
Performance and Tuning Series: Query 
Processing and Abstract Plans
Adaptive Server Enterprise
15.0.2



DOCUMENT ID: DC00743-01-1502-01

LAST REVISED: November  2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. 
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement, 
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other 
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled 
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, 
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed 
are trademarks of Sybase, Inc.  ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Contents
About This Book ...........................................................................................................................  xi

CHAPTER 1 Understanding Query Processing .................................................  1
Query optimizer ................................................................................  3

Factors analyzed in optimizing queries .....................................  6
Transformations for query optimization .....................................  7
Handling search arguments and useful indexes .....................  12
Handling joins..........................................................................  13

Optimization goals..........................................................................  16
Limiting the time spent optimizing a query ..............................  17

Parallelism......................................................................................  18
Optimization issues ........................................................................  18
Lava query execution engine .........................................................  21

Lava query plans .....................................................................  22
How update operations are performed...........................................  29

Direct updates .........................................................................  29
Deferred updates.....................................................................  32
Deferred index inserts .............................................................  33
Restrictions on update modes through joins ...........................  35
Optimizing updates..................................................................  36
Using sp_sysmon while tuning updates ..................................  38

CHAPTER 2 Using showplan.............................................................................  39
Displaying a query plan..................................................................  39

Query plans in Adaptive Server Enterprise 15.0 and later ......  40
Using set showplan with noexec ....................................................  41
Statement-level output ...................................................................  46
Query plan shape...........................................................................  49

Query plan operators...............................................................  54
EMIT operator .........................................................................  54
SCAN operator ........................................................................  54
FROM cache message............................................................  54
FROM or LIST .........................................................................  55
Performance and Tuning Series: Query Processing and Abstract Plans iii



Contents
FROM TABLE .........................................................................  56
Union operators..............................................................................  92

UNION ALL operator ...............................................................  92
MERGE UNION operator ........................................................  93
HASH UNION..........................................................................  93
SCALAR AGGREGATE operator............................................  95
RESTRICT operator ................................................................  96
SORT operator ........................................................................  96
STORE operator......................................................................  97
SEQUENCER operator ...........................................................  99
REMOTE SCAN operator......................................................  101
SCROLL operator..................................................................  101
RID JOIN operator.................................................................  102
SQLFILTER operator ............................................................  104
EXCHANGE operator............................................................  106

INSTEAD-OF TRIGGER operators..............................................  108
INSTEAD-OF TRIGGER operator.........................................  109
CURSOR SCAN operator .....................................................  110
deferred_index and deferred_varcol messages ....................  112

CHAPTER 3 Displaying Query Optimization Strategies and Estimates....... 113
set commands for text format messages .....................................  113
set commands for XML format messages....................................  114

Using show_execio_xml to diagnose query plans.................  116
Usage scenarios ..........................................................................  119
Permissions for set commands ....................................................  122

CHAPTER 4 Finding Slow Running Queries .................................................. 123
Saving diagnostics to a trace file..................................................  123

Set options that save diagnostic information to a trace file ...  125
Which sessions are being traced? ........................................  126
Rebinding a trace ..................................................................  127

Displaying SQL text......................................................................  127
Retaining session settings ...........................................................  130

CHAPTER 5 Parallel Query Processing .......................................................... 131
Vertical, horizontal, and pipelined parallelism ..............................  131
Queries that benefit from parallel processing...............................  132
Enabling parallelism .....................................................................  133

number of worker processes .................................................  133
max parallel degree...............................................................  134
max resource granularity.......................................................  134
iv Adaptive Server Enterprise



Contents
max repartition degree ..........................................................  135
max scan parallel degree ......................................................  135
prod-consumer overlap factor ...............................................  136
min pages for parallel scan ...................................................  136
max query parallel degree.....................................................  136

Controlling parallelism at the session level ..................................  137
set command examples ........................................................  137

Controlling query parallelism........................................................  138
Query-level parallel clause examples....................................  139

Using parallelism selectively ........................................................  139
Using parallelism with large numbers of partitions.......................  140
When parallel query results differ.................................................  142

Queries that use set rowcount...............................................  142
Queries that set local variables .............................................  142

Understanding parallel query plans..............................................  143
Adaptive Server parallel query execution model..........................  145

EXCHANGE operator............................................................  145
Using parallelism in SQL operations .....................................  151
Partition elimination ...............................................................  194
Partition skew ........................................................................  195
Why queries do not run in parallel .........................................  196
Runtime adjustment ..............................................................  196
Recognizing and managing runtime adjustments .................  197

CHAPTER 6 Eager and Lazy Aggregation .....................................................  199
Overview ......................................................................................  199

Eager aggregation.................................................................  200
Aggregation and query processing ..............................................  201
Examples .....................................................................................  204
Using eager aggregation..............................................................  211

Enabling eager aggregation ..................................................  211
Checking for eager aggregation ............................................  211
Forcing eager aggregation with abstract plans .....................  214

CHAPTER 7 Controlling Optimization ............................................................  217
Special optimizing techniques......................................................  217
Viewing current optimizer settings ...............................................  218
Specifying query processor choices.............................................  221
Specifying table order in joins ......................................................  222
Specifying the number of tables considered by the query processor..  

223
Specifying query index .................................................................  224
Specifying I/O size in a query.......................................................  226
Performance and Tuning Series: Query Processing and Abstract Plans v



Contents
Index type and large I/O size.................................................  227
When prefetch specification cannot be followed ...................  228
setting prefetch......................................................................  229

Specifying cache strategy ............................................................  229
In select, delete, and update statements...............................  230

Controlling large I/O and cache strategies ...................................  231
Getting information on cache strategies................................  231

Asynchronous log service ............................................................  231
Understanding the user log cache (ULC) architecture ..........  233
When to use ALS ..................................................................  233
Using the ALS .......................................................................  234

Enabling and disabling merge joins .............................................  234
Enabling and disabling hash joins................................................  235
Enabling and disabling join transitive closure ..............................  235
Controlling literal parameterization...............................................  236
Suggesting a degree of parallelism for a query............................  238

Query level parallel clause examples....................................  240
Optimization goals........................................................................  240

Setting optimization goals .....................................................  241
Optimization criteria .....................................................................  242
Limiting optimization time.............................................................  245
Controlling parallel optimization ...................................................  246

number of worker processes .................................................  247
Specifying the number of worker processes available for parallel 

processing ......................................................................  247
max resource granularity.......................................................  247
max repartition degree ..........................................................  248

Concurrency optimization for small tables ...................................  248
Changing the locking scheme ...............................................  249

CHAPTER 8 Optimization for Cursors ............................................................ 251
Definition ......................................................................................  251

Set-oriented versus row-oriented programming ....................  252
Example ................................................................................  253

Resources required at each stage ...............................................  254
Memory use and execute cursors .........................................  256

Cursor modes...............................................................................  257
Index use and requirements for cursors.......................................  257

Allpages-locked tables ..........................................................  258
Data-only-locked tables.........................................................  258

Comparing performance with and without cursors.......................  259
Sample stored procedure without a cursor............................  259
Sample stored procedure with a cursor.................................  260
Cursor versus noncursor performance comparison ..............  261
vi Adaptive Server Enterprise



Contents
Locking with read-only cursors.....................................................  262
Isolation levels and cursors..........................................................  264
Partitioned heap tables and cursors.............................................  264
Optimizing tips for cursors............................................................  265

Optimizing for cursor selects using a cursor .........................  265
Using union instead of or clauses or in lists ..........................  266
Declaring the cursor’s intent ..................................................  266
Specifying column names in the for update clause ...............  266
Using set cursor rows............................................................  267
Keeping cursors open across commits and rollbacks ...........  268
Opening multiple cursors on a single connection..................  268

CHAPTER 9 Query Processing Metrics..........................................................  269
Overview ......................................................................................  269
Executing QP metrics...................................................................  270
Accessing metrics ........................................................................  270

sysquerymetrics view ............................................................  270
Using metrics ...............................................................................  272

Examples...............................................................................  273
Clearing metrics ...........................................................................  274
Restricting query metrics capture.................................................  275
Understanding the UID in sysquerymetrics..................................  276

CHAPTER 10 Using Statistics to Improve Performance.................................  277
Statistics maintained in Adaptive Server......................................  277
Importance of statistics ................................................................  278

Nonbinary character set histogram interpolation...................  279
Updating statistics ........................................................................  280

Adding statistics for unindexed columns ...............................  280
Limitations for updating statistics on proxy tables and views  281
update statistics commands ..................................................  281
Using sampling for update statistics......................................  283

Automatically updating statistics ..................................................  284
datachange function ..............................................................  285

Configuring automatic update statistics .......................................  287
Using Job Scheduler to update statistics ..............................  287
Examples of updating statistics with datachange..................  289

Column statistics and statistics maintenance...............................  290
Creating and updating column statistics ......................................  292

When additional statistics may be useful ..............................  293
Adding statistics for a column with update statistics .............  295
Adding statistics for minor columns with update index statistics ..  

295
Performance and Tuning Series: Query Processing and Abstract Plans vii



 

Adding statistics for all columns with update all statistics...... 296
Choosing step numbers for histograms........................................ 296

Choosing a step number........................................................ 297
Scan types, sort requirements, and locking.................................. 297

Sorts for unindexed or nonleading columns .......................... 298
Locking, scans, and sorts during update index statistics....... 298
Locking, scans and sorts during update all statistics............. 299
Using the with consumers clause .......................................... 299
Reducing the impact of update statistics on concurrent processes 

299
Using the delete statistics command ............................................ 300
When row counts may be inaccurate ........................................... 301

CHAPTER 11 Introduction to Abstract Plans...................................................  303
Overview....................................................................................... 303
Managing abstract plans .............................................................. 304
Relationship between query text and query plans........................ 305

Limits of options for influencing query plans.......................... 305
Full versus partial plans................................................................ 306

Creating a partial plan............................................................ 307
Abstract plan groups..................................................................... 308
How abstract plans are associated with queries .......................... 308

CHAPTER 12 Creating and Using Abstract Plans...........................................  311
Using set commands to capture and associate plans .................. 311

Enabling plan capture mode with set plan dump................... 312
Associating queries with stored plans.................................... 313
Using replace mode during plan capture ............................... 313
Using dump, load, and replace modes simultaneously ......... 314
Compile-time changes for some set parameters ................... 316

set plan exists check option.......................................................... 317
Using other set options with abstract plans .................................. 318

Using show_abstract_plan to view plans............................... 318
Using showplan ..................................................................... 319
Using noexec......................................................................... 319
Using fmtonly ......................................................................... 320
Using forceplan...................................................................... 320

Server-wide abstract plan capture and association modes .......... 320
Creating plans using SQL............................................................. 321

Using create plan................................................................... 321
Using the plan clause ............................................................ 323
viii   Adaptive Server Enterprise



CHAPTER 13 Abstract Query Plan Guide.........................................................  325
Overview....................................................................................... 325

Abstract plan language .......................................................... 326
Identifying tables.................................................................... 329
Identifying indexes ................................................................. 331
Specifying join order .............................................................. 331
Specifying the join type.......................................................... 335
Specifying partial plans and hints .......................................... 336
Creating abstract plans for subqueries .................................. 339
Abstract plans for materialized views .................................... 346
Abstract plans for queries containing aggregates.................. 347
Abstract plans for queries containing unions ......................... 348
Using abstract plans when queries need ordering................. 349
Specifying the reformatting strategy ...................................... 350
Specifying the OR strategy .................................................... 351
When the store operator is not specified ............................... 351
Abstract plans for parallel processing.................................... 351

Tips on writing abstract plans ....................................................... 353
Using abstract plans at the query level......................................... 353

Operator name alignment for abstract plan and optimizer criteria 
355

Extending the optimizer criteria set syntax ............................ 356
Comparing plans before and after ................................................ 356

Effects of enabling server-wide capture mode....................... 357
Time and space to copy plans ............................................... 358

Abstract plans for stored procedures............................................ 358
Procedures and plan ownership ............................................ 359
Procedures with variable execution paths and optimization .. 359

Ad hoc queries and abstract plans ............................................... 360

CHAPTER 14 Managing Abstract Plans with System Procedures.................  363
Managing an abstract plan group ................................................. 363

Creating a group .................................................................... 363
Dropping a group ................................................................... 364
Getting information about a group ......................................... 364
Renaming a group ................................................................. 366

Finding abstract plans .................................................................. 367
Managing individual abstract plans .............................................. 367

Viewing a plan ....................................................................... 368
Copying a plan to another group ........................................... 368
Dropping an individual abstract plan...................................... 369
Comparing two abstract plans ............................................... 369
Changing an existing plan ..................................................... 370

Managing all plans in a group....................................................... 371
Performance and Tuning Series: Query Processing and Abstract Plans  ix



 

Copying all plans in a group .................................................. 371
Comparing all plans in a group .............................................. 372
Dropping all abstract plans in a group ................................... 374

Importing and exporting groups of plans ...................................... 375
Exporting plans to a user table .............................................. 375
Importing plans from a user table .......................................... 375

Index............................................................................................................................................ 377
x   Adaptive Server Enterprise



About This Book

Audience This book is for System and Database Administrators.

How to use this book • Chapter 1, “Understanding Query Processing” – provides an 
overview of the query processor in Adaptive Server Enterprise.

• Chapter 2, “Using showplan” – describes the messages printed by the 
showplan utility.

• Chapter 3, “Displaying Query Optimization Strategies and 
Estimates” – describes the messages printed by the set commands 
designed for query optimization.

• Chapter 4, “Finding Slow Running Queries” – describes the set 
show_sqltext, set tracefile, and set export_options parameters that 
enable you to collect diagnostic information about poorly-running 
queries.

• Chapter 5, “Parallel Query Processing” – describes how Adaptive 
Server supports horizontal and vertical parallelism for query 
execution.

• Chapter 6, “Eager and Lazy Aggregation” – discusses eager and lazy 
aggregation in Adaptive Server.

• Chapter 7, “Controlling Optimization” – describes query processing 
options that affect the query processor’s choice of join order, index, 
I/O size, and cache strategy.

•  Chapter 8, “Optimization for Cursors” – discusses performance 
issues related to cursors.

• Chapter 9, “Query Processing Metrics” – explains what query 
processing metrics are, what they do, and how you can use them

• Chapter 10, “Using Statistics to Improve Performance” – explains 
how and when to use the commands that manage statistics.

• Chapter 11, “Introduction to Abstract Plans” – reviews the basic 
concepts of abstract plans.
Performance and Tuning Series: Query Processing and Abstract Plans xi



 

• Chapter 12, “Creating and Using Abstract Plans” – provides an overview 
of the commands used to capture abstract plans and to associate incoming 
SQL queries with saved plans.

• Chapter 13, “Abstract Query Plan Guide” – provides guidelines for your 
use in writing abstract plans

• Chapter 14, “Managing Abstract Plans with System Procedures” – 
provides an introduction to the basic functionality and use of system 
procedures for working with abstract plans.

Related documents The Adaptive Server® Enterprise documentation set consists of the following:

• The release bulletin for your platform – contains last-minute information 
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the 
World Wide Web. To check for critical product or document information 
that was added after the release of the product CD, use the Sybase 
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade, 
and configuration procedures for all Adaptive Server and related Sybase 
products.

• What’s New in Adaptive Server Enterprise? – describes the new features 
in Adaptive Server version 15.0, the system changes added to support 
those features, and changes that may affect your existing applications.

• ASE Replicator User’s Guide – describes how to use the Adaptive Server 
Replicator feature of Adaptive Server to implement basic replication from 
a primary server to one or more remote Adaptive Servers.

• Component Integration Services User’s Guide – explains how to use the 
Adaptive Server Component Integration Services feature to connect 
remote Sybase and non-Sybase databases.

• The Configuration Guide for your platform – provides instructions for 
performing specific configuration tasks for Adaptive Server.

• Enhanced Full-Text Search Specialty Data Store User’s Guide – describes 
how to use the Full-Text Search feature with Verity to search Adaptive 
Server Enterprise data.

• Glossary – defines technical terms used in the Adaptive Server 
documentation.

• Historical Server User’s Guide – describes how to use Historical Server to 
obtain performance information for SQL Server® and Adaptive Server.
xii  Adaptive Server Enterprise



     About This Book
• Java in Adaptive Server Enterprise – describes how to install and use Java 
classes as datatypes, functions, and stored procedures in the Adaptive 
Server database.

• Job Scheduler User's Guide – provides instructions on how to install and 
configure, and create and schedule jobs on a local or remote Adaptive 
Server using the command line or a graphical user interface (GUI).

• Messaging Service User’s Guide  – describes how to useReal Time 
Messaging Services to integrate TIBCO Java Message Service and IBM 
WebSphere MQ messaging services with all Adaptive Server database 
applications.

• Monitor Client Library Programmer’s Guide – describes how to write 
Monitor Client Library applications that access Adaptive Server 
performance data.

• Monitor Server User’s Guide – describes how to use Monitor Server to 
obtain performance statistics from SQL Server and Adaptive Server.

• Performance and Tuning Series – a series of books that explain how to 
tune Adaptive Server for maximum performance:

• Basics – the basics for understanding and investigating performance 
questions in Adaptive Server. 

• Locking and Concurrency Control – describes how the various 
locking schemas can be used for improving performance in Adaptive 
Server, and how to select indexes to minimize concurrency.

• Query Processing and Abstract Plans – describes how the optimizer 
processes queries and how abstract plans can be used to change some 
of the optimizer plans.

• Physical Database Tuning – describes how to manage physical data 
placement, space allocated for data, and the temporary databases.

• Monitoring Adaptive Server with sp_sysmon – describes how to 
monitor Adaptive Server’s performance with sp_sysmon.

• Improving Performance with Statistical Analysis – describes how 
Adaptive Server stores and displays statistics, and how to use the set 
statistics command to analyze server statistics.

• Using the Monitoring Tables – describes how to query Adaptive 
Server’s monitoring tables for statistical and diagnostic information.
Performance and Tuning Series: Query Processing and Abstract Plans  xiii



 

• Quick Reference Guide – provides a comprehensive listing of the names 
and syntax for commands, functions, system procedures, extended system 
procedures, data types, and utilities in a pocket-sized book (regular size 
when viewed in PDF format).

• Reference Manual – is a series of four books that contains the following 
detailed Transact-SQL information:

• Building Blocks – Transact-SQL datatypes, functions, global 
variables, expressions, identifiers and wildcards, and reserved words.

• Commands – Transact-SQL commands.

• Procedures – Transact-SQL system procedures, catalog stored 
procedures, system extended stored procedures, and dbcc stored 
procedures.

• Tables – Transact-SQL system tables and dbcc tables.

• System Administration Guide –

• Volume 1 – provides an introduction to the basics of system 
administration, including a description of configuration parameters, 
resource issues, character sets, sort orders, and diagnosing system 
problems. The second part of this book is an in-depth description of 
security administration.

• Volume 2 – includes instructions and guidelines for managing 
physical resources, mirroring devices, configuring memory and data 
caches, managing multiprocessor servers and user databases, 
mounting and unmounting databases, creating and using segments, 
using the reorg command, and checking database consistency. The 
second half of this book describes how to back up and restore system 
and user databases.

• System Tables Diagram – illustrates system tables and their entity 
relationships in a poster format. Full-size available only in print version; a 
compact version is available in PDF format.

• Transact-SQL User’s Guide – documents Transact-SQL, the Sybase 
enhanced version of the relational database language. This manual serves 
as a textbook for beginning users of the database management system. 
This manual also contains descriptions of the pubs2 and pubs3 sample 
databases.

• Troubleshooting Series (for release 15.0):
xiv  Adaptive Server Enterprise



     About This Book
• Troubleshooting: Error Messages Advanced Resolutions – contains 
troubleshooting procedures for problems that you may encounter 
when using Sybase® Adaptive Server® Enterprise. The problems 
addressed here are those which the Sybase Technical Support staff 
hear about most often

• Troubleshooting and Error Messages Guide – contains detailed 
instructions on how to resolve the most frequently occurring Adaptive 
Server error messages. Most of the messages presented here contain 
error numbers (from the master..sysmessages table), but some error 
messages do not have error numbers, and occur only in Adaptive 
Server’s error log.

• User Guide for Encrypted Columns – describes how configure and use 
encrypted columns with Adaptive Server

• Using Adaptive Server Distributed Transaction Management Features – 
explains how to configure, use, and troubleshoot Adaptive Server DTM 
features in distributed transaction processing environments.

• Using Sybase Failover in a High Availability System – provides 
instructions for using Sybase Failover to configure an Adaptive Server as 
a companion server in a high availability system.

• Unified Agent and Agent Management Console – describes the Unified 
Agent, which provides runtime services to manage, monitor and control 
distributed Sybase resources. 

• Utility Guide – documents the Adaptive Server utility programs, such as 
isql and bcp, which are executed at the operating system level.

• Web Services User’s Guide – explains how to configure, use, and 
troubleshoot Web Services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO – 
provides instructions for using the Sybase DTM XA interface with 
X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native 
XML processor and the Sybase Java-based XML support, introduces 
XML in the database, and documents the query and mapping functions 
that comprise XML Services.

Other sources of 
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product 
Manuals Web site to learn more about your product: 
Performance and Tuning Series: Query Processing and Abstract Plans  xv



 

• The Getting Started CD contains release bulletins and installation guides 
in PDF format, and may also contain other documents or updated 
information not included on the SyBooks CD. It is included with your 
software. To read or print documents on the Getting Started CD, you need 
Adobe Acrobat Reader, which you can download at no charge from the 
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your 
software. The Eclipse-based SyBooks browser allows you to access the 
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can 
access through the PDF directory on the SyBooks CD. To read or print the 
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the 
README.txt file on the SyBooks CD for instructions on installing and 
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks 
CD that you can access using a standard Web browser. In addition to 
product manuals, you will find links to EBFs/Maintenance, Technical 
Documents, Case Management, Solved Cases, newsgroups, and the 
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at 
http://www.sybase.com/support/manuals/.

Sybase certifications 
on the Web

Technical documentation at the Sybase Web site is updated frequently.

v Finding the latest information on product certifications 

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe 
and then click Go.

4 Click a Certification Report title to display the report.

v Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at 
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base 
Product; or select the platform and product under Search by Platform.
xvi  Adaptive Server Enterprise



     About This Book
3 Select Search to display the availability and certification report for the 
selection.

v Creating a personalized view of the Sybase Web site (including support 
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create 
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and 
software 
maintenance

v Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at 
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name 
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is 
displayed.

Padlock icons indicate that you do not have download authorization for 
certain EBF/Maintenance releases because you are not registered as a 
Technical Support Contact. If you have not registered, but have valid 
information provided by your Sybase representative or through your 
support contract, click Edit Roles to add the “Technical Support Contact” 
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the 
product description to download the software.

Conventions The following sections describe conventions used in this manual.

SQL is a free-form language. There are no rules about the number of words you 
can put on a line or where you must break a line. However, for readability, all 
examples and most syntax statements in this manual are formatted so that each 
clause of a statement begins on a new line. Clauses that have more than one part 
extend to additional lines, which are indented. Complex commands are 
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual: 
Performance and Tuning Series: Query Processing and Abstract Plans  xvii



 

Table 1: Font and syntax conventions for this manual

• Syntax statements (displaying the syntax and all options for a command) 
appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name  
    from table_name  
    where search_conditions

Element Example

Command names,procedure names, utility names, and 
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font. master database

Book names, file names, variables, and path names are 
in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

Variables—or words that stand for values that you fill 
in—when they are part of a query or statement, are in 
italics in Courier font.

select column_name 
    from table_name 
    where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is 
written in BNF notation. Do not type this symbol. 
Indicates “is defined as”.

::=

Curly braces mean that you must choose at least one 
of the enclosed options. Do not type the braces. 

{cash, check, credit}

Brackets mean that to choose one or more of the 
enclosed options is optional. Do not type the brackets. 

[cash | check | credit]

The comma means you may choose as many of the 
options shown as you want. Separate your choices 
with commas as part of the command.

cash, check, credit

The pipe or vertical bar( | ) means you may select only 
one of the options shown. 

cash | check | credit

An ellipsis (...) means that you can repeat the last unit 
as many times as you like.

buy thing = price [cash | check | credit]  
[, thing = price [cash | check | credit] ]...

You must buy at least one thing and give its price. You may 
choose a method of payment: one of the items enclosed in 
square brackets. You may also choose to buy additional 
things: as many of them as you like. For each thing you 
buy, give its name, its price, and (optionally) a method of 
payment.
xviii  Adaptive Server Enterprise



     About This Book
In syntax statements, keywords (commands) are in normal font and 
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like 
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id    pub_name                city          state  
-------   ---------------------   -----------   -----  
0736      New Age Books           Boston        MA  
0877      Binnet & Hardley        Washington    DC  
1389      Algodata Infosystems    Berkeley      CA  
 
(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can 
disregard case when typing Transact-SQL keywords. For example, SELECT, 
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table 
names, depends on the sort order installed on Adaptive Server. You can change 
case sensitivity for single-byte character sets by reconfiguring the Adaptive 
Server sort order. For more information, see the System Administration Guide.

Accessibility 
features

This document is available in an HTML version that is specialized for 
accessibility. You can navigate the HTML with an adaptive technology such as 
a screen reader, or view it with a screen enlarger. 

Adaptive Server HTML documentation has been tested for compliance with 
U.S. government Section 508 Accessibility requirements. Documents that 
comply with Section 508 generally also meet non-U.S. accessibility guidelines, 
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note  You might need to configure your accessibility tool for optimal use. 
Some screen readers pronounce text based on its case; for example, they 
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as 
words. You might find it helpful to configure your tool to announce syntax 
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase 
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility 
site includes links to information on Section 508 and W3C standards.
Performance and Tuning Series: Query Processing and Abstract Plans  xix



 

If you need help Each Sybase installation that has purchased a support contract has one or more 
designated people who are authorized to contact Sybase Technical Support. If 
you cannot resolve a problem using the manuals or online help, please have the 
designated person contact Sybase Technical Support or the Sybase subsidiary 
in your area.
xx  Adaptive Server Enterprise



C H A P T E R  1 Understanding Query Processing

This chapter provides an overview of the query processor in Adaptive 
Server Enterprise.

The query processor is designed to process queries you specify. The 
processor yields highly efficient query plans that execute using minimal 
resources, and ensure that results are consistent and correct.

To process a query efficiently, the query processor uses:

• The specified query

• Statistics about the tables, indexes, and columns named in the query

• Configurable variables

The query processor has to execute several steps, using several modules, 
to successfully process a query: 

Topic Page
Query optimizer 3

Optimization goals 16

Parallelism 18

Optimization issues 18

Lava query execution engine 21
Performance and Tuning Series: Query Processing and Abstract Plans 1



 

Figure 1-1: : Query processor modules

1 The parser converts the text of the SQL statement to an internal 
representation called a query tree.

2 This query tree is normalized. This involves determining column and table 
names, transforming the query tree into conjugate normal form (CNF), and 
resolving datatypes. At this point, you can determine if the statement may 
benefit from using the statement cache.

3 The preprocessor transforms the query tree for some types of SQL 
statements, such as SQL statements with subqueries and views, to a more 
efficient query tree.

4 The optimizer analyzes the possible combinations of operations (join 
ordering, access and join methods, parallelism) to execute the SQL 
statement, and selects an efficient one based on the cost estimates of the 
alternatives.

5 The code generator converts the query plan generated by the optimizer 
into a format more suitable for the query execution engine.

6 The procedural engine executes command statements such as create table, 
execute procedure, and declare cursor directly. For data manipulation 
language (DML) statements, such as select, insert, delete, and update, the 
engine sets up the execution environment for all query plans and calls the 
query execution engine.

7 The query execution engine executes the ordered steps specified in the 
query plan provided by the code generator.

3: Preprocessor

4: Optimizer

6: Procedural execution engine 6: Query execution 
engine

1: Parser

5: Code generator

2:Normalization
2   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Query optimizer
The query optimizer provides speed and efficiency for online transaction 
processing (OLTP) and operational decision-support systems (DSS) 
environments. You can choose an optimization strategy that best suits your 
query environment.

The query optimizer is self-tuning, and requires fewer interventions than 
versions of Adaptive Server Enterprise ealier than 15.0. It relies infrequently 
on worktables for materialization between steps of operations; however, the 
query optimizer may use more worktables when it determines that hash and 
merge operations are more effective.

Some of the key features in the release 15.0 query optimizer include support 
for:

• New optimization techniques and query execution operator supports that 
enhance query performance, such as:

• On-the-fly grouping and ordering operator support using in-memory 
sorting and hashing for queries with group by and order by clauses

• hash and merge join operator support for efficient join operations

• index union and index intersection strategies for queries with predicates 
on different indexes

Table 1-1 on page 5 is a list of optimization techniques and operator 
support provided in Adaptive Server Enterprise. Many of these techniques 
map directly to the operators supported in the query execution. See “Lava 
query execution engine” on page 21.

• Improved index selection, especially for joins with or clauses, and joins 
with and search arguments (SARGs) with mismatched but compatible 
datatypes

• Improved costing that employs join histograms to prevent inaccuracies that 
might otherwise arise due to data skews in joining columns

• New cost-based pruning and timeout mechanisms in join ordering and plan 
strategies for large, multiway joins, and for star and snowflake schema 
joins

• New optimization techniques to support data and index partitioning 
(building blocks for parallelism) that are especially beneficial for very 
large data sets

• Improved query optimization techniques for vertical and horizontal 
parallelism. See Chapter 5, “Parallel Query Processing.”
Performance and Tuning Series: Query Processing and Abstract Plans  3



Query optimizer 
• Improved problem diagnosis and resolution through:

• Searchable XML format trace outputs

• Detailed diagnostic output from new set commands. See Chapter 3, 
“Displaying Query Optimization Strategies and Estimates.” 
4   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Table 1-1: Optimization operator support

operator Description

hash join Determines whether the query optimizer may use the 
hash join algorithm. hash join may consume more 
runtime resources, but is valuable when the joining 
columns do not have useful indexes or when a relatively 
large number of rows satisfy the join condition, 
compared to the product of the number of rows in the 
joined tables.

hash union distinct Determines whether the query optimizer may use the 
hash union distinct algorithm, which is inefficient if 
most rows are distinct.

merge join Determines whether the query optimizer may use the 
merge join algorithm, which relies on ordered input. 
merge join is most valuable when input is ordered on the 
merge key, for example, from an index scan. merge join 
is less valuable if sort operators are required to order 
input.

merge union all Determines whether the query optimizer may use the 
merge algorithm for union all. merge union all maintains 
the ordering of the result rows from the union input. 
merge union all is particularly valuable if the input is 
ordered and a parent operator (such as merge join) 
benefits from that ordering. Otherwise, merge union all 
may require sort operators that reduce efficiency.

merge union distinct Determines whether the query optimizer may use the 
merge algorithm for union. merge union distinct is 
similar to merge union all, except that duplicate rows are 
not retained. merge union distinct requires ordered input 
and provides ordered output.

nested-loop-join The nested-loop-join algorithm is the most common 
type of join method and is most useful in simple OLTP 
queries that do not require ordering.

append union all Determines whether the query optimizer may use the 
append algorithm for union all.

distinct hashing Determines whether the query optimizer may use a 
hashing algorithm to eliminate duplicates, which is very 
efficient when there are few distinct values compared to 
the number of rows.

distinct sorted Determines whether the query optimizer may use a 
single-pass algorithm to eliminate duplicates. distinct 
sorted relies on an ordered input stream, and may 
increase the number of sort operators if its input is not 
ordered.
Performance and Tuning Series: Query Processing and Abstract Plans  5



Query optimizer 
Factors analyzed in optimizing queries
Query plans consist of retrieval tactics and an ordered set of execution steps, 
which retrieve the data needed by the query. In developing query plans, the 
query optimizer examines:

• The size of each table in the query, both in rows and data pages, and the 
number of OAM and allocation pages to be read.

• The indexes that exist on the tables and columns used in the query, the type 
of index, and the height, number of leaf pages, and cluster ratios for each 
index.

• The index coverage of the query; that is, whether the query can be satisfied 
by retrieving data from the index leaf pages without accessing the data 
pages. Adaptive Server can use indexes that cover queries, even if no 
where clauses are included in the query.

• The density and distribution of keys in the indexes.

group-sorted Determines whether the query optimizer may use an 
on-the-fly grouping algorithm. group-sorted relies on an 
input stream sorted on the grouping columns, and it 
preserves this ordering in its output.

distinct sorting Determines whether the query optimizer may use the 
sorting algorithm to eliminate duplicates. distinct sorting 
is useful when the input is not ordered (for example, if 
there is no index) and the output ordering generated by 
the sorting algorithm could benefit; for example, in a 
merge join.

group hashing Determines whether the query optimizer may use a 
group hashing algorithm to process aggregates.

Technique Description

multi table store ind Determines whether the query optimizer may use 
reformatting on the result of a multiple table join. Using 
multi table store ind may increase the use of worktables.

opportunistic distinct view Determines whether the query optimizer may use a 
more flexible algorithm when enforcing distinctness.

index intersection Determines whether the query optimizer may use the 
intersection of multiple index scans as part of the query 
plan in the search space.

operator Description
6   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
• The size of the available data cache or caches, the size of I/O supported by 
the caches, and the cache strategy to be used.

• The cost of physical and logical reads; that is, reads of physical I/O pages 
from the disk, and of logical I/O reads from main memory.

• join clauses, with the best join order and join type, considering the costs and 
number of scans required for each join and the usefulness of indexes in 
limiting the I/O.

• Whether building a worktable (an internal, temporary table) with an index 
on the join columns is faster than repeated table scans if there are no useful 
indexes for the inner table in a join.

• Whether the query contains a max or min aggregate that can use an index 
to find the value without scanning the table.

• Whether data or index pages must be used repeatedly, to satisfy a query 
such as a join, or whether a fetch-and-discard strategy can be employed 
because the pages need to be scanned only once.

For each plan, the query optimizer determines the total cost by computing the 
costs of logical and physical I/Os, and CPU processing. If there are proxy 
tables, additional network related costs are evaluated as well. The query 
optimizer then selects the cheapest plan.

The query processor for Adaptive Server versions 15.0.2 and later defers the 
optimization of statements in a stored procedure until it executes the statement. 
This benefits the query processor because the values for local variables are 
available for optimization for their respective statements. 

Earlier versions of Adaptive Server used default guesses for selectivity 
estimates on predicates using local variables.

Transformations for query optimization
After a query is parsed and preprocessed, but before the query optimizer begins 
its plan analysis, the query is transformed to increase the number of clauses that 
can be optimized. The transformation changes made by the optimizer are 
transparent unless the output of such query tuning tools as showplan, dbcc(200), 
statistics io, or the set commands is examined. If you run queries that benefit 
from the addition of optimized search arguments, the added clauses are visible. 
In showplan output, it appears as “Keys are” messages for tables for which you 
specify no search argument or join.
Performance and Tuning Series: Query Processing and Abstract Plans  7



Query optimizer 
Search arguments converted to equivalent arguments

The optimizer looks for query clauses to convert to the form used for search 
arguments. These are listed in Table 1-2. 

Table 1-2: Search argument equivalents

Search argument transitive closure applied where applicable

The optimizer applies transitive closure to search arguments. For example, the 
following query joins titles and titleauthor on title_id and includes a search 
argument on titles.title_id:

select au_lname, title 
from titles t, titleauthor ta, authors a 
where t.title_id = ta.title_id 
        and a.au_id = ta.au_id 
        and t.title_id = “T81002"

This query is optimized as if it also included the search argument on 
titleauthor.title_id:

select au_lname, title 
from titles t, titleauthor ta, authors a 
where t.title_id = ta.title_id 
        and a.au_id = ta.au_id 
        and t.title_id = “T81002” 
        and ta.title_id = “T81002"

With this additional clause, the query optimizer can use index statistics on 
titles.title_id to estimate the number of matching rows in the titleauthor table. 
The more accurate cost estimates improve index and join order selection.

Clause Conversion

between Converted to >= and <= clauses. For example, between 10 and 20 
is converted to >= 10 and <= 20.

like If the first character in the pattern is a constant, like clauses may 
be converted to greater than or less than queries. For example, like 
"sm%" becomes >= "sm" and < "sn". 

If the first character is a wildcard, a clause such as like "%x" cannot 
use an index for access, but histogram values can be used to 
estimate the number of matching rows.

in(values_list) Converted to a list of or queries, that is, int_col in (1, 2, 3) becomes 
int_col = 1 or int_col = 2 or int_col = 3. The maximum number of 
elements in an in-list is 1025
8   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
equi-join predicate transitive closure applied where applicable

The optimizer applies transitive closure to join columns for a normal equi-join. 
The following query specifies the equi-join of t1.c11 and t2.c21, and the equi-join 
of t2.c21 and t3.c31:

select *  
from t1, t2, t3 
where t1.c11 = t2.c21 
      and t2.c21 = t3.c31 
      and t3.c31 = 1

Without join transitive closure, the only join orders considered are (t1, t2, t3), 
(t2, t1, t3), (t2, t3, t1),and (t3, t2, t1). By adding the join on t1.c11 = t3.31, the 
query processor expands the list of join orders to include: (t1, t3, t2) and (t3, t1, 
t2). Search argument transitive closure applies the condition specified by t3.c31 
= 1 to the join columns of t1 and t2. 

Similarly, equi-join transitive closure is also applied to equi-joins with or 
predicates as follows:

select * 
from R,S  
where R.a = S.a 
and (R.a = 5 OR S.b = 6)

The query optimizer infers that this would be equivalent to:

select *  
from R,S  
where R.a = S.a  
and (S.a = 5 or S.b = 6)

The or predicate could be evaluated on the scan of S and possibly be used for 
an or optimization, thereby effectively using the indexes of S.

Another example of join transitive closure is its application to compex SARGs, 
so that a query such as:

select *  
from R,S  
where R.a = S.a and (R.a + S.b = 6)

is transformed and inferred as:

select *  
from R,S  
where R.a = S.a  
and (S.a + S.b = 6)
Performance and Tuning Series: Query Processing and Abstract Plans  9



Query optimizer 
The complex predicate could be evaluated on the scan of S, resulting in 
significant performance improvements due to early result set filtering.

Transitive closure is used only for normal equi-joins, as shown. join transitive 
closure is not performed for:

• Non-equi-joins; for example, t1.c1 > t2.c2

• Outer joins; for example, t1.c11 *= t2.c2, or left join or right join

• Joins across subquery boundaries

• Joins used to check referential integrity or the with check option on views

Note  As of Adaptive Server Enterprise 15.0, the sp_configure option to turn on 
or off join transitive closure and sort merge join is discontinued. Whenever 
applicable, join transitive closure is always applied in Adaptive Server 
Enterprise 15.0 and later.

Predicate transformation and factoring to provide additional optimization paths

Predicate transformation and factoring increases the number of choices 
available to the query processor. It adds optimizable clauses to a query by 
extracting clauses from blocks of predicates linked with or into clauses linked 
by and. The additional optimized clauses mean there are more access paths 
available for query execution. The original or predicates are retained to ensure 
query correctness.

During predicate transformation:

1 Simple predicates (joins, search arguments, and in lists) that are an exact 
match in each or clause are extracted. In the query in step 3, below, this 
clause matches exactly in each block, so it is extracted:

t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query uses 
between 15 in both query blocks (though the end ranges are different). The 
equivalent clause is extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all terms that reference 
the same table are treated as a single predicate during expansion. Both type 
and price are columns in the titles table, so the extracted clauses are:
10   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
(type = "travel" and price >=15 and price <= 30) 
or 
(type = "business" and price >= 15 and price <= 50)

3 in lists and or clauses are extracted. If there are multiple in lists for a table 
within a blocks, only the first is extracted. The extracted lists for the 
sample query are:

p.pub_id in (“P220”, “P583”, “P780”) 
or 
p.pub_id in (“P651", “P066", “P629”)

Since these steps can overlap and extract the same clause, duplicates are 
eliminated.

Each generated term is examined to determine whether it can be used as 
an optimized search argument or a join clause. Only those terms that are 
useful in query optimization are retained.

The additional clauses are added to the query clauses specified by the user.

For example, all clauses optimized in this query are enclosed in the or 
clauses:

       select p.pub_id, price 
from publishers p, titles t 
where ( 
     t.pub_id = p.pub_id 
     and type = “travel" 
     and price between 15 and 30 
     and p.pub_id in (“P220", “P583", “P780") 
     ) 
or  ( 
     t.pub_id = p.pub_id 
     and type = “business" 
     and price between 15 and 50 
     and p.pub_id in (“P651", “P066", “P629") 
     )

Predicate transformation pulls clauses linked with and from blocks of clauses 
linked with or, such as those shown above. It extracts only clauses that occur 
in all parenthesized blocks. If the example above had a clause in one of the 
blocks linked with or that did not appear in the other clause, that clause would 
not be extracted.
Performance and Tuning Series: Query Processing and Abstract Plans  11



Query optimizer 
Handling search arguments and useful indexes
It is important that you distinguish between where and having clause predicates 
that can be used to optimize the query and those that are used later during query 
processing to filter the returned rows.

You can use search arguments to determine the access path to the data rows 
when a column in the where clause matches an index key. The index can be 
used to locate and retrieve the matching data rows. Once the row has been 
located in the data cache or has been read into the data cache from disk, any 
remaining clauses are applied.

For example, if the authors table has on an index on au_lname and another on 
city, either index can be used to locate the matching rows for this query:

select au_lname, city, state 
from authors 
where city = “Washington" 
and au_lname = “Catmull"

The query optimizer uses statistics, including histograms, the number of rows 
in the table, the index heights, and the cluster ratios for the index and data pages 
to determine which index provides the cheapest access. The index that provides 
the cheapest access to the data pages is chosen and used to execute the query, 
and the other clause is applied to the data rows once they have been accessed.

Nonequality operators

The non-equality operators, < > and !=, are special cases. The query optimizer 
checks whether it should cover nonclustered indexes if the column is indexed, 
and uses a nonmatching index scan if an index covers the query. However, if 
the index does not cover the query, the table is accessed through a row ID 
lookup of the data pages during the index scan.

Examples of search argument optimization

Shown below are examples of clauses that can be fully optimized. If there are 
statistics on these columns, they can be used to help estimate the number of 
rows the query will return. If there are indexes on the columns, the indexes can 
be used to access the data.

au_lname = “Bennett"  
price >= $12.00 
advance > $10000 and advance < $20000 
au_lname like "Ben%" and price > $12.00
12   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
These search arguments cannot be optimized unless a functional index is built 
on them:

advance * 2 = 5000  /*expression on column side 
                      not permitted */ 
substring(au_lname,1,3) = "Ben" /* function on 
                      column name */

These two clauses can be optimized if written in this form:

advance = 5000/2 
au_lname like "Ben%"

Consider this query, with the only index on au_lname:

select au_lname, au_fname, phone 
   from authors 
   where au_lname = “Gerland” 
     and city = "San Francisco"

The clause qualifies as a search argument: 

au_lname = “Gerland" 

• There is an index on au_lname

• There are no functions or other operations on the column name.

• The operator is a valid search argument operator. 

This clause matches all the criteria above except the first; there is no index on 
the city column. In this case, the index on au_lname is used for the query. All 
data pages with a matching last name are brought into cache, and each 
matching row is examined to see if the city matches the search criteria.

Handling joins
The query optimizer processes join predicates the same way it processes search 
arguments, in that it uses statistics, number of rows in the table, index heights, 
and the cluster ratios for the index and data pages to determine which index and 
join method provides the cheapest access. In addition, the query optimizer also 
uses join density estimates derived from join histograms that give accurate 
estimates of qualifying joining rows and the rows to be scanned in the outer and 
inner tables. The query optimizer also must decide on the optimal join ordering 
that will yield the most efficient query plan. The next sections describe the key 
techniques used in processing joins.
Performance and Tuning Series: Query Processing and Abstract Plans  13



Query optimizer 
Join density and join histograms

The query optimizer uses a cost model for joins that uses table-normalized 
histograms of the joining attributes. This technique gives an exact value for the 
skewed values (that is, frequency count) and uses the range cell densities from 
each histogram to estimate the cell counts of corresponding range cells. 

The join density is dynamically computed from the “join histogram,” which 
considers the joining of histograms from both sides of the join operator. The 
first histogram join occurs typically between two base tables when both 
attributes have histograms. Every histogram join creates a new histogram on 
the corresponding attribute of the parent join's projection.

The outcome of the join histogram technique is accurate join selectivity 
estimates, even if data distributions of the joining columns are skewed, 
resulting in superior join orders and performance.

Expression histogramming selectivity estimates

Versions of Adaptive Server earlier than 15.0.2 used default “guesses” for 
selectivity estimates. 

Adaptive Server versions 15.0.2 and later apply histogramming estimates to 
single column predicates if the histogram exists on the column. This results in 
more accurate row estimates, and improves the join order selection for query 
plans. 

In this example, if the expression is very selective, it may be better to place 
table t1 at the beginning of the join order:

select * from t1,t2 where substring(t1.charcol, 1, 3)  
= "LMC" and t1.a1 = t2.b

Joins with mixed datatypes

A basic requirement is the ability to build keys for index lookups whenever 
possible, without regard to mixed datatypes of any of the join predicates versus 
the index key. Consider the following query:

create table T1 (c1 int, c2 int) 
create table T2 (c1 int, c2 float) 
create index i1 on T1(c2) 
create index i1 on T2(c2) 
 
select * from T1, T2 where T1.c2=T2.c2
14   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Assume that T1.c2 is of type int and has an index on it, and that T2.c2 is of type 
float with an index.

As long as datatypes are implicitly convertible, the query optimizer can use 
index scans to process the join. In other words, the query optimizer uses the 
column value from the outer table to position the index scan on the inner table, 
even when the lookup value from the outer table has a different datatype than 
the respective index attribute of the inner table.

Joins with expressions and or predicates

See “Predicate transformation and factoring to provide additional 
optimization paths” on page 10 for description of how the query optimizer 
handles joins with expressions and or predicates.

join ordering

One of the key tasks of the query optimizer is to generate a query plan for join 
queries so that the order of the relations in the joins processed during query 
execution is optimal. This involves elaborate plan search strategies that can 
consume significant time and memory. The query optimizer uses several 
effective techniques to obtain the optimal join ordering. The key techniques 
are:

• Use of a greedy strategy to obtain an initial good ordering that can be used 
as an upper boundary to prune out other, subsequent join orderings. The 
greedy strategy employs join row estimates and the nested-loop-join 
method to arrive at the initial ordering.

• An exhaustive ordering strategy follows the greedy strategy. In this 
strategy, a potentially better join ordering replaces the join ordering 
obtained in the greedy strategy. This ordering may employ any join 
method. 

• Use of extensive cost-based and rule-based pruning techniques eliminates 
undesirable join orders from consideration. The key aspect of the pruning 
technique is that it always compares partial join orders (the prefix of a 
potential join ordering) against the best complete join ordering to decide 
whether to proceed with the given prefix. This significantly improves the 
time required determine an optimal join order.
Performance and Tuning Series: Query Processing and Abstract Plans  15



Optimization goals 
• The query optimizer can recognize and process star or snowflake schema 
joins and process their join ordering in the most efficient way. A typical 
star schema join involves a large Fact table that has equi-join predicates that 
join it with several Dimension tables. The Dimension tables have no join 
predicates connecting each other; that is, there are no joins between the 
Dimension tables themselves, but there are join predicates between the 
Dimension tables and the Fact table. The query optimizer employs special 
join ordering techniques during which the large Fact table is pushed to the 
end of the join order and the Dimension tables are pulled up front, yielding 
highly efficient query plans. The query optimizer does not, however, use 
this technique if the star schema joins contain subqueries, outer joins, or or 
predicates.

Optimization goals
Optimization goals are a convenient way to match query demands with the best 
optimization techniques, thus ensuring optimal use of the optimizer’s time and 
resources. The query optimizer allows you to configure three types of 
optimization goals, which you can specify at three tiers: server level, session 
level, and query level.

Set the optimization goal at the desired level. The server-level optimization 
goal is overridden at the session level, which is overridden at the query level.

These optimization goals allow you to choose an optimization strategy that best 
fits your query environment:

• allrows_mix – the default goal, and the most useful goal in a mixed-query 
environment. allows_mix balances the needs of OLTP and DSS query 
environments.

• allrows_dss – the most useful goal for operational DSS queries of medium 
to high complexity. Currently, this goal is provided on an experimental 
basis.

• allrows_oltp – the optimizer considers only nested-loop joins.

At the server level, use sp_configure. For example:

sp_configure "optimization goal", 0, "allrows_mix"

At the session level, use set plan optgoal. For example:

set plan optgoal allrows_dss
16   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
At the query level, use a select or other DML command. For example:

select * from A order by A.a plan  
   "(use optgoal allrows_dss)"

In general, you can set query-level optimization goals using select, update, and 
delete statements. However, you cannot set query-level optimization goals in 
pure insert statements, although you can set optimization goals in insert…select 
statements.

Limiting the time spent optimizing a query
Long-running and complex queries can be time-consuming and costly to 
optimize. The timeout mechanism helps to limit that time while supplying a 
satisfactory query plan. The query optimizer provides a mechanism by which 
the optimizer can limit the time taken by long-running and complex queries; 
timing out allows the query processor to stop optimizing when it is reasonable 
to do so.

The optimizer triggers timeout during optimization when both these 
circumstances are met:

• At least one complete plan has been retained as the best plan, and 

• The user configured timeout percentage limit has been exceeded.

You can limit the amount of time Adaptive Server spends optimizing a query 
at every level, using the optimization timeout limit parameter, which you can set 
to anyvalue between 0 and 1000. optimization timeout limit represents the 
percentage of estimated query execution time that Adaptive Server must spend 
to optimize the query. For example, specifying a value of 10 tells Adaptive 
Server to spend 10% of the estimated query execution time in optimizing the 
query. Similarly, a value of 1000 tells Adaptive Server to spend 1000% of the 
estimated query execution time, or 10 times the estimated query execution 
time, in optimizing the query.

See Chapter 5, “Setting Configuration Parameters,” in the System 
Administartion Guide for more information about optimization timeout limit.

A large timeout value may be useful for optimization of stored procedures with 
complex queries. Generally, longer optimization time of the stored procedures 
yields better plans; the longer optimization time can be amortized over several 
executions of the stored procedure. 
Performance and Tuning Series: Query Processing and Abstract Plans  17



Parallelism 
A small timeout value may be used when you want a faster compilation time 
from complex ad hoc queries that normally take a long time to compile. 
However, for most queries, the default timeout value of 10 should suffice.

Use sp_configure to set the optimization timeout limit configuration parameter 
at the server level. For example, to limit optimization time to 10% of total 
query processing time, enter:

sp_configure “optimization timeout limit", 10

Use set to set timeout at the session level: 

set plan opttimeoutlimit <n>

where n is any integer between 0 and 1000.

Use select to limit optimization time at the query level:

select * from <table> plan "(use opttimeoutlimit <n>)"

where n is any integer between 0 and 1000.

Parallelism
Adaptive Server supports horizontal and vertical parallelism for query 
execution. Vertical parallelism is the ability to run multiple operators at the 
same time by employing different system resources such as CPUs, disks, and 
so on. Horizontal parallelism is the ability to run multiple instances of an 
operator on the specified portion of the data. 

See Chapter 5, “Parallel Query Processing,” for a more detailed discussion of 
parallel query optimization in Adaptive Server.

Optimization issues
Although the query optimizer can efficiently optimize most queries, these 
issues may effect the optimizer’s efficiency:

• If statistics have not been updated recently, the actual data distribution 
may not match the values used to optimize queries.
18   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
• The rows referenced by a specified transaction may not fit the pattern 
reflected by the index statistics.

• An index may access a large portion of the table.

• where clauses (SARGS) are written in a form that cannot be optimized.

• No appropriate index exists for a critical query.

• A stored procedure was compiled before significant changes to the 
underlying tables were performed.

• No statistics exists for the SARG or joining columns.

These situations highlight the need to follow some best practices that allow the 
query optimizer to perform at its full potential: 

Creating search 
arguments

Follow these guidelines when you write search arguments for your queries:

• Avoid functions, arithmetic operations, and other expressions on the 
column side of search clauses. When possible, move functions and other 
operations to the expression side of the clause.

• Use as many search arguments as you can, to give the query processor as 
much as possible to work with.

• If a query has more than 400 predicates for a table, put the most potentially 
useful clauses near the beginning of the query, since only the first 102 
SARGs on each table are used during optimization. (All of the search 
conditions are used to qualify the rows.)

• Queries using > (greater than) may perform better if you can rewrite them 
to use >= (greater than or equal to). For example, this query, with an index 
on int_col, uses the index to find the first value where int_col equals 3, and 
then scans forward to find the first value that is greater than 3. If there are 
many rows where int_col equals 3, the server must scan many pages to find 
the first row where int_col is greater than 3:

select * from table1 where int_col > 3

It is more efficient to write the query this way:

select * from table1 where int_col >= 4

This optimization is more difficult with character strings and floating-
point data.

• Check the showplan output to see which keys and indexes are used.
Performance and Tuning Series: Query Processing and Abstract Plans  19



Optimization issues 
• If an index is not being used when you expect it to be, use output from the 
set commands in Table 3-1 on page 114 to see whether the query 
processor is considering the index. 

Use of SQL derived 
tables 

Queries expressed as a single SQL statement exploit the query processor better 
than queries expressed in two or more SQL statements. SQL-derived tables 
enable you to express, in a single step, what might otherwise require several 
SQL statements and temporary tables, especially where intermediate aggregate 
results must be stored. For example:

select dt_1.* from  
   (select sum(total_sales)  
        from titles_west group by total_sales) 
               dt_1(sales_sum), 
   (select sum(total_sales)  
         from titles_east group by total_sales) 
               dt_2(sales_sum) 
where dt_1.sales_sum = dt_2.sales_sum

Here, aggregate results are obtained from the SQL derived tables dt_1 and dt_2, 
and a join is computed between the two SQL derived tables. Everything is 
accomplished in a single SQL statement.

For more information, see Chapter 9, “SQL Derived Tables,” in the Transact-
SQL User's Guide.

Tuning according to 
object sizes

To understand query and system behavior, know the sizes of your tables and 
indexes. At several stages of tuning work, you need size data to:

• Understand statistics i/o reports for a specific query plan. 

• Understand the query processor's choice of query plan. The Adaptive 
Server cost-based query processor estimates the physical and logical I/O 
required for each possible access method and selects the cheapest method. 

• Determine object placement, based on the sizes of database objects and on 
the expected I/O patterns on the objects. 

To improve performance, distribute database objects across physical 
devices, so that reads and writes to disk are evenly distributed. 

Object placement is described in Chapter 1, “Controlling Physical Data 
Placement,” in Performance and Tuning Series: Physical Database 
Tuning.
20   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
• Understand changes in performance. If objects grow, their performance 
characteristics can change. For example, consider a table that is heavily 
used and is usually 100 percent cached. If the table grows too large for its 
cache, queries that access the table can suffer poor performance. This is 
particularly true of joins that require multiple scans.

• Do capacity planning. Whether you are designing a new system or 
planning for the growth of an existing system, you must know the space 
requirements to plan for physical disks and memory needs.

• Understand output from Adaptive Server Monitor Server and from 
sp_sysmon reports on physical I/O.

See the System Administration Guide: Volume 2 for more information on 
sizing.

Lava query execution engine
In Adaptive Server, all query plans are submitted to the procedural execution 
engine for execution. The Procedural Execution Engine drives execution of the 
query plan by:

• Executing simple SQL statements such as set, while, and goto directly.

• Calling out to the utility modules of the query plan to execute create table 
and create index and other utility commands.

• Setting up the context for and driving the execution of stored procedures 
and triggers.

• Setting up the execution context and calling the query execution engine to 
execute query plans for select, insert, delete, and update statements.

• Setting up the cursor execution context for cursor open, fetch, and close 
statements, and calling the query execution engine to execute these 
statements.

• Doing transaction processing and post execution cleanup.

To support the demands of today’s applications, the query execution engine for 
Adaptive Server 15.0 and later has been completely rewritten. With a new 
query execution engine and query optimizer in place, the procedural execution 
engine in Adaptive Server 15.0 and later passes all query plans generated by 
the new query optimizer to the Lava query execution engine.
Performance and Tuning Series: Query Processing and Abstract Plans  21



Lava query execution engine 
The Lava query execution engine executes Lava query plans. All query plans 
chosen by the optimizer are compiled into Lava query plans. However, SQL 
statements that are not optimized, such as set or create, are compiled into query 
plans like those in versions of Adaptive Server earlier than 15.0, and are not 
executed by the Lava query execution engine. Non-Lava query plans are either 
executed by the procedural execution engine or by utility modules called by the 
procedural engine. Adaptive Server version 15.0 and later has two distinct 
kinds of query plans and this is clearly seen in the showplan output (see 
Chapter 3, “Displaying Query Optimization Strategies and Estimates”).

Lava query plans
A Lava query plan is built as an upside down tree of Lava operators: The top 
Lava operator can have one or more child operators, which in turn can have one 
or more child operators, and so on, thus building a bottom-up tree of operators. 
The exact shape of the tree and the operators in it are chosen by the optimizer.

An example of a Lava query plan for this query is shown in Figure 1-2:

Select o.id from sysobjects o, syscolumns c  
where o.id <= 1 and o.id < 2
22   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Figure 1-2: Lava query plan

The Lava query plan for this query consists of four Lava operators. The top 
operator is an Emit (also called Root) operator that dispatches the results of 
query execution either by sending the rows to the client or by assigning values 
to local variables.

The only child operator of the Emit is a NestedLoopJoin (NL Join)that uses the 
nested loop join algorithm to join the rows coming from its two child operators, 
(1) the Scan of sysobjects and (2) the scan of syscolumns.

Since the optimizer optimizes all select, insert, delete and update statements, 
these are always compiled into Lava query plans and executed by the Lava 
query engine. 

Some SQL statements are compiled into hybrid query plans. Such plans have 
multiple steps, some of which are executed by the Utility modules, and a final 
step that is a Lava query plan. An example is the select into statement; select 
into is compiled into a two-step query plan:

• create table creates the target table of the statement.

• A Lava query plan to inserts the rows into the target table. To execute this 
query plan, the Procedural Execution Engine calls the create table utility 
to execute the first step to create the table. 

Then the procedural engine calls the Lava query execution engine to execute 
the Lava query plan to select and insert the rows into the target table. 

Emit

IndexScan
sysobjects(o)

NestedLoopJoin

IndexScan
syscolumns(c)
Performance and Tuning Series: Query Processing and Abstract Plans  23



Lava query execution engine 
The two other SQL statements that generate hybrid query plans are alter table 
(but only when data copying is required) and reorg rebuild.

A Lava query plan is also generated and executed to support bcp. The support 
for bcp in Adaptive Server has always been in the bcp utility. Now, in version 
15.0 and later, the bcp utility generates a Lava query plan and calls the Lava 
query execution engine to execute the plan.

See Chapter 2, “Using showplan,” for more examples of Lava query plans.

Lava operators

Lava query plans are built of Lava operators. Each Lava operator is a self-
contained software object that implements one of the basic physical operations 
that the optimizer uses to build query plans. Each Lava operator has five 
methods that can be called by its parent operator. These five methods 
correspond to the five phases of query execution:

• Acquire

• Open

• Next

• Close,

• Release

Because the Lava operators all provide the same methods (that is, the same 
API), they can be interchanged like building blocks in a Lava query plan. For 
example, you can replace the NLJoin operator in Figure 1-2 with a MergeJoin 
operator or a HashJoin operator without impacting any of the other three 
operators in the query plan.

The Lava operators that can be chosen by the optimizer to build Lava query 
plans are listed in Table 1-3:
24   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Table 1-3: Lava operators

Operator Description

BulkOp Executes the part of bcp processing that is done in the 
Lava query engine. Only found in query plans that are 
created by the bcp utility, not those created by the 
optimizer.

CacheScanOp Reads rows from an in-memory table.

DelTextOp Deletes text page chains as part of alter table drop column 
processing.

DeleteOp Deletes rows from a local table.

Deletes rows from a proxy table when the entire SQL 
statement cannot be shipped to the remote server. See 
also RemoteScanOp.

EmitOp (RootOp) Routes query execution result rows. Can send results to 
the client or assign result values to local variables or fetch 
into variables. An EmitOp is always the top operator in a 
Lava query plan.

EmitExchangeOp Routes result rows from a subplan that is executed in 
parallel to the ExchangeOp in the parent plan fragment. 
EmitExchangeOp always appears directly under an 
ExchangeOp. See Chapter 5, “Parallel Query 
Processing.”

GroupSortedOp 
(Aggregation)

Performs vector aggregation (group by) when the input 
rows are already sorted on the group-by columns. See 
also HashVectorAggOp.

GroupSorted (Distinct) Eliminates duplicate rows. Requires the input rows to be 
sorted on all columns. See also HashDistinctOp and 
SortOp (Distinct).

HashVectorAggOp Performs vector aggregation (group by). Uses a Hash 
algorithm to group the input rows, so no requirements on 
ordering of the input rows. See also GroupSortedOp 
(Aggregation).

HashDistinctOp Eliminates duplicate rows using a hashing algorithm to 
find duplicate rows. See also GroupSortedOp (Distinct) 
and SortOp (Distinct).

HashJoinOp Performs a join of two input row streams using the 
HashJoin algorithm.

HashUnionOp Performs a union operation of two or more input row 
streams using a hashing algorithm to find and eliminate 
duplicate rows. See also MergeUnionOp and UnionAllOp.

InsScrollOp Implements extra processing needed to support 
insensitive scrollable cursors. See also SemiInsScrollOp.
Performance and Tuning Series: Query Processing and Abstract Plans  25



Lava query execution engine 
InsertOp Inserts rows to a local table.

Inserts rows to a proxy table when the entire SQL 
statement cannot be shipped to the remote server. See 
also RemoteScanOp.

MergeJoinOp Performs a join of two streams of rows that are sorted on 
the joining columns using the mergejoin algorithm.

MergeUnionOp Performs a union or union all operation on two or more 
sorted input streams. Guarantees that the output stream 
retains the ordering of the input streams. See also 
HashUnionOp and UnionAllOp.

NestedLoopJoinOp Performs a join of two input streams using the 
NestedLoopJoin algorithm.

NaryNestedLoopJoinOp Performs a join of three or more input streams using an 
enhanced NestedLoopJoin algorithm. This operator 
replaces a left-deep tree of NestedLoopJoin operators and 
can lead to significant performance improvements when 
rows of some of the input streams can be skipped.

OrScanOp Inserts the in or or values into an in-memory table, sorts 
the values, and removes the duplicates.Then returns the 
values, one at a time. Only used for SQL statements with 
in clauses or multiple or clauses on the same column. 

PtnScanOp Reads rows from a local table (partitioned or not) using 
either a table scan or an index scan to access the rows.

RIDJoinOp Receives one or more row identifiers (RIDs) from its 
left-child operator and calls on its right-child operator 
(PtnScanOp) to find the corresponding rows. Used only 
on SQL statements with or clauses on different columns 
of the same table.

RIFilterOp (Direct) Drives the execution of a subplan to enforce referential 
integrity constraints that can be checked on a row-by-
row basis.

Appears only in insert, delete, or update queries on tables 
with referential integrity constraints.

RIFilterOp (Deferred) Drives the execution of a sub-plan to enforce referential 
integrity constraints that can only be checked after all 
rows that are affected by the query have been processed.

Operator Description
26   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Lava query execution

Execution of a Lava query plan involves five phases:

RemoteScanOp Accesses proxy tables. The RemoteScanOp can:

• Read rows from a single proxy table for further 
processing in a Lava query plan on the local host.

• Pass complete SQL statements to a remote host for 
execution: insert, delete, update, and select 
statements. In this case, the Lava query plan consists 
of an EmitOp with a RemoteScanOp as its only child 
operator.

• Pass an arbitrarily complex query plan fragment to a 
remote host for execution and read in the result rows 
(function shipping).

RestrictOp Evaluates expressions.

SQFilterOp Drives the execution of a subplan to execute one or more 
subqueries.

ScalarAggOp Performs scalar aggregation, such as aggregates without 
group by.

SemiInsScrollOp Performs extra processing to support semi-insensitive 
scrollable cursors. See also InsScrollOp.

SequencerOp Enforces sequential execution of different sub-plans in 
the query plan.

SortOp Sorts its input rows based upon specified keys.

SortOp (Distinct) Sorts its input and removes duplicate rows. See also 
HashDisitnctOp and GroupSortedOp (Distinct).

StoreOp Creates and coordinates the filling of a worktable, and 
creates a clustered index on the worktable if required. 
StoreOp can only have an InsertOp as a child; the 
InsertOp populates the worktable.

UnionAllOp Performs a union all operation on two or more input 
streams. See also HashUnionOp and MergeUnionOp.

UpdateOp Changes the value of columns in rows of a local table or 
of a proxy table when the entire update statement cannot 
be sent to the remote server. See also RemoteScanOp.

ExchangeOp Enables and coordinates parallel execution of Lava query 
plans. The ExchangeOp can be inserted between almost 
any two Lava operators in a query plan to divide the plan 
into sub-plans that can be executed in parallel. See 
Chapter 5, “Parallel Query Processing.”

Operator Description
Performance and Tuning Series: Query Processing and Abstract Plans  27



Lava query execution engine 
1 Acquire – acquires resources needed for execution, such as memory 
buffers and creating worktables.

2 Open – prepares to return result rows.

3 Next – generates the next result row.

4 Close – cleans up; for example, notifies the access layer that scanning is 
complete or truncates worktables

5 Release – releases resources acquired during Acquire, such as memory 
buffers, drops worktables.

Each Lava operator has a method with the same name as the phase, which is 
invoked for each of these phases. 

Figure 1-2 on page 23 demonstrates query plan execution:

• Acquire phase 

The acquire method of the Emit operator is invoked. The Emit operator 
calls Acquire of its child, the NLJoin operator, which in turn calls Acquire 
on its left-child operator (the index scan of sysobjects) and then on its right 
child operator (the index scan of syscolumns).

• Open phase

The Open method of the Emit operator is invoked. The Emit operator calls 
Open on the NLJoin operator, which calls Open only on its left-child 
operator.

• Next phase

The Next method of the Emit operator is invoked. Emit calls Next on the 
NLJoin operator, which calls Next on its left child, the Index Scan of 
sysobjects. The index scan operator reads the first row from sysobjects and 
returns it to the NLJoin operator. The NLJoin operator then calls the Open 
method of its right child operator, the Index Scan of syscolumns. Then the 
NLJoin operator calls the Next method of the Index Scan of syscolumns to 
get a row that matches the joining key of the row from sysobjects. When a 
matching row has been found, it is returned to the Emit operator, which 
sends it back to the client. Repeated invocations of the Next method of the 
Emit operator generate more result rows.

• Close phase 

After all rows have been returned, the Close method of the Emit operator 
is invoked, which in turn calls Close of the NLJoin operator, which in turn 
calls Close on both of its child operators.
28   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
• Release phase 

The Release method of the Emit operator is invoked and the calls to the 
Release method of the other operators is propagated down the query plan.

After successfully completing the Release phase of execution, the Lava query 
engine returns control to the Procedural Execution Engine for final statement 
processing.

How update operations are performed
Adaptive Server handles updates in different ways, depending on the changes 
being made to the data and the indexes used to locate the rows. The two major 
types of updates are deferred updates and direct updates. Adaptive Server 
performs direct updates whenever possible.

Direct updates
Adaptive Server performs direct updates in a single pass:

• It locates the affected index and data rows.

• It writes the log records for the changes to the transaction log.

• It makes the changes to the data pages and any affected index pages.

There are three techniques for performing direct updates: 

• In-place updates

• Cheap direct updates

• Expensive direct updates 

Direct updates require less overhead than deferred updates and are generally 
faster, as they limit the number of log scans, reduce logging, save traversal of 
index B-trees (reducing lock contention), and save I/O because Adaptive 
Server does not have to refetch pages to perform modifications based on log 
records.

In-place updates

Adaptive Server performs in-place updates whenever possible. 
Performance and Tuning Series: Query Processing and Abstract Plans  29



How update operations are performed 
When Adaptive Server performs an in-place update, subsequent rows on the 
page are not moved; row IDs remain the same and the pointers in the row offset 
table are not changed.

For an in-place update, the following requirements must be met:

• The row being changed cannot change its length. 

• The column being updated cannot be the key, or part of the key, of a 
clustered index on an allpages-locked table. Because the rows in a 
clustered index on an allpages-locked table are stored in key order, a 
change to the key almost always means that the row location is changed.

• One or more indexes must be unique or must allow duplicates.

• The update statement satisfies the conditions listed in “Restrictions on 
update modes through joins” on page 35.

• The affected columns are not used for referential integrity.

• There cannot be a trigger on the column.

• The table cannot be replicated (via Replication Server).

An in-place update is the fastest type of update because it makes a single 
change to the data page. It changes all affected index entries by deleting the old 
index rows and inserting the new index row. In-place updates affect only 
indexes whose keys are changed by the update, since the page and row 
locations are not changed.

Cheap direct updates

If Adaptive Server cannot perform an update in place, it tries to perform a 
cheap direct update—changing the row and rewriting it at the same offset on 
the page. Subsequent rows on the page are moved up or down so that data 
remains contiguous on the page, but row IDs remain the same. The pointers in 
the row offset table change to reflect the new locations.

A cheap direct update must meet these requirements: 

• The length of the data in the row is changed, but the row still fits on the 
same data page, or the row length is not changed, but there is a trigger on 
the table or the table is replicated.

• The column being updated cannot be the key, or part of the key, of a 
clustered index. Because Adaptive Server stores the rows of a clustered 
index in key order, a change to the key almost always means that the row 
location is changed.
30   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
• One or more indexes must be unique or must allow duplicates.

• The update statement satisfies the conditions listed in “Restrictions on 
update modes through joins” on page 35.

• The affected columns are not used for referential integrity.

Cheap direct updates are almost as fast as in-place updates. They require the 
same amount of I/O, but slightly more processing. Two changes are made to 
the data page (the row and the offset table). Any changed index keys are 
updated by deleting old values and inserting new values. Cheap direct updates 
affect only indexes whose keys are changed by the update, since the page and 
row ID are not changed.

Expensive direct updates

If the data does not fit on the same page, Adaptive Server performs an 
expensive direct update, if possible. An expensive direct update deletes the 
data row, including all index entries, and then inserts the modified row and 
index entries.

Adaptive Server uses a table scan or an index to find the row in its original 
location and then deletes the row. If the table has a clustered index, Adaptive 
Server uses the index to determine the new location for the row; otherwise, 
Adaptive Server inserts the new row at the end of the heap.

An expensive direct update must meet these requirements:

• The length of a data row is changed so that the row no longer fits on the 
same data page, and the row is moved to a different page, or the update 
affects key columns for the clustered index.

• The index used to find the row is not changed by the update.

• The update statement satisfies the conditions listed in “Restrictions on 
update modes through joins” on page 35.

• The affected columns are not used for referential integrity.

An expensive direct update is the slowest type of direct update. The delete is 
performed on one data page, and the insert is performed on a different data 
page. All index entries must be updated, since the row location is changed. 
Performance and Tuning Series: Query Processing and Abstract Plans  31



How update operations are performed 
Deferred updates
Adaptive Server uses deferred updates when direct update conditions are not 
met. A deferred update is the slowest type of update.

In a deferred update, Adaptive Server:

• Locates the affected data rows, writing the log records for deferred delete 
and insert of the data pages as rows are located.

• Reads the log records for the transaction and performs the deletes on the 
data pages and any affected index rows.

• Reads the log records a second time, and performs all inserts on the data 
pages, and inserts any affected index rows.

When deferred updates are required

Deferred updates are always required for:

• Updates that use self-joins

• Updates to columns used for self-referential integrity

• Updates to a table referenced in a correlated subquery

Deferred updates are also required when:

• An update moves a row to a new page while the table is being accessed by 
a table scan or a clustered index.

• Duplicate rows are not allowed in the table, and there is no unique index 
to prevent them.

• The index used to find the data row is not unique, and the row is moved 
because the update changes the clustered index key or because the new 
row does not fit on the page.

Deferred updates incur more overhead than direct updates because they require 
Adaptive Server to reread the transaction log to make the final changes to the 
data and indexes. This involves additional traversal of the index trees.

For example, if there is a clustered index on title, this query performs a deferred 
update:

update titles set title = "Portable C Software" where 
title = "Designing Portable Software"
32   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Deferred index inserts
Adaptive Server performs deferred index updates when the update affects the 
index used to access the table or when the update affects columns in a unique 
index. In this type of update, Adaptive Server:

• Deletes the index entries in direct mode

• Updates the data page in direct mode, writing the deferred insert records 
for the index

• Reads the log records for the transaction and inserts the new values in the 
index in deferred mode

Deferred index insert mode must be used when the update changes the index 
used to find the row or when the update affects a unique index. A query must 
update a single, qualifying row only once—deferred index update mode 
ensures that a row is found only once during the index scan and that the query 
does not prematurely violate a uniqueness constraint.

