
Automated Configuration Guide

EAServer
6.0

DOCUMENT ID: DC00548-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Automated Configuration Guide iii

About This Book .. vii

CHAPTER 1 Introduction ... 1
Silent installation .. 1
Command-line configuration tools.. 1
Ant-based configuration ... 2
Scheduled tasks... 2
Service components... 2
The Thread Manager ... 3
Jagtool and jagant .. 3

CHAPTER 2 Ant-Based Configuration.. 5
About Ant ... 6
Ant in EAServer.. 6
EAServer configuration targets .. 7

The deploy target .. 7
The configure target .. 8
The recompile target ... 8
The refresh target .. 8
The undeploy target .. 9

Configuration scripts for J2EE modules ... 9
User-configuration scripts... 10

Creating user-configuration scripts.. 11
Embedding configuration scripts in J2EE archives 12

Applying settings from configuration scripts 12
Predefined configuration scripts ... 13
Structure of a configuration script .. 15

Add required imports ... 15
Optionally add Ant property definitions.................................... 15
Define required targets.. 16

Ant configuration command syntax .. 16
Examples ... 16

Contents

iv EAServer

CHAPTER 3 Using Scheduled Tasks .. 17
About scheduled tasks ... 17
Predefined tasks .. 18
Creating new tasks... 19

Task properties on the General tab... 20
Task properties on the Schedule tab....................................... 23
Ant configuration example... 24

Configuring scheduled tasks to run.. 25

CHAPTER 4 Creating Service Components ... 27
Introduction .. 27
Creating service components... 29

Create the service implementation.. 30
Implement GenericService interface methods 31
Create a service component entity.. 35
Install the service component in the server 37

Determining service state... 38
Refreshing service components... 40

CHAPTER 5 Using the Thread Manager.. 43
About the Thread Manager .. 43

The Thread Manager and service components....................... 43
The Thread Manager and the message service...................... 44
The Thread Manager and scheduled tasks............................. 44
Thread Manager interface documentation 44

Using the Thread Manager .. 45
Before you start ... 45
Instantiating the Thread Manager ... 47
Starting threads ... 48
Suspending and resuming execution 49
Stopping threads ... 49

CHAPTER 6 Using jagtool and jagant ... 51
Working with jagtool ... 51

jagtool syntax .. 52
Local versus connected mode... 52
Entity identifiers ... 54

jagtool and jagant... 56
Setting up your environment ... 56
jagant scripts ... 57
jagant syntax ... 57

The Ant build file .. 58

Contents

Automated Configuration Guide v

A sample build file ... 58
Registering jagtool commands in the Ant build file.................. 60
Using the jag_connect command .. 60

XML configuration files... 63
Format of the XML configuration file 63
Sample configuration file ... 65

jagtool commands .. 66
compilejsp .. 67
configure .. 70
create ... 71
delete ... 73
deploy... 75
ejbref .. 78
enventry ... 80
exists .. 82
export ... 83
exportconfig.. 85
getmonitorstats... 87
getserverinfo .. 88
getservicestate ... 89
grantroleauth .. 91
install .. 92
jmscreate.. 94
jmsdelete.. 96
jmsflush .. 97
jmslist ... 98
jmslist_listeners.. 99
jmslist_messages... 100
jmsmanage_listeners ... 101
jmsmanage_selectors .. 102
jmsprops... 103
jmsset_props.. 104
list... 106
merge_props .. 108
ping .. 111
props .. 112
rebind ... 113
refresh .. 114
remove ... 116
removeroleauth .. 118
resref .. 119
restart ... 120
set_props ... 121
shutdown.. 124

Contents

vi EAServer

sync.. 125

Index ... 129

Automated Configuration Guide vii

About This Book

Subject This book describes the automated configuration features available in
EAServer.

Audience This book is for administrators and application providers that must
perform scripted configuration to automate deployment of application
components and server configurations.

How to use this book Chapter 2, “Ant-Based Configuration,” describes how to manage
application servers, components, and resources using the EAServer Ant
based configuration mechanism.

Chapter 3, “Using Scheduled Tasks,” describes how to create and run
scheduled tasks to automate periodic maintenance such as checking log
files or running database cleanup commands.

Chapter 4, “Creating Service Components,” describes how to create
service components, which run a specially coded application component
automatically in the server as a background task.

Chapter 5, “Using the Thread Manager,” describes how to use the Thread
Manager to to start threads from EAServer components to perform
asynchronous processing.

Chapter 6, “Using jagtool and jagant,” contains information about these
command line tools that allow you to automate some EAServer
development and deployment tasks.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML and PDF format in your EAServer software
installation and on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for
proprietary EAServer Java classes and C routines.

The EAServer Automated Configuration Guide (this book) explains how
to use Ant-based configuration scripts to:

• Define and configure entities, such as EJB modules, Web
applications, data sources, and servers

viii EAServer

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User’s Guide describes how to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (JMS) clients and components to send, publish, and
receive JMS messages.

The EAServer Migration Guide contains information about migrating
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer System Administration Guide explains how to:

 About This Book

Automated Configuration Guide ix

• Start the preconfigured server and manage it with the Sybase Management
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase software license deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

x EAServer

Conventions The formatting conventions used in this manual are:

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using Ant or jagtool to configure
applications rather than the Management Console

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Management Console, a command line, or as
program text

• Example program fragments

• Example output fragments

 About This Book

Automated Configuration Guide xi

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

xii EAServer

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

The Web Services Toolkit plug-in for Eclipse supports accessibility features for
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

 About This Book

Automated Configuration Guide xiii

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xiv EAServer

Automated Configuration Guide 1

C H A P T E R 1 Introduction

EAServer provides several configuration tools and programming
interfaces that allow you to automate installation, deployment, and
maintenance tasks.

Silent installation
On most platforms, the EAServer installation media includes a silent
installation option. You can configure a silent install kit to automate a
scripted installation of the software. For details, see the EAServer
Installation Guide for your platform.

Command-line configuration tools
EAServer provides many command-line tools that can be called from
operating system scripts to automate configuration and maintenance. For
more information, see Chapter 12, “Command Line Tools,” in the System
Administration Guide.

Topic Page
Silent installation 1

Command-line configuration tools 1

Ant-based configuration 2

Scheduled tasks 2

Service components 2

The Thread Manager 3

Jagtool and jagant 3

Ant-based configuration

2 EAServer

Ant-based configuration
EAServer includes built-in Ant support and uses Ant build files to perform
many administrative and deployment tasks. You can run Ant configuration
scripts to define and configure entities such as EJB modules, Web applications,
data sources, servers, and so forth. You can also embed Ant configuration
scripts in J2EE deployment archives such as an application EAR file. The
script runs automatically when you deploy the archive to EAServer. For more
information, see Chapter 2, “Ant-Based Configuration.”

Scheduled tasks
In EAServer, a scheduled task is a background task that runs at server startup,
shutdown, or at scheduled intervals during server operation. You can use
scheduled tasks to automate periodic configuration and maintenance
activities.EAServer provides several predefined tasks to perform common
maintenance operations such as collecting memory and component invocation
statistics. You can define new tasks by assembling them from common,
predefined operations such as checking log files and sending administrator
mail. You can also define tasks to call application code, such as an enterprise
JavaBean method or an application client. For more information, see Chapter
3, “Using Scheduled Tasks.”

Service components
Service components allow you to run specially coded application components
as a service in the server. Service components load at startup and run
independently of client interaction. You can use service components to perform
background processing or to provide common services for EAServer clients
and other EAServer components. For more information, see Chapter 4,
“Creating Service Components.”

CHAPTER 1 Introduction

Automated Configuration Guide 3

The Thread Manager
The Thread Manager allows you to spawn threads from application code
running in the server. Like service components, you can use the Thread
Manager to run code in the background. However, the Thread Manager allows
you to start a background task programmatically. For more information, see
Chapter 5, “Using the Thread Manager.”

Jagtool and jagant
The jagtool and jagant command line tools are provided primarily for backward
compatibility. These tools allow you to perform common configuration options
from operating system scripts or from an Ant build file. Chapter 6, “Using
jagtool and jagant,” describes these tools.

Jagtool and jagant

4 EAServer

Automated Configuration Guide 5

C H A P T E R 2 Ant-Based Configuration

EAServer includes built-in Ant support and uses Ant build files to perform
many administrative and deployment tasks. You can run Ant
configuration scripts to define and configure entities such as EJB
modules, Web applications, data sources, servers, and so forth.

EAServer generates Ant configuration scripts when you deploy J2EE
archives. The generated script applies settings from the archive’s
deployment descriptor to the new EAServer entities. You can also embed
a user configuration file in J2EE archives to configure settings beyond
those that can be specified by the deployment descriptor.

Entity types that are not deployed in J2EE archives can also be created or
managed with configuration scripts. For example, you can create data
sources, restart servers, and manage security roles and domains.

Topic Page
About Ant 6

Ant in EAServer 6

EAServer configuration targets 7

Configuration scripts for J2EE modules 9

User-configuration scripts 10

Applying settings from configuration scripts 12

Predefined configuration scripts 13

Structure of a configuration script 15

Ant configuration command syntax 16

Examples 16

About Ant

6 EAServer

About Ant
Ant is an open-source, Java-based build tool provided by the Apache Software
Foundation. Like UNIX make, Windows nmake, and other build tools, Ant can
be used to automate repetitive tasks such as building software, deploying Web
sites, and configuring application servers. Unlike make, nmake, and other
shell-based build tools, Ant build commands use a platform-independent XML
format.

Ant build files use XML syntax consisting of targets and tasks. Targets define
the sequence of commands to build a deliverable or achieve a specific
outcome; for example: compiling Java source files or rebooting a server.
Targets have a name that allowed them to be invoked from the Ant command
line. For example, this command invokes the target named create-ejbjar in
the build file mybuild.xml:

ant -f mybuild.xml create-ejbjar

The build sequence in each target is defined by calling Ant tasks. Tasks
perform a step in the build process, such as invoking the Java compiler,
copying or deleting files, creating a Java archive, or running an XSLT
transform. Tasks are implemented as Java classes. Ant includes many built-in
tasks and EAServer provides additional configuration tasks.

For more information, see the Ant documentation on the Apache Ant Web site
at http://ant.apache.org/.

Ant in EAServer
EAServer runs Ant build files to perform most administrative and deployment
tasks. You can run Ant configuration scripts to define and configure entities
such as EJB modules, Web applications, data sources, servers, and so forth.

When you deploy J2EE archives, EAServer generates Ant configuration files
to apply the configuration settings described in the J2EE deployment
descriptor. You can embed EAServer user configuration files to customize the
settings and perform configuration tasks beyond those described in the
deployment descriptor, such as defining data sources or administrative user
accounts.

EAServer includes the following utilities to run Ant build files:

• djc-ant – to run the included Ant installation in the EAServer environment.

CHAPTER 2 Ant-Based Configuration

Automated Configuration Guide 7

• configure – to run Ant and invoke the configure target in an EAServer
configuration file

• recompile – to run Ant and invoke the recompile target in an EAServer
configuration file

• jagant – which is the same as djc-ant and provided for backward
compatibility with EAServer 5.x

EAServer configuration targets
EAServer defines the standard configuration targets in Table 2-1 to perform
common deployment and setup tasks. Each Ant build file that is associated
with a J2EE deployment archive can define these targets.

Table 2-1: EAServer configuration targets

The deploy target
EAServer executes this target one time only after you deploy a J2EE archive.
You can use this target to perform tasks that must be done after deployment but
that should not execute again whenever the configure and recompile targets
are invoked. For example, to perform one-time setup of a runtime database or
to create an administrator login account.

To add your own tasks that execute as part of the deploy target, embed a
Sybase user configuration file in the J2EE archive. Inside that build file, run the
tasks in a target named deploy-user.

Target Description

The deploy target Invoked immediately after deploying a J2EE archive, and before invoking the
configure target. Executes one time only.

The configure target Creates and configures entities, setting properties, assigning users to roles, creating
user accounts, and so forth.

The recompile target Executes the configure task (via an Ant dependency), then regenerates runtime
classes required to integrate the entity implementation files into EAServer.

The refresh target Reloads the entity implementation classes and applies property changes.

The undeploy target Invoked before undeploying entities deployed from a J2EE archive. This target
executes one time only.

EAServer configuration targets

8 EAServer

The configure target
EAServer invokes this target after deploying a J2EE archive, when you
reconfigure or recompile J2EE modules in the Management Console, and when
you run the configure or recompile utilities. Typically, the target creates and
configures entities, setting properties, assigning users to roles, creating user
accounts, and so forth.

To add your own tasks to a J2EE entity’s configuration, create a user
configuration file for the entity and define a target named configure-user.

The configure target can also be used in build files that are not associated
with J2EE archives. The predefined Ant build files use this target to create
entities that are not deployed from J2EE archives—see “Predefined
configuration scripts” on page 13.

The recompile target
EAServer invokes this target after deploying a J2EE archive, when you
recompile J2EE modules in the Management Console, and when you run the
recompile utility. This target regenerates runtime classes required to integrate
the entity implementation files into EAServer. Since this target depends on the
configure target, the configure tasks execute whenever you run the
recompile target.

To add your own tasks to a J2EE entity’s recompile target, create a user
configuration file for the entity and define a target named recompile-user.

The refresh target
EAServer invokes this target after deploying a J2EE archive, when you select
Refresh for entity’s context menu in the Management Console, and when you
run the refresh utility. This target reloads the entities implementation files into
EAServer and applies property changes that affect runtime behavior, such as
changing or adding JNDI name bindings.

If you have run the configure or recompile target on an entity, you must run
the refresh target so that changes to the generated code and properties take
affect.

To add your own tasks to a J2EE entity’s refresh target, create a user
configuration file for the entity and define a target named refresh-user.

CHAPTER 2 Ant-Based Configuration

Automated Configuration Guide 9

The undeploy target
EAServer executes this target one time only when you undeploy a J2EE
archive. The target executes when undeploy with the Management Console or
the undeploy utility. You can use this target to undo configuration done in the
deploy target.

To add your own tasks that execute as part of the undeploy target, embed a
Sybase user configuration file in the J2EE archive. Inside that build file, run the
tasks in a target named undeploy-user.

Configuration scripts for J2EE modules
When you deploy a J2EE archive with the Management Console or the deploy
utility, EAServer generates an Ant configuration script that creates the
corresponding EAServer entities and configures them with settings read from
the deployment descriptor.

Configuration scripts reside in the EAServer config subdirectory with a naming
prefix based on the EJB archive type. Table 2-2 lists the configuration file
names for each J2EE entity type. The default configuration contains settings
that match the deployment descriptor. You can define user configuration files
to override the default settings, or to perform configuration tasks beyond those
that can be described in the deployment descriptor.

Table 2-2: Configuration file names for J2EE entities

J2EE entity type Default configuration file User configuration file

Application application-name.xml application-name-user.xml

Application client appclient-name.xml appclient-name-user.xml

Connector or resource adaptor connector-name.xml connector-name-user.xml

EJB module (contains components
deployed from a single EJB-JAR file)

ejbjar-name.xml ejbjar-name-user.xml

Web application webapp-name.xml webapp-name-user.xml

CORBA package corba-name.xml corba-name-user.xml

User-configuration scripts

10 EAServer

In Table 2-2, name represents the base name of the archive file from which the
entities are deployed. For example, if you deploy EJB components from
ejb1.jar, the corresponding configuration file is config/ejbjar-ejb1.xml.
Deploying ejb1.jar creates a package that contains the components defined in
the JAR file, and the configuration file contains settings to configure and
generate code for the package and all the components inside it.

Note Do not edit generated configuration scripts. Changes you make to the
main configuration script are overwritten if you redeploy the module.
Customize the component properties by creating a user configuration script
with settings that override those in the main script.

When you redeploy entities, existing configuration scripts are backed up to the
config/old directory, with numeric suffixes appended to the file name. For
example, ejbjar-foo.xml is backed up as ejbjar-foo.xml.1, ejbjar-foo.xml.2, and
so forth. EAServer retains up to ten previous backups.

User-configuration scripts
To customize the entity properties or component attributes in a module
deployed from a J2EE archive, you can create a user-configuration script,
which is called when you redeploy or reconfigure the module. You can also
embed user configuration scripts in J2EE archives, to configure EAServer
deployment settings that cannot be specified by deployment descriptor
settings, such as creation of new security roles or binding components external
to an EJB-JAR to EJB naming references in the module.

When you reconfigure or recompile entities deployed from J2EE modules,
EAServer first calls the default (generated) Ant configuration script, then calls
the user-configuration script. Therefore, settings in the user-configuration
script override those in the Ant configuration script.

For J2EE entities, the user configuration script has the same base name as the
generated script listed in Table 2-2, with -user appended. For example, if the
generated script is ejbjar-ejb1.xml, the user configuration script is
ejbjar-ejb1-user.xml.

You also use user-configuration scripts to automate the management of entities
that are not deployed from J2EE archives such as data sources or JMS message
queues.

CHAPTER 2 Ant-Based Configuration

Automated Configuration Guide 11

Creating user-configuration scripts
User configuration scripts can be created manually or using the Management
Console. To create scripts manually, use a text editor, an XML editor, or an IDE
that understands Ant build files to create the script in the EAServer config
subdirectory. See “Structure of a configuration script” on page 15 for details.

The procedures below describe how to create scripts in the Management
Console.

❖ Creating a user-configuration script for entities deployed from J2EE
archives

To create a user-configuration script for a deployed application, EJB, or Web
application module:

1 In the Management Console, select the module, right-click, and select
Create User Configuration. A user-configuration script is created.

2 Right-click again, and select Refresh. The user-configuration script
displays on the User Configuration tab.

3 Edit the values you want to change in the script. Click Apply to save your
changes.

4 For the changes to take affect, perform the following:

a Recompile the module by highlighting the module, right-clicking, and
selecting Run Ant Recompile.

b Refresh the module by highlighting the module, right-clicking, and
selecting Refresh. EAServer applies the property changes and
refreshes the entity implementations so the new behavior takes affect.

❖ Creating configuration scripts for entities of other types

All configuration files defined in the EAServer installation appear under the
Configuration Files folder in the Management Console. You can create generic
configuration files here to manage entities of any type. Create them as follows:

1 In the Management Console, right-click the Configuration Files folder and
choose Add.

2 Run the Add wizard and specify a name for the new file.

Applying settings from configuration scripts

12 EAServer

Embedding configuration scripts in J2EE archives
You can embed user configuration scripts in J2EE archives to automate post-
deployment configuration. When you deploy the archive to EAServer,
EAServer copies the script into the installation as a user configuration script. If
present, the deploy-user, configure-user, and recompile-user targets
execute after deployment. The undeploy-user target executes when you
undeploy the module.

Place the configuration file in the archive’s META-INF subdirectory, using the
file name that matches the archive type, as listed in the second column of Table
2-3.

Table 2-3: File names for Sybase configuration files in J2EE archives

After deployment, EAServer copies the configuration file to the config
subdirectory of the EAServer installation, and renames it using the standard
naming scheme for user configuration files–see Table 2-2 on page 9.

