
CORBA Components Guide

EAServer
6.0

DOCUMENT ID: DC00547-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

CORBA Components Guide iii

About This Book ... ix

CHAPTER 1 CORBA Component Overview ... 1
About CORBA .. 1
CORBA components in EAServer.. 1
The CORBA component development process 2
CORBA component tutorials .. 3

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics 5
Component life cycles .. 5

States in the component life cycle... 6
Stateful versus stateless components....................................... 8
Supporting early deactivation in your component 9
Supporting instance pooling in your component 10
Long versus short transactions ... 11

EAServer’s transaction processing model...................................... 12
How EAServer transactions work.. 12
Benefits of using EAServer transactions 13
Defining transactional semantics... 14
Example .. 19
Dynamic enlistment in bean-managed transactions................ 20

EAServer Transaction Manager ... 21
Resource recovery and transaction logging 22
Transaction interoperability ... 23
Resource manager .. 25
Enlisting XA resources with Transaction Manager 25

CHAPTER 3 Using CORBA IDL ... 27
Learning IDL... 27

IDL modules .. 27
Preprocessor directives... 28
IDL interfaces .. 28

Managing IDL in EAServer... 36

Contents

iv EAServer

Deploying and viewing IDL with the Management Console 37
Deploying IDL from the command-line 37
Specifying Java package mappings for IDL modules.............. 38

Using IDL documentation comments ... 38
Refreshing the HTML documentation...................................... 39
Viewing HTML documentation for IDL modules 40

CHAPTER 4 Managing CORBA Packages and Components.......................... 41
What is a CORBA package?.. 41
Managing CORBA packages in the Management Console 42
Managing CORBA packages with configuration scripts................. 43
CORBA package property descriptions ... 45
CORBA component property descriptions 45

Transaction type values .. 52

CHAPTER 5 Developing and Deploying PowerBuilder Components 55
Developing PowerBuilder components .. 56

Mapping datatypes .. 56
Accessing data .. 60
Logging errors ... 60
Managing transactions .. 61

Deploying components... 62
PowerBuilder components .. 62
Java packages .. 64
Web services... 64
Generated code... 64
Naming conventions.. 65
Repository files.. 65
Security roles... 65

Remote debugging... 66
Troubleshooting ... 66

CHAPTER 6 Developing PowerBuilder Clients .. 67
Developing clients .. 67

Component access.. 68
Web DataWindow.. 68

CHAPTER 7 CORBA/C++ Overview... 71
Overview .. 71
Requirements... 72
Supported datatypes .. 72

C++ mappings for predefined IDL datatypes........................... 73

Contents

CORBA Components Guide v

Using mapped IDL types ... 74
Overloaded methods ... 76

CHAPTER 8 Developing CORBA/C++ Components.. 77
Procedure for creating C++ components 77
Generating C++ component files ... 78

C++ file naming conventions and locations............................. 79
Regenerating changed C++ component methods................... 80

Writing the class implementation ... 80
Compiling source files .. 81

Compiling on UNIX platforms .. 82
Compiling on Windows.. 83

Using data sources .. 84
Using ODBC data sources .. 84
Client-Library data sources ... 86
Oracle OCI data sources... 88

Managing explicit OTS transactions... 91
Initializing the ORB.. 92
Calling CosTransactions::Current interface methods.............. 93
Executing tasks outside of a transaction 94
Exceptions... 95

Setting transaction state... 96
Issuing intercomponent calls.. 97

To components on a non-EAServer ORB 98
Handling errors... 98
Debugging C++ components ... 98

CHAPTER 9 Developing CORBA/C++ Clients.. 101
Procedure for creating CORBA C++ clients................................. 101
Generating stubs.. 102
Writing CORBA C++ clients ... 102

Adding required include and namespace declarations.......... 103
Instantiating component proxies.. 104
Invoking methods .. 110
Processing result sets ... 110
Handling exceptions .. 118

Compiling C++ clients .. 120
Deploying C++ clients .. 120
Using the CosNaming interface ... 121
Using CORBA ORB implementations other than EAServer......... 121

Connecting to EAServer with a third-party client ORB 121
Connecting to third-party ORBs using the EAServer ORB.... 123

Contents

vi EAServer

CHAPTER 10 Tutorial: Creating C++ Components and Clients...................... 125
Overview of the sample application ... 125
Tutorial requirements ... 125
Creating the application ... 126

Verify your environment .. 126
Start EAServer and the Management Console 127
Import the IDL interface... 128
Define the package and component...................................... 128
Generate server integration code and implementation templates

130
Write the server-side code .. 130
Create a user account ... 133
Write the client-side code .. 133
Compile the client executable ... 137
Run the client executable .. 139

CHAPTER 11 CORBA/Java Overview.. 141
Overview .. 141
Requirements... 142
Java IDL datatype mappings.. 142

Binary, Fixed-Point, and Date/Time types............................. 143
Result set types... 144
User-defined IDL types.. 144
Holder classes for IDL types ... 145

CHAPTER 12 Developing CORBA/Java Components 147
Procedure for creating CORBA/Java components....................... 147
Write the Java source file ... 148

Generate Java interface files for IDL types 149
Add package import statements.. 149
Code the constructor ... 150
Add error handling code .. 150

Advanced techniques... 151
Issue intercomponent calls.. 151
Manage database connections ... 153
Return result sets .. 153
Access SSL client certificates ... 158
Set transactional state... 158
Retrieve user-defined component properties 159

Generating EJB wrapper components ... 160
Refreshing Java components... 160

Contents

CORBA Components Guide vii

CHAPTER 13 Developing CORBA/Java Clients... 161
Procedure for creating CORBA/Java clients 161
Generating Java stubs ... 162
Instantiating proxy instances.. 162

Configuring and initializing the ORB runtime......................... 163
Creating a Manager instance .. 168
Creating sessions.. 171
Creating stub instances... 172

Executing component methods.. 175
Serializing component instance references 175
Handling exceptions... 176
Deploying and running Java clients ... 178
Using other CORBA ORB implementations 179

Connecting to EAServer with a third-party client ORB 179
Connecting to third-party ORBs using the EAServer ORB.... 180

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients...... 181
Overview of the sample application ... 181
Tutorial requirements ... 181
Creating the application ... 182

Start EAServer and the Management Console 182
Import the IDL interface... 182
Define the package and component...................................... 183
Compile the component implementation 184
Generate stubs and skeletons... 185
Create a user account ... 186
Create the client program.. 186
Run the client program .. 190

Index ... 193

viii EAServer

CORBA Components Guide ix

About This Book

Audience This book is for application developers who develop C++ or
PowerBuilder® clients or components for deployment to EAServer, and
developers who must maintain legacy EAServer CORBA/Java clients or
components. Developers should be familiar with their chosen
programming languages, specifically Java, C++, or PowerScript®.

How to use this book Chapter 1, “CORBA Component Overview,” describes CORBA
component concepts and the EAServer component models based on the
CORBA model.

Chapter 2, “CORBA Component Life Cycles and Transaction
Semantics,” explains the EAServer CORBA component life cycle and
transaction processing models for CORBA and PowerBuilder
components.

Chapter 3, “Using CORBA IDL,” describes how CORBA component
interfaces are defined in Interface Definition Language (IDL).

Chapter 4, “Managing CORBA Packages and Components,” describes
how to deploy and configure CORBA components in EAServer.

Chapter 5, “Developing and Deploying PowerBuilder Components,”
describes EAServer-specific modifications for PowerBuilder components
developed and deployed from the PowerBuilder IDE.

Chapter 6, “Developing PowerBuilder Clients,” describes how to develop
PowerBuilder clients for EAServer components. describes how to develop
PowerBuilder clients for EAServer components.

Chapter 7, “CORBA/C++ Overview,” provides an overview of things to
consider when developing CORBA C++ clients and components for
EAServer.

Chapter 8, “Developing CORBA/C++ Components,” describes how to
implement CORBA components in C++.

Chapter 9, “Developing CORBA/C++ Clients,” describes how to
implement CORBA clients in C++.

x EAServer

Chapter 10, “Tutorial: Creating C++ Components and Clients,” walks you
through the creation and deployment of a CORBA/C++ component and a client
that calls the component.

Chapter 11, “CORBA/Java Overview,” provides an overview of things to
consider when developing CORBA/Java clients and components for
EAServer.

Chapter 12, “Developing CORBA/Java Components,” describes how to
implement CORBA components in Java.

Chapter 13, “Developing CORBA/Java Clients,” describes how to implement
CORBA clients in Java.

Chapter 14, “Tutorial: Creating CORBA Java Components and Clients,”
walks you through the creation and deployment of a CORBA/Java component
and a client that calls the component.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML and PDF format in your EAServer software installation and
on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-based
configuration scripts to:

• Define and configure entities, such as EJB modules, Web applications,
data sources, and servers

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide (this book) explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User’s Guide describes how to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

 About This Book

CORBA Components Guide xi

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (JMS) clients and components to send, publish, and
receive JMS messages.

The EAServer Migration Guide contains information about migrating
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

xii EAServer

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase software license deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

Conventions The formatting conventions used in this manual are:

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using Ant or jagtool to configure
applications rather than the Management Console

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

 About This Book

CORBA Components Guide xiii

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Management Console, a command line, or as
program text

• Example program fragments

• Example output fragments

Formatting example To indicate

xiv EAServer

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

 About This Book

CORBA Components Guide xv

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

The Web Services Toolkit plug-in for Eclipse supports accessibility features for
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xvi EAServer

CORBA Components Guide 1

C H A P T E R 1 CORBA Component Overview

About CORBA
CORBA is a distributed component architecture defined by the Object
Management Group (OMG). EAServer supports many CORBA
technologies, including:

• The Internet Inter-ORB Protocol (IIOP) for client-server component
invocations.

• CORBA Interface Definition Language (IDL), for defining
component interfaces and datatypes used in interfaces.

• Business component models for C++, PowerBuilder, and Java, based
on the CORBA specifications.

• Standard CORBA APIs, such as the CosNaming API for naming
services.

For information on the CORBA architecture, see the specifications
available at the OMG Web site at http://www.omg.org.

CORBA components in EAServer
EAServer provides CORBA component models for these languages and
technologies:

Topic Page
About CORBA 1

CORBA components in EAServer 1

The CORBA component development process 2

CORBA component tutorials 3

The CORBA component development process

2 EAServer

• C++

• PowerBuilder

• Java

EAServer hosts CORBA components using generated EJB wrapper
components. EJB and CORBA components are fully interoperable. You
can call EJB components from CORBA clients and vice-versa.

Java/CORBA versus EJB components
EAServer provides the Java/CORBA component model for backward
compatiblity with EAServer 5.x and earlier versions. Sybase recommends
you create EJB components for new Java development because they are
more portable to other application servers.

The CORBA component development process
The high level CORBA development and deployment process for
EAServer is:

1 If you are using C++ or Java, define the component interfaces in
CORBA IDL and deploy the IDL to the EAServer repository. Chapter
3, “Using CORBA IDL,” describes how to do this.

If you are using PowerBuilder, you can define interfaces with the
PowerBuilder IDE. PowerBuilder generates IDL when you deploy to
EAServer.

2 Create EAServer entities to define the CORBA packages and
components. The package and component properties specify the
component interfaces and control interaction between EAServer and
your implementation. Chapter 4, “Managing CORBA Packages and
Components,” describes how to define and configure CORBA
packages and components.

3 Develop the component implementation classes and deploy them to
EAServer. For more information, see:

• Chapter 8, “Developing CORBA/C++ Components”

• Chapter 12, “Developing CORBA/Java Components”

• The PowerBuilder IDE documentation and online help

CHAPTER 1 CORBA Component Overview

CORBA Components Guide 3

4 Run the jaguar-compiler command on the CORBA packages to
generate the code and EJB wrapper components required to run the
components in EAServer. You can do this several ways:

• From the PowerBuilder IDE, if using PowerBuilder.

• From the Management Console as described in “Refreshing
CORBA packages in the Management Console” on page 43.

• Using a configuration script, as described in “Managing CORBA
packages with configuration scripts” on page 43.

• Using the jaguar-compiler command-line tool, as described in
Chapter 12, “Command Line Tools,” in the System
Administration Guide.

5 Create the client code to invoke the component methods. You can call
CORBA components from any other client model, including EJB
clients and Web components. For details on CORBA client models,
see:

• Chapter 9, “Developing CORBA/C++ Clients”

• Chapter 13, “Developing CORBA/Java Clients”

CORBA component tutorials
EAServer includes tutorials for CORBA/C++ and CORBA/Java
components. See:

• Chapter 10, “Tutorial: Creating C++ Components and Clients”

• Chapter 14, “Tutorial: Creating CORBA Java Components and
Clients”

CORBA component tutorials

4 EAServer

CORBA Components Guide 5

C H A P T E R 2 CORBA Component Life Cycles
and Transaction Semantics

This chapter explains the EAServer CORBA component life cycle and
transaction processing models for CORBA and PowerBuilder
components.

Transactions allow you to group database updates performed by multiple
components into a single atomic unit of work, which greatly simplifies
error recovery in component-based applications.

The component life cycle determines how instances of a component are
allocated, bound to a client, and destroyed. The EAServer component life
cycle is designed to maximize reuse of resources and minimize the
possibility that a client application can monopolize a server resource.

The component life cycle and the transaction model are tightly integrated.
You must understand both to use transactions effectively in your
application.

Component life cycles
The EAServer component life cycle is designed to:

• Maximize sharing and reuse of server resources

• Minimize the possibility that a client application can monopolize
server resources

To achieve these goals, EAServer supports the concepts of component
instance pooling and early deactivation.

Topic Page
Component life cycles 5

EAServer’s transaction processing model 11

EAServer Transaction Manager 21

Component life cycles

6 EAServer

Instance pooling allows a single component instance to service multiple
clients. The component life cycle contains activation and deactivation steps:
Activation binds an instance to an individual client; deactivation indicates that
the instance is unbound. Instance pooling eliminates resource drain from
repeated allocation of component instances.

Early deactivation allows a component’s methods to specify when
deactivation occurs. Early deactivation prevents a client application from tying
up the resources that are associated with a component instance and allows the
instance to serve more clients in a given time frame. To achieve early
deactivation, you can code or configure your component as described in
“Supporting early deactivation in your component” on page 9.

A component that is deactivated after each method call and supports instance
pooling is said to be a stateless component because the component’s state is
reset across the boundary of a transaction and activation. Early deactivation
and instance pooling promotes greater scalability by enabling an increasing
number of clients to use a static number of instances. An application design
based on stateless components offers the greatest scalability.

States in the component life cycle
EAServer components in any component model follow the state diagram
illustrated in this figure:

Figure 2-1: States in the EAServer component life cycle

The state transitions are as follows:

• New instance The EAServer runtime allocates a new instance of the
component. The instance remains idle in the instance pool waiting for the
first method invocation.

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 7

• Activation Activation prepares a component instance for use by a client.
Once an instance is activated, it is bound to one client and can service no
other client until it has been deactivated. If a component is transactional,
activation also indicates the beginning of the instance’s participation in a
transaction.

• In method In response to a method invocation request from the client,
the EAServer runtime calls the corresponding method in the component.
The next state depends on which of the transaction state primitives the
method calls before returning. (For Java components, the state transition
also depends on whether the method returns with an uncaught exception.)
See “Using transaction state primitives” on page 16 for more information.

• Deactivation Deactivation indicates that the component is no longer
bound to the client. Methods can call either the completeWork or
rollbackWork transaction state primitives to cause explicit deactivation of
the instance. As discussed in “Using transaction state primitives” on page
16, these primitives also affect the transaction’s outcome. Deactivation
can also occur automatically, under any of the following circumstances:

• If the instance is participating in a transaction, the instance is
deactivated when the transaction commits, rolls back, or times out.

• If you have configured the component’s Instance Timeout property to
a finite setting, an instance is deactivated if the time between
consecutive method calls exceeds the timeout value. “CORBA
component property descriptions” on page 45 describes how to
configure this property.

If an exception occurs in a user transaction, you must call rollbackWork
after catching the exception; otherwise, a transaction deadlock may occur
in the database, which can cause client applications to fail.

• Destruction Destruction occurs if the component instance cannot be
recycled. “Supporting instance pooling in your component” on page 9
describes how to ensure instance reuse. If the component cannot be reused,
deactivation is followed by destruction of the instance.

Component life cycles

8 EAServer

The EAServer component life cycle allows component instances to be
recycled; idle component instances can be cached when idle and bound to the
service of individual clients only as needed. If your component has been coded
to support early deactivation, a client holding a reference to the component’s
stub or proxy object may be serviced by several different instances of the
component. After each deactivation, the next method invocation causes an
instance to be activated and bound to the client. Overall server scalability is
increased because a new instance does not have to be instantiated each time a
client invokes a method.

Stateful versus stateless components
A component that can remain active between consecutive method invocations
is called a stateful component. A component that is deactivated after each
method call and that supports instance pooling is said to be a stateless
component. Typically, an application built with stateless components offers
the greatest scalability.

Stateful components A stateful component remains active across method
calls. EAServer wraps stateful CORBA components with an EJB stateful
session bean. To run a CORBA component as stateful, the Stateful Session
Bean (com.sybase.jaguar.component.tx_vote) property must be set to true–see
“CORBA component property descriptions” on page 45.

Since deactivation happens at the mercy of client applications, you may wish
to configure the Passivation Timeout property for stateful components so that
a client cannot monopolize a component instance indefinitely. See “CORBA
component property descriptions” on page 45 for more information.

Stateless components A is stateless if you disable the component’s Stateful
Session Bean property (com.sybase.jaguar.component.tx_vote) —see Table 4-2
on page 46. You can also set the component’s
com.sybase.jaguar.component.tx_vote property to false in an Ant user
configuration file. Alternatively, you can implement the component so that it
calls either completeWork or rollbackWork in every method.:

Stateless components cannot use instance-specific data to accumulate data
between method invocations. Some situations require that you accumulate data
across method invocations. For example, a PurchaseOrder component might
have an addItem() method that is called repeatedly to specify the contents of an
order. In lieu of instance-specific data, you can use one of these alternatives to
accumulate data:

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 9

• Accumulate data in a remote database Use connection caching and
database commands to accumulate data in a remote database. This is the
preferred technique. If you deploy your component to a cluster, it may run
on multiple servers and the database provides a central location available
from all servers.

• Accumulate data in the client Create a data structure that is passed to
each method invocation and contains all accumulated data. This technique
is only practical if the amount of data is small. Sending large amounts of
data over the network will degrade performance.

• Accumulate data in a file If the accumulated data is small and
represented by simple data structures, you can store the data in a local file.

Supporting early deactivation in your component
Early deactivation prevents a client application from tying up the resources
(such as connections) that are associated with a component instance.

To support early deactivation in CORBA and PowerBuilder components you
can use one of these methods:

• Use a stateless component, which deactivates the component instance after
each method invocation—see “Stateful versus stateless components” on
page 8.

• In a stateful component, configure the number of seconds an active
component instance can remain idle before the client’s proxy becomes
invalid—see “Passivation Timeout” in Table 4-2 on page 46.

• Code your component to call one of the completeWork or rollbackWork
transaction state primitives to cause explicit deactivation of the instance.
This technique is useful when your design requires deactivation to occur
after some, but not all, method invocations. If the component is
transactional, the completeWork and rollbackWork primitives also affect the
outcome of the transaction in which the component is participating. See
“Using transaction state primitives” on page 16 for more information.

Supporting instance pooling in your component
Instance pooling eliminates resource drain caused by repeated allocation of
new component instances.

Component life cycles

10 EAServer

For Java components, you can implement a life cycle interface to control
whether the component instances are pooled. These interfaces also provide
activate and deactivate methods that are called to indicate state transitions in a
component instance’s lifetime. See “Set transactional state” on page 158.

For PowerBuilder components, you can enable the Pooling option on the
PowerBuilder wizard that you use to create your component. You can then
write event scripts that respond to changes in an instance’s life cycle. See the
Application Techniques manual in the PowerBuilder documentation for more
information.

For C and C++ components, you can enable instance pooling using the
Management Console. See “CORBA component property descriptions” on
page 45. This method also allows you to configure pooling for Java
components that do not implement the ServerBean or IObjectControl interfaces,
respectively.

To support instance pooling, code that responds to activation events must
restore the component to its initial state (that is, as if it were newly created). the
Java canReuse interfaces have methods that allow an instance to selectively
refuse pooling. For PowerBuilder components, you can script the canBePooled
event to selectively refuse pooling.

When the component Pooled option is set in the Management Console, the Java
canReuse method is not called, even if the component implements the
ServerBean interface.

Long versus short transactions
EASever supports both long and short transactions, which are initially
associated with stateful and stateless components, respectively. Both long and
short transactions begin when a client calls one of a component’s business
methods, as long as the component’s tx_type property is set to neither
“not_supported” nor “supports.” Table 4-2 on page 46 describes the allowable
values for tx_type. The behavior of short transactions conforms to the J2EE
specification. Support for long transactions may be deprecated in future
versions of EAServer.

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 11

Long transactions

A long transaction is associated with a stateful CORBA component instance
the first time a client invokes one of its business methods, subject to the value
of tx_type. Clients need not perform any special transaction work. By default,
long transactions are enabled for backward compatibility. To disable long
transactions, change to the EAServer bin directory, and run:

configure long-transactions-off

If you disable long transactions, short transactions are used instead. To
re-enable long transactions, run:

configure long-transactions-on

In EAServer versions earlier than 6.0, stateful CORBA components, whose
tx_vote property was set to true, had to call either JagCompleteWork or
JagRollbackWork to end a transaction. And a component timeout resulted in the
server rolling back the active transaction..

Short transactions

A short transaction is associated with a stateless component when a client
invokes one of its business methods. EAServer automatically ends the
transaction upon completion of the business method. If the component calls no
APIs, the transaction is committed (as if JagCompleteWork was called). Short
transactions are always enabled.

EAServer’s transaction processing model
An EAServer transaction is a transaction whose boundaries and outcome are
determined by EAServer. Components can be marked as transactional in the
Management Console. If a component is transactional, the EAServer
transaction manager ensures that the component’s third-tier database queries
execute as part of a transaction. Multiple components can participate in an
EAServer transaction; the EAServer transaction manager ensures that all
database changes performed by the participating transactions are all committed
or rolled back.

Transactions All transactions are defined by the ACID test:

• Atomic If a transaction is interrupted, all changes that the transaction
has made are cancelled or rolled back.

EAServer’s transaction processing model

12 EAServer

• Consistent A transaction produces results that preserve invariant
properties.

• Isolated A transaction’s intermediate states cannot be monitored or
changed by other transactions; transactions execute their results one after
another.

• Durable The changes that a transaction completes are permanent.

How EAServer transactions work
In the Management Console, you can declare EAServer components to be
transactional. When a component is transactional and uses the EAServer
connection management feature, commands sent on a third-tier database
connection are automatically performed as part of a transaction. Component
methods can call EAServer’s transaction state primitives to influence whether
EAServer commits or aborts the current transaction.

If long transactions are enabled for the server, the component life cycle is
tightly integrated with EAServer’s transaction model. Component instances
that participate in a transaction are not deactivated until the transaction ends or
until the component indicates that its contribution to the transaction is over
(that is, its work is done and ready for commit or that its work must be rolled
back). An instance’s time in the active state corresponds to the beginning and
end of its participation in a transaction.

Benefits of using EAServer transactions
The benefits of using transactions to group database updates are clear. You can
easily code methods in a single component to implement transactions that run
against a single data source. However, those methods may in turn be executed
by another component, which itself is defining a transaction. In this situation,
error recovery becomes difficult. For example, consider the following scenario
in which an Enrollment component calls both Registrar and Billing components:

A transaction involving
multiple components

In the following figure, the Enrollment.enroll() method calls methods in the
Registrar and StudentBilling components:

• Registar.reserveSeat() checks that a seat is available. If so, it decrements
the count of available seats and adds the student to the course’s enrollment
list. If no seats are available, reserveSeat() fails.

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 13

• StudentBilling.addToBill() checks that the student has a billable credit
record. If so, addToBill() adds the course cost to the student’s bill for that
semester. If the student has a credit problem (if, for example, she owes
money for an overdue book), addToBill() fails.

Figure 2-2: An example EAServer transaction

To be correct, both the database update made by the Registrar and the update
made by the StudentBilling components must occur, or neither must occur. In
other words, if the student cannot be billed, the course’s available seats must
not be changed. To handle this case, you could add logic to the enroll() method
to undo changes (requiring an unreserveSeat() method in Registrar). However,
as more components are added to the scenario, the logic needed to undo
previous changes quickly becomes unmanageable. It is much easier to define
all the participating components to use EAServer transactions. Then an error in
any component can induce a rollback of all changes made by the other
participating components before the error occurred.

By defining the participating components to use EAServer transactions, you
can be sure that the work performed by the components that participate in a
transaction occurs as intended.

Defining transactional semantics
The component and server properties and the component implementation
determine how your CORBA component participates in transactions.

❖ Defining how a component participates in transactions

1 Specify the component’s transaction attribute. Each component has a
transaction attribute that determines whether instances of the component
participate in transactions. “Transaction type values” on page 52 describes
the attribute settings and their meanings.

EAServer’s transaction processing model

14 EAServer

2 If long transactions are enabled in the server, and your CORBA
component is stateful, code methods to call the EAServer transaction state
primitives. Each method should call the appropriate transaction state
primitive to reflect the state of the work that the component has
contributed to the transaction. “Using transaction state primitives” on
page 16 describes the state primitives in detail.

If long transactions are disabled or the CORBA component is stateless,
transactions end when each business method returns. Each business
method can call completeWork or rollbackWork to influence the transaction
outcome. If neither is called, the completeWork behavior is the default.

Transaction coordinator

The Java transaction Service (JTS) transaction coordinator complies with the
JTS and the X/Open Architecture (XA) standards. The JTS transaction
coordinator integrates the functionality of the shared connection and JTS/JTA
transaction modes, and uses two-phase commit to coordinate transactions
among multiple databases.

Note To verify that your EAServer edition supports two-phase commit, check
the server console or the $DJC_HOME/logs/<serverName>.log file.

Transactional component attribute

Components in EAServer have a transaction type property that indicates how
a component participates in transactions. You can view and change a
component’s Transaction Type property using the Management Console. For
PowerBuilder components, you can specify the attribute in the PowerBuilder
wizards (doing so ensures that it is saved with the PowerBuilder project and not
overwritten by redeployment). Allowable values are described in “Transaction
type values” on page 52.

Table 2-1 lists design scenarios and the transaction type values that apply to
each.

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 15

Table 2-1: Deciding on a transaction type value

For example, in the scenario illustrated in “A transaction involving multiple
components” on page 12, the Enrollment component must be marked Requires
Transaction or Requires New Transaction, since it calls methods in the
Registrar and StudentBilling components, and the work performed by the called
components must be grouped in a single transaction. Both Registrar and
StudentBilling must be marked Supports Transaction or Requires Transaction
so that their database updates can be grouped in the transaction begun by the
Enrollment component.

Transaction Not Supported is useful when your component performs updates
to a noncritical database. For example, consider a component whose sole
function is to log usage statistics to a remote database. Since usage statistics are
not mission-critical data, you can choose Not Supported as the component’s
transaction type value to ensure that the logging updates do not incur the
overhead of using two-phase commit.

Determining when transactions begin

After a base client instantiates a transactional component, the first method
invocation begins an EAServer transaction. This instance is said to be the root
instance of the transaction. If the root instance invokes methods in other
transactional components, those components join the existing transaction.

Design scenario
Applicable transaction
type values

Your component interacts with remote databases, and its methods may be called by
another component as part of a larger transaction. Multiple updates are issued before
calling completeWork, or an update depends on the results of queries that were issued
since the last call to completeWork.

Requires Transaction
or
Requires New Transaction

Updates from your component are performed by a single database update, the update
logic is independent of any other query issued by the method, and you call
completeWork in each method that issues an update. In other words, your component’s
updates are already atomic.

Supports Transaction

Your component’s methods make intercomponent method calls, and the work done by
called components must be included in one transaction.

Requires Transaction
or
Requires New Transaction

Methods in the component interact with more than one remote database, and updates
to different databases must be grouped in the same transaction (this also requires a
transaction coordinator that supports two-phase commit to those databases).

Requires Transaction
or
Requires New Transaction

Transactions begun by your component must not be affected by the outcome of
transactions begun by other components that call your component.

Requires New Transaction

Work done by your component must never be done as part of a transaction. Not Supported

EAServer’s transaction processing model

16 EAServer

Use a stub or proxy object for the called component For transactions to
occur with the intended semantics, you must perform intercomponent calls
using a stub or proxy object for the called component. Do not invoke another
component’s methods directly. For calls between PowerBuilder NVO
components, use a PowerBuilder proxy object rather than calling the other
NVO directly.

Using transaction state primitives

EAServer provides transaction state primitives that methods can call to direct
the outcome of the current transaction. Each component model provides an
interface containing methods for these primitives. Table 2-2 on page 17 lists
the API mappings for each component type.

These methods end a component’s participation in a transaction (both cause the
current instance to be deactivated):

• completeWork The component finished its work for the current
transaction and should be deactivated when the method returns. This is the
default behavior for stateless CORBA components; a component that calls
no state primitive behaves as if this method were called. If long
transactions are disabled for the server, this is the default behavior for all
CORBA components.

• rollbackWork The component cannot complete its work. Doom the
current transaction and deactivate the instance when the method returns.

These methods are used to maintain state after the method returns (they delay
deactivation of the component instance):

• continueWork Continue this component’s participation in the current
transaction after the method returns, and allow the transaction to be
committed if the component is deactivated.

In stateful CORBA components with long transactions enabled in the
server, this is the default behavior if a method calls no transaction
primitive.

• disallowCommit Continue this component’s participation in the current
transaction after the method returns, but roll back the transaction if the
component is deactivated before calling another primitive besides
disallowCommit.

These primitives can be used to query the state of the transaction (if any) in
which the method is executing:

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 17

• isInTransaction Query whether the current method is executing in the
context of a transaction.

• isRollbackOnly Query whether the current transaction is doomed to be
rolled back or is still viable.

Table 2-2 describes how the transaction primitives are invoked in Java and
PowerBuilder components. For information on the Java methods, see Chapter
1, “Java Classes and Interfaces,” in the EAServer API Reference. For
information on the PowerBuilder TransactionServer object, see the Application
Techniques manual in the PowerBuilder documentation and the PowerBuilder
online help.

Table 2-2: Java and PowerBuilder transaction primitives

C and C++ components call the methods and routines in the following table to
invoke transaction primitives. See the EAServer API Reference for
documentation of these methods and routines:

Transaction
primitive

Java InstanceContext
method

PowerBuilder
TransactionServer
function

completeWork completeWork SetComplete

rollbackWork rollbackWork SetAbort

continueWork continueWork EnableCommit

disallowCommit None. You can achieve the same effect
by calling, and then raising an
exception if deactivate is called before
the next method invocation.

DisableCommit

isInTransaction inTransaction IsInTransaction

isRollbackOnly isRollbackOnly IsTransactionAborted

EAServer’s transaction processing model

18 EAServer

Table 2-3: C and C++ transaction primitives

Any participating component can roll back the transaction by calling the
rollbackWork primitive; Java components can also cause a rollback by returning
an unhandled exception. Only the action of the root component determines
when EAServer commits the transaction. The transaction is committed when
the root component returns with a state of completeWork and no participating
component has set a state of disallowCommit.

You can use the transaction state primitives in any component; the component
does not have to be declared transactional. Calling completeWork or
rollbackWork from methods causes early deactivation. “Supporting early
deactivation in your component” on page 9 discusses how this feature can
improve application performance.

Example
As discussed in “Benefits of using EAServer transactions” on page 12,
EAServer transactions are most useful when your application uses
intercomponent calls.

As an example, consider the scenario illustrated in “A transaction involving
multiple components” on page 12. The pseudocode below shows the logic
used to ensure that the work performed by the Registrar.reserveSeat() and
StudentBilling.addToBill() occurs within the same transaction.

In the Registrar component, the reserveSeat() method must check the number
of seats. If there is space for the new student, then the method adds the student,
decrements the count of available seats, and sets a state of completeWork. If a
seat is not an available, the method calls rollbackWork to roll back the current
transaction.

Here is the pseudocode for Registrar.reserveSeat():

check number of seats
if enough seats

Transaction primitive C/C++ routine

completeWork JagCompleteWork

rollbackWork JagRollbackWork

continueWork JagContinueWork

disallowCommit JagDisallowCommit

isInTransaction JagInTransaction

isRollbackOnly JagIsRollbackOnly

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 19

decrement number of seats
add student to enrollment list
completeWork

else
rollbackWork

end if

The transaction attribute for Registrar must be Requires Transaction so that the
query for available seats and the update of available seats always occur in the
same transaction.

In the StudentBilling component, the addToBill() method must verify the
student’s credit. If the student does not already owe money, the method adds
the cost to the semester bill and sets a state of completeWork. If the student owes
money, the method calls rollbackWork to roll back the current transaction. Here
is the pseudocode for StudentBilling.addToBill():

check student’s balance
if balance > 0

add cost to bill
debit balance
completeWork

else
rollbackWork

end if

The transaction attribute for StudentBilling must be Requires Transaction so that
the balance query, the billing calculation, and the debit of the student’s balance
always occur in the same transaction.

In the Enrollment component, the enroll() method first calls
Registrar.reserveSeat(). After Registrar.reserveSeat() returns, the method
checks whether the transaction is still viable using the isRollbackOnly primitive.
If the transaction is viable, the method calls StudentBilling.addToBill(). Here is
the pseudocode for Enrollment.enroll():

invoke Registrar.reserveSeat()
if isRollbackOnly returns true

return
else

invoke StudentBilling
completeWork

endif

The transaction attribute for Enrollment must be Requires Transaction so that
the work done by StudentBilling and Registrar occurs as a single transaction.

EAServer’s transaction processing model

20 EAServer

Dynamic enlistment in bean-managed transactions
EAServer supports dynamic enlistment for bean-managed transactions, which
allows you to create a connection in one method, use the connection in another
method, and close the connection in a third method.

For a JDBC 2.0 shared connection (PooledConnection), the container manages
the single connection’s enlistment and deenlistment in transactions.

For XA connections, the Object Transaction Service libraries need to know all
the resources that will participate in a transaction when it starts. If you get an
XAConnection before you start a transaction, EAServer enlists the
XAConnection in the transaction. If you start a transaction before you create
an XAConnection, EAServer creates the connection and enlists it in the
transaction.

