
New Features Guide

Adaptive Server® Enterprise
15.7 SP110

DOCUMENT ID: DC00641-01-1570110-01
LAST REVISED: November 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other
countries, or both.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Improved Data-Load Performance1
Data-Load Optimization on Tables with Multiple

Indexes ...1
Viewing Parallel Update Index Queries in

showplan ...1
Viewing Queries with UpdateIndex3

Restrictions ...3
Downgrade Considerations ..4
Troubleshoot ...5

Remote Dump Host Control ..7
Transaction Log Space Management9

Transaction Log Space ...10
loginfo ...11
sp_xact_loginfo ...14

Automating Transaction Log Management16
Analyzing and Managing Transaction Log Space21

Viewing the Span of a Transaction23
Viewing the Oldest Active Transactions23

Parallel create index with Hash-Based Statistics for
High Domains ..25

EMC PowerPath Device Fencing27
SQL Standard for NULL Concatenation29
Function Nesting in Expressions Increased to 3231
System Changes ..33

Commands ...33
System Procedures ..35
Functions ..36

Index ..39

New Features Guide iii

Contents

iv Adaptive Server Enterprise

Improved Data-Load Performance

Adaptive Server® improves the ins_by_bulk optimizer criteria, providing faster data loading
by using parallel index updates for insert statements into a datarows-locked table with non-
clustered indexes.

Enabling the data-load optimization criteria with set ins_by_bulk runs subsequent
insert...select statements using bulk insert methods.

In this update, Adaptive Server provides enhancements to improve the performance of data
loads via the insert statement to datarows-locked tables with two or more non-clustered
indexes. Index updates are done in parallel to speed up the performance of the data load.

Data-Load Optimization on Tables with Multiple Indexes
Data-load optimization on a target table that has multiple indexes efficiently loads data pages
and maintains multiple indexes in parallel.

To perform maintenance on multiple indexes in parallel, you must configure Adaptive Server
with resources (for example, threads), by setting:

• number of worker processes to the maximum that Adaptive Server can use at any one
time for all simultaneously running queries.

• max parallel degree to the maximum for a query. This parameter determines the
maximum number of threads Adaptive Server uses when processing a given query.

See Query Processing and Abstract Plans in Performance and Tuning Series.

Viewing Parallel Update Index Queries in showplan
set showplan uses the update index operator to display parallel update index statements.

For example:
set showplan on
set ins_by_bulk on
go

insert into my_authors select * from authors

This example showplan output is for an insert-select into a table with several indexes, executed
with the data load optimizations. The text shown in bold reports the parallel index update
enhancements.

QUERY PLAN FOR STATEMENT 1 (at line 2).
Optimized using Parallel Mode
Executed in parallel by coordinating process and 2 worker processes.

Improved Data-Load Performance

New Features Guide 1

 STEP 1
 The type of query is INSERT.

 5 operator(s) under root

 |ROOT:EMIT Operator (VA = 5)
 |
 | | INSERT Operator (VA = 4)
 | | The update mode is direct.
 | |
 | | |SCAN Operator (VA = 0)
 | | | FROM TABLE
 | | | authors
 | | | Table Scan.
 | | | Forward Scan.
 | | | Positioning at start of table.
 | | | Using I/O Size 16 Kbytes for data pages.
 | | | With LRU Buffer Replacement Strategy for data pages.
 | |
 | | |EXCHANGE Operator (VA = 3) (Merged)
 | | |Executed in parallel by 2 Producer and 1 Consumer processes.

 | | |
 | | | |EXCHANGE:EMIT Operator (VA = 2)
 | | | |
 | | | | |UPDATE INDEX Operator (VA = 1)
 | |
 | | TO TABLE
 | | my_authors
 | | Using I/O Size 16 Kbytes for data pages.

The INSERT OPERATOR (VA = 4) is using BULK INSERT

(23 rows affected)

Without these data load enhancements, the data insertion is done in serial mode, with all the
indexes being updated sequentially after the insertion of each row. With the enhanced data
load optimizations, data pages are populated in bulk mode by one insert thread, followed by
index updates which are performed by multiple threads each updating one or more indexes for
all the data rows inserted on one page.

The line:
The INSERT OPERATOR (VA = 4) is using BULK INSERT

shows that bulk inserts are being performed.

The plan fragment UPDATE INDEX Operator (VA = 1) shows that the index updates
are being performed using parallel worker threads.

Improved Data-Load Performance

2 Adaptive Server Enterprise

Viewing Queries with UpdateIndex
show_cached_plan_in_xml displays the cached execution plan using UpdateIndex to
indicate that multiple indexes are applied in parallel.

This example shows the UpdateIndex operator output that updates multiple indexes in
parallel:
<EmitXchg>
<Details>
<VA>2</VA>
 <Vtuple Label="OutputVtuple">
 <Collection Label="Columns(#1)">
 <Column>
 (0x0x1497d6f00) type:INT1len:1 offset:0 valuebuf:0x(nil)
status:(0x00000000)
(constant:0x0x14a10e760 type:INT1 len:1 maxlen:1)
 </Column>
 </Collection>
 </Vtuple>
</Details>
 <UpdateIndex Label="UpdateIndex:">
 <Details>
 <VA>1</VA>
 </Details>
 </UpdateIndex>
</EmitXchg>

show_cached_plan_in_xml is not available for select into because select into statements are
not cached in Adaptive Server.

Restrictions
Data load using parallel index updates optimization is unavailable in certain scenarios.

You cannot use data-load optimization:

• When no valid index is defined or only one index is in the target table.
• The target table is a temporary table or a worktable.

The following behaviour and restrictions are imposed when bulk insert is used in a transaction:

• Serial or concurrent data that is loaded using bulk inserts in a multistatement transaction is
visible only to the inserting task while the transaction is active. While the transaction that
loaded this data using bulk inserts remains active, concurrent access to this data by other
tasks skips the uncommitted data.

• A single transaction can perform multiple bulk inserts to the same table multiple times.
However, in a single transaction (whether it spans multiple databases, or only one), you
can insert into a maximum number of four tables per database using this optimization.

Improved Data-Load Performance

New Features Guide 3

Bulk inserts are not applied to the fifth and subsequent tables in one transaction, and data
load is performed in non-bulk mode, with serial index updates.

• Bulk insert is disabled while the following commands are underway concurrently when
the data load is attempted. The insert instead performs in non-bulk mode, with serial index
updates.
• reorg rebuild ... with online

• create index ... with online

• If the ddl in tran database option is enabled, an attempt to execute create index ...with
online on a table following an insert bulk to that table in the same transaction is restricted.
The create index operation is aborted, but the transaction remains active.

Downgrade Considerations
Transaction logs generated by the data-load optimizations and parallel index updates are
incompatible with versions of Adaptive Server earlier than 15.7 SP110. Database and
transaction log dumps that are generated with data-load optimizations and parallel index
updates cannot be recovered by earlier versions.

To downgrade an entire Adaptive Server installation to an earlier version, use sp_downgrade,
which truncates the active portion of the transaction log, thus permitting recovery of the
databases by the earlier version.