Applying settings from configuration scripts
You can configure or recompile entities in the Management Console or by
using command-line tools.

❖ Updating configurations with the Management Console

1 Start the Management Console and connect to EAServer as described in
Chapter 2, “Management Console Overview,” in the System
Administration Guide.

2 In the left frame, right-click the icon for the configuration file or entity and
choose one of the following:

• Run Ant Configure, to apply the XML configuration file to the
package and component properties.

Archive type File name in archive

J2EE application sybase-application-config.xml

EJB JAR sybase-ejbjar-config.xml

Web application sybase-webapp-config.xml

J2EE application
client

sybase-client-config.xml

Connector sybase-connector-config.xml

CHAPTER 2 Ant-Based Configuration

Automated Configuration Guide 13

• Run Ant Recompile, to apply the XML configuration file to the
package and component properties and recreate generated classes.

3 If you have modified a Web application or EJB module, you must refresh
the module for the changes to take affect. In the left frame, right-click the
icon for the entity and choose Refresh.

❖ Updating configurations with the command line

1 If necessary, use a text or XML editor to edit the contents of the
configuration file.

2 Run the recompile utility to apply the changes to the component and
recreate generated classes. See Chapter 12, “Command Line Tools,” in the
New Features Guide for details on this utility.

You can also run the configure utility to update the component properties
without regenerating affected code.

3 If you have modified a Web application or EJB module, you must refresh
the module by running the refresh utility.

Predefined configuration scripts
The installation includes default configurations for several module types,
including data sources, database types, EJB providers, export configurations,
and thread monitors. Using the Management Console, you can view the
predefined Ant scripts by expanding the Configuration Files folder, and
selecting the file; the contents of the file display in the right pane.

Table 2-4 lists the predefined scripts and what they configure.

Table 2-4: Predefined configuration scripts

Name Configures defaults for

camel-case-off.xml Defines a configure target to turn off camel-case style mappings of IDL types
to Java types.

camel-case-on.xml Defines a configure target to enable camel-case style mappings of IDL types
to Java types.

default-application-servers.xml New application server instances.

default-code-sets.xml Character sets present in the server.

default-database-types.xml Database types. See Chapter 4, “Database Access,” in the System
Administration Guide.

Predefined configuration scripts

14 EAServer

default-data-sources.xml Data sources. See Chapter 4, “Database Access,” in the System
Administration Guide.

default-ejb-providers.xml EJB providers. See Chapter 3, “Developing EJB Clients,” in the EJB Users
Guide.

default-export-configurations.xml Export configurations. See Chapter 7, “Exporting Server Modules,” in the
System Administration Guide.

default-http-contexts.xml HTTP contexts for Web applications.

default-install.xml Entities configured with input gathered by the installation program, such as
port numbers for the default network listeners.

default-jms-providers.xml JMS providers.

default-jms-resources.xml Sample JMS resource factories.

default-mail-sessions.xml JavaMail sessions.

default-scheduled-tasks.xml Scheduled tasks.

default-security-domains.xml Security domains.

default-security-profiles.xml Security profiles.

default-service-components.xml Service components.

default-system-components.xml System components such as the message service and deployment service.

default-socket-listeners.xml Network listeners.

default-transaction-batches.xml Transaction batching configurations.

default-thread-monitors.xml Thread monitors.

default-windows-service.xml Installation of EAServer as a Windows service.

default-windows-service-
sybmaster.xml

Installation of sybmaster, the EAServer SNMP master agent, as a Windows
service.

deploy-tool-options.xml Options for the deploy utility.

idl-generator-off.xml Turns off generation of IDL for EJB components deployed from EJB-JAR
files.

idl-generator-on.xml Turns on generation of IDL for EJB components deployed from EJB-JAR
files.

idl-style-cts.xml Configures the IDL generator to create “CTS” style IDL. This style is
recommended when clients are primarily PowerBuilder. It also provides
backward compatibility with EAServer 5.x clients.

idl-style-xdt.xml Configures the IDL generator to create “XDT” style IDL. This style is
recommended when clients are primarily C++.

jacc-provider-info.xml Example settings to install a customized JACC provider.

long-transactions-off.xml Disables support for long transactions.

long-transactions-on.xml Enables support for long transactions.

Name Configures defaults for

CHAPTER 2 Ant-Based Configuration

Automated Configuration Guide 15

Structure of a configuration script
If you manually create configuration scripts, follow the structure described
below. You can use an existing script as a template. For J2EE archives that have
been deployed already, you can use the Management Console to create a user
configuration script template as described in “Creating user-configuration
scripts” on page 11.

Scripts must be run from the EAServer config subdirectory. Otherwise, Ant
imports are not resolved, and integration with the Management Console and
command-line tools will not work.

Add required imports
Configuration scripts must import ant-config-tasks.xml:

<import file="ant-config-tasks.xml"/>

Add the imports inside the project tag, above any target definitions.

Optionally add Ant property definitions
In the default (generated) configuration file for a J2EE archive, settings that
may be used in multiple places are defined as Ant properties at the top of the
default configuration file. For example, since all components deployed from
the same archive typically connect to the same database, EAServer defines a
sql.dataSource property as follows:

<property name="sql.dataSource" value="default"/>

This property specifies the data source name that is bound to any resource
reference names used in the package.

In the user configuration file, you can override the definitions of these
properties by redefining them. However, if your script imports the default
configuration file, you must define the property in the user configuration file
before the import of the default configuration file. For example:

<property name="sql.dataSource" value="Glossary"/>
<import file="ant-config-tasks.xml"/>
<import file="ejbjar-ejbtut.xml"/>

Ant configuration command syntax

16 EAServer

In Ant, the first declaration of a property takes precedence. If you define the
property after the import of the default configuration file, the value in the
default configuration takes precedence.

Define required targets
If you are creating a user configuration file for a J2EE archive, define any of
the deploy-user, configure-user, recompile-user, and undeploy-user
targets. “EAServer configuration targets” on page 7 describes what these
targets should do. You do not need to define all targets. EAServer ignores
missing target names.

If you are creating a configuration file that is not associated with a J2EE
archive, define a configure target.

Ant configuration command syntax
For details on the syntax of Ant commands, see the following file in your
EAServer installation:

html\help\en\index.html

Examples
For examples of configuration targets, see the default-*.xml configuration
scripts in the config subdirectory of your installation. These scripts create the
predefined entities in the installation. You can use them as a template to define
and configure new entities.

The Enterprise Java Beans tutorial shows how to embed a user-configuration
in an EJB-JAR file to run configuration commands at deployment time. To run
the tutorial, see Chapter 6, “Tutorial: Creating Enterprise JavaBeans
Components and Clients,” in the Enterprise JavaBeans User’s Guide.

Automated Configuration Guide 17

C H A P T E R 3 Using Scheduled Tasks

About scheduled tasks
A scheduled task is a background task that runs at server startup,
shutdown, or at scheduled intervals during server operation. You can use
scheduled tasks to automate periodic configuration and maintenance
activities.

EAServer provides several predefined tasks to perform common
maintenance operations such as collecting memory and component
invocation statistics.

You can define new tasks to run predefined task operations, such as:

• Parsing logs for errors

• Running SQL commands through a data source to configure the
remote database server

• Posting a message to a JMS message queue

• Calling application code such as an EJB stateful session bean method
or running an application client

• Running operating system commands

• Sending email to server administrators

You can also assemble task chains, to combine operations defined in
multiple tasks. For example, you can combine tasks that check for log
errors with an email task to alert administrators to errors in the log.

Topic Page
About scheduled tasks 17

Predefined tasks 18

Creating new tasks 19

Configuring scheduled tasks to run 25

Predefined tasks

18 EAServer

Service components can also run automated tasks using code that you write
yourself.—see Chapter 4, “Creating Service Components.” EAServer
activates scheduled tasks after service components. A scheduled task
configured to run at server startup runs after services are started.

Predefined tasks
Table 3-5 describes the tasks that you can schedule to be performed
automatically. To schedule tasks individually, choose Select, then select or
unselect each task. To schedule all the tasks, select All.

To add new tasks and configure task schedules, see “Creating new tasks” on
page 19.

Table 3-1: Scheduled tasks

Task Description

AutoDeploy Automatically deploy any EJB-JAR, WAR, EAR, or application-client JAR
that is in the deploy directory. By default, this is enabled.

AutoRefresh Enables EJBs and Web modules that are refreshed by AutoDeploy, or by
running the deploy or refresh commands to be reloaded by the server. By
default, this is enabled.

CheckForApplicationExceptions Check the log for application exceptions that match a given string.

CheckForErrorMessages Check the log for error messages that match a given string.

CheckForSecurityAlerts Check the log for security alerts that match a given string.

CheckForSystemExceptions Check the log for system exceptions that match a given string.

CheckForWarningMessages Check the log for warning messages that match a given string.

CheckMemoryUsage Compare memory usage to the memory monitor limits configured in the
server properties. For more information on memory limits, see “Monitors
tab” in Chapter 3, “Creating and Configuring Servers,” in the System
Administration Guide.

Dump60MinuteMemoryUsage Write 60-minute memory usage statistics to the log file every hour.

Dump60MinuteStatistics Write 60-minute statistics to the log file every hour. Files are written in the
logs/statistics directory.

Dump60SecondMemoryUsage Write 60-second memory usage statistics to the log file every minute.

Dump60SecondStatistics Write 60-second statistics to the log file every minute. Files are written in the
logs/statistics directory

EjbSessionTimeout Deletes session state from the session.db data source for passivated EJB
stateful session bean instances that have timed out due to inactivity.

CHAPTER 3 Using Scheduled Tasks

Automated Configuration Guide 19

Creating new tasks
You can create scheduled tasks with the Management Console or by running
an Ant configuration script.

The scheduled task properties specify which actions to perform and when to
run the tasks.

❖ Creating or modifying scheduled tasks with the Management Console

1 In the Management Console, expand the Scheduled Tasks folder.

2 To modify an existing task, highlight the task to configure.

EndOfServerLog Used by other tasks; for example, to include part of the server log in an e-mail
message.

JmsDuplicateDetectionExpiry Deletes expired JMS duplicate-detection records.

JmsPersistentMessageExpiry Deletes expired JMS persistent messages.

LocalRestart Enables the -local option for restarting the local server.

LocalStop Enables the -local option for stopping the local server.

NotifyApplicationExceptions Send a notification if application exceptions are logged.

NotifyErrorMessages Send a notification if errors are logged.

NotifySecurityAlerts Send a notification if a security violation occurs.

NotifyServerShutdown Send a notification when the server shuts down.

NotifyServerStartup Send a notification when the server starts.

NotifySystemExceptions Send a notification if system exceptions occur.

NotifyWarningMessages Send a notification if warnings are logged.

PbHeap_dumpSummary Print a summary of the PowerBuilder heap memory usage.

StartOfServerLog Used by other tasks; for example, to include part of the server log in an e-mail
message.

SybHeap_dumpSummary Print a summary of the EAServer heap memory usage.

TxRef Log transaction cross references. To run this task, the server -txRef option
must be set to true.

XaRecovery Recover transactions that did not complete due to server failure. This option
sends a recovery call to the database to get the list of transaction IDs, then
either commits or rolls back each transaction, depending on its state.

Task Description

Creating new tasks

20 EAServer

To create a new task, right-click the Scheduled Tasks folder and choose
Add from the context menu. The Add wizard runs. Specify the task name
when prompted for it and click Finish.

3 The tasks properties display on tabbed pages in the right pane. Set the
scheduled task options using these pages. Click Apply to save changes
before moving between tabs.

Properties are described in “Task properties on the General tab” on page
20 and “Task properties on the General tab” on page 20.

4 To run the task, follow the instructions in “Configuring scheduled tasks to
run” on page 25

❖ Creating or modifying scheduled tasks using Ant

1 In the EAServer config subdirectory, define an Ant configuration script
with a configure target that calls the <setProperties> command to create an
entity of type scheduledTask. For an example, see “Ant configuration
example” on page 24.

The Ant property names are listed in Table 3-2, Table 3-3, and Table 3-4.
Ant property names are provided in parentheses after the Management
Console display name. Properties are also described in the HTML
reference located in the following file in your installation:

html\help\en\com.sybase.djc.scheduler.ScheduledTask
.html

2 Run the script with the configure command-line tool, specifying the base
name of the configuration script as the argument.

3 To run the task, follow the instructions in “Configuring scheduled tasks to
run” on page 25.

Task properties on the General tab
The properties on the General tab, specify which tasks to perform. Table 3-2
on page 21 defines the options that are common to all the tasks. Ant property
names are provided in parentheses after the Management Console display
name.

CHAPTER 3 Using Scheduled Tasks

Automated Configuration Guide 21

Table 3-2: Scheduled task common options

Table 3-3 defines optional properties that depend on the value of taskAction.
Ant property names are provided in parentheses after the Management Console
display name. These options are appropriate for predefined and user-defined
tasks.

Property Description

Task Action
(taskAction)

Select the action to perform:

• Run Component Method

• Check File

• Print File Head

• Print File Tail

• Publish JMS Text Message

• Run Application Client

• Run Component Method

• Run Database Command

• Run System Command

• Send Mail Message

• Send JMS Text Message

After Failure Run
(afterFailureRun)

If the current task fails, select another task to perform. You can choose any of the tasks
defined in Table 3-1 on page 18 or a user-defined task.

After Success Run
(afterSuccessRun)

Select another task to perform after the current task completes. You can choose any of the
tasks defined in Table 3-1 on page 18 or a user-defined task.

Thread Monitor
(threadMonitor)

Select the thread monitor to use to perform the task.

Wait After Failure
(waitAfterFailure)

If a task fails, the number of seconds to wait before allowing the task to run again.

Wait After Success
(waitAfterSuccess)

If a task succeeds, the number of seconds to wait before allowing the task to run again.

Log Execution
(logExecution)

Select to log scheduled task execution details.

Random Wait Offset
(randomWaitOffset)

Select to randomize the intervals between running the task, to introduce variability.

Creating new tasks

22 EAServer

Table 3-3: Type-specific options

Option Description

Component Method
(componentMethod)

If taskAction is runComponentMethod, specify the component method to run. The method
must be void with no parameters. You can specify either:

• The name method in a simple Java class (which must be in the class path); for example,
com.example.MyTask.run, or

• The name of a deployed component method; for example,
ejb.components.mypackage.MyCompLocal.myMethod or
ejb.components.mypackage.MyCompRemote.myMethod

Check File
(checkFile)

If the task action is checkFile, specify which file to check.

Line Match
(lineMatch)

Enter the character string to search for in the file.

Match if Count Exceeds
(matchIfCountExceeds)

Specify the number of lines in which the pattern must be found to constitute a match.

Match if Delta Exceeds
(matchIfDeltaExceeds)

Specify the number of new lines—added since the last check—in which the pattern must
be found to constitute a match.

After Match Run
(afterMatchRun)

If a line match is found, select another task to perform. You can choose any of the tasks
defined in Table 3-1 on page 18.

Wait After Match
(waitAfterMatch)

Specify the number of seconds to wait after a matching line is found before allowing the
task to run again.

Print File Tail
(printFileTail)

Specify the name of the log file.

Maximum Tail Lines
(maximumTailLines)

Enter the maximum number of lines to print from the end of the file.

Mail Session
(mailSession)

Specify the name of the mail session to use.

From
(mailFrom)

Enter the sender’s e-mail address.

To
(mailTo)

Enter the recipients’s e-mail address.

Cc
(mailCc)

To send a carbon copy of a mail message, enter the recipient’s e-mail address.

Subject
(mailSubject)

Enter the subject of the mail.

Message
(mailMessage)

Enter the mail message body.

Append Output From
(appendOutputFrom)

To append the output from a task as text in the mail message, select the task from those
defined in Table 3-1 on page 18.

Attach Output From
(attachOutputFrom)

To include the output from a task as an attachment in the mail message, select the task
from those defined in Table 3-1 on page 18.

CHAPTER 3 Using Scheduled Tasks

Automated Configuration Guide 23

Task properties on the Schedule tab
Properties on the Schedule tab define when to run the task. Table 3-4 describes
the properties. Ant property names are provided in parentheses after the
Management Console display name.

Table 3-4: Task schedules

Print File Head
(printFileHead)

Specify the name of the log file.

Maximum Head Lines
(maximumHeadLines)

Enter the maximum number of lines to print from the beginning of the file.

Option Description

Property Description

Schedule
(schedule)

Select the frequency at which to perform the task:

• At specified interval

• Every second

• Every minute

• Hourly

• Daily

• Weekly

• Monthly

• At server startup

• At server shutdown

• None

Start Time
(startTime)

Specify the first time to perform the task, as HH:MM.

End Time
(endTime)

Specify the last time to perform the task, as HH:MM.

Start Date
(startDate)

Specify the first date to perform the task, as YYYY-MM-DD.

End Date
(endDate)

Specify the last date to perform the task, as YYYY-MM-DD.

Exclude Date
(excludeDate)

List specific dates to not perform the task, as YYYY-MM-DD<, YYYY-MM-DD, ...>.

Include Date
(includeDate)

List specific dates to perform the task, as YYYY-MM-DD<, YYYY-MM-DD, ...>.

Creating new tasks

24 EAServer

Ant configuration example
Below is an example Ant configuration script to define a scheduled task. For
additional examples, see the file default-scheduled-tasks.xml in the config
subdirectory of your installation. This configuration file defines the
preconfigured scheduled tasks described in “Predefined tasks” on page 18.

Here is the example configuration script:

<?xml version="1.0"?>
<project name="default-scheduled-tasks" default="configure">

<import file="ant-config-tasks.xml"/>
<target name="configure">
<setProperties scheduledTask="MyScheduledTask">

<property name="taskAction" value="runComponentMethod"/>
<property name="componentMethod"

value="ejb.components.myjar.MyCompLocal.myTask"/>
<property name="schedule" value="interval"/>
<property name="interval" value="30"/>

</setProperties>
</target>

</project>

Day of Week
(dayOfWeek)

To perform the task on specific days of the week, choose Select, then select or unselect
each day. To perform the task every day of the week, select All. To create a schedule that
is unrelated to days of the week, select None.

Day of Month
(dayOfMonth)

To perform the task on specific days of the month, choose Select, then select or unselect
each day. To perform the task every day of the month, select All. To create a schedule that
is unrelated to days of the month, select None.

Month of Year
(monthOfYear)

To schedule the task for specific months of the year, choose Select, then select or unselect
each month. To perform the task every month of the year, select All. To create a schedule
that is unrelated to months of the year, select None.

Property Description

CHAPTER 3 Using Scheduled Tasks

Automated Configuration Guide 25

Configuring scheduled tasks to run
Scheduled tasks defined in the repository do not run by default. You must
install them into the server to run them. You can install a task in a server using
the Management Console or by running an Ant configuration file.

To install using the Management Console, configure the Tasks tab in the
Management Console Server Properties pages. For more information, see
Chapter 3, “Creating and Configuring Servers,” in the System Administration
Guide.

