SYBASE

CORBA Components Guide

EAServer
6.0

DOCUMENT ID: DC00547-01-0600-01
LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, Datawindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Devel opers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Ell Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (Iogo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASIS, OASIS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business I nterchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optimat+, Partnershipsthat Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, Physical Architect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage |11 Engineering, Startup.Com, STEP, SupportNow, SW.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financia Server, Sybase Gateways, Sybase |Q, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future |s Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, Total Fix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite. NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, Visua Writer, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK'S, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and X TNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

PN oo 10) A I g =T o o PRSP iX
CHAPTER 1 CORBA COmMpPoNeNnt OVEIVIEWceveeeeeeiesiiiiiiinineenreeeeeeeessensnnnnnes 1
ADOUL CORBA ...ttt 1

CORBA components in EASEIVENcccciiiiiiiiieeeiee e eieivieeeae e e 1

The CORBA component development ProCessccccccvvvevvveeeieennn. 2

CORBA component tUtONalScooviuiiiiiiieeeeiiiiecee e 3

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics 5
Component life CYCIESvvvviiiiiiiii e 5

States in the component life cycle ..., 6

Stateful versus stateless COmpoNents........cccccceevvviviiieeieeeniiinns 8

Supporting early deactivation in your component 9

Supporting instance pooling in your component 10

Long versus short transactionscccccceeevvvcciiieeiee e e, 11

EAServer’s transaction processing model...........cccccvvvevieeeiiiiivnnnnn. 12

How EAServer transactions WOrk.............cccccevveeeenniieeeinieenn. 12

Benefits of using EAServer transactions...........cccccceeevvevvvnnen. 13

Defining transactional semantics..........cccccceevvvciiiivieeeeeeecienne, 14

EXAMPIE ooeiiiiiiiie e 19

Dynamic enlistment in bean-managed transactions................ 20

EAServer Transaction Manager..........ooccvvvveeeeeeiiiiiiieeeeeee s 21

Resource recovery and transaction 10ggingccccceevvvvvvvneen. 22

Transaction interoperabilitycccoveeveeiiiiiiiiiiieen 23

RESOUICE MANAGEN ... eeeeeeeeeeeeeeeereeteeeeeeeeeeeeeeeeeensseeeeensesnrennennes 25

Enlisting XA resources with Transaction Manager.................. 25

CHAPTER 3 USING CORBA IDL ..coiiiiiiiiei ettt 27
[T 14 o1 To T | PRSP 27

IDL MOAUIES ..ottt 27

Preprocessor dir€CHIVEScuuveeeeeeeeiiiiiieee e 28

IDL INEEIACES ..cooiiiiei ittt 28

Managing IDL in EASEIVETcuuuiiiee e e 36

CORBA Components Guide iii

Contents

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Deploying and viewing IDL with the Management Console 37

Deploying IDL from the command-line............ccccccoovviviiiennnnn. 37
Specifying Java package mappings for IDL modules.............. 38

Using IDL documentation COMMENLScceeeeeeiiiiviiieeeeeeeiiivneeeens 38
Refreshing the HTML documentation...........cccccccceevvviiivvnnnnnn. 39

Viewing HTML documentation for IDL modules...................... 40
Managing CORBA Packages and Components.........cccccceeveeennnn. 41
What is @ CORBA Package?........ccceovvviiiiiiieeeieiiiiiieee e e 41
Managing CORBA packages in the Management Console 42
Managing CORBA packages with configuration scripts................. 43
CORBA package property descriptionscccccvvvvvvieeiieeniiniinnnnn 45
CORBA component property descriptionsocccvvveevieesinivinnenn. 45
Transaction type ValUEScccvvveiiieeiiniiiiiiiee e 52
Developing and Deploying PowerBuilder Components 55
Developing PowerBuilder cOmponentsccccccovvvvvieeeinenniiniinnnn. 56
Mapping datatyPesSccvveeiieiiiiiiiiieee e 56
ACCESSING AALAciiiiiiiiee ettt 60
(oo o1 aTo J=T 0 (o] =TSRRI 60
Managing tranSactioNSccovcvvriieieeei i ee e esiireee e 61
Deploying COMPONENES.......ccoicviiiiiiee et e e e et e e e e eeneeaee s 62
PowerBuilder componentsccccovvvveeeeiiiciiiiiiiee e 62

JaVva PACKAGES ...ccceeiiiiviiie e 64

WED SEIVICES ... 64
Generated COUE.........ccoiiiieiiiiii et 64

Naming CONVENTIONSuueviiiiiiiiiiiiiee et 65
REPOSILOrY filE€S ...vvviiiiiiiiiii e 65
SECUNMLY FOIES...cciiiiiiiiiie et 65
Remote debugginguuuiviiiiiiiiiiee e 66
TroublESNOOLING ...vvvviiiiiiiiiii e 66
Developing PowerBuilder CHentsccccccoviiveeeeiiniiee e 67
DeVveloping CHENTSuuviiiiiiiiic e 67
COMPONENT ACCESS. ... 68

Web DataWINAOW.ccooviiiaiiiee e 68
CORBA/CH+ OVEIVIEW ..eeeeiiiiiiiiiie st eeesiiieee e aiee e snseeeeee s annnaee s 71
OVEBIVIBW ...ttt ettt ettt e et e e e s et e e e s enbee e e s nbeeans 71
REQUITEMENTS ...eiiii et e e e e e e 72
Supported datatyPeSuvvveeeiieiiiiiieiee e 72
C++ mappings for predefined IDL datatypes.........cccccovvuvvvnenn. 73

EAServer

Contents

Using Mapped IDL tyPeSuuuiieeeeieiiiiiiiiee e eesivrree e e e e e ssivveeeeas 74
Overloaded Methodscocueiiiiiiiiiniie e 76
CHAPTER 8 Developing CORBA/C++ COMPONENtS......coceeeiiiiiiiiiiiiiiiieeeeeeennn 77
Procedure for creating C++ COMPONENLScceveeviciviiiieieeeeiiiiiienn 77
Generating C++ component filesScccccoiiiiiiiiiiiiiie s 78
C++ file naming conventions and locations...........cccccovvvvvnen. 79
Regenerating changed C++ component methods................... 80
Writing the class implementationcccccceviiiiiiiiiine e, 80
Compiling SOUICE fileScuviiiiiiiiiiiiie e 81
Compiling on UNIX platformscooooviiiiiiiiien e 82
Compiling oN WINAOWSoviiiiieeeiiiiiiiiee e 83
USING data SOUICESuvvviieeeiiiiiiiiiiie e e s ceiiree e e e e e s s estiaaen e e e e e s s nnseaneees 84
Using ODBC data SOUICESccceeeviiuivrriieeeeeesiiiireeeeeeeesnnnnnns 84
Client-Library data SOUICEScceeeviiiviiiieeeeeeiiirieee e 86
Oracle OCI data SOUICEScuueeeiiiiieeeiiieeeeiiee e eee e eieee e 88
Managing explicit OTS transactions..........cccccceeevieiiiiieeieee s 91
Initializing the ORB.........uviiiiiiiiiii e 92
Calling CosTransactions::Current interface methods.............. 93
Executing tasks outside of a transaction..............cccccevvvivvnnenn. 94
EXCEPLIONS ..ccoiiiiiiiit et 95
Setting transaction StAte..........cccvvveiiiiei i 96
Issuing intercomponent CallS..........oooviiiiiiiieiiiiiiiiie e 97
To components on a non-EAServer ORBccceee. 98

[F= Lo [TaTo JH=T4 o] £ T PSRRI 98
Debugging C++ COMPONENTSuuvviieeeeiiiiiiiiiee e e eesiiiree e e e e e e 98
CHAPTER 9 Developing CORBA/C++ ClientS.....ccccvviveviiieeee i 101
Procedure for creating CORBA C++ clientS.........ccoceeevcvveeeeennee... 101
Generating StUDScociiiiie e 102
Writing CORBA C++ ClIENS ...uvviviieecccciiieieec e 102
Adding required include and namespace declarations.......... 103
Instantiating compoNeNnt ProXi€S.........covvvivrrieeieeeniiiiiiiieeeeeenns 104
INVOKING MEthOAS ... 110
Processing result SELSc.vvvviieieiiiiiiiiiiiee e 110
Handling eXCepLioNSuvviiiiiiiiiiiiieeee e 118
Compiling CH+ ClIENES ...vviiiieeci e 120
Deploying CH++ CHENTScveiiiiiiiiiiiee e 120
Using the CosNaming interfaceccccccvvvvveeeeeiiiciiiieee e 121
Using CORBA ORB implementations other than EAServer......... 121
Connecting to EAServer with a third-party client ORB 121

CORBA Components Guide

Connecting to third-party ORBs using the EAServer ORB.... 123

Contents

CHAPTER 10

CHAPTER 11

CHAPTER 12

Vi

Tutorial: Creating C++ Components and Clients...................... 125
Overview of the sample applicationccccccceeeiiiiiiiiiien e, 125
Tutorial reqUIrEMENTSooviieiiiiie e 125
Creating the appliCationoocciiiiiiieiiiiie e 126

Verify your @NVIFONMENTccoivviiiieee e eciiiiiiee e e esenreeae s 126
Start EAServer and the Management Console 127
Import the IDL iNterface..........ooccvvieeiieei i 128
Define the package and component...........ccccceveeviiiciviieeneenn. 128
Generate server integration code and implementation templates
130
Write the server-side COUeccovviiiiiiieiiniee e 130
Create @ USEer aCCOUNT........ccuvvveiiiee it 133
Write the client-side codecooviiiiiiii i 133
Compile the client executableccocceiiiiiiiiiis 137
Run the client executableccooieiiii e, 139

CORBA/JAVA OVEIVIBWevieiiiiiiiesiriiieie e eiiiee et 141
OVEIVIBW ...ttt 141
REQUIFEMENTS ...eeii ittt e e 142
Java IDL datatype MappingS.........ccccurvrreeeeeiiiiinniireeeeessirneeeeeeeeens 142

Binary, Fixed-Point, and Date/Time typesS..........cccecuvvvvereenn. 143
RESUIL SEL LYPES..eiiiii et 144
User-defined IDL tyPeS......uuuuiiieeiiiiiiiiieiee s eciiieee e e e e 144
Holder classes for IDL typesSccccvvvveeeeeeiiiiiiiiee e 145

Developing CORBA/Java Componentsccccceeeveeiiviiiinnneneenn. 147
Procedure for creating CORBA/Java components............cccuvveee.. 147
Write the Java Source file ..o 148

Generate Java interface files for IDL typesccccccvveeriiins 149
Add package import statementS..........ccccvvvveiieeeiiiiiiiiiieeeeeen 149
Code the CONSITUCTONeveiiiiiee it 150
Add error handling COcovviiiiiiiiiie e 150
Advanced teChNIQUES.........cuvviiie e 151
Issue intercomponent calls..........ccccvvveeeeeiiiiiiiiee e 151
Manage database CONNECLIONScccevvviiiiiiieeeeeeeiiiiiieeenn. 153
REtUIN reSUIt SELS ..o 153
Access SSL client certificatescccccevvvvvviieeeeeciiiiiiieeeeeen 158
Set transactional state.........cccccceeiviciiiiiiie e, 158
Retrieve user-defined component propertiesccccee.... 159
Generating EJB wrapper COMPONENESuveevveeeriiiiiieeeieeesninnnns 160
Refreshing Java COMPONENTS.........ccoeviiiiiiiiiiiiee e 160

EAServer

Contents

CHAPTER 13 Developing CORBA/Java Clents......ccccccccvvvveeee s vcciiieiieeeee e 161
Procedure for creating CORBA/Java clients...........ccccccveeviiiivnnnn. 161
Generating Java StUDSccoiiiiiiiiiiie e 162
Instantiating ProxXy iNStANCESccoviiiiviiieee e 162

Configuring and initializing the ORB runtime............c......o..... 163
Creating a Manager iNSaNCeccoovvviiviiieeniee i 168
Creating SESSIONScuuiiieiiiiiiiiiitie et e e e s a e aaees 171
Creating Stub iNStanCes..........c.vvvvveee i 172
Executing component methods ..o 175
Serializing component instance referencesccoccvvvevieeeiinns 175
Handling @XCEPLIONSuvieiiiiiiiiiiiee e e e e 176
Deploying and running Java clientscccccccceviviiiiiiiee e, 178
Using other CORBA ORB implementations...........cccccceeevviivvnneen. 179
Connecting to EAServer with a third-party client ORB........... 179

Connecting to third-party ORBs using the EAServer ORB.... 180

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients...... 181
Overview of the sample applicationccccceeeeiiiiciiiiiniee s 181

Tutorial FEQUIrEMENTScoveiiiiiiiee et 181

Creating the appliCationoocciiiiiiii e 182

Start EAServer and the Management Console 182

Import the IDL interfacecccccvviiiiiiiiiiiiiee e 182

Define the package and component............cccvveeeeeeiniiiiinnenn. 183

Compile the component implementationccccceeeeviinns 184

Generate stubs and skeletons...........coccoceeiiiiiiie e 185

Create @ USEr ACCOUNTcooiiiiiiiieee e et 186

Create the client program.........cccccceeeeeeicciiiieeee e 186

Run the client programccccceeeeeeiiiiiiiee e 190

100 L= PP PP PPRR PR 193

CORBA Components Guide

Vii

viil EAServer

About This Book

Audience

How to use this book

CORBA Components Guide

This book is for application developers who develop C++ or
PowerBuilder® clients or components for deployment to EA Server, and
developers who must maintain legacy EAServer CORBA/Java clients or
components. Developers should be familiar with their chosen
programming languages, specifically Java, C++, or PowerScri pt®.

Chapter 1, “CORBA Component Overview,” describes CORBA
component concepts and the EA Server component models based on the
CORBA mode.

Chapter 2, “CORBA Component Life Cycles and Transaction
Semantics,” explains the EAServer CORBA component life cycle and
transaction processing models for CORBA and PowerBuilder
components.

Chapter 3, “Using CORBA IDL,” describes how CORBA component
interfaces are defined in Interface Definition Language (IDL).

Chapter 4, “Managing CORBA Packages and Components,” describes
how to deploy and configure CORBA componentsin EAServer.

Chapter 5, “Developing and Deploying PowerBuilder Components,”
describes EA Server-specific modificationsfor PowerBuilder components
developed and deployed from the PowerBuilder IDE.

Chapter 6, “ Developing PowerBuilder Clients,” describeshow to develop
PowerBuilder clientsfor EAServer components. describeshow to develop
PowerBuilder clients for EA Server components.

Chapter 7, “CORBA/C++ Overview,” provides an overview of thingsto
consider when developing CORBA C++ clients and components for
EAServer.

Chapter 8, “Developing CORBA/C++ Components,” describes how to
implement CORBA componentsin C++.

Chapter 9, “Developing CORBA/C++ Clients,” describes how to
implement CORBA clientsin C++.

Related documents

Chapter 10, “Tutorial: Creating C++ Components and Clients,” walksyou
through the creation and deployment of a CORBA/C++ component and aclient
that calls the component.

Chapter 11, “CORBA/Java Overview,” provides an overview of things to
consider when developing CORBA/Java clients and components for
EAServer.

Chapter 12, “Developing CORBA/Java Components,” describes how to
implement CORBA componentsin Java.

Chapter 13, “Developing CORBA/Java Clients,” describes how to implement
CORBA clientsin Java

Chapter 14, “Tutorial: Creating CORBA Java Components and Clients,”
walks you through the creation and deployment of a CORBA/Java component
and a client that calls the component.

Core EAServer documentation The core EA Server documents are
availableinHTML and PDF format in your EA Server softwareinstallation and
on the SyBooks™ CD.

What's New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for proprietary
EA Server Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-based
configuration scripts to:

» Define and configure entities, such as EJB modules, Web applications,
data sources, and servers

e Perform administrative and deployment tasks
The EAServer CORBA Components Guide (this book) explains how to:

e Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

» Usetheindustry-standard CORBA and Java APl s supported by EAServer
The EAServer Enterprise JavaBeans User’s Guide describes how to:

e Configure and deploy EJB modules

e Develop EJB clients, and create and configure EJB providers

e Create and configure applications clients

Run the EJB tutorial

EAServer

About This Book

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (M S) clients and components to send, publish, and
receive JM S messages.

The EAServer Migration Guide contains information about migrating
EA Server 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

e Understand the EA Server security architecture
e Configure role-based security for components and Web applications
e Configure SSL certificate-based security for client connections

e Implement custom security servicesfor authentication, authorization, and
role membership evaluation

e Implement secure HTTP and |1 OP client applications

« Deploy client applications that connect through Internet proxies and
firewals

The EAServer System Administration Guide explains how to:

e Start the preconfigured server and manageit with the Sybase Management
Console

e Create, configure, and start new application servers
e Define database types and data sources

e Createclusters of application servers to host |oad-balanced and highly
available components and Web applications

e Monitor servers and application components
e Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

CORBA Components Guide Xi

Conventions

Formatting example

e Support for standard Web services protocol s such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

e Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problemsthat EA Server users may encounter. This document
isavailable only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/pridbcttitle.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase softwarelicense deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EA Server 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

The formatting conventions used in this manual are:

To indicate

commands and methods

When used in descriptive text, this font indicates keywords such as:
» Command names used in descriptive text

e C++ and Javamethod or class names used in descriptive text

» Javapackage names used in descriptive text

» Property namesin the raw format, as when using Ant or jagtool to configure
applications rather than the Management Console

variable, package, or
component

Italic font indicates:
» Program variables, such as myCounter
e Parts of input text that must be substituted, for example:

Server.log
* Filenames

» Names of components, EAServer packages, and other entities that are registered in
the EA Server naming service

Xii

EAServer

About This Book

Formatting example | To indicate

File| Save Menu names and menu items are displayed in plaintext. The vertical bar showsyou how
to navigate menu sel ections. For example, File| Saveindicates* select SavefromtheFile
menu.”

package 1 M onospace font indicates:

¢ Information that you enter in the Management Console, acommand line, or as
program text

« Example program fragments
« Example output fragments

Other sources of Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
information Manuals Web site to |earn more about your product:

e The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

e The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML -based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

e The Sybase Product Manuals Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybﬁse ce[)tifications Technical documentation at the Sybase Web site is updated frequently.
on the We

CORBA Components Guide Xiii

[IFinding the latest information on product certifications
1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.
2 Select Products from the navigation bar on the left.
3 Select aproduct name from the product list and click Go.
4 Select the Certification Report filter, specify atime frame, and click Go.
5

Click a Certification Report title to display the report.

[ICreating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybase isafree service that allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[IFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select aproduct.

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.
Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Xiv EAServer

About This Book

Accessibility
features

If you need help

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product isalso providedin
Eclipse help formats, which you can navigate using a screen reader.

The Web consol e supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

TheWeb Services Toolkit plug-in for Eclipse supportsaccessibility featuresfor
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter accessibility inthe Search dialog box.
4

Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT asinitials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessihility siteincludes links to information on Section 508 and W3C
standards.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

CORBA Components Guide XV

XVi EAServer

CHAPTER 1 CORBA Component Overview

Topic Page

About CORBA 1

CORBA componentsin EAServer

The CORBA component development process

WIN| P

CORBA component tutorials

About CORBA

CORBA isadistributed component architecture defined by the Object
Management Group (OMG). EA Server supports many CORBA
technologies, including:

e Thelnternet Inter-ORB Protocol (110P) for client-server component
invocations.

e CORBA Interface Definition Language (IDL), for defining
component interfaces and datatypes used in interfaces.

e Business component modelsfor C++, PowerBuilder, and Java, based
on the CORBA specifications.

e Standard CORBA APIs, such asthe CosNaming API for naming
services.

For information on the CORBA architecture, see the specifications
available at the OMG Web site at http://www.omg.org.

CORBA components in EAServer

EAServer provides CORBA component models for these languages and
technologies:

CORBA Components Guide 1

The CORBA component development process

C++
PowerBuilder
Java

EAServer hosts CORBA components using generated EJB wrapper
components. EJB and CORBA components are fully interoperable. You
can call EJB components from CORBA clients and vice-versa.

Java/CORBA versus EJB components
EAServer provides the Javal CORBA component model for backward

compatiblity with EAServer 5.x and earlier versions. Sybase recommends
you create EJB components for new Java devel opment because they are
more portable to other application servers.

The CORBA component development process

The high level CORBA development and deployment process for
EAServer is:

1

If you are using C++ or Java, define the component interfacesin
CORBA IDL and deploy the IDL to the EAServer repository. Chapter
3, “Using CORBA IDL,” describes how to do this.

If you are using PowerBuilder, you can define interfaces with the
PowerBuilder IDE. PowerBuilder generates IDL when you deploy to
EAServer.

Create EAServer entities to define the CORBA packages and
components. The package and component properties specify the
component interfaces and control interaction between EA Server and
your implementation. Chapter 4, “Managing CORBA Packages and
Components,” describes how to define and configure CORBA
packages and components.

Develop the component implementation classes and deploy them to
EAServer. For more information, see:

e Chapter 8, “Developing CORBA/C++ Components’
e Chapter 12, “Developing CORBA/Java Components’
e The PowerBuilder IDE documentation and online help

EAServer

CHAPTER 1 CORBA Component Overview

4 Run the jaguar-compiler command on the CORBA packages to
generate the code and EJB wrapper components required to run the
components in EAServer. You can do this several ways:

e From the PowerBuilder IDE, if using PowerBuilder.

e From the Management Console as described in “Refreshing
CORBA packages in the Management Console” on page 43.

e Usingaconfiguration script, asdescribed in “Managing CORBA
packages with configuration scripts’” on page 43.

e Using the jaguar-compiler command-line tool, as described in
Chapter 12, “Command Line Toals,” in the System
Administration Guide.

5 Createtheclient codeto invoke the component methods. You can call
CORBA components from any other client model, including EJB
clients and Web components. For details on CORBA client models,
see:

e Chapter 9, “Developing CORBA/C++ Clients”
e Chapter 13, “Developing CORBA/Java Clients”

CORBA component tutorials

EAServer includes tutorials for CORBA/C++ and CORBA/Java
components. See:

e Chapter 10, “Tutoria: Creating C++ Components and Clients’

e Chapter 14, “Tutoria: Creating CORBA Java Components and
Clients’

CORBA Components Guide 3

CORBA component tutorials

4 EAServer

CHAPTER 2

CORBA Component Life Cycles
and Transaction Semantics

This chapter explains the EAServer CORBA component life cycle and
transaction processing models for CORBA and PowerBuilder
components.

Transactions allow you to group database updates performed by multiple
components into asingle atomic unit of work, which greatly simplifies
error recovery in component-based applications.

The component life cycle determines how instances of a component are
allocated, bound to aclient, and destroyed. The EA Server component life
cycleis designed to maximize reuse of resources and minimize the
possibility that a client application can monopolize a server resource.

The component life cycle and the transaction model aretightly integrated.
You must understand both to use transactions effectively in your
application.

Topic Page
Component life cycles 5
EAServer’s transaction processing model 11
EAServer Transaction Manager 21

Component life cycles

CORBA Components Guide

The EAServer component life cycle is designed to:
e Maximize sharing and reuse of server resources

« Minimize the possibility that a client application can monopolize
Server resources

To achieve these goals, EA Server supports the concepts of component
instance pooling and early deactivation.

Component life cycles

I nstance pooling allows a single component instance to service multiple
clients. The component life cycle contains activation and deactivation steps:
Activation binds an instanceto an individual client; deactivation indicates that
the instance is unbound. Instance pooling eliminates resource drain from
repeated allocation of component instances.

Early deactivation allows a component’s methods to specify when
deactivation occurs. Early deactivation preventsaclient application from tying
up the resources that are associated with a component instance and allows the
instance to serve more clientsin a given time frame. To achieve early
deactivation, you can code or configure your component as described in
“Supporting early deactivation in your component” on page 9.

A component that is deactivated after each method call and supports instance
pooling is said to be a stateless component because the component’s state is
reset across the boundary of atransaction and activation. Early deactivation
and instance pooling promotes greater scalability by enabling an increasing
number of clientsto use a static number of instances. An application design
based on statel ess components offers the greatest scal ability.

States in the component life cycle

EA Server componentsin any component model follow the state diagram
illustrated in this figure:

Figure 2-1: States in the EAServer component life cycle

| New instance

[
Trvoke Method Invocation Complete
Y

In Methad

The state transitions are as follows:

« Newinstance The EAServer runtime allocates a new instance of the
component. The instance remainsidle in the instance pool waiting for the
first method invocation.

EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

CORBA Components Guide

Activation Activation preparesacomponent instancefor use by aclient.
Once an instanceis activated, it is bound to one client and can service no
other client until it has been deactivated. If acomponent is transactional,

activation also indicates the beginning of the instance's participation in a
transaction.

In method In response to a method invocation request from the client,
the EA Server runtime calls the corresponding method in the component.
The next state depends on which of the transaction state primitives the
method calls before returning. (For Java components, the state transition
al so depends on whether the method returns with an uncaught exception.)
See“Using transaction state primitives’ on page 16 for more information.

Deactivation Deactivation indicates that the component is no longer
bound to the client. Methods can call either the completeWork or
rollbackWork transaction state primitives to cause explicit deactivation of
theinstance. Asdiscussed in “Using transaction state primitives’ on page
16, these primitives also affect the transaction’s outcome. Deactivation
can aso occur automatically, under any of the following circumstances:

« If theinstance is participating in atransaction, the instance is
deactivated when the transaction commits, rolls back, or times out.

« If you have configured the component’s I nstance Timeout property to
afinite setting, an instance is deactivated if the time between
consecutive method calls exceeds the timeout value. “CORBA
component property descriptions’” on page 45 describes how to
configure this property.

If an exception occursin a user transaction, you must call rollbackWork
after catching the exception; otherwise, atransaction deadlock may occur
in the database, which can cause client applications to fail.

Destruction Destruction occurs if the component instance cannot be
recycled. “ Supporting instance pooling in your component” on page 9
describes how to ensureinstance reuse. |f the component cannot be reused,
deactivation is followed by destruction of the instance.

Component life cycles

The EAServer component life cycle allows component instances to be
recycled; idle component instances can be cached when idle and bound to the
service of individual clientsonly as needed. If your component has been coded
to support early deactivation, a client holding a reference to the component’s
stub or proxy object may be serviced by severa different instances of the
component. After each deactivation, the next method invocation causes an
instance to be activated and bound to the client. Overall server scalability is
increased because a new instance does not have to be instantiated each time a
client invokes a method.

Stateful versus stateless components

A component that can remain active between consecutive method invocations
iscalled astateful component. A component that is deactivated after each
method call and that supportsinstance pooling is said to be a stateless
component. Typically, an application built with stateless components offers
the greatest scalability.

Stateful components A stateful component remains active across method
calls. EAServer wraps stateful CORBA components with an EJB stateful
session bean. To run a CORBA component as stateful, the Stateful Session
Bean (com.sybase.jaguar.component.tx_vote) property must be set to true-see
“CORBA component property descriptions’ on page 45.

Since deactivation happens at the mercy of client applications, you may wish
to configure the Passivation Timeout property for stateful components so that
a client cannot monopolize a component instance indefinitely. See “CORBA
component property descriptions” on page 45 for more information.

Stateless components A isstatelessif you disable the component’s Stateful
Session Bean property (com.sybase.jaguar.component.tx_vote) —see Table 4-2
on page 46. You can also set the component’s
com.sybase.jaguar.component.tx_vote property to falsein an Ant user
configuration file. Alternatively, you can implement the component so that it
calls either completeWork or rollbackWork in every method.:

Statel ess components cannot use instance-specific data to accumul ate data
between method invocations. Some situations require that you accumul ate data
across method invocations. For example, a PurchaseOrder component might
have an additem() method that is called repeatedly to specify the contents of an
order. In lieu of instance-specific data, you can use one of these alternativesto
accumulate data:

EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

Accumulate data in a remote database Use connection caching and
database commands to accumulate data in aremote database. Thisisthe
preferred technique. If you deploy your component to acluster, it may run
on multiple servers and the database provides a central location available
from al servers.

Accumulate data in the client Create adata structure that is passed to
each method invocation and contains all accumulated data. Thistechnique
isonly practical if the amount of datais small. Sending large amounts of
data over the network will degrade performance.

Accumulate data in afile If the accumulated datais small and
represented by simple data structures, you can storethe datain alocal file.

Supporting early deactivation in your component

Early deactivation prevents a client application from tying up the resources
(such as connections) that are associated with a component instance.

To support early deactivation in CORBA and PowerBuilder components you
can use one of these methods:

Use astatel esscomponent, whi ch deactivatesthe component i nstance after
each method invocation—see “ Stateful versus statel ess components” on

page 8.

In a stateful component, configure the number of seconds an active
component instance can remain idle before the client’s proxy becomes
invalid—see “Passivation Timeout” in Table 4-2 on page 46.

Code your component to call one of the completeWork or rollbackWork
transaction state primitives to cause explicit deactivation of the instance.
This technique is useful when your design requires deactivation to occur
after some, but not all, method invocations. If the component is
transactional, the completeWork and rollbackWork primitivesalso affect the
outcome of the transaction in which the component is participating. See
“Using transaction state primitives’ on page 16 for more information.

Supporting instance pooling in your component

Instance pooling eliminates resource drain caused by repeated allocation of
new component instances.

CORBA Components Guide

Component life cycles

For Java components, you can implement alife cycle interface to control
whether the component instances are pooled. These interfaces also provide
activate and deactivate methods that are called to indicate state transitionsin a
component instance’s lifetime. See “ Set transactional state” on page 158.

For PowerBuilder components, you can enable the Pooling option on the
PowerBuilder wizard that you use to create your component. You can then
write event scripts that respond to changes in an instance’s life cycle. See the
Application Techniques manual in the PowerBuilder documentation for more
information.

For C and C++ components, you can enable instance pooling using the
Management Console. See “CORBA component property descriptions’ on
page 45. This method also alows you to configure pooling for Java
componentsthat do not implement the ServerBean or 10bjectControl interfaces,
respectively.

To support instance pooling, code that responds to activation events must
restore the component toitsinitial state (thatis, asif it were newly created). the
Java canReuse interfaces have methods that allow an instance to selectively
refuse pooling. For PowerBuilder components, you can script the canBePooled
event to selectively refuse pooling.

When the component Pooled option is set inthe M anagement Console, the Java
canReuse method is not called, even if the component implements the
ServerBean interface.

Long versus short transactions

10

EA Sever supports both long and short transactions, which are initially
associated with stateful and statel ess components, respectively. Both long and
short transactions begin when a client calls one of a component’s business
methods, as long as the component’s tx_type property is set to neither
“not_supported” nor “supports.” Table 4-2 on page 46 describesthe allowable
values for tx_type. The behavior of short transactions conforms to the 2EE
specification. Support for long transactions may be deprecated in future
versions of EAServer.

EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

Long transactions

Short transactions

A long transaction is associated with a stateful CORBA component instance
the first time a client invokes one of its business methods, subject to the value
of tx_type. Clients need not perform any special transaction work. By defaullt,
long transactions are enabled for backward compatibility. To disable long
transactions, change to the EA Server bin directory, and run:

configure long-transactions-off

If you disable long transactions, short transactions are used instead. To
re-enable long transactions, run:

configure long-transactions-on

In EAServer versions earlier than 6.0, stateful CORBA components, whose
tx_vote property was set to true, had to call either JagCompletewWork or
JagRollbackWork to end atransaction. And acomponent timeout resulted inthe
server rolling back the active transaction..

A short transaction is associated with a statel ess component when a client
invokes one of its business methods. EA Server automatically ends the
transaction upon completion of the business method. If the component callsno
APIs, the transaction is committed (as if JagCompleteWork was called). Short
transactions are always enabled.

EAServer’s transaction processing model

Transactions

An EAServer transaction isatransaction whose boundaries and outcome are
determined by EA Server. Components can be marked as transactional in the
Management Console. If a component is transactional, the EAServer
transaction manager ensures that the component’s third-tier database queries
execute as part of a transaction. Multiple components can participate in an
EAServer transaction; the EA Server transaction manager ensures that all
database changes performed by the participating transactionsare al committed
or rolled back.