See the Adaptive Server Enterprise 15.7 ESD #2 Reference Manual: Procedures.

To load a database containing transactional activity from the optimized data load, use
sp_downgrade_esd to first downgrade it to the target Adaptive Server support package
version. This process clears transactional activity from the log, which then allows an earlier
version of Adaptive Server to load and recover a dump of this database.

See the Adaptive Server Enterprise 15.7 SP100 Installation Guide.

You cannot downgrade database dumps that contain log activity from the optimized data load
and parallel index updates. Use the output from load...with headeronly to see if a particular
dump contains such activity. To load such dumps into an earlier Adaptive Server version that
does not support these new optimizations (for example, Adaptive Server 15.7 SP100), you
must first reload the dump into an Adaptive Server version that supports this feature. Then use
sp_downgrade_esd to downgrade the database to the appropriate version. Re-create the
dump from the downgraded database in a form that is compatible with the earlier Adaptive
Server version.

With some restrictions, database and transaction log dumps from a later version of Adaptive
Server can be loaded and recovered in earlier versions. However, once a dump is generated, it
may be compatible with only a few of the earlier versions of Adaptive Server, depending on
the features used in the database, or the objects that are contained in the dumps.

Improved Data-Load Performance

4 Adaptive Server Enterprise

Prior to generating the dumps, you can use the db_attr system function to identify the features
that are currently active in the database, and the information that will be included in dumps.

Troubleshoot
Troubleshoot common situations that may cause bulk insert optimizations to not be applied.

• Check the showplan output to confirm that:
• The UPDATE INDEX operator is used.

• The INSERT OPERATOR is using BULK INSERT. It is possible at runtime Adaptive
Server decides to run the query without BULK INSERT even though it was used
during compile time.

• A sufficient number of worker threads is configured or available to perform the index
updates in parallel.

• If bulk insert does not execute, set trace flag 9586 to diagnose the reason in the XML
output.

Improved Data-Load Performance

New Features Guide 5

Improved Data-Load Performance

6 Adaptive Server Enterprise

Remote Dump Host Control

Backup Server introduces a remote access control feature that prevents remote dumps and
loads, and execution of remote procedure calls (RPCs) from any client or server that is running
on unauthorized servers.

Access Control File
Authorization to dump to, or load from, Backup Server is achieved by including the authorized
hosts in the hosts.allow file. The default name of the file is hosts.allow, which is by
default located in $SYBASE. You can change the location and file name using:

backupserver -h full_path_name/hosts.allow
When you start Backup Server, the location of the file is shown in the error log. For example:

Backup Server: 1.88.1.1: The hosts authentication file used by
the backup server is '/remote/myServer/ase157x/SMP/release/
hosts.allow'.

If you do not specify a file, $SYBASE/hosts.allow is used. If the location of the file is a
relative path, the path is replaced by the absolute path using the directory in which the Backup
Server has been started. For example, if you start Backup Server from /usr/u/myServer
and Backup Server is started with:

backupserver -h./myhosts.allow
The error log shows:

Backup Server: 1.88.1.1: The hosts authentication file used by
the backup server is '/usr/u/myServer/./myhosts.allow'.

If the file hosts.allow does not exist, dump or load commands, or remote procedures,
fail.

Note: Local dumps are not affected by this feature.

File Content
The format for hosts.allow is:

host_name_running_backupserver [\t*][,][\t*] host_name_trying_to_connect
host_name_running_backupserver:
hostname | hostname.domain | ipv4 address | ipv6 address
host_name_trying_to_connect:
hostname | hostname.domain | ipv4 address | ipv6 address |+

The '+' sign can be used as a wildcard to allow remote
dumps to, or loads from, any Backup Server running on
the specified host.

Remote Dump Host Control

New Features Guide 7

Example:
Example of hosts.allow file
Development machine imetsol1 allows access from everywhere
imetsol1 +

Group development machine marslinuxX allow access from other
marslinuxX machines only
marslinux1 marslinux2
marslinux1 marslinux3
marslinux2 marslinux1
marslinux2 marslinux3
marslinux3 marslinux1
marslinux3 marslinux2

Permissions
The recommended file permission for UNIX is no greater than640. For Windows, ensure that
only authorized users are granted access to the file.

Error and Warning Messages

• On UNIX, if permission levels are set lower than 640, you see a warning similar to:
Backup Server: 1.86.1.1: Warning: The file './hosts.allow'
has an unsafe permission mask 0664. The recommended value is
0640.

• On Windows, if you have not established permissions, or if access is granted to everyone,
you see a warning similar to:
Backup Server: 1.87.1.1: Warning: The file './hosts.allow'
either has no access control or one of the entries allows
access to everyone. It is recommended that only the owner
has permission to access the file.

• If you attempt to load to, or dump from, a remote Backup Server that does not have the
appropriate access control record, you see error:
Backup Server: 5.16.2.2: Client-Library error: Error number
44, Layer 4, Origin 1, Severity 4: ct_connect(): protocol
specific layer: external error: The attempt to connect to
the server failed. Backup Server: 5.3.2.1: Cannot open a
connection to the slave site 'REMOTE_BS'. Start the remote
Backup Server if it is not running.

• If you attempt to execute an RPC on a remote Backup Server that does not have the
appropriate access control record, you see error:
Msg 7221, Level 14, State 2:
Server 's', Line 1:
Login to site 'REMOTE_BS' failed.

Remote Dump Host Control

8 Adaptive Server Enterprise

Transaction Log Space Management

Adaptive Server introduces new functionality to analyze and free transaction log space.

Adaptive Server provides a single transaction log segment per database. Space can be added to
a log segment or removed from a log segment. However, at any given point, there is limited
space in a log segment.

Whenever the database client applications perform any data manipulation language (DML)
operations on the data, Adaptive Server produces log records that consume space in the
transaction log. Typically there are several clients performing DMLs concurrently on the
database and log records are appended to the log whenever private local caches (PLCs) for
individual clients are full or in some other conditions such as when a data page is changed by
multiple open transactions. Log records of several transactions are therefore typically
interleaved in the transaction log space.

Removing transactions from the transaction log to free the log space can be done using dump
transaction. However, there different scenarios that can cause the transaction log can grow in
such a way that the dump transaction command is not able to free space. In these situations,
the log consumes space to such an extent that it affects the continuous availability of the
database system for any write operations. The scenarios include:

• Transactions are entered into the server but not committed. In this situation the log cannot
be truncated because there is an active transaction.

• Replication Server is slow in reading the log which prevents truncating the log.
• A dump transaction has not been performed for a long period of time. Periodically

dumping transactions can keep the size of the reserved space in the log limited and ensure
that there is free space available in the log which allows the space freed after dump
transaction to be reused for further logging activity.

You can use the loginfo function to evaluate how the space of a transaction log is used and
determine the type of actions possible to free log space. The sp_thresholdaction procedure
can be used to free log space in the transaction log if the available free space falls below a
preconfigured threshold. The recommended action is to define a trigger that will execute
dump transaction once the log fall below the threshold. However, the dump transaction
command cannot truncate the portion of the log beginning from of the oldest incomplete or
active transaction in the log, since this portion is needed for recovery of the database. In this
case, the oldest transactions can be aborted, depending on circumstances.