The update in Figure 1-3 on page 34 changes only the last name, but the index 
row is moved from one page to the next. To perform the update, Adaptive 
Server:

1 Reads index page 1133, deletes the index row for “Greene” from that page, 
and logs a deferred index scan record. 

2 Changes “Green” to “Hubbard” on the data page in direct mode and 
continues the index scan to see if more rows need to be updated.

3 Inserts the new index row for “Hubbard” on page 1127.

Figure 1-3 shows the index and data pages prior to the deferred update 
operation, and the sequence in which the deferred update changes the data and 
index pages.
Performance and Tuning Series: Query Processing and Abstract Plans  33



How update operations are performed 
Figure 1-3: Deferred index update

Page 1133
Greane 1307,4
Greene 1409,2

Page 1421
18 Bennet
19
Hubbard
20

Page 1421
18 Bennet
19 Green
20
Yokomoto

Page 1007
Bennet 1421,1
1132
Greane 1307,4
1133

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1001
Bennet 1421,1
1007
Karsen 1411,3
1009

G
reen

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1409
21 Dull
22 Greene
23 White

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3
1315

Root page Data pages Intermediate Leaf pages 

update employee 
set lname = "Hubbard" 
where lname = "Green"

Step 2: Change 
data page.

Step 1: Write log 
records, then 
delete index row.

Page 1127
Hubbard 1421,2
Hunter 1307,1
Jenkins 1242,4

 

Step 3: Read log, 
insert index row.

Before update:

Update steps

P
o

in
te

r

K
ey

 

P
o

in
te

r

R
o

w
 ID

K
ey

 

R
o

w
 ID

P
o

in
te

r

K
ey

 

34   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Assume a similar update to the titles table:

update titles 
set title = "Computer Phobic’s Manual",  
    advance = advance * 2  
where title like "Computer Phob%"

This query shows a potential problem. If a scan of the nonclustered index on 
the title column found “Computer Phobia Manual,” changed the title, and 
multiplied the advance by 2, and then found the new index row “Computer 
Phobic’s Manual” and multiplied the advance by 2, the advance wold be very 
skewed against the reality.

A deferred index delete may be faster than an expensive direct update, or it may 
be substantially slower, depending on the number of log records that need to be 
scanned and whether the log pages are still in cache. 

During deferred update of a data row, there can be a significant time interval 
between the delete of the index row and the insert of the new index row. During 
this interval, there is no index row corresponding to the data row. If a process 
scans the index during this interval at isolation level 0, it does not return the old 
or new value of the data row.

Restrictions on update modes through joins
Updates and deletes that involve joins can be performed in direct, 
deferred_varcol, or deferred_index mode when the table being updated is the 
outermost table in the join order, or when it is preceded in the join order by 
tables where only a single row qualifies.

Joins and subqueries in update and delete statements

The use of the from clause to perform joins in update and delete statements is a 
Transact-SQL extension to ANSI SQL. Subqueries in ANSI SQL form can be 
used in place of joins for some updates and deletes.

This example uses the from syntax to perform a join:

update t1 set t1.c1 = t1.c1 + 50 
from t1, t2 
where t1.c1 = t2.c1 
and t2.c2 = 1

The following example shows the equivalent update using a subquery:

update t1 set c1 = c1 + 50 
Performance and Tuning Series: Query Processing and Abstract Plans  35



How update operations are performed 
where t1.c1 in (select t2.c1 
                from t2  
                where t2.c2 = 1)

The update mode that is used for the join query depends on whether the updated 
table is the outermost query in the join order—if it is not the outermost table, 
the update is performed in deferred mode. The update that uses a subquery is 
always performed as a direct, deferred_varcol, or deferred_index update.

For a query that uses the from syntax and performs a deferred update due to the 
join order, use showplan and statistics io to determine whether rewriting the 
query using a subquery can improve performance. Not all queries using from 
can be rewritten to use subqueries.

Deletes and updates in triggers versus referential integrity

Triggers that join user tables with the deleted or inserted tables are run in 
deferred mode. If you are using triggers solely to implement referential 
integrity, and not to cascade updates and deletes, then using declarative 
referential integrity in place of triggers may avoid the penalty of deferred 
updates in triggers.

Optimizing updates
showplan messages provide information about whether an update is performed 
in direct mode or deferred mode. If a direct update is not possible, Adaptive 
Server updates the data row in deferred mode. There are times when the 
optimizer cannot know whether a direct update or a deferred update will be 
performed, so two showplan messages are provided:

• The “deferred_varcol” message shows that the update may change the 
length of the row because a variable-length column is being updated. If the 
updated row fits on the page, the update is performed in direct mode; if the 
update does not fit on the page, the update is performed in deferred mode.

• The “deferred_index” message indicates that the changes to the data pages 
and the deletes to the index pages are performed in direct mode, but the 
inserts to the index pages are performed in deferred mode.

These types of direct updates depend on information that is available only at 
runtime, since the page actually has to be fetched and examined to determine 
whether the row fits on the page.
36   Adaptive Server Enterprise



CHAPTER 1    Understanding Query Processing
Designing for direct updates

When you design and code your applications, be aware of the differences that 
can cause deferred updates. To help avoid deferred updates:

• Create at least one unique index on the table to encourage more direct 
updates.

• Whenever possible, use nonkey columns in the where clause when 
updating a different key.

• If you do not use null values in your columns, declare them as not null in 
your create table statement.

Effects of update types and indexes on update modes

Table 1-4 on page 38 shows how indexes affect the update mode for three 
different types of updates. In all cases, duplicate rows are not allowed. For the 
indexed cases, the index is on title_id. The three types of updates are:

• Update of a variable-length key column:

update titles set title_id = value 
    where title_id = "T1234"

• Update of a fixed-length nonkey column:

update titles set pub_date = value 
        where title_id = "T1234"

• Update of a variable-length nonkey column:

    update titles set notes = value 
        where title_id = "T1234"

Table 1-4 shows how a unique index can promote a more efficient update mode 
than a nonunique index on the same key. Pay particular attention to the 
differences between direct and deferred in the shaded areas of the table. For 
example, with a unique clustered index, all of these updates can be performed 
in direct mode, but they must be performed in deferred mode if the index is 
nonunique.

For a table with a nonunique clustered index, a unique index on any other 
column in the table provides improved update performance. In some cases, you 
may want to add an IDENTITY column to a table to include the column as a 
key in an index that would otherwise be nonunique.
Performance and Tuning Series: Query Processing and Abstract Plans  37



How update operations are performed 
Table 1-4: Effects of indexing on update mode

If the key for an index is fixed length, the only difference in update modes from 
those shown in the table occurs for nonclustered indexes. For a nonclustered, 
nonunique index, the update mode is deferred_index for updates to the key. For 
a nonclustered, unique index, the update mode is direct for updates to the key.

If the length of varchar or varbinary is close to the maximum length, use char or 
binary instead. Each variable-length column adds row overhead and increases 
the possibility of deferred updates. 

Using max_rows_per_page to reduce the number of rows allowed on a page 
increases direct updates, because an update that increases the length of a 
variable-length column may still fit on the same page. 

For more information on using max_rows_per_page, see “Using 
max_rows_per_page on allpages-locked tables” on page 106 in Performance 
and Tuning Series: Physical Database Tuning. 

Using sp_sysmon while tuning updates
You can use showplan to determine whether an update is deferred or direct, but 
showplan does not give you detailed information about the type of deferred or 
direct update. Output from the sp_sysmon or Adaptive Server Monitor supplies 
detailed statistics about the types of updates performed during a sample 
interval.

Run sp_sysmon as you tune updates, and look for reduced numbers of deferred 
updates, reduced locking, and reduced I/O. 

See “Transaction Detail” on page 57 in Performance and Tuning Series: 
Monitoring Adaptive Server with sp_sysmon.

Update to:

Index 
Variable- 
length key

Fixed-length 
column

Variable- 
length column

No index N/A direct deferred_varcol

Clustered, unique direct direct direct

Clustered, not unique deferred deferred deferred

Clustered, not unique, with a 
unique index on another column

deferred direct deferred_varcol

Nonclustered, unique deferred_varcol direct direct

Nonclustered, not unique deferred_varcol direct deferred_varcol
38   Adaptive Server Enterprise



C H A P T E R  2 Using showplan

This chapter describes the messages printed by the showplan utility, which 
displays the query plan in a text-based format for each SQL statement in 
a batch or stored procedure.

Displaying a query plan
To see query plans, use:

set showplan on

To stop displaying query plans, use:

set showplan off

You can use showplan in conjunction with other set commands.

To display query plans for a stored procedure, but not execute them, use 
the set fmtonly command.

See Chapter 12, “Creating and Using Abstract Plans,” for information on 
how options interact.

Note  Do not use set noexec with stored procedures—compilation and 
execution does not occur and you do not receive the necessary output.

Topic Page
Displaying a query plan 39

Statement-level output 46

Query plan shape 49

Union operators 92

INSTEAD-OF TRIGGER operators 108
Performance and Tuning Series: Query Processing and Abstract Plans 39



Displaying a query plan 
Query plans in Adaptive Server Enterprise 15.0 and later
Adaptive Server traditionally classifies Transact-SQL statements into two 
groups:

• Optimizable. For example, this query is optimizable because it has many 
relations (tables): 

select * from t1, t2, t3, t4 
where t1.c1 = t2.c1 and . . .  
order by t3.c4

The query processor requires the join order, type of join, search arguments, 
and ordering to be optimized.

• Nonoptimizable. Utility commands like update statistics and dbcc are not 
optimized.

In Adaptive Server version 15.0 and later the optimizer and most of the 
execution engine was rewritten. The utility commands currently generate 
nearly identical showplan output compared with earlier versions. However, 
versions 15.0 and later generate new showplan output for optimizable 
statements.

Some of the new features of the query plans that showplan must display 
include:

• Plan elements – query plans can be composed from over thirty different 
operators.

• Plan shape – query plans are upside-down trees of operators. In general, 
more operators in a query plan result in more combinations of possible tree 
shapes. Query plans in version 15.0 and later can be more complex than 
those found in earlier versions. Nested indentation is provided to assist in 
visualizing the tree shape of these query plans.

• Subplans that are executed in parallel.

Why do I get different query plans for the same query?

The query processor may return a different query plan depending on whether 
you configure set plan optgoal for allrows_oltp, allrows_mix, or allrows_dss 
(unless you force a plan with forceplan):

• allrows_oltp – the query processor uses the nested-loop join operator.
40   Adaptive Server Enterprise



CHAPTER 2    Using showplan
• allrows_mix – the query processor allows both nested-loop joins and merge 
joins. The query processor measures their relative costs to determine 
which join it uses.

• allrows_dss – the query processor uses nested-loop, merge-, or hash-joins. 
The query processor measures their relative costs to determine which join 
it uses.

Using set showplan with noexec
You can use set noexec with set showplan on to view a query plan without 
executing the query. For example, this query prints the query plan but also 
executes the queries, which might be time consuming: 

set showplan on 
go 
select * from really_big_table 
select * from really_really_big_table 
go

However, if you include set noexec, you can view the query plan without 
running the query. 

Stored procedures are compiled when they are first used, or if the resultant 
compiled plan is already in use by another session, so set noexec can have 
unexpected results, and Sybase recommends that you use set fmtonly on 
instead. If you include a stored procedures inside another stored procedure, the 
second stored procedure is not run when you enable set noexec. For example, 
if you create two stored procedures:

create procedure sp_B 
   as 
   begin 
       select * from authors 
   end

and 

create procedure sp_A 
   as 
   begin 
       select * from titles 
       execute sp_B 
   end
Performance and Tuning Series: Query Processing and Abstract Plans  41



Using set showplan with noexec 
Individually, their query plans look like this:

set showplan on 
sp_B
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
            The type of query is EXECUTE. 
QUERY PLAN FOR STATEMENT 1 (at line 4). 
 
     STEP 1 
 
       The type of query is SELECT. 
       1 operator(s) under root 
       |ROOT:EMIT Operator (VA = 1) 
       | 
       |   |SCAN Operator (VA = 0) 
       |   |  FROM TABLE 
       |   |  titles 
       |   |  Table Scan. 
       |   |  Forward Scan. 
       |   |  Positioning at start of table. 
       |   |  Using I/O Size 2 Kbytes for data pages. 
       |   |  With LRU Buffer Replacement Strategy for data pages.

If you enable set noexec:

set noexec on 
go 
set showplan on 
go 
exec proc A 
go

Adaptive Server produces no showplan output for procedure B because noexec 
is enabled, so Adaptive Server is not actually executing or compiling procedure 
B, and does not print any showplan output. If noexec was not enabled, Adaptive 
Server would have compiled and printed plans for both A and B stored 
procedures.

But if you use set fmtonly on:

use pubs2 
go 
create procedure sp_B 
as 
begin 
     select * from authors 
42   Adaptive Server Enterprise



CHAPTER 2    Using showplan
end 
go 
create procedure sp_A 
as 
begin 
     select * from titles 
     execute sp_B 
end 
go 
set showplan on 
go 
set fmtonly on 
go 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
 
   STEP 1 
     The type of query is SET OPTION ON. 
 
sp_B 
go 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
   STEP 1 
     The type of query is EXECUTE. 
 
QUERY PLAN FOR STATEMENT 1 (at line 4). 
 
     STEP 1 
 
       The type of query is SELECT. 
       1 operator(s) under root 
       |ROOT:EMIT Operator (VA = 1) 
       | 
       |   |SCAN Operator (VA = 0) 
       |   |  FROM TABLE 
       |   |  authors 
       |   |  Table Scan. 
       |   |  Forward Scan. 
       |   |  Positioning at start of table. 
       |   |  Using I/O Size 2 Kbytes for data pages. 
       |   |  With LRU Buffer Replacement Strategy for data pages.  
 
 

Performance and Tuning Series: Query Processing and Abstract Plans  43



Using set showplan with noexec 
au_id         au_lname                                 au_fname 
         phone         address 
         city                 state   country     postalcode 
----------    --------------------------------------   -------------------- 
         ------------  ---------------------------------------- 
         ------------------   -----   ----------  ---------- 
 
(0 rows affected) 
(return status = 0) 
sp_A 
go 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
 
   STEP 1 
     The type of query is EXECUTE. 
 
 
QUERY PLAN FOR STATEMENT 1 (at line 4). 
 
 
     STEP 1 
 
       The type of query is SELECT. 
       1 operator(s) under root 
       |ROOT:EMIT Operator (VA = 1) 
       | 
       |   |SCAN Operator (VA = 0) 
       |   |  FROM TABLE 
       |   |  titles 
       |   |  Table Scan. 
       |   |  Forward Scan. 
       |   |  Positioning at start of table. 
       |   |  Using I/O Size 2 Kbytes for data pages. 
       |   |  With LRU Buffer Replacement Strategy for data pages.  
 
 
QUERY PLAN FOR STATEMENT 2 (at line 5). 
 
   STEP 1 
     The type of query is EXECUTE. 
 
title_id 
     title 
 

44   Adaptive Server Enterprise



CHAPTER 2    Using showplan
     type           pub_id     price                 advance 
     total_sales 
     notes 
 
     pubdate                 contract 
-------- 
     -------------------------------------------------------------------- 
     -----------    --------   -------------------   ----------------------- 
     ----------- 
     --------------------------------------------------------------------- 
-----------------------------------------------------------------------------
------------------------------------------------- 
     --------------------    -------- 
 
(0 rows affected) 
 
QUERY PLAN FOR STATEMENT 1 (at line 4). 

     STEP 1 
 
       The type of query is SELECT. 
       1 operator(s) under root 
       |ROOT:EMIT Operator (VA = 1) 
       | 
       |   |SCAN Operator (VA = 0) 
       |   |  FROM TABLE 
       |   |  authors 
       |   |  Table Scan. 
       |   |  Forward Scan. 
       |   |  Positioning at start of table. 
       |   |  Using I/O Size 2 Kbytes for data pages. 
       |   |  With LRU Buffer Replacement Strategy for data pages.  
 
au_id         au_lname                                 au_fname 
         phone         address 
         city                 state   country     postalcode 
----------    --------------------------------------   -------------------- 
         ------------  ---------------------------------------- 
         ------------------   -----   ----------   ----------

Both stored procedures are run and you see the resulting showplan output.
Performance and Tuning Series: Query Processing and Abstract Plans  45



Statement-level output 
Statement-level output
The first section of showplan output for each query plan presents statement-
level information, including the statement and line number in the batch or 
stored procedure of the query for which the query plan was generated:

QUERY PLAN FOR STATEMENT N (at line N).

This message may be followed by a series of messages that apply to the 
statement’s entire query plan. If the query plan was generated using an abstract 
plan about how the abstract plan was forced:

• If an explicit abstract plan was given by a plan clause in the SQL 
statement, the message is:

Optimized using the Abstract Plan in the PLAN clause.

• If an abstract plan has been internally generated (that is, for alter table and 
reorg commands that are executed in parallel), the message is:

Optimized using the forced options (internally 
generated Abstract Plan).

• If a new statement is cached, the output includes:

STEP 1 
 
The type of query is EXECUTE. 
Executing a newly cached statement.

• If a cached statement is reused, the output includes:

STEP 1 
 
The type of query is EXECUTE. 
Executing a previously cached statement.

• If the query recompiles the statement, the output includes:

QUERY PLAN IS RECOMPILED DUE TO SCHEMACT. 
 
THE RECOMPILED QUERY PLAN IS: 
 
. . . 
 
QUERY PLAN FOR STATEMENT 1 (at line 1) 
 
. . . 

• If an abstract plan has been retrieved from sysqueryplans because 
automatic abstract plan usage is enabled, the message is:
46   Adaptive Server Enterprise



CHAPTER 2    Using showplan
Optimized using an Abstract Plan (ID : N).

• If the query plan is a parallel query plan, the following message shows the 
number of processes (coordinator plus worker) that are required to execute 
the query plan:

Executed in parallel by coordinating process and N 
worker processes.

• If the query plan was optimized using simulated statistics, this message 
appears next:

Optimized using simulated statistics.

• The output includes VA= which indicates the virtual address for the 
operator, and the order in which each operator is executed. The query 
processor starts at VA=0. Generally, scan nodes (leaf nodes) are executed 
first.

Note  The VA= in the showplan output is available for Adaptive Server 
version 15.0.2 ESD #2 and later. You will not see VA= in earlier versions 
of Adaptive Server.

• Adaptive Server uses a scan descriptor for each database object that is 
accessed during query execution. By default, each connection (or each 
worker process for parallel query plans) has 28 scan descriptors. If the 
query plan requires access to more than 28 database objects, auxiliary scan 
descriptors are allocated from a global pool. If the query plan uses 
auxiliary scan descriptors, this message is printed, showing the total 
number required:

Auxiliary scan descriptors required: N

• This message shows the total number of operators appearing in the query 
plan:

N operator(s) under root

• The next message shows the type of query for the query plan. For query 
plans, the query type is select, insert, delete, or update:

The type of query is SELECT.

• A final statement-level message is printed at the end of showplan output if 
Adaptive Server is configured to enable resource limits. The message 
displays the optimizer’s total estimated cost of logical and physical I/O:

Total estimated I/O cost for statement N (at line M): 
X.
Performance and Tuning Series: Query Processing and Abstract Plans  47



Statement-level output 
The following query, with showplan output, shows some of these messages:

use pubs2 
go 
set showplan on 
go 
select stores.stor_name, sales.ord_num 
from stores, sales, salesdetail 
where salesdetail.stor_id = sales.stor_id 
and stores.stor_id = sales.stor_id 
plan " ( m_join ( i_scan salesdetailind salesdetail) 
( m_join ( i_scan salesind sales ) ( sort ( t_scan stores ) ) ) )" 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using the Abstract Plan in the PLAN clause. 
 
STEP 1 
The type of query is SELECT. 
 
6 operator(s) under root 
 
ROOT:EMIT Operator (VA = 6) 
 
    |MERGE JOIN Operator (Join Type: Inner Join) (VA = 5) 
    | Using Worktable3 for internal storage. 
    |  Key Count: 1 
    |  Key Ordering: ASC 
    | 
    |   |SCAN Operator (VA = 0) 
    |   |  FROM TABLE 
    |   |  salesdetail 
    |   |  Index : salesdetailind 
    |   |  Forward Scan. 
    |   |  Positioning at index start. 
    |   |  Index contains all needed columns. Base table will not be read. 
    |   |  Using I/O Size 2 Kbytes for index leaf pages. 
    |   |  With LRU Buffer Replacement Strategy for index leaf pages. 
    | 
    |   |MERGE JOIN Operator (Join Type: Inner Join) (VA = 4) 
    |   | Using Worktable2 for internal storage. 
    |   |  Key Count: 1 
    |   |  Key Ordering: ASC 
    |   | 
    |   |   |SCAN Operator (VA = 1) 
    |   |   |  FROM TABLE 
    |   |   |  sales 
    |   |   |  Table Scan. 
48   Adaptive Server Enterprise



CHAPTER 2    Using showplan
    |   |   |  Forward Scan. 
    |   |   |  Positioning at start of table. 
    |   |   |  Using I/O Size 2 Kbytes for data pages. 
    |   |   |  With LRU Buffer Replacement Strategy for data pages. 
    |   | 
    |   |   |SORT Operator (VA = 3) 
    |   |   | Using Worktable1 for internal storage. 
    |   |   | 
    |   |   |   |SCAN Operator (VA = 2) 
    |   |   |   |  FROM TABLE 
    |   |   |   |  stores 
    |   |   |   |  Table Scan. 
    |   |   |   |  Forward Scan. 
    |   |   |   |  Positioning at start of table. 
    |   |   |   |  Using I/O Size 2 Kbytes for data pages. 
    |   |   |   |  With LRU Buffer Replacement Strategy for data pages.

After the statement level output, the query plan appears. The showplan output 
of the query plan consists of two components:

• The names of the operators (some provide additional information) to show 
which operations are being executed in the query plan.

• Vertical bars (the “|” symbol) with indentation to show the shape of the 
query plan operator tree.

Query plan shape
The position of each operator in the tree determines its order of execution. 
Execution starts down the left-most branch of the tree and proceeds to the right. 
To illustrate execution, this section steps through the execution of the query 
plan for the example in the previous section. Figure 2-1 shows a graphical 
representation of the query plan.
Performance and Tuning Series: Query Processing and Abstract Plans  49



Query plan shape 
Figure 2-1: Query plan

To generate a result row, the EMIT operator calls for a row from its child, the 
MERGE JOIN operator (1), which calls for a row from its left child, the SCAN 
operator for salesdetailind. When EMIT receives a row from its left child, 
MERGE JOIN operator (1) calls for a row from its right child, MERGE JOIN 
operator (2). MERGE JOIN operator (2) calls for a row from its left child, the 
SCAN operator for sales. 

When it receives a row from its left child, MERGE JOIN operator (2) calls for 
a row from its right child, the SCAN operator. The SCAN operator is a data-
blocking operator. That is, it needs all of its input rows before it can sort them, 
so the SORT operator keeps calling for rows from its child, the SCAN operator 
for stores, until all rows have been returned. Then the SORT operator sorts 
the rows and passes the first row to the MERGE JOIN operator (2). 

 

SCAN

MERGE JOIN (1)
Inner join

EMIT

MERGE JOIN (2)
Inner join

SORTSCAN
sales

SCAN
stores

salesdetailind

VA=

VA=

VA= VA=

VA=
VA=

VA=
50   Adaptive Server Enterprise



CHAPTER 2    Using showplan
The MERGE JOIN operator (2) keeps calling for rows from either the left or 
right child operators until it gets two rows that match on the joining keys. The 
matching row is then passed up to MERGE JOIN operator (1). MERGE JOIN 
operator (1) also calls for rows from its child operators until a match is found, 
which is then passed up to the EMIT operator to be returned to the client. In 
effect, the operators are processed using a left-deep postfix recursive strategy.

Figure 2-2 shows a graphical representation of an alternate query plan for the 
same example query. This query plan contains all of the same operators, but the 
shape of the tree is different.

Figure 2-2: Alternate query plan

The showplan output corresponding to the query plan in Figure 2-2 is:

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
6 operator(s) under root 
 
The type of query is SELECT. 

MergeJoinOp(1)
Inner join

EMIT

ScanOp
salesdetailind

SortOpScanOp
sales

MergeJoinOp(2)
Inner join

VA=

VA=

VA=

VA=

VA=

VA=

VA=

ScanOp
stores
Performance and Tuning Series: Query Processing and Abstract Plans  51



Query plan shape 
 
ROOT:EMIT Operator 
 
    |MERGE JOIN Operator (Join Type: Inner Join) 
    | Using Worktable3 for internal storage. 
    |  Key Count: 1 
    |  Key Ordering: ASC 
    | 
    |   |MERGE JOIN Operator (Join Type: Inner Join) 
    |   | Using Worktable2 for internal storage. 
    |   |  Key Count: 1 
    |   |  Key Ordering: ASC 
    |   | 
    |   |   |SCAN Operator 
    |   |   |  FROM TABLE 
    |   |   |  sales 
    |   |   |  Table Scan. 
    |   |   |  Forward Scan. 
    |   |   |  Positioning at start of table. 
    |   |   |  Using I/O Size 2 Kbytes for data pages. 
    |   |   |  With LRU Buffer Replacement Strategy for data pages. 
    |   | 
    |   |   |SORT Operator 
    |   |   | Using Worktable1 for internal storage. 
    |   |   | 
    |   |   |   |SCAN Operator 
    |   |   |   |  FROM TABLE 
    |   |   |   |  stores 
    |   |   |   |  Table Scan. 
    |   |   |   |  Forward Scan. 
    |   |   |   |  Positioning at start of table. 
    |   |   |   |  Using I/O Size 2 Kbytes for data pages. 
    |   |   |   |  With LRU Buffer Replacement Strategy for data pages. 
    | 
    |   |SCAN Operator 
    |   |  FROM TABLE 
    |   |  salesdetail 
    |   |  Index : salesdetailind 
    |   |  Forward Scan. 
    |   |  Positioning at index start. 
    |   |  Index contains all needed columns. Base table will not be read. 
    |   |  Using I/O Size 2 Kbytes for index leaf pages. 
    |   |  With LRU Buffer Replacement Strategy for index leaf pages.
52   Adaptive Server Enterprise



CHAPTER 2    Using showplan
The showplan output conveys the shape of the query plan by using indentation 
and the pipe (“|”) symbol to indicate which operators are under which and 
which ones are on the same or different branches of the tree. There are two 
rules to interpreting the tree shape:

• The pipe “|” symbols form a vertical line that starts at the operator’s name 
and continue down past all of the operators that are under it on the same 
branch.

• Child operators are indented to the left for each level of nesting.

Using these rules, the shape of the query plan in Figure 2-2 can be derived from 
the previous showplan output with the following steps:

1 The ROOT or EMIT operator is at the top of the query plan tree.

2 MERGE JOIN operator (1) is the left child of the ROOT. The vertical line 
that starts at MERGE JOIN operator (1) travels down the length of the entire 
output, so all of the other operators are below MERGE JOIN operator (1) 
and on the same branch.

3 The left child operator of the MERGE JOIN operator (1) is MERGE JOIN 
operator (2).

4 The vertical line that starts at MERGE JOIN operator (2) travels down past 
a SCAN, a SORT, and another SCAN operator before it ends. These operators 
are all nested as a subbranch under MERGE JOIN operator (2).

5 The first SCAN under MERGE JOIN operator (2) is its left child, the SCAN 
of the sales table.

6 The SORT operator is the right child of MERGE JOIN operator (2) and the 
SCAN of the stores table is the only child of the SORT operator.

7 Below the output for the SCAN of the stores table, several vertical lines 
end. This indicates that a branch of the tree has ended. 

8 The next output is for the SCAN of the salesdetail table. It has the same 
indentation as MERGE JOIN operator (2), indicating that it is on the same 
level. In fact, this SCAN is the right child of MERGE JOIN operator (1).

Note  Most operators are either unary or binary. That is, they have either a 
single child operator or two child operators directly beneath. Operators that 
have more than two child operators are called “nary”. Operators that have no 
children are leaf operators in the tree and are termed “nullary.”
Performance and Tuning Series: Query Processing and Abstract Plans  53



Query plan shape 
Another way to get a graphical representation of the query plan is to use the 
command set statistics plancost on. See Adaptive Server Reference Manual: 
Commands for more information. This command is used to compare the 
estimated and actual costs in a query plan. It prints its output as a semigraphical 
tree representing the query plan tree. It is a very useful tool for diagnosing 
query performance problems.

Query plan operators
The query plan operators, and a description of each, are listed in Table 1-3 on 
page 25. This section contains additional messages that give more detailed 
information about each operator.

EMIT operator
The EMIT operator appears at the top of every query plan. EMIT is the root of 
the query plan tree and always has exactly one child operator. The EMIT 
operator routes the result rows of the query by sending them to the client (an 
application or another Adaptive Server instance) or by assigning values from 
the result row to local variables or fetch into variables.

SCAN operator
The SCAN operator reads rows into the query plan and makes them available 
for further processing by the other operators in the query plan. The SCAN 
operator is a leaf operator; that is, it never has any child operators. The SCAN 
operator can read rows from multiple sources, so the showplan message 
identifying it is always followed by a FROM message to identify what kind of 
SCAN is being performed. The FROM messages are: FROM CACHE, FROM OR, 
FROM LIST, and FROM TABLE.

FROM cache message
This message shows that a CACHE SCAN operator is reading a single-row in-
memory table.
54   Adaptive Server Enterprise



CHAPTER 2    Using showplan
FROM or LIST
An OR list has as many as N rows; one for each distinct OR or IN value specified 
in the query.

The first message shows that an OR scan is reading rows from an in-memory 
table that contains values from an IN list or multiple or clauses on the same 
column. The OR list appears only in query plans that use the special or strategy 
for in lists. The second message shows the maximum number of rows (N) that 
the in-memory table can have. Since OR list eliminates duplicate values when 
filling the in-memory table, N may be less than the number of values appearing 
in the SQL statement. As an example, the following query generates a query 
plan with the special or strategy and an OR list:

select s.id from sysobjects s where s.id in (1, 0, 1, 2, 3) 
go 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
    The type of query is SELECT. 
 
    4 operator(s) under root 
 
    ROOT:EMIT Operator (VA = 4) 
 
    |NESTED LOOP JOIN Operator (VA = 3) (Join Type: Inner Join) 
    | 
    |   |SCAN Operator (VA = 2) 
    |   | FROM OR List 
    |   | OR List has up to 5 rows of OR/IN values. 
    | 
    |   |RESTRICT Operator (VA = 2)(0)(0)(0)(8)(0) 
    |   |   |SCAN Operator (VA = 1) 
    |   |   | FROM TABLE 
    |   |   | sysobjects 
    |   |   | s 
    |   |   | Using Clustered Index. 
    |   |   | Index : csysobjects 
    |   |   | Forward Scan. 
    |   |   | Positioning by key. 
    |   |   | Index contains all needed columns. Base table will not be read. 
    |   |   | Keys are: 
    |   |   | id ASC 
    |   |   | Using I/O Size 2 Kbytes for index leaf pages. 
    |   |   | With LRU Buffer Replacement Strategy for index leaf pages.
Performance and Tuning Series: Query Processing and Abstract Plans  55



Query plan shape 
This example has five values in the IN list, but only four are distinct, so the OR 
list puts only the four distinct values in its in-memory table. In the example 
query plan, the OR list is the left-child operator of the NESTED LOOP JOIN 
operator and a SCAN operator is the right child of the NESTED LOOP JOIN 
operator. When this plan executes, the NESTED LOOP JOIN operator calls the 
or command to return a row from its in-memory table, then the NESTED LOOP 
JOIN operator calls on the SCAN operator to find all matching rows (one at a 
time), using the clustered index for lookup. This example query plan is much 
more efficient than reading all of the rows of sysobjects and comparing the 
value of sysobjects.id in each row to the five values in the IN list.

FROM TABLE
FROM TABLE shows that a PARTITION SCAN operator is reading a database 
table. A second message gives the table name, and, if there is a correlation 
name, it is printed on the next line. Under the FROM TABLE message in the 
previous example output, sysobjects is the table name and s is the correlation 
name. The previous example also shows additional messages under the FROM 
TABLE message. These messages give more information about how the 
PARTITION SCAN operator is directing the access layer of Adaptive Server to 
get the rows from the table being scanned. 

The messages below indicate whether the scan is a table scan or an index scan:

• Table Scan – the rows are fetched by reading the pages of the table.

• Using Clustered Index – a clustered index is used to fetch the rows 
of the table.

• Index: indexname – an index is used to fetch the table rows. If this message 
is not preceded by “using clustered index,” a nonclustered index is 
used. indexname is the name of the index that will be used.

These messages indicate the direction of a table or index scan. The scan 
direction depends on the ordering specified when the indexes were created and 
the order specified for columns in the order by clause or other useful orderings 
that can be exploited by operators further up in the query plan (for example, a 
sorted ordering for a merge-join strategy).

Backward scans can be used when the order by clause contains the ascending 
or descending qualifiers on index keys, exactly opposite of those in the create 
index clause.

Forward scan
56   Adaptive Server Enterprise



CHAPTER 2    Using showplan
Backward scan

The scan-direction messages are followed by positioning messages, which 
describe how access to a table or to the leaf level of an index takes place:

• Positioning at start of table – a table scan that starts at the first 
row of the table and goes forward.

• Positioning at end of table – a table scan that starts at the last row 
of the table and goes backward.

• Positioning by key – the index is used to position the scan at the first 
qualifying row.

• Positioning at index start/positioning at index end – these 
messages are similar to the corresponding messages for table scans, except 
that an index is being scanned instead of a table.

If the scan can be limited due to the nature of the query, the following messages 
describe how:

• Scanning only the last page of the table – appears when the 
scan uses an index and is searching for the maximum value for scalar 
aggregation. If the index is on the column whose maximum is sought, and 
the index values are in ascending order, the maximum value will be on the 
last page.

• Scanning only up to the first qualifying row – appears when 
the scan uses an index and is searching for the minimum value for scalar 
aggregation.

Note  If the index key is sorted in descending order, the above messages for 
minimum and maximum aggregates are reversed.

In some cases, the index being scanned contains all of the columns of the table 
that are needed in the query. In such a case, this message is printed: 

Index contains all needed columns. Base table will not 
be read.

If an index contains all the columns needed by the query, the optimizer may 
choose an Index Scan over a Table Scan even though there are no useful 
keys on the index columns. The amount of I/O required to read the index can 
be significantly less than that required to read the base table. Index scans that 
do not require base table pages to be read are called covered index scans.

If an index scan is using keys to position the scan, this message prints: 
Performance and Tuning Series: Query Processing and Abstract Plans  57



Query plan shape 
Keys are: 
     Key <ASC/DESC>

This message shows the names of the columns used as keys (each key on its 
own output line) and shows the index ordering on that key: ASC for ascending 
and DESC for descending.

After the messages that describe the type of access being used by the scan 
operator, messages about the I/O sizes and buffer cache strategy are printed.

I/O size messages

The I/O messages are:

Using I/O size N Kbtyes for data pages.

Using I/O size N Kbtyes for index leaf pages.

These messages report the I/O sizes used in the query. Possible I/O sizes are 2, 
4, 8, and 16 kilobytes.

If the table, index, or database used in the query uses a data cache with large 
I/O pools, the optimizer can choose large I/O. It can choose to use one I/O size 
for reading index leaf pages, and a different size for data pages. The choice 
depends on the pool size available in the cache, the number of pages to be read, 
the cache bindings for the objects, and the cluster ratio for the table or index 
pages.

Either (or both) of these messages can appear in the showplan output for a SCAN 
operator. For a table scan, only the first message is printed; for a covered index 
scan, only the second message is printed. For an Index Scan that requires 
base table access, both messages are printed.

After each I/O size message, a cache strategy message is printed:

With <LRU/MRU> Buffer Replacement Strategy for data 
pages.

With <LRU/MRU> Buffer Replacement Strategy for index 
leaf pages.

In an LRU replacement strategy, the most recently accessed pages are 
positioned in the cache to be retained as long as possible. In an MRU 
Replacement Strategy, the most recently accessed pages are positioned in the 
cache for quick replacement. 

Sample I/O and cache messages are shown in the following query:

use pubs2 
go 
58   Adaptive Server Enterprise



CHAPTER 2    Using showplan
set showplan on 
go 
select au_fname, au_lname, au_id from authors 
where au_lname = "Williams" 
go 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
1 operator(s) under root

 
The type of query is SELECT. 
 
ROOT:EMIT Operator (VA = 1) 
 
    |SCAN Operator (VA = 0) 
    |  FROM TABLE 
    |  authors 
    |  Index : aunmind 
    |  Forward Scan. 
    |  Positioning by key. 
    |  Keys are: 
    |    au_lname ASC 
    |  Using I/O Size 2 Kbytes for index leaf pages. 
    |  With LRU Buffer Replacement Strategy for index leaf pages. 
    |  Using I/O Size 2 Kbytes for data pages. 
    |  With LRU Buffer Replacement Strategy for data pages.

The SCAN operator of the authors table uses the index aunmind, but must also 
read the base table pages to get all of the required columns from authors. In this 
example, there are two I/O size messages, each followed by the corresponding 
buffer replacement message.

There are two kinds of table SCAN operators that have their own messages—
the RID SCAN and the LOG SCAN.

RID scan

The Positioning by Row IDentifier (RID) scan is found only in query 
plans that use the second or strategy that the optimizer can choose, the general 
or strategy. The general or strategy may be used when multiple or clauses are 
present on different columns. An example of a query for which the optimizer 
can choose a general or strategy and its showplan output is:

use pubs2 
go 
set showplan on 
Performance and Tuning Series: Query Processing and Abstract Plans  59



Query plan shape 
go 
select id from sysobjects where id = 4 or name = 'foo' 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
6 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator (VA = 6) 
 
    |RID JOIN Operator (VA = 5) 
    | Using Worktable2 for internal storage. 
    | 
    |   |HASH UNION Operator has 2 children. 
    |   | Using Worktable1 for internal storage. 
    |   | 
    |   |   |SCAN Operator (VA = 0) 
    |   |   |  FROM TABLE 
    |   |   |  sysobjects 
    |   |   |  Using Clustered Index. 
    |   |   |  Index : csysobjects 
    |   |   |  Forward Scan. 
    |   |   |  Positioning by key. 
    |   |   |  Index contains all needed columns. Base table will not be read. 
    |   |   |  Keys are: 
    |   |   |    id ASC 
    |   |   |  Using I/O Size 2 Kbytes for index leaf pages. 
    |   |   |  With LRU Buffer Replacement Strategy for index leaf pages. 
    |   | 
    |   |   |SCAN Operator (VA = 1) 
    |   |   |  FROM TABLE 
    |   |   |  sysobjects 
    |   |   |  Index : ncsysobjects 
    |   |   |  Forward Scan. 
    |   |   |  Positioning by key. 
    |   |   |  Index contains all needed columns. Base table will not be read. 
    |   |   |  Keys are: 
    |   |   |    name ASC 
    |   |   |  Using I/O Size 2 Kbytes for index leaf pages. 
    |   |   |  With LRU Buffer Replacement Strategy for index leaf pages. 
    | 
    |   |RESTRICT Operator (VA = 4)(0)(0)(0)(11)(0) 
    |   | 
    |   |   |SCAN Operator(VA = 3) 
    |   |   |  FROM TABLE 
60   Adaptive Server Enterprise



CHAPTER 2    Using showplan
    |   |   |  sysobjects 
    |   |   |  Using Dynamic Index. 
    |   |   |  Forward Scan. 
    |   |   |  Positioning by Row IDentifier (RID). 
    |   |   |  Using I/O Size 2 Kbytes for data pages. 
    |   |   |  With LRU Buffer Replacement Strategy for data pages.

In this example, the where clause contains two disjunctions, each on a different 
column (id and name). There are indexes on each of these columns (csysobjects 
and ncsysobjects), so the optimizer chose a query plan that uses an index scan 
to find all rows whose id column is 4 and another index scan to find all rows 
whose name is “foo.” 

Since it is possible that a single row has both an ID of 4 and a name of “foo,” 
that row would appear twice in the result set. To eliminate these duplicate rows, 
the index scans return only the row identifiers (RIDs) of the qualifying rows. 
The two streams of RIDs are concatenated by the HASH UNION operator, which 
also removes any duplicate RIDs. 

]The stream of unique RIDs is passed to the RID JOIN operator. The rid join 
operator creates a worktable and fills it with a single-column row with each 
RID. The RID JOIN operator then passes its worktable of RIDs to the RID 
SCAN operator. The RID SCAN operator passes the worktable to the access 
layer, where it is treated as a keyless nonclustered index and the rows 
corresponding to the RIDs are fetched and returned. 

The last SCAN in the showplan output is the RID SCAN. As can be seen from 
the example output, the RID SCAN output contains many of the messages 
already discussed above, but it also contains two messages that are printed only 
for the RID SCAN:

• Using Dynamic Index – indicates the SCAN is using the worktable with 
RIDs that was built during execution by the RID JOIN operator as an 
index to locate the matching rows.

• Positioning by Row Identifier (RID) – indicates the rows are 
being located directly by the RID.

Log Scan

 Log Scan appears only in triggers that access inserted or deleted tables. These 
tables are dynamically built by scanning the transaction log when the trigger is 
executed. Triggers are executed only after insert, delete, or update queries 
modify a table with a trigger defined on it for the specific query type. The 
following example is a delete query on the titles table, which has a delete trigger 
called deltitle defined on it:
Performance and Tuning Series: Query Processing and Abstract Plans  61



Query plan shape 
use pubs2 
go 
set showplan on 
go 
delete from titles where title_id = 'xxxx' 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
   The type of query is DELETE. 
 
   2 operator(s) under root 
 
    |ROOT:EMIT Operator (VA = 2) 
 
    |DELETE Operator (VA = 1) 
    |  The update mode is direct. 
    | 
    |   |SCAN Operator (VA = 0) 
    |   |  FROM TABLE 
    |   |  titles 
    |   |  Using Clustered Index. 
    |   |  Index : titleidind 
    |   |  Forward Scan. 
    |   |  Positioning by key. 
    |   |  Keys are: 
    |   |    title_id ASC 
    |   |  Using I/O Size 2 Kbytes for data pages. 
    |   |  With LRU Buffer Replacement Strategy for data pages. 
    | 
    |  TO TABLE 
    |  titles 
    |  Using I/O Size 2 Kbytes for data pages.

The showplan output up to this point is for the actual delete query. The output 
below is for the trigger, deltitle.

QUERY PLAN FOR STATEMENT 1 (at line 5). 
 
STEP 1 
 
The type of query is COND. 
 
6 operator(s) under root 
 
ROOT:EMIT Operator (VA = 6) 
 

62   Adaptive Server Enterprise



CHAPTER 2    Using showplan
    |RESTRICT Operator (VA = 5)(0)(0)(0)(5)(0) 
    | 
    |   |SCALAR AGGREGATE Operator (VA = 4) 
    |   |  Evaluate Ungrouped COUNT AGGREGATE. 
    |   | 
    |   |   |MERGE JOIN Operator (Join Type: Inner Join) (VA = 3) 
    |   |   | Using Worktable2 for internal storage. 
    |   |   |  Key Count: 1 
    |   |   |  Key Ordering: ASC 
    |   |   | 
    |   |   |   |SORT Operator (VA = 1) 
    |   |   |   | Using Worktable1 for internal storage. 
    |   |   |   | 
    |   |   |   |   |SCAN Operator (VA = 0) 
    |   |   |   |   |  FROM TABLE 
    |   |   |   |   |  titles 
    |   |   |   |   |  Log Scan. 
    |   |   |   |   |  Forward Scan. 
    |   |   |   |   |  Positioning at start of table. 
    |   |   |   |   |  Using I/O Size 2 Kbytes for data pages. 
    |   |   |   |   |  With MRU Buffer Replacement Strategy for data pages. 
    |   |   | 
    |   |   |   |SCAN Operator (VA = 2) 
    |   |   |   |  FROM TABLE 
    |   |   |   |  salesdetail 
    |   |   |   |  Index : titleidind 
    |   |   |   |  Forward Scan. 
    |   |   |   |  Positioning at index start. 
    |   |   |   |  Index contains all needed columns. Base table will not be 
                   read. 
    |   |   |   |  Using I/O Size 2 Kbytes for index leaf pages. 
    |   |   |   |  With LRU Buffer Replacement Strategy for index leaf pages. 
 
QUERY PLAN FOR STATEMENT 2 (at line 8). 
 
     STEP 1 
          The type of query is ROLLBACK TRANSACTION. 
 
QUERY PLAN FOR STATEMENT 3 (at line 9). 
 
     STEP 1 
          The type of query is PRINT. 
 
QUERY PLAN FOR STATEMENT 4 (at line 0). 
    STEP 1 
         The type of query is GOTO.
Performance and Tuning Series: Query Processing and Abstract Plans  63



Query plan shape 
The procedure that defines the deltitle trigger consists of four SQL statements. 
Use sp_helptext deltitle to display the text of deltitle. The first statement in 
deltitle has been compiled into a query plan, the other three statements are 
compiled into legacy query plans and are executed by the procedural execution 
engine, not the query execution engine.

The showplan output for the SCAN operator for the titles table indicates that it is 
doing a scan of the log by printing Log Scan.

DELETE, INSERT, and UPDATE operators

The DELETE, INSERT, and UPDATE operators usually have only one child 
operator. However, they can have as many as two additional child operators to 
enforce referential integrity constraints and to deallocate text data in the case 
of alter table drop of a text column.

These operators modify data by inserting, deleting, or updating rows belonging 
to a target table.

Child operators of DML operators can be SCAN operators, JOIN operators, or 
any data streaming operator.

The data modification can be done using different update modes, as specified 
by this message:

The Update Mode is <Update Mode>.

The table update mode may be direct, deferred, deferred for an 
index, or deferred for a variable column. The update mode for a 
worktable is always direct. 

The target table for the data modification is displayed in this message:

TO TABLE 
<Table Name>

Also displayed is the I/O size used for the data modification:

Using I/O Size <N> Kbytes for data pages.

The next example uses the DELETE operator:

use pubs2 
go 
set showplan on 
go 
delete from authors where postalcode = '90210' 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
64   Adaptive Server Enterprise



CHAPTER 2    Using showplan
 
STEP 1 
The type of query is DELETE. 
 
2 operator(s) under root 
 
ROOT:EMIT Operator (VA = 2) 
 

|DELETE Operator (VA = 1) 
|  The update mode is direct. 
| 
|   |SCAN Operator (VA = 0) 
|   |  FROM TABLE 
|   |  authors 
|   |  Table Scan. 
|   |  Forward Scan. 
|   |  Positioning at start of table. 
|   |  Using I/O Size 4 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages. 
| 
|  TO TABLE 
|  authors 
|  Using I/O Size 4 Kbytes for data pages.

TEXT DELETE operator

Another type of query plan where DELETE, INSERT, and UPDATE operator can 
have more than one child operator is the alter table drop textcol command, 
where textcol is the name of a column whose datatype is text, image, or unitext. 
This version of command used the TEXT DELETE operator in its query plan. 
For example:

use tempdb 
go 
create table t1 (c1 int, c2 text, c3 text) 
go 
set showplan on 
go 
alter table t1 drop c2 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using the Abstract Plan in the PLAN clause. 
 
STEP 1 
The type of query is ALTER TABLE. 
 

Performance and Tuning Series: Query Processing and Abstract Plans  65



Query plan shape 
5 operator(s) under root 
 
ROOT:EMIT Operator (VA = 5) 
 

|INSERT Operator (VA = 52) 
|  The update mode is direct. 
| 
|   |RESTRICT Operator (VA = 1)(0)(0)(3)(0)(0) 
|   | 
|   |   |SCAN Operator (VA = 0) 
|   |   |  FROM TABLE 
|   |   |  t1 
|   |   |  Table Scan. 
|   |   |  Forward Scan. 
|   |   |  Positioning at start of table. 
|   |   |  Using I/O Size 2 Kbytes for data pages. 
|   |   |  With LRU Buffer Replacement Strategy for data pages. 
| 
|   |TEXT DELETE Operator 
|   |  The update mode is direct. 
|   | 
|   |   |SCAN Operator (VA = 3) 
|   |   |  FROM TABLE 
|   |   |  t1 
|   |   |  Table Scan. 
|   |   |  Forward Scan. 
|   |   |  Positioning at start of table. 
|   |   |  Using I/O Size 2 Kbytes for data pages. 
|   |   |  With LRU Buffer Replacement Strategy for data pages. 
| 
|  TO TABLE 
|  #syb__altab 
|  Using I/O Size 2 Kbytes for data pages.

One of the two text columns in t1 is dropped, using the alter table command. 
The showplan output has the appearance of a select into query plan because alter 
table internally generated a select into query plan. 

The INSERT operator calls on its left child operator, the SCAN of t1, to read the 
rows of t1, and builds new rows with only the c1 and c3 columns inserted into 
#syb_altab. When all the new rows have been inserted into #syb_altab, the 
INSERT operator calls on its right child, the TEXT DELETE operator, to delete 
the text page chains for the c2 columns that have been dropped from t1. 

Postprocessing replaces the original pages of t1 with those of #syb_altab to 
complete the alter table command.
66   Adaptive Server Enterprise



CHAPTER 2    Using showplan
The TEXT DELETE operator appears only in alter table commands that drop 
some, but not all text columns of a table, and it always appears as the right child 
of an INSERT operator.

The TEXT DELETE operator displays the update mode message, exactly like 
the INSERT, UPDATE, and DELETE operators.

Query plans for referential integrity enforcement

When the INSERT, UPDATE, and DELETE operators are used on a table that has 
one or more referential integrity constraints, the showplan output also shows 
the DIRECT RI FILTER and DEFERRED RI FILTER child operators of the 
DML operator. The type of referential integrity constraint determines whether 
one or both of these operators are present.

The following example is for an insert into the titles table of the pubs3 database. 
This table has a column called pub_id that references the pub_id column of the 
publishers table. The referential integrity constraint on titles.pub_id requires 
that every value that is inserted into titles.pub_id must have a corresponding 
value in publishers.pub_id.

The query and its query plan are:

use pubs3 
go 
set showplan on 
insert into titles values ("AB1234", "Abcdefg", "test", "9999", 9.95, 1000.00, 
10, null, getdate(),1) 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is INSERT. 
 
4 operator(s) under root 
 
 
ROOT:EMIT Operator (VA = 3) 
 

|INSERT Operator (VA = 2) 
|  The update mode is direct. 
| 
|   |SCAN Operator (VA = 1) 
|   |  FROM CACHE 
| 
|   |DIRECT RI FILTER Operator has 1 children. 
Performance and Tuning Series: Query Processing and Abstract Plans  67



Query plan shape 
|   | 
|   |   |SCAN Operator (VA = 0) 
|   |   |  FROM TABLE 
|   |   |  publishers 
|   |   |  Index : publishers_6240022232 
|   |   |  Forward Scan. 
|   |   |  Positioning by key.
|   |   |  Index contains all needed columns. Base table will not be 

                  read. 
|   |   |  Keys are: 
|   |   |    pub_id ASC 
|   |   |  Using I/O Size 2 Kbytes for index leaf pages. 
|   |   |  With LRU Buffer Replacement Strategy for index leaf pages. 
| 
|  TO TABLE 
|  titles 
|  Using I/O Size 2 Kbytes for data pages.

In the query plan, the INSERT operator’s left child operator is a CACHE SCAN, 
which returns the row of values to be inserted into titles. The INSERT 
operator’s right child is a DIRECT RI FILTER operator. 

The DIRECT RI FILTER operator executes a scan of the publishers table to 
find a row with a value of pub_id that matches the value of pub_id to be inserted 
into titles. If a matching row is found, the DIRECT RI FILTER operator allows 
the insert to proceed, but if a matching value of pub_id is not found in 
publishers, the DIRECT RI FILTER operator aborts the command. 

In this example, the DIRECT RI FILTER can check and enforce the referential 
integrity constraint on titles for each row that is inserted, as it is inserted.

The next example shows a DIRECT RI FILTER operating in a different mode, 
together with a DEFERRED RI FILTER operator:

use pubs3 
go 
set showplan on 
go 
update publishers set pub_id = '0001' 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is UPDATE. 
 
13 operator(s) under root 
 
ROOT:EMIT Operator (VA = 13) 
68   Adaptive Server Enterprise



CHAPTER 2    Using showplan
 
|UPDATE Operator (VA = 1) 
|  The update mode is deferred_index. 
| 
|   |SCAN Operator (VA = 0) 
|   |  FROM TABLE 
|   |  publishers 
|   |  Table Scan. 
|   |  Forward Scan. 
|   |  Positioning at start of table. 
|   |  Using I/O Size 2 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages. 
| 
|   |DIRECT RI FILTER Operator (VA = 7) has 1 children. 
|   | 
|   |   |INSERT Operator (VA = 6) 
|   |   |  The update mode is direct. 
|   |   | 
|   |   |   |SQFILTER Operator (VA = 5) has 2 children. 
|   |   |   | 
|   |   |   |   |SCAN Operator (VA = 2) 
|   |   |   |   |  FROM CACHE 
|   |   |   | 
|   |   |   |  Run subquery 1 (at nesting level 0). 
|   |   |   | 
|   |   |   |QUERY PLAN FOR SUBQUERY 1 (at nesting level 0 and at  

                    line 0). 
|   |   |   | 
|   |   |   |   Non-correlated Subquery. 
|   |   |   |   Subquery under an EXISTS predicate. 
|   |   |   | 
|   |   |   |   |SCALAR AGGREGATE Operator (VA = 4) 
|   |   |   |   | Evaluate Ungrouped ANY AGGREGATE. 
|   |   |   |   | Scanning only up to the first qualifying row. 
|   |   |   |   | 
|   |   |   |   |   |SCAN Operator (VA = 3) 
|   |   |   |   |   |  FROM TABLE 
|   |   |   |   |   |  titles 
|   |   |   |   |   |  Table Scan. 
|   |   |   |   |   |  Forward Scan. 
|   |   |   |   |   |  Positioning at start of table. 
|   |   |   |   |   |  Using I/O Size 2 Kbytes for data pages. 
|   |   |   |   |   |  With LRU Buffer Replacement strategy for data 

                              pages. 
|   |   |   | 
|   |   |   |  END OF QUERY PLAN FOR SUBQUERY 1. 
Performance and Tuning Series: Query Processing and Abstract Plans  69



Query plan shape 
|   |   | 
|   |   |  TO TABLE 
|   |   |  Worktable1. 
| 
|   |DEFERRED RI FILTER Operator has (VA = 12) 1 children. 
|   | 
|   |   |SQFILTER Operator (VA = 11) has 2 children. 
|   |   | 
|   |   |   |SCAN Operator (VA = 8) 
|   |   |   |  FROM TABLE 
|   |   |   |  Worktable1. 
|   |   |   |  Table Scan. 
|   |   |   |  Forward Scan. 
|   |   |   |  Positioning at start of table. 
|   |   |   |  Using I/O Size 2 Kbytes for data pages. 
|   |   |   |  With LRU Buffer Replacement Strategy for data pages. 
|   |   | 
|   |   |  Run subquery 1 (at nesting level 0). 
|   |   | 
|   |   |  QUERY PLAN FOR SUBQUERY 1 (at nesting level 0 and at line 0). 
|   |   | 
|   |   |   Non-correlated Subquery. 
|   |   |   Subquery under an EXISTS predicate. 
|   |   | 
|   |   |   |SCALAR AGGREGATE Operator (VA = 10) 
|   |   |   |  Evaluate Ungrouped ANY AGGREGATE. 
|   |   |   |  Scanning only up to the first qualifying row. 
|   |   |   | 
|   |   |   |   |SCAN Operator (VA = 9) 
|   |   |   |   |  FROM TABLE 
|   |   |   |   |  publishers 
|   |   |   |   |  Index : publishers_6240022232 
|   |   |   |   |  Forward Scan. 
|   |   |   |   |  Positioning by key. 
|   |   |   |   |  Index contains all needed columns. Base table will 

                          not be read. 
|   |   |   |   |  Keys are: 
|   |   |   |   |    pub_id ASC 
|   |   |   |   |  Using I/O Size 2 Kbytes for index leaf pages. 
|   |   |   |   |  With LRU Buffer Replacement Strategy for index leaf 

                          pages. 
|   |   | 
|   |   |  END OF QUERY PLAN FOR SUBQUERY 1.| 
|  TO TABLE 
|  publishers 
|  Using I/O Size 2 Kbytes for data pages.
70   Adaptive Server Enterprise



CHAPTER 2    Using showplan
The referential integrity constraint on titles requires that for every value of 
titles.pub_id there must exist a value of publishers.pub_id. However, this 
example query is changing the values of publisher.pub_id, so a check must be 
made to maintain the referential integrity constraint. 

The example query can change the value of publishers.pub_id for several rows 
in publishers, so a check to make sure that all of the values of titles.pub_id still 
exist in publisher.pub_id cannot be done until all rows of publishers have been 
processed. 

This example calls for deferred referential integrity checking: as each row of 
publishers is read, the UPDATE operator calls upon the DIRECT RI FILTER 
operator to search titles for a row with the same value of pub_id as the value that 
is about to be changed. If a row is found, it indicates that this value of pub_id 
must still exist in publishers to maintain the referential integrity constraint on 
titles, so the value of pub_id is inserted into WorkTable1. 

After all of the rows of publishers have been updated, the UPDATE operator calls 
upon the DEFERRED RI FILTER operator to execute its subquery to verify that 
all of the values in Worktable1 still exist in publishers. The left child operator of 
the DEFERRED RI FILTER is a SCAN which reads the rows from Worktable1. 
The right child is a SQFILTER operator that executes an existence subquery to 
check for a matching value in publishers. If a matching value is not found, the 
command is aborted.

The examples in this section used simple referential integrity constraints, 
between only two tables. Adaptive Server allows up to 192 constraints per 
table, so it can generate much more complex query plans. When multiple 
constraints must be enforced, there is still only a single DIRECT RI FILTER 
or DEFERRED RI FILTER operator in the query plan, but these operators can 
have multiple subplans, one for each constraint that must be enforced.

JOIN operators

Adaptive Server provides four primary JOIN operator strategies: NESTED 
LOOP JOIN, MERGE JOIN, HASH JOIN, and NARY NESTED LOOP JOIN, 
which is a variant of NESTED LOOP JOIN. In versions earlier than 15.0, 
NESTED LOOP JOIN was the primary JOIN strategy. MERGE JOIN was also 
available, but was, by default, not enabled.

Each JOIN operator is described in further detail below, including a general 
description of the each algorithm. These descriptions give a high-level 
overview of the processing required for each JOIN strategy. 
Performance and Tuning Series: Query Processing and Abstract Plans  71



Query plan shape 
NESTED LOOP JOIN

NESTED LOOP JOIN, the simplest join strategy, is a binary operator with the 
left child forming the outer data stream and the right child forming the inner 
data stream. 

For every row from the outer data stream, the inner data stream is opened. 
Often, the right child is a scan operator. Opening the inner data stream 
effectively positions the scan on the first row that qualifies all of the searchable 
arguments. 

The qualifying row is returned to the NESTED LOOP JOIN’s parent operator. 
Subsequent calls to the join operator continue to return qualifying rows from 
the inner stream. 

After the last qualifying row from the inner stream is returned for the current 
outer row, the inner stream is closed. A call is made to get the next qualifying 
row from the outer stream. The values from this row provide the searchable 
arguments used to open and position the scan on the inner stream. This process 
continues until the NESTED LOOP JOIN’s left child returns End Of Scan.

 -- Collect all of the title ids for books written by "Bloom". 
select ta.title_id 
from titleauthor ta, authors a 
where a.au_id = ta.au_id 
and au_lname = "Bloom" 
go 

 
QUERY PLAN FOR STATEMENT 1 (at line 2). 
 
STEP 1 
The type of query is SELECT. 
 
3 operator(s) under root 
 
ROOT:EMIT Operator (VA = 3) 
 

|NESTED LOOP JOIN Operator (Join Type: Inner Join) 
| 
|   |SCAN Operator (VA = 0) 
|   |  FROM TABLE 
|   |  authors 
|   |  a 
|   |  Index : aunmind 
|   |  Forward Scan. 
|   |  Positioning by key. 
|   |  Keys are: 
72   Adaptive Server Enterprise



CHAPTER 2    Using showplan
|   |    au_lname ASC 
|   |  Using I/O Size 2 Kbytes for index leaf pages. 
|   |  With LRU Buffer Replacement Strategy for index leaf pages. 
|   |  Using I/O Size 2 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages. 
| 
|   |SCAN Operator (VA = 1) 
|   |  FROM TABLE 
|   |  titleauthor 
|   |  ta 
|   |  Using Clustered Index. 
|   |  Index : taind 
|   |  Forward Scan. 
|   |  Positioning by key. 
|   |  Keys are: 
|   |    au_id ASC 
|   |  Using I/O Size 2 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages.

The authors table is joined with the titleauthor table. A NESTED LOOP JOIN 
strategy has been chosen. The NESTED LOOP JOIN operator’s type is “Inner 
Join.” First, the authors table is opened and positioned on the first row (using 
the aunmind index) containing an l_name value of “Bloom.” Then, the 
titleauthor table is opened and positioned on the first row with an au_id equal to 
the au_id value of the current authors’ row using the clustered index “taind.” If 
there is no useful index for lookups on the inner stream, the optimizer may 
generate a reformatting strategy. 

Generally, a NESTED LOOP JOIN strategy is effective when there is a useful 
index available for qualifying the join predicates on the inner stream.

MERGE JOIN

The MERGE JOIN operator is a binary operator. The left and right children are 
the outer and inner data streams, respectively. Both data streams must be sorted 
on the MERGE JOIN’s key values.

First, a row from the outer stream is fetched. This initializes the MERGE JOIN’s 
join key values. Then, rows from the inner stream are fetched until a row with 
key values that match or are greater than (less than if key column is 
descending) is encountered. If the join key matches, the qualifying row is 
passed on for additional processing, and a subsequent next call to the MERGE 
JOIN operator continues fetching from the currently active stream.
Performance and Tuning Series: Query Processing and Abstract Plans  73



Query plan shape 
 If the new values are greater than the current comparison key, these values are 
used as the new comparison join key while fetching rows from the other 
stream. This process continues until one of the data streams is exhausted.

Generally, the MERGE JOIN strategy is effective when a scan of the data 
streams requires that most of the rows must be processed, and that, if any of the 
input streams are large, they are already sorted on the join keys. 

select ta.title_id 
from titleauthor ta, authors a 
where a.au_id = ta.au_id 
and au_lname = "Bloom" 
go 
 
QUERY PLAN FOR STATEMENT 1 (at line 2). 
 
    STEP 1 
        The type of query is EXECUTE. 
        Executing a newly cached statement. 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is SELECT. 
 
3 operator(s) under root 
 
ROOT:EMIT Operator (VA = 3) 
 

|MERGE JOIN Operator (Join Type: Inner Join) 
| Using Worktable2 for internal storage. 
|  Key Count: 1 
|  Key Ordering: ASC 
| 
|   |SORT Operator 
|   | Using Worktable1 for internal storage. 
|   | 
|   |   |SCAN Operator 
|   |   |  FROM TABLE 
|   |   |  authors 
|   |   |  a 
|   |   |  Index : aunmind 
|   |   |  Forward Scan. 
|   |   |  Positioning by key. 
|   |   |  Keys are: 
|   |   |    au_lname ASC 
|   |   |  Using I/O Size 2 Kbytes for index leaf pages. 
74   Adaptive Server Enterprise



CHAPTER 2    Using showplan
|   |   |  With LRU Buffer Replacement Strategy for index leaf pages. 
|   |   |  Using I/O Size 2 Kbytes for data pages. 
|   |   |  With LRU Buffer Replacement Strategy for data pages. 
| 
|   |SCAN Operator 
|   |  FROM TABLE 
|   |  titleauthor 
|   |  ta 
|   |  Index : auidind 
|   |  Forward Scan. 
|   |  Positioning at index start. 
|   |  Using I/O Size 2 Kbytes for index leaf pages. 
|   |  With LRU Buffer Replacement Strategy for index leaf pages. 
|   |  Using I/O Size 2 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages.

In this example, a sort operator is the left child, or outer stream. The data source 
for the sort operator is the authors table. The sort operator is required because 
the authors table has no index on au_id that would otherwise provide the 
necessary sorted order. A scan of the titleauthor table is the right child/inner 
stream. The scan uses the auidind index, which provides the necessary ordering 
for the MERGE JOIN strategy.

A row is fetched from the outer stream (the authors table is the original source) 
to establish an initial join key comparison value. Then rows are fetched from 
the titleauthor table until a row with a join key equal to or greater than the 
comparison key is found.

Inner stream rows with matching keys are stored in a cache in case they need 
to be refetched. These rows are refetched when the outer stream contains 
duplicate keys. When a titleauthor.au_id value that is greater than the current 
join key comparison value is fetched, the MERGE JOIN operator starts fetching 
from the outer stream until a join key value equal to or greater than the current 
titleauthor.au_id value is found. The scan of the inner stream resumes at that 
point.

The MERGE JOIN operator’s showplan output contains a message indicating the 
worktable to be used for the inner stream’s backing store. The worktable is 
written to if the inner rows with duplicate join keys no longer fits in cached 
memory. The width of a cached row is limited to 64 kilobytes.
Performance and Tuning Series: Query Processing and Abstract Plans  75



Query plan shape 
HASH JOIN

The HASH JOIN operator is a binary operator. The left child generates the build 
input stream. The right child generates the probe input stream. The build set is 
generated by completely draining the build input stream when the first row is 
requested from the HASH JOIN operator. Every row is read from the input 
stream and hashed into an appropriate bucket using the hash key.

If there is not enough memory to hold the entire build set, then a portion of it 
spills to disk. This portion is referred to as a hash partition and should not be 
confused with table partitions. A hash partition consists of a collection of hash 
buckets. After the entire left child’s stream has been drained, the probe input is 
read.

Each row from the probe set is hashed. A lookup is done in the corresponding 
build bucket to check for rows with matching hash keys. This occurs if the 
build set’s bucket is memory resident. If it has been spilled, the probe row is 
written to the corresponding spilled probe partition. When a probe row’s key 
matches a build row’s key, then the necessary projection of the two row’s 
columns is passed up for additional processing.

Spilled partitions are processed in subsequent recursive passes of the HASH 
JOIN algorithm. New hash seeds are used in each pass so that the data is 
redistributed across different hash buckets. This recursive processing continues 
until the last spilled partition is completely memory resident. When a hash 
partition from the build set contains many duplicates, the HASH JOIN operator 
reverts back to NESTED LOOP JOIN processing.

Generally, the HASH JOIN strategy is good in cases where most of the rows 
from the source sets must be processed and there are no inherent useful 
orderings on the join keys or there are no interesting orderings that can be 
promoted to calling operators (for example, an order by clause on the join key). 
HASH JOINs perform particularly well if one of the data sets is small enough 
to be memory resident. In this case, no spilling occurs and no I/O is needed to 
perform that HASH JOIN algorithm.

select ta.title_id 
from titleauthor ta, authors a 
where a.au_id = ta.au_id 
and au_lname = "Bloom" 
 
QUERY PLAN FOR STATEMENT 1 (at line 2). 
 
3 operator(s) under root 
 
The type of query is SELECT. 
76   Adaptive Server Enterprise



CHAPTER 2    Using showplan
 
ROOT:EMIT Operator 
 

|HASH JOIN Operator (Join Type: Inner Join) 
| Using Worktable1 for internal storage. 
| 
|   |SCAN Operator 
|   |  FROM TABLE 
|   |  authors 
|   |  a 
|   |  Index : aunmind 
|   |  Forward Scan. 
|   |  Positioning by key. 
|   |  Keys are: 
|   |    au_lname ASC 
|   |  Using I/O Size 2 Kbytes for index leaf pages. 
|   |  With LRU Buffer Replacement Strategy for index leaf pages. 
|   |  Using I/O Size 2 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages. 
| 
|   |SCAN Operator 
|   |  FROM TABLE 
|   |  titleauthor 
|   |  ta 
|   |  Index : auidind 
|   |  Forward Scan. 
|   |  Positioning at index start. 
|   |  Using I/O Size 2 Kbytes for index leaf pages. 
|   |  With LRU Buffer Replacement Strategy for index leaf pages. 
|   |  Using I/O Size 2 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages.

In this example, the source of the build input stream is an index scan of 
author.aunmind.

Only rows with an au_lname value of “Bloom” are returned from this scan. 
These rows are then hashed on their au_id value and placed into their 
corresponding hash bucket. After the initial build phase is completed, the probe 
stream is opened and scanned. Each row from the source index, 
titleauthor.auidind, is hashed on the au_id column. The resulting hash value is 
used to determine which bucket in the build set should be searched for 
matching hash keys. Each row from the build set’s hash bucket is compared to 
the probe row’s hash key for equality. If the row matches, the titleauthor.au_id 
column is returned to the EMIT operator.
Performance and Tuning Series: Query Processing and Abstract Plans  77



Query plan shape 
The HASH JOIN operator’s showplan output contains a message indicating the 
worktable to be used for the spilled partition’s backing store. The input row 
width is limited to 64 kilobytes.

NARY NESTED LOOP JOIN operator

The NARY NESTED LOOP JOIN strategy is never evaluated or chosen by the 
optimizer. It is an operator that is constructed during code generation. If the 
compiler finds series of two or more left-deep NESTED LOOP JOINs, it 
attempts to transform them into a NARY NESTED LOOP JOIN operator. Two 
additional requirements allow for transformation scan; each NESTED LOOP 
JOIN operator has an “inner join” type and the right child of each NESTED 
LOOP JOIN is a SCAN operator. A RESTRICT operator is permitted above the 
SCAN operator.

NARY NESTED LOOP JOIN execution has a performance benefit over the 
execution of a series of NESTED LOOP JOIN operators. The example below 
demonstrates a fundamental difference between the two methods of execution. 

With a series of NESTED LOOP JOIN, a scan may eliminate rows based on 
searchable argument values initialized by an earlier scan. That scan may not be 
the one that immediately preceded the failing scan. With a series of NESTED 
LOOP JOINs, the previous scan would be completely drained although it has 
no effect on the failing scan. This could result in a significant amount of 
needless I/O. With NARY NESTED LOOP JOINs, the next row fetched comes 
from the scan that produced the failing searchable argument value, which is far 
more efficient.

select a.au_id, au_fname, au_lname 
from titles t, titleauthor ta, authors a 
where a.au_id = ta.au_id 
and ta.title_id = t.title_id 
and a.au_id = t.title_id 
and au_lname = "Bloom"
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is SELECT. 
 
4 operator(s) under root 
 
   |ROOT:EMIT Operator (VA = 4) 
   | 
   |    |N-ARY NESTED LOOP JOIN Operator (VA = 3) has 3 children. 
   |    | 
78   Adaptive Server Enterprise



CHAPTER 2    Using showplan
   |    |   | SCAN Operator (VA = 0) 
   |    |   | FROM TABLE 
   |    |   | authors 
   |    |   | a 
   |    |   | Table Scan. 
   |    |   | Forward Scan. 
   |    |   | Positioning at start of table. 
   |    |   | Using I/O Size 2 Kbytes for data pages. 
   |    |   | With LRU Buffer Replacement Strategy for data pages. 
   |     
   |    |   |SCAN Operator (VA = 1) 
   |    |   | FROM TABLE 
   |    |   | titleauthor 
   |    |   | ta 
   |    |   | Table Scan. 
   |    |   | Forward Scan. 
   |    |   | Positioning at start of table. 
   |    |   | Using I/O Size 2 Kbytes for data pages. 
   |    |   | With LRU Buffer Replacement Strategy for data pages. 
   |    | 
   |    |   | SCAN Operator (VA = 2) 
   |    |   | FROM TABLE 
   |    |   | titles 
   |    |   | t 
   |    |   | Index : titles_6720023942 
   |    |   | Forward Scan. 
   |    |   | Positioning by key. 
   |    |   | Index contains all needed columns. Base table will not be read. 
   |    |   | Keys are: 
   |    |   | title_id ASC 
   |    |   | Using I/O Size 2 Kbytes for index leaf pages. 
   |    |   | With LRU Buffer Replacement Strategy for index leaf pages.