Dynamic enlistment allows you to do this:

connection1 = ds1.getConnection();
// A
user_transaction.begin();
//
connection2 = ds2.getConnection();
connection3 = ds3.getConnection();
// B
connection2.close();
//
user_transaction.commit();
// C
connection3.close();
connection1.close();

Where at these points, the following are true:

A – connection1 is not part of any transaction.

B – connection1, connection2, and connection3 are part of the
user_transaction.

C – connection1 and connection3 are not part of any transaction.

Earlier versions of EAServer required you to get and release connections
within a single component method. In bean-managed transactions, you had to
get and release a connection within the scope of a transaction.

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 21

You can get only one connection per resource. Each getConnection call for the
same database returns the same connection.

Note XA performance diminishes when connections span across methods.

EAServer Transaction Manager
The EAServer Transaction Manager supports the specifications for the Java
Transaction API (JTA) 1.0 and the OTS/XA standards. The Transaction
Manager supports the integrated functionality of these transaction
coordinators: shared connections, OTS/XA, and JTS/JTA, and includes:

• Resource recovery and transaction logging

• Transaction interoperability

• Resource manager

The EAServer Transaction Manager enables EAServer to control the scope and
duration of transactions across multiple resource managers. It also provides the
ability to synchronize transactions and to communicate with other transaction
managers using CORBA OTS. Connections and resources are dynamically
enlisted into a transaction when they are requested.

Two-phase commit ensures that all changes to recoverable resources (for
example, multiple database servers) occur automically, and the failure of any
resource to complete causes all other resources to undo changes. Two-phase
commit consists of a prepare phase and an execution phase. In the prepare
phase, the transaction coordinator validates that all resources are available. In
the execution phase, the transaction coordinator executes all updates to the
resources.

You can define components and component methods so that the transaction
coordinator automatically handles transactions (implicit control). You can also
write component and client code to manage transactions (explicit control).

EAServer implements the javax.transaction.TransactionManager interface,
which allows it to control transaction boundaries, and to manage the interaction
between Java and Encina transaction objects.

EAServer Transaction Manager

22 EAServer

EAServer’s implementation of the javax.transaction.Transaction interface
enables it to manage a set of javax.transaction.xa.XAResource resources that
participate in a transaction. To determine the boundaries and outcome for these
transactions, EAServer uses the CosTransaction::Resource interface.

Resource recovery and transaction logging
Resource recovery is a configurable option that provides object persistence and
recovery operations. Basic persistence is achieved by writing transactions to a
transaction log that contains all the information necessary to re-create the
transaction. Persistence is supported for the CosTransactions::Resource and
CosTransactions::Synchronization objects that are registered with the
transaction. Recovery is supported for JDBC connectors and native type
resources that are registered with EAServer. When EAServer starts, the
recovery manager is called, which reads the transaction log and starts
transaction recovery.

Note Recovery operations can be performed only for transaction logs that
were created for EAServer version 5.0 or later.

A transaction log provides enhanced debugging and integrates with the
standard EAServer logging functionality. Monitoring functionality is also
provided, which allows you to use the Management Console to view statistics,
such as the total number of committed transactions and the average duration of
transactions.

When EAServer starts, the TransactionLogManager verifies the transaction
log’s integrity, automatically does necessary repairs, then runs the transaction
log defragmenter. This helps to allocate space for new transactions. The
recovery manager passes transaction information to the
TransactionLogManager, which is responsible for storing and deleting the
transaction record from the transaction log.

You can set the following recovery options on the Transactions tab of the
Server Properties dialog box:

• Enable Recovery – check to enable.

• Recovery Log File Name – enter the name of the file in which to store the
transaction log. You can specify a file name only, or an absolute path to a
file. If you specify a file name only, the file is created in the logs
subdirectory or your EAServe installation.

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 23

• Log File Size – enter the maximum file size.

Recovering XA resources registered by user components

In this version of EAServer, you cannot directly recover XA resources that are
registered by user components. However, you can enable EAServer to
accomplish this task by using the following technique:

1 Create a wrapper DataSource class; for example, WrapperDataSource.

2 WrapperDataSource.getXAConnection() returns an XAConnection class that
corresponds to the XA connection with the resource.

3 Create an XA-type data source, and set its class name to the
WrapperDataSource class that you created.

Once these steps are implemented, EAServer takes care of the recovery
process. This is useful when using a third-party JMS service with XA
resources.

Transaction interoperability
EAServer Transaction Manager provides transaction interoperability in
accordance with the OTS specifications.

Since EAServer runs in JTS mode, it can share the transaction coordinator
across multiple servers. If a transactional component on one server invokes a
component method on another server, both components can participate in the
same transaction. Also, a client can invoke components on multiple servers that
all participate in the same transaction. This feature is useful for load balancing.

Figure 2-3 illustrates a scenario in which a client calls a component method on
Server A, which calls a component method on Server B. Server A and Server
B use different databases. To ensure that all the database updates occur within
the scope of a single transaction, EAServer passes the transaction context
between servers.

EAServer Transaction Manager

24 EAServer

Figure 2-3: Transaction interoperability

Figure 2-4 illustrates an example where a client calls components on multiple
servers, which all participate in the same transaction. The client manages the
transaction by calling component methods on each server and passing the
transaction context.

Figure 2-4: Server to server

Resource manager
The EAServer Transaction Manager includes an integrated resource manager
that supports JDBC 1.0, JDBC 2.0, connectors, and XA resources for both Java
and C++. The resource manager allows you to dynamically register resources
and synchronize coordinators in accordance with OTS specification for
CosTransactions. The resource manager is based on the functionality of both
the Java Connection Manager and the Jaguar Connection Manager, which
allows you to easily integrate new and existing resources. In future EAServer
versions, customers will be able to use the resource manager to create and
configure resources that EAServer can use.

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide 25

Enlisting XA resources with Transaction Manager
When EAServer is running in two-phase commit mode, which is the default for
version 5.0 and later, you can enlist XA resources with EAServer Transaction
Manager.

❖ Enlisting XA resources

To enlist an XA resource into a current EAServer transaction:

1 Get the instance of Transaction Manager:

javax.transaction.TransactionManager tm =
com.sun.jts.jta.TransactionManager.getTransactionManagerImpl();

2 Get the instance of the transaction:

javax.transaction.Transaction trans = tm.getTransaction();

3 Register the XA resource with the transaction:

trans.enlistResource(xaresource);

EAServer manages this XA resource with respect to its transaction boundaries.

EAServer Transaction Manager

26 EAServer

CORBA Components Guide 27

C H A P T E R 3 Using CORBA IDL

EAServer stores CORBA component interfaces in Interface Definition
Language (IDL) modules.

Learning IDL
IDL is defined by the Object Management Group as a standard language
for defining component interfaces. Chapter 3, “OMG IDL Syntax and
Semantics,” in the CORBA V2.3 Specification defines IDL. Printable
versions of this document can be downloaded from the following URL:

http://www.omg.org/corba/index.html

IDL modules
IDL modules form a namespace to group related types and interfaces,
similar to C++ namespaces. For example, type Date in module MJD is
specified as MJD::Date. Module names must begin with a letter. Modules
can be nested by declaring the nested module inside the parent module.
For example, to declare interfaces and types in the namespace
com::mycompany, use the syntax below and add them to the declaration of
module mycompany:

module com
{

module foo
{

...
};

};

Topic Page
Learning IDL 27

Managing IDL in EAServer 36

Using IDL documentation comments 38

Learning IDL

28 EAServer

Preprocessor directives
The #include directive allows you to include code from another file in the
current file, using the same syntax and semantics as C++. For example:

#include <XDT/DecimalValue.idl>

No IDL preprocessor directives other than #include are supported.

IDL interfaces
Interfaces define the signatures of CORBA component methods. Each method
must be declared as an IDL operation in the IDL interface.

Interfaces are declared as shown below:

interface InterfaceName [: BaseInterface1,
BaseInterface2, ...] {

operations
};

where:

• InterfaceName is the name of the interface.

• operations is a zero or more of IDL operation declarations. See “Operation
declarations” on page 29.

• BaseInterface, BaseInterface2, and so forth form an optional list of
existing interfaces from which the new interface inherits definitions. If a
new interface inherits from other existing interfaces, the existing
interfaces that are inherited from are referred to as base interfaces, and the
new interface is referred to as a derived interface.

For example, this interface, StockComponent, inherits from no other interface:

interface StockComponent {
};

This interface, C, inherits from interfaces A and B:

interface C : A, B {
}

Interfaces that inherit definitions from other interfaces are subject to the
following constraints:

• Operations and attributes cannot be redefined in the new interface.

CHAPTER 3 Using CORBA IDL

CORBA Components Guide 29

• Operation and attribute names defined in base interfaces must be unique.
For example, if a method is defined in both interface A and interface B, you
cannot define a new interface that inherits from both B and A.

• Exceptions, constants, and types from a base interface can be redefined in
the derived interface.

• References to type names, exception names, and constant names that are
used in multiple derived interfaces must be made unambiguous by
prefixing references with the name of the interface that contains the
definition of interest. For example, if the constant MAX is defined in both
A and B, then A::MAX refers to the definition in A, and B::MAX refers to the
definition in B.

Choosing an interface name

Interface names are restricted as follows:

• Interfaces within a module must have unique names, irrespective of case.
That is, you cannot define MyInterface and Myinterface in the same module.

• The interface cannot have the same name as the module that contains it.

Sybase recommends that you begin interface names with a capital letter, and
operation names with a lowercase letter.

Operation declarations

Operations in an IDL interface become component methods when the interface
is assigned to a component. Operations are declared as follows:

returnType opName
(
[... parameterList ...]
)
[raises (... exceptionList ...)] ;

where:

• returnType is either a valid IDL datatype or void to indicate that the
operation does not return a value. “Datatypes for parameters and return
values” on page 32 discusses datatypes in detail.

• opName is the name of the operation. Sybase recommends operation
names begin with a lowercase letter. Names in the same interface must be
unique with respect to case, and capitalization of a name must be
consistent wherever it is used.

Learning IDL

30 EAServer

IDL operation names cannot be overloaded (that is, redeclared with the
same return type and different parameter lists). However, you can define
IDL operations that map to overloaded C++ or Java methods. To do so,
create operation names by appending two underscores and a unique suffix
to the method name that will be overloaded. EAServer strips the suffix
when generating C++ or Java interface definitions. For example, consider
the following IDL:

void ov1__double(in double d);
void ov1__string(in long l);

When mapped to C++ or Java, these operations translate to the following
overloaded methods:

void ov1(double d);
void ov1(long l);

• parameterList is an optional parameter list enclosed in parentheses. The
list (but not the parentheses) can be omitted to indicate that the operation
takes no parameters. Otherwise, add datatypes and parameter names as
shown below:

void myMethod
(
qual1 type1 param1,
qual2 type2 param2,
...
);

where:

• qual1, qual2, and so forth are one of the argument modes in, inout, or
out. Use in for parameters that are input-only; no new value is returned
when the operation completes. Use inout or out if the operation returns
new values for the parameter. An inout parameter’s input value is
meaningful; an out parameter’s input value is not.

• type1, type2, and so forth are valid IDL type names (other than the
CORBA::Any type). “Datatypes for parameters and return values” on
page 32 discusses datatypes in detail.

• param1, param2, and so forth are parameter names.

• exceptionList is an optional list of user-defined exceptions. If the operation
can throw user-defined exceptions, add a raises clause with a list of the
IDL user-defined exception names that the operation can throw, as shown
below:

void myMethod (in int n)

CHAPTER 3 Using CORBA IDL

CORBA Components Guide 31

raises (Exception1, Exception2, ...);

If the operation can throw only CORBA standard exceptions, omit the
raises clause. For more information, see “User-defined exceptions” on
page 35.

Attribute declarations

Attributes allow you to associate a value with an interface. IDL attributes are
similar in concept to structure fields in languages such as C. However, when
mapped to a programming language, attribute values can typically be accessed
only by generated functions that allow you to set and retrieve the attribute’s
value.

Attributes are declared as shown below:

[readonly] attribute TypeSpec name;

where

• readonly is an optional keyword specifying that the attribute can be
retrieved but cannot be set.

• TypeSpec is the name of a standard or user-defined type. “Datatypes for
parameters and return values” on page 32 describes datatypes in detail.

• name is the attribute name.

In C++ and Java, a read-only attribute maps to a method with the same name
that returns the attribute type. A writable attribute maps to a pair of overloaded
methods with the same name as the attribute. For example, consider the
following IDL declarations:

readonly attribute long days; // readonly
attribute long months; // writable

In a C++ or Java implementation of the interface, these methods must be
declared:

long days();
long months();
void months(long new_months);

Learning IDL

32 EAServer

Datatypes for parameters and return values

To define parameter and return value datatypes, you can use EAServer’s
predefined IDL datatypes or your own user-defined IDL types. In addition,
EAServer extends IDL to allow the use of Java class names. The sections
below describe each option in detail.

• Predefined IDL datatypes

• User-defined IDL datatypes

• Java class names used as IDL datatypes

Predefined IDL datatypes

EAServer ships with predefined datatypes for use in declaring parameter and
return value datatypes. Predefined datatypes include all CORBA base types
(except for the CORBA::Any type) and equivalents for database result sets and
other commonly used database column types such as date, time, and timestamp.
Table 3-1 lists these types.

Table 3-1: Predefined EAServer IDL datatypes

CORBA IDL type Description

boolean One bit of binary data; a value that is either true or
false

short A 16-bit integer

long A 32-bit integer

long long A 64-bit integer

float Single-precision IEEE floating point numbers

double Double-precision IEEE floating point numbers

string A sequence of characters of any length

BCD::Binary Sequence of bytes

BCD::Decimal Fixed-point decimal

BCD::Money Same as decimal

MJD::Date A date including year, month, day, hour, minute,
second, and millisecond values

MJD::Time Holds the time of day, including hours, minutes,
seconds, milliseconds

MJD::Timestamp Holds the same data as date, plus a nanoseconds
value

TabularResults::ResultSet A single table of relational database rows

TabularResults::ResultSets A sequence of 0 or more ResultSet objects

CHAPTER 3 Using CORBA IDL

CORBA Components Guide 33

For descriptions of the datatypes defined in the BCD, MJD, or TabularResults
modules, see the documentation in the html/ir subdirectory of your EAServer
installation. (Or, load the main EAServer HTML page in your Web browser,
and click the Interface Repository link). If you use types from these modules,
add an include directive for the appropriate module at the top of the module that
defines your interface. For example:

#include <TabularResults.idl>

Internally, TabularResults.idl includes both BCD.idl and MJD.idl. You need
not include BCD.idl and MJD.idl explicitly if you have already included
TabularResults.idl.

User-defined IDL datatypes

In addition to EAServer’s predefined datatypes, you can define your own
datatypes in IDL and use them to declare return types and parameters.

All IDL type definitions are allowed, with these exceptions:

• Fixed sized arrays are supported, but Sybase recommends that you use
sequences instead.

• The CORBA::Any type is not supported.

• constant declarations are supported.

EAServer allows forward IDL references
You can create new IDL types that refer to other IDL types that do not yet exist;
among other benefits, this feature allows you to create mutually recursive
interface definitions. However, you must be sure that all references are
resolved before you can generate the package code. EAServer will report errors
for any unresolved type references.

For information on defining datatypes, see Chapter 3, “OMG IDL Syntax and
Semantics,” in the CORBA 2.3 specification.

In some cases, you must use the full scope name. In a parameter list, use a
type’s full scope name if any of the following is true:

• The type is declared in another interface.

• The type is declared in another module.

• The type has the same local-scope name as a type declared in the interface
or module that contains the operation.

For example, consider the IDL:

Learning IDL

34 EAServer

module MyMod {
typedef string MyType;
interface MyIntf {

typedef double MyOtherType;
....

};
};

With these declarations, MyMod::MyType is the full scope name for MyType and
MyMod::MyIntf::MyOtherType is the full scope name for MyOtherType.

Java class names used as IDL datatypes

EAServer’s IDL compiler extends IDL to allow Java class names as parameter
and return types for methods. This feature provides functionality that is similar
to the proposed Objects by Value CORBA extension (OMG TC Document
orbos/98-01-18, Objects By Value). Specifically, you can pass a copy of an
object rather than passing an interface pointer that refers back to the original
object.

You can specify any Java class name for a method input parameter or return
type as long as:

• The class containing the type name is in the CLASSPATH environment
variable both when the interface is defined and when the server is run.

• At run time, you specify a class instance that is serializable. That is, a class
must implement the java.io.Serializable interface or inherit from another
class that does so, and an interface must extend the java.io.Serializable
interface. If the instance is not serializable, the call fails with a
CORBA::MARSHALL exception.

Note the following restrictions for methods that are defined using Java
datatypes rather than IDL types:

• Only Java components can implement the method and only Java clients
can invoke the method.

• Only in parameters and return values can be declared with Java class
names.

CHAPTER 3 Using CORBA IDL

CORBA Components Guide 35

• Java datatypes are not marshaled as efficiently as an equivalent IDL
datatype. Marshaling is the process of reading and writing parameters and
return values from the network. More bytes are required to marshal values
defined with a Java datatype than to marshal an equivalent IDL type.
Consequently, invocations of a method defined with Java datatypes are
slower than invocations of an equivalent method defined with IDL
datatypes.

• IDL that contains Java class names may not be portable to other CORBA
client ORB implementations unless they offer this extension to standard
CORBA IDL.

User-defined exceptions

Exceptions can be declared in a module or interface. Exceptions are declared
as follows:

exception name {
... memberList ...

};

where name is the name of the exception and memberList is an optional list of
member field declarations. This list has the form:

exception MyException {
type1 member1;
type2 member2;
...

};

Where type1, type2, and so forth are IDL type names (other than CORBA::Any)
and member1, member2, and so forth are the names of the member fields.

Once you have defined an exception, you can use it in the raises clause when
defining operations for an interface, as described in “Operation declarations”
on page 29.

Interface stub generation directives

For IDL created by deploying EJB and PowerBuilder components, EASerer
can embed specially formatted comments in IDL to control the generation of
Java stubs for IDL interfaces and structures. These directives appear in a block
comment located immediately before the IDL interface or struct declaration.

Managing IDL in EAServer

36 EAServer

Imported class name This directive specifies that a structure or interface
was imported from a Java class, and that a new version of the imported class
must not be generated when stubs are generated. This directive is most
commonly used for EJB home and remote interfaces and EJB primary keys that
were defined by importing EJB classes or EJB-JAR files.

The format is:

** <!-- imported classname -->

Where classname is the Java class name, in dot notation. For example,
foo.bar.MyBeanHome or foo.bar.MyBeanPrimaryKey.

Is home interface This directive identifies an interface as a home interface
used by EJB clients and components. The format is:

** <!-- home -->

Finder method return type Applies to multi-object finder methods in an
EJB entity bean’s home interface. If a finder method’s Java form must return
java.util.Enumeration, you see a doc comment of this form above the IDL finder
method declaration:

/*
** <!-- java.util.Enumeration -->
*/
::MyModule::MyRemoteList findByName(in string name);

Managing IDL in EAServer
IDL types used by CORBA components must be registered in the EAServer
repository. You can register IDL for CORBA components several ways,
including:

• Migrating CORBA components from a previous version of EAServer.

• Deploying IDL modules with the Management Console. The Management
Console displays IDL modules as folders beneath the top-level IDL folder.

• Deploying IDL modules with the deploy command-line tool.

• By placing IDL files in the Repository subdirectory of the server
installation and restarting the application server. If the files contains no
syntax errors, EAServer registers the types defined in it. If the file does
contain syntax errors, the server will log the errors during start-up and the
module’s declarations will not be added to the IDL repository.

CHAPTER 3 Using CORBA IDL

CORBA Components Guide 37

EAServer also creates IDL for EJB and PowerBuilder components upon
deployment, allowing interoperability between the CORBA and other
component models.

Deploying and viewing IDL with the Management Console
You can import and view IDL in the Management Console.

❖ Deploying IDL modules in the Management Console

1 If you haven’t already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “Getting
Started,”in the System Administration Guide.

2 In the Management Console, click the IDL Modules folder to display the
IDL types in the EAServer repository. Right-click the IDL Modules folder
and choose Deploy. The Deploy wizard displays.

3 In the Deploy wizard, specify the IDL file name to be imported.

❖ Viewing IDL in the Management Console

1 Highlight and expand the IDL Modules folder in the left pane. A
hyperlinked list of modules appears in the right pane, and a tree/folder
view of deployed modules appears in the left pane beneath the IDL
Modules folder.

2 Use the hyperlinks or tree view to navigate to the interfaces and types
defined in each module.

❖ Deleting IDL in the Management Console

1 Browse to the IDL module to be removed as described in “Viewing IDL
in the Management Console” on page 37.

2 Right-click the module name in the left pane and choose Undeploy.

 Warning! Do not delete IDL that is in use by deployed components.

Deploying IDL from the command-line
You can import IDL using the deploy command-line tool. Specify the path and
name to the IDL file, as in:

Using IDL documentation comments

38 EAServer

deploy MyModule.idl -overwrite true

For detailed syntax information, see Chapter 12, “Command Line Tools,” in
the System Administration Guide.

Specifying Java package mappings for IDL modules
If an IDL module contains datatypes and interfaces (and not just nested
modules), EAServer Java classes for the datatypes in a Java package derived
from the IDL module name. For example, for IDL types in module foo::bar, the
CORBA Java types are in Java package foo.bar, and EJB equivalents are in
Java package foo.bar.ejb.

You can override the default Java package name using one of these techniques:

• For CORBA components where the CORBA package name matches the
IDL module name, set the Java Package property for the CORBA package
(com.sybase.jaguar.package.java.package). See “CORBA package
property descriptions” on page 45.

• For stubs generated from other IDL modules, Sybase recommends that
you use the default Java package name to simplify coding conventions and
avoid redundant Java classes generated from the same IDL module.

To override the default Java package, specify the -jp option when
generating stubs with the idl-compiler command. See the reference page for
idl-compiler in Chapter 12, “Command Line Tools,” in the System
Administration Guide.

Using IDL documentation comments
EAServer includes HTML documentation files for each predefined IDL
module in the html/ir subdirectory. You can also generate HTML
documentation for IDL that you have deployed.

At a minimum, the generated HTML lists the datatypes and interfaces defined
in the module. You can embed additional documentation text for a datatype,
interface, or method in a C-style comment placed immediately above the
declaration. EAServer ignores C++-style line-end comments when generating
HTML documentation. That is, text within comments that use double slashes,
//, to delineate the comment text is ignored.

CHAPTER 3 Using CORBA IDL

CORBA Components Guide 39

Within the C-style comment, add text describing the item to the comment, as
in the example below. If desired, you can use HTML codes to format the text.
But do not use heading tags such as <H1>, <H2>, and so forth, because they
conflict with tags that are already used to structure the sections of the generated
output.

The IDL fragment below contains an example of a documentation comment:

/**
** Example method to demonstrate user-defined
** exceptions.
** <P>Pass <I>yes_no</I> as <code>true</code>
** if you want an exception thrown.
** <P>Returns input value of <I>yes_no</I>
** parameter.
*/
boolean throwException
(
in boolean yes_no
)
raises
(
myException
);

You need not use the spacing conventions illustrated in this example. EAServer
treats any C-style comment as an IDL documentation comment. However,
when you deploy IDL, EAServer may reformat white space in code and
comments.

Stub generation directives in IDL comments
You can embed directives in IDL comments to affect the Java stubs generated
for a module or interface. See “Interface stub generation directives” on page
35 for more information.

Refreshing the HTML documentation
HTML documentation is not generated automatically. You must use the
EAServer IDL compiler to create or update documentation for new or changed
IDL modules. See the reference page for idl-compiler in Chapter 12,
“Command Line Tools,” in the System Administration Guide.

Using IDL documentation comments

40 EAServer

Viewing HTML documentation for IDL modules
EAServer creates HTML documentation for all imported IDL modules in the
style of Sun’s javadoc tool. At a minimum, this documentation lists the
datatypes and interfaces defined in the module, including structure fields, array
lengths, parameter names and datatypes, exceptions thrown by methods, and so
forth. When editing IDL, you can also create specially-formatted comments
that provide descriptions of entities declared in the IDL file, as described in
“Using IDL documentation comments” on page 38.

Module documentation can be viewed in a Web browser by connecting to your
server with this URL:

http://yourhost:yourport/ir/

where yourhost is the host name and yourport is the HTTP port number.

CORBA Components Guide 41

C H A P T E R 4 Managing CORBA Packages and
Components

What is a CORBA package?
In EAServer, CORBA packages are the unit of deployment for CORBA
and PowerBuilder components. A CORBA package allows you to group
related components together in the same deployment or export
configuration. Packages also provide a means to configure security
constraints for related components. You can configure role-based
authorization on the package to limit access to all components in the
package.

You can create and configure CORBA packages several ways, including:

• Using the Management Console

• Using configuration scripts

• Migrating CORBA and PowerBuilder components from a previous
version of EAServer

• By deploying PowerBuilder components from the PowerBuilder IDE

The use of the Management Console and configuration scripts are
described in this chapter. For information on migrating components, see
the Migration Guide. For information on deploying from PowerBuilder,
see the PowerBuilder documentation or online help.

Topic Page
What is a CORBA package? 41

Managing CORBA packages in the Management Console 42

Managing CORBA packages with configuration scripts 43

CORBA package property descriptions 45

CORBA component property descriptions 45

Managing CORBA packages in the Management Console

42 EAServer

Managing CORBA packages in the Management
Console

The Management Console provides user-friendly graphical interfaces to
manage CORBA packages and components.

❖ Creating a CORBA package in the Management Console

1 If you haven’t already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “Getting
Started,”in the System Administration Guide.

2 In the Management Console, right-click the CORBA Packages folder and
choose Add. The Add wizard displays.

3 In the Add wizard, specify the new package name. Note the restrictions
described in “Restrictions on package names” on page 42.

4 When you finish the Add wizard, the package properties display.
Configure the properties described in “CORBA package property
descriptions” on page 45. Click Apply to save any changes.

Restrictions on package names
Package names must be unique among other packages in the same EAServer
installation, and begin with a letter.

Names are not case sensitive. Your packages must have unique names that
differ in ways other than letter case. For example, you cannot define two
packages named MyPack and mypack in the same EAServer installation. You
cannot have two packages with the same name, even if one is installed in an
application and the other is not.

❖ Creating CORBA components in the Management Console

1 Create the CORBA package as described in “Creating a CORBA package
in the Management Console” on page 42.

2 In the Management Console, expand the CORBA Packages folder. Locate
the icon for the package in which you are creating the component. Double-
click the icon to display the Components folder beneath it.

3 Right-click the Components folder beneath the target package, and click
Add. The Add wizard runs and prompts for values for the most commonly
configured component properties.

CHAPTER 4 Managing CORBA Packages and Components

CORBA Components Guide 43

4 When you finish the Add wizard, the component properties display in the
right pane. Configure the properties described in “CORBA component
property descriptions” on page 45. Click Apply to save any changes.

❖ Refreshing CORBA packages in the Management Console

The Refresh action in the CORBA Package context menu creates (or recreates)
the generated code and EJB wrapper components required to run the
components in the package. If the components are loaded in the server, the new
implementation is loaded to replace the old. Refresh the package as follows:

1 If you haven’t already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “Getting
Started,”in the System Administration Guide.

2 In the Management Console, expand the CORBA Packages folder, then
right-click the icon for the package to be configured and choose Refresh
from the context menu.

3 The Management Console runs the configuration commands to regenerate
the component’s generated code and reload the implementation. If the
operation fails, check the server log file for errors.

Managing CORBA packages with configuration scripts
Configuration scripts allow you to automate the creation and deployment of
CORBA components. For a description of the Ant configuration mechanism
used in EAServer, see Chapter 2, “Ant-Based Configuration,” in the
Automated Configuration Guide.

The sample script below defines a configure target that shows the commands
required to define and configure a CORBA package and component.

<?xml version="1.0"?>

<project name="cpptut" default="configure">

<import file="${djc.home}/config/ant-config-tasks.xml"/>

<property name="package.name" value="packageName" />

<target name="configure">
<setProperties package="${package.name}">

<property name="com.sybase.jaguar.package.roles" value=""/>

Managing CORBA packages with configuration scripts

44 EAServer

</setProperties>

<setProperties component="${package.name}/compName">
<property name="propName" value="propValue"/>
 ...

</setProperties>

<jaguarJarCompiler package="${package.name}"/>

</target>

</project>

The example defines the CORBA package name as the top-level Ant property
package.name. Since the package name appears several places in the script, it
is convenient to define it in one place and reference the property with the Ant
syntax ${package.name}.

Inside the configure target, the script runs these commands:

1 The first setProperties command creates and configures the CORBA
package. Any modifications to the default package properties must be
made with nested property commands in this command. See “CORBA
package property descriptions” on page 45.

2 For each component in the package, an additional setProperties command
creates and configures the component. To ensure EAServer creates the
component in the intended package, the value of the component attribute
for the setProperties command must use the syntax:

package/component

Where package is the CORBA package name, and component is the
component name as it should display in the Management Console and
output from configuration and status commands.

Use nested property commands to configure the component properties. See
“CORBA component property descriptions” on page 45.

3 The jaguarJarCompiler command generates the EJB wrapper components
and other code required to run the components in the server.

CHAPTER 4 Managing CORBA Packages and Components

CORBA Components Guide 45

CORBA package property descriptions
CORBA package properties affect code generation and security constraints for
the components in the package. Table 4-1 lists the properties.

Table 4-1: CORBA package properties

CORBA component property descriptions
Table 4-2 describes the CORBA component properties. The first column
contains the property names displayed in the Management Console. The
second column lists the suffixes for the property name used to configure the
property within a setProperties Ant command. The full property name begin
with:

Management Console
property name

Configuration script
property name Description

EJB Version com.sybase.jaguar.package.
ejb.version

The EJB specification version to use for the
generated EJB wrapper components.

Allowable values are 2.0 (the default) and 2.1.

Java Package com.sybase.jaguar.package.
java.package

The Java package name for EJB home and remote
interfaces used by the generated EJB wrapper
components. If not set, the default Java package
mapping for the component’s CORBA IDL
module is used. For IDL module MyModule, the
default Java Package is MyModule.ejb.

This property applies only for components in the
package that use IDL interfaces defined in a
module that matches the CORBA package name.
For interfaces defined in a different module, the
Java package name is the IDL module name
suffixed with .ejb. For example, Java interfaces
generated to match IDL module Tutorial use Java
package Tutorial.ejb.

Required Roles com.sybase.jaguar.package.roles A comma separated list of security role names
required for users to invoke components in the
package.

The package property configures the default role
list for components for which the component
Roles Required property
(com.sybase.jaguar.component.roles) is not set.

CORBA component property descriptions

46 EAServer

com.sybase.jaguar.component.

 For example, the pooling entry in the table must be configured as
com.sybase.jaguar.component.pooling.

Table 4-2: CORBA component properties

Management
Console name

Configuration file
property suffix Description

Name name The component name. This property is read-only once the
component has been created.

Component Type type The component type. Allowable values are as follows, with
configuration script values in parentheses:

• CORBA/C++ (cpp)

• CORBA/Java (java)

• PowerBuilder (pb)

Code Set code.set For C++ components, specifies the coded character set name
used to encode character and string parameter data. For the list
of supported values, list the subdirectories of the charsets
directory. Each subdirectory matches the name of a supported
character set.

Input values for string parameters (and string fields within
complex datatype values) are converted to this code set before
each method invocation. Upon return, output values are
converted from the component’s code set to the client’s code set.

If your C++ component uses Client-Library connection caches,
you cannot specify a code set that is different than the server
code set. Character data read over a cached Client-Library
connection is always in the server’s code set.

If a component code set is not specified, the default is the
server’s code set.

Expose as Web Service web.service Whether the component is exposed as a Web service. If enabled,
the component’s EJB remote interface is exposed as a Web
service. The default is false.

Roles Required roles A comma-separated list of security role names. If set, clients
cannot invoke the component unless they connect with a user
name that is in one of the assigned roles.

If not set, the default is the value of the Roles Required property
(com.sybase.jaguar.package.roles) in the CORBA package
properties–see “CORBA package property descriptions” on
page 45.

C++ Class cpp.class For C++ components, the name of the C++ class that
implements the component methods.

CHAPTER 4 Managing CORBA Packages and Components

CORBA Components Guide 47

C++ Library cpp.library For C++ components, the base name of the library file that
contains the component implementation.

Copy Library cpp.copy For C++ components, specifies whether the server should copy
the component library before running it. The default is false. Set
this property to true to allow updates to the implementation on
operating systems that do not allow overwriting a DLL or shared
library while the library is in use.

Debug Library cpp.debug For C++ components, specifies whether to catch exceptions.
The default is true, which specifies that exceptions are caught in
the server. Use the default of true for deployment to production
servers to ensure that exceptions thrown by component code do
not terminate the server process.

When debugging an executing component, set this property to
false to allow exceptions to reach your debugger. You must set
this property to true to debug an executing C++ component in
Microsoft Visual C++. Other C++ debuggers may require the
same setting as well.

Java Class java.class For CORBA/Java components, specifies the Java class name
that implements the component methods.

PowerBuilder NVO
Class

pb.class For PowerBuilder components, specifies the name of the
nonvisual object that implements the component’s methods.

This property is set by deployment from PowerBuilder and
should be treated as read-only in EAServer.

PowerBuilder Libarry
List

pb.librarylist For PowerBuilder components, specifies library files that are
required to run the object. Set the value to the list of library files
separated by semicolons. Prefix library names with a dollar sign
($) if they must be included when the component is included in
an export configuration or cluster synchronization. For
example:

mylib.pbl;anotherlib.pbl;$utils.pbl

This property is set by deployment from PowerBuilder and
should be treated as read-only in EAServer.

PowerBuilder Version pb.version For PowerBuilder components, specifies the required version of
the PowerBuilder virtual machine. This property is set when
deploying from PowerBuilder, and should not be edited in any
other way. Components that lack this property setting are run in
the version 7.0 VM.

This property is set by deployment from PowerBuilder and
should be treated as read-only in EAServer.

Management
Console name

Configuration file
property suffix Description

CORBA component property descriptions

48 EAServer

IDL Home Interface home The name of the IDL home interface, in IDL syntax. For
example, Tutorial::CPPArithmeticHome. The home interface
allows interoperability with EJB clients.

If you specify a home interface when creating a component, the
IDL interface must exist already. To have EAServer create a
default interface, leave this setting blank when creating new
components.