Transaction Log Space Management

New Features Guide 9

Transaction Log Space
The transaction log contains sufficient information about each transaction to ensure that it can
be recovered. This transaction information can be interleaved within the log.

This transaction log shows the space allocation of the transaction log.

If a total allocated log segment is considered a contiguous logical space, then additional log
records are appended to the end of the log. When there is no more space available at the end of
the log, portions of the log that have been freed in the beginning of allocated space will be used
to add records. This use of the freed portion of log can introduce a circular or wrapped around
form within the allocated space.

The span of a completed transaction in the log is the portion of a log between begin log record
of the transaction in the log and end log record of the transaction. The actual logging done by a
transaction could be very minimal, however due to intermediate interleaved log records by
other transaction, this span in terms of transaction log space could be considerable.

Transaction Log Space Management

10 Adaptive Server Enterprise

As transaction log space allocation is done in terms of pages, the span of an active transaction
or incomplete transaction is also defined in terms of the number of log pages. There can be
many active transactions at any point in the log. The portion of the transaction log occupied by
span of an active transaction cannot be truncated with dump transaction. The total portion of
the log which cannot be truncated with dump transaction is equal to span of the oldest active
transaction

loginfo
The loginfo function has been extended in Adaptive Server to further support managing
transaction log space.

Syntax
loginfo (dbid | dbname, option]
loginfo (dbid | dbname, option, option1]

Parameters

• dbid – is the database ID.
• dbname – is the database name.
• option – is the specific information you need about the transaction log.

These options have been added in Adaptive Server 15.7 SP110:

• oldest_active_transaction_pct – returns a number from 0 to 100 indicating the span of
the oldest active transaction in percentage of total log space.

Transaction Log Space Management

New Features Guide 11

• oldest_active_transaction_spid – returns the spid of the session having the oldest
active transaction in the log of the Adaptive Server.

• oldest_active_transaction_page – returns the logical page number of start of oldest
active transaction in the log. Returns 0 if there is no active transaction.

• oldest_active_transaction_date – returns the start time of oldest active transaction.
Returns binary(8) number which needs to be converted to date as shown in the example
below:
select (convert(datetime, convert(binary(8),
 loginfo(4, 'oldest_active_transaction_date')), 109))

• is_stp_blocking_dump – returns 1 if there is a secondary truncation point before the
start of the oldest active transaction, otherwise, returns 0.

• stp_span_pct – returns a number from 0 to 100 indicating the span of secondary
truncation point to the end of log with respect to total log space.

• can_free_using_dump_tran – returns a number from 0 to 100 indicating the span of
transaction log which can be truncated with the dump transaction command without
having to abort oldest active transaction. If there is a secondary truncation point before
the start of the oldest active transaction, then this is the span in the log (in percent)
between the start of the log (first log page) and the secondary truncation point. If the
secondary truncation point is not before the oldest active transaction, then this is the
span in the log (in percent) between the start of the log (first log page) and start of the
oldest active transaction.

• is_dump_in_progress – returns 1 if dump transaction command is in progress,
returns 0 if no dump command is in progress.

• database_has_active_transaction – returns 0 if there are no active transactions in the
log. Returns 1 if there is an active transaction in the log.

• xactspanbyspid – This option is to be used only with the third parameter, which is the
SPID of the task. Returns the transaction span if the SPID has an active transaction in
the log. Returns 0 otherwise.

These options are available in Adaptive Server 15.7 SP100 and later:

• help – shows a message with the different options.
• first_page – returns the page number of the first log page.
• root_page – returns the page number of the last log page.
• stp_page – returns the page number of the secondary truncation point (STP), if it

exists. The secondary truncation point (or STP) is the point in the log of the oldest
transaction yet to be processed for replication. The transaction may or may not be
active. In cases where the transaction is no longer active, the STP by definition
precedes the oldest active transaction.

• checkpoint_page – returns the page number in the log that contains the most recent
checkpoint log record.

• checkpoint_marker – returns the record ID (RID) in the log that contains the most
recent checkpoint log record.

Transaction Log Space Management

12 Adaptive Server Enterprise

• checkpoint_date – returns the date of the most recent checkpoint log record.
• oldest_transaction_page – returns the page number in the log on which the oldest

active transaction at the time of the most recent checkpoint, started. If there was no
active transaction at the time of the most recent checkpoint, oldest_transaction_page
returns the same value as checkpoint_page.

• oldest_transaction_marker – returns the RID (page number and row ID) in the log on
which the oldest active transaction at the time of the most recent checkpoint, started. If
there was no active transaction at the time of the most recent checkpoint,
oldest_transaction_marker returns the same value as checkpoint_marker.

• oldest_transaction_date – is the at which the oldest active transaction started.
• until_time_date – is the latest time that could be encapsulated in the dump that is

usable by the until_time clause of load transaction.
• until_time_page – is the log page on which the log record associated with

until_time_date resides.
• until_instant_marker – is the RID (page number and row ID) of the log record

associated with until_time_date.
• total_pages – is the total number of log pages in the log chain, from first_page to

root_page.
• stp_pages – the total number of log pages between the STP and the oldest active

transaction.
• active_pages – the total number of pages between the oldest transaction at the time of

the most recent checkpoint, and the end of the log.
• inactive_pages – the total number of log pages between first_page and either

stp_page or oldest_transaction, whichever comes first. This is the number of log
pages that will be truncated by the dump transaction command.

Note: For a Mixed Log Data (MLD) database, this function returns a value equivalent to 0.
The new options for this function are not supported or meant to be used for MLD
databases.

Examples

• Example 1 – Shows how to display transaction log information.
select loginfo(dbid, 'database_has_active_transaction'),
 loginfo(dbid, 'oldest_active_transaction_pct'),
 loginfo(dbid, 'oldest_active_transaction_spid'),
 loginfo(dbid, 'can_free_using_dump_tran'),
 loginfo(dbid, 'is_stp_blocking_dump'),
 loginfo(dbid, 'stp_span_pct')

has_act_tran OAtran_spid Act_log_portion_pct dump_tran_free_pct is_stp_blocking stp_span_pct log_occupied_pct
------------ ------------ ------------------- ------------------ --------------- ------------ ---------------
 1 14 17 7 0 25 32

The function returns the transaction log information:

Transaction Log Space Management

New Features Guide 13

• 1 active transaction
• 14 is the SPID of the oldest transaction
• 17 percent of the log that is occupied by an active transaction
• 7 percent of the transaction log that can be freed by using the dump transaction

command
• 0 blocking secondary truncation points
• 25 percent of the log that is occupied by the span of the secondary truncation point
• 32 percent of the log that is occupied

• Example 2 – Returns the amount of log space that is spanned for a particular transaction.
select loginfo(dbid, ‘xactspanbyspid’, spid)
spid log_span_pct

 15 2

Permissions

The user must have sa_role to execute loginfo.

sp_xact_loginfo
sp_xact_loginfo provides the span of oldest active transaction in terms of percentage of total
log space.