Figure 2-3 depicts a series of NESTED LOOP JOINs.
Performance and Tuning Series: Query Processing and Abstract Plans  79



Query plan shape 
Figure 2-3: Emit operator tree with Nested loop joins

All query processor operators are assigned a virtual address. The lines in 
Figure 2-3 with VA = report the virtual address for a given operator.

The effective join order is authors, titleauthor, titles. A RESTRICT operator is the 
parent operator of the scan on titleauthors. This plan is transformed into the 
NARY NESTED LOOP JOIN plan below:

 

IndexScan

Emit
(VA=6)

aunmid (a)
(VA = 0)

NestLoopJoin
InnerJoin
(VA = 3)

NestLoopJoin
InnerJoin
(VA = 5)

IndexScan
auidind (ta)
(VA = 1)

IndexScan
titleidind (t2)

(VA = 4)

Restrict
(0) (0) (4) (0)

(VA = 2)
80   Adaptive Server Enterprise



CHAPTER 2    Using showplan
Figure 2-4: NARY NESTED LOOP JOIN operator

The transformation retains the original join order of authors, titleauthor, and 
titles. In this example, the scan of titles has two searchable arguments on it—
ta.title_id = t.title_id and a.au_id = t.title_id. So, the scan of titles fails because of 
the searchable argument value established by the scan of titleauthor, or it fails 
because of the searchable argument value established by the scan of authors. If 
no rows are returned from a scan of titles because of the searchable argument 
value set by the scan of authors, there is no point in continuing the scan of 
titleauthor. For every row fetched from titleauthor, the scan of titles fails. It is 
only when a new row is fetched from authors that the scan of titles might 
succeed. This is why NARY NESTED LOOP JOINs have been implemented; 
they eliminate the useless draining of tables that have no impact on the rows 
returned by successive scans. 

In the example, the NARY NESTED LOOP JOIN operator closes the scan of 
titleauthor, fetches a new row from authors, and repositions the scan of 
titleauthor based on the au_id fetched from authors. Again, this can be a 
significant performance improvement as it eliminates the needless draining of 
the titleauthor table and the associated I/O that could occur.

 IndexScan

NaryNLJoin
(VA = 4)

EMIT
(VA=6)

NaryNLJoin
(VA = 4)

NaryNLJoin
(VA = 4)

RESTRICT

(0) (0) (4) (0)
(VA = 2)

IndexScan

auidind(ta)

IndexScan

titleidind(t)
(VA = 3)

(VA = 0)
aunmid (a)

(VA = 1)
Performance and Tuning Series: Query Processing and Abstract Plans  81



Query plan shape 
semijoin

The semijoin is a variant of NESTED LOOP JOIN operator, and includes the 
NESTED LOOP JOIN operator in its result set. When you make a semi-join 
between two tables, Adaptive Server returns the rows from the first table that 
contain one or more matches in the second table (a regular join returns the 
matching rows from the first table only once). That is, instead of scanning a 
table to return all matching values, an semijoin returns rows when it finds the 
first matching value and then stops processing. Semijoins are also known as 
“existence joins.”

For example, if you perform a semijoin on the titles and titleauthor tables:

select title 
from titles 
where title_id in (select title_id from titleauthor) 
and title like "A Tutorial%"
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
    The type of query is SELECT. 
 
    4 operator(s) under root 
 
|ROOT:EMIT Operator (VA = 4) 
   | 
   |   |NESTED LOOP JOIN Operator (VA = 3) (Join Type: Left Semi Join) 
   |   | 
   |   |   |RESTRICT Operator (VA = 1)(0)(0)(0)(6)(0) 
   |   |   | 
   |   |   |   |SCAN Operator (VA = 0) 
   |   |   |   | FROM TABLE 
   |   |   |   | titles 
   |   |   |   | Index : titleind 
   |   |   |   | Forward Scan. 
   |   |   |   | Positioning by key. 
   |   |   |   | Keys are: 
   |   |   |   | title ASC 
   |   |   |   | Using I/O Size 2 Kbytes for index leaf pages. 
   |   |   |   | With LRU Buffer Replacement Strategy for index leaf pages. 
   |   |   |   | Using I/O Size 2 Kbytes for data pages. 
   |   |   |   | With LRU Buffer Replacement Strategy for data pages. 
   |   | 
   |   |   |SCAN Operator (VA = 2) 
   |   |   | FROM TABLE 
   |   |   | titleauthor 
   |   |   | Index : titleidind 
82   Adaptive Server Enterprise



CHAPTER 2    Using showplan
   |   |   | Forward Scan. 
   |   |   | Positioning by key. 
   |   |   | Index contains all needed columns. Base table will not be read. 
   |   |   | Keys are: 
   |   |   | title_id ASC 
   |   |   | Using I/O Size 2 Kbytes for index leaf pages. 
   |   |   | With LRU Buffer Replacement Strategy for index leaf pages.

Distinct operators

There are three unary operators you can use to enforce distinctness: GROUP 
SORTED Distinct, SORT Distinct, and HASH Distinct. Each has 
advantages and disadvantages. The optimizer chooses an efficient distinct 
operator with respect to its use within the entire query plan’s context.

See Table 1-3 on page 25 for a list and description of all query processor 
operators.

GROUP SORTED Distinct operator

You can use the GROUP SORTED Distinct operator to apply distinctness. 
GROUP SORTED Distinct requires that the input stream is already sorted on 
the distinct columns. It reads a row from its child operator and initializes the 
current distinct columns’ values to be filtered. 

The row is returned to the parent operator. When the GROUP SORTED operator 
is called again to fetch another row, it fetches another row from its child and 
compares the values to the current cached values. If the value is a duplicate, the 
row is discarded and the child is called again to fetch a new row. 

This process continues until a new distinct row is found. The distinct columns’ 
values for this row are cached and are used later to eliminate nondistinct rows. 
The current row is returned to the parent operator for further processing.

The GROUP SORTED Distinct operator returns a sorted stream. The fact that 
it returns a sorted and distinct data stream are properties that the optimizer can 
use to improve performance in additional upstream processing. The GROUP 
SORTED Distinct operator is a nonblocking operator. It returns a distinct row 
to its parent as soon as it is fetched. It does not require the entire input stream 
to be processed before it can start returning rows. The following query collects 
distinct last and first author’s names:

select distinct au_lname, au_fname 
from authors 
where au_lname = "Bloom" 
Performance and Tuning Series: Query Processing and Abstract Plans  83



Query plan shape 
 
QUERY PLAN FOR STATEMENT 1 (at line 2). 
 
STEP 1 
The type of query is SELECT. 
 
2 operator(s) under root 
 
ROOT:EMIT Operator (VA = 2) 
 

|GROUP SORTED Operator (VA = 1) 
|Distinct 
| 
|   |SCAN Operator (VA = 0) 
|   |  FROM TABLE 
|   |  authors 
|   |  Index : aunmind 
|   |  Forward Scan. 
|   |  Positioning by key. 
|   |  Index contains all needed columns. Base table will not be read. 
|   |  Keys are: 
|   |    au_lname ASC 
|   |  Using I/O Size 2 Kbytes for index leaf pages. 
|   |  With LRU Buffer Replacement Strategy for index leaf pages.

The GROUP SORTED Distinct operator is chosen in this query plan to apply 
the distinct property because the scan operator is returning rows in sorted order 
for the distinct columns au_lname and au_fname. GROUP SORTED incurs no I/O 
and minimal CPU overhead.

You can use the GROUP SORTED Distinct operator to implement vector 
aggregation. See “Vector aggregation operators” on page 86. The showplan 
output prints the line Distinct to indicate that this GROUP SORTED 
Distinct operator is implementing the distinct property.

SORT Distinct operator

The SORT Distinct operator does not require that its input stream is already 
sorted on the distinct key columns. It is a blocking operator that drains its child 
operator’s stream and sorts the rows as they are read. A distinct row is returned 
to the parent operator after all rows have been sorted. Rows are returned sorted 
on the distinct key columns. An internal worktable is used as a backing store in 
case the input set does not fit entirely in memory.

QUERY PLAN FOR STATEMENT 1 (at line 1) 
 

84   Adaptive Server Enterprise



CHAPTER 2    Using showplan
STEP 1 
The type of query is SELECT. 
 
2 operator(s) under root 
 
ROOT:EMIT Operator (VA = 2) 
 

|SORT Operator  
| Using Worktable1 for internal storage. 
| 
|   |SCAN Operator 
|   |  FROM TABLE 
|   |  authors 
|   |  Table Scan. 
|   |  Forward Scan. 
|   |  Positioning at start of table. 
|   |  Using I/O Size 2 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages.

The scan of the authors table does not return rows sorted on the distinct key 
columns. This requires that a SORT Distinct operator be used rather than a 
GROUP SORTED Distinct operator. The SORT operator’s distinct key 
columns are au_lname and au_fname. The showplan output indicates that 
Worktable1 is used for disk storage in case the input set does not fit entirely in 
memory.

HASH Distinct operator

The HASH Distinct operator does not require that its input set be sorted on 
the distinct key columns. It is a nonblocking operator. Rows are read from the 
child operator and are hashed on the distinct key columns. This determines the 
row’s bucket position. The corresponding bucket is searched to see if the key 
already exists. The row is discarded if it contains a duplicate key, and another 
row is fetched from the child operator. The row is added to the bucket if no 
duplicate distinct key already exists and the row is passed up to the parent 
operator for further processing. Rows are not returned sorted on the distinct key 
columns.

The HASH Distinct operator is generally used when the input set is not 
already sorted on the distinct key columns or when the optimizer cannot use the 
ordering coming out of the distinct processing later in the plan.

select distinct au_lname, au_fname 
from authors  
where city = "Oakland" 
go 
Performance and Tuning Series: Query Processing and Abstract Plans  85



Query plan shape 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is SELECT. 
 
2 operator(s) under root 
 
ROOT:EMIT Operator (VA = 2) 
 
    |HASH DISTINCT Operator (VA = 1) 
    | Using Worktable1 for internal storage. 
    | 
    |    | SCAN Operator (VA = 0) 
    |    | FROM TABLE 
    |    | authors 
    |    | Table Scan. 
    |    | Forward Scan. 
    |    | Positioning at start of table. 
    |    | Using I/O Size 2 Kbytes for data pages. 
    |    | With LRU Buffer Replacement Strategy for data pages.

In this example, the output of the authors table scan is not sorted. The optimizer 
can choose either a SORT Distinct or HASH Distinct operator strategy. 
The ordering provided by a SORT Distinct strategy is not useful anywhere 
else in the plan, so the optimizer will probably choose a HASH Distinct 
strategy. The optimizer’s decision is ultimately based on cost estimates. The 
HASH Distinct is typically less expensive for unsorted input streams can 
eliminate rows on the fly for resident partitions. The SORT Distinct operator 
cannot eliminate any rows until the entire data set has been sorted.

The showplan output for the HASH Distinct operator reports that Worktable1 
will be used. A worktable is needed in case the distinct row result set cannot fit 
in memory. In that case, partially processed groups are written to disk.

Vector aggregation operators

There are three unary operators used for vector aggregation. They are the 
GROUP SORTED COUNT AGGREGATE, the HASH VECTOR AGGREGATE, and the 
GROUP INSERTING operators. 

See Table 1-3 on page 25 for a list and description of all query processor 
operators.
86   Adaptive Server Enterprise



CHAPTER 2    Using showplan
GROUP SORTED COUNT AGGREGATE operator

The GROUP SORTED COUNT AGGREGATE nonblocking operator is a variant of 
the GROUP SORTED Distinct operator described in “GROUP SORTED 
Distinct operator” on page 83. The GROUP SORTED COUNT AGGREGATE 
operator requires that input set to be sorted on the group by columns. The 
algorithm is very similar to that of GROUP SORTED Distinct.

A row is read from the child operator. If the row is the start of a new vector, its 
grouping columns are cached and the aggregation results are initialized. 

If the row belongs to the current group being processed, the aggregate 
functions are applied to the aggregate results. When the child operator returns 
a row that starts a new group or End Of Scan, the current vector and its 
aggregated values are returned to the parent operator.

The first row in the GROUP SORTED COUNT AGGREGATE operator is returned 
after an entire group is processed, where the first row in the GROUP SORTED 
Distinct operator is returned at the start of a new group. This example 
collects a list of all cities with the number of authors that live in each city.

select city, total_authors = count(*) 
from authors 
group by city 
plan 
"(group_sorted 
(sort (scan authors)) 
)" 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using the Abstract Plan in the PLAN clause. 
 
STEP 1 
The type of query is SELECT. 
 
3 operator(s) under root 
 
ROOT:EMIT Operator (VA = 3) 
 
    |GROUP SORTED Operator (VA = 2)  
    | Evaluate Grouped COUNT AGGREGATE. 
    | 
    |    |SORT Operator (VA = 1) 
    |    | Using Worktable1 for internal storage. 
    |    | 
    |    |    | SCAN Operator (VA = 0) 
    |    |    | FROM TABLE 
Performance and Tuning Series: Query Processing and Abstract Plans  87



Query plan shape 
    |    |    | authors 
    |    |    | Table Scan. 
    |    |    | Forward Scan. 
    |    |    | Positioning at start of table. 
    |    |    | Using I/O Size 2 Kbytes for data pages. 
    |    |    | With LRU Buffer Replacement Strategy for data pages.

In this query plan, the scan of authors does not return rows in grouping order. 
A SORT operator is applied to order the stream based on the grouping column 
city. At this point, a GROUP SORTED COUNT AGGREGATE operator can be 
applied to evaluate the count aggregate.

The GROUP SORTED COUNT AGGREGATE operator showplan output reports the 
aggregate functions being applied as:

 |  Evaluate Grouped COUNT AGGREGATE.

HASH VECTOR AGGREGATE operator

The HASH VECTOR AGGREGATE operator is a blocking operator. All rows from 
the child operator must be processed before the first row from the HASH 
VECTOR AGGREGATE operator can be returned to its parent operator. Other than 
this, the algorithm is similar to the HASH Distinct operator’s algorithm.

Rows are fetched from the child operator. Each row is hashed on the query’s 
grouping columns. The bucket that is hashed is searched to see if the vector 
already exists. 

If the group by values do not exist, the vector is added and the aggregate values 
are initialized using this first row. If the group by values do exist, the current 
row is aggregated to the existing values. This example collects a list of all cities 
with the number of authors that live in each city.

select city, total_authors = count(*) 
from authors 
group by city 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is SELECT. 
 
2 operator(s) under root 
 
ROOT:EMIT Operator (VA = 2) 
 
    |HASH VECTOR AGGREGATE Operator (VA = 1) 
    | GROUP BY 
88   Adaptive Server Enterprise



CHAPTER 2    Using showplan
    | Evaluate Grouped COUNT AGGREGATE. 
    | Using Worktable1 for internal storage. 
    | Key Count: 1 
    | 
    |    |SCAN Operator (VA = 0) 
    |    | FROM TABLE 
    |    | authors 
    |    | Table Scan. 
    |    | Forward Scan. 
    |    | Using I/O Size 2 Kbytes for data pages. 
    |    | With LRU Buffer Replacement Strategy for data pages.

In this query plan, the HASH VECTOR AGGREGATE operator reads all of the 
rows from its child operator, which is scanning the authors table. Each row is 
checked to see if there is already an entry bucket entry for the current city value. 
If there is not, a hash entry row is added with the new city grouping value and 
the count result is initialized to 1. If there is already a hash entry for the new 
row’s city value, the aggregation function is applied. In this case, the count 
result is incriminated.

The showplan output prints a group by message specifically for the HASH 
VECTOR AGGREGATE operator, then prints the grouped aggregation messages:

 |  Evaluate Grouped COUNT AGGREGATE.

The showplan output reports used to store spilled groups and unprocessed 
rows:

 | Using Worktable1 for internal storage.

GROUP INSERTING

GROUP INSERTING is a blocking operator. All rows from the child operator 
must be processed before the first row can be returned from the GROUP 
INSERTING.

GROUP INSERTING is limited to 31 or fewer columns in the group by clause. 
The operator starts by creating a worktable with a clustered index of the 
grouping columns. As each row is fetched from the child, a lookup into the 
work table is done based on the grouping columns. If no row is found, then the 
row is inserted. This effectively creates a new group and initializes its 
aggregate values. If a row is found, the new aggregate values are updated based 
on evaluating the new values. The GROUP INSERTING operator returns rows 
ordered by the grouping columns.

select city, total_authors = count(*) 
from authors 
group by city 
Performance and Tuning Series: Query Processing and Abstract Plans  89



Query plan shape 
plan 
'(group_inserting (i_scan auidind authors ))'

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using the Abstract Plan in the PLAN clause. 
 
STEP 1 
The type of query is SELECT. 
 
2 operator(s) under root 
   |ROOT:EMIT Operator (VA = 2) 
| 
|   |GROUP INSERTING Operator (VA = 1) 
|   | GROUP BY 
|   | Evaluate Grouped COUNT AGGREGATE 
|   | Using Worktable1 for internal storage. 
|   | 
|   |   |SCAN Operator (VA = 0) 
|   |   | FROM TABLE 
|   |   | authors 
|   |   | Table Scan. 
|   |   | Forward Scan. 
|   |   | Positioning at start of table. 
|   |   | Using I/O Size 2 Kbytes for data pages. 
|   |   | With LRU Buffer Replacement Strategy for data pages.

In this example, the group inserting operator starts by building a worktable 
with a clustered index keyed on the city column. The group inserting operator 
proceeds to drain the authors table. For each row, a lookup is done on the city 
value. If there is no row in the aggregation worktable with the current city 
value, then the row is inserted. This creates a new group for the current city 
value with an initialized count value. If the row for the current city value is 
found, then an evaluation is done to increment the COUNT AGGREGATE value.

compute by message

Processing is done in the EMIT operator, and requires that the EMIT operator’s 
input stream be sorted according to any order by requirements in the query. The 
processing is similar to what is done in the GROUP SORTED AGGREGATE 
operator. 
90   Adaptive Server Enterprise



CHAPTER 2    Using showplan
Each row read from the child is checked to see if it starts a new group. If it does 
not, aggregate functions are applied as appropriate to the query’s requested 
groups. If a new group is started, the current group and its aggregated values 
are returned to the user. A new group is then started and its aggregate values 
are initialized from the new row’s values. This example collects an ordered list 
of all cities and reports a count of the number of entries for each city after the 
city list.

select city 
from authors 
order by city 
compute count(city) by city 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is SELECT. 
 
2 operator(s) under root 
 
Emit with Compute semantics 
 
ROOT:EMIT Operator (VA = 2) 
 

|SORT Operator (VA = 1) 
| Using Worktable1 for internal storage. 
| 
|   |SCAN Operator (VA = 0) 
|   |  FROM TABLE 
|   |  authors 
|   |  Table Scan. 
|   |  Forward Scan. 
|   |  Positioning at start of table. 
|   |  Using I/O Size 2 Kbytes for data pages. 
|   |  With LRU Buffer Replacement Strategy for data pages.

In this example, the EMIT operator’s input stream is sorted on the city attribute. 
For each row, the compute by count value is incremented. When a new city 
value is fetched, the current city’s values and associated count value is returned 
to the user. The new city value becomes the new compute by grouping value 
and its count is initialized to one. 
Performance and Tuning Series: Query Processing and Abstract Plans  91



Union operators 
Union operators

UNION ALL operator
The UNION ALL operator merges several compatible input streams without 
performing any duplicate elimination. Every data row that enters the UNION 
ALL operator is included in the operator’s output stream.

The UNION ALL operator is a nary operator that displays this message:

UNION ALL OPERATOR  has N children.

N is the number of input streams into the operator.

This example demonstrates the use of UNION ALL:

select * from sysindexes where id < 100 
union all 
select * from sysindexes where id > 200
 
QUERY PLAN FOR STATEMENT 1 (at line 1).

  STEP 1 
The type of query is SELECT. 
 
 
3 operator(s) under root 
 
  |ROOT:EMIT Operator (VA = 3) 
  | 
  |  |UNION ALL Operator (VA = 2) has 2 children. 
  |  |
 
  |  |  |SCAN Operator (VA = 0) 
  |  |  | FROM TABLE 
  |  |  | sysindexes 
  |  |  | Using Clustered Index. 
  |  |  | Index : csysindexes 
  |  |  | Forward Scan. 
  |  |  | Positioning by key. 
  |  |  | Keys are: 
  |  |  |  id ASC 
  |  |  | Using I/O Size 2 Kbytes for index leaf pages. 
  |  |  | With LRU Buffer Replacement Strategy for index leaf pages.  
  |  |  | Using I/O Size 2 Kbytes for data pages. 
  |  |  | With LRU Buffer Replacement Strategy for data pages. 
92   Adaptive Server Enterprise



CHAPTER 2    Using showplan
  |  | 
  |  |  |SCAN Operator (VA = 1) 
  |  |  | FROM TABLE 
  |  |  | sysindexes 
  |  |  | Using Clustered Index 
  |  |  | Index : csysindexes 
  |  |  | Forward scan. 
  |  |  | Positioning by key. 
  |  |  | Keys are: 
  |  |  |  id ASC 
  |  |  | Using I/O Size 2 Kbytes for index leaf pages. 
  |  |  | With LRU Buffer Replacement Strategy for index leaf pages. 
  |  |  | Using I/O Size 2 Kbytes for data pages. 
  |  |  | With LRU Buffer Replacement Strategy for data pages. 

The UNION ALL operator starts by fetching all rows from its leftmost child. In 
this example, it returns all of the sysindexes rows with an ID less than 100. As 
each child operator’s datastream is emptied, the UNION ALL operator moves 
on to the child operator immediately to its right. This stream is opened and 
emptied. This continues until the last (the Nth) child operator is emptied. 

MERGE UNION operator
The MERGE UNION operator performs a UNION ALL operation on several 
sorted compatible data streams and eliminates duplicates within these streams.

The MERGE UNION operator is a nary operator that displays this message:

MERGE UNION OPERATOR has <N> children.

<N> is the number of input streams into the operator.

HASH UNION
The HASH UNION operator uses Adaptive Server hashing algorithms to 
simultaneously perform a UNION ALL operation on several data streams and 
hash-based duplicate elimination.

The HASH UNION operator is a nary operator that displays this message:

HASH UNION OPERATOR has <N> children.

<N> is the number of input streams into the operator.
Performance and Tuning Series: Query Processing and Abstract Plans  93



Union operators 
HASH UNION also displays the name of the worktable it uses, in this format:

HASH UNION OPERATOR Using Worktable  <X>  for internal 
storage.

This worktable is used by the HASH UNION operator to temporarily store data 
for the current iteration that cannot be processed in the memory currently 
available.

This example demonstrates the use of HASH UNION:

select * from sysindexes 
union 
select * from sysindexes 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is SELECT. 
 
3 operator(s) under root 
 
    | ROOT:EMIT Operator (VA = 3) 
    | 
    |    |HASH UNION Operator has 2 children. 
    |    | Using Worktable1 for internal storage.  
    |    | 
    |    |    |SCAN Operator 
    |    |    |  FROM TABLE 
    |    |    |  sysindexes 
    |    |    |  Table Scan. 
    |    |    |  Forward Scan. 
    |    |    |  Positioning at start of table. 
    |    |    |  Using I/O Size 2 Kbytes for data pages. 
    |    |    |  With LRU Buffer Replacement Strategy for data pages. 
    |    | 
    |    |SCAN Operator (VA = 1) 
    |    |    |  FROM TABLE 
    |    |    |  sysindexes 
    |    |    |  Table Scan. 
    |    |    |  Forward Scan. 
    |    |    |  Positioning at start of table. 
    |    |    |  Using I/O size 2 Kbytes for data pages. 
    |    |    |  With LRU Buffer Replacement Strategy for data pages.
94   Adaptive Server Enterprise



CHAPTER 2    Using showplan
SCALAR AGGREGATE operator
The SCALAR AGGREGATE operator keeps track of running information about 
an input data stream, such as the number of rows in the stream, or the maximum 
value of a given column in the stream.

The SCALAR AGGREGATE operator prints a list of up to 10 messages describing 
the scalar aggregation operations it executes. The message has the following 
format:

Evaluate Ungrouped  <Type of Aggregate> Aggregate 

<Type of Aggregate> can be any of the following: count, sum, average, min, 
max, any, once-unique, count-unique, sum-unique, average-unique, or once. 

The following query performs a SCALAR AGGREGATE (that is, unwrapped) 
aggregation on the authors table in the pubs2 database:

select count(*) from authors 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is SELECT. 
 
2 operator(s) under root 
 
ROOT:EMIT Operator (VA = 2) 
 
    |SCALAR AGGREGATE Operator (VA = 1) 
    | Evaluate Ungrouped COUNT AGGREGATE. 
    | 
    |    |SCAN Operator (VA =0) 
    |    | FROM TABLE 
    |    | authors 
    |    | Index : aunmind 
    |    | Forward Scan. 
    |    | Positioning at index start. 
    |    | Index contains all needed columns. Base table will not be read. 
    |    | Using I/O Size 4 Kbytes for index leaf pages. 
    |    | With LRU Buffer Replacement Strategy for index leaf pages. 

The SCALAR AGGREGATE message indicates that the query to be executed is an 
ungrouped count aggregation.
Performance and Tuning Series: Query Processing and Abstract Plans  95



Union operators 
RESTRICT operator
The RESTRICT operator is a unary operator that evaluates expressions based 
on column values. The RESTRICT operator is associated with multiple column 
evaluations lists that can be processed before fetching a row from the child 
operator, after fetching a row from the child operator, or to compute the value 
of virtual columns after fetching a row from the child operator. 

SORT operator
The SORT operator has only one child operator within the query plan. Its role 
is to generate an output data stream from the input stream, using a specified 
sorting key.

The SORT operator may execute a streaming sort when possible, but may also 
have to store results temporarily into a worktable. The SORT operator displays 
the worktable’s name in this format:

Using Worktable<N>  for internal storage.

where <N> is a numeric identifier for the worktable within the showplan output.

Here is an example of a simple query plan using a SORT operator and a 
worktable:

select au_id from authors order by postalcode 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is SELECT. 
 
2 operator(s) under root 
 
ROOT:EMIT Operator (VA = 2) 
 
    |SORT Operator (VA = 1) 
    | Using Worktable1 for internal storage. 
    | 
    |    |SCAN Operator (VA = 0) 
    |    | FROM TABLE 
    |    | authors 
    |    | Table Scan. 
    |    | Forward Scan. 
    |    | Positioning at start of table. 
    |    | Using I/O Size 4 Kbytes for data pages. 
96   Adaptive Server Enterprise



CHAPTER 2    Using showplan
    |    | With LRU Buffer Replacement Strategy for data pages.

The SORT operator drains its child operator and sorts the rows. In this case, it 
sorts each row fetched from the authors table using the postalcode attribute. If 
all of the rows fit into memory, then no data is spilled to disk. But, if the input 
data’s size exceeds the available buffer space, then sorted runs are spilled to 
disk. These runs are recursively merged into larger sorted runs until there are 
fewer runs than there are available buffers to read and merge the runs with.

STORE operator
The STORE operator is used to create a worktable, fill it, and possibly create an 
index on it. As part of the execution of a query plan, the worktable is used by 
other operators in the plan. A SEQUENCER operator guarantees that the plan 
fragment corresponding to the worktable and potential index creation is 
executed before other plan fragments that use the worktable. This is important 
when a plan is executed in parallel, because execution processes operate 
asynchronously.

Reformatting strategies use the STORE operator to create a worktable with a 
clustered index on it. 

If the STORE operator is used for a reformatting operation, it prints this 
message:

Worktable <X> created, in <L> locking mode for 
reformatting.

The locking mode <L> has to be one of “allpages,” “datapages,” or “datarows.”

The STORE operator also prints this message:

Creating clustered index.

If the STORE operator is not used for a reformatting operation, it prints this 
message:

Worktable <X> created, in <L> locking mode. 

The following example applies to the STORE operator, as well as to the 
SEQUENCER operator.

select * from bigun a, bigun b where a.c4 = b.c4 and a.c2 < 10

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using the Abstract Plan in the PLAN clause. 
 
STEP 1 
Performance and Tuning Series: Query Processing and Abstract Plans  97



Union operators 
  The type of query is SELECT. 
 
  7 operator(s) under root 
 
  |ROOT:EMIT Operator (VA = 7) 
  | 
  |  |SEQUENCER Operator (VA = 6) has 2 children. 
  |  | 
  |  |  |STORE Operator (VA = 5) 
  |  |  | Worktable1 created, in allpages locking mode, for REFORMATTING. 
  |  |  | Creating clustered index. 
  |  |  | 
  |  |  |  |INSERT Operator(VA = 4) 
  |  |  |  | The update mode is direct. 
  |  |  |  | 
  |  |  |  |  |SCAN Operator(VA = 0) 
  |  |  |  |  | FROM TABLE 
  |  |  |  |  | bigun 
  |  |  |  |  | b 
  |  |  |  |  | Table Scan. 
  |  |  |  |  | Forward Scan. 
  |  |  |  |  | Positioning at start of table. 
  |  |  |  |  | Using I/O Size 2 Kbytes for data pages. 
  |  |  |  |  | With LRU Buffer Replacement Strategy for data pages. 
  |  |  |  | 
  |  |  |  | TO TABLE (VA = 3) 
  |  |  |  | Worktable1. 
  |  | 
  |  |  |NESTED LOOP JOIN (Join Type: Inner Join)(VA = 7) 
  |  |  | 
  |  |  |  |SCAN Operator (VA = 2) 
  |  |  |  | FROM TABLE 
  |  |  |  | bigun 
  |  |  |  | a 
  |  |  |  | Table Scan. 
  |  |  |  | Forward Scan. 
  |  |  |  | Positioning at start of table. 
  |  |  |  | Using I/O Size 2 Kbytes for data pages. 
  |  |  |  | With LRU Buffer Replacement Strategy for data pages. 
  |  |  | 
  |  |  |  |SCAN Operator (VA = 1) 
  |  |  |  | FROM TABLE 
  |  |  |  | Worktable1. 
  |  |  |  | Using Clustered Index. 
  |  |  |  | Forward Scan. 
  |  |  |  | Positioning key. 
98   Adaptive Server Enterprise



CHAPTER 2    Using showplan
  |  |  |  | Using I/O Size 2 Kbytes for data pages. 
  |  |  |  | With LRU Buffer Replacement Strategy for data pages. 

In the example plan shown above, the STORE operator is used in a reformatting 
strategy. It is located directly below the SEQUENCER operator in the leftmost 
child of the SEQUENCER operator. 

The STORE operator creates Worktable1, which is filled by the INSERT operator 
below it. The STORE operator then creates a clustered index on Worktable1. The 
index is built on the join key b.c4.

SEQUENCER operator
The SEQUENCER operator is a nary operator used to sequentially execute each 
the child plans below it. The SEQUENCER operator is used in reformatting plans, 
and certain aggregate processing plans.

The SEQUENCER operator executes each of its child subplans, except for the 
rightmost one. Once all the left child subplans are executed, the rightmost 
subplan is executed.

The SEQUENCER operator displays this message:

SEQUENCER operator has N children.

select * from tab1 a, tab2 b where a.c4 = b.c4 and a.c2 < 10

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using the Abstract Plan in the PLAN clause. 
 
  STEP 1 
    The type of query is SELECT. 
 
    7 operator(s) under root 
 
    |ROOT:EMIT Operator (VA = 7) 
    | 
    |  |SEQUENCER Operator (VA = 6) has 2 children. 
    |  | 
    |  |  |STORE Operator (VA = 5) 
    |  |  | Worktable1 created, in allpages locking mode, for REFORMATTING. 
    |  |  | Creating clustered index. 
    |  |  | 
    |  |  |  |INSERT Operator (VA = 4) 
    |  |  |  | The update mode is direct. 
    |  |  |  | 
    |  |  |  |  |SCAN Operator (VA = 0) 
Performance and Tuning Series: Query Processing and Abstract Plans  99



Union operators 
    |  |  |  |  | FROM TABLE 
    |  |  |  |  | tab2 
    |  |  |  |  | b 
    |  |  |  |  | Table Scan. 
    |  |  |  |  | Forward Scan. 
    |  |  |  |  | Positioning at start of table. 
    |  |  |  |  | Using I/O Size 2 Kbytes for data pages. 
    |  |  |  |  | With LRU Buffer Replacement Strategy for data pages. 
    |  |  |  | 
    |  |  |  | TO TABLE 
    |  |  |  | Worktable1. 
    |  | 
    |  |  |NESTED LOOP JOIN Operator (Join Type: Inner Join) (VA = 3) 
    |  |  | 
    |  |  |  |SCAN Operator (VA = 2) 
    |  |  |  | FROM TABLE 
    |  |  |  | tab1 
    |  |  |  | a 
    |  |  |  | Table Scan. 
    |  |  |  | Forward Scan. 
    |  |  |  | Positioning at start of table. 
    |  |  |  | Using I/O Size 2 Kbytes for data pages. 
    |  |  |  | With LRU Buffer Replacement Strategy for data pages. 
    |  |  | 
    |  |  |  |SCAN Operator (VA = 1) 
    |  |  |  | FROM TABLE 
    |  |  |  | Worktable1. 
    |  |  |  | Using Clustered Index. 
    |  |  |  | Forward Scan. 
    |  |  |  | Positioning by key. 
    |  |  |  | Using I/O Size 2 Kbytes for data pages. 
    |  |  |  | With LRU Buffer Replacement Strategy for data pages.

In this example, the SEQUENCER operator implements a reformatting strategy. 
The leftmost branch of the SEQUENCER operator creates a clustered index on 
Worktable1. This branch is executed and closed before the SEQUENCER 
operator proceeds to the next child operator. The SEQUENCER operator arrives 
at the rightmost child, opens, and begins to drain it, returning rows back to its 
parent operator. The design intent of the SEQUENCER operator is for operators 
in the rightmost branch to use the worktables created in the preceding outer 
branches of the SEQUENCER operator. In this example, Worktable1 is used in a 
nested-loop join strategy. The scan of Worktable1 is positioned by a key on its 
clustered index for each row that comes from the outer scan of tab1.
100   Adaptive Server Enterprise



CHAPTER 2    Using showplan
REMOTE SCAN operator
The REMOTE SCAN operator sends a SQL query to a remote server for 
execution. It then processes the results returned by the remote server, if any. 
REMOTE SCAN displays the formatted text of the SQL query it handles.

REMOTE SCAN has 0 or 1 child operators.

SCROLL operator
The SCROLL operator encapsulates the functionality of scrollable cursors in 
Adaptive Server. Scrollable cursors may be insensitive, meaning that they 
display a snapshot of their associated data, taken when the cursor is opened, or 
semi-sensitive, meaning that the next rows to be fetched are retrieved from the 
live data.

The SCROLL operator is a unary operator that displays this message:

SCROLL OPERATOR ( Sensitive Type: <T>)

The type may be insensitive or semi-sensitive.

This is an example of a plan featuring an insensitive scrollable cursor:

declare CI insensitive scroll cursor for 
select au_lname, au_id from authors 
go 
set showplan on 
go 
open CI 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
STEP 1 
The type of query is OPEN CURSOR CI. 
 
 
QUERY PLAN FOR STATEMENT 1 (at line 2). 
 
STEP 1 
The type of query is DECLARE CURSOR. 
 
2 operator(s) under root 
 
ROOT:EMIT Operator (VA = 2) 
 
   |SCROLL Operator (Sensitive Type: Insensitive) (VA = 1) 
Performance and Tuning Series: Query Processing and Abstract Plans  101



Union operators 
   | Using Worktable1 for internal storage. 
   | 
   |   |SCAN Operator (VA = 0) 
   |   | FROM TABLE 
   |   | authors 
   |   | Table Scan. 
   |   | Forward Scan. 
   |   | Positioning at start of table. 
   |   | Using I/O Size 4 Kbytes for data pages. 
   |   | With LRU Buffer Replacement Strategy for data pages.

The SCROLL operator is the child operator of the root EMIT operator, and its 
only child is the SCAN operator on the authors table. SCROLL message specifies 
that the CI cursor is insensitive.

Scrollable cursor rows are initially cached in memory. Worktable1 is used as a 
backing store for this cache when the amount of data processed exceeds the 
cache’s physical memory limits.

RID JOIN operator
The RID JOIN operator is a binary operator that joins two data streams, based 
on row IDs generated for the same source table. Each data row in a SQL table 
is associated with a unique row ID (RID). Think of a rid-join as a special case 
of a self-join query. The left child fills a worktable with the set of uniquely 
qualifying RIDs. The RIDs are the result of applying a distinct filter to the 
RIDs returned from two or more disparate index cases of the same source table. 

The RID JOIN operator is used to implement the general or strategy. The 
general-or strategy is often used when a query’s predicate contains a collection 
of disjunctions that can be qualified by different indexes on the same table. In 
this case, each index is scanned based on the predicates that can be qualified by 
that index. For each index row that qualifies, a RID is returned. 

The returned RIDs are processed for uniqueness so that the same row is not 
returned twice, which might happen if two or more of the disjunctions qualify 
the same row. 

The RID JOIN operator inserts the unique RIDs into a worktable. The 
worktable of unique RIDs is passed to the scan operator in the rid-join’s right 
branch. The access methods can iteratively fetch the next RID to be processed 
directly from the worktable, and look up the associated row. This row is then 
returned to the RID JOIN parent operator.

The RID JOIN operator displays this message:
102   Adaptive Server Enterprise



CHAPTER 2    Using showplan
 Using Worktable <N> for internal storage. 

This worktable is used to store the unique RIDs generated from the left child.

The following example demonstrates the showplan output for the RID JOIN 
operator.

select * from tab1 a where a.c1 = 10 or a.c3 = 10 
 
QUERY PLAN FOR STATEMENT 1 (at line 2). 
 
  STEP 1 
The type of query is SELECT. 
 
6 operator(s) under root. 
 
  |ROOT:EMIT Operator (VA = 6) 
  | 
  |  |RID JOIN Operator (VA = 5) 
  |  | Using Worktable2 for internal storage. 
  |  | 
  |  |  |HASH UNION Operator (VA = 6) has 2 children. 
  |  |  | Key Count: 1 
  |  |  | 
  |  |  |  |SCAN Operator (VA = 0) 
  |  |  |  | FROM TABLE 
  |  |  |  | tab1 
  |  |  |  | a 
  |  |  |  | Index:tab1idx 
  |  |  |  | Forward Scan. 
  |  |  |  | Positioning by key. 
  |  |  |  | Index contains all needed columns. Base table will not be read. 
  |  |  |  | Keys are: 
  |  |  |  | c1 ASC 
  |  |  |  | Using I/O Size 2 Kbytes for index leaf pages. 
  |  |  |  | With LRU Buffer Replacement Strategy for index leaf pages. 
  |  |  | 
  |  |  |  |SCAN Operator (VA = 4) 
  |  |  |  | FROM TABLE 
  |  |  |  | tab1 
  |  |  |  | a 
  |  |  |  | Index:tab1idx2 
  |  |  |  | Forward Scan. 
  |  |  |  | Positioning by key. 
  |  |  |  | Index contains all needed columns. Base table will not be read. 
  |  |  |  | Keys are: 
  |  |  |  |  c3 ASC 
Performance and Tuning Series: Query Processing and Abstract Plans  103



Union operators 
  |  |  |  | Using I/O Size 2 Kbytes for index leaf pages. 
  |  |  |  | With LRU Buffer Replacement Strategy for index leaf pages. 
  |  | 
  |  |  |RESTRICT Operator (VA = 3) 
  |  |  | 
  |  |  |  |SCAN Operator (VA = 2) 
  |  |  |  | FROM TABLE 
  |  |  |  | tab1 
  |  |  |  | a 
  |  |  |  | Using Dynamic Index. 
  |  |  |  | Forward Scan. 
  |  |  |  | Positioning by Row IDentifier (RID). 
  |  |  |  | Using I/O Size 2 Kbytes for data pages. 
  |  |  |  | With LRU Buffer Replacement Strategy for data pages.

In this example, the index tab1idx is scanned to get all RIDs from tab1 that have 
a c1 value of 10. Adaptive Server scans tab1idx2 to get all RIDs from tab1 that 
have a c3 value of 10. 

The HASH UNION operator is used to eliminate duplicate RIDs. There are 
duplicate RIDs for any tab1 rows where both c1 and c3 rows have a value of 10. 

The RID JOIN operator inserts all of the returned rows into Worktable2. 
Worktable2 is passed to the scan of tab1 after it has been completely filled. The 
access methods fetch the first RID, look up the associated row, and return it to 
the RID JOIN operator. On subsequent calls to the tab1’s scan operator, the 
access methods fetch the next RID to be processed and return its associated 
row. 

SQLFILTER operator
The SQLFILTER operator is a nary operator that executes subqueries. Its 
leftmost child represents the outer query, and the other children represent query 
plan fragments associated with one or more subqueries.

The leftmost child generates correlation values that are substituted into the 
other child plans.

The SQLFILTER operator displays this message:

SQFILTER Operator has <N> children.

This example illustrates the use of SQLFILTER:

select pub_name from publishers 
where pub_id = 
(select distinct titles.pub_id from titles 
104   Adaptive Server Enterprise



CHAPTER 2    Using showplan
   where publishers.pub_id = titles.pub_id 
   and price > $1000)

QUERY PLAN FOR STATEMENT 1 (at line 1). 
4 operator(s) under root 
 
STEP 1 
The type of query is SELECT. 
 
4 operator(s) under root 
 
ROOT:EMIT Operator (VA = 4) 
 
  |SQFILTER Operator (VA = 3) has 2 children. 
  | 
  |  |SCAN Operator (VA = 0) 
  |  |  FROM TABLE 
  |  |  publishers 
  |  |  Table Scan. 
  |  |  Forward Scan. 
  |  |  Positioning at start of table. 
  |  |  Using I/O Size 8 Kbytes for data pages. 
  |  |  With LRU Buffer Replacement Strategy for data pages. 
  | 
  | Run subquery 1 (at nesting level 1) 
  | 
  |  QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3) 
  | 
  |  Correlated Subquery 
  |  Subquery under an EXPRESSION predicate. 
  | 
  |  |SCALAR AGGREGATE Operator (VA = 2) 
  |  |  Evaluate Ungrouped ONCE-UNIQUE AGGREGATE 
  |  | 
  |  |  |SCAN Operator (VA = 1) 
  |  |  |  FROM TABLE 
  |  |  |  titles 
  |  |  |  Table Scan. 
  |  |  |  Forward Scan. 
  |  |  |  Postitioning at start of table. 
  |  |  |  Using I/O Size 8 Kbytes for data pages. 
  |  |  |  With LRU Buffer Replacement Strategy for data pages. 
  | 
  | END OF QUERY PLAN FOR SUBQUERY 1
Performance and Tuning Series: Query Processing and Abstract Plans  105



Union operators 
The SQLFILTER operator has two children in this example. The leftmost child 
is the query’s outer block. It is a simple scan of the publishers table. The right 
child is used to evaluate the query’s subquery. SQLFILTER fetch rows from the 
outer block. For every row from the outer block, SQLFILTER invokes the right 
child to evaluate the subquery. If the subquery evaluates to TRUE, a row is 
returned to the SQLFILTER’s parent operator.

EXCHANGE operator
The EXCHANGE operator is a unary operator that encapsulates parallel 
processing of Adaptive Server SQL queries. EXCHANGE can be located almost 
anywhere in a query plan and divides the query plan into plan fragments. A 
plan fragment is a query plan tree that is rooted at an EMIT or EXCHANGE:EMIT 
operator and has leaves that are SCAN or EXCHANGE operators. A serial plan is 
a plan fragment that is executed by a single process. 

An EXCHANGE operator’s child operator is always an EXCHANGE:EMIT 
operator. EXCHANGE:EMIT is the root of a new plan fragment. An EXCHANGE 
operator has an associated server process called the Beta process that acts as a 
local execution coordinator for the EXCHANGE operator’s worker processes. 
Worker processes execute the plan fragment as directed by the parent 
EXCHANGE operator and its Beta process. The plan fragment is often executed 
in a parallel fashion, using two or more processes. The EXCHANGE operator and 
Beta process coordinate activities, including the exchange of data between the 
fragment boundaries.

The topmost plan fragment, rooted at an EMIT operator rather than an 
EXCHANGE:EMIT operator, is executed by the Alpha process. The Alpha 
process is a consumer process associated with the user connection. The Alpha 
process is the global coordinator of all of the query plan’s worker processes. It 
is responsible for initially setting up all of the plan fragment’s worker processes 
and eventually freeing them. It manages and coordinates all of the fragment’s 
worker processes in the case of an exception.

The EXCHANGE operator displays this message:

Executed in parallel by N producer and P consumer processes.
106   Adaptive Server Enterprise



CHAPTER 2    Using showplan
The number of producers refers to the number of worker processes that execute 
the plan fragment located beneath the EXCHANGE operator. The number of 
consumers refers to the number of worker processes that execute the plan 
fragment that contains the EXCHANGE operator. The consumers process the data 
passed to them by the producers. Data is exchanged between the producer and 
consumer processes through a pipe set up in the EXCHANGE operator. The 
producer’s EXCHANGE:EMIT operator writes rows into the pipe while 
consumers read rows from this pipe. The pipe mechanism synchronizes 
producer writes and consumer reads such that no data is lost.

This example illustrates a parallel query in the master database against the 
system table sysmessages:

use master 
go 
set showplan on 
go 
select count(*) from sysmessages t1 plan '(t_scan t1)  (prop t1 (parallel 4)) 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using the forced options (internally generated Abstract Plan). 
Executed in parallel by coordinating process and 4 worker processes. 
 
4 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 

|SCALAR AGGREGATE Operator 
|  Evaluate Ungrouped COUNT AGGREGATE. 
| 
|   |EXCHANGE Operator 
|   |Executed in parallel by 4 Producer and 1 Consumer processes. 
 
|   | 
|   |   |EXCHANGE:EMIT Operator 
|   |   | 
|   |   |   |SCAN Operator 
|   |   |   |  FROM TABLE 
|   |   |   |  sysmessages 
|   |   |   |  Table Scan. 
|   |   |   |  Forward Scan. 
|   |   |   |  Positioning at start of table. 
|   |   |   |  Executed in parallel with a 4-way hash scan. 
|   |   |   |  Using I/O Size 4 Kbytes for data pages. 
|   |   |   |  With LRU Buffer Replacement Strategy for data pages.
Performance and Tuning Series: Query Processing and Abstract Plans  107



INSTEAD-OF TRIGGER operators 
There are two plan fragments in this example. The first fragment in any plan, 
parallel or not, is always rooted by an EMIT operator. The first fragment in this 
example consists of the EMIT, SCALAR AGGREGATE, and EXCHANGE operators. 
This first fragment is always executed by the single Alpha process. In this 
example, it also acts as the Beta process responsible for managing the 
EXCHANGE operator’s worker processes.

The second plan fragment is rooted at the EXCHANGE:EMIT operator. Its only 
child operator is the SCAN operator. The SCAN operator is responsible for 
scanning the sysmessages table. The scan is executed in parallel:

Executed in parallel with a 4-way hash scan

This indicates that each worker process is responsible for approximately a 
quarter of the table. Pages are assigned to the worker processes based on 
having the data page ID.

The EXCHANGE:EMIT operator writes data rows to the consumers by writing to 
a pipe created by its parent EXCHANGE operator. In this example, the pipe is a 
four-to-one demultiplexer, and include several pipe types that perform quite 
different behaviors.

INSTEAD-OF TRIGGER operators
There are two operators associated with the instead-of triggers feature: 
INSTEAD-OF TRIGGER and CURSOR SCAN. The instead-of trigger feature is 
available as of Adaptive Server version 15.0.2. The instead-of trigger feature 
uses pseudotables, which allow the user to apply specific actions for inserts, 
deletes, and updates on views, when these actions would otherwise have been 
ambiguous.
108   Adaptive Server Enterprise



CHAPTER 2    Using showplan
INSTEAD-OF TRIGGER operator
The INSTEAD-OF TRIGGER operator appears only in query plans for insert, 
update, or delete statements on a view that has an instead-of trigger created 
upon it. Its function is to create and fill the inserted and deleted pseudotables 
that are used in the trigger to examine the rows that would have been modified 
by the original insert, update, or delete query. The only purpose of the query 
plan that contains an INSTEAD-OF TRIGGER operator is to fill the inserted and 
deleted tables—the actual operation of the original SQL statement is never 
attempted on the view referenced in the statement. Rather, it is up to the trigger 
to perform the updates to the view’s underlying tables based on the data 
available in the inserted and deleted pseudo tables. 

The following is an example of the INSTEAD-OF TRIGGER operator’s 
showplan output:

create table t12 (c0 int primary key, c1 int null, c2 int null) 
go 
. . . 
create view t12view as select c1,c2 from t12 
go 
create trigger v12updtrg on t12view 
instead of update as 
select * from deleted 
go 
update t12view set c1 = 3 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
  STEP 1 
    The type of query is SELECT. 
 
2 operator(s) under root 
 
   |ROOT:EMIT Operator (VA = 1) 
   | 
   |  |INSTEAD-OF TRIGGER Operator 
   |  | Using Worktable1 for internal storage. 
   |  | Using Worktable2 for internal storage. 
   |  | 
   |  |  |SCAN Operator (VA = 0) 
   |  |  | FROM TABLE 
   |  |  | t12 
   |  |  | Table Scan. 
   |  |  | Forward Scan. 
   |  |  | Positioning at start of table. 
Performance and Tuning Series: Query Processing and Abstract Plans  109



INSTEAD-OF TRIGGER operators 
   |  |  | Using I/O Size 2 Kbytes for data pages. 
   |  |  | With LRU Buffer Replacement Strategy for data pages.

In this example, the v12updtrig instead-of trigger is defined on the t12view. The 
update to the t12view results in the creation of the INSTEAD-OF TRIGGER 
operator. The INSTEAD-OF TRIGGER operator creates two worktables. 
Worktable1 and Worktable2 are used to hold the inserted and deleted rows, 
respectively. These worktables are unique in that they persist across 
statements. Trigger execution results in the following showplan lines getting 
printed.

QUERY PLAN FOR STATEMENT 1 (at line 3). 
 
  STEP 1 
    The type of query is SELECT. 
 
1 operator(s) under root 
 
  |ROOT:EMIT Operator (VA = 1) 
  | 
  |  |SCAN Operator (VA = 0) 
  |  | FROM CACHE

The showplan statement output above is for the trigger’s statement, select * 
from deleted. The rows to be deleted from the view were inserted into the 
“deleted” cache when the initial update statement was executed. Then, the 
trigger scans the table to report what rows would have been deleted from the 
t12view view.

CURSOR SCAN operator
The CURSOR SCAN operator only appears in positioned delete or update (that 
is, delete view-name where current of cursor_name) statements on a view that 
has an instead-of trigger created upon it. As such, it appears only as a child 
operator of the INSTEAD-OF TRIGGER operator. A positioned delete or update 
accesses only the row on which the cursor is currently positioned. The CURSOR 
SCAN operator reads the current row of the cursor directly from the EMIT 
operator of the query plan for the fetch cursor statement. These values are 
passed to the INSTEAD-OF TRIGGER operator to be inserted into the inserted 
or deleted pseudo tables (this example uses the same table as the previous 
example). 
110   Adaptive Server Enterprise



CHAPTER 2    Using showplan
declare curs1 cursor for select * from t12view 
go 
open curs1 
go 
fetch curs1 
 
c1        c2 
_________ ________ 
       1        2 
 
(1 row affected) 
set showplan on 
go 
update t12view set c1 = 3 
where current of curs1 
 
QUERY PLAN FOR STATEMENT (at line 1). 
 
  STEP 1 
    The type of query is SELECT. 
 
2 operator(s) under root 
 
  |ROOT:EMIT Operator (VA = 2) 
  | 
  |  |INSTEAD-OF TRIGGER Operator (VA = 1) 
  |  | Using Worktable1 for internal storage. 
  |  | Using Worktable2 for internal storage. 
  |  | 
  |  |  |CURSOR SCAN Operator (VA = 0) 
  |  |  | FROM EMIT OPERATOR

The showplan output in this example is identical to that from the previous 
INSTEAD-OF TRIGGER operator example, with one exception. A CURSOR 
SCAN operator appears as the child operator of the INSTEAD-OF TRIGGER 
operator rather than a scan of the view’s underlying tables.

The CURSOR SCAN gets the values to be inserted into the pseudo tables by 
accessing the result of the cursor fetch. This is conveyed by the FROM EMIT 
OPERATOR message.

QUERY PLAN FOR STATEMENT 1 (at line 3). 
 
  STEP 1 
    The type of query is SELECT. 
 
1 operator(s) under root 
Performance and Tuning Series: Query Processing and Abstract Plans  111



INSTEAD-OF TRIGGER operators 
 
   |ROOT:EMIT Operator (VA = 1) 
   | 
   |  |SCAN Operator (VA = 0) 
   |  | FROM CACHE

The showplan statement above is for the trigger’s statement. It is identical to 
the output in the INSTEAD-OF TRIGGER example.

deferred_index and deferred_varcol messages
The update mode is deferred_varcol. 
 
The update mode is deferred_index.

These showplan messages indicate that Adaptive Server may process an update 
command as a deferred index update.

Adaptive Server uses deferred_varcol mode when updating one or more 
variable-length columns. This update may be done in deferred or direct mode, 
depending on information that is available only at runtime. 

Adaptive Server uses deferred_index mode when the index is unique or 
may change as part of the update. In this mode, Adaptive Server deletes the 
index entries in direct mode but inserts them in deferred mode. 
112   Adaptive Server Enterprise



C H A P T E R  3 Displaying Query Optimization 
Strategies and Estimates

This chapter describes the messages printed by the query optimization 
options of the set command.

set commands for text format messages
Either the query optimizer or the query execution layer can generate 
diagnostic output. To generate diagnostic output in text format, use:

set option 
   {   {show | show_lop | show_managers | show_log_props | 
       show_parallel | show_histograms | show_abstract_plan | 
       show_search_engine | show_counters | show_best_plan | 
       show_code_gen | show_pio_costing | show_lio_costing | 
       show_pll_costing | show_elimination | show_missing_stats} 
      {normal | brief | long | on | off} }...

Note  Each option specified must be followed by one of normal, brief, long, 
on, or off. on and normal are equivalent. Each show option must include 
one of these choices (normal, brief, and so on); specify more than one 
option in a single set option command by separating each option or choice 
pair with commas.

See “Usage scenarios” on page 119 for examples of using the set options.

Topic Page
set commands for text format messages 113

set commands for XML format messages 114

Usage scenarios 119

Permissions for set commands 122
Performance and Tuning Series: Query Processing and Abstract Plans 113



set commands for XML format messages 
Table 3-1: Optimizer set commands for text format messages

set commands for XML format messages
You can regenerate diagnostics as an XML document. This makes it easier for 
front-end tools to interpret a document. You can use the native XPath query 
processor inside Adaptive Server to query this output if the XML option is 
enabled.

Either the query optimizer or the query execution layer can generate 
diagnostics output. To generate an XML document for the diagnostic output, 
use this set plan command:

set plan for 
{show_exec_xml, show_opt_xml, show_execio_xml,  
show_lop_xml, show_managers_xml, show_log_props_xml,  
show_parallel_xml, show_histograms_xml, show_final_plan_xml, 
show_abstract_plan_xml, show_search_engine_xml, 
show_counters_xml, show_best_plan_xml, show_pio_costing_xml,  
show_lio_costing_xml, show_elimination_xml} 
to {client | message} on

Option Definition 

show Shows a reasonable collection of details, where the collection depends on the 
choice of {normal | brief | long | on | off}

show_lop Shows the logical operators used

show_managers Shows the data structure managers used during optimization

show_log_props Shows the logical properties evaluated

show_parallel Shows details of parallel query optimization

show_histograms Shows the processing of histograms associated with SARG/join columns

show_abstract_plan Shows the details of an abstract plan

show_search_engine Shows the details of the join-ordering algorithm

show_counters Shows the optimization counters

show_best_plan Shows the details of the best query plan selected by the optimizer

show_code_gen Shows details of code generation

show_pio_costing Shows estimates of physical input/output (reads/writes from/to the disk)

show_lio_costing Shows estimates of logical input/output (reads/writes from/to memory)

show_pll_costing Shows estimates relating to costing for parallel execution

show_elimination Shows partition elimination

show_missing_stats Shows details of useful statistics missing from SARG/join columns
114   Adaptive Server Enterprise



CHAPTER 3    Displaying Query Optimization Strategies and Estimates
To turn an option off, specify:

set plan for 
{show_exec_xml, show_opt_xml, show_execio_xml, show_lop_xml, 
show_managers_xml, show_log_props_xml, show_parallel_xml, 
show_histograms_xml,show_final_plan_xml 
show_abstract_plan_xml, show_search_engine_xml, 
show_counters_xml, show_best_plan_xml, show_pio_costing_xml, 
show_lio_costing_xml, show_elimination_xml} off

You need not specify the destination stream when turning the option off.

When message is specified, the client application must get the diagnostics 
from the buffer using a built-in function called showplan_in_xml(query_num).

Option Definition

show_exec_xml Gets the compiled plan output in XML, showing each of the query plan operators.

show_opt_xml Gets optimizer diagnostic output, which shows the different components such as 
logical operators, output from the managers, some of the search engine diagnostics, 
and the best query plan.

show_execio_xml Gets the plan output along with estimated and actual I/Os. show_execio_xml also 
includes the query text.

show_lop_xml Gets the output logical operator tree in XML.

show_managers_xml Shows the output of the different component managers during the preparation phase 
of the query optimizer.

show_log_props_xml Shows the logical properties for a given equivalence class (one or more groups of 
relations in the query).

show_parallel_xml Shows the diagnostics related to the optimizer while generating parallel query plans.

show_histograms_xml Shows diagnostics related to histograms and the merging of histograms.

show_final_plan_xml Gets the plan output. Does not include the estimated and actual I/Os. 
show_final_plan_xml includes the query text.

show_abstract_plan_xml Shows the generated abstract plan.

show_search_engine_xml Shows diagnostics related to the search engine.

show_counters_xml Shows plan object construction/destruction counters.

show_best_plan_xml Shows the best plan in XML.

show_pio_costing_xml Shows actual physical input/output costing in XML.

show_lio_costing_xml Shows actual logical input/output costing in XML.

show_elimination_xml Shows partition elimination in XML.

client When specified, output is sent to the client. By default, this is the error log. When trace 
flag 3604 is active, however, output is sent to the client connection.

message When specified, output is sent to an internal message buffer.
Performance and Tuning Series: Query Processing and Abstract Plans  115



set commands for XML format messages 
query_num refers to the number of queries that are cached in the buffer. 
Currently, a maximum of 20 queries are cached in the buffer. The cache stops 
collecting query plans when it reaches 20 queries; it ignores the rest of the 
query plans. However, the message buffer continues to collect query plans. 
After 20 queries, you can display the message buffer only in its entirety by 
using a value of 0.

Valid values for query_num are 1 – 20, -1, and 0 (zero). A value of -1 refers to 
the last XML doc in the cache; a value of 0 refers to the entire message buffer. 

The message buffer may overflow. If this occurs, there is no way to log all of 
the XML document, which may result in a partial and invalid XML document.

When the message buffer is accessed using showplan_in_xml, the buffer is 
emptied after execution.

You may want to use set textsize to set the maximum text size, as the XML 
document is printed as a text column and the document is truncated if the 
column is not large enough. For example, set the text size to 100000 bytes 
using:

set textsize 100000

When set plan is issued with off, all XML tracing is turned off if all of the trace 
options have been turned off. Otherwise, only specified options are turned off. 
Other options previously turned on are still valid and tracing continues on the 
specified destination stream. When you issue another set plan option, the 
previous options are joined with the current options, but the destination stream 
is switched unconditionally to a new one.

Using show_execio_xml to diagnose query plans
show_execio_xml includes diagnostic information that you may find can be 
helpful for investigating problematic queries. Information from 
show_execio_xml includes:

• The version level of the query plan. Each version of the plan is uniquely 
identified. This is the first version of the plan:

<planVersion>1.0</planVersion>

• The statement number in a batch or stored procedure, along with the line 
number of the statement in the original text. This is statement number 2, 
but line number 6, in the query:

<statementNum>2</statementNum> 
116   Adaptive Server Enterprise



CHAPTER 3    Displaying Query Optimization Strategies and Estimates
<lineNum>6</lineNum>

• The abstract plan for the query. For example, this is the abstract plan for 
the query select * from titles:

<abstractPlan> 
        <![CDATA[> 
                 ( i_scan titleidind titles ) ( prop titles ( parallel 1 
) ( prefetch 8 ) ( lru ) ) 
]]> 
        </abstractPlan>

• The logical I/O, physical I/O, and CPU costs:

 <costs> 
    <lio> 2 </lio> 
    <pio> 2 </pio> 
    <cpu> 18 </cpu> 
</costs>

You can estimate the total costs with this formula (the 25, 2, and 0.1 are 
constants):

25 X pio + 2 X lio + 0.1 X cpu

• The estimated execution resource usage, including the number of threads 
and auxiliary scan descriptors used by the query plan.

• The number of plans the query engine viewed and the plans it determined 
were valid, the total time the query spent in the query engine (in 
milliseconds), the time the query engine took to determine the first legal 
plan, and the amount of procedure cache used during the optimization 
process. 

<optimizerMetrics> 
    <optTimeMs>6</optTimeMs> 
    <optTimeToFirstPlanMs>3</optTimeToFirstPlanMs> 
    <plansEvaluated>1</plansEvaluated> 
    <plansValid>1</plansValid> 
    <procCacheBytes>140231</procCacheBytes> 
</optimizerMetrics>

• The last time update statistics was run on the current table and whether the 
query engine used an estimation constant for a given column that it could 
have estimated better if statistics were available. This section includes 
information about columns with missing statistics:

<optimizerStatistics> 
    <statInfo> 
        <objName>titles</objName> 
Performance and Tuning Series: Query Processing and Abstract Plans  117



set commands for XML format messages 
        <columnStats> 
            <column>title_id</column> 
            <updateTime>Oct  5 2006  4:40:14:730PM</updateTime> 
        </columnStats> 
        <columnStats> 
            <column>title</column> 
            <updateTime>Oct  5 2006  4:40:14:730PM</updateTime> 
        </columnStats> 
    </statInfo> 
</optimizerStatistics>

• An operator tree that includes table and index scans with information 
about cache strategies and I/O sizes (inserts, updates, and deletes have the 
same information for the target table). The operator tree also shows 
whether updates are performed in “direct” or “deferred” mode. The 
exchange operator includes information about the number of producer and 
consumer processes the query used.

<TableScan> 
    <VA>0</VA> 
    <est> 
        <rowCnt>18</rowCnt> 
        <lio>2</lio> 
        <pio>2</pio> 
        <rowSz>218.5555</rowSz> 
    </est> 
    <varNo>0</varNo> 
    <objName>titles</objName> 
    <scanType>TableScan</scanType> 
    <partitionInfo> 
        <partitionCount>1</partitionCount> 
    </partitionInfo> 
    <scanOrder> ForwardScan </scanOrder> 
    <positioning> StartOfTable </positioning> 
    <dataIOSizeInKB>8</dataIOSizeInKB> 
    <dataBufReplStrategy> LRU </dataBufReplStrategy> 
</TableScan>
118   Adaptive Server Enterprise



CHAPTER 3    Displaying Query Optimization Strategies and Estimates
Usage scenarios
For the following examples, if dbcc traceon(3604) is set, trace information is 
sent to the client’s connection. If dbcc traceon (3605) is set, trace information 
is sent to the error log. For Adaptive Server versions 15.0.2 and later, you can 
use the set switch on. For example:

set switch on 3604 
set switch on 3605

Optimization tracing options (dbcc traceon/off(302,310,317)) from versions of 
Adaptive Server earlier than 15.0 are no longer supported.

Use dbcc traceon(3604) or set switch on print_output_to_client to direct trace 
output to the client process that would otherwise go to the error log. Use dbcc 
traceon(3605) or set switch on print_output_to_errorlog to direct output to the 
error log as well as to the client process.

Scenario A To send the execution plan XML to the client as trace output, use:

set plan for show_exec_xml to client on

Then run the queries for which the plan is wanted:

select id from sysindexes where id < 0

Scenario B To get the execution plan, use the showplan_in_xml function. You can get the 
output from the last query, or from any of the first 20 queries in a batch or 
stored procedure.

set plan for show_opt_xml to  message on

Run the query as:

select id from sysindexes where id < 0 
select name from sysobjects where id > 0 
go 
 
select showplan_in_xml(0) 
go

The example generates two XML documents as text streams. You can run an 
XPath query over this built-in as long as the XML option is enabled in 
Adaptive Server.

select xmlextract("/", showplan_in_xml(-1)) 
go

This allows the XPath query “/” to be run over the XML doc produced by the 
last query.
Performance and Tuning Series: Query Processing and Abstract Plans  119



Usage scenarios 
Scenario C To set multiple options:

set plan for show_exec_xml, show_opt_xml to client on 
go 
 
select name from sysobjects where id > 0 
go

This sets up the output from the optimizer and the query execution engine to 
send the result to the client, as is done in normal tracing.

set plan for show_exec_xml off 
go 
select name from sysobjects where id > 0 
go

The optimizer’s diagnostics are still available, as show_opt_xml is left on.

Scenario D When running a set of queries in a batch, you can ask for the optimizer plan for 
the last query.

set plan for show_opt_xml to message on 
go 
declare @v int 
select @v = 1 
select name from sysobjects where id = @v 
go 
 
select showplan_in_xml(-1) 
go

showplan_in_xml() can also be part of the same batch as it works the same way. 
Any message for the showplan_in_xml() function is ignored for logging.

To create a stored procedure:

create proc PP as 
declare @v int 
select @v = 1 
select name from sysobjects where id = @v 
go 
 
exec PP 
go 
 
select showplan_in_xml(-1) 
go
120   Adaptive Server Enterprise



CHAPTER 3    Displaying Query Optimization Strategies and Estimates
If the stored procedure calls another stored procedure, and the called stored 
procedure compiles, and optimizer diagnostics are turned on, you get the 
optimizer diagnostics for the new set of statements as well. The same is true if 
show_execio_xml is turned on and only the called stored procedure is executed.

Scenario E To query the output of the showplan_in_xml() function for the query execution 
plan, which is an XML doc:

set plan for show_exec_xml to message on 
go 
 
select name from sysobjects 
go 
 
select  case when 
'/Emit/Scan[@Label=“Scan:myobjectss”]' xmltest 
showplan_in_xml(-1) 
then “PASSED” else "FAILED" end 
go 
 
set plan for show_exec_xml off 
go

Scenario F Use show_final_plan_xml to configure Adaptive Server to display the query 
plan as XML output. This output does not include the actual LIO costs, PIO 
costs, or the row counts. Once show_final_plan_xml is enabled, you can select 
the query plan from the last run query (which has a query ID of -1). To enable 
show_final_plan_xml:

set plan for show_final_plan_xml to message on

Run your query, for example:

use pubs2 
go 
select * from titles 
go

Select the query plan for the last query run using the showplan_in_xml 
parameter:

select showplan_in_xml(-1)
Performance and Tuning Series: Query Processing and Abstract Plans  121



Permissions for set commands 
Permissions for set commands
The sa_role has full access to the set commands described above.

For other users, the system administrator must grant and revoke new set tracing 
permissions to allow set option and set plan for XML, as well as dbcc traceon/off 
(3604,3605).

For more information, see the grant command description in Adaptive Server 
Reference Manual: Commands.
122   Adaptive Server Enterprise



C H A P T E R  4 Finding Slow Running Queries

Adaptive Server includes the set show_sqltext, set tracefile, and set 
export_options parameters that enable you to collect diagnostic 
information about poorly-running queries without having to previously 
enable showplan or other investigatory parameters.

Saving diagnostics to a trace file
Once enabled, set tracefile saves all SQL text for the current session to the 
specified file, each SQL text batch appending to the previous batch. 

The syntax to enable tracing is:

set tracefile file_name [off] [for spid

The syntax to disable tracing is:

set tracefile off [for spid]

Where:

Topic Page
Saving diagnostics to a trace file 123

Displaying SQL text 127

Retaining session settings 130
Performance and Tuning Series: Query Processing and Abstract Plans 123



Saving diagnostics to a trace file 
• file_name – is the full path to the file in which you are saving the SQL text. 
If you do not specify a directory path, Adaptive Server creates the file in 
$SYBASE.

Note  If file_name contains special characters (“:”, “/”, and so on) other 
than numbers and letters, you must include file_name in quotes. For 
example, this file_name must be in quotes because of the “/” for the 
directory structure:

set tracefile '/tmp/mytracefile.txt' for 25

If file_name does not contain special characters and you want to save it to 
$SYBASE, it does not require quotes. For example, this file_name does not 
need to be in quotes:

set tracefile mytracefile.txt

• off – disables the tracing for this session or spid.

• spid – server process ID whose SQL text you want saved to a trace file. 
Only the users with the SA or SSO role can enable tracing for other spids. 
You cannot save the SQL text for system tasks (such as the housekeeper 
or the port manager).

Examples • This example opens a trace file named sql_text_file for the the current 
session:

set tracefile '/var/sybase/REL1502/text_dir/sql_text_file'

Subsequent outputs from set showplan, set statistics io, and dbcc 
traceon(100) are saved in sql_text_file.

• This example does not specify a directory path, so the trace file is saved in 
$SYBASE/sql_text_file:

set tracefile 'sql_text_file' for 11

Any SQL run on spid 11 is saved to this tracefile.

• This example saves the SQL text for spid 86:

set tracefile 
'/var/sybase/REL1502/text_dir/sql_text_file' for 86

• This example disables set tracefile:

set tracefile off

These are the restrictions for set tracefile:
124   Adaptive Server Enterprise



CHAPTER 4    Finding Slow Running Queries
• You cannot save the SQL text for system tasks (such as the housekeeper 
or the port manager).

• You must have the sa or sso roles, or be granted set tracing permission, to 
run enable or disable tracing.

• set tracefile is not allowed to open an existing file as a tracefile.

• During an SA or SSO session, if you enable set tracfile for a specific spid, 
all subsequent tracing commands executed take effect on that spid, not the 
SA or SSO spid.

• If Adaptive Server runs out of file space while writing the tracefile, it 
closes the file and disables the tracing.

• If an isql session starts tracing for a spid, but the isql session quits without 
disabling the tracing, another isql session can begin tracing this spid.

• Tracing occurs for the session for which it is enabled only, not for the 
session that enabled it.

• You cannot trace more than one session at a time from a single sa or sso 
session. If you attempt to open a tracefile for a session for which there is 
already a trace file open, Adaptive Server issues this error message: 
tracefile is already open for this session.

• You cannot trace the same session from multiple sa or sso sessions.

• The file storing the trace output is closed when the session being traced 
quits or when you disable tracing.

• Before you allocate resources for tracing, keep in mind that each tracing 
requires one file descriptor per engine.

Set options that save diagnostic information to a trace file
You can use set tracefile in combination with other set commands and options 
that provide diagnostic information for a better understanding of slow-running 
queries. These are the set commands and options that save diagnostic 
information to a file:

• set show_sqltext [on | off]

• set showplan [on | off]

• set statistics io [on | off]

• set statistics time [on | off]
Performance and Tuning Series: Query Processing and Abstract Plans  125



Saving diagnostics to a trace file 
• set statistics plancost [on | off]

These are the set options:

• set option show [normal | brief | long | on | off] 

• set option show_lop [normal | brief | long | on | off]

• set option show_parallel [normal | brief | long | on | off]

• set option show_search_engine [normal | brief | long | on | off] 

• set option show_counters [normal | brief | long | on | off] 

• set option show_managers [normal | brief | long | on | off]

• set option show_histograms [normal | brief | long | on | off]

• set option show_abstract_plan [normal | brief | long | on | off]

• set option show_best_plan [normal | brief | long | on | off]

• set option show_code_gen [normal | brief | long | on | off]

• set option show_pio_costing [normal | brief | long | on | off]

• set option show_lio_costing [normal | brief | long | on | off]

• set option show_log_props [normal | brief | long | on | off]

• set option show_elimination [normal | brief | long | on | off]

Which sessions are being traced?
Use sp_helpapptrace to determine which sessions Adaptive Server is tracing. 
sp_helpapptrace returns the server process IDs (spids) for all the sessions 
Adaptive Server is tracing, the spids of the sessions tracing them, and the name 
of the tracefile.

The syntax for sp_helpapptrace is:

sp_helpapptrace

sp_helpapptrace returns these columns:

• traced_spid – spid of the session you are tracing.

• tracer_spid – spid of the session that traced_spid is tracing. Prints “exited” 
if the tracer_spid session has exited.

