
Deploying Applications and Components
to .NET

PowerBuilder® 12.5.2

DOCUMENT ID: DC00586-01-1252-01
LAST REVISED: February 11, 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. A ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of the respective companies
with which they are associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568

http://www.sybase.com/detail?id=1011207

Contents

Windows Forms Targets ...1
Choosing a Windows Forms Application Target1

How .NET Deployment Works2
Security Settings ..3
Strong-Named Assemblies5
ASP.NET Configuration for a .NET Project6
Checklist for Deployment10

PowerBuilder Windows Forms Applications16
Deploying to a production environment17
System Requirements for .NET Windows Forms

Targets ...18
Creating a .NET Windows Forms Project20
Deployment of a Windows Forms Application25
Project Execution ..25

Intelligent Deployment and Update26
Publishing an application for the first time26
Application Installation on the User’s Computer

...31
Publication of Application Updates32
Application Bootstrapping35
Rolling Back ...37
MobiLink Synchronization37

Unsupported Features in Windows Forms Projects37
Unsupported Nonvisual Objects and Structures

in Windows Forms ...38
Unsupported System Functions in Windows

Forms ..44
PowerBuilder Visual Controls in Windows Forms

Applications ...44
Unsupported Functions for Controls in Windows

Forms ..49

Deploying Applications and Components to .NET iii

Unsupported Events for Controls in Windows
Forms ..51

Unsupported Properties for Controls in
Windows Forms ...51

.NET Component Targets ..55
.NET Assembly Targets ..55

Modifying a .NET Assembly Project57
Supported Datatypes ...60
Deploying and Running a .NET Assembly

Project ...61
.NET Web Service Targets ...62

Modifying a .NET Web Service Project64
Configuring ASP.NET for a .NET Web Service

Project ...68
Global Web Configuration Properties68
Deploying and Running a .NET Web Service

Project ...70
.NET Web Service Deployment Considerations

...71
.NET Language Interoperability ..75

Conditional Compilation ..75
Surrounding Code in a .NET Block77
PowerScript Syntax for .NET Calls78
Adding .NET Assemblies to the Target80
Datatype Mappings ..81
Support for .NET language features82
Limitations ..89
Handling Exceptions in the .NET Environment90

Connections to EAServer Components94
Using the Connection Object94
Connections Using the JaguarORB Object95
Support for CORBAObject and CORBACurrent

Objects ..96
Supported Datatypes ...97
SSL Connection Support98

Contents

iv PowerBuilder

Best Practices for .NET Projects103
Design-Level Considerations106
Take Advantage of Global Configuration

Properties ...108
Compiling, Debugging, and Troubleshooting109

Incremental Builds ..109
Build and Deploy Directories109
Rebuild Scope ...110
.NET Modules ..110
PBD Generation ...110
Triggering Build and Deploy Operations111
System Option ...111
Incremental Build Processing112

Debugging a .NET Application113
Attaching to a Running Windows Forms Process

...113
.NET Debugger Restrictions113
Release and Debug Builds114
DEBUG Preprocessor Symbol114
Breaking into the Debugger When an Exception

is Thrown ...115
Debugging a .NET Component116

Troubleshooting .NET Targets117
Troubleshooting Deployment Errors117
Troubleshooting Runtime Errors118
Troubleshooting Tips for Windows Forms

Applications ...118
Appendix ..121

Custom Permission Settings121
Adding Permissions in the .NET Framework

Configuration Tool ..121
EnvironmentPermission122
EventLogPermission ..122
FileDialogPermission ...123
FileIOPermission ...123

Contents

Deploying Applications and Components to .NET v

PrintingPermission ...126
ReflectionPermission ...127
RegistryPermission ..128
SecurityPermission ..128
SMTPPermission ...129
SocketPermission ..130
SQLClientPermission ...130
UIPermission ...130
WebPermission ..131
Custom Permission Types131

Index ..133

Contents

vi PowerBuilder

Windows Forms Targets

This part describes how to create and deploy Windows Forms applications.

Choosing a Windows Forms Application Target
Windows Forms applications with the smart client feature combine the reach of the Web with
the power of local computing hardware. They provide a rich user experience, with a response
time as quick as the response times of equivalent client-server applications.

The smart client feature simplifies application deployment and updates, and can take
advantage of Sybase®'s MobiLink™ technology to provide occasionally connected
capability.

This table shows some of the advantages and disadvantages of Windows Forms applications
with and without the smart client feature.

Application type Advantages Disadvantages

Windows Forms • Rich user experience
• Quicker response time
• Availability of client-side

resources, such as 3D ani-
mation

• Offline capability

• Requires client-side instal-
lation

• Difficult to upgrade

Windows Forms with smart cli-
ent feature

• Same advantages as Win-
dows Forms without smart
client feature

• Easy to deploy and upgrade

• Requires first time client-
side installation

Note: The PowerBuilder® smart client feature makes Windows Forms applications easy to
upgrade while maintaining the advantages of quick response times and the ability to use local
resources. For more information, see Intelligent Deployment and Update on page 26.

Although PowerBuilder® Classic continues to support traditional client-server as well as
distributed applications, it also provides you with the ability to transform these applications
into Windows Forms applications with relative ease.

Windows Forms Targets

Deploying Applications and Components to .NET 1

How .NET Deployment Works
When you deploy a .NET project, PowerBuilder compiles existing or newly developed
PowerScript® code into .NET assemblies.

At runtime, the generated .NET assemblies execute using the .NET Common Language
Runtime (CLR). PowerBuilder’s .NET compiler technology is as transparent as the P-code
compiler in standard PowerBuilder client-server applications.

Depending on their application target type, the assemblies you generate from a .NET project
are built into Windows Forms applications. If you generate assemblies from a component
target type, the assemblies are deployed as independent .NET components or as Web services.

PowerBuilder Windows Forms applications run on the .NET Framework using local computer
hardware resources. The smart client feature permits you to publish Windows Forms
applications to an IIS or FTP server, and leverages Microsoft’s ClickOnce technology, making
it easier for users to get and run the latest version of an application and easier for
administrators to deploy it.

Note: For PowerBuilder .NET applications and components, you must install the .NET
Framework redistributable package on the deployment computer or server. The .NET
Framework SDK (x86) is required on the deployment server for Windows Forms smart client
applications. The x86 version of the SDK is required even for 64-bit computers. You cannot
install the SDK without first installing the redistributable package.

he SDK and the redistributable package are available as separate downloads from the
Microsoft .NET Framework Developer Center at http://msdn.microsoft.com/en-us/
netframework/aa731542.aspx.

This is a high level architectural diagram showing the conversion of PowerBuilder
applications and custom class objects to applications and components on the .NET platform:

Windows Forms Targets

2 PowerBuilder

http://msdn.microsoft.com/en-us/netframework/aa731542.aspx
http://msdn.microsoft.com/en-us/netframework/aa731542.aspx

Security Settings
PowerBuilder applications and components can run in partial trust environments when they
are constrained by .NET code access security (CAS) configurations.

PowerBuilder lets you configure CAS security zones (sandboxes) for .NET Web Service and
Windows Forms smart client projects, to minimize the amount of trust required before
application or component code is run by an end user.

For .NET Web Service projects, you can also modify the Web.config file to support
security zones after you deploy the project. The .NET assemblies that you create by building
and deploying .NET Assembly projects are run with the security permissions of the calling
application or component.

However, Microsoft .NET Framework 4.0 does not support the machine security policy and
zone settings used by Windows Forms applications. To continue to use the CAS policy system
in a Windows Forms application, modify its application.config files as as follows:,
<configuration>
 <runtime>
 <NetFx40_LegacySecurityPolicy enabled="true"/>
</runtime>
</configuration>

Trust options
A radio button group field on the Project painter’s Security tab allows you to select full trust or
a customized trust option. For Windows Forms applications, you can also select local intranet
trust or internet trust. A list box below the radio button group allows you to select or display the
permissions you want to include or exclude when you select local intranet trust, internet trust,
or the custom option. (If you select full trust, the list box is disabled.)

For Windows Forms applications, if you modify a permission after selecting the local intranet
or internet trust options, PowerBuilder automatically treats the selected permissions as
custom selections, but does not modify the selected radio button option. This allows you to
click the Reset button above the list box to change back to the default local intranet or internet
permission settings. Clicking the Detail button (to the left of the Reset button) opens the
Custom Permissions dialog box that allows you to enter custom permissions in XML format.
The Reset and Detail buttons are disabled only when you select the Full Trust radio button
option.

For smart client applications, the permission information is stored in the manifest file that you
deploy with your application. When users run a smart client application, the application loader
process loads the manifest file and creates a sandbox where the application is hosted.

For standard Windows Forms applications, the sandbox allows you to run the application with
the permissions you define on the Project painter Security tab when the applications are run
from the PowerBuilder IDE. When a user starts Windows Forms applications from a file
explorer or by entering a UNC address (such as \\server\myapp\myapp.exe), the security

Windows Forms Targets

Deploying Applications and Components to .NET 3

policies set by the current user’s system are applied and the Security tab permission settings
are ignored.

Note: For information on custom security permissions, see Custom Permission Settings on
page 121 and the Microsoft Web site at http://msdn.microsoft.com/en-us/library/
system.security.permissions.aspx.

Permission error messages
If your .NET application attempts to perform an operation that is not allowed by the security
policy, the Microsoft .NET Framework throws a runtime exception. For example, the default
local intranet trust level has no file input or output (File IO) permissions. If your application
runs with this security setting and tries to perform a File IO operation, the .NET Framework
issues a File Operation exception.

You can catch .NET security exceptions using .NET interoperability code blocks in your
PowerScript code:

 #if defined PBDOTNET then
 try
 ClassDefinition cd_windef
 cd_windef = FindClassDefinition("w_1")
 messagebox("w_1's class
 definition",cd_windef.DataTypeOf)
 catch(System.Security.SecurityException ex)
 messagebox("",ex.Message)
 end try
 #end if

All .NET targets must include a reference to the mscorlib.dll .NET Framework
assembly in order to catch a System.Security.SecurityException exception. The
PBTrace.log files that PowerBuilder Windows Forms applications generate by default
contain detailed descriptions of any security exceptions that occur while the applications are
running. PowerBuilder .NET Web Service components also generate PBTrace.log files
that log critical security exceptions by default.

If you do not catch the exception when it is thrown, the PowerScript SystemError event is
triggered. For Windows Forms applications, a default .NET exception message displays if you
do not catch the exception or include code to handle the SystemError event. The exception
message includes buttons enabling the user to show details of the error, continue running the
application, or immediately quit the application.

For more information about handling .NET exceptions, see Handling Exceptions in the .NET
Environment on page 90.

Debugging and tracing with specified security settings
You can debug and run .NET applications and components from the PowerBuilder IDE with
specified security settings. To support this capability in Windows Forms applications,
PowerBuilder creates a hosting process in the same directory as the application executable.

Windows Forms Targets

4 PowerBuilder

http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx
http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx

The hosting process creates a domain with the CAS setting before it loads the application
assemblies. (The CAS settings generated in the Web.config file determine the security
permissions used by .NET Web Service components.)

If your .NET application attempts to perform an operation not allowed by the specified
security setting, an exception is issued in the IDE.

For more information about debugging .NET applications and components, see Debugging
a .NET Application on page 113.

Strong-Named Assemblies
PowerBuilder can generate strong-named assemblies from all .NET Project painters.

A strong name consists of an assembly’s identity—its simple text name, version number, and
culture information (when provided)—plus a public key and digital signature. It is generated
from an assembly file using the corresponding private key. The assembly file contains the
assembly manifest that includes the names and hashes of all the files that make up the
assembly.

Project painter Sign tab
PowerBuilder includes a Sign tab in the Project painters for all .NET application and
component projects. The Assembly group box on the Sign tab allows you to attach strong
name key files to the assemblies that the.NET projects generate. The Assembly group box
contains the following fields:

Assembly group box field Description

Sign the assembly Select this check box to enable the “Choose a
strong name key file” single line edit box, the
browse and New buttons, and the “Delay sign
only” check box.

Choose a strong name key file Name of the key file you want to attach to the
generated assembly. This field is associated with
a browse (ellipsis) button and a New button. The
browse button opens a Select File dialog box
where you can select a key file with the .snk ex-
tension. The New button lets you create a key file
with the .snk extension. PowerBuilder uses the
Sn.exe tool from the .NET Framework to cre-

ate the key file.

Windows Forms Targets

Deploying Applications and Components to .NET 5

Assembly group box field Description

Delay sign only Select this check box if your company’s security
considerations require the step of signing the as-
sembly to be separate from the development
process. When this check box is selected, the
project will not run and cannot be debugged.
However, you can use the strong name tool
Sn.exe (in the .NET Framework) with the -
Vr option to skip verification during develop-

ment.

Mark the assembly with AllowPartiallyTrusted-
CallerAttribute (.NET Web Service and .NET
Assembly projects only)

By default, a strong-named assembly does not
allow its use by partially trusted code and can be
called only by other assemblies that are granted
full trust. However, you can select this check box
to allow a strong-named assembly to be called by
partially trusted code.

The Sign tab has additional fields for selecting certificate files that you publish with smart
client applications.

For information about the Sign tab fields for smart client applications, see Digital Certificates
on page 28.

Error messages
If you select a strong name key file in either the Assembly or Intelligent Updater group boxes,
and the key file is invalid, PowerBuilder displays a message box telling you that the key file is
invalid. If the key file you select is password protected, PowerBuilder prompts you to enter the
password for the key file. If you enter an incorrect password, a message box informs you that
the password you entered is invalid.

ASP.NET Configuration for a .NET Project
You can configure ASP.NET for a smart client project before or after you deploy the project to
an IIS 5.0 or later server.

All files and directories that you access from a smart client application on a Web server must
have appropriate ASPNET (IIS 5.0), IIS_WPG (IIS 6.0), or IIS_IUSRS (IIS 7.0 and 7.5) user
permissions.

Note: You do not need to install IIS on the development computer for PowerBuilder
applications or components unless you are using the same computer as a server for smart client
applications, or for Web service components. IIS is also not required on end users’ computers.

For an example of granting user permissions to a directory, see Setting Up a SQL Anywhere
Database Connection on page 8.

Windows Forms Targets

6 PowerBuilder

When you deploy directly to a remote computer, system information about the deployment
computer, including its OS and IIS versions, is passed to PowerBuilder through the Windows
Management Instrumentation (WMI) interface. Deployment through the WMI interface
requires administrator privileges. If you make any changes to administrator accounts on a
remote computer, you will probably need to reboot that computer before you can deploy
a .NET Web project from PowerBuilder.

If you deploy to an MSI setup file, and run the setup file on a deployment computer,
PowerBuilder can use the Windows API to obtain information about the OS and IIS versions
on that computer.

IIS Installation
You can install IIS from the Control Panel, but you might need a Windows operating system
CD.

On Windows XP, select Add and Remove Programs from the Control Panel, then click Add/
Remove Windows Components, select the Internet Information Services check box, and click
Next. You can then follow instructions to install IIS. On Vista and Windows 7, go to the
Programs and Features page in the Control Panel, select Turn Windows features on or off, and
select Internet Information Services.

If IIS 5.0 or later is installed after the .NET Framework, you must register IIS with ASP.NET
manually or reinstall the .NET Framework. To manually register IIS with ASP.NET, go to
the .NET Framework path, run aspnet_regiis.exe -i in the command line console,
and restart IIS.

Selecting the Default ASP.NET Version
If you installed multiple versions of the .NET Framework on the target Web server, you should
make sure that IIS uses a supported version for PowerBuilder .NET applications.

You can make this change globally, for all ASP.NET Web site applications, or for individual
applications that you deploy to IIS.

The following procedure applies to IIS 5 and 6. In IIS 7 and later, set the .NET Framework
version for the application pool your applications use. For more information, see
Configuration Requirements for Windows Vista and Later on page 9.

1. Select Start > Run from the Windows Start menu.

2. Type InetMgr in the Run dialog box list.

3. In the left pane of the IIS Manager, expand the local computer node and its Web Sites
sub-node.

4. One of the following:

• For all new Web sites, right-click the Default Web Site node and select Properties.
• For already deployed projects, expand the Web site node and right-click the .NET

application that you deployed from PowerBuilder.

Windows Forms Targets

Deploying Applications and Components to .NET 7

5. Specify the ASP.NET or .NET Framework version.

• On Windows XP, open the ASP.NET tab and choose the ASP.NET version:
• For PowerBuilder 12.0 and earlier: 2.0.50727
• For PowerBuilder 12.5: 4.0.30319

• On Windows 7, Windows Vista, and Windows 2008, set the .NET Framework version
used by your NVO Web service deployment:
a. In the IIS Manager, open the Application Pools node underneath the machine node.
b. Right-click the PBDotNet4AppPool filter and choose Advanced Settings.
c. Set the .NET Framework Version to 4.0.

Setting Up a SQL Anywhere Database Connection
Full control permissions are required for directories containing databases that you need to
access from your .NET Web Service applications.

Before a PowerBuilder .NET .NET Web Service application connects to a SQL Anywhere®

database, you must either start the database manually or grant the ASPNET user (IIS 5 on
Windows XP), the IIS_WPG user group, or IIS_IUSRS (IIS 7 on Windows Vista and IIS 7.5
on Windows 7) default permissions for the Sybase\Shared and Sybase SQL Anywhere
directories, making sure to replace permissions of all child objects in those directories.

Note: If your database configuration uses a server name, you must provide the database server
name in the start-up options when you start the database manually, in addition to the name of
the database file you are accessing.

If you do not grant the appropriate user permissions for Sybase directories and your database
configuration is set to start the database automatically, your application will fail to connect to
the database. SQL Anywhere cannot access files unless the ASPNET, IIS_WPG, or
IIS_IUSRS user group has the right to access them.

1. In Windows Explorer, right-click the Sybase, Sybase\Shared or Sybase SQL
Anywhere directory and select Properties from the context menu.

2. Select the Security tab of the Properties dialog box for the directory and click Add. On
Vista and Windows 7, click Edit and then Add.

Note: To show the Security tab of the Select Users, Computers, or Groups dialog box, you
might need to modify a setting on the View tab of the Folder Options dialog box for your
current directory. You open the Folder Options dialog box by selecting the Tools > Folder
Options menu item from Windows Explorer. To display the Security tab, you must clear
the check box labeled “Use simple file sharing (Recommended)”

3. Click Locations, choose the server computer name from the Locations dialog box, and
click OK.

4. Type ASPNET (IIS 5), IIS_WPG (IIS 6), or IIS_IUSRS (IIS 7 and 7.5) in the list box
labeled “Enter the object names to select” and click OK.

Windows Forms Targets

8 PowerBuilder

If valid for your server, the account name you entered is added to the Security tab for the
current directory. You can check the validity of a group or user name by clicking Check
Names before you click OK.

5. Select the new account in the top list box on the Security tab, then select the check boxes
for the access permissions you need under the Allow column in the bottom list box.

You must select the Full Control check box for a directory containing a database that you
connect to from your application.

6. Click Advanced.

7. Select the check box labeled “Replace permission entries on all child objects with entries
shown here that apply to child objects” and click OK.
A Security dialog box appears, and warns you that it will remove current permissions on
child objects and propagate inheritable permissions to those objects, and prompts you to
respond.

8. Click Yes at the Security dialog box prompt, then click OK to close the Properties dialog
box for the current directory.
The pbtrace.log file is created in the applicationName_root directory. This
file records all runtime exceptions thrown by the application and can be used to
troubleshoot the application.

Configuration Requirements for Windows Vista and Later
When you run PowerBuilder on Windows Vista or Windows 7 under a standard user account,
and attempt to deploy Web Service projects, the User Account Control (UAC) dialog box
appears. This dialog box allows you to elevate your privileges for the purpose of deployment.

Deploying .NET targets to a remote Windows Vista, Windows 2008, or Windows 7 computer
might require changes to the Windows firewall, UAC, or the Distributed Component Object
Model (DCOM) settings:

Settings for Required changes

Windows firewall Enable exceptions for WMI and file and printer
sharing

Windows Forms Targets

Deploying Applications and Components to .NET 9

Settings for Required changes

UAC (When you are not running PowerBuilder
with the built-in Administrator account)

If the development and deployment computers
are in the same domain, connect to the remote
computer using a domain account that is in its
local Administrators group. Then UAC access
token filtering does not affect the domain ac-
counts in the local Administrators group. You
should not use a local, nondomain account on the
remote computer because of UAC filtering, even
if the account is in the Administrators group.

If the development and deployment computers
are in the same workgroup, UAC filtering affects
the connection to the remote computer even if the
account is in the Administrators group. The only
exception is the native “Administrator” account
of the remote computer, but you should not use
this account because of security issues. Instead,
you can turn off UAC on the remote computer.
and if the account you use has no remote DCOM
access rights, you must explicitly grant those
rights to the account.

DCOM Grant remote DCOM access, activation, and
launch rights to a nondomain user account in the
local Administrators group of the remote com-
puter if that is the type of account you are using to
connect to the remote computer.

Checklist for Deployment
Verify that production servers and target computers meet all requirements for running
the .NET targets that you deploy from PowerBuilder Classic.

Checklist for all .NET targets
For deployment of all .NET target types (Windows Forms, .NET Assembly, .NET Web
Service), production servers or target computers must have:

• The Windows XP SP2, Windows Vista, Windows 2008, or Windows 7 operating system
• .NET Framework 4.0
• The Microsoft Visual C++ runtime libraries msvcr71.dll, msvcp71.dll,

msvcp100.dll, msvcr100.dll, and the Microsoft .NET Active Template Library
(ATL) module, atl71.dll

• PowerBuilder .NET assemblies in the global assembly cache (GAC)
• PowerBuilder runtime dynamic link libraries in the system path

See Deploying PowerBuilder runtime files on page 11.

Windows Forms Targets

10 PowerBuilder

Checklist for .NET Web Service targets
For .NET Web Service targets, production servers must have:

• IIS 5 or later (See IIS Installation on page 7)
• ASP.NET (See Selecting the Default ASP.NET Version on page 7)
• ASP.NET permissions for all files and directories used by your applications

For an example of how to grant ASP.NET permissions, see Setting Up a SQL Anywhere
Database Connection on page 8.

For information on different methods for deploying .NET Web Service components, see
Deployment to a production server on page 72.

Deploying PowerBuilder runtime files
The simplest way to deploy PowerBuilder runtime DLLs and .NET assemblies to production
servers or target computers is to use the PowerBuilder Runtime Packager tool. The Runtime
Packager creates an MSI file that installs the files you select, registers any self-registering
DLLs, and installs the .NET assemblies into the global assembly cache (GAC).

Note: When you deploy any PowerBuilder application or component, always make sure that
the version and build number of the PowerBuilder runtime files on the target computer or
server is the same as the version and build number of the DLLs on the development computer.
Mismatched DLLs can result in unexpected errors in all applications. If the development
computer is updated with a new build, PowerBuilder .NET applications and components must
be rebuilt and redeployed with the new runtime files.

For information on all the steps required to migrate .NET applications and components that
you deployed with earlier releases of PowerBuilder, see Release Bulletin > Migration
Information. PowerBuilder release bulletins are available from links on the Product Manuals
Web site at http://www.sybase.com/support/manuals/.

For a list of base components deployed when you select PowerBuilder .NET Components in
the Runtime Packager, see Application Techniques > Deploying Applications and
Components. The Runtime Packager installs additional components depending on the options
you select in its user interface.

You can also choose to use another tool to install the runtime files on the server or target
computer:

Windows Forms Targets

Deploying Applications and Components to .NET 11

http://www.sybase.com/support/manuals/

File name Required for

pbshr125.dll
Sybase.PowerBuilder.ADO.dll
Sybase.PowerBuilder.Common.dll
Sybase.PowerBuilder.Core.dll
Sybase.PowerBuilder.Interop.dll
Sybase.PowerBuilder.Web.dll
Sybase.PowerBuilder.Win.dll

All .NET targets

pbrth125.dll ADO.NET

pbdwm125.dll
Sybase.PowerBuilder.Datawindow.Web.dll
Sybase.PowerBuilder.DataWindow.Win.dll
Sybase.PowerBuilder.Datawindow.Interop.dll

DataWindows and
DataStores

pbdpl125.dll Data pipelines (Win-
dows Forms only)

Sybase.PowerBuilder.EditMask.Win.dll
Sybase.PowerBuilder.EditMask.Interop.dll

Edit masks

Sybase.PowerBuilder.Graph.Web.dll
Sybase.PowerBuilder.Graph.Win.dll
Sybase.PowerBuilder.Graph.Core.dll
Sybase.PowerBuilder.Graph.Interop.dll

Graphs

Windows Forms Targets

12 PowerBuilder

File name Required for

pbrtc125.dll
Sybase.PowerBuilder.RTC.Win.dll
Sybase.PowerBuilder.RTC.Interop.dll
tp13.dll
tp13_bmp.flt
tp13_css.dll
tp13_doc.dll
tp13_gif.flt
tp13_htm.dll
tp13_ic.dll
tp13_ic.ini
tp13_jpg.flt
tp13_obj.dll
tp13_pdf.dll
tp13_png.flt
tp13_rtf.dll
tp13_tif.flt
tp13_tls.dll
tp13_wmf.flt
tp13_wnd.dll
tp4ole13.ocx

Rich text

PBXerces125.dll
xerces-c_2_6.dll
xerces-depdom_2_6.dll

XML export and im-
port

Sybase.PowerBuilder.WebService.Runtime.dll
Sybase.PowerBuilder.WebService.RuntimeRemo-
teLoader.dll

Web service Data-
Windows

Windows Forms Targets

Deploying Applications and Components to .NET 13

File name Required for

ExPat125.dll
libeay32.dll
ssleay32.dll
xerces-c_2_6.dll
xerces-depdom_2_6.dll
EasySoap125.dll
pbnetwsruntime125.dll
pbsoapclient125.pbx
pbwsclient125.pbx
Sybase.PowerBuilder.WebService.Runtime.dll
Sybase.PowerBuilder.WebService.RuntimeRemo-
teLoader.dll

Web service clients

pblab125.ini Label DataWindow
presentation style

pbtra125.dll
pbtrs125.dll

Database connection
tracing

Sybase.PowerBuilder files are strong-named .NET assemblies that can be installed into the
GAC. For more information about the GAC, see Installing assemblies in the global assembly
cache on page 15.