Syntax
sp_xact_loginfo dbid [, vcharparam1] [, vcharparam2]
[, intparam1] [, intparam2][' span_pct] [, startpage]
[, xact_spid] [, starttime] [, firstlog_page] [, stp_page]
[, stp_pages] [, stp_blocking] [, canfree_without_abort_pct]
[, dump_in_progress] [, activexact] [, errorcode]

Parameters

• dbid – is the database ID.
• vcharparam1 – varchar parameter indicating the mode. If oldestactive, the output

parameter values are indicative of oldest active transaction. If xactspanbyspid, then
output parameter values reflect values of active transaction for given spid.

• vcharparam2 – reserved for future use. Provide NULL as a value.
• intparam1 – integer parameter1 (SPID if vcharparam1 = xactspanbyspid)
• intparam2 – integer parameter2
• span_pct – a value from 0 to 100. Indicates the span of transaction in percentage of total

log space based on value of vcharparam1(output parameter).

Transaction Log Space Management

14 Adaptive Server Enterprise

• startpage – page number that is the start of the active transaction in the log based on value
of vcharparam1. This page will hold the begin transaction log record of the active
transaction.

• xact_spid – server process ID of the client having the active transaction based on
vcharparam1.

• starttime – start time of active transaction based on vcharparam1.
• firstlog_page – server process ID of the client having active transaction based on

vcharparam1.
• stp_page – secondary truncation point logical page number in the log. Returns -1 if

replication is not active.
• stp_pages – returns the total number of log pages between the secondary truncation point

and the oldest active transaction. Returns 0 if:

• replication is not active
• there is no active transaction in the log
• there is no secondary truncation point before oldest active transaction

• stp_blocking – value of 0 or 1. 1 indicates that the secondary truncation checkpoint will
block some portion for truncation beyond oldest active transaction span. Meaning that
secondary truncation point is in between the start of the log and the start of oldest active
transaction and replication agent must catch up. 0 indicates that aborting the oldest active
transaction will free transaction log space without the secondary checkpoint blocking the
abort.

• canfree_without_abort_pct – value from 0 to 100. Indicates the difference between
startlogpagenum and startxactpagenum in terms of percentage of total log space. This
portion can be truncated with the dump transaction command without aborting the oldest
active transaction.

• dump_in_progress – returns1 if the dump transaction command is in progress, returns 0 if
no dump command is in progress. Values of output parameters firstlog_page and
canfree_without_abort_pct are not reliable. (output parameter).

• activexact – Boolean flag indicating that there are active transactions in the log.
• errorcode –

• 0 there are no errors
• 1 insufficient permission to execute
• 2 error in opening dbtable. This could be due to various reasons including the dbid or

database name given does not exist.
• 3 cannot start xls session for log scan.
• 4 there are no open transaction in the log against this database

Note: For a Mixed Log Data (MLD) database, this procedure returns values equivalent to 0 in
output parameters. This procedure is not supported or meant to be used for MLD databases.

Transaction Log Space Management

New Features Guide 15

Automating Transaction Log Management
Use cases to automate the management of the transaction log.

You can use sp_thresholdaction to identify the oldest active transaction.

You can use sp_xact_loginfo to monitor the longest running transaction per database or abort
the oldest active transaction based on conditional criteria.

Rescue Scenario Use Case
sp_thresholdaction can be used to identify the oldest active transaction and decide on action
based on the information returned.

You can truncate the log to free up the space or abort the oldest active transaction or both based
on the defined criteria. This use case assumes that the oldest active transaction span needs to be
watched or limited only when free space in log segment falls beyond threshold.

create procedure sp_logthresholdaction
 @dbname varchar(30),
 @segmentname varchar(30),
 @space_left int,
 @status int
as
declare
 @oats_span_pct int,
 @dbid int,
 @at_startpage bigint,
 @firstlog_page bigint,
 @canfree_withoutabort int,
 @stp_blocking int,
 @stp_pagebig int,
 @dump_in_progress int,
 @oat_spid int,
 @oat_starttime datetime,
 @activexact int,
 @free_with_dumptran_pct int,
 @errorcode int,
 @xactspan_limit int,
 @space_left_pct int,
 @dumptrancmd varchar(256),
 @dumpdevice varchar(128),
 @killcmd varchar(128)

 select @dbid = db_id(@dbname)
 select @dumpdevice = “/ferrum_dev1/db1.tran.dmp1”

 select @free_with_dumptran_pct = 5
/*
** attempt dump tran only if it can free at
** least 5 percent of log space
*/
 select @xactspan_limit = 20
/*

Transaction Log Space Management

16 Adaptive Server Enterprise

** optionally also kill oldest active transaction even after
** dump tran if its exceeds 20 percent in the log
*/

 select @space_left_pct = logspace_pagestopct(@dbid, @space_left, 0)
 print “Space left in log segment “ + @space_left_pct + “ percent.”

 select @dump_in_progress = 1
 while (@dump_in_progress> 0)
 begin -- {
 exec sp_xact_loginfo@dbid,
 “oldestactive”,
 NULL,
 0,
 0,
 @span_pct = @oats_span_pct output,
 @startpage = @oat_startpage output,
 @xact_spid = @oat_spid output,
 @starttime = @oat_starttime output,
 @firstlog_page = @firstlog_page output,
 @stp_page = @stp_page output,
 @stp_blocking = @stp_blocking output,
 @canfree_without_abort_pct = @free_with_dumptran_pct output,
 @dump_in_progress = @dump_in_progress output,
 @activexact = @activexact output,
 @errorcode = @errorcode output

if (@dump_in_progress> 0)
begin
 sleep 30
 continue
end
select @killcmd = “kill “ + @xact_spid + “ with status_only”

if (@canfree_withoutabort>@free_with_dumptran)
begin
 select @dumptrancmd = “dump tran ” + @dbname + “ on “ + @dumpdevice
 exec(@dumptrancmd)
/*
** Optionally, also abort oldest active transaction.
*/
 if ((@stp_blocking = 0) and
 (@oats_span_pct> @xactspan_limit))
 then
/*
** Some diagnostic information can be printed or warning actions
** can be executed here before aborting the transaction.
*/
 exec(@killcmd)
 end
else
/*
** Some diagnostic information can be printed or warning actions
** can be executed here before aborting the transaction.
*/
 exec(@killcmd)

Transaction Log Space Management

New Features Guide 17

 end
 end -- }

Monitoring Use Case
sp_xact_loginfo can be used for periodically monitoring the longest running transaction per
database.

For example a stored procedure can be formed around sp_xact_loginfo in which it populates
the tables with the oldest active transaction information and populates a user defined table.
The execution of this stored procedure can be periodic, at desired frequency through job
scheduler.