All transactions are defined by the ACID test:

- Atomic If atransactionisinterrupted, all changes that the transaction
has made are cancelled or rolled back.

CORBA Components Guide 11

EAServer’s transaction processing model

» Consistent A transaction produces results that preserve invariant
properties.

« Isolated A transaction’sintermediate states cannot be monitored or
changed by other transactions; transactions execute their results one after
another.

- Durable The changesthat atransaction completes are permanent.

How EAServer transactions work

In the Management Console, you can declare EA Server components to be
transactional. When a component is transactional and uses the EA Server
connection management feature, commands sent on a third-tier database
connection are automatically performed as part of a transaction. Component
methods can call EA Server’s transaction state primitivesto influence whether
EA Server commits or aborts the current transaction.

If long transactions are enabled for the server, the component life cycleis
tightly integrated with EAServer’s transaction model. Component instances
that participate in atransaction are not deactivated until the transaction ends or
until the component indicates that its contribution to the transaction is over
(that is, itswork is done and ready for commit or that its work must be rolled
back). An instance'stimein the active state corresponds to the beginning and
end of its participation in atransaction.

Benefits of using EAServer transactions

A transaction involving
multiple components

12

The benefits of using transactions to group database updates are clear. You can
easily code methodsin a single component to implement transactions that run
against a single data source. However, those methods may in turn be executed
by another component, which itself is defining atransaction. In this situation,
error recovery becomesdifficult. For example, consider the following scenario
in which an Enroliment component calls both Registrar and Billing components:

In the following figure, the Enroliment.enroll() method calls methods in the
Registrar and StudentBilling components:

* Registar.reserveSeat() checksthat a seat isavailable. If so, it decrements
the count of available seats and adds the student to the course’s enroll ment
list. If no seats are available, reserveSeat() fails.

EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

* StudentBilling.addToBill() checks that the student has a billable credit
record. If so, addToBill() adds the course cost to the student’s hill for that
semester. If the student has a credit problem (if, for example, she owes
money for an overdue book), addToBill() fails.

Figure 2-2: An example EAServer transaction

—™| Enwliment

addToBil{sudent, cowse)

StudentEilling

To be correct, both the database update made by the Registrar and the update
made by the StudentBilling components must occur, or neither must occur. In
other words, if the student cannot be billed, the course's available seats must
not be changed. To handle this case, you could add logic to the enroll() method
to undo changes (requiring an unreserveSeat() method in Registrar). However,
as more components are added to the scenario, the logic needed to undo
previous changes quickly becomes unmanageable. It is much easier to define
all the participating componentsto use EA Server transactions. Then an error in
any component can induce arollback of all changes made by the other
participating components before the error occurred.

By defining the participating components to use EA Server transactions, you
can be sure that the work performed by the components that participatein a
transaction occurs as intended.

Defining transactional semantics

The component and server properties and the component implementation
determine how your CORBA component participates in transactions.

[IDefining how a component participates in transactions

1 Specify the component’s transaction attribute. Each component has a
transaction attribute that determines whether instances of the component
participateintransactions. “ Transaction type values’ on page 52 describes
the attribute settings and their meanings.

CORBA Components Guide 13

EAServer’s transaction processing model

2 If long transactions are enabled in the server, and your CORBA
component is stateful, code methodsto call the EA Server transaction state
primitives. Each method should call the appropriate transaction state
primitive to reflect the state of the work that the component has
contributed to the transaction. “ Using transaction state primitives’ on
page 16 describes the state primitives in detail.

If long transactions are disabled or the CORBA component is stateless,
transactions end when each business method returns. Each business
method can call completeWork or rollbackWork to influence the transaction
outcome. If neither is called, the completeWork behavior is the default.

Transaction coordinator

The Javatransaction Service (JTS) transaction coordinator complies with the
JT'S and the X/Open Architecture (XA) standards. The JTS transaction
coordinator integrates the functionality of the shared connection and JTS/JTA
transaction modes, and uses two-phase commit to coordinate transactions
among multiple databases.

Note To verify that your EAServer edition supports two-phase commit, check
the server console or the $DJC_HOME/logs/< serverName>.log file.

Transactional component attribute

Componentsin EAServer have a transaction type property that indicates how
acomponent participates in transactions. You can view and change a
component’s Transaction Type property using the Management Console. For
PowerBuilder components, you can specify the attribute in the PowerBuilder
wizards (doing so ensuresthat it is saved with the PowerBuil der project and not
overwritten by redeployment). Allowable values are described in “ Transaction
type values’ on page 52.

Table 2-1 lists design scenarios and the transaction type values that apply to
each.

14 EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

Table 2-1: Deciding on a transaction type value

Design scenario

Applicable transaction
type values

Your component interacts with remote databases, and its methods may be called by
another component as part of alarger transaction. Multiple updates are issued before
calling completeWork, or an update depends on the results of queriesthat were issued
since the last call to completeWork.

Requires Transaction
or
Requires New Transaction

Updates from your component are performed by a single database update, the update
logic isindependent of any other query issued by the method, and you call
completeWork in each method that i ssues an update. In other words, your component’s
updates are already atomic.

Supports Transaction

Your component’s methods make intercomponent method calls, and the work done by
called components must be included in one transaction.

Requires Transaction
or
Requires New Transaction

Methods in the component interact with more than one remote database, and updates
to different databases must be grouped in the same transaction (this also requires a
transaction coordinator that supports two-phase commit to those databases).

Requires Transaction
or
Requires New Transaction

Transactions begun by your component must not be affected by the outcome of
transactions begun by other components that call your component.

Requires New Transaction

Work done by your component must never be done as part of atransaction.

Not Supported

For example, in the scenario illustrated in “ A transaction involving multiple
components’ on page 12, the Enrollment component must be marked Requires
Transaction or Requires New Transaction, since it calls methods in the
Registrar and StudentBilling components, and the work performed by the called
components must be grouped in a single transaction. Both Registrar and
StudentBilling must be marked Supports Transaction or Requires Transaction
so that their database updates can be grouped in the transaction begun by the
Enroliment component.

Transaction Not Supported is useful when your component performs updates
to anoncritical database. For example, consider a component whose sole
functionisto log usage statisticsto aremote database. Since usage stetisticsare
not mission-critical data, you can choose Not Supported as the component’s
transaction type value to ensure that the logging updates do not incur the
overhead of using two-phase commit.

Determining when transactions begin

After abase client instantiates a transactional component, the first method
invocation begins an EA Server transaction. Thisinstanceis said to be theroot
instance of the transaction. If the root instance invokes methods in other
transactional components, those components join the existing transaction.

CORBA Components Guide 15

EAServer’s transaction processing model

Use a stub or proxy object for the called component For transactions to
occur with the intended semantics, you must perform intercomponent calls
using a stub or proxy object for the called component. Do not invoke another
component’s methods directly. For calls between PowerBuilder NVO
components, use a PowerBuilder proxy object rather than calling the other
NV O directly.

Using transaction state primitives

16

EA Server provides transaction state primitives that methods can call to direct
the outcome of the current transaction. Each component model provides an
interface containing methods for these primitives. Table 2-2 on page 17 lists
the API mappings for each component type.

These methods end acomponent’s participation in atransaction (both cause the
current instance to be deactivated):

« completeWork The component finished its work for the current
transaction and should be deactivated when the method returns. Thisisthe
default behavior for stateless CORBA components; acomponent that calls
no state primitive behaves as if this method were called. If long
transactions are disabled for the server, thisis the default behavior for all
CORBA components.

* rollbackWork The component cannot complete its work. Doom the
current transaction and deactivate the instance when the method returns.

These methods are used to maintain state after the method returns (they delay
deactivation of the component instance):

» continueWork Continue this component’s participation in the current
transaction after the method returns, and allow the transaction to be
committed if the component is deactivated.

In stateful CORBA components with long transactions enabled in the
server, thisisthe default behavior if amethod calls no transaction
primitive.

« disallowCommit Continuethiscomponent’s participationinthe current
transaction after the method returns, but roll back the transaction if the
component is deactivated before calling another primitive besides
disallowCommit.

These primitives can be used to query the state of the transaction (if any) in
which the method is executing:

EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

e isInTransaction

context of atransaction.

Query whether the current method is executing in the

» isRollbackOnly Query whether the current transaction is doomed to be
rolled back or is till viable.

Table 2-2 describes how the transaction primitives are invoked in Java and
PowerBuilder components. For information on the Java methods, see Chapter
1, “Java Classes and Interfaces,” in the EAServer APl Reference. For
information on the PowerBuilder TransactionServer object, seethe Application
Techniques manual in the PowerBuilder documentation and the PowerBuilder

online help.

Table 2-2: Java and PowerBuilder transaction primitives

Transaction

Java InstanceContext

PowerBuilder
TransactionServer

primitive method function
completeWork completeWork SetComplete
rollbackWork rollbackWork SetAbort

continueWork

continueWork

EnableCommit

disallowCommit

None. You can achievethe sameeffect
by calling, and then raising an
exceptionif deactivate iscalled before
the next method invocation.

DisableCommit

isinTransaction

inTransaction

IsinTransaction

isRollbackOnly

isRollbackOnly

IsTransactionAborted

C and C++ components call the methods and routinesin the following table to
invoke transaction primitives. See the EAServer API Reference for
documentation of these methods and routines:

CORBA Components Guide

17

EAServer’s transaction processing model

Example

18

Table 2-3: C and C++ transaction primitives
Transaction primitive C/C++ routine

completeWork JagCompleteWork
rollbackWork JagRollbackWork
continueWork JagContinueWork
disallowCommit JagDisallowCommit
isInTransaction JagInTransaction
isRollbackOnly JaglsRollbackOnly

Any participating component can roll back the transaction by calling the
rollbackWork primitive; Javacomponents can also cause arollback by returning
an unhandled exception. Only the action of the root component determines
when EAServer commits the transaction. The transaction is committed when
the root component returns with a state of completework and no participating
component has set a state of disallowCommit.

You can use the transaction state primitivesin any component; the component
does not have to be declared transactional. Calling completeWork or
rollbackWork from methods causes early deactivation. “ Supporting early
deactivation in your component” on page 9 discusses how this feature can
improve application performance.

Asdiscussed in “Benefits of using EAServer transactions’ on page 12,
EA Server transactions are most useful when your application uses
intercomponent calls.

As an example, consider the scenario illustrated in “ A transaction involving
multiple components’ on page 12. The pseudocode bel ow shows the logic
used to ensure that the work performed by the Registrar.reserveSeat() and
StudentBilling.addToBill() occurs within the same transaction.

In the Registrar component, the reserveSeat() method must check the number
of seats. If thereis spacefor the new student, then the method adds the student,
decrements the count of available seats, and sets a state of completework. If a
seat is not an available, the method calls rollbackWork to roll back the current
transaction.

Here is the pseudocode for Registrar.reserveSeat():

check number of seats
if enough seats

EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

decrement number of seats
add student to enrollment list
completeWork
else
rollbackWork
end 1if

Thetransaction attribute for Registrar must be Requires Transaction so that the
query for available seats and the update of available seats always occur in the
same transaction.

In the StudentBilling component, the addToBill() method must verify the
student’s credit. If the student does not already owe money, the method adds
the cost to the semester bill and setsastate of completeWork. If the student owes
money, the method callsrollbackWork to roll back the current transaction. Here
is the pseudocode for StudentBilling.addToBill():

check student’s balance
if balance > 0
add cost to bill
debit balance
completeWork
else
rollbackWork
end 1if

Thetransaction attributefor StudentBilling must be Requires Transaction so that
the balance query, the billing calculation, and the debit of the student’s balance
always occur in the same transaction.

In the Enroliment component, the enroll() method first calls
Registrar.reserveSeat(). After Registrar.reserveSeat() returns, the method
checkswhether thetransactionisstill viable using theisRollbackOnly primitive.
If the transaction is viable, the method calls StudentBilling.addToBill(). Hereis
the pseudocode for Enroliment.enroll():

invoke Registrar.reserveSeat ()

if isRollbackOnly returns true
return

else
invoke StudentBilling
completeWork

endif

The transaction attribute for Enrollment must be Requires Transaction so that
the work done by StudentBilling and Registrar occurs as a single transaction.

CORBA Components Guide 19

EAServer’s transaction processing model

Dynamic enlistment in bean-managed transactions

EA Server supports dynamic enlistment for bean-managed transactions, which
allowsyou to create a connection in one method, use the connection in another
method, and close the connection in a third method.

For aJDBC 2.0 shared connection (PooledConnection), the container manages
the single connection’s enlistment and deenlistment in transactions.

For XA connections, the Object Transaction Service libraries need to know all
the resources that will participate in a transaction when it starts. If you get an
XAConnection before you start a transaction, EAServer enlists the
XAConnection in the transaction. If you start a transaction before you create
an XAConnection, EAServer creates the connection and enlistsit in the
transaction.

Dynamic enlistment allows you to do this:

connectionl = dsl.getConnection() ;

// A

user_transaction.begin() ;

//

connection2 = ds2.getConnection() ;
connection3 = ds3.getConnection() ;
// B

connection2.close() ;

//

user_transaction.commit () ;

// cC

connection3.close() ;
connectionl.close() ;

Where at these points, the following are true:
A —connectionl is not part of any transaction.

B — connectionl, connection2, and connection3 are part of the
user_transaction.

C — connectionl and connection3 are not part of any transaction.

Earlier versions of EA Server required you to get and release connections
within a single component method. In bean-managed transactions, you had to
get and release a connection within the scope of atransaction.

20 EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

You can get only one connection per resource. Each getConnection call for the
same database returns the same connection.

Note XA performance diminishes when connections span across methods.

EAServer Transaction Manager

The EAServer Transaction Manager supports the specifications for the Java
Transaction API (JTA) 1.0 and the OTS/XA standards. The Transaction
Manager supports the integrated functionality of these transaction
coordinators: shared connections, OTS/XA, and JTS/JTA, and includes:

* Resource recovery and transaction logging
e Transaction interoperability
¢ Resource manager

The EA Server Transaction Manager enables EA Server to control the scopeand
duration of transactions across multiple resource managers. It also providesthe
ability to synchronize transactions and to communicate with other transaction
managers using CORBA OTS. Connections and resources are dynamically
enlisted into a transaction when they are requested.

Two-phase commit ensures that all changes to recoverable resources (for
example, multiple database servers) occur automically, and the failure of any
resource to complete causes al other resources to undo changes. Two-phase
commit consists of a prepare phase and an execution phase. In the prepare
phase, the transaction coordinator validates that all resources are available. In
the execution phase, the transaction coordinator executes al updates to the
resources.

You can define components and component methods so that the transaction
coordinator automatically handlestransactions (implicit control). You can also
write component and client code to manage transactions (explicit control).

EAServer implements the javax.transaction. TransactionManager interface,
which allowsit to control transaction boundaries, and to managetheinteraction
between Java and Encina transaction objects.

CORBA Components Guide 21

EAServer Transaction Manager

EA Server’'s implementation of the javax.transaction. Transaction interface
enables it to manage a set of javax.transaction.xa.XAResource resources that
participate in atransaction. To determine the boundariesand outcomefor these
transactions, EA Server uses the CosTransaction::Resource interface.

Resource recovery and transaction logging

22

Resourcerecovery isaconfigurable option that provides object persistenceand
recovery operations. Basic persistenceis achieved by writing transactionsto a
transaction log that contains all the information necessary to re-create the
transaction. Persistence is supported for the CosTransactions::Resource and
CosTransactions::Synchronization objects that are registered with the
transaction. Recovery is supported for JDBC connectors and native type
resources that are registered with EA Server. When EAServer starts, the
recovery manager is called, which reads the transaction log and starts
transaction recovery.

Note Recovery operations can be performed only for transaction logs that
were created for EAServer version 5.0 or later.

A transaction log provides enhanced debugging and integrates with the
standard EA Server logging functionality. Monitoring functionality isalso
provided, which allows you to use the Management Consoleto view statistics,
such asthetotal number of committed transactions and the average duration of
transactions.

When EAServer starts, the TransactionLogManager verifies the transaction
log's integrity, automatically does necessary repairs, then runs the transaction
log defragmenter. This helps to allocate space for new transactions. The
recovery manager passes transaction information to the
TransactionLogManager, which is responsible for storing and deleting the
transaction record from the transaction log.

You can set the following recovery options on the Transactions tab of the
Server Properties dialog box:

» Enable Recovery —check to enable.

* Recovery Log File Name— enter the name of the filein which to store the
transaction log. You can specify afile name only, or an absolute path to a
file. If you specify afile name only, thefileis created in the logs
subdirectory or your EA Serve installation.

EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

e Log File Size — enter the maximum file size.

Recovering XA resources registered by user components

Inthisversion of EA Server, you cannot directly recover XA resourcesthat are
registered by user components. However, you can enable EA Server to
accomplish this task by using the following technique:

1 Create awrapper DataSource class; for example, WrapperDataSource.

2 WrapperDataSource.getXAConnection() returnsan XAConnection classthat
corresponds to the XA connection with the resource.

3 Create an XA-type data source, and set its class name to the
WrapperDataSource class that you created.

Once these steps are implemented, EA Server takes care of the recovery
process. Thisis useful when using athird-party JM S service with XA
resources.

Transaction interoperability

EAServer Transaction Manager provides transaction interoperability in
accordance with the OTS specifications.

Since EAServer runsin JTS mode, it can share the transaction coordinator

across multiple servers. If atransactional component on one server invokes a
component method on another server, both components can participate in the
sametransaction. Also, aclient caninvoke components on multiple serversthat
all participate in the same transaction. Thisfeature is useful for load balancing.

Figure 2-3illustrates ascenario in which aclient calls acomponent method on
Server A, which calls a component method on Server B. Server A and Server
B use different databases. To ensure that all the database updates occur within
the scope of a single transaction, EA Server passes the transaction context
between servers.

CORBA Components Guide 23

EAServer Transaction Manager

Figure 2-3: Transaction interoperability

Server A Server B

=

Database A Database B

Figure 2-4 illustrates an example where a client calls components on multiple
servers, which al participate in the same transaction. The client manages the
transaction by calling component methods on each server and passing the
transaction context.

Figure 2-4: Server to server

Server A Database A
Client BN e E
Server B Database B

Resource manager

24

The EAServer Transaction Manager includes an integrated resource manager
that supports JDBC 1.0, IDBC 2.0, connectors, and XA resourcesfor both Java
and C++. The resource manager allows you to dynamically register resources
and synchronize coordinators in accordance with OTS specification for
CosTransactions. The resource manager is based on the functionality of both
the Java Connection Manager and the Jaguar Connection Manager, which
allowsyou to easily integrate new and existing resources. In future EA Server
versions, customers will be able to use the resource manager to create and
configure resources that EA Server can use.

EAServer

CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics

Enlisting XA resources with Transaction Manager

When EA Server isrunning in two-phase commit mode, which isthe default for
version 5.0 and later, you can enlist XA resources with EA Server Transaction
Manager.

[IEnlisting XA resources
To enlist an XA resource into a current EA Server transaction:
1 Get theinstance of Transaction Manager:

javax.transaction.TransactionManager tm =
com.sun.jts.jta.TransactionManager.getTransactionManagerImpl () ;

2 Get theinstance of the transaction:
javax.transaction.Transaction trans = tm.getTransaction() ;
3 Register the XA resource with the transaction:
trans.enlistResource (Xxaresource) ;

EA Server managesthis XA resource with respect to itstransaction boundaries.

CORBA Components Guide 25

EAServer Transaction Manager

26 EAServer

CHAPTER 3 Using CORBA IDL

EAServer stores CORBA component interfaces in Interface Definition
Language (IDL) modules.

Topic Page
Learning IDL 27
Managing IDL in EAServer 36
Using IDL documentation comments 38

Learning IDL
IDL is defined by the Object Management Group as a standard language
for defining component interfaces. Chapter 3, “OMG IDL Syntax and
Semantics,” in the CORBA V2.3 Secification defines IDL. Printable
versions of this document can be downloaded from the following URL :
http://www.omg.org/corba/index.html
IDL modules

IDL modules form a namespace to group related types and interfaces,
similar to C++ namespaces. For example, type Date in module MJD is
specified as MJD::Date. Module names must begin with a letter. Modules
can be nested by declaring the nested module inside the parent module.
For example, to declare interfaces and types in the namespace
com::mycompany, use the syntax below and add them to the declaration of
module mycompany:

module com

{

module foo

{

}i
}i

CORBA Components Guide 27

Learning IDL

Preprocessor directives

IDL interfaces

28

The #include directive allows you to include code from another filein the
current file, using the same syntax and semantics as C++. For example:

#include <XDT/DecimalValue.idls

No IDL preprocessor directives other than #include are supported.

Interfaces define the signatures of CORBA component methods. Each method
must be declared as an IDL operation in the IDL interface.

Interfaces are declared as shown below:

interface InterfaceName [: BaseInterfacel,
BaseInterface2, ...] {
operations
where:

* |InterfaceNameisthe name of theinterface.

e operationsisazeroor moreof IDL operation declarations. See“ Operation
declarations’ on page 29.

» Baselnterface, Baselnterface2, and so forth form an optional list of
existing interfaces from which the new interface inherits definitions. If a
new interface inherits from other existing interfaces, the existing
interfacesthat areinherited from are referred to as base interfaces, and the
new interfaceisreferred to as aderived interface.

For example, thisinterface, StockComponent, inherits from no other interface:

interface StockComponent
¥
Thisinterface, C, inherits from interfaces A and B:

interface C : A, B {

}

Interfaces that inherit definitions from other interfaces are subject to the
following constraints:

e Operations and attributes cannot be redefined in the new interface.

EAServer

CHAPTER 3 Using CORBA IDL

e Operation and attribute names defined in base interfaces must be unique.
For example, if amethod isdefined in both interface A and interface B, you
cannot define a new interface that inherits from both B and A.

« Exceptions, constants, and types from abase interface can be redefined in
the derived interface.

« References to type names, exception names, and constant names that are
used in multiple derived interfaces must be made unambiguous by
prefixing references with the name of the interface that contains the
definition of interest. For example, if the constant MAX is defined in both
A and B, then A::MAX refersto the definition in A, and B::MAX refersto the
definition in B.

Choosing an interface name
Interface names are restricted as fol lows:

* Interfaces within amodule must have unique names, irrespective of case.
That is, you cannot define Myinterface and Myinterface in the same module.

* Theinterface cannot have the same name as the module that containsit.

Sybase recommends that you begin interface names with a capital letter, and
operation names with alowercase | etter.

Operation declarations

Operationsin an IDL interface become component methodswhen theinterface
is assigned to a component. Operations are declared as follows:

returnType opName

(

[... parameterList ...]

)

[raises (... exceptionList ...) 1 ;
where:

e returnTypeiseither avalid IDL datatype or void to indicate that the
operation does not return avalue. “ Datatypes for parameters and return
values’ on page 32 discusses datatypes in detail.

« opNameisthe name of the operation. Sybase recommends operation
names begin with alowercase | etter. Names in the same interface must be
unique with respect to case, and capitalization of a name must be
consistent wherever it is used.

CORBA Components Guide 29

Learning IDL

30

IDL operation names cannot be overloaded (that is, redeclared with the
same return type and different parameter lists). However, you can define
IDL operations that map to overloaded C++ or Java methods. To do so,
create operation names by appending two underscores and a unique suffix
to the method name that will be overloaded. EA Server strips the suffix
when generating C++ or Javainterface definitions. For example, consider
the following IDL:

void ovl double(in double 4d) ;
void ovl string(in long 1);

When mapped to C++ or Java, these operations trandl ate to the following
overloaded methods:

void ovl (double 4d);
void ovl(long 1) ;

parameterList is an optional parameter list enclosed in parentheses. The
list (but not the parentheses) can be omitted to indicate that the operation
takes no parameters. Otherwise, add datatypes and parameter names as
shown below:

void myMethod

(
quall typel paraml,
qual2 type2 param2,

)

where;

e quall, qual2, and so forth are one of the argument modesin, inout, or
out. Usein for parametersthat areinput-only; no new valueisreturned
when the operation completes. Useinout or out if the operation returns

new values for the parameter. Aninout parameter’sinput value is
meaningful; an out parameter’sinput value is not.

e typel, type2, and so forth are valid IDL type names (other than the
CORBA::Any type). “ Datatypes for parameters and return values’ on
page 32 discusses datatypes in detail.

e paraml, param2, and so forth are parameter names.

exceptionListisan optional list of user-defined exceptions. If the operation
can throw user-defined exceptions, add araises clause with alist of the
IDL user-defined exception names that the operation can throw, as shown
below:

void myMethod (in int n)

EAServer

CHAPTER 3 Using CORBA IDL

raises (Exceptionl, Exception2, ...);

If the operation can throw only CORBA standard exceptions, omit the
raises clause. For more information, see “User-defined exceptions’ on

page 35.

Attribute declarations

Attributes allow you to associate a value with an interface. IDL attributes are
similar in concept to structure fields in languages such as C. However, when
mapped to a programming language, attribute values can typically be accessed
only by generated functions that allow you to set and retrieve the attribute’s
value.

Attributes are declared as shown below:
[readonly] attribute TypeSpec name;
where

* readonly isan optional keyword specifying that the attribute can be
retrieved but cannot be set.

e TypeSpec isthe name of a standard or user-defined type. “ Datatypes for
parameters and return values’ on page 32 describes datatypes in detail.

* nameisthe attribute name.

In C++ and Java, aread-only attribute maps to a method with the same name
that returnsthe attribute type. A writable attribute mapsto apair of overloaded
methods with the same name as the attribute. For example, consider the
following IDL declarations:

readonly attribute long days; // readonly

attribute long months; // writable
In a C++ or Javaimplementation of the interface, these methods must be
declared:

long days ()

7

long months ()
(long new_months) ;

void months

CORBA Components Guide 31

Learning IDL

Datatypes for parameters and return values

To define parameter and return val ue datatypes, you can use EAServer’s
predefined IDL datatypes or your own user-defined IDL types. In addition,
EAServer extends IDL to allow the use of Java class names. The sections
below describe each option in detail.

* Predefined IDL datatypes
* User-defined IDL datatypes
e Javaclass namesused as IDL datatypes

Predefined IDL datatypes

EA Server ships with predefined datatypes for use in declaring parameter and
return val ue datatypes. Predefined datatypes include all CORBA base types
(except for the CORBA::Any type) and equivalents for database result sets and
other commonly used database column types such asdate, time, and timestamp.
Table 3-1 lists these types.

Table 3-1: Predefined EAServer IDL datatypes

32

CORBA IDL type Description

boolean One hit of binary data; avalue that is either true or
fase

short A 16-hit integer

long A 32-bit integer

long long A 64-bit integer

float Single-precision | EEE floating point numbers

double Double-precision |EEE floating point numbers

string A seguence of characters of any length

BCD::Binary Sequence of bytes

BCD::Decimal Fixed-point decimal

BCD::Money Same as decimal

MJD::Date A date including year, month, day, hour, minute,
second, and millisecond values

MJD::Time Holds the time of day, including hours, minutes,
seconds, milliseconds

MJD::Timestamp Holds the same data as date, plus a nanoseconds
value

TabularResults::ResultSet A singletable of relational database rows

TabularResults::ResultSets A sequence of 0 or more ResultSet objects

EAServer

CHAPTER 3 Using CORBA IDL

For descriptions of the datatypes defined in the BCD, MJD, or TabularResults
modules, see the documentation in the html/ir subdirectory of your EA Server
installation. (Or, load the main EAServer HTML page in your Web browser,
and click the Interface Repository link). If you use types from these modules,
add aninclude directivefor the appropriate modul e at the top of the modul ethat
defines your interface. For example:

#include <TabularResults.idls>

Internally, Tabular Results.idl includes both BCD.idl and MJD.idI. You need
not include BCD.idl and MJD.idl explicitly if you have already included
TabularResults.idl.

User-defined IDL datatypes

In addition to EAServer’s predefined datatypes, you can define your own
datatypesin IDL and use them to declare return types and parameters.

All IDL type definitions are allowed, with these exceptions:

« Fixed sized arrays are supported, but Sybase recommends that you use
sequences instead.

e The CORBA::Any typeis not supported.

e constant declarations are supported.

EAServer allows forward IDL references
You can create new IDL typesthat refer to other IDL typesthat do not yet exist;

among other benefits, this feature allows you to create mutually recursive
interface definitions. However, you must be sure that all references are
resolved beforeyou can generate the package code. EA Server will report errors
for any unresolved type references.

For information on defining datatypes, see Chapter 3, “OMG IDL Syntax and
Semantics,” in the CORBA 2.3 specification.

In some cases, you must use the full scope name. In a parameter list, use a
type's full scope name if any of the following istrue:

* Thetypeisdeclared in another interface.
e Thetypeisdeclared in another module.

* Thetype hasthe samelocal-scope name as atype declared in the interface
or module that contains the operation.

For example, consider the IDL:

CORBA Components Guide 33

Learning IDL

module MyMod {
typedef string MyType;
interface MyIntf
typedef double MyOtherType;

}i
}i

With these declarations, MyMod::MyType isthe full scope namefor MyType and
MyMod::Myintf::MyOtherType is the full scope name for MyOtherType.

Java class names used as IDL datatypes

34

EAServer'sIDL compiler extends IDL to allow Java class names as parameter
and return types for methods. Thisfeature providesfunctionality that issimilar
to the proposed Objects by Value CORBA extension (OMG TC Document
orbos/98-01-18, Objects By Value). Specifically, you can pass a copy of an
object rather than passing an interface pointer that refers back to the original
object.

You can specify any Java class name for a method input parameter or return
type aslong as:

e Theclass containing the type nameisin the CLASSPATH environment
variable both when the interface is defined and when the server is run.

» Atruntime, you specify aclassinstancethat isserializable. Thatis, aclass
must implement the java.io.Serializable interface or inherit from another
class that does so, and an interface must extend the java.io.Serializable
interface. If the instance is not serializable, the call failswith a
CORBA::MARSHALL exception.

Note the following restrictions for methods that are defined using Java
datatypes rather than IDL types:

e Only Java components can implement the method and only Java clients
can invoke the method.

e Only in parameters and return values can be declared with Java class
names.

EAServer

CHAPTER 3 Using CORBA IDL

e Javadatatypes are not marshaled as efficiently as an equivalent IDL
datatype. Marshaling isthe process of reading and writing parameters and
return values from the network. More bytes are required to marshal values
defined with a Java datatype than to marshal an equivalent IDL type.
Consequently, invocations of a method defined with Java datatypes are
slower than invocations of an equivalent method defined with IDL
datatypes.

e |DL that contains Java class names may not be portable to other CORBA
client ORB implementations unless they offer this extension to standard
CORBA IDL.

User-defined exceptions

Exceptions can be declared in amodule or interface. Exceptions are declared
asfollows:

exception name {
. memberList ...
i

where name is the name of the exception and memberList isan optional list of
member field declarations. Thislist has the form:

exception MyException {
typel memberl;
type2 member2;

}i

Where typel, type2, and so forth are IDL type names (other than CORBA::Any)
and member 1, member 2, and so forth are the names of the member fields.

Once you have defined an exception, you can use it in the raises clause when
defining operations for an interface, as described in “ Operation declarations”
on page 29.

Interface stub generation directives

For IDL created by deploying EJB and PowerBuilder components, EA Serer
can embed specially formatted commentsin IDL to control the generation of
Javastubsfor IDL interfaces and structures. These directives appear in ablock
comment located immediately before the IDL interface or struct declaration.

CORBA Components Guide 35

Managing IDL in EAServer

/*

Imported class name Thisdirective specifiesthat a structure or interface
was imported from a Java class, and that a new version of the imported class
must not be generated when stubs are generated. This directive is most
commonly used for EJB home and remoteinterfaces and EJB primary keysthat
were defined by importing EJB classes or EJB-JAR files.

Theformat is:
** <|-- imported classname -->

Where classname is the Java class name, in dot notation. For example,
foo.bar.MyBeanHome OI foo.bar.MyBeanPrimaryKey.