You must also install the database interfaces your application uses:

File name Required for

pbin9125.dll Informix I-Net 9 native interface

pbo90125.dll Oracle9i native interface

pbo10125.dll Oracle 10g native interface

pbsnc125.dll SQL Native Client for Microsoft
SQL Server native interface

pbdir125.dll Sybase DirectConnect™ native
interface

Windows Forms Targets

14 PowerBuilder

File name Required for

pbase125.dll Sybase Adaptive Server® Enter-
prise native interface (Version 15
and later)

pbsyc125.dll Sybase Adaptive Server Enter-
prise native interface

pbado125.dll
pbrth125.dll
Sybase.PowerBuilder.Db.dll
Sybase.PowerBuilder.DbExt.dll

ADO.NET standard interface

pbjvm125.dll
pbjdb125.dll
pbjdbc12125.jar

JDBC standard interface

pbodb125.dll
pbodb125.ini

ODBC standard interface

pbole125.dll
pbodb125.ini

OLE DB standard interface

Installing assemblies in the global assembly cache
When the Common Language Runtime (CLR) is installed on a computer as part of the .NET
Framework, a machine-wide code cache called the global assembly cache (GAC) is created.
The GAC stores assemblies that can be shared by multiple applications. If you do not want or
need to share an assembly, you can keep it private and place it in the same directory as the
application.

If you do not want to use the Runtime Packager to deploy your application, you should use
Windows Installer or another installation tool that is designed to work with the GAC.
Windows Installer provides assembly reference counting and other features designed to
maintain the cache.

On the development computer, you can use a tool provided with the .NET Framework SDK,
gacutil.exe, to install assemblies into the GAC.

Assemblies deployed in the global assembly cache must have a strong name. A strong name
includes the assembly’s identity as well as a public key and a digital signature. The GAC can
contain multiple copies of an assembly with the same name but different versions, and it might

Windows Forms Targets

Deploying Applications and Components to .NET 15

also contain assemblies with the same name from different vendors, so strong names are used
to ensure that the correct assembly and version is called.

For more information about assemblies and strong names, see the Microsoft library at http://
msdn.microsoft.com/en-us/library/wd40t7ad(VS.71).aspx.

PowerBuilder Windows Forms Applications
PowerBuilder applications with a rich user interface that rely on resources of the client
computer, such as a complex MDI design, graphics, or animations, or that perform intensive
data entry or require a rapid response time, make good candidates for deployment as Windows
Forms applications.

Adapting an existing application
The changes required to transform a PowerBuilder application into a Windows Forms
application depend on the nature of the application, the scripting practices used to encode the
application functionality, and the number of properties, functions, and events the application
uses that are not supported in the .NET Windows Forms environment.

For a list of restrictions, see Best Practices for .NET Projects on page 103.

For tables of unsupported and partially supported objects, controls, functions, events, and
properties, see Unsupported Features in Windows Forms Projects on page 37.

Setting up a target and project
You set up a target for a .NET Windows Forms application using the wizard on the Target page
of the New dialog box. You can start from scratch and create a new library and new objects, use
an existing application object and library, or use the application object and library list of an
existing target.

You define some of the characteristics of the deployed application in the .NET Windows
Forms Application wizard. Additional properties are set in the Project painter. See Properties
for a .NET Windows Forms Project on page 20.

Smart client applications
One of the choices you can make in the wizard or Project painter is whether the application
will be deployed as a smart client application. A smart client application can work either
online (connected to distributed resources) or offline, and can take advantage of “intelligent
update” technology for deployment and maintenance. See Intelligent Deployment and Update
on page 26.

Deploying from the Project painter
When you deploy a PowerBuilder application from the .NET Windows Forms Project painter,
PowerBuilder builds an executable file and deploys it along with any PBLs, PBDs,

Windows Forms Targets

16 PowerBuilder

http://msdn.microsoft.com/en-us/library/wd40t7ad(VS.71).aspx
http://msdn.microsoft.com/en-us/library/wd40t7ad(VS.71).aspx

resources, .NET assemblies, and other DLLs that the application requires. See Deployment of
a Windows Forms Application on page 25.

Using preprocessor symbols
If you share PBLs among different kinds of target, such as a target for a standard PowerBuilder
application and a Windows Forms target, you might want to write code that applies to a
specific target. For example, use the following template to enclose a block of code that should
be parsed by thepb2cscode emitter in a Windows Forms target and ignored by the PowerScript
compiler:

 #if defined PBWINFORM then
 /*action to be performed in a Windows Forms target*/
 #else
 /*other action*/
 #end if

You can use the Paste Special>Preprocessor context menu item in the Script view to paste a
template into a script.

For more information about using preprocessor symbols, see Conditional Compilation on
page 75.

Deploying to a production environment
The simplest way to deploy a Window Forms application to a production environment is to use
smart client deployment. If you cannot or do not want to use smart client deployment, use the
following procedure to install the application.

1. Install .NET Framework 2.0, 3.0, or 3.5 on the target computer.

2. Generate a PowerBuilder .NET components MSI file using the PowerBuilder Runtime
Packager.

For more information about using the Runtime Packager, see Application Techniques >
Deploying Applications and Components.

3. Install the generated MSI file on the target computer and restart the computer.

4. Copy the output from the build directory to the target computer.

5. Install any required database client software and configure related DSNs.

6. If necessary, register ActiveX controls used by your application.

For information about requirements for deployed applications, see Checklist for Deployment
on page 10.

Windows Forms Targets

Deploying Applications and Components to .NET 17

System Requirements for .NET Windows Forms Targets
You must install version 2.0, 3.0, or 3.5 of the Microsoft .NET Framework on the same
computer as PowerBuilder. For intelligent update applications, you must also install the .NET
Framework 2.0, 3.0, or 3.5 SDK (x86).

Make sure that the system PATH environment variable includes:

• The location of the .NET Framework. The location of the 2.0 version is typically C:
\Windows\Microsoft.NET\Framework\v2.0.50727. The location of the 3.5
version is typically C:\Windows\Microsoft.NET\Framework\v3.5.

• For intelligent update applications, the location of the .NET Framework SDK Bin
directory. For .NET Framework 2.0, this is typically C:\Program Files
\Microsoft Visual Studio 8\SDK\v2.0\Bin or C:\Program Files
\Microsoft.NET\SDK\v2.0\Bin. For version 3.5, this is typically C:\Program
Files\Microsoft Visual Studio 9\SDK\v3.5\Bin or C:\Program
Files\Microsoft SDKs\Windows\v6.0A\bin.

The SDK for .NET Framework 2.0 is available from the Microsoft .NET Framework
Developer Center. The Windows SDK for Windows Server 2008 and .NET Framework 3.5 is
available on the Microsoft .NET Framework Developer Center.

If you installed the 1.x version of the .NET Framework or SDK, you must make sure the PATH
variable lists a supported version of the .NET Framework or SDK first.

To publish your application as a smart client from a Web server, you must have access to a Web
server. For information about configuring IIS on your local computer, see Selecting the
Default ASP.NET Version on page 7.

Adding .NET assemblies
If you want to call methods in .NET assemblies in your Windows Forms application, you can
import the assemblies into the target. For more information, see Adding .NET Assemblies to
the Target on page 80.

.NET Windows Forms Target Wizard
Use the .NET Windows Forms Application wizard on the Target page in the New dialog box to
create a Windows Forms application and target, and optionally a project.

The project lets you deploy the PowerBuilder application to the file system or, if you select the
smart client option, to publish it to a server. For more about publishing options, see Intelligent
Deployment and Update on page 26.

If you have an existing PowerBuilder application or target that you want to deploy as a .NET
Windows Forms application, you can select either in the wizard. If you choose to start from
scratch, the wizard creates a new library and application object.

Windows Forms Targets

18 PowerBuilder

http://msdn.microsoft.com/en-us/netframework/aa731542.aspx
http://msdn.microsoft.com/en-us/netframework/aa731542.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

Building a Windows Forms Application and Target from Scratch
Use the .NET Windows Forms Application wizard to create a .NET Windows Forms
application and target from scratch.

1. Select Start from scratch on the Create the Application page in the wizard.

2. Specify the name of the .NET Windows Forms application and the name and location of
the PowerBuilder library (PBL) and target (PBT).

By default, the application name is used for the library and target.

3. Specify project information as described in Creating a .NET Windows Forms Project on
page 20.

Building a Windows Forms Application from an Existing Application and Library
Use the .NET Windows Forms Application wizard to create a .NET Windows Forms
application and target from an existing application and library.

1. Select Use an existing library and application object on the Create the Application page
in the wizard.

2. On the Choose Library and Application page, expand the tree view and select an existing
application.

3. On the Set Library Search Path page, click the ellipsis (...) button to navigate to and select
additional libraries.

4. On the Specify Target File page, specify the name of the new target file.

5. Specify project information as described in Creating a .NET Windows Forms Project on
page 20.

Building a Windows Forms Application from an Existing Target
Use the .NET Windows Forms Application wizard to create a .NET Windows Forms
application and target from an existing target.

1. Select Use the library list and application object of an existing target on the Create the
Application page in the wizard.

2. On the Choose a Target page, select a target from the current workspace.

3. On the Specify Target File page, specify the name of the new target file.

4. Specify project information as described in Creating a .NET Windows Forms Project on
page 20.

Windows Forms Targets

Deploying Applications and Components to .NET 19

Creating a .NET Windows Forms Project
You can create a project to deploy the application in the target wizard or by using the .NET
Windows Forms wizard on the Project page of the New dialog box.

1. On the Specify Project Information page, specify the name of the project and the library in
which the project object will be saved.

2. On the Specify Application General Information page, optionally specify a product name
for the application.

This can be different from the name of the application and is used as the name of the
product on the General page in the Project painter.

You can also specify the name of the .NET Windows Forms executable file (by default, this
is the name of the application object with the extension .exe) and the major and minor
versions and build and revision numbers for the current build (the default is 1.0.0.0).

3. On the Specify Win32 Dynamic Library Files page, click Add to specify the names of any
dynamic libraries required by your application.

The list is prepopulated with the names of libraries referenced in the application’s code.

4. On the Specify Support for Smart Client page, select the check box if you want to publish
the application as a smart client. Otherwise, click Next and then Finish.

If you select this check box, the wizard shows additional pages on which you set publish
and update options. See Intelligent Deployment and Update on page 26.

Properties for a .NET Windows Forms Project
After you click Finish in the wizard, PowerBuilder creates a .NET Windows Forms project in
the target library that you selected and opens the project in the Project painter.

The painter shows all the values you entered in the wizard and allows you to modify them. It
also shows additional properties that you can set only in the painter.

Windows Forms Targets

20 PowerBuilder

Table 1. Properties in the Project painter

Tab page Properties

General The output path is where the application is deployed in the file system. This is not
the same as the location where the application is published if you choose to
publish the application as a smart client application.

The build type determines whether the project is deployed as a debug build
(default selection) or a release build. You use debug builds for debugging pur-
poses. If you select Release, no PDB files are generated. Release builds have
better performance, but when you run a release build in the debugger, the de-
bugger does not stop at breakpoints.

The rebuild scope determines whether the project build is incremental (default)
or full. See Rebuild Scope on page 110.

Clear the Enable DEBUG Symbol check box if you do not want any DEBUG
preprocessor statements you have added to your code to be included in your
deployed application. This selection does not affect and is not affected by the
project’s debug build or release build setting. For more information about pre-
processor statements, see Conditional Compilation on page 75.

Resource Files PowerBuilder .NET Windows Forms do not support PBR files, and they are
unable to locate images embedded in PBD files. You can, however, search a PBR
file for images required by the application.

All resource files must be relative to the path of the .NET Windows Forms target.
If the files your application requires are in another directory, copy them into the
target’s directory structure and click the Search PBR, Add Files, or Add Direc-
tory button again.

Clear the check box in the Recursive column for a directory to deploy only the
files in the directory, or select it to deploy files in its subdirectories as well.

For smart client applications, the Publish Type column indicates whether the file
is a static file that should be installed in the Application directory, or application-
managed data that should be installed in a Data directory. See Resource Files and
Publish Type on page 32.

Windows Forms Targets

Deploying Applications and Components to .NET 21

Tab page Properties

Library Files Use the Library Files tab page to make sure all the PowerBuilder library files
(PBLs or PBDs) that contain DataWindow, Query, and Pipeline objects used by
the application are deployed with the application. If you select the check box next
to the name of a PBL that contains these types of objects, PowerBuilder compiles
the selected PBL into a PBD file before deploying it.

Note: You can reference only DataWindow, Query, or Pipeline objects in a PBD
file. The PBD files that are generated when you compile a Windows Forms
project do not contain other PowerBuilder objects, such as functions or user
objects. If you include a PBD file in your target that contains these other types of
objects, you cannot reference them from the Windows Forms application. They
can be referenced only from a target PBL that is converted to a .NET assembly.

If your application uses external functions, use the Add button to include the DLL
files in which they reside to the list of files to be deployed. You can also add
PowerBuilder runtime files, including pbshr125.dll and
pbdwe125.dll (if the project uses DataWindows), on this page, or you can
add them on the Prerequisites page.

Version Use the Version tab page to specify information that displays in the generated
executable file’s Properties dialog box in Windows Explorer. The company name
is used if you publish the application. See Publication Process and Results on
page 29.

Post-build Use the Post-build tab page to specify a set of commands to be executed after
building the application, but before the deployment process starts. A command
can be the name of a stand-alone executable file or an operating system command
such as copy or move. You can save a separate processing sequence for debug
builds and release builds. (You change the build type of a project deployment on
the General tab of the Project painter.)

Security Use the Security tab page to generate a manifest file (either external or embed-
ded) and to set the execution level of the application.To meet the certification
requirements of the Windows Logo program the application executable must
have an embedded manifest that defines the execution level and specifies whether
access to the user interface of another window is required.

You can also use the Security tab to configure CAS security zones for your
applications, minimizing the amount of trust required before application code is
run by an end user.

For information about manifest file requirements, see Security Requirements on
page 24. For information about customized permission settings, see Security
Settings on page 3 and Custom Permission Settings on page 121.

Run Use the Run tab page to specify any command line arguments that the application
requires, as well as the name of the working directory in which the application
starts.

Windows Forms Targets

22 PowerBuilder

Tab page Properties

Sign The Assembly group box on the Sign tab page allows you to attach strong name
key files to the assemblies that your project generates. You must also use the Sign
tab page to attach digital certificates to manifest files that you publish for smart
client applications.

See Strong-Named Assemblies on page 5 and Digital Certificates on page 28.

Intelligent update pages
The remaining pages in the Project painter are enabled if you checked the smart client check
box in the wizard or on the General page. Check this box if you want to publish the application
to a server so that users can download it and install updates as you make them available. See
Intelligent Deployment and Update on page 26.

Resources and Other Required Files
All resource files must be relative to the path of the .NET Windows Forms target.

Click Add Files on the Resource Files page of the project painter to select image files that your
application requires.

PowerBuilder .NET Windows Forms applications do not support PBR files, and they are
unable to locate images embedded in PBD files. If the files your application requires are not in
the directory structure accessible from the Choose Required Resource Files dialog box, copy
them into the directory structure, then reopen the dialog box.

If your application uses .NET assemblies, specify them on the .NET Assemblies tab page in
the target’s Properties dialog box. Before you deploy a PowerBuilder .NET smart client
application that uses data files, make sure the System.Windows.Forms.dll and
System.Deployment.dll assemblies are listed on this page.

Other files, such as database drivers and PowerBuilder DLLs, should be included on the
Prerequisites page if you are publishing a smart client application, or on the Library Files
page.

Windows Forms Targets

Deploying Applications and Components to .NET 23

Security Requirements
Use the Security tab page of the project painter to specify whether an application has a
manifest file to set its requested execution level, and whether the manifest file is external or
embedded in the application.

This manifest file is not the same as the manifest files generated when you publish a Windows
Forms application as a smart client (ClickOnce) application. The concept of execution level is
part of the User Account Control (UAC) protocol.

If you want to deploy an application that meets the certification requirements of the Windows
Logo program, you must follow UAC guidelines. The executable file must have an embedded
manifest that defines the execution level and specifies whether access to the user interface of
another window is required. The Application Information Service (AIS) checks the manifest
file to determine the privileges with which to launch the process.

Generate options
Select Embedded manifest if your application needs to be certified for Vista or later. A
manifest file with the execution level you select is embedded in the application’s executable
file.

You can also select External manifest to generate a standalone manifest file in XML format
that you ship with your application’s executable file, or No manifest if you do not need to
distribute a manifest file.

Note: If you select Embedded manifest for a Windows Forms target, you must have a
supported version of the .NET Framework SDK installed on your system, because the process
that embeds the manifest in the executable file uses the mt.exe tool that is distributed with the
SDK.

Execution level
Select As Invoker if the application does not need elevated or administrative privileges.
Selecting a different execution level will probably require that you modify your application to
isolate administrative features in a separate process to receive Vista or later certification.

Select Require Administrator if the application process must be created by a member of the
Administrators group. If the application user does not start the process as an administrator, a
message box displays so that the user can enter the appropriate credentials.

Select Highest Available to have the AIS retrieve the highest available access privileges for the
user who starts the process.

UI access
If the application needs to drive input to higher privilege windows on the desktop, such as an
on-screen keyboard, select the “Allow access to protected system UI” check box. For most
applications you should not select this check box. Microsoft provides this setting for user
interface Assistive Technology (Section 508) applications.

Windows Forms Targets

24 PowerBuilder

Note: If you check the Allow access to protected system UI check box, the application must be
Authenticode signed and must reside in a protected location, such as Program Files or
Windows\system32.

Deployment of a Windows Forms Application
When a .NET Windows Forms project is open in the Project painter, you can select Design >
Deploy Project or the Deploy icon on the PainterBar to deploy the project.

When all painters are closed, including the Project painter, you can right-click a .NET
Windows Forms target or project in the System Tree and select Deploy from its pop-up menu.
If the target has more than one project, specify which of them to deploy when you select
Deploy from the target’s context menu on the Deploy tab page in the target’s Properties dialog
box.

The Output window displays the progress of the deployment. PowerBuilder compiles PBLs
into PBD files when they contain DataWindow, Query, or Pipeline objects that are referenced
in the application. The application and its supporting files are deployed to the location
specified in the Output Path field on the General page.

Among the files deployed is a file with the name appname.exe.config, where
appname is the name of your application. This file is a .NET configuration file that defines
application settings. For a sample configuration file that includes database configuration
settings for an ADO.NET connection, see Connecting to Your Database > Using the
ADO.NET Interface. The sample shows how to configure tracing in the
appname.exe.config file, as shown in Runtime Errors on page 118.

If there are any unsupported properties, functions, or events that are used in the application
that are not supported in PowerBuilder .NET Windows Forms applications, they display on
the Unsupported Features tab page in the Output view. For more information, see
Unsupported Features in Windows Forms Projects on page 37.

If the application uses features that might cause it to run incorrectly, they display on the
Warnings tab page in the Output view. For a list of restrictions, see Best Practices for .NET
Projects on page 103.

Project Execution
After you deploy the application, you can run it by selecting Design > Run Project from the
Project painter menu or selecting the Run Project toolbar icon from the Project painter toolbar.

The context menus for the .NET Windows Forms target and project in the System Tree also
have a Run menu item. If the target has more than one project, specify which of them to run
when you select Run from the target’s context menu on the Run tab page in the target’s
Properties dialog box. Run Project starts running the deployed executable file from the
location it was deployed to.

Windows Forms Targets

Deploying Applications and Components to .NET 25

When you debug or run the project from PowerBuilder, a system option setting can cause a
message box to appear if the application has been modified since it was last deployed. The
message box prompts you to redeploy the application, although you can select No to debug or
run the older application, and you can set the system option to prevent the message box from
appearing.

For information about the message box, see Triggering Build and Deploy Operations on page
111. For information about the system option, see System Option on page 111.

For information on debugging .NET Windows Forms targets, see Debugging a .NET
Application on page 113.

Intelligent Deployment and Update
One of the features of .NET smart client applications is that they can be deployed and updated
from a file or Web server using Microsoft .NET ClickOnce technology, making it easier for
users to get and run the latest version of an application and easier for administrators to deploy
it.

PowerBuilder Windows Forms applications can use this "intelligent update" feature.

As the developer of a Windows Forms application, you can specify:

• Whether the application is installed on the user’s computer or run from a browser.
• When and how the application checks for updates.
• Where updates are made available.
• What files and resources need to be deployed with the application.
• What additional software needs to be installed on the user’s computer.

All these properties can be set in the Project painter before you publish the application.
Support for these features is built into the .NET Framework and runtime.

To support intelligent update, you (or a system administrator) need to set up a central HTTP,
FTP, or UNC file server that supports file downloads. This is the server to which updates are
published and from which they are deployed to a user’s computer.

When the user clicks on a link, typically on a Web page or in an e-mail, the application files are
downloaded to a secure cache on the user’s computer and executed. The application itself
contains an updater component. If the application can only be run when the user is connected,
the latest version is always downloaded. If the application can also be run offline, the updater
component polls the server to check whether updates are available. If they are, the user can
choose to download them.

Publishing an application for the first time
When you are ready to deploy an application to users, you publish it to the server. Users can
then download the application, usually from a publish page that contains a link to the server.

You need to:

Windows Forms Targets

26 PowerBuilder

• Create a project and set publishing properties on page 26
• Publish the application on page 29

Figure 1: Deploying an intelligent update application

Set Publishing Properties
If you did not create a .NET Windows Forms project when creating an application that you
want to publish with intelligent update capabilities, you can use a wizard or icon on the Project
page of the New dialog box to create the project.

1. On the Project page of the New dialog box, select the .NET Windows Forms Application
wizard or project icon.

2. On the Specify Support for Smart Client page in the wizard, select the check box to specify
that the application uses intelligent update.
Selecting this check box enables additional pages in the wizard.

3. On the Specify Application Running Mode page, specify whether the application can be
used both online and offline (default), or online only.

4. On the Specify How Application Will be Installed page, specify whether the user installs
the application from a Web site, a shared path, or from a CD or DVD.

5. On the Specify Application Update Mode page, specify whether the application checks for
updates before starting, after starting, or neither. See Publication of Application Updates
on page 32.

You can also select the Publish as a Smart Client Application check box on the General
page in the Project painter. Selecting the check box enables the tab pages in the dialog box
where you set publishing properties. You can set additional properties in the Project
painter. For example, if you want to publish the application to an FTP site, select that
option and specify details on the Publish page.

Locations for Publish, Install, and Update
The publish location, specified on the Publish page in the Project painter, determines where
the application files are generated or copied to when you publish the application. It can be an
HTTP address, an FTP site, or a UNC address.

The install location, specified on the Install/Update page, determines where the end user
obtains the initial version of the application. It can be an HTTP address or UNC address, by

Windows Forms Targets

Deploying Applications and Components to .NET 27

default the same address as the publish location specified in the wizard, or a CD or DVD. The
install location does not need to be the same as the publish location. For example, you can
publish the application to an FTP site, but specify that users get the application and updates
from a Web site.

The update location, also specified on the Install/Update page, determines where the user
obtains updated versions of the application. If the install location is an HTTP address or UNC
address, the update location is always the same as the install location. If the application was
installed from a CD or DVD, updates must be obtained from an HTTP or UNC address.

Digital Certificates
A digital certificate is a file that contains a cryptographic public/private key pair, along with
metadata describing the publisher to whom the certificate was issued and the agency that
issued the certificate.

Digital certificates are a core component of the Microsoft Authenticode authentication and
security system. Authenticode is a standard part of the Windows operating system. To be
compatible with the .NET Framework security model, all PowerBuilder .NET applications
must be signed with a digital certificate, regardless of whether they participate in Trusted
Application Deployment. For more information about Trusted Application Deployment, see
the Microsoft Web site.

Signing manifests with digital certificates
You can select a digital certificate from a certificate store or from a file browser. to sign your
smart client application manifests. You make the selection on the Sign page of the Project
painter by selecting the Sign the manifests check box in the Certificate group box.

This table describes the fields in the Intelligent Updater group box on the Sign page of the
Windows Forms Project painter. These fields are grayed out when the Publish as Smart Client
Application check box on the General tab of the Project painter has not been selected.

Intelligent Up-
dater field

Description

Sign the manifests Select this check box to enable the Select from Store and Select from File
buttons. Use the buttons to select a certificate from a certificate store or from
your file system. If you select a valid certificate, its details display in the
multiline edit box under the check box. If you do not specify a certificate,
PowerBuilder attaches a test certificate automatically. Use test certificates for
development only.

Select from Store Click this button to view the certificates available in the local certificate store.
Select a certificate from the Select a Certificate dialog box, then click View
Certificate if you want to view its details, and click OK to select it.

Windows Forms Targets

28 PowerBuilder

http://msdn.microsoft.com/en-us/library/01daf08f.aspx

Intelligent Up-
dater field

Description

Select from File Click this button to view the certificates available in the local file system.
Select a certificate with the .snk extension from the Select File dialog box

and click Open.

Use the Select from Store or Select from File buttons to select a certificate from a certificate
store or from your file system. If the certificate requires a password, a dialog box displays so
that you can enter it. When you select a valid certificate, detailed information displays in the
Project painter.

If you do not specify a certificate, PowerBuilder signs the published manifest file with the
default test certificate, mycert.fx. This test certificate is installed by the PowerBuilder
setup program in the PowerBuilder DotNet\pbiu\commands directory. However, when
you are ready to publish a production application, you should not sign it with the test
certificate.

For information about application manifests required on the Vista and later operating systems,
see Security Requirements on page 24.

Setting Full Trust Permissions
When you deploy and run an application from a network path (either a path on a mapped drive
or a UNC path), the .NET Framework on the computer must be configured to have Full Trust
permissions at runtime.

1. From the Windows Control Panel, select Administrative Tools > Microsoft .NET
Framework 2.0 Configuration.

2. In the .NET Framework Configuration tool, expand My Computer and select Runtime
Security Policy > Machine > Code Groups > All_Code > LocalIntranet_Zone.

3. From the context menu, select Properties.

4. In the Permission set drop-down list on the Permission Set tab page, select FullTrust.

Publication Process and Results
After you set publish properties, click the Publish button on the toolbar in the Project painter to
publish the application to the server.

PowerBuilder checks whether your publish settings are valid and prompts you to correct them
if necessary. If the application is not up to date, PowerBuilder rebuilds and redeploys it before
publishing it to the server. The files that the application needs at runtime are then published to
the server.