To install a scheduled task from an Ant configuration file, add it to the list of
tasks in the server's scheduledTasks Ant configuration property. For example,
if the task is “MyTask” and the server name is “MyApplicationServer”, add the
following commands to your configure target:

<setProperties applicationServer="MyApplicationServer" merge="true">
<property name="scheduledTasks"

operation="append-list"
value="MyTask"/>

</setProperties>

Configuring scheduled tasks to run

26 EAServer

Automated Configuration Guide 27

C H A P T E R 4 Creating Service Components

This chapter describes how to create service components. Service
components are loaded and initialized when EAServer starts and have a
run method that executes perpetually, independent of any client
interaction.

You can use service components to perform background processing or to
provide common services for EAServer clients and other EAServer
components.

Introduction
Service components perform background processing or provide common
services for EAServer clients and other EAServer components. For
example, you might create service components to perform the following
tasks:

• Maintain cached copies of commonly used database tables

• Move or replicate data between data sources during server idle time

• Manage application-specific log files

What are service
components?

Service components are like any other EAServer component, except that:

• They must implement the methods in the CtsServices::GenericService
IDL interface. These methods allow the server to control the service
component’s initialization, execution, and shutdown.

• Instances are loaded and initialized when the host server starts.

• They can run independently of client interaction.

Topic Page
Introduction 27

Creating service components 29

Determining service state 38

Refreshing service components 40

Introduction

28 EAServer

The Thread Manager and service components
You can use the Thread Manager as an alternative to creating a service
component to handle repetitive processing. You may find the Thread Manager
interface allows more design flexibility. For example, you can suspend
processing in services run by the Thread Manager, and you can start threads at
any time rather than only at server start-up. Chapter 5, “Using the Thread
Manager” describes how to use the thread manager.

PowerBuilder developers can use the Thread Manager to develop more robust
services. Since PowerBuilder components cannot support sharing and
concurrency, you cannot develop a service that can be stopped or refreshed
without using the Thread Manager. For more information, see the Application
Techniques manual in the PowerBuilder documentation.

The GenericService
interface

Your component’s remote or local interface can include the methods in the
CtsServices::GenericService IDL interface. EAServer calls these methods to
control the service component’s initialization, execution, and shutdown. Your
implementation does not need to explicitly implement the interface (that is, list
it in the implements clause of the class declaration), and you do not need to list
the interface in the component properties. The methods are:

• start() Called to initialize the component when the server starts. This
method typically initializes data structures and resources that the service
requires. For example:

• A service that writes to log files would open each file and cache each
file handle as a class instance variable.

• A service that caches tabular data from a remote database would open
a connection to the database and create the data structures required to
store tabular data in memory.

• run() Called after the first invocation of start() returns. run() can loop and
perform repetitive tasks as an EAServer background process. If the
component does not perform background processing, run() can return
immediately.

For services that perform background processing, run() should loop
continuously while performing the service task. run() must periodically
suspend its own execution by calling the Java java.lang.Thread.sleep()
method, one of the Java Object.wait() methods, or the EAServer JagSleep
C routine. These APIs suspend the current thread for a specified duration
so that other threads may execute. run() should return after the server
invokes the stop() method.

CHAPTER 4 Creating Service Components

Automated Configuration Guide 29

If you configure your service to run in multiple threads, EAServer calls
run() concurrently in the specified number of threads.

 Warning! Your run() method must either return immediately or call one of
the Object.wait() Java methods, the EAServer JagSleep C routine, or some
other thread-aware implementation of sleep. Do not call the sleep system
routine or any other routine that suspends process (and not thread)
execution. If coding service components in PowerBuilder, code your
component to call the JagSleep C routine; do not use the PowerBuilder
timer event, which may suspend the EAServer process.

• stop() Called when the server is shutting down or when the component
has been refreshed (refresh stops the service then restarts the service
cycle). EAServer calls the stop() method on a different thread than the run()
method. Code in the stop() method should set a flag that indicates the the
run() method should return.

stop() should also wake up sleeping run() threads if the language allows
this. For example, in Java, call the Object.notifyAll() method to wake
threads that called Object.wait() on the same monitor object. In languages
that do not allow you to wake up sleeping threads, keep your sleep interval
reasonably short. The service cannot be refreshed until all running threads
return from the run() method; that is, if your sleep interval is one hour, it
can take that long to refresh the service unless you add code to wake up
sleeping threads.

Implementing
addtional remtoe
interface methods

Your component can implement additional remote or local interface methods.
EAServer clients, servlets, and other components can execute a service
component’s methods like those of any other component, with one exception:
Clients cannot invoke methods on the service component until the start()
method has returned. This restriction allows you to perform required
initialization in start() without worrying about thread synchronization issues.

After start() returns, EAServer calls the run() method in its own thread. Client
method invocations may arrive at this time as well. There is no guarantee that
run() will have been called when a client method invocation occurs; the first
client invocations may arrive before EAServer calls the run() method.

Creating service components
Follow the steps below to create a service component:

Creating service components

30 EAServer

1 Create the service implementation

2 Implement GenericService interface methods

3 Create a service component entity

4 Install the service component in the server

Create the service implementation
Service components are implemented using EJB stateless session beans or
stateless CORBA or PowerBuilder components. Except for a few special
requirements described here, you define a service component’s interface and
properties as you would do for any component.

Component properties

The EJB or CORBA component that implements your service requires these
settings:

• Remote or local interface The component’s remote or local interface
must include the methods in the CtsServices::GenericService IDL
interface. You can define additional methods if necessary.

• Concurrency and threading options For best performance, your
component must be thread-safe and allow concurrent execution. To
support concurrency, you must ensure that access to read/write instance
variables is synchronized in your component.

If using CORBA components, enable the Thread Safe property, and
disable the Bind Thread option.

Enabling the Thread Safe property allows multiple method invocations to
occur simultaneously. If your component has a run() method that executes
indefinitely, you must enable the Concurrency option or no clients will be
able to invoke methods. To stop the service, EAServer must invoke the
stop method on a thread executing concurrently to the thread executing the
run method.

Disabling the Bind Thread option allows EAServer to run the component
on any available thread. This option is only required by components that
use thread-local storage. It should be disabled in any other case.

CHAPTER 4 Creating Service Components

Automated Configuration Guide 31

• Transaction attribute Do not create service components that are
transactional. EAServer-managed transactions require a component
lifecycle that allows component deactivation, and a service component is
never deactivated. The component’s transaction attribute must be Not
Supported. If you require EAServer’s transaction semantics, implement a
component to perform the transaction-created work and call this
component from your service component.

Required client roles

You can assign the role ServiceControl to service components so that base
clients and other components cannot create instances of the component and call
the start and stop methods. No users can be added to this role.

Implement GenericService interface methods
Each service component must implement the CtsServices::GenericService
interface methods. This section describes how to implement the
CtsServices::GenericService in C++ and Java.

Be careful of consuming CPU cycles
If your service will perform background processing, your implementation must
have access to a thread-aware sleep mechanism. In Java, call the
java.lang.Thread.sleep() method, or use a monitor object and call the
Object.wait() method. In C, C++, or PowerBuilder, EAServer provides the
JagSleep routine. The run method in your service must call one of these APIs
periodically to suspend execution of the current thread. Otherwise, your
service will dominate the server’s CPU time and prevent other components
from executing.

If coding service components in PowerBuilder, code your component’s run
method to call the JagSleep C routine; do not use the PowerBuilder timer
event, which may suspend the EAServer process.

Creating service components

32 EAServer

Services with a client interface
If your component runs as a service and also provides a client interface for
remote invocations, beware that the run method may not have executed when
the first client request arrives. run is called on a different thread after start
returns; client invocations may arrive between the return from start and the
invocation of run, and initialization performed in run may not have completed
when the remote method executes on a different thread. To avoid problems, use
one of these approaches:

• Do not code remote methods that rely on initialization performed in the run
method. Initialization can be performed in the start method, which is
guaranteed to complete before client invocations arrive.

• Use a synchronized boolean variable that is set when run has performed
necessary initialization, and code remote methods to check this variable
and wait for it to be set before executing code that relies on initialization
performed in run.

Java example of GenericService methods

The example uses a static Boolean instance variable, _run, to indicate when the
service should cease running. There is also a java.lang.Object that is used as a
semaphore to allow synchronization among multiple threads. The start()
method sets the _run variable to true; start() must also perform any other
necessary initialization that are needed by your service, such as opening files,
database connections, and so forth. run() executes a while loop as long as the
_run variable is true. In each loop iteration, run() performs some of the work
that the service is responsible for, such as refreshing a copy of a remote
database table, then calls the Object.wait() method to relinquish the CPU. The
stop() method sets the _run variable to false and calls the Object.notifyAll()
method on the semaphore, causing the run() method to return. Before returning,
run() cleans up resources that were allocated in the start() method.

public class MyService
{
public static boolean _run;
public static Object _lock = new Object();

public void start()
{

_run = true;
... perform necessary initializations ...

}

CHAPTER 4 Creating Service Components

Automated Configuration Guide 33

public void run()
{

while (_run)
{

try
{

... do whatever this service does
 on each iteration, then go back
to sleep for a while ...

synchronized(_lock)
{

_lock.wait(100000);
}

}
catch (InterruptedException ie)
{

_run = false;
}

}
... perform necessary cleanup and deallocations ...

}

public void stop()
{

_run = false;
// Wake up any instances that are waiting on the mutex
synchronized (_lock)
{

_lock.notifyAll();
}

}
}

Creating service components

34 EAServer

C++ example of GenericService methods

The code fragment below shows how the GenericService methods can be
implemented in a C++ component. This example uses a static Boolean instance
variable, _stop, to indicate when the service should cease running. The start()
method sets the _stop variable to false; start() must also perform any other
necessary initialization that are needed by your service, such as opening files,
database connections, and so forth. run() executes a while loop as long as the
_stop variable is false. In each loop iteration, run() performs some of the work
that the service is responsible for, such as refreshing a copy of a remote
database table, then calls the JagSleep C routine to relinquish the CPU. The
stop() method sets the _stop variable to true. stop() must also clean up any
resources that were allocated in the start() method.

#include <jagpublic.c> // For JagSleep API

class MyService
{
private:

static boolean _stop; // Declared static in case multiple
// instances are run.

public:
void start()
{

_stop = false;
... perform necessary initializations ...

}

void stop()
{

_stop = true;
}

void run()
{

while (! _stop)
{

... do whatever this service does
 on each iteration ...

JagSleep(1000);
}
... perform necessary cleanup and deallocations ...

}

};

CHAPTER 4 Creating Service Components

Automated Configuration Guide 35

Create a service component entity
Before you can install the service component in a server, you must create a
service component entity using the Management Console or a configuration
script.

❖ Creating a service component entity with the Management Console

1 Highlight the Services Components folder and click Add. The New
Service Component wizard launches. Specify the service component
name.

2 Configure the properties listed in Table 4-1 on page 36.

❖ Creating a service component entity with a configuration script

1 Create a configuration script like the example below.

2 Run the configure target to define the service component.

Example service component configuration script This Ant script creates
a service component named MyService and installs it in the default server
configuration. For details on the properties, see Table 4-1 on page 36.

<?xml version="1.0"?>
<project name="create-service-comp" default="configure">

<import file="ant-config-tasks.xml"/>
<target name="configure">

<setProperties serviceComponent="MyService" merge="false">

<property name="component" value="ejb.components.my_ejb_service.MyEJB
ServiceRemote"/>

<property name="dependsOn" value="JaguarServer"/>
<property name="startOrder" value="2"/>
<property name="startBeforeBinding" value="true"/>
<property name="runThreadCount" value="2"/>
<property name="stopWaitTime" value="1000"/>
<property name="allowStartFailure" value="true"/>

</setProperties>

<setProperties applicationServer="default" merge="true">
<property name="serviceComponents" operation="append-

value" value="MyService" />
</setProperties> </target>

</project>

Creating service components

36 EAServer

Service component entity properties

Table 4-1 lists the service component entity properties.

Table 4-1: Service component entity properties

When multiple threads
are requested

The host server calls the component’s run method from the specified number
of threads. If the Sharing option is enabled, all threads call run on the same
component instance as start was called in. Otherwise, each thread will create a
new instance of the component and call run on that instance. Each thread
terminates when run returns.

Management Console
property

Configuration file
property Description

Component component Identifies the component to run as the service. Specify the
identifier for the component’s generated DJC adapter for the
EJB remote or local interface. For remote interfaces, this has
the form:

ejb.components.module.componentRemote
Where module is the name of the EJB module or CORBA
package, and component is the name of the component. For
local interfaces, it has the form:

ejb.components.module.componentLocal
For example, for component MyService in module
MyPackage, specify the remote interface adaptor as
ejb.components.MyPackage.MyComponentRemote.

Depends On dependsOn Specifies other service components that must be running
before this component can run.

Start Order startOrder Allows you to configure the starting order for multiple
services. Lower numbered services start before higher number
services.

Start Before Binding startBeforeBinding Specifies whether EAServer must perform JNDI name
bindings before calling the start method. Disable this setting if
your start method makes intercomponent calls or accesses
resources using JNDI.

Run Thread Count runThreadCount Specifies how many instances to run. Each instance runs in a
separate thread—see “When multiple threads are requested”
on page 36

Stop Wait Time stopWaitTime When stopping the service, how long to wait for the stop
method to return before giving up. Specify the time in
milliseconds.

Allow Start Failure allowStartFailure Whether the server can run and accept client connections if
this service fails to start.

CHAPTER 4 Creating Service Components

Automated Configuration Guide 37

This feature is useful when your service component performs a background
task that lends itself to parallel processing. For example, if the run
implementation extracts work requests from a queue and performs the
requested operation, you can configure the server so multiple threads read
requests from the queue and process them simultaneously. The component
must be coded to ensure that access to the queue is thread-safe, for example, in
Java, you might create synchronized methods to queue and dequeue.

The component must be stateless in order to run in multiple threads.

Note The start method and stop methods are only called on one instance of a
service component. If Sharing is not enabled for the component, start must
store any data required by the run method or other methods in a way that allows
access from other class instances. For example, use static class fields or a
persistent data store.

Install the service component in the server
In order to run as a service, your service component must be added to the host
server’s list of services, as follows:

❖ Installing services

1 Click the icon for the server in the Servers folder. To install a service as
part of the default server configuration, click the default server icon.

The server properties display.

2 Display the Services tab.

3 Available service components are displayed with a check box for those
that are installed. Install your service by selecting the corresponding check
box.

Click Apply to save your changes.

4 The service runs the next time you refresh or restart the server.

Determining service state

38 EAServer

Determining service state
The jagtool getservicestate command returns the state of service components
executing in the server. You must code your service component to implement
the methods of the CtsServices::ExtendedService IDL interface to allow users
to query the component state with jagtool.

This interface extends CtsServices::GenericServices, and adds one method:

long getServiceState()

This method must return one of the constants listed in Table 4-2 to describe the
state of the service. These constants are defined in module CtsServices.

Table 4-2: Service states

The following Java example shows service component code that determines
and returns state:

import CtsServices.*;

...

public class MyService
{

private static boolean _starting = false;
private static boolean _running = false;
private static boolean _stopping = false;
private static boolean _stop = false;
private static boolean _runHasBeenCalled = false;
private static Object _lock = new Object();
public void start()

State Description

UNKNOWN The state is unknown.

STARTING The service is starting. The start method has been called, but has
not returned.

STARTED The service is started, but not yet running. The start method has
returned, but run has not been called.

RUNNING The service is running, that is, executing the run method.

FINISHED The service is finished processing. The run method has returned.
This state applies only to services that do not run continuously
until stopped.

STOPPING The service is stopping. The stop method has been called, and is
still running.

STOPPED The service is stopped. The stop method has been called and has
returned.

CHAPTER 4 Creating Service Components

Automated Configuration Guide 39

{
_starting = true;
// Perform initialization
_starting = false;

}
public void stop()
{

_stopping = true;
_running = false;
_stop = true;
synchronized (_lock)
{

_lock.notifyAll();
}
// Perform cleanup
_stopping = false;

}
public void run()
{

_runHasBeenCalled = true;
// Perform per-thread initialization here.
_running = true;
while (! _stop)
{

try
{

// do whatever this service does on
// each iteration
synchronized(_lock)
{

 _lock.wait(100000);
}

}
catch (InterruptedException ie)
{

_stop = true;
}

}
// Perform per-thread cleanup here.
_running = false;

}
public int getServiceState()
{

if (_starting)
{

return SERVICE_STATE_STARTING.value;

Refreshing service components

40 EAServer

}
else if (! _runHasBeenCalled)
{

return SERVICE_STATE_STARTED.value;
}
else if (_stopping)
{

return SERVICE_STATE_STOPPING.value;
}
else if (_stop)
{

return SERVICE_STATE_STOPPED.value;
}
else if (_running)
{

return SERVICE_STATE_RUNNING.value;
}
else
{

return SERVICE_STATE_FINISHED.value;
}

}
}

Refreshing service components
Service components are not refreshed when you refresh the package or server
in which the component implementation is installed. You must explicitly
refresh the service component entity. To refresh a service component in the
Management Console, right-click the icon for the service component entity and
choose Refresh.

EAServer refreshes a service component as follows:

1 The server calls the stop() method. Your implementation must
communicate the stoppage so that the run() method returns in each thread
running the service.

2 The server waits for the run() method to return in all instances that are
running as services. The wait time can be configured with the service
component Stop Wait Time property.

CHAPTER 4 Creating Service Components

Automated Configuration Guide 41

3 The server creates a new instance and calls the start() and run() methods, in
that order. If the multiple instances are specified for the service, the server
loads the additional instances that are required and calls run() on each
instance.

After refresh, a new instance is guaranteed not to start before previous
instances have ceased running. Consequently, a service component can not be
refreshed unless the run() method returns. See “Implement GenericService
interface methods” on page 31 for code examples that show how to coordinate
the logic in the stop() and run() methods.

Refreshing service components

42 EAServer

Automated Configuration Guide 43

C H A P T E R 5 Using the Thread Manager

The Thread Manager allows you to start threads from EAServer
components to perform asynchronous processing.

About the Thread Manager
The Thread Manager allows you to run EAServer component instances in
threads that execute independently of client method invocations. You can
use threads spawned by the Thread Manager to perform any processing
that must occur asynchronously with respect to user interaction. For
example, you might have a component method that begins a lengthy file
indexing operation. The method could call the Thread Manager to start the
processing in a new thread, then return immediately.

The Thread Manager and service components
For performing repetive background task processing, the Thread Manager
provides an alternative and complementary technology to service
components or scheduled tasks. You may find the Thread Manager
interface allows more design flexibility. For example, you can suspend
processing in services run by the Thread Manager, and you can start
threads at any time rather than only at server start-up.

The Thread Manager is the recommended way to spawn threads in Java or
C++ components. In C++, using the Thread Manager avoids system-level
thread calls that may affect portability. In Java and C++, components
running in the Thread Manager can make in-memory intercomponent
calls, whereas components running in user-spawned threads must make
intercomponent calls through the network.

Topic Page
About the Thread Manager 43

Using the Thread Manager 45

About the Thread Manager

44 EAServer

You can use the Thread Manager and service components together. For
example, you might code a simple service component that spawns threads in
the start or run method, and stops them in the stop method.

