
Deploying Applications and Components
to .NET

PowerBuilder® 12.5

DOCUMENT ID: DC00586-01-1250-02
LAST REVISED: January 10, 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. A ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of the respective companies
with which they are associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568

http://www.sybase.com/detail?id=1011207

Contents

Choosing a .NET Target ..1
Choosing a .NET Application Target1

How .NET Deployment Works2
Security Settings ..3
Strong-Named Assemblies6
ASP.NET Configuration for a .NET Project7
Checklist for Deployment14

Web Forms Targets ..21
PowerBuilder Web Forms Applications21

System Requirements for PowerBuilder Web
Forms ..21

Web Forms Targets ..21
Web Forms Projects ..22
Web Forms Deployment25
Sharing Data Across Sessions29
Registry Functions for Web Forms Applications

...30
Client-Side Programming ..31

Default Event Handlers ..33
Client-Side Support for the Web DataWindow

Control ...35
Alphabetical Liist of Web DataWindow Client-

Side Events ...37
Permanent User Accounts ..47

Creating Permanent User Accounts48
Managing Permanent User Accounts50

Managers in Web Forms Applications51
Web Forms Print Manager52
Web Forms File Manager56
Web Forms Mail Profile Manager61
Web Forms Theme Manager64

Deploying Applications and Components to .NET iii

Web Forms Properties ..65
Global Web Configuration Properties65
Creating Custom Global Properties74
AutoPostBack ...74
Embedded ...75
HasFileManager ..75
HasMailManager ..76
HasPrintManager ...77
HasThemeManager ...77

System Functions for .NET Web Forms78
DownloadFile ...78
GetConfigSetting ...80
GetDownloadFileURL ..80
MapVirtualPath ..81
OpenFileManager ..82
OpenMailManager ...82
OpenPrintManager ..83
OpenThemeManager ...83
UploadFiles ..84

Unsupported Features in Web Forms Projects86
Unsupported Objects ...88
Unsupported System Functions88
Restrictions on Supported Controls89
Modified Appearance and Behavior of Visual

Controls ...101
Unsupported Functions for Controls in Web

Forms ..104
Unsupported Events for Controls in Web Forms

...110
Unsupported Properties for Controls in Web

Forms ..112
Windows Forms Targets ...119

PowerBuilder Windows Forms Applications119
Deploying to a production environment120

Contents

iv PowerBuilder

System Requirements for .NET Windows Forms
Targets ...121

Creating a .NET Windows Forms Project123
Deployment of a Windows Forms Application . .128
Project Execution ..128

Intelligent Deployment and Update129
Publishing an application for the first time129
Application Installation on the User’s Computer 134
Publication of Application Updates135
Application Bootstrapping138
Rolling Back ...140
MobiLink Synchronization140

Unsupported Features in Windows Forms Projects . . .140
Unsupported Nonvisual Objects and Structures

in Windows Forms ...141
Unsupported System Functions in Windows

Forms ..147
PowerBuilder Visual Controls in Windows Forms

Applications ...147
Unsupported Functions for Controls in Windows

Forms ..152
Unsupported Events for Controls in Windows

Forms ..154
Unsupported Properties for Controls in

Windows Forms ...154
.NET Component Targets ..157

.NET Assembly Targets ..157
Modifying a .NET Assembly Project159
Supported Datatypes ...162
Deploying and Running a .NET Assembly

Project ...163
.NET Web Service Targets ...164

Modifying a .NET Web Service Project166
Configuring ASP.NET for a .NET Web Service

Project ...170

Contents

Deploying Applications and Components to .NET v

Deploying and Running a .NET Web Service
Project ...171

.NET Language Interoperability ..173
Conditional Compilation ..173

Surrounding Code in a .NET Block176
PowerScript Syntax for .NET Calls176
Adding .NET Assemblies to the Target178
Datatype Mappings ..179
Support for .NET language features181
Limitations ..187
Handling Exceptions in the .NET Environment . .188

Connections to EAServer Components192
Using the Connection Object192
Connections Using the JaguarORB Object193
Support for CORBAObject and CORBACurrent

Objects ..194
Supported Datatypes ...195
SSL Connection Support196

Best Practices for .NET Projects201
Design-Level Considerations204
Take Advantage of Global Configuration

Properties ...207
Use Client-Side Events to Delay Postbacks209

Compiling, Debugging, and Troubleshooting213
Incremental Builds ..213

Build and Deploy Directories213
Rebuild Scope ...214
.NET Modules ..214
PBD Generation ...214
Triggering Build and Deploy Operations215
System Option ...215
Incremental Build Processing216

Debugging a .NET Application217
Attaching to a Running Windows Forms Process

...217

Contents

vi PowerBuilder

.NET Debugger Restrictions217
Release and Debug Builds218
DEBUG Preprocessor Symbol219
Breaking into the Debugger When an Exception

is Thrown ...220
Debugging a .NET Component221

Troubleshooting .NET Targets222
Troubleshooting Deployment Errors222
Troubleshooting Runtime Errors223
Troubleshooting Tips for Web Forms

Applications ...223
Troubleshooting Tips for Windows Forms

Applications ...228
Appendix ..231

Custom Permission Settings231
Adding Permissions in the .NET Framework

Configuration Tool ..231
EnvironmentPermission232
EventLogPermission ..232
FileDialogPermission ...233
FileIOPermission ...233
PrintingPermission ...237
ReflectionPermission ...238
RegistryPermission ..238
SecurityPermission .. 239
SMTPPermission ...240
SocketPermission ..241
SQLClientPermission ...242
UIPermission ...242
WebPermission ..242
Custom Permission Types243

Index ..245

Contents

Deploying Applications and Components to .NET vii

Contents

viii PowerBuilder

Choosing a .NET Target

This part describes differences between .NET Windows Forms and Web Forms targets. It also
describes configuration requirements for .NET Web Forms and Web Service targets.

Choosing a .NET Application Target
Web Forms applications have several advantages over traditional client-server and Windows
Forms applications.

Web Forms applications do not require client-side installation, are easy to upgrade, have no
distribution costs, and offer broad-based user access. Any user with a Web browser and an
online connection can run Web Forms applications.

Windows Forms applications with the smart client feature combine the reach of the Web with
the power of local computing hardware. They provide a rich user experience, with a response
time as quick as the response times of equivalent client-server applications. The smart client
feature simplifies application deployment and updates, and can take advantage of Sybase®'s
MobiLink™ technology to provide occasionally connected capability.

This table shows some of the advantages and disadvantages of Web Forms and Windows
Forms applications.

Application type Advantages Disadvantages

Web Forms • No installation
• Easy to upgrade
• Broader reach

• Slower response
• Must be online

Windows Forms • Rich user experience
• Quicker response time
• Availability of client-side

resources, such as 3D ani-
mation

• Offline capability

• Requires client-side instal-
lation

• Difficult to upgrade

Windows Forms with smart cli-
ent feature

• Same advantages as Win-
dows Forms without smart
client feature

• Easy to deploy and upgrade

• Requires first time client-
side installation

Choosing a .NET Target

Deploying Applications and Components to .NET 1

Note: The PowerBuilder® smart client feature makes Windows Forms applications easy to
upgrade while maintaining the advantages of quick response times and the ability to use local
resources. For more information, see Intelligent Deployment and Update on page 129.

Although PowerBuilder Classic continues to support traditional client-server as well as
distributed applications, it also provides you with the ability to transform these applications
into Web Forms and Windows Forms applications with relative ease.

The decision to convert an application to use Web Forms or Windows Forms depends upon the
type of application you plan to convert. Simple inquiry, browsing, or reporting applications are
suitable candidates for Web Forms deployment. If you need only part of an application to run
in a browser, you can move this part and its dependent objects to a new target that you deploy
with a Web Forms project.

Applications that require significant data entry, retrieve large amounts of data (for example,
more than 3 MB per request), or have a complex user interface are more suitably deployed as
Windows Forms.

If you need to deploy data entry intensive applications as Web Forms, you must allow for
slower response times. However, you can enhance the performance of Web Forms
applications by reducing postbacks to the server. You do this through the use of client-side
events, or by refactoring code so that events associated with individual controls are combined
and submitted in a single postback.

For more information on the relative advantages of Web Forms and Windows Forms, see the
Microsoft Web site at http://msdn.microsoft.com/en-us/library/5t6z562c(VS.80).aspx.

How .NET Deployment Works
When you deploy a .NET project, PowerBuilder compiles existing or newly developed
PowerScript® code into .NET assemblies.

At runtime, the generated .NET assemblies execute using the .NET Common Language
Runtime (CLR). PowerBuilder’s .NET compiler technology is as transparent as the P-code
compiler in standard PowerBuilder client-server applications.

Depending on their application target type, the assemblies you generate from a .NET project
are built into Web Forms or Windows Forms applications. If you generate assemblies from a
component target type, the assemblies are deployed as independent .NET components or as
Web services.

PowerBuilder Web Forms applications have a three-tier architecture, with the client running in
a Web browser on the front end and PowerBuilder components running on the Microsoft IIS
server using ASP.NET 4.0 technology. A session is created and is dedicated to processing each
user request on the client side, ensuring that the applications are stateful. The session manages
the runtime environment, makes required connections to the database, retrieves data, renders
HTML responses, and keeps the session active in the server until the user closes the
application or the session times out.

Choosing a .NET Target

2 PowerBuilder

http://msdn.microsoft.com/en-us/library/5t6z562c(VS.80).aspx

PowerBuilder Windows Forms applications run on the .NET Framework using local computer
hardware resources. The smart client feature permits you to publish Windows Forms
applications to an IIS or FTP server, and leverages Microsoft’s ClickOnce technology, making
it easier for users to get and run the latest version of an application and easier for
administrators to deploy it.

Note: For PowerBuilder .NET applications and components, you must install the .NET
Framework redistributable package on the deployment computer or server. The .NET
Framework SDK (x86) is required on the deployment server for Windows Forms smart client
applications. The x86 version of the SDK is required even for 64-bit computers. You cannot
install the SDK without first installing the redistributable package.

he SDK and the redistributable package are available as separate downloads from the
Microsoft .NET Framework Developer Center at http://msdn.microsoft.com/en-us/
netframework/aa731542.aspx.

This is a high level architectural diagram showing the conversion of PowerBuilder
applications and custom class objects to applications and components on the .NET platform:

Security Settings
PowerBuilder applications and components can run in partial trust environments when they
are constrained by .NET code access security (CAS) configurations.

PowerBuilder lets you configure CAS security zones (sandboxes) for .NET Web Forms, .NET
Web Service, and Windows Forms smart client projects, to minimize the amount of trust
required before application or component code is run by an end user.

For .NET Web Forms and Web Service projects, you can also modify the Web.config file to
support security zones after you deploy the project. The .NET assemblies that you create by
building and deploying .NET Assembly projects are run with the security permissions of the
calling application or component.

Choosing a .NET Target

Deploying Applications and Components to .NET 3

http://msdn.microsoft.com/en-us/netframework/aa731542.aspx
http://msdn.microsoft.com/en-us/netframework/aa731542.aspx

However, Microsoft .NET Framework 4.0 does not support the machine security policy and
zone settings used by Windows Forms applications. To continue to use the CAS policy system
in a Windows Forms application, modify its application.config files as as follows:,
<configuration>
 <runtime>
 <NetFx40_LegacySecurityPolicy enabled="true"/>
</runtime>
</configuration>

Trust options
A radio button group field on the Project painter’s Security tab allows you to select full trust or
a customized trust option. For Windows Forms applications, you can also select local intranet
trust or internet trust. A list box below the radio button group allows you to select or display the
permissions you want to include or exclude when you select local intranet trust, internet trust,
or the custom option. (If you select full trust, the list box is disabled.)

For Windows Forms applications, if you modify a permission after selecting the local intranet
or internet trust options, PowerBuilder automatically treats the selected permissions as
custom selections, but does not modify the selected radio button option. This allows you to
click the Reset button above the list box to change back to the default local intranet or internet
permission settings. Clicking the Detail button (to the left of the Reset button) opens the
Custom Permissions dialog box that allows you to enter custom permissions in XML format.
The Reset and Detail buttons are disabled only when you select the Full Trust radio button
option.

For smart client applications, the permission information is stored in the manifest file that you
deploy with your application. When users run a smart client application, the application loader
process loads the manifest file and creates a sandbox where the application is hosted.

For standard Windows Forms applications, the sandbox allows you to run the application with
the permissions you define on the Project painter Security tab when the applications are run
from the PowerBuilder IDE. When a user starts Windows Forms applications from a file
explorer or by entering a UNC address (such as \\server\myapp\myapp.exe), the security
policies set by the current user’s system are applied and the Security tab permission settings
are ignored.

Note: For information on custom security permissions, see Custom Permission Settings on
page 231 and the Microsoft Web site at http://msdn.microsoft.com/en-us/library/
system.security.permissions.aspx.

Permission error messages
If your .NET application attempts to perform an operation that is not allowed by the security
policy, the Microsoft .NET Framework throws a runtime exception. For example, the default
local intranet trust level has no file input or output (File IO) permissions. If your application
runs with this security setting and tries to perform a File IO operation, the .NET Framework
issues a File Operation exception.

Choosing a .NET Target

4 PowerBuilder

http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx
http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx

You can catch .NET security exceptions using .NET interoperability code blocks in your
PowerScript code:

 #if defined PBDOTNET then
 try
 ClassDefinition cd_windef
 cd_windef = FindClassDefinition("w_1")
 messagebox("w_1's class
 definition",cd_windef.DataTypeOf)
 catch(System.Security.SecurityException ex)
 messagebox("",ex.Message)
 end try
 #end if

All .NET targets must include a reference to the mscorlib.dll .NET Framework
assembly in order to catch a System.Security.SecurityException exception. The
PBTrace.log files that PowerBuilder Windows Forms and Web Forms applications
generate by default contain detailed descriptions of any security exceptions that occur while
the applications are running. PowerBuilder .NET Web Service components also generate
PBTrace.log files that log critical security exceptions by default.

If you do not catch the exception when it is thrown, the PowerScript SystemError event is
triggered. For Windows Forms applications, a default .NET exception message displays if you
do not catch the exception or include code to handle the SystemError event. The exception
message includes buttons enabling the user to show details of the error, continue running the
application, or immediately quit the application. Under the same conditions for Web Forms
applications, a system error dialog box displays instead of the .NET exception dialog box, and
the application is terminated.

For more information about handling .NET exceptions, see Handling Exceptions in the .NET
Environment on page 188.

Debugging and tracing with specified security settings
You can debug and run .NET applications and components from the PowerBuilder IDE with
specified security settings. To support this capability in Windows Forms applications,
PowerBuilder creates a hosting process in the same directory as the application executable.
The hosting process creates a domain with the CAS setting before it loads the application
assemblies. (The CAS settings generated in the Web.config file determine the security
permissions used by .NET Web Forms applications and .NET Web Service components.)

If your .NET application attempts to perform an operation not allowed by the specified
security setting, an exception is issued in the IDE.

For more information about debugging .NET applications and components, see Debugging
a .NET Application on page 217.

Choosing a .NET Target

Deploying Applications and Components to .NET 5

Strong-Named Assemblies
PowerBuilder can generate strong-named assemblies from all .NET Project painters.

A strong name consists of an assembly’s identity—its simple text name, version number, and
culture information (when provided)—plus a public key and digital signature. It is generated
from an assembly file using the corresponding private key. The assembly file contains the
assembly manifest that includes the names and hashes of all the files that make up the
assembly.

Project painter Sign tab
PowerBuilder includes a Sign tab in the Project painters for all .NET application and
component projects. The Assembly group box on the Sign tab allows you to attach strong
name key files to the assemblies that the.NET projects generate. The Assembly group box
contains the following fields:

Assembly group box field Description

Sign the assembly Select this check box to enable the “Choose a
strong name key file” single line edit box, the
browse and New buttons, and the “Delay sign
only” check box.

Choose a strong name key file Name of the key file you want to attach to the
generated assembly. This field is associated with
a browse (ellipsis) button and a New button. The
browse button opens a Select File dialog box
where you can select a key file with the .snk ex-
tension. The New button lets you create a key file
with the .snk extension. PowerBuilder uses the
Sn.exe tool from the .NET Framework to cre-

ate the key file.

Delay sign only Select this check box if your company’s security
considerations require the step of signing the as-
sembly to be separate from the development
process. When this check box is selected, the
project will not run and cannot be debugged.
However, you can use the strong name tool
Sn.exe (in the .NET Framework) with the -
Vr option to skip verification during develop-

ment.

Choosing a .NET Target

6 PowerBuilder

Assembly group box field Description

Mark the assembly with AllowPartiallyTrusted-
CallerAttribute (.NET Web Service and .NET
Assembly projects only)

By default, a strong-named assembly does not
allow its use by partially trusted code and can be
called only by other assemblies that are granted
full trust. However, you can select this check box
to allow a strong-named assembly to be called by
partially trusted code.

The Sign tab has additional fields for selecting certificate files that you publish with smart
client applications.

For information about the Sign tab fields for smart client applications, see Digital Certificates
on page 131.

Error messages
If you select a strong name key file in either the Assembly or Intelligent Updater group boxes,
and the key file is invalid, PowerBuilder displays a message box telling you that the key file is
invalid. If the key file you select is password protected, PowerBuilder prompts you to enter the
password for the key file. If you enter an incorrect password, a message box informs you that
the password you entered is invalid.

ASP.NET Configuration for a .NET Project
You can configure ASP.NET for a Web Forms or smart client project before or after you
deploy the project to an IIS 5.0 or later server.

All files and directories that you access from a Web Forms application or a smart client
application on a Web server must have appropriate ASPNET (IIS 5.0), IIS_WPG (IIS 6.0), or
IIS_IUSRS (IIS 7.0 and 7.5) user permissions.

Note: You do not need to install IIS on the development computer for PowerBuilder
applications or components unless you are using the same computer as a server for Web Forms
or smart client applications, or for Web service components. IIS is also not required on end
users’ computers.

For an example of granting user permissions to a directory, see Setting Up a SQL Anywhere
Database Connection on page 10.

When you deploy directly to a remote computer, system information about the deployment
computer, including its OS and IIS versions, is passed to PowerBuilder through the Windows
Management Instrumentation (WMI) interface. Deployment through the WMI interface
requires administrator privileges. If you make any changes to administrator accounts on a
remote computer, you will probably need to reboot that computer before you can deploy
a .NET Web project from PowerBuilder.

Choosing a .NET Target

Deploying Applications and Components to .NET 7

If you deploy to an MSI setup file, and run the setup file on a deployment computer,
PowerBuilder can use the Windows API to obtain information about the OS and IIS versions
on that computer.

IIS Installation
You can install IIS from the Control Panel, but you might need a Windows operating system
CD.

On Windows XP, select Add and Remove Programs from the Control Panel, then click Add/
Remove Windows Components, select the Internet Information Services check box, and click
Next. You can then follow instructions to install IIS. On Vista and Windows 7, go to the
Programs and Features page in the Control Panel, select Turn Windows features on or off, and
select Internet Information Services.

If IIS 5.0 or later is installed after the .NET Framework, you must register IIS with ASP.NET
manually or reinstall the .NET Framework. To manually register IIS with ASP.NET, go to
the .NET Framework path, run aspnet_regiis.exe -i in the command line console,
and restart IIS.

Selecting the Default ASP.NET Version
If you installed multiple versions of the .NET Framework on the target Web server, you should
make sure that IIS uses a supported version for PowerBuilder .NET applications.

You can make this change globally, for all ASP.NET Web site applications, or for individual
applications that you deploy to IIS.

The following procedure applies to IIS 5 and 6. In IIS 7 and later, set the .NET Framework
version for the application pool your applications use. For more information, see
Configuration Requirements for Windows Vista and Later on page 11.

1. Select Start > Run from the Windows Start menu.

2. Type InetMgr in the Run dialog box list.

3. In the left pane of the IIS Manager, expand the local computer node and its Web Sites
sub-node.

4. One of the following:

• For all new Web sites, right-click the Default Web Site node and select Properties.
• For already deployed projects, expand the Web site node and right-click the .NET

application that you deployed from PowerBuilder.

5. Specify the ASP.NET or .NET Framework version.

• On Windows XP, open the ASP.NET tab and choose the ASP.NET version:
• For PowerBuilder 12.0 and earlier: 2.0.50727

• For PowerBuilder 12.5: 4.0.30319

• On Windows 7, Windows Vista, and Windows 2008, set the .NET Framework version
used by your Web Forms or NVO Web service deployment:

Choosing a .NET Target

8 PowerBuilder

1. In the IIS Manager, open the Application Pools node underneath the machine node.
2. Right-click the PBDotNet4AppPool filter and choose Advanced Settings.
3. Set the .NET Framework Version to 4.0.

Viewing and Modifying Global Properties in the IIS Manager
Although you set global properties for a Web Forms application on the Configuration page of
the Project painter before you deploy the project, you can also view and modify the global
properties in the IIS Manager after the project is deployed.

For information about global properties generated with a PowerBuilder .NET Web Forms
project, see Global Web Configuration Properties on page 65.

1. In the left pane of the IIS Manager, expand the nodes until you see the node for the Web
Forms application whose properties you want to examine.

2. Right-click on the Web Forms application and select Properties from the pop-up menu.

3. Click the ASP.NET tab and change the ASP.NET version to 2.0.50727 (for 12.0 and
earlier) or 4.0.30319 (for 12.5) if necessary.

4. Click Edit Configuration.
The ASP.NET Configuration dialog box for the current .NET Web Forms application
appears. You can view its global properties in the list box at the bottom of the General
tab.

Note: You modify a global property by selecting that property in the Application Settings
list box and clicking Edit. You can then type in a new value for that property and click OK.
The next time you run the Web Forms application, the new global property value is used.

Directory Structure on the Server
When you deploy a .NET Web Forms application, PowerBuilder creates two top-level
directories for the application under the IIS root.

One of the directories takes the name of the application specified in the Web Forms project,
and the other appends "_root" to the application name.

The applicationName directory contains the generated cs and aspx files, as well as
subdirectories for any resource files, PowerBuilder libraries, and external modules that you
deploy with your application.

The applicationName_root directory contains directories named File, Mail, Log, and
Print. The File directory contains the Common, Session, User, and Icon subdirectories. The
File\Common directory holds read-only files specified in the Web Forms project. The paths
to the read-only files mirror the paths on the development computer, with the drive letter
serving as the name for the top subdirectory under File\Common directory.

The subdirectories under the File\Common directory include the initial current directory
that you assigned in the .NET Web Forms Application wizard or in the Project painter. If an
application user performs write operations on a file in a File\Common subdirectory, a
SessionID folder is created under the File\Session directory (or, if the application user

Choosing a .NET Target

Deploying Applications and Components to .NET 9

has a permanent user account, a UserName folder is created under the File\User
directory), and the read-only file is copied there in a mirrored path before a user can save the
modified file.

The File\User directory contains files saved by logged-in users whose profiles are
included in a permanent user database. For information about creating user profiles, see
Creating Permanent User Accounts on page 48.

The File\Icon directory is used by the PowerBuilder Web Forms runtime engine to
convert .ICO files to .GIFs and .BMPs. Its contents are not visible to Web Forms application
users.

Setting Up a SQL Anywhere Database Connection
Full control permissions are required for directories containing databases that you need to
access from your Web Forms applications.

Before a PowerBuilder .NET Web Forms application connects to a SQL Anywhere®

database, you must either start the database manually or grant the ASPNET user (IIS 5 on
Windows XP), the IIS_WPG user group, or IIS_IUSRS (IIS 7 on Windows Vista and IIS 7.5
on Windows 7) default permissions for the Sybase\Shared and Sybase SQL Anywhere
directories, making sure to replace permissions of all child objects in those directories.

Note: If your database configuration uses a server name, you must provide the database server
name in the start-up options when you start the database manually, in addition to the name of
the database file you are accessing.

If you do not grant the appropriate user permissions for Sybase directories and your database
configuration is set to start the database automatically, your application will fail to connect to
the database. SQL Anywhere cannot access files unless the ASPNET, IIS_WPG, or
IIS_IUSRS user group has the right to access them.

1. In Windows Explorer, right-click the Sybase, Sybase\Shared or Sybase SQL
Anywhere directory and select Properties from the context menu.

2. Select the Security tab of the Properties dialog box for the directory and click Add. On
Vista and Windows 7, click Edit and then Add.

Note: To show the Security ta of the Select Users, Computers, or Groups dialog box, you
might need to modify a setting on the View tab of the Folder Options dialog box for your
current directory. You open the Folder Options dialog box by selecting the Tools > Folder
Options menu item from Windows Explorer. To display the Security tab, you must clear
the check box labeled “Use simple file sharing (Recommended)”

3. Click Locations, choose the server computer name from the Locations dialog box, and
click OK.

4. Type ASPNET (IIS 5), IIS_WPG (IIS 6), or IIS_IUSRS (IIS 7 and 7.5) in the list box
labeled “Enter the object names to select” and click OK.

Choosing a .NET Target

10 PowerBuilder

If valid for your server, the account name you entered is added to the Security tab for the
current directory. You can check the validity of a group or user name by clicking Check
Names before you click OK.

5. Select the new account in the top list box on the Security tab, then select the check boxes
for the access permissions you need under the Allow column in the bottom list box.

You must select the Full Control check box for a directory containing a database that you
connect to from your application.

6. Click Advanced.

7. Select the check box labeled “Replace permission entries on all child objects with entries
shown here that apply to child objects” and click OK.
A Security dialog box appears, and warns you that it will remove current permissions on
child objects and propagate inheritable permissions to those objects, and prompts you to
respond.

8. Click Yes at the Security dialog box prompt, then click OK to close the Properties dialog
box for the current directory.
The pbtrace.log file is created in the applicationName_root directory. This
file records all runtime exceptions thrown by the application and can be used to
troubleshoot the application.

Telerik RadControls
PowerBuilder installs Telerik RadControls for ASP.NET and deploys these controls with your
Web Forms applications.

RadControls provide enhanced functionality for Web Forms toolbars and menus, DatePicker
and MonthCalendar controls, and TreeView controls.

Configuration Requirements for Windows Vista and Later
When you run PowerBuilder on Windows Vista or Windows 7 under a standard user account,
and attempt to deploy Web Forms or Web Service projects, the User Account Control (UAC)
dialog box appears. This dialog box allows you to elevate your privileges for the purpose of
deployment.

Deploying .NET targets to a remote Windows Vista, Windows 2008, or Windows 7 computer
might require changes to the Windows firewall, UAC, or the Distributed Component Object
Model (DCOM) settings:

Settings for Required changes

Windows firewall Enable exceptions for WMI and file and printer
sharing

Choosing a .NET Target

Deploying Applications and Components to .NET 11

Settings for Required changes

UAC (When you are not running PowerBuilder
with the built-in Administrator account)

If the development and deployment computers
are in the same domain, connect to the remote
computer using a domain account that is in its
local Administrators group. Then UAC access
token filtering does not affect the domain ac-
counts in the local Administrators group. You
should not use a local, nondomain account on the
remote computer because of UAC filtering, even
if the account is in the Administrators group.

If the development and deployment computers
are in the same workgroup, UAC filtering affects
the connection to the remote computer even if the
account is in the Administrators group. The only
exception is the native “Administrator” account
of the remote computer, but you should not use
this account because of security issues. Instead,
you can turn off UAC on the remote computer.
and if the account you use has no remote DCOM
access rights, you must explicitly grant those
rights to the account.

DCOM Grant remote DCOM access, activation, and
launch rights to a nondomain user account in the
local Administrators group of the remote com-
puter if that is the type of account you are using to
connect to the remote computer.

Deploying to the default application pool
Virtual directories in IIS 7 and later are hosted in an application pool. An application pool is
the host process for one or more Web applications. When you deploy a PowerBuilder Web
Forms application to IIS 7 or later, the application is deployed to a PowerBuilder-specific
application pool named PBDotnet4AppPool. On 64-bit operating systems, the
PBDotnet4AppPool pool is configured to run 32-bit applications.

To avoid compatibility issues with some features, Web Forms applications deployed from
PowerBuilder to IIS 7 or IIS 7.5 must run in an application pool that uses the classic managed
pipeline mode, where ASP.NET runs as an ISAPI extension. The PBDotnet4AppPool
application pool uses the classic managed pipeline mode by default.

Changing Application Pool Identity for IIS 7.5
IIS7.5 includes a new identity type, ApplicationPoolIdentity, and sets it as the default identity
for application pools.

On IIS 7.5, PBDotnet4AppPool also uses ApplicationPoolIdentity as its default identity
value, but some Web Forms application features—such as creation of permanent user

Choosing a .NET Target

12 PowerBuilder

accounts, SSL authentication, and DataWindow Print and SaveAs commands—fail with this
identity. You can avoid these issues by changing the PBDotnet4AppPool identity to
NetworkService:

1. In IIS Manager, select Application Pools.

2. From the list of application pools, right-click PBDotnet4AppPool and select Advanced
Settings.

3. In the Process Model section, change the identity property from ApplicationPoolIdentity
to NetworkService, and click OK.
Changing this setting affects all applications running in the PBDotnet4AppPool
application pool.

Creating an Application Pool
Create and configure an application pool to host PowerBuilder Web Forms applications.

1. In IIS Manager, select Application Pools.

2. In the Actions pane, select Add Application Pool.

3. Provide a name, such as PBWebForms, for the application pool.

4. Set .NET Framework version to .NET Framework v4.0.30319.

5. If necessary, set Managed Pipeline Mode to Classic and click OK.

Enabling 32-bit Applications on 64-bit Operating Systems
On 64-bit operating systems, you must enable the application pool to run 32-bit applications.

1. In IIS Manager, select Application Pools.

2. In the list of Application Pools, select the application pool you have configured for use
with PowerBuilder Web Forms.

3. In the Actions pane, select Advanced Settings under Edit Application Pool.

4. Expand the General settings, set Enable 32-bit Applications to true, and click OK.

Moving an Application into a Different Application Pool
If you have created and configured a new application pool for PowerBuilder, you must move
your PowerBuilder Web Forms applications into the pool.

1. In IIS Manager, expand Web Sites and Default Web Site.

2. Right-click the virtual directory for your application and click Advanced Settings.

3. Select the drop-down list next to the Application Pool property, select the application pool
you created, and click OK.

4. Reload the application.

Application Directory Permissions
When you deploy a new Web Forms target, a temp directory is created in the Inetpub
\wwwroot\application_name directory, where application_name is the name of your

Choosing a .NET Target

Deploying Applications and Components to .NET 13

application, and several subdirectories are created in the Inetpub\wwwroot
\application_name_root directory.

Files are written to and deleted from these directories, therefore the IIS_IUSRS group must
have full permissions on temp and application_name_root.

Checklist for Deployment
Verify that production servers and target computers meet all requirements for running
the .NET targets that you deploy from PowerBuilder Classic.

Checklist for all .NET targets
For deployment of all .NET target types (Windows Forms, Web Forms, .NET Assembly, .NET
Web Service), production servers or target computers must have:

• The Windows XP SP2, Windows Vista, Windows 2008, or Windows 7 operating system
• .NET Framework 4.0
• The Microsoft Visual C++ runtime libraries msvcr71.dll, msvcp71.dll,

msvcp100.dll, msvcr100.dll, and the Microsoft .NET Active Template Library
(ATL) module, atl71.dll

• PowerBuilder .NET assemblies in the global assembly cache (GAC)
• PowerBuilder runtime dynamic link libraries in the system path

See Deploying PowerBuilder runtime files on page 14.

Checklist for .NET Web Forms and Web Service targets
For .NET Web Forms and Web Service targets, production servers must have:

• IIS 5 or later (See IIS Installation on page 8)
• ASP.NET (See Selecting the Default ASP.NET Version on page 8)
• ASP.NET permissions for all files and directories used by your applications

For an example of how to grant ASP.NET permissions, see Setting Up a SQL Anywhere
Database Connection on page 10. For command line instructions granting ASP.NET
permissions to deployed application directories, see ASP .NET user permissions on page
27.

For information on different methods for deploying .NET Web Forms applications to a
production server, see Deploying to a production server on page 26. These methods are also
valid for deployment of .NET Web Service components.

Deploying PowerBuilder runtime files
The simplest way to deploy PowerBuilder runtime DLLs and .NET assemblies to production
servers or target computers is to use the PowerBuilder Runtime Packager tool. The Runtime
Packager creates an MSI file that installs the files you select, registers any self-registering
DLLs, and installs the .NET assemblies into the global assembly cache (GAC).

Note: When you deploy any PowerBuilder application or component, always make sure that
the version and build number of the PowerBuilder runtime files on the target computer or

Choosing a .NET Target

14 PowerBuilder

server is the same as the version and build number of the DLLs on the development computer.
Mismatched DLLs can result in unexpected errors in all applications. If the development
computer is updated with a new build, PowerBuilder .NET applications and components must
be rebuilt and redeployed with the new runtime files.

For information on all the steps required to migrate .NET applications and components that
you deployed with earlier releases of PowerBuilder, see Release Bulletin > Migration
Information. PowerBuilder release bulletins are available from links on the Product Manuals
Web site at http://www.sybase.com/support/manuals/.

For a list of base components deployed when you select PowerBuilder .NET Components in
the Runtime Packager, see Application Techniques > Deploying Applications and
Components. The Runtime Packager installs additional components depending on the options
you select in its user interface.

You can also choose to use another tool to install the runtime files on the server or target
computer:

File name Required for

pbshr125.dll

Sybase.PowerBuilder.ADO.dll

Sybase.PowerBuilder.Common.dll

Sybase.PowerBuilder.Core.dll

Sybase.PowerBuilder.Interop.dll

Sybase.PowerBuilder.Web.dll

Sybase.PowerBuilder.Win.dll

All .NET targets

pbrth125.dll .NET Web Forms and
ADO.NET

pbdwm125.dll

Sybase.PowerBuilder.Datawindow.Web.dll

Sybase.PowerBuilder.DataWindow.Win.dll

Sybase.PowerBuilder.Datawindow.Interop.dll

DataWindows and
DataStores

pbdpl125.dll Data pipelines (Win-
dows Forms only)

Sybase.PowerBuilder.EditMask.Win.dll

Sybase.PowerBuilder.EditMask.Interop.dll

Edit masks

Choosing a .NET Target

Deploying Applications and Components to .NET 15

http://www.sybase.com/support/manuals/

File name Required for

Sybase.PowerBuilder.Graph.Web.dll

Sybase.PowerBuilder.Graph.Win.dll

Sybase.PowerBuilder.Graph.Core.dll

Sybase.PowerBuilder.Graph.Interop.dll

Graphs

pbrtc125.dll

Sybase.PowerBuilder.RTC.Win.dll

Sybase.PowerBuilder.RTC.Interop.dll

tp13.dll

tp13_bmp.flt

tp13_css.dll

tp13_doc.dll

tp13_gif.flt

tp13_htm.dll

tp13_ic.dll

tp13_ic.ini

tp13_jpg.flt

tp13_obj.dll

tp13_pdf.dll

tp13_png.flt

tp13_rtf.dll

tp13_tif.flt

tp13_tls.dll

tp13_wmf.flt

tp13_wnd.dll

tp4ole13.ocx

Rich text

PBXerces125.dll

xerces-c_2_6.dll

xerces-depdom_2_6.dll

XML export and im-
port

Choosing a .NET Target

16 PowerBuilder

File name Required for

Sybase.PowerBuilder.WebService.Runtime.dll

Sybase.PowerBuilder.WebService.RuntimeRemo-
teLoader.dll

Web service Data-
Windows

ExPat125.dll

libeay32.dll

ssleay32.dll

xerces-c_2_6.dll

xerces-depdom_2_6.dll

EasySoap125.dll

pbnetwsruntime125.dll

pbsoapclient125.pbx

pbwsclient125.pbx

Sybase.PowerBuilder.WebService.Runtime.dll

Sybase.PowerBuilder.WebService.RuntimeRemo-
teLoader.dll

Web service clients

pblab125.ini Label DataWindow
presentation style

pbtra125.dll

pbtrs125.dll

Database connection
tracing

Sybase.PowerBuilder files are strong-named .NET assemblies that can be installed into the
GAC. For more information about the GAC, see Installing assemblies in the global assembly
cache on page 18.

You must also install the database interfaces your application uses:

File name Required for

pbin9125.dll Informix I-Net 9 native interface

pbo84125.dll Oracle8i native interface

pbo90125.dll Oracle9i native interface

pbo10125.dll Oracle 10g native interface

Choosing a .NET Target

Deploying Applications and Components to .NET 17

File name Required for

pbsnc125.dll SQL Native Client for Microsoft
SQL Server native interface

pbdir125.dll Sybase DirectConnect™ native
interface

pbase125.dll Sybase Adaptive Server® Enter-
prise native interface (Version 15
and later)

pbsyc125.dll Sybase Adaptive Server Enter-
prise native interface

pbado125.dll

pbrth125.dll

Sybase.PowerBuilder.Db.dll

Sybase.PowerBuilder.DbExt.dll

ADO.NET standard interface

pbjvm125.dll

pbjdb125.dll

pbjdbc12125.jar

JDBC standard interface

pbodb125.dll

pbodb125.ini

ODBC standard interface

pbole125.dll

pbodb125.ini

OLE DB standard interface

Installing assemblies in the global assembly cache
When the Common Language Runtime (CLR) is installed on a computer as part of the .NET
Framework, a machine-wide code cache called the global assembly cache (GAC) is created.
The GAC stores assemblies that can be shared by multiple applications. If you do not want or
need to share an assembly, you can keep it private and place it in the same directory as the
application.

If you do not want to use the Runtime Packager to deploy your application, you should use
Windows Installer or another installation tool that is designed to work with the GAC.
Windows Installer provides assembly reference counting and other features designed to
maintain the cache.

Choosing a .NET Target

18 PowerBuilder

On the development computer, you can use a tool provided with the .NET Framework SDK,
gacutil.exe, to install assemblies into the GAC.

Some assemblies, like RadCalendar.NET2.dll, RadInput.Net2.0.dll,
RadMenu.Net2.Dll, RadToolBar.Net2.dll, and RadTreeView.Net2.dll,
are still installed into the .NET Framework 2.0 GAC windows\assembly directory.

Assemblies deployed in the global assembly cache must have a strong name. A strong name
includes the assembly’s identity as well as a public key and a digital signature. The GAC can
contain multiple copies of an assembly with the same name but different versions, and it might
also contain assemblies with the same name from different vendors, so strong names are used
to ensure that the correct assembly and version is called.

For more information about assemblies and strong names, see the Microsoft library at http://
msdn.microsoft.com/en-us/library/wd40t7ad(VS.71).aspx.

Choosing a .NET Target

Deploying Applications and Components to .NET 19

http://msdn.microsoft.com/en-us/library/wd40t7ad(VS.71).aspx
http://msdn.microsoft.com/en-us/library/wd40t7ad(VS.71).aspx

Choosing a .NET Target

20 PowerBuilder

Web Forms Targets

This part describes how to create and deploy Web Forms applications.

PowerBuilder Web Forms Applications
The PowerBuilder Web Forms solution employs ASP.NET technology. It has a three-tier
architecture, with the browser client as the front end, and the PowerBuilder components on the
IIS server as the middle tier. The database tier remains unchanged.

Moving an existing application from client-server architecture to three-tier Web architecture
typically requires a significant effort in modifying the application code and the tolerance of
various functionality restrictions due to constraints of the Web environment. The
PowerBuilder .NET Web Forms solution is intended to ease the deployment of existing client-
server applications to the Web and allow you to use your PowerBuilder skills to create new
Web applications.

You must take into account the Internet bandwidth available, the rendering capability of client
Web browsers, and IIS server environment factors when determining whether .NET Web
Forms are an optimal solution for new or existing applications.

System Requirements for PowerBuilder Web Forms
You must install the .NET Framework 4.0 on the same computer as PowerBuilder. The system
PATH environment variable must include the location of the .NET Framework.

You must also install the .NET Framework on the IIS server where you deploy a Web Forms
target.

For information about installation and configuration, see ASP.NET Configuration for a .NET
Project on page 7. For information on migrating Web Forms targets from earlier releases of
PowerBuilder, see Release Bulletin > Migration Information.

If you are deploying .NET applications as a standard user from a computer with the Vista
operating system or later, the User Account Control dialog box prompts you for privilege
elevation. This dialog box does not appear if you run PowerBuilder as a computer
administrator.

Web Forms Targets
Use the .NET Web Forms Application target wizard to create a Web Forms target “from
scratch” or from an existing PowerBuilder application.

The existing application object that you select to use as a Web Forms application can be an
application object from any type of PowerBuilder target. By default, if the existing application

Web Forms Targets

Deploying Applications and Components to .NET 21

is already included in a target in the current workspace, the wizard reuses the entire library list
from the existing target as the library list for the Web Forms target that the wizard creates.

After the wizard creates a Web Forms target from an existing application, all objects from that
application are visible in the System Tree for the Web Forms target except project objects for
other types of PowerBuilder targets.

Web Forms Projects
Whether you use the .NET Web Forms target wizard to create a new target from scratch or
from an existing application, the target wizard always creates a new project. It automatically
launches the .NET Web Forms Application project wizard.

A Web Forms project object is required to deploy the Web Forms application to an IIS 5.0 or
later server. Once the application is deployed to a server, end users can run it from a Web
browser.

Although you can always start the .NET Web Forms Application project wizard from the
Project tab of the New dialog box, you can start it for a Web Forms target type only. If the
current workspace does not have a target of this type, PowerBuilder does not let you run
the .NET Web Forms Application project wizard.

This table lists optional and required items in the .NET Web Forms Application project
wizard:

Wizard field Description

Project name Name of the Web Forms project.

Project library Library where you want to store the Web Forms project.

Web application name Name of the Web Forms application. By default, this is the name of the
application for the current PowerBuilder target.

Application URL preview Address for starting the Web Forms application in a browser (minus
the default.aspx or default.htm start-up file name).

Resource file and directory
list

Specifies a list of resource files, or directories containing resource
files, that you want to deploy with the project.

When you select a directory, the resource files in all of its subdirec-
tories are also selected by default. However, after you complete the
wizard, you can clear the check box in the Recursive column on the
Resource Files tab page for the project. If you do that, the resource files
in the selected directory, but not in any of its subdirectories, are se-
lected for deployment.

Win32 dynamic library file
list

Specifies any Win32 DLLs that you want to include with your project.
Modules in this list are deployed to the bin directory in the applica-
tion Web site under the virtual root folder.

JavaScript file list Specifies JavaScript files you want to deploy with the project.

Web Forms Targets

22 PowerBuilder

Wizard field Description

Generate setup file option
and Setup file name

Select this option and a setup file name if you are not deploying di-
rectly to an IIS server.

Direct deploy to IIS and IIS
server address

Select this option to deploy to an IIS server and enter the address of the
server where you want to deploy the Web Forms application.

The Web Forms project painter
After you click Finish in the project wizard, PowerBuilder creates a Web Forms project and
opens the project in the Project painter. The Project painter displays the values you entered in
the wizard and allows you to modify them. The painter also includes functionality that is not
available in the .NET Web Forms Application project wizard:

Project tab page Functionality not available in the .NET Web Forms
wizard

General Includes the following radio button build options:

Build Type — Debug (default) or Release.

Rebuild — Incremental (default) or Full.

Use debug builds for debugging purposes. Release builds have better
performance, but when you run a release build in the debug mode, the
debugger does not stop at breakpoints.

For information on the rebuild scope, see Rebuild Scope on page
214.

The Enable DEBUG Symbol check box enables code inside condi-
tional compilation blocks using the DEBUG symbol. This selection
does not affect and is not affected by the project’s build type setting. It
is selected by default.

Resource Files The wizard automatically includes the resource files from all subdir-
ectories of a directory that you add to the wizard’s Resource Files
page. In the Project painter, a check box displays under the Recursive
column for each directory in the Resource Files page list box. You can
clear the check box to deploy only the files in the directory that is
listed. You can also select a registry XML file that you want to deploy
to the File/Common directory for your application.

For more information on using registry files, see Registry Functions
for Web Forms Applications on page 30.

Web Forms Targets

Deploying Applications and Components to .NET 23

Project tab page Functionality not available in the .NET Web Forms
wizard

Library Files The Library Files tab has separate list boxes for target libraries (PBLs
and PBDs) and for dynamic Win32 library files (DLLs) that you want
to deploy with your project. The PBLs you select are generated as
PBDs if they contain DataWindow or Query objects. By default, all
target libraries are selected, but you need to select a PBL only if it
contains DataWindow or Query objects that you use in your applica-
tion. If your target library list includes a PBD file that contains other
types of PowerBuilder objects, such as functions or user objects, you
cannot reference those objects in your Web Forms application.

These types of objects must be contained in a PBL file rather than in a
PBD file before you deploy them to a Web Forms target. For a Web
Services client, you can import a PBX file into a target PBL using the
Import PB Extension item on the library’s context menu, rather than
using the PBD file that contains the SoapConnection and SoapError
classes.

Configuration On this Project painter page, you can modify global properties for the
project before it is deployed. You or the application server manager
can also change global properties after the project is deployed.

For more information about global properties, see Global Web Con-
figuration Properties on page 65.

Version Version information includes values for the product name, company
name, description, and copyright, as well as major, minor, build, and
revision version numbers for the product, file, and assembly that you
generate when you build the project. The values you enter appear in
the generated assembly file's Properties dialog box in Windows Ex-
plorer. They are viewable on the Web Forms server, but are not typi-
cally available to end users of Web Forms applications.

Post-build You can use this Project painter page to select an application, such as a
code obfuscator program, to process the generated Web Forms appli-
cation immediately after it is deployed. You can select different ap-
plications for post-build processing of debug and run versions of your
project.

Security Lets you configure CAS security zones for your applications, mini-
mizing the amount of trust required before application code is run by
an end user.

See Security Settings on page 3 and Custom Permission Settings on
page 231.

Web Forms Targets

24 PowerBuilder

Project tab page Functionality not available in the .NET Web Forms
wizard

Run Contains the Application field where you can enter the path to a
browser you want to have run the Web Forms application and the
Arguments field where you can enter the URL for the Web Forms
application. By default, the path to the Internet Explorer browser is
displayed for the Application field. The Arguments field is populated
by default with the value for the project’s Application URL Preview,
with Localhost as the default server name.

Sign The Assembly group box on this tab page allows you to attach strong
name key files to the assemblies that your project generates.

This picture shows the General page of the Project painter for a .NET Web Forms project.

Web Forms Deployment
When a .NET Web Forms project is open in the Project painter and no other painters are open,
you can select Design > Deploy Project from the Project painter to deploy the project.

When all painters are closed, including the Project painter, you can right-click a Web Forms
project in the System Tree and select Deploy from its context menu.

The Output window shows the progress of the deployment and provides a list of application
functions, events, and properties that are not supported in the Web Forms version of the
application. Most of these warnings are benign and do not prevent users from running the
application as Web Forms.

If a supported version of the Microsoft .NET Framework is the only version of the .NET
Framework installed on the server, or if you configured the server to use a supported version

Web Forms Targets

Deploying Applications and Components to .NET 25

(2.0, 3.0, or 3.5) for all Web sites by default, you can run the application immediately after you
deploy it.

You can run the application from PowerBuilder by selecting Design > Run Project from the
Project painter menu or selecting the Run Project toolbar icon from the Project painter
toolbar. The System Tree context menu for the Web Forms project also has a Run Project
menu item.

Deployment to a setup file
If you are deploying a .NET project to an MSI file, you must have a file named
License.rtf in the PowerBuilder DotNET\bin directory. The PowerBuilder setup
program installs a dummy License.rtf file in this directory, but you should modify this
file’s contents or replace the file with another file of the same name.

The License.rtf file should contain any license information you want to distribute with
your application. You can run the .NET application only after the setup file is extracted to an
IIS server. The contents of the License.rtf file appear in the setup file extraction wizard.

After you create and distribute the MSI file to an IIS server, you must extract the MSI file on
the server. By default the extraction directory is set to C:\Program Files\Webform
\applicationName, and the extraction wizard creates the C:\Program Files
\Webform\applicationName\applicationName and C:\Program Files
\Webform\applicationName\applicationName_root virtual directories,
where applicationName is the name of your application.