Is home interface Thisdirective identifies an interface as a home interface
used by EJB clients and components. The format is:

** <l-- home -->

Finder method return type Appliesto multi-object finder methodsin an
EJB entity bean’s home interface. If afinder method’s Java form must return
java.util.Enumeration, you see adoc comment of thisform abovethelDL finder
method declaration:

** <l-- java.util.Enumeration -->

*/

: :MyModule: :MyRemoteList findByName (in string name) ;

Managing IDL in EAServer

36

IDL types used by CORBA components must be registered in the EA Server
repository. You can register IDL for CORBA components several ways,
including:

» Migrating CORBA components from a previous version of EAServer.

» Deploying IDL moduleswith the Management Consol e. The Management
Consoledisplays|DL modules asfolders beneath thetop-level IDL folder.

» Deploying IDL modules with the deploy command-line tool.

» By placing IDL filesin the Repository subdirectory of the server
installation and restarting the application server. If the files contains no
syntax errors, EAServer registers the types defined in it. If the file does
contain syntax errors, the server will log the errors during start-up and the
modul €' s declarations will not be added to the IDL repository.

EAServer

CHAPTER 3 Using CORBA IDL

EAServer aso creates IDL for EJB and PowerBuilder components upon
deployment, allowing interoperability between the CORBA and other
component models.

Deploying and viewing IDL with the Management Console

You can import and view IDL in the Management Console.

[IDeploying IDL modules in the Management Console

1 If you haven't already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “ Getting
Started,”in the System Administration Guide.

2 Inthe Management Console, click the IDL Modules folder to display the
IDL typesinthe EAServer repository. Right-click the IDL Modulesfolder
and choose Deploy. The Deploy wizard displays.

3 Inthe Deploy wizard, specify the IDL file name to be imported.

[1Viewing IDL in the Management Console

1 Highlight and expand the IDL Modules folder in the left pane. A
hyperlinked list of modules appearsin the right pane, and a tree/folder
view of deployed modules appears in the left pane beneath the IDL
Modules folder.

2 Usethe hyperlinks or tree view to navigate to the interfaces and types
defined in each module.

[IDeleting IDL in the Management Console

1 Browseto the IDL moduleto be removed as described in “ Viewing IDL
in the Management Console” on page 37.

2 Right-click the module name in the left pane and choose Undepl oy.

Warning! Do not delete IDL that isin use by deployed components.

Deploying IDL from the command-line

You canimport IDL using the deploy command-linetool. Specify the path and
nameto the IDL file, asin:

CORBA Components Guide 37

Using IDL documentation comments

deploy MyModule.idl -overwrite true

For detailed syntax information, see Chapter 12, “Command Line Tools,” in
the System Administration Guide.

Specifying Java package mappings for IDL modules

If an IDL module contains datatypes and interfaces (and not just nested
modules), EAServer Java classes for the datatypesin a Java package derived
fromthe IDL module name. For example, for IDL typesin modulefoo::bar, the
CORBA Javatypes arein Java package foo.bar, and EJB equivaentsarein
Java package foo.bar.ejb.

You can override the default Java package name using one of these techniques:

* For CORBA components where the CORBA package name matches the
IDL module name, set the Java Package property for the CORBA package
(com.sybase.jaguar.package.java.package). See “CORBA package
property descriptions’ on page 45.

» For stubs generated from other IDL modules, Sybase recommends that
you usethe default Java package nameto simplify coding conventionsand
avoid redundant Java classes generated from the same IDL module.

To override the default Java package, specify the -jp option when
generating stubswith theidl-compiler command. Seethe reference pagefor
idl-compiler in Chapter 12, “Command Line Tools,” in the System
Administration Guide.

Using IDL documentation comments

38

EAServer includes HTML documentation files for each predefined IDL
module in the html/ir subdirectory. You can also generate HTML
documentation for IDL that you have deployed.

At aminimum, the generated HTML lists the datatypes and interfaces defined
in the module. You can embed additional documentation text for a datatype,
interface, or method in a C-style comment placed immediately above the
declaration. EAServer ignores C++-style line-end comments when generating
HTML documentation. That is, text within comments that use double slashes,
/1, to delineate the comment text isignored.

EAServer

CHAPTER 3 Using CORBA IDL

Within the C-style comment, add text describing the item to the comment, as
in the example below. If desired, you can use HTML codes to format the text.
But do not use heading tags such as <H1>, <H2>, and so forth, because they
conflict with tagsthat are already used to structure the sectionsof the generated
output.

The IDL fragment below contains an example of a documentation comment:
/ * %

** Example method to demonstrate user-defined
** exceptions.
** <P>Pass <I>yes no</I> as <codes>true</codes>
*x 1f you want an exception thrown.
** <P>Returns input value of <I>yes no</I>
** parameter.
*/
boolean throwException
(
in boolean yes no
)
raises
(
myException

)i

You need not use the spacing conventionsillustrated in this example. EA Server
treats any C-style comment as an IDL documentation comment. However,
when you deploy IDL, EAServer may reformat white space in code and
comments.

Stub generation directives in IDL comments
You can embed directivesin IDL comments to affect the Java stubs generated

for amodule or interface. See “Interface stub generation directives’ on page
35 for more information.

Refreshing the HTML documentation

HTML documentation is not generated automatically. You must use the
EAServer IDL compiler to create or update documentation for new or changed
IDL modules. See the reference page for idl-compiler in Chapter 12,
“Command Line Tools,” in the System Administration Guide.

CORBA Components Guide 39

Using IDL documentation comments

Viewing HTML documentation for IDL modules

EAServer creates HTML documentation for al imported IDL modulesin the
style of Sun’sjavadoc tool. At a minimum, this documentation lists the
datatypes and interfaces defined in the modul e, including structurefields, array
lengths, parameter names and datatypes, exceptionsthrown by methods, and so
forth. When editing IDL, you can also create specially-formatted comments
that provide descriptions of entities declared in the IDL file, as described in
“Using IDL documentation comments’ on page 38.

M odule documentation can be viewed in aWeb browser by connecting to your
server with this URL:

http://yourhost:yourport/ixr/

where yourhost is the host name and yourport is the HTTP port number.

40 EAServer

CHAPTER 4

Managing CORBA Packages and
Components

Topic Page
What isa CORBA package? 41
Managing CORBA packages in the Management Console 42
Managing CORBA packages with configuration scripts 43
CORBA package property descriptions 45
CORBA component property descriptions 45

What is a CORBA package?

CORBA Components Guide

In EAServer, CORBA packages are the unit of deployment for CORBA
and PowerBuilder components. A CORBA package allows you to group
related components together in the same deployment or export
configuration. Packages also provide a means to configure security
congtraints for related components. You can configure role-based
authorization on the package to limit accessto all componentsin the
package.

You can create and configure CORBA packages several ways, including:
* Using the Management Console
» Using configuration scripts

e Migrating CORBA and PowerBuilder components from a previous
version of EAServer

* By deploying PowerBuilder components from the PowerBuilder IDE

The use of the Management Console and configuration scripts are
described in this chapter. For information on migrating components, see
the Migration Guide. For information on deploying from PowerBuilder,
see the PowerBuilder documentation or online help.

41

Managing CORBA packages in the Management Console

Managing CORBA packages in the Management

Console

42

The Management Console provides user-friendly graphical interfaces to
manage CORBA packages and components.

[ICreating a CORBA package in the Management Console

1

4

If you haven't already, start EA Server and connect to the preconfigured
server with the Management Console as described in Chapter 1, “ Getting
Started,” in the System Administration Guide.

In the Management Console, right-click the CORBA Packages folder and
choose Add. The Add wizard displays.

In the Add wizard, specify the new package name. Note the restrictions
described in “Restrictions on package names’ on page 42.

When you finish the Add wizard, the package properties display.
Configure the properties described in “CORBA package property
descriptions” on page 45. Click Apply to save any changes.

Restrictions on package names)
Package names must be unique among other packages in the same EA Server

installation, and begin with aletter.

Names are not case sensitive. Your packages must have unique names that
differ in ways other than letter case. For example, you cannot define two
packages named MyPack and mypack in the same EA Server installation. You
cannot have two packages with the same name, even if oneisinstalled in an
application and the other is not.

[ICreating CORBA components in the Management Console

1

Create the CORBA package as described in “ Creating a CORBA package
in the Management Console” on page 42.

In the Management Console, expand the CORBA Packagesfolder. L ocate
theicon for the packagein which you are creating the component. Double-
click the icon to display the Components folder benesath it.

Right-click the Components folder beneath the target package, and click
Add. The Add wizard runs and prompts for values for the most commonly
configured component properties.

EAServer

CHAPTER 4 Managing CORBA Packages and Components

4 When you finish the Add wizard, the component properties display in the
right pane. Configure the properties described in “CORBA component
property descriptions’ on page 45. Click Apply to save any changes.

[IRefreshing CORBA packages in the Management Console

The Refresh actioninthe CORBA Package context menu creates (or recreates)
the generated code and EJB wrapper components required to run the
componentsin the package. If the componentsareloaded in the server, the new
implementation is loaded to replace the old. Refresh the package as follows:

1 If you haven't already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “ Getting
Started,”in the System Administration Guide.

2 Inthe Management Console, expand the CORBA Packages folder, then
right-click the icon for the package to be configured and choose Refresh
from the context menu.

3 TheManagement Console runsthe configuration commandsto regenerate
the component’s generated code and reload the implementation. If the
operation fails, check the server log file for errors.

Managing CORBA packages with configuration scripts

Configuration scripts allow you to automate the creation and deployment of
CORBA components. For adescription of the Ant configuration mechanism
used in EA Server, see Chapter 2, “Ant-Based Configuration,” in the
Automated Configuration Guide.

The sample script below defines a configure target that shows the commands
required to define and configure a CORBA package and component.

<?xml version="1.0"?>

<project name="cpptut" default="configure">
<import file="${djc.home}/config/ant-config-tasks.xml"/>
<property name="package.name" value="packageName" />
<target name="configure"s>

<setProperties package="${package.name}">
<property name="com.sybase.jaguar.package.roles" value=""/>

CORBA Components Guide 43

Managing CORBA packages with configuration scripts

</setPropertiess>

<setProperties component:"${package.name}/compName">
<property name="propName" value="propValue"/>

</setProperties>
<jaguarJarCompiler package="${package.name}"/>
</target>

</project>

The example defines the CORBA package name as the top-level Ant property
package.name. Since the package name appears several placesin the script, it
is convenient to define it in one place and reference the property with the Ant
syntax ${package.name}.

Inside the configure target, the script runs these commands:

1 Thefirst setProperties command creates and configures the CORBA
package. Any modifications to the default package properties must be
made with nested property commands in this command. See “CORBA
package property descriptions’ on page 45.

2 For each component in the package, an additional setProperties command
creates and configures the component. To ensure EA Server creates the
component in the intended package, the value of the component attribute
for the setProperties command must use the syntax:

package/component

Where package isthe CORBA package name, and component is the
component name as it should display in the Management Console and
output from configuration and status commands.

Use nested property commandsto configurethe component properties. See
“CORBA component property descriptions’ on page 45.

3 ThejaguarJarCompiler command generates the EJB wrapper components
and other code required to run the components in the server.

44 EAServer

CHAPTER 4 Managing CORBA Packages and Components

CORBA package property descriptions

CORBA package properties affect code generation and security constraintsfor
the components in the package. Table 4-1 lists the properties.

Management Console
property name

Table 4-1: CORBA package properties

Configuration script
property name

Description

EJB Version

com.sybase.jaguar.package.
ejb.version

The EJB specification version to use for the
generated EJB wrapper components.

Allowable values are 2.0 (the default) and 2.1.

Java Package

com.sybase.jaguar.package.
java.package

The Java package name for EJB home and remote
interfaces used by the generated EJB wrapper
components. If not set, the default Java package
mapping for the component’s CORBA IDL
moduleis used. For IDL module MyModule, the
default Java Package is MyModule.ejb.

This property applies only for componentsin the
package that use IDL interfaces defined in a
module that matches the CORBA package name.
For interfaces defined in a different module, the
Java package name isthe IDL module name
suffixed with .ejb. For example, Java interfaces
generated to match IDL module Tutorial use Java
package Tutorial.ejb.

Required Roles

com.sybase.jaguar.package.roles

A comma separated list of security role names
required for users to invoke componentsin the
package.

The package property configures the default role
list for components for which the component
Roles Required property
(com.sybase.jaguar.component.roles) is not set.

CORBA component property descriptions

Table 4-2 describes the CORBA component properties. The first column
contains the property names displayed in the Management Console. The
second column lists the suffixes for the property name used to configure the
property within a setProperties Ant command. The full property name begin

with:

CORBA Components Guide

45

CORBA component property descriptions

Management
Console name

com.sybase.jaguar.component.

For example, the pooling entry in the table must be configured as
com.sybase.jaguar.component.pooling.

Table 4-2: CORBA component properties

Configurationfile
property suffix

Description

Name

name

The component name. This property is read-only once the
component has been created.

Component Type

type

The component type. Allowable values are as follows, with
configuration script values in parentheses:

* CORBA/C++ (cpp)
« CORBA/Java (java)
« PowerBuilder (pb)

Code Set

code.set

For C++ components, specifies the coded character set name
used to encode character and string parameter data. For the list
of supported values, list the subdirectories of the charsets
directory. Each subdirectory matches the name of a supported
character set.

Input values for string parameters (and string fields within
complex datatype values) are converted to this code set before
each method invocation. Upon return, output values are
converted from the component’s code set to the client’s code set.

If your C++ component uses Client-Library connection caches,
you cannot specify a code set that is different than the server
code set. Character dataread over a cached Client-Library
connection is always in the server’s code set.

If acomponent code set is not specified, the default is the
server’s code set.

Expose as Web Service

web.service

Whether the component isexposed asaWeb service. If enabled,
the component’s EJB remote interface is exposed as a Web
service. The default isfalse.

Roles Required

roles

A comma-separated list of security role names. If set, clients
cannot invoke the component unless they connect with a user
name that is in one of the assigned roles.

If not set, the default isthe value of the Roles Required property
(com.sybase.jaguar.package.roles) in the CORBA package
properties—see “CORBA package property descriptions’ on
page 45.

C++ Class

46

cpp.class

For C++ components, the name of the C++ class that
implements the component methods.

EAServer

CHAPTER 4 Managing CORBA Packages and Components

Management
Console name

Configurationfile
property suffix

Description

C++ Library

cpp.library

For C++ components, the base name of the library file that
contains the component implementation.

Copy Library

cpp.copy

For C++ components, specifies whether the server should copy
the component library before runningit. The default isfalse. Set
this property to true to allow updates to the implementation on
operating systemsthat do not allow overwritingaDLL or shared
library while thelibrary isin use.

Debug Library

cpp.debug

For C++ components, specifies whether to catch exceptions.
The default istrue, which specifiesthat exceptions are caught in
the server. Use the default of true for deployment to production
serversto ensure that exceptions thrown by component code do
not terminate the server process.

When debugging an executing component, set this property to
false to allow exceptionsto reach your debugger. You must set
this property to true to debug an executing C++ component in
Microsoft Visual C++. Other C++ debuggers may require the
same setting as well.

Java Class

java.class

For CORBA/Java components, specifies the Java class name
that implements the component methods.

PowerBuilder NVO
Class

pb.class

For PowerBuilder components, specifies the name of the
nonvisual object that implements the component’s methods.

This property is set by deployment from PowerBuilder and
should be treated as read-only in EAServer.

PowerBuilder Libarry
List

pb.librarylist

For PowerBuilder components, specifieslibrary files that are
required to run the object. Set the valueto thelist of library files
separated by semicolons. Prefix library nameswith adollar sign
(%) if they must be included when the component isincluded in
an export configuration or cluster synchronization. For
example:

mylib.pbl;anotherlib.pbl;Sutils.pbl

This property is set by deployment from PowerBuilder and
should be treated as read-only in EAServer.

PowerBuilder Version

pb.version

CORBA Components Guide

For PowerBuilder components, specifiestherequired version of
the PowerBuilder virtual machine. This property is set when
deploying from PowerBuilder, and should not be edited in any
other way. Components that lack this property setting arerunin
the version 7.0 VM.

This property is set by deployment from PowerBuilder and
should be treated as read-only in EAServer.

47

CORBA component property descriptions

Management
Console name

Configurationfile
property suffix

Description

IDL Home Interface

home

The name of the IDL home interface, in IDL syntax. For
example, Tutorial::CPPArithmeticHome. The home interface
allows interoperability with EJB clients.

If you specify ahome interface when creating a component, the
IDL interface must exist already. To have EAServer create a
default interface, leave this setting blank when creating new
components.

If you do not specify an IDL home interface when creating the
component, EAServer creates one the first time you refresh the
component in the Management Console or run the jaguar-
compiler command on the package using a configuration script
or the command line.

IDL Remote Interface

remote

The name of the IDL remote interface, in IDL syntax. For
example, Tutorial::CPPArithmetic. Theremoteinterface specifies
the signatures of the component methodsthat can beinvoked by
clients. You must set this property and specify the name of a
valid IDL interface that has been deployed to EA Server—see
Chapter 3, “Using CORBA IDL."

IDL Component
Interfaces

interfaces

Optional. Specifies IDL interfaces that the component supports
for client usein addition to the remoteinterface. If set, specify a
commarseparated list of IDL interface names.

Pooled

pooling

Specifies whether component instances should always be
pooled. If set to true, lifecycle methods related to instance
pooling are not called, such as canBePooled or canReuse.

Instance Pool Timeout

48

instancePool.timeout

If the component supportsinstance pooling, specifies how long,
in seconds, an instance can remain idle in the pool. The default
is 600 (ten minutes).

To free resources used by idle component instances, the server
may remove instances that remain idle past this time limit.

EAServer

CHAPTER 4 Managing CORBA Packages and Components

Management
Console name

Configurationfile
property suffix

Description

Passivation Timeout

timeout

For stateful components, specifies how long, in seconds, an
active component instance can remain idle between method
calls before EA Server destroys the instance. The default of “0”
indicates an infinite timeout.

Instance Timeout is useful for ensuring timely deactivation of
stateful components. When the timeout period is exceeded,

EA Server deactivatesthe component and invalidatestheclient’s
object reference. If the client attempts another method
invocation, the client-side ORB throws the
CORBA::OBJECT_NOT_EXIST exception. At this point, the
client must create a new proxy instance for the component.

When specifying timeouts, aresolution of 5 secondsis
recommended. Network transport time is not included in the
measured timeout period. You may need to configure alarger
timeout period if clients connect over slow networks.

Thread Monitor

monitor

Optional. Specifiesthe name of athread monitor that constrains
component execution. Thread monitors provide a mechanismto
govern how many instances of a component can be
simultaneously active in the server For more information, see
“Monitoring threads’ in Chapter 3, “ Creating and Configuring
Servers,” in the System Administration Guide.

Transaction Type

tx_type

For components that use connection cachesto perform database
work, specifies how the database work is scoped in a server
managed transaction. “ Transaction type values’ on page 52
describes the allowable values.

Transaction Outcome

tx_outcome

CORBA Components Guide

For componentsthat participatein server managed transactions,
determineswhether aCORBA:: TRANSACTION_ROLLEDBACK
exception isthrown to the client when a transaction isrolled
back by the component or due to an error in component
execution.

The default value, always, specifiesthat EAServer sendsa
CORBA::TRANSACTION_ROLLEDBACK exception to the
client when atransaction isrolled back.

Thevalue failed specifiesthat EAServer does not send the
CORBA::TRANSACTION_ROLLEDBACK exception to the
client when atransaction isrolled back. If you use this setting,
you can code your components to raise a different exception
with a descriptive message after calling the RollbackWork
transaction primitive. With this setting in effect, EA Server may
still throw a CORBA system exception if unable to commit a
transaction at your component’s request.

49

CORBA component property descriptions

Management
Console name

Configurationfile
property suffix

Description

Transaction Retry

tx_retry

Specifies whether container-managed transactions should be
automatically retried after arollback. The default is false.

Automatic Failover

auto.failover

Specifies whether client proxies can transparently fail over to a
different server when the component is deployed to several
serversin acluster. The default of false prevents failover. For
more information on failover support, see Chapter 8, “Load
Balancing, Failover, and Component Availability,” in the
System Administration Guide.

Bind Object

bind.object

Specifies whether instances remain bound to client’s object
reference after setComplete is called. The default isfalse.
Cannot be set to true unless the component is stateful and
thread-safe.

Bind Thread

bind.thread

Specifies whether instances are bound to the thread that created
them. If true, the component instance is aways called by the
samethread. The default isfalse. Set this property to trueif your
component usesthread-local storage. Otherwise, use the default
of false for best performance. Enabling Bind Thread requires
EAServer to create an extrathread for each component instance.

Pooled

pooling

Specifies whether component instances are pooled for reuse by
multiple client sessions. The default isfase.

Shared

sharing

Specifies whether a single instance or multiple instances of the
component implementation serve clients.If set to true, asingle
instance serves al clients. The default of false means multiple
instances are used.

If sharing is enabled, and the Thread Safe property is enabled,
you must synchronize access to read-write instance variablesin
the implementation.

Stateful Session Bean

50

tx_vote

Specifieswhether the component iswrapped by an EJB stateful
session bean to allow stateful behavior. The default isfalse,
which causes EA Server to wrap the component with a stateless
session bean.

In business methods, stateful CORBA components must call the
transaction state primitive methods to indicate the session state.
For example, completeWork or rollbackWork ends the session
and deactivates the component instance. For details, see“ Using
transaction state primitives’ on page 16.

If long transactions are enabled for the server, server managed
transactions depend on the component’s invocation of the
transaction state primitive methods. See “Long versus short
transactions’ on page 10 for more information.

EAServer

CHAPTER 4 Managing CORBA Packages and Components

Management
Console name

Configurationfile
property suffix

Description

Thread Safe

thread.safe

Specifies whether multiple component instances can execute
concurrently, or whether a shared component can execute
simultaneously on multiple threads. The default istrue. If set to
false, the server serializes all invocations of component
methods.

Note Sharing istrue, this property specifies whether it is safe
for multiple threads to simultaneously call business methods on
asingleton instance of this component.

Debug

debug

Specifies whether the server logstrace information for instance
life cycle events such as creation, destruction, pooling, and so
forth. The default isfalse.

MDB Acknowledge
Mode

mdb.acknowledge-
mode

For CORBA message listener components that have been
migrated from EAServer 5.x. Appliesonly if the remote
interface is CtsComponents::MessageListener.

Specifies the acknowledgment mode for MDBs that manage
their own transactions. Allowable values are:

¢ Auto-acknowledge — The default. The session automatically
acknowledges messages.

¢ Dups-ok-acknowledge — Instructs a session to lazily
acknowledge messages, which reduces a session’sworkload
but may lead to duplicate message deliveries.

MDB Topic Name

topic

For CORBA message listener components that have been
migrated from EAServer 5.x. Appliesonly if the remote
interface is CtsComponents::MessageListener.

For MDBs associated with a message topic, specifies the name
of thetopic.

MDB Destination Type

mdb.destination-type

CORBA Components Guide

For CORBA message listener components that have been
migrated from EAServer 5.x. Applies only if the remote
interface is CtsComponents::MessageListener.

Specifies whether the component listens on a JM S topic or
message queue. Allowable values are:

e javax.jms.Topic
e javax.jms.Queue
The default isjavax.jms.Queue

51

CORBA component property descriptions

Management
Console name

Configurationfile
property suffix

Description

MDB Queue Name

queue

For CORBA message listener components that have been
migrated from EAServer 5.x. Appliesonly if the remote
interface is CtsComponents::MessageListener.

For MDBs associated with amessage queue, specifiesthe name
of the queue.

MDB Message Selector

mdb.message-
selector

For CORBA message listener components that have been

migrated from EAServer 5.x. Appliesonly if the remote

interface is CtsComponents::MessageListener.

If the component listens on a message queue, specifies the

message selector. The message service usesthe selector to filter

the message that it delivers to the queue. Use the syntax:
topic='topicString’

Where topicSring is the selector to filter messages.

MDB Subscription
Durability

mdb.subscription-
durability

For CORBA message listener components that have been
migrated from EAServer 5.x. Appliesonly if the remote
interface is CtsComponents::MessageListener.

For components that listen on a topic, specifies whether the
topic is durable or nondurable. Allowable values are:

« Durable— Durable topic subscriber; guarantees message
delivery.

« NonDurable — Nondurable topic subscriber; can receive
published messages only whileit is connected to EA Server.

MDB Thread Count

mdb.thread-count

Transaction type values

The CORBA component’s Transaction Type property
(com.sybase.jaguar.component.tx_type) determines how database work is scoped
in aserver managed transaction.Allowable values are asfollows (valuesfor usein
setProperty commands are in parentheses):

52

For CORBA message listener components that have been
migrated from EAServer 5.x. Appliesonly if the remote
interface is CtsComponents::MessageListener.

Specifies the number of instances that EA Server createsto
respond to incoming messages. Multiple instances can run
simultaneously and may improve performance. The default is 1.

EAServer

CHAPTER 4 Managing CORBA Packages and Components

* Not Supported (not_supported) — The default. The component’s methods
never execute as part of atransaction. If the component is activated by
another component that is executing within a transaction, the new
instance’'s work is performed outside of the existing transaction.

e Bean Managed (bean_managed) — The component implementation
explicitly begins and ends transactions. The component can inherit a
client’s transaction. If called without a transaction, the component can
explicitly begin, commit, and roll back transactions by using the CORBA
CosTransactions::Current interface.

e Mandatory (mandatory) — Methods may only be invoked by a client that
has an outstanding transaction.

* Never (never) — The component’s methods never execute as part of a
transaction, and the component cannot be called in the context of a
transaction. If a client or another component calls the component with an
outstanding transaction, EAServer throws an exception.

« Requires (requires) — The component always executes in a transaction.
When the component is instantiated directly by a base client, anew
transaction begins. If component A is activated by component B, and B is
executing within atransaction, then A executes within the same
transaction; if B isnot executing in atransaction, then A executesin anew
transaction.

* Requires New (requires_new) —Whenever the component isinstantiated,
anew transaction begins. If component A is activated by component B,
and B is executing within atransaction, then A begins a new transaction
that is unaffected by the outcome of B’s transaction; if B is hot executing
in atransaction, then A executesin a new transaction.

e Supports (supports) — The component can execute in the context of an
EAServer transaction, but one is not required to execute the component’s
methods. If the component isinstantiated directly by a base client,
EAServer does not begin atransaction. If component A isinstantiated by
component B, and component B is executing within atransaction,
component A executes in the same transaction.

CORBA Components Guide 53

CORBA component property descriptions

54 EAServer

CHAPTER 5

CORBA Components Guide

Developing and Deploying
PowerBuilder Components

This chapter describes EA Server-specific modifications for developing
PowerBuilder components.

For general instructions on developing PowerBuilder components, see
Application Techniques at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.
5.apptech/html/apptech/title.htm.

Topic Page
Developing PowerBuilder components 56
Deploying components 62
Remote debugging 66
Troubleshooting 66

EAServer hosts the PowerBuilder virtual machine natively. This means
that EA Server can communicate directly with PowerBuilder nonvisual
user objects, and vice versa. EA Server components developed in
PowerBuilder can take full advantage of the ease of use and flexibility of
PowerScript and the richness of PowerBuilder’s system objects.

The PowerBuilder IDE runs on Windows platforms, but you can deploy
PowerBuilder components to EAServer on any platform for which a
compatiblePBVM isavailable, including most UNIX platforms. For more
information, see the EA Server Release Bulletin for your platform.

PowerBuilder provides full-fledged support for EAServer component
technologies, including:

* Instance pooling, by configuring the Pooling setting in the wizards
and optionally implementing lifecycle methods to control whether
specific instances are pool ed.

e Server-managed transactions, by configuring the Transactions
settings in the wizards and by calling the methods in the
TransactionServer context object.

55

Developing PowerBuilder components

» Database connection caching, when using DataStore objects or embedded
SQL in your implementation code.

» Result sets, by using the PowerScript DataStore, ResultSet, and ResultSets
objects. You can use the DataStore object to return result sets that are
presented in the client using Datawindow controls. You can also use the
ResultSet and ResultSets objectsto return tabular resultsto clients of other
types.

e Intercomponent calls, using the Createlnstance method in the
TransactionServer object to obtain proxies for components.

» Logging, using the ErrorLogging object to write error or status messagesto
the server log file.

* Running independent of client interaction, using the EA Server thread
manager or service component model.

Developing PowerBuilder components

The PowerBuilder IDE includes wizards to create EA Server components and
deployment projects. If you must set additional component properties that
cannot be set from the PowerBuilder IDE, consider creating a script or batch
file that uses an Ant configuration file or the jagtool set_props command to
configure these additional settings. Doing so allows you to maintain an
automated deployment mechanism. For more information, see these chapters
in the Automated Configuration Guide:

» Chapter 2, “Ant-Based Configuration”
» Chapter 6, “Using jagtool and jagant”

Mapping datatypes

56

Beginningin EA Server version 6.0, PowerBuilder NV Osarewrapped asEJBs.
Table 5-1 on page 57 describes the PowerBuilder to EJB datatype mappings,
which are applied when an NV O package is wrapped as an EJB module. NVO
isageneric term used to describe “ custom class user objects,” which inherit
directly from the PowerBuilder system type NonVisualObject.

EAServer

CHAPTER 5 Developing and Deploying PowerBuilder Components

Mappings for datatypes passed by value are valid for in and return parameter
modes. Mappings for datatypes passed by reference are valid for out and inout

parameter modes.

PowerBuilder type

Table 5-1: PowerBuilder to EJB datatype mappings

EJB parameter type

Blob by value
Blob by reference

byte[]

javax.xml.rpc.holders.ByteArrayHolder

Boolean by value
Boolean by reference

boolean

javax.xml.rpc.holders.BooleanHolder

Byte by value
Byte by reference

See “Byte datatype” on page 59.

byte

javax.xml.rpc.holders.ByteHolder

Char by value
Char by reference

char — see “ Character datatypes’ on page 59.

No mapping existsfor Char passed by reference (out and inout
parameter modes).

Date by value
Date by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

DateTime by value
DateTime by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

Decimal by value
Decimal by reference

java.math.BigDecimal

javax.xml.rpc.holders.BigDecimalHolder

Double by value
Double by reference

double

javax.xml.rpc.holders.DoubleHolder

Integer by value
Integer by reference

short
javax.xml.rpc.holders.ShortHolder

For Java client components that communicate with
PowerBuilder server components, the numerical range that

Long by value
Long by reference

this datatype supportsis -32768 — 32767.
int
javax.xml.rpc.holders.IntHolder

For Java client components that communicate with
PowerBuilder server components, the numerical range that
this datatype supports is -2147483648 — 2147483647.

LongLong by value
LongLong by reference

long

javax.xml.rpc.holders.LongHolder

Real by value
Real by reference

CORBA Components Guide

float

javax.xml.rpc.holders.FloatHolder

57

Developing PowerBuilder components

PowerBuilder type

EJB parameter type

String by value
String by reference

String

javax.xml.rpc.holders.StringHolder

Time by value
Time by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

MyModule_MyArray[] or MyArray(]
(return type only)

MyModule.ejb.MyElement[]

MyModule_MyException or MyException

MyModule.ejb.MyException

MyModule_MyComp or MyComp by value
MyModule_MyComp or MyComp by reference

MyModule.ejb.MyComp
MyModule.ejb.holders.MyCompHolder

MyModule_MyStruct or MyStruct by value
MyModule_MyStruct or MyStruct by reference

MyModule.ejb.MyStruct
MyModule.ejb.holders.MyStructHolder

MyModule_MyUnion or MyUnion by value
MyModule_MyUnion or MyUnion by reference

MyModule.ejb.MyUnion
MyModule.ejb.holders.MyUnionHolder

MyModule_MyElement[] or MyElement[] by value

MyModule_MyElement[] or MyElement][] by
reference

MyModule.ejb.MyElement[]
MyModule.ejb.holders.ArrayOfMyElementHolder

MyModule_MySequence or MySequence
(return type only)

MyModule.ejb.MyElement[]

MyModule_MyElement[n] or MyElement[n] by value

MyModule_MyElement[n] or MyElement[n] by
reference

MyModule.ejb.MyElement[]
MyModule.ejb.holders.MyArrayHolder

ResultSet by value
ResultSet by reference

java.sql.ResultSet
TabularResults.SqlResultSetHolder

ResultSets by value
ResultSets by reference

java.sgl.ResultSet[]
TabularResults.SqlResultSetsHolder

XDT_BooleanValue by value
XDT_BooleanValue by reference

java.lang.Boolean
javax.xml.rpc.holders.BooleanWrapperHolder
See “XDT datatypes’ on page 60.