• trace_file – full path to the tracefile.
126   Adaptive Server Enterprise



CHAPTER 4    Finding Slow Running Queries
For example:

sp_helpapptrace
 traced_spid   tracer_spid         trace_file 
--------------   -------------     ---------- 
11               exited             /tmp/myfile1 
13               14                 /tpcc/sybase.15_0/myfile2

Rebinding a trace
If a session is tracing another session, but quits without disabling the tracing, 
Adaptive Server allows a new session to rebind with the earlier trace. This 
means that a sa or sso is not required to finish every trace they start, but can 
start a trace session, quit, and then rebind to this trace session

Displaying SQL text
set show_sqltext allows you to print the SQL text for ad-hoc queries, stored 
procedures, cursors, and dynamic prepared statements. You do not need to 
enable the set show_sqltext before you execute the query (as you do with 
commands like set showplan on) to collect diagnostic information for a SQL 
session. Instead you can enable it while the commands are running to help 
determine which query is performing poorly and diagnose their problems.

Before you enable show_sqltext, you must first enable dbcc traceon to display 
the output to standard out:

dbcc traceon(3604)

The syntax for set show_sqltext is:

set show_sqltext {on | off}

For example, this enables show_sqltext:

set show_sqltext on

Once set show_sqltext is enabled, Adaptive Server prints all SQL text to 
standard out for each command or system procedure you enter. Depending on 
the command or system procedure you run, this output can be extensive.

For example, if you run sp_who, Adaptive Server prints all SQL text associated 
with this system procedure (the output is abbreviated for space purposes):
Performance and Tuning Series: Query Processing and Abstract Plans  127



Displaying SQL text 
sp_who 
2007/02/23 02:18:25.77 
SQL Text: sp_who 
Sproc: sp_who, Line: 0 
Sproc: sp_who, Line: 20 
Sproc: sp_who, Line: 22 
Sproc: sp_who, Line: 25 
Sproc: sp_who, Line: 27 
Sproc: sp_who, Line: 30 
Sproc: sp_who, Line: 55 
Sproc: sp_who, Line: 64 
Sproc: sp_autoformat, Line: 0 
Sproc: sp_autoformat, Line: 165 
Sproc: sp_autoformat, Line: 167 
Sproc: sp_autoformat, Line: 177 
Sproc: sp_autoformat, Line: 188 
. . .  
Sproc: sp_autoformat, Line: 326 
Sproc: sp_autoformat, Line: 332 
SQL Text: INSERT 
#colinfo_af(colid,colname,usertype,type,typename,collength,maxlength,autoform
at,selected,selectorder,asname,mbyte) SELECT 
c.colid,c.name,t.usertype,t.type,t.name,case when c.length < 80 then 80 else 
c.length end,0,0,0,0,c.name,0 FROM tempdb.dbo.syscolumns c,tempdb.dbo.systypes 
t WHERE c.id=1949946031 AND c.usertype=t.usertype 
Sproc: sp_autoformat, Line: 333 
Sproc: sp_autoformat, Line: 334 
. . .  
Sproc: sp_autoformat, Line: 535 
Sproc: sp_autoformat, Line: 0 
Sproc: sp_autoformat, Line: 393 
Sproc: sp_autoformat, Line: 395 
. . .  
Sproc: sp_autoformat, Line: 686 
Sproc: sp_autoformat, Line: 688 
SQL Text: UPDATE #colinfo_af SET maxlength=(SELECT 
isnull(max(isnull(char_length(convert(varchar(80),fid)),4)),1) FROM 
#who1result ), autoformat = 1, mbyte=case when usertype in (24, 25, 34, 35) then 
1 else 0 end WHERE colname='fid' 
Sproc: sp_autoformat, Line: 689 
Sproc: sp_autoformat, Line: 690 
. . . 
Sproc: sp_autoformat, Line: 815 
Sproc: sp_autoformat, Line: 818 
SQL Text: SELECT 
fid=right(space(80)+isnull(convert(varchar(80),fid),'NULL'),3), 
128   Adaptive Server Enterprise



CHAPTER 4    Finding Slow Running Queries
spid=right(space(80)+isnull(convert(varchar(80),spid),'NULL'),4), 
status=SUBSTRING(convert(varchar(80),status),1,8), 
loginame=SUBSTRING(convert(varchar(80),loginame),1,8), 
origname=SUBSTRING(convert(varchar(80),origname),1,8), 
hostname=SUBSTRING(convert(varchar(80),hostname),1,8), 
blk_spid=right(space(80)+isnull(convert(varchar(80),blk_spid),'NULL'),8), 
dbname=SUBSTRING(convert(varchar(80),dbname),1,6), 
tempdbname=SUBSTRING(convert(varchar(80),tempdbname),1,10), 
cmd=SUBSTRING(convert(varchar(80),cmd),1,17), 
block_xloid=right(space(80)+isnull(convert(varchar(80),block_xloid),'NULL'),1
1) FROM #who1result  order by fid, spid, dbname 

Sproc: sp_autoformat, Line: 819 
Sproc: sp_autoformat, Line: 820 
Sproc: sp_autoformat, Line: 826 
Sproc: sp_who, Line: 68 
Sproc: sp_who, Line: 70 
fid  spid  status   loginame     origname    hostname  blk_spid  dbname      
tempdbnamecmd      block_xloid 
---  ----  --------  --------   --------   --------  --------    -------------
------------       -----------    
0    2     sleeping  NULL       NULL       NULL       0        master tempdb 
DEADLOCK TUNE      0    
0    3     sleeping  NULL       NULL       NULL       0        master tempdb 
ASTC HANDLER       0 
0    4     sleeping  NULL       NULL       NULL       0        master tempdb 
CHECKPOINT SLEEP   0 
0    5     sleeping  NULL       NULL       NULL       0        master tempdb 
HK WASH            0 
0    6     sleeping  NULL       NULL       NULL       0        master tempdb 
HK GC           0 
0    7     sleeping  NULL       NULL       NULL       0        master tempdb 
HK CHORES          0 
0    8     sleeping  NULL       NULL       NULL       0        master tempdb 
PORT MANAGER       0 
0    9     sleeping  NULL       NULL       NULL       0        master tempdb 
NETWORK HANDLER    0 
0    10    sleeping  NULL       NULL       NULL       0        master tempdb 
LICENSE HEARTBEAT  0 
0    1     running   sa         sa         echo       0        master tempdb 
INSERT             0 
 
(10 rows affected) 
(return status = 0)
Performance and Tuning Series: Query Processing and Abstract Plans  129



Retaining session settings 
To disable show_sqltext, enter:

set show_sqltext off

Restrictions for 
show_sqltext

• You must have the sa or sso roles to run show_sqltext.

• You cannot use show_sqltext to print the SQL text for triggers.

• You cannot use show_sqltext to show a binding variable or a view name.

Retaining session settings
Adaptive Server’s default behavior is to reset any set parameter changes that 
are set by a trigger or system procedure after they finish running. Enabling set 
export_options allows you to retain the session settings that are set by a system 
procedure or trigger for the duration of the session. The syntax for set 
export_options is:

set export_options [on | off]

For example, this enables set export_options:

set export_options on

This disables set export_options and returns Adaptive Server to the default 
behavior:

set export_options off
130   Adaptive Server Enterprise



C H A P T E R  5 Parallel Query Processing

This chapter provides an in-depth description of parallel query processing.

Vertical, horizontal, and pipelined parallelism
Adaptive Server supports horizontal and vertical parallelism for query 
execution. Vertical parallelism is the ability to run multiple operators 
simultaneously by employing different system resources such as CPUs, 
disks, and so on. Horizontal parallelism is the ability to run multiple 
instances of an operator on the specified portion of the data. 

The way you partition your data greatly affects the efficiency horizontal 
parallelism. The logical partitioning of data is useful in operational 
decision-support systems (DSS) queries where large volumes of data are 
being processed. 

See Chapter 10, “Partitioning Tables and Indexes,” in the Transact-SQL 
User’s Guide and “Partitioning tables for performance” on page 13 of the 
Performance and Tuning Series: Physical Database Tuning guide for a 
more detailed discussion of partitioning on Adaptive Server. 
Understanding different types of partitioning is a prerequisite to 
understanding this chapter.

Topic Page
Vertical, horizontal, and pipelined parallelism 131

Queries that benefit from parallel processing 132

Enabling parallelism 133

Controlling parallelism at the session level 137

Controlling query parallelism 138

Using parallelism selectively 139

Using parallelism with large numbers of partitions 140

When parallel query results differ 142

Understanding parallel query plans 143

Adaptive Server parallel query execution model 145
Performance and Tuning Series: Query Processing and Abstract Plans 131



Queries that benefit from parallel processing 
Adaptive Server also supports pipelined parallelism. Pipelining is a form of 
vertical parallelism in which intermediate results are piped to higher operators 
in a query tree. The output of one operator is used as input for another operator. 
The operator used as input can run simultaneously with the operator feeding 
the data, which is an essential element in pipelined parallelism. Use parallelism 
only when multiple resources like disks and CPUs are available. Using 
parallelism can be detrimental if your system is not configured for resources 
that can work in tandem. In addition, data must be spread across disk resources 
in a way that closely ties the logical partitioning of the data with the physical 
partitioning on parallel devices. The biggest challenge for a parallel system is 
to control the correct granularity of parallelism. If parallelism is too finely 
grained, communication and synchronization overhead can offset any benefit 
that is obtained from parallel operations. Making parallelism too coarse does 
not permit proper scaling.

Queries that benefit from parallel processing
When Adaptive Server is configured for parallel query processing, the query 
optimizer evaluates each query to determine whether it is eligible for parallel 
execution. If it is eligible, and if the optimizer determines that a parallel query 
plan can deliver results faster than a serial plan, the query is divided into plan 
fragments that are processed simultaneously. The results are combined and 
delivered to the client in a shorter period of time than it takes to process the 
query serially as a single fragment. 

Parallel query processing can improve the performance of:

• select statements that scan large numbers of pages but return relatively few 
rows, such as table scans or clustered index scans with grouped or 
ungrouped aggregates.

• Table scans or clustered index scans that scan a large number of pages, but 
have where clauses that return only a small percentage of rows.

• select statements that include union, order by, or distinct, since these query 
operations can make use of parallel sorting or parallel hashing.

• select statements where a reformatting strategy is chosen by the optimizer, 
since these can populate worktables in parallel and can make use of 
parallel sorting.

• join queries.
132   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
Commands that return large, unsorted result sets are unlikely to benefit from 
parallel processing due to network constraints. In most cases, results can be 
returned from the database faster than they can be merged and returned to the 
client over the network.

Parallel DMLs like insert, delete, and update are not supported and so do not 
benefit from parallelism.

Enabling parallelism 
To configure Adaptive Server for parallelism, enable the number of worker 
processes and max parallel degree parameters. 

To gain optimal performance, be aware of other configuration parameters that 
affect the quality of plans generated by Adaptive Server.

number of worker processes
Before you enable parallelism, configure the number of worker processes (also 
referred to as threads) available for Adaptive Server by setting the 
configuration parameter number of worker processes. Sybase recommends that 
you set the value for number of worker processes to one and a half times the 
total number required at peak load. You can calculate an approximate number 
using the max parallel degree configuration parameter, which indicates the total 
number of worker processes that can be used for any query. Depending on the 
number of connections to the Adaptive Server and the approximate number of 
queries that are run simultaneously, you can use this rule to roughly estimate 
the value for the number of worker processes that may be needed at any time:

[number of worker processes] = [max parallel degree] X [the number of 
concurrent connections wanting to run queries in parallel] X [1.5] 

For example, to set the number of worker processes to 40:

sp_configure "number of worker processes", 40 

Any runtime adjustment for the number of threads may have a negative effect 
on query performance. Adaptive Server always tries to optimize thread usage, 
but it may have already committed to a plan that needs increased resources, and 
therefore does not guarantee a linear scaledown when it runs with fewer 
threads. 
Performance and Tuning Series: Query Processing and Abstract Plans  133



Enabling parallelism 
If the query processor has insufficient worker processes, the processor tries to 
adjust the query plan during runtime. If a minimal number of worker processes 
are required but unavailable, the query aborts with this error message: 

Insufficient number of worker processes to execute the 
parallel query. Increase the value of the configuration 
parameter ‘number of worker processes’

max parallel degree
Use the max parallel degree configuration parameter to configure the maximum 
amount of parallelism for a query. This parameter determines the maximum 
number of threads Adaptive Server uses when processing a given query. For 
example, to set max parallel degree to 10, enter:

sp_configure "max parallel degree", 10 

Unlike versions of Adaptive Server earlier than 15.0, this parameter’s value is 
not entirely enforced by the query optimizer. A complete enforcement process 
is expensive in terms of optimization time. Adaptive Server comes close to the 
desired setting of max parallel degree and exceeds it only for semantic reasons.

max resource granularity
The value of max resource granularity configures the maximum percentage of 
system resources a query can use. In Adaptive Server version 15.0 and later, 
max resource granularity affects only procedure cache. By default, max resource 
granularity is 10%. However, this value is not enforced at execution time; it is 
only a guide for the query optimizer. The query engine can avoid memory-
intensive strategies, such as hash-based algorithms, when max resource 
granularity is set to a low value.

To set max resource granularity to 5%, enter:

sp_configure "max resource granularity", 5 
134   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
max repartition degree
Adaptive Server must dynamically repartition intermediate data to match the 
partitioning scheme of another operand or to perform an efficient partition 
elimination. max repartition degree controls the amount of dynamic 
repartitioning Adaptive Server can do. If the value of max repartition degree is 
too high, the number of intermediate partitions becomes too large and the 
system becomes flooded with worker processes that compete for resources, 
which eventually degrades performance. The value for max repartition degree 
enforces the maximum number of partitions created for any intermediate data. 
Repartitioning is a CPU-intensive operation. The value of max repartition 
degree should not exceed the total number of Adaptive Server engines. 

If all tables and indexes are unpartitioned, Adaptive Server uses the value for 
max repartition degree to provide the number of partitions to create as a result 
of repartitioning the data. When the value is set to 1, which is the default case, 
the value of max repartition degree is set to the number of online engines.

Use max repartition degree when using the force option to perform a parallel 
scan on a table or index.

select * from customers (parallel)

For example, if the customers table is unpartitioned and the force option is used, 
Adaptive Server tries to find the inherent partitioning degree of that table or 
index, which in this case is 1. It uses the number of engines configured for the 
server, or whatever degree is best based on the number of pages in the table or 
index that does not exceed the value of max repartition degree.

To set max repartition degree to 5: 

sp_configure "max repartition degree", 5 

max scan parallel degree
The max scan parallel degree configuration parameter is used only for 
backward compatibility, when the data in a partitioned table or index is highly 
skewed. If the value of this parameter is greater than 1, Adaptive Server uses 
this value to do a hash-based scan. The value of max scan parallel degree cannot 
exceed the value of max parallel degree.
Performance and Tuning Series: Query Processing and Abstract Plans  135



Enabling parallelism 
prod-consumer overlap factor
prod-consumer overlap factor affects how much pipelined parallelism can be 
created in a query plan. The default value is 20%, which means that if two 
operators in a parent-child relationship are run by separate worker processes, 
there is a 20% overlap. The remaining 80% of the operation is sequential. This 
affects the way in which Adaptive Server costs two plan fragments. Consider 
the example of a scan operator under a grouping operation. In such a case, if 
the scan operator takes N1 seconds and grouping operations take N2 seconds, 
the response time of the two operators is:

0.2 * max (N1, N2) + 0.8 * (N1 + N2)

In setting this parameter, consider the number of online engines on which 
Adaptive Server is running and the complexity of the queries to be run. As a 
general rule, use thread resources to scan on multiple partitions first. Then, if 
there are unused thread resources, use them to speed up vertical pipelined 
parallelism. Do not exceed a value of 50. 

min pages for parallel scan
max pages for parallel scan controls the tables and indexes that can be accessed 
in parallel. If the number of pages in a table is below this value, the table is 
accessed serially. The default value is 200 pages; page size is not relevant. 
Although the tables and indexes of the table are accessed serially, Adaptive 
Server tries to repartition the data, if that is appropriate, and to use parallelism 
above the scans, if that is appropriate.

max query parallel degree
max query parallel degree defines the number of worker processes to use for a 
given query. This parameter is relevant only if you do not want to enable 
parallelism globally. You must configure the number of worker processes to a 
value greater than zero, but max query parallel degree must be set to 1. 

When max query parallel degree is set to a value greater than 1, queries are not 
compiled to use parallelism. Instead, you can specify parallel hints, using 
abstract plans to compile one or more queries using parallelism. 

Use use parallel N to define how much parallelism is to be used for a given 
query. Alternatively, use create plan to specify the query and the number of 
worker processes to use for it.
136   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
Controlling parallelism at the session level
The set options let you restrict the degree of parallelism on a session basis, in 
stored procedures, or in triggers. These options are useful for tuning 
experiments with parallel queries and can also be used to restrict noncritical 
queries to run in serial, so that worker processes remain available for other 
tasks.

Table 5-1: Session-level parallelism control parameters

If you specify a value that is too large for any of the set options, the value of 
the corresponding configuration parameter is used, and a message reports the 
value that is in effect. While set parallel_degree, set scan_parallel_degree, set 
repartition_degree, or set resource_granularity is in effect during a session, the 
plans for any stored procedures that you execute are not placed in the procedure 
cache. Procedures executed with these set options in effect may produce less 
than optimal plans.

set command examples
This example restricts all queries started in the current session to 5 worker 
processes:

set parallel_degree 5

While this command is in effect, any query on a table with more than 5 
partitions cannot use a partition-based scan. 

Parameter Function

parallel_degree Sets the maximum number of worker processes for a query 
in a session, stored procedure, or trigger. Overrides the max 
parallel degree configuration parameter, but must be less 
than or equal to the value of max parallel degree.

scan_parallel_degree Sets the maximum number of worker processes for a 
hash-based scan during a specific session, stored 
procedure, or trigger. Overrides the max scan parallel 
degree configuration parameter and must be less than or 
equal to the value of max scan parallel degree.

resource_granularity Overrides the global value max resource granularity and 
sets it to a session-specific value, which influences whether 
Adaptive Server uses memory-intensive operations.

repartition_degree Sets the value of max repartition degree for a session. This 
is the maximum degree to which any intermediate data 
stream is be repartitioned for semantic purposes.
Performance and Tuning Series: Query Processing and Abstract Plans  137



Controlling query parallelism 
To remove the session limit, use:

set parallel_degree 0

or:

set scan_parallel_degree 0

To run subsequent queries in serial mode, use:

set parallel_degree 1

or:

set scan_parallel_degree 1

To set resource granularity to 25% of the total resources available in the 
system, use:

set resource_granularity 25

The same is true for repartition degree as well; you can set it to a value of 5. It 
cannot, however, exceed the value of max parallel degree.

set repartition_degree 5

Controlling query parallelism
The parallel extension to the from clause of a select command allows users to 
suggest the number of worker processes used in a select statement. The degree 
of parallelism that you specify cannot be more than the value set with 
sp_configure or the session limit controlled by a set command. If you specify a 
higher value, the specification is ignored, and the optimizer uses the set or 
sp_configure limit.

The syntax for the select statement is:

select ...

from tablename [( [index index_name] 
[parallel [degree_of_parallelism | 1 ]] 
[prefetch size] [lru|mru] ) ] , 
tablename [( [index index_name] 
[parallel [degree_of_parallelism | 1] 
[prefetch size] [lru|mru] ) ] ...
138   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
Query-level parallel clause examples
To specify the degree of parallelism for a single query, include parallel after 
the table name. This example executes in serial:

select * from huge_table (parallel 1)

This example specifies the index to use in the query, and sets the degree of 
parallelism to 2:

select * from huge_table (index ncix parallel 2)

Using parallelism selectively
Not all queries benefit from parallelism. In general, the optimizer determines 
which queries will not benefit from parallelism and attempts to run them 
serially. When the query processor makes errors in such cases, it is usually 
because of skewed statistics or incorrect costing as a result of imperfect 
modeling. Experience will show you whether queries are running better or 
worse, and you can decide to keep parallel on or off. 

If you keep parallel on, and have identified the queries you want to run in serial 
mode, you can attach an abstract plan hint, as follows:

select count(*) from sysobjects 
plan “(use parallel 1)”

The same effect is achieved by creating a query plan:

create plan “select count(*) from sysobjects” 
“use parallel 1”

If, however, you notice that parallelism is resource-intensive or that it does not 
generate query plans that perform well, use it selectively. To enable parallelism 
for selected complex queries:

1 Set the number of worker processes to a number greater than zero, based 
on the guidelines in “number of worker processes” on page 133. For 
example, to configure 10 worker processes, execute:

sp_configure “number of worker processes”, 10

2 Set max query parallel degree to a value greater than 1. As a starting point, 
set it to what you would have used for max parallel degree:

sp_configure “max query parallel degree”, 10
Performance and Tuning Series: Query Processing and Abstract Plans  139



Using parallelism with large numbers of partitions 
3 The preferred way to force a query to use a parallel plan is to use the 
abstract plan syntax:

use parallel N

where N is less than the value of max query parallel degree. 

To write a query that uses a maximum of 5 threads, use:

select count (*), S1.id from sysobjects S1, sysindexes S2 
where S1.id = S2.id 
group by S1.id 
plan 
“(use parallel 5)”

This query tells the optimizer to use 5 worker processes, if it can. the only 
drawback to this approach is that you must alter the actual queries in the 
application. To avoid this, use create plan:

create plan 
“select count(*), S1.id from sysobjects S1, sysindexes S2 
where S1.id = S2.id 
group by S1.id” 
“(use parallel 5)”

To turn the abstract plan load option on globally, enter:

sp_configure “abstract plan load”, 1

See “Creating and Using Abstract Plans” on page 311 for more 
information about using abstract plans.

Using parallelism with large numbers of partitions
The information in this section also applies when partitioning is configured for 
manageability, and when partitions are created on physical or logical devices 
that exhibit little or no parallelism. 

For the purpose of this discussion, you have decided to partition a table using 
range partitioning that represents each week of a year. The issue here is that the 
query optimizer does not know how the underlying disk system will respond to 
a 52-way parallel scan. The optimizer must determine the best way to scan the 
table. If there are enough worker processes configured, the optimizer uses 52 
threads to scan the table, which may well cause serious performance issues and 
be even slower than a serial scan.
140   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
To prevent this, first find out exactly how much parallelism is supported. If you 
know the devices that are used for this table, you can use the following 
command on a UNIX system, where the underlying device is called /dev/xx:

time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &

Assume that time records as x.

Now run two of the same commands concurrently:

time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &
time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &

This time, assume that time is y. In a linear scale-up, x is the same as y, which 
is probably impossible to achieve. The following identity may suffice:

x <= y <= (N*x)/k

Where N is the number of simultaneous sessions started and k is a constant that 
identifies an acceptable improvement level. A good approximation of k might 
be 1.4, which says that parallel scan is allowed as long as it delivers 40% better 
metrics than a serial scan.

Table 5-2: Parallel scan metrics

Table 5-2 shows that the disk subsystem did not perform well after four 
concurrent accesses; the performance numbers went below the acceptable limit 
established by k. In general, read enough data blocks to allow for any skewed 
readings.

Having established that 4 threads is optimal, provide this hint by binding it to 
the object using sp_chgattribute in this way:

sp_chgattribute <tablename>, “plldegree”, 4

This tells the query optimizer to use a maximum of four threads. It may choose 
fewer than four threads if it does not find enough resources. The same 
mechanism can be applied to an index. For example, if an index called auth_ind 
exists on authors and you want to use two threads to access it, use:

sp_chgattribute “authors.auth_ind”, “plldegree”, 4

You must run sp_chgatttribute from the current database.

Number of threads
Performanc
e metrics Acceptable for k=1.4

1 200s

2 245s 245 <= (200*2)/1.4; i.e. 245<=285.71

4 560s 560 <= (200*4)/1.4; i.e. 560<=571.42

5 725s 725 <= (200*5)/1.4; i.e. 725<=714.28
Performance and Tuning Series: Query Processing and Abstract Plans  141



When parallel query results differ 
When parallel query results differ
When a query does not include scalar aggregates or require a final sorting step, 
a parallel query might return results in a different order from the same query 
run in serial, and subsequent executions of the same query in parallel might 
return results in different orders. The relative speed of the different worker 
processes leads to differences in result-set ordering. Each parallel scan behaves 
differently, due to pages already in cache, lock contention, and so forth. Parallel 
queries always return the same set of results, just not in the same order. 

Note  If you need a dependable ordering of results, use order by, or run the 
query in serial mode.

In addition, due to the pacing effects of multiple worker processes reading data 
pages, two types of queries accessing the same data may return different results 
when an aggregate or a final sort is not done. They are:

• Queries that use set rowcount

• Queries that select a column into a local variable without sufficiently 
restrictive query clauses

Queries that use set rowcount
The set rowcount option stops processing from continuing after a certain 
number of rows are returned to the client. With serial processing, the results are 
consistent in repeated executions as long as the query plans are the same. In 
serial mode, given the same query plan, the same rows are returned in the same 
order for a given rowcount value, because a single process reads the data pages 
in the same order every time. With parallel queries, the order of the results and 
the set of rows returned can differ, because worker processes may access pages 
sooner or later than other processes. To get consistent results, either use a 
clause that performs a final sort step, or run the query in serial.

Queries that set local variables
This query sets the value of a local variable in a select statement:

select @tid = title_id from titles 
where type = "business"
142   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
The where clause matches multiple rows in the titles table, so the local variable 
is always set to the value from the last matching row returned by the query. The 
value is always the same in serial processing, but for parallel query processing, 
the results depend on which worker process finishes last. To achieve a 
consistent result, use a clause that performs a final sort step, execute the query 
in serial mode, or add clauses so that the query arguments select only single 
rows.

Understanding parallel query plans
The key to understanding parallel query processing in Adaptive Server is to 
understand the basic building blocks in a parallel query plan.

Note  See Chapter 2, “Using showplan,” which explains how to display a query 
plan in a text-based format for each SQL statement in a batch or stored 
procedure. 

A compiled query plan contains a tree of execution operators that closely 
resembles the relational semantics of the query. Each query operator 
implements a relational operation using a specific algorithm. For example, a 
query operator called the nested-loop join implements the relational join 
operation. In Adaptive Server, the primary operator for parallelism is the 
exchange operator, which is a control operator that does not implement any 
relational operation. An exchange operator is to create new worker processes 
that can handle a fragment of the data. During optimization, Adaptive Server 
strategically places the exchange operator to create operator tree fragments that 
can run in parallel. All operators found below the exchange operator (down to 
the next exchange operator) are executed by worker threads that clone the 
fragment of the operator tree to produce data in parallel. The exchange operator 
can then redistribute this data to the parent operator above it in the query plan. 
The exchange operator handles the pipelining and rerouting of data.

In the following sections, the word “degree” is used in two different contexts. 
When “degree N” of a table or index is referred to, it references the number of 
partitions contained in a table or index. When the “degree of an operation” or 
“the degree of a configuration parameter” is referred to, it references the 
number of partitions generated in the intermediate data stream.
Performance and Tuning Series: Query Processing and Abstract Plans  143



Understanding parallel query plans 
The following example shows how operators in the query processor work in 
serial with the following query run in the pubs2 database. The table titles is 
hash-partitioned three ways on the column pub_id.

select * from titles 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
1 operator(s) under root 
 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
    |SCAN Operator 
    |  FROM TABLE 
    |  titles 
    |  Table Scan. 
    |  Forward Scan. 
    |  Positioning at start of table. 
    |  Using I/O Size 2 Kbytes for data pages. 
    |  With LRU Buffer Replacement Strategy for data 
       pages.

As this example illustrates, the titles table is being scanned by the scan 
operator, the details of which appear in the showplan output. The emit operator 
reads the data from the scan operator and sends it to the client application. A 
given query can create an arbitrarily complex tree of such operators.

When parallelism turned on, Adaptive Server can perform a simple scan in 
parallel using the exchange operator above the scan operator. exchange 
produces three worker processes (based on the three partitions), each of which 
scans the three disjointed parts of the table and sends the output to the 
consumer process. The emit operator at the top of the tree does not know that 
the scans are done in parallel. 

Example A:

select * from titles
Executed in parallel by coordinating process and 3 worker processes. 
 
4 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

144   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
    |EXCHANGE Operator (Merged) 
    |Executed in parallel by 3 Producer and 1 Consumer processes. 
 
    | 
    |   |EXCHANGE:EMIT Operator 
    |   | 
    |   |   |RESTRICT Operator 
    |   |   | 
    |   |   |   |SCAN Operator 
    |   |   |   |  FROM TABLE 
    |   |   |   |  titles 
    |   |   |   |  Table Scan. 
    |   |   |   |  Forward Scan. 
    |   |   |   |  Positioning at start of table. 
    |   |   |   |  Executed in parallel with a 3-way partition scan. 
    |   |   |   |  Using I/O Size 2 Kbytes for data pages. 
    |   |   |   |  With LRU Buffer Replacement Strategy for data pages.

The operator called EXCHANGE: EMIT is placed under an EXCHANGE operator 
to funnel data. See “EXCHANGE operator” on page 145.

Adaptive Server parallel query execution model 
One of the key components of the parallel query execution model is the 
EXCHANGE operator. You can see it in the showplan output of a query.

EXCHANGE operator
The EXCHANGE operator marks the boundary between a producer and a 
consumer operator (the operators below the EXCHANGE operator produce data 
and those above it consume data). Example A, which showed parallel scan of 
the titles table (select * from titles), the EXCHANGE: EMIT and the SCAN 
operator produce data. This is shown briefly.

select * from titles 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
    |EXCHANGE Operator (Merged) 
Performance and Tuning Series: Query Processing and Abstract Plans  145



Adaptive Server parallel query execution model 
    |Executed in parallel by 3 Producer and 1 Consumer 
           processes. 
    | 
    |    |EXCHANGE:EMIT Operator 
    |    | 
    |    |    |RESTRICT Operator 
    |    |    | 
    |    |    |    |SCAN Operator 
    |    |    |    |  FROM TABLE 
    |    |    |    |  titles 
    |    |    |    |  Table Scan.

In this example, one consumer process reads data from a pipe (which is used 
as a medium to transfer data across process boundaries) and passes the data to 
the emit operator, which in turn routes the result to the client. The exchange 
operator also spawns worker processes, which are called producer threads. The 
exchange:emit operator writes the data into a pipe managed by the exchange 
operator.

Figure 5-1: Binding of thread to plan fragments in query plan
146   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
Figure 5-1 shows the process boundary between a producer and a consumer 
process. There are two plan fragments in this query plan. The plan fragment 
with the scan and the exchange:emit operators are cloned three ways and then 
a three-to-one exchange operator writes it into a pipe. The emit operator and the 
exchange operator are run by a single process, which means there is a single 
clone of that plan fragment.

Pipe management

The four types of pipes managed by the exchange operator are distinguished by 
how they split and merge data streams. You can determine which type of pipe 
is being managed by the exchange operator by looking at its description in the 
showplan output, where the number of producers and consumers are shown. 
The four pipe types are described below.

Many-to-one In this case, the exchange operator spawns multiple producer threads and has 
one consumer task that reads the data from a pipe, to which multiple producer 
threads write. The exchange operator in the previous example implements a 
many-to-one exchange. A many-to-one exchange operator can be 
order-preserving and this technique is employed particularly when doing a 
parallel sort for an order by clause and the resultant data stream merged to 
generate the final ordering. The showplan output shows more than one 
producer process and one consumer process. 

|EXCHANGE Operator (Merged) 
        |Executed in parallel by 3 Producer and 1 
         Consumer processes

One-to-many In this case, there is one producer and multiple consumer threads. The producer 
thread writes data to multiple pipes according to a partitioning scheme devised 
at query optimization, and then routes data to each of these pipes. Each 
consumer thread reads data from one of the assigned pipes. This kind of data 
split can preserve the ordering of the data. The showplan output shows one 
producer process and more than one consumer processes:

|EXCHANGE Operator (Repartitioned) 
      |Executed in parallel by 1 Producer 
        and 4 Consumer processes

Many-to-many Many-to-many means there are multiple producers and multiple consumers. 
Each producer writes to multiple pipes, and each pipe has multiple consumers. 
Each stream is written to a pipe. Each consumer thread reads data from one of 
the assigned pipes.

 |EXCHANGE Operator (Repartitioned) 
    |Executed in parallel by 3 Producer and 4 
Performance and Tuning Series: Query Processing and Abstract Plans  147



Adaptive Server parallel query execution model 
      Consumer processes

Replicated exchange 
operators

In this case, the producer thread writes all of its data to each pipe that the 
exchange operator configures. The producer thread makes a number of copies 
of the source data (the number is specified by the query optimizer) equal to the 
number of pipes in the exchange operator. Each consumer thread reads data 
from one of the assigned pipes. The showplan output shows this as follows:

|EXCHANGE (Replicated) 
    |Executed in parallel by 3 Producers and 4 
     Consumer processes

Worker process model

A parallel query plan is composed of different operators, at least one of which 
is an exchange operator. At runtime, a parallel query plan is bound to a set of 
server processes that, together, execute the query plan in a parallel fashion.

The server process associated with the user connection is called the alpha 
process because it is the source process from which parallel execution is 
initiated. In particular, each worker process involved in the execution of the 
parallel query plan is spawned by the alpha process.

In addition to spawning worker processes, the alpha process initializes all the 
worker processes involved in the execution of the plan, and creates and 
destroys the pipes necessary for worker processes to exchange data. The alpha 
process is, in effect, the global coordinator for the execution of a parallel query 
plan.

At runtime, Adaptive Server associates each exchange operator in the plan with 
a set of worker processes. The worker processes execute the query plan 
fragment located immediately below the exchange operator.

For the query in Example A, represented in “EXCHANGE operator” on page 
145, the exchange operator is associated with three worker processes. Each 
worker process executes the plan fragment made of the exchange:emit operator 
and of the scan operator.
148   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
Figure 5-2: Query execution plan with one exchange operator

Each exchange operator is also associated with a server process named the beta 
process, which can be either the alpha process or a worker process. The beta 
process associated with a given exchange operator is the local coordinator for 
the execution of the plan fragment below the exchange operator. In the example 
above, the beta process is the same process as the alpha process, because the 
plan to be executed has only one level of exchange operators.

Next, use this query to illustrate what happens when the query plan contains 
multiple exchange operators:

select count(*),pub_id, pub_date  
from titles  
group by pub_id, pub_date

titles (3 partitions)
Performance and Tuning Series: Query Processing and Abstract Plans  149



Adaptive Server parallel query execution model 
Figure 5-3: Query execution plan with two exchange operators

There are two levels of exchange operators marked as EXCHANGE-1 and 
EXCHANGE-2 in Figure 5-3. Worker process T4 is the beta process 
associated with the exchange operator EXCHANGE-2.

The beta process locally orchestrate execution of the plan fragment below the 
exchange operator; it dispatches query plan information that is needed by the 
worker processes, and synchronizes the execution of the plan fragment.

A process involved in the execution of a parallel query plan that is neither the 
alpha process nor a beta process is called a gamma process.

A given parallel query plan is bound at runtime to a unique alpha process, to 
one or more beta processes, and to at least one gamma process. Any Adaptive 
Server parallel plan needs at least two different processes (alpha and gamma) 
to be executed in parallel.

To find out the mapping between exchange operators and worker processes, as 
well as to figure out which process is the alpha process, and which processes 
are the beta processes, use dbcc traceon(516):
150   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
=======Thread to XCHg Map BEGINS======= 
ALFA thread spid: 17 
XCHG = 2                        <- refers to Xchg-2 
Comp Count = 2 Exec Count = 2 
     Range Adjustable 
   Consumer XCHG = 5 
   Parent thread spid: 34       <- refers to T4 
     Child thread 0: spid:37    <- refers to T1 
     Child thread 1: spid: 38   <- refers to T2 
     Child thread 2: spid: 36   <- refers to T3 
   Scheduling level: 0 
XCHG = 5                        <- refers to Xchg-1 
   Comp Count = 3 Exec Count = 3 
Bounds Adjustable 
   Consumer XCHG -1 
   Parent thread spid: 17       <- refers to Alpha 
     Child thread 0: spid: 34   <- refers to T4 
     Child thread 1: spid: 35   <- refers to T5 
 
Scheduling level: 0 
=======Thread to XCHg Map BEGINS=======

Using parallelism in SQL operations
Partition tables or indexes in any way that best reflects the needs of your 
application. Sybase recommends that you put partitions on segments that use 
different physical disks so that enough I/O parallelism is present. For example, 
you can have a well-defined partition based on hashing of certain columns of a 
table, or certain ranges, or a list of values ascribed to a partition. Hash, range, 
and list partitions belong to the category of “semantic-based” partitioning—
given a row, you can determine to which partition the row belongs.

Round-robin partitioning has no semantics associated with its partitioning. A 
row can occur in any of its partitions. The choice of columns to partition and 
the type of partitioning used can have a significant impact on the performance 
of the application. Think of partitions as a low-cardinality index; the columns 
on which partitioning must be defined are based on the queries in the 
application.
Performance and Tuning Series: Query Processing and Abstract Plans  151



Adaptive Server parallel query execution model 
The query processing engine and its operators take advantage of the Adaptive 
Server partitioning strategy. Partitioning defined on table and indexes is called 
static partitioning. In addition, Adaptive Server dynamically repartitions data 
to match the needs for relational operations like joins, vector aggregation, 
distincts, unions, and so on. Repartitioning is done in streaming mode and no 
storage is associated with it. Repartitioning is not the same as issuing the alter 
table repartition command, where static repartitioning is done. 

A query plan consists of query execution operators. In Adaptive Server, 
operators belong to one of two categories:

• Attribute-insensitive operators include scans, union alls, and scalar 
aggregation. Underlying partitions do not affect attribute-insensitive 
operators.

• Attribute-sensitive operators (for example, join, distinct, union, and vector 
aggregation) allow for an operation on a given amount of data to be broken 
into a smaller number of operations on smaller fragments of the data using 
semantics-based partitioning. Afterwards, a simple union all provides the 
final result set. The union all is implemented using a many-to-one 
exchange operator.

The following sections discuss these two classes of operators. The examples in 
these sections use the following table with enough data to trigger parallel 
processing.

create table RA2(a1 int, a2 int, a3 int)

Parallelism of attribute-insensitive operation 

This section discusses the attribute-insensitive operations, which include scans 
(serial and parallel), scalar aggregations, and union alls. 

Table scan

For horizontal parallelism, either at least one of the tables in the query must be 
partitioned, or the configuration parameter max repartition degree must be 
greater than 1. If max repartition degree is set to 1, Adaptive Server uses the 
number of online engines as a hint. When Adaptive Server runs horizontal 
parallelism, it runs multiple versions of one or more operators in parallel. Each 
clone of an operator works on its partition, which can be statically created or 
dynamically built at execution. 

Serial table scan The following example below shows the serial execution of a query where the 
table RA2 is scanned using the table scan operator. The result of this operation 
is routed to the emit operator, which forwards the result to the client. 
152   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
select * from RA2 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
1 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

  |SCAN Operator 
  |  FROM TABLE 
  |  RA2 
  |  Table Scan. 
  |  Forward Scan. 
  |  Positioning at start of table. 
  |  Using I/O Size 2 Kbytes for data pages. 
  |  With LRU Buffer Replacement Strategy for data 
     pages.

In versions earlier than 15.0, Adaptive Server did not try to scan an 
unpartitioned table in parallel using a hash-based scan unless a force option was 
used. Figure 5-4 shows a scan of an allpages-locked table executed in serial 
mode by a single task T1. The task follows the page chain of the table to read 
each page, while doing physical I/O if the needed pages are not in the cache.

Figure 5-4: Serial task scans data pages

Parallel table scan You can force a parallel table scan of an unpartitioned table using the Adaptive 
Server force option. In this case, Adaptive Server uses a hash-based scan.

 7T1

Single page chain
Performance and Tuning Series: Query Processing and Abstract Plans  153



Adaptive Server parallel query execution model 
Hash-based table 
scans

Figure 5-5 shows how three worker processes divide the work of accessing 
data pages from an allpages-locked table during a hash-based table scan. Each 
worker process performs a logical I/O on every page, but each process 
examines rows on one-third of the pages, as indicated by differently shaded 
lines. Hash-based table scans are used only if the user forces a parallel degree. 
See “Partition skew” on page 195.

With one engine, the query still benefits from parallel access because one work 
process can execute while others wait for I/O. If there are multiple engines, 
some of the worker processes can be running simultaneously.

Figure 5-5: Multiple worker processes scans unpartitioned table

Hash-based scans increase the logical I/O for the scan, since each worker 
process must access each page to hash on the page ID. For a data-only-locked 
table, hash-based scans hash either on the extent ID or the allocation page ID, 
so that only a single worker process scans a page and logical I/O does not 
increase.

Partitioned-based 
table scans

If you partition this table as follows: 

alter table RA2 partition by range(a1, a2) 
(p1 values <= (500,100), p2 values <= (1000, 2000)) 

With the following query, Adaptive Server may choose a parallel scan of the 
table. Parallel scan is chosen only if there are sufficient pages to scan and the 
partition sizes are similar enough that the query will benefit from parallelism.

select * from RA2  
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 

Multiple worker processes

WP2
WP3

Single Page ChainWP1
154   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
worker processes. 
 
3 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

 |EXCHANGE Operator (Merged) 
 |Executed in parallel by 2 Producer and 1 Consumer 

         processes. 
 

 | 
 |   |EXCHANGE:EMIT Operator 
 |   | 
 |   |   |SCAN Operator 
 |   |   |  FROM TABLE 
 |   |   |  RA2 
 |   |   |  Table Scan. 
 |   |   |  Forward Scan. 
 |   |   | Positioning at start of table. 
 |   |   | Executed in parallel with a 2-way 

                partition scan. 
 |   |   | Using I/O Size 2 Kbytes for data pages. 
 |   |   |  With LRU Buffer Replacement Strategy  

                for data pages.

After partitioning the table, showplan output includes two additional operators, 
exchange and exchange:emit. This query includes two worker processes, each 
of which scans a given partition and passes the data to the exchange:emit 
operator, as illustrated in Figure 5-1 on page 146.

Figure 5-6 shows how a query scans a table that has three partitions on three 
physical disks. With a single engine, this query can benefit from parallel 
processing because one worker process can execute while others sleep, waiting 
for I/O or waiting for locks held by other processes to be released. If multiple 
engines are available, the worker processes can run simultaneously on multiple 
engines. Such a configuration can perform extremely well.
Performance and Tuning Series: Query Processing and Abstract Plans  155



Adaptive Server parallel query execution model 
Figure 5-6: Multiple worker processes access multiple partitions

Index scan

Indexes, like tables, can be partitioned or unpartitioned. Local indexes inherit 
the partitioning strategy of the table. Each local index partition scans data in 
only one partition. Global indexes have a different partitioning strategy from 
the base table; they reference one or more partitions.

Global nonclustered 
indexes

Adaptive Server supports global indexes that are nonclustered and 
unpartitioned for all table partitioning strategies. Global indexes are supported 
for compatibility with Adaptive Server versions earlier than 15.0; they are also 
useful in OLTP environments. The index and the data partitions can reside on 
the same or different storage areas.

Noncovered scan of 
global nonclustered 
index using hashing

To create an unpartitioned global nonclustered index on table RA2, which is 
partitioned by range, enter:

create index RA2_NC1 on RA2(a3)

This query has a predicate that uses the index key of a3:

select * from RA2 where a3 > 300
QUERY PLAN FOR STATEMENT 1 (at line 1). 
. . . . . . . . . . . . . .  
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

 |EXCHANGE Operator (Merged) 
156   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
 |Executed in parallel by 3 Producer and 1 
         Consumer processes. 

 | 
 |   |EXCHANGE:EMIT Operator 
 |   | 
 |   |   |SCAN Operator 
 |   |   | FROM TABLE 
 |   |   | RA2 
 |   |   | Index : RA2_NC1 
 |   |   | Forward Scan. 
 |   |   | Positioning by key. 
 |   |   | Keys are: 
 |   |   | a3 ASC 
 |   |   | Executed in parallel with a 3-way 

                   hash scan. 
 |   |   | Using I/O Size 2 Kbytes for index 

                   leaf pages. 
 |   |   | With LRU Buffer Replacement Strategy 

                  for index leaf pages. 
 |   |   | Using I/O Size 2 Kbytes for data 

                  pages. 
 |   |   | With LRU Buffer Replacement Strategy 

                  for data pages.

Adaptive Server uses an index scan using the index RA2_NC1 using three 
producer threads spawned by the exchange operator. Each producer thread 
scans all qualifying leaf pages and uses a hashing algorithm on the row ID of 
the qualifying data and accesses the data pages to which it belongs. The 
parallelism in this case is exhibited at the data page level. 
Performance and Tuning Series: Query Processing and Abstract Plans  157



Adaptive Server parallel query execution model 
Figure 5-7: Hash-based parallel scan of global nonclustered index

Legend for Figure 5-7:
158   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
If the query does not need to access the data page, then it does not execute in 
parallel. However, the partitioning columns must be added to the query; 
therefore, it becomes a noncovered scan: 

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes.
3 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

|EXCHANGE Operator (Merged) 
|Executed in parallel by 2 Producer and 1 Consumer 

processes. 
 

| 
|   |EXCHANGE:EMIT Operator 
|   | 
|   |   |SCAN Operator 
|   |   |  FROM TABLE 
|   |   |  RA2 
|   |   |  Index : RA2_NC1 
|   |   |  Forward Scan. 
|   |   |  Positioning by key. 
|   |   |  Keys are: 
|   |   |    a3 ASC 
|   |   |  Executed in parallel with a 2-way hash 

               scan. 
|   |   |  Using I/O Size 2 Kbytes for index leaf 

               pages. 
|   |   |  With LRU Buffer Replacement Strategy for 

              index leaf pages. 
|   |   |  Using I/O Size 2 Kbytes for data pages. 
|   |   |  With LRU Buffer Replacement Strategy for 

              data pages.

Covered scan using 
nonclustered global 
index

If there is a nonclustered index that includes the partitioning column, there is 
no reason for Adaptive Server to access the data pages and the query executes 
in serial:

create index RA2_NC2 on RA2(a3,a1,a2) 
 
select a3 from RA2 where a3 > 300
Performance and Tuning Series: Query Processing and Abstract Plans  159



Adaptive Server parallel query execution model 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
1 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

 | SCAN Operator 
 | FROM TABLE
 | RA2 
 | Index : RA2_NC2 
 |  Forward Scan. 
 |  Positioning by key. 
 |  Index contains all needed columns. Base table 

        will not be read. 
 |  Keys are: 
 |    a3 ASC 
 |  Using I/O Size 2 Kbytes for index leaf pages. 
 |  With LRU Buffer Replacement Strategy for index 

       leaf pages.

Clustered index scans With a clustered index on an all-pages-locked table, a hash-based scan strategy 
is not permitted. The only allowable strategy is a partitioned scan. Adaptive 
Server uses a partitioned scan if that is necessary. For a data-only-locked table, 
a clustered index is usually a placement index, which behaves as a nonclustered 
index. All discussions pertaining to a nonclustered index on an all-pages-
locked table apply to a clustered index on a data-only-locked table as well.

Local indexes Adaptive Server supports clustered and nonclustered local indexes.

Clustered indexes on 
partitioned tables

Local clustered indexes allow multiple threads to scan each data partition in 
parallel, which can greatly improve performance. To take advantage of this 
parallelism, use a partitioned clustered index. On a local index, data is sorted 
separately within each partition. The information in each data partition 
conforms to the boundaries established when the partitions were created, which 
makes it possible to enforce unique index keys across the entire table.

Unique, clustered local indexes have the following restrictions:

• Index columns must include all partition columns.

• Partition columns must have the same order as the index definition's 
partition key.

• Unique, clustered local indexes cannot be included on a round-robin table 
with more than one partition.
160   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
Nonclustered indexes 
on partitioned tables

Adaptive Server supports local, nonclustered indexes on partitioned tables. 

There is, however, a slight difference when using local indexes. When doing a 
covered index scan of a local nonclustered index, Adaptive Server can still use 
a parallel scan because the index pages are partitioned as well.

To illustrate the difference, this example creates a local nonclustered index:

create index RA2_NC2L on RA2(a3,a1,a2) local index 
 
select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
3 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

 |EXCHANGE Operator (Merged) 
 |Executed in parallel by 2 Producer and 1 Consumer 

processes. 
 

 | 
 |   |EXCHANGE:EMIT Operator 
 |   | 
 |   |   |SCAN Operator 
 |   |   |  FROM TABLE 
 |   |   |  RA2 
 |   |   |  Index : RA2_NC2L 
 |   |   |  Forward Scan. 
 |   |   |  Positioning by key. 
 |   |   |  Index contains all needed columns. Base 

                   table will not be read. 
 |   |   |  Keys are: 
 |   |   |    a3 ASC 
 |   |   |  Executed in parallel with a 2-way 

                partition scan. 
 |   |   |  Using I/O Size 2 Kbytes for index leaf 

                   pages. 
 |   |   |  With LRU Buffer Replacement Strategy 

                   for index leaf pages.
Performance and Tuning Series: Query Processing and Abstract Plans  161



Adaptive Server parallel query execution model 
Sometimes, Adaptive Server chooses a hash-based scan on a local index. This 
occurs when a different parallel degree is needed or when the data in the 
partition is skewed such that a hash-based parallel scan is preferred.

Scalar aggregation

The Transact-SQL scalar aggregation operation can be done in serial or in 
parallel. 

Two-phased scalar aggregation

In a parallel scalar aggregation, the aggregation operation is performed in two 
phases, using two scalar aggregate operators. In the first phase, the lower scalar 
aggregation operator performs aggregation on the data stream. The result of 
scalar aggregation from the first phase is merged using a many-to-one 
exchange operator, and this stream is aggregated a second time. 

In case of a count(*) aggregation, the second phase aggregation performs a 
scalar sum. This is highlighted in the showplan output of the next example. 

select count(*) from RA2 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
5 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
   |SCALAR AGGREGATE Operator 
   |  Evaluate Ungrouped SUM OR AVERAGE AGGREGATE. 
   | 
   |   |EXCHANGE Operator (Merged) 
   |   |Executed in parallel by 2 Producer and 1  
           Consumer processes. 
    
   |   | 
   |   |   |EXCHANGE:EMIT Operator 
   |   |   | 
   |   |   |   |SCALAR AGGREGATE Operator 
   |   |   |   |  Evaluate Ungrouped COUNT AGGREGATE. 
   |   |   |   | 
   |   |   |   |   |SCAN Operator 
162   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
   |   |   |   |   |  FROM TABLE 
   |   |   |   |   |  RA2 
   |   |   |   |   |  Table Scan. 
   |   |   |   |   |  Forward Scan. 
   |   |   |   |   |  Positioning at start of table. 
   |   |   |   |   |  Executed in parallel with a 
                         2-way partition scan. 
   |   |   |   |   |  Using I/O Size 2 Kbytes for data 
                      pages. 
   |   |   |   |   |  With LRU Buffer Replacement 
                          Strategy for data pages.

Serial aggregation

Adaptive Server may also choose to do the aggregation in serial. If the amount 
of data to be aggregated is not enough to guarantee a performance advantage, 
a serial aggregation may be the preferred technique. In case of a serial 
aggregation, the result of the scan is merged using a many-to-one exchange 
operator. This is shown in the example below, where a selective predicate has 
been added to minimize the amount of data flowing into the scalar aggregate 
operator. In such a case, it probably does not make sense to do the aggregation 
in parallel.

select count(*) from RA2 where a2 = 10

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
4 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
    |SCALAR AGGREGATE Operator 
    |  Evaluate Ungrouped COUNT AGGREGATE. 
    | 
    |   |EXCHANGE Operator (Merged) 
    |   |Executed in parallel by 2 Producer 
            and 1 Consumer processes. 
     
    |   | 
    |   |   |EXCHANGE:EMIT Operator 
    |   |   | 
    |   |   |   |SCAN Operator 
    |   |   |   |  FROM TABLE 
Performance and Tuning Series: Query Processing and Abstract Plans  163



Adaptive Server parallel query execution model 
    |   |   |   |  RA2 
    |   |   |   |  Table Scan. 
    |   |   |   |  Forward Scan. 
    |   |   |   |  Positioning at start of table. 
    |   |   |   |  Executed in parallel with a 2-way 
                      partition scan. 
    |   |   |   |  Using I/O Size 2 Kbytes for data 
                      pages. 
    |   |   |   |  With LRU Buffer Replacement 
                      Strategy for data pages.

union all

union all operators are implemented using a physical operator by the same 
name. union all is a fairly simple operation and should be used in parallel only 
when the query is moving a lot of data. 

Parallel union all

The only condition to generating a parallel union all is that each of its operands 
must be of the same degree, irrespective of the type of partitioning they have. 
The following example (using table HA2) shows a union all operator being 
processed in parallel. The position of the exchange operator above the union all 
operator signifies that it is being processed by multiple threads:

create table HA2(a1 int, a2 int, a3 int) 
partition by hash(a1, a2) (p1, p2) 
 
select * from RA2 
union all 
select * from HA2 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
    |EXCHANGE Operator (Merged) 
    |Executed in parallel by 2 Producer and 1 Consumer 
     processes. 
  
    | 
    |   |EXCHANGE:EMIT Operator 
164   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
    |   | 
    |   |   |UNION ALL Operator has 2 children. 
    |   |   | 
    |   |   |   |SCAN Operator 
    |   |   |   |  FROM TABLE 
    |   |   |   |  RA2 
    |   |   |   |  Table Scan. 
. . . . . . . . . . . . . . . . . . . 
    |   |   |   |  Executed in parallel with a 2-way 
                   partition scan. 
. . . . . . . . . . . . . . . . . . . 
    |   |   | 
    |   |   |   |SCAN Operator 
    |   |   |   |  FROM TABLE 
    |   |   |   |  HA2 
    |   |   |   |  Table Scan. 
    . . . . . . . . . . . . . . . . . . . 
    |   |   |   |  Executed in parallel with a 2-way 
                   partition scan.

Serial union all

In the next example, the data from each side of the union operator is restricted 
by selective predicates on either side. The amount of data being sent through 
the union all operator is small enough that Adaptive Server decides not to run 
the unions in parallel. Instead, each scan of the tables RA2 and HA2 are 
organized by putting 2-to-1 exchange operators on each side of the union. The 
resultant operands are then processed in parallel by the union all operator:

select * from RA2 
where a2 > 2400 
union all 
select * from HA2 
where a3 in (10,20)
Executed in parallel by coordinating process and 4 
worker processes. 
 
7 operator(s) under root 
 
The type of query is SELECT. 

 
ROOT:EMIT Operator 
 

 |UNION ALL Operator has 2 children. 
 | 
 |   |EXCHANGE Operator (Merged) 
Performance and Tuning Series: Query Processing and Abstract Plans  165



Adaptive Server parallel query execution model 
 |   |Executed in parallel by 2 Producer and 1 
              Consumer processes. 
 

 |   | 
 |   |   |EXCHANGE:EMIT Operator 
 |   |   | 
 |   |   |   |SCAN Operator 
 |   |   |   |  FROM TABLE 
 |   |   |   |  RA2 
 |   |   |   |  Table Scan. 
 |   |   |   |  Executed in parallel with a 2-way 

                      partition scan. 
 | 
 |   |EXCHANGE Operator (Merged) 
 |   |Executed in parallel by 2 Producer and 1 

              Consumer processes. 
 

 |   | 
 |   |   |EXCHANGE:EMIT Operator 
 |   |   | 
 |   |   |   |SCAN Operator 
 |   |   |   |  FROM TABLE 
 |   |   |   |  HA2 
 |   |   |   |  Table Scan. 
 |   |   |   |  Executed in parallel with a 2-way 

                      partition scan.

Parallelism of attribute-sensitive operation

Attribute-sensitive operations include joins, vector aggregations, and unions. 

join

If two tables are joined in parallel, Adaptive Server tries to use semantics-based 
partitioning to make the join more efficient, depending on the amount of data 
being joined and the type of partitioning that each of the operands have. If the 
amount of data to be joined is small, but the number of pages to scan for each 
of the tables is quite significant, Adaptive Server serializes the parallel streams 
from each side and the join is done in serial mode. In this case, the query 
optimizer determines that it is suboptimal to run a join operation in parallel. In 
general, one or both of the operands used for the join operators may be any 
intermediate operator, like another join or a grouping operator, but the examples 
used show only scans as operands.
166   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
Tables with same 
useful partitioning

The partitioning of each operand of a join is useful only with respect to the join 
predicate. If two tables have the same partitioning, and the partitioning 
columns are a subset of the join predicate, the tables are said to be 
equipartitioned. For example, if you create another table, RB2, which is 
partitioned similarly to that of RA2, using the following command: 

create table RB2(b1 int, b2 int, b3 int)  
partition by range(b1,b2) 
(p1 values <= (500,100), p2 values <= (1000, 2000)) 

Then join RB2 with RA2; the scans and the join can be done in parallel without 
additional repartitioning. Adaptive Server can join the first partition of RA2 
with the first partition of RB2, then join the second partition of RA2 with the 
second partition of RB2. This is called an equipartitioned join and is possible 
only if the two tables join on columns a1, b1 and a2, b2 as shown below:

select * from RA2, RB2  
where a1 = b1 and a2 = b2 and a3 < 0 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
7 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

 |EXCHANGE Operator (Merged) 
 |Executed in parallel by 2 Producer  

         and 1 Consumer processes. 
 

 | 
 |   |EXCHANGE:EMIT Operator 
 |   | 
 |   |   |NESTED LOOP JOIN Operator  

                 (Join Type: Inner Join) 
 |   |   | 
 |   |   |   |RESTRICT Operator 
 |   |   |   | 
 |   |   |   |   |SCAN Operator 
 |   |   |   |   |  FROM TABLE 
 |   |   |   |   |  RB2 
 |   |   |   |   |  Table Scan. 
 |   |   |   |   |  Forward Scan. 
 |   |   |   |   |  Positioning at start of table. 
Performance and Tuning Series: Query Processing and Abstract Plans  167



Adaptive Server parallel query execution model 
 |   |   |   |   |  Executed in parallel with a  
                          2-way partition scan. 

 |   |   | 
 |   |   |   |RESTRICT Operator 
 |   |   |   | 
 |   |   |   |   |SCAN Operator 
 |   |   |   |   |  FROM TABLE 
 |   |   |   |   |  RA2 
 |   |   |   |   |  Table Scan. 
 |   |   |   |   |  Forward Scan. 
 |   |   |   |   |  Positioning at start of table. 
 |   |   |   |   |  Executed in parallel with a  

                          2-way partition scan.

The exchange operator is shown above the nested-loop join. This implies that 
exchange spawns two producer threads: the first scans the first partition of RA2 
and RB2 and performs the nested-loop join; the second scans the second 
partition of RA2 and RB2 to do the nested-loop join. The two threads merge the 
results using a many-to-one (in this case, two-to-one) exchange operator. 

One of the tables with 
useful partitioning

In this example, the table RB2 is repartitioned to a three-way hash partitioning 
on column b1 using the alter table command. 

alter table RB2 partition by hash(b1) (p1, p2, p3) 

Now, take a slightly modified join query as shown below:

select * from RA2, RB2 where a1 = b1 

The partitioning on table RA2 is not useful because the partitioned columns are 
not a subset of the joining columns (that is, given a value for the joining column 
a1, you cannot specify the partition to which it belongs). However, the 
partitioning on RB2 is helpful because it matches the joining column b1 of RB2. 
In this case, the query optimizer repartitions table RA2 to match the partitioning 
of RB2 by using hash partitioning on column a1 of RA2 (the joining column, 
which is followed by a three-way merge join). The many-to-many (two-to-
three) exchange operator above the scan of RA2 does this dynamic 
repartitioning. The exchange operator above the merge join operator merges the 
result using a many-to-one (three-to-one, in this case) exchange operator. The 
showplan output for this query is shown in the following example:

select * from RA2, RB2 where a1 = b1

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 5 
worker processes. 
 
10 operator(s) under root 
168   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
 
The type of query is SELECT. 
 
ROOT:EMIT Operator
   |EXCHANGE Operator (Merged) 
   |Executed in parallel by 3 Producer and 1 Consumer 
       processes. 
    
   | 
   |   |EXCHANGE:EMIT Operator 
   |   | 
   |   |   |MERGE JOIN Operator (Join Type: Inner  
              Join) 
   |   |   | Using Worktable3 for internal storage. 
   |   |   |  Key Count: 1 
   |   |   |  Key Ordering: ASC 
   |   |   | 
   |   |   |   |SORT Operator 
   |   |   |   |Using Worktable1 for internal storage. 
   |   |   |   | 
   |   |   |   |   |EXCHANGE Operator (Repartitioned) 
   |   |   |   |   |Executed in parallel by 2 Producer 
                    and 3 Consumer processes. 
 
   |   |   |   |   | 
   |   |   |   |   |   |EXCHANGE:EMIT Operator 
   |   |   |   |   |   | 
   |   |   |   |   |   |   |RESTRICT Operator 
   |   |   |   |   |   |   | 
   |   |   |   |   |   |   |   |SCAN Operator 
   |   |   |   |   |   |   |   |  FROM TABLE 
   |   |   |   |   |   |   |   |  RA2 
   |   |   |   |   |   |   |   |  Table Scan. 
   |   |   |   |   |   |   |   |  Forward Scan. 
   |   |   |   |   |   |   |   |  Positioning at start 
                                  of table. 
   |   |   |   |   |   |   |   |  Executed in parallel 
                                  with a 2-way 
                                  partition scan. 
   |   |   | 
   |   |   |   |SORT Operator 
   |   |   |   |Using Worktable2 for internal storage. 
   |   |   |   | 
   |   |   |   |   |SCAN Operator 
   |   |   |   |   |  FROM TABLE 
   |   |   |   |   |  RB2 
Performance and Tuning Series: Query Processing and Abstract Plans  169



Adaptive Server parallel query execution model 
   |   |   |   |   |  Table Scan. 
   |   |   |   |   |  Forward Scan. 
   |   |   |   |   |  Positioning at start of table. 
   |   |   |   |   |  Executed in parallel with a 
                         3-way partition scan.

Both tables with 
useless partitioning

The next example uses a join where the native partitioning of the tables on both 
sides is useless. The partitioning on table RA2 is on columns (a1,a2) and that 
of RB2 is on (b1). The join predicate is on different sets of columns, and the 
partitioning for both tables does not help at all. One option is to dynamically 
repartition both sides of the join. By repartitioning table RA2 using a M-to-N 
(two-to-three) exchange operator, Adaptive Server chooses column a3 of table 
RA2 for repartitioning, as it is involved in the join with table RB2. For identical 
reasons, table RB2 is also repartitioned three ways on column b3. The 
repartitioned operands of the join are equipartitioned with respect to the join 
predicate, which means that the corresponding partitions from each side will 
join. In general, when repartitioning needs to be done on both sides of the join 
operator, Adaptive Server employs a hash-based partitioning scheme.

select * from RA2, RB2 where a3 = b3

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 8 
worker processes. 
 
12 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
    |EXCHANGE Operator (Merged) 
    |Executed in parallel by 3 Producer and 1 Consumer 
         processes. 
     
    | 
    |   |EXCHANGE:EMIT Operator 
    |   | 
    |   |   |MERGE JOIN Operator  
                (Join Type: Inner Join) 
    |   |   | Using Worktable3 for internal storage. 
    |   |   | Key Count: 1 
    |   |   | Key Ordering: ASC 
    |   |   | 
    |   |   |   |SORT Operator 
    |   |   |   |Using Worktable1 for internal  
                    storage. 
170   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
    |   |   |   | 
    |   |   |   |   |EXCHANGE Operator (Repartitioned) 
    |   |   |   |   |Executed in parallel by 2  
                       Producer and 3 Consumer 
                       processes. 
 
    |   |   |   |   | 
    |   |   |   |   |   |EXCHANGE:EMIT Operator 
    |   |   |   |   |   | 
    |   |   |   |   |   |   |RESTRICT Operator 
    |   |   |   |   |   |   | 
    |   |   |   |   |   |   |   |SCAN Operator 
    |   |   |   |   |   |   |   |  FROM TABLE 
    |   |   |   |   |   |   |   |  RA2 
    |   |   |   |   |   |   |   |  Table Scan. 
    |   |   |   |   |   |   |   |  Forward Scan. 
    |   |   |   |   |   |   |   |  Positioning at  
                                     start of table. 
    |   |   |   |   |   |   |   |  Executed in  
                                       parallel with 
                                       a 2-way 
                                       partition scan. 
    |   |   | 
    |   |   |   |SORT Operator 
    |   |   |   |Using Worktable2 for internal  
                     storage. 
    |   |   |   | 
    |   |   |   |   |EXCHANGE Operator (Repartitioned) 
    |   |   |   |   |Executed in parallel by 3  
                       Producer and 3 Consumer 
                       processes. 
 
    |   |   |   |   | 
    |   |   |   |   |   |EXCHANGE:EMIT Operator 
    |   |   |   |   |   | 
    |   |   |   |   |   |   |SCAN Operator 
    |   |   |   |   |   |   |  FROM TABLE 
    |   |   |   |   |   |   |  RB2 
    |   |   |   |   |   |   |  Table Scan. 
    |   |   |   |   |   |   |  Forward Scan. 
    |   |   |   |   |   |   |  Positioning at start  
                                 of table. 
    |   |   |   |   |   |   |  Executed in parallel  
                                  with a 3-way 
                                   partition scan.
Performance and Tuning Series: Query Processing and Abstract Plans  171



Adaptive Server parallel query execution model 
In general, all joins, including nested-loop, merge, and hash joins, behave in a 
similar way. nested-loop joins display one exception, which is that the inner 
side of a nested-loop join cannot be repartitioned. This limitation occurs 
because, in the case of a nested-loop join, a column value for the joining 
predicate is pushed from the outer side to the inner side. 

Replicated join A replicated join is useful when an index nested-loop join needs to be used. 
Consider the case where a large table has a useful index on the joining column, 
but useless partitioning, and joins to a small table that is either partitioned or 
not partitioned. The small table can be replicated N ways to that of the inner 
table, where N is the number of partitions of the large table. Each partition of 
the large table is joined with the small table and, because no exchange operator 
is needed on the inner side of the join, an index nested-loop join is allowed.

create table big_table(b1 int, b2 int, b3 int) 
partition by hash(b3) (p1, p2) 
 
create index big_table_nc1 on big_table(b1) 
 
create table small_table(s1 int, a2 int, s3 int) 
 
select * from small_table, big_table 
where small_table.s1 = big_table.b1

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 3 
worker processes. 
 
7 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
    |EXCHANGE Operator (Merged) 
    |Executed in parallel by 2 Producer and 1  
         Consumer processes. 
 
    | 
    |   |EXCHANGE:EMIT Operator 
    |   | 
    |   |   |NESTED LOOP JOIN Operator (Join Type: 
                Inner Join) 
    |   |   | 
    |   |   |   |EXCHANGE Operator (Replicated) 
    |   |   |   |Executed in parallel by 1 Producer  
                    and 2 Consumer processes. 
172   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
 
    |   |   |   | 
    |   |   |   |   |EXCHANGE:EMIT Operator 
    |   |   |   |   | 
    |   |   |   |   |   |SCAN Operator 
    |   |   |   |   |   |  FROM TABLE 
    |   |   |   |   |   |  small_table 
    |   |   |   |   |   |  Table Scan. 
    |   |   | 
    |   |   |   |SCAN Operator 
    |   |   |   |  FROM TABLE 
    |   |   |   |  big_table 
    |   |   |   |  Index : big_table_nc1 
    |   |   |   |  Forward Scan. 
    |   |   |   |  Positioning by key. 
    |   |   |   |  Keys are: 
    |   |   |   |    b1 ASC 
    |   |   |   |  Executed in parallel with a  
                      2-way hash scan.

Parallel reformatting Parallel reformatting is especially useful when you are working with a 
nested-loop join. Usually, reformatting refers to materializing the inner side of 
a nested join into a worktable, then creating an index on the joining predicate. 
With parallel queries and nested-loop join, reformatting is also helpful when 
there is no useful index on the joining column or nested-loop join is the only 
viable option for a query because of the server/session/query level settings. 
This is an important option for Adaptive Server. The outer side may have 
useful partitioning and, if not, it can be repartitioned to create that useful 
partitioning. But for the inner side of a nested-loop join, any repartitioning 
means that the table must be reformatted into a worktable that uses the new 
partitioning strategy. The inner scan of a nested-loop join must then access the 
worktable.

In this next example, partitioning for tables RA2 and RB2 is on columns (a1, 
a2) and (b1, b2) respectively. The query is run with merge and hash join turned 
off for the session.

select * from RA2, RB2 where a1 = b1 and a2 = b3 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 12 
worker processes. 
 
17 operator(s) under root 
 
The type of query is SELECT. 
Performance and Tuning Series: Query Processing and Abstract Plans  173



Adaptive Server parallel query execution model 
 
ROOT:EMIT Operator 
 
    |SEQUENCER Operator has 2 children. 
    | 
    |   |EXCHANGE Operator (Merged) 
    |   |Executed in parallel by 4 Producer  
             and 1 Consumer processes. 
 
    |   | 
    |   |   |EXCHANGE:EMIT Operator 
    |   |   | 
    |   |   |   |STORE Operator 
    |   |   |   |  Worktable1 created, in allpages  
                      locking mode, for REFORMATTING. 
    |   |   |   |  Creating clustered index. 
    |   |   |   | 
    |   |   |   |   |INSERT Operator 
    |   |   |   |   |  The update mode is direct. 
    |   |   |   |   | 
    |   |   |   |   |   |EXCHANGE Operator 
                            (Repartitioned) 
    |   |   |   |   |   |Executed in parallel by  
                             2 Producer and 4  
                             Consumer processes. 
    |   |   |   |   |   | 
    |   |   |   |   |   |   |EXCHANGE:EMIT Operator 
    |   |   |   |   |   |   | 
    |   |   |   |   |   |   |   |RESTRICT Operator 
    |   |   |   |   |   |   |   | 
    |   |   |   |   |   |   |   |   |SCAN Operator 
    |   |   |   |   |   |   |   |   |  FROM TABLE 
    |   |   |   |   |   |   |   |   |  RB2 
    |   |   |   |   |   |   |   |   |  Table Scan. 
    |   |   |   |   |   |   |   |   |  Executed in 
                                           parallel 
                                           with a  
                                           2-way 
                                           partition 
                                           scan. 
    |   |   |   |   | 
    |   |   |   |   |  TO TABLE 
    |   |   |   |   |  Worktable1. 
    | 
    |   |EXCHANGE Operator (Merged) 
    |   |Executed in parallel by 4 Producer  
174   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
             and 1 Consumer processes. 
 
    |   | 
    |   |   |EXCHANGE:EMIT Operator 
    |   |   | 
    |   |   |   |NESTED LOOP JOIN Operator  
                    (Join Type: Inner Join) 
    |   |   |   | 
    |   |   |   |   |EXCHANGE Operator (Repartitioned) 
    |   |   |   |   |Executed in parallel by 2  
                        Producer and 4 Consumer 
                        processes. 
    |   |   |   |   | 
    |   |   |   |   |   |EXCHANGE:EMIT Operator 
    |   |   |   |   |   | 
    |   |   |   |   |   |   |RESTRICT Operator 
    |   |   |   |   |   |   | 
    |   |   |   |   |   |   |   |SCAN Operator 
    |   |   |   |   |   |   |   |  FROM TABLE 
    |   |   |   |   |   |   |   |  RA2 
    |   |   |   |   |   |   |   |  Table Scan. 
    |   |   |   |   |   |   |   |  Executed in  
                                       parallel with  
                                       a 2-way 
                                       partition scan. 
    |   |   |   |   |SCAN Operator 
    |   |   |   |   |  FROM TABLE 
    |   |   |   |   |  Worktable1. 
    |   |   |   |   |  Using Clustered Index. 
    |   |   |   |   |  Forward Scan. 
    |   |   |   |   |  Positioning by key. 

The sequence operator executes all of its child operators but the last, before 
executing the last child operator. In this case, the sequence operator executes 
the first child operator, which reformats table RB2 into a worktable using a 
four-way hash partitioning on columns b1 and b3. The table RA2 is also 
repartitioned four ways to match the stored partitioning of the worktable.

Serial join Sometimes, it may not make sense to run a join in parallel because of the 
amount of data that needs to be joined. If you run a query similar to that of the 
earlier join queries, but now have predicates on each of the tables (RA2 and 
RB2) such that the amount of data to be joined is not enough, the join may be 
done in serial mode. In such a case, it does not matter how these tables are 
partitioned. The query still benefits from scanning the tables in parallel.

select * from RA2, RB2 where a1=b1 and a2 = b2  
Performance and Tuning Series: Query Processing and Abstract Plans  175



Adaptive Server parallel query execution model 
and a3 =  0 and  b2 = 20

 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 4 
worker processes. 
 