Although you do not need to modify the default extraction directory to run the application, the
extraction wizard does let you change the location of the application directories you extract. If
you prefer to keep all your applications directly under the server’s virtual root, you could set
the extraction directory to server’s Inetpub\wwwroot directory.

Deployment to a production server
You can deploy a Web Forms application to a production server either by:
• Extracting an MSI file that you build from a Web Forms project
• Deploying directly from the development computer to a mapped server
• Copying all application folders and files from IIS on a local server to IIS on a production

server
Production servers must meet the requirements described in ASP.NET Configuration for
a .NET Project on page 7. You must install all database clients and have access to all data
sources on the production computer. For applications that you deploy to a production server,
you should add required database driver DLLs to the Win32 dynamic library list on the Library
Files tab page of your Web Forms projects. If you are using ODBC to connect to a database,
you should add the PBODB125.INI file to the list of resource files on the Resource Files tab
page of Web Forms projects.

The production server must have the following DLLs in its system path: atl71.dll,
msvcr71.dll, msvcp71.dll, msvcp100.dll, msvcr100.dll,

Web Forms Targets

26 PowerBuilder

pbshr125.dll, and if your application uses DataWindow objects, pbdwm125.dll. You
can also use the Runtime Packager to deploy required PowerBuilder runtime files to the
ASP.NET server. After you install the package created by the Runtime Packager, you must
restart the server.

For a complete list of required runtime files and for information on the Runtime Packager, see
Application Techniques > Deploying Applications and Components.

Deployment to a remote server
You can deploy directly to a mapped server only if the server is in the same domain or
workgroup as the development computer. In addition, you must add the development
computer user’s Windows login ID as a member of the Administrators group on the remote
computer hosting the IIS server.

If you copy a Web Forms application from a development computer to a production server,
you must copy both the applicationName and applicationName_root folders (and their
contents) that were created when you deployed the application locally. Direct deployment to a
mapped server automatically adds the necessary ASP.NET user permissions to access these
directories, but if you copy files to the server, you must add these permissions manually.

Note: For information on the directory file structure of a deployed Web Forms application
under the IIS virtual root directory (\inetpub\wwwroot), see Web Forms File Manager
on page 56.

ASP .NET user permissions
If you copy files to a production server, or extract your Web Forms application from an MSI
file, you can use Windows Explorer to grant ASP.NET permissions to the application
directories. This method is described in Setting Up a SQL Anywhere Database Connection on
page 10. You can also grant ASP.NET permissions from a command line. The commands are
different depending on the version of IIS that your server is running:

IIS version Commands for granting appropriate user permissions

5
cacls applicationName\temp /t /e /c /g ASPNET:f
cacls applicationName_root /t /e /c /g ASPNET:f

6
cacls applicationName\temp /t /e /c /g IIS_WPG:f
cacls applicationName_root /t /e /c /g IIS_WPG:f

7 and 7.5
cacls applicationName\temp /t /e /c /g IIS_IUSRS:f
cacls applicationName_root /t /e /c /g IIS_IUSRS:f

Web Forms Targets

Deploying Applications and Components to .NET 27

Event logging on the production server
If you log Web Forms application events to a production server’s event log (by setting the
PBTraceTarget global property to "EventLog"), you must have a registry entry key for
PBExceptionTrace. If you use an MSI file to deploy an application to a production server, the
PBExceptionTrace key is created automatically. If you deploy directly to a mapped
production server or if you copy a Web Forms application to a production server, you must
import the PBExceptionTrace key or create it manually.

When you deploy to a local computer, PowerBuilder creates the following key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Application
\PBExceptionTrace. You can export this key to a .REG file and import it to the production
server’s registry.

For information on the PBTraceTarget global property, see Global Web Configuration
Properties on page 65.

If your Web Forms application uses any ActiveX DLLs, such as HTML2RTF.DLL or
RTF2HTML.DLL, you must also register these files on the production server.

Running the project
When you debug or run the project from PowerBuilder, a system option setting can cause a
message box to appear if the application has been modified since it was last deployed. The
message box prompts you to redeploy the application, although you can select No to debug or
run the older application, and you can set the system option to prevent the message box from
appearing.

For information about the message box, see Triggering Build and Deploy Operations on page
215. For information about the system option, see System Option on page 215.

The Web browser that opens when you run a Web Forms project from PowerBuilder does not
include the browser menu and toolbar. This is because PowerBuilder does not append the
starting page, default.aspx, to the URL listed in the project. You can see the application
in a browser window that includes the browser menu and toolbar by typing the URL in the
browser location window or address bar. The URL address is not case-sensitive.

Note: If your application requires command line parameters, you can assign values to the
PBCommandParm global property before you deploy the application. For information on
setting global properties, see Global Web Configuration Properties on page 65.

Application users can override the PBCommandParm parameter set at design time by adding
it at the end of the application’s URL, preceded by a question mark. Multiple parameters are
separated by the ASCII character code for an empty space (%20). For example, the following
address, entered on a single line, uses two start-up parameters for the mypbapp Web Forms
application deployed to the www.mysite.com Web site:
http://www.mysite.com/mypbapp/default.aspx?PBCommandParm=p1%20p2

Web Forms Targets

28 PowerBuilder

If you do not include the starting page, default.aspx, in a URL that you type in a browser
address bar, or if you append default.htm as the starting page, IIS still redirects you to the
default.aspx page, but the browser menu and toolbar do not display.

Sharing Data Across Sessions
You can share the data from primary, delete, and filter buffers of read-only DataWindow
objects across Web Forms application sessions.

Sharing DataWindow objects
The Web.config file global property PBCachedAndSharedDWs is available for this
purpose. You must set its value to the string of comma-delimited names of the DataWindow
objects you want to share across application sessions.

For information on modifying global properties, see Viewing and Modifying Global
Properties in the IIS Manager on page 9.

These restrictions apply to DataWindow controls that have a DataWindow object included in
the PBCachedAndSharedDWs property setting:

• Only a single invocation of Retrieve is allowed, and the Retrieve call must not include
parameters.

• No filtering or sorting is allowed.
• No deletions, insertions, data modifications, or updates are allowed.
• No invocation of ShareData or ShareDataOff is allowed.

When this form of sharing is used, the retrieval events are not fired. This is because the
Retrieve method shares the data in the cache and no actual retrieval occurs.

Sharing DDDW objects
It is also possible to share the data of DropDownDataWindow objects across Web Forms
application sessions. The global property PBCachedAndSharedDDDWs is used for this
purpose. You can set its value to a string of comma-delimited names of DataWindow objects.
Each DataWindow object that you list can then be shared as the child DataWindow of a
DropDownDataWindow column.

Note: In a Web Forms application, response windows are components of main windows rather
than separate browser instances. By default, when a response window is opened, DDDW
columns are temporarily hidden behind a layer displaying the response window. The columns
become visible again when the response window is closed. You can prevent the temporary
visibility issue by changing the value of the PBDataWindowEnableDDDW global property.

For more information about rendering DDDW columns, see DataWindow objects and
controls.

The following restrictions apply to DataWindowChild object references included in the
PBCachedAndSharedDDDWs property setting:

Web Forms Targets

Deploying Applications and Components to .NET 29

• No invocation of Retrieve is allowed.
• No filtering or sorting is allowed.
• No deletions, insertions, data modifications, or updates are allowed.
• No invocation of ShareData or ShareDataOff is allowed.

Registry Functions for Web Forms Applications
PowerBuilder Web Forms applications can read registry entries at the server side and can write
registry entries to a registry.xml file.

Searching and setting registry entries
The RegistryGet, RegistryKeys, and RegistryValues functions can search the server registry
for registry entries if a registry.xml file does not exist in the applicationName_root/File/
Common directory under the IIS virtual root, where applicationName is the name of the
current Web Forms application. The registry search functions also search the server registry
when the registry.xml file exists but the entries you are searching for are not contained in
the current application’s registry.xml file.

The RegistrySet function creates the registry.xml file—if one does not already exist—
in the applicationName_root/File/Session/SessionID for the current Web Forms session or in
the applicationName_root/File/User/UserName directory when the current user has logged in
with a permanent user account. If a registry.xml file already exists, the arguments of the
RegistrySet function are added to the contents of the existing registry.xml file.

The RegistrySet function can also copy a registry.xml file from applicationName_root/
File/Common to applicationName_root/File/Session/SessionID or to applicationName_root/
File/User/UserName, but it writes to the registry.xml file in the SessionID or
UserName directory only.

For information about permanent user accounts, see Creating Permanent User Accounts on
page 48.

Rules for registry searching and setting
These rules apply to registry search and setting operations:

• Searches for registry entries, keys, or values are conducted first in the registry.xml
file. The search uses the server registry only if the registry entry, key, or value cannot be
found in the registry.xml file.

• Application users can set or write registry entries only in the registry.xml file in the
applicationName_root/File/Session/SessionID folder for the current session or in the
applicationName_root/File/User/UserName folder for the current user.

• Application users can delete registry keys or values only from the registry.xml file in
the SessionID folder for the current session or the UserName folder for the current user.

Web Forms Targets

30 PowerBuilder

Deploying a registry.xml file
A text box at the bottom of the Resource Files tab of a Web Forms project allows you to select a
registry.xml file for deployment to the applicationName_root/File/Common directory
under the virtual root for IIS Web sites. If the Web Forms application searches for a registry
entry, key, or value, the registry.xml file is copied to the applicationName_root/File/
Session/SessionID folder for the current session or to the applicationName_root/File/User/
UserName folder for the current user.

This is sample content of a registry.xml file:

<?xml version="1.0"?>
<RegistryRoot>
 <k name="HKEY_LOCAL_MACHINE">
 <k name="Software">
 <k name="MyApp">
 <k name="Fonts">
 <v name="Title">MyTrueType</v>
 </k>
 </k>
 </k>
 </k>
</RegistryRoot>

The first time the registry function is called, the system copies registry.xml from the
Common directory to the SessionID or UserName directory; after that, the system uses the
registry.xml copy under the SessionID or UserName directory.

Client-Side Programming
The use of client-side events can improve application performance because they do not require
round trips to the server.

Interrupting default event handlers
In most cases, an event that is triggered in a PowerBuilder Web Forms application calls a
default JavaScript event handler that posts back to the server and triggers the same event on the
server side control. However, when you code a client-side event for a DataWindow control, the
call to the default JavaScript event handler for that event is aborted and the round trip to the
server can be avoided.

Note: JavaScript event handlers can enhance performance by allowing users to make
modifications without a postback to the server.

To code for a client-side event at design time, you must enclose an event handler assignment in
a conditional compilation code block in a PowerBuilder painter Script view. The start tag for
the code block includes a symbol to indicate that the code inside the block is for a .NET Web

Web Forms Targets

Deploying Applications and Components to .NET 31

Forms application. The event handler assignment is a hook into a JavaScript file that you also
assign in a conditional compilation code block.

Although coding for a client-side event normally interrupts postbacks to the server, you can
explicitly code for a postback in your customized JavaScript event handler by calling
Document.Form.Submit or by calling a default event handler for the triggered event.

Example code for an event handling script
This example of a customized, client-side JavaScript event handler for the ItemChanged event
of a DataWindow determines whether the item changed is in the first or second column of the
DataWindow. If the item is in one of the first two columns, this event handler calls the default
JavaScript event handler that rejects item changes. In this case, the default event handler does
not cause a postback. If the item changed is not in the first or second column, no client-side
action is taken, and the server-side action is delayed until a postback is triggered by a different
event or function call:

//Start MyScriptFile.js
function MyItemChanged(sender, rowNumber, columnName, newValue)
{
 if(columnName == “column1” || columnName == “column2”)
 {
 // The default function is invoked
 return PBDataWindow_ItemChangedReject(sender,rowNumber,
columnName, newValue)
 }
 else
 {
 //do nothing
 }
}
//End MyScriptFile.js

The hook into the customized JavaScript event handler is added at design time in a conditional
compilation code block:

#IF DEFINED PBWEBFORM THEN
 dw_1.JavaScriptFile = “MyScriptFile.js”
 dw_1.OnClientItemChanged = “MyItemChanged”
#END IF

Default event handlers and postbacks
The default event handlers for the ItemChanged and ItemError events do not trigger
postbacks. If active, the default ItemChanged event handler returns immediately to reject the
entered value or causes the Web Forms application to wait for a cascade of user events to occur
before a postback is allowed. The cascade of events that must occur before a postback is
triggered is: ItemChanged, Clicked, RowFocusChanging, RowFocusChanged, and
ItemFocusChanged.

Web Forms Targets

32 PowerBuilder

Some versions of the default Clicked event handler set a timer for postbacks because the
DHTML DoubleClicked event also triggers the Clicked event.

If a DataWindow object’s HTMLGen.PagingMethod property is set to XMLClientSide!,
postbacks are not called until an Update is issued, since the data is stored in its entirety in the
client browser cache. Also, if the corresponding server-side event does not contain any script,
the default event handlers do not cause a postback or cause client-side Web Forms to be re-
rendered.

Default Event Handlers
Default event handlers for the Web DataWindow control are contained in the
PBDataWindow.js file that deploys with your application to the applicationName
\Scripts directory under the server’s virtual root.

The default event handlers typically cause a postback or delayed postback to the
corresponding server-side event. Default event handlers can call more than one server-side
event, but each default event handler name includes a reference to the main event that it
handles.

This table describes the logic followed by the default handlers that attach to each event, and
indicates whether the handler causes a postback, a delayed postback, or no postback.

Client-side Event Default JavaScript han-
dler (postback action)

Used under the follow-
ing conditions for serv-
er-side events:

Clicked PBDataWindow_Clicked (post-
back)

• Clicked is handled, but
DoubleClicked is not

• Clicked and ButtonClicked
are handled, but Double-
Clicked is not

• Clicked and ButtonClicking
is handled, but Double-
Clicked is not

PBDataWindow_Delayed-
Clicked (delayed postback)

• Clicked and DoubleClicked
are handled

• Clicked, DoubleClicked,
and ButtonClicked are han-
dled

• Clicked, DoubleClicked,
and ButtonClicking are
handled

Web Forms Targets

Deploying Applications and Components to .NET 33

Client-side Event Default JavaScript han-
dler (postback action)

Used under the follow-
ing conditions for serv-
er-side events:

PBDataWindow_ClickedDif-
ferentRow (postback)

• RowFocusChanging is han-
dled, but Clicked and Dou-
bleClicked are not

• RowFocusChanged is han-
dled, but Clicked and Dou-
bleClicked are not

PBDataWindow_Delayed-
ClickedDifferentRow (delayed
postback)

• RowFocusChanging and
DoubleClicked are handled,
but Clicked is not

• RowFocusChanged and
DoubleClicked are handled,
but Clicked is not

DoubleClicked PBDataWindow_Double-
Clicked (postback)

DoubleClicked is handled

RButtonDown PBDataWindow_RButton-
Down (postback)

RButtonDown is handled

ButtonClicked PBDataWindow_Button-
Clicked (postback)

ButtonClicked is handled and/
or ButtonClicking is handled

ButtonClicking PBDataWindow_ButtonClick-
ing (postback)

ButtonClicked is handled and/
or ButtonClicking is handled

ItemFocusChanged PBDataWindow_ItemFocu-
sChanged (postback)

ItemFocusChanged is handled

PBDataWindow_ItemFocu-
sChanged_AND_Item-
Changed_OR_ItemError (post-
back)

ItemChanged and ItemError are
handled, but ItemFocu-
sChanged is not

PBDataWindow_ItemFocu-
sChanged_AND_ItemChanged
(postback)

ItemChanged is handled, but
ItemFocusChanged and ItemEr-
ror are not

PBDataWindow_ItemFocu-
sChanged_AND_ItemError
(postback)

ItemError is handled, but Item-
Changed and ItemFocu-
sChanged are not

ItemError PBDataWindow_ItemError (no
postback)

ItemChanged is handled and/or
ItemError is handled

Web Forms Targets

34 PowerBuilder

Client-side Event Default JavaScript han-
dler (postback action)

Used under the follow-
ing conditions for serv-
er-side events:

ItemChanged PBDataWindow_ItemChange-
dReject (no postback)

ItemChanged is handled

RowFocusChanged PBDataWindow_RowFocu-
sChanged (postback)

• RowFocusChanging is han-
dled, but ItemFocu-
sChanged is not

• RowFocusChanged is han-
dled, but ItemFocu-
sChanged is not

If you call a customized client-side event handler, the default event handler does not get
invoked, postbacks are not made to the server, and the corresponding server-side event does
not get triggered. You can explicitly call a default event handler from a customized event
handler if you want to trigger the corresponding server-side event. When you call a default
event handler directly in a JavaScript function, you must use the same arguments and return
value that you would for the principal client-side event that it handles.

For information on client-side event signatures, see the event descriptions under Alphabetical
Liist of Web DataWindow Client-Side Events on page 37.

Client-Side Support for the Web DataWindow Control
The Web Forms version of the DataWindow is a subclass of the DataWindow .NET™ Web
DataWindow control. The client-side programming capabilities of the Web DataWindow
enable the use of client-side JavaScript event handlers.

The ClientEvent properties of the Web DataWindow have also been exposed, allowing the
creation of customized event handlers that can override the default event handlers in the
PBDataWindow.js file. The names of the ClientEvent properties consist of the name of a
client-side event with an “OnClient” prefix. For example, the ClientEvent property that
corresponds to the Clicked event would be OnClientClicked. You can circumvent the default
event handler for the Clicked event by setting OnClientClicked to the name of a JavaScript
function that uses the client-side Clicked event arguments.

The Web DataWindow client control supports the events listed in this table:

Event Arguments Return Codes

ButtonClicked sender, rowNumber, button-
Name

0 – Continue processing

Web Forms Targets

Deploying Applications and Components to .NET 35

Event Arguments Return Codes

ButtonClicking sender, rowNumber, button-
Name 0 – Execute action assigned

to button, then trigger But-
tonClicked
1 – Do not execute action or
trigger ButtonClicked

Clicked sender, rowNumber, object-
Name 0 – Continue processing

1 – Prevent focus change

DoubleClicked sender, rowNumber, object-
Name 0 – Continue processing

1 – Prevent focus change

ItemChanged sender, rowNumber, colum-
nName, newValue 0 – Accept data value

1 – Reject data value and
prevent focus change
2 – Reject data value but al-
low focus change

ItemError sender, rowNumber, colum-
nName, newValue 0 – Reject data value and

show error message
1 – Reject data value with
no error message
2 – Accept data value
3 – Reject data value but al-
low focus change

ItemFocusChanged sender, rowNumber, colum-
nName

0 – Continue processing

RButtonDown sender, rowNumber, object-
Name 0 – Continue processing

1 – Prevent focus change

RowFocusChanged sender, newRowNumber 0 – Continue processing

RowFocusChanging sender, currentRowNumber,
newRowNumber 0 – Continue processing

1 – Prevent focus change

The signatures of the client-side events and the effects of their return values are the same as for
the Web DataWindow control in DataWindow .NET. For a description of each event, see
Alphabetical Liist of Web DataWindow Client-Side Events on page 37.

Web Forms Targets

36 PowerBuilder

About return values for DataWindow events
In client events, you can use a return statement as the last statement in the event script. The
datatype of the value is number.

For example, in the ItemChanged event, set the return code to 2 to reject an empty string as a
data value:

if (newValue = "") {
 return 2;
}

This example prevents focus from changing if the user tries to go back to an earlier row:

function dwCustomer_RowFocusChanging(sender,
 currentRowNumber, newRowNumber)
 {
 if (newRowNumber < currentRowNumber)
 { return 1; }
 }

This example displays a message box informing the user which column and row number were
clicked:

function dwCustomer_Clicked(sender, rowNumber,
 objectName)
 {
 alert ("You clicked the " + objectName +
 " column in row " + rowNumber)
 }

Note: Showing an Alert message box for all clicked objects in a DataWindow can prevent data
entry or modification.

Alphabetical Liist of Web DataWindow Client-Side Events
The list of Web DataWindow control client-side events follows in alphabetical order.

For information on calling client-side scripts, see Client-Side Programming on page 31.

ButtonClicked
Occurs when the user clicks a button inside a DataWindow object.

Applies to
Web DataWindow client control

Web Forms Targets

Deploying Applications and Components to .NET 37

Arguments

Argument Description

sender String. Identifier for the button the user clicked.

row Number. The number of the current row when the
user clicked the button.

objectName String. The name of the control within the Data-
Window under the pointer when the user clicked.

Return codes
There are no special outcomes for this event. The only code is:

0 — continue processing.

Usage
ButtonClicked fires only for buttons with the UserDefined action. Other buttons cause the
page to be reloaded from the server. The ButtonClicked event executes code after the action
assigned to the button has occurred.

Note: The server-side event that posts back to the ButtonClicked client-side event can be
triggered by these default event handlers: PBDataWindow_ButtonClicked,
PBDataWindow_ButtonClicking, PBDataWindow_Clicked, and
PBDataWindow_DelayedClicked.

This event is fired only if you have not selected Suppress Event Processing for the button. If
Suppress Event Processing is on, only the Clicked event and the action assigned to the button
are executed when the button is clicked.

If Suppress Event Processing is off, the Clicked event and the ButtonClicked event are fired. If
the return code of the ButtonClicking event is 0, the action assigned to the button is executed
and the ButtonClicked event is fired. If the return code of the ButtonClicking event is 1, neither
the action nor the ButtonClicked event is executed.

ButtonClicking
Occurs when the user clicks a button inside a DataWindow object. This event occurs before the
ButtonClicked event.

Applies to
Web DataWindow client control

Web Forms Targets

38 PowerBuilder

Arguments

Argument Description

sender String. Identifier for the button the user clicked.

row Number. The number of the current row when the
user clicked the button.

objectName String. The name of the control within the Data-
Window under the pointer when the user clicked.

Return codes
Set the return code to affect the outcome of the event:

0 — execute the action assigned to the button, then trigger the ButtonClicked event.
1 — prevent the action assigned to the button from executing and the ButtonClicked event
from firing.

Usage
Use the ButtonClicking event to execute code before the action assigned to the button occurs.
If the return code is 0, the action assigned to the button is then executed and the ButtonClicked
event is fired. If the return code is 1, the action and the ButtonClicked event are inhibited.

Note: The server-side event that posts back to the ButtonClicking client-side event can be
triggered by these default event handlers: PBDataWindow_ButtonClicked,
PBDataWindow_ButtonClicking, PBDataWindow_Clicked, and
PBDataWindow_DelayedClicked.

This event is fired only if you have not selected Suppress Event Processing for the button.

The Clicked event is fired before the ButtonClicking event.

Clicked
Occurs when the user clicks anywhere in a DataWindow control.

Applies to
Web DataWindow client control

Arguments

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row the user clicked.

Web Forms Targets

Deploying Applications and Components to .NET 39

Argument Description

objectName String. The name of the control within the Data-
Window under the pointer when the user clicked.

Return codes
Set the return code to affect the outcome of the event:

0 — continue processing.
1 — prevent the focus from changing.

Usage
When the user clicks on a DataWindow button, the Clicked event occurs before the
ButtonClicking event. When the user clicks anywhere else, the Clicked event occurs when the
mouse button is released.

Note: The server-side event that posts back to the Clicked client-side event can be triggered by
these default event handlers: PBDataWindow_Clicked and
PBDataWindow_DelayedClicked.

Examples
This script in an .aspx file submits the value of the selected row in the DataWindow to the
server:

function objdwCustomers_Clicked(sender, rowNumber, objectName) {
 document.Form1.rownum.value = rowNumber;
 document.Form1.submit();
}

DoubleClicked
Occurs when the user double-clicks anywhere in a DataWindow control.

Applies to
Web DataWindow client control

Arguments

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row the user double-
clicked.

Web Forms Targets

40 PowerBuilder

Argument Description

objectName String. The name of the control within the Data-
Window under the pointer when the user double-
clicked.

Return codes
Set the return code to affect the outcome of the event:

0 — continue processing.
1 — prevent the focus from changing.

Usage
When the user double-clicks on a DataWindow button, the DoubleClicked event occurs before
the ButtonClicking event. When the user double-clicks anywhere else, the DoubleClicked
event occurs when the mouse button is released.

Note: The server-side event that posts back to the DoubleClicked client-side event can be
triggered by these default event handlers: PBDataWindow_DoubleClicked,
PBDataWindow_DelayedClicked, and PBDataWindow_DelayedClickedDifferentRow.

Examples
This script in an .aspx file submits the value of the selected row in the DataWindow to the
server:

function objdwCustomers_DoubleClicked(sender, rowNumber, objectName)
{
 document.Form1.rownum.value = rowNumber;
 document.Form1.submit();
}

ItemChanged
Occurs when a field in a DataWindow control has been modified and loses focus (for example,
the user presses Enter, the Tab key, or an arrow key, or clicks the mouse on another field within
the DataWindow).

It occurs before the change is applied to the item. ItemChanged can also occur when the
Update function is called.

Applies to
Web DataWindow client control

Web Forms Targets

Deploying Applications and Components to .NET 41

Arguments

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row containing the
item whose value is being changed.

columnName String. The name of the column containing the
item.

newValue String. The new data the user has specified for the
item.

Return codes
Set the return code to affect the outcome of the event:

0 — (default) accept the data value.
1 — reject the data value and do not allow focus to change.
2 — reject the data value but allow the focus to change.

Usage
The ItemChanged event does not occur when the DataWindow control itself loses focus.

Note: The server-side event that posts back to the ItemChanged client-side event can be
triggered by these default event handlers only after a cascade of events occurs: ItemChanged,
Clicked, RowFocusChanging, RowFocusChanged, and ItemFocusChanged.

Default postback scripts for this event are
PBDataWindow_ItemFocusChanged_AND_ItemChanged and
PBDataWindow_ItemFocusChanged_AND_ItemChanged_OR_ItemError. The default
event handler PBDataWindow_ItemChangedReject does not cause a postback, and rejects the
changed value entered by the user.

ItemError
Occurs when a field has been modified, the field loses focus (for example, the user presses
Enter, Tab, or an arrow key or clicks the mouse on another field in the DataWindow), and the
data in the field does not pass the validation rules for its column.

Applies to
Web DataWindow client control

Web Forms Targets

42 PowerBuilder

Arguments

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row containing the
item with a new value that fails validation.

columnName String. The name of the column containing the
item.

newValue String. The new data the user has specified for the
item.

Return codes
Set the return code to affect the outcome of the event:

0 — (default) reject the data value and show an error message box.
1 — reject the data value with no message box.
2 — accept the data value.
3 — reject the data value but allow focus to change.

Usage
If the Return code is 0 or 1 (rejecting the data), the field with the incorrect data regains the
focus.

The ItemError event occurs instead of the ItemChanged event when the new data value fails a
validation rule. You can force the ItemError event to occur by rejecting the value in the
ItemChanged event.

Note: Default postback scripts for this event are called only after an ItemFocusChanged event
occurs on the client side. The default event handlers that invoke the server-side ItemError
event are PBDataWindow_ItemFocusChanged_AND_ItemError and
PBDataWindow_ItemFocusChanged_AND_ItemChanged_OR_ItemError. The default
event handler PBDataWindow_ItemError does not cause a postback, and rejects the value
entered by the user.

ItemFocusChanged
Occurs when the current item in the control changes.

Applies to
Web DataWindow client control

Web Forms Targets

Deploying Applications and Components to .NET 43

Arguments

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row containing the
item that has just gained focus.

columnName String. The name of the column containing the
item.

Return codes
There are no special outcomes for this event. The only code is:

0 — continue processing.

Usage
ItemFocusChanged occurs when focus is set to another column in the DataWindow, including
when the DataWindow is first displayed. The row and column together uniquely identify an
item in the DataWindow.

In Web Forms targets, once a DataWindow loses focus and a postback event is triggered, the
DataWindow loses memory of its current column. If the same cell regains the focus, the
ItemFocusChanged event is triggered because the current column is lost after the page posts
back to the client.

Note: The server-side event that posts back to the ItemFocusChanged client-side event can be
triggered by this event handler: PBDataWindow_ItemFocusChanged.

RButtonDown
Occurs when the user right-clicks anywhere in a DataWindow control.

Applies to
Web DataWindow client control

Arguments

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row the user right-
clicked.

Web Forms Targets

44 PowerBuilder

Argument Description

objectName String. The name of the control within the Data-
Window under the pointer when the user right-
clicked.

Return codes
Set the return code to affect the outcome of the event:

0 — continue processing.
1 — prevent the focus from changing.

Usage
When the user right-clicks on a DataWindow button, the RButtonDown event occurs before
the ButtonClicking event. When the user right-clicks anywhere else, the RButtonDown event
occurs when the mouse button is released.

Note: The server-side event that posts back to the RButtonDown client-side event can be
triggered by this event handler: PBDataWindow_RButtonDown.

Examples
This script in an .aspx file submits the value of the selected row in the DataWindow to the
server:

function objdwCustomers_RButtonDown(sender, rowNumber, objectName) {
 document.Form1.rownum.value = rowNumber;
 document.Form1.submit();
}

RowFocusChanged
Occurs when the current row changes in the DataWindow.

Applies to
Web DataWindow client control

Arguments

Argument Description

sender String. Identifier for the client-side control.

newRow Number. The number of the row that has just be-
come current.

Return codes
There are no special outcomes for this event. The only code is:

Web Forms Targets

Deploying Applications and Components to .NET 45

0 — continue processing.

Usage
The SetRow function, as well as user actions, can trigger the RowFocusChanged and
ItemFocusChanged events.

Note: The server-side event that posts back to the RowFocusChanged client-side event can be
triggered by these default event handlers: PBDataWindow_RowFocusChanged,
PBDataWindow_ClickedDifferentRow, and
PBDataWindow_DelayedClickedDifferentRow.

Examples
This script in an .aspx file shows an alert message when the row focus changes:

function objdw_RowFocusChanged(sender, newRowNumber) {
 alert("Focus changed to row " + newRowNumber);
}

RowFocusChanging
Occurs when the current row is about to change in the DataWindow.

The current row of the DataWindow is not necessarily the same as the current row in the
database.

The RowFocusChanging event occurs just before the RowFocusChanged event.

Applies to
Web DataWindow client control

Arguments

Argument Description

sender String. Identifier for the client-side control.

currentRow Number. The number of the row that is current
(before the row is deleted or its number changes).
If the DataWindow object is empty, currentrow is
0, indicating there is no current row.

newRow Number. The number of the row that is about to
become current. If the new row is going to be an
inserted row, newrow is 0, indicating that it does
not yet exist.

Return codes
Set the return code to affect the outcome of the event:

Web Forms Targets

46 PowerBuilder

0 — continue processing.
1 — prevent the focus from changing.

Usage
Typically the RowFocusChanging event is coded to respond to a mouse-click or keyboard
action that would change the current row in the DataWindow object.

Note: The server-side event that posts back to the RowFocusChanging client-side event can be
triggered by these default event handlers: PBDataWindow_RowFocusChanged,
PBDataWindow_ClickedDifferentRow, and
PBDataWindow_DelayedClickedDifferentRow.

Permanent User Accounts
Due to the stateless nature of the HTTP protocol, file and directory operations in a Web
application typically do not persist after a user session has ended.

However, for PowerBuilder .NET Web Forms applications, you can store user names in a
database and persist data and files created by application users across Web Forms sessions.
PowerBuilder .NET Web Forms can take advantage of the ASP.NET membership feature to
maintain permanent user accounts and store files created or modified by application users.

The default ASP.NET membership provider is defined in the machine.config file that is
typically installed in the C:\WINDOWS\Microsoft.NET\Framework
\v2.0.50727\CONFIG directory. The machine.config file assigns SQL Server
Express (.\SQLEXPRESS) as the default membership data source.

SQL Server Express
You can download the SQL Server 2005 Express Edition from the Microsoft download site at
http://www.microsoft.com/downloads/details.aspx?familyid=220549b5-0b07-4448-8848-
dcc397514b41&displaylang=en.

You might need to uninstall SQL Native Client before installing SQL Server 2005 Express.
The SQL Server Express setup produces an error if it finds an incompatible version of SQL
Native Client. The SQL Server Express setup includes a compatible version of SQL Native
Client that it installs if it does not find an existing version of this driver on the server computer.

If you are not using SQL Server Express
You do not need to install SQL Server Express if you are using SQL Server for the permanent
user database, but then you must replace the default connection string in the
machine.config file or add a connection string to the web.config file for the Web
Forms application. Changes to the machine.config file affect all .NET Web applications.

The connection string you add to the web.config file should have the following format for
a remote database server using SQL Authentication:

Web Forms Targets

Deploying Applications and Components to .NET 47

http://www.microsoft.com/downloads/details.aspx?familyid=220549b5-0b07-4448-8848-dcc397514b41&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=220549b5-0b07-4448-8848-dcc397514b41&displaylang=en

<connectionStrings>
 <add name="MySQLServer" connectionString="Server=dbsevername;
Database=aspnetdb; User Id=uid; password=pwd"
providerName="System.Data.SqlClient" />
</connectionStrings>

This connection string specifies a local SQL Server database with Windows Authentication
(SSPI):

<connectionStrings>
 <add name="MyDbConn"
 connectionString="Initial Catalog=MyDb;
 Data Source=MyServer;
 Integrated Security=SSPI;"/>
</connectionStrings>

Creating Permanent User Accounts
Permanent user accounts are disabled by default. After a Web Forms application is
successfully deployed, the IIS server administrator can use this procedure to set up permanent
user accounts.

It uses the default ASP.NET membership provider and data source assignment. (A note in the
procedure describes a required change to the web.config file when you use a nondefault
connection string.)

1. Start the ASP.NET SQL Server Setup wizard by entering aspnet_regsql from a DOS
command prompt window.

You can enter Aspnet_regsql /? at the command line to obtain a list of optional parameters
for SQL Server or SQL Server Express that you can use to bypass the wizard. If you are
using a local SQL Server database, for example, you can enter aspnet_regsql -S (local) -E
-A m, where -S (local) indicates that the server is local, -E indicates that the connection
uses Windows Authentication, and -A m adds the membership feature.

2. Use the ASP.NET SQL Server Setup wizard to create the user database.

In the wizard, you can enter .\SQLEXPRESS as the server name. This is the default name
for the local server as defined in the machine.config file. The wizard should give you
a success message.

3. In a text editor, modify the web.config file in the virtual root directory for your
deployed Web Forms application (typically, C:\Inetpub\wwwroot
\applicationName) to remove comment tags from the following lines:

 <!-- <roleManager enabled="true" /> -->
 ...
 <!-- <add name="AspNetSqlMembershipProvider"
 ...
 passwordStrengthRegularExpression=""/> -->

These lines should now appear in the web.config file as:

Web Forms Targets

48 PowerBuilder

<roleManager enabled="true" />
 ...
 <add name="AspNetSqlMembershipProvider"
 ...
 passwordStrengthRegularExpression=""/>

Note: You can change the connectionStringName parameter assignment in the
uncommented lines to a value other than LocalSqlServer if you modified the connection
string in the machine.config file, or if you added a connection string in the
application web.config file. For example, if you named a connection string as
MySqlServer, you should change the connectionStringName parameter value to
MySqlServer.

4. Verify that the appropriate user or user group (ASPNET for IIS 5, IIS_WPG for IIS 6, or
IIS_IUSRS for IIS 7 and IIS 7.5) has write authority for the virtual root directory of your
deployed Web Forms application.

The next step in this procedure creates the App_Data directory and saves database files to
this directory. However, it cannot do this if the ASPNET user (Windows XP), the
IIS_WPG user group, or the IIS_IUSRS user group (Windows Vista and later) does not
have write authority for the Web Forms virtual root directory.

If you proceed to the next step without modifying write permissions, you may get an error
page indicating that you do not have write authority for this directory. The error page also
explains how to grant write authority for the directory.

5. Open the UsersInit.aspx file for the Web Forms application in a Web browser.

The full URL for this file is typically http://ServerName/ApplicationName/
UsersInit.aspx. When you open this file in a Web browser, the App_Data directory
is created under the application virtual root directory and the permanent accounts database
is created with the following entries:

User name Password Role

admin a123456& admin

user a123456& user

The UsersInit.aspx returns a success page after the above user accounts are created.

Note: For security reasons, you should delete the UsersInit.aspx file after you go to
the next step or complete this procedure.

6. Open the Login.aspx file for the Web Forms application in a Web browser.
The full URL for this file is typically http://ServerName/ApplicationName/
Login.aspx. The Login page opens.

7. On the Login page, enter admin for the User Name and a123456& for the Password.
The Welcome page for an administrator role has a hyperlink labeled Users that opens a
page to manage users.

Web Forms Targets

Deploying Applications and Components to .NET 49

8. Click the Users hyperlink, then, in the page to manage users, click Search.
The page for managing users displays the application users in the permanent user database.

9. Click the Create New User hyperlink.
The page for adding users opens.

10. Enter a new user name, password, and e-mail. Enter the password a second time in the
Confirm Password text box and click Create User.
A new user account is added to the database for the current Web Forms application.

11. If the new user should have administrative privileges, select the Admin Role check box and
click Finish.
When you return to the page for managing users and click Search again, you should see the
user account you created in the list of user accounts.

12. Repeat steps 10-12 to create as many user accounts as necessary, then click the Logout
hyperlink to log out from the user management role.

Note: Accounts that you create are maintained in the database after you redeploy the Web
Forms application, but you must edit the web.config file as described in step 4 above
after each redeployment.

Managing Permanent User Accounts
In an administrator role, in addition to creating permanent user accounts, you can edit, delete,
and unlock accounts, and you can reset user passwords.

To perform any of these tasks, you must first set up your Web site membership provider as
described in the procedure for Creating Permanent User Accounts on page 48.

1. Open the Login.aspx file for the Web Forms application in a Web browser.

The full URL for this file is typically http://ServerName/ApplicationName/Login.aspx.
The Login page displays.

2. On the Login page, log in with an admin role account.
The default login for an admin account is described in the procedure for Creating
Permanent User Accounts on page 48.

3. Click the Users hyperlink, then in the page to manage users, click Search.
The page for managing users displays the application users in the permanent user database.

4. Click the Edit hyperlink for a user in the list of user accounts.
The page for editing and deleting user accounts appears. This page also includes an Unlock
User button when a user is locked out. Lockouts occur when the number of attempts to log

Web Forms Targets

50 PowerBuilder

in with a faulty password exceeds the number of attempts authorized by the
MaxInvalidPasswordAttempts parameter in the application web.config file.

5. Enter any changes you want for the user role or e-mail, and click Update User to apply
those changes.

The Update User button also applies your selections for whether the membership user can
be authenticated (Enable check box) and whether the user has administrative privileges
(Admin Role check box).

6. If you want to change the user password, enter a new password for the user account and
click Reset Password to apply the change.

7. If the selected user account is currently locked, click Unlock User to unlock the account
and allow the user to log back in.

8. If you want to remove the current user account from the permanent user database, click
Delete User.

9. Repeat steps 4-8 for all the user accounts you want to edit, delete, or unlock.

10. Click the Logout hyperlink to log out of your user management role.

Managers in Web Forms Applications
You can enable print, file, mail profile, and theme managers in a Web Forms application.

The managers provide application users with the ability to print documents, perform file
operations, send e-mail, or change the appearance of controls in the application.

Web Forms Targets

Deploying Applications and Components to .NET 51

Web Forms Print Manager
In Web Forms applications, output from supported PowerScript print functions is published as
PDF files on the server side. These PDF files are visible in the client-side Web browser through
links in the Web Forms Print Manager, and they can be printed on the client side.

The following system print functions are supported in .NET Web Forms applications: Print,
PrintCancel, PrintClose, PrintDefineFontDefine, PrintLine, PrintOpen, PrintOval,
PrintPage, PrintRect, PrintRoundRect, PrintSetSpacing, PrintText, PrintWidth, PrintX,
PrintY. PrintSetFont is also supported, but its return value is not the same as in a standard
PowerBuilder application.

File operation output
You can use the DataWindow control’s Print method to print a DataWindow object to a PDF
file. Application users can open the PDF file in a separate browser instance by selecting the
print result in the Print Manager. They can then print the PDF file using the File > Print menu
of the browser.

You can also use the SaveAs method to print DataWindows and their data as PDF or XSL files.
These files are not visible in the Print Manager. However, you can call the DownloadFile
function (in a conditional compilation block) to download these files, or application users can
download them from the server using the Web Forms File Manager and then print them from a
local browser or Adobe Reader application.

See DownloadFile on page 78. For information on the File Manager, see Web Forms File
Manager on page 56.

Print Manager icon
When supported print functions are used to print text in a Web Forms application, a printer
icon appears in the right-top corner of the main browser window.

The application user can click the icon to open the Web Forms application Print Manager. The
Print Manager lets the application user open a window to view the printed output as PDF
files.

This picture shows the Print Manager with hyperlinks to printed files:

Web Forms Targets

52 PowerBuilder

If you do not want the Print Manager icon to appear on a specific window in your application,
you can set the HasPrintManager property for that window to false. The Print Manager icon
automatically disappears on browser refresh after all the printed files are removed from the
Print Manager window.

You can also code an application event to open the Print Manager by calling the
OpenPrintManager function.

See HasPrintManager on page 77and OpenPrintManager on page 83.

Where printed output is saved
Printed output is saved to files in the applicationName_root\Print\Session\SessionID
directory under the virtual root for IIS Web sites, or in the applicationName_root\Print\User
\UserName directory if the current application user is logged in with a permanent user account
profile. The applicationName_root\Print\Session and the applicationName_root\Print\User
directories are created when you deploy your application. The SessionID or UserName
directory is created by the ASP.NET runtime engine after a PrintOpen call.

The SessionID directory created under the Print\Session directory uses the same session ID
number as the subdirectory created under the applicationName_root\File\Session directory
when the user saves a DataWindow as a PDF or writes to a file from the current application
session, or when the PBWebFileProcessMode global property has been set to Copy mode. The

Web Forms Targets

Deploying Applications and Components to .NET 53

actual SessionID directory name is a long 24-character string with letters and numbers such as
cdxgel554rkxxsbn1221uh55. Unless the user creating the printed files has logged in as a
permanent user, the SessionID directories are deleted when the Web Forms session is ended.

Requirements for Saving Files in PDF or XSL Format
The default PDF printing feature uses the Sybase DataWindow PS printer to print output to a
PostScript (PS) file, and then convert it to a PDF file format.

You must grant print permissions to the ASPNET, IIS_WPG, or IIS_IUSRS user group for the
Sybase DataWindow PS printer.

Alternatively, you could use the Apache Formatting Objects (FO) processor to save a
DataWindow and its data in the PDF or XSL-FO format.

PostScript printing method
The Sybase DataWindow PS printer profile is added automatically to a computer’s printer list
when you save a DataWindow to a PDF file from a PowerBuilder application. This does not
occur automatically with a Web Forms application; however, Web Forms users can use the
Sybase DataWindow PS printer that you create on the server computer from a standard client-
server application at design time or runtime

You can also add the Sybase DataWindow PS profile manually to the server computer using
the Windows Add Printer wizard. If a PostScript driver has not been previously installed on the
IIS server computer, the Add Printer wizard might ask you to insert the Windows installation
CD.

Once a postscript driver is installed, you (or the server administrator) can add a Sybase
DataWindow PS profile from the Install Printer Software page of the wizard in one of these
ways:

• Click Have Disk and browse to the Adist5.inf file (installed with PowerBuilder) in
the Shared\PowerBuilder\drivers directory, or to another PostScript driver file.

• Select a printer with PS in its name (such as “Apple Color LW 12/660 PS”) from the list of
printers of the wizard.

You must then rename the printer to "Sybase DataWindow PS" on the Name Your Printer page
of the Add Printer wizard or in the Properties dialog box for the added printer.

To enable PDF printing from a Web Forms application using the postscript processing
method, you must also install Ghostscript on the IIS server computer.

See Installing GPL Ghostscript on page 55.

Apache FO processing method
If a Web Forms application uses the Apache processor to save a DataWindow and its data in
PDF or XSL-FO format, you must include the fop-0.20.4 directory and the Java Runtime
Environment (JRE) on the server computer. The bin\client folder of the JRE must be in
the server computer’s system path.

Web Forms Targets

54 PowerBuilder

The processor directory and the JRE must be in the same path as the PowerBuilder runtime
files. For example, if pbvm125.dll and the other PowerBuilder runtime files are included
in a server computer directory called ServerPB, the Apache processor must be copied to
ServerPB\fop-0.20.4 and the JRE to ServerPB\jre, respectively. However, you
do not need to place a copy of the JRE in this location if the full JDK is installed on the server
computer and is in its classpath.

These JAR files must be in the server computer’s classpath:

• fop-0.20.4\build\fop.jar

• fop-0.20.4\lib\batik.jar

• fop-0.20.4\lib\xalan-2.3.1.jar

• fop-0.20.4\lib\xercesImpl-2.1.0.jar

• fop-0.20.4\lib\xml-apis.jar

• fop-0.20.4\lib\avalon-framework-cvs-20020315.jar

You might also need to restart the IIS server before you can use this method to print to a PDF
file from a Web Forms application.

Note: If the Web Forms server computer is a DBCS platform, you also need to include a file
that supports DBCS characters in the Windows font directory, for example, C:\WINDOWS
\fonts. For more information about configuring fonts, see the Apache Web site at http://
xml.apache.org/fop/fonts.html.

Installing GPL Ghostscript
To enable Web Forms users to save their data in PDF format using the postscript processing
method, you must download and install Ghostscript on the IIS server computer.

Ghostscript is not required on the client for Web Forms applications.

The use of Ghostscript is subject to the terms and conditions of the General Public License
(GPL). A copy of the GPL is available on the GNU Project Web server at http://www.gnu.org/
licenses/gpl.html.

1. Download the self-extracting executable file for the Ghostscript version you want from
one of the locations listed on the Ghostscript Web site at http://pages.cs.wisc.edu/
~ghost.

2. Run the executable file to install Ghostscript on the server computer.

The default installation directory is C:\program files\gs. You can select a
different directory and/or choose to install shortcuts to the Ghostscript console and readme
file.

When a Web Forms application user saves a DataWindow object as a PDF, the Web Forms
server searches in these locations for an installation of Ghostscript:

• The Windows registry.

Web Forms Targets

Deploying Applications and Components to .NET 55

http://xml.apache.org/fop/fonts.html
http://xml.apache.org/fop/fonts.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://pages.cs.wisc.edu/~ghost
http://pages.cs.wisc.edu/~ghost

• The relative path of the pbdwm125.dll file (typically in the Sybase\Shared
\PowerBuilder directory)

• The system PATH environment variable.

If Ghostscript is installed using the Ghostscript executable file, the path is added to the
Windows registry.

If the Ghostscript files are in the relative path of the pbdwm125.dll file, they must be
installed in this directory structure:

dirname\pbdwm125.dll

dirname\gs\gsN.NN

dirname\gs\fonts

where dirname is the directory that contains the runtime DLLs and N.NN represents the
release version number for Ghostscript.

For information about fonts supplied with Ghostscript, see the Ghostscript Web site at http://
www.ghostscript.com/doc/current/Fonts.htm.

You must also make sure the default PostScript printer driver and related files in Sybase
\Shared\PowerBuilder\drivers are included in the IIS server path.

Where PDF and XSL-FO Output is Saved
If a full path is not provided in the SaveAs command, the PDF and XSL-FO files that users
generate from Web Forms DataWindow objects are saved by default in the virtual root path for
IIS Web sites.

The generated files are saved under the applicationName_root\File\Session
\SessionID\currentInitialDirectory or the applicationName_root
\File\User\UserName\currentInitialDirectory directory, where
currentInitialDirectory is a directory that you assign at design time for the Web Forms
application.

Note: The IIS server administrator can change the default current initial directory by
modifying the PBCurrentDirectory global property in the ASP.NET Configuration Settings
dialog box or in the web.config file for the Web Forms application.

Web Forms File Manager
When you deploy a PowerBuilder application as a .NET Web Forms application,
PowerBuilder creates a virtual file system that Web Forms users can access from client-side
Web browsers.

Virtual file system
The virtual file system is maintained on the server. Application users can read from and write
to files in the virtual file system as long as user permissions for file operations are not
restricted.

Web Forms Targets

56 PowerBuilder

http://www.ghostscript.com/doc/current/Fonts.htm
http://www.ghostscript.com/doc/current/Fonts.htm

Note: You cannot use external functions to do file operations in Web Forms targets.