If you select the wizard defaults, the application is deployed to a subdirectory of the IIS root
directory on your local computer, usually C:\Inetpub\wwwroot.

If you encounter problems when publishing the application, see Troubleshooting Tips for
Windows Forms Applications on page 118.

Windows Forms Targets

Deploying Applications and Components to .NET 29

These additional files are created on the server:

• The application manifest is an XML file that describes the deployed application, including
all the files included in the deployment, and is specific to a single version of the
application. The file is named appname.exe.manifest, where appname is the name of
your Windows Forms application. This file is stored in a version-specific subdirectory of
the application deployment directory.

• The deployment manifest is an XML file that describes an intelligent update deployment,
including the current version and other deployment settings. The file is named
appname.application, where appname is the name of your Windows Forms
application. It references the correct application manifest for the current version of the
application and must therefore be updated when you make a new version of the application
available. The deployment manifest must be strongly named. It can contain certificates for
publisher validation.

• If you specified any prerequisites for the application, such as the .NET Framework or
database drivers, PowerBuilder uses a bootstrapper program to collect the details in a
configuration file called configuration.xml and adds the prerequisites to a
setup.exe program. For more information, see Application Bootstrapping on page
35.

• The publish.htm file is a Web page that is automatically generated and published
along with the application. The default page contains the name of the application and links
to install and run the application and, if you specified any, a button to install prerequisites.
By default, the application name is the same as the name of the target and the company
name is Sybase, Inc. In this publish page, both have been changed by setting the Product
name and Company name properties on the Version tab page in the Project painter. If you
supply a Publish description on the Publish tab page in the Project painter, it displays on
the publish.htm page.

Windows Forms Targets

30 PowerBuilder

Figure 2: Publish page with prerequisites

Application Installation on the User’s Computer
Users can install the application from a CD or DVD or from a file server or Web site. The
system administrator or release engineer is responsible for writing the files to the disk if a CD
or DVD is used.

If the files are available to the user on a server, the publish.htm file provides easy access to
the application and its prerequisites. See Application Bootstrapping on page 35.

The application can be available both online and offline, or online only. If you select online
only, the application can be run only from the Web. Otherwise, the application is installed on
the client. It can be run from the Windows Start menu and is added to the Add or Remove
Programs page in the Windows Control Panel (Programs and Features page on Vista and later)
so that the user can roll back to the previous version or remove the application.

Whether the application is available online only or offline as well, all the files it needs except
optional assemblies are downloaded to the client and stored in an application-specific secure
cache in the user’s Local Settings directory. Keeping the files in a separate cache enables the
intelligent updater to manage updates to the physical files on the user’s computer.

Windows Forms Targets

Deploying Applications and Components to .NET 31

Resource Files and Publish Type
In a smart client application, image files that you add on the Resource Files page in the project
painter are designated as Include files. They are installed in the same directory as the
application’s executable files, libraries, and other static files.

You can also specify that a file’s Publish Type is “Data File.” Files of this type are installed to a
data directory. When an update to the application occurs, a data file might be migrated by the
application.

The data directory is intended for application-managed data—data that the application
explicitly stores and maintains. To read from and write to the data directory, you can use code
enclosed in a conditional compilation block to obtain its path:

string is_datafilename
long li_datafileid

is_datafilename="datafile.txt"
#if defined PBWINFORM Then
 if System.Deployment.Application.
 ApplicationDeployment.IsNetworkDeployed=true then
 is_datafilename=System.Windows.Forms.
 Application.LocalUserAppDataPath+
 "\\"+is_datafilename
 end if
#end if

li_datafileid = FileOpen (is_datafilename, linemode!,
 write!, lockwrite!, append!)

For information about using preprocessor symbols such as PBWINFORM, see Conditional
Compilation on page 75.

Publication of Application Updates
When you update an application and publish the updates, the revision number is incremented
automatically unless you clear the check box in the Publish Version group box on the Publish
page.

PowerBuilder creates a new directory on the server for the new version with a new application
manifest file, and updates the deployment manifest file in the top-level directory.

This figure shows an overview of the directory structure for an application with one revision:

Windows Forms Targets

32 PowerBuilder

The deployment manifest for each version is saved in a numbered file, which enables you to
force a rollback from the server if you need to. See Rolling Back on page 37.

Online-only applications
If the application is available online only, the latest updates are always downloaded before the
application runs.

Online and offline applications
If the application is available offline as well as online, the user is notified of new updates
according to the update strategy you specified in the wizard or Project painter. Whether the
application was originally installed from the Web, a file server, or a CD or DVD, the intelligent
updater component always checks for updates on the Web.

When to check for updates
You can specify that the application never checks for updates (if it does not require automatic
updating or uses a custom update), or that it checks for updates either before or after it starts. If
you specify a check after the application starts and an update is available, it can be installed the
next time the application is run. For high-bandwidth network connections, you might want to
use the before startup option, and for low-bandwidth network connections or large
applications, use the after startup option to avoid a delay in starting the application. If you
specify that the intelligent updater performs the check after the application starts, you can
choose to perform the check every time the application starts or only when a specified interval
has elapsed since the last check.

Windows Forms Targets

Deploying Applications and Components to .NET 33

If an update is available, a dialog box displays to inform the user, who can choose to download
the update immediately or skip the current update and check again later. The user cannot skip
the update if you have specified that it is mandatory. You set all these properties on the Install/
Update page.

Figure 3: Checking for updates

Intelligent notifier
When you select either of the check for updates options for an application that is available
offline, the Notify tab page is enabled. The notifier enables users to check for updates and
download them manually while the application is running. When the application starts, a
notifier icon displays in the task bar. By default, the icon is a PowerBuilder icon, but you can
choose a custom icon in the Project painter.

The context menu that appears when a user right-clicks the notifier icon shows the current
version and contains Check for Update, Retrieve Update, Restart with New Version, Poll for
Updates, and Options menu items.

Check for Update opens a pop-up window that contains information about the availability of
updates. If any are available, the Retrieve Update item is enabled, and if the update is
downloaded and installed, the Restart with New Version item is enabled.

Selecting the Poll for Updates item enables or disables polling for updates. When Poll for
Updates is enabled, the notifier checks for updates at the interval specified in the dialog box

Windows Forms Targets

34 PowerBuilder

that displays when the user selects the Options item. In this dialog box, the user can also
specify the title of the pop-up window that displays when the user selects Check for Update.

Application Bootstrapping
To ensure that your application can be successfully installed and run, you must first make sure
that all components on which it depends are already installed on the target computer.

For example, most applications have a dependency on the .NET Framework. The correct
version of the common language runtime must be present on the destination computer before
the application is installed. You can use tools to help you install the .NET Framework and
other redistributable packages as a part of your installation, a practice often referred to as
bootstrapping.

Bootstrapper for intelligent update
The bootstrapper is a simple setup packager that can be used to install application
prerequisites such as the .NET Framework, MDAC, database drivers, or PowerBuilder
runtime files. You specify what prerequisites your application has and where they can be
found. The bootstrapper downloads and installs the prerequisites.

If you select one or more prerequisites on the Prerequisites page, PowerBuilder generates a
Windows executable program named Setup.exe that installs these dependencies before
your application runs. The packages are copied to a SupportFiles directory on the server.

If a Setup.exe is generated, the Publish.htm page contains a link to install just the
application, and a button to install both the application and the bootstrapped components, as
shown in the figure in Publication Process and Results on page 29.

The bootstrapper lets you provide users with a simple, automated way to detect, download,
and install an application and its prerequisites. It serves as a single installer that integrates the
separate installers for all the components making up an application.

How the bootstrapper works
When the user clicks the Install button on the Publish.htm page, the bootstrapper
downloads and installs the application and the prerequisites you specified if they are not
already installed on the user’s computer.

For example, suppose you specified that the application required the .NET Framework and the
PowerBuilder runtime files. If neither of these components is already installed on the user’s
computer, they both display in the Installation dialog box. If both are already installed, they do
not display. If the user clicks the Advanced button on the Installation dialog box, the
Components List dialog box displays. This dialog box shows that both components are
already installed.

The bootstrapper also detects whether a component is supported on the target computer’s
operating system. If the component cannot run on the target platform, the bootstrapper notifies
the user and ends the installation before downloading the component.

Windows Forms Targets

Deploying Applications and Components to .NET 35

Prerequisites Page Customizations
The selections available on the Prerequisites page can be customized by adding a new
subdirectory to the PowerBuilder version\DotNET\pbiu\BootStrapper\
Packages directory. To this subdirectory, add the package you want to make available and
an XML configuration file that specifies where to obtain the package and what to check on the
user’s system to determine whether the package needs to be installed.

PowerBuilder does not supply a tool to customize prerequisites. You can use the PowerBuilder
Runtime Packager tool to build an MSI file that contains the database drivers and other
PowerBuilder runtime files that your application needs, and use the configuration.xml
file in the BootStrapper\Packages\ 1-PBRuntime directory as an example when
creating your own configuration.xml file.

You can use the dotNetInstaller open source tool to set up your own customizations. It can be
downloaded from the CodePlex Web site.

A comparison of Windows Installer tools is available on the InstallSite organization’s Web
site.

Packages on the Prerequisites page
There are two packages available on the Prerequisites page: the .NET Framework runtime
files and the Sybase PowerBuilder .NET Runtime Library. If you look in the
BootStrapper\Packages directory, you see two subdirectories, each of which
contains a configuration.xml file.

To enable your application to deploy the .NET Framework package, you need to copy
the .NET Framework redistributable package, dotnetfx.exe, to the 0-dotnetfx
directory. This file can be downloaded from the Microsoft Web site. You also need to edit the
configuration.xml file to ensure that the application name and locations specified in
the file are correct for your installation. The file uses http://localhost/SampleApp
as the source URL for the package.

The Sybase PowerBuilder .NET Runtime package is in the 1-PBRuntime subdirectory. The
PBRuntime.msi file installs the same files as the PowerBuilder Runtime Packager
(with .NET and all database interfaces and other options selected) into a directory on the target
computer, and it installs the same .NET assemblies into the global assembly cache. See
Installing assemblies in the global assembly cache on page 15.

If you do not require all the files included in the package, you can create your own package.
See Prerequisites Page Customizations on page 36.

For information about the Runtime Packager, see the chapter on deployment in Application
Techniques.

For information about editing configuration.xml files, see the tutorial for the
dotNetInstaller available on the Code Project Web site.

Windows Forms Targets

36 PowerBuilder

http://dotnetinstaller.codeplex.com/
http://www.installsite.org/pages/en/msi/authoring.htm
http://www.installsite.org/pages/en/msi/authoring.htm
http://www.codeproject.com/KB/install/dotNetInstaller.aspx

Rolling Back
You can roll back a version on the server by replacing the current deployment manifest with
the deployment manifest of the version to which you want to roll back.

As shown in the figure in Publication of Application Updates on page 32, the deployment
manifests for each version are saved in the application deployment folder.

Suppose the current appname.application file in the deployment folder is for version
1.0.0.2, but you have found a bug and you want all users to revert to version 1.0.0.1. You can
delete the current appname.application file, which points to version 1.0.0.2, and save the
appname_1_0_0_1.application file as appname.application.

Users on whose computers the application has been installed for use offline as well as online
can roll back to the previous version or uninstall the application completely from the Windows
Control Panel’s Add/Remove Programs dialog box. Users can roll back only one update.

MobiLink Synchronization
You can use MobiLink synchronization with smart client applications to take advantage of the
"occasionally connected" nature of a Windows Forms application that has been installed on a
client so that it can be run from the Start menu as well as from a browser.

MobiLink is a session-based synchronization system that allows two-way synchronization
between a main database, called the consolidated database, and many remote databases. The
user on the client computer can make updates to a database when not connected, then
synchronize changes with the consolidated database when connected.

You need to deploy the SQL Anywhere database driver and the MobiLink synchronization
client file to the client computer. You can simplify this process by adding the required files to a
package and adding the package to the Prerequisites page in the Project painter.

For more information, see Users Guide > Using the ASA MobiLink synchronization wizard
and Application Techniques > Using MobiLink Synchronization.

Unsupported Features in Windows Forms Projects
PowerBuilder Windows Forms applications do not currently support some standard
PowerBuilder features. Some of these are not implemented in the current release of
PowerBuilder, and others have been partially implemented.

The tables in this chapter provide detailed lists of all objects, controls, functions, events, and
properties and indicate whether they are supported.

The following list summarizes support in Windows Forms for features in this release:

• All DataWindow presentation styles are supported, but there are some restrictions on
RichText and OLE presentation styles.

Windows Forms Targets

Deploying Applications and Components to .NET 37

• External function calls are supported except when the function has a reference structure
parameter.

• You cannot call functions on .NET primitive types that map to PowerBuilder primitive
types. See the list of datatype mappings from .NET to PowerBuilder in the Datatype
Mappings on page 81 topic.

• You can use the built-in Web services client extension (pbwsclient125.pbx) in
applications that you plan to deploy to .NET Windows Forms. You cannot use any other
PBNI extensions in a .NET target.

• In-process OLE controls (controls with the extension .ocx or .dll) are partially
supported. Most of the OLE control container’s events are not supported, but events of the
control in the container are supported with the exception of the Help event. Other OLE
features are not supported. You cannot create an ActiveX control dynamically, and you
must set the initial properties of an ActiveX control in code because the implementation
does not support saving to or retrieving from structured storage.
Support for OLE controls requires the Microsoft ActiveX Control Importer
(aximp.exe). This tool generates a wrapper class for an ActiveX control that can be
hosted on a Windows Form. It imports the DLL or OCX and produces a set of assemblies
that contain the common language runtime metadata and control implementation for the
types defined in the original type library. When you deploy the application, you deploy
these assemblies. You do not need to deploy aximp.exe.

The aximp.exe tool is part of the .NET Framework SDK, which can be freely
downloaded from the Microsoft Web site. See System Requirements for .NET Windows
Forms Targets on page 18.

• These features are not currently supported in .NET targets: tracing and profiling, DDE
functions, and SSLCallback.

• The .NET Framework replaces fonts that are not TrueType or OpenType fonts, such as
Courier or MS Sans Serif. To avoid issues with replacement fonts, always use a TrueType
or OpenType font.

Unsupported Nonvisual Objects and Structures in Windows Forms
Windows Forms applications support most PowerBuilder objects, controls, functions, events,
and properties.

This table lists all PowerBuilder nonvisual objects and structures and indicates whether they
are currently supported in Windows Forms applications. When there is an X in the Partially
Supported column of this table, see the second table for detailed information about what is not
supported. The XX symbol in the Unsupported column of the first table indicates that there are
no current plans to support the corresponding object in future versions of PowerBuilder:

Windows Forms Targets

38 PowerBuilder

Table 2. Support for nonvisual objects in Windows Forms

Class name Supported Partially sup-
ported

Unsupported

AdoResultSet X

Application X

ArrayBounds X

ClassDefinition * X

ClassDefinitionObject X

Connection X

ConnectionInfo X

ConnectObject X

ContextInformation X

ContextKeyword XX

CorbaCurrent X

CorbaObject X

CorbaSystemException (and its de-
scendants)

X

CorbaUnion X

CorbaUserException X

DataStore X

DataWindowChild X

DivideByZeroError X

DWObject X

DWRuntimeError X

DynamicDescriptionArea X

DynamicStagingArea X

EnumerationDefinition X

EnumerationItemDefinition X

Environment X

ErrorLogging X

Windows Forms Targets

Deploying Applications and Components to .NET 39

Class name Supported Partially sup-
ported

Unsupported

Exception X

Graxis X

GrDispAttr X

Inet X

InternetResult X

JaguarOrb X

MailFileDescription X

MailMessage X

MailRecipient X

MailSession X

Message X

NonVisualObject X

NullObjectError X

OleObject X

OleRuntimeError X

OleStorage XX

OleStream XX

OleTxnObject X

OmObject X

OmStorage XX

OmStream XX

Orb X

PBDOM XX

PbxRuntimeError X

Pipeline X

ProfileCall XX

ProfileClass XX

ProfileLine XX

Windows Forms Targets

40 PowerBuilder

Class name Supported Partially sup-
ported

Unsupported

ProfileRoutine XX

Profiling XX

RemoteObject XX

ResultSet X

ResultSets X

RuntimeError X

ScriptDefinition X

Service X

SimpleTypeDefinition X

SSLCallback X

SSLServiceProvider X

Throwable X

Timing X

TraceActivityNode XX

TraceBeginEnd XX

TraceError XX

TraceESQL XX

TraceFile XX

TraceGarbageCollect XX

TraceTreeLine XX

TraceTreeNode XX

TraceTreeObject XX

TraceTreeRoutine XX

TraceTreeUser XX

TraceUser XX

Transaction X

TransactionServer X

TypeDefinition X

Windows Forms Targets

Deploying Applications and Components to .NET 41

Class name Supported Partially sup-
ported

Unsupported

VariableCardinalityDefinition X

VariableDefinition X

WSConnection X

* The order of the array items in the VariableList property of the ClassDefinition object may not be the same in .NET

applications as in standard PowerBuilder applications.

Note: Objects used for profiling and tracing, DDE, and OLE storage and streams are not
supported.

Table 3. Unsupported functions, events, and properties by class

Class name Unsupported functions Unsuppor-
ted events

Unsupported
properties

Application • SetLibraryList
• SetTransPool

• None • ToolbarUserCon-
trol

CorbaSystemExcep-
tion (and its descend-
ants)

• Class
• Line
• Number

DataStore • CopyRTF
• GenerateHTMLForm
• GenerateResultSet
• GetStateStatus
• InsertDocument
• PasteRTF
• Print (supported but not for

data with rich text format-
ting)

• Destructor • None

DataWindowChild • DBErrorCode
• DBErrorMessage
• SetRedraw
• SetRowFocusIndicator

• None • None

Windows Forms Targets

42 PowerBuilder

Class name Unsupported functions Unsuppor-
ted events

Unsupported
properties

OmObject • GetAutomationNative-
Pointer

• SetAutomationLocale
• SetAutomationTimeOut

• None • None

RuntimeError (and its
descendants)

• Class
• Line
• Number

ScriptDefinition • AliasName
• ExternalUserFunc-

tion (supported for
external functions
only)

• LocalVariableList
• Source
• SystemFunction

SimpleTypeDefini-
tion

• LibraryName

TypeDefinition • LibraryName

VariableDefinition • InitialValue (sup-
ported for instance
variables and prim-
itive types)

• IsConstant (suppor-
ted for instance var-
iables)

• OverridesAncestor-
Value

• ReadAccess (sup-
ported for instance
variables)

• WriteAccess (sup-
ported for instance
variables)

Windows Forms Targets

Deploying Applications and Components to .NET 43

Unsupported System Functions in Windows Forms
Most PowerBuilder system functions are supported in Windows Forms applications.

This table lists categories of system functions that are not supported.

Table 4. Unsupported system functions by category

Category Functions

DDE functions CloseChannel, ExecRemote, GetCommandDDE, Get-
CommandDDEOrigin, GetDataDDE, GetDataDDEOrigin,
GetRemote, OpenChannel, RespondRemote, SetDa-
taDDE, SetRemote, StartHotLink, StartServerDDE, Sto-
pHotLink, StopServerDDE

Garbage collection functions GarbageCollectGetTimeLimit, GarbageCollectSetTime-
Limit

Miscellaneous functions PBGetMenuString

Input method functions IMEGetCompositionText, IMEGetMode, IMESetMode

Profiling and tracing functions TraceBegin, TraceClose, TraceDisableActivity, Trace-
Dump, TraceEnableActivity, TraceEnd, TraceError,
TraceOpen, TraceUser

Post function
Post function calls with reference parameters are not supported.

IsNull function
In .NET applications, if you call the IsNull function with a variable of a reference type (a type
derived from the PowerObject base class) as the argument, IsNull returns true when the
variable has not been initialized by assigning an instantiated object to it. To ensure consistent
behavior between standard and .NET PowerBuilder applications, use the IsValid function to
check whether the variable has been instantiated.

PowerBuilder Visual Controls in Windows Forms Applications
For most PowerBuilder visual controls, the only unsupported event in Windows Forms
applications is the Other event, and the only unsupported property is IMEMode.

This table lists PowerBuilder visual controls and indicates whether they are fully or partially
supported in Windows Forms applications. If a control has no unsupported events, properties,
or functions besides the Other event and the IMEMode property, it is listed in the Supported
column. When there is an X in the Partially Supported column, see the second table for
detailed information about which functions, events, and properties are not supported:

Windows Forms Targets

44 PowerBuilder

Table 5. Support for visual controls

Class name Supported Partially supported

Animation X

Checkbox X

CommandButton X

DataWindow X

DatePicker X

DropDownListBox X

DropDownPictureListBox X

EditMask X

Graph X

GroupBox X

HProgressBar X

HScrollBar X

HTrackBar X

InkEdit X

InkPicture X

Line X

ListBox X

ListView X

ListViewItem X

Menu X

MenuCascade X

MonthCalendar X

MultiLineEdit X

OleControl X

OleCustomControl X

OmCustomControl X

OmEmbeddedControl X

Oval X

Windows Forms Targets

Deploying Applications and Components to .NET 45

Class name Supported Partially supported

Picture X

PictureButton X

PictureHyperLink X

PictureListBox X

RadioButton X

Rectangle X

RichTextEdit X

RoundRectangle X

SingleLineEdit X

StaticHyperLink X

StaticText X

Tab X

TreeView X

TreeViewItem X

UserObject X

VProgressBar X

VScrollBar X

VTrackBar X

Window X

Table 6. Unsupported functions, events, and properties by control

Supported
control

Unsupported func-
tions

Unsupported
events

Unsupported prop-
erties

DataWindow • DBErrorCode
• DBErrorMessage
• GenerateHTML-

Form
• GetStateStatus

• Other • RightToLeft

Windows Forms Targets

46 PowerBuilder

Supported
control

Unsupported func-
tions

Unsupported
events

Unsupported prop-
erties

DatePicker • GetCalendar
• Resize (does not sup-

port changing height,
otherwise supported)

• DoubleClicked
• Other

UserString

• AllowEdit
• Border
• BorderStyle

DropDownList-
Box

• None • Other • HScrollBar
• IMEMode

Graph • None
• AddData, GetData-

Value, InsertData,
ModifyData do not
support string values

• Other • BorderStyle

ListBox • None • Other • TabStop

ListView • AddColumn, Insert-
Column, SetColumn
limitation: the align-
ment of the first col-
umn cannot be set to
center or right

• Other • IMEMode

Menu • None • Help • MenuItemType
• MergeOption
• ToolbarAnimation
• ToolbarHighlight-

Color
• ToolbarItemSpace

MenuCascade • None • Help • Columns
• CurrentItem
• DropDown
• MenuItemType
• MergeOption
• ToolbarAnimation
• ToolbarHighlight-

Color
• ToolbarItemSpace

Windows Forms Targets

Deploying Applications and Components to .NET 47

Supported
control

Unsupported func-
tions

Unsupported
events

Unsupported prop-
erties

MonthCalendar • None • DoubleClicked
• Other

MultiLineEdit • None • Other • IMEMode
• TabStop

OmCustomControl • None • None • Alignment
• Cancel
• Default

OmEmbedded-
Control

• _Get_DocFileName
• _Get_ObjectData
• _Set_ObjectData
• Drag
• InsertClass
• InsertFile
• InsertObject
• LinkTo
• Open
• PasteLink
• PasteSpecial
• SaveAs
• SelectObject
• UpdateLinksDialog

• None • Activation
• ContentsAllowed
• DisplayType
• DocFileName
• LinkUpdateOptions
• ObjectData
• ParentStorage
• Resizable
• SizeMode

PictureButton • None • Other • Map3DColors

StaticHyperLink • None • Other • BorderColor
• FillPattern

StaticText • None • Other • BorderColor
• FillPattern

Tab • None • Other • BackColor
• RaggedRight (see

Tab properties on
page 53)

Windows Forms Targets

48 PowerBuilder

Supported
control

Unsupported func-
tions

Unsupported
events

Unsupported prop-
erties

TreeView • None • Other • IMEMode
• StatePictureHeight
• StatePictureWidth

UserObject • AddItem
• DeleteItem
• EventParmDouble
• EventParmString
• InsertItem

• Other • BackColor, TabText-
Color (for tab pages
—see Tab properties
on page 53)

• Style

Window • CloseChannel
• ExecRemote
• GetCommandDDE
• GetCommandD-

DEOrigin
• GetDataDDE
• GetDataDDEOrigin
• GetRemote
• OpenChannel
• RespondRemote
• SetDataDDE
• SetRemote
• StartHotLink
• StartServerDDE
• StopHotLink
• StopServerDDE

• Other • None

Unsupported Functions for Controls in Windows Forms
If your application uses unsupported functions for Windows Forms targets, you must rework
the application before you deploy it.

This table is an alphabetical listing of unsupported functions. It also lists the controls on which
they are not supported, and any notes that apply to specific controls:

Table 7. Unsupported functions for Windows Forms deployment

Function Controls

AddItem UserObject

CloseChannel Window

Windows Forms Targets

Deploying Applications and Components to .NET 49

Function Controls

DBErrorCode DataWindow

DBErrorMessage DataWindow

DeleteItem UserObject

Drag OmEmbeddedControl

EventParmDouble UserObject

EventParmString UserObject

ExecRemote Window

GenerateHTMLForm DataWindow

_Get_DocFileName OmEmbeddedControl

_Get_ObjectData OmEmbeddedControl

GetStateStatus DataWindow

GetCommandDDE Window

GetCommandDDEOrigin Window

GetDataDDE Window

GetDataDDEOrigin Window

GetRemote Window

InsertClass OmEmbeddedControl

InsertFile OmEmbeddedControl

InsertItem UserObject

LinkTo OmEmbeddedControl

Open OmEmbeddedControl

OpenChannel Window

PasteLink OmEmbeddedControl

PasteSpecial OmEmbeddedControl

Resize DatePicker (only changing height is unsupported)

RespondRemote Window

SaveAs OmEmbeddedControl

SelectObject OmEmbeddedControl

Windows Forms Targets

50 PowerBuilder

Function Controls

SetDataDDE Window

_Set_ObjectData OmEmbeddedControl

SetCultureFormat DataWindow

SetRemote Window

SetWSObject DataWindow

StartHotLink Window

StartServerDDE Window

StopHotLink Window

StopServerDDE Window

UpdateLinksDialog OmEmbeddedControl

Unsupported Events for Controls in Windows Forms
If your application uses unsupported events for Windows Forms targets, you must rework the
application before you deploy it.