/*
** Stored procedure assumes presence of a pre-created table
** for monitoring oldest active transactions with following
** table definition:
**
** create table oldest_active_xact(
** dbid int,
** oldestactivexact_span int,
** startxactpagenum int,
** spid int,
** xactstarttime varchar(27),
** startlogpagenum int,
** stppage bigint,
** sec_truncpoint_block int,
** can_free_wo_kill int,
** dump_in_progress int,
** nolog int,
** username varchar(30) null)
*/
create procedure sp_record_oldestactivexact
@dbname varchar(30)
as
declare @dbid int,
 @oats_span_pct int,
 @oat_startpage bigint,
 @firstlog_page bigint,
 @canfree_withoutabort int,
 @stp_blocking int,
 @stp_page bigint,
 @dump_in_progress int,
 @oat_spid int,
 @oat_starttime varchar(27),
 @activexact int,
 @free_with_dumptran_pct int,
 @errorcode int,
 @username varchar(30)

select @dbid = db_id(@dbname)

exec sp_xact_loginfo @dbid,
 'oldestactive',
 NULL,

Transaction Log Space Management

18 Adaptive Server Enterprise

 0,
 0,
 @span_pct = @oats_span_pct output,
 @startpage = @oat_startpage output,
 @xact_spid = @oat_spid output,
 @starttime = @oat_starttime output,
 @firstlog_page = @firstlog_page output,
 @stp_page = @stp_page output,
 @stp_blocking = @stp_blocking output,
 @canfree_without_abort_pct = @free_with_dumptran_pct output,
 @dump_in_progress = @dump_in_progress output,
 @activexact = @activexact output,
 @errorcode = @errorcode output

if (@activexact = 1)
 begin
 print "activexact is true"
 select @username = suser_name(sysproc.uid)
 from master..systransactions systran,
 master..sysprocesses sysproc
 where systran.spid = @oat_spid
 and systran.spid = sysproc.spid
 insert into oldest_active_xact
 values(
 @dbid,
 @oats_span_pct,
 @oat_startpage,
 @oat_spid,
 @oat_starttime,
 @firstlog_page,
 @stp_page,
 @stp_blocking,
 @free_with_dumptran_pct,
 @dump_in_progress,
 @activexact,@username)
 end
else
 begin
 print "activexact is false"
 insert into oldest_active_xact values(
 @dbid,
 @oats_span_pct,
 @oat_startpage,
 @oat_spid,getdate(),
 @firstlog_page,
 @stp_page,
 @stp_blocking,
 @free_with_dumptran_pct,
 @dump_in_progress,
 @activexact,NULL)
end

Transaction Log Space Management

New Features Guide 19

Monitoring and Control Use Case
In addition to monitoring, the action of aborting the oldest active transaction based on
conditional criteria can also be implemented in sp_xact_loginfo which is run periodically
through job scheduler.

/*
** Stored procedure assumes presence of a pre-created table for
monitoring
** oldest active transactions with following table definition:
**
** create table oldest_active_xact(datetimetime_of_recording,
** dbid int,
** oldestactivexact_span int,
** spid int,
** username varchar(30),
** startxactpagenum int,
** startlogpagenum int,
** xactstarttime datetime,
** can_free_wo_kill int,
** sec_truncpoint_block int,
** nolog int,
** action_taken varchar(30))
** lock datarows
*/
create procedure sp_control_oldestactivexact
 @dbname varchar(30)
as
declare @oats_span_pct int,
 @dbid int,
 @at_startpage bigint,
 @firstlog_page bigint,
 @canfree_withoutabort int,
 @stp_blocking int,
 @stp_pagebig int,
 @dump_in_progress int,
 @oat_spid int,
 @oat_starttime datetime,
 @activexact int,
 @free_with_dumptran_pct int,
 @errorcode int,
 @username varchar(30),
 @action_taken varchar(30),
 @xact_maxspan_pct int,
 @killcmd varchar(128)

 select @dbid = db_id(@dbname)
 select @xact_maxspan_pct = 20
 select @action_taken = “none”

exec sp_xact_loginfo @dbid,
 “oldestactive”,
 NULL,
 0,
 0,

Transaction Log Space Management

20 Adaptive Server Enterprise

@span_pct = @oats_span_pct output,
@startpage = @oat_startpage output,
@xact_spid = @oat_spid output,
@starttime = @oat_starttime output,
@firstlog_page = @firstlog_page output,
@stp_page = @stp_page output,
@stp_blocking = @stp_blocking output,
@canfree_without_abort_pct = @free_with_dumptran_pct output,
@dump_in_progress = @dump_in_progress output,
@activexact = @activexact output,
@errorcode = @errorcode output

 select @killcmd = “kill “ + @oldesactive_spid + “ with status_only”

 if (@nolog == 0)
 then
select @username = suser_name(systran.suid)
from master..systransactionssystran where systran.spid
=@oldestactive_spid
if (@oats_span_pct> @xact_maxspan_pct)
begin
 exec(@killcmd)
 select @action_taken = “transaction abort”
end
 insert into oldest_active_xact values(getdate(), @dbid,
@oats_span_pct, @oat_spid, @username, @oat_page, @firstlog_page,
@free_with_dumptran_pct, @stp_blocking, @activexact, @action_taken)
 else
 /*
 ** Just to cover possibility of no active transactions which have
 ** generated any log.
 */
 insert into oldest_active_xact values(getdate(), @dbid,
 0, 0, NULL, 0, 0, 0, 0, 1, @action_taken)
 end

Analyzing and Managing Transaction Log Space
Use the loginfo function to view and free transaction log space.

The system administrator can use the loginfo function to evaluate how the space of a
transaction log is used and determine the type of actions possible to free space.

This example uses loginfo to show the transaction log at a particular point in time:

======================================
select loginfo(dbid, 'database_has_active_transaction') as has_act_tran,
 loginfo(dbid, 'oldest_active_transaction_pct') as Act_log_portion_pct,
 loginfo(dbid, 'oldest_active_transaction_spid') as OA_tran_spid,
 loginfo(dbid, 'can_free_using_dump_tran') as dump_tran_free_pct,
 loginfo(dbid, 'is_stp_blocking_dump') as is_stp_blocking,
 loginfo(dbid, 'stp_span_pct') as stp_span_pct

has_act_tran OAtran_spid Act_log_portion_pct dump_tran_free_pct is_stp_blocking stp_span_pct log_occupied_pct
------------ ------------ ------------------- ------------------ --------------- ------------ ---------------
 1 19 38 7 0 45 52

Transaction Log Space Management

New Features Guide 21

(return status = 0)

This shows:

• has_act_tran = 1, indicates that the database currently has one active transaction.

• OA_tran_spid = 19, indicates that the system process ID of the oldest active
transaction in the database is 19.

• Act_log_portion_pct = 38, indicates that 38 percent of the log space is occupied by
the oldest active transaction.

• dump_tran_free_pct = 7, indicates that 7 percent of the transaction log that can
freed using dump transaction.

• is_stp_blocking = 0, indicates that there is no secondary truncation point preventing
the use of dump transaction to free space.

• stp_span_pct = 45, indicates that there is a secondary truncation point spanning 45
percent of the transaction log.

• log_occupied_pct = 52, indicates that 52 percent of the total log space is currently
occupied.