The virtual file system for a PowerBuilder Web Forms application is contained in the
applicationName_root\File\Common directory under the virtual root of the IIS server, where
applicationName is the name of the current Web Forms application.

Subdirectories of the Common directory store read-only files that are shared by all users of a
Web Forms application. PowerBuilder creates these subdirectories at deployment time. A
top-level subdirectory is created for each development computer drive containing a file
deployed with the PowerBuilder application. The entire path to each application file is
mirrored in the virtual file system to reflect the path to the application files on the desktop file
system. The name of each top-level subdirectory in the virtual file system consists only of a
drive letter that mirrors the desktop drive from where an application file was copied.

This figure shows the Common directory and its subdirectories for the FilmCatalog Web
Forms application. It also shows a SessionID subdirectory with a single subdirectory where a
PDF file was written in Share mode:

Web Forms Targets

Deploying Applications and Components to .NET 57

At runtime, the Web Forms application creates a SessionID folder in the File\Session directory
for each user for storing files uploaded or created by that user. The exact name of the
SessionID directory is generated by the ASP.NET runtime engine.

File process mode
There are two file process modes: Share mode and Copy mode. The PBWebFileProcessMode
global property defines the mode for the current Web Forms application. It is set to Share mode
by default.

Share mode — files are copied from the Common directory to the File\Session\SessionID
or the File\User\UserName directory only as needed.
Copy mode — in this mode, the first time a file operation is called, all folders and files
under the Common directory are copied to the SessionID or UserName directory. In Copy
mode, all file operations are handled in subdirectories of the SessionID or UserName
directory.

The File Manager presents a merged view of the files under the Common and SessionID or
UserName directories. If a read-only file in the Common directory has the same name as a
read-write file in the SessionID or UserName directory, only the SessionID or UserName file
is displayed.

Although users can delete and move folders or files that they create under the SessionID or
UserName directory, files and folders that are copied from the Common directory cannot be
deleted because the File Manager presents a merged view of these virtual file paths, and
removing a file or folder from the SessionID or UserName directory does not cause its removal
from the Common directory.

The common dialog boxes for all file operations are supported regardless of file process mode.
You can display these dialog boxes with the GetOpenFileName, GetSaveFileName, and
GetFolder functions.

File Manager icon
When you set the PBFileManager property to true, the File Manager icon normally displays in
every window of your Web Forms application. Users can open the File Manager at any time by
clicking the File Manager icon. You can also code an application event to open the File
Manager by calling the OpenFileManager function.

Although you can choose to render the File Manager icon at design time, you can change your
selection after deployment by modifying the application’s PBFileManager global property. If
you do not want the File Manager icon to display on a specific window in your application, you
can set the HasFileManager property for that window to false.

See HasFileManager on page 75 and OpenFileManager on page 82.

The File Manager icon displays in the upper right corner of Web Forms, just to the right of the
Mail Profile Manager icon when that icon is also rendered. The File Manager opens in the
current browser window when a user clicks the File Manager icon.

Web Forms Targets

58 PowerBuilder

This figure shows the File Manager for a Web Forms application:

Creating a Directory with the File Manager
The File Manager allows users to create directories, rename and delete selected files or
directories, and upload and download selected files.

It allows users to view all files in the virtual file system for the Web Forms application unless
those files are located in a directory or subdirectory listed in the PBDenyDownloadFolders
global property.

1. In the File Manager, select the directory in the left pane under which you want to create a
folder.

2. Type the name you want for the new folder in the New text box.

3. Click Create Folder.
The new directory is created in the SessionID (or UserName) path under the directory you
selected in Step 1. No other application user can use the Web Forms File Manager to see the
new directory. When an application user leaves the current session, the SessionID
directory and any files uploaded to it are removed. (If an application user is logged in with a
permanent user account, the UserName directory and its contents are not removed.)

Web Forms Targets

Deploying Applications and Components to .NET 59

Note: You can rename a directory by selecting it in the left pane, entering a new name in the
New text box, and clicking Rename Folder. You delete a directory by selecting it in the left
pane and clicking Delete Folder.

You cannot rename or delete a directory if it was not created in the current Web Forms
session. The Rename Folder and Delete Folder buttons are disabled when a directory under
the Common path of the virtual file directory is selected in the left pane of the File
Manager.

Users can close the File Manager and return to the current Web Forms window by clicking
the close (x) button at the upper right corner of the manager frame.

Uploading Files with the File Manager
The files that a user uploads through the Web Forms File Manager are saved under the
SessionID (or UserName) path. The uploaded files are copied from the client-side computer.

They are deleted from the server-side SessionID path (but not from the UserName path) at the
end of the Web Forms session.

This figure shows the PowerBuilder Upload File dialog box for a Web Forms application:

1. In the left pane of the File Manager, select the directory where you want to copy a file.

2. Click the Upload File link.

3. In the PowerBuilder Upload File dialog box, type the file name or browse to the file or files
you want to upload.

4. Click Upload.
A message in the dialog box indicates if the upload is successful.

Web Forms Targets

60 PowerBuilder

5. Click Close & Refresh to close the dialog box and refresh the file listings in the right pane
of the File Manager.

Downloading Files with the File Manager
Users can download any file listed in the right pane of the File Manager. The files are
downloaded to the client-side computer from either the SessionID (UserName) or Common
path on the server.

The actual server path is never displayed in the virtual file directory.

1. From the right pane of the File Manager, select the file you want to download.
The Download File link appears near the bottom right corner of the File Manager, just
above the Upload File link.

2. Click Download File.
The File Download dialog box lists the file name and file type and the name of the server
from which the file can be downloaded. It prompts you to save the file or cancel the
download. (On some operating systems, the File Download dialog box can also include
Open and More Info buttons.)

3. Click Save.

4. In the Save As dialog box, browse to the path on the local computer where you want to save
the file, and click Save.
The Download Complete dialog box appears. Its appearance depends on the client
operating system. It typically prompts the user to open the downloaded file, open the folder
where the file was saved, or close the dialog box.

5. Click Close to close the Download Complete dialog box and return to the File Manager.

Web Forms Mail Profile Manager
If you set the PBMailManager global property to true on the Configuration tab for a Web
Forms application, application users can open the Mail Profile Manager at any time from that
application.

Although you can choose to render the Mail Manager icon at design time, the IIS server
administrator can change your selection after deployment by modifying the PBMailManager
global property in the application’s Web.Config file.

When you set the PBMailManager property to true, the Mail Manager icon appears in every
window of your application. If you do not want the Mail Manager icon to display on a specific
window in your application, set the HasMailManager property for that window to false.

You can also code an application event to open the Mail Profile Manager by calling the
OpenMailManager function.

See HasMailManager on page 76 and OpenMailManager on page 82.

The Mail Manager icon appears in the upper right corner of the Web Forms page, just to the left
of the File Manager icon, when that icon is also rendered. The Mail Profile Manager opens in
the current browser window after a user clicks the Mail Manager icon.

Web Forms Targets

Deploying Applications and Components to .NET 61

Note: The Mail Profile Manager appears automatically if a user triggers a MailSend call from
a Web Forms application before a mail profile has been defined or if a default mail profile has
not been set.

This figure shows the Mail Profile Manager for a Web Forms application:

The Mail Profile Manager is divided into sections for user profile information and outgoing
mail parameters, incoming mail parameters, and account type. Information that the
application user enters in the Mail Profile Manager can be saved in a profile that is available to
the Web Forms application.

This table lists and describes the fields in the Web Forms Mail Profile Manager:

Section Field Description

— Profile Name Name of the mail profile.

Set as Default Mail Profile Select to make the current mail
profile the default profile for a
Web Forms application.

User Profile Name Display name for the user.

E-mail address E-mail address the Web Forms
user wants to use.

Web Forms Targets

62 PowerBuilder

Section Field Description

Outgoing Mail Server address Address for the outgoing mail
server, such as smtp.syb-
ase.com.

Port The default outgoing mail port
is 25.

Requires authentication Select this check box if the out-
going mail server requires au-
thentication.

User ID Alias used to log in to the e-mail
server.

Password Password for the user ID. The
password a user enters is enco-
ded using an MD5 algorithm.

Mail profile management
Users can always enter new mail profile names in the Profile Name drop-down list. After
entering all the Mail Profile Manager fields for a given profile, the application user must click
Create/Update to save the entries to a profile file in the applicationName_root\Mail\session
\sessionID virtual file directory. The profile is saved in an XML file with an encoded version of
the user password. Unless the user has logged in as a permanent user, all mail profiles are
deleted after the user terminates an application session.

Note: If the application user is logged in as a permanent user, the XML mail profile file is
saved in the applicationName_root\Mail\user\userName directory.

For information about the permanent user functionality, see Permanent User Accounts on
page 47.

An application user can display an existing mail profile by selecting it in the Profile Name
drop-down list. The user can then edit the fields of the selected profile and save those changes
by clicking Create/Update, or can remove the profile by clicking Delete. The Delete button is
enabled only after an existing mail profile is selected in the Profile Name drop-down list.

Required modifications for Web Forms applications
Before you issue a MailSend call, you must create a MailSession object. This requirement is
the same in Web Forms and standard client-server applications. However, in standard
applications, you must also issue MailLogon and MailLogoff calls for the MailSession object.
This is not necessary for Web Forms applications, and these calls are ignored by the
PowerBuilder to .NET compiler if you include them in a Web Forms application.

For a standard PowerBuilder client-server application, you can use a MailSend call without
arguments to open a new message window in the client’s default mail application. Because

Web Forms Targets

Deploying Applications and Components to .NET 63

you cannot do this from a Web Forms application, you can use a MailSend call only if you
include a mailmessage argument.

You populate a MailMessage object the same way for a Web Forms application as you do for a
standard client-server application. The properties of the MailMessage object include the text,
subject line, and recipient information for the message that the application user sends. Some of
the properties of a MailMessage object are ignored in a Web Forms application. For a list of
unsupported properties, see Restrictions on Supported Controls on page 89.

Note: The MailAddress, MailDeleteMessage, MailGetMessages, MailHandle, MailLogon,
MailLogoff, MailReadMessage, MailRecipientDetails, MailResolveRecipient, and
MailSaveMessage functions are not supported in Web Forms applications. Although these
functions are ignored by the PowerBuilder to .NET compiler, they do not produce application
errors and do not interfere with supported mail functionality in Web Forms applications.

Web Forms Theme Manager
The Theme Manager allows users to change the appearance of controls in Web Forms
applications. By default, the controls display with themes that are consistent with the
operating system of the client browser.

However, the Theme Manager allows users to change the controls to appear with Windows XP
or Windows Classic themes regardless of the underlying operating system. You can also
change the default themes for all browsers by modifying the PBDefaultTheme global property
at design time.

For a description of global properties, see Global Web Configuration Properties on page
65.

Another global property, PBThemeManager, determines whether the Theme Manager is
available to users at runtime. When you set the PBThemeManager property to true, the Theme
Manager icon normally displays in every window of your Web Forms application. Users can
open the Theme Manager at any time by clicking the Theme Manager icon. You can also code
an application event to open the Theme Manager by calling the OpenThemeManager
function.

Although you can choose to render the Theme Manager icon at design time, if you do not want
it to appear on a specific window in your application, you can set the HasThemeManager
property for that window to false.

See HasThemeManager on page 77 and OpenThemeManager on page 83.

The Theme Manager icon displays in the upper right corner of Web Forms, just to the left of
the Mail Profile Manager icon when that icon is also rendered. The Theme Manager opens in
the current browser window when a user clicks the Theme Manager icon.

Web Forms Targets

64 PowerBuilder

Web Forms Properties
In addition to PowerScript properties that are converted to .NET properties and JavaScript
attributes, a .NET Web Forms application has global properties that you can set at design time,
and several built-in control properties that are not valid for other types of PowerBuilder
targets.

Surround the calls to the built-in control properties in a conditional compilation block
for .NET Web Forms. You can set these properties to reduce postbacks, embed hyperlinked
Web pages, or remove the display of file, mail, print, and theme manager icons from specific
windows when a global display property is set.

Global Web Configuration Properties
Global properties are properties that you set at design time on the Configuration tab of the
Project painter, or after deployment in the generated Web.Config file for your application.

You cannot set global properties in script.

This table lists global properties of a PowerBuilder .NET Web Forms application that you can
set on the Configuration tab before you deploy the application:

Property Default value Description

PBAutoTriggerMenuSelectedE-
vents

False Indicates whether to trigger the
menu Selected event for all menu
items before Web Forms are ren-
dered in the browser.

The Selected event can be handled
on the server only for simple tasks
related to the appearance of the
menu items. The Selected event is
always disabled on the client side to
prevent unnecessary postbacks
when a menu item is highlighted.

PBCachedAndSharedDDDWs — A comma-delimited set of names
for DataWindow objects that you
want to use in DropDownData-
Window edit style controls for shar-
ing across application sessions. See
Sharing Data Across Sessions on
page 29.

Web Forms Targets

Deploying Applications and Components to .NET 65

Property Default value Description

PBCachedAndSharedDWs — A comma-delimited set of names
for DataWindow objects that you
want to share across application
sessions. See Sharing Data Across
Sessions on page 29.

PBCommandParm — Sets command line parameters for
your application. Users can override
the default by setting this property
in a URL.

PBCultureSource Server Enumeration that specifies the
source of regional settings for data
formats. Values are Server or Client.
See Use regional formats based on
client or server settings on page
205 .

PBDataWindowEnableDDDW False Indicates whether to render a Drop-
DownDataWindow (DDDW) or a
DropDownListBox control for a
column using the DDDW edit style.
Values are true to render the drop-
down object as a DDDW, or false to
render it as a list box.

The value you set applies to all
DDDW objects in the application,
although if you set this value to true,
you can still render a specific
DDDW object as a list box by set-
ting its HTMLGen.Genera-
teDDDWFrames property (the
"Generate DDDW Frames" field on
the Web Generation page of the Da-
taWindow painter Properties view)
to false.

PBDataWindowGoToButtonText Go Sets the label for a navigation bar
button that takes a user to a desig-
nated DataWindow page.

PBDataWindowGoToDescription Go To: Sets the label for the navigation
control that takes a user to a desig-
nated DataWindow page.

Web Forms Targets

66 PowerBuilder

Property Default value Description

PBDataWindowNavigationBarPo-
sition

PBDWBottom Sets the position where the page
navigation controls appear. Values
are PBDWBottom to show them at
the bottom of the DataWindow,
PBDWTop to show them at the top
of the DataWindow, or PBDWTo-
pAndBottom to show them at the
top and bottom of the DataWindow.

PBDataWindowPageCount-
PerGroup

10 Sets a limit to the number of pages
that can appear for the Numeric or
NumericWithQuickGo style navi-
gation bars.

PBDataWindowPageNavigator-
Type

NextPrev Values are NextPrev, Numeric,
QuickGo, NextPrevWithQuickGo,
or NumericWithQuickGo. See Take
Advantage of Global Configuration
Properties on page 207.

PBDataWindowQuickGoPageNa-
vigatorType

DropDownList Sets the type of control to use for the
Quick Go navigation bar. Values are
DropDownList or Edit.

PBDataWindowRowsPerPage 20 Sets the number of DataWindow
rows to show in Web Forms when
the HTMLGen.PageSize property
of the DataWindow object is not set.

HTMLGen.PageSize and PBData-
WindowRowsPerPage have no ef-
fect on DataWindow objects with
the Label presentation style. Com-
posite and Crosstab presentation
styles do not support pagination.

PBDataWindowScriptCall-
backDDDW

False Set this to true to load a DropDown-
DataWindow on demand using
ASP.NET script callbacks when
PBDataWindowEnableDDDW is
also set to true.

Web Forms Targets

Deploying Applications and Components to .NET 67

Property Default value Description

PBDataWindowStatusInfoFormat Page {C} of {T} Sets the text for the DataWindow
page count {C} and the total num-
ber of pages {T}. The other varia-
bles you can use are placeholders
for the starting {S} and ending {E}
page of a group range, which you
can set in the PBDataWindowPage-
CountPerGroup global property.

PBDBFetchBuffers 1 The default value causes values to
be entered in the database trace log
for each fetch request when tracing
is enabled. Set to 0 to disable tracing
on each fetch request.

PBDBLogFileName c:\dbtrace.log The name of the database log file
when tracing is enabled. The log file
is saved under the application root
directory in the virtual file system
on the IIS server. You can use Pow-
erBuilder file functions to open and
read the log file.

PBDBShowBindings 1 The default value causes metadata
from the database result set columns
to be entered in the database trace
log when tracing is enabled. Set to 0
to disable these entries.

PBDBShowDBINames 0 If you set this value to 1, the original
database interface command names
are included in a database trace log
file when tracing is enabled. By de-
fault, these names are not included
in the log file.

PBDBSqlTraceFile c:\pbtrsql.log The name of the database log file
when SQL command tracing is en-
abled. The log file is saved under the
application root directory in the vir-
tual file system on the IIS server.
You can use PowerBuilder file func-
tions to open and read the log file.

Web Forms Targets

68 PowerBuilder

Property Default value Description

PBDBSumTiming 1 The default value causes the cumu-
lative total of timings since the da-
tabase connection began to be en-
tered in the database trace log file
when tracing is enabled. Set to 0 to
disable these entries.

PBDBTiming 1 The default value causes the time
required to process database inter-
face commands to be entered in the
database trace log file when tracing
is enabled. Set to 0 to disable these
entries.

PBDefaultTheme Auto The default theme selection causes
controls in the Web Forms applica-
tion to appear with Windows Clas-
sic themes for Windows 2000 oper-
ating systems, and Windows XP
themes for all other operating sys-
tems.

Select "XP" to show controls with
Windows XP themes regardless of
the client operating system. Select
"Classic" to show controls in all cli-
ent browsers with a Windows Clas-
sic appearance.

PBDeleteTempFileInterval 600 (minutes) Sets the number of minutes before
temporary files created by compo-
site DataWindows are deleted. A
value of 0 prevents the temporary
files from being deleted.

PBDenyDownloadFolders c:\~pl_ A semicolon-delimited string of di-
rectory names. Application users
are not able to use the Web Forms
File Manager to download files in
any of the directories listed in this
string.

PBEventLogID 1100 The event ID if exceptions are log-
ged to the EventLog.

PBFileManager False Set to true if you want to render the
File Manager icon in a Web Forms
application.

Web Forms Targets

Deploying Applications and Components to .NET 69

Property Default value Description

PBFormExitMessage "If there is any unsaved
data, it will be lost."

Use to set custom message when
users exit the current form.

The custom message is sandwiched
between two default sentences in
the same message box: "Are you
sure you want to navigate away
from this page?" and "Press OK to
continue, or Cancel to stay on the
current page."

PBIdleInterval 0 (seconds) Factor that adjusts the interval for
the Idle event in a Web Forms ap-
plication. The actual interval is de-
termined by the application idle in-
terval multiplied by the PBIdleIn-
terval value. A value of 0 prevents
the Idle event from being triggered.

PBJVMLogFileName vm.out Name of the file that logs informa-
tion about the JVM for applications
using a JDBC connection. By de-
fault, this file is saved to the ap-
plicationName_root
\Log directory under the virtual
root directory of the Web server.

PBLibDir c:\~pl_ The directory on the server where
dynamic libraries are generated.

PBMailManager False Set to true if you want to render the
Mail Manager icon in a Web Forms
application.

PBMailTimeout 1200000 (milliseconds) Time in milliseconds before an
SMTP session expires. The default
value is equivalent to 20 minutes,
which is also the HTTP session
timeout period. It should be set
higher if the mail includes file or
data attachments.

The SMTP session also expires af-
ter an e-mail is sent from the Web
Forms application.

Web Forms Targets

70 PowerBuilder

Property Default value Description

PBMaxSession 0 Sets the maximum number of Web
Forms sessions that can be open at
the same time. The default value of
0 places no limitation on the number
of sessions that can be open simul-
taneously.

PBShowDenyDownloadFolders False Set to true to allow application users
to see the server-side folders to
which you restrict download access
by listing them in the PBDeny-
DownloadFolders global property.
By default, these folders are not
visible in the File Manager

PBShowFormExitMessage True Set to false to prevent a message box
from displaying when application
users exit the current form. If you
set this to true, you can add a custom
message to the message box by set-
ting the PBFormExitMessage glob-
al property.

PBTempDir c:\temp A temporary directory under the
virtual file root on the server.

PBThemeManager False Set to true if you want to render the
Theme Manager icon in a Web
Forms application.

PBTimerInterval 0 (seconds) Factor that adjusts the interval for
the window Timer event in a Web
Forms application. The actual inter-
val is determined by the window’s
Timer interval multiplied by the
PBTimerInterval value. A value of 0
prevents the Timer event from being
triggered.

PBTrace Enabled Indicates whether to log exceptions
thrown by the Web Forms applica-
tion. Values are Enabled or Disa-
bled.

Web Forms Targets

Deploying Applications and Components to .NET 71

Property Default value Description

PBTraceFileName PBTrace.log Name of the file that logs exceptions
thrown by the Web Forms applica-
tion. By default, this file is saved to
the application-
Name_root\Log directory un-
der the virtual root directory on the
Web Forms server.

PBTraceLevel Critical By default, the .NET runtime logs
critical exceptions only. However, if
you set this property to System-
Function, the .NET runtime logs all
exceptions caught by system func-
tions.

PBTraceTarget File Defines where to log exceptions
thrown by the Web Forms applica-
tion. Values are File or EventLog.

PBWebFileProcessMode Share Share mode maintains files in a
read-only state when a write file op-
eration is not explicitly coded. If an
application requires multiple file
operations, you might want to
change this property setting to Copy
mode. See File process mode on
page 58.

PBWindowDefaultHeight 600 (pixels) Specifies the default height of the
client area of the Web browser when
MDI, MDIHelp, and main type win-
dows are opened as maximized for
the first time.

PBWindowDefaultWidth 1003 (pixels) Specifies the default width of the
client area of the Web browser when
MDI, MDIHelp, and main type win-
dows are opened as maximized for
the first time.

Web Forms Targets

72 PowerBuilder

Property Default value Description

PBYieldTimeout 10000 (milliseconds) Time in milliseconds before the
Yield function causes a postback to
the server. Yield calls are ignored if
you set this value to 0. When you set
this value to 0, however, you must
make sure your application does not
call Yield inside a loop, as in the
following example:

 do while flag
 yield()
 loop

The default global properties and their values appear only when the “System defined
configuration settings” option is selected on the Configuration tab. (This is the default
selection):

Additional global properties are described in the following table, and are included in the
Web.config file that is generated in the main application directory under the IIS virtual root
directory. Although you cannot set these global properties on the Configuration tab, you can
change them in the Web.Config file after deployment. However, the selection that you
make for Web Application Name on the General tab affects default values generated for all of
these global properties except PBPostbackType:

Property Default value Description

FileFolder WebAppDir..\appName_root\file Base directory for the virtual file
manager. It contains the File
\Common directory structure
and files that mirror paths for the
application resource files on the
development computer.

If you switch to Copy mode, a
sessionID directory is created
under the File\Session
directory that mirrors the File
\Common directory structure
and file contents.

MailFolder WebAppDir..\appName_root\mail Base directory for the mail man-
ager.

PrintFolder WebAppDir..\appName_root
\print

Base directory for files that your
application prints in PDF for-
mat.

Web Forms Targets

Deploying Applications and Components to .NET 73

Property Default value Description

LogFolder WebAppDir..\appName_root\log Folder that contains the
PBTrace.log file.

For information on modifying global properties in the Web.config file (after you deploy a
Web Forms application), see Viewing and Modifying Global Properties in the IIS Manager on
page 9.

You can also create custom global properties. When you select a global property from the Key
and Value list and click the Edit button, the Set Configuration Value dialog box appears. You
can use this dialog box to change the values of system or custom global properties.

Creating Custom Global Properties
Create custom global properties for a Web Forms project from the Configuration tab page of
the Project painter.

1. On the Configuration tab, select the Custom defined configuration settings option to
enable the Add button.

2. Click Add.

3. Use the Add User Defined Configuration Setting dialog box to add a custom global
property and a value for that property

You cannot use a system global property name as the name for a custom global property.

Next
When you select a custom global property in the Key and Value list box on the Configuration
tab page of the Project painter, the Edit and Delete buttons become enabled. Click Edit to
change the value of a custom global property. Click Delete to remove a custom global property
and its value.

AutoPostBack
Reduce postbacks and improve performance by setting the AutoPostBack property for certain
controls to false.

Applies to
CheckBox and RadioButton controls

Usage
In scripts, surround the AutoPostBack property in a conditional compilation code block for
Web Forms applications:

 #IF DEFINED PBWEBFORM THEN
 cbx_1.AutoPostBack = false
 #END IF

Web Forms Targets

74 PowerBuilder

When you set a control’s AutoPostBack property to false, all events related to that control are
triggered only in the processing of the next postback caused by another control in the Web
Forms application.

Embedded
Set the Embedded property to true to use the IFRAME element for a Web page defined in the
URL property of a StaticHyperLink control. This causes the Web page to appear inline on the
Web Forms page (window) containing the StaticHyperLink control.

Applies to
StaticHyperLink controls

Usage
In scripts, surround the Embedded property in a conditional compilation code block for Web
Forms applications:

 #IF DEFINED PBWEBFORM THEN
 shl_1.Embedded = true
 #END IF

If you place the above code in the Open event for a window containing the StaticHyperLink
control, or in the control’s Constructor event, the hyperlink text does not appear, but the page
referenced in its URL property opens in the area defined by the control in the Web Forms
page.

When you enable the Embedded property, you must consider enlarging the size of the
StaticHyperLink control to permit adequate viewing of the embedded Web page, although at
runtime, the IFRAME element that replaces the control includes horizontal and vertical scroll
bars if the page size exceeds the size of the original control.

Some Web sites use JavaScript code to make sure their pages display as top level HTML
windows. This can cause JavaScript errors and erratic behavior when Embedded is set to true.

HasFileManager
Set this property to false to hide the File Manager on a particular page in a Web Forms
application.

Applies to
Window controls

Usage
In scripts, surround the HasFileManager property in a conditional compilation code block for
Web Forms applications:

 #IF DEFINED PBWEBFORM THEN

Web Forms Targets

Deploying Applications and Components to .NET 75

 w_mywindow.HasFileManager = false
 #END IF

This property is valid for .NET Web Forms applications only when the PBFileManager global
property is set to true. The global property allows the File Manager icon to appear on all
window forms in your Web Forms applications. The File Manager icon gives users access to a
file manager on the Web Forms server.

By default, the HasFileManager property is set to true and the PBFileManager is set to false.
When you change the PBFileManager global property to true, all window forms show the File
Manager icon unless you set the HasFileManager for a particular window to false.

Note: In MDI applications, manager icons appear on the frame window. To hide the File
Manager icon when the PBFileManager global property is set to true, you must set the
HasFileManager property of both the frame and the active sheet to false.

HasMailManager
Set this property to false to hide the Mail Profile Manager on a particular page in a Web Forms
application.

Applies to
Window controls

Usage
In scripts, surround the HasFileManager property in a conditional compilation code block for
Web Forms applications:

 #IF DEFINED PBWEBFORM THEN
 w_mywindow.HasMailManager = false
 #END IF

This property is valid for .NET Web Forms applications only when the PBMailManager
global property is set to true. The global property allows the Mail Profile Manager icon to
appear on all window forms in your Web Forms applications. The Mail Profile Manager icon
gives users access to a mail profile manager on the Web Forms server.

By default, the HasMailManager property is set to true and the PBMailManager is set to false.
When you change the PBMailManager global property to true, all window forms show the
Mail Profile Manager icon unless you set the HasMailManager for a particular window to
false.

Note: In MDI applications, manager icons appear on the frame window. To hide the Mail
Profile Manager icon when the PBMailManager global property is set to true, you must set the
HasMailManager property of both the frame and the active sheet to false.

Web Forms Targets

76 PowerBuilder

HasPrintManager
Set this property to false to hide the Print Manager on a particular page in a Web Forms
application.

Applies to
Window controls

Usage
In scripts, surround the HasPrintManager property in a conditional compilation code block for
Web Forms applications:

 #IF DEFINED PBWEBFORM THEN
 w_mywindow.HasPrintManager = false
 #END IF

This property is valid for .NET Web Forms applications only when the Print Manager is
activated. You activate the Print Manager by calling a supported print method.

See Web Forms Print Manager on page 52.

By default, the HasPrintManager property is set to true. When you activate the Print Manager,
all window forms show the Print Manager icon unless you set the HasPrintManager for a
particular window to false. The Print Manager icon gives users access to a print manager for
files on the Web Forms server.

Note: In MDI applications, manager icons appear on the frame window. To hide the Print
Manager icon after it is activated, you must set the HasPrintManager property of both the
frame and the active sheet to false.

HasThemeManager
Set this property to false to hide the Theme Manager on a particular page in a Web Forms
application.

Applies to
Window controls

Usage
In scripts, surround the HasThemeManager property in a conditional compilation code block
for Web Forms applications:

 #IF DEFINED PBWEBFORM THEN
 w_mywindow.HasThemeManager = false
 #END IF

Web Forms Targets

Deploying Applications and Components to .NET 77

This property is valid for .NET Web Forms applications only when the PBThemeManager
global property is set to true. The global property allows the Theme Manager icon to appear on
all window forms in your Web Forms applications. The Theme Manager icon gives users to
change the appearance of controls in your application.

By default, the HasThemeManager property is set to true and the PBThemeManager is set to
false. When you change the PBThemeManager global property to true, all window forms
show the Theme Manager icon unless you set the HasThemeManager for a particular window
to false.

Note: In MDI applications, manager icons appear on the frame window. To hide the Theme
Manager icon when the PBThemeManager global property is set to true, you must set the
HasThemeManager property of both the frame and the active sheet to false.

System Functions for .NET Web Forms
System functions specific for .NET Web Forms applications allow you to open the various
managers for Web Forms applications, obtain global configuration settings, download files for
viewing or printing by the application user, and upload files to the Web server.

You must surround calls to these system functions in a conditional compilation block for .NET
Web Forms. These functions cannot be used with standard PowerBuilder client-server
applications.

Functionality for downloading and uploading files is also available from the File Manager.
The Print Manager allows application users to view files printed to the Web server in PDF
format. You can enable the managers through global properties or by calling Web Forms
system functions.

See Managers in Web Forms Applications on page 51.

DownloadFile
Use to download a file from the Web server to a client computer.

Syntax
void DownloadFile (string serverFile, boolean open)

Parameters

• serverFile – A string containing the name of the file on the application’s virtual file path
on the Web server.

• open – A boolean that determines whether to access the file in open mode or download
mode. Values are:

true — show the file directly in a browser window (open mode).

Web Forms Targets

78 PowerBuilder

false — show a dialog box that lets the user open the file, save the file, or cancel the
download operation (download mode).

Returns

None.

Examples

• – This example opens the file aaa.txt in download mode:

 #if defined PBWEBFORM then
 DownloadFile("c:\aaa.txt", false)
 #end if

The download mode causes the File Download dialog box to appear, giving the user the
choice of opening the file, saving the file, or cancelling the operation. The File Download
dialog box shows the file name, the file type, the number of bytes in the file, and the name
of the server that hosts the file.

• – This code opens a dialog box that allows users to select a directory and download
multiple files from the same directory:

 string docpath, docname[]
 boolean lb_open
 integer i, li_cnt, li_rtn, li_filenum

 lb_open = true //or false
 li_rtn = GetFileOpenName("Select File", docpath, &
 + docname[], "DOC", &
 + "Text Files (*.TXT),*.TXT," &
 + "Doc Files (*.DOC),*.DOC," &
 + "All Files (*.*), *.*", &
 "C:\Program Files\Sybase", 18)
 IF li_rtn < 1 THEN return
 li_cnt = Upperbound(docname)
 // if only one file is picked, docpath contains the
 // path and file name
 if li_cnt = 1 then
 mle_1.text = string(docpath)
 #if defined PBWEBFORM then
 DownloadFile(string(docpath), lb_open)
 #end if
 else
 // if multiple files are picked, docpath contains
 // the path only - concatenate docpath and docname
 for i=1 to li_cnt
 string s
 s = string(docpath) + "\" +(string(docname[i]))
 #if defined PBWEBFORM then
 DownloadFile(s, lb_open)
 #end if
 mle_1.text += s +"~r~n"

Web Forms Targets

Deploying Applications and Components to .NET 79

 next
 end if

Usage

Some types of files cannot be viewed directly in a browser window. For these types of files, the
open argument is disregarded. Instead, the File Download dialog box appears, as if you set the
open argument to false, but the dialog box provides no option to open the file directly. In this
case, users can only save the file to disk or cancel the download operation.

If the file you indicate in the serverFile argument is not present on the server, application users
do not see an error message. You can use the FileExists PowerScript function to make sure the
file exists in the server directory before you call DownloadFile.

GetConfigSetting
Use to return the value of a global configuration property.

Syntax
string GetConfigSetting (string key)

Parameters

• key – A string for the name of a global property in the
<appSettings> section of the Web.Config file.

Returns

String. Returns the value of the global property passed in the key parameter.

Examples

• – This code returns "N/A" for not applicable if the global property "myKey" is not found:

 string v, k
 k = "myKey"

 #if defined PBWEBFORM then
 v = GetConfigSetting(k)
 #else
 v = "N/A"
 #end if

GetDownloadFileURL
Use to return the URL for a file on the Web server.

Syntax
string GetDownloadFileURL (string serverFile, boolean open)

Web Forms Targets

80 PowerBuilder

Parameters

• serverFile – A string containing the name of the file on the application’s virtual file path
on the Web server.

• open – A boolean that determines whether to access the file in open mode or download
mode. Values are:

true — show the file directly in a browser window (open mode).
false — show a dialog box that lets the user open the file, save the file, or cancel the
download operation (download mode).

Returns

String. Returns the URL of the file in ASCII format.

Examples

• – This code places the URL for a text file in a MultiLineEdit box and includes it as a
hyperlink in a StaticHyperLink control:

 #if defined PBWEBFORM then
 string s
 s = GetDownloadFileUrl("c:\aaa.txt", false)
 mle_1.text += "~r~n" + s
 shl_1.url = s //shl_1: static hyperlink
 #end if

Usage

The open argument applies only if a Web Forms application user copies the returned URL in
the current browser Address box or if you set a hyperlink in the current browser to the returned
URL address.

MapVirtualPath
Use to return the actual path of a file on the Web Forms server.

Syntax
string MapVirtualPath (string virtualPath)

Parameters

• virtualPath – A string for a virtual path on the Web Forms
server

Returns

String. Returns the actual path of a file in the virtual file system on a Web Forms server.

Web Forms Targets

Deploying Applications and Components to .NET 81

Examples

• – This code returns the actual path on a new line in a MultiLineEdit control:

 #if defined PBWEBFORM then
 mle_1.text +=''~r~nActual Path='' &
 + MapVirtualPath(''c:\a.txt'')
 #end if

Usage

Use the MapVirtualPath function to get the actual path of files for file operations required
by .NET DLLs.

OpenFileManager
Use to open the Web Forms File Manager.

Syntax
void OpenFileManager ()

Returns

None.

Examples

• – Use this code to open the Web Forms File Manager:

 #if defined PBWEBFORM then
 OpenFileManager()
 #end if

Usage

See Web Forms File Manager on page 56.

OpenMailManager
Use to open the Web Forms Mail Profile Manager.

Syntax
void OpenMailManager ()

Returns

None.

Web Forms Targets

82 PowerBuilder

Examples

• – Use this code to open the Web Forms File Manager:

 #if defined PBWEBFORM then
 OpenMailManager()
 #end if

Usage

See Web Forms Mail Profile Manager on page 61.

OpenPrintManager
Use to open the Web Forms Print Manager.

Syntax
void OpenPrintManager ()

Returns

None.

Examples

• – Use this code to open the Web Forms Print Manager:

 #if defined PBWEBFORM then
 OpenPrintManager()
 #end if

Usage

See Web Forms Print Manager on page 52.

OpenThemeManager
Use to open the Web Forms Theme Manager.

Syntax
void OpenThemeManager ()

Returns

None.

Web Forms Targets

Deploying Applications and Components to .NET 83

Examples

• – Use this code to open the Web Forms Theme Manager:

 #if defined PBWEBFORM then
 OpenThemeManager()
 #end if

Usage

See Web Forms Theme Manager on page 64.

UploadFiles
Use to open the Upload Files dialog box that enables an application user to upload files from
the local computer to the Web server.

Syntax
void UploadFiles (string serverFolder, long bgColor, int fileNum,
boolean showServerFolder, string description, string allowExts{,
string callbackFunctionName}{, PowerObject po})

Parameters

• serverFolder – The folder on the server to which you want to copy one or more files from
the client computer. PowerBuilder creates this folder under the server virtual root in the
applicationName_root\session\sessionID directory, or for someone logged in as a
permanent user, in the applicationName_root\users\userName directory.

• bgColor – A long for the background color of the Upload Files dialog box.
• fileNum – An integer for the number of text boxes to show in the Upload Files dialog

boxes. Application users can upload as many files as there are text boxes in a single upload
operation.

• showServerFolder – A boolean specifying whether to show the server folder name in the
Upload Files dialog box. Values are:

true — the server folder name.
false — do not show the server folder name.

• description – Text that you want to appear near the top of the Upload Files dialog box. You
can use an empty string if you do not want to show additional text in this dialog box.

• allowExts – A string that lets you limit the files a user can upload to files with the
extensions you list. If you set this argument to an empty string, files with any file extension
can be uploaded. If you list multiple extensions, you must separate each extension with a
semicolon. You must include the "." (dot) in the extensions you list.

• callbackFunctionName – (Optional) The callback function that lets you know whether
the file is correctly uploaded to the Web server.

Web Forms Targets

84 PowerBuilder

• po – (Optional) The name of a PowerBuilder object that has the callback function set in the
callbackFunctionName argument.

Returns

None.

Examples

• – This example uploads the file to the application’s virtual root d:\hhh directory on the
server, sets the color of the Upload Files dialog box to the background color of the w_main
application window, limits the number of files to be uploaded in a single operation to 3,
does not show the server directory name in the Upload Files dialog box, but does show the
"my description" text, and limits the types of files that can be uploaded to JPG and TXT
files:

 #if defined PBWEBFORM then
 UploadFiles("d:\hhh", w_main.BackColor, 3, false,
 "my description", ".jpg;.txt",
 "myuploadfiles_callback", w_main)
 #end if

• – This example uses green as the background color for the Upload Files dialog box, limits
the number of files to be uploaded in a single operation to 1, shows the server folder name
in the Upload Files dialog box, and does not restrict the types of files a user can upload to
the Web server:

 #if defined PBWEBFORM then
 UploadFiles("c:\hhh", RGB(0, 255, 0), 1, true, "", "",
 "myuploadfiles_callback", w_main)
 #end if

Usage

Use the UploadFiles function in conjunction with a private callback function that you create
for a PowerBuilder object.

The callback function should return an integer and take a string array for its only argument.
The callback function script should include an iteration to fill up the string array with the
names of files selected by the application user to upload to the server. For example, the
following code can be added to a callback function "myuploadfiles_callback" with an
upfiles[] string array argument:

 int i
 for i = 1 to upperbound(up_files)
 this.mle_1.text += "~r~n" + up_files[i]
 next
 return i

If the "myuploadfiles_callback" function is created on the window w_main, you can use this
window name as the value of the po argument in your Upload Files call. If you create the

Web Forms Targets

Deploying Applications and Components to .NET 85

"myuploadfiles_callback" function as a global function, you can use the UploadFiles callback
syntax without the po argument.

If your application uses sequential UploadFiles calls in the same script, only the callback
function in the last of the UploadFiles calls is valid. The other UploadFiles calls can still
upload selected files to the Web server, but further processing of the names of the uploaded
files does not occur, even when the syntax for these calls includes a callback function that
codes for such processing.

If the last UploadFiles call in a script containing sequential UploadFiles calls does not use a
callback function, no callback processing occurs.

Unsupported Features in Web Forms Projects
When you deploy a PowerBuilder application as a Web Forms application to an IIS server,
PowerBuilder lists any unsupported features in the Output window. For the most part,
unsupported features fail silently in the Web Forms application, but unexpected results can
also occur.

If an unsupported feature prevents the PowerBuilder to .NET compiler from compiling your
application, the failure and its cause are noted in the Output window in PowerBuilder.

DataWindow support

• Presentation styles — currently all DataWindow presentation styles are supported except
RichText and OLE. All DataWindow dialog boxes (Specify Retrieval Arguments, Specify
Retrieval Criteria, Import File, Save As, Print, Sort, Filter, and Crosstab) are supported.

• DataWindow expressions — most of the built-in functions for DataWindow expressions
are supported, but they do not include the Describe, LookupDisplay, Case, Page, PageAbs,
ProfileInt, ProfileString, and StripRTF expression functions or the aggregate expression
functions. User-defined expression functions are also not supported in Web Forms
applications.

Note: DataWindow expressions that change UI properties are not supported on the client
side. To work around this issue, you can trigger the Clicked or RowFocusChanged event to
force a postback. DataWindow expressions are fully supported on the server side with the
exception of expression functions noted above.

• Controls in DataWindow controls — controls you can add to a DataWindow are not all
supported in Web Forms applications. The Oval, RoundRectangle, InkPicture, OLE
Object, and OLE Database Blob controls are not supported in a Web Forms DataWindow.
For a list of unsupported properties of controls that are supported in Web Forms
DataWindow objects, see Controls in DataWindow objects on page 100.

• JavaScript keywords — you cannot use JavaScript reserved words to name fields or bands
in a DataWindow control that you deploy to the Web. The list of reserved words is available

Web Forms Targets

86 PowerBuilder

on the Sun Microsystems Web site at http://docs.sun.com/source/816-6410-10/
keywords.htm.

• DataWindow pagination — the Web DataWindow control uses a simplified version of
DataWindow pagination rules, and provides a choice of page navigation bars instead of
scroll bars to support page navigation.
See Take Advantage of Global Configuration Properties on page 207 and DataWindow
objects and controls on page 103.

• Printing DataWindow objects — although the PrintDataWindow or PrintScreen print
functions are not supported, users can save DataWindow objects and their data as PDF
files, and can print the current Web Forms page using a browser’s print menu when those
are available. (Browser menus are available only when the default.aspx page name is
included in the URL used to start the Web Forms application.)

• DataWindow gradient and tooltip properties — the DataWindow gradient and tooltip
properties introduced in PowerBuilder 11.5 are not supported in Web Forms applications.

• RichText column events and functions — the DataWindow RichText column events and
functions introduced in PowerBuilder 11.5 are not supported in Web Forms applications.

Mail support
Although you can send e-mail from Web Forms applications, there is no support for receiving
e-mail. When you call MailSend, you must supply a MailMessage argument. The MailSend
syntax without a parameter is not supported.

The MailSend function returns an enumerated value of type MailReturnCode. These values of
the MailReturnCode enumeration are not supported in Web Forms applications:

MailReturnAccessDenied
MailReturnDiskFull
MailReturnInsufficientMemory
MailReturnInvalidMessage
MailReturnMessageInUse
MailReturnNoMessages
MailReturnTextTooLarge
MailReturnTooManyFiles
MailReturnTooManyRecipients
MailReturnTooManySessions

PBNI feature
You can use the built-in Web services client extension (pbwsclient125.pbx) in
applications that you plan to deploy to .NET. You cannot use any other PBNI extensions
in .NET Web Forms targets.

Hot keys
Hot keys, shortcut keys, and accelerator keys are not supported in .NET Web Forms targets.

Web Forms Targets

Deploying Applications and Components to .NET 87

http://docs.sun.com/source/816-6410-10/keywords.htm
http://docs.sun.com/source/816-6410-10/keywords.htm

Functions on .NET primitive types
You cannot call functions on .NET primitive types that map to PowerBuilder primitive types.
See Datatype Mappings on page 179 for the list of datatype mappings from .NET to
PowerBuilder.

Unsupported Objects
Some PowerScript objects cannot be used in applications deployed to ASP.NET.

Category Objects

Data reproduction Pipeline

EAServer integration RemoteObject

Menu MenuCascade

OLE All OLE objects

PBNI extensions PBDOM

Profiling and tracing ProfileCall, ProfileClass, ProfileLine, ProfileRoutine, Profiling,
TraceFile, TraceTree, TraceTreeNode and descendants, and TraceAc-
tivityNode and descendants

Timing Timing

Tablet PC InkEdit and InkPicture

Note: Using local structures in inherited objects can prevent deployment of a .NET project. To
deploy the project, replace all local structures defined in inherited objects with global
structures.

Unsupported System Functions
Some PowerScript system functions cannot be used in applications deployed to ASP.NET.

Category Functions

Clipboard functions Clipboard, and any object function that uses the clipboard, such as Copy
and Paste

DDE functions CloseChannel, ExecRemote, GetCommandDDE, GetCommandDDEOri-
gin, GetDataDDE, GetDataDDEOrigin, GetRemote, OpenChannel, Re-
spondRemote, SetDataDDE, SetRemote, StartHotLink, StartServerDDE,
StopHotLink, and StopServerDDE

Debugging functions DebugBreak

Garbage collection
functions

GarbageCollect, GarbageCollectGetTimeLimit, and GarbageCollectSet-
TimeLimit

Web Forms Targets

88 PowerBuilder

Category Functions

Help functions ShowHelp and ShowPopupHelp

Input method functions IMEGetCompositionText, IMEGetMode, and IMESetMode

Mail functions MailAddress, MailDeleteMessage, MailGetMessages, MailHandle, Mail-
Logoff, MailLogon, MailReadMessage, MailRecipientDetails, MailResol-
veRecipient, and MailSaveMessage

Messaging functions Post and Send

Miscellaneous func-
tions

DoScript, DraggedObject, Handle, PBGetMenuString, Run, and Restart

Print functions PrintDataWindow, PrintScreen, PrintSend, PrintSetPrinter, PrintSetup,
and PrintSetupPrinter

Profiling and tracing
functions

TraceBegin, TraceClose, TraceDisableActivity, TraceDump, TraceEna-
bleActivity, TraceEnd, TraceError, TraceOpen, and TraceUser

Partially supported system functions

• IsNull — the IsNull function is supported for simple datatypes only. It is not very useful for
structure and class objects, since in .NET targets, uninitialized variables always return true
for an IsNull call even when they are not explicitly set to null. However, you can use IsValid
to test for valid instances of these object types. You can also use IsNull for class objects
after they have been created.

• Timer — the concept of "current window" does not exist in Web Forms applications.
Therefore, you must use the optional PowerScript syntax with the window name
parameter and the name of an active window as the parameter value. The Timer function
fails when the active window does not exist.

• Yield — due to the thread-model design of Web Forms applications, you cannot use the
Yield function and the Selected event of a menu object concurrently. Doing this causes a
JavaScript error.

• Registry functions — system registry functions can read and write registry entries, keys,
and values on the server side, but do not perform these operations on the server computer’s
registry in the same way as they do on a client computer’s registry in a standard
PowerBuilder application. See Registry Functions for Web Forms Applications on page
30.

Restrictions on Supported Controls
Almost all PowerBuilder controls are supported in .NET Web Forms applications. However
some of the methods and properties on supported controls do not work in Web Forms
applications.

Unsupported functions, events, and properties
This table lists functions, events, and properties that are not supported on any control:

Web Forms Targets

Deploying Applications and Components to .NET 89

Category Unsupported feature

Control Functions Clear (supported for EditMask controls), Cut,
Copy, Paste, CanUndo, Undo, Drag, Print (can be
used for DataWindows and DataStores to print to
PDF files), SetActionCode, and SetRedraw

Events Drag and drop events, GetFocus, LoseFocus
events (supported when a call to the SetFocus
function causes the focus change) Help event
MouseMove event Other event

Properties Accelerator AccessibleDescription Accessible-
Name AccessibleRole DragAuto DragIcon IM-
EMode

Additional unsupported functions, events, and properties by control
This table lists the functions, events, and properties that are not supported on some individual
objects or controls. It does not include the items listed in the table under Unsupported
functions, events, and properties on page 89 .

The entry "No additional" in this table indicates that all items except those listed in the
previous table are supported for that control:

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

Animation (Playback
behavior depends on
Windows Media Player
on client side.)