If you do not specify an IDL home interface when creating the
component, EAServer creates one the first time you refresh the
component in the Management Console or run the jaguar-
compiler command on the package using a configuration script
or the command line.

IDL Remote Interface remote The name of the IDL remote interface, in IDL syntax. For
example, Tutorial::CPPArithmetic. The remote interface specifies
the signatures of the component methods that can be invoked by
clients. You must set this property and specify the name of a
valid IDL interface that has been deployed to EAServer—see
Chapter 3, “Using CORBA IDL.”

IDL Component
Interfaces

interfaces Optional. Specifies IDL interfaces that the component supports
for client use in addition to the remote interface. If set, specify a
comma-separated list of IDL interface names.

Pooled pooling Specifies whether component instances should always be
pooled. If set to true, lifecycle methods related to instance
pooling are not called, such as canBePooled or canReuse.

Instance Pool Timeout instancePool.timeout If the component supports instance pooling, specifies how long,
in seconds, an instance can remain idle in the pool. The default
is 600 (ten minutes).

To free resources used by idle component instances, the server
may remove instances that remain idle past this time limit.

Management
Console name

Configuration file
property suffix Description

CHAPTER 4 Managing CORBA Packages and Components

CORBA Components Guide 49

Passivation Timeout timeout For stateful components, specifies how long, in seconds, an
active component instance can remain idle between method
calls before EAServer destroys the instance. The default of “0”
indicates an infinite timeout.

Instance Timeout is useful for ensuring timely deactivation of
stateful components. When the timeout period is exceeded,
EAServer deactivates the component and invalidates the client’s
object reference. If the client attempts another method
invocation, the client-side ORB throws the
CORBA::OBJECT_NOT_EXIST exception. At this point, the
client must create a new proxy instance for the component.

When specifying timeouts, a resolution of 5 seconds is
recommended. Network transport time is not included in the
measured timeout period. You may need to configure a larger
timeout period if clients connect over slow networks.

Thread Monitor monitor Optional. Specifies the name of a thread monitor that constrains
component execution. Thread monitors provide a mechanism to
govern how many instances of a component can be
simultaneously active in the server For more information, see
“Monitoring threads” in Chapter 3, “Creating and Configuring
Servers,” in the System Administration Guide.

Transaction Type tx_type For components that use connection caches to perform database
work, specifies how the database work is scoped in a server
managed transaction. “Transaction type values” on page 52
describes the allowable values.

Transaction Outcome tx_outcome For components that participate in server managed transactions,
determines whether a CORBA::TRANSACTION_ROLLEDBACK
exception is thrown to the client when a transaction is rolled
back by the component or due to an error in component
execution.

The default value, always, specifies that EAServer sends a
CORBA::TRANSACTION_ROLLEDBACK exception to the
client when a transaction is rolled back.

The value failed specifies that EAServer does not send the
CORBA::TRANSACTION_ROLLEDBACK exception to the
client when a transaction is rolled back. If you use this setting,
you can code your components to raise a different exception
with a descriptive message after calling the RollbackWork
transaction primitive. With this setting in effect, EAServer may
still throw a CORBA system exception if unable to commit a
transaction at your component’s request.

Management
Console name

Configuration file
property suffix Description

CORBA component property descriptions

50 EAServer

Transaction Retry tx_retry Specifies whether container-managed transactions should be
automatically retried after a rollback. The default is false.

Automatic Failover auto.failover Specifies whether client proxies can transparently fail over to a
different server when the component is deployed to several
servers in a cluster. The default of false prevents failover. For
more information on failover support, see Chapter 8, “Load
Balancing, Failover, and Component Availability,” in the
System Administration Guide.

Bind Object bind.object Specifies whether instances remain bound to client’s object
reference after setComplete is called. The default is false.
Cannot be set to true unless the component is stateful and
thread-safe.

Bind Thread bind.thread Specifies whether instances are bound to the thread that created
them. If true, the component instance is always called by the
same thread. The default is false. Set this property to true if your
component uses thread-local storage. Otherwise, use the default
of false for best performance. Enabling Bind Thread requires
EAServer to create an extra thread for each component instance.

Pooled pooling Specifies whether component instances are pooled for reuse by
multiple client sessions. The default is false.

Shared sharing Specifies whether a single instance or multiple instances of the
component implementation serve clients.If set to true, a single
instance serves all clients. The default of false means multiple
instances are used.

If sharing is enabled, and the Thread Safe property is enabled,
you must synchronize access to read-write instance variables in
the implementation.

Stateful Session Bean tx_vote Specifies whether the component is wrapped by an EJB stateful
session bean to allow stateful behavior. The default is false,
which causes EAServer to wrap the component with a stateless
session bean.

In business methods, stateful CORBA components must call the
transaction state primitive methods to indicate the session state.
For example, completeWork or rollbackWork ends the session
and deactivates the component instance. For details, see “Using
transaction state primitives” on page 16.

If long transactions are enabled for the server, server managed
transactions depend on the component’s invocation of the
transaction state primitive methods. See “Long versus short
transactions” on page 10 for more information.

Management
Console name

Configuration file
property suffix Description

CHAPTER 4 Managing CORBA Packages and Components

CORBA Components Guide 51

Thread Safe thread.safe Specifies whether multiple component instances can execute
concurrently, or whether a shared component can execute
simultaneously on multiple threads. The default is true. If set to
false, the server serializes all invocations of component
methods.

Note Sharing is true, this property specifies whether it is safe
for multiple threads to simultaneously call business methods on
a singleton instance of this component.

Debug debug Specifies whether the server logs trace information for instance
life cycle events such as creation, destruction, pooling, and so
forth. The default is false.

MDB Acknowledge
Mode

mdb.acknowledge-
mode

For CORBA message listener components that have been
migrated from EAServer 5.x. Applies only if the remote
interface is CtsComponents::MessageListener.

Specifies the acknowledgment mode for MDBs that manage
their own transactions. Allowable values are:

• Auto-acknowledge – The default. The session automatically
acknowledges messages.

• Dups-ok-acknowledge – Instructs a session to lazily
acknowledge messages, which reduces a session’s workload
but may lead to duplicate message deliveries.

MDB Topic Name topic For CORBA message listener components that have been
migrated from EAServer 5.x. Applies only if the remote
interface is CtsComponents::MessageListener.

For MDBs associated with a message topic, specifies the name
of the topic.

MDB Destination Type mdb.destination-type For CORBA message listener components that have been
migrated from EAServer 5.x. Applies only if the remote
interface is CtsComponents::MessageListener.

Specifies whether the component listens on a JMS topic or
message queue. Allowable values are:

• javax.jms.Topic

• javax.jms.Queue

The default is javax.jms.Queue

Management
Console name

Configuration file
property suffix Description

CORBA component property descriptions

52 EAServer

Transaction type values
The CORBA component’s Transaction Type property
(com.sybase.jaguar.component.tx_type) determines how database work is scoped
in a server managed transaction.Allowable values are as follows (values for use in
setProperty commands are in parentheses):

MDB Queue Name queue For CORBA message listener components that have been
migrated from EAServer 5.x. Applies only if the remote
interface is CtsComponents::MessageListener.

For MDBs associated with a message queue, specifies the name
of the queue.

MDB Message Selector mdb.message-
selector

For CORBA message listener components that have been
migrated from EAServer 5.x. Applies only if the remote
interface is CtsComponents::MessageListener.

If the component listens on a message queue, specifies the
message selector. The message service uses the selector to filter
the message that it delivers to the queue. Use the syntax:

topic=’topicString’

Where topicString is the selector to filter messages.

MDB Subscription
Durability

mdb.subscription-
durability

For CORBA message listener components that have been
migrated from EAServer 5.x. Applies only if the remote
interface is CtsComponents::MessageListener.

For components that listen on a topic, specifies whether the
topic is durable or nondurable. Allowable values are:

• Durable – Durable topic subscriber; guarantees message
delivery.

• NonDurable – Nondurable topic subscriber; can receive
published messages only while it is connected to EAServer.

MDB Thread Count mdb.thread-count For CORBA message listener components that have been
migrated from EAServer 5.x. Applies only if the remote
interface is CtsComponents::MessageListener.

Specifies the number of instances that EAServer creates to
respond to incoming messages. Multiple instances can run
simultaneously and may improve performance. The default is 1.

Management
Console name

Configuration file
property suffix Description

CHAPTER 4 Managing CORBA Packages and Components

CORBA Components Guide 53

• Not Supported (not_supported) – The default. The component’s methods
never execute as part of a transaction. If the component is activated by
another component that is executing within a transaction, the new
instance’s work is performed outside of the existing transaction.

• Bean Managed (bean_managed) – The component implementation
explicitly begins and ends transactions. The component can inherit a
client’s transaction. If called without a transaction, the component can
explicitly begin, commit, and roll back transactions by using the CORBA
CosTransactions::Current interface.

• Mandatory (mandatory) – Methods may only be invoked by a client that
has an outstanding transaction.

• Never (never) – The component’s methods never execute as part of a
transaction, and the component cannot be called in the context of a
transaction. If a client or another component calls the component with an
outstanding transaction, EAServer throws an exception.

• Requires (requires) – The component always executes in a transaction.
When the component is instantiated directly by a base client, a new
transaction begins. If component A is activated by component B, and B is
executing within a transaction, then A executes within the same
transaction; if B is not executing in a transaction, then A executes in a new
transaction.

• Requires New (requires_new) – Whenever the component is instantiated,
a new transaction begins. If component A is activated by component B,
and B is executing within a transaction, then A begins a new transaction
that is unaffected by the outcome of B’s transaction; if B is not executing
in a transaction, then A executes in a new transaction.

• Supports (supports) – The component can execute in the context of an
EAServer transaction, but one is not required to execute the component’s
methods. If the component is instantiated directly by a base client,
EAServer does not begin a transaction. If component A is instantiated by
component B, and component B is executing within a transaction,
component A executes in the same transaction.

CORBA component property descriptions

54 EAServer

CORBA Components Guide 55

C H A P T E R 5 Developing and Deploying
PowerBuilder Components

This chapter describes EAServer-specific modifications for developing
PowerBuilder components.

For general instructions on developing PowerBuilder components, see
Application Techniques at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.
5.apptech/html/apptech/title.htm.

EAServer hosts the PowerBuilder virtual machine natively. This means
that EAServer can communicate directly with PowerBuilder nonvisual
user objects, and vice versa. EAServer components developed in
PowerBuilder can take full advantage of the ease of use and flexibility of
PowerScript and the richness of PowerBuilder’s system objects.

The PowerBuilder IDE runs on Windows platforms, but you can deploy
PowerBuilder components to EAServer on any platform for which a
compatible PBVM is available, including most UNIX platforms. For more
information, see the EAServer Release Bulletin for your platform.

PowerBuilder provides full-fledged support for EAServer component
technologies, including:

• Instance pooling, by configuring the Pooling setting in the wizards
and optionally implementing lifecycle methods to control whether
specific instances are pooled.

• Server-managed transactions, by configuring the Transactions
settings in the wizards and by calling the methods in the
TransactionServer context object.

Topic Page
Developing PowerBuilder components 56

Deploying components 62

Remote debugging 66

Troubleshooting 66

Developing PowerBuilder components

56 EAServer

• Database connection caching, when using DataStore objects or embedded
SQL in your implementation code.

• Result sets, by using the PowerScript DataStore, ResultSet, and ResultSets
objects. You can use the DataStore object to return result sets that are
presented in the client using DataWindow controls. You can also use the
ResultSet and ResultSets objects to return tabular results to clients of other
types.

• Intercomponent calls, using the CreateInstance method in the
TransactionServer object to obtain proxies for components.

• Logging, using the ErrorLogging object to write error or status messages to
the server log file.

• Running independent of client interaction, using the EAServer thread
manager or service component model.

Developing PowerBuilder components
The PowerBuilder IDE includes wizards to create EAServer components and
deployment projects. If you must set additional component properties that
cannot be set from the PowerBuilder IDE, consider creating a script or batch
file that uses an Ant configuration file or the jagtool set_props command to
configure these additional settings. Doing so allows you to maintain an
automated deployment mechanism. For more information, see these chapters
in the Automated Configuration Guide:

• Chapter 2, “Ant-Based Configuration”

• Chapter 6, “Using jagtool and jagant”

Mapping datatypes
Beginning in EAServer version 6.0, PowerBuilder NVOs are wrapped as EJBs.
Table 5-1 on page 57 describes the PowerBuilder to EJB datatype mappings,
which are applied when an NVO package is wrapped as an EJB module. NVO
is a generic term used to describe “custom class user objects,” which inherit
directly from the PowerBuilder system type NonVisualObject.

CHAPTER 5 Developing and Deploying PowerBuilder Components

CORBA Components Guide 57

Mappings for datatypes passed by value are valid for in and return parameter
modes. Mappings for datatypes passed by reference are valid for out and inout
parameter modes.

Table 5-1: PowerBuilder to EJB datatype mappings

PowerBuilder type EJB parameter type

Blob by value

Blob by reference

byte[]

javax.xml.rpc.holders.ByteArrayHolder

Boolean by value

Boolean by reference

boolean

javax.xml.rpc.holders.BooleanHolder

Byte by value

Byte by reference

See “Byte datatype” on page 59.

byte

javax.xml.rpc.holders.ByteHolder

Char by value

Char by reference

char – see “Character datatypes” on page 59.

No mapping exists for Char passed by reference (out and inout
parameter modes).

Date by value

Date by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

DateTime by value

DateTime by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

Decimal by value

Decimal by reference

java.math.BigDecimal

javax.xml.rpc.holders.BigDecimalHolder

Double by value

Double by reference

double

javax.xml.rpc.holders.DoubleHolder

Integer by value

Integer by reference

short

javax.xml.rpc.holders.ShortHolder

For Java client components that communicate with
PowerBuilder server components, the numerical range that
this datatype supports is -32768 – 32767.

Long by value

Long by reference

int

javax.xml.rpc.holders.IntHolder

For Java client components that communicate with
PowerBuilder server components, the numerical range that
this datatype supports is -2147483648 – 2147483647.

LongLong by value

LongLong by reference

long

javax.xml.rpc.holders.LongHolder

Real by value

Real by reference

float

javax.xml.rpc.holders.FloatHolder

Developing PowerBuilder components

58 EAServer

String by value

String by reference

String

javax.xml.rpc.holders.StringHolder

Time by value

Time by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

MyModule_MyArray[] or MyArray[]
(return type only)

MyModule.ejb.MyElement[]

MyModule_MyException or MyException MyModule.ejb.MyException

MyModule_MyComp or MyComp by value

MyModule_MyComp or MyComp by reference

MyModule.ejb.MyComp

MyModule.ejb.holders.MyCompHolder

MyModule_MyStruct or MyStruct by value

MyModule_MyStruct or MyStruct by reference

MyModule.ejb.MyStruct

MyModule.ejb.holders.MyStructHolder

MyModule_MyUnion or MyUnion by value

MyModule_MyUnion or MyUnion by reference

MyModule.ejb.MyUnion

MyModule.ejb.holders.MyUnionHolder

MyModule_MyElement[] or MyElement[] by value

MyModule_MyElement[] or MyElement[] by
reference

MyModule.ejb.MyElement[]

MyModule.ejb.holders.ArrayOfMyElementHolder

MyModule_MySequence or MySequence
(return type only)

MyModule.ejb.MyElement[]

MyModule_MyElement[n] or MyElement[n] by value

MyModule_MyElement[n] or MyElement[n] by
reference

MyModule.ejb.MyElement[]

MyModule.ejb.holders.MyArrayHolder

ResultSet by value

ResultSet by reference

java.sql.ResultSet

TabularResults.SqlResultSetHolder

ResultSets by value

ResultSets by reference

java.sql.ResultSet[]

TabularResults.SqlResultSetsHolder

XDT_BooleanValue by value

XDT_BooleanValue by reference

java.lang.Boolean

javax.xml.rpc.holders.BooleanWrapperHolder

See “XDT datatypes” on page 60.

XDT_CharValue by value

XDT_CharValue by reference

java.lang.Character

XDT.CharacterWrapperHolder

See “Character datatypes” on page 59.

XDT_ByteValue by value

XDT_ByteValue by reference

java.lang.Byte

javax.xml.rpc.holders.ByteWrapperHolder

XDT_ShortValue by value

XDT_ShortValue by reference

java.lang.Short

javax.xml.rpc.holders.ShortWrapperHolder

XDT_IntValue by value

XDT_IntValue by reference

java.lang.Int

javax.xml.rpc.holders.IntegerWrapperHolder

PowerBuilder type EJB parameter type

CHAPTER 5 Developing and Deploying PowerBuilder Components

CORBA Components Guide 59

Byte datatype PowerBuilder version 10.5 introduced a Byte datatype. To use the
PowerBuilder Char datatype for backward compatibility, run the following
command (once) before deployment:

configure idl-octet-to-pb-char

To switch back to using the PowerBuilder Byte datatype, run the following
command (once) before deployment:

configure idl-octet-to-pb-byte

Character datatypes Only characters in the ISO 8859-1 character set can be used for in and return
parameter modes. To propagate other characters, use the String datatype.

The char and java.lang.Character datatypes have no defined XML schema
mappings for EJB Web services, so you cannot use these as a parameter types
or structure field types if you intend to expose a component as a Web service.
Use the String datatype instead.

CORBA C++
datatypes

For CORBA C++ datatypes, see CORBA IDL to C++ Language Mapping at
http://www.omg.org/technology/documents/formal/c++.htm.

DataStore system
object

Sybase recommends that you use the PowerBuilder DataStore system object
with the ResultSet return type, especially for NVOs running in an application
server. For improved performance, use NVO instance variables, and create the
DataStore and assign the DataObject in your NVO constructor.

XDT_LongValue by value

XDT_LongValue by reference

java.lang.Long

javax.xml.rpc.holders.LongWrapperHolder

XDT_FloatValue by value

XDT_FloatValue by reference

java.lang.Float

javax.xml.rpc.holders.FloatWrapperHolder

XDT_DoubleValue by value

XDT_DoubleValue by reference

java.lang.Double

javax.xml.rpc.holders.DoubleWrapperHolder

XDT_DecimalValue by value

XDT_DecimalValue by reference

java.math.BigDecimal

javax.xml.rpc.holders.BigDecimalHolder

XDT_IntegerValue by value

XDT_IntegerValue by reference

java.math.BigInteger

javax.xml.rpc.holders.BigIntegerHolder

XDT_DateValue by value

XDT_DateValue by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

XDT_TimeValue by value

XDT_TimeValue by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

XDT_DateTimeValue by value

XDT_DateTimeValue by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

PowerBuilder type EJB parameter type

Developing PowerBuilder components

60 EAServer

XDT datatypes To obtain the PowerBuilder XDT_* datatypes to use as PowerBuilder structure
field types or component parameter types, use the EAServer Proxy wizard or
the Application Server Proxy wizard in the PowerBuilder IDE to generate
proxies for the XDT package. Each of the XDT_* datatypes contains a value
field and an isNull field. You must set isNull to true if you want to indicate null
values.

Accessing data
From PowerBuilder NVOs, you can access data using either JDBC data
sources or Sybase native data sources.

❖ Accessing JDBC data sources in NVOs

1 To set up a JDBC data source in an NVO, use the following PowerScript
code, where DefaultDS is the name of an EAServer data source:

sqlca.dbms = "JDBC"
sqlca.dbparm = "CacheName=’DefaultDS’"

connect; // check error code
... // use embedded SQL or DataStore

disconnect; // check error code

2 To assign a JNDI name to your JDBC data source, see “Configuring data
sources” in Chapter 4, “Database Access,” in the EAServer System
Administration Guide.

❖ Accessing Sybase native data sources in NVOs

• Use the following PowerScript code, where JCM_Sybase is the name of
an EAServer data source:

sqlca.dbms = "SYJ"
sqlca.dbparm = "CacheName=’JCM_Sybase’"
...

Logging errors
The PowerBuilder ErrorLogging class writes errors to
%DJC_HOME%\logs\pb-server.log. To use PowerScript to create an instance
of the class and to log messages, use the following syntax:

ErrorLogging logger

CHAPTER 5 Developing and Deploying PowerBuilder Components

CORBA Components Guide 61

getContextService("ErrorLogging", logger)
logger.log("My Message")

Managing transactions
The PowerBuilder TransactionServer class supports the following methods:

• CreateInstance – (for NVO intercomponent calls) use the two-argument
form, and specify the full JNDI name of the target component:

TransactionServer ts
getContextService("TransactionServer", ts)

// generate and use proxies
pbtest_MyComp comp
ts.createInstance(comp, "pbtest/MyComp")

// call methods on comp

• DisableCommit – prevents the current transaction from being committed,
because the component’s work has not been completed. The instance
remains active after the current method returns.

• EnableCommit – the component should not be deactivated after the current
method invocation; allows the current transaction to be committed if the
component instance is deactivated.

• IsInTransaction – determines whether the current method is running in a
transaction.

• IsTransactionAborted – determines whether the current transaction has
been aborted.

• SetAbort – specifies that the component cannot complete its work for the
current transaction and that the transaction should be rolled back. The
component instance is deactivated when the method returns.

• SetComplete – indicates that the component has completed its work in the
current transaction and that, as far as it is concerned, the transaction can be
committed and the component instance can be deactivated.

Deploying components

62 EAServer

UseContextObject
parameter

If you plan to use the TransactionServer context object to work with EAServer
transaction service primitives, you may want to set the UseContextObject
DBParm parameter for your connection to yes. If a component supports
transactions, setting UseContextObject to yes tells PowerBuilder that you will
be using the TransactionServer object methods, rather than COMMIT and
ROLLBACK, to indicate that the component has completed its work for the
current transaction. If your scripts call COMMIT and ROLLBACK, they will
generate database errors in the SQLCA.SqlErrText string, which can help you
refine your code during development.

If you want to continue to call COMMIT and ROLLBACK on a PowerBuilder
Transaction object, set UseContextObject to no. For components that use an
EAServer data source, this causes COMMIT and ROLLBACK statements to
behave like the TransactionServer object’s SetComplete and SetAbort functions,
which call the EAServer transaction service’s CommitWork and AbortWork
methods.This is the default.

For components that do not support transactions, the UseContextObject setting
is ignored, and PowerBuilder drivers handle COMMIT and ROLLBACK
statements.

Deploying components
The deployment tool wraps your PowerBuilder NVOs as standard EJB session
beans. Target-specific deployment descriptors are generated to bind JNDI
names and JDBC data source resource references automatically.

PowerBuilder components
You can use the Project painter to deploy PowerBuilder components.

❖ Deploying PowerBuilder components

1 In the Project painter Properties dialog box, select the EAServer Host tab,
and enter:

• Host Name – the TCP host name for the server machine. Do not use
“localhost” or the IP address.

• Port – the IIOP port number on the host machine; the default is 2000.

• Login ID – admin@system.

CHAPTER 5 Developing and Deploying PowerBuilder Components

CORBA Components Guide 63

• Login Password – a valid password for the login ID.

Note To override the host name and port number that the server uses for
its deployment listener, see “Configuring listeners” on page 41, in the
EAServer System Administration Guide.

2 From the Component type drop-down list on the Components page, select
one of:

• Shared component – allows multiple clients to share the same
component instance. This provides access to common data that would
otherwise need to be retrieved separately by each client connection,
and reduces the number of database accesses, allowing the database
server to be available for other processing.

• Service component – performs background processing for EAServer
clients and other EAServer components. EAServer loads service
components at server start-up time. A service component can also be
shared.

• Standard component – you can improve performance by allowing
multiple instances of a component to handle client requests.

For detailed information about these component types, see “Building an
EAServer Component” in the PowerBuilder Application Techniques book.

3 In the Standard Options group box on the Components page, to use
stateless EJB session beans, select Automatic Demarcation / Deactivation;
to use stateful session beans, unselect this option.

Live editing You can quickly test changes without redeploying, using live editing—see
“Testing and debugging the component” in Application Techniques at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.app
tech/html/apptech/CHDDHCCJ.htm.

To increase the speed at which live editing runs, perform the following
configuration:

1 Open config/deploy-tool-options.xml, in your EAServer installation.

2 In the com.sybase.jaguar.compiler.JaguarCompiler component description,
set the value of ejbDeployIfUnchanged to false.

3 Run:

configure deply-tool-options

Deploying components

64 EAServer

Java packages
For an NVO package called “xyz,” the default Java package name for
generated EJB interfaces is “xyz.ejb.”

❖ Changing default Java package names

1 In the Project painter Properties dialog box, select the General tab.

2 In the Comments box, enter the Java package name; for example:

javaPackage=“com.example.bank”;

The semicolon is required.

Web services
To deploy a PowerBuilder NVO as a Web service, you must define the Java
package name.

❖ Deploying Web services

1 In the Project painter Properties dialog, select the General tab.

2 In the Comments box, enter the names of the components to generate as
Web services; for example:

javaPackage=“com.example.bank”;webServices=“MyComp1,MyComp2”;

The final semicolon is required.

3 On the WebService tab, select Expose the Component as a Web Service.

Generated code
The base directory for generated files is %DJC_HOME%\genfiles\java, which
includes the following subdirectories:

• applications

• classes

• ejbjars

• src

Typically, you can delete generated files after deployment, but this causes
redeployment to be slower.

CHAPTER 5 Developing and Deploying PowerBuilder Components

CORBA Components Guide 65

Naming conventions
You cannot use hyphens in the names of PowerBuilder components or
methods.

PowerScript method and parameter identifiers that contain underscores are
mapped to Java names using lowerCamelCase; field names are not mapped
when using the camel case option. See “Camel case versus default IDL-to-Java
mappings” on page 144.

A similar mapping is used for structure names, but the first letter is capitalized;
for example, “my_structure” maps to “MyStructure.”

Component names are not changed from the names you enter in the Project
painter. Sybase recommends that you use the Java class naming conventions;
for example, “MyComp.”

An NVO implementation class can use any name.

Repository files
The base directory for repository files is %DJC_HOME%\Repository, which
includes the following subdirectories:

• IDL – interface definitions.

• Component – component properties and PowerBuilder dynamic libraries
(PBDs).

• Instance – server and data source properties.

• Package – package properties.

The repository files are used during deployment and at runtime.

Security roles
By default, security roles are disabled. To specify security roles:

1 In the Project painter Properties dialog, select the General tab.

2 In the Comments box, specify the security roles required for each
component. In the following example, MyComp1 and MyComp2 are
component names and “manager” is the name of the security role assigned
to each:

Remote debugging

66 EAServer

roles:MyComp1=“manager”;roles:MyComp2=“manager”;

3 Use the Management Console to assign roles to users. See “Managing
users” in Chapter 10, “Security Configuration Tasks,” in the Security
Administration and Programming Guide.

Remote debugging
To start a remote debugging session, in the PowerBuilder debugger, select Start
Remote. For details, see the PowerBuilder documentation at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.app
tech/html/apptech/CEGBEGBH.htm.

Troubleshooting
To troubleshoot runtime problems, check the following:

• The EAServer log file logs\serverName.log

• The console window, if available

CORBA Components Guide 67

C H A P T E R 6 Developing PowerBuilder Clients

This chapter describes how to develop PowerBuilder clients for EAServer
components.

While the PowerBuilder IDE is not included with EAServer, the products
are fully integrated and work well together. PowerBuilder allows you to
generate non-visual objects (NVOs) that act as proxies for EAServer
components. Using a proxy, you can call component methods as if they
were implemented as local NVO methods. You can call any type of
component from a PowerBuilder client, not just PowerBuilder NVO
components.

Developing clients
To create a PowerBuilder client, use the EAServer Proxy wizard to
generate PowerScript proxies for the components that the client calls.
New PowerBuilder users may find it helpful to run the Template
Application wizard to create some of the client-side connection logic. To
run the Template Application wizard, select New | Target |
Template Application.

Clients can use the PowerBuilder Connection object generated by the
Template Application wizard to connect to the server, generate proxies
using the EAServer Proxy wizard, then instantiate the proxies and invoke
the proxy methods to call the component’s business methods.

For more information, see the Application Techniques manual in the
PowerBuilder documentation.

Topic Page
Developing clients 67

Developing clients

68 EAServer

Component access
For clients—JavaServer Pages (JSPs), servlets, or other EJBs—running in the
same application server process, you can use either EJB references or direct
JNDI lookups to access components.

When you deploy PowerBuilder components, if the package name is
“MyPackage” and the component name is “MyComp”:

• The generated EJB home interface is MyPackage.ejb.MyCompHome.

• The generated EJB remote interface is MyPackage.ejb.MyComp.

• The JNDI name is “MyPackage/MyComp.”

The PowerBuilder EJBConnection class allows you to call EJBs in EAServer
and third-party application servers—see the EJBConnection class description in
the PowerBuilder documentation at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.app
tech/html/apptech/CCJBGAEBA.htm.

Other patterns for proxy instantiation Some patterns for proxy
instantiation used in clients written for earlier EAServer releases are not
compatible with EAServer 6.0. In particular, clients that use the CosNaming
API or SessionManager::Factory::create methods that take parameters should
be modified to use the implementation pattern described here. For more
information, see “Using the CosNaming interface” on page 121.

Web DataWindow
The Web DataWindow is a thin-client DataWindow implementation for Web
applications, which provides most of the data manipulation, presentation, and
scripting capabilities of the PowerBuilder DataWindow, requiring the Web
DataWindow component on a component server but no PowerBuilder DLLs on
the client. The Web DataWindow supports browser-based clients and offers
three rendering formats: XML, XHTML, and HTML—see the DataWindow
Programmer’s Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.dw
prgug/html/dwprgug/title.htm.

Note the following updates to the DataWindow Programmer’s Guide:

CHAPTER 6 Developing PowerBuilder Clients

CORBA Components Guide 69

❖ Configuring a Web DataWindow for generating and deploying JSP
targets:

• Change to the EAServer bin subdirectory, and run:

configure web-data-window

❖ Instantiating a Web DataWindow from a JavaServer Faces (JSF)
interface, JSP, or servlet

• To instantiate a Web DataWindow, use the following syntax, where NNN
represents the version of the PowerBuilder VM; for example, use
HTMLGenerator105 for PBVM version 10.5:

import com.sybase.pb.datawindow.*;
…
InitialContext nc = new InitialContext();

HtmlGeneratorNNNHome home =
(HtmlGeneratorNNNHome)javax.rmi.PortableRemoteObject.narrow(nc.lookup
(“DataWindow/HTMLGeneratorNNN”), HTMLGeneratorNNNHome.class);

HTMLGenerator gen = home.create();

Developing clients

70 EAServer

CORBA Components Guide 71

C H A P T E R 7 CORBA/C++ Overview

This chapter provides an overview of things to consider when developing
CORBA C++ clients and components for EAServer.

Overview
CORBA is a distributed component architecture defined by the Object
Management Group (OMG). EAServer supports the CORBA Internet
Inter-ORB Protocol (IIOP). EAServer also provides a CORBA-
compatible C++ client-side interface. These two items allow you to create
CORBA EAServer C++ applications. C++ components and clients are
also interoperable with clients and components using other technologies.

The dynamic invocation interface (DII) is not supported.

For information on the CORBA architecture, see the specifications
available at the OMG Web site at http://www.omg.org.

A tutorial is available
If you are new to EAServer, follow the steps in Chapter 10, “Tutorial:
Creating C++ Components and Clients” to get aquainted with the C++
development and deployment cycle.

Topic Page
Overview 71
Requirements 72
Supported datatypes 72

Requirements

72 EAServer

Requirements
To develop C++ components, you need a C++ development tool such as
Microsoft Visual C++, for use on Windows, or the standard C++ compiler for
your UNIX platform. All software that is required to run C++ components in
EAServer is supplied with the EAServer product.

To develop C++ clients, you need a C++ development tool. To deploy and run
C++ clients on end-user workstations, you must install the EAServer C++
client runtime on each workstation.

For detailed system requirements, see the EAServer Installation Guide for your
platform.

Supported datatypes
EAServer follows the OMG standard for translating CORBA IDL to C++,
more specifically, refer to C++ Language Mapping Specification
(formal/99-07-41). You can download this document from the OMG Web site
at http://www.omg.org.

The standard supports all the C++ features in the Annotated C++ Reference
Manual by Ellis and Stroustrup as implemented by the ANSI/ISO C++
standardization committees. In addition, the namespace construct is supported.
Templates are not required but can be used.

IDL modules are mapped to C++ namespaces and IDL interfaces are mapped
to C++ classes. All OMG IDL constructs scoped to an interface are accessed
through C++-scoped-names. For example, the IDL interface
CtsComponents::ThreadManager maps to the C++ class
CtsComponents::ThreadManager. If your C++ compiler supports namespaces,
you can use the namespace directive and refer to the interface name by itself,
as in:

using namespace CtsComponents;
...

ThreadManager threadMan;

CHAPTER 7 CORBA/C++ Overview

CORBA Components Guide 73

C++ mappings for predefined IDL datatypes
Table 7-1 lists the CORBA IDL types predefined in EAServer and the
equivalent C++ datatypes. You can also define additional types in IDL; when
you generate stubs and skeletons, these are translated to C++ types using the
standard CORBA IDL to C++ type mappings. For example, The BCD and MJD
CORBA IDL modules define types to represent binary data, fixed-point
numeric data, dates, and times. For details, see the generated Interface
Repository documentation for these IDL modules.