11 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
    |MERGE JOIN Operator (Join Type: Inner Join) 
    | Using Worktable3 for internal storage. 
    |  Key Count: 1 
    |  Key Ordering: ASC 
    | 
    |   |SORT Operator 
    |   | Using Worktable1 for internal storage. 
    |   | 
    |   |   |EXCHANGE Operator (Merged) 
    |   |   |Executed in parallel by 2 Producer and 
                 1 Consumer processes. 
 
    |   |   | 
    |   |   |   |EXCHANGE:EMIT Operator 
    |   |   |   | 
    |   |   |   |   |RESTRICT Operator 
    |   |   |   |   | 
    |   |   |   |   |   |SCAN Operator 
    |   |   |   |   |   |  FROM TABLE 
    |   |   |   |   |   |  RA2 
    |   |   |   |   |   |  Table Scan. 
    |   |   |   |   |   |  Executed in parallel with 
                             a 2-way partition scan. 
    |   |SORT Operator 
    |   |Using Worktable2 for internal storage. 
    |   | 
    |   |   |EXCHANGE Operator (Merged) 
    |   |   |Executed in parallel by 2 Producer and 
                 1 Consumer processes. 
 
    |   |   | 
    |   |   |   |EXCHANGE:EMIT Operator 
    |   |   |   | 
176   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
    |   |   |   |   |RESTRICT Operator 
    |   |   |   |   | 
    |   |   |   |   |   |SCAN Operator 
    |   |   |   |   |   |  FROM TABLE 
    |   |   |   |   |   |  RB2 
    |   |   |   |   |   |  Table Scan. 
    |   |   |   |   |   |  Executed in parallel with  
                               a 2-way partition scan.

Semijoins Semijoins, which result from flattening of in/exist subqueries, behave the same 
way as regular inner joins. However, replicated joins are not used for semijoins, 
because an outer row can match more than one time in such a situation.

Outer joins In terms of parallel processing for outer joins, replicated joins are not 
considered. Everything else behaves in a similar way as regular inner joins. 
One other point of difference is that no partition elimination is done for any 
table in an outer join that belongs to the outer group. 

Vector aggregation

Vector aggregation refers to queries with group-bys. There are different ways 
Adaptive Server can perform vector aggregation. The actual algorithms are not 
described here; only the technique for parallel evaluation is shown in the 
following sections.

In-partitioned vector 
aggregation

If any base or intermediate relation requires a grouping and is partitioned on a 
subset, or the same columns as that of the columns in the group by clause, the 
grouping operation can be done in parallel on each of the partitions and the 
resultant grouped streams merged using a simple N-to-1 exchange. This is 
because a given group cannot appear in more than one stream. The same 
restriction applies to grouping over any SQL query as long as you use 
semantics-based partitioning on the grouping columns or a subset of them. This 
method of parallel vector aggregation is called in-partitioned aggregation.

The following query uses a parallel in-partitioned vector aggregation since 
range partitioning is defined on the columns a1 and a2, which also happens to 
be the column on which the aggregation is needed.

select count(*), a1, a2 from RA2 group by a1,a2 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
4 operator(s) under root 
 
The type of query is SELECT. 
Performance and Tuning Series: Query Processing and Abstract Plans  177



Adaptive Server parallel query execution model 
 
ROOT:EMIT Operator 
 
    |EXCHANGE Operator (Merged) 
    |Executed in parallel by 2 Producer and  
        1 Consumer processes. 
 
    | 
    |   |EXCHANGE:EMIT Operator 
    |   | 
    |   |   |HASH VECTOR AGGREGATE Operator 
    |   |   |  GROUP BY 
    |   |   |  Evaluate Grouped COUNT AGGREGATE. 
    |   |   | Using Worktable1 for internal storage. 
    |   |   | 
    |   |   |   |SCAN Operator 
    |   |   |   |  FROM TABLE 
    |   |   |   |  RA2 
    |   |   |   |  Table Scan. 
    |   |   |   |  Forward Scan. 
    |   |   |   |  Positioning at start of table. 
    |   |   |   |  Executed in parallel with a 2-way 
                       partition scan. 
    |   |   |   |  Using I/O Size 2 Kbytes for data  
                       pages. 
    |   |   |   |  With LRU Buffer Replacement  
                        Strategy for data pages.

Repartitioned vector 
aggregation

Sometimes, the partitioning of the table or the intermediate results may not be 
useful for the grouping operation. It may still be worthwhile to do the grouping 
operation in parallel by repartitioning the source data to match the grouping 
columns, then applying the parallel vector aggregation. Such a scenario is 
shown below, where the partitioning is on columns (a1, a2), but the query 
requires a vector aggregation on column a1.

select count(*), a1 from RA2 group by a1 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 4 
worker processes. 
 
6 operator(s) under root 
 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
178   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
 
    |EXCHANGE Operator (Merged) 
    |Executed in parallel by 2 Producer and 1 Consumer 
processes. 
 
    | 
    |   |EXCHANGE:EMIT Operator 
    |   | 
    |   |   |HASH VECTOR AGGREGATE Operator 
    |   |   |  GROUP BY 
    |   |   |  Evaluate Grouped COUNT AGGREGATE. 
    |   |   | Using Worktable1 for internal storage. 
    |   |   | 
    |   |   |   |EXCHANGE Operator (Repartitioned) 
    |   |   |   |Executed in parallel by 2 Producer  
                     and 2 Consumer processes. 
 
    |   |   |   | 
    |   |   |   |   |EXCHANGE:EMIT Operator 
    |   |   |   |   | 
    |   |   |   |   |   |SCAN Operator 
    |   |   |   |   |   |  FROM TABLE 
    |   |   |   |   |   |  RA2 
    |   |   |   |   |   |  Table Scan. 
    |   |   |   |   |   |  Forward Scan. 
    |   |   |   |   |   |  Positioning at start of  
                              table. 
    |   |   |   |   |   |  Executed in parallel with 
                               a 2-way partition scan.

Two-phased vector 
aggregation

For the query in the previous example, repartitioning may be expensive. 
Another possibility is to do a first level of grouping, merge the data using a 
N-to-1 exchange operator, then do another level of grouping. This is called a 
two-phased vector aggregation. Depending on the number of duplicates for the 
grouping column, Adaptive Server can reduce the cardinality of the data 
streaming through the N-to-1 exchange, which reduces the cost of the second 
level of grouping.

select count(*), a1 from RA2 group by a1 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
5 operator(s) under root 
 
 

Performance and Tuning Series: Query Processing and Abstract Plans  179



Adaptive Server parallel query execution model 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
    |HASH VECTOR AGGREGATE Operator 
    |  GROUP BY 
    |  Evaluate Grouped SUM OR AVERAGE AGGREGATE. 
    | Using Worktable2 for internal storage. 
    | 
    |   |EXCHANGE Operator (Merged) 
    |   |Executed in parallel by 2 Producer and 
            1 Consumer processes. 
    |   | 
    |   |   |EXCHANGE:EMIT Operator 
    |   |   | 
    |   |   |   |HASH VECTOR AGGREGATE Operator 
    |   |   |   |  GROUP BY 
    |   |   |   |  Evaluate Grouped COUNT AGGREGATE. 
    |   |   |   | Using Worktable1 for internal  
                      storage. 
    |   |   |   | 
    |   |   |   |   |SCAN Operator 
    |   |   |   |   |  FROM TABLE 
    |   |   |   |   |  RA2 
    |   |   |   |   |  Table Scan. 
    |   |   |   |   |  Executed in parallel with  
                          a 2-way partition scan.

Serial vector 
aggregation

As with some of the earlier examples, if the amount of data flowing into the 
grouping operator is restricted by using a predicate, executing that query in 
parallel may not make much sense. In such a case, the partitions are scanned in 
parallel and an N-to-1 exchange operator is used to serialize the stream 
followed by a serial vector aggregation:

select count(*), a1, a2 from RA2 
where a1 between 100 and 200 
group by a1, a2 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 
     2 worker processes. 
 
4 operator(s) under root 
 
 
The type of query is SELECT. 
 

180   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
ROOT:EMIT Operator 
 
   |HASH VECTOR AGGREGATE Operator 
   |  GROUP BY 
   |  Evaluate Grouped COUNT AGGREGATE. 
   | Using Worktable1 for internal storage. 
   | 
   |   |EXCHANGE Operator (Merged) 
   |   |Executed in parallel by 2 Producer and 1 
            Consumer processes. 
   |   | 
   |   |   |EXCHANGE:EMIT Operator 
   |   |   | 
   |   |   |   |SCAN Operator 
   |   |   |   |  FROM TABLE 
   |   |   |   |  RA2 
   |   |   |   |  Positioning at start of table. 
   |   |   |   |  Executed in parallel with a 2-way 
                       partition scan.

You cannot always group on the partitioning columns, or take advantage of a 
table that is already partitioned on the grouping columns. The query optimizer 
determines if it is better to repartition and perform the grouping in parallel, or 
merge the data stream in a partitioned table and do the grouping in serial or a 
two-phased aggregation. 

distinct Queries with distinct operations are the same as grouped vector aggregation 
without the aggregation part. For example:

select distinct a1, a2 from RA2

is same as:

select a1, a2 from RA2 group by a1, a2

All of the methodologies that are applicable to vector aggregates are applicable 
here as well.

Queries with an in list Adaptive Server uses an optimized technique to handle an in list. This is a 
common SQL construct. So, a construct like:

col in (value1, value2,..valuek) 

is same as:

col = value1 OR col = value2 OR .... col = valuek
Performance and Tuning Series: Query Processing and Abstract Plans  181



Adaptive Server parallel query execution model 
The values in the in list are put into a special in-memory table and sorted for 
removal of duplicates.The table is then joined back with the base table using an 
index nested-loop join. The following example illustrates this with two values 
in the in list that correspond to two values in the or list:

SCAN Operator 
FROM OR List 
OR List has up to 2 rows of OR/IN values. 
 
select * from RA2 where a3 in (1425, 2940) 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
      worker processes. 
 
6 operator(s) under root 
 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
  |EXCHANGE Operator (Merged) 
  |Executed in parallel by 2 Producer and 1  
       Consumer processes. 
 
  | 
  |   |EXCHANGE:EMIT Operator 
  |   | 
  |   |   |NESTED LOOP JOIN Operator (Join Type:  
               Inner Join) 
  |   |   | 
  |   |   |   |SCAN Operator 
  |   |   |   |  FROM OR List 
  |   |   |   |  OR List has up to 2 rows of OR/IN  
                     values. 
  |   |   | 
  |   |   |   |RESTRICT Operator 
  |   |   |   | 
  |   |   |   |   |SCAN Operator 
  |   |   |   |   |  FROM TABLE 
  |   |   |   |   |  RA2 
  |   |   |   |   |  Index : RA2_NC1 
  |   |   |   |   |  Forward Scan. 
  |   |   |   |   |  Positioning by key. 
  |   |   |   |   |  Keys are: 
182   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
  |   |   |   |   |    a3 ASC 
  |   |   |   |   |  Executed in parallel with a  
                        2-way hash scan.

Queries with or 
clauses

Adaptive Server takes a disjunctive predicate like an or clause and applies each 
side of the disjunction separately to qualify a set of row IDs (RIDs). The set of 
conjunctive predicates on each side of the disjunction must be indexable. Also, 
the conjunctive predicates on each side of the disjunction cannot have further 
disjunction within them; that is, it makes little sense to use an arbitrarily deep 
nesting of disjunctive and conjunctive clauses. In the next example, a 
disjunctive predicate is taken on the same column (you can have predicates on 
different columns as long as you have indexes that can do inexpensive scans), 
but the predicates may qualify an overlapping set of data rows. Adaptive Server 
uses the predicates on each side of the disjunction separately and qualifies a set 
of row IDs. These row IDs are then subjected to duplicate elimination.

select a3 from RA2 where a3 = 2955 or a3 > 2990 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
8 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
  |EXCHANGE Operator (Merged) 
  |Executed in parallel by 2 Producer and 1  
       Consumer processes. 
 
  | 
  |   |EXCHANGE:EMIT Operator 
  |   | 
  |   |   |RID JOIN Operator 
  |   |   | Using Worktable2 for internal storage. 
  |   |   | 
  |   |   |   |HASH UNION Operator has 2 children. 
  |   |   |   | Using Worktable1 for internal storage. 
  |   |   |   | 
  |   |   |   |   |SCAN Operator 
  |   |   |   |   |  FROM TABLE 
  |   |   |   |   |  RA2 
  |   |   |   |   |  Index : RA2_NC1 
  |   |   |   |   |  Forward Scan. 
Performance and Tuning Series: Query Processing and Abstract Plans  183



Adaptive Server parallel query execution model 
  |   |   |   |   |  Positioning by key. 
  |   |   |   |   |  Index contains all needed 
                         columns.Base table will not 
                         be read. 
  |   |   |   |   |  Keys are: 
  |   |   |   |   |    a3 ASC 
  |   |   |   |   |  Executed in parallel with a  
                       2-way hash scan. 
  |   |   |   | 
  |   |   |   |   |SCAN Operator 
  |   |   |   |   |  FROM TABLE 
  |   |   |   |   |  RA2 
  |   |   |   |   |  Index : RA2_NC1 
  |   |   |   |   |  Forward Scan. 
  |   |   |   |   |  Positioning by key. 
  |   |   |   |   |  Index contains all needed  
                         columns. Base table will  
                         not be read. 
  |   |   |   |   |  Keys are: 
  |   |   |   |   |    a3 ASC 
  |   |   |   |   |  Executed in parallel with a  
                       2-way hash scan. 
  |   |   |   |RESTRICT Operator 
  |   |   |   | 
  |   |   |   |   |SCAN Operator 
  |   |   |   |   |  FROM TABLE 
  |   |   |   |   |  RA2 
  |   |   |   |   |  Using Dynamic Index. 
  |   |   |   |   |  Forward Scan. 
  |   |   |   |   |  Positioning by Row IDentifier  
                         (RID.) 
  |   |   |   |   |  Using I/O Size 2 Kbytes for  
                         data pages. 
  |   |   |   |   |  With LRU Buffer Replacement  
                          Strategy for data pages.

Two separate index scans are employed using the index RA2_NC1, which is 
defined on the column a3. The qualified set of row IDs are then checked for 
duplicate row IDs, and finally, joined back to the base table. Note the line 
Positioning by Row Identifier (RID). You can use different indexes 
for each side of the disjunction, depending on what the predicates are, as long 
as they are indexable. One way to easily identify this is to run the query 
separately with each side of the disjunction to make sure that the predicates are 
indexable. Adaptive Server may not choose an index intersection if it seems 
more expensive than a single scan of the table.
184   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
Queries with an order 
by clause

If a query requires sorted output because of the presence of an order by clause, 
Adaptive Server can apply the sort in parallel. First, Adaptive Server tries to 
avoid the sort if there is some inherent ordering available. If Adaptive Server 
is forced to do the sort, it sees if the sort can be done in parallel. To do that, 
Adaptive Server may repartition an existing data stream or it may use the 
existing partitioning scheme, then apply the sort to each of the constituent 
streams. The resultant data is merged using an N-to-1 order, preserving the 
exchange operator.

select * from RA2 order by a1, a2 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
4 operator(s) under root 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
   |EXCHANGE Operator (Merged) 
   |Executed in parallel by 2 Producer and  
         1 Consumer processes. 
 
   | 
   |   |EXCHANGE:EMIT Operator 
   |   | 
   |   |   |SORT Operator 
   |   |   | Using Worktable1 for internal storage. 
   |   |   | 
   |   |   |   |SCAN Operator 
   |   |   |   |  FROM TABLE 
   |   |   |   |  RA2 
   |   |   |   |  Index : RA2_NC2L 
   |   |   |   |  Forward Scan. 
   |   |   |   |  Positioning at index start. 
   |   |   |   |  Executed in parallel with a  
                       2-way partition scan.

Depending upon the volume of data to be sorted, and the available resources, 
Adaptive Server may repartition the data stream to a higher degree than the 
current degree of the stream, so that the sort operation is faster. The degrees of 
sorting depends on whether the benefit obtained from doing the sort in parallel 
far outweighs the overheads of repartitioning.
Performance and Tuning Series: Query Processing and Abstract Plans  185



Adaptive Server parallel query execution model 
Subqueries

Adaptive Server uses different methods to reduce the cost of processing 
subqueries. Parallel optimization depends on the type of subquery:

• Materialized subqueries – parallel query methods are not considered for 
the materialization step.

• Flattened subqueries – parallel query optimization is considered only 
when the subquery is flattened to a regular inner join or a semijoin. 

• Nested subqueries – parallel operations are considered for the outermost 
query block in a query containing a subquery; the inner, nested queries 
always execute serially. This means that all tables in nested subqueries are 
accessed serially. In the following example, the table RA2 is accessed in 
parallel, but the result is that the table is serialized using a two-to-one 
exchange operator before accessing the subquery. The table RB2 inside the 
subquery is accessed in parallel.

select count(*) from RA2 where not exists 
(select * from RB2 where RA2.a1 = b1) 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
8 operator(s) under root 
 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 
   |SCALAR AGGREGATE Operator 
   |  Evaluate Ungrouped COUNT AGGREGATE. 
   | 
   |   |SQFILTER Operator has 2 children. 
   |   | 
   |   |   |EXCHANGE Operator (Merged) 
   |   |   |Executed in parallel by 2 Producer  
               and 1 Consumer processes. 
 
   |   |   | 
   |   |   |   |EXCHANGE:EMIT Operator 
   |   |   |   | 
   |   |   |   |   |RESTRICT Operator 
   |   |   |   |   | 
186   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
   |   |   |   |   |   |SCAN Operator 
   |   |   |   |   |   |  FROM TABLE 
   |   |   |   |   |   |  RA2 
   |   |   |   |   |   |  Index : RA2_NC2L 
   |   |   |   |   |   |  Forward Scan. 
   |   |   |   |   |   |  Executed in parallel with 
                            a 2-way partition scan. 
   |   | 
   |   |  Run subquery 1 (at nesting level 1). 
   |   |
   |   |  QUERY PLAN FOR SUBQUERY 1 (at nesting  
             level 1 and at line 2). 
   |   | 
   |   |   Correlated Subquery. 
   |   |   Subquery under an EXISTS predicate. 
   |   | 
   |   |   |SCALAR AGGREGATE Operator 
   |   |   |  Evaluate Ungrouped ANY AGGREGATE. 
   |   |   |  Scanning only up to the first  
                  qualifying row. 
   |   |   | 
   |   |   |   |SCAN Operator 
   |   |   |   |  FROM TABLE 
   |   |   |   |  RB2 
   |   |   |   |  Table Scan. 
   |   |   |   |  Forward Scan. 
   |   | 
   |   |  END OF QUERY PLAN FOR SUBQUERY 1.

The following example shows an in subquery flattened into a semijoin. 
Adaptive Server converts this into an inner join to provide greater flexibility in 
shuffling the tables in the join order. As seen below, the table RB2, which was 
originally in the subquery, is now being accessed in parallel.

select * from RA2 where a1 in (select b1 from RB2) 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 5 
worker processes. 
 
10 operator(s) under root 
 
 
The type of query is SELECT. 
 
ROOT:EMIT Operator 
 

Performance and Tuning Series: Query Processing and Abstract Plans  187



Adaptive Server parallel query execution model 
   |EXCHANGE Operator (Merged) 
   |Executed in parallel by 3 Producer and 1 Consumer 
processes. 
 
   | 
   |   |EXCHANGE:EMIT Operator 
   |   | 
   |   |   |MERGE JOIN Operator (Join Type: Inner Join) 
   |   |   | Using Worktable3 for internal storage. 
   |   |   |  Key Count: 1 
   |   |   |  Key Ordering: ASC 
   |   |   | 
   |   |   |   |SORT Operator 
   |   |   |   | Using Worktable1 for internal  
                     storage. 
   |   |   |   | 
   |   |   |   |   |SCAN Operator 
   |   |   |   |   |  FROM TABLE 
   |   |   |   |   |  RB2 
   |   |   |   |   |  Table Scan. 
   |   |   |   |   |  Executed in parallel with a  
                         3-way partition scan. 
   |   |   | 
   |   |   |   |SORT Operator 
   |   |   |   | Using Worktable2 for internal  
                    storage. 
   |   |   |   | 
   |   |   |   |   |EXCHANGE Operator (Merged) 
   |   |   |   |   |Executed in parallel by 2  
                      Producer and 3 Consumer 
                      processes. 
 
   |   |   |   |   | 
   |   |   |   |   |   |EXCHANGE:EMIT Operator 
   |   |   |   |   |   | 
   |   |   |   |   |   |   |RESTRICT Operator 
   |   |   |   |   |   |   | 
   |   |   |   |   |   |   |   |SCAN Operator 
   |   |   |   |   |   |   |   |  FROM TABLE 
   |   |   |   |   |   |   |   |  RA2 
   |   |   |   |   |   |   |   |  Index : RA2_NC2L 
   |   |   |   |   |   |   |   |  Forward Scan. 
   |   |   |   |   |   |   |   |  Positioning at  
                                     index start. 
   |   |   |   |   |   |   |   |  Executed in  
                                      parallel with  
188   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
                                      a 2-way 
                                       partition scan.

select into clauses

Queries with select into clauses create a new table in which to store the query’s 
result set. Adaptive Server optimizes the base query portion of a select into 
command in the same way it does a standard query, considering both parallel 
and serial access methods. A select into statement that is executed in parallel:

• Creates the new table using the columns specified in the select into 
statement.

• Creates N partitions in the new table, where N is the degree of parallelism 
that the optimizer chooses for the insert operation in the query.

• Populates the new table with query results, using N worker processes.

• Unpartitions the new table, if no specific destination partitioning is 
required.

Performing a select into statement in parallel requires more steps than an 
equivalent serial query plan. This is a simple select into done in parallel:

select * into RAT2 from RA2 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
4 operator(s) under root 
 
The type of query is INSERT. 
 
ROOT:EMIT Operator 
 
   |EXCHANGE Operator (Merged) 
   |Executed in parallel by 2 Producer and 1  
       Consumer processes. 
 
   | 
   |   |EXCHANGE:EMIT Operator 
   |   | 
   |   |   |INSERT Operator 
   |   |   |  The update mode is direct. 
   |   |   | 
   |   |   |   |SCAN Operator 
Performance and Tuning Series: Query Processing and Abstract Plans  189



Adaptive Server parallel query execution model 
   |   |   |   |  FROM TABLE 
   |   |   |   |  RA2 
   |   |   |   |  Table Scan. 
   |   |   |   |  Forward Scan. 
   |   |   |   |  Positioning at start of table. 
   |   |   |   |  Executed in parallel with a 2-way 
                     partition scan. 
   |   |   | 
   |   |   |  TO TABLE 
   |   |   |  RAT2 
   |   |   |  Using I/O Size 2 Kbytes for data  
                 pages.

Adaptive Server does not try to increase the degree of the stream coming from 
the scan of table RA2, and uses it to do a parallel insert into the destination 
table. The destination table is initially created using round-robin partitioning of 
degree two. After the insert, the table is unpartitioned.

If the data set to be inserted is not big enough, Adaptive Server may choose to 
insert this data in serial. The scan of the source table can still be done in 
parallel. The destination table is then created as an unpartitioned table.

The select into allows destination partitioning to be specified. In such a case, 
the destination table is created using that partitioning, and Adaptive Server 
finds the most optimal way to insert data. If the destination table must be 
partitioned the same way as the source data, and there is enough data to insert, 
the insert operator executes in parallel.

The next example shows the same partitioning for source and destination table, 
and demonstrates that Adaptive Server recognizes this scenario and chooses 
not to repartition the source data.

select * into new_table 
partition by range(a1, a2) 
(p1 values <= (500,100), p2 values <= (1000, 2000))  
from RA2 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 2 
worker processes. 
 
4 operator(s) under root 
 
 
The type of query is INSERT. 
 
ROOT:EMIT Operator 
190   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
 
   |EXCHANGE Operator (Merged) 
   |Executed in parallel by 2 Producer and 1 Consumer 
processes. 
 
   | 
   |   |EXCHANGE:EMIT Operator 
   |   | 
   |   |   |INSERT Operator 
   |   |   |  The update mode is direct. 
   |   |   | 
   |   |   |   |SCAN Operator 
   |   |   |   |  FROM TABLE 
   |   |   |   |  RA2 
   |   |   |   |  Table Scan. 
   |   |   |   |  Forward Scan. 
   |   |   |   |  Positioning at start of table. 
   |   |   |   |  Executed in parallel with a 2-way 
                            partition scan. 
   |   |   | 
   |   |   |  TO TABLE 
   |   |   |  RRA2 
   |   |   |  Using I/O Size 16 Kbytes for data  
                   pages.

If the source partitioning does not match that of the destination table, the source 
data must be repartitioned. This is illustrated in the next example, where the 
insert is done in parallel using two worker processes after the data is 
repartitioned using a 2-to-2 exchange operator that converts the data from 
range partitioning to hash partitioning.

select * into HHA2 
partition by hash(a1, a2) 
(p1, p2) 
from RA2 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 4 
worker processes. 
 
6 operator(s) under root 
 
 
The type of query is INSERT. 
 
ROOT:EMIT Operator 
 

Performance and Tuning Series: Query Processing and Abstract Plans  191



Adaptive Server parallel query execution model 
|EXCHANGE Operator (Merged) 
|Executed in parallel by 2 Producer and 1  
      Consumer processes. 
 
| 
|   |EXCHANGE:EMIT Operator 
|   | 
|   |   |INSERT Operator 
|   |   |  The update mode is direct. 
|   |   | 
|   |   |   |EXCHANGE OperatorEXCHANGE Operator ( 
                Merged) 
|   |   |   |Executed in parallel by 2 Producer  
                and 2 Consumer processes. 
 
|   |   |   | 
|   |   |   |   |EXCHANGE:EMIT Operator 
|   |   |   |   | 
|   |   |   |   |   |SCAN Operator 
|   |   |   |   |   |  FROM TABLE 
|   |   |   |   |   |  RA2 
|   |   |   |   |   |  Table Scan. 
|   |   |   |   |   |  Forward Scan. 
|   |   |   |   |   |  Positioning at start of table. 
|   |   |   |   |   |  Executed in parallel with a  
                           2-way partition scan. 
|   |   | 
|   |   |  TO TABLE 
|   |   |  HHA2 
|   |   |  Using I/O Size 16 Kbytes for data  
               pages.

insert/delete/update

insert, delete, and update operations are done in serial in Adaptive Server. 
However, tables other than the destination table used in the query to qualify 
rows to be deleted or updated, can be accessed in parallel. 

delete from RA2 
where exists 
(select * from RB2  
where RA2.a1 = b1 and RA2.a2 = b2) 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 3 
worker processes. 
192   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
 
9 operator(s) under root 
 
The type of query is DELETE. 
 
ROOT:EMIT Operator 
 
|DELETE Operator 
|  The update mode is deferred. 
| 
|   |NESTED LOOP JOIN Operator (Join Type: Inner Join) 
|   | 
|   |   |SORT Operator 
|   |   | Using Worktable1 for internal storage. 
|   |   | 
|   |   |   |EXCHANGE Operator (Merged) 
|   |   |   |Executed in parallel by 3 Producer  
                  and 1 Consumer processes. 
 
|   |   |   | 
|   |   |   |   |EXCHANGE:EMIT Operator 
|   |   |   |   | 
|   |   |   |   |   |RESTRICT Operator 
|   |   |   |   |   | 
|   |   |   |   |   |   |SCAN Operator 
|   |   |   |   |   |   |  FROM TABLE 
|   |   |   |   |   |   |  RB2 
|   |   |   |   |   |   |  Table Scan. 
|   |   |   |   |   |   |  Forward Scan. 
|   |   |   |   |   |   |  Positioning at start of  
                              table. 
|   |   |   |   |   |   |  Executed in parallel with 
                              a 3-way partition scan. 
|   |   |   |   |   |   |  Using I/O Size 2 Kbytes  
                              for data pages. 
|   |   |   |   |   |   |  With LRU Buffer Replacement 
                              Strategy for data pages. 
|   | 
|   |   |RESTRICT Operator 
|   |   | 
|   |   |   |SCAN Operator 
|   |   |   |  FROM TABLE 
|   |   |   |  RA2 
|   |   |   |  Index : RA2_NC1 
|   |   |   |  Forward Scan. 
|   |   |   |  Positioning by key. 
Performance and Tuning Series: Query Processing and Abstract Plans  193



Adaptive Server parallel query execution model 
|   |   |   |  Keys are: 
|   |   |   |    a3 ASC 
| 
|  TO TABLE 
|  RA2 
|  Using I/O Size 2 Kbytes for data pages.

The table RB2, which is being deleted, is scanned and deleted in serial. 
However, table RA2 was scanned in parallel. The same scenario is true for 
update or insert statements.

Partition elimination
One of the advantages of semantic partitioning is that the query processor may 
be able to take advantage of this and be able to disqualify range, hash, and list 
partitions at compile time. With hash partitions, only equality predicates can be 
used, whereas for range and list partitions, equality and in-equality predicates 
can be used to eliminate partitions. For example, consider table RA2 with its 
semantic partitioning defined on columns a1, a2 where (p1 values <= 
(500,100) and p2 values <= (1000, 2000)). If there are predicates on columns 
a1 or columns a1, a2, then it would be possible to do some partition 
elimination. For example, this statement does not qualify any data:

select * from RA2 where a1 > 1500

You can see this in the showplan output.

QUERY PLAN FOR STATEMENT 1 (at line 1). 
................................ 
|   |   |SCAN Operator 
|   |   |  FROM TABLE 
|   |   |  RA2 
|   |   |  [ Eliminated Partitions : 1 2 ] 
|   |   |  Index : RA2_NC2L

The phrase Eliminated Partitions identifies the partition in accordance 
with how it was created and assigns an ordinal number for identification. For 
table RA2, the partition represented by p1 where (a1, a2) <= (500, 100) is 
considered to be partition number one and p2 where (a1, a2) > (500, 100) and 
<= (1000, 2000) is identified as partition number two.

Consider an equality query on a hash-partitioned table where all keys in the 
hash partitioning have an equality clause. This can be shown by taking table 
HA2, which is hash-partitioned two ways on columns (a1, a2). The ordinal 
numbers refer to the order in which partitions are listed in the output of sp_help.
194   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
select * from HA2 where a1 = 10 and a2 = 20 
 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
................................ 
 
|SCAN Operator 
|  FROM TABLE 
|  HA2 
|  [ Eliminated Partitions : 1 ] 
|  Table Scan.

Partition skew
Partition skew plays an important part in determining whether a parallel 
partitioned scan can be used. Adaptive Server partition skew is defined as the 
ratio of the size of the largest partition to the average size of a partition. 
Consider a table with four partitions of sizes 20, 20, 35, and 80 pages. The size 
of the average partition is (20 + 20 + 35 + 85)/4 = 40 pages. The biggest 
partition has 85 pages so partition skew is calculated as 85/40 = 2.125. In 
partitioned scans, the cost of doing a parallel scan is as expensive as doing the 
scan on the largest partition. Instead, a hash-based partition may turn out to be 
fast, as each worker process may hash on a page number or an allocation unit 
and scan its portion of the data. The penalty paid in terms of loss of 
performance by skewed partitions is not always at the scan level, but rather as 
more complex operators like several join operations are built over the data. The 
margin of error increases exponentially in such cases.

Run sp_help on a table to see the partition skews:

sp_help HA2 
 
........ 
name   type partition_type partitions  partition_keys  
------ -------------------- -------------- ----------- 
HA2    base table           hash                     2 a1, a2       
 
partition_name partition_id pages       segment       
create_date                 
-------------------------- ------------ ----------- --
------------ 
--------------------------  
HA2_752002679                 752002679         324 default   
Aug 10 2005  2:05PM  
HA2_768002736                 768002736         343 default   
Performance and Tuning Series: Query Processing and Abstract Plans  195



Adaptive Server parallel query execution model 
Aug 10 2005  2:05PM  
 
Partition_Conditions  
--------------------  
NULL                  
 
Avg_pages   Max_pages   Min_pages   Ratio(Max/Avg)   
 
Ratio(Min/Avg)               
----------- ----------- ----------- ------------------
--------- 
---------------------------  
333         343         324                    1.030030

                            0.972973 

Alternatively, you can calculate skew by querying the systabstats system 
catalog, where the number of pages in each partition is listed.

Why queries do not run in parallel
Adaptive Server runs a query in serial when:

• There is not enough data to benefit from parallel access.

• The query contains no equijoin predicates like:

select * from RA2, RB2 
where a1 > b1

• There are not enough resources, such as thread or memory, to run a query 
in parallel.

• Uses a covered scan of a global nonclustered index.

• Tables and indexes are accessed inside a nested subquery that cannot be 
flattened.

Runtime adjustment
If there are not enough worker processes available at runtime, the execution 
engine attempts to reduce the number of worker processes used by the 
exchange operators present in the plan:
196   Adaptive Server Enterprise



CHAPTER 5    Parallel Query Processing
• First, by attempting to reduce the worker process usage of certain 
exchange operators in the query plan without resorting to serial 
recompilation of the query. Depending on the semantics of the query plan, 
certain exchange operators are adjustable and some are not. Some are 
limited in the way they can be adjusted.

• Parallel query plans need a minimum number of worker processes to run. 
When enough worker processes are not available, the query is recompiled 
serially. When recompilation is impossible, the query is aborted and the 
appropriate error message is generated.

It does so in two ways:

Adaptive Server supports serial recompilation for all:

• Ad hoc select queries, except select into, alter table, and execute immediate 
queries.

• Stored procedures, except select into and alter table queries.

Recognizing and managing runtime adjustments
Adaptive Server provides two mechanisms to help you observe runtime 
adjustments of query plans:

• set process_limit_action allows you to abort batches or procedures when 
runtime adjustments take place.

• showplan prints an adjusted query plan when runtime adjustments occur, 
and showplan is effect.

Using set process_limit_action

Use process_limit_action with the set command to monitor the use of adjusted 
query plans at a session or stored procedure level. When you set 
process_limit_action to “abort,” Adaptive Server records error 11015 and aborts 
the query, if an adjusted query plan is required. When you set 
process_limit_action to “warning,” Adaptive Server records error 11014 but still 
executes the query. For example, this command aborts the batch when a query 
is adjusted at runtime:

set process_limit_action abort
Performance and Tuning Series: Query Processing and Abstract Plans  197



Adaptive Server parallel query execution model 
By examining the occurrences of errors 11014 and 11015 in the error log, you 
can determine the degree to which Adaptive Server uses adjusted query plans 
instead of optimized query plans. To remove the restriction and allow runtime 
adjustments, use:

set process_limit_action quiet

See set in the Reference Manual: Commands. 

Using showplan

When you use showplan, Adaptive Server displays the optimized plan for a 
given query before it runs the query. When the query plan involves parallel 
processing, and a runtime adjustment is made, showplan displays this message, 
followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN IS BEING USED FOR STATEMENT 1 
BECAUSE NOT ENOUGH WORKER PROCESSES ARE CURRENTLY 
AVAILABLE. 
 
ADJUSTED QUERY PLAN: 

When using set notexec, Adaptive Server does not attempt to execute a query, 
so runtime plans are never displayed.

Reducing the likelihood of runtime adjustments

To reduce the number of runtime adjustments, increase the number of worker 
processes that are available to parallel queries. You can do this either by adding 
more total worker processes to the system or by restricting or eliminating 
parallel execution for noncritical queries, using either:

• set parallel_degree  to set session-level limits on the degree of parallelism, 
or

• The query-level parallel 1 and parallel N clauses to limit the worker process 
usage of individual statements.

To reduce the number of runtime adjustments for system procedures, recompile 
the procedures after changing the degree of parallelism at the server or session 
level. See sp_recompile in Adaptive Server Reference Manual: Procedures.
198   Adaptive Server Enterprise



C H A P T E R  6 Eager and Lazy Aggregation

This chapter discusses eager and lazy aggregation in Adaptive Server. 

Overview
Aggregate processing is one of the most useful operations in DBMS 
environments. It summarizes large amounts of data with an aggregated 
value, including:

• The minimum, maximum, sum, or average value of a column in a 
specified set of rows

• The count of rows that match a condition

• Other statistical functions

In SQL, aggregate processing is performed using the aggregation 
functions min(), max(), count(), sum(), and avg(), and group by and having 
clauses. The SQL language implements two aggregate processing types, 
vector aggregation and scalar aggregation. A select-project-join (SPJ) 
query illustrates these two types of aggregate processing:

select r1, s1 
from r, s 
where r2 = s2

Vector aggregation In vector aggregation, the SPJ result set is grouped on the group by clause 
expressions, and then the select clause aggregation functions are applied 
to each group. The query produces one result row per group:

select r1, sum (s1) 
from r, s 

Topic Page
Overview 199

Aggregation and query processing 201

Examples 204

Using eager aggregation 211
Performance and Tuning Series: Query Processing and Abstract Plans 199



Overview 
where r2 = s2 
group by r1

Scalar aggregation In scalar aggregation, there is no group by clause and the entire SPJ result set is 
aggregated, as a single group, by the same select clause aggregate functions. 
The query produces a single result row:

select sum (s1) 
from r, s 
where r2 = s2

Eager aggregation
Eager aggregation transforms the internal representation of queries such as 
those discussed above, and processes them as if the aggregation is performed 
incrementally: first locally, over each table, producing intermediate aggregate 
results over smaller local subgroups, and then globally after the join, thus 
combining the local aggregation results to produce the final result set. 

These queries, which return the same result set over any data set, are derived 
table SQL-level rewrites of the vector and scalar aggregation examples above. 
They illustrate the eager aggregation transformations that Adaptive Server 
performs on the internal representation of the queries. 

Vector aggregation select r1, sum(sum_s1 * count_r) 
from 
    (select  
    r1,r2, 
    count_r = count(*) 
    from r 
    group by r1,r2 
    )gr 
    , 
    (select  
        s2, 
        sum_s1 = sum(s1) 
    from s 
    group by s2 
    )gs 
where r2-s2 
group by r1

Scalar aggregation select sum(sum_s1 * count_r) 
from 
    (select 
        r2, 
200   Adaptive Server Enterprise



CHAPTER 6    Eager and Lazy Aggregation
        count_r = count(*) 
    from r 
    group by r2 
    )gr 
    , 
    (select 
        s2,
        sum_s1 = sum(s1) 
    from s 
    group by s2 
    )gs 
where r2 = s2

Eager aggregation plans are generated and costed by the optimizer, and can be 
chosen as the best plan. This form of advanced query optimization can result 
in orders of magnitude of performance gain, relative to the original SQL query.

Aggregation and query processing
From the perspective of query processing (QP), aggregation can be both a 
costly operation, and an operation whose placement has an important impact 
on query performance.

• Aggregation generally computes an aggregated value. Vector aggregation 
is costly, compared to scalar aggregation, as rows must be grouped 
together to obtain the aggregated result over a group; this implies, in 
general, a reordering of the rows through sorting or hashing, both costly 
operations.

• Aggregating after applying cardinality-reducing operators (such as filters) 
to the input set reduces the cost of aggregation and can thus improve 
overall query performance.

• Aggregating before applying cardinality-increasing operators (such as 
joins and unions) to the input set reduces the cost of aggregation and can 
thus improve overall query performance.

• Aggregating early can reduce the costs of parent operators through 
reducing their input set cardinality, and can thus improve overall query 
performance.

• Aggregation can dramatically reduce the cardinality of the input set in the 
result set, when the grouping columns have relatively few distinct value 
combinations.
Performance and Tuning Series: Query Processing and Abstract Plans  201



Aggregation and query processing 
• Some properties of the aggregation’s input set, as already grouped (for 
example, when the aggregation is ordered on the grouping columns), 
reduce the cost of vector aggregation; in scalar aggregation, rows ordered 
on the aggregated column allow computing a min or max without 
accessing each input row.

• Plan fragment physical properties have a big impact on aggregation cost.

The naive QP implementation of aggregation places the scalar or vector 
aggregate operator, as indicated by the SQL query, over the SPJ part of its 
query block. However, there are algebraic transformations that preserve the 
semantics of the query and allow aggregation at other places in the operators 
tree:

• Pushing the aggregation down toward the leaves, to aggregate early 
(called eager aggregation).

• Pulling the aggregation up toward the root, to aggregate late (called lazy 
aggregation).

Plans obtained through such transformations differ greatly in performance. 
More importantly to distributed query processing (DQP), the cardinality of 
intermediate results can be greatly reduced by eager aggregation. Such orders-
of-magnitude cardinality reduce cross-node data transfer cost, thus removing 
the main shortcoming of DQP as opposed to traditional QP.

Adaptive Server 15.0.2 and later implements eager aggregation over the leaves 
of a query plan, which means over the scan operators. 

This query illustrates the QP implications of eager aggregation:

select r1, sum(s1) 
from r,s 
where r2 = s2 
group by r1
202   Adaptive Server Enterprise



CHAPTER 6    Eager and Lazy Aggregation
Figure 6-1: Typical query execution plan

The two index scans, on r(r2) and s(s2) provide the orderings needed by the 
“r2=s2” merge join. Hash-based grouping is done over the join, as the query 
specifies it.

The optimizer also generates query plans that perform eager aggregation, also 
called the push-down of grouping, early grouping, or eager grouping. The SQL 
representation of the transform using derived tables is:

select r1, sum(sum_s1 * cnt_r) 
from 
    (select r1, r2, cnt_r = count(*) 
            from r 
            group by r1, r2 
    ) as gr 
    , 
    (select s2, sum_s1 = sum(s1) 
            from s 
            group by s2 
    ) as gs 
where r2 = s2 
group by r1

GroupHashing: r1; sum(s1)

IndScan: ir2, r IndScan: is2, s

MergeJoin: r2=s2
Performance and Tuning Series: Query Processing and Abstract Plans  203



Examples 
Figure 6-2: Possible eager aggregation plan

The two eager GroupSorted operators group on the local grouping columns. 
GroupSorted operators apply to any column projected out for a reason other 
than that it is an aggregation function argument. These columns include:

• The main grouping columns in the group by clause

• Columns needed by predicates not yet applied

To place the cheap GroupSorted operator, the child plan fragment must provide 
ordering on all the local grouping columns; hence the ir21 index on r(r2, 
r1).

Examples
Online data archiving The most compelling reason to implement eager aggregation is online data 

archiving, which is a distributed query processing (DQP) installation where 
recent OLTP read-write data is on an Adaptive Server and historical read-only 
data is on another server, either Adaptive Server or ASIQ.

The following view, v, offers decision support system (DSS) applications 
transparent access to local Adaptive Server data in ase_tab and, through the 
Component Integration Services (CIS) proxy_asiq_tab, to remote historical 
data on an ASIQ server.

GroupHashing: r1; sum(sum_s1*cnt_r)

IndScan: ir21, r IndScan: is2, s

MergeJoin: r2=s2

GroupSorted: r1, r2; 
          cnt_r = count(*)

GroupSorted: s2; 
       cnt_s1 = sum(s1)
204   Adaptive Server Enterprise



CHAPTER 6    Eager and Lazy Aggregation
create view v(v1, v2) 
as 
select a1, a2 from ase_tab 
union all 
select q1, q2 from proxy_asiq_tab

The DSS applications ignore the distributed nature of the data and use such 
union-in-view tables as the base tables of their complex queries, typically using 
aggregation:

select t1, sum(v1) 
from t,v 
where t2=v2 
group by t1

After view and union resolution, the following operator tree is obtained:

Figure 6-3: SQL query rewrite

As this tree uses a CIS proxy table, the CIS layer uses a specialized remote scan 
operator to generate and ship a plan fragment to the remote site. 

ase_tab proxy_aseq_tab

group:t1;sum(v1)

join:t2=v2

t union
Performance and Tuning Series: Query Processing and Abstract Plans  205



Examples 
Figure 6-4: Suboptimal classical CIS behavior

As such, this mechanism is suboptimal: the entire history table is shipped 
through the CIS layer to the Adaptive Server side, incurring a large network 
cost; furthermove, the advanced ASIQ bitmap-based grouping algorithms are 
not used. 

ASE

GROUP

JOIN

ASIQ
"select
q1, q2
from
asiq_tab"

scan: t union

scan:
ase_tab

scan:
proxy_asiq_t

scan:
asiq_tab
206   Adaptive Server Enterprise



CHAPTER 6    Eager and Lazy Aggregation
Figure 6-5: Classical processing of aggregation

Ideally, transformations are performed on the operators tree and grouping on 
the ASIQ side, so that only aggregated data is transferred.

Grouping done here, on the ASE side, 
according to the semantic of the query.

Intermediate operators:
• Block the grouping pushdown
• Need to switch with grouping

Grouping needed here, on the ASIQ side:
• ASIQ uses bitmap
• Less result data

group

join

unionScan: t

Scan: ase tab Scan: proxy_asiq_tab
ASIQ
Performance and Tuning Series: Query Processing and Abstract Plans  207



Examples 
Figure 6-6: Desired aggregation processing layout

In this example, there are two operators between the group and the CIS proxy: 
a join and a union. The next transform pushes grouping below the join and the 
union, achieving eager aggregation:

Grouping completed here, according to 
the semantic of the query.

Intermediate operators that preserve 
the semantics

Eager grouping that preserves 
the semantics

group

join

unionScan: t

Scan: ase tab
Scan: proxy_asiq_tab

ASIQ
group

?

208   Adaptive Server Enterprise



CHAPTER 6    Eager and Lazy Aggregation
Figure 6-7: Eager aggregation

Grouping is now adjacent to the CIS proxy. The CIS layer can now send a 
grouped query to ASIQ and return aggregated data. 

Eager Aggregation achieved

group

join

unionScan: t

Scan: ase tab Scan: proxy_asiq_tab

group group
Performance and Tuning Series: Query Processing and Abstract Plans  209



Examples 
Figure 6-8: Optimal CIS behavior with eager aggregation

DSS/DQP The efficient execution of complex aggregated DSS queries in a distributed 
environment is a challenge not only in online data archivings; it is, in general, 
a generic DSS/DQP problem in online data archiving DSS/DQP:

• A typical query involves complex joins and unions, and aggregation is 
performed at the top of the query tree.

• The data is distributed across the nodes, and the intermediate results must 
be shipped from a producer node to a consumer node for further 
processing.

Single-node DSS Although the examples above are for DQP in general, and online data archiving 
in particular, the eager aggregation performance impact goes beyond shipping 
intermediate results between DQP nodes.

Eager aggregation enhances the performance of aggregated complex queries 
by reducing intermediate result sets. Since aggregated complex queries are 
typical, eager aggregation enhances Adaptive Server performance in all DSS 
applications.

ASE ASIQselect q2,
sum(q1)

from 
asiq_tab

group by q2
group

scan:
asiq_tab

group

join

scan:t union

group NetScan:
ASIQ

Scan:
ase_tab
210   Adaptive Server Enterprise



CHAPTER 6    Eager and Lazy Aggregation
Using eager aggregation
Eager aggregation is an internal query processing feature. You need not change 
anything at the SQL level when you enable eager aggregation; queries that use 
aggregation have eager aggregation-based plans automatically enumerated and 
costed by the optimizer.

Enabling eager aggregation
Eager aggregation is controlled by the advanced_aggregation optimizer setting, 
which is off by default in all optimization goals except allrows_dss, where it is 
on. Eager aggregation can be enabled, disabled, or reset to the optimizer goal’s 
default value at either the connection or query level. 

For example, to enable at the connection level:

set advanced_aggregation on

To enable at the query level:

select r1, sum (s1) 
from r, s 
where r2 = s2 
group by r1 
plan  
"(use advanced_aggregation on)" 

Alternatively, if the optimization goal is set to allrows_dss, eager aggregation 
is implicitly enabled. In this example, an abstract plan sets allrows_dss at the 
query level:

select r1, sum (s1) 
from r, s 
where r2 = s2 
group by r1 
plan 
"(use optgoal allrows_dss)" 

Checking for eager aggregation
When eager aggregation is enabled, the optimizer determines cost, depending 
on whether the estimated cheapest plan uses eager aggregation or not.
Performance and Tuning Series: Query Processing and Abstract Plans  211



Using eager aggregation 
Output from the showplan aggregation:

1> select r1, sum(s1) 
2> from r, s 
3> where r2=s2 
4> group by r1 
5> go

QUERY PLAN FOR STATEMENT 1 (at line 1). 
STEP 1 
The type of query is SELECT. 
6 operator(s) under root 
|ROOT:EMIT Operator 
| 
| |HASH VECTOR AGGREGATE Operator 
| | GROUP BY 
| | Evaluate Grouped SUM OR AVERAGE AGGREGATE. 
| | Using Worktable2 for internal storage. 
| | Key Count: 1 
| | 
| | |MERGE JOIN Operator (Join Type: Inner Join) 
| | | Using Worktable1 for internal storage. 
| | | Key Count: 1 
| | | Key Ordering: ASC 
| | | 
| | | |GROUP SORTED Operator 
| | | | Evaluate Grouped COUNT AGGREGATE. 
| | | | 
| | | | |SCAN Operator 
| | | | | FROM TABLE 
| | | | | r 
| | | | | Index : ir21 
| | | | | Forward Scan. 
| | | | | Positioning at index start. 
| | | | | Index contains all needed columns. Base table will not be read. 
| | | | | Using I/O Size 2 Kbytes for index leaf pages. 
| | | | | With LRU Buffer Replacement Strategy for index leaf pages. 
| | | 
| | | |GROUP SORTED Operator 
| | | | Evaluate Grouped SUM OR AVERAGE AGGREGATE. 
| | | | 
| | | | |SCAN Operator 
| | | | | FROM TABLE 
| | | | | s 
| | | | | Index : is21 
| | | | | Forward Scan. 
| | | | | Positioning at index start. 
212   Adaptive Server Enterprise



CHAPTER 6    Eager and Lazy Aggregation
| | | | | Index contains all needed columns. Base table will not be read. 
| | | | | Using I/O Size 2 Kbytes for index leaf pages. 
| | | | | With LRU Buffer Replacement Strategy for index leaf pages. 
r1 
----------- ----------- 
          1           2 
          2           4 
(2 rows affected)

As the query performs vector aggregation over the join of r and s, the hash 
vector aggregate operator at the top of the query tree is expected in all cases. 
However, the group sorted operators over the scans of r and of s are not part of 
the query; they perform the eager aggregation.

When advanced_aggregation is off, the plan does not contain the eager 
aggregation operators group sorted:

1> set advanced_aggregation off 
2> go 
1> select r1, sum(s1) 
2> from r, s 
3> where r2=s2 
4> group by r1 
5> go

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
STEP 1 
The type of query is SELECT. 
4 operator(s) under root 
|ROOT:EMIT Operator 
| 
| |HASH VECTOR AGGREGATE Operator 
| | GROUP BY 
| | Evaluate Grouped SUM OR AVERAGE AGGREGATE. 
| | Using Worktable2 for internal storage. 
| | Key Count: 1 
| | 
| | |MERGE JOIN Operator (Join Type: Inner Join) 
| | | Using Worktable1 for internal storage. 
| | | Key Count: 1 
| | | Key Ordering: ASC 
| | | 
| | | |SCAN Operator 
| | | | FROM TABLE 
| | | | r 
| | | | Index : ir21 
| | | | Forward Scan. 
Performance and Tuning Series: Query Processing and Abstract Plans  213



Using eager aggregation 
| | | | Positioning at index start. 
| | | | Index contains all needed columns. Base table will not be read. 
| | | | Using I/O Size 2 Kbytes for index leaf pages. 
| | | | With LRU Buffer Replacement Strategy for index leaf pages. 
| | | 
| | | |SCAN Operator 
| | | | FROM TABLE 
| | | | s 
| | | | Index : is21 
| | | | Forward Scan. 
| | | | Positioning at index start. 
| | | | Index contains all needed columns. Base table will not be read. 
| | | | Using I/O Size 2 Kbytes for index leaf pages. 
| | | | With LRU Buffer Replacement Strategy for index leaf pages. 
r1 
----------- ----------- 
          1           2 
          2           4 
(2 rows affected)

Forcing eager aggregation with abstract plans
The optimizer opportunistically enumerates the cheap GroupSorted-based 
eager aggregation plans when the child plan fragment provides an ordering on 
the local grouping columns.

This limitation avoids increasing the optimization search space and time. 
However, in some cases hash-based eager aggregation produces the cheapest 
plan. abstract plans can be used in such cases to force eager aggregation. 
advanced_grouping must be enabled to use such an abstract plan; otherwise the 
eager aggregation abstract plan is rejected.

In the example above, if r has no index on (r1, r2), and if r is large but has few 
r1--r2 distinct pairs of values, a hash join with eager grouping over r is the best 
plan, forced by this abstract plan:

1> select r1, sum(s1) 
2> from r, s 
3> where r2=s2 
4> group by r1 
5> plan 
6> "(group_hashing 
7>         (h_join 
8>                 (group_hashing 
9>                     (t_scan r) 
214   Adaptive Server Enterprise



CHAPTER 6    Eager and Lazy Aggregation
10>                 ) 
11>                 (t_scan s) 
12>         ) 
13> )" 
14> go

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using the Abstract Plan in the PLAN clause. 
STEP 1 
The type of query is SELECT. 
5 operator(s) under root 
|ROOT:EMIT Operator 
| 
| |HASH VECTOR AGGREGATE Operator 
| | GROUP BY 
| | Evaluate Grouped SUM OR AVERAGE AGGREGATE. 
| | Using Worktable3 for internal storage. 
| | Key Count: 1| | 
| | |HASH JOIN Operator (Join Type: Inner Join) 
| | | Using Worktable2 for internal storage. 
| | | Key Count: 1 
| | | 
| | | |HASH VECTOR AGGREGATE Operator 
| | | | GROUP BY 
| | | | Evaluate Grouped COUNT AGGREGATE. 
| | | | Using Worktable1 for internal storage. 
| | | | Key Count: 2 
| | | | 
| | | | |SCAN Operator 
| | | | | FROM TABLE 
| | | | | r 
| | | | | Table Scan. 
| | | | | Forward Scan. 
| | | | | Positioning at start of table. 
| | | | | Using I/O Size 2 Kbytes for data pages. 
| | | | | With LRU Buffer Replacement Strategy for data pages. 
| | | 
| | | |SCAN Operator 
| | | | FROM TABLE 
| | | | s 
| | | | Table Scan. 
| | | | Forward Scan. 
| | | | Positioning at start of table. 
| | | | Using I/O Size 2 Kbytes for data pages. 
| | | | With LRU Buffer Replacement Strategy for data pages. 
r1 
Performance and Tuning Series: Query Processing and Abstract Plans  215



Using eager aggregation 
----------- ----------- 
1           2 
2           4 
 
(2 rows affected)

The hash vector aggregate operator eagerly aggregates the scan of r, as 
requested by the abstract plan.
216   Adaptive Server Enterprise



C H A P T E R  7 Controlling Optimization

This chapter describes query processing options that affect the query 
processor’s choice of join order, index, I/O size, and cache strategy.

Special optimizing techniques
Sybase recommends that, before using the tools discussed in this chapter, 
you read the Performance and Tuning Series: Basics. It will help you 
understand the material in this chapter. 

Use the optimization techniques with caution, as they allow you to 
override the decisions made by the Adaptive Server query processor and 
if misused, can have an extremely negative effect on performance. You 
should understand the impact on the performance of both your individual 
query and the possible implications for overall system performance.

Topic Page
Special optimizing techniques 217

Specifying query processor choices 221

Specifying table order in joins 222

Specifying the number of tables considered by the query processor 223

Specifying query index 224

Specifying I/O size in a query 226

Specifying cache strategy 229

Controlling large I/O and cache strategies 231

Asynchronous log service 231

Enabling and disabling merge joins 234

Enabling and disabling join transitive closure 235

Controlling literal parameterization 236

Suggesting a degree of parallelism for a query 238

Concurrency optimization for small tables 248
Performance and Tuning Series: Query Processing and Abstract Plans 217



Viewing current optimizer settings 
In most situations, Adaptive Server advanced, cost-based query processor 
produces excellent query plans. However, there are times when the query 
processor does not choose the proper index for optimal performance, or 
chooses a suboptimal join order, and you must control the access methods for 
the query. The optimization techniques allow you to take that control.

In addition, while you are tuning, you may want to see the effects of a different 
join order, I/O size, or cache strategy. Some of the optimization options let you 
specify query processing or access strategy without costly reconfiguration.

Adaptive Server provides tools and query clauses that affect query 
optimization and advanced query analysis tools that let you understand why the 
query processor makes the choices that it does.

Note  This chapter suggests workarounds for certain optimization problems. If 
the workarounds do not adequately address these problems, call Sybase 
Technical Support. 

Viewing current optimizer settings
sp_options allows you to view the current optimizer settings for these options: 

• set plan dump / load 

• set plan exists check

• set forceplan

• set plan optgoal

• set [optCriteria]

• set plan opttimeoutlimit

• set plan replace

• set statistics simulate

• set metrics_capture

• set prefetch

• set parallel_degree number

• set process_limit_action
218   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
• set resource_granularity number

• set scan_parallel_degree number

• set repartition_degree number

sp_options queries the sysoptions fake table, which stores information about 
each set option, its category, and its current and default settings. sysoptions also 
contains a bitmap that provides detailed information for each option

The syntax for sp_options is:

sp_options [ [show | help 
                         [, option_name | category_name |null 
                              [, dflt | non_dflt | null  
                                  [, spid] ] ] ] ]

where:

• show – lists the current and default values of all options, grouped 
according to their category. Issuing sp_options show with an option name 
specified shows you the current and default value for the individual option. 
You can also specify a session ID, and whether you want to view options 
with default settings or options with nondefault settings.

• help – show usage information. Achieve the same result by issuing 
sp_options with no parameters.

• null – indicates the option for which you want to view the settings.

• dflt | non_dflt | null – indicates whether to show options with default settings 
or to show options with non-default settings.

• spid – specifies the session ID. Use the session ID to view other session 
settings. 

For example, to display the current optimizer settings shown below, enter:

1> sp_options show 
2> go 
Category: Query Tuning 
name                      currentsetting       defaultsetting       scope 
------------------------------------------ ------------------------------ 
optgoal                     allrows_mix          allrows_mix          0 
opttimeoutlimit             40                   10                   0 
merge_join                  1                    1                    4  
hash_join                   0                    0                    4  
nl_join                     1                    1                    4  
distinct_sorted             1                    1                    4  
distinct_sorting            1                    1                    4  
distinct_hashing            1                    1                    4  
Performance and Tuning Series: Query Processing and Abstract Plans  219



Viewing current optimizer settings 
group_sorted                1                    1                    4  
group_hashing               1                    1                    4  
group_inserting             0                    0                    4  
order_sorting               1                    1                    4  
append_union_all            1                    1                    4  
merge_union_all             1                    1                    4  
merge_union_distinct        1                    1                    4  
hash_union_distinct         1                    1                    4  
store_index                 1                    1                    4  
bushy_space_search          0                    0                    4  
parallel_query              1                    1                    4  
replicated_partition        0                    0                    4  
ase125_primed               0                    0                    4  
index_intersection          0                    0                    4  
index_union                 1                    1                    4  
multi_table_store_ind       0                    0                    4  
advanced_aggregation        0                    0                    4  
opportunistic_distinct_view 1                    1                    4  
repartition_degree          3                    1                    2  
scan_parallel_degree        0                    1                    2  
resource_granularity        10                   10                   2  
parallel_degree             0                    1                    2  
statistics simulate         0                    0                    4  
forceplan                   0                    0                    7  
prefetch                    1                    1                    6  
metrics_capture             0                    0                    6  
process_limit_action        quiet                quiet                2  
plan replace                0                    0                    4  
plan exists check           0                    0                    4  
plan dump                   0                    0                    4  
plan load                   0                    0                    4  
 
(39 rows affected) 
(return status = 0) 

For more information about sp_options, see Adaptive Server Reference 
Manual: Procedures.

Any user can query sysoptions:

You can also use string manipulation or a cast. For example, if an option is 
numeric, you can query sysoptions by entering:

if (isnumeric(currentsetting)) 
select@int_val = convert(int, currentsetting) 
... 

else 
220   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
select@char_val = currentsetting 
...

For more infomation about sysoptions, see Adaptive Server Reference Manual: 
Tables.

Specifying query processor choices
Adaptive Server lets you specify these optimization choices by including 
commands in a query batch or in the text of the query:

• The order of tables in a join

• The number of tables evaluated at one time during join optimization

• The index used for a table access

• The I/O size

• The cache strategy

• The degree of parallelism

Under some circumstances, the query processor does not choose the best plan. 
Occasionally, the plan choosen by the query processor is only slightly more 
expensive than the “best” plan, so you must weigh the cost of maintaining 
forced options against the slower performance of a less than optimal plan.

The commands to specify join order, index, I/O size, or cache strategy, coupled 
with the query-reporting commands like statistics io and showplan, can help you 
determine why the query processor makes its choices.

 Warning! Use the options described in this chapter with caution. Forced query 
plans may be inappropriate in some situations and may cause poor 
performance. If you include these options in your applications, regularly check 
query plans, I/O statistics, and other performance data.

These options are generally intended for use as tools for tuning and 
experimentation, not as long-term solutions to optimization problems.
Performance and Tuning Series: Query Processing and Abstract Plans  221



Specifying table order in joins 
Specifying table order in joins
Adaptive Server optimizes join orders to minimize I/O. In most cases, the order 
that the query processor chooses does not match the order of the from clauses 
in your select command. To force Adaptive Server to access tables in the order 
they are listed, use: 

set forceplan [on|off]

The query processor still chooses the best access method for each table. If you 
use forceplan and specify a join order, the query processor may use different 
indexes on tables than it would with a different table order, or it may not be able 
to use existing indexes.

You might use this command as a debugging aid if other query analysis tools 
lead you to suspect that the query processor is not choosing the best join order. 
Always verify that the order you are forcing reduces I/O and logical reads by 
using set statistics io on and comparing I/O both with and without forceplan.

If you use forceplan, your routine performance maintenance checks should 
include verifying that the queries and procedures that use forceplan still require 
the option to improve performance.

You can include forceplan in the text of stored procedures.

set forceplan forces only join order, and not join type. There is no command for 
specifying the join type; you can disable merge joins at the server or session 
level. 

You can disable hash joins at the session level. Also remember that an abstract 
plan allows full plan specification, including join order and join types. 

See Chapter 12, “Creating and Using Abstract Plans,” and “Enabling and 
disabling merge joins” on page 234.

Forcing join order has these risks:

• Misuse can lead to extremely expensive queries. Always test the query 
thoroughly with statistics io, and with and without forceplan.

• It requires maintenance. You must regularly check queries and stored 
procedures that include forceplan. Also, each new version of Adaptive 
Server may eliminate the problems that lead you to incorporate index 
forcing, so check all queries that use forced query plans each time a new 
version is installed.

Before you use forceplan:
222   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
• Check the showplan output to determine whether index keys are used as 
expected.

• Use set option show normal to look for other optimization problems.

• Run update statistics on the index. 

• Use update statistics to add statistics for search arguments on unindexed 
search clauses in the query, especially for search arguments that match 
minor keys in compound indexes.

• Use set option show_missing_stats on to look for columns that may need 
statistics. 

• If the query joins more than four tables, use set table count, which may 
result in an improved join order. 

See “Specifying the number of tables considered by the query processor” 
on page 223.

Specifying the number of tables considered by the 
query processor

In versions earlier than 15.0, Adaptive Server optimized joins by considering 
two to four permutations at a time. Versions 15.0 and later do not limit the 
query processor to two or four permutations. Instead, the new search engine 
introduces a timeout mechanism to avoid excessive time spent optimizing a 
query. The set table count setting discussed later in this section still affects the 
initial join order looked at by the search engine, and thus affects the final join 
order when timeout does occur. If you suspect that an inefficient join order is 
being chosen when the search engine times out, use set table count to increase 
the number of tables that are considered, which affects the initial join order 
considered by the search engine in starting the permutation. 

Adaptive Server still optimizes joins by considering permutations of two to 
four tables at a time, but if you suspect that an inefficient join order is being 
chosen for a join query, use set table count to increase the number of tables that 
are considered at the same time: 

set table count int_value

Valid values are 0 though 8; 0 restores the default behavior. 

For example, to specify four-at-a-time optimization, use:
Performance and Tuning Series: Query Processing and Abstract Plans  223



Specifying query index 
set table count 4

As you decrease the value, you reduce the chance that the query processor 
considers all possible join orders. Increasing the number of tables considered at 
one time during join ordering can greatly increase the time it takes to optimize 
a query.

Since the time it takes to optimize the query is increased with each additional 
table, set table count is most useful when the execution savings from improved 
join order outweighs the extra optimizing time. Some examples are:

• If you think that a more optimal join order can shorten total query 
optimization and execution time, especially for stored procedures that you 
expect to be executed many times once a plan is in the procedure cache 

• When saving abstract plans for later use

Use statistics time to check parse and compile time, and statistics io to verify that 
the improved join order is reducing physical and logical I/O. 

If increasing the table count produces an improvement in join optimization, but 
unacceptably increases CPU time, rewrite the from clause in the query, 
specifying the tables in the join order indicated by showplan output, and use 
forceplan to run the query. Be sure that your routine performance maintenance 
checks include verifying that the join order you are forcing still improves 
performance.

Specifying query index
You can use the (index index_name clause in select, update, and delete 
statements to specify the index to use for a query. You can also force a query to 
perform a table scan by specifying the table name. The syntax is: 

select select_list 
    from table_name [correlation_name] 
       (index {index_name | table_name } ) 
       [, table_name ...] 
    where ... 

delete table_name  
    from table_name [correlation_name] 
    (index {index_name | table_name }) ...  
224   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
update table_name set col_name = value 
    from table_name [correlation_name] 
    (index {index_name | table_name})...

For example:

select pub_name, title 
    from publishers p, titles t (index date_type) 
    where p.pub_id = t.pub_id 
    and type = "business" 
    and pubdate > "1/1/93"

Specifying an index in a query may be helpful when you suspect that the query 
processor is choosing a suboptimal query plan. When you do specify the index:

• Always check statistics io for the query to see whether the index you 
choose requires less I/O than the query processor’s choice. 

• Test a full range of valid values for the query clauses, especially if you are:

• Tuning queries on tables that have skewed data distribution

• Performing range queries, since the access methods for these queries 
are sensitive to the size of the range

Use (index index_name only after testing when you are certain that the query 
performs better with the specified index option. Once you include an index 
specification in a query, regularly verify that the resulting plan is still better 
than other choices made by the query processor.

If a unclustered index has the same name as the table, specifying a table name 
causes the unclustered index to be used. You can force a table scan using select  
select_list from  tablename  (0).

Specifying indexes has these risks:

• Changes in the distribution of data could make the forced index less 
efficient than other choices.

• Dropping the index means that all queries and procedures that specify the 
index print an informational message indicating that the index does not 
exist. The query is optimized using the best alternative access method.

• Increased maintenance, since you must periodically check all queries 
using this option. Also, each new version of Adaptive Server may 
eliminate the problems that lead you to incorporate index forcing, so you 
should check all queries using forced indexes each time you install a new 
version.
Performance and Tuning Series: Query Processing and Abstract Plans  225



Specifying I/O size in a query 
• The index must exist at the time the query using it is optimized. You 
cannot create an index and then use it in a query in the same batch.

Before specifying an index in queries:

• Check showplan output for the “Keys are” message to be sure that the 
index keys are being used as expected.

• Use dbcc traceon(3604) or set option show normal to look for other 
optimization problems.

• Run update statistics on the index.

• If the index is a composite index, run update statistics on the minor keys in 
the index, if they are used as search arguments. This can greatly improve 
query processor cost estimates. Creating statistics for other columns 
frequently used for search clauses can also improve estimates.

• Use set option show_missing_stats on to look for columns that may need 
statistics. 

Specifying I/O size in a query
If your Adaptive Server is configured for large I/Os in the default data cache or 
in named data caches, the query processor may decide to use large I/O for:

• Queries that scan entire tables

• Range queries using clustered indexes, such as queries using >, <, > x and 
< y, between, and like “charstring %”

• Queries that scan a large number of index leaf pages

If the cache used by the table or index is configured for 16K I/O, a single I/O 
can read up to 8 pages simultaneously. Each named data cache can have several 
pools, each with a different I/O size. Specifying the I/O size in a query causes 
the I/O for that query to take place in the pool that is configured for that size. 
See the System Administration Guide: Volume 2 for information on configuring 
named data caches.

To specify an I/O size that is different from the one chosen by the query 
processor, add the prefetch specification to the index clause of a select, delete, 
or update statement. The syntax is: 

select select_list 
    from table_name 
226   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
      ( [index {index_name | table_name} ] 
           prefetch size) 
      [, table_name ...] 
where ...

 

delete table_name from table_name  
    ( [index {index_name | table_name} ] 
         prefetch size) 
... 

 

update table_name set col_name = value  
    from table_name  
       ( [index {index_name | table_name} ] 
            prefetch size) 
...

The valid prefetch size depends on the page size. If no pool of the specified size 
exists in the data cache used by the object, the query processor chooses the best 
available size.

If there is a clustered index on au_lname, this query performs 16K I/O while it 
scans the data pages:

select *  
from authors (index au_names prefetch 16) 
    where au_lname like "Sm%"

If a query normally performs large I/O, and you want to check its I/O 
performance with 2K I/O, you can specify a size of 2K:

select type, avg(price) 
from titles (index type_price prefetch 2) 
    group by type

Note  Reference to large I/Os are on a 2K logical page size server. If you have 
an 8K page size server, the basic unit for the I/O is 8K. If you have a 16K page 
size server, the basic unit for the I/O is 16K.

Index type and large I/O size
When you specify an I/O size with prefetch, the specification can affect both 
the data pages and the leaf-level index pages. Table 7-1 shows the effects.
Performance and Tuning Series: Query Processing and Abstract Plans  227



Specifying I/O size in a query 
Table 7-1: Access methods and prefetching

showplan reports the I/O size used for both data and leaf-level pages. 

See “I/O size messages” on page 58.

When prefetch specification cannot be followed
In most cases, when you specify an I/O size in a query, the query processor 
incorporates the I/O size into the query’s plan. However, there are times when 
the specification cannot be followed, either for the query as a whole or for a 
single, large I/O request.

You cannot use large I/O for the query if:

• The cache is not configured for I/O of the specified size. The query 
processor substitutes the best size available.

• sp_cachestrategy has been used to disable large I/O for the table or index.

You cannot use large I/O for a single buffer if: 

• Any of the pages included in that I/O request are in another pool in the 
cache.

• The page is on the first extent in an allocation unit. This extent holds the 
allocation page for the allocation unit, and only seven data pages.

• No buffers are available in the pool for the requested I/O size.

When a large I/O cannot be performed, Adaptive Server performs 2K I/O on 
the specific page or pages in the extent that are needed by the query.

To determine whether the prefetch specification is followed, use showplan to 
display the query plan and statistics io to see the results on I/O for the query. 
sp_sysmon reports on the large I/Os requested and denied for each cache. 

See “Data Cache Management” on page 89 in Performance and Tuning Series: 
Monitoring Adaptive Server with sp_sysmon.

Access method Large I/O performed on

Table scan Data pages

Clustered index Data pages only, for allpages-locked tables

Data pages and leaf-level index pages for 
data-only-locked tables

Nonclustered index Data pages and leaf pages of nonclustered index
228   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
setting prefetch
By default, a query uses large I/O whenever a large I/O pool is configured and 
the query processor determines that large I/O would reduce the query cost. To 
disable large I/O during a session, use:

set prefetch off

To reenable large I/O, use:

set prefetch on

If large I/O is turned off for an object using sp_cachestrategy, set prefetch on 
does not override that setting.

If large I/O is turned off for a session using set prefetch off, you cannot override 
the setting by specifying a prefetch size as part of a select, delete, or insert 
statement.

The set prefetch command takes effect in the same batch in which it is run, so 
you can include it in a stored procedure to affect the execution of the queries in 
the procedure.

Specifying cache strategy
For queries that scan a table’s data pages or the leaf level of an unclustered 
index (covered queries), the Adaptive Server query processor chooses one of 
two cache replacement strategies: the fetch-and-discard, most-recently used 
(MRU) strategy or the least recently used (LRU) strategy. 

See “Heaps, I/O, and cache strategies” on page 74 in Performance and Tuning 
Series: Physical Database Tuning.

The query processor may choose the MRU strategy for:

• Any query that performs table scans

• A range query that uses a clustered index

• A covered query that scans the leaf level of a nonclustered index

• An inner table in a nested-loop join, if the inner table is larger than the 
cache

• The outer table of a nested-loop join, since it needs to be read only once

• Both tables in a merge join.
Performance and Tuning Series: Query Processing and Abstract Plans  229



Specifying cache strategy 
To affect the cache strategy for objects:

• Specify lru or mru in a select, update, or delete statement

• Use sp_cachestrategy to disable or reenable the mru strategy

If you specify the MRU strategy, and a page is already in the data cache, the 
page is placed at the MRU end of the cache, rather than at the wash marker.