This table is an alphabetical listing of unsupported events, and indicates the controls on which
they are not supported:

Table 8. Unsupported events for Windows Forms deployment

Event Controls

DoubleClicked DatePicker, MonthCalendar

Help Menu, MenuCascade

Notify TreeView

Other All controls

Resize DatePicker

UserString DatePicker

Unsupported Properties for Controls in Windows Forms
If your application uses unsupported properties for Windows Forms targets, you must rework
the application before you deploy it.

This table is an alphabetical listing of unsupported properties. It also indicates the controls on
which they are not supported, and any notes that apply to specific controls.

Windows Forms Targets

Deploying Applications and Components to .NET 51

Table 9. Unsupported properties for Windows Forms deployment

Property Controls

Alignment OmCustomControl

AllowEdit DatePicker

Activation OmEmbeddedControl

BackColor Tab, UserObject (see Tab properties on page 53)

Border DatePicker

BorderColor StaticHyperLink, StaticText

BorderStyle DatePicker, Graph

Cancel OmCustomControl

Columns MenuCascade

ColumnsPerPage UserObject

ContentsAllowed OmEmbeddedControl

CurrentItem MenuCascade

Default OmCustomControl

DisplayType OmEmbeddedControl

DocFileName OmEmbeddedControl

DropDown MenuCascade

FillPattern StaticHyperLink, StaticText

Height DatePicker

Help Menu, MenuCascade

HScrollbar DropDownListBox

IMEMode All controls

LinkUpdateOptions OmEmbeddedControl

Map3DColors PictureButton

MenuItemType Menu

MergeOption Menu

ObjectData OmEmbeddedControl

ParentStorage OmEmbeddedControl

RaggedRight Tab (see Tab properties on page 53)

Windows Forms Targets

52 PowerBuilder

Property Controls

RightToLeft DataWindow, ListBox, ListView, TreeView

SizeMode OmEmbeddedControl

StatePictureHeight TreeView

StatePictureWidth TreeView

Style UserObject

TabStop ListBox, MultiLineEdit

TabTextColor UserObject (see Tab properties on page 53)

ToolbarAnimation Menu

ToolbarHighLightColor Menu

ToolbarItemSpace Menu

FaceName property
If you use a bitmap (screen) font such as MS Sans Serif instead of a TrueType font for the
FaceName property, make sure you select a predefined font size from the TextSize drop-down
list. PowerBuilder and .NET use different functions (CreateFontDirect and GdipCreateFont)
to render bitmap fonts and they may display larger in the .NET application than in the
development environment or a standard PowerBuilder application. For example, text that uses
the MS Sans Serif type face and the undefined text size 16 looks the same as size 14 in
PowerBuilder, but looks larger in .NET.

Tab properties
The RaggedRight property for a Tab control works correctly if the sum of the widths of all the
tab pages is greater that the width of the Tab control, and the MultiLine property is set to true.
However, when the PerpendicularText property is true, RaggedRight is not supported.

While the TabPosition property value is tabsonleft! or tabsonright!, and there is not enough
room for all the tabs in a single row, the tabs appear in more than one row, regardless of the
Multiline property setting. If you then dynamically set Multiline to true, the tabs display on top
of the Tab control, regardless of the TabPosition setting.

Dual position display is not supported by the .NET Tab control
(System.Windows.Forms.TabControl), so the TabPosition value tabsontopandbottom!
displays tabs on top only. The tabsonrightandleft! value displays tabs only on the right, and the
tabsonleftandright! value displays tabs only on the left.

The BackColor and TabTextColor properties for a tab page in a Tab control are not supported if
the XP style is used.

Windows Forms Targets

Deploying Applications and Components to .NET 53

Windows Forms Targets

54 PowerBuilder

.NET Component Targets

This part describes how to create and deploy PowerBuilder nonvisual objects as .NET
assemblies and .NET Web services.

.NET Assembly Targets
PowerBuilder includes a target type for creating .NET assemblies from nonvisual custom
class objects.

You can create .NET Assembly targets from scratch or by using PBLs from an existing target
that contain at least one nonvisual custom class object.

Note: The .NET Assembly target type is available in both PowerBuilder Classic and
PowerBuilder .NET. To take advantage of Common Language Specification (CLS) compliant
features, use the .NET Assembly target in PowerBuilder .NET.

Creating a target from scratch
When you use the .NET Assembly target wizard to create a target from scratch, the wizard also
creates an Application object, a project object that allows you to deploy the assembly, and a
nonvisual object (NVO). However, you must add and implement at least one public method in
the wizard-created NVO before it can be used to create a .NET assembly.

This table describes the information you must provide for .NET Assembly targets that you
create from scratch:

Wizard field Description

Project name Name of the project object the wizard creates.

Library Name of the library file the wizard creates. By default, this includes the current
Workspace path and takes the name you enter for the project object with a PBL
extension.

Target Name of the target the wizard creates. By default, this includes the current
Workspace path and takes the name you enter for the project object with a PBT
extension.

Library search path Lets you add PBLs and PBDs to the search path for the new target.

PowerBuilder object
name

Name of the nonvisual object the wizard creates. By default this takes the name
that you entered for a project object with an “n_” prefix.

Description Lets you add a description for the project object the wizard creates.

.NET Component Targets

Deploying Applications and Components to .NET 55

Wizard field Description

Namespace Provides a globally unique name to assembly elements and attributes, distin-
guishing them from elements and attributes of the same name but in different
assemblies.

Assembly file name Name of the assembly created by the wizard. By default, the assembly file
name takes the namespace name with a DLL suffix.

Resource file and di-
rectory list

List of resource files, or directories containing resource files, that you want to
deploy with the project.

You can use the Add Files, Add Directories, or Search PBR Files buttons to add
files and directories to the list box. You can select a file or directory in the list
and click the Delete button to remove that file or directory from the list.

When you select a directory, the resource files in all of its subdirectories are
also selected by default. However, you can use the Resource Files tab in the
Project painter to prevent deployment of subdirectory files. For more infor-
mation, see Resource Files and Library Files tabs on page 59.

Win32 dynamic li-
brary file list

Specifies any Win32 DLLs you want to include with your project. Click the
Add button to open a file selection dialog box and add a DLL to the list. Select a
DLL in the list and click Delete to remove the DLL from the list.

Setup file name Name of the setup file the wizard creates. You can copy this MSI file to client
computers, then double-click the files to install the .NET assembly on those
computers.

Creating a target from an existing target
If you select the option to use an existing target, the wizard creates only the .NET Assembly
target and a .NET Assembly project. The target you select must include a PBL with at least one
nonvisual object having at least one public method. The public method must be implemented
by the nonvisual object or inherited from a parent. The AutoInstantiate property of the
nonvisual object must be set to false.

Note: All objects from an existing target are visible in the System Tree for the .NET Assembly
target created from the existing target, except for any project objects that are incompatible
with the new target. Although visual objects, as well as the application object, are not used in
a .NET Assembly target, you can view them in the System Tree under the new target’s PBLs.

When you use the wizard to create a .NET Assembly target from an existing target, the wizard
prompts you for the same information as when you create a target from scratch, except that it
omits the PowerBuilder object name and library search path fields. These fields are
unnecessary because the existing target must have a usable nonvisual object and the library
search path for the target is already set. The wizard does, however, present fields that are not
available when you create a target from scratch.

.NET Component Targets

56 PowerBuilder

This table describes these additional fields:

Wizard field Description

Choose a target Select a target from the list of targets in the current workspace.

Specify a project name Select a name for the project you want to create. You must create a
project object to deploy nonvisual objects as .NET components.

Choose a project library Specify a library from the list of target libraries where you want to
store the new project object.

Choose NVO objects to be
deployed

Expand the library node or nodes in the list box and select check boxes
next to the nonvisual objects that you want to deploy.

Use .NET nullable types Select this check box to map PowerBuilder standard datatypes to .NET
nullable datatypes. Nullable datatypes are not Common Type System
(CTS) compliant, but they can be used with .NET Generic classes if a
component accepts or returns null arguments or if reference arguments
are set to null.

Only include functions with
supported datatypes

Select this check box if you do not want to list functions that are not
supported in the .NET environment. The functions will be listed in the
Select Objects dialog box that you can open for the project from the
Project painter.

After you create a .NET Assembly target, you can create as many .NET Assembly projects as
you need. You start the .NET Assembly project wizard from the Project tab of the New dialog
box. The fields in the wizard include all the fields in the table for creating a project from
scratch, except for the “PowerBuilder object name” and “Description” fields. They also
include all fields in the table for creating a project from an existing target, except for the
“Choose a target” field.

Whether you opt to build a new target from scratch or from an existing target, most of the
project-related fields listed in these tables are available for modification in the Project painter.

Modifying a .NET Assembly Project
You can modify a .NET Assembly project from the Project painter.

In addition to the values for fields that you entered in the target and project wizards, you can
also modify version, debug, and run settings from the Project painter, and select and rename
functions of the nonvisual objects that you deploy to a .NET assembly.

Each .NET Assembly project has seven tab pages: General, Objects, Resource Files, Library
Files, Version, Post-build, and Run.

General tab
The General tab in the Project painter allows you to modify the namespace, assembly file
name, and setup file name for a .NET Assembly project. It also has a check box you can select

.NET Component Targets

Deploying Applications and Components to .NET 57

to use .NET nullable datatypes. These fields are described in .NET Assembly Targets on page
55.

The General tab also has fields that are not available in the target or project wizards. This table
describes the additional fields:

Project painter
field

Description

Debug or Release Options that determine whether the project is deployed as a debug build
(default selection) or a release build. You use debug builds for debugging
purposes. Release builds have better performance, but when you debug a
release build, the debugger does not stop at breakpoints.

Enable DEBUG symbol Option to activate code inside conditional compilation blocks using the
DEBUG symbol. This selection does not affect and is not affected by the
project’s debug build or release build setting. This option is selected by
default.

Objects tab
The Objects tab in the Project painter lists all the nonvisual user objects available for
deployment from the current .NET Assembly target. The Custom Class field lists all these
objects even if you did not select them in the target or project wizard.

Objects that you selected in the wizard display with a user object icon in the Custom Class
treeview. All methods for the objects selected in the wizard are also selected for deployment
by default, but you can use the Objects tab to prevent deployment of some of these methods
and to change the method names in the deployed component.

This table describes the fields available on the Objects tab:

Project painter
field

Description

Custom class Select an object in this treeview list to edit its list of functions for inclusion in
or exclusion from the assembly component. You can edit the list for all the
objects you want to include in the assembly, but you must do this one object at
a time.

Object name, Class
name, and Name-
space

You can change the object name only by selecting a different object in the
Custom Class treeview. By default, the class name is the same as the object
name, but it is editable. In the Project painter, the namespace is editable only
on the General tab.

.NET Component Targets

58 PowerBuilder

Project painter
field

Description

Method names and
Function prototypes

Select the check box for each function of the selected custom class object you
want to deploy to a .NET assembly. Clear the check box for each function you
do not want to deploy. You can modify the method names in the Method
Names column, but you cannot use dashes (“-”) in the modified names. The
Function Prototype column is for descriptive purposes only.

Change method name
and description

You enable these buttons by selecting a method in the list of method names.
PowerBuilder allows overloaded functions, but each function you deploy in
an assembly class must have a unique name. After you click the Change
Method Name button, you can edit the selected method name in the Method
Name column. The Change Method Description button lets you add or edit a
method description.

Select All and Unse-
lect All

Click the Select All button to select all the functions of the current custom
class object for deployment. Click the Unselect All button to clear the check
boxes of all functions of the current custom class object. Functions with
unselected check boxes are not deployed to a .NET assembly.

Resource Files and Library Files tabs
The fields that you can edit on the Resource Files and Library Files tabs of the Project painter
are the same as the fields available in the target and project wizards. These fields are described
in the first table in .NET Assembly Targets on page 55.

The Resource Files page of the Project painter does have an additional field that is not included
in the project or target wizard. The additional field is a Recursive check box next to each
directory that you add to the Resource Files list. By default, this check box is selected for each
directory when you add it to the list, but you can clear the check box to avoid deployment of
unnecessary subdirectory files.

Version, Post-build, and Run tabs
The fields on the Version, Post-build, and Run tabs of the Project painter are not available in
the .NET Assembly target or project wizards. This table describes these fields:

Project painter field Description

Version tab: Product name, Compa-
ny, Description, and Copyright

Use these fields to specify identification, description, and
copyright information that you want to associate with the as-
sembly you generate for the project.

Version tab: Product version, File
version, and Assembly

Enter major, minor, build, and revision version numbers for the
product, file, and assembly.

.NET Component Targets

Deploying Applications and Components to .NET 59

Project painter field Description

Post-build tab: Post-build com-
mand line list for build type

Select the build type (Debug or Release) and click Add to
include command lines that run immediately after you deploy
the project.

For example, you can include a command line to process the
generated component in a code obfuscator program, keeping
the component safe from reverse engineering. The command
lines run in the order listed, from top to bottom. You can save
separate sequences of command lines for debug and release
build types.

Run tab: Application You use this text box to enter the name of an application with
code that invokes the classes and methods of the generated
assembly. If you do not enter an application name, you get an
error message when you try to run or debug the deployed
project from the PowerBuilder IDE.

Run tab: Argument You use this text box to enter any parameters for an application
that invokes the classes and methods of the deployed project.

Run tab: Start In You use this text box to enter the starting directory for an ap-
plication that invokes the classes and methods of the deployed
project.

Sign tab
The fields that you can edit on the Sign tab of the Project painter are the same as the fields
available for other .NET projects, although one of the fields that permits calls to strong-named
assemblies from partially trusted code is available only for .NET Assembly and .NET Web
Service projects. For descriptions of the fields on the Sign tab, see Strong-Named Assemblies
on page 5.

Supported Datatypes
The PowerBuilder to .NET compiler converts PowerScript datatypes to .NET datatypes.

This table shows the datatype mapping between PowerScript and C#:

PowerScript datatype C# datatype

boolean bool

blob byte []

byte byte

int, uint short, ushort

.NET Component Targets

60 PowerBuilder

PowerScript datatype C# datatype

long, ulong int, uint

longlong long

decimal decimal

real float

double double

string string

user-defined structure struct

user-defined nonvisual object class

Date DateTime

Time DateTime

DateTime DateTime

Note: Arrays are also supported for all standard datatypes.

Deploying and Running a .NET Assembly Project
After you create a .NET Assembly project, you can deploy it from the Project painter or from a
context menu on the project object in the System Tree.

When you deploy a .NET Assembly project, PowerBuilder creates an assembly DLL from the
nonvisual user objects you selected in the wizard or project painter. If you also listed a setup
file name, PowerBuilder creates an MSI file that includes the assembly DLL and any resource
files you listed in the wizard or Project painter.

Note: You can use the Runtime Packager to copy required PowerBuilder runtime files to
deployment computers.

For information on required runtime files, see Checklist for Deployment on page 10. For
information about the Runtime Packager, see Application Techniques > Deploying
Applications and Components.

You can run or debug an assembly project from the PowerBuilder UI if you fill in the
Application field (and optionally, the Argument and Start In fields) on the project Run tab in
the Project painter.

.NET Component Targets

Deploying Applications and Components to .NET 61

.NET Web Service Targets
PowerBuilder includes a target type for creating .NET Web services from nonvisual custom
class objects.

The .NET Web Service target wizard gives you the option of creating a target from scratch or
from an existing PowerBuilder target.

Creating a target from scratch
The .NET Web Service target wizard shares the following fields in common with the .NET
Assembly target: Project Name, Target, Library, Library Search Path, PowerBuilder Object
Name, Description, Resource Files, and Win32 Dynamic DLLs. However, it has four
additional fields (Web service virtual directory name, Web service URL preview, Generate
setup file, and Directly deploy to IIS), and the Namespace and Assembly File Name fields are
specific to the .NET Assembly wizard.

This table describes the fields in the .NET Web Service wizard when you create a target from
scratch:

Wizard field Description

Project name Name of the project object the wizard creates.

Library Name of the library file the wizard creates. By default, this includes the current
Workspace path and takes the name you enter for the project object with a PBL
extension.

Target Name of the target the wizard creates. By default, this includes the current
Workspace path and takes the name you enter for the project object with a PBT
extension.

Library search path Lets you add PBLs and PBDs to the search path for the new target.

PowerBuilder object
name

Name of the nonvisual object the wizard creates. By default this takes the name
that you entered for a project object with an “n_” prefix.

Description Lets you add a description for the project object the wizard creates.

Web service virtual
directory name

The directory path you want to use as the current directory in the virtual file
system on the server. By default, this is the full path name for the current
PowerBuilder target.

Web service URL
preview

Address for accessing the .NET Web service from an application.

.NET Component Targets

62 PowerBuilder

Wizard field Description

Resource file and di-
rectory list

List of resource files, or directories containing resource files, that you want to
deploy with the project.

You can use the Add Files, Add Directories, or Search PBR Files buttons to add
files and directories to the list box. You can select a file or directory in the list
and click the Delete button to remove that file or directory from the list.

When you select a directory, the resource files in all of its subdirectories are
also selected by default. However, you can use the Resource Files tab in the
Project painter to prevent deployment of subdirectory files. For more infor-
mation, see “Resource Files and Library Files tabs” on page 195.

Win32 dynamic li-
brary file list

Specifies any Win32 DLLs you want to include with your project. Click the
Add button to open a file selection dialog box and add a DLL to the list. Select a
DLL in the list and click Delete to remove the DLL from the list.

Generate setup file Select this option to deploy the Web service in an MSI file. When you select
this option, you must provide a name for the setup file.

Setup file name Name of the setup file the wizard creates. You can copy this MSI file to client
computers, then double-click the files to install the .NET Web service on those
computers.

Directly deploy to
IIS

Select this option to deploy the Web service directly to an IIS server. When you
select this option, you must provide an IIS server address. By default, the
server address is “localhost”.

When you click Finish in the wizard for a target you are creating from scratch, the wizard
generates an Application object, a project object, a target, and a nonvisual object. You must
add and implement a public method in the nonvisual object generated by the wizard before you
can deploy it as a Web service.

Creating a target from an existing target
As with the other .NET target wizards, you can use the .NET Web Service target wizard to
create a target from an existing PowerBuilder target. The existing target must be added to the
current workspace and must include a PBL with at least one nonvisual object having at least
one public method. The public method must be implemented by the nonvisual object or
inherited from a parent. The AutoInstantiate property of the nonvisual object must be set to
false.

When you click Finish in the wizard for a target you are creating from an existing target, the
wizard creates a .NET Web Service target and a .NET Web Service project. The .NET Web
Service target uses the same library list as the existing target from which you select nonvisual
user objects.

.NET Component Targets

Deploying Applications and Components to .NET 63

As with the .NET Assembly target wizard, the .NET Web Service target wizard has additional
fields for selecting nonvisual user objects when you use the existing target option. This table
describes these additional fields:

Wizard field Description

Choose a target Select a target from the list of targets in the current workspace.

Specify a project name Select a name for the project you want to create. You must create a
project object to deploy nonvisual objects as .NET components.

Choose a project library Specify a library from the list of target libraries where you want to
store the new project object.

Choose NVO objects to be
deployed

Expand the library node or nodes in the list box and select check boxes
next to the nonvisual objects that you want to deploy.

Use .NET nullable types Select this check box to map PowerBuilder standard datatypes
to .NET nullable datatypes. Nullable datatypes are not Common Type
System (CTS) compliant, but they can be used with .NET Generic
classes if a component accepts or returns null arguments or if refer-
ence arguments are set to null.

Only include functions with
supported datatypes

Select this check box if you do not want to list functions that are not
supported in the .NET environment. After you create the .NET
project, the functions are listed on the Objects tab for the project when
you open it in the Project painter.

Only include functions with
supported datatypes

Select this check box if you do not want to list functions that are not
supported in the .NET environment. The functions will be listed in the
Select Objects dialog box that you can open for the project from the
Project painter.

Modifying a .NET Web Service Project
You can modify a .NET Web Service project from the Project painter.

The Project painter shows all the values you selected in .NET Web Service target or project
wizards. However, you can also modify version, debug, and run settings from the Project
painter, and select and rename functions of the nonvisual objects that you deploy to a .NET
Web Service component.

.NET Web Service project tab pages
Each .NET Web Service project has these tab pages:

• General tab — includes debug fields that are not available in the target or project wizards.

.NET Component Targets

64 PowerBuilder

Project painter
field

Description

Debug or Release Options that determine whether the project is deployed as a debug build
(default selection) or a release build. You use debug builds for debug-
ging purposes. Release builds have better performance, but when you
debug a release build, the debugger does not stop at breakpoints.

Enable DEBUG sym-
bol

Option to activate code inside conditional compilation blocks using the
DEBUG symbol. This selection does not affect and is not affected by
the project’s debug build or release build setting. This option is selected
by default.

• Deploy tab — the fields on the Deploy tab are all available in the .NET Web Service project
wizard. For descriptions of fields available on the Deploy tab, see the first table in .NET
Assembly Targets on page 55.

• Objects tab — allows you to select the methods to make available for each nonvisual object
you deploy as a Web service. You can rename the methods as Web service messages. This
table describes the Objects tab fields for a .NET Web Service project:

Objects tab field Description

Custom class Select an object in this treeview list to edit its list of methods for inclu-
sion in or exclusion from the Web service component. You can edit the
list for all the objects you want to include in the component, but you must
do this for one object at a time.

Object name You can change the object name only by selecting a different object in
the Custom Class treeview.

Web service name Specifies the name for the Web service. By default, this takes the name of
the current custom class user object.

Target namespace Specifies the target namespace. The default namespace for an IIS Web
service is: http://tempurl.org. Typically you change this to a company
domain name.

Web service URL Specifies the deployment location for the current custom class user
object. This is a read-only field. The location combines selections on the
General, Deploy, and Objects tabs for the current project.

Web service WSDL Specifies the WSDL file created for the project. This is a read-only field.
It appends the “?WSDL” suffix to the Web service URL.

.NET Component Targets

Deploying Applications and Components to .NET 65

Objects tab field Description

Browse Web Service If you have previously deployed the project to the named IIS server on
the Deploy tab of the current project, you can click this button to display
a test page for the existing Web service. If a Web service has not been
deployed yet for the current custom class object, a browser error mes-
sage displays. The button is disabled if you selected the option to deploy
the current project to a setup file.

View WSDL If you previously deployed the project to the named IIS server on the
Deploy tab of the current project, you can click this button to display the
existing WSDL file. If a Web service has not been deployed yet for the
current custom class object, a browser error message displays. The but-
ton is disabled if you selected the option to deploy the current project to a
setup file.

Message names and
Function prototypes

Select the check box for each function of the selected custom class object
that you want to deploy in a .NET Web service component. Clear the
check box for each function you do not want to deploy. You can modify
the message names in the Message Names column. The Function Pro-
totype column is for descriptive purposes only.

Change message name You enable this button by selecting a function in the list of message
names. PowerBuilder allows overloaded functions, but each function
you deploy in a component class must have a unique name. After you
click the Change Message Name button, you can edit the selected func-
tion name in the Message Name column.

Select All and Unse-
lect All

Click the Select All button to select all the functions of the current
custom class object for deployment. Click the Unselect All button to
clear the check boxes of all functions of the current custom class object.
Functions with unselected check boxes are not deployed as messages for
a Web service component.

• Resource Files tab — the fields on this tab are the same as those in the project wizard.
However, as for the .NET Assembly project, there is one additional field that is not
included in the project or target wizard. This field is a Recursive check box next to each
directory you add to the Resource Files list. By default, this check box is selected for each
directory when you add it to the list, but you can clear the check box to avoid deployment of
unnecessary subdirectory files.

• Library Files tab — includes fields for the Win 32 dynamic libraries you want to deploy
with your project. These fields are described in .NET Web Service Targets on page 62. The
Library Files tab also includes a list of PBL files for the target. You can select a check box
next to each PBL files containing DataWindow or Query objects to make sure they are
compiled and deployed as PBD files.

• Version tab — the fields on this tab cannot be set in the target or project wizards:

.NET Component Targets

66 PowerBuilder

Version tab field Description

Product name, Company, De-
scription, and Copyright

Use these fields to specify identification, description, and
copyright information that you want to associate with the
assembly you generate for the project.

Product version, File version, and
Assembly

Enter major, minor, build, and revision version numbers for
the product, file, and assembly.

• Post-build tab — the items on this tab cannot be set in the target or project wizards. Select a
build type and click Add to include command lines that run immediately after you deploy
the project. For example, you can include a command line to process the generated
component in a code obfuscator program, keeping the component safe from reverse
engineering. The command lines run in the order listed, from top to bottom. You can save
separate sequences of command lines for debug and release build types.

• Security tab — on this tab, configure CAS security zones for Web Service components,
minimizing the amount of trust required before component code is run from a user
application. A radio button group field on the Security tab allows you to select full trust
(default) or a customized trust option. The list box below the radio button group is disabled
when full trust is selected, but it allows you to select or display the permissions you want to
include or exclude when the custom option is selected.
For information on custom permission requirements, see Security Settings on page 3 and
Custom Permission Settings on page 121.

• Run tab — the fields on this tab cannot be set in the target or project wizards:

Run tab field Description

Application Use this text box to enter the name of an application with code
that invokes the classes and methods of the generated as-
sembly. If you do not enter an application name, you get an
error message when you try to run or debug the deployed
project from the PowerBuilder IDE.

Argument Use this text box to enter any parameters for an application
that invokes the classes and methods of the deployed project.

Start In Use this text box to enter the starting directory for an appli-
cation that invokes the classes and methods of the deployed
project.

• Sign tab — the settings on this tab are the same as those available for other .NET projects,
although the field that permits calls to strong-named assemblies from partially trusted
code is available only for .NET Assembly and .NET Web Service projects. For
descriptions of the fields on the Sign tab, see Strong-Named Assemblies on page 5.

.NET Component Targets

Deploying Applications and Components to .NET 67

Configuring ASP.NET for a .NET Web Service Project
Configure .NET Web Service projects.

IIS and ASP.NET
ASP.NET configuration includes making sure the Web server has a compatible version of IIS
and that the 2.0 version of ASP.NET is selected for your Web service components.

For information on installing IIS and setting the default version of ASP.NET, see ASP.NET
Configuration for a .NET Project on page 6.

SQL Anywhere database connections
Set up a database connection for your Web service components in the same way as for a smart
client application.See Setting Up a SQL Anywhere Database Connection on page 8.

