggregation algorithms;

Note group_sorted requires an ordering on the grouping column, so it
needs to use an index.

(group_sorted
(i _scan 1 _cl12 t1)
)
(group_hashing
(t_scan tl)

Performance and Tuning Series: Query Processing and Abstract Plans 357

Overview

)

(group_ inserting
(t_scan tl)
)

Abstract plans for queries containing unions

The union abstract plan operator describes plans for SQL queries that
contain unions:

select*
from
tl1,
(select * from t2
union
select * from t3
) u(ul, u2)
where cll=ul
plan
“(nl join
(union
(t_scan t2)
(t_scan t3)
)
(1 scan i cl11 t1)

)II

There aretwo types of union in SQL: union distinct and union [all]. union [all]
isthe default.

Them_union_distinct and h_union_distinct abstract plan operatorsforce the
removal of merge or hash-based UNION DISTINCT duplicates. It isillegal
to use these operators with a UNION ALL. The merge-based algorithm
needs, from each of the union children, an ordering covering al union
projection columns.

In the following example, the needed ordering is provided, for the first
child, by the (c11, <12) compositeindex and, for the second child, by
the sort.

select cl1l, cl2 from t1l
union distinct

select c21, c22 from t2
plan

“(m_union distinct

358 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

(1 scan i cl11 cl2 t1)
(sort
(t_scan t2)
)
)II

The union_all and m_union_all abstract plan operators force the append- or
merge-based UNION ALL. It isillegal to use these operatorswith a UNION
DISTINCT. The merge algorithm needs no ordering for itself; it makes any
useful ordering from the children available to the parent.

In the following example, the ordering provided by thetwo i_scan
operatorsis made available, by their m_union_all parent, to the m_join
above.

select *
from
tl,
(select c21, c22 from t2
union
select ¢31, c¢32 from t3
) u(ul, u2)
where cll=ul
plan
“(m_join
(m_union all
(1 scan i c21 t2)
(1 scan i ¢31 t3)
)
(1 scan 1 cl11 t1)

)n

Using abstract plans when queries need ordering

An ordering is needed either explicitly, in an ORDER BY query, or
implicitly by merge-based operators such asm_join, m_union_distinct, and
group_sorted.

Anorderingisproduced either explicitly, by the sort abstract plan operator
(the optimizer build the sort key on all columns known to need an
ordering), or implicitly by ani_scan on the indexed columns.

All merge-based operatorsthat require ordering preserveit in their results
for a parent that also requiresit.

Performance and Tuning Series: Query Processing and Abstract Plans 359

Overview

In the following example, thei_scan of t1 providesthe ordering needed by
the m_join. Thei_scan of t2, and the sort over t3's scan, provides the
ordering needed by m_union_distinct. This ordering also provides the
ordering needed by the m_join. Finally, no top sort isrequired as the
ordering needed by ORDER BY is provided by the m_join.

select *
from
tl1,
(select c21, c22 from t2
union distinct
select ¢31, c32 from t3
) u(ul, u2)
where cll=ul
order by cll, u2
plan
“(m_join
(m_union distinct
(i_scan 1 c21 c22 t2)
(sort
(t_scan t3)
)
)
(1 scan i cl1 t1)
)Il

Specifying the reformatting strategy
In this query, t2 is very large, and has no index:

select *

from tl, t2

where cll > 0
and cl2 = c21
and c22 = 0

The abstract plan that specifies the reformatting strategy on t2 is:

(nl join
(t_scan t1)
(store index
(t_scan t2)
)

360 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

The store_index abstract plan operator must be placed on the inner side of
an nl_join. It can be placed over any abstract plan; thereisno longer a
single table scan limitation. Thelegacy (scan (store...)) syntaxis
still accepted.

Specifying the OR strategy

An OR strategy uses aset of index scansto limit the scan with each of the
OR terms, then passes the resulting row |Ds through a UnionDistinct
operator to get, with a RidJoin from the table, the tuples corresponding to
the unique row IDs.

The m_scan (multiscan) abstract plan operator forces index union, hence
the OR strategy:

select * from tl

where cll > 10 or cl2 > 100
plan

“(m_scan tl1l)”

When the store operator is not specified

Storing the stream of tuples into aworktable to meet the intraoperator
needs of an algorithm (Sort, Groupl nserting, and so on), istreated as a
implementation detail of the algorithm and thusis not exposed in the
abstract plan.

Abstract plans expose only the worktables created for interoperator
reasons, such as the self-joined materialized view. In such a case, none of
the operators needs awork table. The causeis, rather, the global nature of
the plan, of computing an intermediate derived table once and using it
twice.

Abstract plans for parallel processing

Partitioned tables scanned in parallel produce partitioned streams of
tuples. Different operators have specific needsfor parallel processing. For
instance, in all joins, either both children must be equipartitioned, or one
child must be replicated.

Performance and Tuning Series: Query Processing and Abstract Plans 361

Overview

The abstract plan xchg operator forces the optimizer to repartition, on-the-
fly, in nways, its child-derived table. The abstract plan only givesthe
degree. The optimizer chooses the most useful partitioning columns and
style (hash, range, list, or round-robin).

In the following example, assume that t1 and t2 are hash partitioned two
ways and three ways on the join columns, andi_c21 isalocal index:

select *
from tl, t2
where cll=c21

The following abstract plan repartitions t1 three ways, does a three-way
parallel nl_join, serializestheresults, and returns asingle datastream to the
client:

(xchg 1
(nl join
(xchg 3
(t_scan t1)
)
(1 scan 1 c21 t2)
)
)

It is not necessary to specify t2's parallel scan. It is hash-partitioned three
ways, and, asit isjoined with an xchg-3, no other planislegal.

Thefollowing abstract plan scans and sortst1 and t2 in parallel, aseach is
partitioned, then serializes them for the m_join:

(m_join
(xchg 1
(sort
(t_scan t1)
)

(xchg 1
(sort
(t_scan t2)

)
)
(prop tl (parallel 2))
(prop t2 (parallel 3))

The parallel abstract plan construct is used to make sure that the optimizer
chooses the parallel scan with the native degree.

362 Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

Tips on writing abstract plans

Here are some additional tips for writing and using abstract plans:

e Look at the current plan for the query and at plans that use the same
guery execution steps as the plan you need to write. It is often easier
to modify an existing plan than to write a full plan from scratch.

e Capturethe plan for the query.
e Usesp_help_gplan to display the SQL text and plan.

« Edit this output to generate a create plan command, or attach an
edited plan to the SQL query using the plan clause.

« Itisoften best to specify partial plansfor query tuning in caseswhere
most optimizer decisions are appropriate, but only an index choice,
for example, needs improvement.

By using partia plans, the optimizer can choose other paths for other
tables as the data in other tables changes.

e Once saved, abstract plans are static. Data volumes and distributions
may change so that saved abstract plans are no longer optimal.

Subsequent tuning changes made by adding indexes, partitioning a
table, or adding buffer pools may mean that some saved plans are not
performing as well as possible under current conditions. Most of the
time, operate with asmall number of abstract plansthat solve specific
problems.

Perform periodic plan checks to verify that the saved plans are still
better than the plan that the optimizer would choose.

Using abstract plans at the query level

You can use abstract plans to force the query plan the query processor
choses to allow several query-level settings. See Chapter 7, “ Controlling
Optimization,” for more information about using abstract plans at the
query level.