XDT_CharValue by value
XDT_CharValue by reference

java.lang.Character
XDT.CharacterWrapperHolder
See “Character datatypes’ on page 59.

XDT_ByteValue by value
XDT_ByteValue by reference

java.lang.Byte

javax.xml.rpc.holders.ByteWrapperHolder

XDT_ShortValue by value
XDT_ShortValue by reference

java.lang.Short

javax.xml.rpc.holders.ShortWrapperHolder

XDT_IntValue by value
XDT_IntValue by reference

58

java.lang.Int

javax.xml.rpc.holders.IntegerWrapperHolder

EAServer

CHAPTER 5 Developing and Deploying PowerBuilder Components

PowerBuilder type

EJB parameter type

XDT_LongValue by value
XDT_LongValue by reference

java.lang.Long

javax.xml.rpc.holders.LongWrapperHolder

XDT_FloatValue by value
XDT_FloatValue by reference

java.lang.Float

javax.xml.rpc.holders.FloatWrapperHolder

XDT_DoubleValue by value
XDT_DoubleValue by reference

java.lang.Double

javax.xml.rpc.holders.DoubleWrapperHolder

XDT_DecimalValue by value
XDT_DecimalValue by reference

java.math.BigDecimal

javax.xml.rpc.holders.BigDecimalHolder

XDT_IntegerValue by value
XDT_lIntegerValue by reference

java.math.Biglnteger

javax.xml.rpc.holders.BiglntegerHolder

XDT_DateValue by value
XDT_DateValue by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

XDT_TimeValue by value
XDT_TimeValue by reference

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

XDT_DateTimeValue by value
XDT_DateTimeValue by reference

Byte datatype

java.util.Calendar

javax.xml.rpc.holders.CalendarHolder

PowerBuilder version 10.5 introduced a Byte datatype. To use the

PowerBuilder Char datatype for backward compatibility, run the following

Character datatypes

CORBA C++
datatypes

DataStore system
object

command (once) before deployment:
configure idl-octet-to-pb-char

To switch back to using the PowerBuilder Byte datatype, run the following
command (once) before deployment:

configure idl-octet-to-pb-byte

Only charactersin the | SO 8859-1 character set can be used for in and return
parameter modes. To propagate other characters, use the String datatype.

The char and java.lang.Character datatypes have no defined XML schema
mappings for EJB Web services, so you cannot use these as a parameter types
or structure field typesif you intend to expose a component as a Web service.
Use the String datatype instead.

For CORBA C++ datatypes, see CORBA IDL to C++ Language Mapping at
http://www.omg.org/technology/documents/formal/c++.htm.

Sybase recommends that you use the PowerBuilder DataStore system object
with the ResultSet return type, especially for NV Os running in an application
server. For improved performance, use NV O instance variables, and create the
DataStore and assign the DataObject in your NV O constructor.

CORBA Components Guide 59

Developing PowerBuilder components

XDT datatypes To obtain the PowerBuilder XDT_* datatypes to use as PowerBuilder structure
field types or component parameter types, use the EAServer Proxy wizard or
the Application Server Proxy wizard in the PowerBuilder IDE to generate
proxies for the XDT package. Each of the XDT_* datatypes contains a value
field and an isNull field. You must set isNull to true if you want to indicate null
values.

Accessing data
From PowerBuilder NV Os, you can access data using either JDBC data
sources or Sybase native data sources.
[JAccessing JDBC data sources in NVOs

1 TosetupaJDBC datasourcein an NV O, use the following PowerScript
code, where DefaultDS is the name of an EAServer data source:

sglca.dbms = "JDBC"
sglca.dbparm = "CacheName='DefaultDS’"
connect; // check error code

// use embedded SQL or DataStore

disconnect; // check error code

2 Toassign aJNDI name to your JDBC data source, see “ Configuring data
sources’ in Chapter 4, “Database Access,” in the EAServer System
Administration Guide.

[JAccessing Sybase native data sources in NVOs

» Usethefollowing PowerScript code, where JCM_Sybase is the name of
an EA Server data source:

sglca.dbms = "SYJg"
sglca.dbparm = "CacheName='JCM Sybase’"

Logging errors

The PowerBuilder ErrorLogging class writes errors to
%DJC_HOMEY6\logs\pb-server.log. To use PowerScript to create an instance
of the class and to log messages, use the following syntax:

ErrorLogging logger

60 EAServer

CHAPTER 5 Developing and Deploying PowerBuilder Components

getContextService ("ErrorLogging", logger)
logger.log ("My Message")

Managing transactions
The PowerBuilder TransactionServer class supports the following methods:

CORBA Components Guide

Createlnstance — (for NV O intercomponent calls) use the two-argument
form, and specify the full INDI name of the target component:

TransactionServer ts
getContextService ("TransactionServer", ts)

// generate and use proxies
pbtest MyComp comp
ts.createInstance (comp, "pbtest/MyComp")

// call methods on comp

DisableCommit — prevents the current transaction from being committed,
because the component’s work has not been completed. The instance
remains active after the current method returns.

EnableCommit —the component should not be deactivated after the current
method invocation; allows the current transaction to be committed if the
component instance is deactivated.

IsinTransaction — determines whether the current method is running in a
transaction.

IsTransactionAborted — determines whether the current transaction has
been aborted.

SetAbort — specifies that the component cannot compl ete its work for the
current transaction and that the transaction should be rolled back. The
component instance is deactivated when the method returns.

SetComplete —indicates that the component has completed itswork in the
current transaction and that, asfar asit isconcerned, the transaction can be
committed and the component instance can be deactivated.

61

Deploying components

UseContextObject
parameter

If you plan to use the TransactionServer context object to work with EA Server
transaction service primitives, you may want to set the UseContextObject
DBParm parameter for your connection to yes. If a component supports
transactions, setting UseContextObject to yes tells PowerBuilder that you will
be using the TransactionServer object methods, rather than COMMIT and
ROLLBACK, to indicate that the component has completed its work for the
current transaction. If your scripts call COMMIT and ROLLBACK, they will
generate database errorsin the SQL CA.SqlErrText string, which can help you
refine your code during development.

If you want to continue to call COMMIT and ROLLBACK on a PowerBuilder
Transaction object, set UseContextObject to no. For components that use an
EA Server data source, this causes COMMIT and ROLLBACK statements to
behavelikethe TransactionServer object’s SetComplete and SetAbort functions,
which call the EAServer transaction service's CommitWork and AbortWork
methods.This is the default.

For components that do not support transactions, the UseContextObject setting
isignored, and PowerBuilder drivers handle COMMIT and ROLLBACK
statements.

Deploying components

The deployment tool wraps your PowerBuilder NV Os as standard EJB session
beans. Target-specific deployment descriptors are generated to bind JNDI
names and JDBC data source resource references automatically.

PowerBuilder components

You can use the Project painter to deploy PowerBuilder components.

[1IDeploying PowerBuilder components

62

1 IntheProject painter Properties dialog box, select the EAServer Host tab,
and enter:

* Host Name — the TCP host name for the server machine. Do not use
“localhost” or the |P address.

» Port —the IlOP port number on the host machine; the default is 2000.

* Login ID — adminesystem.

EAServer

CHAPTER 5 Developing and Deploying PowerBuilder Components

e Login Password —avalid password for the login ID.

Note To override the host name and port number that the server uses for
its deployment listener, see “Configuring listeners’ on page 41, in the
EAServer System Administration Guide.

2 Fromthe Component type drop-down list on the Components page, select
one of:

e Shared component — allows multiple clients to share the same
component instance. This provides accessto common data that would
otherwise need to be retrieved separately by each client connection,
and reduces the number of database accesses, allowing the database
server to be available for other processing.

* Service component — performs background processing for EAServer
clients and other EA Server components. EA Server loads service
components at server start-up time. A service component can also be
shared.

e Standard component — you can improve performance by allowing
multiple instances of a component to handle client requests.

For detailed information about these component types, see “Building an

EA Server Component” in the PowerBuilder Application Techniques book.

3 Inthe Standard Options group box on the Components page, to use

statel ess EJB session beans, select Automatic Demarcation/ Deactivation;

to use stateful session beans, unselect this option.

Live editing You can quickly test changes without redeploying, using live editing—see

“Testing and debugging the component” in Application Techniques at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.app
tech/html/apptech/CHDDHCCJ.htm.

To increase the speed at which live editing runs, perform the following
configuration:

1
2

CORBA Components Guide

Open config/deploy-tool-options.xml, in your EAServer installation.

In the com.sybase.jaguar.compiler.JaguarCompiler component description,
set the value of ejbDeploylfUnchanged to false.

Run:

configure deply-tool-options

63

Deploying components

Java packages

For an NV O package called “xyz,” the default Java package name for
generated EJB interfacesis “xyz.gjb.”

[IChanging default Java package names
1 Inthe Project painter Properties dialog box, select the General tab.
2 Inthe Comments box, enter the Java package name; for example:
javaPackage="com.example.bank”;

The semicolon is required.

Web services

To deploy a PowerBuilder NVO as a Web service, you must define the Java
package name.

[IDeploying Web services
1 IntheProject painter Properties dialog, select the Genera tab.

2 Inthe Comments box, enter the names of the components to generate as
Web services; for example:

javaPackage="“com.example.bank” ;webServices="MyCompl, MyComp2” ;
The final semicolon isrequired.

3 Onthe WebService tab, select Expose the Component as a Web Service.

Generated code

Thebase directory for generated filesis%DJC_HOMEYo\genfiles\java, which
includes the following subdirectories:

» applications

* classes
* ¢gbjars
e SC

Typically, you can delete generated files after deployment, but this causes
redeployment to be slower.

64 EAServer

CHAPTER 5 Developing and Deploying PowerBuilder Components

Naming conventions

Repository files

Security roles

You cannot use hyphens in the names of PowerBuilder components or
methods.

PowerScript method and parameter identifiers that contain underscores are
mapped to Java names using lower Camel Case; field names are not mapped
when using thecamel case option. See* Camel case versusdefault IDL-to-Java
mappings’ on page 144.

A similar mapping isused for structure names, but thefirst letter is capitalized,;
for example, “my_structure” maps to “MyStructure.”

Component names are not changed from the names you enter in the Project
painter. Sybase recommends that you use the Java class naming conventions;
for example, “MyComp.”

An NVO implementation class can use any name.

The base directory for repository filesis %DJC_HOME%\Repository, which
includes the following subdirectories:

* |DL —interface definitions.

« Component — component properties and PowerBuilder dynamic libraries
(PBDs).

e Instance — server and data source properties.
» Package — package properties.

The repository files are used during deployment and at runtime.

By default, security roles are disabled. To specify security roles:
1 Inthe Project painter Properties dialog, select the General tab.

2 Inthe Comments box, specify the security roles required for each
component. In the following example, MyCompl and MyComp2 are
component namesand “manager” isthe name of the security role assigned
to each:

CORBA Components Guide 65

Remote debugging

roles:MyCompl="manager” ;roles:MyComp2="manager” ;

3 Usethe Management Console to assign roles to users. See “Managing
users’ in Chapter 10, “ Security Configuration Tasks,” in the Security
Administration and Programming Guide.

Remote debugging

To start aremote debugging session, in the PowerBuilder debugger, select Start
Remote. For details, see the PowerBuilder documentation at

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.app
tech/html/apptech/CEGBEGBH.htm.

Troubleshooting

To troubleshoot runtime problems, check the following:
» TheEAServer log file logs\serverName.log

* The console window, if available

66 EAServer

CHAPTER 6

Developing PowerBuilder Clients

This chapter describes how to develop PowerBuilder clientsfor EA Server
components.

While the PowerBuilder IDE is not included with EA Server, the products
arefully integrated and work well together. PowerBuilder allows you to
generate non-visual objects (NVOs) that act as proxies for EAServer
components. Using a proxy, you can call component methods as if they
were implemented aslocal NV O methods. You can call any type of
component from a PowerBuilder client, not just PowerBuilder NVO
components.

Topic | Page
Developing clients | 67

Developing clients

CORBA Components Guide

To create a PowerBuilder client, use the EA Server Proxy wizard to
generate PowerScript proxies for the components that the client calls.
New PowerBuilder users may find it helpful to run the Template
Application wizard to create some of the client-side connection logic. To
run the Template Application wizard, select New | Target |

Template Application.

Clients can use the PowerBuilder Connection object generated by the
Template Application wizard to connect to the server, generate proxies
using the EA Server Proxy wizard, then instantiate the proxies and invoke
the proxy methods to call the component’s business methods.

For more information, see the Application Techniques manual in the
PowerBuilder documentation.

67

Developing clients

Component access

Web DataWindow

68

For clients—JavaServer Pages (JSPs), servlets, or other EJBs—running in the
same application server process, you can use either EJB references or direct
JNDI |ookups to access components.

When you deploy PowerBuilder components, if the package name is
“MyPackage” and the component nameis*“MyComp”:

» The generated EJB home interface is MyPackage.ejb.MyCompHome.
e The generated EJB remote interface is MyPackage.ejb.MyComp.
e The JNDI nameis*“MyPackage/MyComp.”

The PowerBuilder EJBConnection class allows you to call EJBsin EAServer
and third-party application servers—seethe EJBConnection classdescriptionin
the PowerBuilder documentation at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.app
tech/html/apptech/CCIJBGAEBA.htm.

Other patterns for proxy instantiation Some patterns for proxy
instantiation used in clients written for earlier EAServer releases are not
compatible with EAServer 6.0. In particular, clients that use the CosNaming
API or SessionManager::Factory::create methods that take parameters should
be modified to use the implementation pattern described here. For more
information, see “Using the CosNaming interface” on page 121.

The Web Datawindow is a thin-client DataWindow implementation for Web
applications, which provides most of the data manipulation, presentation, and
scripting capabilities of the PowerBuilder DataWindow, requiring the Web
DataWindow component on acomponent server but no PowerBuilder DLLson
the client. The Web DataWindow supports browser-based clients and offers
three rendering formats: XML, XHTML, and HTML—see the Datawindow
Programmer’s Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.pb_10.5.dw
prgug/html/dwprgug/title.htm.

Note the following updates to the DataWindow Programmer’s Guide:

EAServer

CHAPTER 6 Developing PowerBuilder Clients

[IConfiguring a Web DataWindow for generating and deploying JSP
targets:

e Changeto the EAServer bin subdirectory, and run:

configure web-data-window

[instantiating a Web DataWindow from a JavaServer Faces (JSF)
interface, JSP, or servlet

* Toinstantiate a Web Datawindow, use the following syntax, where NNN
represents the version of the PowerBuilder VM; for example, use
HTMLGenerator105 for PBVM version 10.5:

import com.sybase.pb.datawindow. *;
InitialContext nc = new InitialContext () ;
HtmlGeneratorNNNHome home =
(HtmlGeneratorNNNHome) javax.rmi.PortableRemoteObject .narrow (nc.lookup

(“DataWindow/HTMLGeneratorNNN”) , HTMLGeneratorNNNHome.class) ;

HTMLGenerator gen = home.create() ;

CORBA Components Guide 69

Developing clients

70 EAServer

CHAPTER 7

Overview

CORBA Components Guide

CORBA/C++ Overview

This chapter provides an overview of thingsto consider when devel oping
CORBA C++ clients and components for EA Server.

Topic Page
Overview 71
Requirements 72
Supported datatypes 72

CORBA isadistributed component architecture defined by the Object
Management Group (OMG). EA Server supports the CORBA Internet
Inter-ORB Protocol (110P). EAServer also provides a CORBA-
compatible C++ client-side interface. Thesetwo itemsallow you to create
CORBA EAServer C++ applications. C++ components and clients are
also interoperable with clients and components using other technol ogies.

The dynamic invocation interface (DII) is not supported.

For information on the CORBA architecture, see the specifications
available at the OMG Web site at http://www.omg.org.

A tutorial is available
If you are new to EA Server, follow the steps in Chapter 10, “ Tutorial :

Creating C++ Components and Clients’ to get aquainted with the C++
development and deployment cycle.

71

Requirements

Requirements

To develop C++ components, you need a C++ devel opment tool such as
Microsoft Visual C++, for use on Windows, or the standard C++ compiler for
your UNIX platform. All software that is required to run C++ componentsin
EAServer is supplied with the EA Server product.

To develop C++ clients, you need a C++ development tool. To deploy and run
C++ clients on end-user workstations, you must install the EAServer C++
client runtime on each workstation.

For detailed system requirements, seethe EAServer Installation Guidefor your
platform.

Supported datatypes

72

EA Server follows the OMG standard for translating CORBA IDL to C++,
more specifically, refer to C++ Language Mapping Specification
(formal/99-07-41). You can download this document from the OMG Web site
at http://www.omg.org.

The standard supports al the C++ features in the Annotated C++ Reference
Manual by Ellis and Stroustrup as implemented by the ANSI/ISO C++
standardization committees. In addition, the namespace construct is supported.
Templates are not required but can be used.

IDL modules are mapped to C++ namespaces and IDL interfaces are mapped
to C++ classes. All OMG IDL constructs scoped to an interface are accessed
through C++-scoped-names. For example, the IDL interface
CtsComponents:: ThreadManager maps to the C++ class
CtsComponents:: ThreadManager. |f your C++ compiler supports namespaces,
you can use the namespace directive and refer to the interface name by itself,
asin:

using namespace CtsComponents;

ThreadManager threadMan;

EAServer

CHAPTER 7 CORBA/C++ Overview

C++ mappings for predefined IDL datatypes

Table 7-1 lists the CORBA IDL types predefined in EAServer and the
equivalent C++ datatypes. You can also define additional typesin IDL; when
you generate stubs and skeletons, these are trand ated to C++ types using the
standard CORBA IDL to C++ type mappings. For example, The BCD and MJD
CORBA IDL modules define types to represent binary data, fixed-point
numeric data, dates, and times. For details, see the generated Interface
Repository documentation for these IDL modules.

Table 7-1: C++ datatype mappings for predefined CORBA IDL types

CORBA IDL Argument
type mode IDL C++type
short in CORBA::Short
inout CORBA::Short&
out CORBA::Short_out
return CORBA::Short
long in CORBA::Long
inout CORBA::Long&
out CORBA::Long_out
return CORBA::Long
long long in CORBA::LongLong
inout CORBA::LongLong&
out CORBA::LongLong_out
return CORBA::LongLong
Define JAG_LONGLONG
Becausethereisno standard C++ typefor an
signed 64-hit integer, you must define the
JAG_LONGLONG macro as your
compiler’stype for asigned 64-bit integer.
float in CORBA::Float
inout CORBA::Float&
out CORBA::Float_out
return CORBA::Float
double in CORBA::Double
inout CORBA::Double&
out CORBA::Double_out
return CORBA::Double
boolean in CORBA::Boolean
inout CORBA::Boolean&
out CORBA::Boolean_out
return CORBA::Boolean

CORBA Components Guide 73

Supported datatypes

CORBA IDL Argument
type mode IDL C++ type
string in char*
inout char*&
out CORBA::String_out
return char*
BCD::Binary in BCD::Binary&
inout BCD::Binary&
out BCD::Binary_out
return BCD::Binary*
BCD::Decimal in BCD::Decimal&
inout BCD::Decimal&
out BCD::Decimal_out
return BCD::Decimal*
BCD::Money in BCD::Money&
inout BCD::Money&
out BCD::Money_out
return BCD::Money*
MJD::Date in MJD::Date&
inout MJD::Date&
out MJD::Date_out
return MJD::Date
MJD::Time in MJD::Time&
inout MJD::Time&
out MJD::Time_out
return MJD::Time
MJD::Timestamp in MJD::Timestamp&
inout MJD::Timestampé&
out MJD::Timestamp_out
return MJD::Timestamp
TabularResults:: return TabularResults::ResultSet*
ResultSet
TabularResults:: return TabularResults::ResultSets*

ResultSets

Using mapped IDL types

All EAServer component interfaces are defined in standard CORBA IDL, and
C++ stubsand skel etons use the standard CORBA | DL -to-C++ type mappings.

74

EAServer

CHAPTER 7 CORBA/C++ Overview

For local variables that map to constructed C++ types and do not represent an
IDL interface, use the C++ datatype that is appended with _var. _var variables
are automatically freed when they are out of scope. If you do not use the _var
type, references must be freed with the C++ delete operator. In Table 7-1,
string, binary, decimal, money, date, time, timestamp, ResultSet, and ResultSets
have _var types. Other typeslisted in Table 7-1 map to fixed-length C++ types.
For fixed-length types, use the base C++ type.

IDL interfaces map to C++ classesthat extend the CORBA::Object class. These
object reference types have a_var form for references with automatic memory
management, and a_ptr form for references that must remain valid after the
reference variable goes out of scope. _ptr references must be freed by calling
CORBA::release.

You must pass valuesin a_var type as follows:

MyType var v;

v.in() // Passes v as an in

// parameter.
v.inout () // Passes v as an inout
// parameter.
v.out () // Passes v as an out
// parameter.
return v. retn() // Passes v as a return value.

Note Do not use the C++ _out typesfor local variables; these types are
reserved for method signatures.

For out and inout parameters of IDL type string, use CORBA::string_alloc or
CORBA::string_dup to allocate memory for them. For example:

ItemName = CORBA::string dup ("Dummy Item Name") ;
ItemData = CORBA::string dup ("Dummy Item Data") ;

In C++, if you declare string variables as type CORBA::String_var, memory
allocated by CORBA::string_dup or CORBA::string_alloc isfreed automatically.
Otherwise, declare as char * and free the memory explicitly by calling
CORBA::string_free.

You can pass anull value as a parameter type only with the object reference
type Module::Interface::_nil().

CORBA Components Guide 75

Supported datatypes

Overloaded methods

Overloading methodsis supported for C++ components. When you overload a
method, you use the same name for several methods that specify different
parameters. When you call an overloaded method, the method with the
corresponding parameters is executed. See “ Operation declarations’ on page
29 for more information.

76 EAServer

CHAPTER 8

Procedure for creating C++ components

CORBA Components Guide

Developing CORBA/C++

Components

Topic Page
Procedure for creating C++ components 7
Generating C++ component files 78
Writing the class implementation 80
Compiling sourcefiles 81
Using data sources 84
Managing explicit OTS transactions 91
Setting transaction state 96
I ssuing intercomponent cals 97
Handling errors 98
Debugging C++ components 98

To create a CORBA/C++ compoent, you use the Management Console or
a configuration script to define basic information about the component,

such as the component name and methods, generate filesthat are required
towritethe component’s classimplementation, then compilethe classinto
adynamic link library (on Windows) or shared library (on UNIX).

The steps are asfollows:

1 Definethe component interfacein CORBA IDL and deploy the IDL
to the EA Server repository. Chapter 3, “Using CORBA IDL,”

describes how to do this.

2 Create EAServer entities to define the CORBA packages and

components. The package and component properties specify the

component interfaces and control interaction between EA Server and
your implementation. Chapter 4, “Managing CORBA Packages and

Components,” describes how to do this.

77

Generating C++ component files

3 Generatetherequired filesby running thejaguar-compiler command on the
CORBA package to generate the code and EJB wrapper components
required to run the components in EAServer as described in “ Generating
C++ component files” on page 78.

4 Complete the C++ implementation and compile the component library.
For details, see:

e “Writing the class implementation” on page 80

e “Compiling source files” on page 81

A tutorial is available
If you are new to EAServer, follow the stepsin Chapter 10, “ Tutorial: Creating

C++ Componentsand Clients’ to get aquainted with the C++ devel opment and
deployment cycle.

Generating C++ component files

78

Run thejaguar-compiler command on the CORBA packageto generatethe C++
files that you need to compileinto aDLL or UNIX shared library aswell asa
class implementation template in which to write method logic.

You can run the jaguar-compiler command several ways.

e From the Management Console as described in “ Refreshing CORBA
packages in the Management Console” on page 43.

e Using a configuration script, as described in “Managing CORBA
packages with configuration scripts” on page 43.

e Using thejaguar-compiler command-linetool, as described in Chapter 12,
“Command Line Tools,” in the System Administration Guide.

The generated files include sample implementation templates for the
component implementation.

The generated C++ filesinclude:

» Method skeletonsfile— Contains method routinesthat read the parameters
from the network and call the method. The method skel etons also send the
return status and output parameter data back to the client.

EAServer

CHAPTER 8 Developing CORBA/C++ Components

Class header file — Contains the method declarations only. Thisfileisan
included file in the method skeletons file and the class implementation
template.

Class implementation template — Contains the class, method, and
parameter declarations, as well as empty method definitions. You enter
any business logic into the empty method definitions.

Stub interface files— Contain the interface definition for all componentsin
apackage, as well as definitions for user-defined types and exceptions
used in your component’s interface.

UNIX makefile— You use amakefile to compile the C++ sourcefilesinto
aUNIX shared library.

Windows makefileand Microsoft Visual C++ moduledefinitionfile—You
use the makefile and a modul e definition file to compile the C++ source
filesintoaDLL.

C++ file naming conventions and locations

For the component implementation, EA Server generates the following files:

File type

File name

method skeletonsfile

package-name_component-name.cpp

class header file

class-name.hpp.new

Renamethisfileto useit asan
implementation template.

class implementation template

where;

class-name.cpp.new

Renamethisfileto useit asan
implementation template. If you have
modified the IDL interface, merge
modifications from the generated .new file
to your existing .cpp file.

component-name is the name of the component.

class-name is specified by the component’s C++ class name property.

The component implementation files are created in the following EA Server

subdirectory:

cpplib/package name/component name

CORBA Components Guide

79

Writing the class implementation

where:
package-name is the name of the CORBA package.

component_name is the component name.

Regenerating changed C++ component methods

When you add or del ete methods or modify component method prototypes, you
must regenerate the method skel etons and class header files. You must
manually add, delete, or modify the methods in the class implementation
template. Before you regenerate the method skeletons and class header files,
make sure that you have moved your modified class implementation template
to another directory or renamed it so the generated class implementation
template does not overwrite your existing class implementation template.

Writing the class implementation

80

After you generate the method skeleton file, class header file, and class
implementation template, write the code for each method in the class
implementation template (you can also write your class implementation from
scratch and replace the generated class implementation template).

You must use scoped names to specify the CORBA DL module, the EAServer
SessionManager IDL module, and any component IDL modul es that you want
to execute methods on. To make using scoped names easier, you can use the
C++ using statement for the IDL module namespaces as in the following
example:

using namespace CORBA;
using namespace SessionManager;

If your C++ compiler does not support namespaces, define acompiler macro
JAG_NO_NAMESPACE when compiling your source files.

CORBA::is_nil(Object) can be used to verify that a specific interfaceis
implemented by a component.

Aswith any C++ class, you use the constructor and destructor to initialize and
perform any cleanup of objects.

EAServer

CHAPTER 8 Developing CORBA/C++ Components

Constructors of class variables in file scope not called _
If you declare aclass variablein file scope and compileit into a shared object,

such as a component, the Solaris C++ compiler doesn’t call the constructor of
the class variable. If the variables need to be in scope only for a particular
function, procedure or module, then declare these variablesin the appropriate
function, procedure, module; otherwise declare these variablesin the class
definition.

Each C++ method signature must use the return types and parameter datatypes
described in“ Supported datatypes’ on page 72. |nthe method i mplementation,
you optionally implement the features bel ow:

e Caching Connectionsto Third-Tier Database Servers

You can use a data source to improve performance when connecting to
database servers. See “Using data sources’ on page 84 for more
information.

e Managing explicit OTS transactions
You can explicitly to manage OTS transactions from your component.
e Setting Transaction State

Methods in a transactional component should call one of the transaction
primitiveroutinesto set the transaction state beforereturning. See* Setting
transaction state” on page 96 for more information.

e Handling Errors

Use user-defined or CORBA system exceptions to handle errors. See
“Handling errors’ on page 98 for more information about system and
user-defined exceptions.

Compiling source files

Your C++ component code must be compiled and linked intoaDLL or UNIX
shared library in order to be installed into the EA Server runtime environment.
When you generate source files for your component, EAServer creates an
example makefile that builds the component library. You may have to edit this
file to match your environment, as described in the following sections:

e “Compiling on UNIX platforms’ on page 82

CORBA Components Guide 81

Compiling source files

e “Compiling on Windows” on page 83

Compiling on UNIX platforms

EA Server generates a make.unix file when you generate the component
skeleton as described in “ Generating C++ component files’ on page 78. To
build your shared library, run the following command:

make -f make.unix

On Solaris, you must use acompiler and linker that is compatible with version
6.x compilers. The library and binary format is different between version 6.x
and version 4.x compilers.

The generated UNIX makefile for C++ components works on other platforms
without changes. Platform-specific information is defined in thefile
make.include.platform, where platformis the name returned by the command:

uname -s

The make.include.platformincludesthe necessary settigngsto run the compiler
and linker in the component make file. You may need to edit these settings if

your compiler and linker are not installed in the standard location, or you use
different software.

After building the shared library, copy it to the cpplib directory of your
EAServer installation.

Note If you do not place the component shared library in the EAServer cpplib
subdirectory, the directory containing the shared library must be specified in
the shared library search path environment variable for your platform (for
example, LD_LIBRARY _PATH for Solaris).

82 EAServer

CHAPTER 8 Developing CORBA/C++ Components

Compiling on Windows

Visual C++

For componentsthat run on Windows, you must build aDL L that containsyour
C++ component methods. After building the DLL, copy it to the cpplib
directory of your EAServer installation.

Note If you do not place the component DLL in the EAServer cpplib
subdirectory, the directory containing the DLL must be specified in the PATH
environment variable.

“Generating C++ component files” on page 78 describes how to generate C++
component files, including the makefile.

Before compiling your C++ component, verify that the makefile can find the
directory containing the ODBC header files and libraries. You must set the
ODBCHOME environment variable to the directory containing the ODBC
header filesand libraries. If you have Microsoft Visual C++ and ODBCHOME
is not set, the makefile looksin C:\msdev (which is the default installation
directory for Microsoft Visual C++) for these files.

To build your DLL, run this command from a command window in your
component’s source directory:

nmake -f make.nt

If you make changes to the makefile, renameit so it won’t be overwritten when
you regenerate the required files.

Visual C++ requiresamodule definition file that specifies which functions are
exported fromaDL L and some optionsthat control how the DLL isloaded into
memory. Module definition files end with the extension .def.

For most projects, you can use the generated module definition file asis. In
some cases, you may want to edit settings other than those in the EXPORTS
section. For example, your component may perform better with a smaller or
larger HEAPSIZE setting.

Note Do not edit the generated function namesin the EXPORT S section of the
.def file for a C++ component. If you do, the EA Server dispatcher will not be
able to call your methods.

CORBA Components Guide 83

Using data sources

Using data sources

C++ components can call the C Connection Manager routines to take
advantage of connection caching. These routines manage ODBC, Client-
Library, and Oracle Call Interface (OCIl) data sources.

EAServer C routines are documented in Chapter 2, “C Routines Reference,”
inthe EAServer API Reference. The Connection Manager routines have names
that begin with JagCm.

Using ODBC data sources

Header files

The header filejagpublic.h declares the Connection Manager routines and data
structures; the file islocated in the include subdirectory of your EA Server
installation.

Include required ODBC header filesbeforeincluding jagpublic.h, for example:

#include <sgl.h>
#include <sglext.h>
#include <jagpublic.h>

Data structures

Most Connection Manager routines require the address of aCM_CACHE
handle as aparameter. The CM_CACHE handle allows your codeto refer to a
specific data source that is defined in Management Console. The
JagCmGetCachebyName routine returns aCM_CACHE handle to the named
data source. JagCmGetCachebyUser creates atemporary data source using the
specified parameters and returnsits CM_CACHE handle.

ODBC uses an HDBC structure to represent a database connection. The
JagCmGetConnection routine returns the address of an HDBC structure.