Play (supported, but
parameters ignored),
Seek

Click, DoubleClick,
Help, Start, Stop

OriginalSize, Trans-
parent

ClassDefinition No additional No additional LibraryName, Varia-
bleList (supported, but
the sequence of varia-
bles might differ
in .NET applications)

DataStore Same as DataWindow
control

Destructor, Error,
ItemChanged, Prin-
tEnd, PrintPage, Print-
Start

No additional

Web Forms Targets

90 PowerBuilder

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

DataWindow control AcceptText CopyRTF,
PasteRTF Find, Find-
Next GenerateHTML-
Form GenerateResult-
Set GetStateStatus Ge-
tRichTextmethod Get-
Text ImportClipboard
InsertDocument Line-
Count OLEActivate
Position PrintCancel
ReplaceText ResetInk
SaveInk functions
Scroll Selected func-
tions SelectText func-
tions SetActionCode
SetCultureFormat Set-
DetailHeight SetFocus
SetRedraw SetRich-
Textmethod SetText
ShowHeadFoot Text-
Line

EditChanged GetFocus
LoseFocus PrintEnd
PrintMarginChange
PrintPage PrintStart
RichTextCurrentStyle-
Changed RichTextLi-
mitError RichTextLo-
seFocus ScrollHori-
zontal ScrollVertical
(The Clicked event is
not triggered on edita-
ble text columns that
already have focus. See
Partially supported
control events on page
112.

ControlMenu
HSplitScroll Icon Live-
Scroll MaxBox Min-
Box Resizable Rich-
TextToolbarActivation
RightToLeft Title Ti-
tleBar

Web Forms Targets

Deploying Applications and Components to .NET 91

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

DataWindow object
(See DataWindow sup-
port on page 86 for a
list of controls that are
not supported in a Da-
taWindow object. See
Controls in DataWind-
ow objects on page
100 for unsupported
properties of controls
that you can place in a
DataWindow object.)

Has no functions Has no events Bandname.Gradi-
ent.Property Band-
name.Height.Autosize
Bandname.Pointer
Bandname.Text Brush-
mode Grid.Colum-
nMove Header.#.Sup-
press Help.Property
HorizontalScrollProp-
erty HideGrayLine La-
bel.Ellipse_Property
Label.Shape (support
rectangle shape only)
OLE.Client Pic-
ture.Property Pointer
Print.Preview.Property
Retrieve.AsNeeded
RichText.Property
Row.Resize Sparse
Storage.Property
Transparency
Tree.Property Vertical-
ScrollProperty Zoom

DataWindowChild Same as DataWindow
control

Has no events No additional

DatePicker GetCalendar Clicked CloseUp Dou-
bleClicked DropDown
UserString Value-
Changed

AllowEdit DropDown-
Right RightToLeft
ShowUpDown Today-
Section WeekNumbers

DropDownListBox,
DropDownPictureList-
Box

DirList (supported, but
can only include files
from the virtual file
system) Position Re-
placeText Selected-
Length SelectedStart
SelectedText Select-
Text

DoubleClicked AllowEdit AutoHSc-
roll Limit RightToLeft
ShowList

Web Forms Targets

92 PowerBuilder

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

EditMask CanUndo LineCount
LineLength Position
ReplaceText Scroll Se-
lectedLength Selected-
Line SelectedStart Se-
lectedText SelectText
TextLine Undo

No additional AutoHScroll AutoSkip
AutoVScroll Display-
Data DropDownRight
HideSelection Ignore-
DefaultButton Incre-
ment Limit MinMax
Spin TabStop UseCo-
deTable

Graph Clipboard GetData-
Labelling GetData-
Transparency GetSer-
iesLabelling GetSer-
iesTransparency Im-
portClipboard Import-
File SaveAs SetData-
Labelling SetData-
Transparency SetFocus
SetSeriesLabelling
SetSeriesTransparency

No additional FocusRectangle Ren-
der3D

HProgressBar No additional DoubleClicked SmoothScroll

HScrollBar No additional RButtonDown No additional

HTrackBar SelectionRange No additional SliderSize TickFre-
quency TickMarks

ListBox DirList (supported, but
can only include files
from the virtual file
system) SetTop Top

DoubleClicked DisableNoScroll Ex-
tendedSelect RightTo-
Left TabStop

Web Forms Targets

Deploying Applications and Components to .NET 93

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

ListView Arrange EditLabel Fin-
dItem (partial support:
see Control functions
with partial support on
page 110) GetItemAt-
Pointer GetOrigin Se-
tOverlayPicture

BeginDrag BeginLa-
belEdit BeginRight-
Drag DeleteAllItems
EndLabelEdit ItemAc-
tivate Key Right-
Clicked RightDouble-
Clicked Sort

AutoArrange Button-
Header DeleteItems
ExtendedSelect Fixed-
Locations GridLines
HeaderDragDrop
HideSelection Label-
Wrap LayoutRTL One-
ClickActivate Right-
ToLeft ShowHeader
TrackSelect TwoClick-
Activate Underline-
Cold UnderlineHot

ListViewItem No additional No additional CutHighlighted Dro-
pHighlighted ItemX
ItemY

MailFileDescription No additional No additional FileType Position

MailMessage No additional No additional ConversationID Dat-
eRecieved Message-
Type MessageSent Re-
ceiptRequested Unread

MailRecipient No additional No additional EntryID

MailSession MailDeleteMessage
MailGetMessages
MailHandle MailLo-
gon MailLogoff Mail-
ReadMessage MailRe-
cipientDetails MailRe-
solveRecipient Mail-
SaveMessage (For
MailSend restrictions,
see Mail support on
page 87.)

No additional MessageID SessionID

Web Forms Targets

94 PowerBuilder

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

Menu No additional Selected (Can be sup-
ported for simple tasks
that are run prior to the
rendering of Web
Forms in a client
browser. See Partially
supported control
events on page 112.)

BitmapBackColor Bit-
mapGradient MenuA-
nimation MenuBit-
maps MenuImage Me-
nuTitles MenuTitle-
Text MergeOption Mi-
croHelp TitleBackCol-
or TitleGradient Tool-
barAnimation Toolbar-
ItemDown ToolbarI-
temDownName Tool-
barItemSpace

MonthCalendar GetDisplayRange Clicked Double-
Clicked

AutoSize MaxSelect-
Count RightToLeft
ScrollRate TodaySec-
tion WeekNumbers

MultiLineEdit LineCount LineLength
Position Scroll Selec-
tedLine SelectedStart
TextLine

RButtonDown AutoHScroll Au-
toVScroll HideSelec-
tion TabStop

Picture No additional No additional FocusRectangle
Map3DColors

PictureButton No additional No additional Map3DColors

PictureHyperLink No additional No additional FocusRectangle
Map3DColors

PictureListBox DirList (supported, but
can only include files
from the virtual file
system) SetTop Top

DoubleClicked DisableNoScroll Ex-
tendedSelect RightTo-
Left TabStop

RadioButton No additional No additional BorderStyle

Web Forms Targets

Deploying Applications and Components to .NET 95

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

RichTextEdit CopyRTF DataSource
Find FindNext GetA-
lignment GetPara-
graphSetting GetSpac-
ing GetTextColor Get-
TextStyle InputField
functions InsertDocu-
ment (supported for
TXT format only) In-
sertPicture IsPreview
LineCount LineLength
PageCount PasteRTF
Position Preview Prin-
tEx ReplaceText Save-
Document (seePartial
support for SaveDocu-
ment function on page
99) Scroll functions
Selected functions Se-
lectText functions Set
functions (except Set-
Focus, which is sup-
ported) ShowHead-
Foot TextLine

DoubleClicked FileEx-
ists InputFieldSelected
Key Modified Mouse
events PictureSelected
RButtonUp

Accelerator Bottom-
Margin ControlChars-
Visible HeaderFooter
HScrollbar InputField
properties LeftMargin
Modified PictureAs-
Frame PopMenu Re-
sizable RightMargin
RulerBar Selected-
StartPos SelectedText-
Length StatusBar Tab-
Bar TopMargin
VScrollBar WordWrap

ScriptDefinition No additional No additional AliasName ExternalU-
serFunction (not sup-
ported for system func-
tions; supported for ex-
ternal functions only)
LocalVariableList
Source SystemFunc-
tion

SimpleTypeDefinition No additional No additional LibraryName

SingleLineEdit No additional RButtonDown AutoHScroll HideSe-
lection

StaticHyperLink No additional No additional FillPattern FocusRec-
tangle RightToLeft

Web Forms Targets

96 PowerBuilder

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

StaticText No additional No additional FillPattern FocusRec-
tangle RightToLeft

Tab No additional DoubleClicked Right-
DoubleClicked

Alignment (supported
in TabsOnTop style
when ShowPicture is
set to false) Fixed-
Width (supported in
TabsOnTop style, sin-
gle-line mode) Focu-
sOnButtonDown Mul-
tiline (supported in
TabsOnTop style) Per-
pendicular (supported
in single-line mode)
RaggedRight (suppor-
ted in TabsOnTop
style; always true in-
TabsOnLeft style) Tab-
Position (Enum values
supported for TabsOn-
Top and TabsOnLeft
only)

Web Forms Targets

Deploying Applications and Components to .NET 97

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

TreeView AddStatePicture Dele-
teStatePicture DeleteS-
tatePictures EditLabel
GetItemAtPointer Set-
DropHighlight Set-
FirstVisible SetLevel-
Pictures SetOverlay-
Picture

BeginDrag BeginLa-
belEdit BeginRight-
Drag EndLabelEdit
Key Notify RightDou-
bleClicked Sort

DeleteItems Disable-
DragDrop EditLabels
FullRowSelect Has-
Buttons (False value
unsupported for Rad-
Control TreeView;
supported in IE Web
Control TreeView)
HideSelection Indent
(Unsupported for Rad-
Control TreeView;
supported in IE Web
Control TreeView)
LayoutRTL LinesAt-
Root PictureHeight
PictureWidth RightTo-
Left SingleExpand
StatePictureHeight
StatePictureWidth
TrackSelect

TreeViewItem No additional No additional Bold CutHighlighted
DropHighlighted Ex-
pandedOnce HasFocus
OverlayPictureIndex
Selected

TypeDefinition No additional No additional LibraryName

UserObject AddItem DeleteItem
EventParmDouble
EventParmString In-
sertItem

No additional ColumnsPerPage Li-
braryName LinesPer-
Page Style TabBack-
Color UnitsPerColumn
UnitsPerLine

Web Forms Targets

98 PowerBuilder

Supported object
or control

Unsupported
functions

Unsupported
events

Unsupported
properties

VariableDefinition No additional No additional OverridesAncestorVal-
ue Supported only for
descriptions of in-
stance variables: Is-
Constant ReadAccess
WriteAccess Suppor-
ted only for descrip-
tions of instance varia-
bles and primitive-type
properties, such as int,
string, long, and so on:
InitialValue

VProgressBar No additional DoubleClicked SmoothScroll

VScrollBar No additional RButtonDown No additional

VTrackBar SelectionRange No additional SliderSize TickFre-
quency TickMarks

Window DDE functions Get-
Toolbar GetToolbarPos
InputField functions
SetMicroHelp Set-
Toolbar SetToolbarPos

DDE events Deactivate
DoubleClicked Hide
Key Mouse events Sys-
temKey ToolbarMoved

Border, ClientEdge
ColumnsPerPage Con-
textHelp HScrollbar
KeyboardIcon Line-
sPerPage PaletteWind-
ow Resizable RightTo-
Left TitleBar Toolbar
properties (except
ToolbarVisible) Trans-
parency UnitsPerCol-
umn UnitsPerLine
VScrollbar

Supported for child,
popup, and response
windows only: Center
ControlMenu MaxBox
MinBox

Partial support for SaveDocument function
The SaveDocument function for RichTextEdit controls is supported for the TXT format, but
HTML tags are saved in the text file. SaveDocument can also save text and images to HTML

Web Forms Targets

Deploying Applications and Components to .NET 99

and DOC file formats, however, it cannot correctly save Unicode characters in these file
formats. SaveDocument does not support RTF or PDF formats in Web Forms applications.

Controls in DataWindow objects
This table lists the properties that are not supported in Web Forms applications for controls
that you can place in a DataWindow object:

Control in DataWindow Unsupported properties

Button AccessibleProperty, Background.Brushmode,
Background.Gradient.Property, Back-
ground.Transparency, Font.Escapement,
Font.Width, HideSnaked, Moveable, Pointer, Re-
sizeable, SlideLeft, SlideUp, Tooltip.Property,
Transparency, VTextAlign

Column AccessibleProperty, Background.Brushmode,
Background.Gradient.Property, Back-
ground.Transparency, CheckBox.Scale, Check-
Box.Other, ddlb.AllowEdit, ddlb.Limit,
ddlb.ShowList, ddlb.Sorted, ddlb.UseAsBorder,
dddw.AllowEdit, dddw.Lines, dddw.Percent-
Width, dddw.ShowList, dddw.UseAsBorder, Ed-
it.AutoHScroll, Edit.AutoVScroll, Edit.Case,
Edit.HScrollBar, Edit.VScrollBar, EditMask.Co-
deTable, EditMask.DDCal_Property, Edit-
Mask.SpinProperty, Font.Escapement,
Font.Width, Height.Autosize, HideSnaked,
Ink.Property, InkEdit.Property, Moveable, Point-
er, RadioButtons.Scale, Resizeable, SlideLeft,
SlideUp, Tooltip.Property, Transparency, UseEl-
lipsis

Computed field AccessibleProperty, Background.Brushmode,
Background.Gradient.Property, Back-
ground.Transparency, Font.Escapement,
Font.Width, Height.Autosize, HideSnaked,
Moveable, Pointer, Resizeable, SlideLeft, Slide-
Up, Tooltip.Property, Transparency

Graph AccessibleProperty, HideSnaked, Moveable,
Pointer, Render3D, Resizeable, SlideLeft, Slide-
Up

Web Forms Targets

100 PowerBuilder

Control in DataWindow Unsupported properties

Group box AccessibleProperty, Background.Brushmode,
Background.Gradient.Property, Back-
ground.Transparency, Font.Escapement,
Font.Width, Moveable, Pointer, Resizeable, Sli-
deLeft, SlideUp, Tooltip.Property, Transparency

Line (diagonal line is unsupported) Background.Brushmode, Background.Gradi-
ent.Property, Background.Transparency, Movea-
ble, Pen.Style, Pen.Width, Pointer, Resizeable,
SlideLeft, SlideUp, Tooltip.Property

Picture AccessibleProperty, HideSnaked, Invert, Move-
able, Pointer, Resizeable, SlideLeft, SlideUp

Rectangle Background.Brushmode, Background.Gradi-
ent.Property, Background.Transparency,
Brush.Hatch, Moveable, Pen.Style, Pen.Width,
Pointer, Resizeable, SlideLeft, SlideUp, Tool-
tip.Property

Report Border, Height.Autosize, Height, HideSnaked,
Moveable, NewPage, Pointer, Resizeable, Slide-
Left, SlideUp, Trail_Footer

Text AccessibleProperty, Background.Brushmode,
Background.Gradient.Property, Back-
ground.Transparency, Font.Escapement,
Font.Width, HideSnaked, Moveable, Pointer, Re-
sizeable, SlideLeft, SlideUp, Tooltip.Property,
Transparency

Modified Appearance and Behavior of Visual Controls
All PowerBuilder visual controls are supported in .NET Web Forms application, but they may
behave or be rendered in a slightly different manner.

Windows themes
By default, the rendering of visual controls in Web Forms applications uses themes consistent
with the operating system of the client browser. However, by changing the value of the
PBDefaultTheme global property, you can change the rendering of visual controls so that they
display in the same way on all browsers, regardless of the underlying operating system.

If you select "XP" as the value for PBDefaultTheme, visual controls display with XP themes
even when XP themes are not enabled on the client or Web server. If you select "Classic" as the
PBDefaultTheme value, controls display with Windows Classic themes in all browsers.

Web Forms Targets

Deploying Applications and Components to .NET 101

You can let the application user change the control appearance by enabling the Theme
Manager. The Theme Manager allows the end user to change the themes type to Windows
Classic or Windows XP in a specific browser, however it does not let the user change the
PBDefaultTheme value on the server.

See Web Forms Theme Manager on page 64.

Visual properties and controls
This table describes the behavior (of visual properties and controls) that differs in Web Forms
applications from the behavior of the same properties or controls in a standard PowerBuilder
environment. For a description of changes to the visual appearance of DataWindow controls in
Web Forms applications, see DataWindow objects and controls on page 103.

Visual component or control Behavior in Web Forms applications

Animation When autoplay is set to false, the initial frame of
the animation displays as a black area.

Border style: StyleBox! The borders for RichTextEdit controls display as
a white box frame around the outside of the con-
trol, with black lines along the top and left interior
edges of the frame.

Border style: StyleLowered! The borders for CheckBox, DatePicker, Drop-
DownListBox, DropDownPictureListBox, Edit-
Mask, ListView, MonthCalendar, MultiLineEdit,
PictureButton, SingleLineEdit, and TreeView
controls display as a blue box (the default XP
theme display) surrounding the control. Chang-
ing the color scheme does not alter the border
color. RichTextEdit controls display with a thick-
er frame than in standard PowerBuilder applica-
tions.

Border style: StyleRaised! The borders for GroupBox controls that use a
raised border style are not as distinct as in stand-
ard PowerBuilder applications. RichTextEdit
controls display with a thicker frame than in
standard PowerBuilder applications.

Border style: StyleShadowBox! For RichTextEdit controls, this style displays like
the StyleBox! border style, except that the white-
line box frame is slightly thicker.

Color Selection dialog box Does not use a vertical track bar to change colors.

Web Forms Targets

102 PowerBuilder

Visual component or control Behavior in Web Forms applications

CommandButton Text alignment is set to the left when the text
length exceeds the control's width, not to the cen-
ter of the button.

EditMask You cannot use the Shift key to select text in the
control.

ListView Icon colors for the ListView items appear inverted
when selected.

SingleLineEdit Password characters can display in a strange font.
To get consistent behavior in all environments,
use TrueType fonts only.

StaticText Text is truncated to fit the size of the control, even
if that is in the middle of a word.

Tab If you change the X and Y positions of a user
object on a Tab control when the MultiLine prop-
erty is set to true and the tab positions are set to
TabsOnTop, the user object can overlap the tab
page tabs. If you need to change the position of
the user object or if you want to place it so that it
covers the entire tab page without overlapping the
tabs, you must first set MultiLine to false.

TreeView Bitmap pictures for the TreeView items are dis-
played in their original sizes. Also, when you call
SelectItem (0), a selected item does not lose fo-
cus. In Web Forms applications, at least one node
must remain selected. If a RadControl TreeView
(PBWebControlSource=RAD) has many nodes
and the PBPostbackType is set to Synchronous,
the client Web browser can take a long time to
redraw the TreeView. You should use asynchro-
nous postbacks with RadControl controls.

Window MDI sheet windows display as tab pages instead
of cascading sheets.

DataWindow objects and controls

• Freeform DataWindow — in Web Forms applications, DataWindow objects with the
Freeform presentation style can show part of a row when the height of all rows exceeds the
height of the DataWindow control. For example, if one and a half rows can fit in the

Web Forms Targets

Deploying Applications and Components to .NET 103

control, the DataWindow shows one and a half rows. In standard PowerBuilder
applications, partial rows are not visible in the control.

• TreeView DataWindow — Web Forms application users cannot use the Tab key to tab
between items of a TreeView DataWindow control. The Tab key moves the focus to other
controls on the current form.

• ScrollToRow — the ScrollToRow method changes the row specified in the method
argument to be the current row, but the specified row displays differently in standard
PowerBuilder and Web Forms DataWindow controls. In Web Forms applications, when
the ScrollToRow call causes the DataWindow to scroll up, the top of the specified row
aligns with the top of the DataWindow control. When the ScrollToRow call causes the
DataWindow to scroll down, the specified row displays in one of the following ways:
• If the row height is greater than the DataWindow control height, the top of the specified

row aligns with the top of the DataWindow control.
• If the row height is less than the DataWindow control height, the bottom of the

specified row aligns with the bottom of the DataWindow control.
For information on pagination display in Web Forms DataWindow controls, see Take
Advantage of Global Configuration Properties on page 207.

• Drop-down edit styles in DataWindow objects — by default, DropDownDataWindow
(DDDW) objects appear as list boxes in Web Forms applications. When you open a
response window or a message box in front of a DataWindow that has DDDW objects
displayed as list boxes or that has columns with DropDownListBox (DDLB) edit styles,
the DDDW objects and DDLB columns disappear until the response window or message
box is closed.
The same temporary object and column disappearance occurs when an event such as
Clicked, DropDown, ItemFocusChanged, or RowFocusChanged is handled. This is due to
a limitation of the HTML SELECT element used to create a list box. You can prevent the
disappearance of DDDW objects and DataWindow columns with the DDLB edit style by
setting the PBDataWindowEnableDDDW global property to true. With this setting,
DDLB column edit styles are automatically rendered as DDDW edit styles in Web Forms
applications, and DDDW objects are not changed to list boxes.
For information on global properties, see Global Web Configuration Properties on page
65.

Unsupported Functions for Controls in Web Forms
Some PowerBuilder control functions cannot be used in applications deployed to ASP.NET.

This table lists unsupported functions, the controls on which they are not supported, and any
notes that apply to specific controls. If your application uses these functions, rework it to avoid
their use:

Function Controls not supporting function

AcceptText DataWindow

Web Forms Targets

104 PowerBuilder

Function Controls not supporting function

AddData Graph (supported for all datatypes except string
values)

AddItem UserObject

AddStatePicture TreeView

Arrange ListView

CanUndo All controls

Check Menu (supported in all menu controls, but check
mark appearance is not the same as in Power-
Builder applications)

Clear Most controls (supported in EditMask controls)

ClearAll RichTextEdit

Clipboard Graph

CloseChannel Window

Copy All controls

CopyRTF DataStore, DataWindow, RichTextEdit

Cut All controls

DataSource RichTextEdit

DeleteItem UserObject

DeleteStatePicture TreeView

DeleteStatePictures TreeView

DirList ListBox, DropDownListBox, PictureListBox,
DropDownPictureListBox (supported, but can
only include files from the virtual file system)

Drag Most controls (supported in list box controls)

EditLabel ListView, TreeView

EventParmDouble UserObject

EventParmString UserObject

ExecRemote Window

Find DataWindow, RichTextEdit

FindNext DataWindow, RichTextEdit

Web Forms Targets

Deploying Applications and Components to .NET 105

Function Controls not supporting function

GenerateResultSet DataStore, DataWindow

GetAlignment RichTextEdit

GetCalendar DatePicker

GetCommandDDE Window

GetCommandDDEOrigin Window

GetContextService Window (supported for ClassDefinition, Script-
Definition, TypeDefinition, and VariableDefini-
tion objects)

GetDataDDE Window

GetDataDDEOrigin Window

GetDataLabelling Graph

GetDataTransparency Graph

GetDisplayRange MonthCalendar

GetNextSheet Window (returns sheet instead of frame)

GetItemAtPointer ListView, TreeView

GetOrigin ListView

GetParagraphSetting RichTextEdit

GetRemote Window

GetRichTextAlign DataWindow

GetRichTextColor DataWindow

GetRichTextFaceName DataWindow

GetRichTextSize DataWindow

GetRichTextStyle DataWindow

GetSeriesLabelling Graph

GetSeriesTransparency Graph

GetSpacing RichTextEdit

GetText DataWindow

GetTextColor RichTextEdit

GetTextStyle RichTextEdit

Web Forms Targets

106 PowerBuilder

Function Controls not supporting function

GetToolbar Window

GetToolbarPos Window

ImportClipboard DataWindow, Graph

ImportFile Graph

InputField functions RichTextEdit

InsertData Graph (supported for all datatypes except string
value.)

InsertDocument DataWindow

InsertItem UserObject

InsertPicture RichTextEdit

IsPreview RichTextEdit

LineCount DataWindow, EditMask, MultiLineEdit, Rich-
TextEdit

LineLength DataWindow, EditMask, MultiLineEdit, Rich-
TextEdit

OLEActivate DataWindow

OpenChannel Window

PageCount RichTextEdit

Paste All controls

PasteRTF DataStore, DataWindow, RichTextEdit

Position DataWindow, DropDownListBox, DropDown-
PictureListBox, EditMask, MultiLineEdit, Rich-
TextEdit

Preview RichTextEdit

Print All controls (can be used for DataWindows and
DataStores to print to PDF files)

PrintEx RichTextEdit

ReplaceText DataWindow, DropDownListBox, DropDown-
PictureListBox, EditMask, RichTextEdit

RespondRemote Window

SaveAs Graph

Web Forms Targets

Deploying Applications and Components to .NET 107

Function Controls not supporting function

Scroll DataWindow, EditMask, MultiLineEdit, Rich-
TextEdit

Seek Animation

SelectedColumn RichTextEdit

SelectedLength DataWindow, DropDownListBox, DropDown-
PictureListBox, EditMask, RichTextEdit

SelectedLine DataWindow, EditMask, MultiLineEdit, Rich-
TextEdit

SelectedStart DataWindow, DropDownListBox, DropDown-
PictureListBox, EditMask, MultiLineEdit, Rich-
TextEdit

SelectedText DataWindow, DropDownListBox, DropDown-
PictureListBox, EditMask, RichTextEdit

SelectionRange HTrackbar, VTrackbar

SelectText DataWindow, DropDownListBox, DropDown-
PictureListBox, EditMask, RichTextEdit

SelectTextAll RichTextEdit

SelectTextLine RichTextEdit

SelectTextWord RichTextEdit

SetActionCode All controls

SetAlignment RichTextEdit

SetCultureFormat DataWindow

SetDataDDE Window

SetDataLabelling Graph

SetDataTransparency Graph

SetDetailHeight DataWindow

SetDropHighLight TreeView

SetFirstVisible TreeView

SetFocus DataWindow, Graph

SetLevelPictures TreeView

SetMicroHelp Window

Web Forms Targets

108 PowerBuilder

Function Controls not supporting function

SetOverlayPicture ListView, TreeView

SetParagraphSetting RichTextEdit

SetPosition RichTextEdit

SetRedraw All controls

SetRemote Window

SetRichTextAlign DataWindow

SetRichTextColor DataWindow

SetRichTextFaceName DataWindow

SetRichTextSize DataWindow

SetRichTextStyle DataWindow

SetSeriesLabelling Graph

SetSeriesTransparency Graph

SetSpacing RichTextEdit

SetText DataWindow

SetTextColor RichTextEdit

SetTextStyle RichTextEdit

SetToolbar Window

SetToolbarPos Window

SetTop ListBox, PictureListBox

ShowHeadFoot DataWindow, RichTextEdit

StartHotLink Window

StartServerDDE Window

StopHotLink Window

StopServerDDE Window

TextLine DataWindow, EditMask, MultiLineEdit, Rich-
TextEdit

Top ListBox, PictureListBox

Undo All controls

Web Forms Targets

Deploying Applications and Components to .NET 109

Control functions with partial support

• FindItem — in Web Forms applications, the FindItem function is supported for all list box
controls and the TreeView control. The syntax for finding an item by its label is also fully
supported for the ListView control. However, the syntax for finding an item by its relative
position in a ListView control is only partially supported. In Web Forms applications, the
cuthighlighted and drophighlighted arguments are not supported, and DirectionAll! is the
only supported value for the direction argument.

Unsupported Events for Controls in Web Forms
Some PowerBuilder control events cannot be used in applications deployed to ASP.NET.

This table lists unsupported events, the controls on which they are not supported, and any
notes that apply to specific controls. If your application uses these events, rework it to avoid
their use:

Event Controls for which the event is not supported

BeginDrag All controls

BeginLabelEdit ListView, TreeView

BeginRightDrag All controls

Clicked DatePicker, MonthCalendar (supported for DataWindow, but not
triggered on editable controls that already have focus)

CloseUp DatePicker

Deactivate Window

DeleteAllItems ListView

DoubleClicked DatePicker, DropDownListBox, DropDownPictureListBox,
HProgressBar, ListBox, MonthCalendar, RichTextEdit, Tab,
VProgressBar, Window (supported for other controls, but the
Clicked event is not triggered on a double-click in a Picture or
StaticText control)

DragDrop All controls

DragEnter All controls

DragLeave All controls

DragWithin All controls

DropDown DatePicker

EditChanged DataWindow

EndLabelEdit ListView, TreeView

Web Forms Targets

110 PowerBuilder

Event Controls for which the event is not supported

FileExists RichTextEdit

GetFocus All controls

Help All controls

Hide Window

HotLinkAlarm Window

InputFieldSelected RichTextEdit

ItemActivate ListView

ItemChanged DataStore

Key All controls

LoseFocus All controls

MouseDown RichTextEdit, Window

MouseMove RichTextEdit, Window

MouseUp RichTextEdit, Window

Notify TreeView

Other All controls

PrintEnd DataWindow

PrintMarginChange DataWindow

PrintPage DataWindow

PrintStart DataWindow

RButtonDown MultiLineEdit, SingleLineEdit, HScrollBar, VScrollBar

RButtonUp RichTextEdit

RemoteExec Window

RemoteHotLinkStart Window

RemoteHotLinkStop Window

RemoteRequest Window

RemoteSend Window

RichTextCurrentStyle-
Changed

DataWindow

RichTextLimitError DataWindow

Web Forms Targets

Deploying Applications and Components to .NET 111

Event Controls for which the event is not supported

RichTextLoseFocus DataWindow

RightClicked ListView

RightDoubleClicked All controls

ScrollHorizontal DataWindow

ScrollVertical DataWindow

Selected Menu

Sort ListView, TreeView

SystemKey Window

ToolbarMoved Window

ValueChanged DatePicker

Custom events
Custom events based on PowerBuilder Message (pbm) event IDs are not supported in Web
Forms applications. However, you can call user-defined events without event IDs using the
TriggerEvent and PostEvent functions.

Partially supported control events

• Clicked event — in a Web Forms application, if an editable DataWindow text column does
not have focus, clicking it sets the focus on the column and triggers the Clicked event. If the
column already has focus, clicking it does not trigger the Clicked event. This intended
behavior reduces postbacks.

• Selected event— the Selected event on a menu is not generally supported in Web Forms
applications. However, if you set the AutoTriggerMenuSelectedEvents global property to
true, the Selected event is supported for simple tasks that can be run prior to the rendering
of Web Forms in a client browser.

Unsupported Properties for Controls in Web Forms
Some PowerBuilder control properties cannot be used in applications deployed to ASP.NET.

This table lists unsupported properties, the controls on which they are not supported, and any
notes that apply to specific controls. If your application uses these properties, rework it to
avoid their use:

Property Controls for which the property is unsupported

Accelerator All controls

AccessibleDescription Most controls

Web Forms Targets

112 PowerBuilder

Property Controls for which the property is unsupported

AccessibleName Most controls

AccessibleRole All controls

AllowEdit DatePicker, DropDownListBox, DropDownPictureListBox

AutoArrange ListView

AutoHScroll DropDownListBox, DropDownPictureListBox, EditMask, MultiLi-
neEdit, SingleLineEdit

AutoSize MonthCalendar

AutoSkip EditMask

AutoVScroll EditMask, MultiLineEdit

BitmapBackColor Menu

BitmapGradient Menu

Border Window

BorderStyle RadioButton

BottomMargin RichTextEdit

ButtonHeader ListView

Center Window (supported in child, popup, and response windows)

ClientEdge Window

ColumnsPerPage UserObject, Window

ContextHelp Window

ControlCharsVisible RichTextEdit

ControlMenu DataWindow, Window (supported in child, popup, and response
windows)

DeleteItems ListView, TreeView

DisableDragDrop TreeView

DisableNoScroll ListBox, PictureListBox

DisplayData EditMask

DisplayOnly MultiLineEdit (supported, but control cannot get focus when set to
true)

DragAuto All controls

DragIcon All controls

Web Forms Targets

Deploying Applications and Components to .NET 113

Property Controls for which the property is unsupported

DropDownRight DatePicker, EditMask

EditLabels TreeView

ExtendedSelect ListBox, ListView, PictureListBox

FillPattern StaticHyperLink, StaticText

FixedLocations ListView

FocusOnButtonDown Tab

FocusRectangle Graph, Picture, PictureHyperlink, StaticText, StaticHyperlink

FullRowSelect TreeView

GridLines ListView

HasButtons TreeView (false value not supported in RadControl TreeView, but
supported in IE Web Control TreeView)

HeaderDragDrop ListView

HeaderFooter RichTextEdit

Height RoundRectangle (does not change height if width is changed first; for
HTrackBar, this property has no effect in a Windows application, but
does in a Web application)

HideSelection EditMask, ListView, MultiLineEdit, TreeView

HScrollbar ListBox, RichTextEdit, Window

HSplitScroll DataWindow

Icon DataWindow

IgnoreDefaultButton EditMask

IMEMode All controls

Increment EditMask

Indent TreeView (unsupported in RadControl TreeView, supported in IE
Web Control TreeView)

InputField properties RichTextEdit

KeyboardIcon Window

LabelWrap ListView

LayoutRTL ListView, TreeView

LeftMargin RichTextEdit

Web Forms Targets

114 PowerBuilder

Property Controls for which the property is unsupported

LibraryName UserObject

Limit DropDownListBox, DropDownPictureListBox, EditMask

LinesAtRoot TreeView

LinesPerPage UserObject, Window

LiveScroll DataWindow

Map3DColors Picture, PictureButton, PictureHyperLink

MaxBox DataWindow, Window (supported in child, popup, and response
windows)

MaxSelectCount MonthCalendar

MenuAnimation Menu

MenuBitmaps Menu

MenuTitles Menu

MenuTitleText Menu

MergeOption Menu

MicroHelp Menu

MinBox DataWindow, Window (supported in child, popup, and response
windows)

MinMax EditMask

Modified RichTextEdit

OneClickActivate ListView

OriginalSize Animation

PaletteWindow Window

PictureAsFrame RichTextEdit

PictureHeight TreeView

PictureWidth TreeView

PopMenu RichTextEdit

Render3D Graph

Resizable DataWindow, RichTextEdit, Window

RightMargin RichTextEdit

Web Forms Targets

Deploying Applications and Components to .NET 115

Property Controls for which the property is unsupported

RightToLeft DataWindow, DatePicker, DropDownListBox, DropDownPicture-
ListBox, ListBox, ListView, MonthCalendar, PictureListBox, Stati-
cText, StaticHyperlink, TreeView, Window

RulerBar RichTextEdit

Scrolling ListView

ScrollRate MonthCalendar

SelectedStartPos RichTextEdit

SelectedTextLength RichTextEdit

ShowHeader ListView

ShowList DropDownListBox, DropDownPictureListBox

ShowToolbarText Window (supported, but width of text is changed)

ShowUpDown DatePicker

SingleExpand TreeView

SliderSize HTrackBar, VTrackBar

SmoothScroll HProgressBar, VProgressBar (smooth scrolling is supported, but not
step increments)

Spin EditMask

StatePictureHeight TreeView

StatePictureWidth TreeView

StatusBar RichTextEdit

Style UserObject

TabBackColor UserObject

TabBar RichTextEdit

TabStop EditMask, ListBox, MultiLineEdit, PictureListBox

TickFrequency HTrackBar, VTrackBar

TickMarks HTrackBar, VTrackBar

Title DataWindow

TitleBackColor Menu

TitleBar DataWindow, Window

TitleGradient Menu

Web Forms Targets

116 PowerBuilder

Property Controls for which the property is unsupported

TodaySection DatePicker, MonthCalendar

ToolbarAlignment Window

ToolbarAnimation Menu

ToolBarFrameTitle Application

ToolBarHeight Window

ToolbarItemDown Menu

ToolbarItemDownName Menu

ToolbarItemSpace Menu

ToolBarPopMenuText Application

ToolBarSheetTitle Application

ToolBarUserControl Window

ToolBarWidth Window

ToolBarX Window

ToolBarY Window

TopMargin RichTextEdit

TrackSelect ListView, TreeView

Transparency DataWindow object, Window

TwoClickActivate ListView

UnderlineCold ListView

UnderlineHot ListView

UnitsPerColumn UserObject, Window

UnitsPerLine UserObject, Window

UseCodeTable EditMask

VScrollbar RichTextEdit, Window

WeekNumbers DatePicker, MonthCalendar

Width VTrackBar (has no effect in a Windows Form application, but does in
a Web Forms application)

WordWrap RichTextEdit

Web Forms Targets

Deploying Applications and Components to .NET 117

Web Forms Targets

118 PowerBuilder

Windows Forms Targets

This part describes how to create and deploy Windows Forms applications.

PowerBuilder Windows Forms Applications
PowerBuilder applications with a rich user interface that rely on resources of the client
computer, such as a complex MDI design, graphics, or animations, or that perform intensive
data entry or require a rapid response time, make good candidates for deployment as Windows
Forms applications.

For a comparison of design considerations between Web Forms and Windows Forms
applications, see Choosing a .NET Application Target on page 1.

Adapting an existing application
The changes required to transform a PowerBuilder application into a Windows Forms
application depend on the nature of the application, the scripting practices used to encode the
application functionality, and the number of properties, functions, and events the application
uses that are not supported in the .NET Windows Forms environment.

For a list of restrictions, most of which apply to both Windows and Web Forms applications,
see Best Practices for .NET Projects on page 201.

For tables of unsupported and partially supported objects, controls, functions, events, and
properties, see Unsupported Features in Windows Forms Projects on page 140.

Setting up a target and project
You set up a target for a .NET Windows Forms application using the wizard on the Target page
of the New dialog box. You can start from scratch and create a new library and new objects, use
an existing application object and library, or use the application object and library list of an
existing target.

You define some of the characteristics of the deployed application in the .NET Windows
Forms Application wizard. Additional properties are set in the Project painter. See Properties
for a .NET Windows Forms Project on page 123.

Smart client applications
One of the choices you can make in the wizard or Project painter is whether the application
will be deployed as a smart client application. A smart client application can work either
online (connected to distributed resources) or offline, and can take advantage of “intelligent
update” technology for deployment and maintenance. See Intelligent Deployment and Update
on page 129.

Windows Forms Targets

Deploying Applications and Components to .NET 119

Deploying from the Project painter
When you deploy a PowerBuilder application from the .NET Windows Forms Project painter,
PowerBuilder builds an executable file and deploys it along with any PBLs, PBDs,
resources, .NET assemblies, and other DLLs that the application requires. See Deployment of
a Windows Forms Application on page 128.

Using preprocessor symbols
If you share PBLs among different kinds of target, such as a target for a standard PowerBuilder
application and a Windows Forms target, you might want to write code that applies to a
specific target. For example, use the following template to enclose a block of code that should
be parsed by thepb2cscode emitter in a Windows Forms target and ignored by the PowerScript
compiler:

 #if defined PBWINFORM then
 /*action to be performed in a Windows Forms target*/
 #else
 /*other action*/
 #end if

You can use the Paste Special>Preprocessor context menu item in the Script view to paste a
template into a script.

For more information about using preprocessor symbols, see Conditional Compilation on
page 173.

Deploying to a production environment
The simplest way to deploy a Window Forms application to a production environment is to use
smart client deployment. If you cannot or do not want to use smart client deployment, use the
following procedure to install the application.

1. Install .NET Framework 2.0, 3.0, or 3.5 on the target computer.

2. Generate a PowerBuilder .NET components MSI file using the PowerBuilder Runtime
Packager.

For more information about using the Runtime Packager, see Application Techniques >
Deploying Applications and Components.

3. Install the generated MSI file on the target computer and restart the computer.

4. Copy the output from the build directory to the target computer.

5. Install any required database client software and configure related DSNs.

6. If necessary, register ActiveX controls used by your application.

For information about requirements for deployed applications, see Checklist for Deployment
on page 14.

Windows Forms Targets

120 PowerBuilder

System Requirements for .NET Windows Forms Targets
You must install version 2.0, 3.0, or 3.5 of the Microsoft .NET Framework on the same
computer as PowerBuilder. For intelligent update applications, you must also install the .NET
Framework 2.0, 3.0, or 3.5 SDK (x86).

Make sure that the system PATH environment variable includes:

• The location of the .NET Framework. The location of the 2.0 version is typically C:
\Windows\Microsoft.NET\Framework\v2.0.50727. The location of the 3.5
version is typically C:\Windows\Microsoft.NET\Framework\v3.5.

• For intelligent update applications, the location of the .NET Framework SDK Bin
directory. For .NET Framework 2.0, this is typically C:\Program Files
\Microsoft Visual Studio 8\SDK\v2.0\Bin or C:\Program Files
\Microsoft.NET\SDK\v2.0\Bin. For version 3.5, this is typically C:\Program
Files\Microsoft Visual Studio 9\SDK\v3.5\Bin or C:\Program
Files\Microsoft SDKs\Windows\v6.0A\bin.

The SDK for .NET Framework 2.0 is available from the Microsoft .NET Framework
Developer Center. The Windows SDK for Windows Server 2008 and .NET Framework 3.5 is
available on the Microsoft .NET Framework Developer Center.

If you installed the 1.x version of the .NET Framework or SDK, you must make sure the PATH
variable lists a supported version of the .NET Framework or SDK first.

To publish your application as a smart client from a Web server, you must have access to a Web
server. For information about configuring IIS on your local computer, see Selecting the
Default ASP.NET Version on page 8.

Adding .NET assemblies
If you want to call methods in .NET assemblies in your Windows Forms application, you can
import the assemblies into the target. For more information, see Adding .NET Assemblies to
the Target on page 178.

.NET Windows Forms Target Wizard
Use the .NET Windows Forms Application wizard on the Target page in the New dialog box to
create a Windows Forms application and target, and optionally a project.

The project lets you deploy the PowerBuilder application to the file system or, if you select the
smart client option, to publish it to a server. For more about publishing options, see Intelligent
Deployment and Update on page 129.

If you have an existing PowerBuilder application or target that you want to deploy as a .NET
Windows Forms application, you can select either in the wizard. If you choose to start from
scratch, the wizard creates a new library and application object.

Windows Forms Targets

Deploying Applications and Components to .NET 121

http://msdn.microsoft.com/en-us/netframework/aa731542.aspx
http://msdn.microsoft.com/en-us/netframework/aa731542.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

Building a Windows Forms Application and Target from Scratch
Use the .NET Windows Forms Application wizard to create a .NET Windows Forms
application and target from scratch.

1. Select Start from scratch on the Create the Application page in the wizard.

2. Specify the name of the .NET Windows Forms application and the name and location of
the PowerBuilder library (PBL) and target (PBT).

By default, the application name is used for the library and target.

3. Specify project information as described in Creating a .NET Windows Forms Project on
page 123.

Building a Windows Forms Application from an Existing Application and Library
Use the .NET Windows Forms Application wizard to create a .NET Windows Forms
application and target from an existing application and library.

1. Select Use an existing library and application object on the Create the Application page
in the wizard.

2. On the Choose Library and Application page, expand the tree view and select an existing
application.

3. On the Set Library Search Path page, click the ellipsis (...) button to navigate to and select
additional libraries.

4. On the Specify Target File page, specify the name of the new target file.

5. Specify project information as described in Creating a .NET Windows Forms Project on
page 123.

Building a Windows Forms Application from an Existing Target
Use the .NET Windows Forms Application wizard to create a .NET Windows Forms
application and target from an existing target.

1. Select Use the library list and application object of an existing target on the Create the
Application page in the wizard.

2. On the Choose a Target page, select a target from the current workspace.

3. On the Specify Target File page, specify the name of the new target file.

4. Specify project information as described in Creating a .NET Windows Forms Project on
page 123.

Windows Forms Targets

122 PowerBuilder

Creating a .NET Windows Forms Project
You can create a project to deploy the application in the target wizard or by using the .NET
Windows Forms wizard on the Project page of the New dialog box.

1. On the Specify Project Information page, specify the name of the project and the library in
which the project object will be saved.

2. On the Specify Application General Information page, optionally specify a product name
for the application.

This can be different from the name of the application and is used as the name of the
product on the General page in the Project painter.

You can also specify the name of the .NET Windows Forms executable file (by default, this
is the name of the application object with the extension .exe) and the major and minor
versions and build and revision numbers for the current build (the default is 1.0.0.0).

3. On the Specify Win32 Dynamic Library Files page, click Add to specify the names of any
dynamic libraries required by your application.

The list is prepopulated with the names of libraries referenced in the application’s code.

4. On the Specify Support for Smart Client page, select the check box if you want to publish
the application as a smart client. Otherwise, click Next and then Finish.

If you select this check box, the wizard shows additional pages on which you set publish
and update options. See Intelligent Deployment and Update on page 129.

Properties for a .NET Windows Forms Project
After you click Finish in the wizard, PowerBuilder creates a .NET Windows Forms project in
the target library that you selected and opens the project in the Project painter.

The painter shows all the values you entered in the wizard and allows you to modify them. It
also shows additional properties that you can set only in the painter.

Windows Forms Targets

Deploying Applications and Components to .NET 123

Table 1. Properties in the Project painter

Tab page Properties

General The output path is where the application is deployed in the file system. This is not
the same as the location where the application is published if you choose to
publish the application as a smart client application.

The build type determines whether the project is deployed as a debug build
(default selection) or a release build. You use debug builds for debugging pur-
poses. If you select Release, no PDB files are generated. Release builds have
better performance, but when you run a release build in the debugger, the de-
bugger does not stop at breakpoints.

The rebuild scope determines whether the project build is incremental (default)
or full. See Rebuild Scope on page 214.

Clear the Enable DEBUG Symbol check box if you do not want any DEBUG
preprocessor statements you have added to your code to be included in your
deployed application. This selection does not affect and is not affected by the
project’s debug build or release build setting. For more information about pre-
processor statements, see Conditional Compilation on page 173.

Resource Files PowerBuilder .NET Windows Forms do not support PBR files, and they are
unable to locate images embedded in PBD files. You can, however, search a PBR
file for images required by the application.

All resource files must be relative to the path of the .NET Windows Forms target.
If the files your application requires are in another directory, copy them into the
target’s directory structure and click the Search PBR, Add Files, or Add Direc-
tory button again.

Clear the check box in the Recursive column for a directory to deploy only the
files in the directory, or select it to deploy files in its subdirectories as well.

For smart client applications, the Publish Type column indicates whether the file
is a static file that should be installed in the Application directory, or application-
managed data that should be installed in a Data directory. See Resource Files and
Publish Type on page 135.

Windows Forms Targets

124 PowerBuilder

Tab page Properties

Library Files Use the Library Files tab page to make sure all the PowerBuilder library files
(PBLs or PBDs) that contain DataWindow, Query, and Pipeline objects used by
the application are deployed with the application. If you select the check box next
to the name of a PBL that contains these types of objects, PowerBuilder compiles
the selected PBL into a PBD file before deploying it.

Note: You can reference only DataWindow, Query, or Pipeline objects in a PBD
file. The PBD files that are generated when you compile a Windows Forms
project do not contain other PowerBuilder objects, such as functions or user
objects. If you include a PBD file in your target that contains these other types of
objects, you cannot reference them from the Windows Forms application. They
can be referenced only from a target PBL that is converted to a .NET assembly.

If your application uses external functions, use the Add button to include the DLL
files in which they reside to the list of files to be deployed. You can also add
PowerBuilder runtime files, including pbshr125.dll and
pbdwe125.dll (if the project uses DataWindows), on this page, or you can
add them on the Prerequisites page.

Version Use the Version tab page to specify information that displays in the generated
executable file’s Properties dialog box in Windows Explorer. The company name
is used if you publish the application. See Publication Process and Results on
page 132.

Post-build Use the Post-build tab page to specify a set of commands to be executed after
building the application, but before the deployment process starts. A command
can be the name of a stand-alone executable file or an operating system command
such as copy or move. You can save a separate processing sequence for debug
builds and release builds. (You change the build type of a project deployment on
the General tab of the Project painter.)

Security Use the Security tab page to generate a manifest file (either external or embed-
ded) and to set the execution level of the application.To meet the certification
requirements of the Windows Logo program the application executable must
have an embedded manifest that defines the execution level and specifies whether
access to the user interface of another window is required.

You can also use the Security tab to configure CAS security zones for your
applications, minimizing the amount of trust required before application code is
run by an end user.