The optimization criteriaare handled at the session level by the following
set statements:

Performance and Tuning Series: Query Processing and Abstract Plans 363

Using abstract plans at the query level

364

set

nl_join|merge_join|hash_join|...

on | off
The use ... abstract plan syntax accepts any number of use forms before
the abstract plan derived table. In versions of Adaptive Server earlir than
15.0, optgoal and opttimeout could not be in the same abstract plan with a
derived table. For example, this statement would need to be separate from
aoptgoal statement in aquery:

select
plan
"(use opttimeoutlimit 10) (i scan r)"

However, you can include several statementsin the same abstract plan by:
» Using several use statements. For example:

select
plan
"(use optgoal allrows dss) (use nl join off)

(...
» Placing several items within one use form. For example:

select

plan

"(use (optgoal allrows _dss) (nl join off))
(...)"

At the query level, use the optimization goal (opt_goal) or timeout
(opttimeout) setting with the use ... abstract plan syntax. At the session
level, use these settings with the set plan ... syntax:

e Optimization goal.
e Optimization timeout

For example, join r outer to s and enabl e the hash_join without an
optimization goal (opt_goal):

select
>
> plan
>
"(use hash join on)

(join (scan r) (scan s))"

This example uses the opt_goal and allrows_oltp statements, but with
hash_join enabled:

Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

select ...

>

> plan

>

> "(use opt _goal allrows oltp) (use hash join
on)"

When setting the optimization goal and the optimization criteria at the
query level, the order of the use statements does not affect the outcome.

e The abstract plan optimization goal is set first, and sets the
optimization goal defaults for the optimization criteria.

e You can set abstract plan optimization, which supersedes
optimization goal defaults criteria, you set the optimization goal .

Operator name alignment for abstract plan and optimizer criteria

The names of algorithms differ in how you use them in abstract plans and
how you use them in the set command. For example, ahash joinis called
h_join in abstract plans, but is called hash_join in the set command.
Adaptive Server accepts both keywords in the extended abstract plan
syntax. For example:

select ...
plan

"(h join (t_scan r) (t_scan s))"
isequivalent to:

select ...
plan

"(hash _join (t_scan r) (t_scan s))"
and:

select ...
plan
"(use h join on)"

and:

select ...
plan

Performance and Tuning Series: Query Processing and Abstract Plans 365

Comparing plans before and after

"(use hash join on)"
When atable abstract plan is present, it takes precedence:

select ..

from r, s, t

plan

"(use hash join off)

(h_join (t_scan r) (t_scan s))"

The query usesthehash_join for r and s scans; but for thejoin witht it does
not use hash_join as specified by the use abstract plan form, since it was
not specified in the table abstract plan.

Extending the optimizer criteria set syntax

The set opt criteria Statement accepts on/off/default, where default indicates
that you are using the current optimization goal setting for this
optimization criteria (for the complete set syntax, see Reference Manual:
Commands).

Comparing plans before and after

366

Use abstract query plans to assess the impact of an Adaptive Server
software upgrade or system tuning changes on your query plans. You must
save plans before the changes are made, perform the upgrade or tuning
changes, and then save plans again and compare the plans. The basic set
of stepsis:

1 Enable server-wide capture mode by setting the configuration
parameter abstract plan dump to 1. All plans are then captured in the
default group, ap_stdout.

2 Allow enough time for the captured plans to represent most of the
queriesrun on the system. You can check whether additional plansare
being generated by checking whether the count of rowsin the
ap_stdout group in sysqueryplans is stable:

select count (*) from sysqueryplans where gid = 2

Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

N o o b~

Copy all plansfrom ap_stdout to ap_stdin (or some other group, if you
do not want to use server-wide plan load mode), using
sp_copy_all_gplans.

Drop al query plans from ap_stdout, using sp_drop_all_gplans.
Perform the upgrade or tuning changes.
Allow sufficient time for plans to be captured to ap_stdout.

Compare plansin ap_stdout and ap_stdin, using the diff mode
parameter of sp_cmp_all_gplans. For example, this query compares
al plansin ap_stdout and ap_stdin:

sp_cmp_all gplans ap stdout, ap stdin, diff

Thisdisplays only information about the plansthat are different in the
two groups.

Effects of enabling server-wide capture mode

When server-wide capture mode is enabled, plansfor al queriesthat can
be optimized are saved in all databases on the server. Some possible
system administration impacts are:

When plans are captured, the plan is saved in sysqueryplans and log
records are generated. The amount of space required for the plansand
log records depends on the size and compl exity of the SQL statements
and query plans. Check space in each database where users will be
active.

You may need to perform more frequent transaction log dumps,
especialy in the early stages of server-wide capture when many new
plans are being generated.

If users execute system procedures from the master database, and
installmaster was loaded with server-wide plan capture enabled, then
plans for the statements that can be optimized in system procedures
are saved in master.sysqueryplans.

Thisis aso true for any user-defined procedures created while plan
capture was enabled. You may want to provide a default database at
loginfor al users, including system administrators, if spacein master
is limited.

Performance and Tuning Series: Query Processing and Abstract Plans 367

Abstract plans for stored procedures

e Thesysqueryplans table uses datarows |ocking to reduce lock
contention. However, especially when alarge number of new plans
are being saved, there may be a slight impact on performance.

» While server-wide capture mode is enabled, using bcp saves query
plansin the master database. If you perform bcp using alarge number
of tables or views, check sysqueryplans and the transaction log in
master.

Time and space to copy plans

If you have alarge number of query plansin ap_stdout, be sure thereis
sufficient space to copy them on the system segment before starting the
copy. Use sp_spaceused to check the size of sysqueryplans, and
sp_helpsegment to check the size of the system segment.

Copying plans also requires space in the transaction log.

sp_copy_all_gplans calls sp_copy_gplan for each plan in the group to be
copied. If sp_copy_all_gplans failsat any time dueto lack of space or other
problems, any plans that were successfully copied remain in the target
query plan group.

Abstract plans for stored procedures

368

For abstract plans to be captured for the SQL statements that can be
optimized in stored procedures:

» Theproceduresmust be created while plan capture or plan association
mode is enabled. (This saves the text of the procedurein
sysprocedures.)

» Theprocedure must be executed with plan capture mode enabled, and
the procedure must be read from disk, not from the procedure cache.

This sequence of steps captures the query text and abstract plans for all
statements in the procedure that can be optimized:

set plan dump dev_plans on

go

create procedure myproc as ...
go

Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

exec myproc
go

If the procedure isin cache, and the plans for the procedure are not being
captured, execute the procedure with recompile. Similarly, once a stored
procedure has been executed using an abstract query plan, the plan in the
procedure cacheis used so that query plan association does not take place
unless the procedure is read from disk.

You can use set fmtonly on to capture plansfor a stored procedure without
actually executing the statements in a stored procedure.

Procedures and plan ownership

When plan capture mode is enabled, abstract plans for the statementsin a
stored procedure that can be optimized are saved with the user 1D of the
owner of the procedure.

During plan association mode, association for stored proceduresis based
ontheuser ID of the owner of the procedure, not the user who executesthe
procedure. This means that once an abstract query plan is created for a
procedure, all users who have permission to execute the procedure use the
same abstract plan.

Procedures with variable execution paths and optimization

Executing a stored procedure saves abstract plans for each statement that
can be optimized, even if the stored procedure contains control-of-flow
statements that can cause different statements to be run, depending on
parameters to the procedure or other conditions.

Adaptive Server |oads and saves the abstract plans when the stored
procedures are compiled, not when they are executed.

When Adaptive Server compiles a stored procedure (usually whenitis
first run), it saves an abstract plan for each optimized statement. Adaptive
Server does not influence the abstract plan capture, or whether the stored
procedure contains control-of-flow statements that cause different
statements to be executed, depending on the procedure’s parameters.