84 EAServer

CHAPTER 8 Developing CORBA/C++ Components

ODBC example

The following example demonstrates program logic that offersimproved
performance when a matching data source is available and that still functions
when no matching data source has been configured. The examplefirst calls
JagCmGetCachebyUser to obtainaCM_CACHE handleto atemporary ODBC
data source using the values: user name (“myrtle”), password (“secret”), and
server name (“tsingtao”). The code setsthe cache variableto the CM_CACHE
handle.

The examplethen calls JagCmGetConnection, passing the cache value as set by
JagCmGetCachebyUser, and passing explicit values for the user name, server
name, password, and connectivity library. If the cache variable containsavalid
data source reference, JagCmGetConnection |ooks directly in the data source
for an available connection. If cache was set to NULL or the indicated data
source has no avail able connections, JagCmGetConnection creates and opensa
new connection.

Code that follows the implementation strategy illustrated here can achieve
better performance when there are many configured data sources. Passing the
CM_CACHE handle explicitly in JagCmGetConnection eliminates repeated
internal table searches.

/* ODBC includes */
#include <sgl.h>
#include <sglext.h>

/* Connection Manager includes */
#include <jagpublic.h>

SQLRETURN ret; /* Return code catcher */
SQLHDBC *hdbc; /* ODBC connection handle */
JagCmCache cache; /* Cache handle */
/*

** Retrieve a CM_CACHE handle

*/

cache = NULL;
ret = JagCmGetCachebyUser (“myrtle”, “secret”, “tsingtao”, “ODBC”, &cache) ;

/*
** Tgnore the return value. If the call fails, cache is NULL and we can keep
** going.

*/
/*

** Get a connection. If we have a cache handle, use it to get the connection.

CORBA Components Guide 85

Using data sources

** Otherwise, create a new connection.

*

rét = JagCmGetConnection (&cache, “myrtle”, “secret”, “tsingtao”, “ODBC”,
(SQLPOINTER *)&hdbc, JAG CM FORCE) ;

if (ret != SQL SUCCESS)

{ log the error ...

}
code that uses the connection goes here

ret = JagCmReleaseConnection (&cache, “myrtle”, “secret”, “tsingtao”, “ODBC”,

hdbc, JAG CM_UNUSED) ;

if (ret != SQL SUCCESS)

{
}

log the error ...

You can call JagCmGetCachebyName rather than JagCmGetCachebyUser. For
an example, see the reference page for JagCmGetCachebyName in Chapter 5
of the EAServer API Reference.

Client-Library data sources

EAServer 6.0 includes a version of Open Client 12.5 adapted to run in
EAServer. This version supports high availability, failover, and wide-table
features (varchar/varbinary columns more than 255 bytes long and tables with
more than 255 columns). You can use Open Client 12.5 only when you are
connected to Adaptive Server® Enterprise version 12.5 or | ater.

Header files

Before including jagpublic.h, you must include the Client-Library ctpublic.c
header file, asin the example below:

#include <ctpublic.h>
#include <jagpublic.h>

86 EAServer

CHAPTER 8 Developing CORBA/C++ Components

Data structures

Most Connection Manager routines require the address of aCM_CACHE
handle as a parameter. The cache handle allows your codeto refer to a specific
data source that is defined in the Management Console. The routines
JagCmGetCachebyName and JagCmGetCachebyUser retrieve CM_CACHE
handles.

Client-Library usesaCS_CONNECTION structure to represent a database
connection. The JagCmGetConnection routine returns the address of a
CS_CONNECTION structure.

Client-Library example

The following example calls JagCmGetConnection to obtain a connection that
has a user name of “myrtle,” the password “ secret,” connects to the server
“tsingtao,” and uses Client-Library:

#include <ctpublic.h>
#include <jagpublic.h>

CS_RETCODE ret;
CS_CONNECTION *connection;
JagCmCache cache;

/*

** Get a connection.

*/

cache = NULL;

ret = JagCmGetConnection (&cache, “myrtle”, “secret”, “tsingtao”,
“CTLIB”, (SQLPOINTER *)&connection, JAG _CM_FORCE) ;

if (ret != CS_SUCCEED)

(
}

log the error ...

code that uses the connection goes here

ret = JagCmReleaseConnection (&cache, “myrtle”, “secret”, “tsingtao”,
“CTLIB”, (SQLPOINTER)connection, JAG_CM_UNUSED);
if (ret != CS_SUCCEED)

{
}

log the error ...

CORBA Components Guide 87

Using data sources

In the example, the call to JagCmGetConnection looks for a data source that
includes matching values for the user name (“myrtl€”), password (“ secret”),
and server name (“tsingtao”) and that uses Client-Library. The last parameter
value, JAG_CM_FORCE, indicatesthat the call should open anew connection
if no cached connectionisavailable. JagCmReleaseConnection releasescontrol
of the connection: a connection that was taken from a cache is returned to that
cache; an uncached connection is closed and deallocated.

Note that JagCmGetConnection attempts to open a connection even when no
matching datasourceisconfigured. Inthiscase, JagCmGetConnection attempts
to create a new connection using the specified values.

In this example, JagCmGetConnection and JagCmReleaseConnection return
Client-Library return codes since both calls use “CTLIB” as the connection
library parameter.

Note Beginningin EAServer 6.0, you can use CTLIB asthe connection library
for Open Client 11.0, 12.0, and 12.5 connections. Version-specific CTLIB_x
connection libraries are still provided for backward compatibility.

You can call JagCmGetCachebyName rather than JagCmGetCachebyUser. To
see an example, see the reference page for JagCmGetCachebyName in the
EAServer API Reference.

Client-Library error and message callbacks

EAServer installs default server message and client message callbacks into
cached Client-Library connections. The default callbacks write error and
message information to the server’slog file.

When using Client-Library connections, you can install your own server
message and client message callbacks into connections retrieved from
JagCmGetConnection. JagCmReleaseConnection reinstalls the default
callbacks before placing connections back into the cache.

Oracle OCI data sources

88

You can define data sources for an Oracle 9i or 10g database, and use OCI as
the connection library for both database versions. The OCI_9 and OCI_10
connection libraries are still provided for backward compatibility.

EAServer

CHAPTER 8 Developing CORBA/C++ Components

Oracle autocommit setting

EAServer creates Oracle connections with the default autocommit setting,
autocommit off. In non-transactional components, you must explicitly issue a
commit command to commit update and insert queries. In transactional
components, the EA Server transaction manager issues commit and rollback
commands for connections used by the components that participatein an

EA Server transaction.

Note Inanon-transactional component, if you do not explicitly call commit or
rollback after sending Oracle commands, the commands may be committed
when atransactional component uses the same connection. EA Server issues a
commit to clear the connection status before passing Oracle connectionsto a
transactional component.

Header files
Include oci.h before jagpublic.h, asin the example below:

#include <oci.h>
#include <jagpublic.h>

Data structures

Most Connection Manager routines require the address of aCM_CACHE
handle as a parameter. The routines JagCmGetCachebyName and
JagCmGetCachebyUser retrieve CM_CACHE handles.

OCI uses an OCISvcCtx structure to represent a database connection. The
JagCmGetConnection routine returns the address of a OCISvcCtx structure.

OCl example

The example below retrieves an OCI connection, executes a statement using
the connection, then returns the connection to the cache.

#include <jagpublic.h>
#include <oci.h>

#define USERID '"system"
#define PASSWD “manager"
#define DATASOURCE "OCITEST"

JagCmCache cache;

CORBA Components Guide 89

Using data sources

OCIEnv *envhp;

OCISveCtx **gsvepp, *svchp;
OCIError *errhp;

OCIStmt *stmthp;

sword ociret;

/* Connect to ORACLE. */
cache = NULL;
ociret = JagCmGetConnection (&cache, USERID, PASSWD, DATASOURCE, "OCI",
(void*) &svchp, JAG_CM_FORCE) ;

/* Initialize an Env, to allocate stmt and error handles */
OCIEnvInit (&envhp, OCI_ DEFAULT, (size t) 0, (dvoid **)0);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,
OCI_HTYPE ERROR, (size t) 0, (dvoid **) 0);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
OCI_HTYPE STMT, (size t) 0, (dvoid **) 0));
checkerr (errhp, OCIStmtPrepare (stmthp, errhp, sgl statement,
(ub4) strlen((char *) sgl statement),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)) ;

/* execute using the service context */
checkerr (errhp, OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT)) ;

/* free handles */
OCIHandleFree (stmthp, OCI_HTYPE STMT) ;
OCIHandleFree (errhp, OCI_ HTYPE ERROR) ;

/* release connection */

ret = JagCmReleaseConnection (&cache, USERID, PASSWD, DATASOURCE, "OCI",
svchp, JAG CM UNUSED) ;

90 EAServer

CHAPTER 8 Developing CORBA/C++ Components

Managing explicit OTS transactions

You can code components (and clients) to initiate and compl ete transactions
using the OTS (Object Transaction Service) CosTransactions::Current Or
CosTransactions:: TransactionFactory interfaces.

Note Inorder to use OTS, you must enable EAServer to use the OTS/XA
transaction coordinator. See Chapter 3, “Creating and Configuring Servers,”
in the EAServer System Administration Guide for more information.

To use the functionality of these interfaces, include CosTransactions.hpp in
your source file.

To explicitly use transactions in a component or client, use the
CosTransactions::Current interface to perform these tasks.

Task Call this method Catch these exceptions

Start atransaction. begin SubtransactionsUnavailable

Temporarily stop atransaction. suspend None

Resume a suspended transaction. resume InvalidControl

Commit atransaction. commit NoTransaction, HeuristicMixed,
HeuristicHazard

Roll back atransaction. rollback NoTransaction

Make the only possible outcome of the | rollback_only NoTransaction

transaction arollback.

Roll back atransaction after a specified | set_timeout None

amount of time has elapsed without any

response.

Retrieve atransaction’s status. get_status None

Retrieve atransaction’s name. Usethis | get_transaction_name None

method when you need to debug
transactions.

CORBA Components Guide

91

Managing explicit OTS transactions

Using factories _ o) o
The TransactionFactory interface isincluded in EAServer only to maintain

compatibility with the CORBA OTS specification—Sybase recommends that
you use the CosTransactions::Current interface to create explicit transactions.

Note Sybase recommends that you use suspend with caution so as not to
conflict with the EA Server component model. For example, do not use
suspend to take control of atransaction that it does not control.

Initializing the ORB

For clients

92

To initialize the ORB and retrieve areference to the CosTransactions::Current
interface, specify the TransactionCurrent Objectld, which identifies the
CosTransactions::Current interface, to the resolve_initial_references method,
and narrow it (using the _narrow method) to the CosTransactions::Current
interface. Use the is_nil method to verify that the reference to the
CosTransactions::Current interfaceisvalid.

The following code fragment shows how to initialize the ORB from a client.
ORB_init must take the argumentList array that specifiesthe
ORBNameServiceURL parameter. You can also set the ORBNameServiceURL
using the JAG_NAMESERVICEURL environment variable.

int argumentCnt = 1;
char *argumentList[] = {
{ "-ORBNameServiceURL iiop://<hostnamehere>:2000" },

{m}
}i

try {

CORBA: :ORB_var orb = CORBA::ORB_init (argumentCnt,
argumentList, 0);
cerr << "Orb init" << endl;

CORBA: :Object var crntObj =
orb->resolve initial references
("TransactionCurrent") ;
CosTransactions: :Current var CurrentIntf =
CosTransactions: :Current:: narrow(crntObj) ;

EAServer

CHAPTER 8 Developing CORBA/C++ Components

if (CORBA::is nil (CurrentIntf))

{
cerr << "Error getting Current" << endl;
exit (-1);

cerr << "Got Current" << endl;

For components The following code fragment shows how to initialize the ORB from a
component. ORB_init does not need to take any parameters.

orb = CORBA::0ORB_init (argumentCnt, NULL, O0);
cerr << "Orb init" << endl;

CORBA: :Object var crntObj =
orb->resolve_initial references
("TransactionCurrent") ;
CurrentIntf =
CosTransactions::Current:: narrow(crntObj) ;
if (CORBA::is nil (CurrentIntf))
{
cerr << "Error getting Current" << endl;
/* could be due to:
* % 1. Component not BeanManaged/OTS Style

* % 2. Already in a Txn
** 3. not running under OTS
*/

return CS_FAIL;

}

cerr << "Got Current" << endl;

Calling CosTransactions::Current interface methods

After retrieving areference to the CosTransactions::Current interface, you can
call any of the CosTransactions::Current methods on the
CosTransactions::Current reference. After executing the begin method, execute
the database operations you want to include in the transaction. Depending on
whether the database operations succeed or fail, you can execute other
appropriate methods, such as commit, rollback, or rollback_only. This code
fragment shows how to begin atransaction and commit or roll it back
depending on the return codes received from the databases.

CurrentIntf->begin() ;

ret = JagCmGetConnection(&cache,

(SQLCHAR *) USERID, (SQLCHAR *) PASSWD,

(SQLCHAR *) =xaresource, (SQLCHAR *) "CTLIB 110",

CORBA Components Guide 93

Managing explicit OTS transactions

(void*) &conn, JAG CM UNUSED) ;

if (ret != CS_SUCCEED) ({
cerr << "Error getting connection" << endl;
CurrentInt->rollback() ;

}

CurrentIntf->commit (CS_ FALSE) ;

Executing tasks outside of a transaction

To execute amethod outside of atransaction, you can write the codeto perform
either:

» Execute the method before beginning a transaction, or

e Temporarily stop and start execution of the transaction.

[IExecute tasks outside of a transaction using the suspend and resume
methods

1 Executesuspend to temporarily stop execution of the transaction.
2 Execute thetasks.

3 Executeresume to restart the execution of the transaction from where it
stopped.

This code fragment shows how to execute tasks outside of atransaction. The
suspend method returns the control context. You specify the control context
when you use the resume method to restart the transaction. Catch the
InvalidControl exception, which may be raised when a control context is out of
scope (and not null).

sus_ctrl = CurrentIntf->suspend() ;

/* The following method is not in the transaction */
componentl->method2 () ;

CurrentIntf->resume(sus_ctrl) ;
/* The following methods are invoked
in the transaction */

component2-s>methodl () ;

CurrentIntf->commit (CS_FALSE) ;

}

94 EAServer

CHAPTER 8 Developing CORBA/C++ Components

Exceptions

catch (CosTransactions: : SubtransactionsUnavailable
&ex)
cerr << "Exception: SubTxnUnavailable " <<
ex. jagExceptionCode << endl;

}

catch (CosTransactions: :NoTransaction &ex)
cerr << "Exception: NoTransaction " <<
ex. jagExceptionCode << endl;

}

catch (CosTransactions::InvalidControl &ex)
cerr << "Exception: InvalidCtrol " <<
ex. jagExceptionCode << endl;

}

catch(...)

{

cerr << "Caught Unexpected exception" << endl;
exit (-1);

The CosTransactions modul e includes these exceptions:

CORBA Components Guide

SubtransactionsUnavailable — rai sed when the client thread already has an
associated transaction and the transaction coordinator does not support
nested transactions.

NoTransaction — raised when there is no transaction associated with the
client thread.

InvalidControl — rai sed when the specified control isnot null and not within
the scope of the client thread.

Inactive — raised when a method such as rollback_only is executed on a
transaction has aready been prepared.

InvalidTransaction — raised when a request carries an invalid transaction
context, such asif an error occurred when registering a resource.

TransactionRequired — raised when a request carries a null transaction
context but required an active transaction. For example, this could occur
when a component specifies the Mandatory attribute.

95

Setting transaction state

Heuristic exceptions

* Unavailable — rai sed when the requested object cannot be returned because
OTS/XA transaction coordinator restricts the availability of the object.

* TransactionRolledBack — raised when atransaction is marked to roll back
or has already been rolled back.

A heuristic decision is a decision to commit or roll back updates that one or
more participants in atransaction make without waiting for the consensus
decision from the transaction coordinator. These types of commits and
rollbacks are al so called heuristic commits and heuristic rollbacks. When a
heuristic commit or rollback is made, the transaction can become inconsi stent.
Therefore, a heuristic commit or rollback is made only in unusual
circumstances such as communication failures. When the System
Administrator issues a heuristic commit or rollback, a heuristic exception is
raised.

* HeuristicMixed — Raised when a heuristic decision is made and some
relevant updates are committed and others are rolled back.

* HeuristicHazard — Raised when a heuristic decision may have been made,
when not all of the conditions of all relevant updates is known, and for
those updates whose condition is known, either all of them were
committed or rolled back.

e HeuristicRollback — Raised when a heuristic decision to roll back all of a
transaction’s relevant updates has been made.

* HeuristicCommit — Raised when a heuristic decision to commit all of a
transaction’s relevant updates has been made.

Setting transaction state

96

Methods in atransactional component should call one of the transaction state
primitive routines listed in Chapter 2, “ C Routines Reference,” of the
EAServer API Reference.

Evenif your component is not transactional, you can call one of these methods
to explicitly specify whether the instance should be deactivated.

For transactional components, choose the routine that reflects the state of the
work that the component is contributing to the transaction, as follows:

» If thework is complete and without error, call JagCompleteWork.

EAServer

CHAPTER 8 Developing CORBA/C++ Components

e If thework isnot necessarily finished, but not in error, call
JagContinueWork.

e If thework is not finished and not ready for commit, call
JagDisallowCommit.

e |f thework cannot be completed, call JagRollbackWork (you should also
log a description of the error and send an error to the client, as described
in “Handling errors’ on page 98).

For nontransactional components, call either JagCompleteWork or
JagRollbackWork to deactivate and destroy the component instance. To keep
the instance active, call JagContinueWork or JagDisallowCommit.

If amethod doesnot explicitly set transaction state before returning, the default
behavior is JagContinueWork.

Issuing intercomponent calls

To invoke other components, instantiate a stub for the second component, then
use the stub to invoke methods on the component.

You must use a stub to issue intercomponent calls. If you call methodsin
another C++ component directly, EAServer features such as transactions and
security will not work.

To invoke methods in other components, create an ORB instance to obtain
object references to other components and invoke methods on the object
references. You obtain object references for other components on the same
server by invoking string_to_object with the IOR string specified as
Package/Component. For example:

CORBA: :Object var obj =
orb->string to object ("MyPackage/MyComponent") ;
MyModule: :MyInterface var i =
MyModule: :MyInterface:: narrow(obj) ;

When making intercomponent callsusing string_to_object, the user name of the
client that executed the component is automatically used for authorization
checking. string_to_object returns an instance running on the same server if the
component islocally installed; otherwise, it attempts to resolve aremote
instance using the naming server.

CORBA Components Guide 97

Handling errors

To components on a non-EAServer ORB

Your component may need to invoke methods on a component hosted by
another vendor’s CORBA server-side ORB. Sybase recommends that C++
components use the EA Server client-side ORB for al [10OP connections made
from EAServer components. See “Connecting to third-party ORBs using the
EAServer ORB” on page 123 for more information.

Handling errors

Handle errors by:

1 Writing detailed error descriptions to the server log file using the JagLog
C routine.

2 Coding one of these tasks:

a If thecomponent istransactional, call JagDisallowCommit or
JagRollbackWork (or you can throw the
CORBA::TRANSACTION_ROLLEDBACK exception instead of calling
JagRollbackWork).

b Throw a CORBA system or user-defined IDL exception to be raised
by the client stub. See “Handling exceptions” on page 118 for more
information.

For more information about these methods, see Chapter 2, “ C Routines
Reference,” in the EAServer API Reference.

Debugging C++ components

98

To debug a component you must run the debug version of the server, and usea
debugger running on the same host as EA Server. Chapter 3, “ Creating and
Configuring Servers,” inthe EAServer System Administration Guide describes
how to start the debug server.

To debug a component from Microsoft Visual C++, you must set the

component’s C++ Debug (com.sybase.jaguar.component.cpp.debug) property
under the Advanced tab to true.

Follow these steps to attach to the server and step into your component code:

EAServer

CHAPTER 8 Developing CORBA/C++ Components

1 Configurethe component propertiesand verify the CPP Debug property is
enabled (or set to true). See “ CORBA component property descriptions”
on page 45.

2 Start your C++ debugger and configure it to launch EAServer using the
server-start Script.

3 Set abreakpoint on the function jag_dbg_stop. This function executes
every timetheserver loadsacomponent DLL. Thejag_dbg_stop prototype
is:

void jag dbg stop(char *compName)

The compName parameter specifies the name of the library or shared
library that was just started. Several components may be started before
yours. In the debugger, display the compName value when the
jag_dbg_stop breakpoint is tripped, and monitor the value to determine
when your component is started. Breakpoints on jag_dbg_stop are
triggered before the server calls the component’s create method.

Note Make surethejag_dbg_stop breakpoint is set before running your
client application.

4 When your component’sDLL is started, you can specify the component’s
C++ function names as breakpoints and step into the method’s code when
it isinvoked.

5 When you finish debugging, reconfigure the component properties and
verify the CPP Debug property is disabled (or set to true). See “CORBA
component property descriptions’ on page 45.

CORBA Components Guide 99

Debugging C++ components

100 EAServer

CHAPTER 9

Developing CORBA/C++ Clients

Topic Page
Procedure for creating CORBA C++ clients 101
Generating stubs 102
Writing CORBA C++ clients 102
Compiling C++ clients 120
Deploying C++ clients 120
Using the CosNaming interface 121
Using CORBA ORB implementations other than EA Server 121

Procedure for creating CORBA C++ clients

A CORBA C++ client establishes a connection and session with the
EAServer ORB, instantiates a proxy object for the component, and calls
methods in the proxy object. When the client calls the methodsin the

proxy objects, the proxy object methods communicate across the network

CORBA Components Guide

and execute the corresponding methods in the components.

To create CORBA EA Server C++ clients:

1 Generate C++ header filesand CORBA stub implementationsfor the

IDL modules used in the component implementation. See

“Generating stubs’ on page 102.

2 Implement the C++ client logic. See“Writing CORBA C++ clients”

on page 102.

3 Compilethe C++ source files as described in “ Compiling C++

clients’ on page 120.

101

Generating stubs

Generating stubs

The EA Server ORB implementation classrequires stub header filesin order to
invoke component methods. You must include stub header filesin your client
sourcefiles. The stub header files contain asinline al the component functions,
which make calls to the C functionsin libjcc.dll. Inline functions allow

EA Server to support multiple C++ compilers without having to include
separate link libraries for each compiler.

For CORBA/C++ components, EA Server generates C++ stub header files for
deployed C++ CORBA components when you run the jaguar-compiler
command—see “Generating C++ component files’ on page 78. To generate
C++ stubs for components of other types, use the idl-compiler command-line
tool. For example:

$DJC_HOME%\bin\idl-compiler.bat -v Tutorial\CPPArithmetic.idl -f
$DJC_HOME%\include -cpp

For information on idl-compiler syntax, see Chapter 12, “Command Line
Tools,” in the System Administration Guide.

If you are using another C++ ORB implementation to connect to EA Server,
you must export IDL and use the vendor’s IDL compiler to generate stubs that
are compatible with that ORB implementation. “Using CORBA ORB
implementations other than EA Server” on page 121 describes how to export
IDL filesfor EAServer components.

Writing CORBA C++ clients

102

These section describes how to code a CORBA C++ client that invokes
component methods:

e “Adding required include and namespace declarations’ on page 103
e “Instantiating component proxies’ on page 104

e “Invoking methods” on page 110

e “Handling exceptions” on page 118

EAServer

CHAPTER 9 Developing CORBA/C++ Clients

Adding required include and namespace declarations

You must include stub header filesfor al IDL modules that include interfaces
that the component implements. In addition to the stub header files, you must
also include SessionManager.hpp (which contains the classes and functions

that allow a C++ client to create and destroy sessions) in the client sourcefile.

You can also include these optional header files:

e TabularResults.hpp — contains the classes and functions that allow C++
clientsto receive result sets from components.

e BCD.hpp — contains the mappings for binary and arbitrary precision
floating point-decimal datatypes.

e MJD.hpp — contains the datatype mappings from CORBA to C++ for
Modified Astronomical Julian Date (M.J.D.) dates and times.

Note TabularResults.hpp already includes BCD.hpp and MJD.hpp; if you
include TabularResults.hpp, you do not have to include BCD.hpp and
MJD.hpp.

You must use scoped names to the CORBA IDL module, the EA Server
SessionManager |DL module, and any component IDL modules that you want
to execute methods on. To make using scoped names easier, you can use the
C++ using statement for the IDL module namespaces as in the following
example:

using namespace CORBA;
using namespace SessionManager;

If your C++ compiler does not support namespaces, define the compiler macro
JAG_NO_NAMESPACE when compiling your source files.

When you create an object, identify the object reference by appending _var to
the object name. The ObjectName _var referencewill beautomatically released
when it is deallocated or assigned a new object reference.

CORBA::is_nil(Object) can be used to verify that a specific interface is
implemented by a component. For an example, see “ Creating a Manager
instance” on page 108.

If you are returning result sets from components, you should also specify the
TabularResults EAServer IDL module with the using statement.

CORBA Components Guide 103

Writing CORBA C++ clients

Instantiating component proxies

Before invoking methods on component instances, the client must connect to a
server and instantiate the components. Your code must perform these steps to
create proxy instances;

Step

What it does

Detailed explanation

1

Initialize the CORBA ORB and
create an ORB reference.

“Configure and initialize the
ORB runtime” on page 104

invoke component methods.

2 Usethe ORB referenceto createa | “Creating a Manager instance”
Manager instance. on page 108

3 Use the Manager instance to create | “Creating sessions’ on page 109
a Session.

4 Use the Session instance to create | “Creating stub instances’ on
stub component instances. page 109

5 Call the stub methods to remotely | “Invoking methods’ on page 110

Other patterns for proxy instantiation
Some patterns for proxy instantiation used in clients written for earlier

EA Server releases are not compatible with EAServer 6.0. In particular, clients
that use the CosNaming API or SessionManager::Factory::create methods that
take parameters should be modified to use the implementation pattern
described here. For more information, see “ Using the CosNaming interface’
on page 121.

Configure and initialize the ORB runtime

104

Before you can use any ORB classes, you must call the ORB_init method,

which:

Returns an object reference to the ORB.

Allowsyou to passinitialization parametersto the driver classin theform
of astring array. You can also set an environment variable (in the System
Properties for your machine) for each initialization parameter. If the

environment variable and initialization parameter are set, the value of the
initialization parameter isused. You can set any initialization parameter to
avalue of none, which overridesthe val ue of the environment variable and
sets the value to the default, if any.

You can pass the following initialization parameters to the driver class:

EAServer

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide

ORBHttp —this specifies whether the ORB should use HTTP-tunnelling to
connect to the server. A setting of of "true" specifiesHTTPtunnelling. The
default is"false". This parameter can also be set in an environment
variable, JAG_HTTP. Some firewalls may not allow 110P packets
through, but most all allow HTTP packets through. When connecting
through such firewalls, set this property to "true".

ORBHttpExtraHeader — An optional setting to specify what extrainformationis
appended to the header of each HTTP packet when connecting through a Web
proxy. See Chapter 9, “Deploying Applications Around Proxies and
Firewalls,” inthe EAServer Security Administration and Programming
Guide for more information.

ORBHttpUsePost —when using HTTP tunnelling, specifiesthe HTTP
reguest type used. A value of true indicates that POST requests are to be
used. A value of false (the default) specifiesthat GET requests are to be
used. This parameter can also be set in an environment variable,
JAG_HTTPUSEPOST.

ORBLogllOP — this specifies whether the ORB should log 110OP protocol
trace information. A setting of "true" enableslogging. The defaultis
"false". This parameter can also be set in an environment variable,
JAG_LOGIIOP. When this parameter is enabled, you must set the
ORBLogFile option (or the corresponding environment variabl e) to specify
the file where protocol log information iswritten.

ORBLogFile — this sets the path and name of the file to which to log client
execution status and error messages. This parameter can also be setin an
environment variable, JAG_LOGFILE. The default setting is no log.

ORBCodeSet — this sets the code set that the client uses. This parameter
can aso be set in an environment variable, JAG_CODESET. The default
setting isiso_1.

ORBRetryCount — specify the number of times to retry when the initial
attempt to connect to the server fails. This parameter can also be set inan
environment variable, JAG_RETRY COUNT. The default is5.

ORBRetryDelay — specify the delay, in milliseconds, between retry
attempts when the initial attempt to connect to the server fails.This
parameter can also be set in an environment variable,
JAG_RETRYDELAY. The default is 2000.

105

Writing CORBA C++ clients

106

ORBProxyHost — specifies the machine name or the IP address of an
reverse proxy server. See Chapter 9, “Deploying Applications Around
Proxies and Firewalls,” in the EAServer Security Administration and
Programming Guide for more information.

ORBProxyPort — specifies the port number of areverse proxy server.

ORBforceSSL —force an SSL connection to areverse proxy server
(indicated by the ORBProxyHost and ORBProxyPort properties). Set this
property to trueif the connection to the reverse proxy must use SSL
(HTTPS) tunnelling, but the connection from the proxy to the server does
not use SSL tunnelling.

ORBsocketReuseLimit — specifies the number of times that a network
connection may be reused to call methods from one server. The default is
0, whichindicatesno limit. The default isideal for short-lived clients. The
default may not be appropriate for along-running client program that calls
many methods from serversin a cluster. If sockets are reused indefinitely,
the client may build an affinity for serversthat it has already connected to
rather than randomly distributing its server-side processing load among all
the serversin the cluster. In these cases, the property should be tuned to
best balance client performance against cluster load distribution. In Sybase
testing, asetting of 10 to 30 proved to be agood starting point. If the reuse
limit istoo low, client performance degrades.

ORBIldleConnectionTimeout — specifies the time, in seconds, that a
connection is allowed to sit idle. When the timeout expires, the ORB
closes the connection. The default is O, which specifies that connections
can never timeout. The connection timeout does not affect thelife of proxy
instance references; the ORB may close and reopen connections
transparently between proxy method calls. Specifying afinite timeout for
your client applications can improve server performance. If many
instances of the client run simultaneously, afinite client connection
timeout limits the number of server connections that are devoted to idle
clients. A finite timeout also allows rebalancing of server load in an
application that uses a cluster of servers.

ORBWebProxyHost —the host name or | P address of an HT TP proxy server
that supports generic Web tunnelling, sometimes called connect-based
tunnelling. Thereisno default for this property, and you must specify both
the host name and port number properties. See Chapter 9, “ Deploying
Applications Around Proxies and Firewalls,” in the EAServer Security
Administration and Programming Guidefor moreinformation. You can also
specify the property by setting the environment variable
JAG_WEBPROXYHOST.

EAServer

CHAPTER 9 Developing CORBA/C++ Clients

ORBWebProxyPort —when generic Web tunnelling is enabled by setting
ORBWebProxyHost, this property specifies the port number at which the
HTTP proxy server accepts connections. Thereis no default for this
property, and you must specify both a host name and port. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” inthe EAServer
Security Administration and Programming Guidefor moreinformation. You
can also specify the property by setting the environment variable
JAG_WEBPROXY PORT.

ORBHttpExtraHeader —an optional setting to specify what extra
information isappended to the header of each HT TP packet sent to aproxy
server (specified with the orRBwebProxyHost parameter). You can also
specify the property by setting the property
JAG_HTTPEXTRAHEADER. See Chapter 9, “Deploying Applications
Around Proxies and Firewalls,” inthe EAServer Security Administration
and Programming Guide for more information.

You can pass additional properties to configure secure (110PS) connections.
See Chapter 5, “Using SSL in C++ Clients,” in the EAServer Security
Administration and Programming guide for more information.

Example: ORB initialization

ORB initialization is demonstrated in this example. You can specify the ORB
options as acommand line parameters to be passed to the ORB_init method.