Table 7-1: C++ datatype mappings for predefined CORBA IDL types

CORBA IDL
type

Argument
mode IDL C++ type

short in
inout
out
return

CORBA::Short
CORBA::Short&
CORBA::Short_out
CORBA::Short

long in
inout
out
return

CORBA::Long
CORBA::Long&
CORBA::Long_out
CORBA::Long

long long in
inout
out
return

CORBA::LongLong
CORBA::LongLong&
CORBA::LongLong_out
CORBA::LongLong

Define JAG_LONGLONG
Because there is no standard C++ type for an
signed 64-bit integer, you must define the
JAG_LONGLONG macro as your
compiler’s type for a signed 64-bit integer.

float in
inout
out
return

CORBA::Float
CORBA::Float&
CORBA::Float_out
CORBA::Float

double in
inout
out
return

CORBA::Double
CORBA::Double&
CORBA::Double_out
CORBA::Double

boolean in
inout
out
return

CORBA::Boolean
CORBA::Boolean&
CORBA::Boolean_out
CORBA::Boolean

Supported datatypes

74 EAServer

Using mapped IDL types
All EAServer component interfaces are defined in standard CORBA IDL, and
C++ stubs and skeletons use the standard CORBA IDL-to-C++ type mappings.

string in
inout
out
return

char*
char*&
CORBA::String_out
char*

BCD::Binary in
inout
out
return

BCD::Binary&
BCD::Binary&
BCD::Binary_out
BCD::Binary*

BCD::Decimal in
inout
out
return

BCD::Decimal&
BCD::Decimal&
BCD::Decimal_out
BCD::Decimal*

BCD::Money in
inout
out
return

BCD::Money&
BCD::Money&
BCD::Money_out
BCD::Money*

MJD::Date in
inout
out
return

MJD::Date&
MJD::Date&
MJD::Date_out
MJD::Date

MJD::Time in
inout
out
return

MJD::Time&
MJD::Time&
MJD::Time_out
MJD::Time

MJD::Timestamp in
inout
out
return

MJD::Timestamp&
MJD::Timestamp&
MJD::Timestamp_out
MJD::Timestamp

TabularResults::
ResultSet

return TabularResults::ResultSet*

TabularResults::
ResultSets

return TabularResults::ResultSets*

CORBA IDL
type

Argument
mode IDL C++ type

CHAPTER 7 CORBA/C++ Overview

CORBA Components Guide 75

For local variables that map to constructed C++ types and do not represent an
IDL interface, use the C++ datatype that is appended with _var. _var variables
are automatically freed when they are out of scope. If you do not use the _var
type, references must be freed with the C++ delete operator. In Table 7-1,
string, binary, decimal, money, date, time, timestamp, ResultSet, and ResultSets
have _var types. Other types listed in Table 7-1 map to fixed-length C++ types.
For fixed-length types, use the base C++ type.

IDL interfaces map to C++ classes that extend the CORBA::Object class. These
object reference types have a _var form for references with automatic memory
management, and a _ptr form for references that must remain valid after the
reference variable goes out of scope. _ptr references must be freed by calling
CORBA::release.

You must pass values in a _var type as follows:

MyType_var v;
....
v.in() // Passes v as an in

// parameter.
v.inout() // Passes v as an inout

// parameter.
v.out() // Passes v as an out

// parameter.
return v._retn() // Passes v as a return value.

Note Do not use the C++ _out types for local variables; these types are
reserved for method signatures.

For out and inout parameters of IDL type string, use CORBA::string_alloc or
CORBA::string_dup to allocate memory for them. For example:

ItemName = CORBA::string_dup("Dummy Item Name");
ItemData = CORBA::string_dup("Dummy Item Data");

In C++, if you declare string variables as type CORBA::String_var, memory
allocated by CORBA::string_dup or CORBA::string_alloc is freed automatically.
Otherwise, declare as char * and free the memory explicitly by calling
CORBA::string_free.

You can pass a null value as a parameter type only with the object reference
type Module::Interface::_nil().

Supported datatypes

76 EAServer

Overloaded methods
Overloading methods is supported for C++ components. When you overload a
method, you use the same name for several methods that specify different
parameters. When you call an overloaded method, the method with the
corresponding parameters is executed. See “Operation declarations” on page
29 for more information.

CORBA Components Guide 77

C H A P T E R 8 Developing CORBA/C++
Components

Procedure for creating C++ components
To create a CORBA/C++ compoent, you use the Management Console or
a configuration script to define basic information about the component,
such as the component name and methods, generate files that are required
to write the component’s class implementation, then compile the class into
a dynamic link library (on Windows) or shared library (on UNIX).

The steps are as follows:

1 Define the component interface in CORBA IDL and deploy the IDL
to the EAServer repository. Chapter 3, “Using CORBA IDL,”
describes how to do this.

2 Create EAServer entities to define the CORBA packages and
components. The package and component properties specify the
component interfaces and control interaction between EAServer and
your implementation. Chapter 4, “Managing CORBA Packages and
Components,” describes how to do this.

Topic Page
Procedure for creating C++ components 77

Generating C++ component files 78

Writing the class implementation 80

Compiling source files 81

Using data sources 84

Managing explicit OTS transactions 91

Setting transaction state 96

Issuing intercomponent calls 97

Handling errors 98

Debugging C++ components 98

Generating C++ component files

78 EAServer

3 Generate the required files by running the jaguar-compiler command on the
CORBA package to generate the code and EJB wrapper components
required to run the components in EAServer as described in “Generating
C++ component files” on page 78.

4 Complete the C++ implementation and compile the component library.
For details, see:

• “Writing the class implementation” on page 80

• “Compiling source files” on page 81

A tutorial is available
If you are new to EAServer, follow the steps in Chapter 10, “Tutorial: Creating
C++ Components and Clients” to get aquainted with the C++ development and
deployment cycle.

Generating C++ component files
Run the jaguar-compiler command on the CORBA package to generate the C++
files that you need to compile into a DLL or UNIX shared library as well as a
class implementation template in which to write method logic.

You can run the jaguar-compiler command several ways:

• From the Management Console as described in “Refreshing CORBA
packages in the Management Console” on page 43.

• Using a configuration script, as described in “Managing CORBA
packages with configuration scripts” on page 43.

• Using the jaguar-compiler command-line tool, as described in Chapter 12,
“Command Line Tools,” in the System Administration Guide.

The generated files include sample implementation templates for the
component implementation.

The generated C++ files include:

• Method skeletons file – Contains method routines that read the parameters
from the network and call the method. The method skeletons also send the
return status and output parameter data back to the client.

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 79

• Class header file – Contains the method declarations only. This file is an
included file in the method skeletons file and the class implementation
template.

• Class implementation template – Contains the class, method, and
parameter declarations, as well as empty method definitions. You enter
any business logic into the empty method definitions.

• Stub interface files – Contain the interface definition for all components in
a package, as well as definitions for user-defined types and exceptions
used in your component’s interface.

• UNIX makefile – You use a makefile to compile the C++ source files into
a UNIX shared library.

• Windows makefile and Microsoft Visual C++ module definition file – You
use the makefile and a module definition file to compile the C++ source
files into a DLL.

C++ file naming conventions and locations
For the component implementation, EAServer generates the following files:

where:

component-name is the name of the component.

class-name is specified by the component’s C++ class name property.

The component implementation files are created in the following EAServer
subdirectory:

cpplib/package_name/component_name

File type File name

method skeletons file package-name_component-name.cpp

class header file class-name.hpp.new

Rename this file to use it as an
implementation template.

class implementation template class-name.cpp.new

Rename this file to use it as an
implementation template. If you have
modified the IDL interface, merge
modifications from the generated .new file
to your existing .cpp file.

Writing the class implementation

80 EAServer

where:

package-name is the name of the CORBA package.

component_name is the component name.

Regenerating changed C++ component methods
When you add or delete methods or modify component method prototypes, you
must regenerate the method skeletons and class header files. You must
manually add, delete, or modify the methods in the class implementation
template. Before you regenerate the method skeletons and class header files,
make sure that you have moved your modified class implementation template
to another directory or renamed it so the generated class implementation
template does not overwrite your existing class implementation template.

Writing the class implementation
After you generate the method skeleton file, class header file, and class
implementation template, write the code for each method in the class
implementation template (you can also write your class implementation from
scratch and replace the generated class implementation template).

You must use scoped names to specify the CORBA IDL module, the EAServer
SessionManager IDL module, and any component IDL modules that you want
to execute methods on. To make using scoped names easier, you can use the
C++ using statement for the IDL module namespaces as in the following
example:

using namespace CORBA;
using namespace SessionManager;

If your C++ compiler does not support namespaces, define a compiler macro
JAG_NO_NAMESPACE when compiling your source files.

CORBA::is_nil(Object) can be used to verify that a specific interface is
implemented by a component.

As with any C++ class, you use the constructor and destructor to initialize and
perform any cleanup of objects.

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 81

Constructors of class variables in file scope not called
If you declare a class variable in file scope and compile it into a shared object,
such as a component, the Solaris C++ compiler doesn’t call the constructor of
the class variable. If the variables need to be in scope only for a particular
function, procedure or module, then declare these variables in the appropriate
function, procedure, module; otherwise declare these variables in the class
definition.

Each C++ method signature must use the return types and parameter datatypes
described in “Supported datatypes” on page 72. In the method implementation,
you optionally implement the features below:

• Caching Connections to Third-Tier Database Servers

You can use a data source to improve performance when connecting to
database servers. See “Using data sources” on page 84 for more
information.

• Managing explicit OTS transactions

You can explicitly to manage OTS transactions from your component.

• Setting Transaction State

Methods in a transactional component should call one of the transaction
primitive routines to set the transaction state before returning. See “Setting
transaction state” on page 96 for more information.

• Handling Errors

Use user-defined or CORBA system exceptions to handle errors. See
“Handling errors” on page 98 for more information about system and
user-defined exceptions.

Compiling source files
Your C++ component code must be compiled and linked into a DLL or UNIX
shared library in order to be installed into the EAServer runtime environment.
When you generate source files for your component, EAServer creates an
example makefile that builds the component library. You may have to edit this
file to match your environment, as described in the following sections:

• “Compiling on UNIX platforms” on page 82

Compiling source files

82 EAServer

• “Compiling on Windows” on page 83

Compiling on UNIX platforms
EAServer generates a make.unix file when you generate the component
skeleton as described in “Generating C++ component files” on page 78. To
build your shared library, run the following command:

make -f make.unix

On Solaris, you must use a compiler and linker that is compatible with version
6.x compilers. The library and binary format is different between version 6.x
and version 4.x compilers.

The generated UNIX make file for C++ components works on other platforms
without changes. Platform-specific information is defined in the file
make.include.platform, where platform is the name returned by the command:

uname -s

The make.include.platform includes the necessary settigngs to run the compiler
and linker in the component make file. You may need to edit these settings if
your compiler and linker are not installed in the standard location, or you use
different software.

After building the shared library, copy it to the cpplib directory of your
EAServer installation.

Note If you do not place the component shared library in the EAServer cpplib
subdirectory, the directory containing the shared library must be specified in
the shared library search path environment variable for your platform (for
example, LD_LIBRARY_PATH for Solaris).

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 83

Compiling on Windows
For components that run on Windows, you must build a DLL that contains your
C++ component methods. After building the DLL, copy it to the cpplib
directory of your EAServer installation.

Note If you do not place the component DLL in the EAServer cpplib
subdirectory, the directory containing the DLL must be specified in the PATH
environment variable.

“Generating C++ component files” on page 78 describes how to generate C++
component files, including the makefile.

Before compiling your C++ component, verify that the makefile can find the
directory containing the ODBC header files and libraries. You must set the
ODBCHOME environment variable to the directory containing the ODBC
header files and libraries. If you have Microsoft Visual C++ and ODBCHOME
is not set, the makefile looks in C:\msdev (which is the default installation
directory for Microsoft Visual C++) for these files.

To build your DLL, run this command from a command window in your
component’s source directory:

nmake -f make.nt

If you make changes to the makefile, rename it so it won’t be overwritten when
you regenerate the required files.

Visual C++

Visual C++ requires a module definition file that specifies which functions are
exported from a DLL and some options that control how the DLL is loaded into
memory. Module definition files end with the extension .def.

For most projects, you can use the generated module definition file as is. In
some cases, you may want to edit settings other than those in the EXPORTS
section. For example, your component may perform better with a smaller or
larger HEAPSIZE setting.

Note Do not edit the generated function names in the EXPORTS section of the
.def file for a C++ component. If you do, the EAServer dispatcher will not be
able to call your methods.

Using data sources

84 EAServer

Using data sources
C++ components can call the C Connection Manager routines to take
advantage of connection caching. These routines manage ODBC, Client-
Library, and Oracle Call Interface (OCI) data sources.

EAServer C routines are documented in Chapter 2, “C Routines Reference,”
in the EAServer API Reference. The Connection Manager routines have names
that begin with JagCm.

Using ODBC data sources

Header files

The header file jagpublic.h declares the Connection Manager routines and data
structures; the file is located in the include subdirectory of your EAServer
installation.

Include required ODBC header files before including jagpublic.h, for example:

#include <sql.h>
#include <sqlext.h>
#include <jagpublic.h>

Data structures

Most Connection Manager routines require the address of a CM_CACHE
handle as a parameter. The CM_CACHE handle allows your code to refer to a
specific data source that is defined in Management Console. The
JagCmGetCachebyName routine returns a CM_CACHE handle to the named
data source. JagCmGetCachebyUser creates a temporary data source using the
specified parameters and returns its CM_CACHE handle.

ODBC uses an HDBC structure to represent a database connection. The
JagCmGetConnection routine returns the address of an HDBC structure.

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 85

ODBC example

The following example demonstrates program logic that offers improved
performance when a matching data source is available and that still functions
when no matching data source has been configured. The example first calls
JagCmGetCachebyUser to obtain a CM_CACHE handle to a temporary ODBC
data source using the values: user name (“myrtle”), password (“secret”), and
server name (“tsingtao”). The code sets the cache variable to the CM_CACHE
handle.

The example then calls JagCmGetConnection, passing the cache value as set by
JagCmGetCachebyUser, and passing explicit values for the user name, server
name, password, and connectivity library. If the cache variable contains a valid
data source reference, JagCmGetConnection looks directly in the data source
for an available connection. If cache was set to NULL or the indicated data
source has no available connections, JagCmGetConnection creates and opens a
new connection.

Code that follows the implementation strategy illustrated here can achieve
better performance when there are many configured data sources. Passing the
CM_CACHE handle explicitly in JagCmGetConnection eliminates repeated
internal table searches.

/* ODBC includes */
#include <sql.h>
#include <sqlext.h>

/* Connection Manager includes */
#include <jagpublic.h>

SQLRETURN ret; /* Return code catcher */
SQLHDBC *hdbc; /* ODBC connection handle */
JagCmCache cache; /* Cache handle */

/*
** Retrieve a CM_CACHE handle
*/
cache = NULL;
ret = JagCmGetCachebyUser (“myrtle”,“secret”,“tsingtao”,“ODBC”,&cache);

/*
** Ignore the return value. If the call fails, cache is NULL and we can keep
** going.
*/

/*
** Get a connection. If we have a cache handle, use it to get the connection.

Using data sources

86 EAServer

** Otherwise, create a new connection.
*/
ret = JagCmGetConnection (&cache,“myrtle”,“secret”,“tsingtao”,“ODBC”,

(SQLPOINTER *)&hdbc, JAG_CM_FORCE);

if (ret != SQL_SUCCESS)
{

... log the error ...
}

... code that uses the connection goes here ...

ret = JagCmReleaseConnection (&cache, “myrtle”, “secret”, “tsingtao”, “ODBC”,
hdbc, JAG_CM_UNUSED);

if (ret != SQL_SUCCESS)
{

... log the error ...
}

You can call JagCmGetCachebyName rather than JagCmGetCachebyUser. For
an example, see the reference page for JagCmGetCachebyName in Chapter 5
of the EAServer API Reference.

Client-Library data sources
EAServer 6.0 includes a version of Open Client 12.5 adapted to run in
EAServer. This version supports high availability, failover, and wide-table
features (varchar/varbinary columns more than 255 bytes long and tables with
more than 255 columns). You can use Open Client 12.5 only when you are
connected to Adaptive Server® Enterprise version 12.5 or later.

Header files

Before including jagpublic.h, you must include the Client-Library ctpublic.c
header file, as in the example below:

#include <ctpublic.h>
#include <jagpublic.h>

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 87

Data structures

Most Connection Manager routines require the address of a CM_CACHE
handle as a parameter. The cache handle allows your code to refer to a specific
data source that is defined in the Management Console. The routines
JagCmGetCachebyName and JagCmGetCachebyUser retrieve CM_CACHE
handles.

Client-Library uses a CS_CONNECTION structure to represent a database
connection. The JagCmGetConnection routine returns the address of a
CS_CONNECTION structure.

Client-Library example

The following example calls JagCmGetConnection to obtain a connection that
has a user name of “myrtle,” the password “secret,” connects to the server
“tsingtao,” and uses Client-Library:

#include <ctpublic.h>
#include <jagpublic.h>

CS_RETCODE ret;
CS_CONNECTION *connection;
JagCmCache cache;

/*
** Get a connection.
*/
cache = NULL;
ret = JagCmGetConnection (&cache, “myrtle”, “secret”, “tsingtao”,

“CTLIB”,(SQLPOINTER *)&connection, JAG_CM_FORCE);

if (ret != CS_SUCCEED)
{
... log the error ...
}

... code that uses the connection goes here ...

ret = JagCmReleaseConnection (&cache, “myrtle”, “secret”, “tsingtao”,
“CTLIB”, (SQLPOINTER)connection, JAG_CM_UNUSED);

if (ret != CS_SUCCEED)
{

... log the error ...
}

Using data sources

88 EAServer

In the example, the call to JagCmGetConnection looks for a data source that
includes matching values for the user name (“myrtle”), password (“secret”),
and server name (“tsingtao”) and that uses Client-Library. The last parameter
value, JAG_CM_FORCE, indicates that the call should open a new connection
if no cached connection is available. JagCmReleaseConnection releases control
of the connection: a connection that was taken from a cache is returned to that
cache; an uncached connection is closed and deallocated.

Note that JagCmGetConnection attempts to open a connection even when no
matching data source is configured. In this case, JagCmGetConnection attempts
to create a new connection using the specified values.

In this example, JagCmGetConnection and JagCmReleaseConnection return
Client-Library return codes since both calls use “CTLIB” as the connection
library parameter.

Note Beginning in EAServer 6.0, you can use CTLIB as the connection library
for Open Client 11.0, 12.0, and 12.5 connections. Version-specific CTLIB_x
connection libraries are still provided for backward compatibility.

You can call JagCmGetCachebyName rather than JagCmGetCachebyUser. To
see an example, see the reference page for JagCmGetCachebyName in the
EAServer API Reference.

Client-Library error and message callbacks

EAServer installs default server message and client message callbacks into
cached Client-Library connections. The default callbacks write error and
message information to the server’s log file.

When using Client-Library connections, you can install your own server
message and client message callbacks into connections retrieved from
JagCmGetConnection. JagCmReleaseConnection reinstalls the default
callbacks before placing connections back into the cache.

Oracle OCI data sources
You can define data sources for an Oracle 9i or 10g database, and use OCI as
the connection library for both database versions. The OCI_9 and OCI_10
connection libraries are still provided for backward compatibility.

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 89

Oracle autocommit setting

EAServer creates Oracle connections with the default autocommit setting,
autocommit off. In non-transactional components, you must explicitly issue a
commit command to commit update and insert queries. In transactional
components, the EAServer transaction manager issues commit and rollback
commands for connections used by the components that participate in an
EAServer transaction.

Note In a non-transactional component, if you do not explicitly call commit or
rollback after sending Oracle commands, the commands may be committed
when a transactional component uses the same connection. EAServer issues a
commit to clear the connection status before passing Oracle connections to a
transactional component.

Header files

Include oci.h before jagpublic.h, as in the example below:

#include <oci.h>
#include <jagpublic.h>

Data structures

Most Connection Manager routines require the address of a CM_CACHE
handle as a parameter. The routines JagCmGetCachebyName and
JagCmGetCachebyUser retrieve CM_CACHE handles.

OCI uses an OCISvcCtx structure to represent a database connection. The
JagCmGetConnection routine returns the address of a OCISvcCtx structure.

OCI example

The example below retrieves an OCI connection, executes a statement using
the connection, then returns the connection to the cache.

#include <jagpublic.h>
#include <oci.h>
#define USERID "system"
#define PASSWD “manager"
#define DATASOURCE "OCITEST"

JagCmCache cache;

Using data sources

90 EAServer

 OCIEnv *envhp;
 OCISvcCtx **svcpp, *svchp;
 OCIError *errhp;
 OCIStmt *stmthp;
 sword ociret;

 /* Connect to ORACLE. */
cache = NULL;
ociret = JagCmGetConnection(&cache, USERID, PASSWD, DATASOURCE, "OCI",

(void*)&svchp, JAG_CM_FORCE);
 ...

 /* Initialize an Env, to allocate stmt and error handles */
OCIEnvInit(&envhp, OCI_DEFAULT, (size_t) 0, (dvoid **)0);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,

OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,

OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
checkerr(errhp, OCIStmtPrepare(stmthp, errhp, sql_statement,

 (ub4) strlen((char *) sql_statement),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* execute using the service context */
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,

(CONST OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT));

 /* free handles */
OCIHandleFree(stmthp, OCI_HTYPE_STMT);
OCIHandleFree(errhp, OCI_HTYPE_ERROR);

 /* release connection */
 ret = JagCmReleaseConnection(&cache, USERID, PASSWD, DATASOURCE, "OCI",

svchp, JAG_CM_UNUSED);

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 91

Managing explicit OTS transactions
You can code components (and clients) to initiate and complete transactions
using the OTS (Object Transaction Service) CosTransactions::Current or
CosTransactions::TransactionFactory interfaces.

Note In order to use OTS, you must enable EAServer to use the OTS/XA
transaction coordinator. See Chapter 3, “Creating and Configuring Servers,”
in the EAServer System Administration Guide for more information.

To use the functionality of these interfaces, include CosTransactions.hpp in
your source file.

To explicitly use transactions in a component or client, use the
CosTransactions::Current interface to perform these tasks.

Task Call this method Catch these exceptions

Start a transaction. begin SubtransactionsUnavailable

Temporarily stop a transaction. suspend None

Resume a suspended transaction. resume InvalidControl

Commit a transaction. commit NoTransaction, HeuristicMixed,
HeuristicHazard

Roll back a transaction. rollback NoTransaction

Make the only possible outcome of the
transaction a rollback.

rollback_only NoTransaction

Roll back a transaction after a specified
amount of time has elapsed without any
response.

set_timeout None

Retrieve a transaction’s status. get_status None

Retrieve a transaction’s name. Use this
method when you need to debug
transactions.

get_transaction_name None

Managing explicit OTS transactions

92 EAServer

Using factories
The TransactionFactory interface is included in EAServer only to maintain
compatibility with the CORBA OTS specification—Sybase recommends that
you use the CosTransactions::Current interface to create explicit transactions.

Note Sybase recommends that you use suspend with caution so as not to
conflict with the EAServer component model. For example, do not use
suspend to take control of a transaction that it does not control.

Initializing the ORB
To initialize the ORB and retrieve a reference to the CosTransactions::Current
interface, specify the TransactionCurrent ObjectId, which identifies the
CosTransactions::Current interface, to the resolve_initial_references method,
and narrow it (using the _narrow method) to the CosTransactions::Current
interface. Use the is_nil method to verify that the reference to the
CosTransactions::Current interface is valid.

For clients The following code fragment shows how to initialize the ORB from a client.
ORB_init must take the argumentList array that specifies the
ORBNameServiceURL parameter. You can also set the ORBNameServiceURL
using the JAG_NAMESERVICEURL environment variable.

int argumentCnt = 1;
char *argumentList[] = {

{ "-ORBNameServiceURL iiop://<hostnamehere>:2000" },
{ "" }
};

try {

CORBA::ORB_var orb = CORBA::ORB_init(argumentCnt,
argumentList, 0);

cerr << "Orb init" << endl;

CORBA::Object_var crntObj =
orb->resolve_initial_references
("TransactionCurrent");

CosTransactions::Current_var CurrentIntf =
CosTransactions::Current::_narrow(crntObj);

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 93

if(CORBA::is_nil(CurrentIntf))
{

cerr << "Error getting Current" << endl;
exit(-1);

}
cerr << "Got Current" << endl;

For components The following code fragment shows how to initialize the ORB from a
component. ORB_init does not need to take any parameters.

orb = CORBA::ORB_init(argumentCnt, NULL, 0);
cerr << "Orb init" << endl;

CORBA::Object_var crntObj =
orb->resolve_initial_references

("TransactionCurrent");
CurrentIntf =

CosTransactions::Current::_narrow(crntObj);
if(CORBA::is_nil(CurrentIntf))
{

cerr << "Error getting Current" << endl;
/* could be due to:
** 1. Component not BeanManaged/OTS Style
** 2. Already in a Txn
** 3. not running under OTS
*/
return CS_FAIL;

}
cerr << "Got Current" << endl;

Calling CosTransactions::Current interface methods
After retrieving a reference to the CosTransactions::Current interface, you can
call any of the CosTransactions::Current methods on the
CosTransactions::Current reference. After executing the begin method, execute
the database operations you want to include in the transaction. Depending on
whether the database operations succeed or fail, you can execute other
appropriate methods, such as commit, rollback, or rollback_only. This code
fragment shows how to begin a transaction and commit or roll it back
depending on the return codes received from the databases.

CurrentIntf->begin();
ret = JagCmGetConnection(&cache,

(SQLCHAR *) USERID, (SQLCHAR *) PASSWD,
(SQLCHAR *) xaresource, (SQLCHAR *) "CTLIB_110",

Managing explicit OTS transactions

94 EAServer

(void*) &conn, JAG_CM_UNUSED);

if (ret != CS_SUCCEED) {
cerr << "Error getting connection" << endl;
CurrentInt->rollback();

}

CurrentIntf->commit(CS_FALSE);

Executing tasks outside of a transaction
To execute a method outside of a transaction, you can write the code to perform
either:

• Execute the method before beginning a transaction, or

• Temporarily stop and start execution of the transaction.

❖ Execute tasks outside of a transaction using the suspend and resume
methods

1 Execute suspend to temporarily stop execution of the transaction.

2 Execute the tasks.

3 Execute resume to restart the execution of the transaction from where it
stopped.

This code fragment shows how to execute tasks outside of a transaction. The
suspend method returns the control context. You specify the control context
when you use the resume method to restart the transaction. Catch the
InvalidControl exception, which may be raised when a control context is out of
scope (and not null).

sus_ctrl = CurrentIntf->suspend();

/* The following method is not in the transaction */
component1->method2();

CurrentIntf->resume(sus_ctrl);
/* The following methods are invoked
in the transaction */

component2->method1();

CurrentIntf->commit(CS_FALSE);

}

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 95

catch(CosTransactions::SubtransactionsUnavailable
&ex)

{
cerr << "Exception: SubTxnUnavailable " <<

ex._jagExceptionCode << endl;
}
catch(CosTransactions::NoTransaction &ex)
{

cerr << "Exception: NoTransaction " <<
ex._jagExceptionCode << endl;

}
catch(CosTransactions::InvalidControl &ex)
{

cerr << "Exception: InvalidCtrol " <<
ex._jagExceptionCode << endl;

}
catch(...)
{

cerr << "Caught Unexpected exception" << endl;
exit(-1);

}

Exceptions
The CosTransactions module includes these exceptions:

• SubtransactionsUnavailable – raised when the client thread already has an
associated transaction and the transaction coordinator does not support
nested transactions.

• NoTransaction – raised when there is no transaction associated with the
client thread.

• InvalidControl – raised when the specified control is not null and not within
the scope of the client thread.

• Inactive – raised when a method such as rollback_only is executed on a
transaction has already been prepared.

• InvalidTransaction – raised when a request carries an invalid transaction
context, such as if an error occurred when registering a resource.

• TransactionRequired – raised when a request carries a null transaction
context but required an active transaction. For example, this could occur
when a component specifies the Mandatory attribute.

Setting transaction state

96 EAServer

• Unavailable – raised when the requested object cannot be returned because
OTS/XA transaction coordinator restricts the availability of the object.

• TransactionRolledBack – raised when a transaction is marked to roll back
or has already been rolled back.

Heuristic exceptions A heuristic decision is a decision to commit or roll back updates that one or
more participants in a transaction make without waiting for the consensus
decision from the transaction coordinator. These types of commits and
rollbacks are also called heuristic commits and heuristic rollbacks. When a
heuristic commit or rollback is made, the transaction can become inconsistent.
Therefore, a heuristic commit or rollback is made only in unusual
circumstances such as communication failures. When the System
Administrator issues a heuristic commit or rollback, a heuristic exception is
raised.

• HeuristicMixed – Raised when a heuristic decision is made and some
relevant updates are committed and others are rolled back.

• HeuristicHazard – Raised when a heuristic decision may have been made,
when not all of the conditions of all relevant updates is known, and for
those updates whose condition is known, either all of them were
committed or rolled back.

• HeuristicRollback – Raised when a heuristic decision to roll back all of a
transaction’s relevant updates has been made.

• HeuristicCommit – Raised when a heuristic decision to commit all of a
transaction’s relevant updates has been made.

Setting transaction state
Methods in a transactional component should call one of the transaction state
primitive routines listed in Chapter 2, “C Routines Reference,” of the
EAServer API Reference.

Even if your component is not transactional, you can call one of these methods
to explicitly specify whether the instance should be deactivated.

For transactional components, choose the routine that reflects the state of the
work that the component is contributing to the transaction, as follows:

• If the work is complete and without error, call JagCompleteWork.

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 97

• If the work is not necessarily finished, but not in error, call
JagContinueWork.

• If the work is not finished and not ready for commit, call
JagDisallowCommit.

• If the work cannot be completed, call JagRollbackWork (you should also
log a description of the error and send an error to the client, as described
in “Handling errors” on page 98).

For nontransactional components, call either JagCompleteWork or
JagRollbackWork to deactivate and destroy the component instance. To keep
the instance active, call JagContinueWork or JagDisallowCommit.

If a method does not explicitly set transaction state before returning, the default
behavior is JagContinueWork.

Issuing intercomponent calls
To invoke other components, instantiate a stub for the second component, then
use the stub to invoke methods on the component.

You must use a stub to issue intercomponent calls. If you call methods in
another C++ component directly, EAServer features such as transactions and
security will not work.

To invoke methods in other components, create an ORB instance to obtain
object references to other components and invoke methods on the object
references. You obtain object references for other components on the same
server by invoking string_to_object with the IOR string specified as
Package/Component. For example:

CORBA::Object_var obj =
orb->string_to_object("MyPackage/MyComponent");

MyModule::MyInterface_var i =
MyModule::MyInterface::_narrow(obj);

When making intercomponent calls using string_to_object, the user name of the
client that executed the component is automatically used for authorization
checking. string_to_object returns an instance running on the same server if the
component is locally installed; otherwise, it attempts to resolve a remote
instance using the naming server.

Handling errors

98 EAServer

To components on a non-EAServer ORB
Your component may need to invoke methods on a component hosted by
another vendor’s CORBA server-side ORB. Sybase recommends that C++
components use the EAServer client-side ORB for all IIOP connections made
from EAServer components. See “Connecting to third-party ORBs using the
EAServer ORB” on page 123 for more information.

Handling errors
Handle errors by:

1 Writing detailed error descriptions to the server log file using the JagLog
C routine.

2 Coding one of these tasks:

a If the component is transactional, call JagDisallowCommit or
JagRollbackWork (or you can throw the
CORBA::TRANSACTION_ROLLEDBACK exception instead of calling
JagRollbackWork).

b Throw a CORBA system or user-defined IDL exception to be raised
by the client stub. See “Handling exceptions” on page 118 for more
information.

For more information about these methods, see Chapter 2, “C Routines
Reference,” in the EAServer API Reference.

Debugging C++ components
To debug a component you must run the debug version of the server, and use a
debugger running on the same host as EAServer. Chapter 3, “Creating and
Configuring Servers,” in the EAServer System Administration Guide describes
how to start the debug server.

To debug a component from Microsoft Visual C++, you must set the
component’s C++ Debug (com.sybase.jaguar.component.cpp.debug) property
under the Advanced tab to true.

Follow these steps to attach to the server and step into your component code:

CHAPTER 8 Developing CORBA/C++ Components

CORBA Components Guide 99

1 Configure the component properties and verify the CPP Debug property is
enabled (or set to true). See “CORBA component property descriptions”
on page 45.

2 Start your C++ debugger and configure it to launch EAServer using the
server-start script.

3 Set a breakpoint on the function jag_dbg_stop. This function executes
every time the server loads a component DLL. The jag_dbg_stop prototype
is:

void jag_dbg_stop(char *compName)

The compName parameter specifies the name of the library or shared
library that was just started. Several components may be started before
yours. In the debugger, display the compName value when the
jag_dbg_stop breakpoint is tripped, and monitor the value to determine
when your component is started. Breakpoints on jag_dbg_stop are
triggered before the server calls the component’s create method.

Note Make sure the jag_dbg_stop breakpoint is set before running your
client application.

4 When your component’s DLL is started, you can specify the component’s
C++ function names as breakpoints and step into the method’s code when
it is invoked.

5 When you finish debugging, reconfigure the component properties and
verify the CPP Debug property is disabled (or set to true). See “CORBA
component property descriptions” on page 45.

Debugging C++ components

100 EAServer

CORBA Components Guide 101

C H A P T E R 9 Developing CORBA/C++ Clients

Procedure for creating CORBA C++ clients
A CORBA C++ client establishes a connection and session with the
EAServer ORB, instantiates a proxy object for the component, and calls
methods in the proxy object. When the client calls the methods in the
proxy objects, the proxy object methods communicate across the network
and execute the corresponding methods in the components.

To create CORBA EAServer C++ clients:

1 Generate C++ header files and CORBA stub implementations for the
IDL modules used in the component implementation. See
“Generating stubs” on page 102.

2 Implement the C++ client logic. See “Writing CORBA C++ clients”
on page 102.

3 Compile the C++ source files as described in “Compiling C++
clients” on page 120.

Topic Page
Procedure for creating CORBA C++ clients 101

Generating stubs 102

Writing CORBA C++ clients 102

Compiling C++ clients 120

Deploying C++ clients 120

Using the CosNaming interface 121

Using CORBA ORB implementations other than EAServer 121

Generating stubs

102 EAServer

Generating stubs
The EAServer ORB implementation class requires stub header files in order to
invoke component methods. You must include stub header files in your client
source files. The stub header files contain as inline all the component functions,
which make calls to the C functions in libjcc.dll. Inline functions allow
EAServer to support multiple C++ compilers without having to include
separate link libraries for each compiler.

For CORBA/C++ components, EAServer generates C++ stub header files for
deployed C++ CORBA components when you run the jaguar-compiler
command—see “Generating C++ component files” on page 78. To generate
C++ stubs for components of other types, use the idl-compiler command-line
tool. For example:

%DJC_HOME%\bin\idl-compiler.bat -v Tutorial\CPPArithmetic.idl -f
%DJC_HOME%\include -cpp

For information on idl-compiler syntax, see Chapter 12, “Command Line
Tools,” in the System Administration Guide.

If you are using another C++ ORB implementation to connect to EAServer,
you must export IDL and use the vendor’s IDL compiler to generate stubs that
are compatible with that ORB implementation. “Using CORBA ORB
implementations other than EAServer” on page 121 describes how to export
IDL files for EAServer components.