The available actions are:

1. The first step can be to use dump transaction to free the transaction log of the 7 percent
shown by dump_tran_free_pct = 7. After freeing the space using dump
transaction, the output of the same query shows:

has_act_tran OAtran_spid Act_log_portion_pct dump_tran_free_pct is_stp_blocking stp_span_pct log_occupied_pct
------------ ------------ ------------------- ------------------ --------------- ------------ ---------------
 1 19 38 0 1 45 45

(return status = 0)

2. At this stage, Act_log_portion_pct = 38, indicates that 38 percent of the log
space is occupied by the transaction with the system process ID of 19. You can wait for
system process 19 to complete, or abort the transaction.
If you decide to abort the transaction using the kill command (with or without status only
option) as a measure to rescue the log, re-issuing the same query shows:

has_act_tran OAtran_spid Act_log_portion_pct dump_tran_free_pct is_stp_blocking stp_span_pct log_occupied_pct
------------ ------------ ------------------- ------------------ --------------- ------------ ---------------
 0 0 0 45 0 0 45

(return status = 0)

3. The query shows that there are no active transaction in the system. You can free all 45
percent of the occupied log space using the dump transaction command. After dump
transaction is executed, the output of the same query shows:

has_act_tran OAtran_spid Act_log_portion_pct dump_tran_free_pct is_stp_blocking stp_span_pct log_occupied_pct
------------ ------------ ------------------- ------------------ --------------- ------------ ---------------
 0 0 0 0 0 0 0

(return status = 0)

Transaction Log Space Management

22 Adaptive Server Enterprise

Viewing the Span of a Transaction
The system administrator can view the span of a transaction started by a specific process.

In this example, the transaction is identified by system process ID 15 and the database ID is
4:
select loginfo(4, 'xactspanbyspid', 15)
 as xact_span_spid15_dbid4
xact_span_spid15_dbid4

 10

This indicates that system process 15 is an active transaction and the log transaction span is 10
percent.

Viewing the Oldest Active Transactions
The system administrator can view the processes that are using the most log space.

This example shows the top three oldest active transactions having longest spans in the
transaction log:
select top 3 convert(numeric(3,0),
 loginfo(db_id(), ‘xactspanbyspid’, t.spid)) as XACTSPAN,
 convert(char(4), t.spid) as SPID,
 convert(char(20), t.starttime) as STARTTIME,
 convert(char(4), p.suid) as SUID,
 convert(char(15), p.program_name) as PROGNAME,
 convert(char(15), p.cmd) as COMMAND,
 convert(char(16), p.hostname) as HOSTNAME,
 convert(char(16), p.hostprocess) as HOSTPROCESS
from master..systransactions t, master..sysprocesses p
where t.spid = p.spid
order by XACTSPAN desc
XACTSPAN SPID STARTTIME SUID PROGRAM COMMMAND HOSTNAME
HOSTPROCESS
-------- ---- ----------------- ---- ------- -------- ----------

 38 19 Aug 5 2013 12:20AM 1 ISQL WAITFOR linuxstore4
26141
 20 20 Aug 5 2013 12:20AM 1 ISQL WAITFOR linuxstore2
23467
 10 21 Aug 5 2013 12:21AM 1 ISQL WAITFOR linuxstore6
4971
(return status =0)

Transaction Log Space Management

New Features Guide 23

Transaction Log Space Management

24 Adaptive Server Enterprise

Parallel create index with Hash-Based
Statistics for High Domains

Parallel create index in Adaptive Server 15.7 SP110 and later supports hash-based statistics
gathering on high domain minor attribute columns of the index (that is, columns with 65536 or
more unique column values).

Hash-based statistics gathering allows a database to immediately use newly created indexes
without requiring the index scan from subsequent update index statistics tab_name
index_name with hashing commands, which gather column statistics on the minor attributes
of the index for query optimization (update statistics supports only serial hash-based
statistics gathering).

The index must have more than one column for this feature to have effect.

Note: The major attribute of an index (that is, the first column of the index) continues to use
legacy sort-based statistics gathering, whether or not you enable hash-based statistics
gathering.

Parallel create index in earlier versions of Adaptive Server supported only hash-based
statistics gathering on low-domain minor attribute columns of a composite index.

Each parallel thread creates its respective portion of the index, similar to earlier versions of
create index. However, in versions 15.7 SP110 and later, while the index rows are being
processed, hash based statistics gathering is invoked on each minor attribute of each index
row. Each thread has a thread-local hash table for each column, so that the amount of tempdb
buffer cache used increases proportionally by the number of parallel threads specified. In the
case of high-domain, hash-based statistics gathering, additional memory is required to
produce the final histogram .

The max_resource_granularity value limits the amount of memory used by all threads. If this
limit is exceeded, one column is selected as a “victim” and the memory recycled is used to
continue processing the remaining columns. If a victim is chosen due insufficient tempdb
cache resources, the query processor does not generate statistics for the respective column.
Typically, the high domain histograms created by parallelism is not the same as the histogram
created by serial hash based processing, but in both cases the histogram cell weights are
accurate for the respective cell boundaries.

Parallel create index with Hash-Based Statistics for High Domains

New Features Guide 25

Parallel create index with Hash-Based Statistics for High Domains

26 Adaptive Server Enterprise

EMC PowerPath Device Fencing

Use the SYBASE_MAX_MULTIPATHS environment variable to override the number of paths
iterated when PowerPath is enabled.

On the AIX platform, the method used for fencing EMC PowerPath devices is that the path of
each device is fenced separately, which can result in performance issues during startup.

To increase startup performance when PowerPath is enabled, set the
SYBASE_MAX_MULTIPATHS environment variable to 1, which will cause Adaptive Server to
fence each device only once and allow PowerPath to broadcast the fencing operation to all of
the paths.

• ksh: export SYBASE_MAX_MULTIPATHS=1

• csh: setenv SYBASE_MAX_MULTIPATHS 1

EMC PowerPath Device Fencing

New Features Guide 27

EMC PowerPath Device Fencing

28 Adaptive Server Enterprise

SQL Standard for NULL Concatenation

Use set sqlnull on to implement SQL standard for NULL concatenation.

Standard SQL requires that string concatenation involving a NULL generates a NULL output.
Adaptive Server evaluates a string concatenated with NULL to the value of the string. A string
concatenation involving a NULL is treated as a string with a 0 length and an empty string ("")
is interpreted as a single space.

Adaptive Server SP110 allows you to use the set sqlnull option to implement SQL standard
for NULL concatenation.