Specifying the cache strategy affects only data pages and the leaf pages of 
indexes. Root and intermediate pages always use the LRU strategy.

In select, delete, and update statements
You can use lru or mru in a select, delete, or update command to specify the I/O 
size for the query. (You get only sizes based on caches you have configured 
correctly. For example, if you specify 4K but Adaptive Server does not use a 
4K page size, the command returns 2K): 

select select_list 
      from table_name 
           (index index_name prefetch size [lru|mru]) 
           [, table_name ...] 
where ...

 

delete table_name from table_name (index index_name  
      prefetch size [lru|mru]) ... 

 

update table_name set col_name = value 
      from table_name (index index_name 
             prefetch size [lru|mru]) ...

For example, to add the LRU replacement strategy to a 16K I/O specification, 
enter:

select au_lname, au_fname, phone 
    from authors (index au_names prefetch 16 lru)

See “Specifying I/O size in a query” on page 226.
230   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
Controlling large I/O and cache strategies
Status bits in the sysindexes table identify whether you should consider a table 
or an index for large I/O prefetch or for MRU replacement strategy. By default, 
both are enabled. To disable or reenable these strategies, use sp_cachestrategy: 

sp_cachestrategy dbname , [ownername.]tablename  
      [, indexname | "text only" | "table only"  
      [, { prefetch | mru }, { "on" | "off"}]]

For example, to turn off the large I/O prefetch strategy for the au_name_index 
of the authors table, enter:

sp_cachestrategy pubtune, authors, au_name_index, 
   prefetch, "off"

To reenable MRU replacement strategy for the titles table:

sp_cachestrategy pubtune, titles, "table only",  
   mru, "on"

Only a system administrator or the object owner can change or view the cache 
strategy status of an object.

Getting information on cache strategies
To see the cache strategy that is in effect for a given object, execute 
sp_cachestrategy, with the database and object name:

sp_cachestrategy pubtune, titles
object name      index name       large IO MRU      
---------------- ---------------- -------- -------- 
titles           NULL             ON       ON  

showplan output shows the cache strategy used for each object, including 
worktables.

Asynchronous log service
Asynchronous log service (ALS) increases scalability in Adaptive Server and 
provides higher throughput in logging subsystems for high-end symmetric 
multiprocessor systems. 
Performance and Tuning Series: Query Processing and Abstract Plans  231



Asynchronous log service 
You cannot use ALS if you have fewer than four engines; if you attempt to do 
so, with fewer than 4 online engines an error message appears.

You can enable, disable, or configure ALS using the sp_dboption stored 
procedure:

sp_dboption <db Name>, "async log service", 
"true|false"

After issuing sp_dboption, you must issue a checkpoint in the database for 
which you are setting the ALS option: 

sp_dboption "mydb", "async log service", "true" 
use mydb
checkpoint

You can use the checkpoint to identify the one or more databases or use an all 
clause:

checkpoint [all | [dbname[, dbname[, dbname.....]]]

To disable ALS, enter:

sp_dboption "mydb", "async log service", "false" 
use mydb
checkpoint 
-------------

Before you disable ALS, make sure there are no active users in the database. If 
there are active users in the database when you disable ALS, you see this error 
message:

Error 3647: Cannot put database in single-user mode. 
Wait until all users have logged out of the database and 
issue a CHECKPOINT to disable "async log service".

Use sp_helpdb to see whether ALS is enabled in a specified database:

sp_helpdb "mydb" 
---------- 
mydb 3.0 MB sa 2 

July 09, 2002 
select into/bulkcopy/pllsort, trunc log on chkpt,

async log service

For more information on these stored procedures, see the Adaptive Server 
Reference Manual: Procedures.
232   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
Understanding the user log cache (ULC) architecture
The Adaptive Server logging architecture features the user log cache, or ULC, 
by which each task owns its own log cache. No other task can write to this 
cache, and the task continues writing to the user log cache whenever a 
transaction generates a log record. When the transaction commits or aborts, or 
when the log cache fills up, the ULC is flushed to the common log cache, 
shared by all the current tasks, which is then written to the disk. 

Flushing the ULC is the first part of a commit or abort operation, requiring the 
following steps, each of which can cause delay or increase contention:

1 Obtaining a lock on the last log page.

2 Allocating new log pages if necessary.

3 Copying the log records from the ULC to the log cache.

The processes in steps 2 and 3 require you to hold a lock on the last log 
page, which prevents any other tasks from writing to the log cache or 
performing commit or abort operations.

4 Flush the log cache to disk.

Step 4 requires repeated scanning of the log cache to issue write commands 
on dirty buffers. 

Repeated scanning can cause contention on the buffer cache spinlock to 
which the log is bound. Under a large transaction load, contention on this 
spinlock can be significant.

When to use ALS
You can enable ALS on any specified database that has at least one of the 
following performance issues, if your system runs four or more online engines:

• Heavy contention on the last log page

You can tell that the last log page is under contention when the sp_sysmon 
output in the Task Management Report section shows a significantly high 
value. For example:

Task Management             per sec       per xact   count   % of total 
-----------------------   ---------    ----------   --------  -------- 
Log Semaphore Contention        58.0           0.3       34801    73.1%
Performance and Tuning Series: Query Processing and Abstract Plans  233



Enabling and disabling merge joins 
• Underutilized bandwidth in the log device

Note  Use ALS only when you identify a single database with high transaction 
requirements, since setting ALS for multiple databases may cause unexpected 
variations in throughput and response times. To configure ALS on multiple 
databases, first check that throughput and response times are satisfactory.

Using the ALS
Two threads scan the dirty buffers (buffers full of data not yet written to the 
disk), copy the data, and write it to the log. These threads are:

• The user log cache (ULC) flusher – The ULC flusher is a system task 
thread that is dedicated to flushing the user log cache of a task into the 
general log cache. When a task is ready to commit, the user enters a 
commit request into the flusher queue. Each entry has a handle, by which 
the ULC flusher can access the ULC of the task that queued the request. 
The ULC flusher task continuously monitors the flusher queue, removing 
requests from the queue and servicing them by flushing ULC pages into 
the log cache.

• The log writer – Once the ULC flusher has finished flushing the ULC 
pages into the log cache, it queues the task request into a wakeup queue. 
The log writer patrols the dirty buffer chain in the log cache, issuing a write 
command if it finds dirty buffers, and monitors the wakeup queue for tasks 
whose pages are all written to disk. Since the log writer patrols the dirty 
buffer chain, it knows when a buffer is ready to write to disk.

Enabling and disabling merge joins
By default, merge joins are enabled at the server level, for allrows mix and for 
allrows_dss optgoal, and are disabled at the server level for other optgoals, 
including allrows_oltp. When merge joins are disabled, the server costs only the 
other join types that are not disabled. To enable merge joins server-wide, set 
enable merge join to 1. The enable sort-merge joins and JTC configuration 
parameter from versions of Adaptive Server earlier than 15.0 does not affect 
the 15.0 and later query processor.
234   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
The command set merge_join on overrides the server level to allow use of 
merge joins in a session or stored procedure.

To enable merge joins, use:

set merge_join on

To disable merge joins, use:

set merge_join off

Enabling and disabling hash joins
By default, hash joins are enabled only when you run allrows_dss optgoal. To 
override the server level setting, and allow use of hash join in a session or 
stored procedure, use set hash_join on. 

To enable hash joins, use:

set hash_join on

To disable hash joins, use:

set hash_join off

Enabling and disabling join transitive closure
In Adaptive Server version 15.0 and later, join transitive closure is always on 
and cannot be disabled. The search engine uses the timeout mechanism to 
avoid excessive optimization time. Although the timeout setting no longer 
affects the actual use of transitive closure for the query processor, it can still 
affect the initial join order with which the search engine begins the permutation 
when the timeout occurs. You may find this discussion useful when you suspect 
that a suboptimal join order is being chosen at timeout. 

By default, join transitive closure is not enabled at the server level, since it can 
increase optimization time. You can enable join transitive closure at a session 
level with set jtc on. The session-level command overrides the server-level 
setting for the enable sort-merge joins and JTC configuration parameter 
(available for versions of Adaptive Server earlier than 15.0).
Performance and Tuning Series: Query Processing and Abstract Plans  235



Controlling literal parameterization 
For queries that execute quickly, even when several tables are involved, join 
transitive closure may increase optimization time with little improvement in 
execution cost. For example, with join transitive closure applied to this query, 
the number of possible joins is multiplied for each added table:

select * from t1, t2, t3, t4, ... tN 
where t1.c1 = t2.c1 
and t1.c1 = t3.c1 
and t1.c1 = t4.c1 
... 
and t1.c1 = tN.c1

For joins on very large tables, however, the additional optimization time 
involved in costing the join orders added by join transitive closure may result in 
a join order that greatly improves the response time.

Use set statistics time to see how long Adaptive Server takes to optimize the 
query. If running queries with set jtc on greatly increases optimization time, but 
also improves query execution by choosing a better join order, check the 
showplan, set option show_search_engine normal, or set option 
show_search_engine long output. Explicitly add the useful join orders to the 
query text. Run the query without join transitive closure, and get the improved 
execution time, without the increased optimization time of examining all 
possible join orders generated by join transitive closure.

You can also enable join transitive closure and save abstract plans for queries 
that benefit. If you then execute those queries with loading from the saved 
plans enabled, the saved execution plan is used to optimize the query, making 
optimization time extremely short. 

See Performance and Tuning: Optimizer and Abstact Plans for more 
information on using abstract plans and configuring join transitive closure 
server-wide.

Controlling literal parameterization
Adaptive Server version 15.0.1 and later allow you to automatically convert 
literal values in SQL queries to parameter descriptions (similar to variables).

To enable or disable enable literal autoparam server-wide, use:

sp_configure "enable literal autoparam", [0 | 1]
236   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
Where 1 automatically converts literal values to parameter descriptions, and 0 
(the default) disables the feature.

Set literal parameterization at the session level using:

set literal_autoparam [off | on]

In versions of Adaptive Server earlier than 15.0.1, two queries that were 
identical except for one or more literal values resulted in the statement cache 
storing two separate query plans, or two additional rows, in sysqueryplans. For 
example, the query plans for these queries were stored separately, even though 
they are almost identical:

select count(*) from titles where total_sales > 100 
select count(*) from titles where total_sales > 200

Examples If you enable automatic literal parameterization, the SQL text of the select 
count(*) example referred to above is converted to:

select count(*) from titles where total_sales > @@@V0_INT

Where @@@V0_INT is an internally generated name for the parameter that 
represents the literal values 100 and 200.

All instances of literal values in the SQL text are replaced by internally 
generated parameters. For example:

select substring(name, 3, 4) from sysobjects where name in  
    ('systypes', 'syscolumns') 

is transformed to:

select substring(name, 3, 4) from sysobjects where name in 
    (@@@V0_VCHAR1,@@@V1_VCHAR1)

Any combination of values that replace the literals, 3, 4, systypes and 
syscolumns is transformed to the same SQL text with the same parameters 
and shares the same query plan when you enable the statement cache.

Automatic literal parameterization:

• Reduces compilation time on the second—and subsequent—executions of 
the query, regardless of the literal values in the query.

• Reduces the amount of SQL text storage space, including memory usage 
in the statement cache and the number of rows in sysqueryplans for 
abstract plans and query metrics.

• Reduces the amount of procedure cache used to store query plans.

• Occurs automatically within Adaptive Server, when enabled: you need not 
change the applications that submit the queries to Adaptive Server.
Performance and Tuning Series: Query Processing and Abstract Plans  237



Suggesting a degree of parallelism for a query 
Usage issues for automatic literal parameterization include:

• Adaptive Server parameterizes the literals only for select, delete, update, 
and insert. For insert statements, Adaptive Server parameterizes only insert 
... select statements, not insert ... values statements.

• Adaptive Server does not parameterize queries similar to select id + 1 
from sysobjects group by id + 1 or select id + 1 from 
sysobjects order by id + 1 because of the expressions (“id + 1”) 
in the group by and order by clauses.

• Adaptive Server does not cache SQL statements with text longer than 
16384 bytes in the statement cache (SQL statements over 16K are not 
cached). Transforming literals in the SQL statement into variables can 
significantly expand the size of the SQL text (especially if there was a 
large number of literals). Enabling automatic literal parameterization may 
result in Adaptive Server not caching some SQL statements that it would 
otherwise have cached.

• univarchar and unichar literals are not supported.

• If you are using a multibyte character set, enable literal autoparam is 
automatically disabled.

• If two SQL statements are the same except that their literal values have 
different datatypes, they are not transformed into matching SQL texts. For 
example, the following two SQL statements return the same results, but 
are parameterized differently because they use the different datatypes:

select name from sysobjects where id = 1 
select name from sysobjects where id = 1.0

The parameterized versions of these statements are:

select name from sysobjects where id = @@@V0_INT 
select name from sysobjects where id = @@@V0_NUMERIC

Suggesting a degree of parallelism for a query
The parallel and degree_of_parallelism extensions to the from clause of a select 
command allow users to restrict the number of worker processes used in a scan.

For a parallel partition scan to be performed, the degree_of_parallelism must 
be equal to or greater than the number of partitions. For a parallel index scan, 
specify any value for the degree_of_parallelism. 
238   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
The syntax for the select statement is: 

select... 
      [from {tablename}  
          [(index index_name  
              [parallel [degree_of_parallelism | 1]] 
              [prefetch size] [lru|mru])], 
          {tablename} [([index_name]  
              [parallel [degree_of_parallelism | 1]  
                [prefetch size] [lru|mru])] ...

Table 7-2 shows how to combine the index and parallel keywords to obtain 
serial or parallel scans. 

Table 7-2: Optimizer hints for serial and parallel execution

When you specify the parallel degree for a table in a merge join, it affects the 
degree of parallelism used for both the scan of the table and the merge join.

You cannot use the parallel option if you have disabled parallel processing 
either at the session level with the set parallel_degree 1 command, or at the 
server level with the parallel degree configuration parameter. The parallel 
option cannot override these settings.

If you specify a degree_of_parallelism that is greater than the maximum 
configured degree of parallelism, Adaptive Server ignores the hint.

The optimizer ignores hints that specify a parallel degree if any of the 
following conditions is true:

• The from clause is used in the definition of a cursor.

• parallel is used in the from clause of an inner query block of a subquery, and 
the optimizer does not move the table to the outermost query block during 
subquery flattening.

• The table is a view, a system table, or a virtual table.

To specify a: Use:

Parallel partition scan (index tablename   parallel N)

Parallel index scan (index index_name   parallel N)

Serial table scan (index tablename parallel 1)

Serial index scan (index index_name   parallel 1)

Parallel scan, with the choice of 
table or index scan left to the 
optimizer

(parallel N)

Serial scan, with the choice of table 
or index scan left to the optimizer

(parallel 1)
Performance and Tuning Series: Query Processing and Abstract Plans  239



Optimization goals 
• The table is the inner table of an outer join.

• The query specifies exists, min, or max on the table.

• The value for the max scan parallel degree configuration parameter is set 
to 1.

• An unpartitioned clustered index is specified or is the only parallel option.

• A nonclustered index is covered.

• The query is processed using the OR strategy. 

• The select statement is used for an update or insert.

Query level parallel clause examples
To specify the degree of parallelism for a single query, include parallel after the 
table name. This example executes in serial:

select * from titles (parallel 1)

This example specifies the index to be used in the query, and sets the degree of 
parallelism to 5:

select * from titles  
    (index title_id_clix parallel 5) 
where ...

To force a table scan, use the table name instead of the index name.

Optimization goals
Adaptive Server lets you choose a query optimization goal that best suits your 
query environment:

• fastfirstrow – optimizes queries so that Adaptive Server returns the first few 
rows as quickly as possible.

• allrows_oltp – optimizes queries so that Adaptive Server uses a limited 
number of optimization criteria (described in “Optimization criteria” on 
page 242) to find a good query plan. allrows_oltp is most useful for purely 
OLTP queries.
240   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
• allrows_mixed – optimizes queries so that Adaptive Server uses most 
available optimization techniques, including merge_join and parallel, to 
find the best query plan. allrows_mixed, which is the default strategy, is 
most useful in a mixed-query environment.

• allrows_dss – optimizes queries so that Adaptive Server uses all available 
optimization techniques to find the best query plan, including hash join, 
advanced aggregates processing, and bushy tree plan. allrows_dss is most 
useful in a DSS environment. 

Setting optimization goals
You can set the optimization goal at the server, session, or query level. The 
server-level optimization goal is overridden at the session level, which is 
overridden at the query level—which means you can set a different 
optimization goal at each level.

At the server level To set the optimization goal at the server level, you can:

• Use the sp_configure command

• Modify the optimization goal configuration parameter in the Adaptive 
Server configuration file

For example, to set the optimization level for the server to fastfirstrow, enter:

sp_configure "optimization goal", 0, "fastfirstrow"

At the session level To set the optimization goal at the session level, use set plan optgoal. For 
example, to modify the optimization goal for the session to allrows, enter:

set plan optgoal allrows_oltp

To verify the current optimization goal at the session level, enter:

select @@optgoal

At the query level To set the optimization goal at the query level, use the select or other DML 
command. For example, to change the optimization goal to allrows_oltp for the 
current query, enter:

select * from A order by A.a plan "(use optgoal allrows_oltp)"

At the query level only, you can specify the number of rows that Adaptive 
Server quickly returns when you set fastfirstrow as the optimization goal. For 
example, enter:

select * from A order by A.a plan "(use optgoal fastfirstrow 5)"
Performance and Tuning Series: Query Processing and Abstract Plans  241



Optimization criteria 
Some exceptions In general, you can set query-level optimization goals using select, update, and 
delete statements. However:

• You cannot set query-level optimization goals in pure insert statements, 
although you can set optimization goals in select ... insert statements.

• fastfirstrow is relevant only for select statements; it incurs an error when 
used with other DML statements.

Optimization criteria
You can set specific optimization criteria for each session. The optimization 
criteria represent specific algorithms or relational techniques that may or may 
not be considered when Adaptive Server creates a query plan. By setting 
individual optimization criteria on or off, you can fine-tune the query plan for 
the current session.

Note  Each optimization goal has default settings for each optimization 
criterion. Resetting optimization criteria may interfere with the default settings 
of the current optimization goal and produce an error message—although 
Adaptive Server applies the new setting.  
 
Sybase recommends that you set individual optimization criteria only rarely 
and with caution if you must fine-tune a particular query. Overriding 
optimization goal settings can overly complicate query administration. Always 
set optimization criteria after setting any existing session level optgoal setting; 
an explicit optgoal setting may return an optimization criteria to its default 
value.  
 
See “Default optimization criteria” on page 244.

Setting optimization 
criteria

Use the set command to enable or disable individual criteria. 

For example, to enable the hash join algorithm, enter:

set hash_join 1

To disable the hash join algorithm, enter: 

set hash_join 0

To enable one option and disable another, enter:
242   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
set hash_join 1, merge_join 0

Criteria descriptions Most criteria described here decides whether a particular query engine operator 
can be used in the final plan chosen by the optimizer. 

The optimization criteria are:

• hash_join – determines whether the query processor may use the hash join 
algorithm. Hash joins may consume more runtime resources, but are 
valuable when the joining columns do not have useful indexes or when a 
relatively large number of rows satisfy the join condition, compared to the 
product of the number of rows in the joined tables.

• hash_union_distinct – determines whether the query processor may use the 
hash union distinct algorithm, which is not efficient if most rows are 
distinct. 

• merge_join – determines whether the query processor may use the merge 
join algorithm, which relies on ordered input. merge_join is most valuable 
when input is ordered on the merge key—for example, from an index scan. 
merge_join is less valuable if sort operators are required to order input.

• merge_union_all – determines whether the query processor may use the 
merge algorithm for union all. merge_union_all maintains the ordering of 
the result rows from the union input. merge_union_all is particularly 
valuable if the input is ordered and a parent operator (such as merge join) 
benefits from that ordering. Otherwise, merge_union_all may require sort 
operators that reduce efficiency.

• merge_union_distinct – determines whether the query processor may use 
the merge algorithm for union. merge_union_distinct is similar to 
merge_union_all, except that duplicate rows are not retained. 
merge_union_distinct requires ordered input and provides ordered output.

• multi_table_store_ind – determines whether the query processor may use 
reformatting on the result of a multiple table join. Using  
multi_tablet_store_ind may increase the use of worktables.

• nl_join – determines whether the query processor may use the nested-loop-
join algorithm.

• opportunistic_distinct_view – determines whether the query processor may 
use a more flexible algorithm when enforcing distinctness.

• parallel_query – determines whether the query processor may use parallel 
query optimization.

• store_index – determines whether the query processor may use 
reformatting, which may increase the use of worktables.
Performance and Tuning Series: Query Processing and Abstract Plans  243



Optimization criteria 
• append_union_all – determines whether the query processor may use the 
append union all algorithm.

• bushy_search_space – determines whether the query processor may use 
bushy-tree-shaped query plans, which may increase the search space, but 
provide more query plan options to improve performance.

• distinct_hashing – determines whether the query processor may use a 
hashing algorithm to eliminate duplicates, which is very efficient when 
there are few distinct values compared to the number of rows.

• distinct_sorted – determines whether the query processor may use a single-
pass algorithm to eliminate duplicates. distinct_sorted relies on an ordered 
input stream, and may increase the number of sort operators if its input is 
not ordered.

• group-sorted – determines whether the query processor may use an on-the-
fly grouping algorithm. group-sorted relies on an input stream sorted on the 
grouping columns, and it preserves this ordering in its output.

• distinct_sorting – determines whether the query processor may use the 
sorting algorithm to eliminate duplicates. distinct_sorting is useful when 
the input is not ordered (for example, if there is no index) and the output 
ordering generated by the sorting algorithm could benefit; for example, in 
a merge join.

• group_hashing – determines whether the query processor may use a group 
hashing algorithm to process aggregates.

• index_intersection – determines whether the query processor may use the 
intersection of multiple index scans as part of the query plan in the search 
space.

If all the algorithms of a relational operator are disabled, the query processor 
reenables a default algorithm. For example, if all join algorithms (nl_join, 
m_join, and h_join) are disabled, the query processor enables nl_join.

The query processor can also reenable nl_join for semantic reasons: for 
example, if the joining tables are not connected through equijoins.

Default optimization 
criteria

Each optimization goal— fastfirstrow, allrows_oltp, allrows_mixed, 
allrows_dss—has a default setting (on (1)or off (0)) for each optimization 
criterion. For example, the default setting for merge_join is off (0) for 
fastfirstrow and allrows_oltp, and on (1) for allrows_mixed and allrows_dss. See 
Table 7-3 for a list of default settings for each optimization criteria.
244   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
Sybase recommends that you reset the optimization goal and evaluate 
performance before changing optimization criteria. Change optimization 
criteria only if you must fine-tune a particular query.

Table 7-3: Default settings for optimization criteria 

Limiting optimization time
You can use the optimization timeout limit configuration parameter to restrict the 
amount of time Adaptive Server spends optimizing a query. optimization 
timeout limit specifies the amount of time Adaptive Server can spend optimizing 
a query as a percentage of the total time spent processing the query.

The timeout is activated only if:

• At least one complete plan has been retained as the best plan, and

• The optimization timeout limit has been exceeded.

Use sp_configure to set optimization timeout limit at the server level. For 
example, to limit optimization time to 10 percent of total query processing 
time, enter:

Optimization 
criteria fastfirstrow allrows_oltp allrows_mixed    allrows_dss

append_union_all 1 1 1 1

bushy_search_space 0 0 0 1

distinct_sorted 1 1 1 1

distinct_sorting 1 1 1 1

group_hashing 1 1 1 1

group_sorted 1 1 1 1

hash_join 0 0 0 1

hash_union_distinct 1 1 1 1

index_intersection 0 0 0 1

merge_join 0 0 1 1

merge_union_all 1 1 1 1

multi_gt_store_ind 0 0 0 1

nl_join 1 1 1 1

opp_distinct_view 1 1 1 1

parallel_query 1 0 1 1

store_index 1 1 1 1
Performance and Tuning Series: Query Processing and Abstract Plans  245



Controlling parallel optimization 
sp_configure “optimization timeout limit”, 10

To set optimization timeout limit at the session level, use:

set plan optimeoutlimit n

This command overrides the server setting. 

The default value is 10 percent; you can specify any value from 1 to 1000.

At the server level, there is a separate configuration parameter, optimization 
timeout limit, for the server-level default timeout value within stored procedure 
compilations. The default value is 40 percent; you can specify any value from 
1 to 4000.

For more information about optimization timeout limit, see “Limiting the time 
spent optimizing a query” on page 17.

Controlling parallel optimization
The goal of executing queries in parallel is to get the fastest response time, even 
if it involves more total work from the server.

To enable and control parallel processing, Adaptive Server provides these 
configuration parameters:

• number of worker processes

• max parallel degree

• max resource granularity

• max repartition degree

With the exception of number of worker processes, each of these parameters can 
be set at the server and the session level. To view the current session-level 
value of a parameter, use the select command. For example, to view the current 
value of max resource granularity, enter:

select @@resource_granularity

Note  When set or viewed at the session level, these parameters do not include 
“max.”
246   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
number of worker processes
Use number of worker processes to specify the maximum number of worker 
processes that Adaptive Server can use at any one time for all simultaneously 
running parallel queries.

number of worker processes is a server-wide configuration parameter only; use 
sp_configure to set the parameter. For example, to set the maximum number of 
worker processes to 200, enter:

sp_configure “number of worker processes”, 200

Specifying the number of worker processes available for parallel 
processing

Use max parallel degree to specify the maximum number of worker processes 
allowed per query. You can configure max parallel degree at the server or the 
session level.

For example, to set max parallel degree to 60 at the server level, enter:

sp_configure “max parallel degree”, 60

To set max parallel degree to 60 at the session level, enter:

set parallel_degree 60

The value of max parallel degree must be equal to or less than the current value 
of number of worker processes. Setting max parallel degree to 1 turns off parallel 
processing—Adaptive Server scans all tables and indexes serially. To enable 
parallel partition scans, set max parallel degree equal to or greater than the 
number of partitions in the table you are querying.

max resource granularity
Use max resource granularity to specify the percentage of total memory that 
Adaptive Server can allocate to a single query. You can set the parameter at the 
server or session level.

For example, to set max resource granularity to 35 percent at the server level, 
enter:

sp_configure “max resource granularity”, 35

To set max resource granularity to 35 percent at the session level, enter:
Performance and Tuning Series: Query Processing and Abstract Plans  247



Concurrency optimization for small tables 
set resource_granularity 35

The value of this parameter can affect the query optimizer’s choice of operators 
for a query. If max resource granularity is set low, many hash- and sort-based 
operators cannot be chosen. max resource granularity also affects the scheduling 
algorithm.

max repartition degree
Use max repartition degree to suggest a number of worker processes that the 
query processor can use to partition a data stream. You can set max repartition 
degree at the server or query level. 

Note  The value of max repartition degree is a suggestion only; the query 
processor decides the optimal number.

max repartition degree is most useful when the tables being queried are not 
partitioned, but partitioning the resultant data stream may improve 
performance by allowing concurrent SQL operations.

For example, to set max repartition degree to 15 at the server level, enter:

sp_configure “max repartition degree”, 15

To set max repartition degree to 15 at the session level, enter:

set repartition_degree 15

The value of max repartition degree cannot exceed the current value of max 
parallel degree. Sybase recommends that you set the value of this parameter 
equal to or less than the number of CPUs or disk systems that can work in 
parallel.

Concurrency optimization for small tables
For data-only-locked tables of 15 pages or fewer, Adaptive Server does not 
consider a table scan if there is a useful index on the table. Instead, it always 
chooses the cheapest index that matches any search argument that can be 
optimized in the query. The locking required for an index scan provides higher 
concurrency and reduces the chance of deadlocks, although slightly more I/O 
may be required than for a table scan.
248   Adaptive Server Enterprise



CHAPTER 7    Controlling Optimization
If concurrency on small tables is not an issue, and you want to optimize the I/O 
instead, use sp_chgattribute to disable this optimization. For example, to turn 
off concurrency optimization for a table:

sp_chgattribute tiny_lookup_table, 
   “concurrency_opt_threshold”, 0

With concurrency optimization disabled, the query processor can choose table 
scans when they require fewer I/Os. 

You can also increase the concurrency optimization threshold for a table. This 
command sets the concurrency optimization threshold for a table to 30 pages:

sp_chgattribute lookup_table, 
   “concurrency_opt_threshold”, 30

The maximum value for the concurrency optimization threshold is 32,767. 
Setting the value to -1 enforces concurrency optimization for a table of any 
size; this setting may be useful when a table scan is chosen over indexed 
access, and the resulting locking results in increased contention or deadlocks.

The current setting is stored in systabstats.conopt_thld and is printed as part of 
optdiag output.

Changing the locking scheme
Concurrency optimization affects only data-only-locked tables. Table 7-4 
shows the effect of changing the locking scheme.

Table 7-4: Effects of alter table on concurrency optimization settings

Changing from Effect on stored value

Allpages to data-only Set to 15, the default

Data-only to allpages Set to 0

One data-only scheme to another Configured value retained
Performance and Tuning Series: Query Processing and Abstract Plans  249



Concurrency optimization for small tables 
250   Adaptive Server Enterprise



C H A P T E R  8 Optimization for Cursors

This chapter discusses performance issues related to cursors. Cursors are 
a mechanism for accessing the results of a SQL select statement one row 
at a time (or several rows, if you use set cursors rows). Since cursors use a 
different model from ordinary set-oriented SQL, the way cursors use 
memory and hold locks has performance implications for your 
applications. In particular, cursor performance issues include locking at 
the page and at the table level, network resources, and overhead of 
processing instructions. 

Definition
A cursor is a symbolic name that is associated with a select statement. It 
enables you to access the results of a select statement one row at a time. 
Figure 8-1 shows a cursor accessing the authors table. 

Topic Page
Definition 251

Resources required at each stage 254

Cursor modes 257

Index use and requirements for cursors 257

Comparing performance with and without cursors 259

Locking with read-only cursors 262

Isolation levels and cursors 264

Partitioned heap tables and cursors 264

Optimizing tips for cursors 265
Performance and Tuning Series: Query Processing and Abstract Plans 251



Definition 
Figure 8-1: Cursor example

You can think of a cursor as a “handle” on the result set of a select statement. 
It enables you to examine and possibly manipulate one row at a time.

Set-oriented versus row-oriented programming
SQL was conceived as a set-oriented language. Adaptive Server is extremely 
efficient when it works in set-oriented mode. Cursors are required by ANSI 
SQL standards; when they are needed, they are very powerful. However, they 
can have a negative effect on performance.

For example, this query performs the identical action on all rows that match the 
condition in the where clause:

update titles 
    set contract = 1  
where type = ’business’

The optimizer finds the most efficient way to perform the update. In contrast, 
a cursor would examine each row and perform single-row updates if the 
conditions were met. The application declares a cursor for a select statement, 
opens the cursor, fetches a row, processes it, goes to the next row, and so forth. 
The application may perform quite different operations depending on the 
values in the current row, and the server’s overall use of resources for the cursor 
application may be less efficient than the server’s set level operations. 
However, cursors can provide more flexibility than set-oriented programming.

Figure 8-2 shows the steps involved in using cursors. The function of cursors 
is to get to the middle box, where the user or application code examines a row 
and decides what to do, based on its values.

Result setCursor with select * from 
authors where state = ’KY’

Programming can:
- Examine a row
- Take an action based on row 
values

 A978606525 Marcello Duncan KY                   

 A937406538 Carton Nita KY                                         

 A1525070956Porczyk Howard KY                                  

 A913907285 Bier Lane KY 
252   Adaptive Server Enterprise



CHAPTER 8    Optimization for Cursors
Figure 8-2: Cursor flowchart

Example
Here is a simple example of a cursor with the “Process Rows” step shown 
above in pseudocode:

declare biz_book cursor 
    for select * from titles 
    where type = ’business’ 
go 
open biz_book 
go 
fetch biz_book 
go 
/* Look at each row in turn and perform 
** various tasks based on values,  

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?
Performance and Tuning Series: Query Processing and Abstract Plans  253



Resources required at each stage 
** and repeat fetches, until 
** there are no more rows 
*/ 
close biz_book 
go 
deallocate cursor biz_book 
go

Depending on the content of the row, the user might delete the current row:

delete titles where current of biz_book

or update the current row:

update titles set title="The Rich  
    Executive’s Database Guide" 
where current of biz_book

Resources required at each stage
Cursors use memory and require locks on tables, data pages, and index pages. 
When you open a cursor, memory is allocated to the cursor and to store the 
query plan that is generated. While the cursor is open, Adaptive Server holds 
intent table locks and sometimes row or page locks. Figure 8-3 shows the 
duration of locks during cursor operations.
254   Adaptive Server Enterprise



CHAPTER 8    Optimization for Cursors
Figure 8-3: Resource use by cursor statement

The memory resource descriptions in Figure 8-3 and Table 8-1 refer to ad hoc 
cursors for queries sent by isql or Client-Library™. For other kinds of cursors, 
the locks are the same, but the memory allocation and deallocation differ 
somewhat depending on the type of cursor being used, as described in 
“Memory use and execute cursors” on page 256.

page
locks

Memory

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delet

No

Yes

Close cursor

Deallocate cursor

Get next
row?

Table
locks
(intent);
some
row or 

locks
page

Row 
or
Performance and Tuning Series: Query Processing and Abstract Plans  255



Resources required at each stage 
Table 8-1: Locks and memory use for isql and Client-Library client 
cursors

Memory use and execute cursors
The descriptions of declare cursor and deallocate cursor in Table 8-1 refer to ad 
hoc cursors that are sent by isql or Client-Library. Other kinds of cursors 
allocate memory differently:

• For cursors that are declared on stored procedures, only a small amount of 
memory is allocated at declare cursor time. Cursors declared on stored 
procedures are sent using Client-Library or the precompiler and are known 
as execute cursors. 

Cursor 
command Resource use

declare cursor When a cursor is declared, Adaptive Server uses only 
enough memory to store the query text.

open When a cursor is opened, Adaptive Server allocates 
memory to the cursor and to store the query plan that is 
generated. The server optimizes the query, traverses 
indexes, and sets up memory variables. The server does not 
access rows yet, unless it needs to build worktables. 
However, it does set up the required table-level locks (intent 
locks). Row and page locking behavior depends on the 
isolation level, server configuration, and query type.

See “How isolation levels affect locking” on page 19 in 
Performance and Tuning Series: Locking and Concurrency 
Control for more information.

fetch When a fetch is executed, Adaptive Server gets the row(s) 
required and reads specified values into the cursor variables 
or sends the row to the client. If the cursor needs to hold 
lock on rows or pages, the locks are held until a fetch moves 
the cursor off the row or page or until the cursor is closed. 
The lock is either a shared or an update lock, depending on 
how the cursor is written.

close When a cursor is closed, Adaptive Server releases the locks 
and some of the memory allocation. You can open the 
cursor again, if necessary. 

deallocate cursor When a cursor is deallocated, Adaptive Server releases the 
rest of the memory resources used by the cursor. To reuse 
the cursor, declare it again. 
256   Adaptive Server Enterprise



CHAPTER 8    Optimization for Cursors
• For cursors declared within a stored procedure, memory is already 
available for the stored procedure, and the declare statement does not 
require additional memory.

Cursor modes
There are two cursor modes: read-only and update. As the names suggest, read-
only cursors can only display data from a select statement; update cursors can 
be used to perform positioned updates and deletes. 

Read-only mode uses shared page or row locks. If read committed with lock is 
set to 0, and the query runs at isolation level 1, it uses instant duration locks, 
and does not hold the page or row locks until the next fetch.

Read-only mode is in effect when you specify for read only or when the cursor’s 
select statement uses distinct, group by, union, or aggregate functions, and in 
some cases, an order by clause.

Update mode uses update page or row locks. It is in effect when:

• You specify for update.

• The select statement does not include distinct, group by, union, a subquery, 
aggregate functions, or the at isolation read uncommitted clause.

• You specify shared.

If column_name_list is specified, only those columns are updatable.

See “Cursors and locking” on page 87 in Performance and Tuning Series: 
Locking and Concurrency Control for more information.

Specify the cursor mode when you declare the cursor. If the select statement 
includes certain options, the cursor is not updatable even if you declare it for 
update.

Index use and requirements for cursors
When a query is used in a cursor, it may require or choose different indexes 
than the same query used outside of a cursor.
Performance and Tuning Series: Query Processing and Abstract Plans  257



Index use and requirements for cursors 
Allpages-locked tables
For read-only cursors, queries at isolation level 0 (dirty reads) require a unique 
index. Read-only cursors at isolation level 1 or 3 should produce the same 
query plan as the select statement outside of a cursor. 

The index requirements for updatable cursors mean that updatable cursors may 
use different query plans than read-only cursors. Updatable cursors have these 
indexing requirements:

• If the cursor is not declared for update, a unique index is preferred over a 
table scan or a nonunique index.

• If the cursor is declared for update without a for update of list, a unique 
index is required on allpages-locked tables. An error is raised if no unique 
index exists.

• If the cursor is declared for update with a for update of list, then only a 
unique index without any columns from the list can be chosen on an 
allpages-locked table. An error is raised if no unique index qualifies.

When cursors are involved, an index that contains an IDENTITY column is 
considered unique, even if the index is not declared unique. In some cases, 
IDENTITY columns must be added to indexes to make them unique, or the 
optimizer might be forced to choose a suboptimal query plan for a cursor query.

Data-only-locked tables
In data-only-locked tables, fixed row IDs are used to position cursor scans, so 
unique indexes are not required for dirty reads or updatable cursors. The only 
cause for different query plans in updatable cursors is that table scans are used 
if columns from only useful indexes are included in the for update of list.

Table scans to avoid the Halloween problem

The Halloween problem is an update anomaly that can occur when a client 
using a cursor updates a column of the cursor result-set row, and that column 
defines the order in which the rows are returned from the table. For example, 
if a cursor was to use an index on last_name, first_name, and update one of 
these columns, the row could appear in the result set a second time. 

To avoid the Halloween problem on data-only-locked tables, Adaptive Server 
chooses a table scan when the columns from an otherwise useful index are 
included in the column list of a for update clause. 
258   Adaptive Server Enterprise



CHAPTER 8    Optimization for Cursors
For implicitly updatable cursors declared without a for update clause, and for 
cursors where the column list in the for update clause is empty, cursors that 
update a column in the index used by the cursor may encounter the Halloween 
problem.

Comparing performance with and without cursors
This section examines the performance of a stored procedure written two 
different ways:

• Without a cursor – this procedure scans the table three times, changing the 
price of each book.

• With a cursor – this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor
This is an example of a stored procedure without cursors:

/* Increase the prices of books in the 
** titles table as follows: 
**  
** If current price is <= $30, increase it by 20% 
** If current price is > $30 and <= $60, increase  
** it by 10% 
** If current price is > $60, increase it by 5% 
** 
** All price changes must take effect, so this is 
** done in a single transaction. 
*/ 
 
create procedure increase_price 
as 
 
    /* start the transaction */ 
    begin transaction 
    /* first update prices > $60 */ 
    update titles 
        set price = price * 1.05 
        where price > $60 
Performance and Tuning Series: Query Processing and Abstract Plans  259



Comparing performance with and without cursors 
 
    /* next, prices between $30 and $60 */ 
    update titles  
        set price = price * 1.10     
    where price > $30 and price <= $60 
 
    /* and finally prices <= $30 */ 
    update titles  
    set price = price * 1.20 
    where price <= $30 
 
    /* commit the transaction */  
    commit transaction 
 
return

Sample stored procedure with a cursor
This procedure performs the same changes to the underlying table as the 
procedure written without a cursor, but it uses cursors instead of set-oriented 
programming. As each row is fetched, examined, and updated, a lock is held 
on the appropriate data page. Also, as the comments indicate, each update 
commits as it is made, since there is no explicit transaction.

/* Same as previous example, this time using a  
** cursor. Each update commits as it is made. 
*/ 
create procedure increase_price_cursor 
as 
declare @price money 
 
/* declare a cursor for the select from titles */ 
declare curs cursor for  
    select price  
    from titles  
    for update of price 
 
/* open the cursor */ 
open curs 
 
/* fetch the first row */ 
fetch curs into @price 
 
/* now loop, processing all the rows 
** @@sqlstatus = 0 means successful fetch 
260   Adaptive Server Enterprise



CHAPTER 8    Optimization for Cursors
** @@sqlstatus = 1 means error on previous fetch 
** @@sqlstatus = 2 means end of result set reached 
*/ 
while (@@sqlstatus != 2) 
begin     
    /* check for errors */ 
    if (@@sqlstatus = 1) 
    begin 
        print "Error in increase_price" 
        return 
    end 
     
    /* next adjust the price according to the  
    ** criteria  
    */ 
    if @price > $60 
    select @price = @price * 1.05 
    else 
    if @price > $30 and @price <= $60 
    select @price = @price * 1.10 
    else 
    if @price <= $30  
    select @price = @price * 1.20 
 
    /* now, update the row */ 
    update titles 
    set price = @price 
    where current of curs 
     
    /* fetch the next row */ 
    fetch curs into @price 
end 
 
/* close the cursor and return */ 
close curs 
return

Which procedure do you think will have better performance, one that performs 
three table scans or one that performs a single scan via a cursor?

Cursor versus noncursor performance comparison
Table 8-2 shows statistics gathered against a 5000-row table. The cursor code 
takes over 4 times longer, even though it scans the table only once.
Performance and Tuning Series: Query Processing and Abstract Plans  261



Locking with read-only cursors 
Table 8-2: Sample execution times against a 5000-row table

Results from tests like these can vary widely. They are most pronounced on 
systems that have busy networks, a large number of active database users, and 
multiple users accessing the same table.

In addition to locking, cursors involve more network activity than set 
operations and incur the overhead of processing instructions. The application 
program needs to communicate with Adaptive Server regarding every result 
row of the query. This is why the cursor code took much longer to complete 
than the code that scanned the table three times.

Cursor performance issues include:

• Locking at the page and table level

• Network resources

• Overhead of processing instructions

If there is a set-level programming equivalent, it may be preferable, even if it 
involves multiple table scans.

Locking with read-only cursors
Here is a piece of cursor code you can use to display the locks that are set up at 
each point in the life of a cursor. The following example uses an allpages-
locked table. Execute the code in Figure 8-4, and pause at the arrows to execute 
sp_lock and examine the locks that are in place. 

Procedure Access method Time

increase_price Uses three table scans 28 seconds

increase_price_cursor Uses cursor, single table 
scan

125 seconds
262   Adaptive Server Enterprise



CHAPTER 8    Optimization for Cursors
Figure 8-4: Read-only cursors and locking experiment input

Table 8-3 shows the results.

Table 8-3: Locks held on data and index pages by cursors

If you issue another fetch command after the last row of the result set has been 
fetched, the locks on the last page are released, so there will be no cursor-
related locks.

With a data-only-locked table:

• If the cursor query runs at isolation level 1, and read committed with lock is 
set to 0, you do not see any page or row locks. The values are copied from 
the page or row, and the lock is immediately released.

• If read committed with lock is set to 1 or if the query runs at isolation level 
2 or 3, you see either shared page or shared row locks at the point that 
Table 8-3 indicates shared page locks. If the table uses datarows locking, 
the sp_lock report includes the row ID of the fetched row.

Event Data page

After declare No cursor-related locks. 

After open Shared intent lock on authors.

After first fetch Shared intent lock on authors and shared page lock on 
a page in authors. 

After 100 fetches Shared intent lock on authors and shared page lock on 
a different page in authors.

After close No cursor-related locks.

declare curs1 cursor for
select au_id, au_lname, au_fname
    from authors
    where au_id like ’15%’
    for read only
go
open curs1
go
fetch curs1
go
fetch curs1
go 100
close curs1
go
deallocate cursor curs1
go
Performance and Tuning Series: Query Processing and Abstract Plans  263



Isolation levels and cursors 
Isolation levels and cursors
The query plan for a cursor is compiled and optimized when the cursor is 
opened. You cannot open a cursor and then use set transaction isolation level to 
change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those using 
other isolation levels, you cannot open a cursor at isolation level 0 and open or 
fetch from it at level 1 or 3. Similarly, you cannot open a cursor at level 1 or 3 
and then fetch from it at level 0. Attempts to fetch from a cursor at an 
incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must 
deallocate the cursor before changing isolation levels. The effects of changing 
isolation levels while the cursor is open are as follows:

• Attempting to close and reopen the cursor at another isolation level fails 
with an error message.

• Attempting to change isolation levels without closing and reopening the 
cursor has no effect on the isolation level in use and does not produce an 
error message.

You can include an at isolation clause in the cursor to specify an isolation level. 
The cursor in the example below can be declared at level 1 and fetched from 
level 0 because the query plan is compatible with the isolation level:

declare cprice cursor for 
select title_id, price 
    from titles  
    where type = "business" 
    at isolation read uncommitted

Partitioned heap tables and cursors
A cursor scan of an unpartitioned heap table can read all data up to and 
including the final insertion made to that table, even if insertions took place 
after the cursor scan started.
264   Adaptive Server Enterprise



CHAPTER 8    Optimization for Cursors
If a heap table is partitioned, data can be inserted into one of the many page 
chains. The physical insertion point may be before or after the current position 
of a cursor scan. This means that a cursor scan against a partitioned table is not 
guaranteed to scan the final insertions made to that table.

Note  If cursor operations require all inserts to be made at the end of a single 
page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors
Here are several optimizing tips for cursors:

• Optimize cursor selects using the cursor, not an ad hoc query.

• Use union or union all instead of or clauses or in lists.

• Declare the cursor’s intent.

• Specify column names in the for update clause.

• Fetch more than one row if you are returning rows to the client.

• Keep cursors open across commits and rollbacks.

• Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor
A standalone select statement may be optimized very differently than the same 
select statement in an implicitly or explicitly updatable cursor. When you are 
developing applications that use cursors, always check your query plans and 
I/O statistics using the cursor, rather than using a standalone select. In 
particular, index restrictions of updatable cursors require very different access 
methods.
Performance and Tuning Series: Query Processing and Abstract Plans  265



Optimizing tips for cursors 
Using union instead of or clauses or in lists
Cursors cannot use the dynamic index of row IDs generated by the OR strategy. 
Queries that use the OR strategy in standalone select statements usually 
perform table scans using read-only cursors. Updatable cursors may need to 
use a unique index and still require access to each data row, in sequence, in 
order to evaluate the query clauses.

A read-only cursor using union creates a worktable when the cursor is declared, 
and sorts it to remove duplicates. Fetches are performed on the worktable. A 
cursor using union all can return duplicates and does not require a worktable. 

Declaring the cursor’s intent
Always declare a cursor’s intent: read-only or updatable. This gives you greater 
control over concurrency implications. If you do not specify the intent, 
Adaptive Server decides for you, and very often it chooses updatable cursors. 
Updatable cursors use update locks, thereby preventing other update locks or 
exclusive locks. If the update changes an indexed column, the optimizer may 
need to choose a table scan for the query, resulting in potentially difficult 
concurrency problems. Be sure to examine the query plans for queries that use 
updatable cursors.

Specifying column names in the for update clause
Adaptive Server acquires update locks on the pages or rows of all tables that 
have columns listed in the for update clause of the cursor select statement. If the 
for update clause is not included in the cursor declaration, all tables referenced 
in the from clause acquire update locks.

The following query includes the name of the column in the for update clause, 
but acquires update locks only on the titles table, since price is mentioned in the 
for update clause. The table uses allpages locking. The locks on authors and 
titleauthor are shared page locks:

declare curs3 cursor 
for 
select au_lname, au_fname, price 
    from titles t, authors a, 
        titleauthor ta 
where advance <= $1000  
    and t.title_id = ta.title_id 
266   Adaptive Server Enterprise



CHAPTER 8    Optimization for Cursors
    and a.au_id = ta.au_id 
for update of price

Table 8-4 shows the effects of:

• Omitting the for update clause entirely—no shared clause

• Omitting the column name from the for update clause

• Including the name of the column to be updated in the for update clause

• Adding shared after the name of the titles table while using for update of 
price

In this table, the additional locks, or more restrictive locks for the two versions 
of the for update clause are emphasized.

Table 8-4: Effects of for update clause and shared on cursor locking

Using set cursor rows
The SQL standard specifies a one-row fetch for cursors, which wastes network 
bandwidth. Using the set cursor rows query option and Open Client’s 
transparent buffering of fetches, you can improve performance:

ct_cursor(CT_CURSOR_ROWS)

Be careful when you choose the number of rows returned for frequently 
executed applications using cursors—tune them to the network.

See “Changing network packet sizes” on page 22 for an explanation of this 
process.

Clause titles authors titleauthor

None

sh_page on data

sh_page on index

sh_page on data sh_page on data

for update updpage on index

updpage on data

updpage on index

updpage on data updpage on data

for update of 
price updpage on data

sh_page on index

sh_page on data sh_page on data

for update of 
price 
+ shared

sh_page on data

sh_page on index

sh_page on data sh_page on data
Performance and Tuning Series: Query Processing and Abstract Plans  267



Optimizing tips for cursors 
Keeping cursors open across commits and rollbacks
ANSI closes cursors at the conclusion of each transaction. Transact-SQL 
provides the set option close on endtran for applications that must meet ANSI 
behavior. By default, however, this option is turned off. Unless you must meet 
ANSI requirements, leave this option off to maintain concurrency and 
throughput.

If you must be ANSI-compliant, decide how to handle the effects on Adaptive 
Server. Should you perform a lot of updates or deletes in a single transaction? 
Or should you keep the transactions short?

If you choose to keep transactions short, closing and opening the cursor can 
affect throughput, since Adaptive Server needs to rematerialize the result set 
each time the cursor is opened. If you choose to perform more work in each 
transaction, this can cause concurrency problems, since the query holds locks.

Opening multiple cursors on a single connection
Some developers simulate cursors by using two or more connections from DB-
Library™. One connection performs a select and the other performs updates or 
deletes on the same tables. This has very high potential to create application 
deadlocks. For example:

• Connection A holds a shared lock on a page. As long as there are rows 
pending from Adaptive Server, a shared lock is kept on the current page.

• Connection B requests an exclusive lock on the same pages and then waits.

• The application waits for Connection B to succeed before invoking 
whatever logic is needed to remove the shared lock. But this never 
happens.

Since Connection A never requests a lock that is held by Connection B, this is 
not a server-side deadlock.
268   Adaptive Server Enterprise



C H A P T E R  9 Query Processing Metrics

Overview
Query processing (QP) metrics identify and compare empirical metric 
values in query execution. When a query is executed, it is associated with 
a set of defined metrics that are the basis for comparison in QP metrics.

Captured metrics include:

• CPU execution time – the time, in milliseconds, it takes to execute the 
query.

• Elapsed time – the time, in milliseconds, from after the compile to the 
end of the execution.

• Logical I/O – the number of logical I/O reads.

• Physical I/O – the number of physical I/O reads.

• Count – the number of times a query is executed.

• Abort count – the number of times a query is aborted by the resource 
governor due to a resource limit being exceeded.

Each metric, except count and abort count, has three values: minimum, 
maximum, and average.

Topic Page
Overview 269

Executing QP metrics 270

Accessing metrics 270

Using metrics 272

Clearing metrics 274

Restricting query metrics capture 275

Understanding the UID in sysquerymetrics 276
Performance and Tuning Series: Query Processing and Abstract Plans 269



Executing QP metrics 
Executing QP metrics
You can activate and use QP metrics at the server level or at the session level.

At the server level, use sp_configure with the enable metrics capture option. The 
QP metrics for ad hoc statements are captured directly into a system catalog, 
while the QP metrics for statements in a stored procedure are saved in a 
procedure cache. When the stored procedure or query in the statement cache is 
flushed, the respective captured metrics are written to the system catalog.

sp_configure "enable metrics capture", 1

At a session level, use set metrics_capture on/off:

set metrics_capture on/off

Accessing metrics
QP metrics are always captured in the default group, which is group 1 in each 
respective database. Use sp_metrics ‘backup’ to move saved QP metrics from 
the default running group to a backup group. Access metric information using 
a select statement with order by against the sysquerymetrics view. See 
“sysquerymetrics view” on page 270 for details.

You can also use a data manipulation language (DML) statement to sort the 
metric information and identify the specific queries for evaluation. See Chapter 
2, “Understand Component Integration Services,” in the Component 
Integration Services Users Guide, which is part of the Adaptive Server 
Enterprise documentation set. .

sysquerymetrics view

Field Definition

uid User ID

gid Group ID

id Unique ID

hashkey Hash key over the SQL query text

sequence Sequence number for a row when multiple rows are required for the text 
of the SQL code

exec_min Minimum execution time
270   Adaptive Server Enterprise



CHAPTER 9    Query Processing Metrics
Average values in this view are calculated using:

new_avg = (old_avg * old_count + new_value )/ (old_count + 1) = old_avg + 
round((new_value - old_avg)/(old_count + 1))

This is an example of the sysquerymetrics view: 

select * from sysquerymetrics 

uid   gid   hashkey   id   sequence   exec_min  
exec_max   exec_avg   elap_min   elap_max   elap_avg   lio_min  
lio_max   lio_avg   pio_min   pio_max   pio_avg   cnt   abort_cnt  
qtext 
----------- ----------- ----------- ----------- ----------- ----------- 
----------- ----------- ----------- ----------- ----------- ----------- 
----------- ----------- ----------- ----------- ----------- -----------  
------------------------------------------------------------------------- 
1   1   106588469   480001710   0   0  
0   0   16   33   25   4 
4   4   0   4   2   2   0  
select distinct c1 from t_metrics1 where c2 in (select c2 from t_metrics2)

The above example displays a record for a SQL statement. The query text of 
the statement is select distinct c1 from t_metrics1 where c2 in (select c2 from 
t_metrics2):

• This statement has been executed twice so far (cnt = 2).

exec_max Maximum execution time

exec_avg Average execution time

elap_min Minimum elapsed time

elap_max Maximum elapsed time

elap_avg Average elapsed time

lio_min Minimum logical I/O

lio_max Maximum logical I/O

lio_avg Average logical I/O

pio_min Minimum physical I/O

pio_max Maximum physical I/O

pio_avg Average physical I/O

cnt Number of times the query has been executed

abort_cnt Number of times a query is aborted by the resource governor when a 
resource limit is exceeded

qtext Query text

Field Definition
Performance and Tuning Series: Query Processing and Abstract Plans  271



Using metrics 
• The minimum elapsed time is 16 milliseconds; the maximum elapsed time 
is 33 milliseconds, and the average elapsed time is 25 milliseconds

• All the execution times are 0, and this may be due to the CPU execution 
time being less than 1 millisecond. 

• The maximum physical I/O is 4, which is consistent with the maximum 
logical I/O. However, the minimum physical I/O is 0 because data is 
already in cache in the second run. The logical I/O, at 4, should be static 
whether or not the data is in memory

Using metrics
Use the information produced by QP metrics to identify:

• Query performance regression

• Most expensive query in a batch of running queries

• Most frequently run queries

When you have information on the queries that may be causing problems, you 
can tune the queries to increase efficiency. 

For example, identifying and fine-tuning an expensive query may be more 
effective than tuning the cheaper ones in the same batch.

You can also identify the queries that are run most frequently, and fine-tune 
them to increase efficiency.

Turning on query metrics may involve extra I/O for every query executed, so 
there may be performance impact. However, also consider the benefits 
mentioned above. You may want to gather statistical information from 
monitoring tables instead of turning on metrics.

Both QP metrics and monitoring tables can be used to gather statistical 
information. However, you can use QP metrics instead of the monitoring tables 
to gather aggregated historical query information in a persistent catalog, rather 
than have transient information from the monitor tables.
272   Adaptive Server Enterprise



CHAPTER 9    Query Processing Metrics
Examples
You can use QP metrics to identify specific queries for tuning and possible 
regression on performance.

Identifying the most expensive statement

Typically, to find the most expensive statement as the candidate for tuning, 
sysquerymetrics provides CPU execution time, elapsed time, logical IO, and 
physical I/O as options for measure. For example, a typical measure is based 
on logical I/O. Use the following query to find the statements that incur too 
many IOs as the candidates for tuning:

select lio_avg, qtext from sysquerymetrics order by lio_avg
lio_avg qtext 
----------- 
------------------------------------------------------ 
2 
select c1, c2 from t_metrics1 where c1 = 333 
4 
select distinct c1 from t_metrics1 where c2 in (select c2 from t_metrics2) 
6 
select count(t_metrics1.c1) from t_metrics1, t_metrics2, 
t_metrics3 where (t_metrics1.c2 = t_metrics2.c2 and 
t_metrics2.c2 = t_metrics3.c2 and t_metrics3.c3 = 0) 
164 
select min(c1) from t_metrics1 where c2 in (select t_metrics2.c2 from 
t_metrics2, t_metrics3 where (t_metrics2.c2 = t_metrics3.c2 and t_metrics3.c3 
= 1)) 
 
(4 rows affected)

The best candidate for tuning can be seen in the last statement of the above 
results, which has the biggest value (164) for average logical IO.

Identifying the most frequently used statement for tuning

If a query is used frequently, fine-tuning may improve its performance. Identify 
the most frequently used query using the select statement with order by:

select elap_avg, cnt, qtext from sysquerymetrics order by cnt
elap_avg cnt 
qtext 
----------- ----------- 
-------------------------------------------------- 
0 1 
Performance and Tuning Series: Query Processing and Abstract Plans  273



Clearing metrics 
select c1, c2 from t_metrics1 where c1 = 333 
16 2 
 
select distinct c1 from t_metrics1 where c2 in (select c2 from t_metrics2) 
24 3 
 
select min(c1) from t_metrics1 where c2 in (select t_metrics2.c2 from 
t_metrics2, t_metrics3 where (t_metrics2.c2 = t_metrics3.c2 and t_metrics3.c3 
= 1)) 
 
78 4 
 
select count(t_metrics1.c1) from t_metrics1, t_metrics2, t_metrics3 where 
(t_metrics1.c2 = t_metrics2.c2 and t_metrics2.c2 = t_metrics3.c2 and 
t_metrics3.c3 = 0) 
 
(4 rows affected)

The best candidate for tuning can be seen in the last statement of the above 
results, which has the biggest value (78).

Identifying possible performance regression

In some cases, when a server is upgraded to a newer version, QP metrics may 
be useful for comparing performance. To identify queries that may have some 
degradation, after a server-version upgrade:

1 Back up the QP metrics from the old server into a backup group:

sp_metrics ‘backup’, ’@gid’

2 Enable QP metrics on the new server:

sp_configure “enable metrics capture”, 1

3 Compare QP metrics output from the old and new servers to identify any 
queries that may have regression problems.

Clearing metrics
Use sp_metrics ‘flush’ to flush all aggregated metrics in memory to the system 
catalog.The aggregated metrics for all statements in memory are set to zero.

sp_metrics ‘drop’, ‘@gid’ [, ‘@id'
274   Adaptive Server Enterprise



CHAPTER 9    Query Processing Metrics
To remove one entry, use:

sp_metrics ‘drop’, ‘<gid>’, ‘<id>’

You can also use filter to remove QP metrics from the system catalog, based on 
some metrics conditions:

sp_metrics ‘filter’, ‘@gid’, [, ‘@predicate’]

This example deletes all QP metrics in group 1 where lio_max < 100:

sp_metrics ‘filter’,’1’,’lio_max < 100'

Restricting query metrics capture
These configuration parameters set the query metrics threshold for capture into 
the catalog:

• metrics lio max

• metrics pio max

• metrics elap max

• metrics exec max

These parameters let you filter out trivial metrics before writing metrics 
information to the catalog.

By default, these configuration parameters are set to 0 (off).

For example, to not capture those query plans for which lio is less than 10, use:

sp_configure ‘metrics lio max’, 10

If you do not set any of these configuration parameters, Adaptive Server 
captures the query metrics to the system tables. However, if you set any of 
these configuration parameters, Adaptive Server uses only those nonzero 
configuration parameters as thresholds for determining whether to capture 
query metrics.

For example, if you set metrics elap max to a non-zero value, but no others, 
query metrics are captured only if the elapsed time is bigger than the 
configured value. Because the other three configuration parameters are set to 
0, they do not act as thresholds for capturing metrics.
Performance and Tuning Series: Query Processing and Abstract Plans  275



Understanding the UID in sysquerymetrics 
Understanding the UID in sysquerymetrics
The user ID (UID) of sysquerymetrics is 0 when all table names in a query that 
are not qualified by user name are owned by the database owner. 

Example 1 select * from t1 where cl = 1

t1 is owned by database owner and is shared by different users. 0 is the UID for 
the entry into sysquerymetrics no matter which user issues the query.

Example 2 select * from t2 where cl = 1

In this case, t2 is owned by user1. user1’s UID is used for the entry in 
sysquerymetrics, since t2 is unqualified and is not owned by the database 
owner.

Example 3 select * from u1.t3 where cl = 1

Here, t3 is owned by u1 and is qualified by u1, so UID 0 is used.

This increases the sharing of metrics between user IDs to reduce the number of 
entries in sysqueryplans. Aggregation of metrics for identical queries with 
different user IDs is done automatically. Turn on trace flag 15361 to use the 
UID of the user who issues the query. 

Note  QP metrics for insert...selec, /update, delete statements are captured when 
at least one table is involved. CIS-related queries and insert...values statements 
are not included. 
276   Adaptive Server Enterprise



C H A P T E R  1 0 Using Statistics to Improve 
Performance

Accurate statistics are essential to query optimization. In some cases, 
adding statistics for columns that are not leading index keys also improves 
query performance. This chapter explains how and when to use the 
commands that manage statistics.

Statistics maintained in Adaptive Server
These key optimizer statistics are maintained in Adaptive Server:

• Statistics per partition – table row count; table page count. An 
unpartitioned table is considered to have one partition for the 
purposes of the systabstats catalog. Statistics per partition can be 
found in systabstats.

Topic Page
Statistics maintained in Adaptive Server 277

Importance of statistics 278

Updating statistics 280

Automatically updating statistics 284

Configuring automatic update statistics 287

Column statistics and statistics maintenance 290

Creating and updating column statistics 292

Choosing step numbers for histograms 296

Scan types, sort requirements, and locking 297

Using the delete statistics command 300

When row counts may be inaccurate 301
Performance and Tuning Series: Query Processing and Abstract Plans 277



Importance of statistics 
• Statistics per index: index row count – index height; index leaf page count. 
A local index has a separate systabstats row for each index partition. A 
global index, which is considered a partitioned index with one partition, 
has one systabstats row. Statistics per index: index row count can be found 
in systabstats.

• Statistics per column: data distribution. Statistics per column be found in 
sysstatistics.

• Statistics per group of column – density information. Statistics per group 
of column can be found in sysstatistics. 

• Statistics per partition – 

• Column statistics – data distribution per column; density per group of 
columns. Column statistics can be found in sysstatistics. 

Throughout this chapter, density is a statistical measurement of the uniqueness 
of a given column’s values, and a histogram is a statistical representation of the 
distribution of values of a given column of the relation.

Importance of statistics
The Adaptive Server cost-based optimizer uses statistics about the tables, 
indexes, partitions, and columns named in a query to estimate query costs. It 
chooses the access method that the optimizer determines has the least cost. But 
this cost estimate cannot be accurate if statistics are not accurate.

Some statistics, such as the number of pages or rows in a table, are updated 
during query processing. Other statistics, such as the histograms on columns, 
are updated only when you execute update statistics, or when indexes are 
created.

If your query is performing slowly and you seek help from Technical Support 
or a Sybase newsgroup on the Internet, one of the first questions you are likely 
be asked is “Did you run update statistics?” Use the optdiag command to see 
when update statistics was last run for each column on which statistics exist:

Last update of column statistics: Aug 31 2004 
4:14:17:180PM
278   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
Another command you may need for statistics maintenance is delete statistics. 
Dropping an index does not drop the statistics for that index. If the distribution 
of keys in the columns changes after the index is dropped, but the statistics are 
still used for some queries, the outdated statistics can affect query plans.

Histogram statistics from a global index are more accurate than histogram 
statistics generated by a local index. For a local index, statistics are created on 
each partition, and are then merged to create a global histogram using 
approximations as to how overlapping histogram cells from each partition 
should be combined. With a global index, the merge step, with merging 
estimates, does not occur. In most cases, there is no issue with update statistics 
on a local index. However, if there are significant estimation errors in queries 
involving partitioned tables, histogram accuracy can be improved by creating 
and dropping a global index on a column rather than updating the statistics on 
a local index.

Nonbinary character set histogram interpolation
Adaptive Server versions 15.0.2 and later allow selectivity estimates to have 
the same accuracy as the binary character set, without requiring an excessive 
number of histogram steps. This benefits queries like the following, which uses 
range predicates:

select * from t1 where charcolumn > "LMC0021" and 
charcolumn <= "LMC0029"

If ranges specified falls into the same histogram cell, Adaptive Server can 
much more accurately estimate this selectivity.

In versions of Adaptive Server earlier than 15.0.2, only the default binary 
character set benefited from histogram interpolation, which is used to estimate 
the selectivity of range predicates. For all other character sets, Adaptive Server 
made a selectivity estimate of 50 percent for a histogram cell. This typically 
required Adaptive Server to use a large number of histogram cells for character 
column histograms to reduce the error associated with this estimate.
Performance and Tuning Series: Query Processing and Abstract Plans  279



Updating statistics 
Updating statistics
The update statistics command updates column-related statistics such as 
histograms and densities. Statistics must be updated on those columns where 
the distribution of keys in the index changes in ways that affect the use of 
indexes for your queries.

Running update statistics requires system resources. Like other maintenance 
tasks, Sybase recommends that you schedule it during at times when the load 
on the server is light. In particular, update statistics requires table scans or leaf-
level scans of indexes, may increase I/O contention, may use the CPU to 
perform sorts, and uses the data and procedure caches. Use of these resources 
can adversely affect queries running on the server.

Using the sampling feature can reduce resource requirements and allow more 
flexibility when running this task. 

In addition, some update statistics commands require shared locks, which may 
block updates. See “Scan types, sort requirements, and locking” on page 297.

You can also configure Adaptive Server to automatically run update statistics 
at times that have minimal impact on the system resources. See “Automatically 
updating statistics” on page 284.

Adding statistics for unindexed columns
When you create an index, a histogram is generated for the leading column in 
the index. Examples in earlier chapters have shown how statistics for other 
columns can increase the accuracy of optimizer statistics. 

Consider adding statistics for virtually all columns that are frequently used as 
search arguments, as long as your maintenance schedule allows time to keep 
these statistics up to date.

In particular, adding statistics for minor columns of composite indexes can 
greatly improve cost estimates when those columns are used in search 
arguments or joins along with the leading index key.
280   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
Limitations for updating statistics on proxy tables and views
If you create indexes on proxy tables, you may experience performance 
degradation; you cannot run create index, because Adaptive Server cannot 
propogate the command to the remote view. However, if you map the proxy 
table to a user table, Adaptive Server can optimize the query plan by creating 
indexes on the proxy tables’ join column.

If the number of rows returned by the view varies drastically from one 
execution to another, performance degrades when you gather statistics on 
proxy tables.

If you are using proxy tables or views, Sybase makes these recommendations:

• Do not run update statistics on proxy tables defined on views. 

• If you ran update statistics on a proxy table defined on a view, increase 
performance by dropping, then re-creating the proxy table. You cannot use 
delete statistics to remove the current statistics, because systabstats retains 
the original row count.

• Convert the view to a permanent table.

• Try using the command line trace flag 318 (force reformatting). 

update statistics commands
The update statistics commands create statistics, if there are none for a 
particular column, or replaces existing statistics. Statistics are stored in the 
systabstats and sysstatistics system tables: 

update statistics table_name 
[[ partition data_partition_name ] [ (column_list ) ] | 
index_name [ partition index_partition_name ] ]  
[ using step values ] 
[ with consumers = consumers] [, sampling=percent] 
 
        update index statistics 
table_name [[ partition data_partition_name ] | 
[ index_name [ partition index_partition_name ] ] ] 
[ using step values ] 
[ with consumers = consumers] [, sampling=percent] 
 
        update all statistics table_name 
[ partition data_partition_name ] 
[ sp_configure histogram tuning factor, <value> 
 
        update table statistics 
Performance and Tuning Series: Query Processing and Abstract Plans  281



Updating statistics 
table_name [partition data_partition_name ] 
 
        delete [ shared ] statistics table_name 
[ partition data_partition_name ]  
[( column_name[, column_name ] ...)]

• For update statistics:

• table_name – generates statistics for the leading column in each index 
on the table.

• table_name index_name – generates statistics for all columns of the 
index.

• partition_name – generates statistics for only this partition.

• partition_name table_name (column_name) – generates statistics for 
this column of this table on this partition.

• table_name (column_name) – generates statistics for only this 
column.

• table_name (column_name, column_name...) – generates a histogram 
for the leading column in the set, and multicolumn density values for 
the prefix subsets.

• using step values – identifies the number of steps used. The default is 
20 steps. To change the default number of steps, use sp_configure.

• sampling = percent – the numeric value of the sampling percentage, 
such as 05 for 5%, 10 for 10%, and so on. The sampling integer is 
between zero (0) and one hundred (100).

• For update index statistics:

• table_name – generates statistics for all columns in all indexes on the 
table.

• partition_name table_name – generates statistics for all columns in all 
indexes for the table on this partition.

• table_name index_name – generates statistics for all columns in this 
index.

• For update all statistics:

• table_name – generates statistics for all columns of a table.

• table_name partition_name – generates statistics for all columns of a 
table on a partition.
282   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
• using step values – identifies the number of steps used. The default is 
20 steps. To change the default number of steps, use sp_configure. 

sp_configure syntax includes the histogram tuning factor, which allows 
a greater selection of the number of histogram steps. The default value 
for histogram tuning factor is 20. See Chapter 5, “Setting Configuration 
Parameters” in System Administration Guide: Volume 1 for 
information about sp_configure.

Using sampling for update statistics
The optimizer for Adaptive Server uses the statistics on a database to set up and 
optimize queries. To generate optimal results, the statistics must be as current 
as possible. 

Run the update statistics commands against data sets, such as tables, to update 
information about the distribution of key values in specified indexes or 
columns, for all columns in an index, or for all columns in a table. The 
commands revise histograms and density values for column-level statistics. 
The results are then used by the optimizer to calculate the best query plan.

Run update statistics using a sampling method, which can reduce the I/O and 
time when your maintenance window is small and the data set is large. If you 
are updating a large data set or table that is in constant use, being truncated and 
repopulated, you may want to do a statistical sampling to reduce the time and 
the size of the I/O. Because sampling does not update the density values, run a 
full update statistics prior to using sampling for an accurate density value.

Use caution with sampling, since the results are not fully accurate. Balance 
changes to histogram values against the savings in I/O. 

Sampling does not update density values created by a non-sampling update 
statistics command. Since the density changes very slowly, replacing an 
accurate density with an approximation calculated by sampling usually does 
not improve the estimate. Density values created by a sampling update statistics 
command is updated. Sybase recommends that you use that one non-sampling 
update statistics command to establish an accurate density, which can be 
followed by numerous sampling update statistics commands. To have sampling 
update statistics update the density, delete the column statistics before using 
update statistics with sampling.

When you are deciding whether or not to use sampling, consider the size of the 
data set, the time constraints you are working with, and if the histogram 
produced is as accurate as needed.
Performance and Tuning Series: Query Processing and Abstract Plans  283



Automatically updating statistics 
The percentage to use when sampling depends on your needs. Test various 
percentages until you receive a result that reflects the most accurate 
information on a particular data set; for example:

update statistics authors(auth_id) with sampling = 5 percent

Set server-wide sampling percent using:

sp_configure 'sampling percent', 5

This command sets a server-wide sampling of 5% for update statistics that 
allows you to execute update statistics without the sampling syntax. The 
percentage can be between zero (0) and one hundred (100) percent.

Automatically updating statistics
The Adaptive Server cost-based query processor estimates the query costs 
using the statistics for the tables, indexes, and columns named in a query. The 
query processor chooses the access method it determines has the least cost. 
However, this cost estimate cannot be accurate if the statistics are not accurate. 
You can run update statistics to ensure that the statistics are current, however, 
running update statistics has an associated cost because it consumes system 
resources such as CPU, buffer pools, sort buffers, and procedure cache.