Global properties
The following global properties can be used by Web service projects:

LogFolder
FileFolder
PrintFolder
PBWebFileProcessMode
PBCurrentDir
PBTempDir
PBLibDir
PBDenyDownloadFolders
PBTrace
PBTraceTarget
PBTraceFileName
PBMaxSession
PBEventLogID
PBDeleteTempFileInterval

See and Global Web Configuration Properties on page 68.

Global Web Configuration Properties
A set of global properties is available for .NET Web Services.

Global properties are set in web.config, which is deployed to the ...\wwwroot
\application_name folder by the .NET Web Service project. You cannot set global
properties in script.

This table lists global properties that you can set for .NET Web Service targets:

.NET Component Targets

68 PowerBuilder

Property Default value Description

LogFolder WebAppDir..
\appName_root
\log

Folder that contains the
PBTrace.log file.

FileFolder WebAppDir..
\appName_root
\file

Base directory for the virtual file
manager. It contains the File
\Common directory structure and
files that mirror paths for the appli-
cation resource files on the devel-
opment computer.

If you switch to Copy mode, a ses-
sionID directory is created under
the File\Session directory
that mirrors the File\Common
directory structure and file contents.

PrintFolder WebAppDir..
\appName_root
\print

Base directory for files that your
application prints in PDF format.

PBWebFileProcessMode Share Share mode maintains files in a
read-only state when a write file op-
eration is not explicitly coded. If an
application requires multiple file
operations, you might want to
change this property setting to Copy
mode.

PBCurrentDir c:\ Specifies the current directory for
the Web Service.

PBTempDir c:\temp A temporary directory under the
virtual file root on the server.

PBLibDir c:\~pl_ The directory on the server where
dynamic libraries are generated.

PBDenyDownloadFolders c:\~pl_ A semicolon-delimited string of di-
rectory names.

PBTrace Enabled Indicates whether to log exceptions
thrown by the application. Values
are Enabled or Disabled.

PBTraceTarget File Defines where to log exceptions
thrown by the application. Values
are File or EventLog.

.NET Component Targets

Deploying Applications and Components to .NET 69

Property Default value Description

PBTraceFileName PBTrace.log Name of the file that logs exceptions
thrown by the application. By de-
fault, this file is saved to the ap-
plicationName_root
\Log directory under the virtual
root directory on the server.

PBEventLogID 1100 The event ID if exceptions are log-
ged to the EventLog.

PBDeleteTempFileInterval 600 (minutes) Sets the number of minutes before
temporary files created by compo-
site DataWindows are deleted. A
value of 0 prevents the temporary
files from being deleted.

Deploying and Running a .NET Web Service Project
After you create a .NET Web Service project, you can deploy it from the Project painter or
from a context menu on the project object in the System Tree.

When you deploy directly to an IIS server, PowerBuilder creates an application directory
under the IIS virtual root and creates an ASMX file in the application directory. The ASMX
file created by the project is an ASP.NET executable file rather than a true WSDL file, so you
might need to add the “?WSDL” suffix to the URL when you try to access this Web service
from certain types of applications.

In addition to the application directory and the ASMX file, deploying the project creates an
additional assembly containing the Web service wrapper class. The file name for this
assembly is generated by appending the characters “_ws” to the file name of the main
application assembly. It is generated with the main assembly in the application’s bin directory.

Note: In some versions of IIS for the Windows XP platform, ASPNET Web services use the
Temp system directory during method processing. If the ASPNET user (IIS 5), the IIS_WPG
user group (IIS 6), or the IIS_IUSRS user group (IIS 7 and 7.5) does not have read or write
access to the Temp directory on the server, applications invoking methods on those services
receive an error message stating that temporary classes cannot be generated.

You can prevent this error by granting appropriate user or user group permissions to the Temp
directory in the same way you grant permissions for the Sybase and database directories. See
Setting Up a SQL Anywhere Database Connection on page 8.

When you deploy to a setup file in a .NET Web Service project, the project builds an MSI file
that includes the ASMX file, PowerBuilder system libraries for .NET, and any resource files
you listed in the project wizard or painter.

.NET Component Targets

70 PowerBuilder

Note: You can use the Runtime Packager to copy required PowerBuilder runtime files to
deployment servers. After you install the package created by the runtime packager, you must
restart the server. For information on required runtime files, see Checklist for Deployment on
page 10. For information about the Runtime Packager, see Application Techniques >
Deploying Applications and Components.

You can run or debug a .NET Web Service project from the PowerBuilder UI if you fill in the
Application field (and optionally, the Argument and Start In fields) on the project Run tab in
the Project painter. The Application field is typically filled in automatically with the name of
the Internet Explorer executable on the development computer.

.NET Web Service Deployment Considerations
This topic discusses requirements, restrictions, and options for deploying .NET Web Service
projects.

When a .NET Web Service project is open in the Project painter and no other painters are open,
you can select Design > Deploy Project from the Project painter to deploy the project.

When all painters are closed, including the Project painter, you can right-click a Web Service
project in the System Tree and select Deploy from its context menu.

The Output window shows the progress of the deployment and provides a list of application
functions, events, and properties that are not supported in the Web Service version of the
application. Most of these warnings are benign and do not prevent users from running the
application as a Web Service.

If a supported version of the Microsoft .NET Framework is the only version of the .NET
Framework installed on the server, or if you configured the server to use a supported version
(2.0, 3.0, or 3.5) for all Web sites by default, you can run the application immediately after you
deploy it.

You can run the application from PowerBuilder by selecting Design > Run Project from the
Project painter menu or selecting the Run Project toolbar icon from the Project painter
toolbar. The System Tree context menu for the Web Service project also has a Run Project
menu item.

Deployment to a setup file
If you are deploying a .NET project to an MSI file, you must have a file named
License.rtf in the PowerBuilder DotNET\bin directory. The PowerBuilder setup
program installs a dummy License.rtf file in this directory, but you should modify this
file’s contents or replace the file with another file of the same name.

The License.rtf file should contain any license information you want to distribute with
your application. You can run the .NET application only after the setup file is extracted to an
IIS server. The contents of the License.rtf file appear in the setup file extraction wizard.

.NET Component Targets

Deploying Applications and Components to .NET 71

After you create and distribute the MSI file to an IIS server, you must extract the MSI file on
the server. By default the extraction directory is set to C:\Program Files
\webservice\applicationName, and the extraction wizard creates the C:
\Program Files\webservice\applicationName\applicationName and
C:\Program Files\webservice\applicationName
\applicationName_root virtual directories, where applicationName is the name of
your application.

Although you do not need to modify the default extraction directory to run the application, the
extraction wizard does let you change the location of the application directories you extract. If
you prefer to keep all your applications directly under the server’s virtual root, you could set
the extraction directory to server’s Inetpub\wwwroot directory.

Deployment to a production server
You can deploy a Web Service application to a production server either by:

• Extracting an MSI file that you build from a Web Service project
• Deploying directly from the development computer to a mapped server
• Copying all application folders and files from IIS on a local server to IIS on a production

server

Production servers must meet the requirements described in ASP.NET Configuration for
a .NET Project on page 6. You must install all database clients and have access to all data
sources on the production computer. For applications that you deploy to a production server,
you should add required database driver DLLs to the Win32 dynamic library list on the Library
Files tab page of your Web Service projects. If you are using ODBC to connect to a database,
you should add the PBODB125.INI file to the list of resource files on the Resource Files tab
page of Web Service projects.

The production server must have the following DLLs in its system path: atl71.dll,
msvcr71.dll, msvcp71.dll, msvcp100.dll, msvcr100.dll,
pbshr125.dll, and if your application uses DataWindow objects, pbdwm125.dll. You
can also use the Runtime Packager to deploy required PowerBuilder runtime files to the
ASP.NET server. After you install the package created by the Runtime Packager, you must
restart the server.

For a complete list of required runtime files and for information on the Runtime Packager, see
Application Techniques > Deploying Applications and Components.

Deployment to a remote server
You can deploy directly to a mapped server only if the server is in the same domain or
workgroup as the development computer. In addition, you must add the development
computer user’s Windows login ID as a member of the Administrators group on the remote
computer hosting the IIS server.

If you copy a Web Service application from a development computer to a production server,
you must copy both the applicationName and applicationName_root folders (and their

.NET Component Targets

72 PowerBuilder

contents) that were created when you deployed the application locally. Direct deployment to a
mapped server automatically adds the necessary ASP.NET user permissions to access these
directories, but if you copy files to the server, you must add these permissions manually.

ASP .NET user permissions
If you copy files to a production server, or extract your Web Service application from an MSI
file, you can use Windows Explorer to grant ASP.NET permissions to the application
directories. This method is described in Setting Up a SQL Anywhere Database Connection on
page 8. You can also grant ASP.NET permissions from a command line. The commands are
different depending on the version of IIS that your server is running:

IIS version Commands for granting appropriate user permissions

5
cacls applicationName\temp /t /e /c /g ASPNET:f
cacls applicationName_root /t /e /c /g ASPNET:f

6
cacls applicationName\temp /t /e /c /g IIS_WPG:f
cacls applicationName_root /t /e /c /g IIS_WPG:f

7 and 7.5
cacls applicationName\temp /t /e /c /g IIS_IUSRS:f
cacls applicationName_root /t /e /c /g IIS_IUSRS:f

Event logging on the production server
If you log Web Service application events to a production server’s event log (by setting the
PBTraceTarget global property to "EventLog"), you must have a registry entry key for
PBExceptionTrace. If you use an MSI file to deploy an application to a production server, the
PBExceptionTrace key is created automatically. If you deploy directly to a mapped
production server or if you copy a Web Service application to a production server, you must
import the PBExceptionTrace key or create it manually.

When you deploy to a local computer, PowerBuilder creates the following key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Application
\PBExceptionTrace. You can export this key to a .REG file and import it to the production
server’s registry.

For information on the PBTraceTarget global property, see Global Web Configuration
Properties on page 68.

If your Web Service application uses any ActiveX DLLs, such as HTML2RTF.DLL or
RTF2HTML.DLL, you must also register these files on the production server.

.NET Component Targets

Deploying Applications and Components to .NET 73

.NET Component Targets

74 PowerBuilder

.NET Language Interoperability

This part describes how to use conditional compilation blocks in PowerScript code. These
coding blocks allow you to reference .NET objects and methods in PowerScript without
triggering error messages from the PowerScript compiler.

It also describes how to connect to an EAServer component from a .NET client. A chapter on
best practices provides suggestions for enhancing the .NET applications and components you
build in PowerBuilder.

Conditional Compilation
Use the number sign (#) at the start of a line or block of code in PowerBuilder to mark the code
for specialized processing prior to PowerScript compilation.

Each line of code or block of conditional code set off by a leading number sign is automatically
parsed by a PowerBuilder preprocessor before it is passed to the design-time PowerScript
compiler or the PowerBuilder-to-C# (pb2cs) compiler.

Preprocessing symbols
There are six default code-processing symbols that affect the code passed to the PowerScript
compiler at design time. Four of these symbols correspond to different PowerBuilder target
types, one applies to all .NET target types, and one applies to both standard PowerBuilder
and .NET target types.

The preprocessor enables PowerBuilder to compile project code specific to a particular
deployment target without hindering the compiler’s ability to handle the same code when a
different deployment target is selected.

The preprocessor substitutes blank lines for all declarative statements and conditional block
delimiters having leading number sign characters before passing the code to the PowerScript
compiler or the pb2cs compiler. The contents of the conditional blocks are converted to blank
lines or passed to the compiler depending on which preprocessor symbol is used.

This table shows the default preprocessing symbols, the project types to which they
correspond, and their effects on the code passed to the PowerScript compiler engine or the
pb2cs compiler:

.NET Language Interoperability

Deploying Applications and Components to .NET 75

Table 10. Default preprocessing symbols for conditional compilation

Preprocessing
symbols

Project type Code in this processing block

PBNATIVE PowerBuilder client-server or
distributed applications

Fully parsed by the PowerScript compiler.
It is converted to blank lines for the pb2cs

compiler.

PBWINFORM .NET Windows Forms appli-
cations

Fully parsed by the pb2cs compiler
for .NET Windows Forms targets only. It is
converted to blank lines for the Power-
Script compiler and all other types of .NET
targets.

PBWEBSERVICE .NET Web Service compo-
nent targets

Fully parsed by the pb2cs compiler
for .NET Web Service targets only. It is
converted to blank lines for the Power-
Script compiler and all other types of .NET
targets.

PBDOTNET Windows Forms applications
and .NET Assembly
and .NET Web Service com-
ponents

Fully parsed by the pb2cs compiler for
all .NET target types. It is converted to
blank lines for the PowerScript compiler.

DEBUG Standard PowerBuilder tar-
gets and all .NET application
and component targets

When a project’s Enable DEBUG Symbol
check box is selected, code is fully parsed
in deployed applications by the Power-
Script compiler, or for .NET targets, by the
pb2cs compiler. Code is converted to blank
lines when the check box is cleared.

Note: The PBWPF preprocesser can be used for WPF Window Application targets in the
PowerBuilder .NET IDE. PowerBuilder Classic ignores the scripts inside these code blocks,
except when the NOT operator is used with this preprocesser. The PBDOTNET and DEBUG
code blocks are valid for both PowerBuilder Classic and PowerBuilder .NET.

Conditional syntax
You indicate a conditional block of code with a statement of the following type, where
symbolType is any of the symbols defined by PowerBuilder:
#IF defined symbolType then

You can use the NOT operator to include code for all target types that are not of the symbol
type that you designate. For example, the following code is parsed for all targets that are not of
the type PBNative:
#IF NOT defined PBNATIVE then

.NET Language Interoperability

76 PowerBuilder

You can also use #ELSE statements inside the code block to include code for all target types
other than the one defined at the start of the code block. You can use #ELSEIF defined
symbolType then statements to include code for a specific target type that is different
from the one defined at the start of the code block.

The closing statement for a conditional block is always:
#END IF

Comments can be added to conditional code if they are preceded by double slash marks (//)
in the same line of code. Although you cannot use the PowerScript line continuation character
(&) in a conditional code statement, you must use it in code that you embed in the conditional
block when you use more than one line for a single line of code.

Limitations and error messages
Conditional compilation is not supported in DataWindow syntax, in structures, or in menu
objects. You cannot edit the source code for an object to include conditional compilation
blocks that span function, event, or variable definition boundaries.

You must rebuild your application after you add a DEBUG conditional block.

This table shows the types of error messages displayed for incorrect conditional compilation
code:

Table 11. Types of error messages returned by the preprocessor

Error message Description

Invalid if statement #if statement without a defined symbol, with an incor-

rectly defined symbol, or without a then clause

#end if directive expected #if statement without an #end if statement

Unexpected preprocessor directive Caused by an #else, #elseif, or #end if state-

ment when not preceded by an #if statement

Preprocessor syntax error Caused by including text after an #else or #end if
statement when the text is not preceded by comment char-
acters (//)

Surrounding Code in a .NET Block
Because the main PowerBuilder compiler does not recognize the classes imported from .NET
assemblies, you must surround the code referencing those classes in a conditional compilation
block for a .NET application.

For example, to reference the .NET message box Show function, you must surround the
function call with preprocessor statements that hide the code from the main PowerBuilder
compiler:
#IF Defined PBDOTNET Then

.NET Language Interoperability

Deploying Applications and Components to .NET 77

 System.Windows.Forms.MessageBox.Show ("This "&
 + "message box is from .NET, not "&
 + "PowerBuilder.")
#END IF

The PBDOTNET symbol can be used for all types of .NET targets supported by
PowerBuilder. You can also use the following symbols for specific types of .NET targets:
PBWINFORM, and PBWEBSERVICE.

You can paste preprocessor statements into the Script view. Select Edit > Paste Special >
Preprocessor and select the statement you need.

PowerScript Syntax for .NET Calls
When you make calls to .NET assemblies or their methods or properties from PowerBuilder,
you must follow PowerScript syntax rules. The following syntax rules are especially
important for C# developers to keep in mind:

Instantiating a class
To instantiate a class, use “create”, not “new”. Even when you are referencing a .NET type in
a .NET conditional block, you must use the PowerScript create syntax. The following line
instantiates a .NET type from the logger namespace:
ls = create logger.LogServer

Note that a single dot (.) is used as a namespace separator in .NET conditional blocks.

Compound statements
You must use PowerScript syntax for compound statements, such as “if”, “for”, or “switch”.
The preprocessors for .NET applications signal an error if C# compound statements are used.
For example, you cannot use the following C# statement, even inside a .NET conditional
block: for (int I=0;I<10;I++). The following script shows the PowerScript
equivalent, with looping calls to the .NET WriteLine method, inside a PBDOTNET
conditional block:
#IF Defined PBDOTNET THEN
 int i
 for I = 1 to 10
 System.Console.WriteLine(i)
 next
#END IF

.NET Language Interoperability

78 PowerBuilder

PowerScript keywords
The .NET Framework uses certain PowerBuilder keywords such as “System” and “type”. To
distinguish the .NET Framework usage from the PowerBuilder keyword, you can prepend the
@ symbol. For example, you can instantiate a class in the .NET System namespace as follows:
#IF Defined PBDOTNET THEN
 @System.Collections.ArrayList myList
 myList = create @System.Collections.ArrayList
#END IF

The PowerBuilder preprocessor includes logic to distinguish the .NET System namespace
from the PowerBuilder System keyword, therefore the use of the @ prefix is optional as a
namespace identifier in the above example. However, you must include the @ identifier when
you reference the .NET Type class in PowerScript code (@System.@Type or
System.@Type). Also, if you use a PowerBuilder keyword for a .NET namespace name
other than System, you must prefix the namespace name with the @ identifier.

Although PowerBuilder can support .NET Framework classes and namespaces, it does not
support .NET keywords. For example, you cannot use the .NET keyword typeof, even if you
prepend it with the @ identifier.

Line continuation and termination
You must use PowerScript rules when your script extends beyond a single line. The line return
character indicates the end of a line of script except when it is preceded by the ampersand (&)
character. Semicolons are not used to indicate the end of a PowerScript line.

Rules for arrays
To declare an array, use square brackets after the variable name, not after the array datatype.
You cannot initialize an array before making array index assignments. PowerBuilder provides
automatic support for negative index identifiers. (In C#, you can have negative index
identifiers only if you use the System.Array.CreateInstance method.) The following example
illustrates PowerScript coding for an array that can hold seven index values. The code is
included inside a conditional compilation block for the .NET environment:
#IF Defined PBDOTNET THEN
 int myArray[-2 to 5]
 //in C#, you would have to initialize array
 //with code like: int[] myArray = new int[7]
 myArray[-1]=10 //assigning a value to 2nd array index
#END IF

In PowerBuilder, unbounded arrays can have one dimension only. The default start index for
all PowerBuilder arrays is 1. The GetValue method on a C# array returns 0 for a default start
index identifier, so you would call array_foo.GetValue (0) to return the first element
of the array array_foo. However, after a C# array is assigned to a PowerBuilder array, you

.NET Language Interoperability

Deploying Applications and Components to .NET 79

access the elements of the array with the PowerBuilder index identifier. In this example, you
identify the first element in PowerScript as array_foo[1].

Case sensitivity
.NET is case sensitive, but PowerBuilder is not. The .NET Framework does provide a way to
treat lowercase and uppercase letters as equivalent, and the PowerBuilder to .NET compiler
takes advantage of this feature. However, if the .NET resources you are accessing have or
contain names that differ only by the case of their constituent characters, PowerBuilder cannot
correctly compile .NET code for these resources.

Cross-language data exchange
Code inside a .NET conditional compilation block is not visible to the main PowerBuilder
compiler. If you use variables to hold data from the .NET environment that you want to access
from outside the conditional block, you must declare the variables outside the conditional
block. Variables you declare outside a .NET conditional block can remain in scope both inside
and outside the conditional block.

Declaring enumeration constants
You use a terminal exclamation mark (!) to access enumeration constants in PowerScript. For
information about using enumeration constants in the .NET environment, see User-Defined
Enumerations on page 85.

Adding .NET Assemblies to the Target
To call methods in .NET assemblies in your .NET application, you need to import the
assemblies into the target.

1. Right-click the target in the System Tree and select .NET Assemblies.

2. To import a private .NET Assembly:

a) Click Browse
b) Browse to select a private assembly with the .dll, .tlb, .olb, .ocx, or .exe

extension and click Open.

To import multiple assemblies, you must select and import them one at a time.

3. To import a shared .NET Assembly:

a) Click Add to open the Import .NET Assembly dialog box.
b) Select a shared assembly from the list and click OK.

To import multiple assemblies, you must select and import them one at a time. You can use
the Import .NET Assembly dialog box to import recently used assemblies.

For more information about shared and private assemblies, see Installing assemblies in the
global assembly cache on page 15.

.NET Language Interoperability

80 PowerBuilder

Datatype Mappings
When you call methods from managed assemblies in PowerScript, you must use
PowerBuilder datatypes in any method arguments or return values.

This table shows the mappings between .NET, C#, and PowerBuilder datatypes:

Table 12. Datatype mappings in managed assembly methods

.NET datatype C# datatype PowerBuilder datatype

System.Boolean boolean Boolean

System.Byte Byte Byte

System.Sbyte Sbyte Sbyte

System.Int16 short Int

System.UInt16 ushort Uint

System.Int32 int Long

System.UInt32 uint Ulong

System.Int64 long Longlong

System.UInt64 ulong Unsignedlonglong

System.Single float Real

System.Double Double Double

System.Decimal Decimal Decimal

System.Char Char Char

System.String String String

System.DateTime System.Datetime Datetime

For example, suppose you want to reference a method foo with arguments that require
separate int and long datatype values when you call the method in C# script. The class
containing this method is defined in an assembly in the following manner:
public class MyClass
{
 public int foo(int a, long b);
 {
 return a + b
 }
}

.NET Language Interoperability

Deploying Applications and Components to .NET 81

In PowerScript code, you must replace the foo method datatypes with their PowerBuilder
datatype equivalents (long for int, longlong for long):
long p1, returnValue
longlong p2
#IF Defined PBWINFORM Then
 MyClass instanceOfMyClass
 instanceOfMyClass = create MyClass
 returnValue = instanceOfMyClass.foo(p1, p2)
#END IF

Calling PowerScript methods from .NET assemblies
If you generate a .NET assembly or Web service from a PowerBuilder target, the generated
methods can be called by a different .NET assembly or application, but these calls must be
made using .NET syntax and datatypes. In the table for Datatype mappings in managed
assembly methods on page 81, the datatype mapping is bidirectional, so you can call methods
on the .NET assemblies you generate from PowerBuilder using the .NET equivalents for
PowerScript datatypes shown in the table.

Some PowerScript datatypes do not have a one-to-one correspondence with datatypes
in .NET. When you generate a .NET assembly or Web service from PowerBuilder,
PowerBuilder converts these datatypes as shown in the following table. If you call methods
using these datatypes from a .NET application, you must substitute the .NET datatype
equivalents shown in this table:

Table 13. Mappings for PowerScript datatypes unsupported in .NET

PowerBuilder datatype C# datatype .NET datatype

Blob Byte [] System.Byte []

Date System.Datetime System.Datetime

Time System.Datetime System.Datetime

Support for .NET language features
You can write conditional code for the .NET environment, taking advantage of features that
are not available directly in the PowerBuilder Classic application environment.

• Support for sbyte and ulonglong — sbyte is the signed format of the byte datatype and
ulonglong is the unsigned format of the longlong datatype.

• Bitwise operators — see Bitwise Operator Support on page 84.

.NET Language Interoperability

82 PowerBuilder

• Parameterized constructors — arguments are not permitted in constructors for standard
PowerBuilder applications, but they are supported in conditional code blocks for the .NET
environment.

• Static fields and methods — static fields and methods are not permitted in standard
PowerBuilder applications, but they are supported in conditional code blocks for the .NET
environment.
You can use instance references to access static members of .NET classes, as in the
following example for the static property "Now" of the System.DateTime class:
#if defined PBDOTNET then
 System.DateTime dt_instance
 System.DateTime current_datetime
 dt_instance = create System.DateTime
 current_datetime = dt_instance.Now
#end if

Alternatively, you can access static .NET properties without using instance references, as
the following code illustrates:
#if defined PBDOTNET then
 System.DateTime current_datetime
 current_datetime = System.DateTime.Now
#end if

• Namespaces, interfaces, and user-defined enumerations — you can reference namespaces
and .NET interfaces and enumerations in conditional code blocks for the .NET
environment. In standard PowerScript code, namespaces are not available and you cannot
declare an interface or enumeration.
See User-Defined Enumerations on page 85.

• Function calls on .NET primitive types and enumerations — the pb2cs compiler merges
functionality of .NET primitive types with the functionality of corresponding
PowerBuilder primitive types. Function calls are also supported on .NET enumerated
types that you import to a PowerBuilder .NET target.
See Function Calls on .NET Primitive and Enumerated Types on page 86.

• .NET index access — you can access the indexes of .NET classes in the same way you
access PowerBuilder array elements.
See Accessing Indexes for .NET Classes on page 87.

• Function arguments defined as out parameters — in .NET, functions can pass parameters
using the “out” passing mode. Although there is no equivalent concept in PowerScript, you
can access “out” parameters—as well as parameters passed by reference—using the “ref”
keyword.
.NET also allows you to overload a function that has a parameter passed by value with a
prototype that differs only in the passing mode of the parameter. In these cases, if you want

.NET Language Interoperability

Deploying Applications and Components to .NET 83

to call the function prototype with the parameter that uses the reference or out passing
mode, you must use the ref keyword in your PowerScript call:
my_obj.TestMethod(ref l_string)

Bitwise Operator Support
Standard PowerBuilder applications allow the use of the logical operators AND, OR, and
NOT to evaluate boolean expressions. In .NET applications and components, in addition to
evaluating boolean expressions, you can use these same operators to perform bitwise
evaluations.

For the AND and OR operators, a bitwise evaluation compares the bits of one operand with the
bits of a second operand. For the NOT operator, a bitwise evaluation assigns the
complementary bit of the single operand to a result bit.

The operands in a bitwise comparison must have integral data types, such as integer, uint,
long, ulong, and longlong. However, if either of the operands (or the sole operand in the case of
a NOT operation) has an any datatype, the .NET application or component treats the operation
as a standard logical evaluation rather than as a bitwise comparison.