PowerBuilder developers can use the Thread Manager to develop more robust
services. Since PowerBuilder components cannot support sharing and
concurrency, you cannot develop a service that can be stopped or refreshed
without using the Thread Manager. In the services start or run method, spawn
threads that do the service's processing. In the service's stop method, call the
Thread Manager stop method to halt the threads. For more information, see the
Application Techniques manual in the PowerBuilder documentation.

The Thread Manager and the message service
If you are using threads to implement a provider/consumer algorithm, or an
asynchronous notification system, consider using the EAServer message
service implementation described in the Java Message Service User’s Guide.
The message service provides a ready-made infrastructure for solving these
classes of problems.

The Thread Manager and scheduled tasks
Using the scheduled tasks feature, you can restrict background processing to a
server’s off-peak hours. For example, you may have threads running that index
the text content of a Web site. Using a scheduled task and the Thread Manager,
you can suspend processing at the beginning of the server’s peak use period,
then resume processing at the end. For details on configuring scheduled tasks,
see Chapter 3, “Using Scheduled Tasks.”

Thread Manager interface documentation
This chapter briefly discusses how to use the Thread Manager methods. For
reference documentation, see the generated HTML documentation for the
CtsComponents::ThreadManager IDL interface. You can view this
documentation in the html/ir subdirectory of your EAServer installation. Using
a Web browser, load the URL:

http://host:port/ir/index.html

Where host is your server’s host name, and port is the HTTP port number.

CHAPTER 5 Using the Thread Manager

Automated Configuration Guide 45

Using the Thread Manager
The Thread Manager is a built-in EAServer component. You can create a proxy
and execute methods the same way that you would call any other component.
Each thread executes a run method in an EAServer component that you specify.

The thread manager is designed primarily for use in server-side code. However,
it is possible to call thread manager methods from base clients or Web
applications. For example, you can create an administrative client that stops
threads created by your application.

Before you start
Before running components in the Thread Manager, make sure you understand
how the component must be prepared, how threads are run in thread groups,
and the effect of a thread group’s run interval.

Adapting components to be run by the Thread Manager

Each thread runs an EAServer component instance. To be run by the Thread
Manager, the component’s remote or local interface must have a run method
that matches this IDL signature:

void run ();

The Thread Manager calls the run method one or more times, depending on
how you configure the run interval (described below).

The Thread Manager is itself an EAServer component, and runs your
component using intercomponent calls. All component properties, including
transaction attributes, are in effect when your component is run by the Thread
Manager. The Thread Manager executes with the system identity, as does your
component’s run method.

Understanding thread groups

Threads are associated with a thread group. To start, stop, suspend, or manage
the run interval of threads, you must specify the group name. These operations
affect all threads in the specified group. The group name is simply a string.
Group names have a scope limited to one server; that is, you cannot have two
like-named groups in the same server. If two applications use the same group
name, their Thread Manager calls affect threads in both applications. You can
run different components in one thread group.

Using the Thread Manager

46 EAServer

Naming conventions for thread groups
To avoid collisions between thread groups used by different applications, use
the reverse-domain naming convention for group names, as used in Java
package names. For example, “com.foo.mythreadgroup”.

Understanding the run interval

Each thread group has a run interval, which determines how often the Thread
Manager calls the run method. The run interval can be:

To allow threads to be stopped or suspended, you must configure a positive or
0-length run interval and code each component’s run method to perform a
repetitive task, then return. The run interval has no effect if your run method
never returns.

If the run interval is positive or 0, you can change the run interval after threads
have been started in the group, the change takes for each thread when it returns
from the run method. You cannot change the interval to -1, and changing the
interval does not affect threads started with the interval set to -1. In these cases,
calling setRunInterval has no effect.

You can use a run interval to schedule periodic tasks, such as refreshing a
cached copy of a database query result. You can also tune how much CPU time
your component consumes if it performs CPU-intensive tasks such as lengthy
calculations; such tuning also requires that you adjust the amount of work done
in each invocation of the run method.

You can also use the scheduled tasks feature to perform background
processing. For details, see Chapter 3, “Using Scheduled Tasks.”

Run interval Meaning

A positive integer n The Thread Manager calls run repeatedly, waiting
approximately n seconds after each time the run
method returns. The actual time can vary depending
on scheduling of calls to other methods and the
server’s processing load.

0 The Thread Manager calls run repeatedly, with no
waiting between invocations.

-1 (the default) The Thread Manager calls run only once.

CHAPTER 5 Using the Thread Manager

Automated Configuration Guide 47

Understanding the thread count

Each thread group has a thread count, which determines how many threads can
run simultaneously. The count can be:

To change the thread count, call the ThreadManager::setThreadCount method.
The change takes effect after threads return from the run method. Thread counts
are useful if threads run repeatedly (run interval is positive or 0). For example,
if 6 threads are running, and you change the count to 5, the next thread that
returns from its run method will not be restarted. The thread count provides a
means to throttle the number of running threads, without stopping or
suspending all threads.

Instantiating the Thread Manager
Other than restricted access, the Thread Manager can be instantiated as you
would instantiate any other component.

Obtaining authorized access

To instantiate the Thread Manager, your client or component must execute with
with the system identity or an identity that is in the ThreadManager role. These
are the recommended ways to satisfy this constraint:

• Start threads from a service component and create the Thread Manager
proxy in the service’s start or run method. These methods execute with the
system identity.

• For a component that is pooled or shared, create the Thread Manager
proxy in the component’s class constructor, the setSessionContext or
setEntityContext method (for EJB components), or the setObjectContext
method (for CORBA components). All of these methods execute with the
system identity.

• For a component that is not a service and not pooled or shared:

• Delegate Thread Manager operations to another component that is
pooled or shared, or

Run interval Meaning

-1 (the default) There is no limit.

A positive integer n n threads can execute.

0 No threads can execute.

Using the Thread Manager

48 EAServer

• Run the component with an identity that is in the ThreadManager role.

• For a base client, connect to EAServer with a user name that is a member
of the ThreadManager role.

ThreadManager privileges can be dangerous
User accounts with ThreadManager role membership can use the Thread
Manager to implement denial of service attacks or to stop thread groups.
Treat ThreadManager role accounts with the same care as you would
Admin role accounts.

Instantiating a proxy

Use the standard technique for your component model to instantiate the Thread
Manager proxy.

CORBA (C++ and Java), and PowerBuilder components must declare a stub
for the CtsComponents::ThreadManager IDL interface, then instantiate the
component named CtsComponents/ThreadManager.

EJB components must use the home interface
com.sybase.ejb.cts.ThreadManagerHome to create a stub for the remote
interface com.sybase.ejb.cts.ThreadManager. Look up the name
CtsComponents/ThreadManager to obtain the home interface.

Starting threads
To start threads:

1 Optionally, configure a run interval by calling the setRunInterval method,
specifying the group name.

2 If necessary, create proxies for the components that will run in the thread
group. For stateless or shared-instance components, you can use one proxy
instance to run the component on multiple threads. For stateful
components, create a proxy for each component instance and initialize the
instance state as necessary.

3 Start the desired number of threads by calling the start method once per
thread. In each call, specify the group name and pass a proxy for the
component that is to run in the thread.

CHAPTER 5 Using the Thread Manager

Automated Configuration Guide 49

If you have set a thread count, and try to start more threads than the thread
count, the behavior depends on the run interval. If the run interval is -1, all
threads are started and run once. If the run interval is 0 or positive, the start
method does not create additional threads after the count is reached.

Suspending and resuming execution
To suspend the threads in a group, call the ThreadManager::suspend method,
specifying the group name. Each thread is suspended when it next returns from
its run method.

To resume execution, call the ThreadManager:resume method.

Stopping threads
You can only stop threads that return from their run method. The Thread
Manager stops each thread the next time it returns from its run method.

You can stop threads in two ways:

• By decreasing the thread count Call the
ThreadManager::setThreadCount method to reduce the number of threads
executing in the thread group. This technique is useful when you want to
throttle the execution of the task. For example, during a Web site’s peak
usage hours, you can reduce the thread count for background processing
to give user threads more CPU time. During off hours, you can reset the
thread count and start new threads to raise the thread count again.

• By stopping all threads in the group Call the ThreadManager::stop
method to stop all threads in the group. This method is equivalent to
calling ThreadManager::setThreadCount to reduce the thread count to zero.

If you stop all threads by calling ThreadManager::stop or setting the thread
count to 0, you must reset the thread count to a positive value or -1 (meaning
infinity) before starting more threads.

Using the Thread Manager

50 EAServer

Automated Configuration Guide 51

C H A P T E R 6 Using jagtool and jagant

jagtool is a command line interface that allows you to automate some
EAServer development and deployment tasks. You can use jagtool from
the command line, from scripts or makefiles, or with Jakarta Ant.

This chapter contains instructions on how to use jagtool, either by itself, or
with jagant.

Beginning with EAServer 6.0, jagtool and jagant are supported for
backward compatibility. Sybase recommends that for new development
you use Ant configuration scripts, as described in Chapter 2, “Ant-Based
Configuration,” and command line tools, such as wsh, wfs, and deploy
documented in Chapter 12, “Command Line Tools,” in the System
Administration Guide.

Working with jagtool
Before using jagtool, make sure that:

• The DJC_HOME environment variable is set.

• UNIX $DJC_HOME/bin is added to your path.

• Windows %DJC_HOME%\bin is added to your path.

Use the following scripts to run jagtool:

• UNIX $DJC_HOME/bin/jagtool

• Windows %DJC_HOME%\bin\jagtool.bat

Topic Page
Working with jagtool 51

jagtool and jagant 56

The Ant build file 58

XML configuration files 63

jagtool commands 66

Working with jagtool

52 EAServer

jagtool syntax
The syntax for jagtool is:

jagtool [connect-args | local-args] [log-arg] [command]

Where:

• connect-args is a list of arguments required to run in connected mode.

• local-args is a list of arguments required to run in local mode.

• log-arg is an optional argument to specify a file name to record jagtool
output. If you do not specify a file name, output is sent to the standard
output device. Specify a file name using the -logfile filename
argument or -l filename.

• command is a jagtool command described in “jagtool commands” on
page 66.

Local versus connected mode
You can run jagtool in either connected mode or in local mode. In
connected mode, jagtool connects to a server that can be running locally or
on a remote machine. In local mode, jagtool does not require a connection
to a server, but you can run it only on a machine that has file system access
to the EAServer installation.

Using connected mode

Connected mode is jagtool’s default mode of operation. All commands can
run in connected mode. When using connected mode, specify the
arguments listed in Table 6-1.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 53

Table 6-1: jagtool connection arguments

For example, to connect to the server running on “eclipse” at port 9005,
using account admin@system with password “secret” enter:

jagtool -h eclipse -n 9005 -p secret

You can omit the -u flag because admin@system is the default user name.

Unless otherwise specified in the command reference page, all commands
can run in connected mode.

Using local mode

Local mode allows you to configure an EAServer installation without
requiring a connection to a server. Local mode is helpful in situations
where it is not convenient to start a server, for example, if you are using
jagtool to configure new installations. You cannot run all commands in
local mode. To see whether a command supports local mode, check the
syntax listing for the command in this chapter or check the help output for
the command.

To run in local mode, specify the arguments in Table 6-2.

Parameter To specify

-h hostname or -host hostname Server host name. If not specified, the
default is the value of the
HOSTNAME environment variable.

-n port or -port port Server IIOP port number. If not
specified, the default is 9000.

-u name or -user name User name. If not specified, the
default is “admin@system”.

-p password or -password
password

Password. If not specified, the default
is “” (no password).

Working with jagtool

54 EAServer

Table 6-2: jagtool local-mode arguments

Local mode also requires the following:

• You must be logged in to the operating system as a user with read and
write privileges on the EAServer installation directory and all
subdirectories.

• You must set the DJC_HOME environment variable to specify the
local installation directory.

When running jagtool or jagant locally, the user name and password
arguments are ignored.

Entity identifiers
Many jagtool commands take one or more entity identifiers as arguments.
An entity identifier is a string of the form EntityType:EntityName that
uniquely identifies an entity in the repository. EntityName is the J2EE
module name; that is, the name of the archive from which the entity is
deployed. For example, if you deploy myejb.jar, the entity name is
“myejb.”

Table 6-3 provides examples of entity identifiers for each entity type.

Table 6-3: Example entity identifiers

Parameter To specify

-local Specifies whether to run in local mode,
without a connection to the server. If you do
not specify this parameter, jagtool requires a
connection to a running server.

-server servername Specifies the name of the server to use when
running in local mode. Specify the name of
the server that you would connect to if
running in connected mode. If you do not
specify a server name, the default is the name
of the machine on which EAServer is
installed.

Entity identifier Specifies

Agent:agent1 Agent named agent1.

Application:estore Application named estore.

ApplicationClient:estore/PetStoreClient Application client named PetstoreClient in
application named estore.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 55

Not all jagtool commands support every type of entity in the repository. For
example, the refresh command is not supported for the Listener entity type.

Cluster:TheBigCluster Cluster named TheBigCluster.

Component:SVU/SVULogin Component named SVULogin that is installed
in the SVU package. The package name is
included because EAServer components always
reside in packages.

ConnCache:JavaCache Connection cache named JavaCache.

Connector:BlackBoxLocalTx J2EE connector named BlackBoxLocalTx.

DatabaseType:Sybase_ASA Database type definition named Sybase_ASA.

EntityCollection:MyEntityCollection Entity collection named MyEntityCollection.

Filter:WebTier/MyFilter Servlet filter named MyFilter installed in the
Web application named WebTier.

InstancePool:MyPool The named instance pool MyPool.

Listener:Jaguar/iiops1 The network listener named iiops1 installed in
the server named Jaguar. When specifying a
listener name, use the server name and the
listener name as displayed in the Management
Console.

ManagedConnectionFactory:BlackBoxLocalTx/EASDemo The managed connection factory named
EASDemo in the J2EE connector named
BlackBoxLocalTx.

Method:SVU/SVULogin/isLogin Method named isLogin of component
SVULogin in package SVU.

Package:SVU Package named SVU.

Role:MyRole Role named MyRole.

Security:sample1 Security entity named sample1.

Server:Jaguar Server named Jaguar.

Service:MyPack/MyComp Service component named MyComp, installed
in package MyPack. Use this syntax to install or
remove service components from a server.

Servlet:StandAloneServlet The servlet named StandaloneServlet. This
syntax is valid only for servlets that are not
installed in a Web application.

Servlet:MyWebApp/MyServlet Servlet named MyServlet in Web application
named MyWebApp. You must use this syntax
for servlets that are installed in a Web
application.

WebApplication:WebTier Web application named Web tier.

Entity identifier Specifies

jagtool and jagant

56 EAServer

When a command specifies an invalid entity type, an appropriate error
message is displayed.

jagtool and jagant
jagant lets you run jagtool commands from Ant build files. This powerful
feature allows you to write build files that automate many development
and deployment tasks.

Jakarta Ant is a Java-based build tool developed by the Apache Jakarta
project. To obtain Ant software and documentation, see the Ant Web site
at http://jakarta.apache.org/ant/. Ant works similarly to other build tools
(such as make, gnumake, or jam) but is platform-independent, extending
Java classes rather than OS-specific shell commands. Ant includes a
number of tasks that are frequently used to perform builds, including
compiling Java files and creating JAR files. It also includes common
functions such as copy, delete, chmod, and so on.

Ant build files (similar to a make file) are written in XML. Like make, Ant
build files can include targets that perform a series of tasks. Instead of
extending shell commands, Ant’s build file calls out a target tree where
various tasks are executed. Each task is run by an object that implements
a particular task interface.

Setting up your environment
Install Ant and read the accompanying documentation.

The jagant script requires a full JDK installation. If you are running jagant
from an EAServer client install, make sure you have installed the full JDK.
By default, only the JRE files are installed.

Before running jagant, verify that:

• The DJC_HOME environment variable is set.

• A full JDK installation is present.

• Jakarta Ant is installed on your system.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 57

By default, jagant searches for Jakarta Ant in %DJC_HOME%\ant
(Windows) or $DJC_HOME/ant (Solaris). To use a different Ant
installation, set the ANT_HOME environment variable before
running the jagant script to specify the Ant installation location.

• If you are using jagant to compile JSP files with the compilejsp
command, modify the CLASSPATH setting for the Ant scripts,
adding the location of the xalan.jar and crimson.jar files that are
included with EAServer. For example, if you are using Windows, edit
the ant.bat file, and change the code under the :runAnt label to read:

:runAnt
set DJC_HOME=EAServer installation directory
set LOCALCLASSPATH=%DJC_HOME%\java\classes\crimson.jar;%LOCALCLASSPATH%
set LOCALCLASSPATH=%DJC_HOME%\java\classes\xalan.jar;%LOCALCLASSPATH%
%_JAVACMD% -classpath %LOCALCLASSPATH% -Dant.home="%ANT_HOME%"
%ANT_OPTS% org.apache.tools.ant.Main %ANT_CMD_LINE_ARGS%
goto end

Or on UNIX, change the last line to read like these lines:

DJC_HOME=EAServer installation directory
LOCALCLASSPATH=$DJC_HOME/java/classes/crimson.jar:$LOCALCLASSPATH
LOCALCLASSPATH=$DJC_HOME/java/classes/xalan.jar:$LOCALCLASSPATH
$JAVACMD -classpath "$LOCALCLASSPATH" -Dant.home="${ANT_HOME}" $ANT_OPTS
org.apache.tools.ant.Main "$@"

jagant scripts
The following scripts are provided for running Ant with jagtool
commands:

• Windows %DJC_HOME%\bin\jagant.bat

• UNIX $DJC_HOME/bin/jagant.sh

jagant syntax
The jagant script uses this syntax:

jagant [ant_options]

where ant_options are any options and commands supported by Ant; see
the Ant documentation for details on these options.

The Ant build file

58 EAServer

You may frequently use the -buildfile flag. Using -buildfile lets you specify
a location other than the default for the Ant XML build file.

As with jagtool, you can run jagant in local or connected mode. “Local
versus connected mode” on page 52 explains the difference.

The Ant build file
To use jagant, you must create an Ant build file that imports the jagant task
definitions, specifies a connect task to connect to EASever, and runs the
intended tasks.