You can set update statistics to run automatically when it best suits your site and 
avoid running it at times that hamper your system. Use the datachange function 
to determine the best time for you to run update statistics. datachange also helps 
to ensure that you do not unnecessarily run update statistics. You can use the 
Job Scheduler templates to determine the objects, schedules, priority, and 
datachange thresholds that trigger update statistics, which ensures that critical 
resources are used only when the query processor generates more efficient 
plans.

Because update statistics is a resource-intensive task, base the decision to run 
update statistics on a specific set of criteria. Key parameters that can help you 
determine a good time to run update statistics include:

• How much data characteristics have changed since you last ran update 
statistics. This is known as the datachange parameter.

• Whether there are sufficient resources available to run update statistics. 
These include resources such as the number of idle CPU cycles and 
making sure that critical online activity does not occur during update 
statistics.
284   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
Data change is a key metric that helps you measure the amount of altered data 
since you last ran update statistics, and is tracked by the datachange function. 
Using this metric and the criteria for resource availability, you can automate the 
process of running update statistics. Job Scheduler includes a mechanism to 
automatically run update statistics. and also includes customizable templates 
you can use to determine when to run update statistics. These inputs include all 
parameters to update statistics, the datachange threshold values, and the time to 
run update statistics. Job Scheduler runs update statistics at a low priority so it 
does not affect critical jobs that are running concurrently.

datachange function
The datachange function measures the amount of change in the data 
distribution since update statistics last ran. Specifically, it measures the number 
of inserts, updates, and deletes that have occurred on the given object, partition, 
or column, and helps you determine if running update statistics would benefit 
the query plan.

The syntax for datachange is:

select datachange(object_name, partition_name, colname)

Where:

• object_name – is the object name. This object is assumed to be in the 
current database. The object_name cannot be null.

• partition_name – is the data partition name. This can be a null value.

• colname – is the column name for which the datachange is requested. This 
can be a null value.

These parameters are all required.

datachange is expressed as a percentage of the total number of rows in the table 
or partition (if the partition is specified). The percentage value can be greater 
than 100 percent because the number of changes to an object can be much 
greater than the number of rows in the table, particularly when the number of 
deletes and updates to a table is very high.

The following set of examples illustrate the various uses for the datachange 
function. The examples use the following:

• Object name is “O.”

• Partition name is “P.”
Performance and Tuning Series: Query Processing and Abstract Plans  285



Automatically updating statistics 
• Column name is “C.”

Passing a valid object, 
partition, and column 
name

The value reported when you include the object, partition, and column name is 
determined by the datachange value for the specified column in the specified 
partition divided by the number of rows in the partition. The result is expressed 
as a percentage:

datachange = 100 * (data change value for column C/ rowcount (P))

Using null partition 
names

If you include a null partition name, the datachange value is determined by the 
sum of the datachange value for the column across all partitions divided by the 
number of rows in the table. The result is expressed as a percentage:

datachange = 100 * (Sum(data change value for (O, P(1-N) , C))/rowcount(O)

Where P(1-N) indicates that the value is summed over all partitions.

Using null column 
names

If you include null column names, the value reported by datachange is 
determined by the maximum value of the datachange for all columns that have 
histograms for the specified partition divided by the number of rows in the 
partition. The result is expressed as a percentage:

datachange = 100 * (Max(data change value for (O, P, Ci))/rowcount(P)

Where the value of i varies through the columns with histograms (for example, 
formatid 102 in sysstatistics).

Null partition and 
column names

If you include null partition and column names, the value of datachange is 
determined by the maximum value of the datachange for all columns that have 
histograms summed across all partitions divided by the number of rows in the 
table. The result is expressed as a percentage:

datachange = 100 * ( Max(data change value for (O, NULL, Ci))/rowcount(O)

Where i is 1 through the total number of columns with histograms (for 
example, formatid 102 in sysstatistics).

This illustrates datachange gathering statistics:

create table matrix(col1 int, col2 int) 
go 
insert into matrix values (234, 560) 
go 
update statistics matrix(col1) 
go 
insert into matrix values(34,56) 
go 
select datachange ("matrix", NULL, NULL) 
go 
286   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
------ 
50.000000

The number of rows in matrix is two. The amount of data that has changed since 
the last update statistics command is 1, so the datachange percentage is 100 * 
1/2 = 50 percent.

datachange counters are all maintained in memory. These counters are 
periodically flushed to disk by the housekeeper or when you run sp_flushstats.

Configuring automatic update statistics
Automatically update statistics by:

• Defining update statistics jobs with Job Scheduler 

• Defining update statistics jobs as part of the self-managed installation

• Creating user-defined scripts

Creating user-defined scripts is not discussed in this document.

Using Job Scheduler to update statistics
Job Scheduler includes the update statistics template, which you can use to 
create a job that runs update statistics on a table, index, column, or partition. 
The datachange function determines when the amount of change in a table or 
partition has reached the predefined threshold. You determine the value for this 
threshold when you configure the template.

Templates:

• Run update statistics on specific tables, partitions, indexes, or columns. 
The templates allow you to define the value for datachange at which you 
want update statistics to run.

• Run update statistics at the server level, which configures Adaptive Server 
to sweep through the available tables in all databases on the server and 
update statistics on all the tables, based on the threshold you determined 
when creating your job.

To configure Job Scheduler to automate the process of running update statistics 
(the chapters listed are from the Job Scheduler Users Guide:
Performance and Tuning Series: Query Processing and Abstract Plans  287



Configuring automatic update statistics 
1 Install and set up Job Scheduler (Chapter 2, “Configuring and Running Job 
Scheduler”)

2 Install the stored procedures required for the templates (Chapter 4, “Using 
Templates to Schedule Jobs”).

3 Install the templates. Job Scheduler provides the templates specifically for 
automating update statistics (Chapter 4, “Using Templates to Schedule 
Jobs”).

4 Configure the templates. The templates for automating update statistics 
are in the Statistics Management folder.

5 Schedule the job. After you have defined the index, column, or partition 
you want tracked, you can also create a schedule that determines when 
Adaptive Server runs the job, making sure that update statistics is run only 
when it does not impact performance.

6 Identify success or failure. The Job Scheduler infrastructure allows you to 
identify success or failure for the automated update statistic.

The template allows you to supply values for the various options of the update 
statistics command such as sampling percent, number of consumers, steps, and 
so on. Optionally, you can also provide threshold values for the datachange 
function, page count, and row count. If you include these optional values, they 
are used to determine when and if Adaptive Server should run update statistics. 
If the current values for any of the tables, columns, indexes, or partitions 
exceed the threshold values, Adaptive Server issues update statistics. Adaptive 
Server detects that update statistics has been run on a column. Any query 
referencing that table in the procedure cache is recompiled before the next 
execution.

When does Adaptive 
Server run update 
statistics?

There are many forms of the update statistics command (update statistics, 
update index statistics, and so on); use these different forms depending on your 
needs.

You must specify three thresholds: rowcount, pagecount, and datachange. 
Although values of NULL or 0 are ignored, these values do not prevent the 
command from running.

Table 10-1 describes the circumstances under which Adaptive Server 
automatically runs update statistics, based on the parameter values you provide.

Table 10-1: When does Adaptive Server automatically run update 
statistics?

If the user Action taken by Job Scheduler

Specifies a datachange threshold of zero or NULL Runs update statistics at the scheduled time.
288   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
The datachange function compiles the number of changes in a table and 
displays this as a percentage of the total number of rows in the table. You can 
use this compiled information to create rules that determine when Adaptive 
Server runs update statistics. The best time for this to happen can be based on 
any number of objectives:

• The percentage of change in a table

• Number of CPU cycles available

• During a maintenance window

After update statistics runs, the datachange counter is reset to zero. The count 
for datachange is tracked at the partition level (not the object level) for inserts, 
and deletes and at the column level for updates.

Examples of updating statistics with datachange
You can write scripts that check for the specified amount of changed data at the 
column, table, or partition level. The time at which you decide to run update 
statistics can be based on a number of variables collected by the datachange 
function; CPU usage, percent change in a table, percent change in a partition, 
and so on.

Specifies a datachange threshold greater than zero 
for a table only, and does not request the update 
index statistics form

Gets all the indexes for the table and gets the leading column 
for each index. If the datachange value for any leading 
column is greater than or equal to the threshold, run update 
statistics.

Specifies threshold values for the table and index 
but does not request the update index statistics form

Gets the datachange value for the leading column of the 
index. If the datachange value is greater than or equal to the 
threshold, runs update statistics.

Specifies a threshold value for a table only, and 
requests the update index statistics form

Gets all the indexes for the table and gets the leading column 
for each index. If the datachange value for any leading 
column exceeds the threshold, runs update statistics.

Specifies threshold values for table and index and 
requests the update index statistics form

Gets the datachange value for the leading column of the 
index. If the datachange value is greater than or equal to the 
threshold, runs update statistics.

Specifies threshold values for a table and one or 
more columns (ignores any indexes or requests for 
the update index statistics form)

Gets the datachange value for each column. If the 
datachange value for any column is greater than or equal to 
the threshold, runs update statistics.

If the user Action taken by Job Scheduler
Performance and Tuning Series: Query Processing and Abstract Plans  289



Column statistics and statistics maintenance 
In this example, the authors table is partitioned, and the user wants to run 
update statistics when the data changes to the city column in the author_ptn2 
partition are greater than or equal to 50%:

select  @datachange = datachange("authors","author_ptn2", "city") 
if @datachange >= 50 
begin 
         update statistics authors partition author_ptn2(city) 
end 
go

The user can also specify that the script is executed when the system is idle or 
any other parameters.

In this example, the user triggers update statistics when the data changes to the 
city column of the authors table are greater than or equal to 100% (the table in 
this example is not partitioned):

select  @datachange = datachange("authors",NULL, "city") 
if @datachange > 100 
begin 
         update statistics authors (city) 
end 
go

Column statistics and statistics maintenance
Histograms are kept on a per-column basis, rather than on a per-index basis. 
This has certain implications for managing statistics:

• If a column appears in more than one index, update statistics, update index 
statistics, or create index updates the histogram for the column and the 
density statistics for all prefix subsets.

update all statistics updates histograms for all columns in a table.

• Dropping an index does not drop the statistics for the index, since the 
optimizer can use column-level statistics to estimate costs, even when no 
index exists.

To remove the statistics after dropping an index, you must explicitly delete 
them using delete statistics.
290   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
If the statistics are useful to the query processor, and to keep the statistics 
without having an index, use update statistics, specifying the column 
name, for indexes where the distribution of key values changes over time.

• Truncating a table does not delete the column-level statistics in 
sysstatistics. In many cases, tables are truncated and the same data is 
reloaded.

Since truncate table does not delete the column-level statistics, you need 
not run update statistics after the table is reloaded, if the data is the same.

If you reload the table with data that has a different distribution of key 
values, run update statistics.

• You can drop and re-create indexes without affecting the index statistics, 
by specifying 0 for the number of steps in the with statistics clause to create 
index. This create index command does not affect the statistics in 
sysstatistics:

create index title_id_ix on titles(title_id) 
    with statistics using 0 values

This allows you to re-create an index without overwriting statistics that 
have been edited with optdiag.

• If two users attempt to create an index on the same table, with the same 
columns, at the same time, one of the commands may fail due to an attempt 
to enter a duplicate key value in sysstatistics.

• Executing update statistics on a column in a partition of a multipartition 
table updates the statistics for that partition, but also updates the global 
histogram for that column. This is done by merging the histograms for that 
column from each partition in a row-weighted fashion to arrive at a global 
histogram for the column.

• Updating statistics on a multipartitioned table for a column, without 
specifying a partition, updates the statistics for each partition of the table 
for that column, and, as a last step, merges the partition histograms for the 
column to create a global histogram for the column.

• The optimizer only uses the global histograms for a multipartitioned table 
during compilation, and does not read the partition histograms. This 
approach avoids the overhead of merging partition histograms at 
compilation time, and instead performs any merging work at DDL time.
Performance and Tuning Series: Query Processing and Abstract Plans  291



Creating and updating column statistics 
Creating and updating column statistics
Creating statistics on unindexed columns can improve the performance of 
many queries. The optimizer can use statistics on any column in a where or 
having clause to help estimate the number of rows from a table that match the 
complete set of query clauses on that table.

Adding statistics for the minor columns of indexes and for unindexed columns 
that are frequently used in search arguments can greatly improve the 
optimizer’s estimates.

Maintaining a large number of indexes during data modification can be 
expensive. Every index for a table must be updated for each insert and delete to 
the table, and updates can affect one or more indexes.

Generating statistics for a column without creating an index gives the optimizer 
more information to use for estimating the number of pages to be read by a 
query, without the processing expense of index updates during data 
modification.

The optimizer can apply statistics for any columns used in a search argument 
of a where or having clause, and for any column named in a join clause. 

Use these commands to create and maintain column statistics:

• update statistics, when used with the name of a column, generates statistics 
for that column without creating an index on it. See “Adding statistics for 
a column with update statistics” on page 295 for information about 
syntax.

The optimizer can use these column statistics to more precisely estimate 
the cost of queries that reference the column.

• update index statistics, when used with an index name, creates or updates 
statistics for all columns in an index. See “Adding statistics for minor 
columns with update index statistics” on page 295 for information about 
syntax.

If used with a table name, update index statistics updates statistics for all 
indexed columns.

• update all statistics creates or updates statistics for all columns in a table. 
See “Adding statistics for all columns with update all statistics” on page 
296 for information about syntax.

Good candidates for column statistics are:

• Columns frequently used as search arguments in where and having clauses
292   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
• Columns included in a composite index, and which are not the leading 
columns in the index, but which can help estimate the number of data rows 
that need to be returned by a query

When additional statistics may be useful
To determine when additional statistics are useful, run queries using set option 
commands and set statistics io. If there are significant discrepancies between 
the “rows to be returned” and I/O estimates displayed by set commands and the 
actual I/O displayed by statistics io, examine these queries for places where 
additional statistics can improve the estimates. Look especially for the use of 
default density values for search arguments and join columns. 

The set option show_missing_stats command prints the names of columns that 
could have used histograms, and groups of columns that could have used 
multiattribute densities. This is particularly useful in pointing out where 
additional statistics can be useful.

Example 1 set option show_missing_stats long 
go 
dbcc traceon(3604) 
go
DBCC execution completed. If DBCC printed error 
messages, contact a user with System Administrator (SA) 
role.
select * from part, partsupp 
where p_partkey = ps_partkey and p_itemtype = 
ps_itemtype 
go
NO STATS on column part.p_partkey 
NO STATS on column part.p_itemtype 
NO STATS on column partsupp.pa_itemtype 
NO STATS on density set for E={p_partkey, p_itemtype} 
NO STATS on density set for F={ps_partkey, ps_itemtype} 
- - - - - - - - - - - - - - - 
(200 rows affected)

You can get the same information using the show_final_plan_xml option. The 
set plan uses the client option and trace flag 3604 to get the output on the client 
side. This differs from the way the message option of set plan is used.

Example 2 dbcc traceon(3604)
DBCC execution completed. If DBCC printed error 
messages, contact a user with System Administrator (SA) 
role.
Performance and Tuning Series: Query Processing and Abstract Plans  293



Creating and updating column statistics 
set plan for show_final_plan_xml to client on 
go 
select * from part, partsupp 
where p_partkey = ps_partkey and p_itemtype = 
ps_itemtype 
go
<?xml version=”1.0” encoding=”UTF-8”?> 
<query> 

<planVersion> 1.0 </planVersion> 
- - - - - - - - - - - - - - - - - - 
<optimizerStatistics> 
    <statInfo> 
        <objName>part</objName> 
        <missingHistogram> 
            <column>p_partkey</column> 
            <column>p_itemtype</column> 
        </missingHistogram> 
        <missingDensity> 
            <column>p_partkey</column> 
            <column>p_itemtype</column> 
        </missingDensity> 
    </statInfo> 
    <statInfo> 
<objName>partsupp</objName> 
        <missingHistogram> 
            <column>ps_partkey</column> 
            <column>ps_itemtype</column> 
        </missingHistogram> 
        <missingDensity> 
            <column>ps_partkey</column> 
            <column>ps_itemtype</column> 
        </missingDensity> 
    </statInfo> 
</optimizerStatistics>

Use update statistics on part and partsupp to create statistics on p_partkey and 
p_itemtype, thus creating a histogram on the leading column (p_partkey) and 
the density (p_partkey, p_itemtype). Create a histogram on p_itemtype as well. 
Use:

update statistics part(p_partkey, p_itemtype) 
go 
update statistics part(p_itemtype) 
go
294   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
Since partsupp has a histogram on ps_partkey, you can create a histogram on 
ps_itemtype and a density on (ps_itemtype, ps_partkey). The columns used for 
density may be unordered. 

update statistics partsupp(ps_itemtype, ps_partkey) 

If this procedure is successful, you will not see the “NO STATS” messages 
shown in Example 1 when you run the query again.

Adding statistics for a column with update statistics
To add statistics for the price column in the titles table, enter:

update statistics titles (price) 

To specify the number of histogram steps for a column, use:

update statistics titles (price)  
   using 50 values

This command adds a histogram for the titles.pub_id column and generates 
density values for the prefix subsets pub_id; pub_id, pubdate; and pub_id, 
pubdate, title_id:

update statistics titles(pub_id, pubdate, title_id)

However, this command does not create a histogram on pubdate and 
title_id, since a separate update statistics command is needed for every 
column for which a histogram is desired. 

Note  Running update statistics with a table name updates histograms and 
densities for leading columns for indexes only; it does not update the statistics 
for unindexed columns. To maintain these statistics, run update statistics and 
specify the column name, or run update all statistics.

Adding statistics for minor columns with update index statistics
To create or update statistics on all columns in an index, use update index 
statistics. The syntax is: 

update index statistics 
table_name [[ partition data_partition_name ] | 
[ index_name [ partition index_partition_name ] ] ] 
Performance and Tuning Series: Query Processing and Abstract Plans  295



Choosing step numbers for histograms 
[ using step values ] 
[ with consumers = consumers ] [, sampling = percent]

Adding statistics for all columns with update all statistics
To create or update statistics on all columns in a table, use update all statistics. 
The syntax is: 

update all statistics table_name 
[partition data_partition_name]

Choosing step numbers for histograms
By default, each histogram has 20 steps, which provides good performance and 
modeling for columns that have an even distribution of values. A higher 
number of steps can increase the accuracy of I/O estimates for columns that:

• Have a large number of highly duplicated values

• Have unequal or skewed distribution of values

• Are queried using leading wildcards in like queries

The histogram tuning factor default of 20 automatically chooses a step value 
between the current requested step value (default 20) and the increased steps 
due to the factor (20 * 20 = 400) so that Adaptive Server automatically chooses 
the optimal steps value to compensate for the above cases. Overriding the step 
values should take into account the larger number of steps already introduced 
by the histogram tuning factor. 

Note  If your database was updated from a pre-11.9 version of Adaptive Server, 
the number of steps defaults to the number of steps that were used on the 
distribution page.

Increasing the number of steps beyond what is needed for good query 
optimization can degrade Adaptive Server performance, largely due to the 
amount of space that is required to store and use the statistics. Increasing the 
number of steps:

• Increases the disk storage space required for sysstatistics
296   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
• Increases the cache space needed to read statistics during query 
optimization

• Requires more I/O, if the number of steps is very large

During query optimization, histograms use space borrowed from the procedure 
cache. This space is released as soon as the query is optimized.

Choosing a step number
If your table has 5000 rows, and one value in the column that has only one 
matching row, you may need to request 5000 steps to get a histogram that 
includes a frequency cell for every distinct value. The actual number of steps 
is not 5000; it is either the number of distinct values plus one (for dense 
frequency cells), or twice the number of values plus one (for sparse frequency 
cells). 

The sp_configure option histogram tuning factor automatically chooses a larger 
number of steps, within parameters, when there are a large number of highly 
duplicated values. 

The default value of the histogram tuning factor is 20 in Adaptive Server version 
15.0 and later. If the requested step count is 50, then update statistics can create 
up to 20 * 50 = 1000 steps. This larger number of steps is used only if histogram 
distribution is skewed with a number of domain values that are highly 
duplicated. However, for a unique column, update statistics uses only 50 steps 
to represent the histogram. To most efficiently use histograms, specify a 
relatively low number of steps and allow the histogram tuning factor to 
determine whether more steps would be useful for optimization. For example, 
instead of specifying 1000 steps with a default step count of 1000 to be used by 
all histograms, it is better to specify 50 default steps and a histogram tuning 
factor of 20. This allows Adaptive Server to determine the best step count, 
within the range of 50 to 1000 steps, with which to represent the distribution.

Scan types, sort requirements, and locking 
Table 10-2 shows the types of scans performed during update statistics, the 
types of locks acquired, and when sorts are needed.
Performance and Tuning Series: Query Processing and Abstract Plans  297



Scan types, sort requirements, and locking 
Table 10-2: Scans, sorts, and locking during update statistics

Sorts for unindexed or nonleading columns
For unindexed columns and columns that are not the leading columns in 
indexes, Adaptive Server performs a serial table scan, copying the column 
values into a worktable. It then sorts the worktable to build the histogram. The 
sort is performed in serial, unless the with consumers clause is specified.

See Chapter 5, “Parallel Query Processing,”.

Locking, scans, and sorts during update index statistics
The update index statistics command generates a series of update statistics 
operations that use the same locking, scanning, and sorting as the equivalent 
index-level and column-level command. For example, if the salesdetail table 
has a nonclustered index named sales_det_ix on salesdetail(stor_id, ord_num, 
title_id), this command:

update statistics 
specifying Scans and sorts performed Locking

Table name

Allpages-locked table Table scan, plus a leaf-level scan of each 
nonclustered index

Level 1; shared intent table lock, 
shared lock on current page

Data-only-locked table Table scan, plus a leaf-level scan of each 
nonclustered index and the clustered index, if one 
exists

Level 0; dirty reads

Table name and clustered index name

Allpages-locked table Table scan Level 1; shared intent table lock, 
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and nonclustered index name

Allpages-locked table Leaf level index scan Level 1; shared intent table lock, 
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable and sorts the 
worktable

Level 1; shared intent table lock, 
shared lock on current page

Data-only-locked table Table scan; creates a worktable and sorts the 
worktable

Level 0; dirty reads
298   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
update index statistics salesdetail

performs these update statistics operations:

update statistics salesdetail sales_det_ix 
update statistics salesdetail (ord_num)
update statistics salesdetail (title_id)

Locking, scans and sorts during update all statistics
The update all statistics commands generate a series of update statistics 
operations for each index on the table, followed by a series of update statistics 
operations for all unindexed columns.

Using the with consumers clause
The with consumers clause for update statistics is designed for use on 
partitioned tables on Redundant Array of Independent Disks (RAID) devices, 
which appear to Adaptive Server as a single I/O device, but can produce the 
high throughput required for parallel sorting. See Chapter 5, “Parallel Query 
Processing,” for information.

Reducing the impact of update statistics on concurrent processes
Since update statistics uses dirty reads (transaction isolation level 0) for 
data-only-locked tables, you can execute it while other tasks are active on the 
server; it does not block access to tables and indexes. Updating statistics for 
leading columns in indexes requires only a leaf-level scan of the index, and 
does not require a sort, so updating statistics for these columns does not affect 
concurrent performance very much.

However, updating statistics for unindexed and nonleading columns, which 
require a table scan, worktable, and sort, can affect concurrent processing. 

• Sorts are CPU-intensive. Use a serial sort, or a small number of worker 
processes to minimize CPU utilization. Alternatively, you can use 
execution classes to set the priority for update statistics.

See Chapter 3, “Using Engines and CPUs,” in Performance and Tuning 
Series: Basics.
Performance and Tuning Series: Query Processing and Abstract Plans  299



Using the delete statistics command 
• The cache space required for merging sort runs is taken from the data 
cache, and some procedure cache space is also required. Setting the 
number of sort buffers to a low value reduces the space used in the buffer 
cache.

If number of sort buffers is set to a large value, it takes more space from the 
data cache, and may also cause stored procedures to be flushed from the 
procedure cache, since procedure cache space is used while merging 
sorted values. There are approximately 100 bytes of procedure cache 
needed for every row that can fit into the sort buffers specified. For 
example, if 500 2K sort buffers are specified, and about 200 rows fit into 
each 2K buffer, then 200 * 100 * 500 bytes of procedure cache are needed 
to support the sort. This example requires about 5000 2K procedure cache 
buffers, if the entire 500 data cache buffers are filled by a sort run.

Creating the worktables for sorts also uses space in tempdb.

Using the delete statistics command
In versions of Adaptive Server earlier than 11.9, dropping an index removed 
the distribution page for the index. As of version 11.9.2, maintaining 
column-level statistics is under explicit user control, and the optimizer can use 
column-level statistics even when an index does not exist. The delete statistics 
command allows you to drop statistics for specific columns.

If you create an index and then decide to drop it because it is not useful for data 
access, or because of the cost of index maintenance during data modifications, 
you must determine whether the:

• Statistics on the index are useful to the optimizer.

• Distribution of key values in the columns for this index are subject to 
change over time as rows are inserted and deleted.

If the distribution of key values changes, run update statistics periodically 
to maintain useful statistics.

This example deletes the statistics for the price column in the titles table:
300   Adaptive Server Enterprise



CHAPTER 10    Using Statistics to Improve Performance
delete statistics titles(price)

Note  delete statistics removes rows only from sysstatistics; it does not remove 
rows from systabstats. You cannot delete the rows in systabstats that described 
partition row counts, cluster ratios, page counts, and so on. However, if you use 
optdiag simulate statistics to add any simulated systabstats rows to sysstatistics, 
then those rows are deleted. 

When row counts may be inaccurate
Row count values for the number of rows, number of forwarded rows, and 
number of deleted rows may be inaccurate, especially if query processing 
includes many rollback commands. If workloads are extremely heavy, and the 
housekeeper wash task does not run often, these statistics are more likely to be 
inaccurate.

Running update statistics corrects counts in systabstats. When the housekeeper 
wash task runs, or when you execute sp_flushstats, row count values are saved 
in systabstats.

Note  You must set the configuration parameter housekeeper free write percent 
to 1 or greater to enable housekeeper statistics flushing.

Running dbcc checktable or dbcc checkdb updates these row count values in 
memory.
Performance and Tuning Series: Query Processing and Abstract Plans  301



When row counts may be inaccurate 
302   Adaptive Server Enterprise



C H A P T E R  1 1 Introduction to Abstract Plans

Overview
Adaptive Server can generate an abstract plan for a query, and save the 
text and its associated abstract plan in the sysqueryplans system table. 
Using a rapid hashing method, incoming SQL queries can be compared to 
saved query text, and if a match is found, the corresponding saved abstract 
plan is used to execute the query.

An abstract plan describes the execution plan for a query using a language 
created for that purpose. This language contains operators to specify the 
choices and actions that can be generated by the optimizer. For example, 
to specify an index scan on the titles table, using the index title_id_ix, the 
abstract plan says:

(i_scan title_id_ix titles)

To use this abstract plan with a query, you can modify the query text and 
add a PLAN clause:

select * from titles where title_id = “On Liberty” 
plan 
“(i_scan title_id_ix titles)”

This alternative requires a change to the SQL text; however, the method 
described in the first paragraph, that is, the sysqueryplans-based way to 
give the abstract plan of a query, does not involve changing the query text.

Topic Page
Overview 303

Managing abstract plans 304

Relationship between query text and query plans 305

Full versus partial plans 306

Abstract plan groups 308

How abstract plans are associated with queries 308
Performance and Tuning Series: Query Processing and Abstract Plans 303



Managing abstract plans 
Abstract plans provide a means for system administrators and 
performance tuners to protect the overall performance of a server from 
changes to query plans. Changes in query plans can arise due to:

• Adaptive Server software upgrades that affect optimizer choices and 
query plans

• New Adaptive Server features that change query plans

• Changing tuning options such as the parallel degree, table 
partitioning, or indexing

The main purpose of abstract plans is to provide a means to capture query 
plans before and after major system changes. You can then compare sets 
of before-and-after query plans to determine the effects of changes on your 
queries. Other uses include:

• Searching for specific types of plans, such as table scans or 
reformatting

• Searching for plans that use particular indexes

• Specifying full or partial plans for poorly performing queries

• Saving plans for queries with long optimization times

Abstract plans provide an alternative to options that must be specified in 
the batch or query to influence optimizer decisions. Using abstract plans, 
you can influence the optimization of a SQL statement without modifing 
the statement syntax. While matching query text to stored text requires 
some processing overhead, using a saved plan reduces query optimization 
overhead.

Managing abstract plans
A full set of system procedures allows system administrators and database 
owners to administer plans and plan groups. Individual users can view, 
drop, and copy the plans for the queries that they have run. 

See Chapter 14, “Managing Abstract Plans with System Procedures,” for 
more information.
304   Adaptive Server Enterprise



CHAPTER 11    Introduction to Abstract Plans
Relationship between query text and query plans
For most SQL queries, there are many possible query execution plans. 
SQL describes the desired result set, but does not describe how that result 
set should be obtained from the database. Consider a query that joins three 
tables, such as:

select t1.c11, t2.c21 
from t1, t2, t3 
where t1.c11 = t2.c21 
and t1.c11 = t3.c31

There are many different possible join orders, and depending on the 
indexes that exist on the tables, many possible access methods, including 
table scans, index scans, and the reformatting strategy. Each join may use 
either a nested-loop join or a merge join. These choices are determined by 
the optimizer’s query costing algorithms, and are not included in or 
specified in the query itself.

When you capture the abstract plan, the query is optimized in the usual 
way, except that the optimizer also generates an abstract plan, and saves 
the query text and abstract plan in sysqueryplans. 

Limits of options for influencing query plans
Adaptive Server provides other options for influencing optimizer choices:

• Session-level options such as set forceplan to force join order or set 
parallel_degree to specify the maximum number of worker processes 
to use for the query

• Options that can be included in the query text to influence the index 
choice, cache strategy, and parallel degree

There are some limitations to using set commands or adding hints to the 
query text:

• Not all query plan steps can be influenced, for example, subquery 
attachment.

• Some query-generating tools do not support the in-query options or 
require all queries to be vendor-independent.
Performance and Tuning Series: Query Processing and Abstract Plans  305



Full versus partial plans 
Full versus partial plans
Abstract plans can be full plans, describing all query processing steps and 
options, or they can be partial plans. A partial plan might specify that an 
index is to be used for the scan of a particular table, without specifying 
other access methods. For example:

select t1.c11, t2.c21 
from t1, t2, t3 
where t1.c11 = t2.c21 
and t1.c11 = t3.c31 
plan 
“(i_scan t3_c31_ix t3)”

The full abstract plan includes:

• The join type, nl_join for nested-loop joins, m_join for merge joins, or 
h_join for hash joins.

• The join order.

• The type of scan, t_scan for table scan or i_scan for index scan.

• The name of the index chosen for the tables that are accessed via an 
index scan.

• The scan properties: the parallel degree, I/O size, and cache strategy 
for each table in the query.

The abstract plan for the query above specifies the join order, the access 
method for each table in the query, and the scan properties for each table:

select t1.c11, t2.c21 
from t1, t2, t3 
where t1.c11 = t2.c21 
and t1.c11 = t3.c31 
plan 
“(i_scan t3_c31_ix t3)” 
 
(nl_join ( nl_join  
    ( t_scan t2 )  
    ( i_scan t1_c11_ix t1 )  
    ) 
    ( i_scan t3_c31_ix t3 )  
)  
( prop t3  
    ( parallel 1 )  
    ( prefetch 16 )  
    ( lru )  
306   Adaptive Server Enterprise



CHAPTER 11    Introduction to Abstract Plans
)  
( prop t1  
    ( parallel 1 )  
    ( prefetch 16 )  
    ( lru )  
)  
( prop t2  
    ( parallel 1 )  
    ( prefetch 16 )  
    ( lru )  
)   

If the abstract plan dump mode is on, the query text and the abstract plan 
pair are saved in sysqueryplans:

select t1.c11, t2.c21 
from t1, t2, t3 
where t1.c11 = t2.c21 
and t1.c11 = t3.c31 
plan 
“(i_scan t3_c31_ix t3)”

Creating a partial plan
When abstract plans are captured, full abstract plans are generated and 
stored. You can write partial plans that affect only a subset of the optimizer 
choices. If the query above had not used the index on t3, but all other parts 
of the query plan were optimal, you could create a partial plan for the 
query using the create plan command. This partial plan specifies only the 
index choice for t3:

create plan 
"select t1.c11, t2.c21 
from t1, t2, t3 
where t1.c11 = t2.c21 
and t1.c11 = t3.c31" 
"( i_scan t3_c31_ix t3 )"

You can also create abstract plans with the plan clause for select, delete, 
update, and other commands that can be optimized. If the abstract plan 
dump mode is on, the query text and AP pair are saved in sysqueryplans.

See Chapter 12, “Creating and Using Abstract Plans,” for more 
information.
Performance and Tuning Series: Query Processing and Abstract Plans  307



Abstract plan groups 
Abstract plan groups
When you install Adaptive Server, there are two abstract plan groups:

• ap_stdout, used by default to capture plans

• ap_stdin, used by default for plan association

A system administrator can enable server-wide plan capture to ap_stdout, 
so that all query plans for all queries are captured. Server-wide plan 
association uses queries and plans from ap_stdin. If some queries require 
specially-tuned plans, they can be made available server-wide.

A system administrator or database owner can create additional plan 
groups, copy plans from one group to another, and compare plans in two 
different groups. 

The capture of abstract plans and the association of abstract plans with 
queries always happens within the context of the currently active plan 
group. Users can use session-level set commands to enable plan capture 
and association.

Some of the ways abstract plan groups can be used are:

• A query tuner can create abstract plans in a group created for testing 
purposes without affecting plans for other users on the system

• Using plan groups, “before” and “after” sets of plans can be used to 
determine the effects of system or upgrade changes on query 
optimization.

See Chapter 12, “Creating and Using Abstract Plans,” for more 
information on enabling the capture and association of plans.

How abstract plans are associated with queries
When an abstract plan is saved, all white space (tabs, multiple spaces, and 
returns, except for returns that terminate a --style comment) in the query 
is trimmed to a single space, and a hash-key value is computed for the 
white-space trimmed SQL statement. The trimmed SQL statement and the 
hash key are stored in sysqueryplans along with the abstract plan, a unique 
plan ID, the user’s ID, and the ID of the current abstract plan group. 
308   Adaptive Server Enterprise



CHAPTER 11    Introduction to Abstract Plans
When abstract plan association is enabled, the hash key for incoming SQL 
statements is computed, and this value is used to search for the matching 
query and abstract plan in the current association group, with the 
corresponding user ID. The full association key of an abstract plans 
consists of:

• The user ID of the current user

• The group ID of the current association group

• The full query text

Once a matching hash key is found, the full text of the saved query is 
compared to the query to be executed, and used if it matches. 

The association key combination of user ID, group ID, and query text 
means that for a given user, there cannot be two queries in the same 
abstract plan group that have the same query text, but different query 
plans.
Performance and Tuning Series: Query Processing and Abstract Plans  309



How abstract plans are associated with queries 
310   Adaptive Server Enterprise



C H A P T E R  1 2 Creating and Using Abstract 
Plans

Use the set command to capture abstract plans and to associate incoming 
SQL queries with saved plans. Any user can issue session-level 
commands to capture and load plans during a session, and a system 
administrator can enable server-wide abstract plan capture and 
association. This chapter also describes how to specify abstract plans 
using SQL. 

Using set commands to capture and associate plans
At the session level, any user can enable and disable capture and use of 
abstract plans using the set plan dump and set plan load commands. set 
plan replace determines whether existing plans are overwritten by changed 
plans.

Enabling and disabling abstract plan modes takes effect at the end of the 
batch in which the command is included (similar to showplan). Therefore, 
change the mode in a separate batch before you run your queries:

set plan dump on 
go 
/*queries to run*/ 
go

Topic Page
Using set commands to capture and associate plans 311

set plan exists check option 317

Using other set options with abstract plans 318

Server-wide abstract plan capture and association modes 320

Creating plans using SQL 321
Performance and Tuning Series: Query Processing and Abstract Plans 311



Using set commands to capture and associate plans 
Any set plan commands used in a stored procedure do not affect the 
procedure (except those statements affected by deferred compilation) in 
which they are included, but remain in effect after the procedure 
completes.

Enabling plan capture mode with set plan dump
The set plan dump command activates and deactivates the capture of 
abstract plans. You can save the plans to the default group, ap_stdout, by 
using set plan dump with no group name:

set plan dump on

To start capturing plans in a specific abstract plan group, specify the group 
name. This example sets the group dev_plans as the capture group:

set plan dump dev_plans on

The group that you specify must exist before you issue the set command. 
The system procedure sp_add_qpgroup creates abstract plan groups; only 
the system administrator or database owner can create an abstract plan 
group. Once an abstract plan group exists, any user can dump plans to the 
group. 

See “Creating a group” on page 363 for information on creating a plan 
group.

To deactivate the capturing of plans, use:

set plan dump off

You do not need to specify a group name to end capture mode. Only one 
abstract plan group can be active for saving or matching abstract plans at 
any one time. If you are currently saving plans to a group, turn off the plan 
dump mode, and reenable it for the new group, as shown here:

set plan dump on /*save to the default group*/ 
go 
/*some queries to be captured */ 
go 
set plan dump off 
go 
set plan dump dev_plans on 
go 
/*additional queries*/ 
go
312   Adaptive Server Enterprise



CHAPTER 12    Creating and Using Abstract Plans
The use of the use database command while set plan dump is in effect 
disables plan dump mode.

Associating queries with stored plans
The set plan load command activates and deactivates the association of 
queries with stored abstract plans.

To start the association mode using the default group, ap_stdin, use:

set plan load on

To enable association mode using another abstract plan group, specify the 
group name: 

set plan load test_plans on

Only one abstract plan group can be active for plan association at one time. 
If plan association is active for a group, deactivate the current group and 
activate plan association for the new group, as shown here:

set plan load test_plans on 
go 
/*some queries*/ 
go 
set plan load off 
go 
set plan load dev_plans on 
go

The use of the use database command while set plan load is in effect 
disables plan load mode.

Using replace mode during plan capture
While plan capture mode is active, you can choose whether to have plans 
for the same query replace existing plans by enabling or disabling set plan 
replace. To activate plan replacement mode, use:

set plan replace on

Do not specify a group name with set plan replace; it affects the current 
active capture group.

To disable plan replacement:
Performance and Tuning Series: Query Processing and Abstract Plans  313



Using set commands to capture and associate plans 
set plan replace off

The use of the use database command while set plan replace is in effect 
disables plan replace mode.

When to use replace mode

When you are capturing plans, and a query has the same query text as an 
already-saved plan, the existing plan is not replaced unless replace mode 
is enabled. If you have captured abstract plans for specific queries, and you 
are making physical changes to the database that affect optimizer choices, 
replace existing plans for these changes to be saved.

Some actions that might require plan replacement are:

• Adding or dropping indexes, or changing keys or key ordering in 
indexes

• Changing the partitioning on a table

• Adding or removing buffer pools

• Changing configuration parameters that affect query plans

In most cases, do not enable plan load. When plan association is active, any 
plan specifications are used as inputs to the optimizer. For example, if a 
full query plan includes the prefetch property and an I/O size of 2K, and 
you have created a 16K pool and want to replace the prefetch specification 
in the plan, do not enable plan load mode. 

You may want to check query plans and replace some abstract plans as 
data distribution changes in tables, or after rebuilds on indexes, updating 
statistics, or changing the locking scheme.

Using dump, load, and replace modes simultaneously
You can have both plan dump and plan load mode active simultaneously, 
with or without replace mode active.

Using dump and load to the same group

If you have enabled dump and load to the same group, without replace 
mode enabled:
314   Adaptive Server Enterprise



CHAPTER 12    Creating and Using Abstract Plans
• If a valid plan exists for the query, it is loaded and used to optimize 
the query.

• If a plan exists that is not valid (for example, because an index has 
been dropped), a new plan is generated and used to optimize the 
query, but is not saved.

• If only a partial plan exists, a full plan is generated, but the existing 
partial plan is not replaced

• If a plan does not exist for the query, a plan is generated and saved.

With replace mode also enabled:

• If a valid plan exists for the query, it is loaded and used to optimize 
the query.

• If the plan is not valid, a new plan is generated and used to optimize 
the query, and the old plan is replaced.

• If the plan is a partial plan, a complete plan is generated and used, and 
the existing partial plan is replaced. The specifications in the partial 
plan are used as input to the optimizer.

• If a plan does not exist for the query, a plan is generated and saved.

Using dump and load to different groups

If you have dump enabled to one group, and load enabled from another 
group, without replace mode enabled:

• If a valid plan exists for the query in the load group, it is loaded and 
used. The plan is saved in the dump group, unless a plan for the query 
already exists in the dump group.

• If the plan in the load group is not valid, a new plan is generated. The 
new plan is saved in the dump group, unless a plan for the query 
already exists in the dump group.

• If the plan in the load group is a partial plan, a full plan is generated 
and saved in the dump group, unless a plan already exists. The 
specifications in the partial plan are used as input to the optimizer.

• If there is no plan for the query in the load group, the plan is generated 
and saved in the dump group, unless a plan for the query exists in the 
dump group.

With replace mode active:
Performance and Tuning Series: Query Processing and Abstract Plans  315



Using set commands to capture and associate plans 
• If a valid plan exists for the query in the load group, it is loaded and 
used. 

• If the plan in the load group is not valid, a new plan is generated and 
used to optimize the query. The new plan is saved in the dump group.

• If the plan in the load group is a partial plan, a full plan is generated 
and saved in the dump group. The specifications in the partial plan are 
used as input to the optimizer.

• If a plan does not exist for the query in the load group, a new plan is 
generated. The new plan is saved in the dump group.

Compile-time changes for some set parameters
In Adaptive Server releases earlier than 15.0.2, the set parameters took 
effect after the stored procedure was executed or recompiled. Adaptive 
Server release 15.0.2 and later allows you to use optimizer set parameters 
at compile time to affect the optimizer in stored procedures or batches. 

Note  This changed behavior may effect the composition of the result set. 
Sybase recommends that you review the result set created by the 15.0.2 
versions of the set parameters before using them in your production 
systems.

You must reset the set parameter before returning from the stored 
procedure or the execution of subsequent stored procedures may be 
affected. If you intend to propogate this change to subsequent stored 
procedures, use export_options parameter. 

Adaptive Server changes the compile-time behavior for these parameters:

• distinc_sorted

• distinct_sorting

• distinct_hashing

• group_sorted

• group_hashing

• bushy_space_search

• parallel_query
316   Adaptive Server Enterprise



CHAPTER 12    Creating and Using Abstract Plans
• order_sorting

• nl_join

• merge_join

• hash_join

• append_union_all

• merge_union_all

• merge_union_distinct

• hash_union_distinct

• store_index

• index_intersection

• index_union

• multi_table_store_ind

• opportunistic_distict_view

• advanced_aggregation

• replicated_partition

• group_inserting

• basic_optimization

• auto_query_tuning

• query_tuning_mem_limit

• query_tuning_time_limit

• set plan optgoal

set plan exists check option
Use the exists check mode during query plan association to speed 
performance when users require abstract plans for fewer than 20 queries 
from an abstract plan group. If a small number of queries require plans to 
improve their optimization, enabling exists check mode speeds execution 
of all queries that do not have abstract plans, because they do not check for 
plans in sysqueryplans. 
Performance and Tuning Series: Query Processing and Abstract Plans  317



Using other set options with abstract plans 
When set plan load and set exists check are both enabled, the hash keys for 
up to 20 queries in the load group are cached for the user. If the load group 
contains more than 20 queries, exists check mode is disabled. Each 
incoming query is hashed; if its hash key is not stored in the abstract plan 
cache, then there is no plan for the query and no search is made. This 
speeds the compilation of all queries that do not have saved plans.

The syntax is: 

set plan exists check {on | off}

You must enable load mode before you enable plan hash-key caching.

A system administrator can configure server-wide plan hash-key caching 
with the configuration parameter abstract plan cache. To enable server-
wide plan caching, use:

sp_configure "abstract plan cache", 1

Using other set options with abstract plans
You can combine other set tuning options with set plan dump, 
show_abstract_plan, and set plan load.

Using show_abstract_plan to view plans
set option show_abstract_plan prints the optimal abstract plan currently 
running on the TDS connection. It prints the plan after optimization and 
before execution, and is the only set option show_ command that does not 
depend on trace flag 3604 or 3605.

Printing the final plan’s abstract plan is similar to viewing showplan 
output: it provides information to the user, but the abstract plan is not 
saved in sysqueryplans, and is not used if you use the apstract plan load 
mode.

This example shows the optimal abstract plan currently running on the 
TDS connection:

1> set option show_abstract_plan on 
2> go 
1> select r1, sum(s1) 
2> from r, s 
318   Adaptive Server Enterprise



CHAPTER 12    Creating and Using Abstract Plans
3> where r2=s2 
4> group by r1
The Abstract Plan (AP) of the final query execution plan: 
( group_sorted ( nl_join ( i_scan ir12 r ) ( i_scan is21 s ) ) ) ( prop r  
(parallel 1 ) ( prefetch 2 ) ( lru ) ) ( prop s ( parallel 1 ) ( prefetch 2 )  
(lru ) ) 
To experiment with the optimizer behavior, this AP can be modified and then 
passed to the optimizer using the PLAN clause:  
SELECT/INSERT/DELETE/UPDATE ... 
PLAN '( ... )'. 
r1 
----------- ----------- 
          1           2 
          2           4 
 
(2 rows affected)

Using showplan
When showplan is turned on, and abstract plan association mode has been 
enabled with set plan load, showplan prints the plan ID of the matching 
abstract plan at the beginning of the showplan output for the statement:

QUERY PLAN FOR STATEMENT 1 (at line 1). 
Optimized using an Abstract Plan (ID : 832005995).

If you run queries using the plan clause added to a SQL statement, 
showplan displays:

Optimized using the Abstract Plan in the PLAN clause.

Using noexec
You can use noexec mode to capture abstract plans without actually 
executing the queries. If noexec mode is in effect, queries are optimized 
and abstract plans are saved, but no query results are returned.

To use noexec mode while capturing abstract plans, execute any needed 
procedures (such as sp_add_qpgroup) and other set options (such as set 
plan dump) before enabling noexec mode. The following example shows a 
typical set of steps:

sp_add_qpgroup pubs_dev 
go 
Performance and Tuning Series: Query Processing and Abstract Plans  319



Server-wide abstract plan capture and association modes 
set plan dump pubs_dev on 
go 
set noexec on 
go 
select type, sum(price) from titles group by type 
go

Using fmtonly
A similar behavior can be obtained for capturing plans in stored 
procedures without actually executing the stored procedures, using fmtonly 
set.

sp_add_qpgroup pubs_dev 
go 
set plan dump pubs_dev on 
go 
set fmtonly on 
go 
exec stored_proc(...) 
go

Using forceplan
If set forceplan on is in effect, and query association is also enabled for the 
session, forceplan is ignored if a full abstract plan is used to optimize the 
query. If a partial plan does not completely specify the join order:

• First, the tables in the abstract plan are ordered, as specified.

• The remaining tables are ordered as specified in the from clause.

• The two lists of tables are merged.

Server-wide abstract plan capture and association 
modes

A system administrator can enable server-wide plan capture, association, 
and replacement modes with these configuration parameters: 
320   Adaptive Server Enterprise



CHAPTER 12    Creating and Using Abstract Plans
• abstract plan dump – enables dumping to the default abstract plans 
capture group, ap_stdout.

• abstract plan load – enables loading from the default abstract plans 
loading group, ap_stdin.

• abstract plan replace – when plan dump mode is also enabled, enables 
plan replacement.

• abstract plan cache – enables caching of abstract plan hash IDs; 
abstract plan load must also be enabled. See “set plan exists check 
option” on page 317.

By default, these configuration parameters are set to 0, which means that 
capture and association modes are off. To enable a mode, set the 
configuration value to 1:

sp_configure "abstract plan dump", 1

Enabling any of the server-wide abstract plan modes is dynamic; you need 
not restart the server.

Server-wide capture and association allows the system administrator to 
capture all plans for all users on a server. You cannot override server-wide 
modes at the session level.

Creating plans using SQL
You can directly specify the abstract plan for a query by:

• Using the create plan command

• Adding the plan clause to select, insert...select, update, delete and 
return commands, and to if and while clauses

For information on writing plans, see Chapter 13, “Abstract Query Plan 
Guide.”

Using create plan
The create plan command specifies the text of a query, and the abstract 
plan to save for the query. 

This example creates an abstract plan:
Performance and Tuning Series: Query Processing and Abstract Plans  321



Creating plans using SQL 
create plan 
    “select avg(price) from titles” 
“(scalar_agg 
    (i_scan type_price_ix titles) 
)”

The plan is saved in the current active plan group. You can also specify the 
group name:

create plan 
    “select avg(price) from titles” 
“(scalar_agg 
    (i_scan type_price_ix titles) 
)” 
into dev_plans

If a plan already exists for the specified query in the current plan group, or 
the plan group that you specify, you must first enable replace mode in 
order to overwrite the existing plan.

To see the plan ID that is used for a plan you create, create plan can return 
the ID as a variable. You must declare the variable first. This example 
returns the plan ID:

create plan 
    “select avg(price) from titles” 
“(scalar_agg 
    (i_scan type_price_ix titles) 
)” 
into dev_plans 
and set @id 
 
select @id

When you use create plan, the query in the plan is not executed. This 
means that:

• The text of the query is not parsed, so the query is not checked for 
valid SQL syntax.

• The plans are not checked for valid abstract plan syntax.

• The plans are not checked to determine whether they are compatible 
with the SQL text.

To guard against errors and problems, immediately execute the specified 
query with showplan enabled.
322   Adaptive Server Enterprise



CHAPTER 12    Creating and Using Abstract Plans
Using the plan clause
You can use the plan clause with the following SQL statements to specify 
the plan to use to execute the query:

• select 

• insert...select 

• delete 

• update 

• if 

• while 

• return 

This example specifies the plan to use to execute the query:

select avg(price) from titles 
    plan 
“(scalar_agg 
    (i_scan type_price_ix titles 
)”

When you specify an abstract plan for a query, the query is executed using 
the specified plan. If you have showplan enabled, this message is printed:

Optimized using the Abstract Plan in the PLAN clause.

When you use the plan clause with a query, any errors in the SQL text, the 
plan syntax, and any mismatches between the plan and the SQL text are 
reported as errors. For example, this plan uses the wrong abstract plan 
operator for the query:

/* wrong operator! */ 
select * from t1,t2 
where c11 = c21 
plan 
“(union 
 (t_scan t1) 
 (t_scan t2) 
)"

This plan returns the following message:

Abstract Plan (AP) Warning: An error occurred while applying the AP: 
(union (t_scan t1) (t_scan2)) 
to the SQL query: 
select * from t1, t2 
Performance and Tuning Series: Query Processing and Abstract Plans  323



Creating plans using SQL 
where c11 = c21 
Failed to apply the top operator ‘union’ of the following AP fragment: 
(union (t_scan t1) (t_scan t2)) 
The query contains no union that matches the ‘union’ AP operator at this point. 
The following template can be used as a basis for a valid AP: 
(also_enforce (join (also_enforce (scan t1)) (also_enforce (scan t2))) 
) 
The optimizer will complete the compilation of this query; the query will be 
executed normally.

Plans specified with the plan clause are saved in sysqueryplans only if plan 
capture is enabled. If a plan for the query already exists in the current 
capture group, enable replace mode to replace an existing plan.
324   Adaptive Server Enterprise



C H A P T E R  1 3 Abstract Query Plan Guide

This chapter covers some guidelines you can use in writing Abstract 
Plans.

Overview
Abstract plans allow you to specify the desired execution plan of a query. 
Abstract plans provide an alternative to the session-level and query-level 
options that force a join order, or specify the index, I/O size, or other query 
execution options. The session-level and query-level options are 
described in Chapter 12, “Creating and Using Abstract Plans.”

There are several optimization decisions that you cannot specify with set 
commands or clauses in the query text, for example:

• Algorithms that implement a given relational operator; for example, 
NLJ versus MJ versus HJ or GroupSorted versus GroupHashing versus 
GroupInserting

• Subquery attachment

• The join order for flattened subqueries 

• Reformatting 

In many cases when issuing T-SQL commands, you cannot include set 
commands or change the query text. Abstract plans provide an alternative, 
more complete method of influencing optimizer decisions.

Topic Page
Overview 325

Tips on writing abstract plans 353

Using abstract plans at the query level 353

Comparing plans before and after 356

Abstract plans for stored procedures 358

Ad hoc queries and abstract plans 360
Performance and Tuning Series: Query Processing and Abstract Plans 325



Overview 
Abstract plans are relational algebra expressions that are not included in 
the query text. They are stored in a system catalog and associated with 
incoming queries based on the text of these queries. 

Abstract plan language
The abstract plan language is a relational algebra that uses these operators: 

• distinct – a logical operator describing duplicates elimination.

• distinct_sorted – a physical operator describing available 
ordering-based duplicates elimination.

• distinct_sorting – a physical operator describing sorting-based 
duplicates elimination.

• distinct_hashing – a physical operator describing hashing-based 
duplicates elimination.

• group – a logical operator, describing vector aggregation.

• group_sorted – a physical operator describing the available 
ordering-based vector aggregation.

• group_hashing – a physical operator describing hashing-based 
vector aggregation.

• group_inserting – a physical operator describing clustered index 
insertion-based vector aggregation.

• join – the generic join and a high-level logical join operator that 
describes inner, outer and existence joins, using nested-loop joins, 
merge joins, or hash joins. 

• nl_join – specifying a nested-loop join, including all inner, outer, 
and existence joins.

• m_join – specifying a merge join, including inner and outer joins.

• h_join – specifying a hash join, including all inner, outer, and 
existence joins. 

• union – a logical union operator. It describes both the union and the 
union all SQL constructs.

• append_union_all – a physical operator implementing union all. It 
appends the child result sets, one after the other. 
326   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
• merge_union_all – a physical operator implementing union all. It 
merges the child result sets on the subset of the projection that is 
ordered in each child, and preserves that ordering. 

• merge_union_distinct – a physical operator implementing union 
[distinct]. A merge-based duplicates removal algorithm. 

• hash_union_distinct – a physical operator implementing union 
[distinct]. A merge-based duplicates removal algorithm.

• scalar_agg – a logical operator, describing scalar aggregation.

• scan – a logical operator that transforms a stored table in a flow of 
rows, an abstract plan derived table. It allows partial plans that do not 
restrict the access method.

• i_scan – a physical operator implementing scan. It directs the 
optimizer to use an index scan on the specified table.

• t_scan – a physical operator implementing scan. It directs the 
optimizer to use a full table scan on the specified table.

• m_scan – a physical operator implementing scan. It directs the 
optimizer to use a multiindex table scan on the specified table, 
either index union, index intersection, or both. 

• store – a physical operator describing the materialization of an 
abstract plan derived table in a stored worktable. 

• store_index – a physical operator describing the materialization of an 
abstract plan derived table in a clustered index stored worktable; the 
optimizer chooses the useful key columns.

• sort – a physical operator describing the sorting of an abstract plan 
derived table; the optimizer chooses the useful key columns. 

• nested – a filter describing the placement and structure of nested 
subqueries.

• xchg – a physical operator describing the on-the-fly repartitioning of 
an abstract plan derived table. The abstract plan gives the target 
degree, but the optimizer chooses the useful target partitioning. 

These additional abstract plan keywords are used for grouping and 
identification:

• sequence – groups the elements when a sequence requires multiple 
steps.

• hints – groups a set of hints for a partial plan.
Performance and Tuning Series: Query Processing and Abstract Plans  327



Overview 
• prop – introduces a set of scan properties for a table: prefetch, lru|mru 
and parallel.

• table – identifies a table when correlation names are used, and in 
subqueries or views.

• work_t – identifies a worktable.

• in – used with table to identify tables named in a subquery (subq) or 
view (view).

• subq – used under the nested operator to indicate the attachment point 
for a nested subquery, and to introduce the subqueries’ abstract plan.

All legacy abstract plan operators, such as g_join, are still accepted for 
their new counterparts. 

Queries, access methods, and abstract plans

For any specific table, there can be several access methods for a specific 
query; index scans using different indexes, table scans, the OR strategy, 
and reformatting. 

This simple query has several choices of access methods:

select * from t1  
where c11 > 1000 and c12 < 0

The following abstract plans specify three different access methods: 

• Use the index i_c11:

(i_scan i_c11 t1)

• Use the index i_c12:

(i_scan i_c12 t1)

• Do a full table scan:

(t_scan t1)

• Do a multi-scan; that is, the union or intersection of several indexes 
of the table, according to the complex clause (hence the more 
complex query used in this example):

select * from t1 
where (c11 > 1000 or c12 < 0) and (c12 > 1000 or c112 < 0) 
plan 
“(m_scan t1)”
328   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
Abstract plans can be full plans, specifying all optimizer choices for a 
query, or can specify a subset of the choices, such as the index to use for a 
single table in the query, but not the join order for the tables. For example, 
using a partial abstract plan, you can specify that the query above should 
use some index and let the optimizer choose between i_c11 and i_c12, but 
not do a full table scan. The empty parentheses are used in place of the 
index name:

(i_scan () t1)

In addition, the query could use either 2K or 16K I/O, or be performed in 
serial or parallel. 

Derived tables

A derived table is defined by the evaluation of a query expression and 
differs from a regular table in that it is neither described in system catalogs 
nor stored on disk. In Adaptive Server, a derived table may be a SQL 
derived table or an abstract plan derived table.

• A SQL derived table – defined by one or more tables through the 
evaluation of a query expression. A SQL derived table is used in the 
query expression in which it is defined and exists only for the duration 
of the query. See the Transact-SQL User’s Guide.

• An abstract plan derived table – a derived table used in query 
processing, the optimization and execution of queries. An abstract 
plan derived table differs from a SQL derived table in that it exists as 
part of an abstract plan and is invisible to the end user.

Identifying tables
Abstract plans must name all of a query’s tables in a nonambiguous way, 
such that a table named in the abstract can be linked to its occurrence in 
the SQL query. In most cases, the table name is all that is needed. If the 
query qualifies the table name with the database and owner name, these 
are also needed to fully identify a table in the abstract plan. For example, 
this example uses the unqualified table name:

select * from t1

The abstract plan also uses the unqualified name, (t_scan t1). If a database 
name or owner name are provided in the query:

select * from pubs2.dbo.t1
Performance and Tuning Series: Query Processing and Abstract Plans  329



Overview 
The abstract plan must use qualifications, (t_scan pubs2.dbo.t1). 
However, the same table may occur several times in the same query, as in 
this example:

select * from t1 a, t1 b 

Correlation names, a and b in the example above, identify the two tables 
in SQL. In an abstract plan, the table operator associates each correlation 
name with the occurrence of the table: 

(join  
        (t_scan (table (a t1)))  
        (t_scan (table (b t1)))  
)

You can also use a briefer abstract plan, which uses only the correlation 
names:

(join 
  (t_scan a) 
  (t_scan b) 
)

Table names can also be ambiguous in views and subqueries, so the table 
operator is used for tables in views and subqueries.

For subqueries, the in and subq operators qualify the name of the table with 
its syntactical containment by the subquery. The same table is used in the 
outer query and the subquery in this example:

select *  
from t1  
where c11 in (select c12 from t1 where c11 > 100)

The abstract plan identifies the tables unambiguously:

(join  
    (t_scan t1)  
    (i_scan i_c11_c12 (table t1 (in (subq 1)))) 
) 

For views, the in and view operators provide the identification. The query 
in this example references a table used in the view:

create view v1 
as 
select * from t1 where c12 > 100
select t1.c11 from t1, v1 
    where t1.c12 = v1.c11

Here is the abstract plan: 
330   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
     (join  
         (t_scan t1)  
         (i_scan i_c12 (table t1 (in (view v1)))) 
     ) 

In abstract plans generated by Adaptive Server, the view or subquery-
qualified table names are generated only for the tables where they are 
needed to remove name ambiguity. For other tables, only the name is 
generated.

In abstract plans created by the user, view or subquery-qualified tables 
names are required in case of ambiguity; both syntaxes are accepted 
otherwise.

Identifying indexes
The i_scan operator requires two operands, the index name and the table 
name, as shown here:

(i_scan i_c12 t1)

To specify that some index should be used, without specifying the index, 
substitute empty parenthesis for the index name:

(i_scan () t1)

Specifying join order
Adaptive Server performs joins of three or more tables by joining two of 
the tables, and joining the abstract plan derived table from that join to the 
next table in the join order. This abstract plan derived table is a flow of 
rows, as from an earlier nested-loop join in the query execution.

This query joins three tables: 

select *  
from t1, t2, t3 
where c11 = c21  
    and c12 = c31 
    and c22 = 0 
    and c32 = 100

This example shows the binary nature of the join algorithm, using join 
operators. The plan specifies the join order t2, t1, t3: 
Performance and Tuning Series: Query Processing and Abstract Plans  331



Overview 
(join 
    (join 
        (scan t2) 
        (scan t1) 
    ) 
    (scan t3) 
)

The results of the t2-t1 join are then joined to t3. The scan operator in this 
example leaves the choice of table scan or index scan up to the optimizer. 

Shorthand notation for joins

In general, an N-way left deep nested loops join, with the order t1, t2, t3..., 
tN-1, tN is described by: 

(join 
    (join 
        ... 
            (join 
                (join 
                    (scan t1) 
                    (scan t2) 
                ) 
                (scan t3) 
            ) 
        ... 
        (scan tN-1) 
    ) 
    (scan tN) 
)

This notation can be used as shorthand for the nl_join operator: 

(nl_join 
    (scan t1) 
    (scan t2) 
    (scan t3) 
    ... 
    (scan tN-1) 
    (scan tN) 
)

332   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
Join order examples

The optimizer could select among several plans for this three-way join 
query:

select *  
from t1, t2, t3 
where c11 = c21  
    and c12 = c31 
    and c22 = 0 
    and c32 = 100

Here are a few examples:

• Use c22 as a search argument on t2, join with t1 on c11, then with t3 
on c31:

(nl_join 
    (i_scan i_c22 t2) 
    (i_scan i_c11 t1) 
    (i_scan i_c31 t3) 
)

• Use the search argument on t3, and the join order t3, t1, t2:

(nl_join 
    (i_scan i_c32 t3) 
    (i_scan i_c12 t1) 
    (i_scan i_c21 t2) 
)

• Do a full table scan of t2, if it is small and fits in cache, still using the 
join order t3, t1, t2:

(nl_join 
    (i_scan i_c32 t3) 
    (i_scan i_c12 t1) 
    (t_scan t2) 
)

• If t1 is very large, and t2 and t3 individually qualify a large part of t1, 
but together a very small part, this plan specifies a star join:

(nl_join 
    (i_scan i_c22 t2) 
    (i_scan i_c32 t3) 
    (i_scan i_c11_c12 t1) 
)

Performance and Tuning Series: Query Processing and Abstract Plans  333



Overview 
The join operators are generic in that they implement any of the outer 
joins, inner joins, and existence joins; the optimizer chooses the correct 
join semantics according to the query semantics. 

Match between execution methods and abstract plans

There are some limits to join orders and join types, depending on the type 
of query. One example is outer joins, such as:

select *  
from t1 left join t2 
on c11 = c21

Adaptive Server requires the outer member of the outer join to be the outer 
table during join processing. Therefore, this abstract plan is illegal:

(join 
    (scan t2) 
    (scan t1) 
)

Attempting to use this plan results in an error message, the AP application 
fails, and the optimizer makes the best attempt to finish compiling the 
query.

Specifying join order for queries using views

You can use abstract plans to enforce the join order for merged views. This 
example creates a view that performs a join of t2 and t3: 

create view v2  
as  
select *  
from t2, t3 
where c22 = c32

This query performs a join with the t2 in the view:

select * from t1, v2 
where c11 = c21  
    and c22 = 0

This abstract plan specifies the join order t2, t1, t3:

(nl_join 
    (scan t2) 
    (scan t1) 
    (scan t3) 
334   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
)

Since the table names are not ambiguous, the view qualification is not 
needed. However, the following abstract plan is also legal and has the 
same meaning:

(nl_join 
     (scan (table t2(in(view v2)))) 
     (scan t1) 
     (scan (table t3 (in (view v2)))) 
)

This example joins with t3 in the view:

select * from t1, v2 
where c11 = c31  
    and c32 = 100

This plan uses the join order t3, t1, t2: 

(join 
    (scan t3) 
    (scan t1) 
    (scan t2) 
)

This is an example where abstract plans can be used, if needed, to affect 
the join order for a query, when set forceplan cannot.

Specifying the join type
Adaptive Server can perform nested-loop, merge, or hash joins. The join 
operator leaves the optimizer free to choose the best join algorithm, based 
on costing. To specify a nested-loop join, use the nl_join operator; for a 
merge join, use the m_join operator, and for a hash join, use the h_join 
operator. Abstract plans captured by Adaptive Server always include the 
operator that specifies the algorithm, and not the join operator.

This query specifies a join between t1 and t2: 

select * from t1, t2 
    where c12 = c21 and c11 = 0

This abstract plan specifies a nested-loop join: 

(nl_join 
    (i_scan i_c11 t1) 
    (i_scan i_c21 t2) 
Performance and Tuning Series: Query Processing and Abstract Plans  335



Overview 
)

The nested-loop plan uses the index i_c11to limit the scan using the search 
clause, and then performs the join with t2, using the index on the join 
column.

This merge-join plan uses different indexes: 

(m_join 
    (i_scan i_c12 t1) 
    (i_scan i_c21 t2) 
)

The merge join uses the indexes on the join columns, i_c12 and i_c21, for 
the merge keys. This query performs a full-merge join and no sort is 
needed. 

A merge join could also use the index on i_c11 to select only the matching 
rows, but then a sort is needed to provide the needed ordering.

(m_join 
    (sort 
        (i_scan i_c11 t1) 
    ) 
    (i_scan i_c21 t2) 
)

Finally, this plan does a hash join and a full table scan on the inner side:

(h_join 
   (i_scan i_c11 t1) 
   (t_scan t2) 
) 

Specifying partial plans and hints
Sometimes a full plan is not needed, for example, if the only problem with 
a query plan is that the optimizer chooses a table scan instead of using a 
nonclustered index, the abstract plan can specify only the index choice, 
and leave the other decisions to the optimizer. 

The optimizer could choose a table scan of t3 rather than using i_c31 for 
this query: 

select *  
from t1, t2, t3 
where c11 = c21  
336   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
    and c12 < c31 
    and c22 = 0 
    and c32 = 100

The following plan, as generated by the optimizer, specifies join order t2, 
t1, t3. However, the plan specifies a table scan of t3:

(nl_join 
    (i_scan i_c22 t2) 
    (i_scan i_c11 t1) 
    (t_scan t3) 
)

This full plan could be modified to specify the use of i_c31 instead:

(nl_join 
    (i_scan i_c22 t2) 
    (i_scan i_c11 t1) 
    (i_scan i_c31 t3) 
)

However, specifying only a partial abstract plan is a more flexible 
solution. As data in the other tables of that query evolves, the optimal join 
order can change. The partial plan can specify just one partial plan item. 
For the index scan of t3, the partial plan is simply: 

(i_scan i_c31 t3)

The optimizer chooses the join order and the access methods for t1 and t2.

Abstract plans are partial by using logical operators instead of physical 
operators. For example, the following abstract plan is partial, although it 
covers the entire query, as it lets the optimizer choose the join algorithms 
and the access methods:

(join 
   (scan t1) 
   (scan t2) 
   (scan t3) 
)

Partial plans may also be incomplete at the top, in that the root of the 
abstract plan may cover only a part of the query. If this is the case, the 
optimizer completes the plan:

(nl_join 
   (t_scan t1) 
   (t_scan t2) 
)

Performance and Tuning Series: Query Processing and Abstract Plans  337



Overview 
However, the plan fragment given in an abstract plan must be complete 
down to the leafs. For example, the following abstract plan, which reads 
“hash join t1 outer to something” is illegal.

(h_join 
   (t_scan t1) 
   () 
)

Grouping multiple hints

Sometimes more than one plan fragment is needed. For example, you 
might want to specify that some index should be used for each table in the 
query, but leave the join order up to the optimizer. When multiple hints are 
needed, you can group them with the hints operator:

(hints 
    (i_scan () t1) 
    (i_scan () t2) 
    (i_scan () t3) 
)

In this case, the role of the hints operator is purely syntactic; it does not 
affect the ordering of the scans.

There are no limits on what may be given as a hint. Partial join orders may 
be mixed with partial access methods. This hint specifies that t2 is outer to 
t1 in the join order, and that the scan of t3 should use an index, but the 
optimizer can choose the index for t3, the access methods for t1 and t2, and 
the placement of t3 in the join order: 

(hints 
    (join 
        (scan t2) 
        (scan t1) 
    ) 
    (i_scan () t3) 
)

Inconsistent and illegal plans using hints

It is possible to describe inconsistent plans using hints, such as this plan 
that specifies contradictory join orders:

(hints 
    (join 
        (scan t2) 
338   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
        (scan t1) 
    ) 
    (join 
        (scan t1) 
        (scan t2) 
    ) 
)

When the query associated with the plan is executed, the query cannot be 
compiled, and an error is raised. 

Other inconsistent hints do not raise an exception, but may use any of the 
specified access methods. This plan specifies both an index scan and a 
table scan for the same table:

(hints 
    (t_scan t3) 
    (i_scan () t3) 
)

In this case, either method may be chosen, and the behavior is 
indeterminate.

Creating abstract plans for subqueries
Subqueries are resolved in several ways in Adaptive Server, and the 
abstract plans reflect the query execution steps:

• Materialization – the subquery is executed and results are stored in a 
worktable or internal variable. See “Materialized subqueries” on page 
340. 

• Flattening – the query is flattened into a join with the tables in the 
main query. See “Flattened subqueries” on page 340. 

• Nesting – the subquery is executed once for each outer query row. See 
“Nested subqueries” on page 342.

Abstract plans do not allow the choice of the basic subquery resolution 
method. This is a rule-based decision and cannot be changed during query 
optimization. Abstract plans, however, can be used to influence the plans 
for the outer and inner queries. In nested subqueries, abstract plans can 
also be used to choose where the subquery is nested in the outer query.
Performance and Tuning Series: Query Processing and Abstract Plans  339



Overview 
Materialized subqueries

This query includes a noncorrelated subquery that can be materialized: 

select *  
from t1 
where c11 = (select count(*) from t2)

The first step in the abstract plan materializes the scalar aggregate in the 
subquery. The second step uses the result to scan t1:

( sequence  
    (scalar_agg 
        (i_scan i_c21 t2)  
    ) 
    (i_scan i_c11 t1) 
) 

Flattened subqueries

Some subqueries can be flattened into joins. The join, nl_join, m_join, and 
h_join operators leave it to the optimizer to detect when an existence join 
is needed. For example, this query includes a subquery introduced with 
exists: 

select * from t1 
where c12 > 0  
    and exists (select * from t2  
            where t1.c11 = c21 and c22 < 100)

The semantics of the query require an existence join between t1 and t2. The 
join order t1, t2 is interpreted by the optimizer as a semijoin, with the scan 
of t2 stopping on the first matching row of t2 for each qualifying row in t1: 

(join 
    (scan t1) 
    (scan t2)  
)

The join order t2, t1 requires other means to guarantee the duplicate 
elimination:

(join 
    (distinct 
       (scan t2) 
    ) 
    (scan t1) 
)

340   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
Using this abstract plan, the optimizer can decide to use:

• A unique index on t2.c21, if one exists, with a regular join.

• The unique reformatting strategy, if no unique index exists. In this 
case, the query will probably use the index on c22 to select the rows 
into a worktable.

• The duplicate elimination sort optimization strategy, performing a 
regular join and selecting the results into the worktable, then sorting 
the worktable.

The abstract plan does not need to specify the creation and scanning of the 
worktables needed for the last two options.

Example of changing the join order in a flattened subquery

The query can be flattened to an existence join: 

select *  
from t1, t2 
where c11 = c21 
    and c21 > 100 
    and exists (select * from t3 where c31 != t1.c11)

The “!=” correlation can make the scan of t3 rather expensive. If the join 
order is t1, t2, the best place for t3 in the join order depends on whether the 
join of t1 and t2 increases or decreases the number of rows, and therefore, 
the number of times that the expensive table scan needs to be performed. 
If the optimizer fails to find the right join order for t3, the following 
abstract plan can be used when the join reduces the number of times that 
t3 must be scanned: 

(nl_join 
    (scan t1) 
    (scan t2) 
    (scan t3) 
)

If the join increases the number of times that t3 needs to be scanned, this 
abstract plan performs the scans of t3 before the join: 

(nl_join 
    (scan t1) 
    (scan t3) 
    (scan t2) 
)

Performance and Tuning Series: Query Processing and Abstract Plans  341



Overview 
Nested subqueries

Nested subqueries can be explicitly described in abstract plans if:

• The abstract plan for the subquery is provided.