You can perform a bitwise comparison only inside a .NET conditional compilation block. If
you try to evaluate operands with integral datatypes in a standard PowerBuilder application,
you will get a compiler error.

For .NET applications and components, you can also use the bitwise operator XOR. If you use
this operator to evaluate a boolean expression in the .NET environment, the return result is true
only when one of the operands is true and the other is false. If both operands are true, or both
are false, the return result for the XOR operator is false.

This table describes the result of using the bitwise operators:

Table 14. Bitwise operators in the .NET environment

Operator Description

AND The bitwise “AND” operator compares each bit of its first operand to the corre-
sponding bit of its second operand. If both bits are 1, the corresponding result bit is
set to 1. Otherwise, the corresponding result bit is set to 0.

OR The bitwise “inclusive OR” operator compares each bit of its first operand to the
corresponding bit of its second operand. If either bit is 1, the corresponding result
bit is set to 1. Otherwise, the corresponding result bit is set to 0.

XOR The bitwise “exclusive OR” operator compares each bit of its first operand to the
corresponding bit of its second operand. If one bit is 0 and the other bit is 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result bit is set to
0.

NOT This is a unary operator. It produces the bitwise complement of its sole operand. If
one bit is 1, the corresponding result bit is set to 0. Otherwise, the corresponding
result bit is set to 1.

.NET Language Interoperability

84 PowerBuilder

User-Defined Enumerations
To use enumerations that you import from a .NET assembly, you must surround the
enumeration references in a conditional compilation block that is valid for your .NET target
environment.

Declaring .NET enumerations in PowerScript
You must also append an exclamation mark (“!”) to each of the enumeration’s constant strings
that you declare in the conditional code block.

For example, the following code defines the .NET enumeration class TimeOfDay:
Public enum TimeOfDay
{
 Morning = 0,
 AfterNoon,
 Evening
}

In PowerScript, you reference a .NET enumeration constant string as follows, when
TimeOfDay is an enumeration class in the ns_1.ns_2 namespace:
#if defined PBDOTNET THEN
 ns_1.ns_2.TimeOfDay a
 a=ns_1.ns_2.TimeOfDay.Morning!
#end if

Scope of enumeration constant
When you set a system-defined enumeration constant in standard PowerBuilder applications,
there is no issue regarding the scope of the constant definition, since all system enumeration
constants are uniquely defined. However, for .NET enumerations, you must define a scope for
the constant using the syntax:
enumerationType.enumerationEntryName!

If the enumeration class is declared under a namespace, you must include the namespace when
you set an enumeration constant:
namespacename.enumerationType.enumerationEntryName!

If there is no enumerationType enumeration class prefacing the declaration of a constant in
a .NET conditional code block, PowerBuilder assumes the enumeration is a system-defined
type and returns an error if the system-defined type is not found.

The syntax for a PowerBuilder system enumeration constant in the .NET environment is:
[enumerationType.]enumerationEntryName!

.NET Language Interoperability

Deploying Applications and Components to .NET 85

Although you cannot use dot notation in a constant declaration for a system-defined
enumeration in standard PowerScript, the pb2cs compiler must let you use dot notation for
constant declarations that you make in a conditional compilation block for the .NET
environment. Prefixing a constant declaration in the .NET environment with a PowerBuilder
system enumeration name is equivalent to making the same declaration without a prefix.

The VM initially checks whether the enumerationType is a declared .NET enumeration class.
If it does not find the enumeration class, it checks whether the enumerationType is a
PowerBuilder system enumeration. When the enumerationType matches the name of a
PowerBuilder system enumeration, the VM sets the constant for your .NET application or
component.

Therefore, for the system Alignment enumeration, the constant declaration
Alignment.Left! produces the same result as the Left! declaration inside a .NET
conditional code block. Outside such a code block, the Alignment.Left! declaration
causes a compiler error.

Function Calls on .NET Primitive and Enumerated Types
You can make function calls on .NET primitive and enumerated types from a PowerBuilder
application. The function calls must be made inside a conditional compilation block for
a .NET target.

.NET primitive types
To support function calls on .NET primitive types, the PowerBuilder .NET compiler (pb2cs)
merges the functionality of these primitive types with the functionality of corresponding
PowerBuilder primitive types. This allows you to use .NET primitive types and their
corresponding PowerBuilder primitive types in a similar fashion. The following example
makes the same ToString function call on both the .NET System.Int32 datatype and the
PowerScript long datatype:
System.Int32 i1
long i2
i1.ToString()
i2.ToString()

For a table of equivalencies between .NET and PowerScript primitive datatypes, see Datatype
Mappings on page 81.

Note: The System.IntPtr and SystemUIntPtr primitive types do not have precise
corresponding types in PowerBuilder—they are always treated as long datatypes. Calling
functions or modifying properties on these .NET primitive types leads to a compilation error
in PowerBuilder.

.NET enumerated types
Function calls are also supported on .NET enumerated types that you import to a
PowerBuilder .NET target. For example, suppose you define a .NET enumerated type in
a .NET assembly as follows:

.NET Language Interoperability

86 PowerBuilder

Public enum TimeOfDay
{
 Morning = 0,
 AfterNoon,
 Evening
}

PowerBuilder allows you to call the ToString method on the .NET TimeOfDay enumerated
type after you import it to your target:
#if defined PBDOTNET then
 ns1.ns2.TimeOfDay daytime
 daytime = ns1.ns2.TimeOfDay.Morning!
 daytime.ToString()
#end if

Accessing Indexes for .NET Classes
You can access the indexes of .NET classes in the same way you access PowerBuilder array
elements. However, in standard PowerBuilder applications, you can reference indexes only
using integral datatypes, such as integer, short, long, and so on.

In the .NET environment, you are not restricted to referencing indexes as integral types; you
can reference the indexes using any datatypes as parameters.

This example shows how to use a string datatype to access the index of the .NET hashtable
class, countries:
#IF Defined PBDOTNET then
system.collections.hashtable countries
countries = create system.collections.hashtable
//Assign value to hashtable
countries["Singapore"] = 6
countries["China"] = 1300
countries["United States"] = 200
//Obtain value from hashtable
int singaporePopulation, USAPopulation
singaporePopulation = countries["Singapore"]
USAPopulation = countries["United States"]
#END IF

Using Multithreading
When you deploy a PowerBuilder application that contains shared objects or an NVO
assembly to .NET, the application can be run in a multithreaded environment. The
PowerBuilder .NET runtime library also supports .NET synchronization, enabling your
application to avoid possible data corruption.

.NET Threading in PowerScript
This PowerScript code fragment uses .NET threading:
#if defined PBDOTNET then
//Declare a .NET Class
System.Threading.Thread ithread

.NET Language Interoperability

Deploying Applications and Components to .NET 87

//Declare a delegate for .NET Thread
System.Threading.ThreadStart threadproc

//Assign a user defined PowerScript
//function to the delegate
threadproc = f_compute

FOR Count = 1 TO a_count
 ithread = create System.Threading.Thread(threadproc)
 ithread.IsBackground = true
 ithread.Start()
 ithread.sleep(500)
NEXT

#else
 /*action*/
#end if

Using .NET Synchronization Functions
To use .NET synchronization functions directly in PowerScript:

1. Declare a global variable.
2. Initialize the global variable.
3. Use the global variable in your .NET synchronization functions. Define your types and

functions within #IF DEFINED and #END IF preprocessor statements.

Windows Form example:
/* declare and initialize global variable */
System.Object obj
obj = create System.Object

#if defined PBWINFORM then
 System.Threading.Monitor.Enter(obj);
#else
 /*action*/
#end if

b = 1000/globala
globala = 0

a = 1000

globala = 10
b = a / globala

#if defined PBWINFORM then
 System.Threading.Monitor.Exit(obj);
#else
 /*action*/

#end if

return 1

.NET Language Interoperability

88 PowerBuilder

Limitations
There are some important limitations on the code you can enclose in conditional compilation
blocks.

• Case sensitivity — PowerScript is case insensitive, but C# is case sensitive. If a resource
has the same name as another resource with differences only in the case of one or more
characters, PowerBuilder cannot process the resource names correctly.

• Calls to PowerScript from .NET functions — you cannot call a .NET method inside a
conditional code block if that method calls back into PowerScript functions.

• Delegates are not supported — a delegate is a type that safely encapsulates a method,
similar to a function pointer in C and C++. You cannot use delegates in conditional code
blocks.

• .NET classes and interfaces — you cannot use .NET classes and interfaces as parameters
to functions and events.

• Inheriting from .NET classes — you cannot create user objects, windows, or window
controls that inherit from .NET classes.

• Implementing .NET interfaces — you cannot create user objects that implement .NET
interfaces.

• Consuming .NET generics — you cannot consume .NET generic classes or generic
methods in conditional code blocks. The .NET Framework 2.0 introduced generics to act
as templates that allow classes, structures, interfaces, methods, and delegates to be
declared and defined with unspecified or generic type parameters instead of specific types.
Several namespaces, such as System Namespace and System.Collections.Generic,
provide generic classes and methods.
The System.Nullable type is a standard representation of optional values and as such it is
also classified as generic and therefore cannot be consumed in PowerBuilder .NET
applications.
In .NET Assembly and Web service targets, you can select a check box to map
PowerBuilder standard datatypes to .NET nullable datatypes. Nullable datatypes are not
Common Type System (CTS) compliant, but they can be used with .NET Generic classes
if a component accepts or returns null arguments or if reference arguments are set to null.

• AutoScript does not support .NET classes — AutoScript works as expected for
PowerBuilder objects, properties, and methods inside conditional code blocks, but it does
not display for .NET classes.

• DYNAMIC and POST do not support .NET methods — you cannot use the DYNAMIC or
POST keywords when you call a .NET method.

• .NET arrays of arrays — .NET arrays of arrays are supported in conditional code blocks
for .NET targets only.

.NET Language Interoperability

Deploying Applications and Components to .NET 89

Handling Exceptions in the .NET Environment
The PowerBuilder to .NET compiler changes the exception hierarchy used by the native
PowerScript compiler.

Modified exception hierarchy
In the native PowerBuilder environment, Throwable is the root datatype for all user-defined
exception and system error types. Two other system object types, RuntimeError and
Exception, inherit directly from Throwable.

In the .NET environment, System.Exception is the root datatype. The PowerBuilder to .NET
compiler redefines the Throwable object type as a subtype of the System.Exception class, and
maps the .NET System.IndexOutOfRangeException class to the PowerBuilder RuntimeError
object type with the error message “Array boundary exceeded.” The PowerBuilder to .NET
compiler also maps the following .NET exceptions to PowerBuilder error objects:

• System.NullReferenceException class to the NullObjectError object type
• System.DivideByZeroException class to the DivideByZeroError object type

This figure shows the exception hierarchy for PowerBuilder applications in the .NET
environment:

.NET Language Interoperability

90 PowerBuilder

Figure 4: Exception hierarchy for PowerBuilder in the .NET environment

Example using a .NET system exception class
Even though a .NET exception class is mapped to a PowerBuilder object type, you must use
the PowerBuilder object type in your PowerScript code. For example, suppose you define
a .NET test class to test for division by zero errors as follows:
namespace ExceptionSample
{
 // Custom exception class used in method second_test(int a) below
 public class MyCustomException : Exception
 {
 public string GetMessage()
 {
 public string GetMessage()
 {
 return "Custom Error Thrown";

.NET Language Interoperability

Deploying Applications and Components to .NET 91

 }
 }

 public class Test
 {
 public int division_test (int a)
 {
 int zero = 0;
 // this will throw a System.DivideByZero exception
 return a/zero;
 }
 public int second_test(int a)
 {
 a = a / 2;
 throw new MyCustomException();
 }
 }
}

To catch the error in PowerScript, you can use the DivideByZeroError object type or either of
its ancestors, RuntimeError or Throwable. The following PowerScript code catches the error
caused by the call to the .NET Test class method for invoking division by zero errors:
int i = 10
string ls_error
try
 #IF Defined PBDOTNET Then
 ExceptionSample.Test t
 t = create ExceptionSample.Test
 i = t.division_test(i)
 #END IF
catch (DivideByZeroError e)
//the following lines would also work:
//catch (RuntimeError e)
//catch (Throwable e)

.NET Language Interoperability

92 PowerBuilder

 ls_error = e.getMessage ()
 MessageBox("Exception Error", ls_error)
end try

Example using a custom .NET exception class
Suppose the .NET Test class is modified to catch a custom .NET exception:
public class Test
{
 public int second_test (int a)
 {
 a = a/2;
 throw new MyUserException();
 }
}

Because MyUserException is a user-defined exception in the .NET environment, it cannot be
caught by either the PowerBuilder Exception or Throwable object types. It must be handled
inside a .NET conditional compilation block:
int i = 10
string ls_error
#IF Defined PBDOTNET Then
 try
 ExceptionSample.Test t
 t = create ExceptionSample.Test
 i = t.second_test(i)
 catch (ExceptionSample.MyUserException e)
 //this will also work: catch (System.Exception e)
 ls_error = e.getMessage()
 MessageBox("Custom Exception", ls_error)
 end try
#END IF

.NET Language Interoperability

Deploying Applications and Components to .NET 93

Connections to EAServer Components
You can build a .NET client application or component that invokes methods of Enterprise
JavaBeans (EJB) components or PowerBuilder EAServer components running in EAServer
6.1 or later.

This capability is based on the .NET client ORB library introduced in EAServer 6.1.

Note: When you install EAServer, you must install the .NET support option.

You can use either the Connection object or the JaguarORB object to connect to the
component in EAServer, and you can connect from .NET Windows Forms and from .NET
assemblies and Web services.

Using the Connection Object
Build a .NET client application for an EAServer component using the Connection object.

1. Use the Template Application target wizard to create a client application, then use a .NET
application wizard to create a .NET target using the library list and application object of the
target you just created.

Alternatively, use a .NET target wizard to build a client application from scratch.

2. Use the EAServer Connection Object Wizard to create a standard class user object
inherited from the Connection object. You can then use this object in a script to establish a
connection. First set connection options, then call the ConnectToServer function.

If you use the Template Application wizard to create the client application, you can create
the Connection object in that wizard.

3. Use the EAServer Proxy Wizard to create a project for building a proxy object for each
EAServer component that the .NET client will use, then generate the proxy objects. The
EAServer Proxy icons on the Project page of the New dialog box are enabled for all .NET
target types.

4. Write the code required to create the EAServer component instance using the
CreateInstance function.

5. Call one or more component methods from the client.

The steps are the same for .NET clients and standard PowerBuilder clients. For detailed steps,
see Application Techniques > Building an EAServer Client.

.NET Client Differences
There are some differences you should be aware of when you use a Connection object with
a .NET client.

This table lists some properties that have different behavior in .NET client applications.
Properties and functions that are obsolete or for internal use only in standard PowerBuilder

.NET Language Interoperability

94 PowerBuilder

applications are also unsupported in .NET applications. All other properties, functions, and
events are supported.

Property Description

Driver Only Jaguar and AppServer are supported values. Any other value results in a
runtime error.

ErrorCode These error codes are supported:

• 0 — success
• 50 — distributed service error
• 57 — not connected
• 92 — required property missing or invalid
• 100 — unknown error

The same error codes are returned by the ConnectToServer function.

Options These options support SSL connections from .NET clients. They are case
sensitive and are not available for standard PowerBuilder (Win 32) clients:

• ORBclientCertificateFile
• ORBclientCertificatePassword

See SSL Connection Support on page 98.

Connections Using the JaguarORB Object
To create a CORBA-compatible client, you can use the JaguarORB object instead of the
Connection object to establish the connection to the server.

The JaguarORB object allows you to access EAServer from PowerBuilder clients in the same
way as C++ clients.

Two techniques
The JaguarORB object supports two techniques for accessing component interfaces, using its
String_To_Object and Resolve_Initial_References functions.

Using the String_To_Object function works in the same way that the ConnectToServer and
CreateInstance functions on the Connection object do internally. The String_To_Object
function allows you to instantiate a proxy instance by passing a string argument that describes
how to connect to the server that hosts the component. The disadvantage of this approach is
that you lose the benefits of server address abstraction that are provided by using the naming
service API explicitly.

To use the EAServer naming service API, you can call the Resolve_Initial_References
function to obtain the initial naming context. However, this technique is not recommended
because it requires use of a deprecated SessionManager::Factory create method.

.NET Language Interoperability

Deploying Applications and Components to .NET 95

Most PowerBuilder clients do not need to use the CORBA naming service explicitly. Instead,
they can rely on the name resolution that is performed automatically when they create
EAServer component instances using the CreateInstance and Lookup functions of the
Connection object.

See Application Techniques > Building an EAServer Client.

.NET client differences
There are some differences you should be aware of when you use a JaguarORB object with
a .NET client. The Init function has slightly different behavior in .NET client applications:

• You do not need to call the Init function to use the JaguarORB object from a .NET client. If
you do not call Init, the EAServer ORB driver uses the default property values.

• .NET clients support these standard options only:
• ORBHttp
• ORBWebProxyHost
• ORBWebProxyPort
• ORBHttpExtraHeader

• The following options support mutual authentication in SSL connections from a .NET
client. They are case sensitive and are not available for standard PowerBuilder (Win 32)
clients:
• ORBclientCertificateFile
• ORBclientCertificatePassword
See SSL Connection Support on page 98.

All other properties, functions, and events are supported and work in the same way as in
standard PowerBuilder client applications.

Support for CORBAObject and CORBACurrent Objects
The CORBAObject object gives PowerBuilder clients access to several standard CORBA
methods. All proxy objects generated for EAServer components using the EAServer proxy
generator are descendants of CORBAObject.

The CORBACurrent service object provides information about the EAServer transaction
associated with a calling thread and enables the caller to control the transaction. The
CORBACurrent object supports most of the methods defined by the EAServer
CORBACurrent interface.

All CORBAObject and CORBACurrent properties, functions, and events are supported
with .NET clients.

.NET Language Interoperability

96 PowerBuilder

Supported Datatypes
Simple and complex datatypes are convertible between .NET clients and EAServer
components.

This table describes the basic CORBA IDL types supported and their corresponding
PowerScript type:

CORBA IDL type Mode PowerScript type

boolean in, return Boolean by value

out, inout Boolean by reference

char in, return Char by value

out, inout Char by reference

octet in, return Byte by value

out, inout Byte by reference

short in, return Integer by value

out, inout Integer by reference

long in, return Long by value

out, inout Long by reference

long long in, return Longlong by value

out, inout Longlong by reference

float in, return Real by value

out, inout Real by reference

double in, return Double by value

out, inout Double by reference

string in, return String by value

out, inout String by reference

BCD::Binary in, return Blob by value

out, inout Blob by reference

BCD::Decimal in, return Decimal by value

out, inout Decimal by reference

BCD::Money in, return Decimal by value

out, inout Decimal by reference

.NET Language Interoperability

Deploying Applications and Components to .NET 97

CORBA IDL type Mode PowerScript type

MJD::Date in, return Date by value

out, inout Date by reference

MJD::Time in, return Time by value

out, inout Time by reference

MJD::Timestamp in, return DateTime by value

out, inout DateTime by reference

TabularResults::ResultSet in, return ResultSet by value

out, inout ResultSet by reference

TabularResults::ResultSets in, return ResultSets by value

out, inout ResultSets by reference

Void return (None)

Arrays and sequences of structures and basic types are also supported. This table lists the
complex datatypes that are supported:

CORBA IDL type Mode PowerScript type

Array in Bounded array by value

inout Bounded array by reference

Sequence in Unbounded array by value

inout Unbounded array by reference

Structure in, return Structure by value

out, inout Structure by reference

SSL Connection Support
To enable .NET client applications developed in PowerBuilder to connect with EAServer
using the Secure Sockets Layer (SSL), the computer where the .NET application runs must be
configured to work correctly with the SSL authentication mode.

You can connect using Server authentication or Mutual authentication.

Server Authentication
If only server authentication is required, the EAServer client must provide authentication to
the server to prove that the client can be trusted before it can connect to the server.

By default, EAServer 6.x uses 2001 as the port for this type of SSL connection.

.NET Language Interoperability

98 PowerBuilder

Connection Code
In the PowerScript connection code, change the EAServer host’s address to a URL that begins
with “iiops” and ends with the correct SSL port.

All other code is the same as if the client was connecting to a server without using SSL.

The following sample code connects with EAServer using an SSL connection:
Connection myconnect
int rc

myconnect = create Connection
myconnect.Application = "pbtest"
myconnect.Driver = "jaguar"
myconnect.UserID = "admin@system"
myconnect.Password = "abc"
myconnect.Location = "iiops://mydesktop:2001"

rc = myconnect.connecttoserver()

Importing an EAServer Certificate into the Client Certificate Store
The EAServer host’s certificate file must be imported into the Microsoft certificate store on
the client’s computer.

You can do this using the Certificate snap-in in the Microsoft Management Console (MMC).

1. Select Run from the Windows Start menu, type mmc in the Run dialog box, and click OK
to open the Microsoft Management Console.

2. Select File > Add/Remove Snap-in to open the Add/Remove Snap-in dialog box.

.NET Language Interoperability

Deploying Applications and Components to .NET 99

3. Click Add to open the Add Standalone Snap-in dialog box.

4. Select Certificates from the Snap-in list and click Add to open the Certificates Snap-in
dialog box.

.NET Language Interoperability

100 PowerBuilder

5. Select the Computer account radio button, click Next, click Finished, and close the Add
Standalone Snap-in and Add/Remove Snap-in dialog boxes.

A Certificates node displays in the MMC.

6. Expand the Certificates node in the MMC, right-click Personal, select All Tasks, and then
select Import.

The Certificate Import Wizard opens.

7. Follow the instructions in the Certificate Import Wizard to import the certificate.

.NET Language Interoperability

Deploying Applications and Components to .NET 101

The wizard prompts you to provide a certificate file. For server authentication, this is the
certificate file that is configured as the certificate for EAServer on port 2001 or any other
port that is specified for use in server-only authentication SSL mode. You may already
have such a file from configuring EAServer for SSL connections, or, if you have access
rights to the built-in Java keystore on the EAServer host, you can export the required
certificate from the keystore.

For more information about exporting a certificate, see the EAServer documentation.

Note: The server’s certificate file need not include its private key.

Mutual Authentication
If mutual authentication is required, the server and client must authenticate each other to
ensure that both can be trusted.

By default, EAServer 6.x uses 2002 as the port for this type of SSL connection.

Both the server’s certificate and the client’s certificate must be imported into the Microsoft
certificate store on the client computer as described in Importing an EAServer Certificate into
the Client Certificate Store on page 99.

Note: The client’s certificate file must include the private key for the client’s certificate. The
server’s certificate file need not include its private key.

The server certificate used for mutual authentication cannot be the same as the certificate used
for server-only authentication. Make sure you obtain the correct certificate file.

For mutual authentication, the client’s certificate file must be imported into the certificate
store on the client computer and it must be available in the file system on the client computer,
because it is referenced in the PowerScript code required to connect to EAServer.

Two new key/value pairs in the Options property of the Connection object are used for mutual
authentication:

• ORBclientCertificateFile is used to specify the file name of the client certificate file.
• ORBclientCertificatePassword is used to specify the password for the certificate if any.

There is no need to use this key if the certificate is not protected by password.

Connection code
In the PowerScript connection code, change the EAServer host’s address to a URL that begins
with “iiops” and ends with the correct SSL port. The following sample code connects to an
EAServer host that requires mutual authentication:
Connection myconnect
int rc

myconnect = create Connection

myconnect.Application = "pbtest"
myconnect.Driver = "jaguar"
myconnect.UserID = "admin@system"

.NET Language Interoperability

102 PowerBuilder

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc38035.0600/html/eassec/CACFHEGG.htm

myconnect.Password = "sybase"
myconnect.Location = "iiops://mydesktop:2002"
myconnect.Options = "ORBclientCertificateFile=
'd:\work\sample1.p12',ORBclientCertificatePassword =abc"

rc = myconnect.connecttoserver()

Configuration step required for Web services
For mutual authentication, PowerBuilder .NET Web services that are clients for EAServer
require that the ASPNET account on the IIS server have access to the private key of the client
certificate. Access to the private key of the server certificate is not required.

Use the Windows HTTP Services Certificate Configuration Tool
(WinHttpCertCfg.exe) to configure client certificates. You can download this tool from
the Microsoft Download Center.

To grant access rights to the private key of the client certificate for the ASPNET account on the
IIS server, type the following commands at a command prompt:
cd C:\Program Files\Windows Resource Kits\Tools
WinHttpCertCfg -g -c LOCAL_MACHINE\MY -s "ABC" -a "ASPNET"

These commands assume that the tool is installed in the default location at C:\Program
Files\Windows Resource Kits\Tools and that the client certificate's subject
name is “ABC”. The -s argument is equivalent to the Issued To field in the MMC. The
ASPNET account is valid for XP computers. You should use the “NetworkService” account
for other Windows platforms. For the -c argument, always use “LOCAL_MACHINE\MY”
rather than the actual name of the local computer.

For more information about the configuration tool’s options, type WinHttpCertCfg -
help at the command prompt. For more information about installing client certificates for
Web applications and services, see the Microsoft Help and Support site.

Best Practices for .NET Projects
Although PowerScript is essentially a compiled language, it is quite tolerant. For the sake of
performance, the PowerBuilder .NET compiler is not designed to be as tolerant as the
PowerBuilder native compiler.

To be able to compile your applications with .NET, you should avoid certain practices in your
PowerScript code.

Syntax issues
These language-level items apply when you plan to transform a PowerBuilder application to a
Windows Forms application.

.NET Language Interoperability

Deploying Applications and Components to .NET 103

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f
http://support.microsoft.com/kb/901183

• Avoid the GoTo statement — jumping into a branch of a compound statement is legal in
PowerBuilder, because the concept of scope inside a function does not exist in
PowerScript.
For example, the following code works well in PowerBuilder:
if b = 0 then
 label: …
else
 …
end if
goto label

This PowerScript translates conceptually into the following C# code:
if (b == 0)
{ // opening a new scope
 label: …
}
else
{
 …
}
goto label;

Since a GoTo statement is not allowed to jump to a label within a different scope in .NET,
the C# code would not compile. For this reason, avoid using GoTo statements.

• Do not call an indirect ancestor event in an override event — suppose that there are three
classes, W1, W2, and W3. W1 inherits from Window, W2 inherits from W1, and W3
inherits from W2. Each of these classes handles the Clicked event.