A sample build file
Here is a sample build file:

<?xml version="1.0"?>
<!DOCTYPE project [

<!ENTITY jagtasks SYSTEM "file:./jagtasks.xml">
]>
<project name="sample" default="refresh_svu" basedir=".">

<!-- include Jaguar task definitions -->
&jagtasks;

<!-- global properties for this build -->
<property name="jaguar.host" value="SANDVIK2K1" />
<property name="jaguar.port" value="2000" />
<property name="jaguar.user" value="jagadmin" />
<property name="jaguar.password" value="easerver6" />

<!-- connect -->
<target name="connect">

<jag_connect host="${jaguar.host}" port="${jaguar.port}"
user="${jaguar.user}" password="${jaguar.password}" />

</target>

<!-- refresh package ejbtut -->
<target name="refresh_ejbtut" depends="connect">

<jag_refresh entity="Package:ejbtut" />
</target>

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 59

<!-- restart the server -->
<target name="restart_server" depends="connect">

<jag_restart />
</target>

<!-- shutdown the server -->
<target name="shutdown_server" depends="connect">

<jag_shutdown />
</target>

</project>

This sample imports the EAServer jagtasks.xml file to declare the jagant
tasks. The jagtasks.xml file is located in the EAServer config subdirectory.
The syntax shown in the sample imports the file from the same directory;
to run build files using this syntax, copy jagtasks.xml to the same directory
as your build file, place a copy of your build file in the EAServer config
subdirectory, or edit the path specified by the system entity declaration, for
example:

<!ENTITY jagtasks SYSTEM "file:../config/jagtasks.xml">

To run jagant with the sample build file, enter this command all on one
line:

jagant -buildfile sample.xml refresh_ejbtut

In this example, jagant is invoked with the specified build file. The target,
refresh_ejbtut, refreshes the package named ejbtut by invoking the
jag_refresh command. You can run other targets in the sample using the
same syntax.

Most targets in the sample depends on the connect target. This dependency
ensures the connection is established when the target runs. The connect
target invokes the jag_connect command to open a connection with the
server. The host name, port number, user name and password are defined
as Ant properties in the build file.

You can override these property values at the command line using the Ant
-D option. This is typically done to specify the password, so that it is not
stored directly in the build file. For example (entered all on one line):

jagant -Djaguar.host=eclipse -Djaguar.port=9005 -Djaguar.password=jagpass
-buildfile sample.xml refresh_ejbtut

The Ant build file

60 EAServer

This command connects to the server with a host name “eclipse” on port
9005, with the user name admin@system and the password “jagpass.” The
default user of admin@system is still used because it was not overridden
at the command line.

Registering jagtool commands in the Ant build file
Each build file that invokes jagtool commands must include definitions for
those commands. An Ant taskdef directive is required for each jagtool
command. The EAServer jagtasks.xml file in the config subdirectory
contains the necessary directives. Import this file into your build files
using the syntax shown in “A sample build file” on page 58.

Using the jag_connect command
In build files, use the jag_connect command to connect to a server or to
specify the server name for local mode. You cannot use jag_connect from
the command line; instead use the connection or local-mode arguments
described in “Local versus connected mode” on page 52.

jag_connect must be executed before any other jagtool commands in the
build file. jag_connect can be included directly in any target, or in a
“connect” target that other targets list as a dependency.

Using jagant in connected mode

To run jagant in connected mode, specify these options for the jag_connect
command:

• host The name of the host where EAServer is running.

• port The port number for the server. The default is 9000.

• user The user name used to connect. The default is admin@system.

• password The password used to connect. The default is no
password.

• logfile The log file for the connection attempt. The default is
System.out.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 61

For example, this sample project defines a connect task to connect to the
machine “myhost” at port 9000, logging in as “admin@system,” and runs
the jag_list command over the connection:

<?xml version="1.0"?>

<!DOCTYPE project [
<!ENTITY jagtasks SYSTEM "file:./jagtasks.xml">
]>

<project name="local_sample" default="list_packages" basedir=".">

<!-- include server task definitions -->
&jagtasks;

<!-- connect -->
<target name="connect">

<jag_connect host="myhost" port="9000" user="admin@system" password="" />
</target>

<!-- list packages in the server -->
<target name="list_packages" depends="connect">

<jag_list type="Package" />
</target>

<!-- list the properties of package CtsSecurity -->
<target name="CtsSecurity_props" depends="connect">

<jag_props entity="Package:CtsSecurity" />
</target>

</project>

Using jagant in local mode

To define a jag_connect task to run in local mode, set the localServer option
to the name of the server to use when running in local mode. Specify the
name of the server that you would connect to if running in connected
mode. If you specify this option, the connected-mode arguments are
ignored and jagant runs in local mode. For example, this sample project
defines a connect task to run in local mode on the server Jaguar, then runs
the jag_list command in the scope of the local-mode connection:

<?xml version="1.0"?>

<!DOCTYPE project [
<!ENTITY jagtasks SYSTEM "file:./jagtasks.xml">

The Ant build file

62 EAServer

]>

<project name="local_sample" default="list_packages" basedir=".">

<!-- include server task definitions -->
&jagtasks;

<!-- connect -->
<target name="connect">

<jag_connect localServer="Jaguar" />
</target>

<!-- list packages in the server -->
<target name="list_packages" depends="connect">

<jag_list type="Package" />
</target>

</project>

Using multiple connections

You can use multiple jag_connect commands in a single build file, which
allows you to execute jagtool commands for different servers. Each time
jag_connect is executed, the current connection or local-mode session is
closed and a new one is opened. For example, this code restarts two
servers:

<target name="restart_all_servers">
<jag_connect host="host1" password-="jagpass" />
<jag_restart />
<jag_connect host="host2" password="jagpass" />
<jag_restart /></target>

A connection to “host1” is opened and the server on “host1” is restarted.
Then the connection is closed, a connection is opened to “host2,” and the
server on “host2” is restarted. The port number for both servers is 9000
and the user name is admin@system (the defaults). The password for both
servers is “jagpass,” and the log file is System.out.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 63

XML configuration files
Rather than using jagtool or jagant to configure an entity’s properties
individually, you can define entity properties in XML. You can define and
configure multiple entities in one XML file.

With jagtool, you can use the exportconfig command to create an XML
configuration file that replicates an existing entity, and the configure
command to apply the settings in an XML file to the repository.

You can also embed these XML configuration files in J2EE-format
archive files for components, applications, Web applications, and
connectors.

Note Support for this XML format is provided primarily for backward
compatibility with EAServer 5.x. In 6.0 and later releases, use the Ant
user-configuration target format described in Chapter 2, “Ant-Based
Configuration.”

Format of the XML configuration file
Configuration files must use this DTD, which is located in your EAServer
installation:

lib/dtds/sybase-easerver-config_1_0.dtd

sybase-easerver-config element

The sybase-easerver-config element is the root element and can contain
zero or more macro elements followed by one or more configure elements.
You can use the description attribute for comment text; this text does not
affect any properties set in the repository. Here is an example:

<sybase-easerver-config description="Configuring EAServer properties">
... deleted ...
</sybase-easerver-config>

XML configuration files

64 EAServer

macro elements

You can use macro elements to define abbreviations for commonly used
strings in the XML file, such as the com.sybase.jaguar.component prefix
used in most component property names. macro elements have optional
begin and end attributes to specify the delimiters. If you do not specify
them, the default begin and end delimiters are ${ and }, respectively. The
macro element can contain one or more definition elements to specify the
macro abbreviations, for example:

<macro begin="${" end="}">
<definition name="comp" value="com.sybase.jaguar.component"/>
<definition name="desc" value="com.sybase.jaguar.description"/>

</macro>

configure elements

A configure element creates and updates an entity. The value of the type
attribute specifies the operation to perform, as follows:

If you are embedding an XML file in a J2EE archive to configure entities
defined in the archive, use the update operation. Entities defined in the file
exist when the XML configuration file is applied.

The entity attribute specifies the entity to operate on, using the format
described in “Entity identifiers” on page 54. The configure element can
contain zero or more property elements to configure the entity’s properties.

Here is an example configure element:

<configure type="create" entity="Package:DocTest">
<property name="${desc}" value="New package" />

</configure>

Value of type
attribute Action

create Create a new entity with the specified name and with the
specified properties. The operation fails if the entity
already exists.

update Update the specified properties for an existing entity.
The operation fails if the entity does not exist.

delete Deletes the specified property settings from an existing
entity. The operation fails if the entity does not exist.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 65

property elements

The property element specifies a property setting for the entity, for
example:

<property name="com.sybase.jaguar.component.stateless" value="true" />

Special characters

For special characters in property values, use the appropriate XML entity
identifier, such as " for the double-quote symbol (").

Sample configuration file
Here is a sample configuration file that defines a package, DocTest, and a
component in the package, FooComponent:

<!DOCTYPE sybase-easerver-config PUBLIC '-
//Sybase, Inc.//DTD EAServer configuration 1.0//EN' 'http://www.sybase.com/dt
ds/easerver/sybase-easerver-config_1_0.dtd'>

<sybase-easerver-config description="Configuring EAServer properties">
<macro begin="${" end="}">

<definition name="comp" value="com.sybase.jaguar.component"/>
<definition name="desc" value="com.sybase.jaguar.description"/>

</macro>
<configure type="create" entity="Package:DocTest">

<property name="${desc}" value="New package" />
</configure>
<configure type="create" entity="Component:DocTest/FooComponent">

<property name="${comp}.debug" value="true" />
<property name="${comp}.name" value="DocTest/FooComponent" />
<property name="${desc}" value="New description" />
<property name="com.sybase.jaguar.component.type" value="java" />
<property name="com.sybase.jaguar.component.control" value="JaguarEJB::Se

rverBean" />
<property name="com.sybase.jaguar.component.sharing" value="true" />
<property name="com.sybase.jaguar.component.roles" value="" />
<property name="com.sybase.jaguar.component.tx_outcome" value="always" />
<property name="com.sybase.jaguar.component.pooling" value="false" />
<property name="com.sybase.jaguar.component.java.class" value="com.sybase

.jaguar.sample.events.StockManagerImpl" />
<property name="com.sybase.jaguar.component.thread.safe" value="true" />
<property name="com.sybase.jaguar.component.stateless" value="false" />
<property name="com.sybase.jaguar.component.java.classes" value="" />

jagtool commands

66 EAServer

<property name="com.sybase.jaguar.component.interfaces" value="EventSampl
es::StockManager" />

<property name="com.sybase.jaguar.component.ids" value="IDL:EventSamples/
StockManager:1.0" />

<property name="com.sybase.jaguar.component.transient" value="false" />
<property name="com.sybase.jaguar.component.auto.failover" value="false"

/>
<property name="com.sybase.jaguar.component.tx_type" value="not_supported

" />
<property name="com.sybase.jaguar.component.tx_control" value="true" />
<property name="com.sybase.jaguar.component.refresh" value="true" />
<property name="com.sybase.jaguar.component.model" value="com" />
<property name="com.sybase.jaguar.component.tx_vote" value="false" />

</configure>
</sybase-easerver-config>

jagtool commands
This section contains information about jagtool commands, and lists the
commands that jagtool accepts.

Each command has its own heading and each command section contains a
description of the command, its syntax, a list of options, and an example
of its use at the command line and in Ant build files.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 67

compilejsp
Description Compiles JSP files.

Syntax Local-mode support: Yes.

Connected-mode support: No.

Command line:

compilejsp
local-args
[-webapp WebAppName]
[-uriroot directory]
[-outputdir directory]
[-verbose true|false]
[-debug true|false]
[-keep true|false]
[file1 file2 ...]

Ant build file:

<jag_compilejsp
[webapp="WebAppName"]
[uriroot="directory"]
[outputdir="directory"]
[verbose="true|false"]
[debug="true|false"]
[keep="true|false"]
[jspfile=”file”] />

Option Description Required

local-args Arguments to run in local mode. See “Using local mode” on page
53.

Yes

webapp Compiles the JSP files in the specified Web application. Uses the
DJC_HOME environment variable to locate the Web application
directory. Compiles all JSP files in the Web application unless
specific files are specified.

You must specify one of the -webapp or -uriroot options, but not
both.

You must specify the -webapp option to compile JSPs that require
tag library mappings defined in the Web application properties file.

No

uriroot Compiles the specified JSP files in the given directory, which must
be specified as a complete path. If no files are specified, compiles
all JSP files in the directory and its subdirectories.

No

compilejsp

68 EAServer

Return value

Examples Example 1 This command line example compiles the files jsp/file1.jsp and
jsp/file2.jsp in the Web application named MyWebApp:

jagtool compilejsp -webapp MyWebApp jsp/file1.jsp jsp/file2.jsp

The output is sent to the EAServer directory:

work/server/Servlet/WebApp-MyWebApp

Example 2 This command line example recursively compiles all JSPs in
the Web application named MyWebApp:

jagtool compilejsp -webapp MyWebApp

outputdir The full path of the output directory for generated Java source and
compiled classes. If the -webapp option is specified, the default is
this subdirectory of your EAServer installation directory:

work\server\Servlet\WebApp-WAName

Where server is the name of your server, and WAName is the name
of your Web application. To run the JSPs in EAServer, class files
must be in this directory.

If you do not specify the -webapp option, the default is the current
directory.

No

verbose Execute in verbose mode. The default is false. No

debug Compile the generated Java files with debugging information. The
default is false.

No

keep Keep the generated Java source files rather than deleting them. The
default is true.

No

file1 file2 ... When using the command line, the list of files to compile, with paths
specified relative to the Web application root directory, if using the
webapp option, or the specified directory, if using the uriroot
option. If no files are specified, all files in the specified Web
application or directory are compiled.

No

jspfile When using Ant, the file to compile with path relative to the relative
to the Web application root directory, if using the webapp option, or
the specified directory, if using the uriroot option. If no file is
specified, all files in the specified Web application or directory are
compiled.

No

Option Description Required

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 69

The output is sent to the EAServer directory:

$DJC_HOME/work/server/Servlet/WebApp-MyWebApp

Where server is the name of the server to which you are connected.

Example 3 This command line example compiles file1.jsp in the Web
application named MyWebApp:

jagtool compilejsp -webapp MyWebApp -outputdir c:\temp file1.jsp

The output is sent to c:\temp.

Example 4 This command line example compiles file1.jsp in the directory
c:\webapps\MyWebAppDir:

jagtool compilejsp -uriroot c:\webapps\MyWebAppDir file1.jsp

The output is sent to the current directory.

Example 5 This command line example recursively compiles all JSPs in
the directory c:\webapps\MyWebAppDir:

jagtool compilejsp -uriroot c:\webapps\MyWebAppDir -outputdir c:\temp

The output is sent to c:\temp.

Example 6 This Ant build file example defines a target to compile two
JSP files:

<target name="compilejsp_test" >
<jag_compilejsp Jspfile="file1.jsp" verbose="false"

Uriroot="D:\EAS\Sample\jagtool" />
<jag_compilejsp Jspfile="file2.jsp" verbose="false"

Uriroot="D:\EAS\Sample\jagtool" />
</target>

Usage You must run compilejsp in local mode. If you are running jagtool, see
“Using local mode” on page 53. If you are running jagant, see “Using
jagant in local mode” on page 61.

To use the compilejsp command in Ant, you must add the location of the
xalan.jar and crimson.jar files that are included with EAServer to the Ant
CLASSPATH. See “Setting up your environment” on page 56 for more
information.

You can also compile JSPs using the EAServer jspc script. The jspc script
invokes jagtool to compile JSPs.

See also Chapter 4, “Creating JavaServer Pages,” in the EAServer Web Application
Programmer’s Guide

configure

70 EAServer

configure
Description Configures or defines entities in the repository by reading properties from

an XML file.

Syntax Local-mode support: Yes.

Command line:

configure
[connect-args | local-args]
[-verbose true|false]
filename

Ant build file:

<jag_configure [verbose=”true|false”] file=”filename” />

Where:

Return value

Usage The configure command allows you to define and configure entities with
an XML file.

Note In 6.0 and later releases, use the Ant user-configuration target format
described in Chapter 2, “Ant-Based Configuration.”.

See also exportconfig, “XML configuration files” on page 63

Option Description Required

connect-args
| local-args

Arguments to specify a connection to the
server or to run in local mode. See “Local
versus connected mode” on page 52.

Yes

verbose Execute in verbose mode. The default is
false.

No

filename XML file to read commands from. Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 71

create
Description Creates a new entity in the repository.

Syntax Local-mode support: Yes.

Command line:

create [connect-args | local-args] entity [file]

Ant build file, specifying properties from an optional file:

<jag_create entity=”entity” [file=”file”] />

Ant build file, specifying properties directly:

<jag_create entity=”entity” >
<property name=”name” value=”value” />

</jag_create>

Return value

Examples Example 1 This example creates a package named NewPackage with the
properties defined in the file NewPackage.props.

• Command line:

Option Description Required

connect-args
| local-args

Arguments to specify a connection to
the server or run in local mode. See
“Local versus connected mode” on
page 52.

Yes

entity The name of the entity being created,
in the form EntityType:EntityName.

Yes

file An optional file containing properties
for the entity. The file must specify
properties in the form of an EAServer
repository properties file.

No

name The property name. In an Ant build
file, you may specify multiple
properties as <property> elements.

When setting
properties directly in
Ant

value The property value. When setting
properties directly in
Ant

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

create

72 EAServer

jagtool create Package:NewPackage NewPackage.props

• Ant build file:

<jag_create entity="Package:NewPackage" file="NewPackage.props" />

Example 2 This example creates a package named NewPackage2 and sets
the given properties. This alternate syntax allows you to specify properties
for the new entity in the command.

• Ant build file:

<jag_create entity="NewPackage2">
<property name="com.sybase.jaguar.description" value=Sample Package" />
<property name="com.sybase.jaguar.package.roles" value="role1" />

</jag_create>

Example 3 This example creates a listener called MyListener in the server
called Jaguar:

• Command line:

jagtool create Listener:Jaguar/MyListener

• Ant build file:

<jag_create entity="Listener:Jaguar/MyListener" />

Usage The create command does not perform the installation steps required to
run an entity in a particular server. For example, a package or application
must be installed in a server before running on that server, and a listener
must be installed in the server that it is associated with. Use the install
command to install entities into a parent entity.

See also delete, install, jmscreate

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 73

delete
Description Deletes an entity from the repository.

Syntax Local-mode support: Yes.

Command line:

delete [connect-args | local-args] [-type type] entity

Ant build file:

<jag_delete [type=”type”] entity=”entity” />

Return value

Examples Example 1 This example deletes Package:SVU from the repository.

• Command line:

jagtool delete Package:SVU

• Ant build file:

<jag_delete entity="Package:SVU" />

Note When a package is deleted, it is also removed from any servers on
which it is installed.

Option Description Required

connect-args
| local-args

Arguments to specify a connection to the server
or to run in local mode. See “Local versus
connected mode” on page 52.

Yes

type Specify simple for simple deletion (properties
files only) or full to delete all files that were
created when the entity was deployed. The
default is simple. For more information, see
“Undeploying entities” in Chapter 9, “Importing
Application Components,” in the System
Administration Guide.

No

entity The identifier for the entity being deleted. Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

delete

74 EAServer

Example 2 This example deletes the SVULogin component from
Package:SVU.

• Command line:

jagtool delete Component:SVU/SVULogin

• Ant build file:

<jag_delete entity="Component:SVU/SVULogin" />

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 75

deploy
Description Deploys a J2EE EAR file, J2EE WAR file, J2EE JAR file, or EAServer

JAR file to the server.

Syntax Local-mode support: Yes.

Command line:

deploy
[connect-args | local-args]
[-type filetype]
[-stubsandskels true|false]
[-jagjartype jartype]
[-install true|false]
[-strategy strategy]
[-verbose true|false]
[-interoperablenaming true|false]
[-setjarfilepackagenaming=”true|false”]
filename

Ant build file:

<jag_deploy
[type="filetype"]
[stubsandskels="true|false"]
[jagjartype="jartype"]
[install="true|false"]
[strategy="strategy"]
[verbose="true|false"]
[interoperablenaming=”true|false”]
[setjarfilepackagenaming=”true|false”]
file="filename” />

Option Description Default Required

connect-args | local-args Arguments to specify a connection to the server or
to run in local mode. See “Local versus connected
mode” on page 52.