This example, based on the table staff_profile, demonstrates the different output
generated using the sqlnull option:

create table staff_profile(id int, firstname char(10) NULL,
surname char(10) NULL, city varchar(10) NULL, country varchar(10)
NULL)
go
insert staff_profile values(001, 'Tom', 'Griffin', 'Dublin', 'US')
insert staff_profile values(002, 'Kumar', NULL, 'Pune', 'India')
insert staff_profile values(003, NULL , 'Kobe', 'Tokyo', NULL)
insert staff_profile values(004, 'Steve', 'Lewis', 'London', 'UK')
insert staff_profile values(005, 'Hana', 'SAP', NULL, 'Germany')
insert staff_profile values(006, 'Wei', 'Ming', 'Shanghai', 'China')
insert staff_profile values(007, 'city-state', ' ', 'Singapore',
'')

Output with the default value of set sqlnull off:

set sqlnull off
select id, rtrim(firstname) + '' + rtrim(surname) name, rtrim(city) +
'' + rtrim(country)
location from staff_profile

id name location
-------- ------------ ---------------------
1 Tom Griffin Dublin US
2 Kumar Pune India
3 Kobe Tokyo
4 Steve Lewis London UK
5 Hana SAP Germany
6 Wei Ming Shanghai China
7 city-state Singapore
(6 rows affected)

Output with set sqlnull on:

set sqlnull on
select id, rtrim(firstname) + '' + rtrim(surname) name, rtrim(city) +
'' + rtrim(country)
location from staff_profile

SQL Standard for NULL Concatenation

New Features Guide 29

id name location
-------- ------------ ---------------------
1 Tom Griffin Dublin US
2 NULL Pune India
3 NULL NULL
4 Steve Lewis London UK
5 Hana SAP NULL
6 Wei Ming Shanghai China
7 city-state Singapore
(6 rows affected)

SQL Standard for NULL Concatenation

30 Adaptive Server Enterprise

Function Nesting in Expressions Increased to
32

The limit of 10 nested functions in an expression has been raised from 10 to 32.

Function Nesting in Expressions Increased to 32

New Features Guide 31

Function Nesting in Expressions Increased to 32

32 Adaptive Server Enterprise

System Changes

Adaptive Server 15.7 SP110 adds changes to system procedures and functions.

Commands
Changed Adaptive Server 15.7 SP110 commands.

set ins_by_bulk
The ins_by_bulk parameter is improved for the set command, providing faster data loading by
using parallel index updates for insert statements into a datarows-locked table with non-
clustered indexes. The session-level syntax is:
set ins_by_bulk {on | off}

load ... with headeronly
Dumps that are created in a version of Adaptive Server using newer features may be
incompatible for loading into earlier versions that do not support these newer features. The
load database and load transaction...with headeronly commands report the database
features that are contained in the dump, and the target version that allows the load of such
dumps.

This is an example of the output from the load transaction command for a transaction log that
contains activity from an optimized dump load with parallel index updates.

1> load tran pubs2 from '/linuxstore6_eng4/DBS/2k/UpgdDowngd/
pubs2.tran1.dmp' with headeronly
2> go

Backup Server session id is: 18. Use this value when executing the
'sp_volchanged' system stored procedure after fulfilling any volume
change request from the Backup Server.
Backup Server: 6.28.1.1: Dumpfile name 'pubs21323503E6C ' section number
1 mounted on disk file '/linuxstore6_eng4/DBS/2k/UpgdDowngd/
pubs2.tran1.dmp'

This is a log dump of database ID 4, name 'pubs2', from Aug 23 2013
4:26AM. ASE version: lite_744746-2/Adaptive Server Enterprise/15.7/EBF
XXXXX SMP SP110 /744746-2/x86_64/Enterprise Linux/. Backup
Server version: Backup Server/15.7 SP110/EBF XXXXX/P/Linux AMD Opteron/
Enterprise Linux/asecarina/4347/64-bit/OPT/T. Database page size is
16384.

Log begins on page 262147; checkpoint RID=Rid pageid = 0x42950; row num =
0x8a; previous BEGIN XACT RID=(Rid pageid = 0x40003; row num = 0x1);
sequence dates: (old=Aug 23 2013 4:24:28:740AM, new=Aug
23 2013 4:26:20:613AM); truncation page=272720; 9 pages deallocated;
requires database with 524288 pages.

System Changes

New Features Guide 33

Database log version=7; database upgrade version=35; database
durability=UNDEFINED.
segmap: 0x00000003 lstart=0 vstart=[vpgdevno=3 vpvpn=0] lsize=262144
unrsvd=259433
segmap: 0x00000004 lstart=262144 vstart=[vpgdevno=4 vpvpn=0] lsize=262144
unrsvd=260714

The database contains 524288 logical pages (8192 MB) and 524288 physical
pages (8192 MB).
dbdevinfo: devtype=0 vdevno=3 devname=pubs2_data physname=/
linuxstore6_eng3/DBS/asecarina/16k/pubs2_data.dat.16k devsize=2097152
dbdevsize=262144 vstart=0 devstat=2 devstat2=1
dbdevinfo: devtype=0 vdevno=4 devname=pubs2_log physname=/
linuxstore6_eng2/DBS/asecarina/16k/pubs2_log.dat.16k devsize=2097152
dbdevsize=262144 vstart=0 devstat=2 devstat2=1

This is the SYSDATABASES row of database ID 4, name 'pubs2' from the dump
header. Status:0x0205. Crdate:Aug 18 2013 11:32PM. Dumptrdate:Aug 23
2013 4:24AM. Status2:0x0000. Audflags:0x0000.
Deftabaud:0. Defvwaud:0. Defpraud:0. Def_remote_type:0. Status3:0x20000.
Status4:0x4000. Durablility:1. Lobcomp_lvl:0. Inrowlen:0. Dcompdefault:
1.
This is the SYSATTRIBUTES row for the database 'pubs2' from the dump
header. Flmode:0x0000.

The output in bold lists the features contained in this dump, and the Adaptive Server version
that can be used to load such a dump.

Features found in the database or transaction dump header:

ID= 4:15.7.0.000:Database has system catalog changes made in 15.7 GA
ID= 7:15.7.0.020:Database has system catalog changes made in 15.7 ESD#02
ID=11:15.7.0.100:Database has the Sysdams catalog
ID=13:15.7.0.100:Database has indexes sorted using RID value comparison
ID=14:15.7.0.110:Log has transactions generating parallel index
operations

The last row indicates that this dump contains activity from the optimized data load feature
with parallel index updates. Such an activity can be safely recovered only in Adaptive Server
Enterprise 15.7 SP110, or later. Loading this dump into an earlier version, such as Adaptive
Server 15.7 SP100, is prohibited, and the load command fails.

Before creating a database or transaction dump, use sp_downgrade and sp_downgrade_esd
and their associated recommendations to prepare your databases to be loadable in an earlier
Adaptive Server version. Use the information from with headeronly to identify the features in
a particular dump that may be incompatible with an earlier Adaptive Server version.

System Changes

34 Adaptive Server Enterprise

System Procedures
New and changed Adaptive Server 15.7 SP110 system procedures.

sp_modifystats
sp_modifystats adds these parameters:
 sp_modifystats [database].[owner].table_name, {"column_group" |
"all"},
. . .
modify_default_selectivity,
 {inequality | inbetween},
 {absolute | factor},
'value'
modify_unique
 {range | total },
 {absolute | factor},
'value'

Where:

• modify_default_selectivity – specifies the default selectivity value. Must be between zero
and one, inclusive. modify_default_selectivity is one of:
• inequality – indicates columns in which the predicate has an upper bound or a lower

bound, but not both, and includes these range operators: > =, <=, >, <. The default value
for inequality is .33

• inbetween – indicates columns in which the predicate includes the upper bound and
lower bound, and includes these range operators: > =, <=, >, <. The default value for
inbetween is .25

• absolute – ignore the current value and use the number specified by the value
parameter.