In the Clicked event of W3, it is legal to code the following in PowerScript:
call w1::clicked

However, in C#, calling the base method of an indirect base class from an override method is
not allowed. The previous statement translates into the following C# code, which might
produce different behavior:
base.clicked();

In this example, a possible workaround is to move code from the Clicked event of the indirect
ancestor window to a window function, and then call the function, rather than the original
Clicked event, from the descendant window.

Semantic issues

• Do not use the This keyword in global functions — a global function is essentially a static
method of a class. Although the PowerBuilder compiler does not prevent you from using
the This pronoun in a global function, the C# compiler does not allow this.

• Do not change an event's signature — the PowerBuilder compiler does not prevent you
from changing the signature of an event defined by its super class, but .NET does not allow
this.
For example, suppose the w_main class contains this event:

.NET Language Interoperability

104 PowerBuilder

Event type integer ue_update(int e)

The subclasses of the w_main class should not change the parameters or the return type of
the event.

• Do not change the access modifier of an inherited function to public — if your application
contains a class that inherits from another class, do not change to public access the access
modifiers of functions whose access level in the parent class was protected or private.
The PowerBuilder compiler does not prevent you from changing the access modifier of a
function in an inherited class from protected or private to public, but if you attempt to
deploy a .NET target that contains such a function, you receive an error indicating that a
private or protected function cannot be accessed.

• Do not code Return statements in Finally clauses — PowerBuilder allows you to code a
Return statement in the Finally clause of a Try-Catch-Finally-End-Try statement, but C#
does not support Return statements in Finally clauses.
If your code includes such statements, the compiler returns the error "Return statement
cannot be used in finally clause."

• Do not cast to object without inheritance relationship — the PowerBuilder compiler
allows you to cast an object to classes that are not ancestors of the object you are casting,
such as sibling object classes. However, this is not considered good coding practice, and is
not allowed for .NET targets.

External functions

• Differences in passing a structure by reference — PowerBuilder allows you to declare an
external function that has a parameter of type Structure passed by reference.
For example:
Subroutine CopyMemory(ref structure s, int size) library "abc.dll"

The s parameter can accept any datatype that is a pointer to something.
A PowerBuilder external function is mapped to the .NET platform Invoke functionality.
This functionality requires that the structure passed into the external function be exactly of
the type declared. Therefore, when compiling the following PowerScript code, the
PowerBuilder .NET compiler issues an error, because the parameter, li, references a
LogInfo structure, which is different from the function’s declared structure class.
LogInfo li
CopyMemory(ref li, 20) // error!

To solve this problem, you can declare an additional external function as follows:
Subroutine CopyMemory(ref LogInfo li, int size) library "abc.dll"

• Structures as parameters in .NET Applications — external functions that have structures
for parameters must be passed by reference rather than value if you call them in a .NET
Windows Forms application when the parameter is a const pointer.
For example, a PowerScript call to the SystemTimeToFileTime function in
kernel32.dll could use the following declaration, with the first parameter being
passed by value and the second parameter by reference:

.NET Language Interoperability

Deploying Applications and Components to .NET 105

Function boolean SystemTimeToFileTime(os_systemtime lpSystemTime,
ref os_filedatetime lpFileTime) library "KERNEL32.DLL"

For .NET Windows Forms applications, you must modify the declaration to pass both
parameters by reference:
Function boolean SystemTimeToFileTime(ref os_systemtime
lpSystemTime, ref os_filedatetime lpFileTime) library
"KERNEL32.DLL"

The SystemTimeToFileTime function is declared as a local external function and used in
pfc_n_cst_filesrvunicode, pfc_n_cst_filesrvwin32, and other operating-system-specific
classes in the pfcapsrv.pbl in the PFC library. If you use this library in a .NET
Windows Forms application, you must change the declaration as described above.

• Allocate space before passing a string by reference — before passing a string to an external
function by reference in PowerBuilder, you should allocate memory for the string by
calling the Space system function. In subsequent calls to the function, if you pass the same
string to the function, PowerBuilder continues to work well even if the string becomes
empty, because memory allocated for the string is not yet freed by the PowerBuilder VM.
This is not the case in the .NET environment. If the string passed to an external function by
reference is empty, and if the external function writes something to the string, an exception
is thrown. Therefore, you must make sure to allocate enough space for a string before
passing it to an external function by reference.
If the code looks like this:
char* WINAPI fnReturnEnStrA()
{
 return "ANSI String";
}

it is recommended that you alter it like this:
#include <objbase.h>
... ...
char* WINAPI fnReturnEnStrA()
{
 char* s = (char*)CoTaskMemAlloc(12);
 memcpy(s, "ANSI string\0", 12);
 return s;
}

Design-Level Considerations
Although stricter compiler enforcement for the .NET environment can catch coding errors
typically tolerated by the PowerScript compiler, the .NET environment might also require
changes in application design that are not necessarily caught by the compiler.

Use the DESTROY statement
The .NET garbage collection service does not trigger the Destructor event for PowerBuilder
objects. If you need to trigger the Destructor event for a nonvisual object, you must explicitly
call the PowerScript DESTROY statement for that object.

.NET Language Interoperability

106 PowerBuilder

Use multiple text patterns for string matching
If you want to test whether a string’s value contains any of a multiple set of matching text
patterns, you can use the pipe character (|) in your .NET applications or components. The pipe
character is a metacharacter in the .NET environment that functions as an OR operator,
although it is not a metacharacter in the standard PowerBuilder client-server environment.

Therefore, when you call the Match function in the .NET environment, you can use pipe
characters to determine if either of two (or one of many) text patterns match a string you are
evaluating. In standard client-server applications, you can use the Match function to evaluate
only one text pattern at a time.

Work around unsupported features

• Restrict impact of unsupported events — since unsupported events are never triggered, do
not allow the logic in unsupported events to affect the logic flow of other events or
functions.
For example, if the code in an unsupported event changes the value of an instance variable,
it can affect the logic flow in a supported event that uses that variable. Remove this type of
coding from unsupported events.

• Avoid name conflicts — PowerBuilder allows two objects to have the same name if they
are of different types. For example, you can use the name s_address to define a structure
and a static text control or a nonvisual object in the same PowerBuilder application.
The .NET environment does not allow two classes to have the same name. To enable your
application to compile in .NET, you must not give the same name to multiple objects, even
if they are of different types.

• Use global structures in inherited objects — using local structures in inherited objects can
prevent deployment of a .NET project. To deploy the project, replace all local structures
defined in inherited objects with global structures.

Avoid hindrances to application performance
Some functions and features that are fully supported can hinder application performance. Use
these functions and features sparingly and avoid them where possible.

• Response windows and message boxes — use only when absolutely necessary. Response
windows and message boxes require more server-side resources than other kinds of
windows.

• Yield — avoid whenever possible, because it requires additional server-side resources.
• Timers — use sparingly and avoid including them on forms that require data entry. Timers

periodically generate postbacks and can impede data entry. When you use them, delay the
postbacks by appropriate scripting of client-side events.

• PFC — the DataWindow service in PFC handles many DataWindow events. Each event
causes a postback for each mouse-click, which adversely affects application performance.
Delay postbacks by scripting client-side events or cache DataWindow data in the client

.NET Language Interoperability

Deploying Applications and Components to .NET 107

browser by setting the paging method property for the DataWindow object to
XMLClient!.

Take Advantage of Global Configuration Properties
Properties have been added to standard PowerBuilder Classic controls to enhance the
application presentation in the .NET environment and to improve application performance.

Global properties also allow you to share data across application sessions.

These properties are listed in Global Web Configuration Properties on page 68.

.NET Language Interoperability

108 PowerBuilder

Compiling, Debugging, and Troubleshooting

This part provides information about compiling, debugging, and troubleshooting .NET
targets.

Incremental Builds
Incremental builds allow you to save time while deploying applications for testing or
production purposes. For incremental builds, only object classes that are affected by one or
more changes are recompiled during the build process.

Target level
The incremental rebuild process for .NET targets is conducted as the first step of a project’s
deployment to a .NET platform. Although deployment remains at the project level,
incremental rebuilds are done at the target level. This means that multiple projects within a
single target are able to benefit from this time saving feature by sharing the same incremental
build assemblies or .NET modules.

Note: Incremental builds are not available for .NET component targets. The
PowerBuilder .NET compiler always does full rebuilds for these target types.

Build and Deploy Directories
When you deploy a .NET application project, PowerBuilder creates a build directory under the
directory for the current target.

The name of the build directory is TargetName.pbt_build, where TargetName is the name of
the current target. If the project you deploy has a debug build type, the build files are generated
in a “debug” subdirectory of the TargetName.pbt_build directory. If the project you deploy has
a release build type, the build files are generated in a subdirectory named “release.”

The debug and release subdirectories store incremental build results only. PowerBuilder does
a full rebuild if files are missing or damaged in one of these subdirectories. The subdirectories
or their parent directory cannot be used for a project's output path or working path.

In addition to the debug and release directories, PowerBuilder creates a deploy directory when
you first deploy a project from the current target. The deploy directory contains an XML file
for each project in the target that you deploy.

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 109

Rebuild Scope
An option on the General tab page of .NET Windows Forms painters allows you to choose
whether to do a full rebuild or an incremental build when deploying a .NET project. The
default option is incremental.

If the application has not been previously deployed, a full build is triggered by the
PowerBuilder IDE even when the incremental rebuild option is selected. The incremental
rebuild option is also overridden if you remove the build directory that PowerBuilder
generates from a previous build, or if some of the build files are missing or damaged in the
build directory or its subdirectories.

.NET Modules
For a debug build, the PowerBuilder .NET compiler creates a .NET module for each
PowerBuilder class or class group. A class group consists of a container object that instantiates
a primary class, and the controls in that container object, that are instances of subsidiary
classes.

For example, a window normally contains several controls. The window and the controls are
declared as separate classes that are bound together as a class group in the .NET build process.

For a release build, the compiler creates a .NET module for each PBL rather than for each class
or class group. Although basing the generated .NET modules on classes and class groups
increases performance for incremental builds, this is mostly needed at development time when
the application is being debugged. At production time, basing the generated .NET modules on
target PBLs is more advantageous, since it minimizes the number of modules that need to be
deployed.

Incremental rebuilds are supported for deployment to remote servers as well as for MSI file
generation. In addition to saving time on deployment, the generation of .NET modules is
especially beneficial for smart client Windows Forms applications, because the modules can
reduce the size of the assembly files that need to be updated.

PBD Generation
In addition to .NET modules or assemblies, PowerBuilder can generate PBD files for
application PBLs containing DataWindow, Query, or Pipeline objects.

Pipeline objects are supported in Windows Forms targets, but are not currently supported in
the .NET component targets. The PBD files are linked as external resources with the
generated .NET modules and assemblies.

If you use incremental builds for your Windows Forms, the PBD files are generated only for
selected PBLs in which modifications have been made to DataWindow, Query, or Pipeline
objects. For these target types, the PBD files are generated in a “pbd” subdirectory of the
TargetName.pbt_build directory. The PBD files are deployed together with the

Compiling, Debugging, and Troubleshooting

110 PowerBuilder

generated .NET modules or assemblies. On deployment, they are not deleted from this
subdirectory since they are used to check for changes during subsequent incremental builds.

If you use full builds, PBD files are always generated for selected PBLs containing
DataWindow, Query, or Pipeline objects even when there are no changes to these objects—
although you can prevent generation by clearing the check box next to the PBL name on the
Library Files tab page of the Project painter. Since you cannot use incremental builds
with .NET component targets, PBD files are always generated by default for these target
types.

Triggering Build and Deploy Operations
PowerBuilder lets you trigger build and deploy operations when you run or debug a Windows
Forms project.

By default, when you click the running man or debugging icon in the PowerBuilder toolbar, or
select Run from a project menu or context menu for one of these target types, PowerBuilder
determines if there is a corresponding build directory for the selected target. If there is,
PowerBuilder checks whether the .NET modules in the build directory are consistent with the
latest changes to each object in your current application.

If implementation or interface changes are detected or if the build directory does not exist for
the current target, PowerBuilder displays a message box that tells you the project is out of date
and that prompts you to redeploy the project. The message box has three buttons (Yes, No, and
Cancel) and a check box that lets you prevent the display of the message box the next time you
click or select run or debug.

If you click Yes in the message box, PowerBuilder builds the project using an incremental or
full rebuild—depending on the current rebuild scope—and then redeploys it, using the current
project’s deployment specifications. If you click No in the message box with the
redeployment prompt, PowerBuilder attempts to run or debug the currently deployed target
even though it is out of date. Clicking Cancel terminates the run or debug request.

If you select the Do not ask me again check box and then click Yes or No, PowerBuilder
modifies a drop-down list selection on the General tab of the System Options dialog box.

System Option
Select an option to determine whether a message box appears if you run or debug a project
when it is out of date.

The On click Run, if .NET application projects are out of date drop-down list on the General
tab of the System Options dialog box controls the appearance of a message box when a project
is out of date.

This table describes the selections available in the drop-down list:

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 111

Table 15. Drop-down list selections for incremental builds

Selection Effect when you click or select Run or Debug

Ask me (Default selection.) Causes a message box to appear if the current project
has been modified since the last time it was deployed, or if it has never been
deployed before.

Always redeploy Always redeploys a project before running or debugging it. It first rebuilds
the project using the rebuild scope set in the Project painter.

Never redeploy Never redeploys a project before trying to run it, although it does deploy a
project that has not been previously deployed, and then attempts to run or
debug that project. (Do not use this option to debug a project that you have
previously deployed.)

The message box that prompts you to redeploy an out-of-date project appears only when the
drop-down list selection is “Ask me.” This selection changes automatically to “Always
redeploy” if you click Yes in the message box when the “Do not ask me again” option is
selected. It changes to “Never redeploy” if you click No. You can always reset the option from
the System Options dialog box.

Incremental Build Processing
When you save recently edited code, the PowerBuilder IDE invokes the PowerScript compiler
to get information for updating the System Tree and the property sheet.

There are basically three kinds of changes that the compiler handles:

• Implementation changes, such as modifications to a function body or to the properties of a
class.

• Interface changes, such as the removal of a function or the modification of a function
prototype.

• Data changes, including edits made to a DataWindow, Query, or Pipeline object.

The IDE collects the information that has changed, performs a full or incremental PowerScript
rebuild, and passes the necessary information to the pb2cs .NET translator. If the PowerScript
compiler reports any errors the IDE does not invoke the .NET translator.

An interface change that is successfully compiled by the PowerScript compiler and then
passed to pb2cs can also affect code in classes that are compiled in a different .NET module of
the same target. In this case, if you rebuild the project using the incremental rebuild process,
the .NET runtime throws an exception when you try to run the application.

PowerBuilder catches and translates .NET runtime exceptions to error messages describing
the exception source. Before redeploying the application, you can correct this type of error by
changing the PowerScript code based on the contents of the error message or by performing a
full rebuild. If there are many places in other .NET modules affected by the interface change, it
is best to do a full rebuild.

Compiling, Debugging, and Troubleshooting

112 PowerBuilder

If you only make data changes to DataWindow objects before an incremental rebuild,
the .NET rebuild process is skipped entirely and only application PBD files are redeployed.

Debugging a .NET Application
After you have deployed a PowerBuilder or Windows Forms application, you can debug it.

1. To open the debugger, you can:

• Right-click the target or project in the System Tree and select Debug from its context
menu.

• Open the project to debug, and select Design > Debug Project from the Project painter
menu bar.

• Make sure the application you want to debug is current and select Debug
applicationName in the PainterBar.

2. To start the debugging process:

• From the Debugger toolbar, select Start applicationName .
• From the Debugger menu, select Debug > Start applicationName.

Attaching to a Running Windows Forms Process
For Windows Forms projects, you can start your deployed application from its executable file
before starting the debugger, and then attach to the running process from the debugger.

To attach to a process that is already running:

1. In the Project painter, select Run > Attach to .NET Process.

2. In the dialog box that opens, select the process you want to attach to.
After you attach to the process, it starts running in the debugger and you can set
breakpoints as you normally do.

Next

Select Run > Detach to detach from the process. This gives you more flexibility than simply
using just-in-time (JIT) debugging.

.NET Debugger Restrictions
The .NET debugger supports most features of the debugger for standard PowerBuilder
applications, including expression evaluation and conditional breakpoints.

It does not support the Objects in Memory view or variable breakpoints, which are not
supported in .NET. Local variables that are declared but not used do not appear in the Local
Variables view in .NET targets.

Additional debugging restrictions include the following:

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 113

• Single-stepping between events — in the .NET debugger, when you step into a statement
or function in an event script, the debugger shows the next line of code. However, if you
step into a different event script, the debugger continues execution to the next breakpoint.
Add a breakpoint to each event that you want to debug.
For example, if you have set a breakpoint in the application's Open event, and the script
opens a window, the debugger does not step into the window's Open event. You should set a
breakpoint in the window's Open event or in a user-defined event that is called from the
Open event.

• Setting breakpoints in modified code — if you modify your code after successfully
debugging a .NET application, you must redeploy the application before you debug it
again. Although you can still set breakpoints in modified lines of code before you redeploy
an application, the debugger debugs only the last deployed version of your application.

• Remote debugging — debugging of Web Service targets is not supported for applications
or components deployed to remote IIS servers.

For information about standard PowerBuilder debugger features, see Users Guide >
Debugging an application.

Release and Debug Builds
If you choose to compile an application or component as a debug build, an extra file with the
extension .PDB is generated in the output directory, and additional information is included in
the Output window.

Select a build type for your application or component on the General page in the Project
painter. If you want to stop at breakpoints in your code, you must use a debug build. Select a
release build when your application is ready to distribute to users.

DEBUG Preprocessor Symbol
Enable the DEBUG preprocessor symbol if you want to add code to your application to help
you debug while testing the application.

This is a selection on the General tab of the Project painter. Although you do not typically
enable the DEBUG symbol in a release build, if a problem is reported in a production
application, you can redeploy the release build with the DEBUG symbol enabled to help
determine the nature or location of the problem.

When the DEBUG symbol is enabled, code that is enclosed in a code block with the following
format is parsed by the pb2cs code emitter:
#if defined DEBUG then
 /*debugging code*/
#else
 /* other action*/
#end if

Note: When you use the DEBUG symbol, you can add breakpoints in the DEBUG block only
for lines of code that are not in an ELSE clause that removes the DEBUG condition. If you

Compiling, Debugging, and Troubleshooting

114 PowerBuilder

attempt to add a breakpoint in the ELSE clause, the debugger automatically switches the
breakpoint to the last line of the clause defining the DEBUG condition.

In the previous pseudocode example, if you add a breakpoint to the comment line “/* other
action*/”, the breakpoint automatically switches to the “/*debugging code*/”
comment line.

This figure shows the context menu item that you can use to paste the #If Defined DEBUG Then
template statement in the Script view:

For information about using preprocessor symbols such as DEBUG, see Conditional
Compilation on page 75.

Breaking into the Debugger When an Exception is Thrown
When an application throws an exception while it is being debugged, the debugger sees the
exception before the program has a chance to handle it.

The debugger can allow the program to continue, or it can handle the exception.

This is usually referred to as the debugger’s first chance to handle the exception. If the
debugger does not handle the exception, the program sees the exception. If the program does
not handle the exception, the debugger gets a second chance to handle it.

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 115

You can control whether the debugger handles first-chance exceptions in the Exception
Setting dialog box. To open the dialog box, open the debugger and select Exceptions from the
Debug menu. By default, all exceptions inherit from their parent, and all are set to Continue.

This figure shows the DWRuntimeError exception has been set to Break into the debugger:

When this exception is thrown, a dialog box lets you choose whether to open the debugger or
pass the exception to the program.

Debugging a .NET Component
You can debug .NET components as well as .NET applications that you build in PowerBuilder.

.NET Assembly component
You can run or debug an assembly project from the PowerBuilder UI if you fill in the
Application field (and optionally, the Argument and Start In fields) on the project Run tab in
the Project painter. SeeVersion, Post-build, and Run tab on page 59 for a description of the Run
tab fields for a .NET Assembly project.

.NET Web Service component
When you start the debugger and Internet Explorer is listed as the application to run a Web
Service project, a browser test page opens with links to the Web services deployed from your
project.

Compiling, Debugging, and Troubleshooting

116 PowerBuilder

Using the DEBUG symbol
If you used the DEBUG conditional compilation symbol in code for the nonvisual objects you
deploy as a Web service and you want this code to run, you must make sure that the enable
DEBUG symbol check box is selected before you deploy the project. If you plan to debug the
assembly or Web service, you should make sure the project is deployed as a debug build.

If you use a PowerBuilder .NET Windows Forms or application to debug the .NET component
project, you must copy the generated PDB file containing the DEBUG symbols for the
component to the deployment directory of the .NET Windows Forms application. Otherwise it
is likely that the debugger will not stop at breakpoints in the assembly that you generate from
the .NET component project.

Troubleshooting .NET Targets
Troubleshooting tips for PowerBuilder .NET applications and components can help you
diagnose and correct deployment and runtime errors.

Troubleshooting Deployment Errors
The deployment process has two steps: the PowerBuilder-to-C# emitter (pb2cs) runs, then the
project is compiled.

Errors are written to the output window, and the progress of the deployment process is written
to the DeployLog.txt file.

PB2CS errors
If pb2cs fails, make sure that:

• The pbc2cs.exe file is present in the PowerBuilder 12.5\DotNET\bin
directory and is the version distributed with the current PowerBuilder release.

If pb2cs fails and your application has any objects or controls whose names include dashes,
open a painter with a Script view and select Design>Options from the menu bar. Make sure the
Allow Dashes in Identifiers option is selected on the Script page in the Design Options dialog
box.

If your application uses local structures in inherited objects, the .NET project might fail to
deploy. To deploy the project successfully, replace all local structures defined in inherited
objects with global structures. Also, your application must not include calls to functions, such
as ToString, on primitive .NET datatypes, such as System.String, that map to PowerBuilder
datatypes. See Datatype Mappings on page 81 for a list of datatype mappings from .NET to
PowerBuilder.

If your application uses conditional compilation blocks, see Limitations on page 89 to make
sure that you have not used any .NET classes, interfaces, or methods in ways that are not

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 117

supported. See also Best Practices for .NET Projects on page 103 and Design-Level
Considerations on page 106.

Errors that display in the Output window with a C0 prefix, such as error C0312, are generated
by the PowerBuilder compiler. There is a link from these errors back to the source code in
PowerBuilder painters. Explanations for PowerBuilder compiler errors can be found in the
online help.

Build errors
If there is a build failure, make sure the 2.0 version of the .NET Framework is installed and is
listed in your PATH environment variable before any other versions of the .NET Framework.

Errors that display in the Output window with a CS prefix, such as error CS0161, are generated
by the Microsoft C# compiler. There is no link from these errors back to the source code in
PowerBuilder painters. Explanations for C# compiler errors can be found at the Microsoft
Web site.

Troubleshooting Runtime Errors
If a .NET application or component produces unexpected errors, make sure that the
PowerBuilder runtime files on the target computer or server have the same version and build
number as the PowerBuilder files on the development computer.

Troubleshooting Tips for Windows Forms Applications
Review the suggestions in this section if you experience difficulty deploying, running,
publishing, or updating a Windows Forms application.

Make sure you have installed the .NET Framework and SDK as described in System
Requirements for .NET Windows Forms Targets on page 18, and review the known issues for
Windows Forms applications listed in the PowerBuilder Release Bulletin.

Runtime Errors
The application might not run correctly when you select Design > Run Project in the Project
painter, when you run the executable file in the deployment folder, or when a user runs the
installed application.

When you or a user runs the executable file, PowerBuilder creates a file called
PBTrace.log in the same directory as the executable. This file can help you trace runtime
errors. It can be configured by editing the appname.exe.config file, where appname is
the name of the executable file:
 <appSettings>
 <!-- The value could be "enabled" or "disabled"-->
 <add key ="PBTrace" value ="enabled"/>
 <!-- The target can be File, EventLog or File|EventLog -->
 <add key ="PBTraceTarget" value="File"/>
 <!-- If the Target is File, PBTraceFileName should also be
 specified.-->
 <add key ="PBTraceFileName" value ="PBTrace.log"/>

Compiling, Debugging, and Troubleshooting

118 PowerBuilder

http://msdn.microsoft.com/en-us/library/ms228296(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms228296(VS.80).aspx

 <!-- EventLogId is optional(0 is default), and it only
 works when EventLog is enabled-->
 <add key ="PBEventLogID" value ="1101"/>
 ...

The following problems might also occur:

• If the application cannot be launched from another computer, make sure the required
PowerBuilder runtime files, pbshr125.dll and pbdwm125.dll, and the Microsoft
runtime files on which they depend, at71.dll, msvcp100.dll,
msvcr100.dll,msvcp71.dll, and msvcr71.dll, are available on the other
computer and in the application’s path.
If the executable file is located on a network path, the .NET Framework must be configured
to have Full Trust permissions at runtime. See Setting Full Trust Permissions on page
29.

• If the application cannot connect to a database, make sure that the required PowerBuilder
database interface, such as pbodb125.dll, has been added to the Win32 dynamic
library files section of the Library Files tab page and that the required client software is
available on the target computer. If the application uses a configuration file, such as
myapp.ini, select it on the Resource Files tab page. For ODBC connections, make sure
that the DSN file is created on the client.

• If no data displays in DataWindow objects, select the PBLs that contain them on the
Library Files tab page.

• If graphics fail to display, select them on the Resource Files tab page.

Publish Errors
There are two steps in the publication process. First, publish files are generated, and then they
are transferred to the publish location. Publish errors are displayed in the Output window and
recorded in a file called pbiupub.log in the output directory.

These errors may be reported during file generation:

• Failure to create local folder structure — check that you have permission to create a folder
in the specified directory.

• Failure to generate application manifest file — check that the .NET Framework SDK bin
directory is in your PATH environment variable. If a certificate file is specified, check that
it exists in the specified location and is a valid certificate.

Note: Use different output paths for multiple projects. If you create more than one
Windows Forms project for a single application, make sure you specify a different output
path on the General page for each project. If you do not, the application manifest files
generated for each project conflict with each other.

These errors may be reported during file transfer:

• Publish location is a Web server: http://servername/appname — check that servername
and the development computer are in the same network domain and that you are in the

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 119

administrators group of servername or have write access to the wwwroot directory on
servername.

• Publish location is a file share: \\servername\appname — check that servername and
the development computer are on the same network and that you have write access to the
appname directory on \\servername.