None Yes

type The type of file deployed:

• ear

• war

• ejbjar

• jagjar

• rar

ear No

stubsandskels Indicates whether to generate stubs and skeletons
for EJB files. This flag is applicable only to EAR
and EJB files.

true No

deploy

76 EAServer

Return value

Examples Example 1 This command runs in local mode and deploys the EJB-JAR
file named myejb.jar into the server named FooServer:

jagjartype When type is jagjar, specifies the contents of the
Jaguar JAR file. Options are:

• Application

• Connector

• EntityCollection

• Package

• WebApplication

Application
for type
jagjar;
otherwise,
none

Only for
type
jagjar

install Indicates whether to automatically deploy
installed entities in servers.

true No

strategy Indicates the deployment strategy. Options are:

• full IDL is generated for everything in the
deployment tree.

• incremental IDL is generated for everything
that has changed.

• optimistic Used for implementation changes
(for example, if you have changed the contents
of a method without changing its prototype).

You can specify incremental when the methods,
fields, interfaces, or superclass of a class have
changed. Specify full when other details have
changed or IDL has been deleted.

incremental No

setjarfilepackagenaming For EAR or EJB-JAR files, specifies how newly
created packages are named, as follows:

• true indicates that entities use the name of the
archive file from which they are imported.

• false indicates that entities use the display-
name element in the deployment descriptor.

false No

verbose Indicates that output during deployment is
verbose.

false No

filename The name of the deployed file. None Yes

Option Description Default Required

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 77

jagtool -local -server FooServer deploy -type ejbjar myejb.jar

Example 2 This example deploys the J2EE EAR file eastore.ear to the
server:

• Command line:

jagtool deploy -type ear e:\temp\estore.ear

• Ant build file:

<jag_deploy type="ear" file="e:\temp\estore.ear" />

Example 3 This example deploys the JAR file AuthServiceDemo.jar to
the server:

• Command line:

jagtool deploy -type jagjar -jagjartype Package /tmp/AuthServiceDemo.jar

• Ant build file:

<jag_deploy type="jagjar" jagjartype="Package"
file="/tmp/AuthServiceDemo.jar" />

See also export, install

Chapter 9, “Importing Application Components” in the System
Administration Guide.

ejbref

78 EAServer

ejbref
Description Sets the value of an EJB reference.

Syntax Local-mode support: Yes.

Command line:

ejbref
[connect-args | local-args]
entity
[-localref true|false]
-refname name
-value value

Ant build file:

<jag_ejbref [localref=”true|false”] entity=”entity” refname=”name”
value=”value” />

Return value

Examples This example sets the value of an EJB reference in the component
TheCustomer in the package Customer_Component. The EJB reference
ejb/account/Account is set to the value of
“Customer_Component/TheAccount”.

• Command line (all on one line):

Option Description Default Required

connect-args |
local-args

Arguments to specify a connection
to the server or to run in local
mode. See “Local versus
connected mode” on page 52.

- Yes

entity The entity identifier in the form
EntityType:EntityName.

- Yes

localref Whether setting a local-interface
reference or a remote-interface
reference. true indicates a local-
interface reference.

false No

refname The name of an EJB reference for
the given entity.

- Yes

value The value for the EJB reference. - Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 79

jagtool ejbref Component:Customer_Component/TheCustomer
-refname ejb/account/Account
-value Customer_Component/TheAccount

• Ant build file:

<jag_ejbref entity="Component:Customer_Component/TheCustomer"
refname="ejb/account/Account" value="Customer_Component/TheAccount" />

enventry

80 EAServer

enventry
Description Sets the value of a J2EE environment entry.

Syntax Local-mode support: Yes.

Command line:

enventry
[connect-args | local-args]
entity
-entryname name
-value value

Ant build file:

<jag_enventry entity=”entity” entryname=”name” value=”value” />

Return value

Examples This example sets the value of an environment entry in the component
TheOrder in the package Customer_Component. The value of environment
entry ejb/order/OrderDAOClass is set to
“com.sun.j2ee.blueprints.customer.order.dao.OrderDAOSybase”.

• Command line (all on one line):

jagtool enventry Component:Customer_Component/TheOrder -entryname
ejb/order/OrderDAOClass -value
com.sun.j2ee.blueprints.customer.order.dao.OrderDAOSybase

• Ant build file:

Option Description Default Required

connect-args |
local-args

Arguments to specify a connection
to the server or to run in local
mode. See “Local versus
connected mode” on page 52.

- Yes

entity The entity identifier in the form
EntityType:EntityName.

- Yes

entryname The name of an environment entry
for the given entity.

- Yes

value The value for the environment
entry.

- Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 81

<jag_enventry entity="Component:Customer_Component/TheOrder"
entryname="ejb/order/OrderDAOClass"
value="com.sun.j2ee.blueprints.customer.order.dao.OrderDAOSybase" />

exists

82 EAServer

exists
Description Determines whether or not a specified entity is present in the configuration

repository.

Syntax Local-mode support: Yes.

Command line:

exists [connect-args | local-args] entity

Ant build file:

<jag_exists entity=”entity” property=”ant_property”>

Return value

Examples This example determines whether the component SVULogin in package
SVU exists:

• Command line:

jagtool exists Component:SVU/SVULogin

• Ant build file:

This example does the same, and sets the property svulogin.exists
if the component exists. If it does not exist, the property is not set.

<jag_exists entity="Component:SVU/SVULogin" property="svulogin.exists"
/>

Option Description Required

connect-args
| local-args

Arguments to specify a connection to the server
or to run in local mode. See “Local versus
connected mode” on page 52.

Yes

entity The entity identifier in the form
EntityType:EntityName.

Yes

ant_property The name of the Ant build property to set if the
entity exists.

When using
Ant

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 83

export
Description Exports an entity to a J2EE-format EAR, JAR, RAR, or WAR file, or to an

EAServer-format JAR file.

Syntax Local-mode support: Yes.

Command line:

export [connect-args | local-args] [-dir dirname] [-jagjar true|false] \
[-xmlconfig=true|false] [-emptycachetags=true|false] entity

Ant build file:

<jag_export [dir=”dirname”] [jagjar=”true|false”]
[-xmlconfig=”true|false”] -[emptycachetags=”true|false”]
entity=”entity” />

Return value

Examples Example 1 This example exports the application named “estore” to a J2EE
EAR file in the e:\temp directory:

• Command line:

jagtool export -dir e:\temp Application:estore

Option Description Default Required

connect-args |
local-args

Arguments to specify a connection to the server or to run in local
mode. See “Local versus connected mode” on page 52.

- Yes

dir The directory where the file is created. Current
directory

No

jagjar Export to a Jaguar JAR file rather than a J2EE archive file. true No

xmlconfig When exporting a J2EE archive, whether to include the EAServer-
specific sybase-easerver-config.xml file. For more information, see
“Using EAServer configuration files in J2EE archives” in Chapter
9, “Importing Application Components” in the System
Administration Guide.

true No

emptycachetags When exporting a J2EE archive, whether to export a no-operation
version of the EAServer partial page caching tag library with Web
applications to allow portability to other J2EE application servers
that do not support this tag library.

false No

entity Entity identifier for the entity being exported. - Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

export

84 EAServer

• Ant build file:

<jag_export dirname="e:\temp" entity="Application:estore" />

Example 2 This example exports the SVU package to a JAR file in the
current directory:

• Command line:

jagtool export -jagjar true Package:SVU

• Ant build file:

<jag_export jagjar="true" entity="Package:SVU" />

See also deploy

Chapter 9, “Importing Application Components” in the System
Administration Guide.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 85

exportconfig
Description Creates an XML configuration file that matches the configuration of an

existing entity.

Syntax Local-mode support: Yes.

Command line:

exportconfig [connect-args | local-args] [-dir dirname] \
[-configtype update|create] [-verbose true|false] \
[-easerverpropsonly true|false] entity

Ant build file:

<jag_exportconfig [dir=”dirname”] [configtype=”update|create”]
[verbose=true|false”] [easerverpropsonly “true|false “]
entity=”entity” />

The exportconfig command creates the file sybase-easerver-config.xml in
the specified directory. The command fails if a file with this name already
exists.

Return value

Option Description Default Required

connect-args | local-
args

Arguments to specify a connection to the server or to run in
local mode. See “Local versus connected mode” on page
52.

- Yes

dir The directory where the file is to be created. Current
directory

No

configtype Specifies the value of the type attribute of the configure
XML element that is created.

update No

verbose Execute in verbose mode. false No

easerverpropsonly Whether the generated XML file should include all
properties, or only those properties that are not set in an
equivalent J2EE deployment descriptor for the entity.
Specify true to exclude properties that are set in the
equivalent J2EE deployment descriptor.

false No

entity The name of the entity being created, in the form
EntityType:EntityName.

- Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

exportconfig

86 EAServer

Examples This command line example creates an XML configuration file in the
current directory for the component EventSamples/StockManager and
specifies create as the configure type:

jagtool exportconfig -configtype create Component:EventSamples/StockManager

Usage In 6.0 and later releases, use the Ant user-configuration target format
described in Chapter 2, “Ant-Based Configuration.”

See also configure, “XML configuration files” on page 63

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 87

getmonitorstats
Description Retrieves and prints runtime monitoring statistics from the server to which

you are connected.

Syntax Local-mode support: No.

Command line:

getmonitorstats connect-args item [detail]

Ant build file:

<jag_getmonitorstats [item=”item”] [detail=”detail”] />

Usage getmonitorstats allows you to retrieve runtime monitoring statistics for the
items listed in Table 6-4.

Table 6-4: getmonitorstats options

See also Chapter 11, “Runtime Monitoring” in the System Administration Guide.

Option Description Required

connect-args Arguments to specify a connection to the
server. See “Using connected mode” on page
52.

Yes

item An item type as listed in Table 6-4. Yes

detail An optional detail specifier to match the
specified item type, as listed in Table 6-4.

No

Item Detail To specify

Package An optional package name Statistics for components in the specified package,
or all components if you do not specify a package
name

Component A component name in the
form package/component

Statistics for the specified component

ConnCache An optional connection
cache name

Statistics for the specified connection cache, or all
of them if you do not specify a name

ManagedConnectionFactory An optional managed
connection factory name

Statistics for the specified managed connection
factory, or all of them if you do not specify a name

Network The protocol, that is, HTTP or
IIOP

Network statistics for the specified protocol

getserverinfo

88 EAServer

getserverinfo
Description Print status and version information for the server to which you are

connected.

Syntax Local-mode support: No.

Command line:

getserverinfo connect-args [-version true|false] [-status true|false]

Ant build file:

<jag_getserverinfo [version=”true|false”] [status=”true|false”] />

Option Description Required

connect-args Arguments to specify a connection to the
server. See “Using connected mode” on page
52.

Yes

version Whether to print the server version number. No

status Whether to print the server status, that is,
whether the server is accepting regular client
connections or in Admin mode.

No

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 89

getservicestate
Description Returns the state of service components executing in the server.

Syntax Local-mode support: No.

Command line:

getservicestate connect-args servicename

Ant build file:

<jag_getservicestate servicename=”servicename “ />

Return value

Usage This command prints the service state, using the terms listed in Table 6-5.

Table 6-5: Service states

Option Description Required

connect-args Arguments to specify a connection to the
server. See “Using connected mode” on page
52.

Yes

servicename The name of the service to query, or all to list
the state of all services. jagtool fails with an
error message if you specify the name of a
service that is not installed or that does not
implement the interface
CtsServices::ExtendedService.

Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

State Description

UNKNOWN The state is unknown because the service does not
implement the CtsServices::ExtendedService
interface.

STARTING The service is starting. The start method has been
called, but has not returned.

STARTED The service is started, but not yet running. The start
method has returned, but the run method has not been
called.

RUNNING The service is running, that is, executing the run
method.

getservicestate

90 EAServer

For example, this is the typical output for a server where the message
service is not installed:

jagtool getservicestate all
JaguarServlet/ServletService's state is RUNNING
CosNaming/JNameService's state is FINISHED

This command is useful when you are running jagtool or jagant from
scripts that start or restart the server. You can check the output to determine
if the required service is running. For example, components should not be
deployed before the name service has finished, and JMS entities cannot be
created before the message service is running.

See also Chapter 4, “Creating Service Components”

FINISHED The service is finished processing. The run method
has returned. This state applies only to services that do
not run continuously until stopped.

STOPPING The service is stopping. The stop method has been
called, and is still running.

STOPPED The service is stopped. The stop method has been
called and has returned.

State Description

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 91

grantroleauth
Description Grants authorization to a given role to perform specific actions on the

given entity. If the entity is a server, members of the role are granted
permission to restart, refresh, or shutdown the server. If the entity is an
application, Web application, servlet, or package, members of the role are
granted access to those resources, including deploying the entity.

Syntax Local-mode support: Yes.

Command line:

grantroleauth [connect-args | local-args] [-role rolename] \
[-action actionname] entity

Ant build file:

<jag_grantroleauth [role=”rolename”] [action=”actionname”]
entity=”entity” />

Examples This example grants access to the “Estore” application to members of the
role named “test”.

jagtool grantroleauth -role test Application:Estore

See also removeroleauth

Option Description Required

connect-args |
local-args

Arguments to specify a connection to the
server or to run in local mode. See “Local
versus connected mode” on page 52.

Yes

role The role ID or name to which authorization is
being granted. The role must exist on the
server to which you are connected.

Yes

action Valid only when the entity type is server.
Valid actions include restart, refresh, and
shutdown.

When the
entity type is
server

entity The name of the entity, in the form
EntityType:EntityName. Valid entities are
application, Webapplication, servlet, server,
and package.

Yes

install

92 EAServer

install
Description Installs an entity into another entity (for example, installs a package into a

server).

Syntax Local-mode support: Yes.

Command line:

install [connect-args | local-args] source target

Ant build file:

<jag_install source=”source” target=”target” />

Return value

Examples Example 1 This example installs the package SoapDemo in the server
Jaguar.

• Command line:

jagtool install Package:SoapDemo Server:Jaguar

• Ant build file:

<jag_install source="Package:SoapDemo" target="Server:Jaguar" />

Example 2 This example installs the application MyPortfolio in the server
Jaguar.

• Command line:

jagtool install Application:MyPortfolio Server:Jaguar

• Ant build file:

Option Description Required

connect-args |
local-args

Arguments to specify a connection to the server
or to run in local mode. See “Local versus
connected mode” on page 52.

Yes

source The entity identifier for the entity being
installed.

Yes

target The entity identifier in which the source entity
is being installed.

Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 93

<jag_install source="Application:MyPortfolio" target="Server:Jaguar" />

Example 3 This example installs MyListener into the server Jaguar:

• Command line:

jagtool install Listener:Jaguar/MyListener Server:Jaguar

• Ant build file:

<jag_install source="Listener:Jaguar/MyListener" target=”Server:Jaguar”
/>

Example 4 This example installs the service component
MyPack/MyComp into the server Jaguar:

• Command line:

jagtool install Service:MyPack/MyComp Server:Jaguar

• Ant build file:

<jag_install source="Service:MyPack/MyComp" target=”Server:Jaguar” />

See also create, remove

jmscreate

94 EAServer

jmscreate
Description Creates a JMS entity.

Syntax Local-mode support: No.

Command line:

jmscreate connect-args entity [file]

Ant build file:

<jag_jmscreate entity=”entity” [file=”file”] />

Return value

Examples Example 1 This example uses the command line to create a message
queue named MyQueue and specifies a properties file:

jagtool jmscreate MessageQueue:MyQueue
D:\Jag41005\sample\jagtool\queueprops.txt

Example 2 This example does the same thing in an Ant build file:

<jag_jmscreate entity="MessageQueue:AntQueue"
file="D:\Jag41005\sample\jagtool\queueprops.txt" />

Option Description Required

connect-args Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

entity The entity to create, in the form
EntityType:EntityName. Valid entity types
are:

• MessageQueue

• MessageTopic

• QueueConnectionFactory

• ThreadPool

• TopicConnectionFactory

Yes

file An optional file containing properties for the
entity. The file must specify properties in the
form of an EAServer repository properties file.
You can set properties after the entity exists
with the jmsset_props command.

No

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 95

See also jmsdelete, jmslist, jmsprops, jmsset_props

Chapter 2, “Setting up the Message Service” the EAServer JMS User’s
Guide.

jmsdelete

96 EAServer

jmsdelete
Description Deletes the specified entity.

Syntax Local-mode support: No.

Command line:

jmsdelete connect-args entity

Ant build file:

<jag_jmsdelete entity=”entity” />

If the entity is a message queue, you must first remove its listeners. This
operation removes selectors, and receives and acknowledges all queued
messages for the message queue.

Return value

Examples Example 1 This command line example deletes the message queue
“MyQueue”:

jagtool jmsdelete MessageQueue:MyQueue

Example 2 This example does the same thing in an Ant build file:

<jag_jmsdelete entity="MessageQueue:MyQueue" />

Option Description Required

connect-args Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

entity The entity to delete, in the form
EntityType:EntityName. Valid entity types
are:

• Listener

• MessageQueue

• MessageTopic

• QueueConnectionFactory

• ThreadPool

• TopicConnectionFactory

Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 97

jmsflush
Description Flushes the messages from the specified message queue.

Syntax Local-mode support: No.

Command line:

jmsflush connect-args MessageQueue:QueueName

Where connect-args is the list of arguments to specify a connection to the
server. See “Using connected mode” on page 52.

Ant build file:

<jag_jmsflush entity=”MessageQueue:QueueName” />

Return value

Examples Example 1 This command line example flushes the message queue
“MyQueue”:

jagtool jmsflush MessageQueue:MyQueue

Example 2 This example does the same thing in an Ant build file:

<jag_jmsflush entity="MessageQueue:MyQueue" />

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

jmslist

98 EAServer

jmslist
Description Lists JMS entities of the specified type.

Syntax Local-mode support: No.

Command line:

jmslist connect-args type

Ant build file:

<jag_jmslist type=”type” />

Where connect-args is the list of arguments to specify a connection to the
server, described in “Using connected mode” on page 52, and type is one
of the following JMS entity types:

Return value

Examples Example 1 This command line example lists active JMS message queues:

jagtool jmslist ActiveMessageQueue

Example 2 This example does the same in an Ant build file:

<jag_jmslist type="ActiveMessageQueue" />

Type specifier To list names of

ActiveMessageQueue Currently active message queues

ConfMessageQueue Configured message queues (queues that
were created administratively rather than
programmatically)

ActiveMessageTopic Currently active message topics

ConfMessageTopic Configured message topics (topics that were
created administratively rather than
programmatically)

QueueConnectionFactory Queue connection factories

ThreadPool Thread pools

TopicConnectionFactory Topic connection factories

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 99

jmslist_listeners
Description Lists the names of the listeners attached to the specified message queue.