CORBA Components Guide

#include <stdio.h>

#include <iostream.h>

#include <string.h>

#include <SessionManager.hpp>

#include <Jaguar.hpp>

#include <Tutorial.hpp> // Stubs for interfaces in
Tutorial IDL // module.

int main(int argc, char** argv)
{
const char *usage =
"Usage:\n\tarith -ORBNameServiceURL iiop://
<host>:<iiop-port>/<initial-context>\n";
const char *tutorial_help =
"Verify that the"
"Tutorial/CPPArithmetic component exists "
"and that it implements the "
"Tutorial: :CPPArithmetic IDL interface.";

const char *ior prefix = "iiop://";

107

Writing CORBA C++ clients

const char *component name = "Tutorial/CPPArithmetic";
char *ior = NULL;

try {
cout << "Creating Jaguar session\n\n";

// Initialize the ORB
CORBA: :ORB_var orb = CORBA::ORB_init (argc, argv, 0);

Creating a Manager instance

108

The SessionManager::Manager interface is used for client authentication for
EAServer connections. To create a Manager instance, you must identify the
server by using an [1OP or [1OPS URL to connect to the server.

The server’s I1OP port is configured using listeners. In the default
configuration, the [1OP port number is 2000. For more information, see
Chapter 3, “Creating and Configuring Servers,” in the System Administration
Guide.

Once the client has obtained the server’s IOR or URL string, it callsthe
ORB::string_to_object method to convert the IOR or URL stringinto aManager
instance, as shown in the following example. You use the Manager::_narrow
method to return anew object reference for the existing object, which isthe
IOR object.

Object var object = orb->string to object
("iiop://myhost:2000") ;
Manager var manager = Manager:: narrow (object);
if (is_nil (manager)) {
cout << "Error: Null SessionManager::Manager
instance. Exiting.";
return -1;

b

string_to_object returns an object reference as object. For each reference, the
_var form is used because the object will be automatically released when it is
deallocated or assigned a new object reference. _narrow converts object into
object reference for Manager.

_narrow returnsanil object referenceif the component does not implement the
interface. is_nil(manager) verifies that the SessionManager::Manager interface
isimplemented and returns an error if the interface is not implemented.

EAServer

CHAPTER 9 Developing CORBA/C++ Clients

Creating sessions

The SessionManager::Session interface represents an authenticated session
between the client application and a server. The Manager::createSession
method accepts a user name and password and returns a Session_var object,
session, as shown in the example below:

Session_var session =
manager.createSession (userName, password) ;

Creating stub instances

You call the Session::lookup method to return a factory for proxy object
references. The signature of Session::lookup is:

SessionManager: :Factory var lookup ("name")

Session::lookup takes a string that specifies the name of the component to
instantiate. A component’sdefault nameisthe EA Server package name and the
component name, separated by aslash asin calculator/calc. However, a
different name can be specified by changing the name binding properties for
EJB components. For example, you can specify alogical name, such as
USA/MyCompany/FinanceServer/Payroll. For more information on
configuring the naming service, see Chapter 5, “Naming Services,” in the
EAServer System Administration Guide.

Session::lookup returns a factory for component proxies. Call the
Factory::create method to obtain proxies for the component. This method
returns a org.omg.CORBA.Object reference. Call _narrow to convert the object
reference into an instance of the stub class for the component.

The code to call Session::factory and Factory::create 100ks like this:

// In this example, the component is named
// Repository and is installed in
// the EAServer package.

Object var obj = session->lookup ("Jaguar/Repository") ;
SessionManager: :Factory var repoFactory =
SessionManager: :Factory:: narrow(obj) ;

obj = repoFactory->create() ;

Jaguar: :Repository var repository =
Jaguar: :Repository:: narrow(obj) ;

CORBA Components Guide 109

Writing CORBA C++ clients

// Verify that we really have an instance.
if (CORBA::is nil (repository))
{

cout << "ERROR: Null instance for component.";

}

Calling Session.lookup in server code
When called from server code, Session::lookup resolves the component name

by calling the name service, which gives preference to alocal component
instance if the component isinstalled on the same server. However, the use of
alocally installed component is not guaranteed. To ensure that alocal
implementation is used, specify the name as 1ocal : package/ component,
where packageisthe package name and component isthe component name, for
example, 1local:CtsSecurity/SessionInfo. When you specify the local:
prefix, thelookup call bypasses the name service and returnsalocal instanceif
the component is installed in the same server. The call failsif the specified
component is not installed in the same server..

Invoking methods

After instantiating the stub class, use the stub class instance to invoke the
component’s methods. The stub class has methods that correspond to each
method in the component. Parameter datatypes are mapped as described in
Table 7-1 on page 73. Any parameter datatype can be used asareturntype; in
addition, user-defined IDL datatypes can be used as return, in, inout, Or out
parameters.

Processing result sets

110

To retrieve and process a single result set from a component:
1 Call the component method on the stub instance that returns aresult set.

2 lterate through each row and then each column in arow by using nested
for loops.

3 Usethediscriminator method (_d) to retrieve the datatype of the column
in arow and switch/case Syntax to process the column values (such as
printing the column values).

EAServer

CHAPTER 9 Developing CORBA/C++ Clients

To retrieve and process multiple result sets returned from acomponent method
as a TabularResults::ResultSets object:

1 Call the component method on the component reference that returns the
result sets.

Retrieve the length or number of result sets.
3 lterate through the result sets using afor loop.

For each result set, iterate through each row and then each columninarow
by using nested for loops.

You can treat aResultSets object asan array of ResultSet objects. On each
iteration, retrieve areference to each ResultSet object by using the
subscript [] operator.

4 Usethe discriminator method (_d) to retrieve the datatype of the column
in arow and switch/case syntax to process the column values (such as
printing the column values).

Example of processing result sets

This example retrieves a single result set. The following code shows the C++
client in its entirety. For detailed explanations, see the sections that explain
each result-set processing step.

All of the required header files are included. The IDL module namespaces are
specified with the C++ using statement. The printResultSet() method contains
the logic for processing aresult set. main() contains the logic to initialize and
connect to the EA Server ORB, instantiate the stub, call the component method
toretrievetheresult set object, and call printResultSet() to processtheresult set.

After the result set has been processed, execution of printResultSet() ends and
control isreturned to main(). In main(), the screen is kept open with the forintf
statement. Once you press Return, execution ends.

#include <stdio.h>

#include <time.h>

#include <iostream.h>

#include <SessionManager.hpp>
#include <TabularResults.hpp>
#include <Test.hpp>

using namespace CORBA;

using namespace SessionManager;
using namespace TabularResults;
using namespace Test;

void printResultSet (const ResultSeté& rs)

CORBA Components Guide 111

Writing CORBA C++ clients

ULong nc = rs.columns.length() ;
cout << rs.rows << " rows, " << nc << " columns" << endl;
for (ULong row = 0; YOw < I'S.YOWS; TOw++)

cout << "row " << row << ": ";

7

for (ULong column = 0; column < nc; column++)

{

if (column > 0)

{
}

cout << ", ";

BooleanSeg& nulls = ((ColumnSeqgé&)rs.columns) [column] .nulls;

if (row + 1 <= nulls.length() && nulls[row])
{
cout << "null";
continue;
}
Data& values = ((ColumnSeqgé&)rs.columns) [column] .values;
switch (values. d{())

{

case TYPE BIT:

{

BooleanSeg& booleanValues = values.booleanValues() ;
cout << (booleanValues[row] ? "true" : "false");
break;

}

case TYPE TINYINT:

{

OctetSeq octetValues = values.octetValues() ;
cout << octetValues[row] ;
break;

}

case TYPE SMALLINT:
ShortSeg& shortValues = values.shortValues() ;
cout << shortValues[row] ;
break;

}

case TYPE INTEGER:
LongSeqgé& longValues = values.longValues() ;
cout << longValues [row] ;
break;

}

case TYPE REAL:

112

EAServer

CHAPTER 9 Developing CORBA/C++ Clients

FloatSeg& floatValues = values.floatValues() ;
cout << floatValues|[row] ;
break;

}

case TYPE DOUBLE:

case TYPE FLOAT:

{
DoubleSeqg& doubleValues = values.doubleValues() ;
cout << doubleValues [row] ;
break;

}

case TYPE CHAR:

case TYPE LONGVARCHAR:

case TYPE VARCHAR:

{
StringSeqgé& stringValues = values.stringValues() ;
cout << stringValues [row] ;
break;

}

case TYPE BINARY:

case TYPE LONGVARBINARY:

case TYPE VARBINARY:

{
BinarySeg& binaryValues = values.binaryValues() ;
cout << " (binary)";
break;

}

case TYPE BIGINT:

case TYPE DECIMAL:

case TYPE NUMERIC:

{
DecimalSeqg& decimalValues = values.decimalValues() ;
cout << " (decimal)";
break;

}

case TYPE DATE:

{

DateSeg& dateValues = values.dateValues() ;
// Assumption: time t is seconds from Jan 1, 1970

time t t = (time t) ((dateValues [row] .dateValue - 40222.0)
86400) ;

cout << ctime (&t) ;

break;

}

case TYPE TIME:

CORBA Components Guide

*

113

Writing CORBA C++ clients

TimeSeg& timeValues = values.timeValues() ;
cout << "time: " << timeValues [row] .timeValue;
break;
case TYPE TIMESTAMP:
TimestampSegé& timestampValues = values.timestampValues() ;
time t t = (time_t) ((timestampValues [row] .dateValue +
timestampValues [row] .timeValue - 40222.0) * 86400) ;
cout << ctime (&t) ;
break;

cout << endl;
int main(int argc, char** argv)

ORB_var orb = ORB_init (argc, argv, "");
Manager var manager = Manager::

_narrow (Object var (orb->string to object("iiop://myhost:2000"))) ;
Session var session = manager->createSession("jagadmin", "");
Ping var p = Ping:: narrow(Object var (session->create("Test/Java")));
ResultSet var rs = p->results();
printResultSet (rs.in()) ;

{

char c;

fprintf (stderr, "Press Return to continue...");
¢ = getchar () ;

}

return 0;

Retrieving the result set

Toretrieve the result set, you must instantiate the stub and call the component
method that returns aresult set to the client. This example instantiates the stub
from the Java component in the Test package in asession as an object p of type
Ping_var using the _narrow method. The component method, results() is called
on p which returns the result set rs.

Ping var p = Ping:: narrow(Object var(session-
>create ("Test/Java"))) ;
ResultSet var rs = p->results();

114 EAServer

CHAPTER 9 Developing CORBA/C++ Clients

Iterating through the rows and columns

You must process each column value of each row oneat atime. Inthisexample,
the processing is contained in a method (which you can reuse in other
applications) called printResultSet(). printResultSet() takes the result set rs asan
input parameter.

printResultSet (rs.in()) ;

The method uses the length() method to determine how many columns, nc, are
in the result set, rs, and displays the number of columns and rows; the number
of rows s represented by the variable rows. The method uses a for loop to
iterate through each row, row, in the result set; and a nested for loop to iterate
through each column, column, in the current row. The method must check for
null values before it can process and print the valuesin each of the columns of
the current row. After checking for and printing out null values, the method
continues to the next column in the current row.

void printResultSet (const ResultSeté& rs)
ULong nc = rs.columns.length() ;
cout << rs.rows << " rows, " << nc << " columns" <<
endl;
for (ULong row = 0; YOw < ¥S.YOWS; TYOW++)
cout << "row " << row << ": ";
for (ULong column = 0; column < nc; column++)

{

if (column > 0)

{
}

BooleanSeg& nulls =
((ColumnSeqgé&) rs.columns) [column] .nulls;

cout << ", ';

if (row + 1 <= nulls.length() && nulls[row])

{

cout << "null";
continue;

}

CORBA Components Guide 115

Writing CORBA C++ clients

Retrieving the column datatype and processing values

In the body of printResultSet(), the _d() method (the discriminator method) is
used to retrieve the datatype of the column and switch/case processing is used
to process the column value in the current row. values is areference to a Data
object that represents the column value. _d() returns the datatype of the
referenced val ue to the switch statement and the body of the case statement that
matches the datatypeis executed. In each case, the current row’s column value
that corresponds to the case’s datatype is printed.

For the Date, Time, Timestamp datatypes, some conversion isrequired to print
avauein a standard format (such as “January 5, 1998").

Data& values =
((ColumnSeqgé&) rs.columns) [column] .values;
switch (values. d())

{

case TYPE BIT:
BooleanSeg& booleanValues =
values.booleanValues () ;
cout << (booleanValues[row] ? "true"
"false") ;

}

case TYPE TINYINT:

{

break;

OctetSeqg octetValues =
values.octetValues () ;

cout << octetValues[row] ;

break;

}

case TYPE SMALLINT:

{
ShortSeg& shortValues =
values.shortValues () ;
cout << shortValues[row] ;
break;

}

case TYPE INTEGER:

{

LongSeqg& longValues = values.longValues() ;
cout << longValues [row] ;
break;

}

case TYPE_ REAL:

{

116 EAServer

CHAPTER 9 Developing CORBA/C++ Clients

CORBA Components Guide

FloatSeqg& floatValues =

values.floatValues() ;
cout << floatValues|[row];

break;

}

case TYPE DOUBLE:
case TYPE FLOAT:

{
DoubleSeg& doubleValues =
values.doubleValues () ;
cout << doubleValues [row] ;
break;

}

case TYPE CHAR:
case TYPE LONGVARCHAR:

case TYPE VARCHAR:

StringSegé& stringValues =
values.stringValues() ;
cout << stringValues [row] ;

break;

}

case TYPE BINARY:
case TYPE LONGVARBINARY:
case TYPE VARBINARY:

{

BinarySeg& binaryValues =
values.binaryValues() ;

cout << " (binary)";
break;

}

case TYPE BIGINT:

case TYPE DECIMAL:

case TYPE NUMERIC:

{
DecimalSeqgé& decimalValues =

values.decimalValues () ;
cout << " (decimal)";

break;

}

case TYPE DATE:

{

DateSeqg& dateValues = values.dateValues() ;
// Assumption: time t is seconds from Jan

1, 1970
time t t =

117

Writing CORBA C++ clients

(time_t) ((dateValues[row] .dateValue - 40222.0) *
86400) ;
cout << ctime (&t) ;
break;

}

case TYPE TIME:

{

TimeSeqg& timeValues = values.timeValues () ;

cout << "time: " <<
timeValues [row] .timeValue;
break;

}

case TYPE TIMESTAMP:

{

TimestampSeqg& timestampValues =
values.timestampValues () ;

time t t =
(time_t) ((timestampValues [row] .dateValue +

timestampValues [row] .timeValue - 40222.0) *
86400) ;

cout << ctime (&t) ;

break;

}
}
}
cout << endl;

}

Handling exceptions
The client-side ORB throws two kinds of exceptions:

» CORBA system exceptions— These exceptions are defined inthe CORBA
specification.

» User-defined exceptions — These exceptions must be defined in the
component’s IDL definition.

118 EAServer

CHAPTER 9 Developing CORBA/C++ Clients

CORBA system exceptions

The CORBA specification defines the list of standard system exceptions. In
C++, all CORBA system exceptions are mapped to a C++ classthat is derived
from the standard SystemException class defined in the CORBA module. You
may want to trap the exceptions shown in this code fragment:

try

{

catch (CORBA::COMM FAILURE& cf)

{

// invoke methods

// A component aborted the EAServer transaction,
// or the transaction timed out. Retry the
// transaction if desired.

}

catch (CORBA::TRANSACTION ROLLEDBACK& tr)

{

catch (CORBA::0BJECT NOT EXIST& one)

{

// possibly retry the transaction

// Received when trying to instantiate

// a component that does not exist. Also

// received when invoking a method if the
// object reference has expired

// (this can happen if the component

// is stateful and is configured with

// a finite Instance Timeout property) .

// Create a new proxy instance if desired.}

}

catch (CORBA::NO PERMISSSION& np)

catch (CORBA::SystemException& se)

{
3

// tell the user they are not authorized

// report the error but don’t bother retrying

Note Not all of the possible system exceptions are shown in the example. See
the CORBA/IIOP 2.2 Specification (formal/98-02-01) for alist of al the
possible exceptions.

CORBA Components Guide 119

Compiling C++ clients

User-defined exceptions

In C++, all CORBA user-defined exceptions are mapped to aC++ classthat is
derived from the standard UserException class defined in the CORBA module.
For more information, see “ User-defined IDL datatypes’ on page 33 and
“User-defined exceptions’ on page 35.

Note User-defined typesmust exist inthe EA Server IDL repository beforeyou
can use them in interface declarations.

Compiling C++ clients

For example C++ client compilation commands, see “Compile the client
executable” on page 137.

If the client uses SSL, the following files must also reside on the client machine
inadirectory specified in the libary search environment variable. Inthe UNIX
column, replace ext with the platform extension for shared library files:

Windows UNIX
libjctssec.dll libjctssec.ext
libjsybscl.dll libjsybscl.ext
libjspks.dll libjspks.ext
libjsentpks.dll libjsentpks.ext
libjintl.dll libjintl.ext

Deploying C++ clients

120

To deploy a C++ client on another machine:

1 Ingtall the EAServer client runtimeif not done already, including C++
libraries. If the client uses SSL, make sure the SSL client runtime support
isinstalled.

2 Copy the client’s executable to the machine.

3 Configure the environment as described in “ Verify your environment” on
page 126.

EAServer

CHAPTER 9 Developing CORBA/C++ Clients

Using the CosNaming interface

Although EAServer supports the CORBA CosNaming interface to instantiate
proxiesin client applications, this technique is not recommended. You do not
need to use the CosNaming API in clients to realize the benefits incurred by
using logical component names. EA Server usesthe CosNaming APl to resolve
component names in the implementation of the Session::lookup and
Session::create methods. “Instantiating component proxies’ on page 104
describes the recommended technique for stub instantiation.

Unlike earlier releases, clients must be authenticated to perform name service
lookups using the default EA Server 6.0 configuration. To enable name service
lookups for clients that haven't been authenticated yet, you must set the
minimumPasswordLength property for the default security domain to zero and
set an empty password for the “guest” user. Sybase does not recommend this
configuration, because allowing “guest” access could be a point of security
vulnerability.

Use of the CosNaming interface also requires use of deprecated or unsupported
SessionManager::Factory methods, in particular the create methods that take
parameters. These methods are not compatible with Enterprise JavaBeans
components with multiple create methods in the home interface. These
methods are not supported for use in C++ or PowerBuilder clients.

Using CORBA ORB implementations other than
EAServer

EAServer’s I1OP implementation allows you to use any CORBA client ORB
to invoke EA Server components. You can aso use the EA Server client ORB
to execute components that are hosted by another vendor’s server ORB.

Connecting to EAServer with a third-party client ORB

In some cases, you may wish to use another vendor’s ORB in your client
applications. For example, you may have an existing installation of the ORB
on client workstations.

Clients that use another ORB can use the same code as the EAServer ORB,
except for the following differences:

CORBA Components Guide 121

Using CORBA ORB implementations other than EAServer

* Youmust use stub classes generated by the vendor’s1DL-to-C++ compiler
rather than stubs generated by EA Server.

* Your code to connect to EAServer and instantiate components may differ.

Generating compatible C++ stubs

EAServer IDL modules

EAServer IDL files

Usethe IDL-to-C++ compiler that comes with your ORB software to generate
compatible stubs, run on the IDL filesin the EAServer repository.

For information about which component IDL filesand EAServer IDL filesyou
need to useto generate stubsfor other ORBS, see “ Generating compatible Java
stubs” on page 179 (although this section refersto Javaclients, it also applies
to C++ clients).

Use the ORB vendor’s IDL-to-C++ compiler to generate stubs for the filesin
thetable, “EAServer IDL files’ on page 122. All IDL filesareinstalled inthe
EA Server include subdirectory. “Writing CORBA C++ clients’ on page 102
describes how these interfaces are used to instantiate EA Server components
and call component methods. For additional information, see the commentsin
each IDL file.

File name Description

SessionManager.idl Definesinterfacesfor session-based creation of
EAServer component instances.

BCD.idl Definesthe CORBA datatypesfor EAServer’'s
binary and fixed-point numeric datatypes.

MJD.idl Definesthe CORBA datatypesfor EAServer’'s
date and time datatypes.

TabularResults.idl Defines the CORBA datatypes that represent
result sets returned by a method invocation.

Performing datatype conversion

122

EA Server provides C++ header filesto convert from the EAServer CORBA
datatypes to those commonly used in C++. If you are using another vendor’s
ORB, use the EA Server header filesin your application. For languages other
than C++, see the commentsin the IDL files for details on how the datais
interpreted.

EAServer

CHAPTER 9 Developing CORBA/C++ Clients

Instantiating components using a third-party ORB

EAServer’s naming service cannot be used with other client ORBs, so you
must use the EAServer SessionManager::Manager interface to instantiate
components from another ORB, as described in “Instantiating component
proxies’ on page 104.

Also, you must use standard format 10Rs, not the URL format, as described in
“Creating a Manager instance” on page 108.

Connecting to third-party ORBs using the EAServer ORB

You can use the EA Server client-side ORB to execute components hosted by
another vendor’s server-side ORB, aslong as the server-side ORB accepts
I1OP connections and the required interfaces are defined in standard CORBA
IDL. Implement your client as follows:

1 Import al therequired IDL modulesinto the EAServer repository, as
described in “Managing IDL in EAServer” on page 36.

2 Generate stubs for each imported module, as described in “ Generating
stubs’ on page 102. You must generate stubsfor each moduleindividually.

CORBA Components Guide 123

Using CORBA ORB implementations other than EAServer

124 EAServer

cuapTERrR 10 lutorial: Creating C++
Components and Clients

In thistutorial, you will create a C++ component, install it in EAServer,
and create a C++ client program that connects to EAServer and callsa
method in the component.

Topic Page
Overview of the sample application 125
Tutorial requirements 125
Creating the application 126

Overview of the sample application

In this sample:

1 Theclient-side executable, developed with C++, instantiates the
middle-tier C++ component, CPPArithmetic.

2 Theclient executable calls the multiply method in CPPArithmetic.

3 The multiply method computes the product of the input values, then
returns the result.

4 Theclient executable displays the result for the end user.

Tutorial requirements
To create this tutorial application, you need:

e The EAServer software. The EAServer Installation Guide for your
platform describes how to install the software.

e A C++ development environment, such as:

CORBA Components Guide 125

Creating the application

e For Windows, Microsoft Visual C++.

e For UNIX, the system C++ compiler. Some UNIX platforms support
multiple C++ versions. The EAServer Release Bulletin for your
UNIX platform lists compilers that have been tested with EA Server.

Creating the application
To create and run the sample application:

© 00 N o 00 b~ W N P

Verify your environment.

Start EA Server and the Management Console.

Import the IDL interface.

Define the package and component.

Generate server integration code and implementation templates.
Write the server-side code.

Create a user account.

Write the client-side code.

Compile the client executable.

10 Run the client executable.

Verify your environment

Before running the tutorial, verify these environment settings:

126

For all platforms, the DJC_HOME environment variable must be set to the
location of your EA Server installation.

For Windows, the PATH environment variable must include the EA Server
lib subdirectory.

For UNIX platforms, the EA Server lib directory must be added to the
shared library search path variable listed in Table 10-1 for your platform.

EAServer

CHAPTER 10 Tutorial: Creating C++ Components and Clients

Table 10-1: Shared library search path variables for UNIX platforms

Platform Variable name
Solaris LD_LIBRARY PATH
HP-UX SHLIB_PATH

AIX LIBPATH

Linux LD_LIBRARY PATH

[IConfiguring the Windows environment

To configure the command line where you are running the tutorials, run

these commands, substituting your EA Server installation location for eas-
home:

set DJC_HOME=eas-home
set PATH=%DJC HOME%\d1ll;%$PATH%

You can also edit these variablesin the System dialog for the Windows
Control Pandl, or create a batch file to configure the settings.

[IConfiguring the UNIX environment for C shell

To configure the C shell session where you are running the tutorials, run
these commands, substituting your EA Server installation location for eas-
home, and the shared-library variable from Table 10-1 for LIB_PATH:

setenv DJC_HOME eas-home
setenv LIB PATH $DJC HOME/lib:$LIB PATH

[IConfiguring the UNIX environment for Bourne shell

To configure the Bourne shell session where you are running the tutorials,
run these commands, substituting your EA Server installation location for
eas-home, and the shared-library variable from Table 10-1 for LIB_PATH:

DJC_HOME=eas-home export DJC_ HOME
LIB PATH=$DJC_HOME/lib:$LIB PATH export LIB PATH

Start EAServer and the Management Console

Start the Management Console and connect to EA Server as described in
Chapter 1, “ Getting Started,”in the System Administration Guide.

CORBA Components Guide 127

Creating the application

Import the IDL interface

CORBA component interfaces must be defined using IDL. Your EA Server
installation includes a predefined IDL file, CPPArithmetic.idl in the
samples/tutorial/cpp-corba directory. The component interface has one
method, multiply.

[dimporting the IDL file

1 If you haven't aready, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “Getting
Started,” in the System Administration Guide.

2 Inthe Management Console, click the IDL Modules folder to display the
IDL typesinthe EAServer repository. Right-click the IDL Modulesfolder
and choose Deploy. The Deploy Wizard displays.

3 Browse to the samples/tutorial/cpp-corba directory in your EAServer
installation and select CPPArithmetic.idl.

Define the package and component

This section showsyou how to use Management Consol eto create the package,
component, and method for the sampl e application.

Define a new package

In EAServer, CORBA packages allow you to group CORBA components that
perform related tasks. Before a component can be instantiated by clients, it
must be installed in a package, and that package must beinstalled in the server.

[ICreating the cpptut package

1 IntheManagement Console, click the CORBA packagesfolder under the
Local Server folder. Thisfolder displaysall packagesin the repository for
the server that you are connected to.

2 If the cpptut package is displayed, skip to “Define a new component” on
page 129.

3 Right-click the CORBA Packagesfolder, and select Add. The Add wizard
displays. For the package name, enter cpptut.

4 When you finish the wizard, the package properties display. Leave these
properties at their default settings.

128 EAServer

CHAPTER 10 Tutorial: Creating C++ Components and Clients

Define a new component

You will define anew C++ component, CPPArithmetic.

[IDefining the component

1 Expand the cpptut package and right-click the Components folder beneath
it, then select Add. The New Component Wizard displays. Apply the
following settings as you page through the wizard:

For component name, enter cPPArithmetic.

For component type, choose CORBA/C++.

For C++ Class Name, enter cppArithmeticImpl.
For C++ Library, enter 1ibcpPArithmetic.

For IDL Home Interface, leave blank. (EAServer generates the
default home interface later in the tutorial.)

For IDL Remote Interface, enter Tutorial: :CPPArithmetic.

When you finish the wizard, the component properties display.

2 Inthe component properties, select the General tab. Confirm or apply the
settings in the table below. Leave the remaining fields at their default

settings.
Field Value
Component Type CORBA/C++
C++ Class CPPArithmeticImpl
C++ Library 1ibCPPArithmetic (NO extension)
Copy Library Checked
Debug Library Checked
IDL Home Interface Leave blank.
IDL Remote Interface | Tutorial::CPPArithmetic
Automatic Failover Checked
Pooled Checked
Thread Safe Checked

3 Click Apply to save changes made to the component properties.

CORBA Components Guide

129

Creating the application

Generate server integration code and implementation templates

Onceyou have created the package and component, you must generate thefiles
that allow your C++ implementation to run in EAServer and clientsto invoke
the component. These include the EJB wrapper component that EA Server
generates to invoke the C++ library, the client stub interface files, and an
implementation template for the component.

[IGenerating the server-side files
1 Inthe Management Console, expand the cpptut package. Beneath it, right-
click the CPPArithmetic component and choose Refresh.

2 TheManagement Console generatesthe required files. If generation fails,
check the server log file for a description of the problem.

[IGenerating C++ stubs
» If using Windows, run the following command at a prompt:
$DJC_HOME%\bin\idl-compiler -v Tutorial\CPPArithmetic.idl -f
$DJC_HOMES%\include -cpp
If using UNIX, run the following command at a prompt:

$DJC_HOME/bin/idl-compiler.sh -v Tutorial\CPPArithmetic.idl -£
$DJC_HOME/include -cpp

Write the server-side code
EA Server has generated C++ implementation templates for the component
methods. Here we will fill in the implementation template, then build a shared
library or DLL file. Finally, we will verify that the shared library or DLL isin
the EA Server cpplib subdirectory, where EA Server expects to find C++
component library files.

[Writing the server-side code

1 Navigateto the cpplib directory under your EA Server installation, then
navigate to the cpptut/ CPPArithmetic subdirectory. You should see the
following files:

* CPPArithmeticimpl.hpp.new Template for the component header
file. Defines the CPPArithmeticimpl class. No changesare required for
the tutorial, other than renaming the file as discussed below.

130 EAServer

CHAPTER 10 Tutorial: Creating C++ Components and Clients

e CPPArithmeticimpl.cpp.new Template for the component
implementation. Contains the definition of the component methods.
Changes you must make to this file are described bel ow.

e cpptut_CPPArithmetic.cpp Source for the skeleton. Do not
modify the generated skeleton code.

+ make.nt Microsoft nmake makefile. The nmake utility isincluded
with the Microsoft Visual C++ installation.

+ make.unix UNIX makefile, for all UNIX platforms.

2 Rename the implementation files to CPPArithmeticlmpl.hpp and

CPPArithmeticlmpl.cpp. (In other words, remove the .new extension from
both file names).

Open CPPArithmeticlmpl.cpp in atext editor, then find the definition of
the multiply method. Change the definition so that it matches the one
below:

CORBA: :Double CPPArithmeticImpl::multiply
(CORBA: :Double ml,
CORBA: :Double m2)

CORBA: :Double result;
result = ml * m2;
return result;

}

4 Saveyour changes.

[Building the component on Windows

1 Verify your setup asdescribed in “Verify your environment” on page 126.
2 Rename make.nt to Makefile, then open Makefilein atext editor. Find the

CORBA Components Guide

definition of the MSVCDIR and ODBCLIB macros:

MSVCDIR=c: \msdev
ODBCLIB = "$(MSVCDIR)\lib\odbec32.1lib"

If you use the standard Microsoft Visucal C++ setup file, VCVARS32.bat,
no changes are needed to these settings. The Visual C++ installation
generates VCVARS32.bat to set the MSV CDIR environment variable. If
you do not use the generated VCVARS32.bat file, or it isincorrect, edit
these linesin the makefile to match your system; set MSVCDIR to the
location where Microsoft Visual C++ isinstalled and set ODBCLIB to the
full path to the odbc32.lib file.

131

Creating the application

3 Open acommand window and change directory to the
cpplib/cpptut/CPPArithmetic subdirectory of your EAServer installation.
Build the DLL asfollows:

a Apply the settings in the EAServer djc-setenv.bat file and the
Microsoft Visual C++ VCVARS32.bat setup file. For example:

set DJC_HOME=d:\Sybase\EAS60
call %DJC_HOME%\bin\djc-setenv.bat
call "D:\engapps\Microsoft Visual Studio\VC98\Bin\VCVARS32.bat"

b Runnmake (no arguments are required).

You should see anew file called libCPPArithmetic.dll. Verify that the makefile
has copied thisfile to the EAServer cpplib subdirectory. If nmake fails, verify
that you have renamed the .cpp and .hpp implementation files with the
expected file names, and that you have applied the correct edits to
CPPArithmeticl mpl.cpp and Makefile.

[Building the component on UNIX platforms
1 Verify your setup asdescribed in “Verify your environment” on page 126.

2 Rename make.unix to Makefile.
3 Build the shared library by running make (no arguments are required).

You should see anew file called libCPPArithmetic.ext, where ext isthe
appropriate shared library extension for your platform. Verify that the makefile
has copied this file to the EA Server cpplib subdirectory.

If make fails, verify the following:

* You have renamed the .cpp and .hpp implementation files with the
expected file names, and that you have applied the correct edits to
CPPArithmeticl mpl.cpp.

» Thecompile and link settings in Makefile are appropriate for your
installation. The settings are defined in the file cpplib/make.include.plat,
where plat is the platform code returned by running uname -s onyour
system. If necessary, edit this file to match your system configuration.

132 EAServer

CHAPTER 10 Tutorial: Creating C++ Components and Clients

Create a user account

You must have a user account the client application uses to connect to the
server. If you don't already have a user account defined, createit as described
here. Alternatively, edit the client application source code to use an existing
account.