Writing CORBA C++ clients
These section describes how to code a CORBA C++ client that invokes
component methods:

• “Adding required include and namespace declarations” on page 103

• “Instantiating component proxies” on page 104

• “Invoking methods” on page 110

• “Handling exceptions” on page 118

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 103

Adding required include and namespace declarations
You must include stub header files for all IDL modules that include interfaces
that the component implements. In addition to the stub header files, you must
also include SessionManager.hpp (which contains the classes and functions
that allow a C++ client to create and destroy sessions) in the client source file.

You can also include these optional header files:

• TabularResults.hpp – contains the classes and functions that allow C++
clients to receive result sets from components.

• BCD.hpp – contains the mappings for binary and arbitrary precision
floating point-decimal datatypes.

• MJD.hpp – contains the datatype mappings from CORBA to C++ for
Modified Astronomical Julian Date (M.J.D.) dates and times.

Note TabularResults.hpp already includes BCD.hpp and MJD.hpp; if you
include TabularResults.hpp, you do not have to include BCD.hpp and
MJD.hpp.

You must use scoped names to the CORBA IDL module, the EAServer
SessionManager IDL module, and any component IDL modules that you want
to execute methods on. To make using scoped names easier, you can use the
C++ using statement for the IDL module namespaces as in the following
example:

using namespace CORBA;
using namespace SessionManager;

If your C++ compiler does not support namespaces, define the compiler macro
JAG_NO_NAMESPACE when compiling your source files.

When you create an object, identify the object reference by appending _var to
the object name. The ObjectName_var reference will be automatically released
when it is deallocated or assigned a new object reference.

CORBA::is_nil(Object) can be used to verify that a specific interface is
implemented by a component. For an example, see “Creating a Manager
instance” on page 108.

If you are returning result sets from components, you should also specify the
TabularResults EAServer IDL module with the using statement.

Writing CORBA C++ clients

104 EAServer

Instantiating component proxies
Before invoking methods on component instances, the client must connect to a
server and instantiate the components. Your code must perform these steps to
create proxy instances:

Other patterns for proxy instantiation
Some patterns for proxy instantiation used in clients written for earlier
EAServer releases are not compatible with EAServer 6.0. In particular, clients
that use the CosNaming API or SessionManager::Factory::create methods that
take parameters should be modified to use the implementation pattern
described here. For more information, see “Using the CosNaming interface”
on page 121.

Configure and initialize the ORB runtime

Before you can use any ORB classes, you must call the ORB_init method,
which:

• Returns an object reference to the ORB.

• Allows you to pass initialization parameters to the driver class in the form
of a string array. You can also set an environment variable (in the System
Properties for your machine) for each initialization parameter. If the
environment variable and initialization parameter are set, the value of the
initialization parameter is used. You can set any initialization parameter to
a value of none, which overrides the value of the environment variable and
sets the value to the default, if any.

You can pass the following initialization parameters to the driver class:

Step What it does Detailed explanation

1 Initialize the CORBA ORB and
create an ORB reference.

“Configure and initialize the
ORB runtime” on page 104

2 Use the ORB reference to create a
Manager instance.

“Creating a Manager instance”
on page 108

3 Use the Manager instance to create
a Session.

“Creating sessions” on page 109

4 Use the Session instance to create
stub component instances.

“Creating stub instances” on
page 109

5 Call the stub methods to remotely
invoke component methods.

“Invoking methods” on page 110

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 105

• ORBHttp – this specifies whether the ORB should use HTTP-tunnelling to
connect to the server. A setting of of "true" specifies HTTP tunnelling. The
default is "false". This parameter can also be set in an environment
variable, JAG_HTTP. Some firewalls may not allow IIOP packets
through, but most all allow HTTP packets through. When connecting
through such firewalls, set this property to "true".

• ORBHttpExtraHeader – An optional setting to specify what extra information is
appended to the header of each HTTP packet when connecting through a Web
proxy. See Chapter 9, “Deploying Applications Around Proxies and
Firewalls,” in the EAServer Security Administration and Programming
Guide for more information.

• ORBHttpUsePost – when using HTTP tunnelling, specifies the HTTP
request type used. A value of true indicates that POST requests are to be
used. A value of false (the default) specifies that GET requests are to be
used. This parameter can also be set in an environment variable,
JAG_HTTPUSEPOST.

• ORBLogIIOP – this specifies whether the ORB should log IIOP protocol
trace information. A setting of "true" enables logging. The default is
"false". This parameter can also be set in an environment variable,
JAG_LOGIIOP. When this parameter is enabled, you must set the
ORBLogFile option (or the corresponding environment variable) to specify
the file where protocol log information is written.

• ORBLogFile – this sets the path and name of the file to which to log client
execution status and error messages. This parameter can also be set in an
environment variable, JAG_LOGFILE. The default setting is no log.

• ORBCodeSet – this sets the code set that the client uses. This parameter
can also be set in an environment variable, JAG_CODESET. The default
setting is iso_1.

• ORBRetryCount – specify the number of times to retry when the initial
attempt to connect to the server fails. This parameter can also be set in an
environment variable, JAG_RETRYCOUNT. The default is 5.

• ORBRetryDelay – specify the delay, in milliseconds, between retry
attempts when the initial attempt to connect to the server fails.This
parameter can also be set in an environment variable,
JAG_RETRYDELAY. The default is 2000.

Writing CORBA C++ clients

106 EAServer

• ORBProxyHost – specifies the machine name or the IP address of an
reverse proxy server. See Chapter 9, “Deploying Applications Around
Proxies and Firewalls,” in the EAServer Security Administration and
Programming Guide for more information.

• ORBProxyPort – specifies the port number of a reverse proxy server.

• ORBforceSSL – force an SSL connection to a reverse proxy server
(indicated by the ORBProxyHost and ORBProxyPort properties). Set this
property to true if the connection to the reverse proxy must use SSL
(HTTPS) tunnelling, but the connection from the proxy to the server does
not use SSL tunnelling.

• ORBsocketReuseLimit – specifies the number of times that a network
connection may be reused to call methods from one server. The default is
0, which indicates no limit. The default is ideal for short-lived clients. The
default may not be appropriate for a long-running client program that calls
many methods from servers in a cluster. If sockets are reused indefinitely,
the client may build an affinity for servers that it has already connected to
rather than randomly distributing its server-side processing load among all
the servers in the cluster. In these cases, the property should be tuned to
best balance client performance against cluster load distribution. In Sybase
testing, a setting of 10 to 30 proved to be a good starting point. If the reuse
limit is too low, client performance degrades.

• ORBIdleConnectionTimeout – specifies the time, in seconds, that a
connection is allowed to sit idle. When the timeout expires, the ORB
closes the connection. The default is 0, which specifies that connections
can never timeout. The connection timeout does not affect the life of proxy
instance references; the ORB may close and reopen connections
transparently between proxy method calls. Specifying a finite timeout for
your client applications can improve server performance. If many
instances of the client run simultaneously, a finite client connection
timeout limits the number of server connections that are devoted to idle
clients. A finite timeout also allows rebalancing of server load in an
application that uses a cluster of servers.

• ORBWebProxyHost – the host name or IP address of an HTTP proxy server
that supports generic Web tunnelling, sometimes called connect-based
tunnelling. There is no default for this property, and you must specify both
the host name and port number properties. See Chapter 9, “Deploying
Applications Around Proxies and Firewalls,” in the EAServer Security
Administration and Programming Guide for more information. You can also
specify the property by setting the environment variable
JAG_WEBPROXYHOST.

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 107

• ORBWebProxyPort – when generic Web tunnelling is enabled by setting
ORBWebProxyHost, this property specifies the port number at which the
HTTP proxy server accepts connections. There is no default for this
property, and you must specify both a host name and port. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information. You
can also specify the property by setting the environment variable
JAG_WEBPROXYPORT.

• ORBHttpExtraHeader – an optional setting to specify what extra
information is appended to the header of each HTTP packet sent to a proxy
server (specified with the ORBWebProxyHost parameter). You can also
specify the property by setting the property
JAG_HTTPEXTRAHEADER. See Chapter 9, “Deploying Applications
Around Proxies and Firewalls,” in the EAServer Security Administration
and Programming Guide for more information.

You can pass additional properties to configure secure (IIOPS) connections.
See Chapter 5, “Using SSL in C++ Clients,” in the EAServer Security
Administration and Programming guide for more information.

Example: ORB initialization

ORB initialization is demonstrated in this example. You can specify the ORB
options as a command line parameters to be passed to the ORB_init method.

#include <stdio.h>
#include <iostream.h>
#include <string.h>
#include <SessionManager.hpp>
#include <Jaguar.hpp>
#include <Tutorial.hpp> // Stubs for interfaces in
Tutorial IDL // module.

int main(int argc, char** argv)
{
const char *usage =

"Usage:\n\tarith -ORBNameServiceURL iiop://
<host>:<iiop-port>/<initial-context>\n";

const char *tutorial_help =
"Verify that the"
"Tutorial/CPPArithmetic component exists "
"and that it implements the "
"Tutorial::CPPArithmetic IDL interface.";

const char *ior_prefix = "iiop://";

Writing CORBA C++ clients

108 EAServer

const char *component_name = "Tutorial/CPPArithmetic";
char *ior = NULL;

try {

cout << "Creating Jaguar session\n\n";

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, 0);

Creating a Manager instance

The SessionManager::Manager interface is used for client authentication for
EAServer connections. To create a Manager instance, you must identify the
server by using an IIOP or IIOPS URL to connect to the server.

The server’s IIOP port is configured using listeners. In the default
configuration, the IIOP port number is 2000. For more information, see
Chapter 3, “Creating and Configuring Servers,” in the System Administration
Guide.

Once the client has obtained the server’s IOR or URL string, it calls the
ORB::string_to_object method to convert the IOR or URL string into a Manager
instance, as shown in the following example. You use the Manager::_narrow
method to return a new object reference for the existing object, which is the
IOR object.

...
Object_var object = orb->string_to_object

("iiop://myhost:2000");
Manager_var manager = Manager::_narrow (object);
if (is_nil(manager)) {

cout << "Error: Null SessionManager::Manager
instance. Exiting.";

return -1;
}...

string_to_object returns an object reference as object. For each reference, the
_var form is used because the object will be automatically released when it is
deallocated or assigned a new object reference. _narrow converts object into
object reference for Manager.

_narrow returns a nil object reference if the component does not implement the
interface. is_nil(manager) verifies that the SessionManager::Manager interface
is implemented and returns an error if the interface is not implemented.

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 109

Creating sessions

The SessionManager::Session interface represents an authenticated session
between the client application and a server. The Manager::createSession
method accepts a user name and password and returns a Session_var object,
session, as shown in the example below:

...
Session_var session =

manager.createSession(userName, password);
...

Creating stub instances

You call the Session::lookup method to return a factory for proxy object
references. The signature of Session::lookup is:

SessionManager::Factory_var lookup("name")

Session::lookup takes a string that specifies the name of the component to
instantiate. A component’s default name is the EAServer package name and the
component name, separated by a slash as in calculator/calc. However, a
different name can be specified by changing the name binding properties for
EJB components. For example, you can specify a logical name, such as
USA/MyCompany/FinanceServer/Payroll. For more information on
configuring the naming service, see Chapter 5, “Naming Services,” in the
EAServer System Administration Guide.

Session::lookup returns a factory for component proxies. Call the
Factory::create method to obtain proxies for the component. This method
returns a org.omg.CORBA.Object reference. Call _narrow to convert the object
reference into an instance of the stub class for the component.

The code to call Session::factory and Factory::create looks like this:

...
// In this example, the component is named
// Repository and is installed in
// the EAServer package.

Object_var obj = session->lookup("Jaguar/Repository");
SessionManager::Factory_var repoFactory =
SessionManager::Factory::_narrow(obj);

obj = repoFactory->create();
Jaguar::Repository_var repository =

Jaguar::Repository::_narrow(obj);

Writing CORBA C++ clients

110 EAServer

// Verify that we really have an instance.
if (CORBA::is_nil(repository))
{

cout << "ERROR: Null instance for component.";
}

Calling Session.lookup in server code
When called from server code, Session::lookup resolves the component name
by calling the name service, which gives preference to a local component
instance if the component is installed on the same server. However, the use of
a locally installed component is not guaranteed. To ensure that a local
implementation is used, specify the name as local:package/component,
where package is the package name and component is the component name, for
example, local:CtsSecurity/SessionInfo. When you specify the local:
prefix, the lookup call bypasses the name service and returns a local instance if
the component is installed in the same server. The call fails if the specified
component is not installed in the same server..

Invoking methods
After instantiating the stub class, use the stub class instance to invoke the
component’s methods. The stub class has methods that correspond to each
method in the component. Parameter datatypes are mapped as described in
Table 7-1 on page 73. Any parameter datatype can be used as a return type; in
addition, user-defined IDL datatypes can be used as return, in, inout, or out
parameters.

Processing result sets
To retrieve and process a single result set from a component:

1 Call the component method on the stub instance that returns a result set.

2 Iterate through each row and then each column in a row by using nested
for loops.

3 Use the discriminator method (_d) to retrieve the datatype of the column
in a row and switch/case syntax to process the column values (such as
printing the column values).

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 111

To retrieve and process multiple result sets returned from a component method
as a TabularResults::ResultSets object:

1 Call the component method on the component reference that returns the
result sets.

2 Retrieve the length or number of result sets.

3 Iterate through the result sets using a for loop.

For each result set, iterate through each row and then each column in a row
by using nested for loops.

You can treat a ResultSets object as an array of ResultSet objects. On each
iteration, retrieve a reference to each ResultSet object by using the
subscript [] operator.

4 Use the discriminator method (_d) to retrieve the datatype of the column
in a row and switch/case syntax to process the column values (such as
printing the column values).

Example of processing result sets

This example retrieves a single result set. The following code shows the C++
client in its entirety. For detailed explanations, see the sections that explain
each result-set processing step.

All of the required header files are included. The IDL module namespaces are
specified with the C++ using statement. The printResultSet() method contains
the logic for processing a result set. main() contains the logic to initialize and
connect to the EAServer ORB, instantiate the stub, call the component method
to retrieve the result set object, and call printResultSet() to process the result set.

After the result set has been processed, execution of printResultSet() ends and
control is returned to main(). In main(), the screen is kept open with the fprintf
statement. Once you press Return, execution ends.

#include <stdio.h>
#include <time.h>
#include <iostream.h>
#include <SessionManager.hpp>
#include <TabularResults.hpp>
#include <Test.hpp>
using namespace CORBA;
using namespace SessionManager;
using namespace TabularResults;
using namespace Test;
void printResultSet(const ResultSet& rs)

Writing CORBA C++ clients

112 EAServer

{
ULong nc = rs.columns.length();
cout << rs.rows << " rows, " << nc << " columns" << endl;
for (ULong row = 0; row < rs.rows; row++)
{
cout << "row " << row << ": ";
for (ULong column = 0; column < nc; column++)
{

if (column > 0)
{

cout << ", ";
}
BooleanSeq& nulls = ((ColumnSeq&)rs.columns)[column].nulls;
if (row + 1 <= nulls.length() && nulls[row])
{

cout << "null";
continue;

}
Data& values = ((ColumnSeq&)rs.columns)[column].values;
switch (values._d())
{

case TYPE_BIT:
{

BooleanSeq& booleanValues = values.booleanValues();
 cout << (booleanValues[row] ? "true" : "false");

break;
}

 case TYPE_TINYINT:
{

OctetSeq octetValues = values.octetValues();
cout << octetValues[row];
break;

}
case TYPE_SMALLINT:

 {
ShortSeq& shortValues = values.shortValues();
cout << shortValues[row];
break;

}
case TYPE_INTEGER:

 {
LongSeq& longValues = values.longValues();
cout << longValues[row];
break;

}
case TYPE_REAL:

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 113

{
FloatSeq& floatValues = values.floatValues();
cout << floatValues[row];
break;

}
case TYPE_DOUBLE:
case TYPE_FLOAT:
{

DoubleSeq& doubleValues = values.doubleValues();
cout << doubleValues[row];
break;

}
case TYPE_CHAR:
case TYPE_LONGVARCHAR:
case TYPE_VARCHAR:
{

StringSeq& stringValues = values.stringValues();
cout << stringValues[row];
break;

}
case TYPE_BINARY:
case TYPE_LONGVARBINARY:
case TYPE_VARBINARY:
{

BinarySeq& binaryValues = values.binaryValues();
cout << "(binary)";
break;

}
case TYPE_BIGINT:
case TYPE_DECIMAL:
case TYPE_NUMERIC:
{

DecimalSeq& decimalValues = values.decimalValues();
cout << "(decimal)";
break;

}
case TYPE_DATE:
{

DateSeq& dateValues = values.dateValues();
// Assumption: time_t is seconds from Jan 1, 1970
time_t t = (time_t)((dateValues[row].dateValue - 40222.0) *

86400);
cout << ctime(&t);
break;

}
case TYPE_TIME:

Writing CORBA C++ clients

114 EAServer

{
TimeSeq& timeValues = values.timeValues();
cout << "time: " << timeValues[row].timeValue;
break;

}
case TYPE_TIMESTAMP:
{

TimestampSeq& timestampValues = values.timestampValues();
time_t t = (time_t)((timestampValues[row].dateValue +
timestampValues[row].timeValue - 40222.0) * 86400);
cout << ctime(&t);
break;

}
}

}
cout << endl;

}
}
int main(int argc, char** argv)
{

ORB_var orb = ORB_init(argc, argv, "");
Manager_var manager = Manager::

_narrow(Object_var(orb->string_to_object("iiop://myhost:2000")));
Session_var session = manager->createSession("jagadmin", "");
Ping_var p = Ping::_narrow(Object_var(session->create("Test/Java")));
ResultSet_var rs = p->results();
printResultSet(rs.in());

 {
char c;
fprintf(stderr, "Press Return to continue...");
c = getchar();

}
return 0;

}

Retrieving the result set

To retrieve the result set, you must instantiate the stub and call the component
method that returns a result set to the client. This example instantiates the stub
from the Java component in the Test package in a session as an object p of type
Ping_var using the _narrow method. The component method, results() is called
on p which returns the result set rs.

Ping_var p = Ping::_narrow(Object_var(session-
>create("Test/Java")));

ResultSet_var rs = p->results();

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 115

Iterating through the rows and columns

You must process each column value of each row one at a time. In this example,
the processing is contained in a method (which you can reuse in other
applications) called printResultSet(). printResultSet() takes the result set rs as an
input parameter.

printResultSet(rs.in());

The method uses the length() method to determine how many columns, nc, are
in the result set, rs, and displays the number of columns and rows; the number
of rows is represented by the variable rows. The method uses a for loop to
iterate through each row, row, in the result set; and a nested for loop to iterate
through each column, column, in the current row. The method must check for
null values before it can process and print the values in each of the columns of
the current row. After checking for and printing out null values, the method
continues to the next column in the current row.

void printResultSet(const ResultSet& rs)
{

ULong nc = rs.columns.length();
cout << rs.rows << " rows, " << nc << " columns" <<

endl;
for (ULong row = 0; row < rs.rows; row++)
{

cout << "row " << row << ": ";
for (ULong column = 0; column < nc; column++)
{

if (column > 0)
{
cout << ", ";

}
BooleanSeq& nulls =

((ColumnSeq&)rs.columns)[column].nulls;

if (row + 1 <= nulls.length() && nulls[row])
{
cout << "null";
continue;

}

Writing CORBA C++ clients

116 EAServer

Retrieving the column datatype and processing values

In the body of printResultSet(), the _d() method (the discriminator method) is
used to retrieve the datatype of the column and switch/case processing is used
to process the column value in the current row. values is a reference to a Data
object that represents the column value. _d() returns the datatype of the
referenced value to the switch statement and the body of the case statement that
matches the datatype is executed. In each case, the current row’s column value
that corresponds to the case’s datatype is printed.

For the Date, Time, Timestamp datatypes, some conversion is required to print
a value in a standard format (such as “January 5, 1998”).

Data& values =
((ColumnSeq&)rs.columns)[column].values;

switch (values._d())
{

case TYPE_BIT:
{

BooleanSeq& booleanValues =
values.booleanValues();

 cout << (booleanValues[row] ? "true" :
"false");

break;
}

 case TYPE_TINYINT:
{

OctetSeq octetValues =
values.octetValues();

cout << octetValues[row];
break;

}
case TYPE_SMALLINT:

 {
ShortSeq& shortValues =

values.shortValues();
cout << shortValues[row];
break;

}
case TYPE_INTEGER:

 {
LongSeq& longValues = values.longValues();
cout << longValues[row];
break;

}
case TYPE_REAL:
{

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 117

FloatSeq& floatValues =
values.floatValues();

cout << floatValues[row];
break;

}
case TYPE_DOUBLE:
case TYPE_FLOAT:
{

DoubleSeq& doubleValues =
values.doubleValues();

cout << doubleValues[row];
break;

}
case TYPE_CHAR:
case TYPE_LONGVARCHAR:
case TYPE_VARCHAR:
{

StringSeq& stringValues =
values.stringValues();

cout << stringValues[row];
break;

}
case TYPE_BINARY:
case TYPE_LONGVARBINARY:
case TYPE_VARBINARY:
{

BinarySeq& binaryValues =
values.binaryValues();

cout << "(binary)";
break;

}
case TYPE_BIGINT:
case TYPE_DECIMAL:
case TYPE_NUMERIC:
{

DecimalSeq& decimalValues =
values.decimalValues();

cout << "(decimal)";
break;

}
case TYPE_DATE:
{

DateSeq& dateValues = values.dateValues();
// Assumption: time_t is seconds from Jan

1, 1970
time_t t =

Writing CORBA C++ clients

118 EAServer

(time_t)((dateValues[row].dateValue - 40222.0) *
86400);

cout << ctime(&t);
break;

}
case TYPE_TIME:
{

TimeSeq& timeValues = values.timeValues();
cout << "time: " <<

timeValues[row].timeValue;
break;

}
case TYPE_TIMESTAMP:
{

TimestampSeq& timestampValues =
values.timestampValues();

time_t t =
(time_t)((timestampValues[row].dateValue +

timestampValues[row].timeValue - 40222.0) *
86400);

cout << ctime(&t);
break;

}
}

}
cout << endl;

}
}

Handling exceptions
The client-side ORB throws two kinds of exceptions:

• CORBA system exceptions – These exceptions are defined in the CORBA
specification.

• User-defined exceptions – These exceptions must be defined in the
component’s IDL definition.

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 119

CORBA system exceptions

The CORBA specification defines the list of standard system exceptions. In
C++, all CORBA system exceptions are mapped to a C++ class that is derived
from the standard SystemException class defined in the CORBA module. You
may want to trap the exceptions shown in this code fragment:

try
{
... // invoke methods
}
catch (CORBA::COMM_FAILURE& cf)
{
... // A component aborted the EAServer transaction,

// or the transaction timed out. Retry the
// transaction if desired.

}
catch (CORBA::TRANSACTION_ROLLEDBACK& tr)
{
... // possibly retry the transaction
}
catch (CORBA::OBJECT_NOT_EXIST& one)
{
... // Received when trying to instantiate

// a component that does not exist. Also
// received when invoking a method if the
// object reference has expired
// (this can happen if the component
// is stateful and is configured with
// a finite Instance Timeout property).
// Create a new proxy instance if desired.}

}
catch (CORBA::NO_PERMISSSION& np)
{
... // tell the user they are not authorized
}
catch (CORBA::SystemException& se)
{
... // report the error but don’t bother retrying
}

Note Not all of the possible system exceptions are shown in the example. See
the CORBA/IIOP 2.2 Specification (formal/98-02-01) for a list of all the
possible exceptions.

Compiling C++ clients

120 EAServer

User-defined exceptions

In C++, all CORBA user-defined exceptions are mapped to a C++ class that is
derived from the standard UserException class defined in the CORBA module.
For more information, see “User-defined IDL datatypes” on page 33 and
“User-defined exceptions” on page 35.

Note User-defined types must exist in the EAServer IDL repository before you
can use them in interface declarations.

Compiling C++ clients
For example C++ client compilation commands, see “Compile the client
executable” on page 137.

If the client uses SSL, the following files must also reside on the client machine
in a directory specified in the libary search environment variable. In the UNIX
column, replace ext with the platform extension for shared library files:

Deploying C++ clients
To deploy a C++ client on another machine:

1 Install the EAServer client runtime if not done already, including C++
libraries. If the client uses SSL, make sure the SSL client runtime support
is installed.

2 Copy the client’s executable to the machine.

3 Configure the environment as described in “Verify your environment” on
page 126.

Windows UNIX

libjctssec.dll libjctssec.ext

libjsybscl.dll libjsybscl.ext

libjspks.dll libjspks.ext

libjsentpks.dll libjsentpks.ext

libjintl.dll libjintl.ext

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 121

Using the CosNaming interface
Although EAServer supports the CORBA CosNaming interface to instantiate
proxies in client applications, this technique is not recommended. You do not
need to use the CosNaming API in clients to realize the benefits incurred by
using logical component names. EAServer uses the CosNaming API to resolve
component names in the implementation of the Session::lookup and
Session::create methods. “Instantiating component proxies” on page 104
describes the recommended technique for stub instantiation.

Unlike earlier releases, clients must be authenticated to perform name service
lookups using the default EAServer 6.0 configuration. To enable name service
lookups for clients that haven't been authenticated yet, you must set the
minimumPasswordLength property for the default security domain to zero and
set an empty password for the “guest” user. Sybase does not recommend this
configuration, because allowing “guest” access could be a point of security
vulnerability.

Use of the CosNaming interface also requires use of deprecated or unsupported
SessionManager::Factory methods, in particular the create methods that take
parameters. These methods are not compatible with Enterprise JavaBeans
components with multiple create methods in the home interface. These
methods are not supported for use in C++ or PowerBuilder clients.

Using CORBA ORB implementations other than
EAServer

EAServer’s IIOP implementation allows you to use any CORBA client ORB
to invoke EAServer components. You can also use the EAServer client ORB
to execute components that are hosted by another vendor’s server ORB.

Connecting to EAServer with a third-party client ORB
In some cases, you may wish to use another vendor’s ORB in your client
applications. For example, you may have an existing installation of the ORB
on client workstations.

Clients that use another ORB can use the same code as the EAServer ORB,
except for the following differences:

Using CORBA ORB implementations other than EAServer

122 EAServer

• You must use stub classes generated by the vendor’s IDL-to-C++ compiler
rather than stubs generated by EAServer.

• Your code to connect to EAServer and instantiate components may differ.

Generating compatible C++ stubs

Use the IDL-to-C++ compiler that comes with your ORB software to generate
compatible stubs, run on the IDL files in the EAServer repository.

For information about which component IDL files and EAServer IDL files you
need to use to generate stubs for other ORBs, see “Generating compatible Java
stubs” on page 179 (although this section refers to Java clients, it also applies
to C++ clients).

EAServer IDL modules

Use the ORB vendor’s IDL-to-C++ compiler to generate stubs for the files in
the table, “EAServer IDL files” on page 122. All IDL files are installed in the
EAServer include subdirectory. “Writing CORBA C++ clients” on page 102
describes how these interfaces are used to instantiate EAServer components
and call component methods. For additional information, see the comments in
each IDL file.

EAServer IDL files

Performing datatype conversion

EAServer provides C++ header files to convert from the EAServer CORBA
datatypes to those commonly used in C++. If you are using another vendor’s
ORB, use the EAServer header files in your application. For languages other
than C++, see the comments in the IDL files for details on how the data is
interpreted.

File name Description

SessionManager.idl Defines interfaces for session-based creation of
EAServer component instances.

BCD.idl Defines the CORBA datatypes for EAServer’s
binary and fixed-point numeric datatypes.

MJD.idl Defines the CORBA datatypes for EAServer’s
date and time datatypes.

TabularResults.idl Defines the CORBA datatypes that represent
result sets returned by a method invocation.

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide 123

Instantiating components using a third-party ORB

EAServer’s naming service cannot be used with other client ORBs, so you
must use the EAServer SessionManager::Manager interface to instantiate
components from another ORB, as described in “Instantiating component
proxies” on page 104.

Also, you must use standard format IORs, not the URL format, as described in
“Creating a Manager instance” on page 108.

Connecting to third-party ORBs using the EAServer ORB
You can use the EAServer client-side ORB to execute components hosted by
another vendor’s server-side ORB, as long as the server-side ORB accepts
IIOP connections and the required interfaces are defined in standard CORBA
IDL. Implement your client as follows:

1 Import all the required IDL modules into the EAServer repository, as
described in “Managing IDL in EAServer” on page 36.

2 Generate stubs for each imported module, as described in “Generating
stubs” on page 102. You must generate stubs for each module individually.

Using CORBA ORB implementations other than EAServer

124 EAServer

CORBA Components Guide 125

C H A P T E R 1 0 Tutorial: Creating C++
Components and Clients

In this tutorial, you will create a C++ component, install it in EAServer,
and create a C++ client program that connects to EAServer and calls a
method in the component.

Overview of the sample application
In this sample:

1 The client-side executable, developed with C++, instantiates the
middle-tier C++ component, CPPArithmetic.

2 The client executable calls the multiply method in CPPArithmetic.

3 The multiply method computes the product of the input values, then
returns the result.

4 The client executable displays the result for the end user.

Tutorial requirements
To create this tutorial application, you need:

• The EAServer software. The EAServer Installation Guide for your
platform describes how to install the software.

• A C++ development environment, such as:

Topic Page
Overview of the sample application 125

Tutorial requirements 125

Creating the application 126

Creating the application

126 EAServer

• For Windows, Microsoft Visual C++.

• For UNIX, the system C++ compiler. Some UNIX platforms support
multiple C++ versions. The EAServer Release Bulletin for your
UNIX platform lists compilers that have been tested with EAServer.

Creating the application
To create and run the sample application:

1 Verify your environment.

2 Start EAServer and the Management Console.

3 Import the IDL interface.

4 Define the package and component.

5 Generate server integration code and implementation templates.

6 Write the server-side code.

7 Create a user account.

8 Write the client-side code.

9 Compile the client executable.

10 Run the client executable.

Verify your environment
Before running the tutorial, verify these environment settings:

• For all platforms, the DJC_HOME environment variable must be set to the
location of your EAServer installation.

• For Windows, the PATH environment variable must include the EAServer
lib subdirectory.

• For UNIX platforms, the EAServer lib directory must be added to the
shared library search path variable listed in Table 10-1 for your platform.

CHAPTER 10 Tutorial: Creating C++ Components and Clients

CORBA Components Guide 127

Table 10-1: Shared library search path variables for UNIX platforms

❖ Configuring the Windows environment

• To configure the command line where you are running the tutorials, run
these commands, substituting your EAServer installation location for eas-
home:

set DJC_HOME=eas-home
set PATH=%DJC_HOME%\dll;%PATH%

You can also edit these variables in the System dialog for the Windows
Control Panel, or create a batch file to configure the settings.

❖ Configuring the UNIX environment for C shell

• To configure the C shell session where you are running the tutorials, run
these commands, substituting your EAServer installation location for eas-
home, and the shared-library variable from Table 10-1 for LIB_PATH:

setenv DJC_HOME eas-home
setenv LIB_PATH $DJC_HOME/lib:$LIB_PATH

❖ Configuring the UNIX environment for Bourne shell

• To configure the Bourne shell session where you are running the tutorials,
run these commands, substituting your EAServer installation location for
eas-home, and the shared-library variable from Table 10-1 for LIB_PATH:

DJC_HOME=eas-home export DJC_HOME
LIB_PATH=$DJC_HOME/lib:$LIB_PATH export LIB_PATH

Start EAServer and the Management Console
Start the Management Console and connect to EAServer as described in
Chapter 1, “Getting Started,”in the System Administration Guide.

Platform Variable name

Solaris LD_LIBRARY_PATH

HP-UX SHLIB_PATH

AIX LIBPATH

Linux LD_LIBRARY_PATH

Creating the application

128 EAServer

Import the IDL interface
CORBA component interfaces must be defined using IDL. Your EAServer
installation includes a predefined IDL file, CPPArithmetic.idl in the
samples/tutorial/cpp-corba directory. The component interface has one
method, multiply.

❖ Importing the IDL file

1 If you haven’t already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “Getting
Started,”in the System Administration Guide.

2 In the Management Console, click the IDL Modules folder to display the
IDL types in the EAServer repository. Right-click the IDL Modules folder
and choose Deploy. The Deploy Wizard displays.

3 Browse to the samples/tutorial/cpp-corba directory in your EAServer
installation and select CPPArithmetic.idl.

Define the package and component
This section shows you how to use Management Console to create the package,
component, and method for the sample application.

Define a new package

In EAServer, CORBA packages allow you to group CORBA components that
perform related tasks. Before a component can be instantiated by clients, it
must be installed in a package, and that package must be installed in the server.

❖ Creating the cpptut package

1 In the Management Console, click the CORBA packages folder under the
Local Server folder. This folder displays all packages in the repository for
the server that you are connected to.

2 If the cpptut package is displayed, skip to “Define a new component” on
page 129.

3 Right-click the CORBA Packages folder, and select Add. The Add wizard
displays. For the package name, enter cpptut.

4 When you finish the wizard, the package properties display. Leave these
properties at their default settings.

CHAPTER 10 Tutorial: Creating C++ Components and Clients

CORBA Components Guide 129

Define a new component

You will define a new C++ component, CPPArithmetic.

❖ Defining the component

1 Expand the cpptut package and right-click the Components folder beneath
it, then select Add. The New Component Wizard displays. Apply the
following settings as you page through the wizard:

• For component name, enter CPPArithmetic.

• For component type, choose CORBA/C++.

• For C++ Class Name, enter CPPArithmeticImpl.

• For C++ Library, enter libCPPArithmetic.

• For IDL Home Interface, leave blank. (EAServer generates the
default home interface later in the tutorial.)

• For IDL Remote Interface, enter Tutorial::CPPArithmetic.

When you finish the wizard, the component properties display.

2 In the component properties, select the General tab. Confirm or apply the
settings in the table below. Leave the remaining fields at their default
settings.

3 Click Apply to save changes made to the component properties.

Field Value

Component Type CORBA/C++

C++ Class CPPArithmeticImpl

C++ Library libCPPArithmetic (no extension)

Copy Library Checked

Debug Library Checked

IDL Home Interface Leave blank.

IDL Remote Interface Tutorial::CPPArithmetic

Automatic Failover Checked

Pooled Checked

Thread Safe Checked

Creating the application

130 EAServer

Generate server integration code and implementation templates
Once you have created the package and component, you must generate the files
that allow your C++ implementation to run in EAServer and clients to invoke
the component. These include the EJB wrapper component that EAServer
generates to invoke the C++ library, the client stub interface files, and an
implementation template for the component.