Performance and Tuning Series: Query Processing and Abstract Plans 369

Ad hoc queries and abstract plans

If you run the query a second time (without recompilation) with different
parametersthat use adifferent code path, because Adaptive Server already
optimized and saved the plansfor all statements from the earlier
compilation, both the plans and the abstract plansfor the statementsinthis
different code path are available, and are based on the prior stored
procedure’s run parameter values, whether or not these statement were
executed.

However, abstract plans for procedures do not solve the problem caused
by procedureswith statementsthat are optimized differently depending on
conditions or parameters. For exampleis aprocedure where users provide
the low and high values for a between clause, with a query such as:

select title id
from titles
where price between @lo and @hi

Depending on the parameters, the best plan could either be anindex access
or atable scan. The abstract plan may specify either access method,
depending on the parameters used for the initial execution of the
procedure. Abstract plansthat are saved while executing queries or stored
proceduresin tempdb are lost if the server is restarted.

Ad hoc queries and abstract plans

370

Abstract plan capture savesthefull text of the SQL query and abstract plan
association is based on the full text of the SQL query. If users submit ad
hoc SQL statements, rather than using stored procedures or Embedded
SQL, abstract plans are saved for each different combination of query
clauses. This can result in avery large number of abstract plans.

For exampe, if users check the price of a specific title_id using select
statements, an abstract planissaved for each statement. Thefollowing two
queries each generate an abstract plan:

select price from titles where title_ id "T19245"
select price from titles where title id = "T40007"

In addition, there is one plan for each user, that is, if several users check
for thetitle_id “T40007,” aplanis save for each user ID.

If such queries are included in stored procedures, there are two benefits:

« Only only one abstract plan is saved, for example, for the query:

Adaptive Server Enterprise

CHAPTER 13 Abstract Query Plan Guide

select price from titles where title id =
@title id
e Theplanis saved with the user 1D of the user who owns the stored

procedure, and abstract plan association is made based on the
procedure owner’s ID.

Using Embedded SQL, the only abstract plan is saved with the host
variable:

select price from titles
where title_id = :host_var_ id

Performance and Tuning Series: Query Processing and Abstract Plans 371

Ad hoc queries and abstract plans

372 Adaptive Server Enterprise

ciarTER 14 Managing Abstract Plans with
System Procedures

This chapter provides an introduction to the basi ¢ functionality and use of
the system procedures for working with abstract plans. For detailed
information on each procedure, see the Reference Manual: Procedures.

Topic Page
Managing an abstract plan group 373
Finding abstract plans 377
Managing individual abstract plans 377
Managing all plansin agroup 381
Importing and exporting groups of plans 385

Managing an abstract plan group

You can use system proceduresto create, drop, rename, and provide
information about an abstract plan group.

Creating a group

Use sp_add_gpgroup to create and names an abstract plan group. Unless
you are using the default capture group, ap_stdout, you must create aplan
group before you can begin capturing plans. For example, to start saving
plansin agroup called dev_plans, you must create the group, then issue

the set plan dump command, specifying the group name;

sp_add _gpgroup dev_plans
set plan dump dev_plans on
/*SQL queries to capture*/

Only a system administrator or database owner can add abstract plan
groups. Once agroup is created, any user can dump or load plansfrom the

group.

Performance and Tuning Series: Query Processing and Abstract Plans 373

Managing an abstract plan group

Dropping a group

Use sp_drop_gpgroup to drop an abstract plan group.
The following restrictions apply to sp_drop_gpgroup:

e Only asystem administrator or database owner can drop abstract plan
groups.

e You cannot drop agroup that containsplans. Toremoveall plansfrom
agroup, use sp_drop_all_gplans, specifying the group name.

e You cannot drop the default abstract plan groups ap_stdin and
ap_stdout.

This command drops the dev_plans plan group:

sp_drop_gpgroup dev_plans

Getting information about a group

374

sp_help_gpgroup printsinformation about an abstract plan group, or about
all abstract plan groupsin a database.

When you use sp_help_gpgroup without agroup name, it prints the names
of all abstract plan groups, the group 1Ds, and the number of plansin each

group:
sp_help gpgroup

Query plan groups in database ‘pubtune’
Group GID Plans

ap stdin 1 0
ap_stdout 2 2
p_prod 4 0
priv_test 8 1
ptest 3 51
ptest2 7 189

When you use sp_help_gpgroup with a group name, the report provides
statistics about plans in the specified group. This example reports on the
group ptest2:

sp_help gpgroup ptest2
Query plans group 'ptest2', GID 7

Total Rows Total QueryPlans

Adaptive Server Enterprise

CHAPTER 14 Managing Abstract Plans with System Procedures

Mode

452 189
sysqueryplans rows consumption, number of query
plans per row count

Rows Plans
5 2
3 68
2 119
Query plans that use the most sysqueryplans rows
Rows Plan

5 1932533918
5 1964534032
Hashkeys

123
There is no hash key collision in this group.

When reporting on an individual group, sp_help_gpgroup reports:

e Thetotal number of abstract plans, and thetotal number of rowsinthe
sysqueryplans table.

e The number of plansthat have multiple rowsin sysqueryplans. The
plans are listed in descending order, starting with the plans with the
largest number of rows.

e Information about the number of hash keys and hash-key collisions.
Abstract plans are associated with queries by a hashing algorithm
over the entire query.

When a system administrator or the database owner executes
sp_help_gpgroup, the procedure reports on all of the plansin the database
or in the specified group. When any other user executes sp_help_gpgroup,
it reports only on plans that he or she owns.

sp_help_gpgroup provides several report modes. The report modes are;

Information returned

full

The number of rows and number of plansin the group, the number of plans that use two or more
rows, the number of rows and plan IDs for the longest plans, and number of hash keys, and has-
key callision information. Thisis the default report mode.

stats

All of the information from the full report, except hash-key information.

hash

The number of rows and number of abstract plansin the group, the number of hash keys, and hash-
key collision information.

Performance and Tuning Series: Query Processing and Abstract Plans 375

Managing an abstract plan group

Mode Information returned

list The number of rows and number of abstract plansin the group, and the following information for
each query/plan pair: hash key, plan ID, first few characters of the query, and the first few
characters of the plan.

queries The number of rows and number of abstract plansin the group, and the following information for
each query: hash key, plan ID, first few characters of the query.

plans The number of rows and number of abstract plansin the group, and the following information for
each plan: hash key, plan ID, first few characters of the plan.

counts The number of rows and number of abstract plansin the group, and the following information for
each plan: number of rows, number of characters, hash key, plan ID, first few characters of the
query.

This exampl e shows the output for the counts mode:

sp_help gpgroup ptestl, counts
Query plans group 'ptestl', GID 3

Total Rows Total QueryPlans

Query plans in this group

Rows Chars hashkey id query
3 623 1801454852 876530156 select title from titles
3 576 476063777 700529529 select au_lname, au_fname...
3 513 444226348 652529358 select aul.au lname, aul....
3 470 792078608 716529586 select au_lname, au fname...
3 430 789259291 684529472 select aul.au lname, aul....
3 425 1929666826 668529415 select au_lname, au_fname...
3 421 169283426 860530099 select title from titles ...
3 382 571605257 524528902 select pub name from publ...
3 355 845230887 764529757 delete salesdetail where
3 347 846937663 796529871 delete salesdetail where
2 379 1400470361 732529643 update titles set price =...

Renaming a group

A system administrator or database owner can rename an abstract plan
group with sp_rename_gpgroup. This example changes the name of the
group from dev_plans to prod_plans:

376 Adaptive Server Enterprise

CHAPTER 14 Managing Abstract Plans with System Procedures

sp_rename_gpgroup dev_plans, prod plans

The new group name cannot be the name of an existing group.