[ICreating the Guest user account

1 IntheManagement Console, expand the Security folder and right-click the
Users folder beneath it. Choose Add from the context menu.

In the New User wizard, enter cuest asthe user name and click Finish.

3 Anicon appears for the Guest wizard under the Users folder. Right-click
thisicon and choose Set Password.

4 Inthe Set Password wizard, enter Guest Password2 for the password and
click Apply.

Write the client-side code

Create the source filefor the sample C++ client, arith.cpp. You can find acopy
of arith.cpp in the sampl es/tutorial/cpp-corba/client subdirectory of your
EAServer installation. Here is the source for arith.cpp:

/*

** arith.cpp -- Example C++ client for the EAServer C++

* % tutorial.

* %

il This program connects to EAServer,

* % creates an instance of the Tutorial/CPPArithmetic

*k component, and invokes the multiply method.

* %

** Usage:

* % arith iiop://<host>:<port>

* %

* ok Where:

* %

** <host> is the host name or IP address of the server machine.
* %

* % <iiop-port> is the server's IIOP port (9000 in the
* %k default configuration) .

* %

*/

CORBA Components Guide 133

Creating the application

#include <stdio.h>

#include <iostream.h>
#include <string.h>

#include <Jaguar.hpp>
#include <SessionManager.hpp>

#include <Tutorial.hpp> // Stubs for interfaces in Tutorial IDL

// module.
int main(int argc, char** argv)

{
const char *usage =

"Usage:\n\tarith iiop://<host>:<iiop-port>\n";
const char *tutorial help =

"Verify that the"

"cpptut/CPPArithmetic component exists "

"and that it implements the "

"Tutorial: :CPPArithmetic IDL interface.";

const char *component name = "cpptut/CPPArithmetic";

try {

if (argc < 2)

{

cout << usage;
return -1;

char* manager url = argv[1l];
cout << "**** Creating session\n";

// Initialize the ORB
CORBA: :ORB_var orb = CORBA::ORB_init (argc, argv, 0);

// Create a SessionManager: :Manager instance

CORBA: :Object var obj =
orb->string to object (manager url) ;
SessionManager: :Manager var manager =
SessionManager: :Manager:: narrow (obj) ;
if (CORBA::is nil (manager))

{

cout << "Error: Null SessionManager::Manager instance.

<< usage ;
return -1;

134

Exiting. "

EAServer

CHAPTER 10 Tutorial: Creating C++ Components and Clients

// Create an authenticated session for user Guest
// using password GuestPassword2

SessionManager::Session var session =
manager->createSession("Guest", "GuestPassword2") ;

if (CORBA::is nil (session))

cout << "Error: Null session. Exiting. " << usage;
return -1;

// Obtain a factory for component instances by
// resolving the component name

cout << "**** Creating component instance for "
<< component name << "\n"

obj = session->lookup (component name) ;
SessionManager::Factory var arithFactory =
SessionManager: :Factory:: narrow(obj) ;

if (CORBA::is nil (arithFactory))
cout << "ERROR: Null component factory for component "
<< component name
<< tutorial help ;
return -1;

}

// Use the factory to create an instance.

Tutorial::CPPArithmetic var arith =
Tutorial: :CPPArithmetic:: narrow(arithFactory->create()) ;

// Verify that we really have an instance.
if (CORBA::is nil(arith)) {
cout << "ERROR: Null component instance. "
<< tutorial help ;
return -1;

// Call the multiply method.

CORBA Components Guide 135

Creating the application

136

cout << "**** Multiplying ...\n\n";
CORBA: :Double ml = (CORBA::Double)3.1;
CORBA: :Double m2 = (CORBA::Double)2.5;

CORBA: :Double result = arith-s>multiply(ml, m2);

cout << (double)ml << " * " << (double)m2
<< " = " << (double)result
<< "\n\n";

// Explicitly catch exceptions that can occur due to user error,
// and print a generic error message for any other CORBA system
// exception.

// Requested object (component) does not exist.
catch (CORBA::0BJECT NOT EXIST cone)
cout << "Error: CORBA OBJECT NOT EXIST exception. Check the "
<< "server log file for more information. Also verify "
<< "that the " << component name

<< " component has been created properly." << tutorial help ;

}

// Authentication or authorization failure.

catch (CORBA: :NO_PERMISSION npe)

{

cout << "Error: CORBA:: NO PERMISSION exception. Check whether "

<< "login authentication is enabled for your server and "
<< "whether the component has restricted access. If so "
<< "edit the source file to use a valid user name and "
<< "password.\n";

// Invalid object reference.
catch (CORBA::INV_OBJREF cio)

{
}

cout << "Error: CORBA INV_OBJREF exception.";

// Communication failure. Server could be down or URL's port value
// could be wrong.
catch (CORBA::COMM FAILURE ccf)
{
cout << "Error: CORBA COMM FAILURE exception. Check that the "
<< "specified host and IIOP port number are "

EAServer

CHAPTER 10 Tutorial: Creating C++ Components and Clients

<<

<<

}

"correct and that the server is running. "
usage;

// Anything else.
catch (CORBA::0BJ ADAPTER)

{
}

cout <<

"Error: CORBA::0BJ ADAPTER \n";

catch (CORBA::SystemException cse)

{

cout <<
<<
<<

<<

return 0;

"Exrror: CORBA System Exception. Check that the server "
"hostname and IIOP port are specified correctly, and "
"check the server's error log for more information.\n"
usage;

Compile the client executable

SETLOCAL

[ICompiling the client on Windows
1 Verify your setup asdescribed in “Verify your environment” on page 126.

2 Create a batch file with these commands and run it:

set INCLUDE=.;%DJC_HOMES%\include; $INCLUDES;

set LIB=%DJC HOME%\lib;$LIB%

cl /W3 /nologo /DWIN32 /Gd /GX -c arith.cpp

set SYSLIBS=kernel32.lib advapi32.1lib

link /MAP /out:arith.exe arith.obj libjcc.lib libjutils.lib $%SYSLIBS%

ENDLOCAL

[ICompiling the client on UNIX
1 Verify your setup asdescribed in “Verify your environment” on page 126.

2 Create ashell script containing the commands for your platform from
Table 10-2, then run the shell script.

3 Changethe script file permissions to allow execution, for example,
assuming you have named the script compile.sh:

chmod 777 compile.sh

CORBA Components Guide 137

Creating the application

Table 10-2: Client compilation commands for UNIX platforms
Platform | Shell script

Solaris This shell script works with the Solaris CC compiler, version 6.x:
#!/bin/sh
$DJC_HOME/bin/djc-setenv.sh
CC -DJAG NO_NAMESPACE -z muldefs -I. -I$DJC_HOME/include \
-L$DJC_HOME/lib -1ljcc -1jtml _r -lunic -1lnsl \
-1dl -1lthread -1m -1ljutils -o arith arith.cpp

HP-UX This shell script uses the HP-UX ANSI C++ (aCC) compiler:
#!/bin/sh
$DJC_HOME/bin/djc-setenv.sh
aCC -c¢ +DAl.1 +DS2.0 +u4 -DNATIVE -D_HPUX -D POSIX C_SOURCE=199506L \
-D_HPUX_SOURCE -I $(DJC_HOME JDK13)/include -I
$(DJC_HOME JDK13) /include/hp-ux -I. \
-ISDJC_HOME/include -L$SDJC HOME/lib -lpthread -1ljcc -1nsl -1jtml r \
-ljinsck_r -lunic -1ljutils -o arith arith.cpp

HP This shell script uses the HP C++ (aCC) compiler:
Itanium #1/bin/sh
$DJC_HOME/bin/djc-setenv.sh
aCC -g +DD32 -mt -I. -I$(DJC_HOME)/include \
-L$ (DJC_HOME) /1ib -lpthread -lunic -1jtml r -ljinsck r \
-1ljcc -1nsl -1ljlog -o arith arith.cpp

AlIX This shell script uses the IBM native compiler:

#!/bin/sh
$DJC_HOME/bin/djc-setenv.sh

x1C r -g -c -DDEBUG -DJAG _NO NAMESPACE -DAIX -D AIX -gcpluscmt -gnoro \
-gmaxmem=-1 -garch=com -gtbtable=full \
-I. -I$DJC_HOME/include \
-brtl -L$SDJC HOME/lib -ljcc.so -lunic -1jtml r.so -1ljinsck r.so \
-lpthread -1lnsl -1jutils -o arith arith.cpp

Linux This shell script uses the g++ compiler:

#!/bin/sh
$DJC_HOME/bin/djc-setenv.sh

g++ -c -D GNU SOURCE=1 -DLINUX -D LINUX -D REENTRANT -fPIC \
-fwritable-strings -pipe -g -DDEBUG -I $(DJC_HOME JDK13)/include \
-I. -I$DJC_HOME/include \
-L$DJC_HOME/lib -lpthread -ljcc -1lnsl -1jtml r -ljinsck r \
-1 unic -1ljutils -o arith arith.cpp

138 EAServer

CHAPTER 10 Tutorial: Creating C++ Components and Clients

Run the client executable

If you have not refreshed or restarted the server since creating the
CPPArithmetic component or adding the cuest user account, do so now before
running the client program. Make sure your environment is configured as
described in “ Verify your environment” on page 126.

Run the executabl e, specifying the server host name and [1OP port number on
the command line asfollows:

arith iiop://host:iiop-port
For example:
arith iiop://myhost:2000

If everything isworking, arith prints the results from the invocation of the
multiply method. If not, check the error text printed on the console where you
ran the client, and check for error messages in the server log file.

CORBA Components Guide 139

Creating the application

140 EAServer

CHAPTER 11

Overview

About CORBA Java
language bindings

CORBA Components Guide

CORBA/Java Overview

This chapter provides an overview of thingsto consider when devel oping
CORBA/Java clients and components for EAServer.

Topic Page
Overview 141
Requirements 142
Java IDL datatype mappings 142

CORBA isadistributed component architecture defined by the Object
Management Group. EA Server supports the CORBA Internet | nter-ORB
Protocol (110P). EAServer also provides a CORBA-compatible client-
sideinterface that isimplemented according to the CORBA specification
for IDL-to-Javalanguage mappings. These two items allow you to create
CORBA-compliant Java applications and appl ets that interact with

EA Server components.

Java/CORBA versus EJB components
EAServer provides the Javal CORBA component model for backward

compatibility with EAServer 5.x and earlier versions. Sybase
recommends you create EJB components for new Java development
because they are more portable to other application servers.

For information on the CORBA architecture, see the specifications
available at the Object Management Group (OMG) Web site at
http://www.omg.org.

The EAServer Java ORB runtime isimplemented according to the
CORBA 2.3 specification (specifically, the document IDL to Java
Language Mapping Specification, formal/99-07-53). You can download
this document from the OMG Web site at http://www.omg.org.

141

Requirements

EAServer Java ORB
runtime

Requirements

The Java ORB programming interface is defined by the CORBA Java-
language bindings specification. The top-level class, org.omg.CORBA.ORB, is
an abstract Javaclass. Each Java ORB vendor must provide an implementation
of this class. For example, the EA Server ORB implementation classis
com.sybase.CORBA.ORB. You can use the EAServer ORB or any CORBA-
compatible ORB to invoke EA Server components.

In this version, EAServer’'s ORB implementation does not support:
* Method invocation via the Dynamic Invocation Interface (DII)

e The CORBA:Any type

All software that is required to compile, deploy, and run Java components in
EAServer is supplied with the EA Server product. However, you can use other
compilers or Java IDEs such as JBuilder or Eclipse. You must compile
components and clients with a JDK version that is compatible with the JIDK
version used to run the application server.

Java IDL datatype mappings

JavalCORBA components use the type mappings specified by the CORBA
document, IDL to Java Language Mapping Specification (formal/99-07-53).

The following table lists the CORBA IDL types predefined in EAServer and
the equivalent Java datatypes.

Table 11-1: Java types for predefined CORBA IDL types

Java type (input
CORBA IDL parameter or return
type value) Javatype (inout or out parameter)
short short org.omg.CORBA.ShortHolder
long int org.omg.CORBA.IntHolder
long long long org.omg.CORBA.LongHolder
float float org.omg.CORBA.FloatHolder
double double org.omg.CORBA.DoubleHolder

142

EAServer

CHAPTER 11 CORBA/Java Overview

Java type (input

CORBA IDL parameter or return

type value) Java type (inout or out parameter)
boolean boolean org.omg.CORBA.BooleanHolder
char char org.omg.CORBA.CharHolder
octet byte org.omg.CORBA.ByteHolder
string java.lang.String org.omg.CORBA.StringHolder
BCD::Binary byte[] BCD.Binary

BCD::Decimal BCD.Decimal BCD.DecimalHolder
BCD::Money BCD.Money BCD.MoneyHolder

MJD::Date MJD.Date MJD.DateHolder

MJD::Time MJD.Time MJD.TimeHolder

MJD::Timestamp

MJD.Timestamp

MJD.TimestampHolder

TabularResults::
ResultSet

TabularResults.ResultSet

TabularResults.ResultSetHolder

TabularResults::
ResultSets

TabularResults.ResultSet]]

TabularResults.ResultSetsHolder

Binary, Fixed-Point, and Date/Time types

The BCD and MJD IDL modules define types to represent common database
column types such as binary data, fixed-point numeric data, dates, times. The
BCD::Binary CORBA type mapsto a Java byte array. The other BCD and MJD
types map to data representations that are optimized for network transport.

To convert between the IDL-mapped datatypes and from core java.* classes,
use these classes from the com.sybase. CORBA.jdbc11 package:

Class | Description

SQL

Contains methods to convert from BCD.* and MJD.* types to java.* types

IDL

Contains methods to convert from java.* typesto BCD.* and MJD.* types

Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference
provides reference pages for these classes.

CORBA Components Guide

143

Java IDL datatype mappings

Result set types

The TabularResults IDL module defines types used to represent tabular data.
Result setsaretypically used only as return types, though you can passthem as
parameters.

User-defined IDL types

A user-defined type is any type that is:

* Notinthe set of datatypesthat is not predefined by EAServer’sread-only
repository modules and

* Not one of the CORBA IDL base types.

If amethod definition includes user-defined types, the Javacomponent method
will use a Java type translated from the IDL type definition.

CORBA Any and TypeCode support
EAServer’'s Java ORB supports the CORBA Any and TypeCode datatypes.

Refer to the OMG CORBA 2.3 specification and IDL to Java Language
Mapping Specification (formal/99-07-53) for information on using these
types.

Camel case versus default IDL-to-Java mappings

144

By default, EA Server uses standard mappingsto generate Java classesfor user-
defined IDL types, as specified by the CORBA Java language mappings
specification.

You can configure camel case mappings for IDL-to-Javatrandation. Camel
case mappings follow the Java class naming convention rather than the IDL
naming convention. When using this option, IDL operation and parameter
names such abc_xyz map to abcXyz, and IDL interfaces, sequence, structure,
and union type names abc_xyz map to AbcXyz. The camel case mapping is not
applied to exception and structure field names.

To enable camel case mapping, run the following command in the EA Server
bin directory:

configure camel-case-on

To disable camel case mapping, run the following command in the EA Server
bin directory:

EAServer

CHAPTER 11 CORBA/Java Overview

configure camel-case-off

Note If youintend to expose components as Web services, enable the camel
case option. Otherwise you may run into problems with the JAX-RPC
identifier mapping rules defined by the JAX-RPC 1.1 specification, Chapter
20, “Appendix: Mapping of XML Names’.

Holder classes for IDL types

All IDL-mapped Javatypes have an accompanying holder classthat isused for
passing parameters by reference. Each holder class hasthe following structure:

public class <Type>Holder ({
// Current value
public <types> value;
// Default constructor
public <Types>Holder () {}
// Constructor that sets initial value
public <TypesHolder (<type> v) {
this.value = v;

}
}

This structure is defined by the CORBA Java-language bindings specification.

CORBA Components Guide 145

Java IDL datatype mappings

146 EAServer

CHAPTER 12

Procedure for creating CORBA/Java components

CORBA Components Guide

Developing CORBA/Java

Components
Topic Page
Procedure for creating CORBA/Java components 147
Write the Java sourcefile 148
Advanced techniques 151
Generating EJB wrapper components 160
Refreshing Java components 160

To create a CORBA/Java compoent, you use the Management Console or
a configuration script to define basic information about the component,

such as the component name and methods, compile and deploy the
component implementation classes, then generate filesthat arerequired to

write the component’s class implementation.

The steps are asfollows:

1 Definethe component interfacein CORBA IDL and deploy the IDL
to the EA Server repository. Chapter 3, “Using CORBA IDL,”

describes how to do this.

2 Create EAServer entities to define the CORBA packages and

components. The package and component properties specify the

component interfaces and control interaction between EA Server and
your implementation. Chapter 4, “Managing CORBA Packages and

Components,” describes how to do this.

3 Develop the component implementation, as described in “Write the

Java source file” on page 148.

147

Write the Java source file

4 Generate the EJB wrapper components required to host the CORBA
component by running the jaguar-compiler command on the CORBA
package as described in “ Generating EJB wrapper components’ on page
160.

A tutorial is available
If you are new to EAServer, follow the stepsin Chapter 14, “ Tutorial: Creating

CORBA Java Components and Clients” to get aquainted with the Java
development and deployment cycle.

Write the Java source file

In the component implementation, create a Javamethod for each IDL operation
in the component’s client interfaces. When you code the parameters for each
method, use the Javatypes that correspond to the IDL operation parameters.
See “Java IDL datatype mappings’ on page 142.

In the Java component, component interface methods must be public and
cannot be declared static. If the IDL definition of the method has a non-empty
raises clause, the Java method must throw equivalent Java exceptions for the
IDL exceptions listed in the raises clause.

The component implementation class must be in a Java package. You cannot
define components implemented by classes in the default package.

[Jdimplementing the component

148

1 Generate Javainterface filesfor IDL types— If your IDL usestypes that
arenot predefinedin EA Server, generate Javatypesfromthe DL interface
files.

2 Add package import statements — Import the packages that contain the
classes that you need to use in your Java class.

3 Code the constructor — Provide a default constructor to be called when
EA Server loads the implementation class.

4 Add error handling code — Add code that gracefully handles errors by
logging status messages and sending meaningful messages to the client.

5 Tofinish up, you can use these advanced technique to polish your
component implementation:

EAServer

CHAPTER 12 Developing CORBA/Java Components

a Manage database connections — Connect to databases through
connection caches using the Connection Management API.

b Returnresult sets— Return result sets using the EA Server Result Sets

APIL.

¢ Issueintercomponent calls— Instantiate a Java stub to make

intercomponent calls.

Generate Java interface files for IDL types

If the component’s definition uses user-defined types for parameters, return
values, or exceptions, Java interfaces are required for these typesin order to
compile your component’s implementation file.

The EA Server install ation includes Java stubs for the predefined IDL types. To
generate Java stubs for other IDL modules and types, use the idl-compiler

command-line tool. For example:

idl-compiler.bat -v Tutoriall\JavaArithmetic.idl
Tutorial\JavaArithmeticHome.idl -f $DJC_HOME%\samples\tutoriall\java-

corba\client-src -java

For information on idl-compiler syntax, see Chapter 12, “Command Line
Tools,” in the System Administration Guide.

Add package import statements

The packages below are useful if your component isimplemented using the
standard CORBA |DL-to-Java datatype mappings:

Package(s)

Description

org.omg.CORBA

Contains Javaholder and hel per classesfor each
of the core CORBA datatypes. Also definesthe
interfaces for astandard Java client-side Object
Request Broker.

com.sybase. CORBA .jdbcl1l.*

Contains utility classes for converting between
EAServer IDL datatypes and core Java
datatypes.

com.sybase.jaguar.server

Contains utility classesfor usein server-side
Java code.

com.sybase.jaguar.sql

CORBA Components Guide

Defines interfaces for defining and sending
result sets.

149

Write the Java source file

Package(s) Description
com.sybase.jaguar.jcm Provides the Java Connection Management
(JCM) classes.

com.sybase.jaguar.util .JException | Many of the methods in the EAServer Java
classes throw JException. Note that the
packages com.sybase.jaguar.util and
org.omg.CORBA contain identically named
classes, so you can not import al classes from
both packages. To avoid compilation problems,
import JException explicitly or awaysrefer to
this class by its full name.

The fragment below shows the import statements for all of these classes:

import org.omg.CORBA.*;

import com.sybase.CORBA.jdbcll.*;

import com.sybase.jaguar.util.JException;
import com.sybase.jaguar.server.*;

import com.sybase.jaguar.sql.*;

import com.sybase.jaguar.jcm.*;

Code the constructor

Add error handlin

150

A class congtructor is normally used to initialize instance-specific data.
However, if your component implements lifecycle methods, then you should
use these methods to manage instance-specific data. Otherwise, instance-
specific initialization must be done in the constructor.

Any uncaught exception that is thrown within the constructor aborts the
creation of the new component instance.

g code

Errors occurring during component execution should be handled gracefully as
follows:

1 Writedetailed descriptionsof theerror to thelog. Thiswill help you debug
the problem later. You can call any of the System.out.print methodsto write
to the log (the output is redirected).

2 If the error prevents completion of the current transaction, roll it back as
described in “ Set transactional state” on page 158.

EAServer

CHAPTER 12 Developing CORBA/Java Components

3 Throw an exception with a brief, descriptive message that is appropriate
for display to an end user of the client application.

Java components can record errors or status messages to the server’slog file.

Writing to thelog creates apermanent record of the error, and log messages can
be automatically stamped with the date and time that the message waswritten.
Call any of the System.out.print methods to write to the log.

You can also throw an uncaught exception. Ideally, any exception thrown by
your component should be astandard CORBA I DL exception or auser-defined
IDL exception (the latter must be listed in the raises clause of the IDL method
definition and thethrows clause of the equival ent Javamethod declaration). All
exceptions are forwarded to the client, but only exceptionsthat are defined in
IDL can be rethrown by the client stub as a duplicate of the server-side
exception.

Advanced techniques

After the basic component implementation isin place, you can add code to
perform the following advanced tasks:

e “Issueintercomponent calls’ on page 151

e “Manage database connections’ on page 153

e “Return result sets’ on page 153

e “Access SSL client certificates’” on page 158

e “Settransactional state” on page 158

* “Retrieve user-defined component properties’ on page 159

Issue intercomponent calls

Using the CORBA
ORB to instantiate
proxies

You must use a proxy to issue intercomponent calls. If you call methodsin
another Java component directly, no server features are available to the called
component, such as transaction control, instance lifecycle management, and
security.

To invoke other components, instantiate a proxy (stub) object for the second
component, then use the stub to invoke methods on the component.

CORBA Components Guide 151

Advanced techniques

To invoke methods in other components, create an ORB instance to obtain
proxy objects for other components, then invoke methods on the object
references. You obtain object references for other components on the same
server by invoking string_to_object with the IOR string specified as
Package/Component. For example, the fragment bel ow obtains a proxy object
for acomponent Sessionlnfo that isinstalled in the CtsSecurity package.

java.util.Properties props = new java.util.Propert
ies () ;
props.put ("org.omg.CORBA.ORBClass",
"com.sybase.CORBA.ORB") ;
ORB orb = ORB.init((java.lang.String[])null, props
)
SessionInfo sessInfo =
SessionInfoHelper.narrow
(orb.string to_object (
"CtsSecurity/SessionInfo")) ;

When making intercomponent callsusing string_to_object, the user name of the
client that executed the component is automatically used for authorization
checking. The exception is when instantiating the system componentsin the
Jaguar package: the ORB automatically switchesto the system user priveleges
when you specify acomponent in the Jaguar package. To specify a user name,
use this syntax:

orb.string to object ("iiop://0:0:user name:password/Package/Component")) ;

Connecting to third-
party CORBA servers

152

You can retrieve the system user name and password with these methods in
class com.sybase.CORBA.ORB, which both return strings:

e getSystemUser() returnsthe system user name.
e getSystemPassword() returns the system password.

When called from components, string_to_object returns an instance running on
the same server if the component islocally installed; otherwise, it attemptsto
resolve a remote instance using the naming server.

Your component may need to invoke methods on a component hosted by
another vendor’s CORBA server-side ORB. Sybase recommends that Java
components use the EA Server client-side ORB for al I10OP connections made
from EAServer components. See “Connecting to third-party ORBs using the
EAServer ORB” on page 180 for more information.

EAServer

CHAPTER 12 Developing CORBA/Java Components

Manage database connections

If your Java methods connect to remote data servers, you should use
EAServer’s connection caching feature to improve performance. See the
reference pages for the com.sybase.jaguar.jcm classes for more information.

Note EAServer’'stransactional model works only with connections obtained
from the EA Server Connection Manager. Connections that you open yoursel f
will not be able to participate in EAServer transactions.

Return result sets

Using the JDBC API, a Java component can retrieve result sets from a
database. Using classes in the com.sybase.jaguar.sgl package, Java
components can also send these result setsto the caller. A Java component can
combine the data from several result sets retrieved from databases and send
that data as a single result set to a Javaclient. A Java component can also
forward the original result set retrieved from a database.

Java components send results sets with the interfacesin the
com.sybase.jaguar.sql package:

¢ Methodsin the JServerResultSetMetaData interface define the format of
rowsin aresult set.

¢ Methodsin the JServerResultSet interface define column values for rows
in aresult set and send the rows to the client.

The JContext class contains static factory methods to return objects that
implement these interfaces.

Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference
contains reference pages for all classes and interfaces.

You cannot send aresult set unlessthe | DL definition of the component method
returns TabularResults::ResultSet or TabularResults::ResultSets. However, you
can gtill use the JServerResultSetMetaData and JServerResultSet interfaces to
implicitly return results. Just return null as the method’s return value.
Alternatively, you can construct the equivalent Java datatypes for the IDL
TabularResults::ResultSet and TabularResults::ResultSets types. Call the
getResultSet method in the class com.sybase.CORBA.jdbc11.IDL to convert a
java.sgl.ResultSet instance into a TabularResults.ResultSet instance that can be
returned by the method.

CORBA Components Guide 153

Advanced techniques

Forwarding a ResultSet object

You can use the steps below to forward results from a JDBC query directly to
the client:

1 Query the remote server. Use java.sgl.Statement or one of its extensions;
the appropriate method depends on the query being sent.

2 Handlethe results of the query. For each ResultSet returned by the query,
call JContext.forwardResultSet(ResultSet) to forward the rowsto the client.

3 If your component uses IDL/Java datatypes, return null as the method's
return value.

Instead of calling JContext.forwardResultSet(ResultSet), Java components that
use IDL/Java datatypes can call the IDL.getResultSet(java.sql.ResultSet)
method to convert ResultSet object to TabularResults.ResultSet object, then
return the converted object as the method's return value.

Sending results row-by-row

Usethe sequence of callsbel ow to define and send aresult set row-by-row. Use
these calls when building aresult set from a non-JDBC source, or when the
java.sgl.ResultSet returned by a database query cannot be sent as-is to the
client.

JServerResultSet sequence of calls

Here are the calls to construct aresult set and send it row-by-row:

1 Create aJServerResultSetMetaData object by calling
JContext.createServerResultSetMetaData().

2 Cadl the JServerResultSetMetaData methods to define the format of the
result rows, as follows:

a JServerResultSetMetaData.setColumnCount(int) to specify the number
of columnsin each row.

b For each column, call JServerResultSetMetaData.setColumnType(int,
int) to specify the datatype.

¢ For columnsthat have avariable length datatype, call
JServerResultSetMetaData.setColumnDisplaySize(int, int) to specify
the maximum length for column values.

d Cadll other JServerResultSetMetaData methods to specify other
column attributes as needed.

154 EAServer

CHAPTER 12 Developing CORBA/Java Components

3 CreateaJServerResultSet object by calling
JContext.createServerResultSet().

4 Cal JserverResultSet.next() to position the result set’s cursor at the first
row.

5 For each row to be sent:

« For each column, call the appropriate
JServerResultSet.set<Object>(int, <Object>) method to set the column
value.

* Call JserverResultSet.next() to send the row.

6 If sending asingleresult set or if using JDBC types, call
JServerResultSet.done() to indicate that all rows have been sent in the
current result set.

7 If your component uses IDL/Java datatypes, use the
com.sybase.CORBA.IdIResultSet class to convert the result set to a
TabularResults.ResultSet instance. See Chapter 1, “ Java Classes and
Interfaces,” in the EAServer API Reference for details.

You can repeat steps 4 to 6 to send or create another result set that hasthe same
metadata using the same JServerResultSet object. Repeat steps 1 to 6 to send
or create another result set that requires different metadata.

You cannot return multiple result sets unless the method's IDL definition
returns TabularResults::ResultSets.

JServerResultSet example

The example method below sends three rows with three columns each. Note
that exceptions are not caught in the example; the server logs any uncaught
exceptions that are thrown in a method call:

public void send rows (IntegerHolder ih) throws

{

JException, SQLException

// Declare the constant ’'pi’
final double pi = 3.1414; // Create the metadata object.
JServerResultSetMetaData

jsrsmd = JContext.createServerResultSetMetaData() ;

// There will be 3 columns in the result set.
jsrsmd.setColumnCount (3) ;

CORBA Components Guide 155

Advanced techniques

// The

jsrsmd.
jsrsmd.

// The

jsrsmd.
jsrsmd.

// The

jsrsmd.
jsrsmd.

first column has datatype INTEGER and name ‘one’.
setColumnType (1, Types.INTEGER) ;
setColumnName (1, "one") ;

second column has datatype VARCHAR and name ’'two’.

setColumnType (2, Types.VARCHAR) ;
setColumnName (2, "two") ;

third column has datatype DOUBLE and name ’three’.

setColumnType (3, Types.DOUBLE) ;
setColumnName (3, "three");

// Create the result set object.

JServerResultSet jsrs = JContext.createServerResultSet (jsrsmd) ;

// Position the cursor.
jsrs.next () ;

// First row values: 1, "first", pi
jsrs.setInt (1, 1);
jsrs.setString (2, "first");

jsrs.setDouble (3, pi);

// Send the row.
jsrs.next () ;

// Second row values: 2, "second", pi * 2
jsrs.setInt (1, 2);
jsrs.setString (2, "second") ;

jsrs.setDouble (3, pi * 2.0);

// Send the row.
jsrs.next () ;

// Third row values: 3, "third", pi * 3
jsrs.setInt (1, 3);

jsrs.setString (2, "third");
jsrs.setDouble (3, pi * 3.0);

// Send the row.
jsrs.next () ;

// Demarcate the end of the result set by

jsrs.done () ;

156

calling done() .

EAServer

CHAPTER 12 Developing CORBA/Java Components

The fragment below shows client-side code to call the stub and print the rows
to the console.

try {
ih = new IntegerHolder() ;
comp.send_rows (ih) ;

ResultSet rs = comp.getResultSet () ;
ResultSetMetaData rsmd = rs.getMetaData() ;

StringBuffer row = new StringBuffer("");
for (int i = 1; 1 <= rsmd.getColumnCount (); i++)
{
row.append (rsmd.getColumnName (1)) ;
if (i < rsmd.getColumnCount ())
row.append ("\t") ;

}

System.out.println (row) ;

while (rs.next ())
{
row = new StringBuffer("");
for (int i = 1; i <= rsmd.getColumnCount (); i++)
{
row.append (rs.getString (i)) ;
if (1 < rsmd.getColumnCount ())
row.append ("\t") ;
!

System.out.println (row) ;

}

// Discard any remaining results.
while (comp.getMoreResults())

{
}
}

catch (Exception e) {
System.out.println ("Exception: " + e.getMessage());
e.printStackTrace() ;

}

rs = comp.getResultSet () ;

CORBA Components Guide 157

Advanced techniques

Access SSL client certificates

Set transactional

158

Clients can connect to a secure |1 OP port using an SSL client certificate. You
can issue intercomponent calls to the built-in CtsSecurity/Sessionlnfo
component to retrieve the client certificate data, including:

e Thedistinguished SSL user name

e Theclient certificate fingerprint (MD5 message digest)
* Theclient certificate data

e Thechain of issuing certificates

This component implements CtsSecurity::Sessioninfo IDL interface. HTML
documentation is available for the interface in the html/ir subdirectory of your
EAServer installation. You can view it by loading the main EAServer HTML
page, then clicking the “ Interface Repository” link.