❖ Generating the server-side files

1 In the Management Console, expand the cpptut package. Beneath it, right-
click the CPPArithmetic component and choose Refresh.

2 The Management Console generates the required files. If generation fails,
check the server log file for a description of the problem.

❖ Generating C++ stubs

• If using Windows, run the following command at a prompt:

%DJC_HOME%\bin\idl-compiler -v Tutorial\CPPArithmetic.idl -f
%DJC_HOME%\include -cpp

If using UNIX, run the following command at a prompt:

$DJC_HOME/bin/idl-compiler.sh -v Tutorial\CPPArithmetic.idl -f
$DJC_HOME/include -cpp

Write the server-side code
EAServer has generated C++ implementation templates for the component
methods. Here we will fill in the implementation template, then build a shared
library or DLL file. Finally, we will verify that the shared library or DLL is in
the EAServer cpplib subdirectory, where EAServer expects to find C++
component library files.

❖ Writing the server-side code

1 Navigate to the cpplib directory under your EAServer installation, then
navigate to the cpptut/CPPArithmetic subdirectory. You should see the
following files:

• CPPArithmeticImpl.hpp.new Template for the component header
file. Defines the CPPArithmeticImpl class. No changes are required for
the tutorial, other than renaming the file as discussed below.

CHAPTER 10 Tutorial: Creating C++ Components and Clients

CORBA Components Guide 131

• CPPArithmeticImpl.cpp.new Template for the component
implementation. Contains the definition of the component methods.
Changes you must make to this file are described below.

• cpptut_CPPArithmetic.cpp Source for the skeleton. Do not
modify the generated skeleton code.

• make.nt Microsoft nmake makefile. The nmake utility is included
with the Microsoft Visual C++ installation.

• make.unix UNIX makefile, for all UNIX platforms.

2 Rename the implementation files to CPPArithmeticImpl.hpp and
CPPArithmeticImpl.cpp. (In other words, remove the .new extension from
both file names).

3 Open CPPArithmeticImpl.cpp in a text editor, then find the definition of
the multiply method. Change the definition so that it matches the one
below:

CORBA::Double CPPArithmeticImpl::multiply
(CORBA::Double m1,
CORBA::Double m2)

{
CORBA::Double result;
result = m1 * m2;
return result;

}

4 Save your changes.

❖ Building the component on Windows

1 Verify your setup as described in “Verify your environment” on page 126.

2 Rename make.nt to Makefile, then open Makefile in a text editor. Find the
definition of the MSVCDIR and ODBCLIB macros:

MSVCDIR=c:\msdev
ODBCLIB = "$(MSVCDIR)\lib\odbc32.lib"

If you use the standard Microsoft Visucal C++ setup file, VCVARS32.bat,
no changes are needed to these settings. The Visual C++ installation
generates VCVARS32.bat to set the MSVCDIR environment variable. If
you do not use the generated VCVARS32.bat file, or it is incorrect, edit
these lines in the makefile to match your system; set MSVCDIR to the
location where Microsoft Visual C++ is installed and set ODBCLIB to the
full path to the odbc32.lib file.

Creating the application

132 EAServer

3 Open a command window and change directory to the
cpplib/cpptut/CPPArithmetic subdirectory of your EAServer installation.
Build the DLL as follows:

a Apply the settings in the EAServer djc-setenv.bat file and the
Microsoft Visual C++ VCVARS32.bat setup file. For example:

set DJC_HOME=d:\Sybase\EAS60
call %DJC_HOME%\bin\djc-setenv.bat
call "D:\engapps\Microsoft Visual Studio\VC98\Bin\VCVARS32.bat"

b Run nmake (no arguments are required).

You should see a new file called libCPPArithmetic.dll. Verify that the makefile
has copied this file to the EAServer cpplib subdirectory. If nmake fails, verify
that you have renamed the .cpp and .hpp implementation files with the
expected file names, and that you have applied the correct edits to
CPPArithmeticImpl.cpp and Makefile.

❖ Building the component on UNIX platforms

1 Verify your setup as described in “Verify your environment” on page 126.

2 Rename make.unix to Makefile.

3 Build the shared library by running make (no arguments are required).

You should see a new file called libCPPArithmetic.ext, where ext is the
appropriate shared library extension for your platform. Verify that the makefile
has copied this file to the EAServer cpplib subdirectory.

If make fails, verify the following:

• You have renamed the .cpp and .hpp implementation files with the
expected file names, and that you have applied the correct edits to
CPPArithmeticImpl.cpp.

• The compile and link settings in Makefile are appropriate for your
installation. The settings are defined in the file cpplib/make.include.plat,
where plat is the platform code returned by running uname -s on your
system. If necessary, edit this file to match your system configuration.

CHAPTER 10 Tutorial: Creating C++ Components and Clients

CORBA Components Guide 133

Create a user account
You must have a user account the client application uses to connect to the
server. If you don’t already have a user account defined, create it as described
here. Alternatively, edit the client application source code to use an existing
account.

❖ Creating the Guest user account

1 In the Management Console, expand the Security folder and right-click the
Users folder beneath it. Choose Add from the context menu.

2 In the New User wizard, enter Guest as the user name and click Finish.

3 An icon appears for the Guest wizard under the Users folder. Right-click
this icon and choose Set Password.

4 In the Set Password wizard, enter GuestPassword2 for the password and
click Apply.

Write the client-side code
Create the source file for the sample C++ client, arith.cpp. You can find a copy
of arith.cpp in the samples/tutorial/cpp-corba/client subdirectory of your
EAServer installation. Here is the source for arith.cpp:

/*
** arith.cpp -- Example C++ client for the EAServer C++
** tutorial.
**
** This program connects to EAServer,
** creates an instance of the Tutorial/CPPArithmetic
** component, and invokes the multiply method.
**
** Usage:
** arith iiop://<host>:<port>
**
** Where:
**
** <host> is the host name or IP address of the server machine.
**
** <iiop-port> is the server's IIOP port (9000 in the
** default configuration).
**
*/

Creating the application

134 EAServer

#include <stdio.h>
#include <iostream.h>
#include <string.h>
#include <Jaguar.hpp>
#include <SessionManager.hpp>
#include <Tutorial.hpp> // Stubs for interfaces in Tutorial IDL

 // module.

int main(int argc, char** argv)
{

const char *usage =
"Usage:\n\tarith iiop://<host>:<iiop-port>\n";

const char *tutorial_help =
"Verify that the"
"cpptut/CPPArithmetic component exists "
"and that it implements the "
"Tutorial::CPPArithmetic IDL interface.";

const char *component_name = "cpptut/CPPArithmetic";

try {

if (argc < 2)
{

cout << usage;
return -1;

}

char* manager_url = argv[1];

cout << "**** Creating session\n";

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, 0);

// Create a SessionManager::Manager instance

CORBA::Object_var obj =
 orb->string_to_object(manager_url);

SessionManager::Manager_var manager =
SessionManager::Manager::_narrow(obj);
if (CORBA::is_nil(manager))
{

cout << "Error: Null SessionManager::Manager instance. Exiting. "
 << usage ;

return -1;

CHAPTER 10 Tutorial: Creating C++ Components and Clients

CORBA Components Guide 135

}

// Create an authenticated session for user Guest
// using password GuestPassword2

SessionManager::Session_var session =
 manager->createSession("Guest", "GuestPassword2");
if (CORBA::is_nil(session))
{
cout << "Error: Null session. Exiting. " << usage;
return -1;

}

// Obtain a factory for component instances by
// resolving the component name

cout << "**** Creating component instance for "
 << component_name << "\n" ;

obj = session->lookup(component_name);
SessionManager::Factory_var arithFactory =
SessionManager::Factory::_narrow(obj);

if (CORBA::is_nil(arithFactory))
{

cout << "ERROR: Null component factory for component "
 << component_name
 << tutorial_help ;

return -1;
}

// Use the factory to create an instance.

Tutorial::CPPArithmetic_var arith =
 Tutorial::CPPArithmetic::_narrow(arithFactory->create());

// Verify that we really have an instance.
if (CORBA::is_nil(arith)) {

cout << "ERROR: Null component instance. "
 << tutorial_help ;

return -1;
}

// Call the multiply method.

Creating the application

136 EAServer

cout << "**** Multiplying ...\n\n";
CORBA::Double m1 = (CORBA::Double)3.1;
CORBA::Double m2 = (CORBA::Double)2.5;
CORBA::Double result = arith->multiply(m1, m2);

cout << (double)m1 << " * " << (double)m2
 << " = " << (double)result
 << "\n\n";

}

// Explicitly catch exceptions that can occur due to user error,
// and print a generic error message for any other CORBA system
// exception.

// Requested object (component) does not exist.
catch (CORBA::OBJECT_NOT_EXIST cone)
{

cout << "Error: CORBA OBJECT_NOT_EXIST exception. Check the "
 << "server log file for more information. Also verify "
 << "that the " << component_name
 << " component has been created properly." << tutorial_help ;

}

// Authentication or authorization failure.
catch (CORBA::NO_PERMISSION npe)
{

cout << "Error: CORBA:: NO_PERMISSION exception. Check whether "
 << "login authentication is enabled for your server and "
 << "whether the component has restricted access. If so "
 << "edit the source file to use a valid user name and "
 << "password.\n";

}

// Invalid object reference.
catch (CORBA::INV_OBJREF cio)
{

cout << "Error: CORBA INV_OBJREF exception.";
}

// Communication failure. Server could be down or URL's port value
// could be wrong.
catch (CORBA::COMM_FAILURE ccf)
{

cout << "Error: CORBA COMM_FAILURE exception. Check that the "
 << "specified host and IIOP port number are "

CHAPTER 10 Tutorial: Creating C++ Components and Clients

CORBA Components Guide 137

 << "correct and that the server is running. "
 << usage;

}

// Anything else.
catch (CORBA::OBJ_ADAPTER)
{

cout << "Error: CORBA::OBJ_ADAPTER \n";
}
catch (CORBA::SystemException cse)
{

cout << "Error: CORBA System Exception. Check that the server "
 << "hostname and IIOP port are specified correctly, and "
 << "check the server's error log for more information.\n"
 << usage;

}

return 0;
}

Compile the client executable

❖ Compiling the client on Windows

1 Verify your setup as described in “Verify your environment” on page 126.

2 Create a batch file with these commands and run it:

SETLOCAL
set INCLUDE=.;%DJC_HOME%\include;%INCLUDE%;
set LIB=%DJC_HOME%\lib;%LIB%
cl /W3 /nologo /DWIN32 /Gd /GX -c arith.cpp
set SYSLIBS=kernel32.lib advapi32.lib
link /MAP /out:arith.exe arith.obj libjcc.lib libjutils.lib %SYSLIBS%
ENDLOCAL

❖ Compiling the client on UNIX

1 Verify your setup as described in “Verify your environment” on page 126.

2 Create a shell script containing the commands for your platform from
Table 10-2, then run the shell script.

3 Change the script file permissions to allow execution, for example,
assuming you have named the script compile.sh:

chmod 777 compile.sh

Creating the application

138 EAServer

Table 10-2: Client compilation commands for UNIX platforms

Platform Shell script

Solaris This shell script works with the Solaris CC compiler, version 6.x:

#!/bin/sh
. $DJC_HOME/bin/djc-setenv.sh
CC -DJAG_NO_NAMESPACE -z muldefs -I. -I$DJC_HOME/include \
-L$DJC_HOME/lib -ljcc -ljtml_r -lunic -lnsl \
-ldl -lthread -lm -ljutils -o arith arith.cpp

HP-UX This shell script uses the HP-UX ANSI C++ (aCC) compiler:
#!/bin/sh
. $DJC_HOME/bin/djc-setenv.sh
aCC -c +DA1.1 +DS2.0 +u4 -DNATIVE -D_HPUX -D_POSIX_C_SOURCE=199506L \

-D_HPUX_SOURCE -I $(DJC_HOME_JDK13)/include -I
$(DJC_HOME_JDK13)/include/hp-ux -I. \

-I$DJC_HOME/include -L$DJC_HOME/lib -lpthread -ljcc -lnsl -ljtml_r \
-ljinsck_r -lunic -ljutils -o arith arith.cpp

HP
Itanium

This shell script uses the HP C++ (aCC) compiler:

#!/bin/sh
. $DJC_HOME/bin/djc-setenv.sh
aCC -g +DD32 -mt -I. -I$(DJC_HOME)/include \
-L$(DJC_HOME)/lib -lpthread -lunic -ljtml_r -ljinsck_r \
-ljcc -lnsl -ljlog -o arith arith.cpp

AIX This shell script uses the IBM native compiler:

#!/bin/sh
. $DJC_HOME/bin/djc-setenv.sh
xlC_r -g -c -DDEBUG -DJAG_NO_NAMESPACE -DAIX -D_AIX -qcpluscmt -qnoro \

-qmaxmem=-1 -qarch=com -qtbtable=full \
-I. -I$DJC_HOME/include \
-brtl -L$DJC_HOME/lib -ljcc.so -lunic -ljtml_r.so -ljinsck_r.so \
-lpthread -lnsl -ljutils -o arith arith.cpp

Linux This shell script uses the g++ compiler:

#!/bin/sh
. $DJC_HOME/bin/djc-setenv.sh
g++ -c -D_GNU_SOURCE=1 -DLINUX -D_LINUX -D_REENTRANT -fPIC \

-fwritable-strings -pipe -g -DDEBUG -I $(DJC_HOME_JDK13)/include \
-I. -I$DJC_HOME/include \
-L$DJC_HOME/lib -lpthread -ljcc -lnsl -ljtml_r -ljinsck_r \
-l unic -ljutils -o arith arith.cpp

CHAPTER 10 Tutorial: Creating C++ Components and Clients

CORBA Components Guide 139

Run the client executable
If you have not refreshed or restarted the server since creating the
CPPArithmetic component or adding the Guest user account, do so now before
running the client program. Make sure your environment is configured as
described in “Verify your environment” on page 126.

Run the executable, specifying the server host name and IIOP port number on
the command line as follows:

arith iiop://host:iiop-port

For example:

arith iiop://myhost:2000

If everything is working, arith prints the results from the invocation of the
multiply method. If not, check the error text printed on the console where you
ran the client, and check for error messages in the server log file.

Creating the application

140 EAServer

CORBA Components Guide 141

C H A P T E R 1 1 CORBA/Java Overview

This chapter provides an overview of things to consider when developing
CORBA/Java clients and components for EAServer.

Overview
CORBA is a distributed component architecture defined by the Object
Management Group. EAServer supports the CORBA Internet Inter-ORB
Protocol (IIOP). EAServer also provides a CORBA-compatible client-
side interface that is implemented according to the CORBA specification
for IDL-to-Java language mappings. These two items allow you to create
CORBA-compliant Java applications and applets that interact with
EAServer components.

Java/CORBA versus EJB components
EAServer provides the Java/CORBA component model for backward
compatibility with EAServer 5.x and earlier versions. Sybase
recommends you create EJB components for new Java development
because they are more portable to other application servers.

About CORBA Java
language bindings

For information on the CORBA architecture, see the specifications
available at the Object Management Group (OMG) Web site at
http://www.omg.org.

The EAServer Java ORB runtime is implemented according to the
CORBA 2.3 specification (specifically, the document IDL to Java
Language Mapping Specification, formal/99-07-53). You can download
this document from the OMG Web site at http://www.omg.org.

Topic Page
Overview 141
Requirements 142
Java IDL datatype mappings 142

Requirements

142 EAServer

EAServer Java ORB
runtime

The Java ORB programming interface is defined by the CORBA Java-
language bindings specification. The top-level class, org.omg.CORBA.ORB, is
an abstract Java class. Each Java ORB vendor must provide an implementation
of this class. For example, the EAServer ORB implementation class is
com.sybase.CORBA.ORB. You can use the EAServer ORB or any CORBA-
compatible ORB to invoke EAServer components.

In this version, EAServer’s ORB implementation does not support:

• Method invocation via the Dynamic Invocation Interface (DII)

• The CORBA::Any type

Requirements
All software that is required to compile, deploy, and run Java components in
EAServer is supplied with the EAServer product. However, you can use other
compilers or Java IDEs such as JBuilder or Eclipse. You must compile
components and clients with a JDK version that is compatible with the JDK
version used to run the application server.

Java IDL datatype mappings
Java/CORBA components use the type mappings specified by the CORBA
document, IDL to Java Language Mapping Specification (formal/99-07-53).

The following table lists the CORBA IDL types predefined in EAServer and
the equivalent Java datatypes.

Table 11-1: Java types for predefined CORBA IDL types

CORBA IDL
type

Java type (input
parameter or return
value) Java type (inout or out parameter)

short short org.omg.CORBA.ShortHolder

long int org.omg.CORBA.IntHolder

long long long org.omg.CORBA.LongHolder

float float org.omg.CORBA.FloatHolder

double double org.omg.CORBA.DoubleHolder

CHAPTER 11 CORBA/Java Overview

CORBA Components Guide 143

Binary, Fixed-Point, and Date/Time types
The BCD and MJD IDL modules define types to represent common database
column types such as binary data, fixed-point numeric data, dates, times. The
BCD::Binary CORBA type maps to a Java byte array. The other BCD and MJD
types map to data representations that are optimized for network transport.

To convert between the IDL-mapped datatypes and from core java.* classes,
use these classes from the com.sybase.CORBA.jdbc11 package:

Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference
provides reference pages for these classes.

boolean boolean org.omg.CORBA.BooleanHolder

char char org.omg.CORBA.CharHolder

octet byte org.omg.CORBA.ByteHolder

string java.lang.String org.omg.CORBA.StringHolder

BCD::Binary byte[] BCD.Binary

BCD::Decimal BCD.Decimal BCD.DecimalHolder

BCD::Money BCD.Money BCD.MoneyHolder

MJD::Date MJD.Date MJD.DateHolder

MJD::Time MJD.Time MJD.TimeHolder

MJD::Timestamp MJD.Timestamp MJD.TimestampHolder

TabularResults::
ResultSet

TabularResults.ResultSet TabularResults.ResultSetHolder

TabularResults::
ResultSets

TabularResults.ResultSet[] TabularResults.ResultSetsHolder

CORBA IDL
type

Java type (input
parameter or return
value) Java type (inout or out parameter)

Class Description

SQL Contains methods to convert from BCD.* and MJD.* types to java.* types

IDL Contains methods to convert from java.* types to BCD.* and MJD.* types

Java IDL datatype mappings

144 EAServer

Result set types
The TabularResults IDL module defines types used to represent tabular data.
Result sets are typically used only as return types, though you can pass them as
parameters.

User-defined IDL types
A user-defined type is any type that is:

• Not in the set of datatypes that is not predefined by EAServer’s read-only
repository modules and

• Not one of the CORBA IDL base types.

If a method definition includes user-defined types, the Java component method
will use a Java type translated from the IDL type definition.

CORBA Any and TypeCode support
EAServer’s Java ORB supports the CORBA Any and TypeCode datatypes.
Refer to the OMG CORBA 2.3 specification and IDL to Java Language
Mapping Specification (formal/99-07-53) for information on using these
types.

Camel case versus default IDL-to-Java mappings

By default, EAServer uses standard mappings to generate Java classes for user-
defined IDL types, as specified by the CORBA Java language mappings
specification.

You can configure camel case mappings for IDL-to-Java translation. Camel
case mappings follow the Java class naming convention rather than the IDL
naming convention. When using this option, IDL operation and parameter
names such abc_xyz map to abcXyz, and IDL interfaces, sequence, structure,
and union type names abc_xyz map to AbcXyz. The camel case mapping is not
applied to exception and structure field names.

To enable camel case mapping, run the following command in the EAServer
bin directory:

configure camel-case-on

To disable camel case mapping, run the following command in the EAServer
bin directory:

CHAPTER 11 CORBA/Java Overview

CORBA Components Guide 145

configure camel-case-off

Note If you intend to expose components as Web services, enable the camel
case option. Otherwise you may run into problems with the JAX-RPC
identifier mapping rules defined by the JAX-RPC 1.1 specification, Chapter
20, “Appendix: Mapping of XML Names”.

Holder classes for IDL types
All IDL-mapped Java types have an accompanying holder class that is used for
passing parameters by reference. Each holder class has the following structure:

public class <Type>Holder {
// Current value
public <type> value;
// Default constructor
public <Type>Holder() {}
// Constructor that sets initial value
public <Type>Holder(<type> v) {

this.value = v;
}

}

This structure is defined by the CORBA Java-language bindings specification.

Java IDL datatype mappings

146 EAServer

CORBA Components Guide 147

C H A P T E R 1 2 Developing CORBA/Java
Components

Procedure for creating CORBA/Java components
To create a CORBA/Java compoent, you use the Management Console or
a configuration script to define basic information about the component,
such as the component name and methods, compile and deploy the
component implementation classes, then generate files that are required to
write the component’s class implementation.

The steps are as follows:

1 Define the component interface in CORBA IDL and deploy the IDL
to the EAServer repository. Chapter 3, “Using CORBA IDL,”
describes how to do this.

2 Create EAServer entities to define the CORBA packages and
components. The package and component properties specify the
component interfaces and control interaction between EAServer and
your implementation. Chapter 4, “Managing CORBA Packages and
Components,” describes how to do this.

3 Develop the component implementation, as described in “Write the
Java source file” on page 148.

Topic Page
Procedure for creating CORBA/Java components 147

Write the Java source file 148

Advanced techniques 151

Generating EJB wrapper components 160

Refreshing Java components 160

Write the Java source file

148 EAServer

4 Generate the EJB wrapper components required to host the CORBA
component by running the jaguar-compiler command on the CORBA
package as described in “Generating EJB wrapper components” on page
160.

A tutorial is available
If you are new to EAServer, follow the steps in Chapter 14, “Tutorial: Creating
CORBA Java Components and Clients” to get aquainted with the Java
development and deployment cycle.

Write the Java source file
In the component implementation, create a Java method for each IDL operation
in the component’s client interfaces. When you code the parameters for each
method, use the Java types that correspond to the IDL operation parameters.
See “Java IDL datatype mappings” on page 142.

In the Java component, component interface methods must be public and
cannot be declared static. If the IDL definition of the method has a non-empty
raises clause, the Java method must throw equivalent Java exceptions for the
IDL exceptions listed in the raises clause.

The component implementation class must be in a Java package. You cannot
define components implemented by classes in the default package.

❖ Implementing the component

1 Generate Java interface files for IDL types – If your IDL uses types that
are not predefined in EAServer, generate Java types from the IDL interface
files.

2 Add package import statements – Import the packages that contain the
classes that you need to use in your Java class.

3 Code the constructor – Provide a default constructor to be called when
EAServer loads the implementation class.

4 Add error handling code – Add code that gracefully handles errors by
logging status messages and sending meaningful messages to the client.

5 To finish up, you can use these advanced technique to polish your
component implementation:

CHAPTER 12 Developing CORBA/Java Components

CORBA Components Guide 149

a Manage database connections – Connect to databases through
connection caches using the Connection Management API.

b Return result sets – Return result sets using the EAServer Result Sets
API.

c Issue intercomponent calls – Instantiate a Java stub to make
intercomponent calls.

Generate Java interface files for IDL types
If the component’s definition uses user-defined types for parameters, return
values, or exceptions, Java interfaces are required for these types in order to
compile your component’s implementation file.

The EAServer installation includes Java stubs for the predefined IDL types. To
generate Java stubs for other IDL modules and types, use the idl-compiler
command-line tool. For example:

idl-compiler.bat -v Tutorial\JavaArithmetic.idl
Tutorial\JavaArithmeticHome.idl -f %DJC_HOME%\samples\tutorial\java-
corba\client-src -java

For information on idl-compiler syntax, see Chapter 12, “Command Line
Tools,” in the System Administration Guide.

Add package import statements
The packages below are useful if your component is implemented using the
standard CORBA IDL-to-Java datatype mappings:

Package(s) Description

org.omg.CORBA Contains Java holder and helper classes for each
of the core CORBA datatypes. Also defines the
interfaces for a standard Java client-side Object
Request Broker.

com.sybase.CORBA.jdbc11.* Contains utility classes for converting between
EAServer IDL datatypes and core Java
datatypes.

com.sybase.jaguar.server Contains utility classes for use in server-side
Java code.

com.sybase.jaguar.sql Defines interfaces for defining and sending
result sets.

Write the Java source file

150 EAServer

The fragment below shows the import statements for all of these classes:

import org.omg.CORBA.*;
import com.sybase.CORBA.jdbc11.*;
import com.sybase.jaguar.util.JException;
import com.sybase.jaguar.server.*;
import com.sybase.jaguar.sql.*;
import com.sybase.jaguar.jcm.*;

Code the constructor
A class constructor is normally used to initialize instance-specific data.
However, if your component implements lifecycle methods, then you should
use these methods to manage instance-specific data. Otherwise, instance-
specific initialization must be done in the constructor.

Any uncaught exception that is thrown within the constructor aborts the
creation of the new component instance.

Add error handling code
Errors occurring during component execution should be handled gracefully as
follows:

1 Write detailed descriptions of the error to the log. This will help you debug
the problem later. You can call any of the System.out.print methods to write
to the log (the output is redirected).

2 If the error prevents completion of the current transaction, roll it back as
described in “Set transactional state” on page 158.

com.sybase.jaguar.jcm Provides the Java Connection Management
(JCM) classes.

com.sybase.jaguar.util.JException Many of the methods in the EAServer Java
classes throw JException. Note that the
packages com.sybase.jaguar.util and
org.omg.CORBA contain identically named
classes, so you can not import all classes from
both packages. To avoid compilation problems,
import JException explicitly or always refer to
this class by its full name.

Package(s) Description

CHAPTER 12 Developing CORBA/Java Components

CORBA Components Guide 151

3 Throw an exception with a brief, descriptive message that is appropriate
for display to an end user of the client application.

Java components can record errors or status messages to the server’s log file.
Writing to the log creates a permanent record of the error, and log messages can
be automatically stamped with the date and time that the message was written.
Call any of the System.out.print methods to write to the log.

You can also throw an uncaught exception. Ideally, any exception thrown by
your component should be a standard CORBA IDL exception or a user-defined
IDL exception (the latter must be listed in the raises clause of the IDL method
definition and the throws clause of the equivalent Java method declaration). All
exceptions are forwarded to the client, but only exceptions that are defined in
IDL can be rethrown by the client stub as a duplicate of the server-side
exception.

Advanced techniques
After the basic component implementation is in place, you can add code to
perform the following advanced tasks:

• “Issue intercomponent calls” on page 151

• “Manage database connections” on page 153

• “Return result sets” on page 153

• “Access SSL client certificates” on page 158

• “Set transactional state” on page 158

• “Retrieve user-defined component properties” on page 159

Issue intercomponent calls
You must use a proxy to issue intercomponent calls. If you call methods in
another Java component directly, no server features are available to the called
component, such as transaction control, instance lifecycle management, and
security.

Using the CORBA
ORB to instantiate
proxies

To invoke other components, instantiate a proxy (stub) object for the second
component, then use the stub to invoke methods on the component.

Advanced techniques

152 EAServer

To invoke methods in other components, create an ORB instance to obtain
proxy objects for other components, then invoke methods on the object
references. You obtain object references for other components on the same
server by invoking string_to_object with the IOR string specified as
Package/Component. For example, the fragment below obtains a proxy object
for a component SessionInfo that is installed in the CtsSecurity package.

java.util.Properties props = new java.util.Propert
ies();

props.put("org.omg.CORBA.ORBClass",
"com.sybase.CORBA.ORB");

ORB orb = ORB.init((java.lang.String[])null, props
);

SessionInfo sessInfo =
SessionInfoHelper.narrow

(orb.string_to_object(
"CtsSecurity/SessionInfo"));

When making intercomponent calls using string_to_object, the user name of the
client that executed the component is automatically used for authorization
checking. The exception is when instantiating the system components in the
Jaguar package: the ORB automatically switches to the system user priveleges
when you specify a component in the Jaguar package. To specify a user name,
use this syntax:

orb.string_to_object("iiop://0:0:user_name:password/Package/Component"));

You can retrieve the system user name and password with these methods in
class com.sybase.CORBA.ORB, which both return strings:

• getSystemUser() returns the system user name.

• getSystemPassword() returns the system password.

When called from components, string_to_object returns an instance running on
the same server if the component is locally installed; otherwise, it attempts to
resolve a remote instance using the naming server.

Connecting to third-
party CORBA servers

Your component may need to invoke methods on a component hosted by
another vendor’s CORBA server-side ORB. Sybase recommends that Java
components use the EAServer client-side ORB for all IIOP connections made
from EAServer components. See “Connecting to third-party ORBs using the
EAServer ORB” on page 180 for more information.

CHAPTER 12 Developing CORBA/Java Components

CORBA Components Guide 153

Manage database connections
If your Java methods connect to remote data servers, you should use
EAServer’s connection caching feature to improve performance. See the
reference pages for the com.sybase.jaguar.jcm classes for more information.

Note EAServer’s transactional model works only with connections obtained
from the EAServer Connection Manager. Connections that you open yourself
will not be able to participate in EAServer transactions.

Return result sets
Using the JDBC API, a Java component can retrieve result sets from a
database. Using classes in the com.sybase.jaguar.sql package, Java
components can also send these result sets to the caller. A Java component can
combine the data from several result sets retrieved from databases and send
that data as a single result set to a Java client. A Java component can also
forward the original result set retrieved from a database.

Java components send results sets with the interfaces in the
com.sybase.jaguar.sql package:

• Methods in the JServerResultSetMetaData interface define the format of
rows in a result set.

• Methods in the JServerResultSet interface define column values for rows
in a result set and send the rows to the client.

The JContext class contains static factory methods to return objects that
implement these interfaces.

Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference
contains reference pages for all classes and interfaces.

You cannot send a result set unless the IDL definition of the component method
returns TabularResults::ResultSet or TabularResults::ResultSets. However, you
can still use the JServerResultSetMetaData and JServerResultSet interfaces to
implicitly return results. Just return null as the method’s return value.
Alternatively, you can construct the equivalent Java datatypes for the IDL
TabularResults::ResultSet and TabularResults::ResultSets types. Call the
getResultSet method in the class com.sybase.CORBA.jdbc11.IDL to convert a
java.sql.ResultSet instance into a TabularResults.ResultSet instance that can be
returned by the method.

Advanced techniques

154 EAServer

Forwarding a ResultSet object

You can use the steps below to forward results from a JDBC query directly to
the client:

1 Query the remote server. Use java.sql.Statement or one of its extensions;
the appropriate method depends on the query being sent.

2 Handle the results of the query. For each ResultSet returned by the query,
call JContext.forwardResultSet(ResultSet) to forward the rows to the client.

3 If your component uses IDL/Java datatypes, return null as the method’s
return value.

Instead of calling JContext.forwardResultSet(ResultSet), Java components that
use IDL/Java datatypes can call the IDL.getResultSet(java.sql.ResultSet)
method to convert ResultSet object to TabularResults.ResultSet object, then
return the converted object as the method’s return value.

Sending results row-by-row

Use the sequence of calls below to define and send a result set row-by-row. Use
these calls when building a result set from a non-JDBC source, or when the
java.sql.ResultSet returned by a database query cannot be sent as-is to the
client.

JServerResultSet sequence of calls

Here are the calls to construct a result set and send it row-by-row:

1 Create a JServerResultSetMetaData object by calling
JContext.createServerResultSetMetaData().

2 Call the JServerResultSetMetaData methods to define the format of the
result rows, as follows:

a JServerResultSetMetaData.setColumnCount(int) to specify the number
of columns in each row.

b For each column, call JServerResultSetMetaData.setColumnType(int,
int) to specify the datatype.

c For columns that have a variable length datatype, call
JServerResultSetMetaData.setColumnDisplaySize(int, int) to specify
the maximum length for column values.

d Call other JServerResultSetMetaData methods to specify other
column attributes as needed.

CHAPTER 12 Developing CORBA/Java Components

CORBA Components Guide 155

3 Create a JServerResultSet object by calling
JContext.createServerResultSet().

4 Call JServerResultSet.next() to position the result set’s cursor at the first
row.

5 For each row to be sent:

• For each column, call the appropriate
JServerResultSet.set<Object>(int, <Object>) method to set the column
value.

• Call JServerResultSet.next() to send the row.

6 If sending a single result set or if using JDBC types, call
JServerResultSet.done() to indicate that all rows have been sent in the
current result set.

7 If your component uses IDL/Java datatypes, use the
com.sybase.CORBA.IdlResultSet class to convert the result set to a
TabularResults.ResultSet instance. See Chapter 1, “Java Classes and
Interfaces,” in the EAServer API Reference for details.

You can repeat steps 4 to 6 to send or create another result set that has the same
metadata using the same JServerResultSet object. Repeat steps 1 to 6 to send
or create another result set that requires different metadata.

You cannot return multiple result sets unless the method’s IDL definition
returns TabularResults::ResultSets.