For information about manifest file requirements, see Security Requirements on
page 127. For information about customized permission settings, see Security
Settings on page 3 and Custom Permission Settings on page 231.

Run Use the Run tab page to specify any command line arguments that the application
requires, as well as the name of the working directory in which the application
starts.

Windows Forms Targets

Deploying Applications and Components to .NET 125

Tab page Properties

Sign The Assembly group box on the Sign tab page allows you to attach strong name
key files to the assemblies that your project generates. You must also use the Sign
tab page to attach digital certificates to manifest files that you publish for smart
client applications.

See Strong-Named Assemblies on page 6 and Digital Certificates on page 131.

Intelligent update pages
The remaining pages in the Project painter are enabled if you checked the smart client check
box in the wizard or on the General page. Check this box if you want to publish the application
to a server so that users can download it and install updates as you make them available. See
Intelligent Deployment and Update on page 129.

Resources and Other Required Files
All resource files must be relative to the path of the .NET Windows Forms target.

Click Add Files on the Resource Files page of the project painter to select image files that your
application requires.

PowerBuilder .NET Windows Forms applications do not support PBR files, and they are
unable to locate images embedded in PBD files. If the files your application requires are not in
the directory structure accessible from the Choose Required Resource Files dialog box, copy
them into the directory structure, then reopen the dialog box.

If your application uses .NET assemblies, specify them on the .NET Assemblies tab page in
the target’s Properties dialog box. Before you deploy a PowerBuilder .NET smart client
application that uses data files, make sure the System.Windows.Forms.dll and
System.Deployment.dll assemblies are listed on this page.

Other files, such as database drivers and PowerBuilder DLLs, should be included on the
Prerequisites page if you are publishing a smart client application, or on the Library Files
page.

Windows Forms Targets

126 PowerBuilder

Security Requirements
Use the Security tab page of the project painter to specify whether an application has a
manifest file to set its requested execution level, and whether the manifest file is external or
embedded in the application.

This manifest file is not the same as the manifest files generated when you publish a Windows
Forms application as a smart client (ClickOnce) application. The concept of execution level is
part of the User Account Control (UAC) protocol.

If you want to deploy an application that meets the certification requirements of the Windows
Logo program, you must follow UAC guidelines. The executable file must have an embedded
manifest that defines the execution level and specifies whether access to the user interface of
another window is required. The Application Information Service (AIS) checks the manifest
file to determine the privileges with which to launch the process.

Generate options
Select Embedded manifest if your application needs to be certified for Vista or later. A
manifest file with the execution level you select is embedded in the application’s executable
file.

You can also select External manifest to generate a standalone manifest file in XML format
that you ship with your application’s executable file, or No manifest if you do not need to
distribute a manifest file.

Note: If you select Embedded manifest for a Windows Forms target, you must have a
supported version of the .NET Framework SDK installed on your system, because the process
that embeds the manifest in the executable file uses the mt.exe tool that is distributed with the
SDK.

Execution level
Select As Invoker if the application does not need elevated or administrative privileges.
Selecting a different execution level will probably require that you modify your application to
isolate administrative features in a separate process to receive Vista or later certification.

Select Require Administrator if the application process must be created by a member of the
Administrators group. If the application user does not start the process as an administrator, a
message box displays so that the user can enter the appropriate credentials.

Select Highest Available to have the AIS retrieve the highest available access privileges for the
user who starts the process.

UI access
If the application needs to drive input to higher privilege windows on the desktop, such as an
on-screen keyboard, select the “Allow access to protected system UI” check box. For most
applications you should not select this check box. Microsoft provides this setting for user
interface Assistive Technology (Section 508) applications.

Windows Forms Targets

Deploying Applications and Components to .NET 127

Note: If you check the Allow access to protected system UI check box, the application must be
Authenticode signed and must reside in a protected location, such as Program Files or
Windows\system32.

Deployment of a Windows Forms Application
When a .NET Windows Forms project is open in the Project painter, you can select Design >
Deploy Project or the Deploy icon on the PainterBar to deploy the project.

When all painters are closed, including the Project painter, you can right-click a .NET
Windows Forms target or project in the System Tree and select Deploy from its pop-up menu.
If the target has more than one project, specify which of them to deploy when you select
Deploy from the target’s context menu on the Deploy tab page in the target’s Properties dialog
box.

The Output window displays the progress of the deployment. PowerBuilder compiles PBLs
into PBD files when they contain DataWindow, Query, or Pipeline objects that are referenced
in the application. The application and its supporting files are deployed to the location
specified in the Output Path field on the General page.

Among the files deployed is a file with the name appname.exe.config, where
appname is the name of your application. This file is a .NET configuration file that defines
application settings. For a sample configuration file that includes database configuration
settings for an ADO.NET connection, see Connecting to Your Database > Using the
ADO.NET Interface. The sample shows how to configure tracing in the
appname.exe.config file, as shown in Runtime Errors on page 228.

If there are any unsupported properties, functions, or events that are used in the application
that are not supported in PowerBuilder .NET Windows Forms applications, they display on
the Unsupported Features tab page in the Output view. For more information, see
Unsupported Features in Windows Forms Projects on page 140.

If the application uses features that might cause it to run incorrectly, they display on the
Warnings tab page in the Output view. For a list of restrictions, most of which apply to both
Windows and Web Forms applications, see Best Practices for .NET Projects on page 201.

Project Execution
After you deploy the application, you can run it by selecting Design > Run Project from the
Project painter menu or selecting the Run Project toolbar icon from the Project painter toolbar.

The context menus for the .NET Windows Forms target and project in the System Tree also
have a Run menu item. If the target has more than one project, specify which of them to run
when you select Run from the target’s context menu on the Run tab page in the target’s
Properties dialog box. Run Project starts running the deployed executable file from the
location it was deployed to.

Windows Forms Targets

128 PowerBuilder

When you debug or run the project from PowerBuilder, a system option setting can cause a
message box to appear if the application has been modified since it was last deployed. The
message box prompts you to redeploy the application, although you can select No to debug or
run the older application, and you can set the system option to prevent the message box from
appearing.

For information about the message box, see Triggering Build and Deploy Operations on page
215. For information about the system option, see System Option on page 215.

For information on debugging .NET Windows Forms targets, see Debugging a .NET
Application on page 217.

Intelligent Deployment and Update
One of the features of .NET smart client applications is that they can be deployed and updated
from a file or Web server using Microsoft .NET ClickOnce technology, making it easier for
users to get and run the latest version of an application and easier for administrators to deploy
it.

PowerBuilder Windows Forms applications can use this "intelligent update" feature.

As the developer of a Windows Forms application, you can specify:

• Whether the application is installed on the user’s computer or run from a browser.
• When and how the application checks for updates.
• Where updates are made available.
• What files and resources need to be deployed with the application.
• What additional software needs to be installed on the user’s computer.

All these properties can be set in the Project painter before you publish the application.
Support for these features is built into the .NET Framework and runtime.

To support intelligent update, you (or a system administrator) need to set up a central HTTP,
FTP, or UNC file server that supports file downloads. This is the server to which updates are
published and from which they are deployed to a user’s computer.

When the user clicks on a link, typically on a Web page or in an e-mail, the application files are
downloaded to a secure cache on the user’s computer and executed. The application itself
contains an updater component. If the application can only be run when the user is connected,
the latest version is always downloaded. If the application can also be run offline, the updater
component polls the server to check whether updates are available. If they are, the user can
choose to download them.

Publishing an application for the first time
When you are ready to deploy an application to users, you publish it to the server. Users can
then download the application, usually from a publish page that contains a link to the server.

You need to:

Windows Forms Targets

Deploying Applications and Components to .NET 129

• Create a project and set publishing properties on page 129
• Publish the application on page 132

Figure 1: Deploying an intelligent update application

Set Publishing Properties
If you did not create a .NET Windows Forms project when creating an application that you
want to publish with intelligent update capabilities, you can use a wizard or icon on the Project
page of the New dialog box to create the project.

1. On the Project page of the New dialog box, select the .NET Windows Forms Application
wizard or project icon.

2. On the Specify Support for Smart Client page in the wizard, select the check box to specify
that the application uses intelligent update.
Selecting this check box enables additional pages in the wizard.

3. On the Specify Application Running Mode page, specify whether the application can be
used both online and offline (default), or online only.

4. On the Specify How Application Will be Installed page, specify whether the user installs
the application from a Web site, a shared path, or from a CD or DVD.

5. On the Specify Application Update Mode page, specify whether the application checks for
updates before starting, after starting, or neither. See Publication of Application Updates
on page 135.

You can also select the Publish as a Smart Client Application check box on the General
page in the Project painter. Selecting the check box enables the tab pages in the dialog box
where you set publishing properties. You can set additional properties in the Project
painter. For example, if you want to publish the application to an FTP site, select that
option and specify details on the Publish page.

Locations for Publish, Install, and Update
The publish location, specified on the Publish page in the Project painter, determines where
the application files are generated or copied to when you publish the application. It can be an
HTTP address, an FTP site, or a UNC address.

The install location, specified on the Install/Update page, determines where the end user
obtains the initial version of the application. It can be an HTTP address or UNC address, by

Windows Forms Targets

130 PowerBuilder

default the same address as the publish location specified in the wizard, or a CD or DVD. The
install location does not need to be the same as the publish location. For example, you can
publish the application to an FTP site, but specify that users get the application and updates
from a Web site.

The update location, also specified on the Install/Update page, determines where the user
obtains updated versions of the application. If the install location is an HTTP address or UNC
address, the update location is always the same as the install location. If the application was
installed from a CD or DVD, updates must be obtained from an HTTP or UNC address.

Digital Certificates
A digital certificate is a file that contains a cryptographic public/private key pair, along with
metadata describing the publisher to whom the certificate was issued and the agency that
issued the certificate.

Digital certificates are a core component of the Microsoft Authenticode authentication and
security system. Authenticode is a standard part of the Windows operating system. To be
compatible with the .NET Framework security model, all PowerBuilder .NET applications
must be signed with a digital certificate, regardless of whether they participate in Trusted
Application Deployment. For more information about Trusted Application Deployment, see
the Microsoft Web site.

Signing manifests with digital certificates
You can select a digital certificate from a certificate store or from a file browser. to sign your
smart client application manifests. You make the selection on the Sign page of the Project
painter by selecting the Sign the manifests check box in the Certificate group box.

This table describes the fields in the Intelligent Updater group box on the Sign page of the
Windows Forms Project painter. These fields are grayed out when the Publish as Smart Client
Application check box on the General tab of the Project painter has not been selected.

Intelligent Up-
dater field

Description

Sign the manifests Select this check box to enable the Select from Store and Select from File
buttons. Use the buttons to select a certificate from a certificate store or from
your file system. If you select a valid certificate, its details display in the
multiline edit box under the check box. If you do not specify a certificate,
PowerBuilder attaches a test certificate automatically. Use test certificates for
development only.

Select from Store Click this button to view the certificates available in the local certificate store.
Select a certificate from the Select a Certificate dialog box, then click View
Certificate if you want to view its details, and click OK to select it.

Windows Forms Targets

Deploying Applications and Components to .NET 131

http://msdn.microsoft.com/en-us/library/01daf08f.aspx

Intelligent Up-
dater field

Description

Select from File Click this button to view the certificates available in the local file system.
Select a certificate with the .snk extension from the Select File dialog box

and click Open.

Use the Select from Store or Select from File buttons to select a certificate from a certificate
store or from your file system. If the certificate requires a password, a dialog box displays so
that you can enter it. When you select a valid certificate, detailed information displays in the
Project painter.

If you do not specify a certificate, PowerBuilder signs the published manifest file with the
default test certificate, mycert.fx. This test certificate is installed by the PowerBuilder
setup program in the PowerBuilder DotNet\pbiu\commands directory. However, when
you are ready to publish a production application, you should not sign it with the test
certificate.

For information about application manifests required on the Vista and later operating systems,
see Security Requirements on page 127.

Setting Full Trust Permissions
When you deploy and run an application from a network path (either a path on a mapped drive
or a UNC path), the .NET Framework on the computer must be configured to have Full Trust
permissions at runtime.

1. From the Windows Control Panel, select Administrative Tools > Microsoft .NET
Framework 2.0 Configuration.

2. In the .NET Framework Configuration tool, expand My Computer and select Runtime
Security Policy > Machine > Code Groups > All_Code > LocalIntranet_Zone.

3. From the context menu, select Properties.

4. In the Permission set drop-down list on the Permission Set tab page, select FullTrust.

Publication Process and Results
After you set publish properties, click the Publish button on the toolbar in the Project painter to
publish the application to the server.

PowerBuilder checks whether your publish settings are valid and prompts you to correct them
if necessary. If the application is not up to date, PowerBuilder rebuilds and redeploys it before
publishing it to the server. The files that the application needs at runtime are then published to
the server.

If you select the wizard defaults, the application is deployed to a subdirectory of the IIS root
directory on your local computer, usually C:\Inetpub\wwwroot.

If you encounter problems when publishing the application, see Troubleshooting Tips for
Windows Forms Applications on page 228.

Windows Forms Targets

132 PowerBuilder

These additional files are created on the server:

• The application manifest is an XML file that describes the deployed application, including
all the files included in the deployment, and is specific to a single version of the
application. The file is named appname.exe.manifest, where appname is the name of
your Windows Forms application. This file is stored in a version-specific subdirectory of
the application deployment directory.

• The deployment manifest is an XML file that describes an intelligent update deployment,
including the current version and other deployment settings. The file is named
appname.application, where appname is the name of your Windows Forms
application. It references the correct application manifest for the current version of the
application and must therefore be updated when you make a new version of the application
available. The deployment manifest must be strongly named. It can contain certificates for
publisher validation.

• If you specified any prerequisites for the application, such as the .NET Framework or
database drivers, PowerBuilder uses a bootstrapper program to collect the details in a
configuration file called configuration.xml and adds the prerequisites to a
setup.exe program. For more information, see Application Bootstrapping on page
138.

• The publish.htm file is a Web page that is automatically generated and published
along with the application. The default page contains the name of the application and links
to install and run the application and, if you specified any, a button to install prerequisites.
By default, the application name is the same as the name of the target and the company
name is Sybase, Inc. In this publish page, both have been changed by setting the Product
name and Company name properties on the Version tab page in the Project painter. If you
supply a Publish description on the Publish tab page in the Project painter, it displays on
the publish.htm page.

Windows Forms Targets

Deploying Applications and Components to .NET 133

Figure 2: Publish page with prerequisites

Application Installation on the User’s Computer
Users can install the application from a CD or DVD or from a file server or Web site. The
system administrator or release engineer is responsible for writing the files to the disk if a CD
or DVD is used.

If the files are available to the user on a server, the publish.htm file provides easy access to
the application and its prerequisites. See Application Bootstrapping on page 138.

The application can be available both online and offline, or online only. If you select online
only, the application can be run only from the Web. Otherwise, the application is installed on
the client. It can be run from the Windows Start menu and is added to the Add or Remove
Programs page in the Windows Control Panel (Programs and Features page on Vista and later)
so that the user can roll back to the previous version or remove the application.

Whether the application is available online only or offline as well, all the files it needs except
optional assemblies are downloaded to the client and stored in an application-specific secure
cache in the user’s Local Settings directory. Keeping the files in a separate cache enables the
intelligent updater to manage updates to the physical files on the user’s computer.

Windows Forms Targets

134 PowerBuilder

Resource Files and Publish Type
In a smart client application, image files that you add on the Resource Files page in the project
painter are designated as Include files. They are installed in the same directory as the
application’s executable files, libraries, and other static files.

You can also specify that a file’s Publish Type is “Data File.” Files of this type are installed to a
data directory. When an update to the application occurs, a data file might be migrated by the
application.

The data directory is intended for application-managed data—data that the application
explicitly stores and maintains. To read from and write to the data directory, you can use code
enclosed in a conditional compilation block to obtain its path:

string is_datafilename
long li_datafileid

is_datafilename="datafile.txt"

#if defined PBWINFORM Then
 if System.Deployment.Application.
 ApplicationDeployment.IsNetworkDeployed=true then
 is_datafilename=System.Windows.Forms.
 Application.LocalUserAppDataPath+
 "\\"+is_datafilename
 end if
#end if

li_datafileid = FileOpen (is_datafilename, linemode!,
 write!, lockwrite!, append!)

For information about using preprocessor symbols such as PBWINFORM, see Conditional
Compilation on page 173.

Publication of Application Updates
When you update an application and publish the updates, the revision number is incremented
automatically unless you clear the check box in the Publish Version group box on the Publish
page.

PowerBuilder creates a new directory on the server for the new version with a new application
manifest file, and updates the deployment manifest file in the top-level directory.

This figure shows an overview of the directory structure for an application with one revision:

Windows Forms Targets

Deploying Applications and Components to .NET 135

The deployment manifest for each version is saved in a numbered file, which enables you to
force a rollback from the server if you need to. See Rolling Back on page 140.

Online-only applications
If the application is available online only, the latest updates are always downloaded before the
application runs.

Online and offline applications
If the application is available offline as well as online, the user is notified of new updates
according to the update strategy you specified in the wizard or Project painter. Whether the
application was originally installed from the Web, a file server, or a CD or DVD, the intelligent
updater component always checks for updates on the Web.

When to check for updates
You can specify that the application never checks for updates (if it does not require automatic
updating or uses a custom update), or that it checks for updates either before or after it starts. If
you specify a check after the application starts and an update is available, it can be installed the
next time the application is run. For high-bandwidth network connections, you might want to
use the before startup option, and for low-bandwidth network connections or large
applications, use the after startup option to avoid a delay in starting the application. If you
specify that the intelligent updater performs the check after the application starts, you can
choose to perform the check every time the application starts or only when a specified interval
has elapsed since the last check.

Windows Forms Targets

136 PowerBuilder

If an update is available, a dialog box displays to inform the user, who can choose to download
the update immediately or skip the current update and check again later. The user cannot skip
the update if you have specified that it is mandatory. You set all these properties on the Install/
Update page.

Figure 3: Checking for updates

Intelligent notifier
When you select either of the check for updates options for an application that is available
offline, the Notify tab page is enabled. The notifier enables users to check for updates and
download them manually while the application is running. When the application starts, a
notifier icon displays in the task bar. By default, the icon is a PowerBuilder icon, but you can
choose a custom icon in the Project painter.

The context menu that appears when a user right-clicks the notifier icon shows the current
version and contains Check for Update, Retrieve Update, Restart with New Version, Poll for
Updates, and Options menu items.

Check for Update opens a pop-up window that contains information about the availability of
updates. If any are available, the Retrieve Update item is enabled, and if the update is
downloaded and installed, the Restart with New Version item is enabled.

Selecting the Poll for Updates item enables or disables polling for updates. When Poll for
Updates is enabled, the notifier checks for updates at the interval specified in the dialog box

Windows Forms Targets

Deploying Applications and Components to .NET 137

that displays when the user selects the Options item. In this dialog box, the user can also
specify the title of the pop-up window that displays when the user selects Check for Update.

Application Bootstrapping
To ensure that your application can be successfully installed and run, you must first make sure
that all components on which it depends are already installed on the target computer.

For example, most applications have a dependency on the .NET Framework. The correct
version of the common language runtime must be present on the destination computer before
the application is installed. You can use tools to help you install the .NET Framework and
other redistributable packages as a part of your installation, a practice often referred to as
bootstrapping.

Bootstrapper for intelligent update
The bootstrapper is a simple setup packager that can be used to install application
prerequisites such as the .NET Framework, MDAC, database drivers, or PowerBuilder
runtime files. You specify what prerequisites your application has and where they can be
found. The bootstrapper downloads and installs the prerequisites.

If you select one or more prerequisites on the Prerequisites page, PowerBuilder generates a
Windows executable program named Setup.exe that installs these dependencies before
your application runs. The packages are copied to a SupportFiles directory on the server.

If a Setup.exe is generated, the Publish.htm page contains a link to install just the
application, and a button to install both the application and the bootstrapped components, as
shown in the figure in Publication Process and Results on page 132.

The bootstrapper lets you provide users with a simple, automated way to detect, download,
and install an application and its prerequisites. It serves as a single installer that integrates the
separate installers for all the components making up an application.

How the bootstrapper works
When the user clicks the Install button on the Publish.htm page, the bootstrapper
downloads and installs the application and the prerequisites you specified if they are not
already installed on the user’s computer.

For example, suppose you specified that the application required the .NET Framework and the
PowerBuilder runtime files. If neither of these components is already installed on the user’s
computer, they both display in the Installation dialog box. If both are already installed, they do
not display. If the user clicks the Advanced button on the Installation dialog box, the
Components List dialog box displays. This dialog box shows that both components are
already installed.

The bootstrapper also detects whether a component is supported on the target computer’s
operating system. If the component cannot run on the target platform, the bootstrapper notifies
the user and ends the installation before downloading the component.

Windows Forms Targets

138 PowerBuilder

Prerequisites Page Customizations
The selections available on the Prerequisites page can be customized by adding a new
subdirectory to the PowerBuilder version\DotNET\pbiu\BootStrapper\
Packages directory. To this subdirectory, add the package you want to make available and
an XML configuration file that specifies where to obtain the package and what to check on the
user’s system to determine whether the package needs to be installed.

PowerBuilder does not supply a tool to customize prerequisites. You can use the PowerBuilder
Runtime Packager tool to build an MSI file that contains the database drivers and other
PowerBuilder runtime files that your application needs, and use the configuration.xml
file in the BootStrapper\Packages\ 1-PBRuntime directory as an example when
creating your own configuration.xml file.

You can use the dotNetInstaller open source tool to set up your own customizations. It can be
downloaded from the CodePlex Web site.

A comparison of Windows Installer tools is available on the InstallSite organization’s Web
site.

Packages on the Prerequisites page
There are two packages available on the Prerequisites page: the .NET Framework runtime
files and the Sybase PowerBuilder .NET Runtime Library. If you look in the
BootStrapper\Packages directory, you see two subdirectories, each of which
contains a configuration.xml file.

To enable your application to deploy the .NET Framework package, you need to copy
the .NET Framework redistributable package, dotnetfx.exe, to the 0-dotnetfx
directory. This file can be downloaded from the Microsoft Web site. You also need to edit the
configuration.xml file to ensure that the application name and locations specified in
the file are correct for your installation. The file uses http://localhost/SampleApp
as the source URL for the package.

The Sybase PowerBuilder .NET Runtime package is in the 1-PBRuntime subdirectory. The
PBRuntime.msi file installs the same files as the PowerBuilder Runtime Packager
(with .NET and all database interfaces and other options selected) into a directory on the target
computer, and it installs the same .NET assemblies into the global assembly cache. See
Installing assemblies in the global assembly cache on page 18.

If you do not require all the files included in the package, you can create your own package.
See Prerequisites Page Customizations on page 139.

For information about the Runtime Packager, see the chapter on deployment in Application
Techniques.

For information about editing configuration.xml files, see the tutorial for the
dotNetInstaller available on the Code Project Web site.

Windows Forms Targets

Deploying Applications and Components to .NET 139

http://dotnetinstaller.codeplex.com/
http://www.installsite.org/pages/en/msi/authoring.htm
http://www.installsite.org/pages/en/msi/authoring.htm
http://www.codeproject.com/KB/install/dotNetInstaller.aspx

Rolling Back
You can roll back a version on the server by replacing the current deployment manifest with
the deployment manifest of the version to which you want to roll back.

As shown in the figure in Publication of Application Updates on page 135, the deployment
manifests for each version are saved in the application deployment folder.

Suppose the current appname.application file in the deployment folder is for version
1.0.0.2, but you have found a bug and you want all users to revert to version 1.0.0.1. You can
delete the current appname.application file, which points to version 1.0.0.2, and save the
appname_1_0_0_1.application file as appname.application.

Users on whose computers the application has been installed for use offline as well as online
can roll back to the previous version or uninstall the application completely from the Windows
Control Panel’s Add/Remove Programs dialog box. Users can roll back only one update.

MobiLink Synchronization
You can use MobiLink synchronization with smart client applications to take advantage of the
"occasionally connected" nature of a Windows Forms application that has been installed on a
client so that it can be run from the Start menu as well as from a browser.

MobiLink is a session-based synchronization system that allows two-way synchronization
between a main database, called the consolidated database, and many remote databases. The
user on the client computer can make updates to a database when not connected, then
synchronize changes with the consolidated database when connected.

You need to deploy the SQL Anywhere database driver and the MobiLink synchronization
client file to the client computer. You can simplify this process by adding the required files to a
package and adding the package to the Prerequisites page in the Project painter.

For more information, see Users Guide > Using the ASA MobiLink synchronization wizard
and Application Techniques > Using MobiLink Synchronization.

Unsupported Features in Windows Forms Projects
PowerBuilder Windows Forms applications do not currently support some standard
PowerBuilder features. Some of these are not implemented in the current release of
PowerBuilder, and others have been partially implemented.

The tables in this chapter provide detailed lists of all objects, controls, functions, events, and
properties and indicate whether they are supported.

The following list summarizes support in Windows Forms for features in this release:

• All DataWindow presentation styles are supported, but there are some restrictions on
RichText and OLE presentation styles.

Windows Forms Targets

140 PowerBuilder

• External function calls are supported except when the function has a reference structure
parameter.

• You cannot call functions on .NET primitive types that map to PowerBuilder primitive
types. See the list of datatype mappings from .NET to PowerBuilder in the Datatype
Mappings on page 179 topic.

• You can use the built-in Web services client extension (pbwsclient125.pbx) in
applications that you plan to deploy to .NET Windows Forms. You cannot use any other
PBNI extensions in a .NET target.

• In-process OLE controls (controls with the extension .ocx or .dll) are partially
supported. Most of the OLE control container’s events are not supported, but events of the
control in the container are supported with the exception of the Help event. Other OLE
features are not supported. You cannot create an ActiveX control dynamically, and you
must set the initial properties of an ActiveX control in code because the implementation
does not support saving to or retrieving from structured storage.
Support for OLE controls requires the Microsoft ActiveX Control Importer
(aximp.exe). This tool generates a wrapper class for an ActiveX control that can be
hosted on a Windows Form. It imports the DLL or OCX and produces a set of assemblies
that contain the common language runtime metadata and control implementation for the
types defined in the original type library. When you deploy the application, you deploy
these assemblies. You do not need to deploy aximp.exe.

The aximp.exe tool is part of the .NET Framework SDK, which can be freely
downloaded from the Microsoft Web site. See System Requirements for .NET Windows
Forms Targets on page 121.

• These features are not currently supported in .NET targets: tracing and profiling, DDE
functions, and SSLCallback.

• The .NET Framework replaces fonts that are not TrueType or OpenType fonts, such as
Courier or MS Sans Serif. To avoid issues with replacement fonts, always use a TrueType
or OpenType font.

Unsupported Nonvisual Objects and Structures in Windows Forms
Windows Forms applications support most PowerBuilder objects, controls, functions, events,
and properties.

This table lists all PowerBuilder nonvisual objects and structures and indicates whether they
are currently supported in Windows Forms applications. When there is an X in the Partially
Supported column of this table, see the second table for detailed information about what is not
supported. The XX symbol in the Unsupported column of the first table indicates that there are
no current plans to support the corresponding object in future versions of PowerBuilder:

Windows Forms Targets

Deploying Applications and Components to .NET 141

Table 2. Support for nonvisual objects in Windows Forms

Class name Supported Partially sup-
ported

Unsupported

AdoResultSet X

Application X

ArrayBounds X

ClassDefinition * X

ClassDefinitionObject X

Connection X

ConnectionInfo X

ConnectObject X

ContextInformation X

ContextKeyword XX

CorbaCurrent X

CorbaObject X

CorbaSystemException (and its de-
scendants)

X

CorbaUnion X

CorbaUserException X

DataStore X

DataWindowChild X

DivideByZeroError X

DWObject X

DWRuntimeError X

DynamicDescriptionArea X

DynamicStagingArea X

EnumerationDefinition X

EnumerationItemDefinition X

Environment X

ErrorLogging X

Windows Forms Targets

142 PowerBuilder

Class name Supported Partially sup-
ported

Unsupported

Exception X

Graxis X

GrDispAttr X

Inet X

InternetResult X

JaguarOrb X

MailFileDescription X

MailMessage X

MailRecipient X

MailSession X

Message X

NonVisualObject X

NullObjectError X

OleObject X

OleRuntimeError X

OleStorage XX

OleStream XX

OleTxnObject X

OmObject X

OmStorage XX

OmStream XX

Orb X

PBDOM XX

PbxRuntimeError X

Pipeline X

ProfileCall XX

ProfileClass XX

ProfileLine XX

Windows Forms Targets

Deploying Applications and Components to .NET 143

Class name Supported Partially sup-
ported

Unsupported

ProfileRoutine XX

Profiling XX

RemoteObject XX

ResultSet X

ResultSets X

RuntimeError X

ScriptDefinition X

Service X

SimpleTypeDefinition X

SSLCallback X

SSLServiceProvider X

Throwable X

Timing X

TraceActivityNode XX

TraceBeginEnd XX

TraceError XX

TraceESQL XX

TraceFile XX

TraceGarbageCollect XX

TraceTreeLine XX

TraceTreeNode XX

TraceTreeObject XX

TraceTreeRoutine XX

TraceTreeUser XX

TraceUser XX

Transaction X

TransactionServer X

TypeDefinition X

Windows Forms Targets

144 PowerBuilder

Class name Supported Partially sup-
ported

Unsupported

VariableCardinalityDefinition X

VariableDefinition X

WSConnection X

* The order of the array items in the VariableList property of the ClassDefinition object may not be the same in .NET

applications as in standard PowerBuilder applications.

Note: Objects used for profiling and tracing, DDE, and OLE storage and streams are not
supported.

Table 3. Unsupported functions, events, and properties by class

Class name Unsupported functions Unsuppor-
ted events

Unsupported
properties

Application • SetLibraryList
• SetTransPool

• None • ToolbarUserCon-
trol

CorbaSystemExcep-
tion (and its descend-
ants)

• Class
• Line
• Number

DataStore • CopyRTF
• GenerateHTMLForm
• GenerateResultSet
• GetStateStatus
• InsertDocument
• PasteRTF
• Print (supported but not for

data with rich text format-
ting)

• Destructor • None

DataWindowChild • DBErrorCode
• DBErrorMessage
• SetRedraw
• SetRowFocusIndicator

• None • None

Windows Forms Targets

Deploying Applications and Components to .NET 145

Class name Unsupported functions Unsuppor-
ted events

Unsupported
properties

OmObject • GetAutomationNative-
Pointer

• SetAutomationLocale
• SetAutomationTimeOut

• None • None

RuntimeError (and its
descendants)

• Class
• Line
• Number

ScriptDefinition • AliasName
• ExternalUserFunc-

tion (supported for
external functions
only)

• LocalVariableList
• Source
• SystemFunction

SimpleTypeDefini-
tion

• LibraryName

TypeDefinition • LibraryName

VariableDefinition • InitialValue (sup-
ported for instance
variables and prim-
itive types)

• IsConstant (suppor-
ted for instance var-
iables)

• OverridesAncestor-
Value

• ReadAccess (sup-
ported for instance
variables)

• WriteAccess (sup-
ported for instance
variables)

Windows Forms Targets

146 PowerBuilder

Unsupported System Functions in Windows Forms
Most PowerBuilder system functions are supported in Windows Forms applications.

This table lists categories of system functions that are not supported.

Table 4. Unsupported system functions by category

Category Functions

DDE functions CloseChannel, ExecRemote, GetCommandDDE, Get-
CommandDDEOrigin, GetDataDDE, GetDataDDEOrigin,
GetRemote, OpenChannel, RespondRemote, SetDa-
taDDE, SetRemote, StartHotLink, StartServerDDE, Sto-
pHotLink, StopServerDDE

Garbage collection functions GarbageCollectGetTimeLimit, GarbageCollectSetTime-
Limit

Miscellaneous functions PBGetMenuString

Input method functions IMEGetCompositionText, IMEGetMode, IMESetMode

Profiling and tracing functions TraceBegin, TraceClose, TraceDisableActivity, Trace-
Dump, TraceEnableActivity, TraceEnd, TraceError,
TraceOpen, TraceUser

Post function
Post function calls with reference parameters are not supported.

IsNull function
In .NET applications, if you call the IsNull function with a variable of a reference type (a type
derived from the PowerObject base class) as the argument, IsNull returns true when the
variable has not been initialized by assigning an instantiated object to it. To ensure consistent
behavior between standard and .NET PowerBuilder applications, use the IsValid function to
check whether the variable has been instantiated.

PowerBuilder Visual Controls in Windows Forms Applications
For most PowerBuilder visual controls, the only unsupported event in Windows Forms
applications is the Other event, and the only unsupported property is IMEMode.

This table lists PowerBuilder visual controls and indicates whether they are fully or partially
supported in Windows Forms applications. If a control has no unsupported events, properties,
or functions besides the Other event and the IMEMode property, it is listed in the Supported
column. When there is an X in the Partially Supported column, see the second table for
detailed information about which functions, events, and properties are not supported:

Windows Forms Targets

Deploying Applications and Components to .NET 147

Table 5. Support for visual controls

Class name Supported Partially supported

Animation X

Checkbox X

CommandButton X

DataWindow X

DatePicker X

DropDownListBox X

DropDownPictureListBox X

EditMask X

Graph X

GroupBox X

HProgressBar X

HScrollBar X

HTrackBar X

InkEdit X

InkPicture X

Line X

ListBox X

ListView X

ListViewItem X

Menu X

MenuCascade X

MonthCalendar X

MultiLineEdit X

OleControl X

OleCustomControl X

OmCustomControl X

OmEmbeddedControl X

Oval X

Windows Forms Targets

148 PowerBuilder

Class name Supported Partially supported

Picture X

PictureButton X

PictureHyperLink X

PictureListBox X

RadioButton X

Rectangle X

RichTextEdit X

RoundRectangle X

SingleLineEdit X

StaticHyperLink X

StaticText X

Tab X

TreeView X

TreeViewItem X

UserObject X

VProgressBar X

VScrollBar X

VTrackBar X

Window X

Table 6. Unsupported functions, events, and properties by control

Supported
control

Unsupported func-
tions

Unsupported
events

Unsupported prop-
erties

DataWindow • DBErrorCode
• DBErrorMessage
• GenerateHTML-

Form
• GetStateStatus

• Other • RightToLeft

Windows Forms Targets

Deploying Applications and Components to .NET 149

Supported
control

Unsupported func-
tions

Unsupported
events

Unsupported prop-
erties

DatePicker • GetCalendar
• Resize (does not sup-

port changing height,
otherwise supported)

• DoubleClicked
• Other

UserString

• AllowEdit
• Border
• BorderStyle

DropDownList-
Box

• None • Other • HScrollBar
• IMEMode

Graph • None
• AddData, GetData-

Value, InsertData,
ModifyData do not
support string values

• Other • BorderStyle

ListBox • None • Other • TabStop

ListView • AddColumn, Insert-
Column, SetColumn
limitation: the align-
ment of the first col-
umn cannot be set to
center or right

• Other • IMEMode

Menu • None • Help • MenuItemType
• MergeOption
• ToolbarAnimation
• ToolbarHighlight-

Color
• ToolbarItemSpace

MenuCascade • None • Help • Columns
• CurrentItem
• DropDown
• MenuItemType
• MergeOption
• ToolbarAnimation
• ToolbarHighlight-

Color
• ToolbarItemSpace

Windows Forms Targets

150 PowerBuilder

Supported
control

Unsupported func-
tions

Unsupported
events

Unsupported prop-
erties

MonthCalendar • None • DoubleClicked
• Other

MultiLineEdit • None • Other • IMEMode
• TabStop

OmCustomControl • None • None • Alignment
• Cancel
• Default

OmEmbedded-
Control

• _Get_DocFileName
• _Get_ObjectData
• _Set_ObjectData
• Drag
• InsertClass
• InsertFile
• InsertObject
• LinkTo
• Open
• PasteLink
• PasteSpecial
• SaveAs
• SelectObject
• UpdateLinksDialog

• None • Activation
• ContentsAllowed
• DisplayType
• DocFileName
• LinkUpdateOptions
• ObjectData
• ParentStorage
• Resizable
• SizeMode

PictureButton • None • Other • Map3DColors

StaticHyperLink • None • Other • BorderColor
• FillPattern

StaticText • None • Other • BorderColor
• FillPattern

Tab • None • Other • BackColor
• RaggedRight (see

Tab properties on
page 156)

Windows Forms Targets

Deploying Applications and Components to .NET 151

Supported
control

Unsupported func-
tions

Unsupported
events

Unsupported prop-
erties

TreeView • None • Other • IMEMode
• StatePictureHeight
• StatePictureWidth

UserObject • AddItem
• DeleteItem
• EventParmDouble
• EventParmString
• InsertItem

• Other • BackColor, TabText-
Color (for tab pages
—see Tab properties
on page 156)

• Style

Window • CloseChannel
• ExecRemote
• GetCommandDDE
• GetCommandD-

DEOrigin
• GetDataDDE
• GetDataDDEOrigin
• GetRemote
• OpenChannel
• RespondRemote
• SetDataDDE
• SetRemote
• StartHotLink
• StartServerDDE
• StopHotLink
• StopServerDDE

• Other • None

Unsupported Functions for Controls in Windows Forms
If your application uses unsupported functions for Windows Forms targets, you must rework
the application before you deploy it.

This table is an alphabetical listing of unsupported functions. It also lists the controls on which
they are not supported, and any notes that apply to specific controls:

Table 7. Unsupported functions for Windows Forms deployment

Function Controls

AddItem UserObject

CloseChannel Window

Windows Forms Targets

152 PowerBuilder

Function Controls

DBErrorCode DataWindow

DBErrorMessage DataWindow

DeleteItem UserObject

Drag OmEmbeddedControl

EventParmDouble UserObject

EventParmString UserObject

ExecRemote Window

GenerateHTMLForm DataWindow

_Get_DocFileName OmEmbeddedControl

_Get_ObjectData OmEmbeddedControl

GetStateStatus DataWindow

GetCommandDDE Window

GetCommandDDEOrigin Window

GetDataDDE Window

GetDataDDEOrigin Window

GetRemote Window

InsertClass OmEmbeddedControl

InsertFile OmEmbeddedControl

InsertItem UserObject

LinkTo OmEmbeddedControl

Open OmEmbeddedControl

OpenChannel Window

PasteLink OmEmbeddedControl

PasteSpecial OmEmbeddedControl

Resize DatePicker (only changing height is unsupported)

RespondRemote Window

SaveAs OmEmbeddedControl

SelectObject OmEmbeddedControl

Windows Forms Targets

Deploying Applications and Components to .NET 153

Function Controls

SetDataDDE Window

_Set_ObjectData OmEmbeddedControl

SetCultureFormat DataWindow

SetRemote Window

SetWSObject DataWindow

StartHotLink Window

StartServerDDE Window

StopHotLink Window

StopServerDDE Window

UpdateLinksDialog OmEmbeddedControl

Unsupported Events for Controls in Windows Forms
If your application uses unsupported events for Windows Forms targets, you must rework the
application before you deploy it.

This table is an alphabetical listing of unsupported events, and indicates the controls on which
they are not supported:

Table 8. Unsupported events for Windows Forms deployment

Event Controls

DoubleClicked DatePicker, MonthCalendar

Help Menu, MenuCascade

Notify TreeView

Other All controls

Resize DatePicker

UserString DatePicker

Unsupported Properties for Controls in Windows Forms
If your application uses unsupported properties for Windows Forms targets, you must rework
the application before you deploy it.

This table is an alphabetical listing of unsupported properties. It also indicates the controls on
which they are not supported, and any notes that apply to specific controls.

Windows Forms Targets

154 PowerBuilder

Table 9. Unsupported properties for Windows Forms deployment

Property Controls

Alignment OmCustomControl

AllowEdit DatePicker

Activation OmEmbeddedControl

BackColor Tab, UserObject (see Tab properties on page 156)

Border DatePicker

BorderColor StaticHyperLink, StaticText

BorderStyle DatePicker, Graph

Cancel OmCustomControl

Columns MenuCascade

ColumnsPerPage UserObject

ContentsAllowed OmEmbeddedControl

CurrentItem MenuCascade

Default OmCustomControl

DisplayType OmEmbeddedControl

DocFileName OmEmbeddedControl

DropDown MenuCascade

FillPattern StaticHyperLink, StaticText

Height DatePicker

Help Menu, MenuCascade

HScrollbar DropDownListBox

IMEMode All controls

LinkUpdateOptions OmEmbeddedControl

Map3DColors PictureButton

MenuItemType Menu

MergeOption Menu

ObjectData OmEmbeddedControl

ParentStorage OmEmbeddedControl

RaggedRight Tab (see Tab properties on page 156)

Windows Forms Targets

Deploying Applications and Components to .NET 155

Property Controls

RightToLeft DataWindow, ListBox, ListView, TreeView

SizeMode OmEmbeddedControl

StatePictureHeight TreeView

StatePictureWidth TreeView

Style UserObject

TabStop ListBox, MultiLineEdit

TabTextColor UserObject (see Tab properties on page 156)

ToolbarAnimation Menu

ToolbarHighLightColor Menu

ToolbarItemSpace Menu

FaceName property
If you use a bitmap (screen) font such as MS Sans Serif instead of a TrueType font for the
FaceName property, make sure you select a predefined font size from the TextSize drop-down
list. PowerBuilder and .NET use different functions (CreateFontDirect and GdipCreateFont)
to render bitmap fonts and they may display larger in the .NET application than in the
development environment or a standard PowerBuilder application. For example, text that uses
the MS Sans Serif type face and the undefined text size 16 looks the same as size 14 in
PowerBuilder, but looks larger in .NET.

Tab properties
The RaggedRight property for a Tab control works correctly if the sum of the widths of all the
tab pages is greater that the width of the Tab control, and the MultiLine property is set to true.
However, when the PerpendicularText property is true, RaggedRight is not supported.

While the TabPosition property value is tabsonleft! or tabsonright!, and there is not enough
room for all the tabs in a single row, the tabs appear in more than one row, regardless of the
Multiline property setting. If you then dynamically set Multiline to true, the tabs display on top
of the Tab control, regardless of the TabPosition setting.

Dual position display is not supported by the .NET Tab control
(System.Windows.Forms.TabControl), so the TabPosition value tabsontopandbottom!
displays tabs on top only. The tabsonrightandleft! value displays tabs only on the right, and the
tabsonleftandright! value displays tabs only on the left.

The BackColor and TabTextColor properties for a tab page in a Tab control are not supported if
the XP style is used.

Windows Forms Targets

156 PowerBuilder

.NET Component Targets

This part describes how to create and deploy PowerBuilder nonvisual objects as .NET
assemblies and .NET Web services.

.NET Assembly Targets
PowerBuilder includes a target type for creating .NET assemblies from nonvisual custom
class objects.

You can create .NET Assembly targets from scratch or by using PBLs from an existing target
that contain at least one nonvisual custom class object.

Note: The .NET Assembly target type is available in both PowerBuilder Classic and
PowerBuilder .NET. To take advantage of Common Language Specification (CLS) compliant
features, use the .NET Assembly target in PowerBuilder .NET.

Creating a target from scratch
When you use the .NET Assembly target wizard to create a target from scratch, the wizard also
creates an Application object, a project object that allows you to deploy the assembly, and a
nonvisual object (NVO). However, you must add and implement at least one public method in
the wizard-created NVO before it can be used to create a .NET assembly.

This table describes the information you must provide for .NET Assembly targets that you
create from scratch:

Wizard field Description

Project name Name of the project object the wizard creates.

Library Name of the library file the wizard creates. By default, this includes the current
Workspace path and takes the name you enter for the project object with a PBL
extension.

Target Name of the target the wizard creates. By default, this includes the current
Workspace path and takes the name you enter for the project object with a PBT
extension.

Library search path Lets you add PBLs and PBDs to the search path for the new target.

PowerBuilder object
name

Name of the nonvisual object the wizard creates. By default this takes the name
that you entered for a project object with an “n_” prefix.

Description Lets you add a description for the project object the wizard creates.

.NET Component Targets

Deploying Applications and Components to .NET 157

Wizard field Description

Namespace Provides a globally unique name to assembly elements and attributes, distin-
guishing them from elements and attributes of the same name but in different
assemblies.

Assembly file name Name of the assembly created by the wizard. By default, the assembly file
name takes the namespace name with a DLL suffix.

Resource file and di-
rectory list

List of resource files, or directories containing resource files, that you want to
deploy with the project.

You can use the Add Files, Add Directories, or Search PBR Files buttons to add
files and directories to the list box. You can select a file or directory in the list
and click the Delete button to remove that file or directory from the list.

When you select a directory, the resource files in all of its subdirectories are
also selected by default. However, you can use the Resource Files tab in the
Project painter to prevent deployment of subdirectory files. For more infor-
mation, see Resource Files and Library Files tabs on page 161.

Win32 dynamic li-
brary file list

Specifies any Win32 DLLs you want to include with your project. Click the
Add button to open a file selection dialog box and add a DLL to the list. Select a
DLL in the list and click Delete to remove the DLL from the list.

Setup file name Name of the setup file the wizard creates. You can copy this MSI file to client
computers, then double-click the files to install the .NET assembly on those
computers.

Creating a target from an existing target
If you select the option to use an existing target, the wizard creates only the .NET Assembly
target and a .NET Assembly project. The target you select must include a PBL with at least one
nonvisual object having at least one public method. The public method must be implemented
by the nonvisual object or inherited from a parent. The AutoInstantiate property of the
nonvisual object must be set to false.

Note: All objects from an existing target are visible in the System Tree for the .NET Assembly
target created from the existing target, except for any project objects that are incompatible
with the new target. Although visual objects, as well as the application object, are not used in
a .NET Assembly target, you can view them in the System Tree under the new target’s PBLs.

When you use the wizard to create a .NET Assembly target from an existing target, the wizard
prompts you for the same information as when you create a target from scratch, except that it
omits the PowerBuilder object name and library search path fields. These fields are
unnecessary because the existing target must have a usable nonvisual object and the library
search path for the target is already set. The wizard does, however, present fields that are not
available when you create a target from scratch.

.NET Component Targets

158 PowerBuilder

This table describes these additional fields:

Wizard field Description

Choose a target Select a target from the list of targets in the current workspace.

Specify a project name Select a name for the project you want to create. You must create a
project object to deploy nonvisual objects as .NET components.

Choose a project library Specify a library from the list of target libraries where you want to
store the new project object.

Choose NVO objects to be
deployed

Expand the library node or nodes in the list box and select check boxes
next to the nonvisual objects that you want to deploy.

Use .NET nullable types Select this check box to map PowerBuilder standard datatypes to .NET
nullable datatypes. Nullable datatypes are not Common Type System
(CTS) compliant, but they can be used with .NET Generic classes if a
component accepts or returns null arguments or if reference arguments
are set to null.

Only include functions with
supported datatypes

Select this check box if you do not want to list functions that are not
supported in the .NET environment. The functions will be listed in the
Select Objects dialog box that you can open for the project from the
Project painter.

After you create a .NET Assembly target, you can create as many .NET Assembly projects as
you need. You start the .NET Assembly project wizard from the Project tab of the New dialog
box. The fields in the wizard include all the fields in the table for creating a project from
scratch, except for the “PowerBuilder object name” and “Description” fields. They also
include all fields in the table for creating a project from an existing target, except for the
“Choose a target” field.

Whether you opt to build a new target from scratch or from an existing target, most of the
project-related fields listed in these tables are available for modification in the Project painter.

Modifying a .NET Assembly Project
You can modify a .NET Assembly project from the Project painter.

In addition to the values for fields that you entered in the target and project wizards, you can
also modify version, debug, and run settings from the Project painter, and select and rename
functions of the nonvisual objects that you deploy to a .NET assembly.

Each .NET Assembly project has seven tab pages: General, Objects, Resource Files, Library
Files, Version, Post-build, and Run.

General tab
The General tab in the Project painter allows you to modify the namespace, assembly file
name, and setup file name for a .NET Assembly project. It also has a check box you can select

.NET Component Targets

Deploying Applications and Components to .NET 159

to use .NET nullable datatypes. These fields are described in .NET Assembly Targets on page
157.