• Publish location is an FTP site: ftp://servername/appname — check that servername
can be accessed using the specified user name and password and that you have write access
to the appname directory on \\servername.

You should also check that the publish location name is typed correctly, that the
PBNET_HOME environment variable is set correctly, and that network connections are
working correctly.

Installation Errors
If installation on the client computer fails, troubleshoot the problem by verifying files,
locations, and network connections.

Make sure that:

• The files exist in the location specified on the server.
• The link on the publish page matches the location where the files have been published.
• The user has access rights to the publish server.
• There is sufficient space on the user’s computer.
• The network connection to the publish server is working correctly.
• You have not used localhost as the publish or install location.

If the publish page fails to open on the client, check the firewall settings on the publish server.
The firewall must be turned off on the server.

If the setup.exe file is not downloaded when a prerequisite is selected, open the Properties
dialog box for the HTTP directory in IIS Manager and make sure the script source access
permission is enabled. If the Execute Permissions property is not set to Scripts only, select
Scripts only from the drop-down list and refresh the server.

Update Errors
If update fails, make sure that the update mode has been set as intended, and that the update
files are in the specified location.

Compiling, Debugging, and Troubleshooting

120 PowerBuilder

Appendix

The appendix describes custom permissions you can set on the Security tabs of Web Service
and Windows Forms projects.

Custom Permission Settings
You can set custom permissions for .NET Windows Forms applications and for .NET Web
Service components, in the Project painter Security tab.

Most of the permission classes that you can customize are defined in the
System.Security.Permissions namespace. For more information on these permission classes,
see the Microsoft Web site at http://msdn.microsoft.com/en-us/library/
system.security.permissions.aspx.

Adding Permissions in the .NET Framework Configuration Tool
The list of permissions that display in the Security tab permissions list box is the same as the
list in the "Everything" permission set of the .NET Framework 4.0 SDK Configuration tool
runtime security policy.

To add permission settings that are not in the custom permissions list:

1. Close PowerBuilder if it is open, and create an XML file with the permission settings you
want to add.

For example, by default, the SMTPPermission setting is not included in the assigned
permissions in the "Everything" permission set. To create this permission, save a file
named SMTPPermission.xml with the following content:

<IPermission class="System.Net.Mail.SmtpPermission, System,
Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1" Unrestricted="true"/
>

2. Open the .NET Framework SDK Configuration tool from the Administrative Tools folder
in your computer Control Panel.

3. In the left pane of the configuration tool, select My Computer > Runtime Security
Policy > Machine > Permission Sets > Everything, then select the Action > Change
Permissions menu item.

4. In the Create Permission Set dialog box, click Import to open the Import a Permission
dialog box, browse to the SMTPPermission.xml file, and click OK.

5. Click Finish, close the configuration tool, and open a .NET project in PowerBuilder to the
Security tab page.

Appendix

Deploying Applications and Components to .NET 121

http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx
http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx

The SMTPPermission displays in the list box of the Security tab page. You can scroll the
list to see it when you select any radio button option other than Full Trust.

EnvironmentPermission
In a .NET Windows Forms application, you must have minimal “Read”
EnvironmentPermission settings if your application uses the GetContextKeywords function.

The default setting is “Unrestricted=’true’” when the EnvironmentPermission check box is
selected on the Security tab of the Project painter, although you can change this to “Read” and
still use the GeContextKeywords function. If you modify the setting to “Write” or
“NoAccess”, GetContextKeywords will fail.

Table 16. EnvironmentPermission required in Windows Forms

System function Permission required

GetContextKeywords Read

You can customize the EnvironmentPermission setting to allow the use of the
GetContextKeywords function in XML, as in this sample setting:

<IPermission
class="System.Security.Permissions.EnvironmentPermission, mscorlib,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
version="1"
Read="Path " />

EventLogPermission
EventLogPermission settings are required for the PBTraceTarget global property for .NET
targets.

Set this property on the Configuration tab of the Project painter for Web Service targets after
deployment in the appname.exe.config file (where appname is the name of the
executable file).

Table 17. EventLogPermission required in .NET targets

Global .NET property Permission required

PBTraceTarget when the value is set to file Windows Forms: Pbtrace.log FileIO per-

mission asserted by default in runtime library

PBTraceTarget when the value is set to EventLog Administer

In Windows Forms targets, if PBTraceTarget is set to "EventLog", the application needs
Administer permission to write to the log. You can set this in Security tab as follows:

<IPermission class=" EventLogPermission" version="1">

Appendix

122 PowerBuilder

 <Machine name="testmachine" access="Administer"/>
</IPermission>

FileDialogPermission
FileDialogPermission settings are required for the GetFileOpenName and GetFileSaveName
functions in Windows Forms targets.

Table 18. FileDialogPermission required in Windows Forms

System function Permission required

GetFileOpenName Open or OpenSave (unrestricted FileIOPermis-
sion also required)

GetFileSaveName Save or OpenSave (unrestricted FileIOPermis-
sion also required)

FileIOPermission
FileIOPermission settings are required for PowerScript system functions in Windows Forms
targets.

Permission requirements for Windows Forms

Table 19. FileIOPermission required for system functions in Windows Forms

System function Permission required

AddToLibraryList,DirectoryExists ,
FileEncoding, FileExists, FileLength,
FileLength64, FileRead, FileReadEx,
FileSeek, FileSeek64, LibraryDirecto-

ry, LibraryDirectoryEx, LibraryEx-

port, PrintBitmap, ProfileInt, Profile-

String, SetProfileString, SetLibrary-

List, ShowHelp, ShowPopupHelp,
and XMLParseFile

Read

FileWrite, FileWriteEx, RemoveDirec-

tory, LibraryCreate, LibraryDelete,
and LibraryImport

Write

FileDelete Read and Write

Appendix

Deploying Applications and Components to .NET 123

System function Permission required

FileOpen When the FileAccess argument is Read!

• Read permission for file named in FileName (first) ar-
gument

When the FileAccess argument is Write!

• Append and Write permission when the WriteMode ar-
gument is Append!

• Read and Write permission when the WriteMode argu-
ment is Replace!

FileCopy (string s, string t) Read for the source file (first) argument; Write for the target
file (second) argument

FileMove (string s, string t) Read and Write for the source file (first) argument; Write for
the target file (second) argument

GetFolder Unrestricted

GetCurrentDirectory PathDiscovery for the current directory

CreateDirectory (string d) Read for the parent directory; Write for the directory name
argument

This table shows the required FileIOPermission settings for object and control functions in
Windows Forms targets.

Object or control Function or property Permission required

Animation AnimationName Read

DataWindow SaveAsAscii , SaveAsFormattedText , Sa-

vInk , SaveInkPicture

Write

ImportFile Read permission if the
(usually second) file name
argument is supplied; if
file name argument is emp-
ty or null, requires Open-
Save FileDialogPermis-
sion and Unrestricted Fil-
eIOPermission

Appendix

124 PowerBuilder

Object or control Function or property Permission required

SaveAs Write permission if the
(usually second) file name
argument is supplied; if
file name argument is emp-
ty or null, requires Open-
Save FileDialogPermis-
sion and Unrestricted Fil-
eIOPermission

DataWindow (RichText
only)

InsertDocument Read

DataStore ImportFile Read

SaveAs, SaveAsAscii , SaveAsFormat-

tedText , SavInk , SaveInkPicture

Write

DragObject DragIcon property Read

DropDownListBox, List-
Box

DirList (string s, uint filetype) Read and PathDiscovery
for the file specification
(first) argument

DropDownPictureList-
Box, PictureListBox

AddPicture, and PictureName property Read

DirList (string s, uint filetype) Read and PathDiscovery
for the file specification
(first) argument

Graph ImportFile Read

SaveAs Unrestricted for function
with no arguments; Write
on the file name (first) ar-
gument for function with
arguments

InkPicture PictureFileName property Read

LoadInk Read and Write for the file
(first) argument

LoadPicture Read for the file (first) ar-
gument

Appendix

Deploying Applications and Components to .NET 125

Object or control Function or property Permission required

Save, SaveInk Write for the file (first) ar-
gument and for the current
temporary file directory

Listview AddLargePicture, AddSmallPicture, Add-

StatePicture, and LargePictureName,
SmallPictureName, StatePictureName
properties

Read

Picture PictureName property Read

PictureButton DisabledName, PictureName properties Read

RichTextEdit InsertDocument, InsertPicture Read

SaveDocument Write

Treeview AddPicture, AddStatePicture, and Pictur-
eName, StatePictureName properties

Read

UserObject PictureName property Read

This XML example gives Read access to two files and write access to one of those files:

<IPermission class="System.Security.Permissions.FileIOPermission,
mscorlib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1" Read="d:\test.txt;c:
\demo.jpg" Write="c:\demo.jpg" />

PrintingPermission
PrintingPermission settings are required for PowerScript system functions in Windows Forms
targets.

Permission requirements for system functions

Table 20. Printing Permission required for system functions in Windows Forms

System function Permission required

Print, PrintBitmap, PrintCancel, PrintClose,
PrintDataWindow, PrintDefineFont, PrintGet-

Printer, PrintScreen, PrintSend, PrintSetFont,
PrintSetSpacing, PrintLine, PrintOpen. PrintOv-

al, PrintPage, PrintRect, PrintRoundRect, Print-

SetupPrinter, PrintText, PrintWidth, PrintX,
PrintY

DefaultPrinting or AllPrinting

Appendix

126 PowerBuilder

System function Permission required

PrintGetPrinters, PrintSetPrinter, PrintSetup AllPrinting

This table shows the required PrintingPermission settings for object and control functions in
Windows Forms targets.

Table 21. PrintingPermission required for object or control functions in
Windows Forms

Object or control Function or property Permission required

DataWindow Print with no arguments DefaultPrinting or AllPrinting

Print (canceldialog, true) AllPrinting

DataStore Print DefaultPrinting or AllPrinting

DragObject Print DefaultPrinting or AllPrinting

RichTextEdit PrintEx (cancelDialog) DefaultPrinting or AllPrinting

Window Print DefaultPrinting or AllPrinting

This example allows printing to the default printer and the use of a restricted printer selection
dialog box:

<IPermission
 class="System.Drawing.Printing.PrintingPermission, System.Drawing,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
version="1" Level="DefaultPrinting"/>

ReflectionPermission
ReflectionPermission settings are required for PowerScript reflection functions and objects
in .NET targets.

Table 22. ReflectionPermission required in .NET targets

System function or object Permission required

FindClassDefinition, FindTypeDefinition TypeInformation

ScriptDefinition object TypeInformation

This permission setting in Windows Forms targets allows reflection for members of a type that
are not visible:

 <IPermission class=
 "System.Security.Permissions.ReflectionPermission,
 mscorlib, Version=4.0.0.0, Culture=neutral,

Appendix

Deploying Applications and Components to .NET 127

 PublicKeyToken=b77a5c561934e089" version="1"
 Flags="TypeInformation" />

RegistryPermission
RegistryPermission settings are required for system registry functions and MLSync object
functions in .NET targets.

Table 23. Required RegistryPermission settings for system functions

System function Permission required

RegistryGet, RegistryKeys, Registry-

Values

Read

RegistrySet Write; if registry key does not exist, requires Create

RegistryDelete Read and Write

This table shows the required RegistryPermission settings for MLSync object functions
in .NET targets:

Table 24. Required RegistryPermission settings for MLSync functions

MLSync function Permission required

GetObjectRevisionFromRegistry, Gets-

SyncRegistryProperties

Read on HKEY_CURRENT_USER registry key

GetDBMLSyncPath Read on the Software\Sybase\SQL Anywhere registry
keys under HKEY_CURRENT_USER and HKEY_LO-
CAL_MACHINE

SetsSyncRegistryProperties Unrestricted on HKEY_CURRENT_USER registry key

This example for a Windows Forms application grants read permission for the
HKEY_CURRENT_USER registry key, which extends to its subkeys:

 <IPermission
class="System.Security.Permissions.RegistryPermission,
 mscorlib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Read="HKEY_CURRENT_USER" />

SecurityPermission
Execution permission is required for a SecurityPermission setting on all .NET applications
and for any managed code that you want a user to run.

This table shows the required SecurityPermission settings for functions and objects in
Windows Forms targets.

Appendix

128 PowerBuilder

Table 25. SecurityPermission required in Windows Forms targets

Function, object, property, or
feature

Permission required

OLEControl Unrestricted (or the Full Trust option)

ChangeDirectory, Handle, Post, Restart,
Run, Send

UnmanagedCode

URL (PictureHyperlink and StaticHyper-
link property),

UnmanagedCode

HyperlinkToURL (Inet property) UnmanagedCode

Language interoperation feature Variable permissions required, depending on .NET func-
tion called or property accessed

Win32 API feature UnmanagedCode

This example sets required security permissions for Windows Forms targets:

 <IPermission
class="System.Security.Permissions.SecurityPermission,
 mscorlib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Flags="Assertion, Execution, BindingRedirects,
 UnmanagedCode" />

SMTPPermission
An SMTPPermission setting is required for the MailSession object log on function in .NET
targets.

Table 26. SMTPPermission required in .NET targets

MailSession object function Permission required

MailLogon Connect (if using default port) or ConnectToUn-
restrictedPort

This permission setting allows a Windows Forms application to log onto a mail session and
receive mail through a default port:

 <IPermission class="System.Net.Mail.SmtpPermission,
 System, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Access="Connect"/>

Appendix

Deploying Applications and Components to .NET 129

SocketPermission
A SocketPermission setting is required for the Connection object ConnectToServer function
in .NET targets.

The SocketPermission class belongs to the System.Net namespace described on the Microsoft
Web site at http://msdn.microsoft.com/en-us/library/system.net.aspx.

Table 27. SocketPermission required in .NET targets

Connection object function Permission required

ConnectToServer Connect

Thispermission setting allows a Windows Forms application to get or set a network access
method:

 <IPermission class="System.Net.SocketPermission,
 System, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1">
 <ConnectAccess>
 <ENDPOINT host="10.42.144.40" transport="Tcp"
 port="2000"/>
 </ConnectAccess>
 </IPermission>

SQLClientPermission
A SocketPermission setting is required for the database connection feature in .NET targets.

Table 28. SQLClientPermission required in .NET targets

Feature Permission required

Database connect (including pipeline functional-
ity for Windows Forms clients)

Unrestricted

This permission setting allows database connections for a Windows Forms application:

 <IPermission class=
 "System.Data.SqlClient.SqlClientPermission,
 System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Unrestricted="true" />

UIPermission
The Unrestricted UIPermission setting is required for Windows Forms applications, although
you can customize the setting to use a combination of AllowDrop and AllWindow permission
values.

Appendix

130 PowerBuilder

http://msdn.microsoft.com/en-us/library/system.net.aspx

WebPermission
WebPermission settings are required for features and functions in .NET targets.

The WebPermission class belongs to the System.Net namespace described on the Microsoft
Web site at http://msdn.microsoft.com/en-us/library/system.net.aspx.

Table 29. WebPermission required in .NET targets

Function or feature Permission required

GetURL (Inet function) Connect for urlname argument

PostURL (Inet function) Connect for urlname and serverport arguments

Web Service call feature Unrestricted=“true”

This permission setting allows a Windows Forms application to connect to the Sybase Web
site:

 <IPermission class="System.Net.WebPermission, System,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1">
 <ConnectAccess>
 <URI uri="http://www.sybase.com"/>
 </ConnectAccess>
 </IPermission>

Custom Permission Types
Permission types that you can customize on the Security tab page of the Project painter
(besides the permissions described elsewhere in this appendix) have no direct impact on
PowerScript functions or properties in .NET targets.

However, if you use the language interoperation feature of PowerBuilder, this may also
require customized permissions for the following permission types:

• ASPNETHostingPermission
• ConfigurationPermission
• DataProtectionPermission
• DNSPermission
• IsolatedStoragePermission
• KeyContainerPermission
• OleDBPermission
• PerformanceCounterPermission
• StorePermission

Appendix

Deploying Applications and Components to .NET 131

http://msdn.microsoft.com/en-us/library/system.net.aspx

Appendix

132 PowerBuilder

Index
.NET applications

bitwise operator support 84
coding restrictions 103

.NET assemblies
importing 18, 80
strong names 14

.NET Assembly
component project 57
component target wizard 55

.NET calls
PowerScript syntax for 78

.NET classes and interfaces
limitations in conditional code 89

.NET compiler 16

.NET enumerations 85

.NET environment
debugging 113, 116
handling exceptions 90
support for language features 82
synchronization 87

.NET Framework SDK 18

.NET generics classes
unsupported 89

.NET language features
support for 82

.NET modules 110

.NET primitive types 86

.NET Web Service
component project 64
component target wizard 62

.NET Windows Forms
See Windows Forms applications

A
access permissions

ASP.NET 8
application

design-level considerations 106
directory structure 32
installing 27, 31
manifest file for smart client 29
publishing 26
running mode 27, 31
update mode 27, 33

updating 32
arrays 79, 89
ASP.NET

configuring 6
setting user permissions 8
user permissions 73
version 7

assemblies
See .NET assemblies

AutoScript
does not support .NET classes 89

B

best practices 16
bitwise operator support

.NET applications 84
bootstrapper

about 35
customizing 35

build directories 109
builds

Debug and Release 114
incremental 109
PBD generation 110

C

case sensitivity 80
ClickOnce technology 26
company name

setting 20, 29
compound statements 78
conditional compilation 75
configuring

ASP.NET 6, 68
SQL Anywhere database connection 8

Connection object
connecting to EAServer 94
using with a .NET client 94

controls
supported in Windows Forms 44

CORBA
supported datatypes 97

CORBACurrent object 96

Index

Deploying Applications and Components to .NET 133

CORBAObject object 96

D
data

synchronizing 37
data exchange 80
datatype mapping 60, 81
Debug builds 114
DEBUG preprocessor symbol 114, 117
debugging

.NET applications 113

.NET components 116
attaching to a running process 113
restrictions with .NET targets 113
Windows Forms 113

declaring
arrays 79
enumerations 85

deploying
.NET Assembly project 61
.NET Web Service project 70
Web Service projects 71
Windows Forms projects 25

deployment
checklist for production server 11
troubleshooting 117

deployment manifest file for smart clients 29
digital certificates 28
directory structure, on server 32
DLLs

deploying 11, 20
DYNAMIC keyword

unsupported with .NET methods 89

E
EAServer

.NET clients 94
using the Connection object 94
using the JaguarORB object 95

enumerated types
function calls on 86

enumerations 85
exceptions

handling in .NET environment 90

F
file server

setting up 26

files
runtime 11

fonts
using TrueType in controls in Windows Forms

38
FTP server

setting up 26
Full Trust required for smart client 29

G

GAC (Global Assembly Cache) 15
generic .NET classes

unsupported 89
Global Assembly Cache (GAC) 15
global properties

and .NET Web Service targets 68
list of 68
taking advantage of 108

H

handling exceptions
in .NET environment 90

I

IIS
installing 7

images
deploying 23
for Windows Forms targets 32

incremental builds 109, 112
Indexes

for .NET classes 87
instantiating a .NET class 78
intelligent notifier 34
intelligent update 33
interoperability

datatype mappings 81
referencing .NET classes 75
support for .NET language features 82
writing code in a .NET block 77

J

JaguarORB object
connecting to EAServer 95

Index

134 PowerBuilder

K

keywords 79

L

library files 20
line return characters 79
log file

pbiupub.log 119
pbtrace.log 9

M

mandatory updates 34
manifest files

for smart client application 29
for smart client deployment 29
for Windows Forms 24
security tab 20
signing with digital certificates 28

migration
runtime files 11

MobiLink synchronization
for smart clients 37

multithreading, .NET applications
support for 87

mutual authentication 102

N

notifier
icon 34
options 34

nullable
unsupported 89

O

online only 31

P

PATH environment variable 18
PBDs

deploying 20
PBLs

deploying 20

PBTrace.log file 9, 118
permissions

adding in .NET Framework configuration tool
121

adding manually for copied files 73
ASP.NET 6
EnvironmentPermission 122
error messages 4
EventLogPermission 122
FileDialogPermission 123
FileIOPermission 123
for Web service components 70
Full Trust required for smart client 29
granting from command line 73
PrintingPermission 126
ReflectionPermission 127
RegistryPermission 128
SecurityPermission 128
SMTPPermission 129, 130
Sybase directories 8
troubleshooting Windows Forms 118
UIPermission 130
WebPermission 131

POST keyword
unsupported with .NET methods 89

post-build commands 20
PowerBuilder runtime files

deploying 20
PowerScript

keywords 79
unsupported events in Windows Forms 51
unsupported functions in Windows Forms 49
unsupported properties in Windows Forms 51

preprocessor statements
pasting into script 78

preprocessor symbols
about 75
DEBUG 114
list of 75

prerequisites
for application 29, 35
for deployment 10
for development 18

primitive types
function calls on 86

projects
out-of-date message 111

properties
global 68

Index

Deploying Applications and Components to .NET 135

publish page
link to server 26
prerequisites 35
view of 29

publishing an application 26

R
rebuild scope 110
Release builds 114
requirements

system 18
resource files

for .NET assembly targets 59
for .NET Web service targets 66
for .NET Windows Forms targets 23

resources
deploying 23

running an application 25
runtime files

deploying 11

S
security 29

manifest files for Windows Forms 24
settings 3

server authentication 98
Sign tab 5
signing manifest files 28
smart client

rolling back 37
SQL Anywhere

setting up database connection 8
SSL connection support 98
Start menu

adding to 31
string matching 107
strong-named assemblies 5, 14
structures

supported 38
system functions

unsupported in Windows Forms 44
system objects

supported 38
system options

redeployment 111

system requirements 18
System.Nullable

unsupported 89

T

troubleshooting
conditional code 89
deployment errors 117
tips for Windows Forms applications 118

TrueType fonts
using in controls in Windows Forms 38

trust options 3

U

updates
checking for 33, 34
mandatory 34
online and offline 33
online only 33
polling for 34

V

Vista
See Windows Vista

visual controls
supported in Windows Forms 44

W

Web browser
default start page 25

Web server
setting up 26

Windows Forms Application project 18
Windows Forms Application wizard 16
Windows Forms applications

advantages of 1, 16
supported controls 46–49
supported objects 42, 43

Windows Vista
additional requirements for Windows Forms

24

Index

136 PowerBuilder

	Deploying Applications and Components to .NET
	Contents
	Windows Forms Targets
	Choosing a Windows Forms Application Target
	How .NET Deployment Works
	Security Settings
	Strong-Named Assemblies
	ASP.NET Configuration for a .NET Project
	IIS Installation
	Selecting the Default ASP.NET Version
	Setting Up a SQL Anywhere Database Connection
	Configuration Requirements for Windows Vista and Later

	Checklist for Deployment

	PowerBuilder Windows Forms Applications
	Deploying to a production environment
	System Requirements for .NET Windows Forms Targets
	.NET Windows Forms Target Wizard
	Building a Windows Forms Application and Target from Scratch
	Building a Windows Forms Application from an Existing Application and Library
	Building a Windows Forms Application from an Existing Target

	Creating a .NET Windows Forms Project
	Properties for a .NET Windows Forms Project
	Resources and Other Required Files
	Security Requirements

	Deployment of a Windows Forms Application
	Project Execution

	Intelligent Deployment and Update
	Publishing an application for the first time
	Set Publishing Properties
	Locations for Publish, Install, and Update
	Digital Certificates
	Setting Full Trust Permissions
	Publication Process and Results

	Application Installation on the User’s Computer
	Resource Files and Publish Type

	Publication of Application Updates
	Application Bootstrapping
	Rolling Back
	MobiLink Synchronization

	Unsupported Features in Windows Forms Projects
	Unsupported Nonvisual Objects and Structures in Windows Forms
	Unsupported System Functions in Windows Forms
	PowerBuilder Visual Controls in Windows Forms Applications
	Unsupported Functions for Controls in Windows Forms
	Unsupported Events for Controls in Windows Forms
	Unsupported Properties for Controls in Windows Forms

	.NET Component Targets
	.NET Assembly Targets
	Modifying a .NET Assembly Project
	Supported Datatypes
	Deploying and Running a .NET Assembly Project

	.NET Web Service Targets
	Modifying a .NET Web Service Project
	Configuring ASP.NET for a .NET Web Service Project
	Global Web Configuration Properties
	Deploying and Running a .NET Web Service Project
	.NET Web Service Deployment Considerations

	.NET Language Interoperability
	Conditional Compilation
	Surrounding Code in a .NET Block
	PowerScript Syntax for .NET Calls
	Adding .NET Assemblies to the Target
	Datatype Mappings
	Support for .NET language features
	Bitwise Operator Support
	User-Defined Enumerations
	Function Calls on .NET Primitive and Enumerated Types
	Accessing Indexes for .NET Classes
	Using Multithreading

	Limitations
	Handling Exceptions in the .NET Environment

	Connections to EAServer Components
	Using the Connection Object
	.NET Client Differences

	Connections Using the JaguarORB Object
	Support for CORBAObject and CORBACurrent Objects
	Supported Datatypes
	SSL Connection Support
	Server Authentication
	Connection Code
	Importing an EAServer Certificate into the Client Certificate Store

	Mutual Authentication

	Best Practices for .NET Projects
	Design-Level Considerations
	Take Advantage of Global Configuration Properties

	Compiling, Debugging, and Troubleshooting
	Incremental Builds
	Build and Deploy Directories
	Rebuild Scope
	.NET Modules
	PBD Generation
	Triggering Build and Deploy Operations
	System Option
	Incremental Build Processing

	Debugging a .NET Application
	Attaching to a Running Windows Forms Process
	.NET Debugger Restrictions
	Release and Debug Builds
	DEBUG Preprocessor Symbol
	Breaking into the Debugger When an Exception is Thrown
	Debugging a .NET Component

	Troubleshooting .NET Targets
	Troubleshooting Deployment Errors
	Troubleshooting Runtime Errors
	Troubleshooting Tips for Windows Forms Applications
	Runtime Errors
	Publish Errors
	Installation Errors
	Update Errors

	Appendix
	Custom Permission Settings
	Adding Permissions in the .NET Framework Configuration Tool
	EnvironmentPermission
	EventLogPermission
	FileDialogPermission
	FileIOPermission
	PrintingPermission
	ReflectionPermission
	RegistryPermission
	SecurityPermission
	SMTPPermission
	SocketPermission
	SQLClientPermission
	UIPermission
	WebPermission
	Custom Permission Types

	Index