JServerResultSet example

The example method below sends three rows with three columns each. Note
that exceptions are not caught in the example; the server logs any uncaught
exceptions that are thrown in a method call:

public void send_rows (IntegerHolder ih) throws
JException, SQLException

{

// Declare the constant ’pi’
final double pi = 3.1414; // Create the metadata object.
JServerResultSetMetaData

jsrsmd = JContext.createServerResultSetMetaData();

// There will be 3 columns in the result set.
jsrsmd.setColumnCount(3);

Advanced techniques

156 EAServer

// The first column has datatype INTEGER and name ’one’.
jsrsmd.setColumnType(1, Types.INTEGER);
jsrsmd.setColumnName(1, "one");

// The second column has datatype VARCHAR and name ’two’.
jsrsmd.setColumnType(2, Types.VARCHAR);
jsrsmd.setColumnName(2, "two");

// The third column has datatype DOUBLE and name ’three’.
jsrsmd.setColumnType(3, Types.DOUBLE);
jsrsmd.setColumnName(3, "three");

// Create the result set object.
JServerResultSet jsrs = JContext.createServerResultSet(jsrsmd);

// Position the cursor.
jsrs.next();

// First row values: 1, "first", pi
jsrs.setInt(1, 1);
jsrs.setString(2, "first");
jsrs.setDouble(3, pi);

// Send the row.
jsrs.next();

// Second row values: 2, "second", pi * 2
jsrs.setInt(1, 2);
jsrs.setString(2, "second");
jsrs.setDouble(3, pi * 2.0);

// Send the row.
jsrs.next();

// Third row values: 3, "third", pi * 3
jsrs.setInt(1, 3);
jsrs.setString(2, "third");
jsrs.setDouble(3, pi * 3.0);

// Send the row.
jsrs.next();

// Demarcate the end of the result set by calling done().
jsrs.done();

}

CHAPTER 12 Developing CORBA/Java Components

CORBA Components Guide 157

The fragment below shows client-side code to call the stub and print the rows
to the console.

try {
ih = new IntegerHolder();
comp.send_rows(ih);

ResultSet rs = comp.getResultSet();
ResultSetMetaData rsmd = rs.getMetaData();

StringBuffer row = new StringBuffer("");
for (int i = 1; i <= rsmd.getColumnCount(); i++)
{

row.append(rsmd.getColumnName(i));
if (i < rsmd.getColumnCount())

row.append("\t");
}

System.out.println(row);

while(rs.next())
{

row = new StringBuffer("");
for (int i = 1; i <= rsmd.getColumnCount(); i++)
{

row.append(rs.getString(i));
if (i < rsmd.getColumnCount())
row.append("\t");

}
System.out.println(row);

}

// Discard any remaining results.
while(comp.getMoreResults())
{

rs = comp.getResultSet();
}

}
catch (Exception e) {

System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}

Advanced techniques

158 EAServer

Access SSL client certificates
Clients can connect to a secure IIOP port using an SSL client certificate. You
can issue intercomponent calls to the built-in CtsSecurity/SessionInfo
component to retrieve the client certificate data, including:

• The distinguished SSL user name

• The client certificate fingerprint (MD5 message digest)

• The client certificate data

• The chain of issuing certificates

This component implements CtsSecurity::SessionInfo IDL interface. HTML
documentation is available for the interface in the html/ir subdirectory of your
EAServer installation. You can view it by loading the main EAServer HTML
page, then clicking the “Interface Repository” link.

Set transactional state
The transactional state of a component instance determines whether a
transactional component’s database updates are committed or rolled back.

To set transactional state, you must use the InstanceContext object retrieved by
calling Jaguar.getInstanceContext() in each method that sets transactional state
(do not save the object across method invocations, because it will not be valid
if the component instance has been deactivated and reactivated). See the
EAServer API Reference Manual for information on this method.

To set transaction state, choose the method that reflects the state of the work
that the component is contributing to the transaction, as follows:

• If the work is complete and without error, call setComplete.

• Call setRollbackOnly if the work cannot be completed. Alternatively, throw
the exception org.omg.CORBA.TRANSACTION_ROLLEDBACK. If the
error indicates an internal inconsistency in the application, log a
description of the error to help debug the problem as described in “Add
error handling code” on page 150.

CHAPTER 12 Developing CORBA/Java Components

CORBA Components Guide 159

Transaction control with the ServerBean control interface
If you use the deprecated control interface JaguarEJB::ServerBean and Auto
demarcation/deactivation option is disabled in the Transactions tab in the
Transactions properties for your component, the transaction state specified in
the method determines whether the instance is deactivated or remains bound to
the client.

Retrieve user-defined component properties
You can add user defined properties for your components using the Advanced
tab in the Component Properties page in the Management Console. To access
these properties at run time, use the Jaguar::Repository API as shown in the
example below. For details on this API, see the generated reference
documentation in the html/ir subdirectory of your installation. The function
below returns an array of Jaguar::Property instances that contain the properties
defined for the currently executing component:

public static Property[] getMyComponentProps() {
Repository theRep;
Property[] myProps;
try {

java.util.Properties orbProps = new java.util.Properties();
orbProps.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
ORB theOrb = ORB.init((java.lang.String[])null, orbProps);
theRep = RepositoryHelper.narrow

(theOrb.string_to_object("Jaguar/Repository"));
} catch (Exception e) {

System.out.println("Exception instantiating Repository component:"
+ "\n" + e);

return null;
}
try {

String myPackage = JContext.getPackageName();
String myComponent = myPackage + "/" + JContext.getComponentName();
myProps = theRep.lookup("Component", myComponent);

} catch (Exception e) {
System.out.println("Exception getting component properties:"

+ "\n" + e);
return null;

}
return myProps;

Generating EJB wrapper components

160 EAServer

}

Generating EJB wrapper components
EAServer generates EJB wrapper components to host CORBA components in
EAServer. Before generating the EJB wrapper components, compile your
component implementation to a code base directory that is in the application
server’s default class path, such as one of the following:

• The java/classes subdirectory

• The genfiles/java/classes subdirectory

Run the jaguar-compiler command on the CORBA package to generate the EJB
wrapper components. You can run the jaguar-compiler command several ways:

• From the Management Console as described in “Refreshing CORBA
packages in the Management Console” on page 43.

• Using a configuration script, as described in “Managing CORBA
packages with configuration scripts” on page 43.

• Using the jaguar-compiler command-line tool, as described in Chapter 12,
“Command Line Tools,” in the System Administration Guide.

Refreshing Java components
You can refresh a component’s implementation classes while the server is
running. You do not need to shut down and restart the server. Classes loaded
from a different code base directory will not be reloaded. EAServer only
reloads the component’s implementation class, the skeleton class, and any
classes configured in the Java class loader used by the component—see
Chapter 10, “Configuring Java Class Loaders,” in the System Administration
Guide.

CORBA Components Guide 161

C H A P T E R 1 3 Developing CORBA/Java Clients

Procedure for creating CORBA/Java clients
A CORBA/Java client establishes a session with the application server,
instantiates stub (or proxy) instances for EAServer components, and
executes component methods by calling like-named methods on the stub
instance.

1 Generate stub classes.

These classes act as a proxy object for a component instance that is
executing on the server; there is one stub for each IDL interface that
the component implements. “Generating Java stubs” on page 162
describes how to generate stubs.

2 Implement code to instantiate proxy objects.

Your program must obtain proxy objects for the EAServer component
and narrow them to the stub interface that you intend to use. See
“Instantiating proxy instances” on page 162.

3 Implement code that invokes the component methods.

Topic Page
Procedure for creating CORBA/Java clients 161

Generating Java stubs 162

Instantiating proxy instances 162

Executing component methods 175

Serializing component instance references 175

Handling exceptions 176

Deploying and running Java clients 178

Using other CORBA ORB implementations 179

Generating Java stubs

162 EAServer

You execute the component’s methods by calling like-named methods on
the stub class and passing the necessary input data. Each stub method has
a return value and parameter list that is mapped from the corresponding
IDL operation definition. “Executing component methods” on page 175
describes return type and parameter type mappings in detail.

4 If desired, you can serialize the component instance reference as an IOR
string, then deserialize the reference later.

See “Serializing component instance references” on page 175 for details.

Each of these steps requires appropriate exception handling. “Handling
exceptions” on page 176 summarizes CORBA exceptions.

Generating Java stubs
Stub classes allow you to instantiate local Java objects that act as proxies for
an instance of the EAServer component. CORBA/Java clients require two
types of stub files:

• Java interfaces for types defined in CORBA IDL. To create these stubs,
see “Generate Java interface files for IDL types” on page 149.

• Implementation classes for the component proxy interfaces. If you run
clients in a full JDK installation (rather than a JRE), EAServer generates
these stubs on demand. You can manually generate them with the stub-
compiler command. For details, see Chapter 12, “Command Line Tools,”
in the System Administration Guide.

If you are using another ORB implementation class to connect to EAServer,
you must export the IDL interface definitions, then use the vendor’s IDL
compiler to generate stubs. See “Connecting to EAServer with a third-party
client ORB” on page 179 for more information.

Instantiating proxy instances
After you have compiled stub classes, you can implement code that uses the
stubs to interact with EAServer components.

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 163

Your program must obtain proxy objects for the EAServer component and
narrow them to the stub interface that you intend to use by following the steps
below:

Java exceptions can occur at any step. “Handling exceptions” on page 176
describes common exceptions and their cause.

Other patterns for proxy instantiation
Some patterns for proxy instantiation used in clients written for earlier
EAServer releases are not compatible with EAServer 6.0. In particular, clients
that use the CosNaming API or SessionManager::Factory::create methods that
take parameters should be modified to use the implementation pattern
described here. For more information, see “Using the CosNaming interface”
on page 121.

Configuring and initializing the ORB runtime
ORB properties define the class name of the ORB driver that will be used, and
configure settings required by the driver. Properties can be set externally in
HTML parameters for a Java applet or in command-line arguments for a Java
application. You can also set them directly in your source code in both applets
and applications. Table 13-1 describes the EAServer ORB properties.

Step What it does Detailed explanation

1 Initialize the CORBA ORB classes. “Configuring and initializing the
ORB runtime” on page 163

2 Use an IOR string and the
ORB.string_to_object method to obtain
the Manager instance for the server.

“Creating a Manager instance”
on page 168

3 Use the Manager instance to create a
Session.

“Creating sessions” on page 171

4 Call the Session’s lookup method to
create proxy objects, then narrow them
to an interface that the component
supports. The lookup method uses the
EAServer name service to resolve the
requested name to an installed
component.

“Creating stub instances” on
page 172

5 Call the stub methods to remotely
invoke component methods.

“Executing component
methods” on page 175

Instantiating proxy instances

164 EAServer

Table 13-1: EAServer Java ORB properties

Property Specifies

org.omg.CORBA.ORBClass The class that implements interface org.omg.ORB. Specify
com.sybase.CORBA.ORB to indicate the EAServer ORB driver class. There
is no default for this property.

com.sybase.CORBA.
ConnectionTimeout

For applications that run in a cluster, sets a time limit to receive a server
response before the connection fails over to try another server in the cluster.
Setting this property ensures that failover happens without an unreasonable
delay. Specify the timeout period in seconds. The default of 0 indicates no
time limit.

com.sybase.CORBA.forceSSL If set to true when using a a reverse proxy server, forces use of SSL for the
connection to the reverse proxy. Set this property to true if the connection to
the reverse proxy must use SSL (HTTPS) tunnelling, but the connection
from the proxy to the server does not use SSL tunnelling. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information on
connecting to EAServer through proxy servers.

com.sybase.CORBA.GCInterval Specifies how often the ORB forces deallocation (Java garbage collection)
of unused class references. Though this property is set on an individual ORB
instance, it affects all ORB instances. The default is 30 seconds. The default
is appropriate unless you have set an idle connection timeout of less than 30
seconds. In that case, you should specify a lower value for the garbage
collection interval, since connections are only closed while performing
garbage collection. In other words, the effective idle connection timeout
ranges from the idle connection timeout setting to the smallest integral
multiple of the garbage collection interval.

com.sybase.CORBA.http Specify whether the ORB should use HTTP tunnelling without trying to use
plain IIOP first. The default is false. With the default setting, the ORB tries
to open a connection using plain IIOP, and switches to HTTP tunnelling if
the plain IIOP connection is refused. The default is appropriate when some
users connect through firewalls that require tunnelling and others do not; the
same application can serve both types. If you know tunnelling is required,
set this property to true. This setting eliminates a slight bit of overhead that
is incurred by trying plain IIOP connections before tunnelling is used.

com.sybase.CORBA.
HttpExtraHeader

An optional setting to specify what extra information is appended to the
header of each HTTP packet when connecting through a Web proxy. See
Chapter 9, “Deploying Applications Around Proxies and Firewalls,” in the
EAServer Security Administration and Programming Guide for more
information.

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 165

com.sybase.CORBA.http.
jaguar35Compatible

When set to true, specifies that HTTP tunnelling must be compatible with
servers running EAServer version 3.5 or older installations. The default is
false.

Compatibility with version 3.5 or older servers
The default tunnelling model is incompatible with servers older than version
3.6. If you do not set the com.sybase.CORBA.http.jaguar35Compatible
property to true, clients using the EAServer 3.6 or later Java client ORB
cannot connect to older-version servers using HTTP tunnelling. Note that
HTTP tunnelling may happen automatically when clients connect to the
server through firewalls.

com.sybase.CORBA.
HttpUsePost

When using HTTP tunnelling, specifies the HTTP request type used. A
value of true indicates that POST requests are to be used. A value of false
(the default) specifies that GET requests are to be used.

Some Web browsers cannot handle the long URLs generated when using
HTTP tunnelling with GET requests. Setting this property to true can work
around the issue.

com.sybase.CORBA.
IdleConnectionTimeout

 Specifies the time, in seconds, that a connection is allowed to sit idle. When
the timeout expires, the ORB closes the connection. The default is 0, which
specifies that connections can never timeout. The connection timeout does
not affect the life of proxy instance references; the ORB may close and
reopen connections transparently between proxy method calls. Specifying a
finite timeout for your client applications can improve server performance.
If many instances of the client run simultaneously, a finite client connection
timeout limits the number of server connections that are devoted to idle
clients. A finite timeout also allows rebalancing of server load in an
application that uses a cluster of servers.

If you specify an idle connection timeout, make sure the garbage collection
interval (com.sybase.CORBA.GCInterval) is set to an equal or lesser value.

com.sybase.CORBA.isApplet Specifies whether the client is a Java applet. The default is false unless the
ORB is initialized by calling the Orb.init method that takes a
java.applet.Applet instance as a parameter. If you call another version of init
from a Java applet, you must set this property to true in order to connect to
EAServer using SSL.

Property Specifies

Instantiating proxy instances

166 EAServer

com.sybase.CORBA.local For server-side component use only. Specifies whether the ORB reference
can be used to issue intercomponent calls in user-spawned threads. The
default is true, which means that intercomponent calls are made in memory
and must be issued from a thread spawned by EAServer. Set this property to
false if your component makes intercomponent calls from user-spawned
threads.

com.sybase.CORBA.local property is deprecated
This property is not needed when calling components from threads spawned
by the the Thread Manager. The Thread Manager is the recommended way
to spawn threads in Java components. See Chapter 5, “Using the Thread
Manager,” in the Automated Configuration Guide for more information.

com.sybase.CORBA.ProxyHost Specifies the machine name or the IP address of a reverse-proxy server. See
Chapter 9, “Deploying Applications Around Proxies and Firewalls,” in the
EAServer Security Administration and Programming Guide for more
information.

com.sybase.CORBA.ProxyPort Specifies the port number of a reverse-proxy server. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.

com.sybase.CORBA.RetryCount Specify the number of times to retry when the initial attempt to connect to
the server fails. The default is 5.

com.sybase.CORBA.RetryDelay Specify the delay, in milliseconds, between retry attempts when the initial
attempt to connect to the server fails. The default is 2000.

com.sybase.CORBA.
socketReuseLimit

Specify the number of times that a network connection may be reused to call
methods from one server. The default is 0, which indicates no limit. The
default is ideal for short-lived clients. The default may not be appropriate for
a long-running client program that calls many methods from servers in a
cluster. If sockets are reused indefinitely, the client may build an affinity for
servers that it has already connected to rather than randomly distributing its
server-side processing load among all the servers in the cluster. In these
cases, the property should be tuned to best balance client performance
against cluster load distribution. In Sybase testing, settings between 10 and
30 proved to be a good starting point. If the reuse limit is too low, client
performance degrades.

com.sybase.CORBA.
WebProxyHost

The host name or IP address of an HTTP proxy server that supports generic
Web tunnelling, sometimes called connect-based tunnelling. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.
There is no default for this property, and you must specify both the host
name and port number properties.

Property Specifies

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 167

Example: ORB Initialization in an Applet ORB initialization for a Java
applet is demonstrated in the example below. This code constructs a
java.util.Properties object and sets the required properties. The applet reference
and the Properties object are passed to the org.omg.CORBA.ORB.init method.

import java.applet.*;
import org.omg.CORBA.*;
public class myApp extends Applet {

public void init() {
...
java.util.Properties props

= new java.utils.Properties();
props.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
ORB orb = ORB.init(this, props);
...

Rather than property values, you can pass properties to the ORB as parameters
in the HTML APPLET tag that loads the applet, as in the example below:

<APPLET
codebase=....
<param name="org.omg.CORBA.ORBClass"

value="com.sybase.CORBA.ORB">
...
</APPLET>

com.sybase.CORBA.
WebProxyPort

When generic Web tunnelling is enabled by setting
com.sybase.CORBA.WebProxyHost, this property specifies the port number
at which the HTTP proxy server accepts connections. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.
There is no default for this property, and you must specify both the host
name and port properties.

com.sybase.CORBA.
useJSSE

Use the Java Secure Sockets Extension (JSSE) classes for secure HTTP
tunnelled (HTTPS protocol) connections. JSSE provides an alternative to
the built-in SSL implementations when secure connections are needed from
an applet running in a Web browser. Additional configuration may be
required to use this option. See Chapter 4, “Using SSL in Java Clients,” in
the EAServer Security Administration and Programming Guide for more
information.

Property Specifies

Instantiating proxy instances

168 EAServer

A property setting that is passed as an applet parameter supersedes any setting
that is specified in the java.utils.Properties parameter to the ORB.init method. If
you want to ensure that hard-coded property values are used, pass the Applet
parameter as null.

Example: ORB Initialization in an Application ORB initialization for a
Java application is demonstrated in the example below. This code constructs a
java.util.Properties object and sets the required properties. The command-line
parameters are passed to the org.omg.CORBA.ORB.init method.

import java.util.*;

public class myApp extends Object {

public static void main(String[] args)
throws Exception

{
...
Properties props = new Properties();
props.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
ORB orb = ORB.init(args, props);
...

Rather than hard-coding the property values, you can pass them to the ORB as
command-line parameters, as in the example below:

java yourclass -org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

Properties that are specified as command-line parameters supersede values
specified in the java.utils.Properties parameter to the ORB.init method. If you
want to ensure that hard-coded property values are used, pass the String[]
parameter to init as null.

Creating a Manager instance
The EAServer authentication service implements the
SessionManager::Manager interface. When using CORBA naming services,
you can resolve this object by using the special name AuthenticationService.
Without using naming services, you must supply a CORBA Interoperable
Object Reference (IOR), which is a text string that describes how to connect to
the server hosting the object.

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 169

Standard CORBA IOR strings are hex-encoded and not human-readable.
EAServer supports both standard format IORs and a URL form that is human-
readable. For information on standard-format IORs, see “Instantiating
components using a third-party ORB” on page 180.

URL format IORs The URL string format offers the benefits of being human-
readable. Also, for Java applets, you can create URL strings that connect to the
applet’s download host by default; this feature simplifies deployment since you
do not need to change hard-coded IORs when you move your application to
another server. IOR strings in URL format must have the form:

protocol://host:iiop_port

where

• protocol is iiops if connecting to a secure port and iiop otherwise.

• host is the EAServer host address or machine name. In an applet, you can
omit the host name to specify that the connection must go to the host from
which the applet was downloaded.

• iiop_port is the port number for IIOP requests. Your server may accept
IIOP connections at several different ports, each of which uses a diffferent
security profile. For example, the default server configuration provides
listeners at these ports:

• 2000 accepts unsecure IIOP connections.

• 2001 accepts IIOPS connections with encryption and server-side
authentication.

• 2002 accepts IIOPS connections with encryption and mutual (client
and server) authentication. Mutual authentication requires that your
end users have valid digital certificates, and that those certificates are
issued by a certificate authority that is trusted by the server.

The EAServer Security Administration and Programming Guide describes
how to configure listeners and security profiles.

An example URL-format IOR is iiop://machina:2000, which specifies that
the server runs on the machine named “machina” and listens for IIOP requests
on port 2000. In an applet, you can omit the host name to specify that the
connection must go to the host from which the applet was downloaded. For
example, iiop://:2000 specifies a connection to port 2000 on the applet’s
host.

Instantiating proxy instances

170 EAServer

Standard format IORs Use the standard IOR format if you must have
portability to other standard Java ORB implementations. Your server generates
IOR strings embedded within text files each time it starts. Several files are
generated for each IIOP listener. There are files formatted as an HTML param
tag; these can be used to compose HTML applet sections. There are also files
that contain the IOR by itself. Additionally, there are different files generated
for compatibility with different IIOP protocol versions.

For each listener, the server prints a hex-encoded IOR string with standard
encoding to the following files in the EAServer html subdirectory:

• <listener><iiop-version>.ior – Contains the IOR string by itself,
followed by a newline.

• <listener>_<iiop-version>_param.ior – Contains the IOR as part of an
HTML param definition that can be inserted into an applet section.

where

• <listener> is the name of the listener.

• <iiop-version> is the version of IIOP and can be either 10 (which
represents IIOP version 1.0) or 11 (which represents IIOP version 1.1).
Use the file that matches the IIOP version that is supported by your client
ORB.

For example, a server will generate the following files for a listener named
iiops2. All files are created in the html subdirectory:

• iiops2_10.ior

• iiops2_11.ior

• iiops2_10_param.ior

• iiops2_11_param.ior

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 171

Your applet can retrieve the IOR if you supply it in applet parameters. In this
case, you can copy the contents of one of the param format files to the HTML
file. Alternatively, you can add code that connects to EAServer via HTTP and
downloads one of the generated .ior files.

Note If you change a server’s host name or port number, you must edit or
replace IOR values that contain the host name, including hex-format IORs
copied from the server-generated .ior files. When using the EAServer ORB,
use the URL string format and omit the host name. When using another
vendor’s ORB, you can download the contents of a generated .ior file, or you
can store server IORs in the ORB vendor’s name server.

Creating the Manager instance Once the applet or application has obtained
the server’s IOR string or an equivalent IIOP URL string, it calls the
ORB.string_to_object method to convert the IOR string into a
SessionManager::Manager instance, as shown in the following example:

import org.omg.CORBA.*;
import java.awt.*;
import SessionManager.*;

public class myApplet extends Applet {
String ior;
ORB orb;
... deleted ORB.init() code and code that

retrieves IOR from applet parameters ...
Manager manager = ManagerHelper.narrow(

orb.string_to_object(ior));

Creating sessions
The SessionManager.Session interface represents an authenticated session
between the client application and EAServer. The Manager.createSession
method accepts a user name and password and returns a Session object, as
shown in the example below:

import org.omg.CORBA.*;
import SessionManager.*;
import java.awt.*;

public class myApplet extends Applet {
Manager manager;

Instantiating proxy instances

172 EAServer

... deleted code that created Manager instance
...

try {
Session session = manager.createSession(user,

password);
}
catch (org.omg.CORBA.COMM_FAILURE cf)
{

// The server is likely down or has run
// out of connections. You can retry the
// connection if desired.
... report the error ...

}
catch (org.omg.CORBA.NO_PERMISSION np)
{

// Tell the user they are not authorized
...

}
catch (org.omg.CORBA.SystemException se)
{

// Catch-all clause for any CORBA system
// exception that was not explicitly caught
// above. Report the error but don’t bother
// retrying.
...

}

Creating stub instances
A Java stub implements the Java version for one of the EAServer component’s
IDL interfaces. Call the Session.lookup method to obtain a factory for stub
instances. The signature of Session.lookup is:

SessionManager.Factory lookup(String name)

Session.lookup takes a string that specifies the name of the component to
instantiate. A component’s default name is the EAServer package name and the
component name, separated by a slash as in calculator/calc. However, a
different name can be specified with the component’s
com.sybase.jaguar.component.naming property. For example, you can specify a
logical name, such as USA/MyCompany/FinanceServer/Payroll. For more
information on configuring the naming service, see Chapter 5, “Naming
Services,” in the EAServer System Administration Guide.

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 173

Session.lookup returns a factory for component proxies. Call the Factory.create
method to obtain proxies for the component. This method returns a
org.omg.CORBA.Object reference. You must call the narrow method in the IDL
interface’s generated helper class to convert this to an instance of the stub class
for the component’s IDL interface. If the component instance does not
implement the requested interface, the narrow method returns a null object
reference.

Session.lookup can throw these CORBA standard exceptions:

• NO_PERMISSION The user is not authorized to instantiate the
requested component.

• OBJECT_NOT_EXIST The server component cannot be instantiated.
Verify that:

• The specified component is installed in the specified package.

• The specified package is listed in the server’s Start Modules property.

• The Java class, Windows DLL, or UNIX shared library that
implements the component is available.

The code to call Session.lookup and Factory.create looks like this:

import org.omg.CORBA.*;
import SessionManager.*;
import java.awt.*;
import Calculator.*; // Package for Java stubs

// for this example, matches
// IDL module name for the
// component’s interface.

public class myApplet extends Applet {

Session session;

... deleted code that created Session instance
...

//
// In this example, the component is named calc
// and is installed in the EAServer package
// calculator. calcHelper.narrow() verifies that
// the returned object is of the appropriate
// type, then returns a Calculator.Calc instance
//
try {

Factory fact =

Instantiating proxy instances

174 EAServer

FactoryHelper.narrow(
session.lookup("calculator/calc"));

Calc c =
CalcHelper.narrow(fact.create());

}
catch (org.omg.CORBA.OBJECT_NOT_EXIST one)
{

// Tell the user to contact the server
// administrator
... report the error ...

}
catch (org.omg.CORBA.NO_PERMISSION np)
{

// Tell the user they are not authorized
... report the error ...

}
catch (org.omg.CORBA.SystemException se)
{

// Catch-all clause for any CORBA system
// exception that was not explicitly caught
// above.
... report the error ...

}

Calling Session.lookup in server code
When called from server code, Session.lookup resolves the component name
by calling the name service, which gives preference to a local component
instance if the component is installed on the same server. However, the use of
a locally installed component is not guaranteed. To ensure that a local
implementation is used, specify the name as local:package/component,
where package is the package name and component is the component name, for
example, local:CtsSecurity/SessionInfo. When you specify the local:
prefix, the lookup call bypasses the name service and returns a local instance if
the component is installed in the same server. The call fails if the specified
component is not installed in the same server..

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 175

Executing component methods
After instantiating the stub class, use the stub class instance to invoke the
component’s methods. Each method in the stub interface corresponds to a
method in the component interface that you have narrowed the proxy object to.
See “Java IDL datatype mappings” on page 142 for descriptions of the type
mappings.

Serializing component instance references
You can call the ORB.object_to_string() and ORB.string_to_object() methods to
serialize and deserialize proxy object references. Assuming that the proxy
interface is Payroll, this call serializes a proxy component reference:

Payroll payroll;
... deleted code that instantiates payroll ...

String payroll_ior = orb.object_to_string(payroll);

This call deserializes the reference:

Payroll payroll = PayrollHelper.narrow(
orb.string_to_object(payroll_ior));

The following restrictions apply when serializing and deserializing component
proxy references:

• Unless the proxy is for an Enterprise Java EntityBean, the serialized
reference remains valid only as long as the server has not been restarted
since the time when proxy was first instantiated. When deserializing, the
proxy instance will connect back to the same host and port as was used to
create the original instance. An EntityBean proxy can be deserialized at
any time, as long as the EntityBean is still installed on the original server.

Handling exceptions

176 EAServer

• If the original proxy instance was created by connecting to a secure port
with a client-side SSL certificate, the proxy must be deserialized in a
session that connects using the same client certificate and equal or greater
security constraints. For example, if you create an object with session that
uses 128-bit SSL encryption, serialize the object, then later try to
deserialize the object using during a session that uses 40-bit SSL
encryption, the ORB will throw the CORBA::NO_PERMISSION exception.
Access will be allowed when objects created using less secure session are
later accessed using a more secure session.

Handling exceptions
The client-side ORB throws two kinds of exceptions:

• CORBA system exceptions – these exceptions are defined in the CORBA
specification.

• User-defined exceptions – these exceptions are defined in the
component’s IDL definition.

CORBA system
exceptions

The CORBA specification defines the list of standard system exceptions. In
Java, all CORBA system exceptions extend org.omg.CORBA.SystemException.
System exceptions are unchecked exceptions (they extend
java.lang.RuntimeException). The Java compiler does not require that you catch
CORBA system exceptions. However, some exceptions can occur in a well-
behaved program. For example, the Session.loookup call throws a
NO_PERMISSION exception when you request a component instance and the
user lacks permission to instantiate that component. You may want to trap the
exceptions shown in the code fragment below:

try
{

// invoke method(s)
...

}
catch (org.omg.CORBA.COMM_FAILURE cf)
{

// If this occurs when instantiating a Manager
// instance, the server is likely down or has run
// out of connections. You can retry the connection
// if desired.
//
// If this occurs after a method call, you

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 177

// can retry the call (or the transaction call
// sequence for a stateful component).
...

}
catch (org.omg.CORBA.TRANSACTION_ROLLEDBACK tr)
{

// A component on the server aborted the EAServer
// transaction, or the transaction timed out.
// Retry the method call(s) if desired.
...

}
catch (org.omg.CORBA.OBJECT_NOT_EXIST one)
{

// Possibly try to create another instance. Check
// that the package and component are installed
// on the server.
// Received when trying to instantiate a component
// that does not exist. Also received when invoking
// a method if the object reference has expired
// (this can happen if the component is stateful
// and is configured with a finite Instance Timeout
// property). Create another instance if desired.
...

}
catch (org.omg.CORBA.NO_PERMISSSION np)
{

// Tell the user they are not authorized
...

}}
catch (org.omg.CORBA.SystemException se)
{

// Catch-all clause for any CORBA system exception
// that was not explicitly caught above.
// Report the error but don’t bother retrying.
...

Note Not all of the possible system exceptions are shown in the example. See
CORBA/IIOP 2.3 Specification for a list of all the possible exceptions.

User-defined
exceptions

User-defined exceptions are defined in the component’s IDL definition. For
example, you might define OverdrawnException to be thrown by methods that
withdraw money from a bank account. In Java, all user-defined exceptions
extend org.omg.CORBA.UserException.

Deploying and running Java clients

178 EAServer

In Java, IDL user-defined exceptions are checked exceptions; if the IDL
definition of a method contains a raises clause, the equivalent Java stub method
will have a throws clause that lists the equivalent Java exceptions. For example,
consider the IDL definition below:

module MyModule {
exception MyException
{

string reason;
};

interface MyIntf {
boolean throwException
(in boolean yes_no)
raises (MyException);

};
};

The equivalent Java throwException method is:

boolean throwException (boolean yes_no)
throws MyModule.MyException;

Deploying and running Java clients
Run the Java client in a JDK 1.4 or later Java interpreter.

At run time, the following EAServer JAR files must be in the CLASSPATH for
Java applications and included with the class files for applets:

• lib/eas-client-15.jar and lib/eas-server-15.jar to run in Java 1.5

• lib/eas-client-14.jar and lib/eas-server-14.jar to run in Java 1.4

The client runtime writes errors to the console by default. In Java applications,
you can modify this behavior by specifying the profile name as the Java system
property djc.logFile. For example:

java -Ddjc.rmiTrace=true "-Ddjc.logFile=%DJC_HOME%\logs\rmiClientTrace.log”

For more information, see “Configuring system logging” in Chapter 3,
“Creating and Configuring Servers,” in the System Administration Guide.

CHAPTER 13 Developing CORBA/Java Clients

CORBA Components Guide 179

Using other CORBA ORB implementations
EAServer’s IIOP implementation allows you to use any CORBA-compliant
client ORB to invoke EAServer components. You can also use the EAServer
client ORB to execute components that are hosted by another vendor’s server
ORB.

Connecting to EAServer with a third-party client ORB
In some cases, you may wish to use another vendor’s ORB in your client
applications. For example, you may have an existing installation of the ORB
on client workstations.

Clients that use another ORB can use the same code as for the EAServer ORB,
except for the following differences:

• You must use stub classes generated by the vendor’s IDL-to-Java compiler
rather than stubs generated by EAServer.

• Your code to connect to EAServer and instantiate components may differ.

When executing methods, you may wish to use the EAServer conversion
classes to create and interpret the predefined EAServer datatypes. These
conversion classes, in packages com.sybase.CORBA.jdbc102 and
com.sybase.CORBA.jdbc11, are documented in Chapter 1, “Java Classes and
Interfaces,” in the EAServer API Reference. The classes are compatible with
any Java ORB.

Generating
compatible Java stubs

You should generate stubs for your third-party ORB using the IDL-to-Java or
IDL-to-C++ compiler provided by the vendor. Stubs created by EAServer are
not guaranteed to work with another ORB.

Each component’s IDL interfaces are specified in the Component Properties
window, under the General tab. See “CORBA component property
descriptions” on page 45 for more information. All interfaces are defined in
IDL modules that are stored as plain text files in the EAServer Repository
subdirectory. For example, if the component implements the Module1::I1 and
Module2::I2 interfaces, you will need to copy the files Module1.idl and
Module2.idl into a working directory for generating stubs for your third-party
ORB software. You must also copy any files that are included by these
modules, including those listed in Table 13-2: Predefined EAServer IDL files.

Table 13-2 lists the names of the predefined EAServer IDL modules that are
needed by all client applications.

Using other CORBA ORB implementations

180 EAServer

Table 13-2: Predefined EAServer IDL files

 Warning! When creating stubs for another ORB, do not overwrite the
EAServer Java stubs. Use different package names when creating stubs for
third-party ORBs or create the third-party ORB stubs under a different code
base.

Instantiating
components using a
third-party ORB

EAServer’s naming service cannot be used with other client ORBs, so you
must use the EAServer SessionManager::Manager interface to instantiate
components from another ORB, as described in “Instantiating proxy
instances” on page 162. Set the org.omg.CORBA.ORBClass property to the
name of the class provided by your ORB vendor.

Connecting to third-party ORBs using the EAServer ORB
You can use the EAServer client-side ORB to execute components hosted by
another vendor’s server-side ORB, as long as the server-side ORB accepts
IIOP connections and the required interfaces are defined in standard CORBA
IDL.

❖ Implement your client as follows:

1 Import all the required IDL modules into EAServer, as described in
“Managing IDL in EAServer” on page 36.

2 Generate stubs for each imported module, as described in “Generating
Java stubs” on page 162.

3 Implement code to connect to the third-party server and instantiate
components, following the vendor’ s documentation.

Filename Description

SessionManager.idl Defines interfaces for session-based creation of EAServer
component instances.

BCD.idl Defines the CORBA datatypes for EAServer’s binary and
fixed-point numeric datatypes.

MJD.idl Defines the CORBA datatypes for EAServer’s date and time
datatypes.

TabularResults.idl Defines the CORBA datatypes that represent result sets
returned by a method invocation.

CORBA Components Guide 181

C H A P T E R 1 4 Tutorial: Creating CORBA Java
Components and Clients

In this tutorial, you will create a CORBA Java component, install it in
EAServer, and create a CORBA Java client that connects to EAServer and
calls a method in the component.

Overview of the sample application
The application performs the following steps:

1 The client-side application, developed with Java, instantiates the
middle-tier Java component, JavaArithmetic.

2 The client calls the multiply method in JavaArithmetic.

3 The multiply method computes the product of the input values, then
returns the result.

4 The client application displays the result for the end user.

Tutorial requirements
To create the tutorial application, you need:

• The EAServer software

The EAServer Installation Guide for your platform describes how to
install the software.