The General tab also has fields that are not available in the target or project wizards. This table
describes the additional fields:

Project painter
field

Description

Debug or Release Options that determine whether the project is deployed as a debug build
(default selection) or a release build. You use debug builds for debugging
purposes. Release builds have better performance, but when you debug a
release build, the debugger does not stop at breakpoints.

Enable DEBUG symbol Option to activate code inside conditional compilation blocks using the
DEBUG symbol. This selection does not affect and is not affected by the
project’s debug build or release build setting. This option is selected by
default.

Objects tab
The Objects tab in the Project painter lists all the nonvisual user objects available for
deployment from the current .NET Assembly target. The Custom Class field lists all these
objects even if you did not select them in the target or project wizard.

Objects that you selected in the wizard display with a user object icon in the Custom Class
treeview. All methods for the objects selected in the wizard are also selected for deployment
by default, but you can use the Objects tab to prevent deployment of some of these methods
and to change the method names in the deployed component.

This table describes the fields available on the Objects tab:

Project painter
field

Description

Custom class Select an object in this treeview list to edit its list of functions for inclusion in
or exclusion from the assembly component. You can edit the list for all the
objects you want to include in the assembly, but you must do this one object at
a time.

Object name, Class
name, and Name-
space

You can change the object name only by selecting a different object in the
Custom Class treeview. By default, the class name is the same as the object
name, but it is editable. In the Project painter, the namespace is editable only
on the General tab.

.NET Component Targets

160 PowerBuilder

Project painter
field

Description

Method names and
Function prototypes

Select the check box for each function of the selected custom class object you
want to deploy to a .NET assembly. Clear the check box for each function you
do not want to deploy. You can modify the method names in the Method
Names column, but you cannot use dashes (“-”) in the modified names. The
Function Prototype column is for descriptive purposes only.

Change method name
and description

You enable these buttons by selecting a method in the list of method names.
PowerBuilder allows overloaded functions, but each function you deploy in
an assembly class must have a unique name. After you click the Change
Method Name button, you can edit the selected method name in the Method
Name column. The Change Method Description button lets you add or edit a
method description.

Select All and Unse-
lect All

Click the Select All button to select all the functions of the current custom
class object for deployment. Click the Unselect All button to clear the check
boxes of all functions of the current custom class object. Functions with
unselected check boxes are not deployed to a .NET assembly.

Resource Files and Library Files tabs
The fields that you can edit on the Resource Files and Library Files tabs of the Project painter
are the same as the fields available in the target and project wizards. These fields are described
in the first table in .NET Assembly Targets on page 157.

The Resource Files page of the Project painter does have an additional field that is not included
in the project or target wizard. The additional field is a Recursive check box next to each
directory that you add to the Resource Files list. By default, this check box is selected for each
directory when you add it to the list, but you can clear the check box to avoid deployment of
unnecessary subdirectory files.

Version, Post-build, and Run tabs
The fields on the Version, Post-build, and Run tabs of the Project painter are not available in
the .NET Assembly target or project wizards. This table describes these fields:

Project painter field Description

Version tab: Product name, Compa-
ny, Description, and Copyright

Use these fields to specify identification, description, and
copyright information that you want to associate with the as-
sembly you generate for the project.

Version tab: Product version, File
version, and Assembly

Enter major, minor, build, and revision version numbers for the
product, file, and assembly.

.NET Component Targets

Deploying Applications and Components to .NET 161

Project painter field Description

Post-build tab: Post-build com-
mand line list for build type

Select the build type (Debug or Release) and click Add to
include command lines that run immediately after you deploy
the project.

For example, you can include a command line to process the
generated component in a code obfuscator program, keeping
the component safe from reverse engineering. The command
lines run in the order listed, from top to bottom. You can save
separate sequences of command lines for debug and release
build types.

Run tab: Application You use this text box to enter the name of an application with
code that invokes the classes and methods of the generated
assembly. If you do not enter an application name, you get an
error message when you try to run or debug the deployed
project from the PowerBuilder IDE.

Run tab: Argument You use this text box to enter any parameters for an application
that invokes the classes and methods of the deployed project.

Run tab: Start In You use this text box to enter the starting directory for an ap-
plication that invokes the classes and methods of the deployed
project.

Sign tab
The fields that you can edit on the Sign tab of the Project painter are the same as the fields
available for other .NET projects, although one of the fields that permits calls to strong-named
assemblies from partially trusted code is available only for .NET Assembly and .NET Web
Service projects. For descriptions of the fields on the Sign tab, see Strong-Named Assemblies
on page 6.

Supported Datatypes
The PowerBuilder to .NET compiler converts PowerScript datatypes to .NET datatypes.

This table shows the datatype mapping between PowerScript and C#:

PowerScript datatype C# datatype

boolean bool

blob byte []

byte byte

int, uint short, ushort

.NET Component Targets

162 PowerBuilder

PowerScript datatype C# datatype

long, ulong int, uint

longlong long

decimal decimal

real float

double double

string string

user-defined structure struct

user-defined nonvisual object class

Date DateTime

Time DateTime

DateTime DateTime

Note: Arrays are also supported for all standard datatypes.

Deploying and Running a .NET Assembly Project
After you create a .NET Assembly project, you can deploy it from the Project painter or from a
context menu on the project object in the System Tree.

When you deploy a .NET Assembly project, PowerBuilder creates an assembly DLL from the
nonvisual user objects you selected in the wizard or project painter. If you also listed a setup
file name, PowerBuilder creates an MSI file that includes the assembly DLL and any resource
files you listed in the wizard or Project painter.

Note: You can use the Runtime Packager to copy required PowerBuilder runtime files to
deployment computers.

For information on required runtime files, see Checklist for Deployment on page 14. For
information about the Runtime Packager, see Application Techniques > Deploying
Applications and Components.

You can run or debug an assembly project from the PowerBuilder UI if you fill in the
Application field (and optionally, the Argument and Start In fields) on the project Run tab in
the Project painter.

.NET Component Targets

Deploying Applications and Components to .NET 163

.NET Web Service Targets
PowerBuilder includes a target type for creating .NET Web services from nonvisual custom
class objects.

The .NET Web Service target wizard gives you the option of creating a target from scratch or
from an existing PowerBuilder target.

Creating a target from scratch
The .NET Web Service target wizard shares the following fields in common with the .NET
Assembly target: Project Name, Target, Library, Library Search Path, PowerBuilder Object
Name, Description, Resource Files, and Win32 Dynamic DLLs. However, it has four
additional fields (Web service virtual directory name, Web service URL preview, Generate
setup file, and Directly deploy to IIS), and the Namespace and Assembly File Name fields are
specific to the .NET Assembly wizard.

This table describes the fields in the .NET Web Service wizard when you create a target from
scratch:

Wizard field Description

Project name Name of the project object the wizard creates.

Library Name of the library file the wizard creates. By default, this includes the current
Workspace path and takes the name you enter for the project object with a PBL
extension.

Target Name of the target the wizard creates. By default, this includes the current
Workspace path and takes the name you enter for the project object with a PBT
extension.

Library search path Lets you add PBLs and PBDs to the search path for the new target.

PowerBuilder object
name

Name of the nonvisual object the wizard creates. By default this takes the name
that you entered for a project object with an “n_” prefix.

Description Lets you add a description for the project object the wizard creates.

Web service virtual
directory name

The directory path you want to use as the current directory in the virtual file
system on the server. By default, this is the full path name for the current
PowerBuilder target. This field is similar to the “Initial current directory” field
in the Web Forms wizard.

Web service URL
preview

Address for accessing the .NET Web service from an application.

.NET Component Targets

164 PowerBuilder

Wizard field Description

Resource file and di-
rectory list

List of resource files, or directories containing resource files, that you want to
deploy with the project.

You can use the Add Files, Add Directories, or Search PBR Files buttons to add
files and directories to the list box. You can select a file or directory in the list
and click the Delete button to remove that file or directory from the list.

When you select a directory, the resource files in all of its subdirectories are
also selected by default. However, you can use the Resource Files tab in the
Project painter to prevent deployment of subdirectory files. For more infor-
mation, see “Resource Files and Library Files tabs” on page 195.

Win32 dynamic li-
brary file list

Specifies any Win32 DLLs you want to include with your project. Click the
Add button to open a file selection dialog box and add a DLL to the list. Select a
DLL in the list and click Delete to remove the DLL from the list.

Generate setup file Select this option to deploy the Web service in an MSI file. When you select
this option, you must provide a name for the setup file.

Setup file name Name of the setup file the wizard creates. You can copy this MSI file to client
computers, then double-click the files to install the .NET Web service on those
computers.

Directly deploy to
IIS

Select this option to deploy the Web service directly to an IIS server. When you
select this option, you must provide an IIS server address. By default, the
server address is “localhost”.

When you click Finish in the wizard for a target you are creating from scratch, the wizard
generates an Application object, a project object, a target, and a nonvisual object. You must
add and implement a public method in the nonvisual object generated by the wizard before you
can deploy it as a Web service.

Creating a target from an existing target
As with the other .NET target wizards, you can use the .NET Web Service target wizard to
create a target from an existing PowerBuilder target. The existing target must be added to the
current workspace and must include a PBL with at least one nonvisual object having at least
one public method. The public method must be implemented by the nonvisual object or
inherited from a parent. The AutoInstantiate property of the nonvisual object must be set to
false.

When you click Finish in the wizard for a target you are creating from an existing target, the
wizard creates a .NET Web Service target and a .NET Web Service project. The .NET Web
Service target uses the same library list as the existing target from which you select nonvisual
user objects.

.NET Component Targets

Deploying Applications and Components to .NET 165

As with the .NET Assembly target wizard, the .NET Web Service target wizard has additional
fields for selecting nonvisual user objects when you use the existing target option. This table
describes these additional fields:

Wizard field Description

Choose a target Select a target from the list of targets in the current workspace.

Specify a project name Select a name for the project you want to create. You must create a
project object to deploy nonvisual objects as .NET components.

Choose a project library Specify a library from the list of target libraries where you want to
store the new project object.

Choose NVO objects to be
deployed

Expand the library node or nodes in the list box and select check boxes
next to the nonvisual objects that you want to deploy.

Use .NET nullable types Select this check box to map PowerBuilder standard datatypes
to .NET nullable datatypes. Nullable datatypes are not Common Type
System (CTS) compliant, but they can be used with .NET Generic
classes if a component accepts or returns null arguments or if refer-
ence arguments are set to null.

Only include functions with
supported datatypes

Select this check box if you do not want to list functions that are not
supported in the .NET environment. After you create the .NET
project, the functions are listed on the Objects tab for the project when
you open it in the Project painter.

Only include functions with
supported datatypes

Select this check box if you do not want to list functions that are not
supported in the .NET environment. The functions will be listed in the
Select Objects dialog box that you can open for the project from the
Project painter.

Modifying a .NET Web Service Project
You can modify a .NET Web Service project from the Project painter.

The Project painter shows all the values you selected in .NET Web Service target or project
wizards. However, you can also modify version, debug, and run settings from the Project
painter, and select and rename functions of the nonvisual objects that you deploy to a .NET
Web Service component.

.NET Web Service project tab pages
Each .NET Web Service project has these tab pages:

• General tab — includes debug fields that are not available in the target or project wizards.

.NET Component Targets

166 PowerBuilder

Project painter
field

Description

Debug or Release Options that determine whether the project is deployed as a debug build
(default selection) or a release build. You use debug builds for debug-
ging purposes. Release builds have better performance, but when you
debug a release build, the debugger does not stop at breakpoints.

Enable DEBUG sym-
bol

Option to activate code inside conditional compilation blocks using the
DEBUG symbol. This selection does not affect and is not affected by
the project’s debug build or release build setting. This option is selected
by default.

• Deploy tab — the fields on the Deploy tab are all available in the .NET Web Service project
wizard. For descriptions of fields available on the Deploy tab, see the first table in .NET
Assembly Targets on page 157.

• Objects tab — allows you to select the methods to make available for each nonvisual object
you deploy as a Web service. You can rename the methods as Web service messages. This
table describes the Objects tab fields for a .NET Web Service project:

Objects tab field Description

Custom class Select an object in this treeview list to edit its list of methods for inclu-
sion in or exclusion from the Web service component. You can edit the
list for all the objects you want to include in the component, but you must
do this for one object at a time.

Object name You can change the object name only by selecting a different object in
the Custom Class treeview.

Web service name Specifies the name for the Web service. By default, this takes the name of
the current custom class user object.

Target namespace Specifies the target namespace. The default namespace for an IIS Web
service is: http://tempurl.org. Typically you change this to a company
domain name.

Web service URL Specifies the deployment location for the current custom class user
object. This is a read-only field. The location combines selections on the
General, Deploy, and Objects tabs for the current project.

Web service WSDL Specifies the WSDL file created for the project. This is a read-only field.
It appends the “?WSDL” suffix to the Web service URL.

.NET Component Targets

Deploying Applications and Components to .NET 167

Objects tab field Description

Browse Web Service If you have previously deployed the project to the named IIS server on
the Deploy tab of the current project, you can click this button to display
a test page for the existing Web service. If a Web service has not been
deployed yet for the current custom class object, a browser error mes-
sage displays. The button is disabled if you selected the option to deploy
the current project to a setup file.

View WSDL If you previously deployed the project to the named IIS server on the
Deploy tab of the current project, you can click this button to display the
existing WSDL file. If a Web service has not been deployed yet for the
current custom class object, a browser error message displays. The but-
ton is disabled if you selected the option to deploy the current project to a
setup file.

Message names and
Function prototypes

Select the check box for each function of the selected custom class object
that you want to deploy in a .NET Web service component. Clear the
check box for each function you do not want to deploy. You can modify
the message names in the Message Names column. The Function Pro-
totype column is for descriptive purposes only.

Change message name You enable this button by selecting a function in the list of message
names. PowerBuilder allows overloaded functions, but each function
you deploy in a component class must have a unique name. After you
click the Change Message Name button, you can edit the selected func-
tion name in the Message Name column.

Select All and Unse-
lect All

Click the Select All button to select all the functions of the current
custom class object for deployment. Click the Unselect All button to
clear the check boxes of all functions of the current custom class object.
Functions with unselected check boxes are not deployed as messages for
a Web service component.

• Resource Files tab — the fields on this tab are the same as those in the project wizard.
However, as for the .NET Assembly project, there is one additional field that is not
included in the project or target wizard. This field is a Recursive check box next to each
directory you add to the Resource Files list. By default, this check box is selected for each
directory when you add it to the list, but you can clear the check box to avoid deployment of
unnecessary subdirectory files.

• Library Files tab — includes fields for the Win 32 dynamic libraries you want to deploy
with your project. These fields are described in .NET Web Service Targets on page 164.
The Library Files tab also includes a list of PBL files for the target. You can select a check
box next to each PBL files containing DataWindow or Query objects to make sure they are
compiled and deployed as PBD files.

• Version tab — the fields on this tab cannot be set in the target or project wizards:

.NET Component Targets

168 PowerBuilder

Version tab field Description

Product name, Company, De-
scription, and Copyright

Use these fields to specify identification, description, and
copyright information that you want to associate with the
assembly you generate for the project.

Product version, File version, and
Assembly

Enter major, minor, build, and revision version numbers for
the product, file, and assembly.

• Post-build tab — the items on this tab cannot be set in the target or project wizards. Select a
build type and click Add to include command lines that run immediately after you deploy
the project. For example, you can include a command line to process the generated
component in a code obfuscator program, keeping the component safe from reverse
engineering. The command lines run in the order listed, from top to bottom. You can save
separate sequences of command lines for debug and release build types.

• Security tab — on this tab, configure CAS security zones for Web Service components,
minimizing the amount of trust required before component code is run from a user
application. A radio button group field on the Security tab allows you to select full trust
(default) or a customized trust option. The list box below the radio button group is disabled
when full trust is selected, but it allows you to select or display the permissions you want to
include or exclude when the custom option is selected.
For information on custom permission requirements, see Security Settings on page 3 and
Custom Permission Settings on page 231.

• Run tab — the fields on this tab cannot be set in the target or project wizards:

Run tab field Description

Application Use this text box to enter the name of an application with code
that invokes the classes and methods of the generated as-
sembly. If you do not enter an application name, you get an
error message when you try to run or debug the deployed
project from the PowerBuilder IDE.

Argument Use this text box to enter any parameters for an application
that invokes the classes and methods of the deployed project.

Start In Use this text box to enter the starting directory for an appli-
cation that invokes the classes and methods of the deployed
project.

• Sign tab — the settings on this tab are the same as those available for other .NET projects,
although the field that permits calls to strong-named assemblies from partially trusted
code is available only for .NET Assembly and .NET Web Service projects. For
descriptions of the fields on the Sign tab, see Strong-Named Assemblies on page 6.

.NET Component Targets

Deploying Applications and Components to .NET 169

Configuring ASP.NET for a .NET Web Service Project
Configure .NET Web Service projects in the same way you configure .NET Web Forms
projects.

IIS and ASP.NET
ASP.NET configuration includes making sure the Web server has a compatible version of IIS
and that the 2.0 version of ASP.NET is selected for your Web service components. .NET Web
Service projects also use the same directory structure on the server as .NET Web Forms
projects.

For information on installing IIS and setting the default version of ASP.NET, see ASP.NET
Configuration for a .NET Project on page 7. For information on the directory structure for
deployed projects, see Directory Structure on the Server on page 9.

SQL Anywhere database connections
If you set up a database connection for your Web service components, you configure the
connection in the same way as for a Web Forms application. See Setting Up a SQL Anywhere
Database Connection on page 10.

Global properties
Most of the global properties for Web Forms applications that do not involve visual controls
also apply to Web service components. The following global properties can be used by Web
service projects:

LogFolder
FileFolder
PrintFolder
PBWebFileProcessMode
PBCurrentDir
PBTempDir
PBLibDir
PBDenyDownloadFolders
PBCommandParm
PBTrace
PBTraceTarget
PBTraceFileName
PBMaxSession
PBEventLogID
PBDeleteTempFileInterval

See Viewing and Modifying Global Properties in the IIS Manager on page 9 and Global Web
Configuration Properties on page 65.

.NET Component Targets

170 PowerBuilder

Deploying and Running a .NET Web Service Project
After you create a .NET Web Service project, you can deploy it from the Project painter or
from a context menu on the project object in the System Tree.

When you deploy directly to an IIS server, PowerBuilder creates an application directory
under the IIS virtual root and creates an ASMX file in the application directory. The ASMX
file created by the project is an ASP.NET executable file rather than a true WSDL file, so you
might need to add the “?WSDL” suffix to the URL when you try to access this Web service
from certain types of applications.

In addition to the application directory and the ASMX file, deploying the project creates a
directory structure that is substantially the same as that created by a .NET Web Forms project.
In fact, PowerBuilder deploys a Web Service target as a Web Forms target, but it creates an
additional assembly containing the Web service wrapper class. The file name for this
assembly is generated by appending the characters “_ws” to the file name of the main
application assembly. It is generated with the main assembly in the application’s bin directory.

For more information, see Directory Structure on the Server on page 9.

Note: In some versions of IIS for the Windows XP platform, ASPNET Web services use the
Temp system directory during method processing. If the ASPNET user (IIS 5), the IIS_WPG
user group (IIS 6), or the IIS_IUSRS user group (IIS 7 and 7.5) does not have read or write
access to the Temp directory on the server, applications invoking methods on those services
receive an error message stating that temporary classes cannot be generated.

You can prevent this error by granting appropriate user or user group permissions to the Temp
directory in the same way you grant permissions for the Sybase and database directories. See
Setting Up a SQL Anywhere Database Connection on page 10.

When you deploy to a setup file in a .NET Web Service project, the project builds an MSI file
that includes the ASMX file, PowerBuilder system libraries for .NET, and any resource files
you listed in the project wizard or painter.

Note: You can use the Runtime Packager to copy required PowerBuilder runtime files to
deployment servers. After you install the package created by the runtime packager, you must
restart the server. For information on required runtime files, see Checklist for Deployment on
page 14. For information about the Runtime Packager, see Application Techniques >
Deploying Applications and Components.

You can run or debug a .NET Web Service project from the PowerBuilder UI if you fill in the
Application field (and optionally, the Argument and Start In fields) on the project Run tab in
the Project painter. The Application field is typically filled in automatically with the name of
the Internet Explorer executable on the development computer.

.NET Component Targets

Deploying Applications and Components to .NET 171

.NET Component Targets

172 PowerBuilder

.NET Language Interoperability

This part describes how to use conditional compilation blocks in PowerScript code. These
coding blocks allow you to reference .NET objects and methods in PowerScript without
triggering error messages from the PowerScript compiler.

It also describes how to connect to an EAServer component from a .NET client. A chapter on
best practices provides suggestions for enhancing the .NET applications and components you
build in PowerBuilder.

Conditional Compilation
Use the number sign (#) at the start of a line or block of code in PowerBuilder to mark the code
for specialized processing prior to PowerScript compilation.

Each line of code or block of conditional code set off by a leading number sign is automatically
parsed by a PowerBuilder preprocessor before it is passed to the design-time PowerScript
compiler or the PowerBuilder-to-C# (pb2cs) compiler.

Preprocessing symbols
There are six default code-processing symbols that affect the code passed to the PowerScript
compiler at design time. Four of these symbols correspond to different PowerBuilder target
types, one applies to all .NET target types, and one applies to both standard PowerBuilder
and .NET target types.

The preprocessor enables PowerBuilder to compile project code specific to a particular
deployment target without hindering the compiler’s ability to handle the same code when a
different deployment target is selected.

The preprocessor substitutes blank lines for all declarative statements and conditional block
delimiters having leading number sign characters before passing the code to the PowerScript
compiler or the pb2cs compiler. The contents of the conditional blocks are converted to blank
lines or passed to the compiler depending on which preprocessor symbol is used.

This table shows the default preprocessing symbols, the project types to which they
correspond, and their effects on the code passed to the PowerScript compiler engine or the
pb2cs compiler:

.NET Language Interoperability

Deploying Applications and Components to .NET 173

Table 10. Default preprocessing symbols for conditional compilation

Preprocessing
symbols

Project type Code in this processing block

PBNATIVE PowerBuilder client-server or
distributed applications

Fully parsed by the PowerScript compiler.
It is converted to blank lines for the pb2cs

compiler.

PBWEBFORM .NET Web Forms application Fully parsed by the pb2cs compiler
for .NET Web Forms targets only. It is con-
verted to blank lines for the PowerScript
compiler and all other types of .NET tar-
gets.

PBWINFORM .NET Windows Forms appli-
cations

Fully parsed by the pb2cs compiler
for .NET Windows Forms targets only. It is
converted to blank lines for the Power-
Script compiler and all other types of .NET
targets.

PBWEBSERVICE .NET Web Service compo-
nent targets

Fully parsed by the pb2cs compiler
for .NET Web Service targets only. It is
converted to blank lines for the Power-
Script compiler and all other types of .NET
targets.

PBDOTNET .NET Web Forms and Win-
dows Forms applications,
and .NET Assembly
and .NET Web Service com-
ponents

Fully parsed by the pb2cs compiler for
all .NET target types. It is converted to
blank lines for the PowerScript compiler.

DEBUG Standard PowerBuilder tar-
gets and all .NET application
and component targets

When a project’s Enable DEBUG Symbol
check box is selected, code is fully parsed
in deployed applications by the Power-
Script compiler, or for .NET targets, by the
pb2cs compiler. Code is converted to blank
lines when the check box is cleared.

Note: The PBWPF preprocesser can be used for WPF Window Application targets in the
PowerBuilder .NET IDE. PowerBuilder Classic ignores the scripts inside these code blocks,
except when the NOT operator is used with this preprocesser. The PBDOTNET and DEBUG
code blocks are valid for both PowerBuilder Classic and PowerBuilder .NET.

Conditional syntax
You indicate a conditional block of code with a statement of the following type, where
symbolType is any of the symbols defined by PowerBuilder:

.NET Language Interoperability

174 PowerBuilder

#IF defined symbolType then

You can use the NOT operator to include code for all target types that are not of the symbol
type that you designate. For example, the following code is parsed for all targets that are not of
the type PBNative:
#IF NOT defined PBNATIVE then

You can also use #ELSE statements inside the code block to include code for all target types
other than the one defined at the start of the code block. You can use #ELSEIF defined
symbolType then statements to include code for a specific target type that is different
from the one defined at the start of the code block.

The closing statement for a conditional block is always:
#END IF

Comments can be added to conditional code if they are preceded by double slash marks (//)
in the same line of code. Although you cannot use the PowerScript line continuation character
(&) in a conditional code statement, you must use it in code that you embed in the conditional
block when you use more than one line for a single line of code.

Limitations and error messages
Conditional compilation is not supported in DataWindow syntax, in structures, or in menu
objects. You cannot edit the source code for an object to include conditional compilation
blocks that span function, event, or variable definition boundaries.

You must rebuild your application after you add a DEBUG conditional block.

This table shows the types of error messages displayed for incorrect conditional compilation
code:

Table 11. Types of error messages returned by the preprocessor

Error message Description

Invalid if statement #if statement without a defined symbol, with an incor-

rectly defined symbol, or without a then clause

#end if directive expected #if statement without an #end if statement

Unexpected preprocessor directive Caused by an #else, #elseif, or #end if state-

ment when not preceded by an #if statement

Preprocessor syntax error Caused by including text after an #else or #end if
statement when the text is not preceded by comment char-
acters (//)

.NET Language Interoperability

Deploying Applications and Components to .NET 175

Surrounding Code in a .NET Block
Because the main PowerBuilder compiler does not recognize the classes imported from .NET
assemblies, you must surround the code referencing those classes in a conditional compilation
block for a .NET application.

For example, to reference the .NET message box Show function, you must surround the
function call with preprocessor statements that hide the code from the main PowerBuilder
compiler:
#IF Defined PBDOTNET Then

 System.Windows.Forms.MessageBox.Show ("This "&

 + "message box is from .NET, not "&

 + "PowerBuilder.")

#END IF

The PBDOTNET symbol can be used for all types of .NET targets supported by
PowerBuilder. You can also use the following symbols for specific types of .NET targets:
PBWEBFORM, PBWINFORM, and PBWEBSERVICE.

You can paste preprocessor statements into the Script view. Select Edit > Paste Special >
Preprocessor and select the statement you need.

PowerScript Syntax for .NET Calls
When you make calls to .NET assemblies or their methods or properties from PowerBuilder,
you must follow PowerScript syntax rules. The following syntax rules are especially
important for C# developers to keep in mind:

Instantiating a class
To instantiate a class, use “create”, not “new”. Even when you are referencing a .NET type in
a .NET conditional block, you must use the PowerScript create syntax. The following line
instantiates a .NET type from the logger namespace:
ls = create logger.LogServer

Note that a single dot (.) is used as a namespace separator in .NET conditional blocks.

Compound statements
You must use PowerScript syntax for compound statements, such as “if”, “for”, or “switch”.
The preprocessors for .NET applications signal an error if C# compound statements are used.
For example, you cannot use the following C# statement, even inside a .NET conditional
block: for (int I=0;I<10;I++). The following script shows the PowerScript
equivalent, with looping calls to the .NET WriteLine method, inside a PBDOTNET
conditional block:
#IF Defined PBDOTNET THEN

.NET Language Interoperability

176 PowerBuilder

 int i

 for I = 1 to 10

 System.Console.WriteLine(i)

 next

#END IF

PowerScript keywords
The .NET Framework uses certain PowerBuilder keywords such as “System” and “type”. To
distinguish the .NET Framework usage from the PowerBuilder keyword, you can prepend the
@ symbol. For example, you can instantiate a class in the .NET System namespace as follows:
#IF Defined PBDOTNET THEN
 @System.Collections.ArrayList myList
 myList = create @System.Collections.ArrayList
#END IF

The PowerBuilder preprocessor includes logic to distinguish the .NET System namespace
from the PowerBuilder System keyword, therefore the use of the @ prefix is optional as a
namespace identifier in the above example. However, you must include the @ identifier when
you reference the .NET Type class in PowerScript code (@System.@Type or
System.@Type). Also, if you use a PowerBuilder keyword for a .NET namespace name
other than System, you must prefix the namespace name with the @ identifier.

Although PowerBuilder can support .NET Framework classes and namespaces, it does not
support .NET keywords. For example, you cannot use the .NET keyword typeof, even if you
prepend it with the @ identifier.

Line continuation and termination
You must use PowerScript rules when your script extends beyond a single line. The line return
character indicates the end of a line of script except when it is preceded by the ampersand (&)
character. Semicolons are not used to indicate the end of a PowerScript line.

Rules for arrays
To declare an array, use square brackets after the variable name, not after the array datatype.
You cannot initialize an array before making array index assignments. PowerBuilder provides
automatic support for negative index identifiers. (In C#, you can have negative index
identifiers only if you use the System.Array.CreateInstance method.) The following example
illustrates PowerScript coding for an array that can hold seven index values. The code is
included inside a conditional compilation block for the .NET environment:
#IF Defined PBDOTNET THEN

 int myArray[-2 to 5]

 //in C#, you would have to initialize array

 //with code like: int[] myArray = new int[7]

.NET Language Interoperability

Deploying Applications and Components to .NET 177

 myArray[-1]=10 //assigning a value to 2nd array index

#END IF

In PowerBuilder, unbounded arrays can have one dimension only. The default start index for
all PowerBuilder arrays is 1. The GetValue method on a C# array returns 0 for a default start
index identifier, so you would call array_foo.GetValue (0) to return the first element
of the array array_foo. However, after a C# array is assigned to a PowerBuilder array, you
access the elements of the array with the PowerBuilder index identifier. In this example, you
identify the first element in PowerScript as array_foo[1].

Case sensitivity
.NET is case sensitive, but PowerBuilder is not. The .NET Framework does provide a way to
treat lowercase and uppercase letters as equivalent, and the PowerBuilder to .NET compiler
takes advantage of this feature. However, if the .NET resources you are accessing have or
contain names that differ only by the case of their constituent characters, PowerBuilder cannot
correctly compile .NET code for these resources.

Cross-language data exchange
Code inside a .NET conditional compilation block is not visible to the main PowerBuilder
compiler. If you use variables to hold data from the .NET environment that you want to access
from outside the conditional block, you must declare the variables outside the conditional
block. Variables you declare outside a .NET conditional block can remain in scope both inside
and outside the conditional block.

Declaring enumeration constants
You use a terminal exclamation mark (!) to access enumeration constants in PowerScript. For
information about using enumeration constants in the .NET environment, see User-Defined
Enumerations on page 183.

Adding .NET Assemblies to the Target
To call methods in .NET assemblies in your .NET application, you need to import the
assemblies into the target.

1. Right-click the target in the System Tree and select .NET Assemblies.

2. To import a private .NET Assembly:

a) Click Browse
b) Browse to select a private assembly with the .dll, .tlb, .olb, .ocx, or .exe

extension and click Open.

To import multiple assemblies, you must select and import them one at a time.

3. To import a shared .NET Assembly:

a) Click Add to open the Import .NET Assembly dialog box.
b) Select a shared assembly from the list and click OK.

.NET Language Interoperability

178 PowerBuilder

To import multiple assemblies, you must select and import them one at a time. You can use
the Import .NET Assembly dialog box to import recently used assemblies.

For more information about shared and private assemblies, see Installing assemblies in the
global assembly cache on page 18.

Datatype Mappings
When you call methods from managed assemblies in PowerScript, you must use
PowerBuilder datatypes in any method arguments or return values.

This table shows the mappings between .NET, C#, and PowerBuilder datatypes:

Table 12. Datatype mappings in managed assembly methods

.NET datatype C# datatype PowerBuilder datatype

System.Boolean boolean Boolean

System.Byte Byte Byte

System.Sbyte Sbyte Sbyte

System.Int16 short Int

System.UInt16 ushort Uint

System.Int32 int Long

System.UInt32 uint Ulong

System.Int64 long Longlong

System.UInt64 ulong Unsignedlonglong

System.Single float Real

System.Double Double Double

System.Decimal Decimal Decimal

System.Char Char Char

System.String String String

System.DateTime System.Datetime Datetime

For example, suppose you want to reference a method foo with arguments that require
separate int and long datatype values when you call the method in C# script. The class
containing this method is defined in an assembly in the following manner:
public class MyClass

{

 public int foo(int a, long b);

.NET Language Interoperability

Deploying Applications and Components to .NET 179

 {

 return a + b

 }

}

In PowerScript code, you must replace the foo method datatypes with their PowerBuilder
datatype equivalents (long for int, longlong for long):
long p1, returnValue

longlong p2

#IF Defined PBWINFORM Then

 MyClass instanceOfMyClass

 instanceOfMyClass = create MyClass

 returnValue = instanceOfMyClass.foo(p1, p2)

#END IF

Calling PowerScript methods from .NET assemblies
If you generate a .NET assembly or Web service from a PowerBuilder target, the generated
methods can be called by a different .NET assembly or application, but these calls must be
made using .NET syntax and datatypes. In the table for Datatype mappings in managed
assembly methods on page 179, the datatype mapping is bidirectional, so you can call methods
on the .NET assemblies you generate from PowerBuilder using the .NET equivalents for
PowerScript datatypes shown in the table.

Some PowerScript datatypes do not have a one-to-one correspondence with datatypes
in .NET. When you generate a .NET assembly or Web service from PowerBuilder,
PowerBuilder converts these datatypes as shown in the following table. If you call methods
using these datatypes from a .NET application, you must substitute the .NET datatype
equivalents shown in this table:

Table 13. Mappings for PowerScript datatypes unsupported in .NET

PowerBuilder datatype C# datatype .NET datatype

Blob Byte [] System.Byte []

Date System.Datetime System.Datetime

Time System.Datetime System.Datetime

.NET Language Interoperability

180 PowerBuilder

Support for .NET language features
You can write conditional code for the .NET environment, taking advantage of features that
are not available directly in the PowerBuilder Classic application environment.

• Support for sbyte and ulonglong — sbyte is the signed format of the byte datatype and
ulonglong is the unsigned format of the longlong datatype.

• Bitwise operators — see Bitwise Operator Support on page 182.
• Parameterized constructors — arguments are not permitted in constructors for standard

PowerBuilder applications, but they are supported in conditional code blocks for the .NET
environment.

• Static fields and methods — static fields and methods are not permitted in standard
PowerBuilder applications, but they are supported in conditional code blocks for the .NET
environment.
You can use instance references to access static members of .NET classes, as in the
following example for the static property "Now" of the System.DateTime class:
#if defined PBDOTNET then

 System.DateTime dt_instance

 System.DateTime current_datetime

 dt_instance = create System.DateTime

 current_datetime = dt_instance.Now

#end if

Alternatively, you can access static .NET properties without using instance references, as
the following code illustrates:
#if defined PBDOTNET then

 System.DateTime current_datetime

 current_datetime = System.DateTime.Now

#end if

• Namespaces, interfaces, and user-defined enumerations — you can reference namespaces
and .NET interfaces and enumerations in conditional code blocks for the .NET
environment. In standard PowerScript code, namespaces are not available and you cannot
declare an interface or enumeration.
See User-Defined Enumerations on page 183.

• Function calls on .NET primitive types and enumerations — the pb2cs compiler merges
functionality of .NET primitive types with the functionality of corresponding
PowerBuilder primitive types. Function calls are also supported on .NET enumerated
types that you import to a PowerBuilder .NET target.
See Function Calls on .NET Primitive and Enumerated Types on page 184.

• .NET index access — you can access the indexes of .NET classes in the same way you
access PowerBuilder array elements.

.NET Language Interoperability

Deploying Applications and Components to .NET 181

See Accessing Indexes for .NET Classes on page 185.
• Function arguments defined as out parameters — in .NET, functions can pass parameters

using the “out” passing mode. Although there is no equivalent concept in PowerScript, you
can access “out” parameters—as well as parameters passed by reference—using the “ref”
keyword.
.NET also allows you to overload a function that has a parameter passed by value with a
prototype that differs only in the passing mode of the parameter. In these cases, if you want
to call the function prototype with the parameter that uses the reference or out passing
mode, you must use the ref keyword in your PowerScript call:
my_obj.TestMethod(ref l_string)

Bitwise Operator Support
Standard PowerBuilder applications allow the use of the logical operators AND, OR, and
NOT to evaluate boolean expressions. In .NET applications and components, in addition to
evaluating boolean expressions, you can use these same operators to perform bitwise
evaluations.

For the AND and OR operators, a bitwise evaluation compares the bits of one operand with the
bits of a second operand. For the NOT operator, a bitwise evaluation assigns the
complementary bit of the single operand to a result bit.

The operands in a bitwise comparison must have integral data types, such as integer, uint,
long, ulong, and longlong. However, if either of the operands (or the sole operand in the case of
a NOT operation) has an any datatype, the .NET application or component treats the operation
as a standard logical evaluation rather than as a bitwise comparison.

You can perform a bitwise comparison only inside a .NET conditional compilation block. If
you try to evaluate operands with integral datatypes in a standard PowerBuilder application,
you will get a compiler error.

For .NET applications and components, you can also use the bitwise operator XOR. If you use
this operator to evaluate a boolean expression in the .NET environment, the return result is true
only when one of the operands is true and the other is false. If both operands are true, or both
are false, the return result for the XOR operator is false.

This table describes the result of using the bitwise operators:

Table 14. Bitwise operators in the .NET environment

Operator Description

AND The bitwise “AND” operator compares each bit of its first operand to the corre-
sponding bit of its second operand. If both bits are 1, the corresponding result bit is
set to 1. Otherwise, the corresponding result bit is set to 0.

OR The bitwise “inclusive OR” operator compares each bit of its first operand to the
corresponding bit of its second operand. If either bit is 1, the corresponding result
bit is set to 1. Otherwise, the corresponding result bit is set to 0.

.NET Language Interoperability

182 PowerBuilder

Operator Description

XOR The bitwise “exclusive OR” operator compares each bit of its first operand to the
corresponding bit of its second operand. If one bit is 0 and the other bit is 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result bit is set to
0.

NOT This is a unary operator. It produces the bitwise complement of its sole operand. If
one bit is 1, the corresponding result bit is set to 0. Otherwise, the corresponding
result bit is set to 1.

User-Defined Enumerations
To use enumerations that you import from a .NET assembly, you must surround the
enumeration references in a conditional compilation block that is valid for your .NET target
environment.

Declaring .NET enumerations in PowerScript
You must also append an exclamation mark (“!”) to each of the enumeration’s constant strings
that you declare in the conditional code block.

For example, the following code defines the .NET enumeration class TimeOfDay:
Public enum TimeOfDay

{

 Morning = 0,

 AfterNoon,

 Evening

}

In PowerScript, you reference a .NET enumeration constant string as follows, when
TimeOfDay is an enumeration class in the ns_1.ns_2 namespace:
#if defined PBDOTNET THEN

 ns_1.ns_2.TimeOfDay a

 a=ns_1.ns_2.TimeOfDay.Morning!

#end if

Scope of enumeration constant
When you set a system-defined enumeration constant in standard PowerBuilder applications,
there is no issue regarding the scope of the constant definition, since all system enumeration
constants are uniquely defined. However, for .NET enumerations, you must define a scope for
the constant using the syntax:
enumerationType.enumerationEntryName!

.NET Language Interoperability

Deploying Applications and Components to .NET 183

If the enumeration class is declared under a namespace, you must include the namespace when
you set an enumeration constant:
namespacename.enumerationType.enumerationEntryName!

If there is no enumerationType enumeration class prefacing the declaration of a constant in
a .NET conditional code block, PowerBuilder assumes the enumeration is a system-defined
type and returns an error if the system-defined type is not found.

The syntax for a PowerBuilder system enumeration constant in the .NET environment is:
[enumerationType.]enumerationEntryName!

Although you cannot use dot notation in a constant declaration for a system-defined
enumeration in standard PowerScript, the pb2cs compiler must let you use dot notation for
constant declarations that you make in a conditional compilation block for the .NET
environment. Prefixing a constant declaration in the .NET environment with a PowerBuilder
system enumeration name is equivalent to making the same declaration without a prefix.

The VM initially checks whether the enumerationType is a declared .NET enumeration class.
If it does not find the enumeration class, it checks whether the enumerationType is a
PowerBuilder system enumeration. When the enumerationType matches the name of a
PowerBuilder system enumeration, the VM sets the constant for your .NET application or
component.

Therefore, for the system Alignment enumeration, the constant declaration
Alignment.Left! produces the same result as the Left! declaration inside a .NET
conditional code block. Outside such a code block, the Alignment.Left! declaration
causes a compiler error.

Function Calls on .NET Primitive and Enumerated Types
You can make function calls on .NET primitive and enumerated types from a PowerBuilder
application. The function calls must be made inside a conditional compilation block for
a .NET target.

.NET primitive types
To support function calls on .NET primitive types, the PowerBuilder .NET compiler (pb2cs)
merges the functionality of these primitive types with the functionality of corresponding
PowerBuilder primitive types. This allows you to use .NET primitive types and their
corresponding PowerBuilder primitive types in a similar fashion. The following example
makes the same ToString function call on both the .NET System.Int32 datatype and the
PowerScript long datatype:
System.Int32 i1
long i2

i1.ToString()
i2.ToString()

.NET Language Interoperability

184 PowerBuilder

For a table of equivalencies between .NET and PowerScript primitive datatypes, see Datatype
Mappings on page 179.

Note: The System.IntPtr and SystemUIntPtr primitive types do not have precise
corresponding types in PowerBuilder—they are always treated as long datatypes. Calling
functions or modifying properties on these .NET primitive types leads to a compilation error
in PowerBuilder.

.NET enumerated types
Function calls are also supported on .NET enumerated types that you import to a
PowerBuilder .NET target. For example, suppose you define a .NET enumerated type in
a .NET assembly as follows:
Public enum TimeOfDay
{
 Morning = 0,
 AfterNoon,
 Evening
}

PowerBuilder allows you to call the ToString method on the .NET TimeOfDay enumerated
type after you import it to your target:
#if defined PBDOTNET then
 ns1.ns2.TimeOfDay daytime
 daytime = ns1.ns2.TimeOfDay.Morning!
 daytime.ToString()
#end if

Accessing Indexes for .NET Classes
You can access the indexes of .NET classes in the same way you access PowerBuilder array
elements. However, in standard PowerBuilder applications, you can reference indexes only
using integral datatypes, such as integer, short, long, and so on.

In the .NET environment, you are not restricted to referencing indexes as integral types; you
can reference the indexes using any datatypes as parameters.

This example shows how to use a string datatype to access the index of the .NET hashtable
class, countries:
#IF Defined PBDOTNET then
system.collections.hashtable countries
countries = create system.collections.hashtable
//Assign value to hashtable
countries["Singapore"] = 6
countries["China"] = 1300
countries["United States"] = 200
//Obtain value from hashtable
int singaporePopulation, USAPopulation
singaporePopulation = countries["Singapore"]
USAPopulation = countries["United States"]
#END IF

.NET Language Interoperability

Deploying Applications and Components to .NET 185

Using Multithreading
When you deploy a PowerBuilder application that contains shared objects or an NVO
assembly to .NET, the application can be run in a multithreaded environment. The
PowerBuilder .NET runtime library also supports .NET synchronization, enabling your
application to avoid possible data corruption.

.NET Threading in PowerScript
This PowerScript code fragment uses .NET threading:
#if defined PBDOTNET then
//Declare a .NET Class
System.Threading.Thread ithread

//Declare a delegate for .NET Thread
System.Threading.ThreadStart threadproc

//Assign a user defined PowerScript
//function to the delegate
threadproc = f_compute

FOR Count = 1 TO a_count
 ithread = create System.Threading.Thread(threadproc)
 ithread.IsBackground = true
 ithread.Start()
 ithread.sleep(500)
NEXT

#else
 /*action*/
#end if

Using .NET Synchronization Functions
To use .NET synchronization functions directly in PowerScript:

1. Declare a global variable.
2. Initialize the global variable.
3. Use the global variable in your .NET synchronization functions. Define your types and

functions within #IF DEFINED and #END IF preprocessor statements.

Windows Form example:
/* declare and initialize global variable */
System.Object obj
obj = create System.Object

#if defined PBWINFORM then
 System.Threading.Monitor.Enter(obj);
#else
 /*action*/
#end if

b = 1000/globala
globala = 0

.NET Language Interoperability

186 PowerBuilder

a = 1000

globala = 10
b = a / globala

#if defined PBWINFORM then
 System.Threading.Monitor.Exit(obj);
#else
 /*action*/

#end if

return 1

Limitations
There are some important limitations on the code you can enclose in conditional compilation
blocks.

• Case sensitivity — PowerScript is case insensitive, but C# is case sensitive. If a resource
has the same name as another resource with differences only in the case of one or more
characters, PowerBuilder cannot process the resource names correctly.

• Calls to PowerScript from .NET functions — you cannot call a .NET method inside a
conditional code block if that method calls back into PowerScript functions.

• Delegates are not supported — a delegate is a type that safely encapsulates a method,
similar to a function pointer in C and C++. You cannot use delegates in conditional code
blocks.

• .NET classes and interfaces — you cannot use .NET classes and interfaces as parameters
to functions and events.

• Inheriting from .NET classes — you cannot create user objects, windows, or window
controls that inherit from .NET classes.

• Implementing .NET interfaces — you cannot create user objects that implement .NET
interfaces.

• Consuming .NET generics — you cannot consume .NET generic classes or generic
methods in conditional code blocks. The .NET Framework 2.0 introduced generics to act
as templates that allow classes, structures, interfaces, methods, and delegates to be
declared and defined with unspecified or generic type parameters instead of specific types.
Several namespaces, such as System Namespace and System.Collections.Generic,
provide generic classes and methods.
The System.Nullable type is a standard representation of optional values and as such it is
also classified as generic and therefore cannot be consumed in PowerBuilder .NET
applications.
In .NET Assembly and Web service targets, you can select a check box to map
PowerBuilder standard datatypes to .NET nullable datatypes. Nullable datatypes are not
Common Type System (CTS) compliant, but they can be used with .NET Generic classes
if a component accepts or returns null arguments or if reference arguments are set to null.

.NET Language Interoperability

Deploying Applications and Components to .NET 187

• AutoScript does not support .NET classes — AutoScript works as expected for
PowerBuilder objects, properties, and methods inside conditional code blocks, but it does
not display for .NET classes.

• DYNAMIC and POST do not support .NET methods — you cannot use the DYNAMIC or
POST keywords when you call a .NET method.

• .NET arrays of arrays — .NET arrays of arrays are supported in conditional code blocks
for .NET targets only.

Handling Exceptions in the .NET Environment
The PowerBuilder to .NET compiler changes the exception hierarchy used by the native
PowerScript compiler.

Modified exception hierarchy
In the native PowerBuilder environment, Throwable is the root datatype for all user-defined
exception and system error types. Two other system object types, RuntimeError and
Exception, inherit directly from Throwable.