Syntax Local-mode support: No.

Command line:

jmslist_listeners connect-args MessageQueue:QueueName

Where connect-args is the list of arguments to specify a connection to the
server. See “Using connected mode” on page 52.

Ant build file:

<jag_jmslist_listeners type=”MessageQueue:QueueName” />

Return value

Examples Example 1 This command line example lists the listeners attached to
“MyQueue”:

jagtool jmslist_listeners MessageQueue:MyQueue

Example 2 This example does the same in an Ant build file:

<jag_jmslist_listeners type="MessageQueue:MyQueue"
/>

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

jmslist_messages

100 EAServer

jmslist_messages
Description Lists the messages in the specified message queue.

Syntax Local-mode support: No.

Command line:

jmslist_messages connect-args [-maximum #messages]
[-selector expression]
MessageQueue:QueueName

Ant build file:

<jag_jmslist_messages [“maximum = #messages]
[“selector = expression”]
type=”MessageQueue:QueueName” />

Return value

Examples Example 1 This command line example lists the first 25 messages in
“MyQueue”:

jagtool jmslist_messages -maximum 25 MessageQueue:MyQueue

Example 2 This example does the same in an Ant build file:

<jag_jmslist_messages “maximum=25” type="MessageQueue:MyQueue" />

Option Description Default Required

connect-args Arguments to specify a
connection to the server. See
“Using connected mode” on page
52.

- Yes

#messages The maximum number of
messages to list. If 0 or a negative
number, all messages are listed.

100 No

expression A selector expression. Only
messages that match the selector
expression are returned. If set to
true, all messages are returned.
The number of these messages
that are listed is determined by
#messages.

true No

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 101

jmsmanage_listeners
Description Adds and removes listeners to and from JMS message queues.

Syntax Local-mode support: No.

Command line:

jmsmanage_listeners
connect-args
-action "Component:comp"
MessageQueue:queue

Ant build file: <

jag_manage_listeners action=”action” listener="Component:comp"
entity="MessageQueue:queue"/>

Return value

Examples These command line examples add and remove the component named
JmsListenerTest/JmsListener to the queue MyQueue:

jagtool jmsmanage_listeners -add Component:JmsListenerTest/JmsListener
MessageQueue:MyQueue

jagtool jmsmanage_listeners -remove Component:JmsListenerTest/JmsListener
MessageQueue:MyQueue

Option Description Required

connect-args Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

action add to add the listener to the queue or remove
to remove the listener from the queue.

Yes

comp The component that listens for messages
on the specified queue, in the format
package/component.

Yes

queue The message queue name. Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

jmsmanage_selectors

102 EAServer

jmsmanage_selectors
Description Adds and removes selectors to and from JMS message queues.

Syntax Local-mode support: No.

Command line:

jmsmanage_selectors
connect-args
-action "selector"
MessageQueue:queue

Ant build file:

<jag_manage_selectors action=”action” selector="selector"
entity="MessageQueue:queue"/>

Return value

Examples These command line examples install and remove the selector
“topic='test'” from the message queue MyQueue:

jagtool jmsmanage_selectors -add "topic='test'" MessageQueue:MyQueue

jagtool jmsmanage_listeners -remove "topic='test'" MessageQueue:MyQueue

Option Description Required

connect-args Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

action add to add the selector to the queue or remove
to remove the selector from the queue.

Yes

selector The JMS selector. Yes

queue The message queue name. Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 103

jmsprops
Description Lists the properties for a JMS entity.

Syntax Local-mode support: No.

Command line:

jmsprops connect-args entity

Ant build file:

<jag_jmsprops entity=”entity” />

Return value

Examples Example 1 This example lists properties for the message queue
“MyQueue”:

jagtool jmsprops MessageQueue:MyQueue

Example 2 This example does the same thing in an Ant build file:

<jag_jmsprops entity="MessageQueue:MyQueue" />

See also jmsset_props

Option Description Required

connect-args Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

entity The entity of interest, in the form
EntityType:EntityName. Valid entity types
are:

• MessageQueue

• MessageTopic

• QueueConnectionFactory

• ThreadPool

• TopicConnectionFactory

Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

jmsset_props

104 EAServer

jmsset_props
Description Sets properties for a JMS entity.

Syntax Local-mode support: No.

Command line: To set an individual property, specify the property name
and value on the command line:

jmsset_props connect-args entity name value

To set multiple properties (one or more) from a properties file, specify the
file name:

jmsset_props connect-args entity file

Ant build file: To set an individual property, specify the property name
and value:

<jag_jmsset_props entity=”entity” name=”name” value=”value” />

To set multiple properties (one or more) from a properties file, specify the
file name:

<jag_jmsset_props entity=”entity” file=”file” />

Return value

Option Description Required

connect-args Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

entity The entity of interest, in the form
EntityType:EntityName. Valid entity types
are:

• MessageQueue

• MessageTopic

• QueueConnectionFactory

• ThreadPool

• TopicConnectionFactory

Yes

name The property name. No

value The property value. No

file An optional file containing properties for the
entity. The file must specify properties in the
form of an EAServer repository properties file.

No

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 105

Examples Example 1 This command line example configures the “maximum”
property of the queue named “AntQueue”:

jagtool jmsset_props "MessageQueue:AntQueue" maximum 99

This example does the same thing in an Ant build file:

<jag_jmsset_props entity="MessageQueue:AntQueue" name="maximum" value="99"
/>

Example 2 This command line example configures the queue named
“AntQueue,” specifying a properties file:

jagtool jmsset_props "MessageQueue:AntQueue"
"D:\Jag41005\sample\jagtool\Newqueueprops.txt"

This example does the same thing in an Ant build file:

<jag_jmsset_props entity="MessageQueue:AntQueue"
file="D:\Jag41005\sample\jagtool\Newqueueprops.txt" />

Example 3 Here is what the Newqueueprops.txt file used in the above
examples might contain:

IGNORE_DUPLICATE_KEY=false
REQUIRES_ACKNOWLEDGE=false
REQUIRES_TRANSACTION=false
maximum=0
qop=none
share=true
store=true
table=
timeout=60

See also jmscreate, jmsdelete, jmslist, jmsprops

Chapter 2, “Setting up the Message Service” in the JMS User’s Guide

list

106 EAServer

list
Description Lists entities in the repository.

Syntax Local-mode support: Yes.

Command line:

list [connect-args | local-args] type entity

Ant build file:

<jag_list type=”type” entity=”entity” />

Return value

Examples Example 1 This command lists all connection caches, running from the
command line in local mode:

jagtool -local list ConnCache

Example 2 This example lists all the packages in the repository.

• Command line:

jagtool list Package

• Ant build file:

<jag_list type="Package" />

Example 3 This example lists all the child entities of Package:SVU.

• Command line:

jagtool list Package:SVU

• Ant build file:

<jag_list entity="Package:SVU" />

Option Description Required

connect-args |
local-args

Arguments to specify a connection to the
server or to run in local mode. See “Local
versus connected mode” on page 52.

Yes

type The type of entities to list. Either type or
entity is required.
Both can be used.

entity An optional entity identifier to specify a
parent entity. Child entities are listed.

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 107

Example 4 This example lists all the child components of Package:SVU.

• Command line:

jagtool list Component Package:SVU

• Ant build file:

<jag_list type="Component" entity="Package:SVU" />

merge_props

108 EAServer

merge_props
Description Merges or deletes property values for an entity.

Syntax Local-mode support: Yes.

Command line:

merge_props [connect-args | local-args] entity \
[-verbose true|false] { [mergeop name value] | [file] }

Ant build file: There are three syntax forms for Ant commands. You can
specify a merge command for a single property with this syntax:

<jag_merge_props entity=”entity” [verbose=” true|false”]
mergeop=”mergeop” name=”name” value=”value” >
</jag_merge_props>

You can specify merge commands for multiple properties with this syntax:

<jag_merge_props entity="entity" [verbose="true|false"]>
<mergeproperty mergeop="mergeop" name="name"

value="value" />
<mergeproperty mergeop="mergeop" name="name"

value="value" />
...

</jag_merge_props>

You can specify the name of a file that contains merge commands with this
syntax:

<jag_merge_props entity=”entity” [verbose=” true|false”]
file=”file” ></jag_merge_props>

Option Description Required

connect-args |
local-args

Arguments to specify a connection to the server or to run in local mode. See
“Local versus connected mode” on page 52.

Yes

entity The entity identifier for the target entity. Valid entity types include Agent,
Application, Cluster, Component, ConnCache, Connector, DatabaseType,
EntityCollection, Filter, InstancePool, Listener,
ManagedConnectionFactory, Package, Role, Security, Server, Servlet, and
WebApplication.

The entity types Connector, Filter, and ManagedConnectionFactory are
available only for J2EE 1.3-enabled servers.

Yes

verbose Whether to execute in verbose mode. The default is false. No

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 109

Examples Example 1 To add a service to the list of services for the server named
Jaguar, you can run the following on the command line:

jagtool merge_props Server:Jaguar AppendToList
com.sybase.jaguar.server.services MyNewService

Example 2 The following Ant example appends a value to the Java
classes setting for a package:

<target name="test_merge_props" depends="connect">
<jag_merge_props entity="Package:Foo"

verbose="true" mergeop="AppendToList"
name="com.sybase.jaguar.package.java.classes"
value="com.foo.MyClass">

</jag_merge_props>
</target>

mergeop The merge operation, one of:

• AppendToList For properties that take a comma-separated list of
values, append the value to the existing value if not already present. Case
is significant when comparing against existing entries; for example, if
foo2 is present and you append Foo2, both are present after appending.

• PrependToList For properties that take a comma-separated list of
values, prepend the value to the existing value.

• RemoveFromList For properties that take a comma-separated list of
values, remove the value from the existing value if present.

• SetDefault Set the properties value to the default value.

• Delete Delete the property setting completely.

When not
specifying a file
containing
merge
commands

name The name of the property of interest. When not
specifying a file
containing
merge
commands

value The property value to merge. When not
specifying a file
containing
merge
commands

file The name of a text file containing merge commands. The file must be a text
file containing lines of the form:

mergeop:name=value
Where mergeop, name, and value follow the syntax rules above.

When not
specifying a
merge
operation and
property name

Option Description Required

merge_props

110 EAServer

Example 3 This Ant example merges several properties for a package:

<target name="test_merge_props" depends="connect">
<jag_merge_props entity="Package:Foo" verbose="true">

<mergeproperty mergeop="AppendToList"
name="com.sybase.jaguar.package.description" value="more stuff"/>

<mergeproperty mergeop="PrependToList"
name="com.sybase.jaguar.package.someprop" value="newvalue3"/>

<mergeproperty mergeop="RemoveFromList"
name="com.sybase.jaguar.package.someprop" value="original"/>

<mergeproperty mergeop="SetDefault"
name="com.sybase.jaguar.package.someprop" value="newvalue4"/>

<mergeproperty mergeop="Delete"
name="com.sybase.jaguar.package.someprop"/>

</jag_merge_props>
</target>

Example 4 This Ant example specifies the name of a file that contains
merge commands:

<target name="test_merge_props" depends="connect">
<jag_merge_props entity="Package:Foo"

verbose="true" file="C:\EAServer\MergeProps.txt">
</jag_merge_props>
</target>

See also props, set_props

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 111

ping
Description Pings a connection cache.

Syntax Local-mode support: No.

Command line:

ping connect-args entity

Ant build file:

<jag_ping entity=”entity” />

Return value

Examples This example pings the connection cache named “JavaCache”:

• Command line:

jagtool ping ConnCache:JavaCache

• Ant build file:

<jag_ping entity="ConnCache:JavaCache" />

Option Description Required

connect-args Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

entity The connection cache identifier in the form
ConnCache:EntityName.

Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

props

112 EAServer

props
Description Lists properties for an entity in the repository.

Syntax Local-mode support: Yes.

Command line:

props [connect-args | local-args] entity

Ant build file:

<jag_props entity=”entity” />

Return value

Examples Example 1 This example lists the properties of Package:SVU.

• Command line:

jagtool props Package:SVU

• Ant build file:

<jag_props entity="Package:SVU" />

Example 2 This example lists the properties of Server:Jaguar.

• Command line:

jagtool props Server:Jaguar

• Ant build file:

<jag_props entity="Server:Jaguar" />

See also Appendix B, “Repository Properties Reference”

Option Description Required

connect-args |
local-args

Arguments to specify a connection to the server
or to run in local mode. See “Local versus
connected mode” on page 52.

Yes

entity The entity identifier for the entity whose
properties are listed.

Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 113

rebind
Description Rebinds a cluster, which refreshes all of the name servers within the

cluster.

Syntax Local-mode support: No.

Command line:

rebind connect-args Cluster:name

Ant build file:

<jag_rebind entity=”Cluster:name” />

Return value

Usage If you add a component to a server that is already part of a cluster and want
to make that component available to the cluster, you need to rebind the
cluster. You can also use the rebind option if a problem occurs when you
synchronize the cluster; if for example, one of the name servers is slow to
start.

See also Chapter 6, “Clusters and Synchronization” in the System Administration
Guide.

Option Description Required

connect-args Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

name The name of the cluster to rebind. Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

refresh

114 EAServer

refresh
Description Refreshes an entity in the server.

Syntax Local-mode support: No.

Command line:

refresh connect-args entity

Ant build file:

<jag_refresh entity=”entity” />

Return value

Examples Example 1 This example refreshes Package:SVU.

• Command line:

jagtool refresh Package:SVU

• Ant build file:

<jag_refresh entity="Package:SVU" />

Example 2 This example refreshes the SVULogin component of
Package:SVU.

• Command line:

jagtool refresh Component:SVU/SVULogin

• Ant build file:

Option Description Required

connect-
args

Arguments to specify a connection to the server.
See “Using connected mode” on page 52.

Yes

entity The entity identifier for the entity being refreshed.
To refresh servers, you must be connected to the
specified server. To refresh other entities, you must
be connected to a server in which the entity is
installed.

Refresh does not support servlets. To refresh
servlets, refresh the Web application or server in
which they are installed.

Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 115

<jag_refresh entity="Component:SVU/SVULogin" />

Example 3 This example refreshes the server Jaguar, and works only
when you are connected to the server with this name.

• Command line:

jagtool refresh Server:Jaguar

• Ant build file:

<jag_refresh entity="Server:Jaguar" />

remove

116 EAServer

remove
Description Removes, but does not delete, an entity from another entity. For example,

use remove to remove a package from a server.

Syntax Local-mode support: Yes.

Command line:

remove [connect-args | local-args] source target

Ant build file:

<jag_remove source=”source” target=”target” />

Return value

Examples Example 1 This example removes Package:SVU from the entity
Server:Jaguar.

• Command line:

jagtool remove Package:SVU Server:Jaguar

• Ant build file:

<jag_remove source="Package:SVU" target="Server:Jaguar"/>

Example 2 This example removes WebApplication:WebTier from the
entity Application:estore.

• Command line:

jagtool remove WebApplication:WebTier Application:estore

• Ant build file:

Option Description Required

connect-args |
local-args

Arguments to specify a connection to the server
or to run in local mode. See “Local versus
connected mode” on page 52.

Yes

source The entity identifier of the entity being
removed.

Yes

target The entity identifier of the entity from which
the source is removed.

Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

1 The command ran successfully; the result is false/failure.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 117

<jag_remove source="WebApplication:WebTier" target="Application:estore"
/>

Example 3 This example removes the service component
MyPack/MyComp from the server Jaguar:

• Command line:

jagtool remove Service:MyPack/MyComp Server:Jaguar

• Ant build file:

<jag_remove source="Service:MyPack/MyComp" target=”Server:Jaguar” />

See also install

removeroleauth

118 EAServer

removeroleauth
Description Removes authorization from members of a given role to perform specific

actions on the given entity. If the entity is a server, members of the role are
denied permission to restart, refresh, or shut down the server. If the entity
is an application, Web application, servlet, or package, members of the
role are denied access to those resources, including deploying the entity.

Syntax Local-mode support: Yes.

Command line:

removeroleauth [connect-args | local-args] [-role rolename] \
[-action actionname] entity

Ant build file:

<jag_removeroleauth [role=”rolename”] [action=”actionname”]
entity=”entity” />

Examples This example denies access to the “Estore” application to members of the
role named “test”.

jagtool removeroleauth -role test Application:Estore

See also grantroleauth

Option Description Required

connect-args |
local-args

Arguments to specify a connection to the server
or to run in local mode. See “Local versus
connected mode” on page 52.

Yes

role Role ID or name to which authorization is being
denied. The role must exist on the server to which
you are connected.

Yes

action Only valid when the entity type is server. Valid
actions include restart, refresh, and shutdown.

No

entity The name of the entity, in the form
EntityType:EntityName. Valid entities are
application, Webapplication, servlet, server, and
package.

Yes

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 119

resref
Description Sets the value of a J2EE resource reference.

Syntax Local-mode support: Yes.

Command line:

resref [connect-args | local-args] entity -refname name -value value

Ant build file:

<jag_resref entity=”entity” refname=”name” value=”value” />

Return value

Examples This example sets the value of a reference in the component TheAccount
in the Customer_Component package. The resource reference
jdbc/EstoreDataSource is set to the value “PetStoreDB.”

• Command line (all on one line):

jagtool resref Component:Customer_Component/TheAccount -refname
jdbc/EstoreDataSource -value PetStoreDB

• Ant build file:

<jag_resref entity="Component:Customer_Component/TheAccount"
refname="jdbc/EstoreDataSource" value="PetStoreDB" />

Option Description Required

connect-args |
local-args

Arguments to specify a connection to the server
or to run in local mode. See “Local versus
connected mode” on page 52.

Yes

entity The entity identifier in the form
EntityType:EntityName.

Yes

name The name of a resource reference for the given
entity.

Yes

value The value for the reference. Yes

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

restart

120 EAServer

restart
Description Terminates and restarts the server process to which you are connected.

Syntax Local-mode support: No.

Command line:

restart connect-args

Where connect-args is a list of arguments to specify a server connection,
as described in “Using connected mode” on page 52.

Ant build file:

<jag_restart />

Return value

Examples This example connects to the server “eclipse” on port 9005, with the user
name “admin@system” and the password “jagpass,” and restarts the
server.

• Command line:

jagtool -h eclipse -n 9005 -u admin@system -p jagpass restart

• Ant build file:

<jag_connect host="eclipse" port="9005" user="admin@system"
password="jagpass" />
<jag_restart />

All jagant commands depend on jag_connect. See “Using the jag_connect
command” on page 60 for more information about jag_connect.

See also shutdown

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 121

set_props
Description Sets properties for an entity in the repository. Properties can be set by

specifying either a names and values or a properties file.

Syntax Local-mode support: Yes.

Command line:

set_props [connect-args | local-args] entity [name value] | [file]

Ant build file, specifying a property file to read:

<jag_set_props entity=”entity” file=”file” />

Ant build file, specifying properties directly:

<jag_set_props entity=”entity” />
<property name=”name” value=”value”>
...

</jag_set_props>

Return value

Examples Example 1 This example sets the description for the entity Package:SVU.