• The location at which the subquery attaches to the main query is 
specified.

Abstract plans allow you to affect the query plan for the subquery, and to 
change the attachment point for the subquery in the outer query. 

The nested operator specifies the position of the subquery in the outer 
query. Subqueries are “nested over” a specific abstract plan derived table. 
The optimizer chooses a spot where all the correlation columns for the 
outer query are available, and where it estimates that the subquery needs 
to be executed the least number of times.

The following SQL statement contains a correlated expression subquery: 

select *  
from t1, t2 
where c11 = c21 
    and c21 > 100 
    and c12 = (select c31 from t3  
                where c32 = t1.c11)

The abstract plan shows the subquery nested over the scan of t1: 

(nl_join  
    (nested  
        (i_scan i_c12 t1)  
        (subq  
            (scalar_agg 
                (scan t3) 
            ) 
         ) 
    )  
    (i_scan i_c21 t2)  
) 

Aggregation is described in Chapter 2, “Using showplan.” The scalar_agg 
abstract plan operator is necessary because all abstract plans, even partial 
ones, must be complete down to the leafs. 
342   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
Subquery identification and attachment

Subqueries in the SQL query are matched against abstract plan subqueries 
using their underlying tables. As tables are unambiguously identified, so 
are the subqueries. For example:

select 
   (select c11 from t1 where c12 = t3.c32), c31 
from t3 
where 
   c32 > (select c22 from t2 where c21 = t3.c31) 
plan 
“(nested 
    (nested 
        (t_scan t3) 
        (subq 
             (i_scan i_c11_c12 t1) 
   ) 
) 
    (subq 
        (i_scan i_c21 t2) 
   ) 
)”

However, when table names are ambiguous, the identity of the subquery is 
needed to solve the table name ambiguity.

Subqueries are identified with numbers, in the order of their leading 
opened parenthesis “(“. 

This example has two subqueries; both refer to table t1:

select 1 
from t1 
where  
   c11 not in (select c12 from t1) 
   and c11 not in (select c13 from t1)

In the abstract plan, the subquery which projects out of c12 is named “1” 
and the subquery which projects out of c13 is named “2”. 

(nested  
    (nested  
        (t_scan t1)  
        (subq 
           (scalar_agg 
                (i_scan i_c11_c12 (table t1 (in (subq 1)))) 
           ) 
        ) 
Performance and Tuning Series: Query Processing and Abstract Plans  343



Overview 
    )  
    (subq 
        (scalar_agg 
            (i_scan i_c13 (table t1 (in (subq 2)))) 
        ) 
    ) 
)

In this query, the second subquery is nested in the first:

select * from t1  
where c11 not in 
    (select c12 from t1  
     where c11 not in 
     (select c13 from t1) 

In this case, the subquery that projects out of c12 is also named “1” and the 
subquery that projects out of c13 is also named “2”. 

(nested 
   (t_scan t1 
   (subq 
      (scalar_agg 
         (nested 
            (i_scan i_c12 (table t1 (in (subq 1)))) 
            (subq 
               (scalar_agg 
                  (i_scan i_c21 (table t1 (in (subq 2)))) 
                ) 
             ) 
          ) 
       ) 
   ) 
)

More subquery examples: reading ordering and attachment

The nested operator has the abstract plan derived table as the first operand 
and the nested subquery as the second operand. This allows an easy 
vertical reading of the join order and subquery placement: 

select *  
from t1, t2, t3 
where c12 = 0 
    and c11 = c21 
    and c22 = c32 
    and 0 < (select c21 from t2 where c22 = t1.c11)
344   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
In the plan, the join order is t1, t2, t3, with the subquery nested over the 
scan of t1:

(nl_join  
    (nested  
        (i_scan i_c11 t1)  
        (subq  
            (t_scan (table t2 (in (subq 1)))  
        )  
    )  
    (i_scan i_c21 t2)  
    (i_scan i_c32 t3)  
) 

Modifying subquery nesting

If you modify the attachment point for a subquery, you must choose a point 
at which all of the correlation columns are available.This query is 
correlated to two of the tables in the outer query:

select *  
from t1, t2, t3 
where c12 = 0 
    and c11 = c21 
    and c22 = c32 
    and 0 < (select c31 from t3 where c31 = t1.c11 
                    and c32 = t2.c22)

This plan uses the join order t1, t2, t3, with the subquery nested over the 
t1-t2 join:

(nl_join  
    (nested  
        (nl_join  
            (i_scan i_c11_c12 t1)  
            (i_scan i_c22 t2)  
        )  
        (subq  
            (t_scan (table t3 (in (subq 1))))  
        )  
    ) 
    (i_scan i_c32 t3)  
) 

Since the subquery requires columns from both outer tables, it would be 
incorrect to nest it over the scan of t1 or the scan of t2; such errors are 
silently corrected during optimization.
Performance and Tuning Series: Query Processing and Abstract Plans  345



Overview 
However, the following abstract plan makes the legal request to nest the 
subquery over the three-table join:

(nested 
  (nl_join 
    (i_scan i_c11_c12 t1) 
    (i_scan i_c22 t2) 
    (i_scan i_c32 t3) 
  ) 
  (subq 
    (t_scan (table t3 (in (subq 1)))) 
  ) 
)

Abstract plans for materialized views
In most cases, view processing merges the view definition in the main 
query. There are, however, cases when a view needs to be materialized, as 
in the case of a self-join:

create view v3(cc31, sum_c32) 
as 
select c31, sum(c32) 
from t3 
group by c31 
 
select * 
from v3 a, v3 b 
where a.c31 = b.c31

In such a case, the abstract plan exposes the worktable and the store 
operator that materializes it. The two scans of the worktable are identified 
through their correlation names:

(sequence 
  (store 
    (group_sorted 
      (i_scan i_c31 t3) 
    ) 
  ) 
  (m_join 
  (sort 
    (t_scan (work_t (a Worktable))) 
  ( sort 
    (t_scan (work_t (b Worktable))) 
  ) 
346   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
  ) 
)

The handling of vector aggregation in an abstract plan is described in the 
next section.

Abstract plans for queries containing aggregates
This query returns a scalar aggregate: 

select max(c11) from t1

There is a physical operator that implements scalar aggregation, therefore, 
the optimizer has no choice. However, choosing an index on c11 allows the 
max() optimization:

(scalar_agg 
  (i_scan ic11 t1)  
) 

Since the scalar aggregate is the top abstract plan operator, removing it and 
using the following partial plan has the same outcome:

(i_scan ic11 t1)

The scalar_agg abstract plan is typically needed when it is part of a 
subquery and the abstract plan must cover the parent query as well.

Vector aggregation is different, in that there are several physical operators 
to implement the group logical operator, which means that the optimizer 
has a choice to make. Thus, the abstract plan can force it.

select max(c11) 
from t1 
group by c12

The following abstract plan examples force each of the three vector 
aggregation algorithms:

Note  group_sorted requires an ordering on the grouping column, so it 
needs to use an index.

(group_sorted 
  (i_scan i_c12 t1) 
) 
(group_hashing 
  (t_scan t1) 
Performance and Tuning Series: Query Processing and Abstract Plans  347



Overview 
) 
 
(group_inserting 
  (t_scan t1) 
)

Abstract plans for queries containing unions
The union abstract plan operator describes plans for SQL queries that 
contain unions:

select* 
from 
  t1, 
  (select * from t2 
  union 
  select * from t3 
 ) u(u1, u2) 
where c11=u1 
plan 
“(nl_join 
 (union 
  (t_scan t2) 
  (t_scan t3) 
 ) 
 (i_scan i_c11 t1) 
)”

There are two types of union in SQL: union distinct and union [all]. union [all] 
is the default. 

The m_union_distinct and h_union_distinct abstract plan operators force the 
removal of merge or hash-based UNION DISTINCT duplicates. It is illegal 
to use these operators with a UNION ALL. The merge-based algorithm 
needs, from each of the union children, an ordering covering all union 
projection columns. 

In the following example, the needed ordering is provided, for the first 
child, by the (c11, c12) composite index and, for the second child, by 
the sort.

select c11, c12 from t1 
union distinct 
select c21, c22 from t2 
plan 
“(m_union distinct 
348   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
 (i_scan i_c11_c12 t1) 
 (sort 
  (t_scan t2) 
 ) 
)”

The union_all and m_union_all abstract plan operators force the append- or 
merge-based UNION ALL. It is illegal to use these operators with a UNION 
DISTINCT. The merge algorithm needs no ordering for itself; it makes any 
useful ordering from the children available to the parent. 

In the following example, the ordering provided by the two i_scan 
operators is made available, by their m_union_all parent, to the m_join 
above.

select * 
from 
  t1, 
  (select c21, c22 from t2 
   union 
   select c31, c32 from t3 
) u(u1, u2) 
where c11=u1 
plan 
“(m_join 
 (m_union_all 
   (i_scan i_c21 t2) 
   (i_scan i_c31 t3) 
 ) 
 (i_scan i_c11 t1) 
)”

Using abstract plans when queries need ordering
An ordering is needed either explicitly, in an ORDER BY query, or 
implicitly by merge-based operators such as m_join, m_union_distinct, and 
group_sorted.

An ordering is produced either explicitly, by the sort abstract plan operator 
(the optimizer build the sort key on all columns known to need an 
ordering), or implicitly by an i_scan on the indexed columns. 

All merge-based operators that require ordering preserve it in their results 
for a parent that also requires it.
Performance and Tuning Series: Query Processing and Abstract Plans  349



Overview 
In the following example, the i_scan of t1 provides the ordering needed by 
the m_join. The i_scan of t2, and the sort over t3’s scan, provides the 
ordering needed by m_union_distinct. This ordering also provides the 
ordering needed by the m_join. Finally, no top sort is required as the 
ordering needed by ORDER BY is provided by the m_join.

select * 
from 
  t1, 
  (select c21, c22 from t2 
    union distinct 
    select c31, c32 from t3 
) u(u1, u2) 
where c11=u1 
order by c11, u2 
plan 
“(m_join 
    (m_union_distinct 
        (i_scan i_c21_c22 t2) 
        (sort 
            (t_scan t3) 
        ) 
    ) 
    (i_scan i_c11 t1) 
)” 

Specifying the reformatting strategy
In this query, t2 is very large, and has no index: 

select * 
from t1, t2 
where c11 > 0 
    and c12 = c21 
    and c22 = 0

The abstract plan that specifies the reformatting strategy on t2 is:

(nl_join 
    (t_scan t1) 
    (store_ind 
        (t_scan t2) 
    ) 
)

350   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
The store_ind abstract plan operator must be placed on the inner side of an 
nl_join. It can be placed over any abstract plan; there is no longer a single 
table scan limitation. The legacy (scan (store... )) syntax is still 
accepted. 

Specifying the OR strategy
An OR strategy uses a set of index scans to limit the scan with each of the 
OR terms, then passes the resulting row IDs through a UnionDistinct 
operator to get, with a RidJoin from the table, the tuples corresponding to 
the unique row IDs.

The m_scan (multiscan) abstract plan operator forces index union, hence 
the OR strategy:

select * from t1 
where c11 > 10 or c12 > 100 
plan 
“(m_scan t1)”

When the store operator is not specified
Storing the stream of tuples into a worktable to meet the intraoperator 
needs of an algorithm (Sort, GroupInserting, and so on), is treated as a 
implementation detail of the algorithm and thus is not exposed in the 
abstract plan.

Abstract plans expose only the worktables created for interoperator 
reasons, such as the self-joined materialized view. In such a case, none of 
the operators needs a work table. The cause is, rather, the global nature of 
the plan, of computing an intermediate derived table once and using it 
twice. 

Abstract plans for parallel processing
Partitioned tables scanned in parallel produce partitioned streams of 
tuples. Different operators have specific needs for parallel processing. For 
instance, in all joins, either both children must be equipartitioned, or one 
child must be replicated. 
Performance and Tuning Series: Query Processing and Abstract Plans  351



Overview 
The abstract plan xchg operator forces the optimizer to repartition, on-the-
fly, in n ways, its child-derived table. The abstract plan only gives the 
degree. The optimizer chooses the most useful partitioning columns and 
style (hash, range, list, or round-robin).

In the following example, assume that t1 and t2 are hash partitioned two 
ways and three ways on the join columns, and i_c21 is a local index:

select * 
from t1, t2 
where c11=c21

The following abstract plan repartitions t1 three ways, does a three-way 
parallel nl_join, serializes the results, and returns a single data stream to the 
client:

(xchg 1 
  (nl_join 
    (xchg 3 
      (t_scan t1) 
    ) 
    (i_scan i_c21 t2) 
  ) 
)

It is not necessary to specify t2’s parallel scan. It is hash-partitioned three 
ways, and, as it is joined with an xchg-3, no other plan is legal.

The following abstract plan scans and sorts t1 and t2 in parallel, as each is 
partitioned, then serializes them for the m_join:

(m_join 
    (xchg 1 
        (sort 
            (t_scan t1) 
        ) 
    ) 
    (xchg 1 
        (sort 
            (t_scan t2) 
        ) 
    ) 
) 
(prop t1 (parallel 2)) 
(prop t2 (parallel 3))

The parallel abstract plan construct is used to make sure that the optimizer 
chooses the parallel scan with the native degree.
352   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
Tips on writing abstract plans
Here are some additional tips for writing and using abstract plans:

• Look at the current plan for the query and at plans that use the same 
query execution steps as the plan you need to write. It is often easier 
to modify an existing plan than to write a full plan from scratch.

• Capture the plan for the query.

• Use sp_help_qplan to display the SQL text and plan.

• Edit this output to generate a create plan command, or attach an 
edited plan to the SQL query using the plan clause.

• It is often best to specify partial plans for query tuning in cases where 
most optimizer decisions are appropriate, but only an index choice, 
for example, needs improvement. 

By using partial plans, the optimizer can choose other paths for other 
tables as the data in other tables changes.

• Once saved, abstract plans are static. Data volumes and distributions 
may change so that saved abstract plans are no longer optimal. 

Subsequent tuning changes made by adding indexes, partitioning a 
table, or adding buffer pools may mean that some saved plans are not 
performing as well as possible under current conditions. Most of the 
time, operate with a small number of abstract plans that solve specific 
problems. 

Perform periodic plan checks to verify that the saved plans are still 
better than the plan that the optimizer would choose.

Using abstract plans at the query level
You can use abstract plans to force the query plan the query processor 
choses to allow several query-level settings. See Chapter 7, “Controlling 
Optimization,” for more information about using abstract plans at the 
query level.

The optimization criteria are handled at the session level by the following 
set statements:
Performance and Tuning Series: Query Processing and Abstract Plans  353



Using abstract plans at the query level 
set 
nl_join|merge_join|hash_join|... 
on | off

The use ... abstract plan syntax accepts any number of use forms before 
the abstract plan derived table. In versions of Adaptive Server earlir than 
15.0, optgoal and opttimeout could not be in the same abstract plan with a 
derived table. For example, this statement would need to be separate from 
a optgoal statement in a query:

select ... 
    plan 
     "(use opttimeoutlimit 10) (i_scan r)"

However, you can include several statements in the same abstract plan by:

• Using several use statements. For example:

select ... 
    plan 
    "(use optgoal allrows_dss) (use nl_join off) 
(...)"

• Placing several items within one use form. For example:

select ... 
    plan 
    "(use (optgoal allrows_dss) (nl_join off)) 
(...)"

At the query level, use the optimization goal (opt_goal) or timeout 
(opttimeout) setting with the use ... abstract plan syntax. At the session 
level, use these settings with the set plan ... syntax:

• Optimization goal.

• Optimization timeout

For example, join r outer to s and enable the hash_join without an 
optimization goal (opt_goal): 

select ... 
> 
>            plan 
> 
            "(use hash_join on) 
> 
>            (join (scan r) (scan s))"

This example uses the opt_goal and allrows_oltp statements, but with 
hash_join enabled:
354   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
select ... 
> 
>     plan 
> 
>      "(use opt_goal allrows_oltp)(use hash_join 
on)"

When setting the optimization goal and the optimization criteria at the 
query level, the order of the use statements does not affect the outcome.

• The abstract plan optimization goal is set first, and sets the 
optimization goal defaults for the optimization criteria.

• You can set abstract plan optimization, which supersedes 
optimization goal defaults criteria, you set the optimization goal.

Operator name alignment for abstract plan and optimizer criteria
The names of algorithms differ in how you use them in abstract plans and 
how you use them in the set command. For example, a hash join is called 
h_join in abstract plans, but is called hash_join in the set command. 
Adaptive Server accepts both keywords in the extended abstract plan 
syntax. For example:

select ... 
 
plan 
 
"(h_join (t_scan r) (t_scan s))"

is equivalent to:

 select ... 
 
    plan 
 
    "(hash_join (t_scan r) (t_scan s))"

and:

select ... 
plan 
"(use h_join on)"

and:

select ... 
plan 
Performance and Tuning Series: Query Processing and Abstract Plans  355



Comparing plans before and after 
"(use hash_join on)"

When a table abstract plan is present, it takes precedence:

select .. 
from r, s, t 
... 
plan 
"(use hash_join off) 
(h_join (t_scan r) (t_scan s))"

The query uses the hash_join for r and s scans; but for the join with t it does 
not use hash_join as specified by the use abstract plan form, since it was 
not specified in the table abstract plan.

Extending the optimizer criteria set syntax
The set opt criteria statement accepts on/off/default, where default indicates 
that you are using the current optimization goal setting for this 
optimization criteria (for the complete set syntax, see Reference Manual: 
Commands).

Comparing plans before and after
Use abstract query plans to assess the impact of an Adaptive Server 
software upgrade or system tuning changes on your query plans. You must 
save plans before the changes are made, perform the upgrade or tuning 
changes, and then save plans again and compare the plans. The basic set 
of steps is:

1 Enable server-wide capture mode by setting the configuration 
parameter abstract plan dump to 1. All plans are then captured in the 
default group, ap_stdout.

2 Allow enough time for the captured plans to represent most of the 
queries run on the system. You can check whether additional plans are 
being generated by checking whether the count of rows in the 
ap_stdout group in sysqueryplans is stable:

select count(*) from sysqueryplans where gid = 2
356   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
3 Copy all plans from ap_stdout to ap_stdin (or some other group, if you 
do not want to use server-wide plan load mode), using 
sp_copy_all_qplans.

4 Drop all query plans from ap_stdout, using sp_drop_all_qplans.

5 Perform the upgrade or tuning changes.

6 Allow sufficient time for plans to be captured to ap_stdout.

7 Compare plans in ap_stdout and ap_stdin, using the diff mode 
parameter of sp_cmp_all_qplans. For example, this query compares 
all plans in ap_stdout and ap_stdin:

sp_cmp_all_qplans ap_stdout, ap_stdin, diff

This displays only information about the plans that are different in the 
two groups.

Effects of enabling server-wide capture mode
When server-wide capture mode is enabled, plans for all queries that can 
be optimized are saved in all databases on the server. Some possible 
system administration impacts are:

• When plans are captured, the plan is saved in sysqueryplans and log 
records are generated. The amount of space required for the plans and 
log records depends on the size and complexity of the SQL statements 
and query plans. Check space in each database where users will be 
active. 

You may need to perform more frequent transaction log dumps, 
especially in the early stages of server-wide capture when many new 
plans are being generated.

• If users execute system procedures from the master database, and 
installmaster was loaded with server-wide plan capture enabled, then 
plans for the statements that can be optimized in system procedures 
are saved in master.sysqueryplans. 

This is also true for any user-defined procedures created while plan 
capture was enabled. You may want to provide a default database at 
login for all users, including system administrators, if space in master 
is limited.
Performance and Tuning Series: Query Processing and Abstract Plans  357



Abstract plans for stored procedures 
• The sysqueryplans table uses datarows locking to reduce lock 
contention. However, especially when a large number of new plans 
are being saved, there may be a slight impact on performance.

• While server-wide capture mode is enabled, using bcp saves query 
plans in the master database. If you perform bcp using a large number 
of tables or views, check sysqueryplans and the transaction log in 
master.

Time and space to copy plans
If you have a large number of query plans in ap_stdout, be sure there is 
sufficient space to copy them on the system segment before starting the 
copy. Use sp_spaceused to check the size of sysqueryplans, and 
sp_helpsegment to check the size of the system segment.

Copying plans also requires space in the transaction log.

sp_copy_all_qplans calls sp_copy_qplan for each plan in the group to be 
copied. If sp_copy_all_qplans fails at any time due to lack of space or other 
problems, any plans that were successfully copied remain in the target 
query plan group.

Abstract plans for stored procedures
For abstract plans to be captured for the SQL statements that can be 
optimized in stored procedures:

• The procedures must be created while plan capture or plan association 
mode is enabled. (This saves the text of the procedure in 
sysprocedures.)

• The procedure must be executed with plan capture mode enabled, and 
the procedure must be read from disk, not from the procedure cache. 

This sequence of steps captures the query text and abstract plans for all 
statements in the procedure that can be optimized:

set plan dump dev_plans on 
go 
create procedure myproc as ... 
go 
358   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
exec myproc 
go

If the procedure is in cache, and the plans for the procedure are not being 
captured, execute the procedure with recompile. Similarly, once a stored 
procedure has been executed using an abstract query plan, the plan in the 
procedure cache is used so that query plan association does not take place 
unless the procedure is read from disk.

You can use set fmtonly on to capture plans for a stored procedure without 
actually executing the statements in a stored procedure. 

Procedures and plan ownership
When plan capture mode is enabled, abstract plans for the statements in a 
stored procedure that can be optimized are saved with the user ID of the 
owner of the procedure. 

During plan association mode, association for stored procedures is based 
on the user ID of the owner of the procedure, not the user who executes the 
procedure. This means that once an abstract query plan is created for a 
procedure, all users who have permission to execute the procedure use the 
same abstract plan.

Procedures with variable execution paths and optimization
Executing a stored procedure saves abstract plans for each statement that 
can be optimized, even if the stored procedure contains control-of-flow 
statements that can cause different statements to be run, depending on 
parameters to the procedure or other conditions. 

Adaptive Server loads and saves the abstract plans when the stored 
procedures are compiled, not when they are executed.

When Adaptive Server compiles a stored procedure (usually when it is 
first run), it saves an abstract plan for each optimized statement. Adaptive 
Server does not influence the abstract plan capture, or whether the stored 
procedure contains control-of-flow statements that cause different 
statements to be executed, depending on the procedure’s parameters.
Performance and Tuning Series: Query Processing and Abstract Plans  359



Ad hoc queries and abstract plans 
If you run the query a second time (without recompilation) with different 
parameters that use a different code path, because Adaptive Server already 
optimized and saved the plans for all statements from the earlier 
compilation, both the plans and the abstract plans for the statements in this 
different code path are available, and are based on the prior stored 
procedure’s run parameter values, whether or not these statement were 
executed.

However, abstract plans for procedures do not solve the problem caused 
by procedures with statements that are optimized differently depending on 
conditions or parameters. For example is a procedure where users provide 
the low and high values for a between clause, with a query such as:

select title_id 
from titles 
where price between @lo and @hi

Depending on the parameters, the best plan could either be an index access 
or a table scan. The abstract plan may specify either access method, 
depending on the parameters used for the initial execution of the 
procedure. Abstract plans that are saved while executing queries or stored 
procedures in tempdb are lost if the server is restarted. 

Ad hoc queries and abstract plans
Abstract plan capture saves the full text of the SQL query and abstract plan 
association is based on the full text of the SQL query. If users submit ad 
hoc SQL statements, rather than using stored procedures or Embedded 
SQL, abstract plans are saved for each different combination of query 
clauses. This can result in a very large number of abstract plans.

For exampe, if users check the price of a specific title_id using select 
statements, an abstract plan is saved for each statement. The following two 
queries each generate an abstract plan:

select price from titles where title_id = "T19245"
select price from titles where title_id = "T40007"

In addition, there is one plan for each user, that is, if several users check 
for the title_id “T40007,” a plan is save for each user ID.

If such queries are included in stored procedures, there are two benefits:

• Only only one abstract plan is saved, for example, for the query:
360   Adaptive Server Enterprise



CHAPTER 13    Abstract Query Plan Guide
select price from titles where title_id = 
@title_id

• The plan is saved with the user ID of the user who owns the stored 
procedure, and abstract plan association is made based on the 
procedure owner’s ID.

Using Embedded SQL, the only abstract plan is saved with the host 
variable:

select price from titles  
where title_id = :host_var_id
Performance and Tuning Series: Query Processing and Abstract Plans  361



Ad hoc queries and abstract plans 
362   Adaptive Server Enterprise



C H A P T E R  1 4 Managing Abstract Plans with 
System Procedures

This chapter provides an introduction to the basic functionality and use of 
the system procedures for working with abstract plans. For detailed 
information on each procedure, see the Reference Manual: Procedures.

Managing an abstract plan group
You can use system procedures to create, drop, rename, and provide 
information about an abstract plan group.

Creating a group
Use sp_add_qpgroup to create and names an abstract plan group. Unless 
you are using the default capture group, ap_stdout, you must create a plan 
group before you can begin capturing plans. For example, to start saving 
plans in a group called dev_plans, you must create the group, then issue 
the set plan dump command, specifying the group name:

sp_add_qpgroup dev_plans
set plan dump dev_plans on
/*SQL queries to capture*/

Only a system administrator or database owner can add abstract plan 
groups. Once a group is created, any user can dump or load plans from the 
group. 

Topic Page
Managing an abstract plan group 363

Finding abstract plans 367

Managing individual abstract plans 367

Managing all plans in a group 371

Importing and exporting groups of plans 375
Performance and Tuning Series: Query Processing and Abstract Plans 363



Managing an abstract plan group 
Dropping a group
Use sp_drop_qpgroup to drop an abstract plan group. 

The following restrictions apply to sp_drop_qpgroup:

• Only a system administrator or database owner can drop abstract plan 
groups.

• You cannot drop a group that contains plans. To remove all plans from 
a group, use sp_drop_all_qplans, specifying the group name. 

• You cannot drop the default abstract plan groups ap_stdin and 
ap_stdout.

This command drops the dev_plans plan group:

sp_drop_qpgroup dev_plans

Getting information about a group
sp_help_qpgroup prints information about an abstract plan group, or about 
all abstract plan groups in a database.

When you use sp_help_qpgroup without a group name, it prints the names 
of all abstract plan groups, the group IDs, and the number of plans in each 
group:

sp_help_qpgroup
Query plan groups in database ‘pubtune’ 
 Group                          GID         Plans        
 ------------------------------ ----------- -----------  
 ap_stdin                                 1           0  
 ap_stdout                                2           2  
 p_prod                                   4           0  
 priv_test                                8           1  
 ptest                                    3          51  
 ptest2                                   7         189 

When you use sp_help_qpgroup with a group name, the report provides 
statistics about plans in the specified group. This example reports on the 
group ptest2:

sp_help_qpgroup ptest2
Query plans group 'ptest2', GID 7 
  
 Total Rows  Total QueryPlans  
364   Adaptive Server Enterprise



CHAPTER 14    Managing Abstract Plans with System Procedures
 ----------- ----------------  
         452              189  
sysqueryplans rows consumption, number of query 
plans per row count 
 Rows        Plans        
 ----------- -----------  
           5           2  
           3          68  
           2         119  
Query plans that use the most sysqueryplans rows 
 Rows        Plan         
 ----------- -----------  
           5  1932533918  
           5  1964534032  
 Hashkeys     
 -----------  
         123  
There is no hash key collision in this group.

When reporting on an individual group, sp_help_qpgroup reports:

• The total number of abstract plans, and the total number of rows in the 
sysqueryplans table.

• The number of plans that have multiple rows in sysqueryplans. The 
plans are listed in descending order, starting with the plans with the 
largest number of rows.

• Information about the number of hash keys and hash-key collisions. 
Abstract plans are associated with queries by a hashing algorithm 
over the entire query.

When a system administrator or the database owner executes 
sp_help_qpgroup, the procedure reports on all of the plans in the database 
or in the specified group. When any other user executes sp_help_qpgroup, 
it reports only on plans that he or she owns.

sp_help_qpgroup provides several report modes. The report modes are:

Mode Information returned

full The number of rows and number of plans in the group, the number of plans that use two or more 
rows, the number of rows and plan IDs for the longest plans, and number of hash keys, and has- 
key collision information. This is the default report mode.

stats All of the information from the full report, except hash-key information.

hash The number of rows and number of abstract plans in the group, the number of hash keys, and hash-
key collision information.
Performance and Tuning Series: Query Processing and Abstract Plans  365



Managing an abstract plan group 
This example shows the output for the counts mode:

sp_help_qpgroup ptest1, counts
Query plans group 'ptest1', GID 3 
 
 Total Rows  Total QueryPlans  
 ----------- ----------------  
          48               19  
  
Query plans in this group 
 
Rows  Chars     hashkey     id          query                                  
----- --------- ----------- ----------- ----------------------------  
    3      623  1801454852   876530156 select title from titles ...  
    3      576   476063777   700529529 select au_lname, au_fname...  
    3      513   444226348   652529358 select au1.au_lname, au1....  
    3      470   792078608   716529586 select au_lname, au_fname...  
    3      430   789259291   684529472 select au1.au_lname, au1....  
    3      425  1929666826   668529415 select au_lname, au_fname...  
    3      421   169283426   860530099 select title from titles ...  
    3      382   571605257   524528902 select pub_name from publ...  
    3      355   845230887   764529757 delete salesdetail where ...  
    3      347   846937663   796529871 delete salesdetail where ...  
    2      379  1400470361   732529643 update titles set price =...  

Renaming a group
A system administrator or database owner can rename an abstract plan 
group with sp_rename_qpgroup. This example changes the name of the 
group from dev_plans to prod_plans:

list The number of rows and number of abstract plans in the group, and the following information for 
each query/plan pair: hash key, plan ID, first few characters of the query, and the first few 
characters of the plan.

queries The number of rows and number of abstract plans in the group, and the following information for 
each query: hash key, plan ID, first few characters of the query.

plans The number of rows and number of abstract plans in the group, and the following information for 
each plan: hash key, plan ID, first few characters of the plan.

counts The number of rows and number of abstract plans in the group, and the following information for 
each plan: number of rows, number of characters, hash key, plan ID, first few characters of the 
query.

Mode Information returned
366   Adaptive Server Enterprise



CHAPTER 14    Managing Abstract Plans with System Procedures
sp_rename_qpgroup dev_plans, prod_plans

The new group name cannot be the name of an existing group.

Finding abstract plans
Use sp_find_qplan to search both the query text and the plan text to find 
plans that match a given pattern.

This example finds all plans where the query includes the string “from 
titles”:

sp_find_qplan "%from titles%"

This example searches for all abstract plans that perform a table scan:

sp_find_qplan "%t_scan%"

When a system administrator or database owner executes sp_find_qplan, 
the procedure examines and reports on plans owned by all users. When 
other users execute the procedure, sp_find_qplan searches and reports on 
only plans that they own.

To search just one abstract plan group, specify the group name. This 
example searches only the test_plans group, finding all plans that use a 
particular index:

sp_find_qplan "%i_scan title_id_ix%", test_plans

For each matching plan, sp_find_qplan prints the group ID, plan ID, query 
text, and abstract plan text.

Managing individual abstract plans
You can use system procedures to print the query and text of individual 
plans, to copy, drop, or compare individual plans, or to change the plan 
associated with a particular query.
Performance and Tuning Series: Query Processing and Abstract Plans  367



Managing individual abstract plans 
Viewing a plan
Use sp_help_qplan to report on individual abstract plans. It provides three 
types of reports that you can specify: brief, full, and list. The brief report 
prints only the first 78 characters of the query and plan; use full to see the 
entire query and plan, or list to display only the first 20 characters of the 
query and plan.

This example prints the default brief report:

sp_help_qplan 588529130
 gid         hashkey     id           
 ----------- ----------- -----------  
           8  1460604254   588529130  
 query                                                                           
 ---------------------------------------------------------------  
 select min(price) from titles                                                   
 plan                                                                            
---------------------------------------------------------------  
 (plan  
    (i_scan type_price titles)  
    ()  
)  
(prop titles  
    (parallel ... 

A system administrator or database owner can use sp_help_qplan to report 
on any plan in the database. Other users can view only the plans that they 
own.

sp_help_qpgroup reports on all plans in a group. See “Getting information 
about a group” on page 364.

Copying a plan to another group
Use sp_copy_qplan to copy an abstract plan from one group to another 
existing group. This example copies the plan with plan ID 316528161 
from its current group to the prod_plans group:

sp_copy_qplan 316528161, prod_plans

sp_copy_qplan verifies that the query does not already exist in the 
destination group. If a possible conflict exists, sp_copy_qplan runs 
sp_cmp_qplans to check plans in the destination group. In addition to the 
message printed by sp_cmp_qplans, sp_copy_qplan prints messages when:
368   Adaptive Server Enterprise



CHAPTER 14    Managing Abstract Plans with System Procedures
• The query and plan you are trying to copy already exists in the 
destination group

• Another plan in the group has the same user ID and hash key

• Another plan in the group has the same hash key, but the queries are 
different

If there is a hash-key collision, the plan is copied. If the plan already exists 
in the destination group or if it would give an association key collision, the 
plan is not copied. The messages printed by sp_copy_qplan contain the 
plan ID of the plan in the destination group, so you can use sp_help_qplan 
to check the query and plan.

A system administrator or the database owner can copy any abstract plan. 
Other users can copy only plans that they own. The original plan and group 
are not affected by sp_copy_qplan. The copied plan is assigned a new plan 
ID, the ID of the destination group, and the user ID of the user who ran the 
query that generated the plan.

Dropping an individual abstract plan
Use sp_drop_qplan to drop individual abstract plans. This example drops 
the specified plan:

sp_drop_qplan 588529130

A system administrator or database owner can drop any abstract plan in the 
database. Other users can drop only plans that they own.

To find abstract plan IDs, use sp_find_qplan to search for plans using a 
pattern from the query or plan, or use sp_help_qpgroup to list the plans in 
a group.

Comparing two abstract plans
Given two plan IDs, sp_cmp_qplans compares two abstract plans and the 
associated queries. For example:

sp_cmp_qplans 588529130, 1932533918

sp_cmp_qplans prints one message reporting the comparison of the query, 
and a second message about the plan, as follows:

• For the two queries, one of:
Performance and Tuning Series: Query Processing and Abstract Plans  369



Managing individual abstract plans 
• The queries are the same. 

• The queries are different. 

• The queries are different but have the same hash key. 

• For the plans:

• The query plans are the same. 

• The query plans are different. 

This example compares two plans where the queries and plans both match:

sp_cmp_qplans 411252620, 1383780087
The queries are the same. 
The query plans are the same.

This example compares two plans where the queries match, but the plans 
are different:

sp_cmp_qplans 2091258605, 647777465
The queries are the same. 
The query plans are different.

sp_cmp_qplans returns a status value showing the results of the 
comparison.

Table 14-1: Return status values for sp_cmp_qplans

A system administrator or database owner can compare any two abstract 
plans in the database. Other users can compare only plans that they own.

Changing an existing plan
Use sp_set_qplan to change the abstract plan for an existing plan ID 
without changing the ID or the query text. You can use sp_set_qplan only 
when the plan text is 255 or fewer characters.

sp_set_qplan 588529130, "(i_scan title_ix titles)"

Return value Meaning

0 The query text and abstract plans are the same.

+1 The queries and hash keys are different.

+2 The queries are different, but the hash keys are the same.

+10 The abstract plans are different.

100 One or both of the plan IDs does not exist.
370   Adaptive Server Enterprise



CHAPTER 14    Managing Abstract Plans with System Procedures
A system administrator or database owner can change the abstract plan for 
any saved query. Other users can modify only plans that they own.

When you execute sp_set_qplan, the abstract plan is not checked against 
the query text to determine whether the new plan is valid for the query, or 
whether the tables and indexes exist. To test the validity of the plan, 
execute the associated query.

You can also use create plan and the plan clause to specify the abstract plan 
for a query. See “Creating plans using SQL” on page 321.

Managing all plans in a group
You can use system procedures to copy all plans in one abstract plan group 
to another group, compare all abstract plans in two groups and reports, and 
drop all abstract plans in a group.

Copying all plans in a group
Use sp_copy_all_qplans to copy all of the plans in one abstract plan group 
to another group. This example copies all of the plans from the test_plans 
group to the helpful_plans group:

sp_copy_all_qplans test_plans, helpful_plans

The helpful_plans group must exist before you execute sp_copy_all_qplans. 
It can contain other plans.

sp_copy_all_qplans copies each plan in the group by executing 
sp_copy_qplan, so copying a plan may fail for the same reasons that 
sp_copy_qplan might fail. See “Comparing two abstract plans” on page 
369.

Each plan is copied as a separate transaction, and failure to copy any single 
plan does not cause sp_copy_all_qplans to fail. If sp_copy_all_qplans fails 
for any reason, and has to be restarted, you see a set of messages for the 
plans that have already been successfully copied, telling you that they exist 
in the destination group.
Performance and Tuning Series: Query Processing and Abstract Plans  371



Managing all plans in a group 
A new plan ID is assigned to each copied plan. The copied plans have the 
original user’s ID. To copy abstract plans and assign new user IDs, you 
must use sp_export_qpgroup and sp_import_qpgroup. See “Importing and 
exporting groups of plans” on page 375.

A system administrator or database owner can copy all plans in the 
database. Other users can copy only plans that they own.

Comparing all plans in a group
Use sp_cmp_all_qplans to compare all abstract plans in two groups and 
reports:

• The number of plans that are the same in both groups

• The number of plans that have the same association key, but different 
abstract plans

• The number of plans that are present in one group, but not the other

This example compares the plans in ap_stdout and ap_stdin:

sp_cmp_all_qplans ap_stdout, ap_stdin
If the two query plans groups are large, this might take some 
time. 
Query plans that are the same 
 count 
 ----------- 
         338 
Different query plans that have the same association key 
 
 count 
 ----------- 
          25 
Query plans present only in group ’ap_stdout’ : 
 
 count 
 ----------- 
           0 
Query plans present only in group ’ap_stdin’ : 
 
 count 
 ----------- 
           1
372   Adaptive Server Enterprise



CHAPTER 14    Managing Abstract Plans with System Procedures
With the additional specification of a report-mode parameter, 
sp_cmp_all_qplans provides detailed information, including the IDs, 
queries, and abstract plans of the queries in the groups. The mode 
parameter lets you get the detailed information for all plans, or just those 
with specific types of differences.

Table 14-2: Report modes for sp_cmp_all_qplans

This example shows the brief report mode:

sp_cmp_all_qplans ptest1, ptest2, brief

If the two query plans groups are large, this might take some time. 
Query plans that are the same
 
 count        
 -----------  
          39  
Different query plans that have the same association key 
 
 count        
 -----------  
           4  

Mode Reported information

counts The counts of plans that are the same, plans that have the same 
association key, but different groups, and plans that exist in one 
group, but not the other. This is the default report mode.

brief The information provided by counts, plus the IDs of the abstract 
plans in each group where the plans are different, but the 
association key is the same, and the IDs of plans that are in one 
group, but not in the other.

same All counts, plus the IDs, queries, and plans for all abstract plans 
where the queries and plans match.

diff All counts, plus the IDs, queries, and plans for all abstract plans 
where the queries and plans are different.

first All counts, plus the IDs, queries, and plans for all abstract plans 
that are in the first plan group, but not in the second plan group.

second All counts, plus the IDs, queries, and plans for all abstract plans 
that are in the second plan group, but not in the first plan group.

offending All counts, plus the IDs, queries, and plans for all abstract plans 
that have different association keys or that do not exist in both 
groups. This is the combination of the diff, first, and second 
modes.

full All counts, plus the IDs, queries, and plans for all abstract plans. 
This is the combination of same and offending modes.
Performance and Tuning Series: Query Processing and Abstract Plans  373



Managing all plans in a group 
  
    ptest1    ptest2 
 
 id1         id2          
 ----------- -----------  
   764529757  1580532664  
   780529814  1596532721  
   796529871  1612532778  
   908530270  1724533177  
Query plans present only in group ’ptest1’ : 
 
 count        
 -----------  
           3  
  
 
 id           
 -----------  
   524528902  
  1292531638  
  1308531695  
  
Query plans present only in group ’ptest2’ : 
 
 count        
 -----------  
           1  
  
 
 id           
 -----------  
  2108534545 

Dropping all abstract plans in a group
Use sp_drop_all_qplans to drop all abstract plans in a group. This example 
drops all abstract plans in the dev_plans group:

sp_drop_all_qplans dev_plans

When a system administrator or the database owner executes 
sp_drop_all_qplans, all plans belonging to all users are dropped from the 
specified group. When another user executes this procedure, it affects only 
the plans owned by that user.
374   Adaptive Server Enterprise



CHAPTER 14    Managing Abstract Plans with System Procedures
Importing and exporting groups of plans
Use sp_export_qpgroup and sp_import_qpgroup to copy groups of plans 
between sysqueryplans and a user table. This allows a system 
administrator or database owner to:

• Copy abstract plans from one database to another on the same server

• Create a table that can be copied out of the current server with bcp, 
and copied into another server

• Assign different user IDs to existing plans in the same database

Exporting plans to a user table
Use sp_export_qpgroup to copy all plans for a specific user from an 
abstract plan group to a user table. This example copies plans owned by 
the database owner (dbo) from the fast_plans group, creating a table called 
transfer:

sp_export_qpgroup dbo, fast_plans, transfer

sp_export_qpgroup uses select...into to create a table with the same 
columns and datatypes as sysqueryplans. If you do not have the 
select into/bulkcopy/pllsort option enabled in the database, you can specify 
the name of another database. This command creates the export table in 
tempdb:

sp_export_qpgroup mary, ap_stdout, "tempdb..mplans"

The table can be copied out using bcp, and copied into a table on another 
server. The plans can also be imported to sysqueryplans in another 
database on the same server, or the plans can be imported into 
sysqueryplans in the same database, with a different group name or user 
ID.

Importing plans from a user table
Use sp_import_qpgroup to copy plans from tables created by 
sp_export_qpgroup into a group in sysqueryplans. This example copies the 
plans from the table tempdb.mplans into ap_stdin, assigning the user ID for 
the database owner:

sp_import_qpgroup "tempdb..mplans", dbo, ap_stdin
Performance and Tuning Series: Query Processing and Abstract Plans  375



Importing and exporting groups of plans 
You cannot copy plans into a group that already contains plans for the 
specified user.
376   Adaptive Server Enterprise



Index
Symbols
::= (BNF notation)

in SQL statements  xviii
, (comma)

in SQL statements  xviii
{} (curly braces)

in SQL statements  xviii
() (parentheses)

in SQL statements  xviii
[ ] (square brackets)

in SQL statements  xviii

A
abstract plan cache configuration parameter  321
abstract plan derived tables  329
abstract plan dump configuration parameter  321
abstract plan groups

adding  363
creating  363
dropping  364
exporting  375
importing  375
information about  364
overview of use  308
plan association and  308
plan capture and  308
procedures for managing  363–375

abstract plan load configuration parameter  321
abstract plan replace configuration parameter  321
abstract plans

comparing  369
copying  368
finding  367
information about  368
pattern matching  367
viewing with sp_help_qplan  368

accessing
Performance and Tuning Series: Query Processing a
query processing metrics  270
adding

abstract plan groups  363
statistics for unindexed columns  280

adding statistics  280
adjustment

managing runtime  197
recognizing runtime  197
reducing runtime  198
runtime  196

ALS
user log cache  233

ALS. see Asynchronous Log Service  231
application design

cursors and  268
index specification  225

associating queries with plans
plan groups and  308
session-level  313

association key
defined  309
plan association and  309
sp_cmp_all_qplans and  372
sp_copy_qplan and  369

attribute-insensitive operation
parallelism  152

attribute-sensitive operation
parallelism  166

automatically
update statistics  287

B
Backus Naur Form (BNF) notation  xvii, xviii
BNF notation in SQL statements  xvii, xviii
brackets. See square brackets [ ]
buffers unavailable  228
nd Abstract Plans 377



Index
C
capturing plans

session-level  312
case sensitivity

in SQL  xix
cheap direct updates  30
clearing query processing metrics  274
close command

memory and  256
close on endtran option, set  268
clustered indexes

prefetch and  227
column-level statistics  290

generating the update statistics  295
truncate table and  291
update statistics and  290

comma (,)
in SQL statements  xviii

comparing abstract plans  369
composite indexes

update index statistics and  295
compute by processing  90
concurrency optimization

for small tables  249
concurrency optimization threshold

deadlocks and  249
connections

cursors and  268
controlling parallelism at session level  137
controlling parallelism for a query  138
conventions

See also syntax
Transact-SQL syntax  xvii
used in the Reference Manual  xvii

converted search arguments  8
copying

abstract plans  368
plan groups  371
plans  368, 371

covered queries
specifying cache strategy for  229

creating
abstract plan groups  363
column statistics  292
search arguments  19

curly braces ({}) in SQL statements  xviii
378
cursor rows option, set  267
cursors

execute  256
Halloween problem  258
indexes and  257
isolation levels and  264
locking and  254
modes  257
multiple  268
read-only  257
stored procedures and  257
updatable  257

D
data modification update modes  29
data pages prefetching  227
datachange  function

statistics  285
datatypes

join  14
deadlocks

concurrency optimization threshold settings  249
table scans and  249

deallocate cursor command
memory and  256

debugging aids
set forceplan on  222

declare cursor command
memory and  256

default settings
number of tables optimized  224

deferred
index updates  33
updates  32

degree
setting max parallel  134

delete operations
joins and update mode  32
update mode in joins  32

delete operator  64, 192
delete statistics command

managing statistics and  300
deleting plans  369, 374
density join  14
Adaptive Server Enterprise



Index
derived tables
abstract plan derived tables  329
SQL  20
SQL derived tables  329

differing parallel query results  142
direct updates  29

cheap  30
expensive  31
in-place  29
joins and  32

discontinued trace commands
XML  119

drop index command
statistics and  300

dropping
abstract plan groups  364
indexes specified with index  225
plans  369, 374

duplication
update performance effect of  32

E
elimination partition  194
emit operator  54
enable parallelism  133
engine query execution  21
equi-join, transitive closure  9
exceptions, optimization goals  17
exchange

operator  145
worker process mode  148

exchange, pipemanagement  147
execute cursors

memory use of  256
executing

query processing metrics  270
execution

preventing with set noexec on  39
exists check mode  317
expensive direct updates  31
exporting plan groups  375
expressions, join  15
Performance and Tuning Series: Query Processing a
F
factors, analyzed for optimization  6
fetching cursors, memory and  256
finding abstract plans  367
fixed-length columns

indexes and update modes  38
for update option, declare cursor

optimizing and  267
forceplan option, set  222
from table  56
function

datachange , statistics  285

G
goals, optimization  16
goals, optimization exceptions  17
group sorted agg

operator  87
group sorted agg operator  87
GroupSorted (Distinct) operator  83

H
Halloween problem

cursors and  258
hash join

operator  76
hash union

operator  93
hash vector aggregate

operator  88
hash-based table scan  154
HashDistinctOp operator  85
histograms

join  14
steps, number of  296

I
I/O

direct updates and  29
prefetch keyword  226
nd Abstract Plans 379



Index
range queries and  226
specifying size in queries  226
update operations and  31

IDENTITY columns
cursors and  258

importing abstract plan groups  375
index scan  156

clustered  160
clustered, partitioned table  160
covered using nonclustered global  159
global nonclustered  156
nonclustered, partitioned table  161
noncovered, global nonclustered  156

indexes
cursors using  257
large I/O for  226
search arguments  12
specifying for queries  224
update index statistics on  295
update modes and  37
update operations and  30, 31
update statistics on  295

in-place updates  29
insert

operator  64, 192
isolation levels

cursors  264

J
Job Scheduler

update statistics  287
join  13

both tables with useless partitioning  170
number of tables considered by optimizer  223
operator  71
outer  177
parallelism  166
parallelism, one table with useful partitioning  168
parallelism, replicated  172
parallelism, tables with same useful partitioning  167
semi  177
serial  175
table order in  222
update mode and  32
380
updates using  30, 31, 32
join

density  14
expressions  15
histograms  14
mixed data types  14
or predicates  15
ordering  15

joins
updates using  31

jtc option, set  236

K
keys, index

update operations on  30

L
large I/O

index leaf pages  226
Lava

operators  24
query engine  22
query execution  27
query plans  22

locking
statistics  297

log scan  61
LRU replacement strategy

specifying  230

M
maintenance tasks

forced indexes  225
forceplan checking  222

maintenance, statistics  290
max repartition degree

setting  135
max resource granularity

setting  134
memory
Adaptive Server Enterprise



Index
cursors and  254
merge join operator  73
merge union operator  93
messages, dropped index  225
minor columns

update index statistics and  295
modifying abstract plans  370
MRU replacement strategy, disabling  231

N
names

index clause and  225
index prefetch and  227

nary nested loop join operator  78
nested loop join  72
networks

cursor activity of  262
nonequality, operators  12
nonleading columns sort statistics  298
null columns

optimizing updates on  37
number (quantity of)

cursor rows  267
tables considered by optimizer  223

O
object sizes

tuning  20
open command

memory and  256
operations

insert, delete, update  192
operator

delete operator  64
exchange  145
group sorted agg  87
group sorted agg  87
hash join  76
hash union  93
hash vector aggregate  88
merge union  93
nary nested loop join  78
Performance and Tuning Series: Query Processing a
remote scan  101
restrict  96
RID join  102
scan  54
scroll  101
sequencer  99
sort  96
sqfilter  104
store  97
text delete  65
union all  92
update operator  64

operator ,insert operator  64
operator, emit  54
operator, merge join  73
operators

GroupSorted (Distinct)  83
HashDistinctOp  85
Lava  24
optimization  5
query plans  54
ScalarAggOp  95
SortOp (Distinct)  84
vector aggregation  86

operators, nonequality  12
optimization

additional paths  10
cursors  256
example search arguments  12
limit time optimizing query  17
operators  5
predicate transformation  10
query transformation  7
techniques  5

optimization goals, exceptions  17
optimization problems  18
optimization, factors analyzed  6
optimization, goals  16
optimizer  36–38

overriding  217
query  3
updates and  36

option
set rowcount  142

or list  55
or predicates
nd Abstract Plans 381



Index
join  15
OR strategy, cursors and  266
order, tables in a join  222
ordering, join  15
output

statement  46
XML diagnostic  114

overhead
cursors  262
deferred updates  32

P
pages, data

prefetch and  227
parallel

query execution model  145
query plans  143
query processing  131
setting max degree  134
setting max resource granularity  134
table scan  153
union all  164

parallel degree, setting max scan  135
parallel processing

query  132
parallelism  18

attribute-insensitive operation  152
attribute-sensitive operation  166
controlling at session level  137
controlling for a query  138
distinct vector aggregation  181
in-partitioned vector aggregation  177
join  166
join, both tables with useless partitioning  170
join, one table with useful partitioning  168
join, replicated  172
join, tables with same useful partitioning  167
outer joins  177
query with IN list  181
query with OR clause  183
query with order by clause  185
reformatting  173
repartitioned vector aggregation  178
semijoins  177
382
serial join  175
serial vector aggregation  180
setting number of worker processes  133
SQL operatoions  151
table scan  152
two-phased vector aggregation  179
vector aggregation  177

parallelism, enable  133
parentheses ()

in SQL statements  xviii
partial plans

specifying with create plan  307
partition

elimination  194
skew  195
table scan  154

performance
number of tables considered by optimizer  224

permissions
XML  122

pipe management, exchange  147
plan dump option, set  311
plan groups

adding  363
copying  371
copying to a table  375
creating  363
dropping  364
dropping all plans in  374
exporting  375
information about  364
overview of use  308
plan association and  308
plan capture and  308
reports  364

plan load option, set  313
plan replace option, set  313
plans

changing  370
comparing  369
copying  368, 371
deleting  374
dropping  369, 374
finding  367
modifying  370
searching for  367
Adaptive Server Enterprise



Index
predicate transformation  10
prefetch

data pages  227
disabling  229
enabling  229
queries  226
sp_cachestrategy  231

prefetch keyword, I/O size and  226
problems optimizing queries  18
process_limit_action  197

Q
QP metrics. See  query processing metrics
queries

execution settings  39
specifying I/O size  226
specifying index for  224

queries, problems optimizing  18
query

Lava execution  27
limit optimizing time  17
not run in parallel  196
optimizer  3
OR clause  183
parallel execution model  145
parallel processing  132
select-into clause  189
set local variables  142
with IN list  181
with order by clause  185

query analysis  36–38
showplan and  39
sp_cachestrategy  231

query optimization  113
query plans  49

Lava  22
operators  54
parallel  143
suboptimal  225
updatable cursors and  266

query processing
parallel  131

query processing metrics
accessing  270
Performance and Tuning Series: Query Processing a
clearing  274
executing  270
sysquerymetrics view  272
using  272

query, execution engine  21

R
range queries, large I/O for  226
read-only cursors  257

indexes and  257
locking and  262

reduce update statistics impact  299
referential integrity

constraints  67
update operations and  30
updates using  32

reformatting parallelism  173
remote scan operator  101
replication, update operations and  30
reports

cache strategy  231
plan groups  364

restrict operator  96
results, differing parallel query  142
RID join operator  102
RID scan  59
row counts statistics, inaccurate  301
row ID (RID) update operations and  30
runtime

adjustment  196
managing adjustment  197
recognizing adjustment  197
reducing adjustments  198

S
sampling

statistics  283
use for updating statistics  283

scalar aggregation
serial  163
two phased  162

ScalarAggOp operator  95
nd Abstract Plans 383



Index
scan
clustered index  160
clustered index on partitioned tables  160
index  156
index global nonclustered  156
index noncovered of global nonclustered  156
index, covered use nonclustered global  159
local indexes  160
nonclustered, partitioned table  161
operator  54

scan types statistics  297
scroll operator  101
search arguments

creating  19
example of optimization  12
indexes  12
transitive closure  8

search arguments, converted  8
searching for abstract plans  367
select command

specifying index  224
select-into query  189
sequencer

operator  99
serial

scalar aggregation  163
union all  165

serial table scan  152
set

local variables  142
XML command  114

set command
examples  137
forceplan  222
jtc  236
plan dump  311
plan exists  317
plan load  313
plan replace  313
sort_merge  234

set plan dump command  312
set plan exists check  317
set plan load command  313
set plan replace command  313
set rowcount

option  142
384
set theory operations
compared to row-oriented programming  252

setting
mac parallel degree  134
max repartition degree  135
max resource granularity  134
max scan parallel degree  135
number of worker processes  133

shared keyword, cursors and  257
shared locks

read-only cursors  257
showplan

statement level output  46
using  39, 198

skew, partition  195
sort

operator  96
statistics, unindexed columns  298

sort requirements
statistics  297

sort_merge option, set  234
SortOp (Distinct) operator  84
sp_add_qpgroup system procedure  363
sp_cachestrategy system procedure  231
sp_chgattribute system procedure

concurrency_opt_threshold  249
sp_cmp_qplans system procedure  369
sp_copy_all_qplans system procedure  371
sp_copy_qplan system procedure  368
sp_drop_all_qplans system procedure  374
sp_drop_qpgroup system procedure  364
sp_drop_qplan system procedure  369
sp_export_qpgroup system procedure  375
sp_find_qplan system procedure  367
sp_help_qpgroup system procedure  364
sp_help_qplan system procedure  368
sp_import_qpgroup system procedure  375
sp_set_qplan system procedure  370
speed (server)

cheap direct updates  30
deferred index deletes  35
deferred updates  32
direct updates  29
expensive direct updates  31
in-place updates  29
updates  29
Adaptive Server Enterprise



Index
sqfilter, operator  104
SQL

parallelism  151
SQL derived tables  329
SQL standards

cursors and  252
SQL tables

derived  20
square brackets [ ]

in SQL statements  xviii
statement level output  46
statistics

adding for unindexed columns  280
column-level  290, 292, 295
creating column statistics  292
datachange function  285
deleting table and column with delete statistics 

 300
drop index and  290
getting additional  293
locking  297
sampling  283
scan types  297
sort requirements  297
sorts for unindexed columns  298
truncate table and  291
update statistics  281
update statistics automatically  287
updating  280, 292
using  277
using Job Scheduler  287

statistics clause, create index command  291
statisticsmaintenance  290
statisticssorts, nonleading columns  298
steps

deferred updates  32
direct updates  29

store
operator  97

stored procedures
cursors within  260

subqueries  186
symbols

in SQL statements  xvii, xviii
syntax conventions, Transact-SQL  xvii
sysquerymetrics view
Performance and Tuning Series: Query Processing a
query processing metrics  272

T
table count option, set  223
table scan

forcing  224
hash-based  154
parallel  153
parallelism  152
partition-based  154
serial  152

techniques, optimization  5
testing, index forcing  225
text delete, operator  65
transaction logs, update operation and  29
transformation

predicate  10
transformations

query optimization  7
transitive closure

equi-join  9
search arguments  8

triggers
update mode and  36
update operations and  30

truncate table command
column-level statistics and  291

tuning
according to object size  20
advanced techniques for  217–249
range queries  225

two phased scalar aggregation  162

U
unindexed columns  280
union all

operator  92
parallel  164
serial  165

union operator
cursors and  266

unique indexes
nd Abstract Plans 385



Index
update modes and  37
update  192
update all statistics  292
update all statistics command  296
update cursors  257
update index statistics  292, 295, 298
update locks

cursors and  257
update modes

cheap direct  30
deferred  32
deferred index  33
direct  32
expensive direct  31
indexing and  37
in-place  29
joins and  32
optimizing for  36
triggers and  36

update operations  29
update operator  64
update statistics  281

column-level  295
column-level statistics  295
managing statistics and  290
with consumers clause  299

updating statistics  280, 283, 292
use sampling  283

user IDs
changing with sp_import_qpgroup  375

user log cache, in ALS  233

V
variables, setting local  142
vector aggregation  177

distinct  181
in-partitioned  177
repartitioned  178
serial  180
two-phased  179

vector aggregation operators  86
view

sysquerymetrics, query processing metrics  272
386
W
with statistics clause, create index command  291
worker process mode

exchange  148
worker processes

setting number  133

X
XML

diagnostic output  114
discontinued trace commands  119
permissions  122
set  114
Adaptive Server Enterprise


	Performance and Tuning Series: Query Processing and Abstract Plans
	Adaptive Server Enterprise
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Sybase certifications on the Web
	v Finding the latest information on product certifications
	v Finding the latest information on component certifications
	v Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software maintenance
	v Finding the latest information on EBFs and software maintenance
	Conventions
	Table 1: Font and syntax conventions for this manual
	Accessibility features
	If you need help

	CHAPTER 1 Understanding Query Processing
	Figure 1-1: : Query processor modules
	Query optimizer
	Table 1-1: Optimization operator support
	Factors analyzed in optimizing queries
	Transformations for query optimization
	Search arguments converted to equivalent arguments
	Table 1-2: Search argument equivalents

	Search argument transitive closure applied where applicable
	equi-join predicate transitive closure applied where applicable
	Predicate transformation and factoring to provide additional optimization paths

	Handling search arguments and useful indexes
	Nonequality operators
	Examples of search argument optimization


	Handling joins
	Join density and join histograms
	Expression histogramming selectivity estimates
	Joins with mixed datatypes
	Joins with expressions and or predicates
	join ordering


	Optimization goals
	Limiting the time spent optimizing a query

	Parallelism
	Optimization issues
	Creating search arguments
	Use of SQL derived tables
	Tuning according to object sizes

	Lava query execution engine
	Lava query plans
	Figure 1-2: Lava query plan
	Lava operators
	Table 1-3: Lava operators

	Lava query execution


	How update operations are performed
	Direct updates
	In-place updates
	Cheap direct updates
	Expensive direct updates

	Deferred updates
	When deferred updates are required

	Deferred index inserts
	Figure 1-3: Deferred index update

	Restrictions on update modes through joins
	Joins and subqueries in update and delete statements
	Deletes and updates in triggers versus referential integrity

	Optimizing updates
	Designing for direct updates
	Effects of update types and indexes on update modes
	Table 1-4: Effects of indexing on update mode


	Using sp_sysmon while tuning updates


	CHAPTER 2 Using showplan
	Displaying a query plan
	Query plans in Adaptive Server Enterprise 15.0 and later
	Why do I get different query plans for the same query?


	Using set showplan with noexec
	Statement-level output
	Query plan shape
	Figure 2-1: Query plan
	Figure 2-2: Alternate query plan
	Query plan operators
	EMIT operator
	SCAN operator
	FROM cache message
	FROM or LIST
	FROM TABLE
	I/O size messages
	RID scan
	Log Scan
	DELETE, INSERT, and UPDATE operators
	TEXT DELETE operator
	Query plans for referential integrity enforcement
	JOIN operators
	NESTED LOOP JOIN
	MERGE JOIN
	HASH JOIN
	NARY NESTED LOOP JOIN operator
	Figure 2-3: Emit operator tree with Nested loop joins
	Figure 2-4: NARY NESTED LOOP JOIN operator

	semijoin
	Distinct operators
	GROUP SORTED Distinct operator
	SORT Distinct operator
	HASH Distinct operator
	Vector aggregation operators
	GROUP SORTED COUNT AGGREGATE operator
	HASH VECTOR AGGREGATE operator
	GROUP INSERTING

	compute by message


	Union operators
	UNION ALL operator
	MERGE UNION operator
	HASH UNION
	SCALAR AGGREGATE operator
	RESTRICT operator
	SORT operator
	STORE operator
	SEQUENCER operator
	REMOTE SCAN operator
	SCROLL operator
	RID JOIN operator
	SQLFILTER operator
	EXCHANGE operator

	INSTEAD-OF TRIGGER operators
	INSTEAD-OF TRIGGER operator
	CURSOR SCAN operator
	deferred_index and deferred_varcol messages


	CHAPTER 3 Displaying Query Optimization Strategies and Estimates
	set commands for text format messages
	Table 3-1: Optimizer set commands for text format messages

	set commands for XML format messages
	Using show_execio_xml to diagnose query plans

	Usage scenarios
	Scenario A
	Scenario B
	Scenario C
	Scenario D
	Scenario E
	Scenario F

	Permissions for set commands

	CHAPTER 4 Finding Slow Running Queries
	Saving diagnostics to a trace file
	Examples
	Set options that save diagnostic information to a trace file
	Which sessions are being traced?
	Rebinding a trace

	Displaying SQL text
	Restrictions for show_sqltext

	Retaining session settings

	CHAPTER 5 Parallel Query Processing
	Vertical, horizontal, and pipelined parallelism
	Queries that benefit from parallel processing
	Enabling parallelism
	number of worker processes
	max parallel degree
	max resource granularity
	max repartition degree
	max scan parallel degree
	prod-consumer overlap factor
	min pages for parallel scan
	max query parallel degree

	Controlling parallelism at the session level
	Table 5-1: Session-level parallelism control parameters
	set command examples

	Controlling query parallelism
	Query-level parallel clause examples

	Using parallelism selectively
	Using parallelism with large numbers of partitions
	Table 5-2: Parallel scan metrics

	When parallel query results differ
	Queries that use set rowcount
	Queries that set local variables

	Understanding parallel query plans
	Adaptive Server parallel query execution model
	EXCHANGE operator
	Figure 5-1: Binding of thread to plan fragments in query plan
	Pipe management
	Many-to-one
	One-to-many
	Many-to-many
	Replicated exchange operators

	Worker process model
	Figure 5-2: Query execution plan with one exchange operator
	Figure 5-3: Query execution plan with two exchange operators


	Using parallelism in SQL operations
	Parallelism of attribute-insensitive operation
	Table scan
	Serial table scan
	Figure 5-4: Serial task scans data pages
	Parallel table scan
	Hash-based table scans
	Figure 5-5: Multiple worker processes scans unpartitioned table
	Partitioned-based table scans
	Figure 5-6: Multiple worker processes access multiple partitions

	Index scan
	Global nonclustered indexes
	Noncovered scan of global nonclustered index using hashing
	Figure 5-7: Hash-based parallel scan of global nonclustered index
	Covered scan using nonclustered global index
	Clustered index scans
	Local indexes
	Clustered indexes on partitioned tables
	Nonclustered indexes on partitioned tables


	Scalar aggregation
	Two-phased scalar aggregation
	Serial aggregation

	union all
	Parallel union all
	Serial union all

	Parallelism of attribute-sensitive operation
	join
	Tables with same useful partitioning
	One of the tables with useful partitioning
	Both tables with useless partitioning
	Replicated join
	Parallel reformatting
	Serial join
	Semijoins
	Outer joins

	Vector aggregation
	In-partitioned vector aggregation
	Repartitioned vector aggregation
	Two-phased vector aggregation
	Serial vector aggregation
	distinct
	Queries with an in list
	Queries with or clauses
	Queries with an order by clause


	Subqueries
	select into clauses
	insert/delete/update

	Partition elimination
	Partition skew
	Why queries do not run in parallel
	Runtime adjustment
	Recognizing and managing runtime adjustments
	Using set process_limit_action
	Using showplan
	Reducing the likelihood of runtime adjustments



	CHAPTER 6 Eager and Lazy Aggregation
	Overview
	Vector aggregation
	Scalar aggregation
	Eager aggregation
	Vector aggregation
	Scalar aggregation


	Aggregation and query processing
	Figure 6-1: Typical query execution plan
	Figure 6-2: Possible eager aggregation plan

	Examples
	Online data archiving
	Figure 6-3: SQL query rewrite
	Figure 6-4: Suboptimal classical CIS behavior
	Figure 6-5: Classical processing of aggregation
	Figure 6-6: Desired aggregation processing layout
	Figure 6-7: Eager aggregation
	Figure 6-8: Optimal CIS behavior with eager aggregation
	DSS/DQP
	Single-node DSS

	Using eager aggregation
	Enabling eager aggregation
	Checking for eager aggregation
	Forcing eager aggregation with abstract plans


	CHAPTER 7 Controlling Optimization
	Special optimizing techniques
	Viewing current optimizer settings
	Specifying query processor choices
	Specifying table order in joins
	Specifying the number of tables considered by the query processor
	Specifying query index
	Specifying I/O size in a query
	Index type and large I/O size
	Table 7-1: Access methods and prefetching

	When prefetch specification cannot be followed
	setting prefetch

	Specifying cache strategy
	In select, delete, and update statements

	Controlling large I/O and cache strategies
	Getting information on cache strategies

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS

	Enabling and disabling merge joins
	Enabling and disabling hash joins
	Enabling and disabling join transitive closure
	Controlling literal parameterization
	Examples

	Suggesting a degree of parallelism for a query
	Table 7-2: Optimizer hints for serial and parallel execution
	Query level parallel clause examples

	Optimization goals
	Setting optimization goals
	At the server level
	At the session level
	At the query level
	Some exceptions


	Optimization criteria
	Setting optimization criteria
	Criteria descriptions
	Default optimization criteria
	Table 7-3: Default settings for optimization criteria

	Limiting optimization time
	Controlling parallel optimization
	number of worker processes
	Specifying the number of worker processes available for parallel processing
	max resource granularity
	max repartition degree

	Concurrency optimization for small tables
	Changing the locking scheme
	Table 7-4: Effects of alter table on concurrency optimization settings



	CHAPTER 8 Optimization for Cursors
	Definition
	Figure 8-1: Cursor example
	Set-oriented versus row-oriented programming
	Figure 8-2: Cursor flowchart

	Example

	Resources required at each stage
	Figure 8-3: Resource use by cursor statement
	Table 8-1: Locks and memory use for isql and Client-Library client cursors
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem


	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison
	Table 8-2: Sample execution times against a 5000-row table


	Locking with read-only cursors
	Figure 8-4: Read-only cursors and locking experiment input
	Table 8-3: Locks held on data and index pages by cursors

	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Table 8-4: Effects of for update clause and shared on cursor locking

	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection


	CHAPTER 9 Query Processing Metrics
	Overview
	Executing QP metrics
	Accessing metrics
	sysquerymetrics view

	Using metrics
	Examples
	Identifying the most expensive statement
	Identifying the most frequently used statement for tuning
	Identifying possible performance regression


	Clearing metrics
	Restricting query metrics capture
	Understanding the UID in sysquerymetrics
	Example 1
	Example 2
	Example 3


	CHAPTER 10 Using Statistics to Improve Performance
	Statistics maintained in Adaptive Server
	Importance of statistics
	Nonbinary character set histogram interpolation

	Updating statistics
	Adding statistics for unindexed columns
	Limitations for updating statistics on proxy tables and views
	update statistics commands
	Using sampling for update statistics

	Automatically updating statistics
	datachange function
	Passing a valid object, partition, and column name
	Using null partition names
	Using null column names
	Null partition and column names


	Configuring automatic update statistics
	Using Job Scheduler to update statistics
	When does Adaptive Server run update statistics?
	Table 10-1: When does Adaptive Server automatically run update statistics?

	Examples of updating statistics with datachange

	Column statistics and statistics maintenance
	Creating and updating column statistics
	When additional statistics may be useful
	Example 1
	Example 2

	Adding statistics for a column with update statistics
	Adding statistics for minor columns with update index statistics
	Adding statistics for all columns with update all statistics

	Choosing step numbers for histograms
	Choosing a step number

	Scan types, sort requirements, and locking
	Table 10-2: Scans, sorts, and locking during update statistics
	Sorts for unindexed or nonleading columns
	Locking, scans, and sorts during update index statistics
	Locking, scans and sorts during update all statistics
	Using the with consumers clause
	Reducing the impact of update statistics on concurrent processes

	Using the delete statistics command
	When row counts may be inaccurate

	CHAPTER 11 Introduction to Abstract Plans
	Overview
	Managing abstract plans
	Relationship between query text and query plans
	Limits of options for influencing query plans

	Full versus partial plans
	Creating a partial plan

	Abstract plan groups
	How abstract plans are associated with queries

	CHAPTER 12 Creating and Using Abstract Plans
	Using set commands to capture and associate plans
	Enabling plan capture mode with set plan dump
	Associating queries with stored plans
	Using replace mode during plan capture
	When to use replace mode

	Using dump, load, and replace modes simultaneously
	Using dump and load to the same group
	Using dump and load to different groups

	Compile-time changes for some set parameters

	set plan exists check option
	Using other set options with abstract plans
	Using show_abstract_plan to view plans
	Using showplan
	Using noexec
	Using fmtonly
	Using forceplan

	Server-wide abstract plan capture and association modes
	Creating plans using SQL
	Using create plan
	Using the plan clause


	CHAPTER 13 Abstract Query Plan Guide
	Overview
	Abstract plan language
	Queries, access methods, and abstract plans
	Derived tables

	Identifying tables
	Identifying indexes
	Specifying join order
	Shorthand notation for joins
	Join order examples
	Match between execution methods and abstract plans
	Specifying join order for queries using views

	Specifying the join type
	Specifying partial plans and hints
	Grouping multiple hints
	Inconsistent and illegal plans using hints

	Creating abstract plans for subqueries
	Materialized subqueries
	Flattened subqueries
	Example of changing the join order in a flattened subquery
	Nested subqueries
	Subquery identification and attachment
	More subquery examples: reading ordering and attachment
	Modifying subquery nesting

	Abstract plans for materialized views
	Abstract plans for queries containing aggregates
	Abstract plans for queries containing unions
	Using abstract plans when queries need ordering
	Specifying the reformatting strategy
	Specifying the OR strategy
	When the store operator is not specified
	Abstract plans for parallel processing

	Tips on writing abstract plans
	Using abstract plans at the query level
	Operator name alignment for abstract plan and optimizer criteria
	Extending the optimizer criteria set syntax

	Comparing plans before and after
	Effects of enabling server-wide capture mode
	Time and space to copy plans

	Abstract plans for stored procedures
	Procedures and plan ownership
	Procedures with variable execution paths and optimization

	Ad hoc queries and abstract plans

	CHAPTER 14 Managing Abstract Plans with System Procedures
	Managing an abstract plan group
	Creating a group
	Dropping a group
	Getting information about a group
	Renaming a group

	Finding abstract plans
	Managing individual abstract plans
	Viewing a plan
	Copying a plan to another group
	Dropping an individual abstract plan
	Comparing two abstract plans
	Table 14-1: Return status values for sp_cmp_qplans

	Changing an existing plan

	Managing all plans in a group
	Copying all plans in a group
	Comparing all plans in a group
	Table 14-2: Report modes for sp_cmp_all_qplans

	Dropping all abstract plans in a group

	Importing and exporting groups of plans
	Exporting plans to a user table
	Importing plans from a user table


	Index