Finding abstract plans

Use sp_find_gplan to search both the query text and the plan text to find
plans that match a given pattern.

This example finds al plans where the query includes the string “from
titles’:
sp_find gplan "%from titles%"

This example searches for all abstract plans that perform atable scan:

)

sp_find gplan "%t_scan%"

When a system administrator or database owner executes sp_find_gplan,
the procedure examines and reports on plans owned by all users. When
other users execute the procedure, sp_find_gplan searches and reports on
only plans that they own.

To search just one abstract plan group, specify the group name. This
example searches only the test_plans group, finding all plansthat use a
particular index:

sp_find gplan "%i_scan title id ix%", test_plans

For each matching plan, sp_find_gplan printsthe group ID, plan ID, query
text, and abstract plan text.

Managing individual abstract plans

You can use system procedures to print the query and text of individual
plans, to copy, drop, or compare individual plans, or to change the plan
associated with a particul ar query.

Performance and Tuning Series: Query Processing and Abstract Plans 377

Managing individual abstract plans

Viewing a plan

Use sp_help_gplan to report on individual abstract plans. It providesthree
types of reports that you can specify: brief, full, and list. The brief report
prints only the first 78 characters of the query and plan; use full to see the
entire query and plan, or list to display only the first 20 characters of the
query and plan.

This example prints the default brief report:

sp_help gplan 588529130
gid hashkey id

8 1460604254 588529130

select min(price) from titles
plan

(plan
(i _scan type price titles)
()
)
(prop titles
(parallel ...

A system administrator or database owner can use sp_help_gplan to report
on any plan in the database. Other users can view only the plans that they
own.

sp_help_gpgroup reportson al plansin agroup. See* Getting information
about a group” on page 374.

Copying a plan to another group

378

Use sp_copy_gplan to copy an abstract plan from one group to another
existing group. This example copies the plan with plan ID 316528161
from its current group to the prod_plans group:

sp_copy gplan 316528161, prod plans

sp_copy_gplan verifies that the query does not already exist in the
destination group. If a possible conflict exists, sp_copy_gplan runs
sp_cmp_gplans to check plans in the destination group. In addition to the
message printed by sp_cmp_gplans, sp_copy_gplan prints messages when:

Adaptive Server Enterprise

CHAPTER 14 Managing Abstract Plans with System Procedures

e Thequery and plan you are trying to copy already existsin the
destination group

e Another plan in the group has the same user ID and hash key

e Another plan in the group has the same hash key, but the queries are
different

If thereisahash-key collision, the planiscopied. If the plan already exists
in the destination group or if it would give an association key collision, the
plan is not copied. The messages printed by sp_copy_gplan contain the
plan ID of the plan in the destination group, so you can use sp_help_gplan
to check the query and plan.

A system administrator or the database owner can copy any abstract plan.
Other userscan copy only plansthat they own. Theoriginal planand group
are not affected by sp_copy_gplan. The copied planisassigned anew plan
ID, the D of the destination group, and the user I D of the user who ran the
query that generated the plan.

Dropping an individual abstract plan

Use sp_drop_gplan to drop individual abstract plans. This example drops
the specified plan:

sp_drop_gplan 588529130

A system administrator or database owner can drop any abstract planinthe
database. Other users can drop only plans that they own.

To find abstract plan I1Ds, use sp_find_gplan to search for plansusing a
pattern from the query or plan, or use sp_help_gpgroup to list the plansin
agroup.

Comparing two abstract plans

Given two plan IDs, sp_cmp_gplans compares two abstract plans and the
associated queries. For example:

sp_cmp _gplans 588529130, 1932533918

sp_cmp_gplans prints one message reporting the comparison of the query,
and a second message about the plan, as follows:

e For thetwo queries, one of:

Performance and Tuning Series: Query Processing and Abstract Plans 379

Managing individual abstract plans

e Thequeriesare the same.
» Thequeriesare different.
e Thequeriesare different but have the same hash key.
e Forthe plans:
e Thequery plans are the same.
e Thequery plans are different.
This example comparestwo plans where the queries and plans both match:

sp_cmp_gplans 411252620, 1383780087
The queries are the same.
The query plans are the same.

This example compares two plans where the queries match, but the plans
are different:

sp_cmp gplans 2091258605, 647777465
The queries are the same.
The query plans are different.

sp_cmp_gplans returns a status value showing the results of the

comparison.
Table 14-1: Return status values for sp_cmp_qgplans
Return value Meaning
0 The query text and abstract plans are the same.
+1 The queries and hash keys are different.
+2 The queries are different, but the hash keys are the same.
+10 The abstract plans are different.
100 One or both of the plan IDs does not exist.

A system administrator or database owner can compare any two abstract
plansin the database. Other users can compare only plans that they own.

Changing an existing plan

Use sp_set_gplan to change the abstract plan for an existing plan ID
without changing the ID or the query text. You can use sp_set_gplan only
when the plan text is 255 or fewer characters.

sp_set gplan 588529130, "(i_scan title ix titles)™

380 Adaptive Server Enterprise

CHAPTER 14 Managing Abstract Plans with System Procedures

A system administrator or database owner can change the abstract plan for
any saved query. Other users can modify only plans that they own.

When you execute sp_set_gplan, the abstract plan is not checked against
the query text to determine whether the new planisvalid for the query, or
whether the tables and indexes exist. To test the validity of the plan,
execute the associated query.

You can al so use create plan and the plan clause to specify the abstract plan
for aquery. See “Creating plans using SQL” on page 331.

Managing all plans in a group

Copying all plans in

You can use system proceduresto copy al plansin one abstract plan group
to another group, compareall abstract plansin two groups and reports, and
drop all abstract plansin a group.

agroup

Usesp_copy_all_gplans to copy all of the plansin one abstract plan group
to another group. This example copiesal of the plansfrom the test_plans
group to the helpful_plans group:

sp_copy all gplans test plans, helpful plans

Thehelpful_plans group must exist before you executesp_copy_all_gplans.
It can contain other plans.

sp_copy_all_gplans copies each plan in the group by executing
sp_copy_gplan, so copying a plan may fail for the same reasons that
sp_copy_gplan might fail. See “ Comparing two abstract plans’ on page
379.

Each planiscopied asaseparate transaction, and failureto copy any single
plan does not cause sp_copy_all_gplans to fail. If sp_copy_all_gplans fails
for any reason, and has to be restarted, you see a set of messages for the
plansthat havealready been successfully copied, telling you that they exist
in the destination group.

Performance and Tuning Series: Query Processing and Abstract Plans 381

Managing all plans in a group

A new plan ID isassigned to each copied plan. The copied plans have the
original user’s|D. To copy abstract plans and assign new user 1Ds, you
must use sp_export_gpgroup and sp_import_gpgroup. See “Importing and
exporting groups of plans’ on page 385.

A system administrator or database owner can copy all plansinthe
database. Other users can copy only plans that they own.

Comparing all plans in a group
Use sp_cmp_all_gplans to compare all abstract plans in two groups and
reports:
» The number of plansthat are the same in both groups

» Thenumber of plansthat have the same association key, but different
abstract plans

» The number of plans that are present in one group, but not the other
This example compares the plansin ap_stdout and ap_stdin:

sp_cmp_all gplans ap stdout, ap stdin
If the two query plans groups are large, this might take some
time.
Query plans that are the same
count

338
Different query plans that have the same association key

25

382 Adaptive Server Enterprise

CHAPTER 14 Managing Abstract Plans with System Procedures

With the additional specification of areport-mode parameter,
sp_cmp_all_gplans provides detailed information, including the I1Ds,
queries, and abstract plans of the queriesin the groups. The mode
parameter lets you get the detailed information for al plans, or just those
with specific types of differences.