• Command line:

Option Description Required

connect-args |
local-args

Arguments to specify a connection
to the server or to run in local
mode. See “Local versus
connected mode” on page 52.

Yes

entity The entity identifier for the entity
whose properties are being set.

Yes

name The property name. In an Ant
build file, you may specify
multiple properties as
<property> elements.

When setting properties
directly

value The property value. When setting properties
directly

file The name of a property file. Files
must specify properties in the
format of an EAServer properties
file.

When setting properties
using a properties file

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

set_props

122 EAServer

jagtool set_props Package:SVU com.sybase.jaguar.description “This is the
SVU Package”

• Ant build file:

<jag_set_props entity="Package:SVU">
<property name="com.sybase.jaguar.description" value="This is the SVU
Package" />
</jag_set_props>

Example 2 This example sets the properties for Package:SVU from the
file SVU.props.

• Command line:

jagtool set_props Package:SVU SVU.props

• Ant build file:

<jag_set_props entity="Package:SVU" file="SVU.props" />

Example 3 You can use the Ant build file to specify multiple properties.
For example, this declaration sets the values for the
com.sybase.jaguar.description and com.sybase.jaguar.package.roles
properties for Package:SVU.

• Ant build file:

<jag_set_props entity="Package:SVU" />
<property name="com.sybase.jaguar.description" value="This is the SVU
Package" />
<property name="com.sybase.jaguar.package.roles"
value="admin@system,role1" />
</jag_set_props>

Example 4 This example sets the host, port, and network protocol values
for “MyListener” in the “Jaguar” server:

• Command line:

jagtool set_props Listener:Jaguar/MyListener
com.sybase.jaguar.listener.host victor
jagtool set_props Listener:Jaguar/MyListener
com.sybase.jaguar.listener.port 9050
jagtool set_props Listener:Jaguar/MyListener
com.sybase.jaguar.listener.protocol iiop

• Ant build file:

<jag_set_props entity="Listener:Jaguar/MyListener" />
<property name=”com.sybase.jaguar.listener.host” value=”victor”>
<property name=”com.sybase.jaguar.listener.port” value=”9050”>

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 123

<property name=”com.sybase.jaguar.listener.protocol” value=”iiop”>
</jag_set_props>

Example 5 This jagtool example shows how special characters can be
escaped when running commands in DOS or Windows. In this case, the =
in the value set must be escaped by quoting:

jagtool set_props WebApplication:onepage
com.sybase.jaguar.webapplication.session-config=(session-timeout"="30)

This syntax is equivalent:

jagtool set_props WebApplication:onepage
com.sybase.jaguar.webapplication.session-config="(session-timeout=30)"

See also Appendix B, “Repository Properties Reference”

shutdown

124 EAServer

shutdown
Description Shuts down the server to which you are connected.

Syntax Local-mode support: No.

Command line:

shutdown connect-args

Where connect-args is a list of arguments to connect to the server, as
described in “Using connected mode” on page 52.

Ant build file:

<jag_shutdown />

Like all commands, shutdown requires connection flags at the command
line and the jag_connect command in Ant build files (see “Using the
jag_connect command” on page 60). shutdown terminates the server
process to which you have connected.

Return value

Examples This example connects to the server eclipse on port 9005, with the user
name admin@system and the password jagpass, and shuts down the
server.

• Command line:

jagtool -h eclipse -n 9005 -u admin@system -p jagpass shutdown

• Ant build file:

<jag_connect host="eclipse" port="9005" user="admin@system"
password="jagpass" />
<jag_shutdown />

See also restart

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 125

sync
Description Synchronizes entities in the current repository to one or more remote

repositories. Synchronization can be used to create identically configured
servers in a cluster, or to copy entities from one server to another.

Syntax Local-mode support: No.

Command line:

sync connect-args
[-clusterfiles true|false]
[-packagefiles true|false]
[-servletfiles true|false]
[-webappfiles true|false]
[-appfiles true|false]
[-clientappfiles true|false]
[-connectorfiles true|false]
[-syncwebappjavaclasses true|false]
[-newprimary true|false]
[-newversion true|false]
[-refresh true|false]
[-refresh true|false]
[-restart true|false]
[-waitfor waittime]
[-verbose true|false]
[-cluster clustername]
[-servers serverURLS] entity

Ant build file:

<jag_sync
[clusterfiles="true|false="]
[packagefiles="true|false="]
[servletfiles="true|false="]
[webappfiles="true|false="]
[appfiles="true|false"]
[clientappfiles="true|false"]
[connectorfiles="true|false"]
[syncwebappjavaclasses="true|false"]
[newprimary="true|false"]
[newversion="true|false"]
[refresh="true|false"]
[refresh="true|false"]

sync

126 EAServer

[restart="true|false"]
[waitfor="waittime"]
[verbose="true|false"]
[cluster="clustername"]
[servers="serverURLS"]
entity=”entity” />

Option Description Default Required

connect-args Arguments to specify a connection to the server. See
“Using connected mode” on page 52.

- Yes

clusterfiles Indicates all cluster files should be synchronized (all
files in Repository/Security, the property file for the
cluster, and any server properties found in the cluster
definition).

false No

packagefiles Indicates all packages should be synchronized
regardless of the type of entity specified by the entity
parameter.

false No

servletfiles Indicates all servlets should be synchronized regardless
of the type of entity specified by the entity parameter.

false No

webappfiles Indicates all Web applications should be synchronized,
regardless of the type of entity specified by the entity
parameter.

false No

appfiles Indicates all applications should be synchronized
regardless of the type of entity specified by the entity
parameter.

false No

clientappfiles Indicates all application clients should be synchronized
regardless of the type of entity specified by the entity
parameter.

false No

connectorfiles Indicates all connectors should be synchronized,
regardless of the type of entity specified by the entity
parameter.

false No

syncwebappjavaclasses When synchronizing Web application files, whether to
include class files included in the Web application’s
custom class list.

true No

newprimary Indicates that the sync primary specified with this
option overrides the default.

This option is required when the sync command is
initiated from a different server than the one used
previously to connect to the current target.

false See
description

newversion Indicates this sync command should result in a new
cluster version number.

This option is relevant only if the cluster option is
also specified.

false No

CHAPTER 6 Using jagtool and jagant

Automated Configuration Guide 127

Return value

Examples This example synchronizes the estore application on the servers in the
cluster MyCluster.

• Command line:

refresh Refreshes remote objects after the sync command
finishes.

false No

restart Restarts remote servers after the sync command
finishes.

false No

waittime Indicates a period of time in seconds to wait for a
remote server to restart before restarting the next server.

This command is relevant only if the restart option is
also specified.

0 No

verbose Indicates a verbose server output log. false No

clustername The name of the cluster to be synchronized.

Either the cluster or the servers option must be
specified.

- See
description

serverURLs Server URLs in a comma-delimited list.

For example:
serverURL1,serverURL2,serverURL3

Either the cluster or the servers option must be
specified.

- See
description

entity The name of the entity to be synchronized, in the form
EntityType:EntityName as described in “Entity
identifiers” on page 54.

EntityType must be one of the following:

• Cluster

• Server

• WebApplication

• Application

• Connector

• Package

• Component

- Yes

Option Description Default Required

Return
value Indicates

0 The command ran successfully; the result is true/success.

2 The command did not run successfully; an exception was thrown.

sync

128 EAServer

jagtool sync -cluster MyCluster Application:estore

• Ant build file:

<jag_sync cluster="MyCluster" entity="Application:estore" />

Usage If you specify a cluster (using the cluster option) when a previous sync
command to the cluster came from a different source/primary, then you
must specify the -newprimary option. Otherwise, the sync command
fails.

See also Chapter 6, “Clusters and Synchronization” in the System Administration
Guide.

Automated Configuration Guide 129

A
afterFailureRun

scheduled task property 21
afterMatchFail

scheduled task property 22
afterSuccessRun

scheduled task property 21
Ant

configuration targets 7
explanation of 6
use in EAServer 6

Ant configuration
examples 24, 35
of scheduled tasks 20

Ant scripts
defining properties in 15
embedding in deployment archives 12
examples 16, 24, 35
listed by module type 9
predefined in EAServer 13
structure of 15
user configuration 10

Ant targets
configure 8
defining 16
deploy 7
recompile 8
refresh 8
undeploy 9

Ant-based configuration
examples of 16, 24, 35
explanation of 5
scripts for 5

ant-config-tasks.xml
Ant import script 15

appendOutputFrom
scheduled task property 22

Application clients
Ant scripts for 9, 12

Applications, J2EE
Ant scripts for 9, 12

attachOutputFrom
scheduled task property 22

AutoDeploy
scheduled task 18

AutoRefresh
scheduled task 18

C
camel-case-off.xml

Ant configuration script 13
camel-case-on.xml

Ant configuration script 13
checkFile

scheduled task property 22
CheckForApplicationExceptions

scheduled task 18
CheckForErrorMessages

scheduled task 18
CheckForSecurityAlerts

scheduled task 18
CheckForSystemExceptions

scheduled task 18
CheckForWarningMessages

scheduled task 18
CheckMemoryUsage

scheduled task 18
cluster

rebinding 113
command-line tools 1

configure 7
djc-ant 6
jagant 7
recompile 7

compilejsp, jagtool command 67
componentMethod

scheduled task property 22

Index

Index

130 EAServer

components
service 27

concurrency
component property 30

configuration scripts, user 10
configure

Ant target 8
configure command line tool 7
configure, jagtool command 70
configuring

scheduled tasks 19
service components 35

connectors
Ant scripts for 9, 12

conventions x
CORBA packages

Ant scripts for 9
create, jagtool command 71
creating

service components 29, 35
CtsServices::GenericService IDL interface 31

D
dayOfMonth

scheduled task property 24
dayOfWeek

scheduled task property 24
default-application-servers.xml

Ant configuration script 13
default-code-sets.xml

Ant configuration script 13
default-database-types.xml

Ant configuration script 13
default-data-sources.xml

Ant configuration script 14
default-ejb-providers.xml

Ant configuration script 14
default-export-configurations.xml

Ant configuration script 14
default-http-contexts.xml

Ant configuration script 14
default-install.xml

Ant configuration script 14
default-jms-providers.xml

Ant configuration script 14
default-jms-resources.xml

Ant configuration script 14
default-mail-sessions.xml

Ant configuration script 14
default-scheduled-tasks.xml

Ant configuration script 14
default-security-domains.xml

Ant configuration script 14
default-security-profiles.xml

Ant configuration script 14
default-service-components.xml

Ant configuration script 14
default-socket-listeners.xml

Ant configuration script 14
default-system-components.xml

Ant configuration script 14
default-thread-monitors.xml

Ant configuration script 14
default-transaction-batches.xml

Ant configuration script 14
default-windows-service.xml

Ant configuration script 14
default-windows-service-sybmaster.xml

Ant configuration script 14
delete, jagtool command 73
deploy

Ant target 7
jagtool command 75

deployment archives
embedding Ant scripts in 12

deploy-tool-options.xml
Ant configuration script 14

djc-ant command line tool 6
Dump60MinuteMemoryUsage

scheduled task 18
Dump60MinuteStatistics

scheduled task 18
Dump60SecondMemoryUsage

scheduled task 18
Dump60SecondStatistics

scheduled task 18

Index

Automated Configuration Guide 131

E
EAR files

embedding Ant scripts in 12
EAServer

installing 1
predefined Ant scripts for 13
predefined scheduled tasks for 18
using Ant with 6

EJB modules
Ant scripts for 9, 12

EJB-JAR files
embedding Ant scripts in 12

ejbref, jagtool command 78
EjbSessionTimeout

scheduled task 18
endDate

scheduled task property 23
EndOfServerLog

scheduled task 19
endTime

scheduled task property 23
enventry, jagtool command 80
environment variables

HOSTNAME 53
examples

Ant configuration 16, 24, 35
excludeDate

scheduled task property 23
exists, jagtool command 82
export, jagtool command 83
exportconfig, jagtool command 85

G
GenericService

IDL interface 28
grantroleauth, jagtool command 91

H
HOSTNAME environment variable 53

I
idl-generator-off.xml

Ant configuration script 14
idl-generator-on.xml

Ant configuration script 14
idl-style-cts.xml

Ant configuration script 14
idl-style-xdt.xml

Ant configuration script 14
includeDate

scheduled task property 23
install, jagtool command 92
installation

scripted 1
installing

silently 1

J
jacc-provider-info.xml

Ant configuration script 14
jag_connect, jagtool command 60
jagant

command line tool 7
jagtool 51–128

Ant build files 56
commands. See individual command names
entity identifiers 54
jag_connect command 60
jagant scripts 57
jagant syntax 57
Jakarta Ant and 51
registering commands 60
sample XML configuration file 65
setting up jagant 56
syntax 52
XML build file 58
XML configuration files for 63

JAR files, for application client deployment
embedding Ant scripts in 12

jmscreate, jagtool command 94
jmsdelete, jagtool command 96
JmsDuplicateDetectionExpiry

scheduled task 19
jmsflush, jagtool command 97

Index

132 EAServer

jmslist, jagtool command 98
jmslist_listeners, jagtool command 99
jmslist_messages, jagtool command 100
JmsPersistentMessageExpiry

scheduled task 19
jmsprops, jagtool command 103
jmsset_props, jagtool command 104

L
lineMatch

scheduled task property 22
list, jagtool command 106
LocalRestart

scheduled task 19
LocalStop

scheduled task 19
logExecution

scheduled task property 21
long-transactions-off.xml

Ant configuration script 14
long-transactions-on.xml

Ant configuration script 14

M
mailCC

scheduled task property 22
mailFrom

scheduled task property 22
mailMessage

scheduled task property 22
mailSession

scheduled task property 22
mailSubject

scheduled task property 22
mailTo

scheduled task property 22
matchIfCountExceeds

scheduled task property 22
matchIfDeltaExceeded

scheduled task property 22
maximumHeadLines

scheduled task property 23

maximumTailLines
scheduled task property 22

merge_props, jagtool command 108
modules

Ant scripts for 9
monthOfYear

scheduled task property 24

N
name server

rebinding 113
NotifyApplicationExceptions

scheduled task 19
NotifyErrorMessages

scheduled task 19
NotifySecurityAlerts

scheduled task 19
NotifyServerShutdown

scheduled task 19
NotifyServerStartup

scheduled task 19
NotifySystemExceptions

scheduled task 19
NotifyWarningMessages

scheduled task 19

P
PBHeap_dumpSummary

scheduled task 19
ping command

command line options 111
printFileHead

scheduled task property 23
printFileTail

scheduled task property 22
properties

Ant 15
props, jagtool command 112

Index

Automated Configuration Guide 133

R
randomWaitOffset

scheduled task property 21
RAR files

embedding Ant scripts in 12
rebind, jagtool command 113
rebinding name servers 113
recompile

Ant target 8
command line tool 7

refresh
Ant target 8

refresh, jagtool command 114
refreshing

service components 40
remove, jagtool command 116
removeroleauth, jagtool command 118
resource adaptors

Ant scripts for 9
resref, jagtool command 119
restart, jagtool command 120

S
samples

Ant configuration 16, 24, 35
schedule

scheduled task property 23
scheduled tasks

common options 21
configuring 19
creating 19
creating with Ant 24
enabling 18
explanation of 17
installing in a server 25
predefined 18
running 25
scheduling 23
task-specific options 22

servers
installing additional services for 27, 37

service components
C++ language example for 34
configuring 35

creating 29, 30, 35
creating with Ant 35
explanation of 27
installing in EAServer 37
introduction to 27
Java language example for 32
lifecycle of 28
refreshing 40

services
See also service components
installing additional 37

set_props, jagtool command 121
shutdown, jagtool command 124
silent installation 1
startDate

scheduled task property 23
StartOfServerLog

scheduled task 19
startTime

scheduled task property 23
SybHeap_dumpSummary

scheduled task 19
sync, jagtool command 125

T
targets

Ant 6
configure 8
deploy 7
for Ant-based configuration 7
recompile 8
refresh 8
undeploy 9

targets, Ant
defining 16

taskAction
scheduled task property 21

tasks
Ant 6

Thread Manager
API usage 43
use with service components 43
using 45

threadMonitor

Index

134 EAServer

scheduled task property 21
threads

See also Thread Manager
for service components 28, 31

TxRef
scheduled task 19

typographical conventions x

U
undeploy

Ant target 9
user configuration scripts

creating 11
explanation of 10

W
waitAfterFailure

scheduled task property 21
waitAfterMatch

scheduled task property 22
waitAfterSuccess

scheduled task property 21
WAR files

embedding Ant scripts in 12
Web applications

Ant scripts for 12

X
XARecovery

scheduled task 19
XML configuration files for

jagtool 63

	Automated Configuration Guide
	About This Book
	CHAPTER 1 Introduction
	Silent installation
	Command-line configuration tools
	Ant-based configuration
	Scheduled tasks
	Service components
	The Thread Manager
	Jagtool and jagant

	CHAPTER 2 Ant-Based Configuration
	About Ant
	Ant in EAServer
	EAServer configuration targets
	The deploy target
	The configure target
	The recompile target
	The refresh target
	The undeploy target

	Configuration scripts for J2EE modules
	User-configuration scripts
	Creating user-configuration scripts
	Embedding configuration scripts in J2EE archives

	Applying settings from configuration scripts
	Predefined configuration scripts
	Structure of a configuration script
	Add required imports
	Optionally add Ant property definitions
	Define required targets

	Ant configuration command syntax
	Examples

	CHAPTER 3 Using Scheduled Tasks
	About scheduled tasks
	Predefined tasks
	Creating new tasks
	Task properties on the General tab
	Task properties on the Schedule tab
	Ant configuration example

	Configuring scheduled tasks to run

	CHAPTER 4 Creating Service Components
	Introduction
	Creating service components
	Create the service implementation
	Component properties
	Required client roles

	Implement GenericService interface methods
	Java example of GenericService methods
	C++ example of GenericService methods

	Create a service component entity
	Service component entity properties

	Install the service component in the server

	Determining service state
	Refreshing service components

	CHAPTER 5 Using the Thread Manager
	About the Thread Manager
	The Thread Manager and service components
	The Thread Manager and the message service
	The Thread Manager and scheduled tasks
	Thread Manager interface documentation

	Using the Thread Manager
	Before you start
	Adapting components to be run by the Thread Manager
	Understanding thread groups
	Understanding the run interval
	Understanding the thread count

	Instantiating the Thread Manager
	Obtaining authorized access
	Instantiating a proxy

	Starting threads
	Suspending and resuming execution
	Stopping threads

	CHAPTER 6 Using jagtool and jagant
	Working with jagtool
	jagtool syntax
	Local versus connected mode
	Using connected mode
	Using local mode

	Entity identifiers

	jagtool and jagant
	Setting up your environment
	jagant scripts
	jagant syntax

	The Ant build file
	A sample build file
	Registering jagtool commands in the Ant build file
	Using the jag_connect command
	Using jagant in connected mode
	Using jagant in local mode
	Using multiple connections

	XML configuration files
	Format of the XML configuration file
	sybase-easerver-config element
	macro elements
	configure elements
	property elements
	Special characters

	Sample configuration file

	jagtool commands

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