In the .NET environment, System.Exception is the root datatype. The PowerBuilder to .NET
compiler redefines the Throwable object type as a subtype of the System.Exception class, and
maps the .NET System.IndexOutOfRangeException class to the PowerBuilder RuntimeError
object type with the error message “Array boundary exceeded.” The PowerBuilder to .NET
compiler also maps the following .NET exceptions to PowerBuilder error objects:

• System.NullReferenceException class to the NullObjectError object type
• System.DivideByZeroException class to the DivideByZeroError object type

This figure shows the exception hierarchy for PowerBuilder applications in the .NET
environment:

.NET Language Interoperability

188 PowerBuilder

Figure 4: Exception hierarchy for PowerBuilder in the .NET environment

Example using a .NET system exception class
Even though a .NET exception class is mapped to a PowerBuilder object type, you must use
the PowerBuilder object type in your PowerScript code. For example, suppose you define
a .NET test class to test for division by zero errors as follows:
namespace ExceptionSample

{

 // Custom exception class used in method second_test(int a) below

 public class MyCustomException : Exception

 {

 public string GetMessage()

 {

 public string GetMessage()

 {

 return "Custom Error Thrown";

.NET Language Interoperability

Deploying Applications and Components to .NET 189

 }

 }

 public class Test

 {

 public int division_test (int a)

 {

 int zero = 0;

 // this will throw a System.DivideByZero exception

 return a/zero;

 }

 public int second_test(int a)

 {

 a = a / 2;

 throw new MyCustomException();

 }

 }

}

To catch the error in PowerScript, you can use the DivideByZeroError object type or either of
its ancestors, RuntimeError or Throwable. The following PowerScript code catches the error
caused by the call to the .NET Test class method for invoking division by zero errors:
int i = 10

string ls_error

try

 #IF Defined PBDOTNET Then

 ExceptionSample.Test t

 t = create ExceptionSample.Test

 i = t.division_test(i)

 #END IF

catch (DivideByZeroError e)

//the following lines would also work:

//catch (RuntimeError e)

//catch (Throwable e)

.NET Language Interoperability

190 PowerBuilder

 ls_error = e.getMessage ()

 MessageBox("Exception Error", ls_error)

end try

Example using a custom .NET exception class
Suppose the .NET Test class is modified to catch a custom .NET exception:
public class Test

{

 public int second_test (int a)

 {

 a = a/2;

 throw new MyUserException();

 }

}

Because MyUserException is a user-defined exception in the .NET environment, it cannot be
caught by either the PowerBuilder Exception or Throwable object types. It must be handled
inside a .NET conditional compilation block:
int i = 10

string ls_error

#IF Defined PBDOTNET Then

 try

 ExceptionSample.Test t

 t = create ExceptionSample.Test

 i = t.second_test(i)

 catch (ExceptionSample.MyUserException e)

 //this will also work: catch (System.Exception e)

 ls_error = e.getMessage()

 MessageBox("Custom Exception", ls_error)

 end try

#END IF

.NET Language Interoperability

Deploying Applications and Components to .NET 191

Connections to EAServer Components
You can build a .NET client application or component that invokes methods of Enterprise
JavaBeans (EJB) components or PowerBuilder EAServer components running in EAServer
6.1 or later.

This capability is based on the .NET client ORB library introduced in EAServer 6.1.

Note: When you install EAServer, you must install the .NET support option.

You can use either the Connection object or the JaguarORB object to connect to the
component in EAServer, and you can connect from .NET Windows Forms and Web Forms
applications and from .NET assemblies and Web services.

Using the Connection Object
Build a .NET client application for an EAServer component using the Connection object.

1. Use the Template Application target wizard to create a client application, then use a .NET
application wizard to create a .NET target using the library list and application object of the
target you just created.

Alternatively, use a .NET target wizard to build a client application from scratch.

2. Use the EAServer Connection Object Wizard to create a standard class user object
inherited from the Connection object. You can then use this object in a script to establish a
connection. First set connection options, then call the ConnectToServer function.

If you use the Template Application wizard to create the client application, you can create
the Connection object in that wizard.

3. Use the EAServer Proxy Wizard to create a project for building a proxy object for each
EAServer component that the .NET client will use, then generate the proxy objects. The
EAServer Proxy icons on the Project page of the New dialog box are enabled for all .NET
target types.

4. Write the code required to create the EAServer component instance using the
CreateInstance function.

5. Call one or more component methods from the client.

The steps are the same for .NET clients and standard PowerBuilder clients. For detailed steps,
see Application Techniques > Building an EAServer Client.

.NET Client Differences
There are some differences you should be aware of when you use a Connection object with
a .NET client.

This table lists some properties that have different behavior in .NET client applications.
Properties and functions that are obsolete or for internal use only in standard PowerBuilder

.NET Language Interoperability

192 PowerBuilder

applications are also unsupported in .NET applications. All other properties, functions, and
events are supported.

Property Description

Driver Only Jaguar and AppServer are supported values. Any other value results in a
runtime error.

ErrorCode These error codes are supported:

• 0 — success
• 50 — distributed service error
• 57 — not connected
• 92 — required property missing or invalid
• 100 — unknown error

The same error codes are returned by the ConnectToServer function.

Options These options support SSL connections from .NET clients. They are case
sensitive and are not available for standard PowerBuilder (Win 32) clients:

• ORBclientCertificateFile
• ORBclientCertificatePassword

See SSL Connection Support on page 196.

Connections Using the JaguarORB Object
To create a CORBA-compatible client, you can use the JaguarORB object instead of the
Connection object to establish the connection to the server.

The JaguarORB object allows you to access EAServer from PowerBuilder clients in the same
way as C++ clients.

Two techniques
The JaguarORB object supports two techniques for accessing component interfaces, using its
String_To_Object and Resolve_Initial_References functions.

Using the String_To_Object function works in the same way that the ConnectToServer and
CreateInstance functions on the Connection object do internally. The String_To_Object
function allows you to instantiate a proxy instance by passing a string argument that describes
how to connect to the server that hosts the component. The disadvantage of this approach is
that you lose the benefits of server address abstraction that are provided by using the naming
service API explicitly.

To use the EAServer naming service API, you can call the Resolve_Initial_References
function to obtain the initial naming context. However, this technique is not recommended
because it requires use of a deprecated SessionManager::Factory create method.

.NET Language Interoperability

Deploying Applications and Components to .NET 193

Most PowerBuilder clients do not need to use the CORBA naming service explicitly. Instead,
they can rely on the name resolution that is performed automatically when they create
EAServer component instances using the CreateInstance and Lookup functions of the
Connection object.

See Application Techniques > Building an EAServer Client.

.NET client differences
There are some differences you should be aware of when you use a JaguarORB object with
a .NET client. The Init function has slightly different behavior in .NET client applications:

• You do not need to call the Init function to use the JaguarORB object from a .NET client. If
you do not call Init, the EAServer ORB driver uses the default property values.

• .NET clients support these standard options only:
• ORBHttp
• ORBWebProxyHost
• ORBWebProxyPort
• ORBHttpExtraHeader

• The following options support mutual authentication in SSL connections from a .NET
client. They are case sensitive and are not available for standard PowerBuilder (Win 32)
clients:
• ORBclientCertificateFile
• ORBclientCertificatePassword
See SSL Connection Support on page 196.

All other properties, functions, and events are supported and work in the same way as in
standard PowerBuilder client applications.

Support for CORBAObject and CORBACurrent Objects
The CORBAObject object gives PowerBuilder clients access to several standard CORBA
methods. All proxy objects generated for EAServer components using the EAServer proxy
generator are descendants of CORBAObject.

The CORBACurrent service object provides information about the EAServer transaction
associated with a calling thread and enables the caller to control the transaction. The
CORBACurrent object supports most of the methods defined by the EAServer
CORBACurrent interface.

All CORBAObject and CORBACurrent properties, functions, and events are supported
with .NET clients.

.NET Language Interoperability

194 PowerBuilder

Supported Datatypes
Simple and complex datatypes are convertible between .NET clients and EAServer
components.

This table describes the basic CORBA IDL types supported and their corresponding
PowerScript type:

CORBA IDL type Mode PowerScript type

boolean in, return Boolean by value

out, inout Boolean by reference

char in, return Char by value

out, inout Char by reference

octet in, return Byte by value

out, inout Byte by reference

short in, return Integer by value

out, inout Integer by reference

long in, return Long by value

out, inout Long by reference

long long in, return Longlong by value

out, inout Longlong by reference

float in, return Real by value

out, inout Real by reference

double in, return Double by value

out, inout Double by reference

string in, return String by value

out, inout String by reference

BCD::Binary in, return Blob by value

out, inout Blob by reference

BCD::Decimal in, return Decimal by value

out, inout Decimal by reference

BCD::Money in, return Decimal by value

out, inout Decimal by reference

.NET Language Interoperability

Deploying Applications and Components to .NET 195

CORBA IDL type Mode PowerScript type

MJD::Date in, return Date by value

out, inout Date by reference

MJD::Time in, return Time by value

out, inout Time by reference

MJD::Timestamp in, return DateTime by value

out, inout DateTime by reference

TabularResults::ResultSet in, return ResultSet by value

out, inout ResultSet by reference

TabularResults::ResultSets in, return ResultSets by value

out, inout ResultSets by reference

Void return (None)

Arrays and sequences of structures and basic types are also supported. This table lists the
complex datatypes that are supported:

CORBA IDL type Mode PowerScript type

Array in Bounded array by value

inout Bounded array by reference

Sequence in Unbounded array by value

inout Unbounded array by reference

Structure in, return Structure by value

out, inout Structure by reference

SSL Connection Support
To enable .NET client applications developed in PowerBuilder to connect with EAServer
using the Secure Sockets Layer (SSL), the computer where the .NET application runs must be
configured to work correctly with the SSL authentication mode.

You can connect using Server authentication or Mutual authentication.

Server Authentication
If only server authentication is required, the EAServer client must provide authentication to
the server to prove that the client can be trusted before it can connect to the server.

By default, EAServer 6.x uses 2001 as the port for this type of SSL connection.

.NET Language Interoperability

196 PowerBuilder

Connection Code
In the PowerScript connection code, change the EAServer host’s address to a URL that begins
with “iiops” and ends with the correct SSL port.

All other code is the same as if the client was connecting to a server without using SSL.

The following sample code connects with EAServer using an SSL connection:
Connection myconnect
int rc

myconnect = create Connection
myconnect.Application = "pbtest"
myconnect.Driver = "jaguar"
myconnect.UserID = "admin@system"
myconnect.Password = "abc"
myconnect.Location = "iiops://mydesktop:2001"

rc = myconnect.connecttoserver()

Importing an EAServer Certificate into the Client Certificate Store
The EAServer host’s certificate file must be imported into the Microsoft certificate store on
the client’s computer.

You can do this using the Certificate snap-in in the Microsoft Management Console (MMC).

1. Select Run from the Windows Start menu, type mmc in the Run dialog box, and click OK
to open the Microsoft Management Console.

2. Select File > Add/Remove Snap-in to open the Add/Remove Snap-in dialog box.

.NET Language Interoperability

Deploying Applications and Components to .NET 197

3. Click Add to open the Add Standalone Snap-in dialog box.

4. Select Certificates from the Snap-in list and click Add to open the Certificates Snap-in
dialog box.

.NET Language Interoperability

198 PowerBuilder

5. Select the Computer account radio button, click Next, click Finished, and close the Add
Standalone Snap-in and Add/Remove Snap-in dialog boxes.

A Certificates node displays in the MMC.

6. Expand the Certificates node in the MMC, right-click Personal, select All Tasks, and then
select Import.

The Certificate Import Wizard opens.

7. Follow the instructions in the Certificate Import Wizard to import the certificate.

.NET Language Interoperability

Deploying Applications and Components to .NET 199

The wizard prompts you to provide a certificate file. For server authentication, this is the
certificate file that is configured as the certificate for EAServer on port 2001 or any other
port that is specified for use in server-only authentication SSL mode. You may already
have such a file from configuring EAServer for SSL connections, or, if you have access
rights to the built-in Java keystore on the EAServer host, you can export the required
certificate from the keystore.

For more information about exporting a certificate, see the EAServer documentation.

Note: The server’s certificate file need not include its private key.

Mutual Authentication
If mutual authentication is required, the server and client must authenticate each other to
ensure that both can be trusted.

By default, EAServer 6.x uses 2002 as the port for this type of SSL connection.

Both the server’s certificate and the client’s certificate must be imported into the Microsoft
certificate store on the client computer as described in Importing an EAServer Certificate into
the Client Certificate Store on page 197.

Note: The client’s certificate file must include the private key for the client’s certificate. The
server’s certificate file need not include its private key.

The server certificate used for mutual authentication cannot be the same as the certificate used
for server-only authentication. Make sure you obtain the correct certificate file.

For mutual authentication, the client’s certificate file must be imported into the certificate
store on the client computer and it must be available in the file system on the client computer,
because it is referenced in the PowerScript code required to connect to EAServer.

Two new key/value pairs in the Options property of the Connection object are used for mutual
authentication:

• ORBclientCertificateFile is used to specify the file name of the client certificate file.
• ORBclientCertificatePassword is used to specify the password for the certificate if any.

There is no need to use this key if the certificate is not protected by password.

Connection code
In the PowerScript connection code, change the EAServer host’s address to a URL that begins
with “iiops” and ends with the correct SSL port. The following sample code connects to an
EAServer host that requires mutual authentication:
Connection myconnect
int rc

myconnect = create Connection

myconnect.Application = "pbtest"
myconnect.Driver = "jaguar"
myconnect.UserID = "admin@system"

.NET Language Interoperability

200 PowerBuilder

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc38035.0600/html/eassec/CACFHEGG.htm

myconnect.Password = "sybase"
myconnect.Location = "iiops://mydesktop:2002"
myconnect.Options = "ORBclientCertificateFile=
'd:\work\sample1.p12',ORBclientCertificatePassword =abc"

rc = myconnect.connecttoserver()

Configuration step required for Web Forms and Web services
For mutual authentication, PowerBuilder .NET Web Forms applications and .NET Web
services that are clients for EAServer require that the ASPNET account on the IIS server have
access to the private key of the client certificate. Access to the private key of the server
certificate is not required.

Use the Windows HTTP Services Certificate Configuration Tool
(WinHttpCertCfg.exe) to configure client certificates. You can download this tool from
the Microsoft Download Center.

To grant access rights to the private key of the client certificate for the ASPNET account on the
IIS server, type the following commands at a command prompt:
cd C:\Program Files\Windows Resource Kits\Tools
WinHttpCertCfg -g -c LOCAL_MACHINE\MY -s "ABC" -a "ASPNET"

These commands assume that the tool is installed in the default location at C:\Program
Files\Windows Resource Kits\Tools and that the client certificate's subject
name is “ABC”. The -s argument is equivalent to the Issued To field in the MMC. The
ASPNET account is valid for XP computers. You should use the “NetworkService” account
for other Windows platforms. For the -c argument, always use “LOCAL_MACHINE\MY”
rather than the actual name of the local computer.

For more information about the configuration tool’s options, type WinHttpCertCfg -
help at the command prompt. For more information about installing client certificates for
Web applications and services, see the Microsoft Help and Support site.

Best Practices for .NET Projects
Although PowerScript is essentially a compiled language, it is quite tolerant. For the sake of
performance, the PowerBuilder .NET compiler is not designed to be as tolerant as the
PowerBuilder native compiler.

To be able to compile your applications with .NET, you should avoid certain practices in your
PowerScript code.

Syntax issues
These language-level items apply when you plan to transform a PowerBuilder application to a
Windows Forms or Web Forms application.

.NET Language Interoperability

Deploying Applications and Components to .NET 201

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f
http://support.microsoft.com/kb/901183

• Avoid the GoTo statement — jumping into a branch of a compound statement is legal in
PowerBuilder, because the concept of scope inside a function does not exist in
PowerScript.
For example, the following code works well in PowerBuilder:
if b = 0 then
 label: …
else
 …
end if
goto label

This PowerScript translates conceptually into the following C# code:
if (b == 0)
{ // opening a new scope
 label: …
}
else
{
 …
}
goto label;

Since a GoTo statement is not allowed to jump to a label within a different scope in .NET,
the C# code would not compile. For this reason, avoid using GoTo statements.

• Do not call an indirect ancestor event in an override event — suppose that there are three
classes, W1, W2, and W3. W1 inherits from Window, W2 inherits from W1, and W3
inherits from W2. Each of these classes handles the Clicked event.

In the Clicked event of W3, it is legal to code the following in PowerScript:
call w1::clicked

However, in C#, calling the base method of an indirect base class from an override method is
not allowed. The previous statement translates into the following C# code, which might
produce different behavior:
base.clicked();

In this example, a possible workaround is to move code from the Clicked event of the indirect
ancestor window to a window function, and then call the function, rather than the original
Clicked event, from the descendant window.

Semantic issues

• Do not use the This keyword in global functions — a global function is essentially a static
method of a class. Although the PowerBuilder compiler does not prevent you from using
the This pronoun in a global function, the C# compiler does not allow this.

• Do not change an event's signature — the PowerBuilder compiler does not prevent you
from changing the signature of an event defined by its super class, but .NET does not allow
this.
For example, suppose the w_main class contains this event:

.NET Language Interoperability

202 PowerBuilder

Event type integer ue_update(int e)

The subclasses of the w_main class should not change the parameters or the return type of
the event.

• Do not change the access modifier of an inherited function to public — if your application
contains a class that inherits from another class, do not change to public access the access
modifiers of functions whose access level in the parent class was protected or private.
The PowerBuilder compiler does not prevent you from changing the access modifier of a
function in an inherited class from protected or private to public, but if you attempt to
deploy a .NET target that contains such a function, you receive an error indicating that a
private or protected function cannot be accessed.

• Do not code Return statements in Finally clauses — PowerBuilder allows you to code a
Return statement in the Finally clause of a Try-Catch-Finally-End-Try statement, but C#
does not support Return statements in Finally clauses.
If your code includes such statements, the compiler returns the error "Return statement
cannot be used in finally clause."

• Do not cast to object without inheritance relationship — the PowerBuilder compiler
allows you to cast an object to classes that are not ancestors of the object you are casting,
such as sibling object classes. However, this is not considered good coding practice, and is
not allowed for .NET targets.

External functions

• Differences in passing a structure by reference — PowerBuilder allows you to declare an
external function that has a parameter of type Structure passed by reference.
For example:
Subroutine CopyMemory(ref structure s, int size) library "abc.dll"

The s parameter can accept any datatype that is a pointer to something.
A PowerBuilder external function is mapped to the .NET platform Invoke functionality.
This functionality requires that the structure passed into the external function be exactly of
the type declared. Therefore, when compiling the following PowerScript code, the
PowerBuilder .NET compiler issues an error, because the parameter, li, references a
LogInfo structure, which is different from the function’s declared structure class.
LogInfo li

CopyMemory(ref li, 20) // error!

To solve this problem, you can declare an additional external function as follows:
Subroutine CopyMemory(ref LogInfo li, int size) library "abc.dll"

• Structures as parameters in .NET Applications — external functions that have structures
for parameters must be passed by reference rather than value if you call them in a .NET
Windows Forms or .NET Web Forms application when the parameter is a const pointer.
For example, a PowerScript call to the SystemTimeToFileTime function in
kernel32.dll could use the following declaration, with the first parameter being
passed by value and the second parameter by reference:

.NET Language Interoperability

Deploying Applications and Components to .NET 203

Function boolean SystemTimeToFileTime(os_systemtime lpSystemTime,
ref os_filedatetime lpFileTime) library "KERNEL32.DLL"

For .NET Windows Forms or Web Forms applications, you must modify the declaration to
pass both parameters by reference:
Function boolean SystemTimeToFileTime(ref os_systemtime
lpSystemTime, ref os_filedatetime lpFileTime) library
"KERNEL32.DLL"

The SystemTimeToFileTime function is declared as a local external function and used in
pfc_n_cst_filesrvunicode, pfc_n_cst_filesrvwin32, and other operating-system-specific
classes in the pfcapsrv.pbl in the PFC library. If you use this library in a .NET
Windows Forms or Web Forms application, you must change the declaration as described
above.

• Allocate space before passing a string by reference — before passing a string to an external
function by reference in PowerBuilder, you should allocate memory for the string by
calling the Space system function. In subsequent calls to the function, if you pass the same
string to the function, PowerBuilder continues to work well even if the string becomes
empty, because memory allocated for the string is not yet freed by the PowerBuilder VM.
This is not the case in the .NET environment. If the string passed to an external function by
reference is empty, and if the external function writes something to the string, an exception
is thrown. Therefore, you must make sure to allocate enough space for a string before
passing it to an external function by reference.
If the code looks like this:
char* WINAPI fnReturnEnStrA()
{
 return "ANSI String";
}

it is recommended that you alter it like this:
#include <objbase.h>
... ...
char* WINAPI fnReturnEnStrA()
{
 char* s = (char*)CoTaskMemAlloc(12);
 memcpy(s, "ANSI string\0", 12);
 return s;
}

Design-Level Considerations
Although stricter compiler enforcement for the .NET environment can catch coding errors
typically tolerated by the PowerScript compiler, the .NET environment might also require
changes in application design that are not necessarily caught by the compiler.

Use PowerBuilder system functions
For a .NET Web Forms application, use PowerBuilder system functions instead of external
functions whenever possible. Some system functions, such as the functions for file operations,

.NET Language Interoperability

204 PowerBuilder

are implemented differently for Windows Forms and Web Forms. If you always use
PowerBuilder system functions, you do not need to worry about these differences.

• Use GetCurrentDirectory — some applications use external DLL functions to get the
current directory. For PowerBuilder Web Forms applications, you must use the
GetCurrentDirectory standard system function instead.
PowerBuilder Web Forms use a virtual file system to emulate a file system on the server for
each client. The virtual file system is actually a folder on the server computer to which the
ASPNET user (IIS 5), the IIS_WPG user group (IIS 6), or the IIS_IUSRS user group (IIS 7
and 7.5) has write permission. Calling an external function to get the current directory
from the virtual file system fails.

Use the DESTROY statement
The .NET garbage collection service does not trigger the Destructor event for PowerBuilder
objects. If you need to trigger the Destructor event for a nonvisual object, you must explicitly
call the PowerScript DESTROY statement for that object.

Use regional formats based on client or server settings
The PBCultureSource global property determines whether a .NET Web Forms application
uses client or server regional settings. Client regional settings are specified by the first
language listed in the Language Preference dialog box of the Internet Explorer browser.
However, if you set PBCultureSource to “client” and no language is listed in the Language
Preference dialog box, server-side regional settings are used instead.

Server regional settings are those set for the ASP.NET user or user group on the server
computer. You can use the IIS Manager to change the default regional settings in the
Globalization section of the Web.config files for your Web Forms applications, or you can
modify the Web.config files manually after you deploy your applications.

The regional settings specify formats for the following items:

• numeric separators (decimals or commas)
• number of digits per group to the left of a separator
• currency symbol location when a specific EditMask is not used
• date and time values

The regional settings apply to DataWindow columns of relevant datatypes and to the
following PowerScript controls and functions:

• DatePicker control using the DtfLongDate!, DtfShortDate! or DtfTime! format
• EditMask control when the mask contains a [DATE], [TIME], or [CURRENCY [{digit

number}] format
• MonthCalendar control
• System String (v) function when the data argument datatype is Date, Time, or DateTime

(the formats for these datatypes are [SHORTDATE], [TIME], or [SHORTDATE][TIME],
respectively)

.NET Language Interoperability

Deploying Applications and Components to .NET 205

• System String (v, f) function when the format argument is [SHORTDATE],
[LONGDATE], [DATE], [TIME], or [DATETIME]

The regional settings selection can also apply to objects you include in .NET conditional
compilation blocks. It does not apply to button labels in message boxes or other system dialog
boxes.

You can set the PBCultureSource global property on the Configurations tab in the Web Forms
Project painter before you deploy a project. By default, applications use the regional settings
specified by the Web Forms server.

Use multiple text patterns for string matching
If you want to test whether a string’s value contains any of a multiple set of matching text
patterns, you can use the pipe character (|) in your .NET applications or components. The pipe
character is a metacharacter in the .NET environment that functions as an OR operator,
although it is not a metacharacter in the standard PowerBuilder client-server environment.

Therefore, when you call the Match function in the .NET environment, you can use pipe
characters to determine if either of two (or one of many) text patterns match a string you are
evaluating. In standard client-server applications, you can use the Match function to evaluate
only one text pattern at a time.

Work around unsupported features

• Avoid using Handle — some applications call the Handle function to get the window
handle of a control and pass it to an external function. This does not work in a Web Forms
application.

• Restrict impact of unsupported events — since unsupported events are never triggered, do
not allow the logic in unsupported events to affect the logic flow of other events or
functions.
For example, if the code in an unsupported event changes the value of an instance variable,
it can affect the logic flow in a supported event that uses that variable. Remove this type of
coding from unsupported events.

• Avoid name conflicts — PowerBuilder allows two objects to have the same name if they
are of different types. For example, you can use the name s_address to define a structure
and a static text control or a nonvisual object in the same PowerBuilder application.
The .NET environment does not allow two classes to have the same name. To enable your
application to compile in .NET, you must not give the same name to multiple objects, even
if they are of different types.

• Use global structures in inherited objects — using local structures in inherited objects can
prevent deployment of a .NET project. To deploy the project, replace all local structures
defined in inherited objects with global structures.

• AcceptText is redundant — in the Web Forms deployment version of the DataWindow,
explicit invocations of AcceptText are redundant but harmless. Any loss of focus of a
DataWindow implicitly invokes AcceptText.

.NET Language Interoperability

206 PowerBuilder

Avoid hindrances to application performance
Some functions and features that are fully supported can hinder application performance. Use
these functions and features sparingly and avoid them where possible.

• Response windows and message boxes — although response windows and message boxes
are supported in Web Forms, use them only when absolutely necessary. Response
windows and message boxes require more server-side resources than other kinds of
windows.
Hiding a response window in a Web Forms application does not work properly and can
cause the application to fail. Instead of hiding a response window, always close it when the
user has finished with it.

• Yield — although the Yield function works in a Web Forms application, avoid it whenever
possible, because it requires additional server-side resources.

• Timers — timers are supported in Web Forms applications, but they periodically generate
postbacks and can impede data entry. Use them sparingly and avoid including them on
forms that require data entry. When you use them, delay the postbacks by appropriate
scripting of client-side events.

• PFC — the DataWindow service in PFC handles many DataWindow events. Each event
causes a postback for each mouse-click, which adversely affects application performance.
Delay postbacks by scripting client-side events or cache DataWindow data in the client
browser by setting the paging method property for the DataWindow object to
XMLClient!.

Take Advantage of Global Configuration Properties
Properties have been added to standard PowerBuilder Classic controls to enhance the
application presentation in the .NET environment and to improve application performance.

These properties are listed in Global Web Configuration Properties on page 65. You can set
them on the Configuration tab in the .NET Web Forms project painter.

The global properties are generated in the Web.config file in the main folder for your
PowerBuilder .NET Web Forms project under the IIS server root. After deployment, you can
edit the file directly, or you can modify the global properties using the IIS Manager.

For information on how to modify global properties in the IIS Manager, see Viewing and
Modifying Global Properties in the IIS Manager on page 9.

Global properties also allow you to share data across application sessions. See Sharing Data
Across Sessions on page 29.

.NET Language Interoperability

Deploying Applications and Components to .NET 207

DataWindow Pagination
If the HTMLGen.PageSize property of a DataWindow object is not set, the Web.config file
property PBDataWindowRowsPerPage limits the number of rows per page for a Web
DataWindow control to 20 rows by default.

Note: You set the HTMLGen.PageSize property in the DataWindow painter by selecting the
Rows Per Page option on the Web Generation tab.

Because this renders only the specified number of rows at a time, the
PBDataWindowRowsPerPage helps reduce the size of the HTML response and thereby
enhances performance. This property is global, since it applies to all DataWindows in the
application for which HTMLGen.PageSize is not set.

Note: The PBDataWindowRowsPerPage setting has no effect on the number of rows in a
DataWindow object with the Label presentation style. Composite and Crosstab presentation
styles do not support pagination.

To disable pagination of Web Forms DataWindow objects, set the
PBDataWindowRowsPerPage property to -1. To disable pagination for a specific
DataWindow object, set its HTMLGen.PageSize property to -1.

DataWindow Page Navigation
There are several global properties related to DataWindow page navigation. Set the navigation
bar at the top or the bottom of a DataWindow page by modifying the
PBDataWindowNavigationBarPosition property.

The PBDataWindowPageNavigatorType property lets you select the type of navigation bar
you want to use: NextPrev, Numeric, QuickGo, or combined types.

• QuickGo — edit labels for the QuickGo navigation bar and the text for the current and total
page counts by modifying the PBDataWindowGoToDescription,
PBDataWindowGoToButtonText, and PBDataWindowStatusInfoFormat properties.

• NextPrev — this figure shows the default NextPrev navigation bar:

It shows page status information with default text for the current and total page count. You
can use the PBDataWindowStatusInfoFormat property to modify the text.
The NextPrev navigation bar includes the > symbol for navigating to the next page, and the
< symbol for navigating to the previous page. Doubled symbols are controls for navigating
to the first page (<<) or last page (>>). The navigation bar folds up to show only symbols
that are functional when a user displays the first or last page of a DataWindow. For
example, the user cannot navigate to a previous page from the first page, and navigating to
the first page is unnecessary, so the < and << symbols do not display on the first page.

• NumericWithQuickGo — this figure shows the NumericWithQuickGo navigation bar:

.NET Language Interoperability

208 PowerBuilder

The numeric portion of the navigation bar lists each page by its page number. You can set
the PBDataWindowPageNavigatorType to Numeric or to QuickGo if you want to use
these styles separately. You can also combine the NextPrev style with the QuickGo style by
setting the PBDataWindowPageNavigatorType property to NextPrevWithQuickGo.

Although the QuickGo navigation control appears by default as a drop-down list, you can
change this to a text box with an associated command button by setting the
PBDataWindowQuickGoPageNavigatorType property to Button. You can edit the button
label by setting the PBDataWindowGoToButtonText property. You set the label for the text
box or the drop-down list by modifying the PBDataWindowGoToDescription property.

Use Client-Side Events to Delay Postbacks
Before the .NET target is deployed, you can code client-side events in JavaScript and set
properties to reference the JavaScript code that handles client-side events.

You must set the properties in #IF DEFINED -#END IF conditional compilation code blocks
for .NET targets. The beginning and end tags for these code blocks signal the PowerBuilder
native compiler to ignore the code contained inside them.

See Conditional Compilation on page 173.

The code inside the conditional compilation code blocks is passed to the Web browser client
from the server at runtime. You use this code to designate JavaScript functions that handle
events on client-side objects. Most events on client-side objects cause a postback to controls
on the server side, because the events have server-side analogs that are written originally in
PowerScript, then transformed to run in the .NET environment.

If you write any JavaScript code for the client-side events, the postback to the server is
interrupted. To resume a postback, you can call the submit method for Web Forms or one of
the postback methods generated in the PBDataWindow.JS file. The
PBDataWindow.JS file is generated in the Scripts subdirectory of the main project
directory under the IIS virtual root.

The postback methods of the PBDataWindow.JS file are described in Default Event
Handlers on page 33.

DataWindow property for setting a customized event handler
Properties of the DataWindow class allow you to handle client-side events in JavaScript code.
The JavaScriptFile property specifies the JS file that contains JavaScript functions for
handling individual client-side events.

Make sure to deploy the JavaScript file that contains your customized event handling code.
You assign the JavaScriptFile property in an #IF DEFINED -#END IF code block:

#IF Defined PBWEBFORM THEN

.NET Language Interoperability

Deploying Applications and Components to .NET 209

 dw_1.JavaScriptFile = “D:\Scripts\MyScriptFile.js”
#END IF

DataWindow properties for calling client-side events
These DataWindow events can be handled on the client side in JavaScript code:

• Clicked
• ButtonClicking
• ButtonClicked
• DoubleClicked
• ItemChanged
• ItemError
• ItemFocusChanged
• RButtonDown
• RowFocusChanged
• RowFocusChanging

See Alphabetical Liist of Web DataWindow Client-Side Events on page 37.

To specify a JavaScript function for handling a client-side event, you must indicate the
function to call in the corresponding Web DataWindow property. The name of the
corresponding property consists of the name of the client-side event with an "OnClient"
prefix. For example, the property corresponding to the ItemChanged event is
OnClientItemChanged.

This example references a script called MyDwClickedEventHandler for the client-side
DataWindow Clicked event:

#IF Defined PBDOTNET THEN
 dw_1.JavaScriptFile = “D:\Scripts\MyScriptFile.js”
 dw_1.OnClientClicked = “MyDWClickedEventHandler”
#END IF

The script for the MyDwClickedEventHandler event handler must use the syntax for the
client-side Clicked event described in Clicked on page 39.

Client-side CommandButton property
The OnClientClick CommandButton property specifies a snippet of JavaScript code that
executes when a command button is clicked.

AutoPostBack
You can reduce postbacks and increase performance by setting the AutoPostBack property for
CheckBox and RadioButton controls to false:

#IF DEFINED PBWEBFORM THEN
 cbx_1.AutoPostBack = false
#END IF

.NET Language Interoperability

210 PowerBuilder

For more information on the built-in Web Forms control properties, see Web Forms Properties
on page 65.

.NET Language Interoperability

Deploying Applications and Components to .NET 211

.NET Language Interoperability

212 PowerBuilder

Compiling, Debugging, and Troubleshooting

This part describes how to create and deploy Web Forms applications.

Incremental Builds
Incremental builds allow you to save time while deploying applications for testing or
production purposes. For incremental builds, only object classes that are affected by one or
more changes are recompiled during the build process.

Target level
The incremental rebuild process for .NET targets is conducted as the first step of a project’s
deployment to a .NET platform. Although deployment remains at the project level,
incremental rebuilds are done at the target level. This means that multiple projects within a
single target are able to benefit from this time saving feature by sharing the same incremental
build assemblies or .NET modules.

Note: Incremental builds are not available for .NET component targets. The
PowerBuilder .NET compiler always does full rebuilds for these target types.

Build and Deploy Directories
When you deploy a .NET application project, PowerBuilder creates a build directory under the
directory for the current target.

The name of the build directory is TargetName.pbt_build, where TargetName is the name of
the current target. If the project you deploy has a debug build type, the build files are generated
in a “debug” subdirectory of the TargetName.pbt_build directory. If the project you deploy has
a release build type, the build files are generated in a subdirectory named “release.”

The debug and release subdirectories store incremental build results only. PowerBuilder does
a full rebuild if files are missing or damaged in one of these subdirectories. The subdirectories
or their parent directory cannot be used for a project's output path or working path.

In addition to the debug and release directories, PowerBuilder creates a deploy directory when
you first deploy a project from the current target. The deploy directory contains an XML file
for each project in the target that you deploy.

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 213

Rebuild Scope
An option on the General tab page of .NET Windows Forms and Web Forms Project painters
allows you to choose whether to do a full rebuild or an incremental build when deploying
a .NET project. The default option is incremental.

If the application has not been previously deployed, a full build is triggered by the
PowerBuilder IDE even when the incremental rebuild option is selected. The incremental
rebuild option is also overridden if you remove the build directory that PowerBuilder
generates from a previous build, or if some of the build files are missing or damaged in the
build directory or its subdirectories.

.NET Modules
For a debug build, the PowerBuilder .NET compiler creates a .NET module for each
PowerBuilder class or class group. A class group consists of a container object that instantiates
a primary class, and the controls in that container object, that are instances of subsidiary
classes.

For example, a window normally contains several controls. The window and the controls are
declared as separate classes that are bound together as a class group in the .NET build process.

For a release build, the compiler creates a .NET module for each PBL rather than for each class
or class group. Although basing the generated .NET modules on classes and class groups
increases performance for incremental builds, this is mostly needed at development time when
the application is being debugged. At production time, basing the generated .NET modules on
target PBLs is more advantageous, since it minimizes the number of modules that need to be
deployed.

Incremental rebuilds are supported for deployment to remote servers as well as for MSI file
generation. In addition to saving time on deployment, the generation of .NET modules is
especially beneficial for smart client Windows Forms applications, because the modules can
reduce the size of the assembly files that need to be updated.

PBD Generation
In addition to .NET modules or assemblies, PowerBuilder can generate PBD files for
application PBLs containing DataWindow, Query, or Pipeline objects.

Pipeline objects are supported in Windows Forms targets, but are not currently supported in
Web Forms targets or in the .NET component targets. The PBD files are linked as external
resources with the generated .NET modules and assemblies.

If you use incremental builds for your Windows Forms or Web Forms targets, the PBD files are
generated only for selected PBLs in which modifications have been made to DataWindow,
Query, or Pipeline objects. For these target types, the PBD files are generated in a “pbd”
subdirectory of the TargetName.pbt_build directory. The PBD files are deployed together
with the generated .NET modules or assemblies. On deployment, they are not deleted from

Compiling, Debugging, and Troubleshooting

214 PowerBuilder

this subdirectory since they are used to check for changes during subsequent incremental
builds.

If you use full builds, PBD files are always generated for selected PBLs containing
DataWindow, Query, or Pipeline objects even when there are no changes to these objects—
although you can prevent generation by clearing the check box next to the PBL name on the
Library Files tab page of the Project painter. Since you cannot use incremental builds
with .NET component targets, PBD files are always generated by default for these target
types.

Triggering Build and Deploy Operations
PowerBuilder lets you trigger build and deploy operations when you run or debug a .NET Web
Forms or Windows Forms project.

By default, when you click the running man or debugging icon in the PowerBuilder toolbar, or
select Run from a project menu or context menu for one of these target types, PowerBuilder
determines if there is a corresponding build directory for the selected target. If there is,
PowerBuilder checks whether the .NET modules in the build directory are consistent with the
latest changes to each object in your current application.

If implementation or interface changes are detected or if the build directory does not exist for
the current target, PowerBuilder displays a message box that tells you the project is out of date
and that prompts you to redeploy the project. The message box has three buttons (Yes, No, and
Cancel) and a check box that lets you prevent the display of the message box the next time you
click or select run or debug.

If you click Yes in the message box, PowerBuilder builds the project using an incremental or
full rebuild—depending on the current rebuild scope—and then redeploys it, using the current
project’s deployment specifications. If you click No in the message box with the
redeployment prompt, PowerBuilder attempts to run or debug the currently deployed target
even though it is out of date. Clicking Cancel terminates the run or debug request.

If you select the Do not ask me again check box and then click Yes or No, PowerBuilder
modifies a drop-down list selection on the General tab of the System Options dialog box.

System Option
Select an option to determine whether a message box appears if you run or debug a project
when it is out of date.

The On click Run, if .NET application projects are out of date drop-down list on the General
tab of the System Options dialog box controls the appearance of a message box when a project
is out of date.

This table describes the selections available in the drop-down list:

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 215

Table 15. Drop-down list selections for incremental builds

Selection Effect when you click or select Run or Debug

Ask me (Default selection.) Causes a message box to appear if the current project
has been modified since the last time it was deployed, or if it has never been
deployed before.

Always redeploy Always redeploys a project before running or debugging it. It first rebuilds
the project using the rebuild scope set in the Project painter.

Never redeploy Never redeploys a project before trying to run it, although it does deploy a
project that has not been previously deployed, and then attempts to run or
debug that project. (Do not use this option to debug a project that you have
previously deployed.)

The message box that prompts you to redeploy an out-of-date project appears only when the
drop-down list selection is “Ask me.” This selection changes automatically to “Always
redeploy” if you click Yes in the message box when the “Do not ask me again” option is
selected. It changes to “Never redeploy” if you click No. You can always reset the option from
the System Options dialog box.

Incremental Build Processing
When you save recently edited code, the PowerBuilder IDE invokes the PowerScript compiler
to get information for updating the System Tree and the property sheet.

There are basically three kinds of changes that the compiler handles:

• Implementation changes, such as modifications to a function body or to the properties of a
class.

• Interface changes, such as the removal of a function or the modification of a function
prototype.

• Data changes, including edits made to a DataWindow, Query, or Pipeline object.

The IDE collects the information that has changed, performs a full or incremental PowerScript
rebuild, and passes the necessary information to the pb2cs .NET translator. If the PowerScript
compiler reports any errors the IDE does not invoke the .NET translator.

An interface change that is successfully compiled by the PowerScript compiler and then
passed to pb2cs can also affect code in classes that are compiled in a different .NET module of
the same target. In this case, if you rebuild the project using the incremental rebuild process,
the .NET runtime throws an exception when you try to run the application.

PowerBuilder catches and translates .NET runtime exceptions to error messages describing
the exception source. Before redeploying the application, you can correct this type of error by
changing the PowerScript code based on the contents of the error message or by performing a
full rebuild. If there are many places in other .NET modules affected by the interface change, it
is best to do a full rebuild.

Compiling, Debugging, and Troubleshooting

216 PowerBuilder

If you only make data changes to DataWindow objects before an incremental rebuild,
the .NET rebuild process is skipped entirely and only application PBD files are redeployed.

Debugging a .NET Application
After you have deployed a PowerBuilder Web Forms or Windows Forms application, you can
debug it.

1. To open the debugger, you can:

• Right-click the target or project in the System Tree and select Debug from its context
menu.

• Open the project to debug, and select Design > Debug Project from the Project painter
menu bar.

• Make sure the application you want to debug is current and select Debug
applicationName in the PainterBar.

2. To start the debugging process:

• From the Debugger toolbar, select Start applicationName .
• From the Debugger menu, select Debug > Start applicationName.

Attaching to a Running Windows Forms Process
For Windows Forms projects, you can start your deployed application from its executable file
before starting the debugger, and then attach to the running process from the debugger.

To attach to a process that is already running:

1. In the Project painter, select Run > Attach to .NET Process.

2. In the dialog box that opens, select the process you want to attach to.
After you attach to the process, it starts running in the debugger and you can set
breakpoints as you normally do.

Next

Select Run > Detach to detach from the process. This gives you more flexibility than simply
using just-in-time (JIT) debugging.

.NET Debugger Restrictions
The .NET debugger supports most features of the debugger for standard PowerBuilder
applications, including expression evaluation and conditional breakpoints.

It does not support the Objects in Memory view or variable breakpoints, which are not
supported in .NET. Local variables that are declared but not used do not appear in the Local
Variables view in .NET targets.

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 217

Additional debugging restrictions include the following:

• Debugger icons appear in .NET Web Forms projects — when you close a .NET Web Forms
application that is being debugged, the Stop Debugging icon remains enabled in the
debugger, and the StartDebugging icon is disabled.

• Single-stepping between events — in the .NET debugger, when you step into a statement
or function in an event script, the debugger shows the next line of code. However, if you
step into a different event script, the debugger continues execution to the next breakpoint.
Add a breakpoint to each event that you want to debug.
For example, if you have set a breakpoint in the application's Open event, and the script
opens a window, the debugger does not step into the window's Open event. You should set a
breakpoint in the window's Open event or in a user-defined event that is called from the
Open event.

• Setting breakpoints in modified code — if you modify your code after successfully
debugging a .NET application, you must redeploy the application before you debug it
again. Although you can still set breakpoints in modified lines of code before you redeploy
an application, the debugger debugs only the last deployed version of your application.

• Server support restrictions for .NET Web Forms projects — the .NET debugger does not
support IIS 6 if the maximum number of worker processes is set to greater than one. This is
because it cannot determine whether the process to be debugged is newly created or is
recycled from a pool of worker processes. (The debugger must attach to the worker process
in Web garden mode.) It also does not support the Cassini Web server that ships with .NET
Framework.

• Multiple applications using the same PBLs — when you run or debug a Web Forms
application, its PBLs can remain cached in the ASP.NET process. If you then try to debug a
second Web Forms application that shares a PBL with the first application, the ASP.NET
process lets the debugger know that the first module is loaded and the debugger binds to
breakpoints in that module.
In this case, the debugger never binds to breakpoints in the second application. You can
avoid this issue by not sharing PBLs among Web Forms projects or by restarting IIS before
you begin debugging.

• Remote debugging — debugging of Web Forms or Web Service targets is not supported for
applications or components deployed to remote IIS servers.

For information about standard PowerBuilder debugger features, see Users Guide >
Debugging an application.

Release and Debug Builds
If you choose to compile an application or component as a debug build, an extra file with the
extension .PDB is generated in the output directory, and additional information is included in
the Output window.

Select a build type for your application or component on the General page in the Project
painter. If you want to stop at breakpoints in your code, you must use a debug build. Select a
release build when your application is ready to distribute to users.

Compiling, Debugging, and Troubleshooting

218 PowerBuilder

DEBUG Preprocessor Symbol
Enable the DEBUG preprocessor symbol if you want to add code to your application to help
you debug while testing the application.

This is a selection on the General tab of the Project painter. Although you do not typically
enable the DEBUG symbol in a release build, if a problem is reported in a production
application, you can redeploy the release build with the DEBUG symbol enabled to help
determine the nature or location of the problem.

When the DEBUG symbol is enabled, code that is enclosed in a code block with the following
format is parsed by the pb2cs code emitter:
#if defined DEBUG then
 /*debugging code*/
#else
 /* other action*/
#end if

Note: When you use the DEBUG symbol, you can add breakpoints in the DEBUG block only
for lines of code that are not in an ELSE clause that removes the DEBUG condition. If you
attempt to add a breakpoint in the ELSE clause, the debugger automatically switches the
breakpoint to the last line of the clause defining the DEBUG condition.

In the previous pseudocode example, if you add a breakpoint to the comment line “/* other
action*/”, the breakpoint automatically switches to the “/*debugging code*/”
comment line.

This figure shows the context menu item that you can use to paste the #If Defined DEBUG Then
template statement in the Script view:

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 219

For information about using preprocessor symbols such as DEBUG, see Conditional
Compilation on page 173.

Breaking into the Debugger When an Exception is Thrown
When an application throws an exception while it is being debugged, the debugger sees the
exception before the program has a chance to handle it.

The debugger can allow the program to continue, or it can handle the exception.

This is usually referred to as the debugger’s first chance to handle the exception. If the
debugger does not handle the exception, the program sees the exception. If the program does
not handle the exception, the debugger gets a second chance to handle it.

You can control whether the debugger handles first-chance exceptions in the Exception
Setting dialog box. To open the dialog box, open the debugger and select Exceptions from the
Debug menu. By default, all exceptions inherit from their parent, and all are set to Continue.

This figure shows the DWRuntimeError exception has been set to Break into the debugger:

Compiling, Debugging, and Troubleshooting

220 PowerBuilder

When this exception is thrown, a dialog box lets you choose whether to open the debugger or
pass the exception to the program.

Debugging a .NET Component
You can debug .NET components as well as .NET applications that you build in PowerBuilder.

.NET Assembly component
You can run or debug an assembly project from the PowerBuilder UI if you fill in the
Application field (and optionally, the Argument and Start In fields) on the project Run tab in
the Project painter. SeeVersion, Post-build, and Run tab on page 161 for a description of the
Run tab fields for a .NET Assembly project.

.NET Web Service component
When you start the debugger and Internet Explorer is listed as the application to run a Web
Service project, a browser test page opens with links to the Web services deployed from your
project.

Using the DEBUG symbol
If you used the DEBUG conditional compilation symbol in code for the nonvisual objects you
deploy as a Web service and you want this code to run, you must make sure that the enable
DEBUG symbol check box is selected before you deploy the project. If you plan to debug the
assembly or Web service, you should make sure the project is deployed as a debug build.

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 221

If you use a PowerBuilder .NET Windows Forms or .NET Web Forms application to debug
the .NET component project, you must copy the generated PDB file containing the DEBUG
symbols for the component to the deployment directory of the .NET Windows Forms or .NET
Web Forms application. Otherwise it is likely that the debugger will not stop at breakpoints in
the assembly that you generate from the .NET component project.

Troubleshooting .NET Targets
Troubleshooting tips for PowerBuilder .NET applications and components can help you
diagnose and correct deployment and runtime errors.

Troubleshooting Deployment Errors
The deployment process has two steps: the PowerBuilder-to-C# emitter (pb2cs) runs, then the
project is compiled.

Errors are written to the output window, and the progress of the deployment process is written
to the DeployLog.txt file.

PB2CS errors
If pb2cs fails, make sure that:

• The pbc2cs.exe file is present in the PowerBuilder 12.5\DotNET\bin
directory and is the version distributed with the current PowerBuilder release.

If pb2cs fails and your application has any objects or controls whose names include dashes,
open a painter with a Script view and select Design>Options from the menu bar. Make sure the
Allow Dashes in Identifiers option is selected on the Script page in the Design Options dialog
box.

If your application uses local structures in inherited objects, the .NET project might fail to
deploy. To deploy the project successfully, replace all local structures defined in inherited
objects with global structures. Also, your application must not include calls to functions, such
as ToString, on primitive .NET datatypes, such as System.String, that map to PowerBuilder
datatypes. See Datatype Mappings on page 179 for a list of datatype mappings from .NET to
PowerBuilder.

If your application uses conditional compilation blocks, see Limitations on page 187 to make
sure that you have not used any .NET classes, interfaces, or methods in ways that are not
supported. See also Best Practices for .NET Projects on page 201 and Design-Level
Considerations on page 204.

Errors that display in the Output window with a C0 prefix, such as error C0312, are generated
by the PowerBuilder compiler. There is a link from these errors back to the source code in
PowerBuilder painters. Explanations for PowerBuilder compiler errors can be found in the
online help.

Compiling, Debugging, and Troubleshooting

222 PowerBuilder

Build errors
If there is a build failure, make sure the 2.0 version of the .NET Framework is installed and is
listed in your PATH environment variable before any other versions of the .NET Framework.