Table 14-2: Report modes for sp_cmp_all_gplans

Mode Reported information

counts The counts of plansthat are the same, plansthat have the same association key, but different groups,
and plans that exist in one group, but not the other. Thisis the default report mode.

brief Theinformation provided by counts, plusthe I Ds of the abstract plansin each group wherethe plans
are different, but the association key isthe same, and the I Ds of plansthat are in one group, but not
in the other.

same All counts, plusthe IDs, queries, and plansfor al abstract plans where the queries and plans match.

diff All counts, plus the IDs, queries, and plans for all abstract plans where the queries and plans are
different.

first All counts, plusthe IDs, queries, and plansfor all abstract plansthat are in the first plan group, but
not in the second plan group.

second All counts, plus the IDs, queries, and plans for all abstract plans that are in the second plan group,
but not in the first plan group.

offending All counts, plusthe IDs, queries, and plansfor all abstract plansthat have different association keys
or that do not exist in both groups. Thisisthe combination of the diff, first, and second modes.

full All counts, plus the IDs, queries, and plans for all abstract plans. Thisis the combination of same

and offending modes.

This example shows the brief report mode:

sp_cmp_all gplans ptestl, ptest2, brief

If the two query plans groups are large, this might take some time.
Query plans that are the same

ptestl

39

ptest2

Performance and Tuning Series: Query Processing and Abstract Plans 383

Managing all plans in a group

764529757 1580532664
780529814 1596532721
796529871 1612532778
908530270 1724533177
Query plans present only in group ’'ptestl’

524528902
1292531638
1308531695

Query plans present only in group ’'ptest2’

count
1
id
2108534545

Dropping all abstract plans in a group

Usesp_drop_all_gplans to drop all abstract plansin agroup. Thisexample
drops al abstract plansin the dev_plans group:

sp _drop_all gplans dev_plans

When a system administrator or the database owner executes
sp_drop_all_gplans, all plans belonging to all users are dropped from the
specified group. When another user executesthis procedure, it affectsonly
the plans owned by that user.

384 Adaptive Server Enterprise

CHAPTER 14 Managing Abstract Plans with System Procedures

Importing and exporting groups of plans

Use sp_export_gpgroup and sp_import_gpgroup to copy groups of plans
between sysqueryplans and a user table. This allows a system
administrator or database owner to:

« Copy abstract plans from one database to another on the same server

« Create atable that can be copied out of the current server with bcp,
and copied into another server

* Assign different user IDsto existing plans in the same database

Exporting plans to a user table

Use sp_export_gpgroup to copy al plans for a specific user from an
abstract plan group to a user table. This example copies plans owned by
the database owner (dbo) from thefast_plans group, creating atable called
transfer:

sp_export gpgroup dbo, fast plans, transfer

Sp_export_gpgroup USES select...into to create atable with the same
columns and datatypes as sysqueryplans. If you do not have the

select into/bulkcopy/plisort option enabled in the database, you can specify
the name of another database. This command creates the export table in
tempdb:

Sp_export gpgroup mary, ap_stdout, "tempdb..mplans"

The table can be copied out using bcp, and copied into a table on another
server. The plans can also be imported to sysqueryplans in another
database on the same server, or the plans can be imported into
sysqueryplans in the same database, with a different group name or user
ID.

Importing plans from a user table

Use sp_import_gpgroup to copy plans from tables created by
sp_export_gpgroup into agroup in sysqueryplans. Thisexample copiesthe
plansfrom thetable tempdb.mplans into ap_stdin, assigning the user 1D for
the database owner:

sp_import gpgroup "tempdb..mplans", dbo, ap_ stdin

Performance and Tuning Series: Query Processing and Abstract Plans 385

Importing and exporting groups of plans

You cannot copy plansinto a group that already contains plans for the
specified user.

386 Adaptive Server Enterprise

Index

A

abstract plan cache configuration parameter 331
abstract plan derived tables 339
abstract plan dump configuration parameter 331
abstract plan groups

adding 373

creating 373

dropping 374

exporting 385

importing 385

information about 374

overview of use 318

plan associationand 318

plan captureand 318

procedures for managing 373-385
abstract plan load configuration parameter 331
abstract plan replace configuration parameter 331
abstract plans

comparing 379

copying 378

finding 377

information about 378

pattern matching 377

viewing with sp_help_gplan 378
accessing

query processing metrics 280
adding

abstract plan groups 373

statistics for unindexed columns 290
adding statistics 290
adjustment

managing runtime 200

recognizing runtime 200

reducing runtime 201

runtime 199
ALS

user log cache 243
ALS. see AsynchronousLog Service 241
application design

cursorsand 277

index specification 235
associating queries with plans

plangroupsand 318

session-level 323
association key

defined 319

plan associationand 319

sp_cmp_all_gplans and 382

sp_copy_gplan and 379
attribute-insensitive operation

parallelism 155
attribute-sensitive operation
parallelism 169
automatically

update statistics 297

B

buffersunavailable 238

C

capturing plans
session-level 322
cheap direct updates 28
clearing query processing metrics 284
close command
memory and 266
close on endtran option, set 277
clustered indexes
prefetchand 237
column-level statistics 300
generating the update statistics 305
truncate table and 301
update statistics and 300
comparing abstract plans 379
composite indexes

Performance and Tuning Series: Query Processing and Abstract Plans 387

Index

update index statistics and 305
compute by processing 88
concurrency optimization

for small tables 259
concurrency optimization threshold

deadlocksand 259
connections

cursorsand 278
controlling parallelism at sessionlevel 139
controlling paralelism for aquery 141
converted search arguments 6
copying

abstract plans 378

plangroups 381

plans 378, 381
covered queries

specifying cache strategy for 239
creating

abstract plan groups 373

column statistics 302

search arguments 18
cursor rows option, set 277
cursors

execute 266

Halloween problem 268

indexesand 267

isolation levelsand 273

lockingand 264

modes 266

multiple 278

read-only 266

stored proceduresand 266

updatable 266

D

data modification update modes 27
data pages prefetching 237
datachange function
statistics 295
datatypes
join 13
deadlocks
concurrency optimization threshold settings
tablescansand 259

388

deallocate cursor command
memory and 266
debugging aids
set forceplan on 232
declare cursor command
memory and 265
default settings
number of tables optimized 234
deferred
index updates 31
updates 30
degree
setting max parallel 136
delete operations
joinsand update mode 30
update modeinjoins 30
delete operator 62, 195
delete statistics command
managing statisticsand 310
deleting plans 379, 384
density join 12
derived tables
abstract plan derived tables 339
SQL 19
SQL derived tables 339
differing parallel query results 144
direct updates 27
cheap 28
expensive 29
in-place 27
joinsand 30
discontinued trace commands
XML 119
drop index command
statisticsand 310
dropping
abstract plan groups 374
indexes specified withindex 235
plans 379, 384
duplication
update performance effect of 30
dynamic parameters, anayzing 122

Adaptive Server Enterprise

E

elimination partition 197
emit operator 52
enable parallelism 135
engine query execution 20
equi-join, transitiveclosure 7
exceptions, optimization goals 16
exchange

operator 148

worker processmode 151
exchange, pipemanagement 149
execute cursors

memory useof 266
executing

query processing metrics 280
execution

preventing with set noexec on 37

exists check mode 327
expensive direct updates 29
exporting plan groups 385
expressions, join 14