Topic Page
Overview of the sample application 181

Tutorial requirements 181

Creating the application 182

Creating the application

182 EAServer

• Java development environment

The tutorial steps use the JDK software and Apache Ant software that is
included with your EAServer installation. You can also use Eclipse,
JBuilder, or any other development tool that is compatible with JDK 1.4
or later.

Creating the application
To create and run the sample application:

1 Start EAServer and the Management Console.

2 Import the IDL interface.

3 Define the package and component.

4 Compile the component implementation.

5 Generate stubs and skeletons.

6 Create a user account.

7 Create the client program.

8 Run the client program.

Start EAServer and the Management Console
Start the Management Console and connect to EAServer as described in
Chapter 1, “Getting Started,”in the System Administration Guide.

Import the IDL interface
CORBA component interfaces must be defined using IDL. Your EAServer
installation includes a predefined IDL file, JavaArithmetic.idl in the
samples/tutorial/java-corba directory. The component interface has one
method, multiply.

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

CORBA Components Guide 183

❖ Importing the IDL file

1 If you haven’t already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “Getting
Started,”in the System Administration Guide.

2 In the Management Console, click the IDL Modules folder to display the
IDL types in the EAServer repository. Right-click the IDL Modules folder
and choose Deploy. The Deploy Wizard displays.

3 Browse to the samples/tutorial/java-corba directory in your EAServer
installation and select JavaArithmetic.idl.

Define the package and component
This section shows you how to use Management Console to create the package,
component, and method for the sample application.

Define a new package

In EAServer, CORBA packages allow you to group CORBA components that
perform related tasks. Before a component can be instantiated by clients, it
must be installed in a package, and that package must be installed in the server.

❖ Creating the javatut package

1 In the Management Console, click the CORBA packages folder under the
Local Server folder. This folder displays all packages installed in the
server that you are connected to.

2 Right-click the CORBA Packages folder, and select Add. The Add wizard
displays. For the package name, enter javatut.

3 When you finish the wizard, the package properties display. Leave these
properties at their default settings.

Define and install a new component

You will define a new Java/CORBA component, JavaArithmetic.

❖ Defining the new component

1 Expand the javatut package and right-click the Components folder beneath
it, then select Add. The New Component Wizard displays. Apply the
following settings as you page through the wizard:

Creating the application

184 EAServer

• For component name, enter JavaArithmetic.

• For component type, choose CORBA/Java.

• For Java Class Name, enter
com.sybase.easerver.tutorials.java.JavaArithmeticImpl.

• For IDL Home Interface, leave blank. (EAServer generates the
default home interface later in the tutorial.)

• For IDL Remote Interface, enter Tutorial::JavaArithmetic.

When you finish the wizard, the component properties display.

2 In the component properties, select the General tab. Confirm or apply the
settings in the table below. Leave the remaining fields at their default
settings.

3 Click Apply to save changes made to the component properties.

Compile the component implementation
The component implementation classes must be placed in the Java class path
for EAServer before we can generate skeletons and the EJB wrapper that
integrates the component code into EAServer.

Your EAServer installation includes an Ant project to compile the component
in the subdirectory samples/tutorial/java-corba. Source for the component is
in JavaArithmeticImpl.java in the subdirectory
src/com/sybase/easerver/tutorials/java.

The build.xml file defines an Ant project to compile the component and a test
client. To ensure the component classes are in the EAServer Java class path, the
Ant project compiles them to the EAServer genfiles/java/classes subdirectory.

Field Value

Component Type CORBA/Java

Java Class com.sybase.easerver.tutorials.java.JavaArithmeticImpl

IDL Home Interface Leave blank.

IDL Remote Interface Tutorial::JavaArithmetic

Automatic Failover Checked

Pooled Checked

Thread Safe Checked

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

CORBA Components Guide 185

❖ Compiling the component implementation

1 At a command prompt, change to the EAServer samples/tutorial/java-
corba subdirectory.

2 Make sure the DJC_HOME environment variable specifies the location of
your EAServer installation, then running the build script or batch file. For
example, if on Windows:

set DJC_HOME=D:\Sybase\eas60
cd %DJC_HOME%\samples\tutorial\java-corba
build

Or, if running UNIX with C shell:

setenv DJC_HOME /opt/Sybase/eas60
cd $DJC_HOME/samples/tutorial/java-corba
build

The build script or batch file runs the EAServer djc-ant command, which
invokes Ant on the default build file, build.xml in the current directory.

Generate stubs and skeletons
Once you have created the package and component, you must generate the files
that allow your C++ implementation to run in EAServer and clients to invoke
the component. These include the EJB wrapper component that EAServer
generates to invoke the component and client stub interface files that clients
use to call the component methods.

❖ Generating the server-side files

1 In the Management Console, expand the javatut package. Beneath it, right-
click the JavaArithmetic component and choose Refresh.

2 The Management Console generates the required files. If generation fails,
check the server log file for a description of the problem.

❖ Generating CORBA/Java stubs

• If using Windows, run the following command at a prompt:

%DJC_HOME%\bin\idl-compiler -v Tutorial\JavaArithmetic.idl
Tutorial\JavaArithmeticHome.idl -f %DJC_HOME%\genfiles\java\src -java

If using UNIX, run the following command at a prompt:

$DJC_HOME/bin/idl-compiler.sh -v Tutorial/JavaArithmetic.idl
Tutorial/JavaArithmeticHome.idl -f $DJC_HOME/genfiles/java/src -java

Creating the application

186 EAServer

Create a user account
You must have a user account the client application uses to connect to the
server. If you don’t already have a user account defined, create it as described
here. Alternatively, edit the client application source code to use an existing
account.

❖ Creating the Guest user account

1 In the Management Console, expand the Security folder and right-click the
Users folder beneath it. Choose Add from the context menu.

2 In the New User wizard, enter Guest as the user name and click Finish.

3 An icon appears for the Guest wizard under the Users folder. Right-click
this icon and choose Set Password.

4 In the Set Password wizard, enter GuestPassword2 for the password and
click Apply.

Create the client program
The Ant project for the component

The Ant project is located in the subdirectory samples/tutorial/java-corba.
Source for the client is in Arith.java in the subdirectory
client-src/com/sybase/easerver/tutorials/java/client.

This is a simple command-line application that:

• Connects to EAServer.

• Creates an authenticated session using the Guest account that we created
earlier.

• Creates a proxy for the component.

• Calls the component multiply method.

Here is the source for Arith.java:

//package com.sybase.easerver.tutorials.java.client;

/**
 * This is a sample command-line Java application that
 * invokes the JavaArithmetic component created in the EAServer
 * CORBA/Java component tutorial. Usage:
 * <pre>
 * Arith iiop://<host>:<port>

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

CORBA Components Guide 187

 *
 * Where:
 *
 * <host> is the host name or IP address of the server machine.
 *
 * <iiop-port> is the server's IIOP port (2000 in the
 * default configuration).
 *</pre>
 */

import org.omg.CORBA.*;
import SessionManager.*;
import Tutorial.*; // Package for EAServer stub classes

public class Arith {

static public final String compName = "javatut/JavaArithmetic";

static public void main(String options[]) {

String _usage = "Usage: Arith iiop://<host>:<port>\n";
String _ior = null;

try {

if (options.length >= 1)
{
_ior = options[0];
}
else
{
System.out.println(_usage);

return;
}

//
// Initialize the CORBA client-side ORB and
// obtain a stub for the EAServer component instance.
//
System.out.println("... Creating session.");

//
// Initialize the ORB.
//
java.util.Properties props = new java.util.Properties();
props.put("org.omg.CORBA.ORBClass", "com.sybase.CORBA.ORB");

Creating the application

188 EAServer

ORB orb = ORB.init(options, props);

//
// Create an instance of the EAServer SessionManager::Manager
// CORBA IDL object.
//

Manager manager = ManagerHelper.narrow(orb.string_to_object(_ior));

//
// Create an authenticated session with user "Guest" and password
// "GuestPassword2".
//
Session session = manager.createSession("Guest", "GuestPassword2");

System.out.println("... Creating component instance.");

//
// Create a stub object instance for the
// Tutorial/JavaArithmetic EAServer component.
//
JavaArithmetic comp =
JavaArithmeticHelper.narrow(
session.create(compName));

if (comp == null)
{

System.out.print("ERROR: Null component instance. ");
System.out.print(

"Verify that the component " + compName +
"exists and that it implements the " +
"Tutorial::JavaArithmetic IDL interface.");

return;
}

System.out.println("... Created component instance.");

//
// Invoke the multiply method.
//

System.out.println("... Multiplying:\n");
double m1 = 3.1;
double m2 = 2.5;
double result = comp.multiply(m1, m2);

System.out.println(" " + m1 + "*" + m2 + "=" + result);

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

CORBA Components Guide 189

// Explicitly catch exceptions that can occur due to user error,
// and print a generic error message for any other CORBA system
// exception.

} catch (org.omg.CORBA.COMM_FAILURE cfe)
{

// The server is not running, or the specified URL is
// wrong.
System.out.println(

 "Error: could not connect to server at " + _ior + "\n"
 + "Make sure the specified address is correct and the "
 + "server is running.\n\n" + _usage);

} catch (org.omg.CORBA.OBJECT_NOT_EXIST cone)
{

// Requested object (component) does not exist.
System.out.println(
 "Error: CORBA OBJECT_NOT_EXIST exception. Check the "

 + "server log file for more information. Also verify "
 + "that the " + compName
 + "component has been created properly. \n");

} catch (org.omg.CORBA.NO_PERMISSION npe) {
 // Login failed, or the component requires an authorization role

// that this user is not a member of.
System.out.println("Error: CORBA NO_PERMISSION exception. "

 + " Does the Guest account exist and have"
 + " you set the password to match this example"
 + " code?");

 npe.printStackTrace();

 } catch (org.omg.CORBA.SystemException se)
{

// Generic CORBA exception
System.out.println(

 "Received CORBA system exception: "
 + se.toString());

se.printStackTrace();
}

return;
} // main()

}

Creating the application

190 EAServer

❖ Compiling the client application

• Compile the application source using the component Ant project,
specifying the client target. For example, on Windows

set DJC_HOME=D:\Sybase\eas60
cd %DJC_HOME%\samples\tutorial\java-corba
build client

Or, if running UNIX with C shell:

setenv DJC_HOME /opt/Sybase/eas60
cd $DJC_HOME/samples/tutorial/java-corba
build client

The build script or batch file runs the EAServer djc-ant command, which
invokes Ant on the default build file, build.xml in the current directory.

Run the client program
If you have not refreshed or restarted the server since creating the
JavaArithmetic component, refresh the server before running the client
program.

Create a batch file or UNIX shell script to run the client application, then run
it. The batch file or shell script configures the CLASSPATH environment
variable, then runs the application using the JDK 1.4 java program included
with your EAServer installation.

If necessary, you can run the client on a different machine than the server host,
as long as your server uses a real host address and not localhost or 127.0.0.1.

If everything is working, the application prints the results from the invocation
of the multiply method. If not, check the error text printed on the console where
you ran the client, and check for error messages in the server log file.

❖ Running the client on Windows

1 Create a file named runclient.bat containing the commands below:

setlocal
call %DJC_HOME%\bin\djc-setenv.bat
cd %DJC_HOME%\samples\tutorial\java-corba
set CLASSPATH=%CLASSPATH%;.\client-classes
%JAVA_HOME%\jre\bin\java
com.sybase.easerver.tutorials.java.client.Arith %*

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

CORBA Components Guide 191

2 Run the client by running the batch file and specifying the server’s IIOP
URL on the command line, for example:

set DJC_HOME=D:\Sybase\eas60
runclient iiop://myhost:2000

❖ Running the client on UNIX

1 Create a file named runclient containing the commands below:

#!/bin/sh
. $DJC_HOME/bin/djc-setenv.sh
cd $DJC_HOME/samples/tutorial/java-corba
CLASSPATH=$CLASSPATH:./client-classes export CLASSPATH
$JAVA_HOME/jre/bin/java com.sybase.easerver.tutorials.java.client.Arith
$*

2 Change the file permissions to allow the script to be executed. For
example:

chmod 777 runclient

3 Run the client by running the batch file and specifying the server’s IIOP
URL on the command line, for example:

setenv DJC_HOME /opt/Sybase/eas60
runclient iiop://myhost:2000

Creating the application

192 EAServer

CORBA Components Guide 193

A
activation, component

definition of 7
addresses, network

specifying in C++ clients 108
specifying in Java clients 168

applications
C++ 125
CORBA 181

attributes, IDL
defining 31

authentication
and secure ports 169
in C++ clients 109
in Java clients 168

authentication, mutual SSL
in Java clients 169

B
BCD IDL module

use in C++ clients 73
BCD.hpp

C++ header file 103
BCD::Binary IDL datatype 32
BCD::Decimal IDL datatype 32
BCD::Money IDL datatype 32
building

C++ clients 120
C++ components 81

Byte datatype 59

C
C components

setting transaction state in 96
C++

client code for 133
clients 101
compilers for 131, 132, 137
component code 130
components 77
data source access in 84
generating files for 130
running clients 139
tutorial 125
using namespaces in 80, 103

C++ clients
compiling and linking 120
configuring ORB properties for 104
deployment of 120
developing 101
generating stubs for 102
header files for 103
IDL datatype mappings for 72
implementing 102
introduction to 71, 101
invoking methods from 110
ORB initialization in 104
processing result sets in 110
requirements for 72
using naming services in 121
using third-party ORBs with 121

C++ components
accessing database connections in 84
compiling and linking 81
datatypes used in 72
debugging 98
development procedure for 77
file naming conventions 79
generating source files for 78
handling errors in 98
implementing 80
issuing intercomponent calls from 97
obtaining database connections in 84
raising exceptions in 98
system requirements for 72

Index

Index

194 EAServer

when to regenerate skeletons for 80
caches, connection

C code examples using 85, 87
using in C++ components 84

certificates, SSL
accessing in Java components 158

Character datatype 59
character sets

specifying for C++ clients 105
Client-Library

connection caches defined for 84
control structures 87
header files for 86

clients 67
C++ 125, 133
developing 67
Java 186

CM_CACHE C control structure 84, 87, 89
code

C++ client 133
C++ component 130
for Java clients 186
generating for C++ 130
Java component 184

com.sybase.CORBA.local
Java ORB property name 166

com.sybase.CORBA.ProxyHost
Java ORB property name 166

com.sybase.CORBA.ProxyPort
Java ORB property name 166

COMM_FAILURE CORBA system exception 119, 177
compiling

C++ clients 120, 137
C++ components 81, 131, 132

completeWork method in Java interface InstanceContext
158

components
C++ 77–98, 125, 128
creation and destruction of 6
deactivation of 9
deploying 62
developing 56
Java 147–160, 183
Java code for 184
lifecycle of 5, 6
properties for C++ 129

properties for Java 184
recycling of instances 10
serializing references in 175
stateful 8
stateful vs. stateless 8
stateless 6, 8, 9
transactional properties 15

components, C++
building 131, 132
compiling 131, 132

components, Java 181
connection caches

C code examples using 85, 87
connection management

C language examples for 85, 87
in C++ components 84

Connection object 67
connection timeout

configuring for C++ clients 106
configuring for CORBA clients 164
configuring for Java clients 165

ConnectionTimeout
Java/CORBA client property 164

constructor
for C++ components 80
for Java components 150

control structures
Client-Library 87
for connection management 84, 87, 89
OCI 8.x 89

conventions xii
naming 65

CORBA
See also IDL; ORB, C++; ORB, Java
and C++ clients 71, 101
and Java clients 141
Any datatype 144
C++ components 77
C++ tutorial for 125
creating Java applications with 181
IDL 27
interoperable object references 97, 108, 152, 168
Java tutorial for 181
system exceptions 119, 176
Typecode datatype 144
user-defined exceptions 120, 177

Index

CORBA Components Guide 195

CosNaming CORBA IDL module
use in C++ clients 121

create method in IDL interface
SessionManager::Session 109, 172

CreateInstance, TransactionServer method 61
createServerResultSet method in Java class JContext

155
createServerResultSetMetaData method in Java class

JContext 154
createSession method in IDL interface

SessionManager::Manager 109, 171
creating

Java components 147
CtsSecurity IDL module 158
CtsSecurity::UserCredentials IDL interface 158

D
data access 60
data sources 85

C code examples using 85
JDBC, accessing from NVOs 60
Sybase native, accessing from NVOs 60
using in C++ components 84

database connections
accessing in C++ components 84
accessing in Java components 153

DataStore system object 59
datatype mappings, PowerBuilder to EJB 57
datatypes

as used in C++ clients 72
as used in Java components 142
Byte 59
Character 59
defining in IDL 32
Java stubs for 149
predefined in EAServer 32
used in C++ components 72
user-defined 33

deactivation
See also early deactivation
definition of 7

debugging
C++ components 98

debugging remotely 66

declarations, IDL
for attributes 31
for interfaces 28
for operations 29

defining
C++ component 128
Java components 147

deploying components 62
deployment

of C++ clients 120
of C++ components 82
of Java clients 178

destructor
for C++ components 80

developing
C++ clients 101
C++ components 77
clients 67
components 56
Java clients 161
Java components 147

development environments
Java 182

DisableCommit, TransactionServer method 61
DLLs

building for C++ components 81
done method in Java interface JServerResultSet 155
dynamic enlistment 20

E
early deactivation 9

definition of 6
EAServer

component lifecycle model 5
transaction processing model 12

EAServer Transaction Manager 21
recovery limitations 22
resource manager 25
resource recovery and transaction logging 22
transaction interoperability 23

EAServer transactions
benefits of 13
explanation of 12

EJB datatype mappings 57

Index

196 EAServer

EJBConnection class 68
EnableCommit, TransactionServer method 61
errors

See also exceptions
handling in C++ components 98
handling in Java components 150
logging in C++ components 98
logging in Java components 151

examples
intercomponent calls 97, 152
using JagCmGetCachebyUser 85

exceptions
CORBA system 119, 176
defining in IDL 35
generating C++ stubs for 79
generating Java stubs for 149
handling in Java clients 176
listing in IDL method declarations 29, 30
raising in C++ components 98
raising in Java components 150
user-defined 120, 177

F
files, repository 65
forwarding

result sets from Java components 154
forwardResultSet method in Java class JContext 154

G
garbage collection, Java

configuring for Java clients 164
generated code 64
generating

C++ component source files 78
C++ files 130
C++ stubs 102
Java component source files 149
Java files 185
Java stubs 162

H
header files

for C connection manager routines 84
for C++ clients 103

holder classes, Java
for Java components 145

I
IDL

and C++ clients 71, 101
and Java clients 141
defining attributes in 31
defining datatypes in 32
defining exceptions in 35
defining methods in 29
defining modules 27
defining operations in 29
deploying to EAServer 36
generating documentation for 38, 39
interfaces 28
learning 27
stub generation directives 38
using in EAServer 27

IIOPS
use in Java applets 169

importing
Java packages required for Java components 149

inheritance, interface 28
init Java ORB method 167, 168
instance pooling

adding support for 10
definition of 6

InstanceContext Java interface 151
intercomponent calls

and EAServer transactions 13
example 97, 152
issuing from C++ components 97
issuing from Java components 151

Interface Definition Language.
See IDL

interfaces, IDL
explanation of 28
structure of 28
suggested naming conventions for 29

Index

CORBA Components Guide 197

interoperable object reference, CORBA.
See IORs

IORs
for C++ client ORB 108
for C++ intercomponent calls 97
for Java client ORB 168
for Java intercomponent calls 152
serializing and deserializing 175

is_nil C++ ORB method 103
IsInTransaction, TransactionServer method 61
IsTransactionAborted, TransactionServer method 61

J
JAG_CODESET environment variable 105
jag_dbg_stop C function 99
JAG_HTTP environment variable 105
JAG_HTTPUSEPOST environment variable 105
JAG_LOGFILE environment variable 105
JAG_NO_NAMESPACE C++ macro 103
JAG_RETRYCOUNT environment variable 105
JAG_RETRYDELAY environment variable 105
JagCmGetCachebyName C routine 86, 88
JagCmGetCachebyUser C routine 85, 86, 88
JagCmGetConnection C routine 85, 87, 88
JagCmReleaseConnection C routine 88
JagCompleteWork C routine 96
JagContinueWork C routine 97
JagDisallowCommit C routine 97
JagLog C routine 98
jagpublic.h C header file 84
JagRollbackWork C routine 97
Jaguar.writeLog() Java method 151
Java

class names as extended IDL datatypes 34
clients 161
components 147–160
defining components 183
development environments 182
generating files for 185
holder classes 145
skeletons 185
stubs 185
tutorial for 181

Java clients

configuring ORB properties for 163
creating 161
deploying 178
generating stubs for 162
handling exceptions in 176
instantiating proxies in 162
introduction to 141
invoking methods from 175
ORB initialization in 163
serializing component references in 175
using naming services in 162
using third-party ORBs with 179

Java components
accessing SSL certificates in 158
constructor for 150
creating 147
datatypes used in 142
defining 147
developing 147
issuing intercomponent calls from 151
logging errors in 151
managing database connections 153
refreshing after changes 160
setting transaction state in 158
system requirements for 142

Java packages 64
Java Transaction Service. See JTS
JContext Java class 154, 155
JDBC data sources, configuring 60
JNDI name, configuring for a JDBC data source 60
JServerResultSet Java interface 154, 155
JServerResultSetMetaData Java interface 154, 155
JTS

transaction options 15

L
life cycles

component states in 6
of components in general 5

linking
C++ clients 120
C++ components 81

live editing 63
log file

Index

198 EAServer

writing to from C++ components 98
writing to from Java components 151

logging
errors from Java components 151

M
makefiles

for C++ components 81
for UNIX 82
for Windows 83

Management Console
editing IDL files with 27
generating Java component source files with 149

Manager IDL interface in module SessionManager 108,
168, 171

method overloading
for C++ stubs and components 30
for Java stubs and components 30
in C++ components 76
in interface definitions 30

methods
See also method overloading
defining in IDL 29
invoking from C++ clients 110
invoking from Java clients 175
overloaded 30
suggested naming conventions for 29

MJD IDL module
use in Java clients 73

MJD.hpp
C++ header file 103

MJD::Date IDL datatype 32
MJD::Time IDL datatype 32
MJD::Timestamp IDL datatype 32
module definition files

for C++ components 83
use of to build C++ DLLs 83

modules, IDL
explanation of 27
managing in EAServer 36
stub generation for 38

mutual SSL authentication
in Java clients 169

N
namespaces

for C++ 80, 103
naming conventions 65

for C++ component files 79
for interfaces and methods 29

naming services
use in C++ clients 121
use in Java clients 162

next method in Java interface JServerResultSet 155
NO_PERMISSION CORBA system exception 119,

173, 176, 177
NonVisualObject. See NVOs
NVOs

defined 56
JDBC data sources, accessing from 60
Sybase native data sources, accessing from 60

O
object persistence 22
object references.

See IORs
OBJECT_NOT_EXIST CORBA system exception

119, 173, 177
object_to_string Java ORB method 175
OCI

control structures for 89
ODBC

connection caches defined for 84
control structures for 84
header files for 84, 86

operations, IDL
defining 29
suggested naming conventions for 29

ORB, C++
configuring 104
connecting to third-party server-side ORBs 123
generating stubs for 102
initialization of 104
specifying IORs for 108
specifying properties for 104
third-party 121
use in C++ components 97

ORB, Java

Index

CORBA Components Guide 199

configuring 163
connecting to third-party server-side ORBs 180
generating stubs for 162
initialization of 163
specifying IORs for 168
specifying properties for 163
support for 142
third-party 179
use in Java components 151, 152

ORB_init C++ ORB method 104
ORBCodeSet

C++ ORB property name 105
ORBforceSSL

C++ ORB property name 106
ORBHttp

C++ ORB property name 105
ORBHttpUsePost

C++ ORB property name 105
ORBidleConnectionTimeout

C++ ORB property name 106
ORBLogFile

C++ ORB property name 105
ORBProxyHost

C++ ORB property name 106
ORBProxyPort

C++ ORB property name 106
ORBRetryCount

C++ ORB property name 105
ORBRetryDelay

C++ ORB property name 105
overloaded methods

defining in IDL 30
for C++ stubs and components 30
for Java stubs and components 30

P
packages, Java

importing in Java components 149
parameters

defining in IDL 29
for Java component methods 142
specifying datatypes for 32

passwords
specifying in C++ clients 109

specifying in Java clients 171
port numbers

specifying in C++ clients 108
specifying in Java clients 168

ports, secure
connecting to 169

PowerBuilder
clients 67
components 62
to EJB datatype mappings 57

properties
for C++ client ORB 104
for C++ components 129
for Java client ORB 163
for Java components 184

proxies
instantiation in Java clients 162

R
refreshing

Java components 160
remote debugging 66
repository files 65
requirements

for C++ clients 72
for C++ components 72
for Java 182
for Java components 142

resource manager 25
resource recovery 22
result sets

constructing with Java calls 155
forwarding from Java components 154
processing in C++ clients 110
returning from Java components 153
sending from Java components 153

ResultSet
return type 59

ResultSet IDL datatype in module TabularResults 32
ResultSet Java class, forwarding 154
ResultSets IDL datatype in module TabularResults 32
return types

defining in IDL 29
for component method declarations 29

Index

200 EAServer

for Java component methods 142
roles, security 65
rollbackWork method in Java interface InstanceContext

158
runtime problems, troubleshooting 66

S
secure ports

connecting to 169
security roles 65
Session IDL interface in module SessionManager 109,

171
SessionManager CORBA IDL module

use in Java clients 171
SessionManager::Factory CORBA IDL interface

use in C++ clients 171
set<Object> method in Java interface JServerResultSet

155
SetAbort, TransactionServer method 61
setColumnCount method in Java interface

JServerResultSetMetaData 154
setColumnDisplaySize method in Java interface

JServerResultSetMetaData 154
setColumnType method in Java interface

JServerResultSetMetaData 154
SetComplete, TransactionServer method 61
shared libraries, UNIX

building for C++ components 81
SharedObjects Java interface 151
skeletons

C++ 130
generating for C++ components 78
generating Java 185
when to regenerate 80

socketReuseLimit
C++ ORB property name 106

software requirements
for C++ components 72
for Java components 142

SSL authentication, mutual
in Java clients 169

SSL certificates
accessing in Java components 158

state primitives, for transactions 16

stateful components
definition of 8

stateless components
creating 8
deactivation and instance pooling of 6
definition of 9

states
in component lifecycle 6

string_to_object C++ ORB method 97, 108
string_to_object Java ORB method 152, 171, 175
stubs

C++ 130
generating C++ 102
generating for Java clients 162
generating Java 185
instantiation in Java clients 162

stubs, C++
for third-party ORBS 121
generating 102

stubs, Java
for third-party ORBs 179
generating 162

system exceptions, CORBA 119, 176
system requirements

for C++ clients 72
for C++ components 72
for Java components 142

T
TabularResults IDL module

use in C++ clients 111
TabularResults.hpp

C++ header file 103
TabularResults::ResultSet IDL datatype 32
TabularResults::ResultSets IDL datatype 32
threads

intercomponent calls from 166
timeouts, connection

for C++ clients 106
for CORBA clients 164
for Java clients 165

transaction interoperability 23
transaction logging 22
transaction options

Index

CORBA Components Guide 201

JTS 15
transaction, EAServer

definition of 12
TRANSACTION_ROLLEDBACK CORBA system

exception 119, 177
TransactionLogManager 23
transactions

and intercomponent calls 13
benefits of using 13
controlling outcome of 16
defining how components participate in 14
dynamic enlistment for bean-managed 20
examples of 13, 19
how to commit and roll back 16
multi-component 16
overview of 12
semantics of 14
server processing of 12
specifying coordinators for 15
specifying how a component participates in 15
state primitives for 16

TransactionServer class 61
troubleshooting 66
tutorial, C++

client code for 133
defining the component 128
generating files for 130
running 139
server-side code 130

tutorial, Java
client program for 186
component code for 184
defining the component 183
generate files for 185

tutorials
C++ 125
Java 181

two-phase commit, verifying support for 15
typographical conventions xii

U
user names

specifying in C++ clients 109
specifying in Java clients 171

UserCredentials IDL interface in module CtsSecurity
158

using C++ keyword 80, 103
using in C++ 85

W
Web DataWindow 68
Web services 64

deploying 64
writeLog method in Java class Jaguar 151

Index

202 EAServer

	CORBA Components Guide
	About This Book
	CHAPTER 1 CORBA Component Overview
	About CORBA
	CORBA components in EAServer
	The CORBA component development process
	CORBA component tutorials

	CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics
	Component life cycles
	States in the component life cycle
	Stateful versus stateless components
	Supporting early deactivation in your component
	Supporting instance pooling in your component
	Long versus short transactions
	Long transactions
	Short transactions

	EAServer’s transaction processing model
	How EAServer transactions work
	Benefits of using EAServer transactions
	Defining transactional semantics
	Transaction coordinator
	Transactional component attribute
	Determining when transactions begin
	Using transaction state primitives

	Example
	Dynamic enlistment in bean-managed transactions

	EAServer Transaction Manager
	Resource recovery and transaction logging
	Recovering XA resources registered by user components

	Transaction interoperability
	Resource manager
	Enlisting XA resources with Transaction Manager

	CHAPTER 3 Using CORBA IDL
	Learning IDL
	IDL modules
	Preprocessor directives
	IDL interfaces
	Choosing an interface name
	Operation declarations
	Attribute declarations
	Datatypes for parameters and return values
	User-defined exceptions
	Interface stub generation directives

	Managing IDL in EAServer
	Deploying and viewing IDL with the Management Console
	Deploying IDL from the command-line
	Specifying Java package mappings for IDL modules

	Using IDL documentation comments
	Refreshing the HTML documentation
	Viewing HTML documentation for IDL modules

	CHAPTER 4 Managing CORBA Packages and Components
	What is a CORBA package?
	Managing CORBA packages in the Management Console
	Managing CORBA packages with configuration scripts
	CORBA package property descriptions
	CORBA component property descriptions
	Transaction type values

	CHAPTER 5 Developing and Deploying PowerBuilder Components
	Developing PowerBuilder components
	Mapping datatypes
	Accessing data
	Logging errors
	Managing transactions

	Deploying components
	PowerBuilder components
	Java packages
	Web services
	Generated code
	Naming conventions
	Repository files
	Security roles

	Remote debugging
	Troubleshooting

	CHAPTER 6 Developing PowerBuilder Clients
	Developing clients
	Component access
	Web DataWindow

	CHAPTER 7 CORBA/C++ Overview
	Overview
	Requirements
	Supported datatypes
	C++ mappings for predefined IDL datatypes
	Using mapped IDL types
	Overloaded methods

	CHAPTER 8 Developing CORBA/C++ Components
	Procedure for creating C++ components
	Generating C++ component files
	C++ file naming conventions and locations
	Regenerating changed C++ component methods

	Writing the class implementation
	Compiling source files
	Compiling on UNIX platforms
	Compiling on Windows
	Visual C++

	Using data sources
	Using ODBC data sources
	Header files
	Data structures
	ODBC example

	Client-Library data sources
	Header files
	Data structures
	Client-Library example
	Client-Library error and message callbacks

	Oracle OCI data sources
	Oracle autocommit setting
	Header files
	Data structures
	OCI example

	Managing explicit OTS transactions
	Initializing the ORB
	Calling CosTransactions::Current interface methods
	Executing tasks outside of a transaction
	Exceptions

	Setting transaction state
	Issuing intercomponent calls
	To components on a non-EAServer ORB

	Handling errors
	Debugging C++ components

	CHAPTER 9 Developing CORBA/C++ Clients
	Procedure for creating CORBA C++ clients
	Generating stubs
	Writing CORBA C++ clients
	Adding required include and namespace declarations
	Instantiating component proxies
	Configure and initialize the ORB runtime
	Creating a Manager instance
	Creating sessions
	Creating stub instances

	Invoking methods
	Processing result sets
	Example of processing result sets
	Retrieving the result set
	Iterating through the rows and columns
	Retrieving the column datatype and processing values

	Handling exceptions
	CORBA system exceptions
	User-defined exceptions

	Compiling C++ clients
	Deploying C++ clients
	Using the CosNaming interface
	Using CORBA ORB implementations other than EAServer
	Connecting to EAServer with a third-party client ORB
	Generating compatible C++ stubs
	Instantiating components using a third-party ORB

	Connecting to third-party ORBs using the EAServer ORB

	CHAPTER 10 Tutorial: Creating C++ Components and Clients
	Overview of the sample application
	Tutorial requirements
	Creating the application
	Verify your environment
	Start EAServer and the Management Console
	Import the IDL interface
	Define the package and component
	Define a new package
	Define a new component

	Generate server integration code and implementation templates
	Write the server-side code
	Create a user account
	Write the client-side code
	Compile the client executable
	Run the client executable

	CHAPTER 11 CORBA/Java Overview
	Overview
	Requirements
	Java IDL datatype mappings
	Binary, Fixed-Point, and Date/Time types
	Result set types
	User-defined IDL types
	Camel case versus default IDL-to-Java mappings

	Holder classes for IDL types

	CHAPTER 12 Developing CORBA/Java Components
	Procedure for creating CORBA/Java components
	Write the Java source file
	Generate Java interface files for IDL types
	Add package import statements
	Code the constructor
	Add error handling code

	Advanced techniques
	Issue intercomponent calls
	Manage database connections
	Return result sets
	Forwarding a ResultSet object
	Sending results row-by-row

	Access SSL client certificates
	Set transactional state
	Retrieve user-defined component properties

	Generating EJB wrapper components
	Refreshing Java components

	CHAPTER 13 Developing CORBA/Java Clients
	Procedure for creating CORBA/Java clients
	Generating Java stubs
	Instantiating proxy instances
	Configuring and initializing the ORB runtime
	Creating a Manager instance
	Creating sessions
	Creating stub instances

	Executing component methods
	Serializing component instance references
	Handling exceptions
	Deploying and running Java clients
	Using other CORBA ORB implementations
	Connecting to EAServer with a third-party client ORB
	Connecting to third-party ORBs using the EAServer ORB

	CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients
	Overview of the sample application
	Tutorial requirements
	Creating the application
	Start EAServer and the Management Console
	Import the IDL interface
	Define the package and component
	Define a new package
	Define and install a new component

	Compile the component implementation
	Generate stubs and skeletons
	Create a user account
	Create the client program
	Run the client program

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