Errors that display in the Output window with a CS prefix, such as error CS0161, are generated
by the Microsoft C# compiler. There is no link from these errors back to the source code in
PowerBuilder painters. Explanations for C# compiler errors can be found at the Microsoft
Web site.

Troubleshooting Runtime Errors
If a Web Forms application shows a blank page, or if any .NET application or component
produces unexpected errors, make sure that the PowerBuilder runtime files on the target
computer or server have the same version and build number as the PowerBuilder files on the
development computer.

Troubleshooting Tips for Web Forms Applications
Review the suggestions in this section if you experience difficulty deploying, running, or
updating a Web Forms application.

Also review the known issues listed in the PowerBuilder Release Bulletin.

Web Forms Deployment Errors
Inadequate write permissions for a deployment directory, or a deployment computer with a
hyphen in its name, may prevent you from deploying Web Forms applications.

Using a local machine alias
You can deploy a Web Forms project to a local IIS server using “localhost” or one of the
following aliases:

• Machine name
• Machine IP address
• 127.0.0.1 (the generic DNS address for the local computer)

However, in order to use the machine IP address or the generic DNS address for the local
machine, you must share the wwwroot directory as “wwwroot$” and enable write permissions
for this directory.

Host name issue
Web Forms deployment fails with an “IIS Server not found” error when the host name of the
computer running IIS contains a hyphen. You must remove the hyphen from the computer
name before deployment can be successful.

Vista or later platform requirement
If you are deploying .NET applications from a computer with a Vista or later operating system,
you must run PowerBuilder as the computer administrator.

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 223

http://msdn.microsoft.com/en-us/library/ms228296(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms228296(VS.80).aspx

Browser Error Messages
Runtime errors for Web Forms applications are often posted in the client browser.

Null reference exception
The “Object reference not set to an instance of an object” error message might display in a
client browser for a Web Forms application if the application uses an unsupported version of
the .NET Framework. The error message description indicates that “an unhandled exception
occurred during the execution of the current web request,” and the exception details display a
“System.NullReferenceException”.

You can resolve this type of error by opening a command window on the server, changing
directories to the Microsoft.NET\Framework\v2.0.50727 directory in the Windows system
path, and typing the following command: aspnet_regiis -i. This upgrades all IIS
scriptmaps to use the 4.0 release version of ASP.NET. After running this command and
restarting the server, the error message should no longer display.

Could not load <Global.app>
This error is usually due to an incorrect ASP.NET or IIS configuration setup. To resolve this
issue, make sure .NET Framework 4.0 is installed on the server computer, register ASP.NET
4.0 with IIS by running aspnet_regiis.exe -I from the .NET Framework 4.0
directory, and make sure ASP.NET 4.0 is the version set for your Web application in the IIS
Manager. You might also need to restart IIS.

Exception from HRESULT: 0x8007007E
This error can be caused by different versions of PowerBuilder .NET assemblies in the server
environment. To resolve this issue, remove extra copies of PowerBuilder .NET assemblies
from the Global Assembly Cache (GAC), leaving only the latest copies of each assembly.

Page cannot be displayed
This error is also known as the “404 file not found” error. If you see this error, make sure all the
application files and folders have been generated under the wwwroot directory on the IIS
server computer. If you are using a TCP port number other than 80 (the default port number),
you must include the port number in the URL for the Web Forms application.

If you are trying to open the page from a remote client, ping the server to make sure it is
accessible. If the firewall is on for the server you are accessing, turn it off and open the page
again.

File not found exception
After successfully deploying a Web Forms application, you might see an error such as the
following when you try to run the application:
System.IO.FileNotFoundException: The specified module could
not be found. This is typically because IIS cannot locate PowerBuilder runtime DLLs,
such as pbdwmversion.dll or pbshrversion.dll, or the Microsoft Visual C++

Compiling, Debugging, and Troubleshooting

224 PowerBuilder

runtime libraries msvcr71.dll, msvcp71.dll, msvcp100.dll, msvcr100.dll,
and the Microsoft .NET Active Template Library (ATL) module, atl71.dll. To resolve
this issue, make sure the DLLs are available on the server and that the directory where the
DLLs are located is included in the system path on the server.

Unexpected error was thrown
When a runtime JavaScript error occurs, the application terminates and the following error
message displays: “Unexpected error was thrown, the browser will be closed!” Using a
column or field that has a JavaScript keyword for its name can cause this type of error.

Failure to Connect to a Database
Limited access rights for ASP.NET users is a common cause for the inability to connect to a
database from a Web Forms application.

DSN
Due to limited access rights of ASP.NET user and user group accounts, data sources created as
User DSNs may not be loaded. You must create the data sources for your Web Forms
application as System DSNs.

Oracle
The appropriate user or user group must be granted full control rights to the Oracle Client
directory. For example, if the Oracle client is installed in the c:\oracle\ora9 directory, the
ASPNET user (IIS 5), the IIS_WPG user group (IIS 6), or the IIS_IUSRS user group (IIS 7 and
7.5) must have full control rights to this directory.

SQL Anywhere
To launch a SQL Anywhere database automatically from a Web Forms application, the
appropriate user or user group must be granted at least read and execution rights to the
directory indicated by the SQLANY10 or ASANY9 environment variable. The ASPNET
user, the IIS_WPG user group, or the IIS_IUSRS user group must also have full control
privileges to the directory that contains the database.

Database connections using an INI file
If your application uses an INI file to get database connection information, make sure to add
the INI file to the resource file list of your .NET Web Forms project before you deploy it.

JDBC connections
If an error message indicates that the Java VM cannot be initialized, make sure that the system
CLASSPATH and JAVA_HOME environment variables have been set correctly. If an error
message indicates that you are attempting to read from or write to protected memory, make
sure the ASPNET user, the IIS_WPG user group, or the IIS_IUSRS user group has at least
read, execute, and list folder contents permissions for the vendor's JDBC directory.

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 225

After making any changes to the directory permissions or system environment variables,
restart the IIS service and either ASPNET_WP.EXE (IIS 5) or W3WP.EXE (IIS 6, IIS 7, and
IIS 7.5). Alternatively, you can restart the IIS server to make sure that the changes take effect.

DataWindows Are Not Visible
Make sure the PBL files that contain the DataWindows used by a Web Forms application are
copied to the directory specified by the PBLibDir global property.

By default, the PBLibDir global property assigns C:\~PL_ as the directory for application
PBL files. This corresponds to the File\Common\C\~PL_ subdirectory of the
applicationName_root directory in the server’s virtual file system path.

On Vista and later, TreeView DataWindows are not visible if you have not given the
IIS_IUSRS group full permissions (including write and delete) to application directories. See
Application Directory Permissions on page 13.

Pictures Are Not Visible
Before you deploy a .NET Web Forms project, make sure you add all picture files used by the
application to the resource file list for the project.

Resource files might not be accessible if you change the default value for the initial current
directory of the virtual file system for the Web Forms project. The default value in the .NET
Web Forms Application wizard is the current target path. Modifying the PBCurrentDirectory
global property in the project’s ASP.NET configuration settings or directly in the
Web.config file might also make the resource files inaccessible.

Excessive Flickering on Web Page
A Web Forms application user might encounter excessive flickering in an application if a
default browser setting has been changed.

When this occurs, the user must select the “Enable page transitions” check box on the
Advanced tab of the Internet Options dialog box to minimize or eliminate the flickering
problem. The user can open the Internet Options dialog box from the Tools menu of Internet
Explorer.

Posted Events Are Not Executed
If you post an event in a response window that closes the response window, and call posted
events in the Open event for a main window that displays when the response window is closed,
the posted events in the Open event are not executed.

This is due to a limitation of the threading model in Web Forms applications.

To make sure that the posted events of the main window are executed, close the response
window directly in a triggered event rather than in a posted event. Alternatively, move the code
from posted events in the main window to events that are triggered directly by the user.

Compiling, Debugging, and Troubleshooting

226 PowerBuilder

External DLLs Do Not Load
Make sure the DLLs you want to load are copied to the bin subdirectory of the main Web
Forms application directory in the server’s virtual file system path.

Print Failure
Some PowerScript print functions are not supported in the current release. If your applications
saves or exports DataWindows as PDF or XSL-FO files, make sure you read the instructions
for installing the appropriate printing software on the Web Forms server.

See Requirements for Saving Files in PDF or XSL Format on page 54.

Log Files
A PowerBuilder application that compiles successfully with the PowerBuilder native
compiler might not compile successfully with the PowerBuilder to .NET compiler. Log files
help you trace compiler and runtime errors.

Log.txt
At deployment time, PowerBuilder logs all compilation errors and warnings into the
application’s log.txt file. The PowerBuilder to .NET compiler is stricter than the
PowerBuilder native compiler, as described in Best Practices for .NET Projects on page 201. If
deployment fails, or if issues occur at runtime, review the errors and warnings in the
log.txt file.

Pbtrace.log
At runtime, a Web application logs all exceptions in the pbtrace.log file located in the
applicationName_root\log directory. You can look into the call stack when an exception is
thrown and map the call stack back to PowerScript code, from which you might find the root
cause of any runtime errors.

Problems with IIS 7.5
When you deploy a PowerBuilder Web Forms application to IIS 7 or later, the application is
deployed to a PowerBuilder-specific application pool named PBDotnet4AppPool.

PBDotnet4AppPool uses the default application pool identity, which is NetworkService on
IIS 7, and ApplicationPoolIdentity on IIS 7.5. However several Web Forms application
features, including the creation of permanent user accounts, SSL authentication, and
DataWindow Print and SaveAs commands, do not work with the default IIS 7.5 application
pool identity. To enable these features, you must change the PBDotnet4AppPool application
pool identiity to NetworkService.

See Changing Application Pool Identity for IIS 7.5 on page 12.

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 227

Troubleshooting Tips for Windows Forms Applications
Review the suggestions in this section if you experience difficulty deploying, running,
publishing, or updating a Windows Forms application.

Make sure you have installed the .NET Framework and SDK as described in System
Requirements for .NET Windows Forms Targets on page 121, and review the known issues for
Windows Forms applications listed in the PowerBuilder Release Bulletin.

Runtime Errors
The application might not run correctly when you select Design > Run Project in the Project
painter, when you run the executable file in the deployment folder, or when a user runs the
installed application.

When you or a user runs the executable file, PowerBuilder creates a file called
PBTrace.log in the same directory as the executable. This file can help you trace runtime
errors. It can be configured by editing the appname.exe.config file, where appname is
the name of the executable file:
 <appSettings>
 <!-- The value could be "enabled" or "disabled"-->
 <add key ="PBTrace" value ="enabled"/>
 <!-- The target can be File, EventLog or File|EventLog -->
 <add key ="PBTraceTarget" value="File"/>
 <!-- If the Target is File, PBTraceFileName should also be
 specified.-->
 <add key ="PBTraceFileName" value ="PBTrace.log"/>
 <!-- EventLogId is optional(0 is default), and it only
 works when EventLog is enabled-->
 <add key ="PBEventLogID" value ="1101"/>

 ...

The following problems might also occur:

• If the application cannot be launched from another computer, make sure the required
PowerBuilder runtime files, pbshr125.dll and pbdwm125.dll, and the Microsoft
runtime files on which they depend, at71.dll, msvcp100.dll,
msvcr100.dll,msvcp71.dll, and msvcr71.dll, are available on the other
computer and in the application’s path.
If the executable file is located on a network path, the .NET Framework must be configured
to have Full Trust permissions at runtime. See Setting Full Trust Permissions on page
132.

• If the application cannot connect to a database, make sure that the required PowerBuilder
database interface, such as pbodb125.dll, has been added to the Win32 dynamic
library files section of the Library Files tab page and that the required client software is
available on the target computer. If the application uses a configuration file, such as

Compiling, Debugging, and Troubleshooting

228 PowerBuilder

myapp.ini, select it on the Resource Files tab page. For ODBC connections, make sure
that the DSN file is created on the client.

• If no data displays in DataWindow objects, select the PBLs that contain them on the
Library Files tab page.

• If graphics fail to display, select them on the Resource Files tab page.

Publish Errors
There are two steps in the publication process. First, publish files are generated, and then they
are transferred to the publish location. Publish errors are displayed in the Output window and
recorded in a file called pbiupub.log in the output directory.

These errors may be reported during file generation:

• Failure to create local folder structure — check that you have permission to create a folder
in the specified directory.

• Failure to generate application manifest file — check that the .NET Framework SDK bin
directory is in your PATH environment variable. If a certificate file is specified, check that
it exists in the specified location and is a valid certificate.

Note: Use different output paths for multiple projects. If you create more than one
Windows Forms project for a single application, make sure you specify a different output
path on the General page for each project. If you do not, the application manifest files
generated for each project conflict with each other.

These errors may be reported during file transfer:

• Publish location is a Web server: http://servername/appname — check that servername
and the development computer are in the same network domain and that you are in the
administrators group of servername or have write access to the wwwroot directory on
servername.

• Publish location is a file share: \\servername\appname — check that servername and
the development computer are on the same network and that you have write access to the
appname directory on \\servername.

• Publish location is an FTP site: ftp://servername/appname — check that servername
can be accessed using the specified user name and password and that you have write access
to the appname directory on \\servername.

You should also check that the publish location name is typed correctly, that the
PBNET_HOME environment variable is set correctly, and that network connections are
working correctly.

Installation Errors
If installation on the client computer fails, troubleshoot the problem by verifying files,
locations, and network connections.

Make sure that:

Compiling, Debugging, and Troubleshooting

Deploying Applications and Components to .NET 229

• The files exist in the location specified on the server.
• The link on the publish page matches the location where the files have been published.
• The user has access rights to the publish server.
• There is sufficient space on the user’s computer.
• The network connection to the publish server is working correctly.
• You have not used localhost as the publish or install location.

If the publish page fails to open on the client, check the firewall settings on the publish server.
The firewall must be turned off on the server.

If the setup.exe file is not downloaded when a prerequisite is selected, open the Properties
dialog box for the HTTP directory in IIS Manager and make sure the script source access
permission is enabled. If the Execute Permissions property is not set to Scripts only, select
Scripts only from the drop-down list and refresh the server.

Update Errors
If update fails, make sure that the update mode has been set as intended, and that the update
files are in the specified location.

Compiling, Debugging, and Troubleshooting

230 PowerBuilder

Appendix

The appendix describes custom permissions you can set on the Security tabs of Web Forms,
Web Service, and Windows Forms projects.

Custom Permission Settings
You can set custom permissions for .NET Windows Forms and Web Forms applications, and
for .NET Web Service components, in the Project painter Security tab.

Most of the permission classes that you can customize are defined in the
System.Security.Permissions namespace. For more information on these permission classes,
see the Microsoft Web site at http://msdn.microsoft.com/en-us/library/
system.security.permissions.aspx.

Adding Permissions in the .NET Framework Configuration Tool
The list of permissions that display in the Security tab permissions list box is the same as the
list in the "Everything" permission set of the .NET Framework 4.0 SDK Configuration tool
runtime security policy.

To add permission settings that are not in the custom permissions list:

1. Close PowerBuilder if it is open, and create an XML file with the permission settings you
want to add.

For example, by default, the SMTPPermission setting is not included in the assigned
permissions in the "Everything" permission set. To create this permission, save a file
named SMTPPermission.xml with the following content:

<IPermission class="System.Net.Mail.SmtpPermission, System,
Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1" Unrestricted="true"/
>

2. Open the .NET Framework SDK Configuration tool from the Administrative Tools folder
in your computer Control Panel.

3. In the left pane of the configuration tool, select My Computer > Runtime Security
Policy > Machine > Permission Sets > Everything, then select the Action > Change
Permissions menu item.

4. In the Create Permission Set dialog box, click Import to open the Import a Permission
dialog box, browse to the SMTPPermission.xml file, and click OK.

5. Click Finish, close the configuration tool, and open a .NET project in PowerBuilder to the
Security tab page.

Appendix

Deploying Applications and Components to .NET 231

http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx
http://msdn.microsoft.com/en-us/library/system.security.permissions.aspx

The SMTPPermission displays in the list box of the Security tab page. You can scroll the
list to see it when you select any radio button option other than Full Trust.

EnvironmentPermission
In a .NET Windows Forms application, you must have minimal “Read”
EnvironmentPermission settings if your application uses the GetContextKeywords function.

The default setting is “Unrestricted=’true’” when the EnvironmentPermission check box is
selected on the Security tab of the Project painter, although you can change this to “Read” and
still use the GeContextKeywords function. If you modify the setting to “Write” or
“NoAccess”, GetContextKeywords will fail.

Table 16. EnvironmentPermission required in Windows Forms

System function Permission required

GetContextKeywords Read

You can customize the EnvironmentPermission setting to allow the use of the
GetContextKeywords function in XML, as in this sample setting:

<IPermission
class="System.Security.Permissions.EnvironmentPermission, mscorlib,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
version="1"
Read="Path " />

EventLogPermission
EventLogPermission settings are required for the PBTraceTarget global property for .NET
targets.

You can set this property on the Configuration tab of the Project painter for Web Forms and
Web Service targets. For Windows Forms targets, you must set this after deployment in the
appname.exe.config file (where appname is the name of the executable file).

Table 17. EventLogPermission required in .NET targets

Global .NET property Permission required

PBTraceTarget when the value is set to file Windows Forms: Pbtrace.log FileIO per-

mission asserted by default in runtime library
Web Forms: appname_root\log
\pbtrace.log FileIO permissions added

by default when property set in IDE

PBTraceTarget when the value is set to EventLog Administer

Appendix

232 PowerBuilder

In Windows and Web Forms targets, if PBTraceTarget is set to "EventLog", the application
needs Administer permission to write to the log. You can set this in Security tab as follows:

<IPermission class=" EventLogPermission" version="1">
 <Machine name="testmachine" access="Administer"/>
</IPermission>

FileDialogPermission
FileDialogPermission settings are required for the GetFileOpenName and GetFileSaveName
functions in Windows Forms targets.

Table 18. FileDialogPermission required in Windows Forms

System function Permission required

GetFileOpenName Open or OpenSave (unrestricted FileIOPermis-
sion also required)

GetFileSaveName Save or OpenSave (unrestricted FileIOPermis-
sion also required)

FileIOPermission
FileIOPermission settings are required for PowerScript system functions in Windows Forms
targets.

Permission requirements in Web Forms
For Web Forms targets, file-releated functions require Read, Write, Append and
PathDiscovery permissions on the appname_root directory. For print-related functions,
you must set the PrintingPermission value to AllPrinting, in addition to setting Read, Write,
and PathDiscover permissions on the appname_root/print directory.

Appendix

Deploying Applications and Components to .NET 233

Permission requirements for Windows Forms

Table 19. FileIOPermission required for system functions in Windows Forms

System function Permission required

AddToLibraryList,DirectoryExists ,
FileEncoding, FileExists, FileLength,
FileLength64, FileRead, FileReadEx,
FileSeek, FileSeek64, LibraryDirecto-

ry, LibraryDirectoryEx, LibraryEx-

port, PrintBitmap, ProfileInt, Profile-

String, SetProfileString, SetLibrary-

List, ShowHelp, ShowPopupHelp,
and XMLParseFile

Read

FileWrite, FileWriteEx, RemoveDirec-

tory, LibraryCreate, LibraryDelete,
and LibraryImport

Write

FileDelete Read and Write

FileOpen When the FileAccess argument is Read!

• Read permission for file named in FileName (first) ar-
gument

When the FileAccess argument is Write!

• Append and Write permission when the WriteMode ar-
gument is Append!

• Read and Write permission when the WriteMode argu-
ment is Replace!

FileCopy (string s, string t) Read for the source file (first) argument; Write for the target
file (second) argument

FileMove (string s, string t) Read and Write for the source file (first) argument; Write for
the target file (second) argument

GetFolder Unrestricted

GetCurrentDirectory PathDiscovery for the current directory

CreateDirectory (string d) Read for the parent directory; Write for the directory name
argument

This table shows the required FileIOPermission settings for object and control functions in
Windows Forms targets.

Appendix

234 PowerBuilder

Object or control Function or property Permission required

Animation AnimationName Read

DataWindow SaveAsAscii , SaveAsFormattedText , Sa-

vInk , SaveInkPicture

Write

ImportFile Read permission if the
(usually second) file name
argument is supplied; if
file name argument is emp-
ty or null, requires Open-
Save FileDialogPermis-
sion and Unrestricted Fil-
eIOPermission

SaveAs Write permission if the
(usually second) file name
argument is supplied; if
file name argument is emp-
ty or null, requires Open-
Save FileDialogPermis-
sion and Unrestricted Fil-
eIOPermission

DataWindow (RichText
only)

InsertDocument Read

DataStore ImportFile Read

SaveAs, SaveAsAscii , SaveAsFormat-

tedText , SavInk , SaveInkPicture

Write

DragObject DragIcon property Read

DropDownListBox, List-
Box

DirList (string s, uint filetype) Read and PathDiscovery
for the file specification
(first) argument

DropDownPictureList-
Box, PictureListBox

AddPicture, and PictureName property Read

DirList (string s, uint filetype) Read and PathDiscovery
for the file specification
(first) argument

Graph ImportFile Read

Appendix

Deploying Applications and Components to .NET 235

Object or control Function or property Permission required

SaveAs Unrestricted for function
with no arguments; Write
on the file name (first) ar-
gument for function with
arguments

InkPicture PictureFileName property Read

LoadInk Read and Write for the file
(first) argument

LoadPicture Read for the file (first) ar-
gument

Save, SaveInk Write for the file (first) ar-
gument and for the current
temporary file directory

Listview AddLargePicture, AddSmallPicture, Add-

StatePicture, and LargePictureName,
SmallPictureName, StatePictureName
properties

Read

Picture PictureName property Read

PictureButton DisabledName, PictureName properties Read

RichTextEdit InsertDocument, InsertPicture Read

SaveDocument Write

Treeview AddPicture, AddStatePicture, and Pictur-
eName, StatePictureName properties

Read

UserObject PictureName property Read

This XML example gives Read access to two files and write access to one of those files:

<IPermission class="System.Security.Permissions.FileIOPermission,
mscorlib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1" Read="d:\test.txt;c:
\demo.jpg" Write="c:\demo.jpg" />

This example for a Web Forms application grants Read, Write, Append, and PathDiscovery
permissions to the main deployment and root directories for the MyWebApp application:

<IPermission class="FileIOPermission" version="1"
Read="MyWebApp_root;MyWebApp" Write="MyWebApp_root;MyWebApp"

Appendix

236 PowerBuilder

Append="MyWebApp_root;MyWebApp"
PathDiscovery="MyWebApp_root;MyWebApp"/>

PrintingPermission
PrintingPermission settings are required for PowerScript system functions in Windows Forms
targets.

Permission requirements for system functions

Table 20. Printing Permission required for system functions in Windows Forms

System function Permission required

Print, PrintBitmap, PrintCancel, PrintClose,
PrintDataWindow, PrintDefineFont, PrintGet-

Printer, PrintScreen, PrintSend, PrintSetFont,
PrintSetSpacing, PrintLine, PrintOpen. PrintOv-

al, PrintPage, PrintRect, PrintRoundRect, Print-

SetupPrinter, PrintText, PrintWidth, PrintX,
PrintY

DefaultPrinting or AllPrinting

PrintGetPrinters, PrintSetPrinter, PrintSetup AllPrinting

This table shows the required PrintingPermission settings for object and control functions in
Windows Forms targets.

Table 21. PrintingPermission required for object or control functions in
Windows Forms

Object or control Function or property Permission required

DataWindow Print with no arguments DefaultPrinting or AllPrinting

Print (canceldialog, true) AllPrinting

DataStore Print DefaultPrinting or AllPrinting

DragObject Print DefaultPrinting or AllPrinting

RichTextEdit PrintEx (cancelDialog) DefaultPrinting or AllPrinting

Window Print DefaultPrinting or AllPrinting

This example allows printing to the default printer and the use of a restricted printer selection
dialog box:

<IPermission
 class="System.Drawing.Printing.PrintingPermission, System.Drawing,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
version="1" Level="DefaultPrinting"/>

Appendix

Deploying Applications and Components to .NET 237

ReflectionPermission
ReflectionPermission settings are required for PowerScript reflection functions and objects
in .NET targets.

Table 22. ReflectionPermission required in .NET targets

System function or object Permission required

FindClassDefinition, FindTypeDefinition TypeInformation

ScriptDefinition object TypeInformation

This permission setting in Windows Forms targets allows reflection for members of a type that
are not visible:

 <IPermission class=
 "System.Security.Permissions.ReflectionPermission,
 mscorlib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Flags="TypeInformation" />

This permission setting in Web Forms targets allows reflection for members of a type that are
not visible:

 <IPermission class="ReflectionPermission" version="1"
 Flags="TypeInformation"/>

RegistryPermission
RegistryPermission settings are required for system registry functions and MLSync object
functions in .NET targets.

Table 23. Required RegistryPermission settings for system functions

System function Permission required

RegistryGet, RegistryKeys, Registry-

Values

Read

RegistrySet Write; if registry key does not exist, requires Create

RegistryDelete Read and Write

This table shows the required RegistryPermission settings for MLSync object functions
in .NET targets:

Appendix

238 PowerBuilder

Table 24. Required RegistryPermission settings for MLSync functions

MLSync function Permission required

GetObjectRevisionFromRegistry, Gets-

SyncRegistryProperties

Read on HKEY_CURRENT_USER registry key

GetDBMLSyncPath Read on the Software\Sybase\SQL Anywhere registry
keys under HKEY_CURRENT_USER and HKEY_LO-
CAL_MACHINE

SetsSyncRegistryProperties Unrestricted on HKEY_CURRENT_USER registry key

This example for a Windows Forms application grants read permission for the
HKEY_CURRENT_USER registry key, which extends to its subkeys:

 <IPermission
class="System.Security.Permissions.RegistryPermission,
 mscorlib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Read="HKEY_CURRENT_USER" />

This example for a Web Forms application grants read permission for the
HKEY_CURRENT_USER registry key, which extends to its subkeys:

 <IPermission class="RegistryPermission" version="1
 Read="HKEY_CURRENT_USER" />

SecurityPermission
Execution permission is required for a SecurityPermission setting on all .NET applications
and for any managed code that you want a user to run.

This table shows the required SecurityPermission settings for functions and objects in
Windows Forms targets.

Table 25. SecurityPermission required in Windows Forms targets

Function, object, property, or
feature

Permission required

OLEControl Unrestricted (or the Full Trust option)

ChangeDirectory, Handle, Post, Restart,
Run, Send

UnmanagedCode

URL (PictureHyperlink and StaticHyper-
link property),

UnmanagedCode

HyperlinkToURL (Inet property) UnmanagedCode

Appendix

Deploying Applications and Components to .NET 239

Function, object, property, or
feature

Permission required

Language interoperation feature Variable permissions required, depending on .NET func-
tion called or property accessed

Win32 API feature UnmanagedCode

This table shows the required SecurityPermission settings for interactions with .NET or
Win32 functions and properties in Web Forms targets.

Table 26. SecurityPermission required in Web Forms targets

Feature Permission required

Language interoperation Variable permissions required, depending on .NET func-
tion called or property accessed

Win32 API UnmanagedCode

This example sets required security permissions for Windows Forms targets:

 <IPermission
class="System.Security.Permissions.SecurityPermission,
 mscorlib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Flags="Assertion, Execution, BindingRedirects,
 UnmanagedCode" />

This example sets required security permissions for Web Forms targets

 <IPermission class="SecurityPermission" version="1"
 Flags="Assertion, Execution, ControlThread,
 ControlPrincipal, RemotingConfiguration,
 UnmanagedCode"/>

SMTPPermission
An SMTPPermission setting is required for the MailSession object log on function in .NET
targets.

Table 27. SMTPPermission required in .NET targets

MailSession object function Permission required

MailLogon Connect (if using default port) or ConnectToUn-
restrictedPort

This permission setting allows a Windows Forms application to log onto a mail session and
receive mail through a default port:

Appendix

240 PowerBuilder

 <IPermission class="System.Net.Mail.SmtpPermission,
 System, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Access="Connect"/>

This permission setting in a Web Forms target allows application users to log onto a mail
provider and receive mail through any available port:

 <IPermission class=" SmtpPermission" version="1"
 Access="ConnectToUnrestrictedPort"/>

SocketPermission
A SocketPermission setting is required for the Connection object ConnectToServer function
in .NET targets.

The SocketPermission class belongs to the System.Net namespace described on the Microsoft
Web site at http://msdn.microsoft.com/en-us/library/system.net.aspx.

Table 28. SocketPermission required in .NET targets

Connection object function Permission required

ConnectToServer Connect

Thispermission setting allows a Windows Forms application to get or set a network access
method:

 <IPermission class="System.Net.SocketPermission,
 System, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1">
 <ConnectAccess>
 <ENDPOINT host="10.42.144.40" transport="Tcp"
 port="2000"/>
 </ConnectAccess>
 </IPermission>

This permission setting allows a Web Forms application to get or set a network access:

 <IPermission class="SocketPermission" version="1">
 <ConnectAccess>
 <ENDPOINT host="10.42.144.40" transport="Tcp"
 port="2000"/>
 </ConnectAccess>
 </IPermission>

Appendix

Deploying Applications and Components to .NET 241

http://msdn.microsoft.com/en-us/library/system.net.aspx

SQLClientPermission
A SocketPermission setting is required for the database connection feature in .NET targets.

Table 29. SQLClientPermission required in .NET targets

Feature Permission required

Database connect (including pipeline functional-
ity for Windows Forms clients)

Unrestricted

This permission setting allows database connections for a Windows Forms application:

 <IPermission class=
 "System.Data.SqlClient.SqlClientPermission,
 System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1"
 Unrestricted="true" />

This permission setting allows database connections for a Web Forms application:

 <IPermission class=" SqlClientPermission" version="1"
 Unrestricted="true" />

UIPermission
The Unrestricted UIPermission setting is required for Windows Forms applications, although
you can customize the setting to use a combination of AllowDrop and AllWindow permission
values.

The UIPermission setting has no effect on WebForms applications.

WebPermission
WebPermission settings are required for features and functions in .NET targets.

The WebPermission class belongs to the System.Net namespace described on the Microsoft
Web site at http://msdn.microsoft.com/en-us/library/system.net.aspx.

Table 30. WebPermission required in .NET targets

Function or feature Permission required

GetURL (Inet function) Connect for urlname argument

PostURL (Inet function) Connect for urlname and serverport arguments

Web Service call feature Unrestricted=“true”

This permission setting allows a Windows Forms application to connect to the Sybase Web
site:

Appendix

242 PowerBuilder

http://msdn.microsoft.com/en-us/library/system.net.aspx

 <IPermission class="System.Net.WebPermission, System,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" version="1">
 <ConnectAccess>
 <URI uri="http://www.sybase.com"/>
 </ConnectAccess>
 </IPermission>

This permission setting allows a Web Forms application to connect to a remote host:

 <IPermission class="WebPermission" version="1">
 <ConnectAccess>
 <URI uri="$OriginHost$"/>
 </ConnectAccess>
 </IPermission>

Custom Permission Types
Permission types that you can customize on the Security tab page of the Project painter
(besides the permissions described elsewhere in this appendix) have no direct impact on
PowerScript functions or properties in .NET targets.

However, if you use the language interoperation feature of PowerBuilder, this may also
require customized permissions for the following permission types:

• ASPNETHostingPermission
• ConfigurationPermission
• DataProtectionPermission
• DNSPermission
• IsolatedStoragePermission
• KeyContainerPermission
• OleDBPermission
• PerformanceCounterPermission
• StorePermission

Appendix

Deploying Applications and Components to .NET 243

Appendix

244 PowerBuilder

Index
.NET applications

bitwise operator support 182
coding restrictions 201

.NET assemblies
importing 121, 178
strong names 17

.NET Assembly
component project 159
component target wizard 157

.NET calls
PowerScript syntax for 176

.NET classes and interfaces
limitations in conditional code 187

.NET compiler 119

.NET enumerations 183

.NET environment
debugging 217, 221
handling exceptions 188
support for language features 181
synchronization 186

.NET Framework SDK 121

.NET generics classes
unsupported 187

.NET language features
support for 181

.NET modules 214

.NET primitive types 184

.NET Web Forms
See Web Forms applications

.NET Web Service
component project 166
component target wizard 164

.NET Windows Forms
See Windows Forms applications

A
access permissions

ASP.NET 10
application

design-level considerations 204
directory structure 135
installing 130, 134
manifest file for smart client 132
publishing 129

running mode 130, 134
update mode 130, 136
updating 135

application pools
changing identity 12
creating 13
PBDotnet4AppPool 12

arrays 177, 188
ASP.NET

configuring 7
setting user permissions 10
user permissions 27
version 8

assemblies
See .NET assemblies

AutoPostBack property 74, 210
AutoScript

does not support .NET classes 188

B

best practices 119
bitwise operator support

.NET applications 182
bootstrapper

about 138
customizing 138

browser error messages 224
build directories 213
builds

Debug and Release 218
incremental 213
PBD generation 214

ButtonClicked event 37
ButtonClicking event 38

C

case sensitivity 178
Clicked event 39
ClickOnce technology 129
client-side 33
command line parameters 28
company name

setting 123, 132

Index

Deploying Applications and Components to .NET 245

compound statements 176
conditional compilation 173
configuring

application directory permissions 13
ASP.NET 7, 170
SQL Anywhere database connection 10

Connection object
connecting to EAServer 192
using with a .NET client 192

controls
supported in Web Forms 89
supported in Windows Forms 147

copy mode
global property 58

CORBA
supported datatypes 195

CORBACurrent object 194
CORBAObject object 194

D
data

synchronizing 140
data exchange 178
database connection errors 225
datatype mapping 162, 179
DataWindow

page navigation 208
pagination 208
saving as XSL 54

Debug builds 218
DEBUG preprocessor symbol 219, 221
debugging

.NET applications 217

.NET components 221
attaching to a running process 217
restrictions with .NET targets 217
Windows Forms 217

declaring
arrays 177
enumerations 183

deploying
.NET Assembly project 163
.NET Web Service project 171
Web Forms projects 25
Windows Forms projects 128

deployment
checklist for production server 14
troubleshooting 222

deployment manifest file for smart clients 132

digital certificates 131
directory structure, on server 135
DLLs

deploying 15, 123
DoubleClicked event 40
DownloadFile Web Forms function 78
downloading files

Web Forms applications 61
DYNAMIC keyword

unsupported with .NET methods 188

E

EAServer
.NET clients 192
using the Connection object 192
using the JaguarORB object 193

Embedded property 75
enumerated types

function calls on 185
enumerations 183
event handlers 33

and postback events 32, 33
client-side 33
default 33

events
ClientEvent properties 35
Web DataWindow client control 35

exceptions
handling in .NET environment 188

F

File Manager
creating a folder 59
downloading files 61
icon 58
uploading files 60
virtual file system 56

file process mode 58
file server

setting up 129
files

runtime 15
fonts

using TrueType in controls in Windows Forms
141

FTP server
setting up 129

Index

246 PowerBuilder

Full Trust required for smart client 132

G

GAC (Global Assembly Cache) 18
generic .NET classes

unsupported 187
GetConfigSetting Web Forms function 80
GetDownloadFileURL Web Forms function 80
Ghostscript

installing 55
Global Assembly Cache (GAC) 18
global properties

and .NET Web Service targets 170
creating 74
list of 65
taking advantage of 207

H

handling exceptions
in .NET environment 188

HasFileManager property 75
HasMailManager property 76
HasPrintManager property 77
HasThemeManager property 77
HTMLGen.PagingMethod property 32

I

IIS
application pools 12
directory structure 9
installing 8

IIS Manager
viewing global properties 9

images
deploying 126
for Windows Forms targets 135

incremental builds 213, 216
Indexes

for .NET classes 185
instantiating a .NET class 176
intelligent notifier 137
intelligent update 136
interoperability

datatype mappings 179
referencing .NET classes 173
support for .NET language features 181

writing code in a .NET block 176
ItemChanged event 41
ItemError event 42
ItemFocusChanged event 43

J

JaguarORB object
connecting to EAServer 193

K

keywords 177

L

library files 123
line return characters 177
log file

log.txt 227
pbiupub.log 229
pbtrace.log 11, 227

M

mail
sending 61

Mail Profile Manager 61
mandatory updates 137
manifest files

for smart client application 132
for smart client deployment 132
for Windows Forms 127
security tab 123
signing with digital certificates 131

MapVirtualPath Web Forms function 81
migration

runtime files 15
MobiLink synchronization

for smart clients 140
multithreading, .NET applications

support for 186
mutual authentication 200

N

navigation controls 208

Index

Deploying Applications and Components to .NET 247

notifier
icon 137
options 137

nullable
unsupported 187

O

OnClient event prefix 35
online only 134
OpenFileManager Web Forms function 82
OpenMailManager Web Forms function 82
OpenPrintManager Web Forms function 83
OpenThemeManager Web Forms function 83
operating systems

64-bit 13

P

PATH environment variable 121
PBDataWindow.JS file 35
PBDs

deploying 123
PBLs

deploying 123
PBTrace.log file 11, 228
PDF

Apache FO printing method 54
postscript printing method 54

permanent user accounts 47
permissions

adding in .NET Framework configuration tool
231

adding manually for copied files 27
ASP.NET 7
EnvironmentPermission 232
error messages 4
EventLogPermission 232
FileDialogPermission 233
FileIOPermission 233
for Web service components 171
Full Trust required for smart client 132
granting from command line 27
PrintingPermission 237
ReflectionPermission 238
RegistryPermission 238
required for printing to PDF 54
SecurityPermission 239
SMTPPermission 240–242

Sybase directories 10
troubleshooting deployment failure 223
troubleshooting Windows Forms 228
UIPermission 242
under wwwroot 13
WebPermission 242

POST keyword
unsupported with .NET methods 188

post-build commands 123
postbacks

and client-side events 209
avoiding 33
from default event handlers 33

PowerBuilder runtime files
deploying 123

PowerScript
keywords 177
registry functions 30
system functions 204
unsupported events in Web Forms 110
unsupported events in Windows Forms 154
unsupported functions in Web Forms 104
unsupported functions in Windows Forms

152
unsupported properties in Web Forms 112
unsupported properties in Windows Forms

154
preprocessor statements

pasting into script 176
preprocessor symbols

about 173
DEBUG 219
list of 173

prerequisites
for application 132, 138
for deployment 14
for development 121

primitive types
function calls on 184

print functions 52
Print Manager icon 52
printing

Apache FO software processing 54
DataWindow as PDF 54
Ghostscript software processing 55

printing:output location 53
projects

out-of-date message 215

Index

248 PowerBuilder

properties
global 65

publish page
link to server 129
prerequisites 138
view of 132

publishing an application 129

R

RadControls 11
RButtonDown event 44
rebuild scope 214
regional formats 205
registry functions

in Web Forms applications 30
registry.xml 31
Release builds 218
requirements

printing to PDF and XSL files 54
system 121

resource files
for .NET assembly targets 161
for .NET Web service targets 168
for .NET Windows Forms targets 126
inaccessible 226

resources
deploying 126

RowFocusChanged event 45
RowFocusChanging event 46
running an application 128
runtime files

deploying 15

S

script
client-side events 31

security 132
manifest files for Windows Forms 127
settings 3

server authentication 196
share mode

global property 58
sharing data

across sessions 29
DropDownDataWindows 29

Sign tab 6
signing manifest files 131

smart client
rolling back 140

SQL Anywhere
setting up database connection 10

SSL connection support 196
Start menu

adding to 134
string matching 206
strong-named assemblies 6, 17
structures

supported 141
system functions 204

unsupported in Web Forms 88
unsupported in Windows Forms 147

system objects
supported 141

system options
redeployment 215

system requirements 121
System.Nullable

unsupported 187

T

Telerik RadControls 11
Theme Manager 64
troubleshooting

conditional code 187
deployment errors 222
tips for Web Forms applications 223
tips for Windows Forms applications 228

TrueType fonts
using in controls in Windows Forms 141

trust options 4

U

updates
checking for 136, 137
mandatory 137
online and offline 136
online only 136
polling for 137

UploadFiles Web Forms function 84
uploading files

Web Forms applications 60
users

permanent accounts 47

Index

Deploying Applications and Components to .NET 249

V

Vista
See Windows Vista

visual controls
supported in Web Forms 89
supported in Windows Forms 147

W

Web browser
command line parameters 28
default start page 28, 128

Web DataWindow
client-side scripts 35
events for client control 35

Web Forms applications
advantages of 1
browser error messages 224
changing application pool 13
configuring ASP.NET for 7
directory structure 9
downloading files 61
global properties 9
project wizard 22
registry functions 30
requirements 21
sending mail 61
start page 28
supported controls 90
supported print functions 52

system functions 78
target wizard 21
three-tier architecture 21
unsupported features 86
uploading files 60
virtual file system 56

Web Forms function
DownloadFile 78
GetConfigSetting 80
GetDownloadFileURL 80
MapVirtualPath 81
OpenFileManager 82
OpenMailManager 82
OpenPrintManager 83
OpenThemeManager 83
UploadFiles 84

Web server
setting up 129

Web.config file 74
Windows Forms Application project 121
Windows Forms Application wizard 119
Windows Forms applications

advantages of 1, 119
supported controls 149–152
supported objects 145, 146

Windows Vista
additional requirements for IIS 7 11
additional requirements for Windows Forms

127
wwwroot

setting permissions on subdirectories 13

Index

250 PowerBuilder

	Deploying Applications and Components to .NET
	Contents
	Choosing a .NET Target
	Choosing a .NET Application Target
	How .NET Deployment Works
	Security Settings
	Strong-Named Assemblies
	ASP.NET Configuration for a .NET Project
	IIS Installation
	Selecting the Default ASP.NET Version
	Viewing and Modifying Global Properties in the IIS Manager
	Directory Structure on the Server
	Setting Up a SQL Anywhere Database Connection
	Telerik RadControls
	Configuration Requirements for Windows Vista and Later
	Changing Application Pool Identity for IIS 7.5
	Creating an Application Pool
	Enabling 32-bit Applications on 64-bit Operating Systems
	Moving an Application into a Different Application Pool
	Application Directory Permissions

	Checklist for Deployment

	Web Forms Targets
	PowerBuilder Web Forms Applications
	System Requirements for PowerBuilder Web Forms
	Web Forms Targets
	Web Forms Projects
	Web Forms Deployment
	Sharing Data Across Sessions
	Registry Functions for Web Forms Applications

	Client-Side Programming
	Default Event Handlers
	Client-Side Support for the Web DataWindow Control
	Alphabetical Liist of Web DataWindow Client-Side Events
	ButtonClicked
	ButtonClicking
	Clicked
	DoubleClicked
	ItemChanged
	ItemError
	ItemFocusChanged
	RButtonDown
	RowFocusChanged
	RowFocusChanging

	Permanent User Accounts
	Creating Permanent User Accounts
	Managing Permanent User Accounts

	Managers in Web Forms Applications
	Web Forms Print Manager
	Requirements for Saving Files in PDF or XSL Format
	Installing GPL Ghostscript
	Where PDF and XSL-FO Output is Saved

	Web Forms File Manager
	Creating a Directory with the File Manager
	Uploading Files with the File Manager
	Downloading Files with the File Manager

	Web Forms Mail Profile Manager
	Web Forms Theme Manager

	Web Forms Properties
	Global Web Configuration Properties
	Creating Custom Global Properties
	AutoPostBack
	Embedded
	HasFileManager
	HasMailManager
	HasPrintManager
	HasThemeManager

	System Functions for .NET Web Forms
	DownloadFile
	GetConfigSetting
	GetDownloadFileURL
	MapVirtualPath
	OpenFileManager
	OpenMailManager
	OpenPrintManager
	OpenThemeManager
	UploadFiles

	Unsupported Features in Web Forms Projects
	Unsupported Objects
	Unsupported System Functions
	Restrictions on Supported Controls
	Modified Appearance and Behavior of Visual Controls
	Unsupported Functions for Controls in Web Forms
	Unsupported Events for Controls in Web Forms
	Unsupported Properties for Controls in Web Forms

	Windows Forms Targets
	PowerBuilder Windows Forms Applications
	Deploying to a production environment
	System Requirements for .NET Windows Forms Targets
	.NET Windows Forms Target Wizard
	Building a Windows Forms Application and Target from Scratch
	Building a Windows Forms Application from an Existing Application and Library
	Building a Windows Forms Application from an Existing Target

	Creating a .NET Windows Forms Project
	Properties for a .NET Windows Forms Project
	Resources and Other Required Files
	Security Requirements

	Deployment of a Windows Forms Application
	Project Execution

	Intelligent Deployment and Update
	Publishing an application for the first time
	Set Publishing Properties
	Locations for Publish, Install, and Update
	Digital Certificates
	Setting Full Trust Permissions
	Publication Process and Results

	Application Installation on the User’s Computer
	Resource Files and Publish Type

	Publication of Application Updates
	Application Bootstrapping
	Rolling Back
	MobiLink Synchronization

	Unsupported Features in Windows Forms Projects
	Unsupported Nonvisual Objects and Structures in Windows Forms
	Unsupported System Functions in Windows Forms
	PowerBuilder Visual Controls in Windows Forms Applications
	Unsupported Functions for Controls in Windows Forms
	Unsupported Events for Controls in Windows Forms
	Unsupported Properties for Controls in Windows Forms

	.NET Component Targets
	.NET Assembly Targets
	Modifying a .NET Assembly Project
	Supported Datatypes
	Deploying and Running a .NET Assembly Project

	.NET Web Service Targets
	Modifying a .NET Web Service Project
	Configuring ASP.NET for a .NET Web Service Project
	Deploying and Running a .NET Web Service Project

	.NET Language Interoperability
	Conditional Compilation
	Surrounding Code in a .NET Block
	PowerScript Syntax for .NET Calls
	Adding .NET Assemblies to the Target
	Datatype Mappings
	Support for .NET language features
	Bitwise Operator Support
	User-Defined Enumerations
	Function Calls on .NET Primitive and Enumerated Types
	Accessing Indexes for .NET Classes
	Using Multithreading

	Limitations
	Handling Exceptions in the .NET Environment

	Connections to EAServer Components
	Using the Connection Object
	.NET Client Differences

	Connections Using the JaguarORB Object
	Support for CORBAObject and CORBACurrent Objects
	Supported Datatypes
	SSL Connection Support
	Server Authentication
	Connection Code
	Importing an EAServer Certificate into the Client Certificate Store

	Mutual Authentication

	Best Practices for .NET Projects
	Design-Level Considerations
	Take Advantage of Global Configuration Properties
	DataWindow Pagination
	DataWindow Page Navigation

	Use Client-Side Events to Delay Postbacks

	Compiling, Debugging, and Troubleshooting
	Incremental Builds
	Build and Deploy Directories
	Rebuild Scope
	.NET Modules
	PBD Generation
	Triggering Build and Deploy Operations
	System Option
	Incremental Build Processing

	Debugging a .NET Application
	Attaching to a Running Windows Forms Process
	.NET Debugger Restrictions
	Release and Debug Builds
	DEBUG Preprocessor Symbol
	Breaking into the Debugger When an Exception is Thrown
	Debugging a .NET Component

	Troubleshooting .NET Targets
	Troubleshooting Deployment Errors
	Troubleshooting Runtime Errors
	Troubleshooting Tips for Web Forms Applications
	Web Forms Deployment Errors
	Browser Error Messages
	Failure to Connect to a Database
	DataWindows Are Not Visible
	Pictures Are Not Visible
	Excessive Flickering on Web Page
	Posted Events Are Not Executed
	External DLLs Do Not Load
	Print Failure
	Log Files
	Problems with IIS 7.5

	Troubleshooting Tips for Windows Forms Applications
	Runtime Errors
	Publish Errors
	Installation Errors
	Update Errors

	Appendix
	Custom Permission Settings
	Adding Permissions in the .NET Framework Configuration Tool
	EnvironmentPermission
	EventLogPermission
	FileDialogPermission
	FileIOPermission
	PrintingPermission
	ReflectionPermission
	RegistryPermission
	SecurityPermission
	SMTPPermission
	SocketPermission
	SQLClientPermission
	UIPermission
	WebPermission
	Custom Permission Types

	Index