F

factors, analyzed for optimization 5
fetching cursors, memory and 266
finding abstract plans 377
fixed-length columns
indexes and update modes 36
for update option, declare cursor
optimizingand 276
forceplan option, set 232
from table 54
function
datachange , statistics 295

G

goals, optimization 15
goals, optimization exceptions 16
group sorted agg

operator 85
group sorted agg operator 85
GroupSorted (Distinct) operator 81

H

Halloween problem
cursorsand 268

hash join

operator 74
hash union
operator 91
hash vector aggregate
operator 86

hash-based table scan 157
HashDistinctOp operator 83
histograms

join 12

steps, number of 306

1/10
direct updatesand 27
prefetch keyword 236
range queriesand 236
specifying sizein queries 236
update operationsand 29
IDENTITY columns
cursorsand 268
importing abstract plan groups 385
index scan 159
clustered 163
clustered, partitioned table 163
covered using nonclustered global
global nonclustered 159

nonclustered, partitioned table 163

162

noncovered, global nonclustered 159

indexes
cursorsusing 267
largel/Ofor 236
search arguments 10
specifying for queries 234
update index statistics on 305
update modesand 35
update operationsand 28, 29
update statistics on 305
in-place updates 27
insert
operator 62, 195

Performance and Tuning Series: Query Processing and Abstract Plans

Index

389

Index

isolation levels
cursors 273

J

Job Scheduler
update statistics 297
join 12
both tables with useless partitioning 173
number of tables considered by optimizer 233
operator 69
outer 180
paralelism 169
parallelism, one table with useful partitioning 171
paralelism, replicated 175
paralelism, tables with same useful partitioning 169
semi 180
serial 178
tableorder in 232
update modeand 30
updatesusing 28, 29, 30
join
density 12
expressions 14
histograms 12
mixed datatypes 13
or predicates 14
ordering 14
joins
updatesusing 29
jtc option, set 246

K

keys, index
update operationson 28

L

large 1/0

index leaf pages 236
Lava

operators 23

390

query engine 21
query execution 25
query plans 21
lightweight procedures and dynamic SQL statements
122
locking
statistics 307
logscan 59
LRU replacement strategy
specifying 240

M

maintenance tasks
forced indexes 235
forceplan checking 232
maintenance, statistics 300
max repartition degree

setting 137

max resource granularity
setting 136
memory

cursorsand 264
mergejoin operator 71
merge union operator 91
messages, dropped index 235
minor columns
update index statistics and 305
modifying abstract plans 380
MRU replacement strategy, disabling 241

N

names
index clauseand 235
index prefetchand 237
nary nested loop join operator 76
nested loop join 70
networks
cursor activity of 272
nonequality, operators 11
nonleading columns sort statistics 308
null columns
optimizing updateson 35

Adaptive Server Enterprise

number (quantity of)
cursor rows 277

tables considered by optimizer 233

@)
object sizes
tuning 19
open command
memory and 266
operations
insert, delete, update 195
operator
delete operator 62
exchange 148
group sortedagg 85
group sorted agg 85
hashjoin 74
hash union 91
hash vector aggregate 86
mergeunion 91
nary nested loop join 76
remotescan 99

restrict 94
RID join 100
scan 52

scroll 99
sequencer 97
sort 94
sofilter 102
store 95

text delete 63
unional 90

update operator 62
operator ,insert operator 62
operator, emit 52
operator, mergejoin 71
operators

GroupSorted (Distinct) 81

HashDistinctOp 83

Lava 23

optimization 4

query plans 52

ScalarAggOp 93

SortOp (Distinct) 82

vector aggregation 84
operators, nonequality 11
optimization

additional paths 9

cursors 266

example search arguments 11

limit time optimizing query 16

operators 4

predicate transformation 9

query transformation 6

techniques 4
optimization goals, exceptions 16
optimization problems 17
optimization, factorsanalyzed 5
optimization, goals 15
optimizer 34-36

overriding 221

query 3

updatesand 34
optimizer diagnostic utility 229-230

configuring Adaptive Server 230

runsp_opt_querystats 230

sp_opt_querystats 229-??

sp_opt_querystats , information provided
option

set rowcount 145
orlist 53
or predicates

join 14
OR strategy, cursorsand 275
order, tablesinajoin 232
ordering, join 14
output

statement 44

XML diagnogtic 112
overhead

cursors 272

deferred updates 30

P

pages, data
prefetchand 237
parallel
query execution model 148

Performance and Tuning Series: Query Processing and Abstract Plans

Index

229

391

Index

query plans 146
query processing 133
setting max degree 136
setting max resource granularity 136
tablescan 156
unional 167
parallel degree, setting max scan 138
parallel processing
query 134
paralelism 17
attribute-insensitive operation 155
attribute-sensitive operation 169
controlling at sessionlevel 139
controlling for aquery 141
distinct vector aggregation 184
in-partitioned vector aggregation 180
join 169
join, both tables with useless partitioning 173
join, one table with useful partitioning 171
join, replicated 175
join, tables with same useful partitioning 169
outer joins 180
query with IN list 184
query with OR clause 186
query with order by clause 188
reformatting 176
repartitioned vector aggregation 181
semijoins 180
serid join 178
seria vector aggregation 183
setting number of worker processes 135
SQL operatoions 154
tablescan 155
two-phased vector aggregation 182
vector aggregation 180
paralelism, enable 135
partia plans
specifying with create plan 317
partition
elimination 197
skew 198
tablescan 157
performance
number of tables considered by optimizer 234
permissions
XML 122

392

pipe management, exchange 149
plan dump option, set 321
plan groups

adding 373

copying 381
copyingtoatable 385
creating 373

dropping 374
dropping dl plansin 384
exporting 385
information about 374
overview of use 318
plan associationand 318
plan captureand 318
reports 374
plan load option, set 323
plan replace option, set 323
plans

changing 380
comparing 379
copying 378, 381
deleting 384

dropping 379, 384
finding 377

modifying 380
searching for 377
predicate transformation 9
prefetch

datapages 237
disabling 239

enabling 239

queries 236
sp_cachestrategy 241
prefetch keyword, /O sizeand 236
problems optimizing queries 17
process_limit_action 200

Q

QP metrics. See query processing metrics
queries

execution settings 37

specifying /O size 236

specifying index for 234
queries, problems optimizing 17

Adaptive Server Enterprise

query
Lavaexecution 25
limit optimizingtime 16
not runin parallel 199
optimizer 3
ORclause 186
parallel execution model 148
paralel processing 134
select-into clause 192
set local variables 145
with IN list 184
with order by clause 188
query anadysis 34-36
dynamic parameters 122
showplan and 37
sp_cachestrategy 241
query optimization 111
query plans 47
Lava 21
operators 52
parallel 146
suboptimal 235
updatable cursorsand 275
query processing
paralle 133
query processing metrics
accessing 280
clearing 284
executing 280
sysquerymetricsview 282
using 282
query, execution engine 20