• factor – multiply the current statistical value by the value parameter.

Note: You can use modify_default_selectivity only on an individual column, not a column
group.

Adaptive Server uses the default selectivity when an unknown constant prevents it from
using a histogram to estimate selectivity of the respective predicate. The default selectivity
for a search argument using inequality is 33%. inequality search arguments include
columns for which there is an upper bound predicate or a lower bound predicate, but not
both, and use the >=, <=, >, < range operators. The default selectivity for search arguments
that include an inbetween search arguments is 25%. inbetween search arguments include
columns that have both an upper bound predicate and a lower bound predicate, or use the
between operator.

• modify_unique – allows you to modify the range unique or total unique values of a
column or column group to the granularity specified in the value parameter.

System Changes

New Features Guide 35

• range – modifies the estimate for the number of unique values found in the range cells
of the histogram. range does not include the frequency cells (that is, single-valued
histogram cells). The estimate is represented as a fraction between 0.0 and 1.0, equal
to:
unique_range_values / (range_cell_rows * total rows_in_table)

• total – modifies the estimate of the number of unique values for the column or column
group (including the NULL value). The optimizer uses this value to estimate group by
and distinct cardinality. It is represented as a fraction between 0.0 and 1.0 where the
1.0/<unique count> is stored in the catalogs.

• absolute – ignore the current value and use the number specified by the value
parameter.

• factor – multiply the current statistical value by the value parameter.

This example sets the default selectivity of inequality predicates with unknown constants (for
example, a1>@v1) to 0.09:

sp_modifystats t10, a1, MODIFY_DEFAULT_SELECTIVITY, inequality,
absolute, "0.09"

This example sets the default selectivity for column a2 to use a value of 0.11 if you specify
upper bound and a lower bound predicates with unknown constants (for example, a2>@v1
and a2<@v2):

sp_modifystats t10, a2, MODIFY_DEFAULT_SELECTIVITY, inbetween,
absolute, "0.11"

This example modifies the range value for all columns for table t10 by a factor of 0.13:
sp_modifystats t10, "all", MODIFY_UNIQUE, range, factor, "0.13"

This example modifies the total unique value for all columns for table t10 to an absolute value
of 0.14, which indicates there are (1.0 / 0.14) = 7.1428 unique values for each column in the
table:
sp_modifystats t10, "all", MODIFY_UNIQUE, total, absolute, "0.14"
go

sp_xact_loginfo
sp_xact_loginfo is a new procedure that provides the span of oldest active transaction in terms
of percentage of total log space. See sp_xact_loginfo on page 14

Functions
Changed Adaptive Server 15.7 SP110 functions.

shrinkdb_status
shrinkdb_status adds these values for the query parameter:

• current_object_id – Object ID of the table being shrunk

System Changes

36 Adaptive Server Enterprise

• current_page – number of the page most recently, or currently, being moved
• buffer_read_wait – amount of time, in microseconds, spent waiting for buffers to be read
• buffer_write_wait – amount of time, in microseconds, spent waiting for buffers to be

written
• pages_read – number of pages read by the shrink operation
• pages_written – number of pages written by the shrink operation
• index_sort_count – number of times the shrink operation sorted duplicated indexes

loginfo
loginfo adds parameters to support managing transaction log space. See loginfo on page 11

db_attr
db_attr has been expanded to include the list_dump_fs attribute.

You may not be able to load a database or transaction dumps that are generated in a later
version of Adaptive Server into an earlier version. The features that are in use in a database,
and objects that are created using newer features, are captured in database and transaction
dumps. Before generating such dumps, use the list_dump_fs attribute to identify the features
to be included in future dumps.

The following example shows the various features that are in use for the pubs2 database, and
the target Adaptive Server version, which can safely load such dumps. The last line in bold
indicates that the optimized data load with parallel index updates was executed in this
database, and is contained in the transaction log.

1> select db_attr('pubs2', 'list_dump_fs')
2> go

Features found active in the database that will be recorded in a
subsequent dump header:

ID= 3: 15.7.0.007: Database has compressed tables at version 1
ID= 4: 15.7.0.000: Database has system catalog changes made in 15.7 GA
ID= 7: 15.7.0.020: Database has system catalog changes made in 15.7 ESD#02
ID=11: 15.7.0.100: Database has the Sysdams catalog
ID=13: 15.7.0.100: Database has indexes sorted using RID value comparison
ID=14: 15.7.0.110: Log has transactions generating parallel index
operations

Future dumps of pubs2 will be loadable only in the target server version indicated. To load the
dumps of such a database in a target Adaptive Server version that is earlier than the version
listed, downgrade the database to remove the footprint of newer features.

System Changes

New Features Guide 37

System Changes

38 Adaptive Server Enterprise

Index
A
AIX platform fencing 27

C
command

load...with headeronly 33
set 33

D
data-load optimization 1

restrictions 3

E
EMC PowerPath 27

F
function

db_attr 36
loginfo 36
shrinkdb_status 36

H
hosts.allow 7

I
ins_by_bulk 1

L
load...with headeronly command 33
loginfo 21

xactspanbyspid 23
loginfo function 11

O
optimization goal

ins_by_bulk 1

P

parallel
index updates 1

procedure
sp_modifystats 35
sp_xact_loginfo 35

R

remote host control 7
remote procedure calls 7

S

set command
ins_by_bulk 33

set showplan 1
show_cached_plan_in_xml 3
sp_downgrade 4
sp_downgrade_esd 4
sp_thresholdaction 16
sp_xact_loginfo 18, 20
sp_xact_loginfo system procedure 14
sybase_max_multipaths 27

T

transaction log
analyze and manage 21
automating management 16
effective span 10
loginfo 11
monitor and control use case 20
monitoring use case 18
physical span 10
rescue use case 16
sp_xact_loginfo 14
space allocation 10
space management 9
viewing the oldest active transaction 23
viewing the transaction span 23

troubleshooting bulk insert 5

Index

New Features Guide 39

U
UpdateIndex 3

Index

40 Adaptive Server Enterprise

	New Features Guide
	Contents
	Improved Data-Load Performance
	Data-Load Optimization on Tables with Multiple Indexes
	Viewing Parallel Update Index Queries in showplan
	Viewing Queries with UpdateIndex

	Restrictions
	Downgrade Considerations
	Troubleshoot

	Remote Dump Host Control
	Transaction Log Space Management
	Transaction Log Space
	loginfo
	sp_xact_loginfo
	Automating Transaction Log Management
	Rescue Scenario Use Case
	Monitoring Use Case
	Monitoring and Control Use Case

	Analyzing and Managing Transaction Log Space
	Viewing the Span of a Transaction
	Viewing the Oldest Active Transactions

	Parallel create index with Hash-Based Statistics for High Domains
	EMC PowerPath Device Fencing
	SQL Standard for NULL Concatenation
	Function Nesting in Expressions Increased to 32
	System Changes
	Commands
	System Procedures
	Functions

	Index