R

range queries, large /O for 236
read-only cursors 266
indexesand 267
lockingand 272
reduce update statistics impact
referential integrity
constraints 65
update operationsand 28
updatesusing 30
reformatting parallelism 176

remote scan operator 99
replication, update operationsand 28
reports

cache strategy 241
plangroups 374

restrict operator 94

results, differing parallel query 144
RID join operator 100

RID scan 57

row counts statistics, inaccurate 311
row ID (RID) update operationsand 28
runtime

adjustment 199

managing adjustment 200
recognizing adjustment 200
reducing adjustments 201

sampling

statistics 293
use for updating statistics 293

scalar aggregation

serial 166
two phased 165

ScalarAggOp operator 93
Scan

clusteredindex 163

clustered index on partitioned tables 163
index 159

index global nonclustered 159

Index

index noncovered of global nonclustered 159
index, covered use nonclustered global 162

local indexes 163
nonclustered, partitioned table 163
operator 52

scan types statistics 307
scroll operator 99
search arguments

creating 18
example of optimization 11
indexes 10

transitiveclosure 7

search arguments, converted 6
searching for abstract plans 377

Performance and Tuning Series: Query Processing and Abstract Plans

393

Index

select command
specifyingindex 234
select-into query 192

sequencer
operator 97

serid
scalar aggregation 166
unional 168

seria tablescan 155

set

loca variables 145

XML command 112
set command

examples 140

forceplan 232

jtc 246

plan dump 321

plan exists 327

plan load 323

plan replace 323
set plan dump command 322
set plan exists check 327
set plan load command 323
set plan replace command 323
set rowcount

option 145
set theory operations

compared to row-oriented programming
setting

mac parallel degree 136

max repartition degree 137

max resource granularity 136

max scan parallel degree 138

number of worker processes 135
shared keyword, cursorsand 267
shared locks

read-only cursors 267
showplan

statement level output 44

using 37,201
skew, partition 198
sort

operator 94

statistics, unindexed columns 308
sort requirements

statistics 307

394

262

SortOp (Distinct) operator 82
sp_add_gpgroup system procedure 373
sp_cachestrategy system procedure 241
sp_chgattribute system procedure

concurrency_opt_threshold 259
sp_cmp_gplans system procedure 379
sp_copy_all_gplans system procedure 381
sp_copy_gplan system procedure 378
sp_drop_all_gplans system procedure 384
sp_drop_gpgroup system procedure 374
sp_drop_gplan system procedure 379
sp_export_gpgroup system procedure 385
sp_find_gplan system procedure 377
sp_help_gpgroup system procedure 374
sp_help_gplan system procedure 378
sp_import_gpgroup System procedure 385
sp_opt_querystats

configuring Adative Server 230

running 230

system procedure 229

truncating output 230
sp_set_gplan system procedure 380
speed (server)

cheap direct updates 28

deferred index deletes 33

deferred updates 30

direct updates 27

expensive direct updates 29

in-place updates 27

updates 27
safilter, operator 102
SQL

paralelism 154
SQL derived tables 339
SQL standards

cursorsand 262
SQL tables

derived 19
statement level output 44
statistics

adding for unindexed columns 290

column-level 300, 302, 305

creating column statistics 302

datachange function 295

deleting table and column with delete statistics

310

Adaptive Server Enterprise

drop index and 300
getting additional 303

locking 307
sampling 293
scantypes 307

sort requirements 307

sorts for unindexed columns 308
truncate table and 301

update statistics 291

update statistics automaticaly 297

updating 290, 302
using 287
using Job Scheduler 297

statistics clause, create index command 301

statisticsmaintenance 300

statisticssorts, nonleading columns 308

steps

deferred updates 30

direct updates 27
store

operator 95
stored procedures

cursorswithin -~ 270
subqueries 189
sysquerymetrics view

query processing metrics 282

T

table count option, set 233
table scan

forcing 234
hash-based 157
paralled 156
paralelism 155
partition-based 157
serial 155
techniques, optimization 4
testing, index forcing 235
text delete, operator 63

transaction logs, update operationand 27

transformation
predicate 9
transformations
query optimization 6

transitive closure
equi-join 7
search arguments 7
triggers
update modeand 34
update operationsand 28
truncate table command
column-level statisticsand 301
tuning
according to object size 19
advanced techniquesfor 221259
range queries 235
two phased scalar aggregation 165

U

unindexed columns 290
union al

operator 90
parallel 167

serial 168

union operator
cursorsand 275
unique indexes

update modesand 35
update 195

update all statistics 302
update all statistics command 306
update cursors 266
update index statistics 302, 305, 308
update locks

cursorsand 267
update modes

cheap direct 28
deferred 30
deferredindex 31
direct 30
expensivedirect 29
indexingand 35
in-place 27
joinsand 30
optimizing for 34
triggersand 34
update operations 27
update operator 62

Performance and Tuning Series: Query Processing and Abstract Plans

Index

395

Index

update statistics 291
column-level 305
column-level statistics 305
managing statisticsand 300
with consumers clause 309
updating statistics 290, 293, 302
usesampling 293
user IDs
changing with sp_import_gpgroup 385
user log cache, inALS 243

Vv

variables, setting local 145

vector aggregation 180

distinct 184

in-partitioned 180

repartitioned 181

serial 183

two-phased 182
vector aggregation operators 84
view

Sysquerymetrics, query processing metrics 282

W

with statistics clause, create index command 301
worker process mode

exchange 151
worker processes

setting number 135

X

XML
diagnostic output 112
discontinued trace commands 119
permissions 122
set 112

396 Adaptive Server Enterprise

	Performance and Tuning Series: Query Processing and Abstract Plans
	CHAPTER 1 Understanding Query Processing
	Query optimizer
	Factors analyzed in optimizing queries
	Transformations for query optimization
	Search arguments converted to equivalent arguments
	Search argument transitive closure applied where applicable
	equi-join predicate transitive closure applied where applicable
	Predicate transformation and factoring to provide additional optimization paths

	Handling search arguments and useful indexes
	Nonequality operators

	Handling joins
	Join density and join histograms
	Expression histogramming selectivity estimates
	Joins with mixed datatypes
	Joins with expressions and or predicates
	join ordering

	Optimization goals
	Limiting the time spent optimizing a query

	Parallelism
	Optimization issues
	Lava query execution engine
	Lava query plans
	Lava operators
	Lava query execution

	How update operations are performed
	Direct updates
	In-place updates
	Cheap direct updates
	Expensive direct updates

	Deferred updates
	When deferred updates are required

	Deferred index inserts
	Restrictions on update modes through joins
	Joins and subqueries in update and delete statements
	Deletes and updates in triggers versus referential integrity

	Optimizing updates
	Designing for direct updates
	Effects of update types and indexes on update modes

	Using sp_sysmon while tuning updates

	CHAPTER 2 Using showplan
	Displaying a query plan
	Query plans in Adaptive Server Enterprise 15.0 and later
	Why do I get different query plans for the same query?

	Using set showplan with noexec
	Statement-level output
	Query plan shape
	Query plan operators
	EMIT operator
	SCAN operator
	FROM cache message
	FROM or LIST
	FROM TABLE
	I/O size messages
	RID scan
	Log Scan
	DELETE, INSERT, and UPDATE operators
	TEXT DELETE operator
	Query plans for referential integrity enforcement
	JOIN operators
	NESTED LOOP JOIN
	MERGE JOIN
	HASH JOIN
	NARY NESTED LOOP JOIN operator
	semijoin
	Distinct operators
	GROUP SORTED Distinct operator
	SORT Distinct operator
	HASH Distinct operator
	Vector aggregation operators
	compute by message

	Union operators
	UNION ALL operator
	MERGE UNION operator
	HASH UNION
	SCALAR AGGREGATE operator
	RESTRICT operator
	SORT operator
	STORE operator
	SEQUENCER operator
	REMOTE SCAN operator
	SCROLL operator
	RID JOIN operator
	SQLFILTER operator
	EXCHANGE operator

	INSTEAD-OF TRIGGER operators
	INSTEAD-OF TRIGGER operator
	CURSOR SCAN operator
	deferred_index and deferred_varcol messages

	CHAPTER 3 Displaying Query Optimization Strategies and Estimates
	set commands for text format messages
	set commands for XML format messages
	Using show_execio_xml to diagnose query plans
	Showing cached plans in XML

	Diagnostic usage scenarios
	Permissions for set commands
	Analyzing dynamic parameters
	Dynamic parameter example analysis

	CHAPTER 4 Finding Slow Running Queries
	Saving diagnostics to a trace file
	Set options that save diagnostic information to a trace file
	Which sessions are being traced?
	Rebinding a trace

	Displaying SQL text
	Retaining session settings

	CHAPTER 5 Parallel Query Processing
	Vertical, horizontal, and pipelined parallelism
	Queries that benefit from parallel processing
	Enabling parallelism
	number of worker processes
	max parallel degree
	max resource granularity
	max repartition degree
	max scan parallel degree
	prod-consumer overlap factor
	min pages for parallel scan
	max query parallel degree

	Controlling parallelism at the session level
	set command examples

	Controlling query parallelism
	Query-level parallel clause examples

	Using parallelism selectively
	Using parallelism with large numbers of partitions
	When parallel query results differ
	Queries that use set rowcount
	Queries that set local variables

	Understanding parallel query plans
	Adaptive Server parallel query execution model
	EXCHANGE operator
	Pipe management
	Worker process model

	Using parallelism in SQL operations
	Parallelism of attribute-insensitive operation
	Scalar aggregation
	union all
	Parallelism of attribute-sensitive operation
	Subqueries
	select into clauses
	insert/delete/update

	Partition elimination
	Partition skew
	Why queries do not run in parallel
	Runtime adjustment
	Recognizing and managing runtime adjustments
	Using set process_limit_action
	Using showplan
	Reducing the likelihood of runtime adjustments

	CHAPTER 6 Eager and Lazy Aggregation
	Overview
	Eager aggregation

	Aggregation and query processing
	Examples
	Using eager aggregation
	Enabling eager aggregation
	Checking for eager aggregation
	Forcing eager aggregation with abstract plans

	CHAPTER 7 Controlling Optimization
	Special optimizing techniques
	Viewing current optimizer settings
	Setting the optimization level

	Optimizer Diagnostic Utility
	Configuring Adaptive Server to run sp_opt_querystats
	Running sp_opt_querystats

	Specifying query processor choices
	Specifying table order in joins
	Specifying the number of tables considered by the query processor
	Specifying query index
	Specifying I/O size in a query
	Index type and large I/O size
	When prefetch specification cannot be followed
	setting prefetch

	Specifying cache strategy
	In select, delete, and update statements

	Controlling large I/O and cache strategies
	Getting information on cache strategies

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS

	Enabling and disabling merge joins
	Enabling and disabling hash joins
	Enabling and disabling join transitive closure
	Controlling literal parameterization
	Suggesting a degree of parallelism for a query
	Query level parallel clause examples

	Optimization goals
	Setting optimization goals

	Optimization criteria
	Limiting optimization time
	Controlling parallel optimization
	number of worker processes
	Specifying the number of worker processes available for parallel processing
	max resource granularity
	max repartition degree

	Concurrency optimization for small tables
	Changing the locking scheme

	CHAPTER 8 Optimization for Cursors
	Definition
	Set-oriented versus row-oriented programming
	Example

	Resources required at each stage
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem

	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison

	Locking with read-only cursors
	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection

	CHAPTER 9 Query Processing Metrics
	Overview
	Executing QP metrics
	Accessing metrics
	sysquerymetrics view

	Using metrics
	Examples
	Identifying the most expensive statement
	Identifying the most frequently used statement for tuning
	Identifying possible performance regression

	Clearing metrics
	Restricting query metrics capture
	Understanding the UID in sysquerymetrics

	CHAPTER 10 Using Statistics to Improve Performance
	Statistics maintained in Adaptive Server
	Importance of statistics
	Nonbinary character set histogram interpolation

	Updating statistics
	Adding statistics for unindexed columns
	Limitations for updating statistics on proxy tables and views
	update statistics commands
	Using sampling for update statistics

	Automatically updating statistics
	datachange function

	Configuring automatic update statistics
	Using Job Scheduler to update statistics
	Examples of updating statistics with datachange

	Column statistics and statistics maintenance
	Creating and updating column statistics
	When additional statistics may be useful
	Adding statistics for a column with update statistics
	Adding statistics for minor columns with update index statistics
	Adding statistics for all columns with update all statistics

	Choosing step numbers for histograms
	Choosing a step number

	Scan types, sort requirements, and locking
	Sorts for unindexed or nonleading columns
	Locking, scans, and sorts during update index statistics
	Locking, scans and sorts during update all statistics
	Using the with consumers clause
	Reducing the impact of update statistics on concurrent processes

	Using the delete statistics command
	When row counts may be inaccurate

	CHAPTER 11 Introduction to Abstract Plans
	Overview
	Managing abstract plans
	Relationship between query text and query plans
	Limits of options for influencing query plans

	Full versus partial plans
	Creating a partial plan

	Abstract plan groups
	How abstract plans are associated with queries
	Abstract plans in cached statements

	CHAPTER 12 Creating and Using Abstract Plans
	Using set commands to capture and associate plans
	Enabling plan capture mode with set plan dump
	Associating queries with stored plans
	Using replace mode during plan capture
	When to use replace mode

	Using dump, load, and replace modes simultaneously
	Using dump and load to the same group
	Using dump and load to different groups

	Compile-time changes for some set parameters

	set plan exists check option
	Using other set options with abstract plans
	Using show_abstract_plan to view plans
	Using showplan
	Using noexec
	Using fmtonly
	Using forceplan

	Server-wide abstract plan capture and association modes
	Creating plans using SQL
	Using create plan
	Using the plan clause

	CHAPTER 13 Abstract Query Plan Guide
	Overview
	Abstract plan language
	Queries, access methods, and abstract plans
	Derived tables

	Identifying tables
	Identifying indexes
	Specifying join order
	Shorthand notation for joins
	Join order examples
	Match between execution methods and abstract plans
	Specifying join order for queries using views

	Specifying the join type
	Specifying partial plans and hints
	Grouping multiple hints
	Inconsistent and illegal plans using hints

	Creating abstract plans for subqueries
	Materialized subqueries
	Flattened subqueries
	Example of changing the join order in a flattened subquery
	Nested subqueries
	Subquery identification and attachment
	More subquery examples: reading ordering and attachment
	Modifying subquery nesting

	Abstract plans for materialized processing of views
	Abstract plans for queries containing aggregates
	Abstract plans for queries containing unions
	Using abstract plans when queries need ordering
	Specifying the reformatting strategy
	Specifying the OR strategy
	When the store operator is not specified
	Abstract plans for parallel processing

	Tips on writing abstract plans
	Using abstract plans at the query level
	Operator name alignment for abstract plan and optimizer criteria
	Extending the optimizer criteria set syntax

	Comparing plans before and after
	Effects of enabling server-wide capture mode
	Time and space to copy plans

	Abstract plans for stored procedures
	Procedures and plan ownership
	Procedures with variable execution paths and optimization

	Ad hoc queries and abstract plans

	CHAPTER 14 Managing Abstract Plans with System Procedures
	Managing an abstract plan group
	Creating a group
	Dropping a group
	Getting information about a group
	Renaming a group

	Finding abstract plans
	Managing individual abstract plans
	Viewing a plan
	Copying a plan to another group
	Dropping an individual abstract plan
	Comparing two abstract plans
	Changing an existing plan

	Managing all plans in a group
	Copying all plans in a group
	Comparing all plans in a group
	Dropping all abstract plans in a group

	Importing and exporting groups of plans
	Exporting plans to a user table
	Importing plans from a user table

	Index