State

The transactional state of a component instance determines whether a
transactional component’s database updates are committed or rolled back.

To set transactional state, you must use the InstanceContext object retrieved by
calling Jaguar.getinstanceContext() in each method that setstransactional state
(do not save the object across method invocations, because it will not be valid
if the component instance has been deactivated and reactivated). See the
EAServer API Reference Manual for information on this method.

To set transaction state, choose the method that reflects the state of the work
that the component is contributing to the transaction, as follows:

» If thework is complete and without error, call setComplete.

» Cadll setRollbackOnly if thework cannot be completed. Alternatively, throw
the exception org.omg.CORBA.TRANSACTION_ROLLEDBACK. If the
error indicates an internal inconsistency in the application, log a
description of the error to help debug the problem as described in “ Add
error handling code” on page 150.

EAServer

CHAPTER 12 Developing CORBA/Java Components

Transaction control with the ServerBean control interface
If you use the deprecated control interface JaguarEJB::ServerBean and Auto

demarcation/deactivation option is disabled in the Transactions tab in the
Transactions properties for your component, the transaction state specified in
the method determineswhether theinstance is deactivated or remains bound to
the client.

Retrieve user-defined component properties

You can add user defined properties for your components using the Advanced
tab in the Component Properties page in the Management Console. To access
these properties at run time, use the Jaguar::Repository APl as shown in the
example below. For details on this API, see the generated reference
documentation in the html/ir subdirectory of your installation. The function
below returns an array of Jaguar::Property instances that contain the properties
defined for the currently executing component:

public static Property[] getMyComponentProps () {

Repository theRep;

Property[] myProps;

try {
java.util.Properties orbProps = new java.util.Properties() ;
orbProps.put ("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB") ;
ORB theOrb = ORB.init ((java.lang.String[])null, orbProps) ;
theRep = RepositoryHelper.narrow
(theOrb.string to object ("Jaguar/Repository")) ;
} catch (Exception e) {

System.out.println("Exception instantiating Repository component:"

+ "\n" + e);
return null;
}

try {
String myPackage = JContext.getPackageName () ;

String myComponent = myPackage + "/" + JContext.getComponentName () ;

myProps = theRep.lookup ("Component", myComponent) ;
} catch (Exception e) {
System.out.println ("Exception getting component properties:"
+ n\nu + e)[.
return null;

}

return myProps;

CORBA Components Guide

159

Generating EJB wrapper components

Generating EJB wrapper components

EA Server generates EJB wrapper components to host CORBA componentsin
EA Server. Before generating the EJB wrapper components, compile your
component implementation to a code base directory that isin the application
server’s default class path, such as one of the following:

» Thejava/classes subdirectory
» The genfiles/java/classes subdirectory

Run the jaguar-compiler command on the CORBA packageto generatethe EJB
wrapper components. You can run the jaguar-compiler command several ways:

» From the Management Console as described in “ Refreshing CORBA
packages in the Management Console” on page 43.

» Using a configuration script, as described in “Managing CORBA
packages with configuration scripts’ on page 43.

» Using the jaguar-compiler command-line tool, as described in Chapter 12,
“Command Line Tools,” in the System Administration Guide.

Refreshing Java components

160

You can refresh a component’s implementation classes while the server is
running. You do not need to shut down and restart the server. Classes |loaded
from a different code base directory will not be reloaded. EA Server only

rel oads the component’s implementation class, the skeleton class, and any
classes configured in the Java class |oader used by the component—see
Chapter 10, “Configuring Java Class L oaders,” in the System Administration
Guide.

EAServer

CHAPTER 13

Procedure for creating CORBA/Java clients

CORBA Components Guide

Developing CORBA/Java Clients

Topic Page
Procedure for creating CORBA/Java clients 161
Generating Java stubs 162
Instantiating proxy instances 162
Executing component methods 175
Seriaizing component instance references 175
Handling exceptions 176
Deploying and running Java clients 178
Using other CORBA ORB implementations 179

A CORBA/Java client establishes a session with the application server,
instantiates stub (or proxy) instances for EAServer components, and
executes component methods by calling like-named methods on the stub

instance.

1 Generate stub classes.

These classes act as a proxy object for a component instance that is
executing on the server; thereis one stub for each IDL interface that
the component implements. “Generating Java stubs’ on page 162

describes how to generate stubs.

2 Implement code to instantiate proxy objects.

Your program must obtain proxy objectsfor the EA Server component
and narrow them to the stub interface that you intend to use. See

“Instantiating proxy instances’” on page 162.

3 Implement code that invokes the component methods.

161

Generating Java stubs

You execute the component’s methods by calling like-named methods on
the stub class and passing the necessary input data. Each stub method has
areturn value and parameter list that is mapped from the corresponding
IDL operation definition. “ Executing component methods”’ on page 175
describes return type and parameter type mappings in detail.

4 If desired, you can serialize the component instance reference as an IOR
string, then deserialize the reference later.

See “ Serializing component instance references’ on page 175 for details.

Each of these steps requires appropriate exception handling. “Handling
exceptions’ on page 176 summarizes CORBA exceptions.

Generating Java stubs

Stub classes allow you to instantiate local Java objects that act as proxies for
an instance of the EA Server component. CORBA /Java clients require two
types of stub files:

» Javainterfacesfor types defined in CORBA IDL. To create these stubs,
see “ Generate Java interface filesfor IDL types’ on page 149.

» Implementation classes for the component proxy interfaces. If you run
clientsin afull JDK installation (rather than a JRE), EAServer generates
these stubs on demand. You can manually generate them with the stub-
compiler command. For details, see Chapter 12, “Command Line Tools,”
in the System Administration Guide.

If you are using another ORB implementation class to connect to EAServer,
you must export the IDL interface definitions, then use the vendor’s IDL
compiler to generate stubs. See “ Connecting to EA Server with athird-party
client ORB” on page 179 for more information.

Instantiating proxy instances

After you have compiled stub classes, you can implement code that uses the
stubsto interact with EA Server components.

162 EAServer

CHAPTER 13 Developing CORBA/Java Clients

Your program must obtain proxy objects for the EA Server component and
narrow them to the stub interface that you intend to use by following the steps

below:
Step | What it does Detailed explanation
1 Initialize the CORBA ORB classes. “Configuring and initializing the
ORB runtime” on page 163

2 Use an IOR string and the “Creating a Manager instance’
ORB.string_to_object method to obtain | on page 168
the Manager instance for the server.

3 Use the Manager instance to create a “Creating sessions’ on page 171
Session.

4 Call the Session’s lookup method to “Creating stub instances’ on
create proxy objects, then narrow them | page 172
to an interface that the component
supports. The lookup method uses the
EA Server name service to resolve the
requested name to an installed
component.

5 Call the stub methods to remotely “Executing component
invoke component methods. methods’ on page 175

Java exceptions can occur at any step. “Handling exceptions’ on page 176
describes common exceptions and their cause.

Other patterns for proxy instantiation
Some patterns for proxy instantiation used in clients written for earlier

EAServer releases are not compatible with EA Server 6.0. In particular, clients
that use the CosNaming API or SessionManager::Factory::create methods that
take parameters should be modified to use the implementation pattern
described here. For more information, see “Using the CosNaming interface”
on page 121.

Configuring and initializing the ORB runtime

ORB properties define the class name of the ORB driver that will be used, and
configure settings required by the driver. Properties can be set externally in
HTML parameters for a Java applet or in command-line arguments for a Java
application. You can also set them directly in your source code in both applets
and applications. Table 13-1 describes the EAServer ORB properties.

CORBA Components Guide 163

Instantiating proxy instances

Table 13-1: EAServer Java ORB properties

Property

Specifies

org.omg.CORBA.ORBClass

The class that implements interface org.omg.ORB. Specify
com.sybase.CORBA.ORB toindicatethe EAServer ORB driver class. There
is no default for this property.

com.sybase.CORBA.
ConnectionTimeout

For applications that run in a cluster, sets atime limit to receive a server
response before the connection fails over to try another server in the cluster.
Setting this property ensuresthat failover happens without an unreasonable
delay. Specify the timeout period in seconds. The default of 0 indicates no
time limit.

com.sybase.CORBA.forceSSL

If set to true when using a areverse proxy server, forces use of SSL for the
connection to the reverse proxy. Set this property to trueif the connection to
the reverse proxy must use SSL (HTTPS) tunnelling, but the connection
from the proxy to the server does not use SSL tunnelling. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information on
connecting to EA Server through proxy servers.

com.sybase.CORBA.GClnterval

Specifies how often the ORB forces deallocation (Java garbage collection)
of unused classreferences. Though this property isset onanindividual ORB
instance, it affectsall ORB instances. The default is 30 seconds. The default
is appropriate unlessyou have set an idle connection timeout of lessthan 30
seconds. In that case, you should specify alower value for the garbage
collection interval, since connections are only closed while performing
garbage collection. In other words, the effective idle connection timeout
ranges from the idle connection timeout setting to the smallest integral
multiple of the garbage collection interval.

com.sybase.CORBA.http

Specify whether the ORB should use HTTP tunnelling without trying to use
plain [1OPfirst. The default isfalse. With the default setting, the ORB tries
to open a connection using plain I1OP, and switchesto HTTP tunnelling if
the plain 11OP connection is refused. The default is appropriate when some
users connect through firewallsthat require tunnelling and othersdo not; the
same application can serve both types. If you know tunnelling is required,
set this property to true. This setting eliminates a slight bit of overhead that
isincurred by trying plain 110OP connections before tunnelling is used.

com.sybase.CORBA.
HttpExtraHeader

164

An optional setting to specify what extrainformation is appended to the
header of each HT TP packet when connecting through a Web proxy. See
Chapter 9, “Deploying Applications Around Proxies and Firewalls,” in the
EAServer Security Administration and Programming Guide for more
information.

EAServer

CHAPTER 13 Developing CORBA/Java Clients

Property Specifies
com.sybase.CORBA .http. When set to true, specifies that HTTP tunnelling must be compatible with
jaguar35Compatible servers running EAServer version 3.5 or older installations. The default is

fase.

Compatibility with version 3.5 or older servers)
The default tunnelling model isincompatiblewith serversolder than version

3.6. If you do not set the com.sybase.CORBA .http.jaguar35Compatible
property to true, clients using the EAServer 3.6 or later Java client ORB
cannot connect to older-version servers using HTTP tunnelling. Note that
HTTP tunnelling may happen automatically when clients connect to the
server through firewalls.

com.sybase.CORBA.
HttpUsePost

When using HTTP tunnelling, specifies the HTTP request type used. A
value of true indicates that POST requests are to be used. A value of false
(the default) specifies that GET requests are to be used.

Some Web browsers cannot handle the long URL s generated when using
HTTP tunnelling with GET requests. Setting this property to true can work
around the issue.

com.sybase.CORBA.
IdleConnectionTimeout

Specifiesthetime, in seconds, that aconnectionisallowedto sit idle. When
the timeout expires, the ORB closesthe connection. The default is O, which
specifies that connections can never timeout. The connection timeout does
not affect the life of proxy instance references; the ORB may close and
reopen connections transparently between proxy method calls. Specifying a
finite timeout for your client applications can improve server performance.
If many instances of the client run simultaneousdly, afinite client connection
timeout limits the number of server connections that are devoted to idle
clients. A finite timeout also allows rebalancing of server load in an
application that uses a cluster of servers.

If you specify an idle connection timeout, make sure the garbage collection
interval (com.sybase.CORBA.GClInterval) is set to an equal or lesser value.

com.sybase.CORBA.isApplet

CORBA Components Guide

Specifieswhether the client isaJavaapplet. Thedefaultisfalse unlessthe
ORB isinitialized by calling the Orb.init method that takes a
java.applet.Applet instance as a parameter. If you call another version of init
from a Javaapplet, you must set this property to true in order to connect to
EAServer using SSL.

165

Instantiating proxy instances

Property

Specifies

com.sybase.CORBA.local

For server-side component use only. Specifies whether the ORB reference
can be used to issue intercomponent calls in user-spawned threads. The
defaultistrue, which meansthat intercomponent callsare madein memory
and must beissued from athread spawned by EA Server. Set this property to
false if your component makesintercomponent calls from user-spawned
threads.

com.sybase.CORBA.local property is deprecated
Thisproperty isnot needed when calling components from threads spawned

by the the Thread Manager. The Thread Manager is the recommended way
to spawn threads in Java components. See Chapter 5, “Using the Thread
Manager,” in the Automated Configuration Guide for more information.

com.sybase.CORBA.ProxyHost

Specifiesthe machine name or the | P address of areverse-proxy server. See
Chapter 9, “Deploying Applications Around Proxies and Firewalls,” in the
EAServer Security Administration and Programming Guide for more
information.

com.sybase.CORBA.ProxyPort

Specifies the port number of areverse-proxy server. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.

com.sybase.CORBA.RetryCount

Specify the number of times to retry when the initial attempt to connect to
the server fails. The default is 5.

com.sybase.CORBA.RetryDelay

Specify the delay, in milliseconds, between retry attempts when theinitial
attempt to connect to the server fails. The default is 2000.

com.sybase.CORBA.
socketReuseLimit

Specify the number of times that anetwork connection may be reused to call
methods from one server. The default is 0, which indicates no limit. The
defaultisideal for short-lived clients. The default may not be appropriate for
along-running client program that calls many methods from serversin a
cluster. If sockets are reused indefinitely, the client may build an affinity for
serversthat it has already connected to rather than randomly distributing its
server-side processing load among all the serversin the cluster. In these
cases, the property should be tuned to best balance client performance
against cluster load distribution. In Sybase testing, settings between 10 and
30 proved to be a good starting point. If the reuse limit istoo low, client
performance degrades.

com.sybase.CORBA.
WebProxyHost

166

The host name or | P address of an HTTP proxy server that supports generic
Web tunnelling, sometimes called connect-based tunnelling. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.
Thereis no default for this property, and you must specify both the host
name and port number properties.

EAServer

CHAPTER 13 Developing CORBA/Java Clients

Property

Specifies

com.sybase.CORBA.

WebProxyPort

When generic Web tunnelling is enabled by setting
com.sybase.CORBA.WebProxyHost, this property specifiesthe port number
at which the HTTP proxy server accepts connections. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.
Thereisno default for this property, and you must specify both the host
name and port properties.

com.sybase.CORBA.

useJSSE

Use the Java Secure Sockets Extension (JSSE) classes for secure HTTP
tunnelled (HTTPS protocol) connections. JSSE provides an aternative to
the built-in SSL implementati ons when secure connections are needed from
an applet running in a Web browser. Additional configuration may be
required to use this option. See Chapter 4, “Using SSL in Java Clients,” in
the EAServer Security Administration and Programming Guide for more
information.

Example: ORB Initialization in an Applet ORB initialization for a Java
applet is demonstrated in the example below. This code constructs a
java.util.Properties object and setsthe required properties. The applet reference
and the Properties object are passed to the org.omg.CORBA.ORB.init method.

import java.applet.*;
import org.omg.CORBA.*;
public class myApp extends Applet {

public void init () {

java.util.Properties props
= new java.utils.Properties();
props.put ("org.omg.CORBA.ORBClass",
"com.sybase.CORBA.ORB") ;
ORB orb = ORB.init (this, props);

Rather than property values, you can pass propertiesto the ORB as parameters
inthe HTML APPLET tag that |oads the applet, as in the example below:

<APPLET

codebase=.. ..

<param name="org.omg.CORBA.ORBClass"
value="com.sybase.CORBA.ORB" >

</APPLET>

CORBA Components Guide 167

Instantiating proxy instances

java yourclass -org.

A property setting that is passed as an applet parameter supersedes any setting
that is specified in the java.utils.Properties parameter to the ORB.init method. If
you want to ensure that hard-coded property values are used, pass the Applet
parameter as null.

Example: ORB Initialization in an Application ORB initiadization for a
Javaapplication is demonstrated in the example below. This code constructs a
java.util.Properties object and sets the required properties. The command-line
parameters are passed to the org.omg.CORBA.ORB.init method.

import java.util.*;
public class myApp extends Object

public static void main(Stringl[] args)
throws Exception

Properties props = new Properties() ;
props.put ("org.omg.CORBA.ORBClass",
"com.sybase.CORBA.ORB") ;
ORB orb = ORB.init (args, props);

Rather than hard-coding the property values, you can passthem to the ORB as
command-line parameters, asin the example below:

omg.CORBA.ORBClass com.sybase.CORBA.ORB

Properties that are specified as command-line parameters supersede values
specified in the java.utils.Properties parameter to the ORB.init method. If you
want to ensure that hard-coded property values are used, pass the String|[]
parameter to init as null.

Creating a Manager instance

168

The EAServer authentication service implements the
SessionManager::Manager interface. When using CORBA naming services,
you can resolve this abject by using the special name AuthenticationService.
Without using naming services, you must supply a CORBA Interoperable
Object Reference (IOR), which isatext string that describes how to connect to
the server hosting the object.

EAServer

CHAPTER 13 Developing CORBA/Java Clients

Standard CORBA |OR strings are hex-encoded and not human-readable.

EA Server supports both standard format IORs and a URL form that is human-
readable. For information on standard-format IORs, see “ Instantiating
components using a third-party ORB” on page 180.

URL format IORs TheURL string format offersthe benefits of being human-
readable. Also, for Javaapplets, you can create URL stringsthat connect to the
applet’sdownload host by default; thisfeature simplifies depl oyment sinceyou
do not need to change hard-coded | ORs when you move your application to
another server. IOR stringsin URL format must have the form:

protocol://host:iiop port
where
e protocol isiiops if connecting to asecure port and iiop otherwise.

* hostisthe EAServer host address or machine name. In an applet, you can
omit the host nameto specify that the connection must go to the host from
which the appl et was downloaded.

e iiop_portisthe port number for 11OP requests. Your server may accept
I1OP connections at severa different ports, each of which usesadiffferent
security profile. For example, the default server configuration provides
listeners at these ports:

e 2000 accepts unsecure | lOP connections.

e 2001 accepts I1OPS connections with encryption and server-side
authentication.

e 2002 accepts I1OPS connections with encryption and mutual (client
and server) authentication. Mutual authentication requires that your
end users have valid digital certificates, and that those certificatesare
issued by a certificate authority that is trusted by the server.

The EAServer Security Administration and Programming Guide describes
how to configure listeners and security profiles.

Anexample URL-format IORiSiiop://machina: 2000, Which specifiesthat
the server runs on the machine named “machina” and listensfor 11OP requests
on port 2000. In an applet, you can omit the host name to specify that the
connection must go to the host from which the applet was downloaded. For
example, iiop://:2000 specifies aconnection to port 2000 on the applet’s
host.

CORBA Components Guide 169

Instantiating proxy instances

Standard format IORs Use the standard IOR format if you must have
portability to other standard Java ORB implementations. Your server generates
IOR strings embedded within text files each time it starts. Several filesare
generated for each I1OP listener. There arefiles formatted asan HTML param
tag; these can be used to compose HTML applet sections. There are also files
that contain the IOR by itself. Additionally, there are different files generated
for compatibility with different I1OP protocol versions.

For each listener, the server prints a hex-encoded IOR string with standard
encoding to the following filesin the EA Server html subdirectory:

» <listener><iiop-version>.ior — Contains the IOR string by itself,
followed by anewline.

e <listener>_<iiop-version>_param.ior — Contains the IOR as part of an
HTML param definition that can be inserted into an applet section.

where
o <listener> isthe name of the listener.

e <iiop-version> isthe version of IIOP and can be either 10 (which
represents [1OP version 1.0) or 11 (which represents [IOP version 1.1).
Usethefile that matchesthe 11OP version that is supported by your client
ORB.

For example, a server will generate the following files for alistener named
iiops2. All files are created in the html subdirectory:

e iiops2_10.ior
e iiops2 1l.ior
e iiops2_10 param.ior
e iiops2_11 param.ior

170 EAServer

CHAPTER 13 Developing CORBA/Java Clients

Your applet can retrieve the IOR if you supply it in applet parameters. In this
case, you can copy the contents of one of the param format filesto the HTML
file. Alternatively, you can add code that connectsto EAServer viaHTTP and
downloads one of the generated .ior files.

Note If you change a server’'s host name or port number, you must edit or
replace IOR values that contain the host name, including hex-format IORs
copied from the server-generated .ior files. When using the EAServer ORB,
use the URL string format and omit the host name. When using another
vendor’s ORB, you can download the contents of a generated .ior file, or you
can store server IORs in the ORB vendor’s name server.

Creating the Manager instance Oncethe applet or application has obtained
the server’s IOR string or an equivalent 1OP URL string, it callsthe
ORB.string_to_object method to convert the IOR string into a
SessionManager::Manager instance, as shown in the following example:

import org.omg.CORBA.*;
import java.awt.*;
import SessionManager.*;

public class myApplet extends Applet
String ior;
ORB orb;
. deleted ORB.init () code and code that
retrieves IOR from applet parameters
Manager manager = ManagerHelper.narrow (
orb.string to object(ior));

Creating sessions

The SessionManager.Session interface represents an authenticated session
between the client application and EA Server. The Manager.createSession
method accepts a user name and password and returns a Session object, as
shown in the example below:

import org.omg.CORBA.*;
import SessionManager.*;
import java.awt.*;

public class myApplet extends Applet
Manager manager;

CORBA Components Guide 171

Instantiating proxy instances

deleted code that created Manager instance

try {
Session session = manager.createSession (user,

password) ;
!

catch (org.omg.CORBA.COMM FAILURE cf)
// The server is likely down or has run
// out of connections. You can retry the
// connection if desired.
report the error

}

catch (org.omg.CORBA.NO PERMISSION np)

{

// Tell the user they are not authorized

}

catch (org.omg.CORBA.SystemException se)

{
// Catch-all clause for any CORBA system
// exception that was not explicitly caught
// above. Report the error but don’t bother
// retrying.

Creating stub instances

172

A Javastub implementsthe Javaversion for one of the EA Server component’s
IDL interfaces. Call the Session.lookup method to obtain afactory for stub
instances. The signature of Session.lookup is:

SessionManager.Factory lookup (String name)

Session.lookup takes a string that specifies the name of the component to
instantiate. A component’sdefault nameisthe EA Server package nameand the
component name, separated by a dash asin calculator/calc. However, a
different name can be specified with the component’s
com.sybase.jaguar.component.naming property. For example, you can specify a
logical name, such as USA/MyCompany/FinanceServer/Payroll. For more
information on configuring the naming service, see Chapter 5, “Naming
Services,” inthe EAServer System Administration Guide.

EAServer

CHAPTER 13 Developing CORBA/Java Clients

Session.lookup returnsafactory for component proxies. Call the Factory.create
method to obtain proxies for the component. This method returns a
org.omg.CORBA.Object reference. You must call the narrow method in the IDL
interface’s generated helper classto convert thisto an instance of the stub class
for the component’s IDL interface. If the component instance does not
implement the requested interface, the narrow method returns a null object
reference.

Session.lookup can throw these CORBA standard exceptions:

« NO_PERMISSION Theuser is not authorized to instantiate the
reguested component.

e« OBJECT_NOT_EXIST The server component cannot be instantiated.
Verify that:

* The specified component isinstalled in the specified package.
* The specified packageislisted in the server’s Start Modul es property.

e TheJavaclass, Windows DLL, or UNIX shared library that
implements the component is available.

The code to call Session.lookup and Factory.create |0oks like this:

import org.omg.CORBA. *;

import SessionManager.*;

import java.awt.*;

import Calculator.*; // Package for Java stubs
// for this example, matches
// IDL module name for the
// component’s interface.

public class myApplet extends Applet
Session session;

. deleted code that created Session instance

// In this example, the component is named calc
// and is installed in the EAServer package
// calculator. calcHelper.narrow() verifies that
// the returned object is of the appropriate
// type, then returns a Calculator.Calc instance

try {
Factory fact =

CORBA Components Guide 173

Instantiating proxy instances

174

FactoryHelper.narrow (
session.lookup ("calculator/calc")) ;
Calc ¢ =
CalcHelper.narrow (fact.create()) ;
}

catch (org.omg.CORBA.OBJECT NOT EXIST one)
// Tell the user to contact the server
// administrator
report the error

catch (org.omg.CORBA.NO PERMISSION np)
{
// Tell the user they are not authorized
report the error

catch (org.omg.CORBA.SystemException se)
{
// Catch-all clause for any CORBA system
// exception that was not explicitly caught
// above.
report the error

Calling Session.lookup in server code
When called from server code, Session.lookup resolves the component name

by calling the name service, which gives preference to alocal component
instance if the component isinstalled on the same server. However, the use of
alocally installed component is not guaranteed. To ensure that alocal
implementation is used, specify the name as 1ocal : package/ component,
where packageisthe package name and component i sthe component name, for
example, local:CtsSecurity/SessionInfo. When you specify thelocal:
prefix, thelookup call bypassesthe name service and returnsalocal instanceif
the component is installed in the same server. The call failsif the specified
component is not installed in the same server..

EAServer

CHAPTER 13 Developing CORBA/Java Clients

Executing component methods

After instantiating the stub class, use the stub class instance to invoke the
component’s methods. Each method in the stub interface correspondsto a
method in the component interface that you have narrowed the proxy object to.
See “Java IDL datatype mappings’ on page 142 for descriptions of the type

mappings.

Serializing component instance references

You can call the ORB.object_to_string() and ORB.string_to_object() methods to
serialize and deserialize proxy object references. Assuming that the proxy
interface is Payroll, this call serializes aproxy component reference:

Payroll payroll;
. deleted code that instantiates payroll ...

String payroll ior = orb.object to string(payroll);

This call deserializes the reference:

Payroll payroll = PayrollHelper.narrow (
orb.string to object (payroll ior));

Thefollowing restrictions apply when serializing and deserializing component
proxy references:

e Unlessthe proxy isfor an Enterprise Java EntityBean, the serialized
reference remains valid only as long as the server has not been restarted
since the time when proxy was first instantiated. When deserializing, the
proxy instance will connect back to the same host and port as was used to
create the original instance. An EntityBean proxy can be deserialized at
any time, as long as the EntityBean is still installed on the original server.

CORBA Components Guide 175

Handling exceptions

If the original proxy instance was created by connecting to a secure port
with aclient-side SSL certificate, the proxy must be deserialized in a
session that connects using the same client certificate and equal or greater
security constraints. For example, if you create an object with session that
uses 128-hit SSL encryption, serialize the object, then later try to
deserialize the object using during a session that uses 40-bit SSL
encryption, the ORB will throw the CORBA::NO_PERMISSION exception.
Accesswill be allowed when objects created using |ess secure session are
later accessed using a more secure Session.

Handling exceptions

The client-side ORB throws two kinds of exceptions:

CORBA system
exceptions

176

CORBA system exceptions—these exceptions are defined in the CORBA
specification.

User-defined exceptions — these exceptions are defined in the
component’s IDL definition.

The CORBA specification defines the list of standard system exceptions. In
Java, all CORBA system exceptions extend org.omg.CORBA.SystemException.
System exceptions are unchecked exceptions (they extend

java.lang.RuntimeException). The Java compiler does not requirethat you catch

CORBA system exceptions. However, some exceptions can occur in awell-
behaved program. For example, the Session.loookup call throws a
NO_PERMISSION exception when you request a component instance and the
user lacks permission to instantiate that component. You may want to trap the
exceptions shown in the code fragment below:

try

{

// invoke method (s)

}

catch (org.omg.CORBA.COMM FAILURE cf)

{

// If this occurs when instantiating a Manager

// instance, the server is likely down or has run
// out of connections. You can retry the connection
// 1f desired.

// If this occurs after a method call, you

EAServer

CHAPTER 13 Developing CORBA/Java Clients

// can retry the call (or the transaction call
// sequence for a stateful component) .

}

catch (org.omg.CORBA.TRANSACTION ROLLEDBACK tr)

{
// A component on the server aborted the EAServer
// transaction, or the transaction timed out.
// Retry the method call(s) if desired.

}

catch (org.omg.CORBA.OBJECT NOT EXIST one)

{
// Possibly try to create another instance. Check
// that the package and component are installed
// on the server.
// Received when trying to instantiate a component
// that does not exist. Also received when invoking
// a method if the object reference has expired
// (this can happen if the component is stateful
// and is configured with a finite Instance Timeout
// property). Create another instance if desired.

}

catch (org.omg.CORBA.NO PERMISSSION np)

{

// Tell the user they are not authorized

H

catch (org.omg.CORBA.SystemException se)

{
// Catch-all clause for any CORBA system exception
// that was not explicitly caught above.
// Report the error but don’t bother retrying.

Note Not all of the possible system exceptions are shown in the example. See
CORBA/IIOP 2.3 Specification for alist of al the possible exceptions.

User-defined User-defined exceptions are defined in the component’s IDL definition. For

exceptions example, you might define OverdrawnException to be thrown by methods that
withdraw money from a bank account. In Java, all user-defined exceptions
extend org.omg.CORBA.UserException.

CORBA Components Guide 177

Deploying and running Java clients

In Java, IDL user-defined exceptions are checked exceptions; if the IDL
definition of amethod containsaraises clause, the equivalent Java stub method
will haveathrows clausethat liststhe equival ent Java exceptions. For example,
consider the IDL definition below:

module MyModule
exception MyException

{

string reason;

Vi

interface MyIntf
boolean throwException
(in boolean yes no)
raises (MyException) ;
Vi
Vi

The equivalent Java throwException method is:

boolean throwException (boolean yes no)
throws MyModule.MyException;

Deploying and running Java clients
Run the Java client inaJDK 1.4 or |ater Javainterpreter.

At runtime, thefollowing EAServer JAR filesmust bein the CLASSPATH for
Java applications and included with the class files for applets:

e lib/eas-client-15.jar and lib/eas-server-15.jar torunin Java 1.5
» lib/eas-client-14.jar and lib/eas-server-14.jar torunin Javal.4

The client runtime writes errorsto the consol e by default. In Java applications,
you can modify thisbehavior by specifying the profile name asthe Javasystem
property djc.logFile. For example:

java -Ddjc.rmiTrace=true "-Ddjc.logFile=%$DJC_HOME%\logs\rmiClientTrace.log”

For more information, see “ Configuring system logging” in Chapter 3,
“Creating and Configuring Servers,” in the System Administration Guide.

178 EAServer

CHAPTER 13 Developing CORBA/Java Clients

Using other CORBA ORB implementations

EAServer’s I1OP implementation allows you to use any CORBA-compliant
client ORB to invoke EAServer components. You can also use the EA Server
client ORB to execute components that are hosted by another vendor’s server
ORB.

Connecting to EAServer with a third-party client ORB

Generating
compatible Java stubs

In some cases, you may wish to use another vendor’s ORB in your client
applications. For example, you may have an existing installation of the ORB
on client workstations.

Clientsthat use another ORB can use the same code as for the EAServer ORB,
except for the following differences:

e Youmust use stub classes generated by the vendor’s | DL-to-Javacompiler
rather than stubs generated by EA Server.

e Your codeto connect to EA Server and instantiate components may differ.

When executing methods, you may wish to use the EA Server conversion
classes to create and interpret the predefined EA Server datatypes. These
conversion classes, in packages com.sybase.CORBA.jdbc102 and
com.sybase.CORBA jdbc11, are documented in Chapter 1, “ Java Classes and
Interfaces,” in the EAServer API Reference. The classes are compatible with
any Java ORB.

You should generate stubs for your third-party ORB using the IDL-to-Java or
IDL-to-C++ compiler provided by the vendor. Stubs created by EA Server are
not guaranteed to work with another ORB.

Each component’s IDL interfaces are specified in the Component Properties
window, under the General tab. See “CORBA component property
descriptions’ on page 45 for more information. All interfaces are defined in
IDL modulesthat are stored as plain text filesin the EAServer Repository
subdirectory. For example, if the component implements the Module1::11 and
Module2::12 interfaces, you will need to copy the files Modulel.idl and
Module2.idl into aworking directory for generating stubs for your third-party
ORB software. You must also copy any files that are included by these
modules, including those listed in Table 13-2: Predefined EAServer IDL files.

Table 13-2 lists the names of the predefined EAServer IDL modules that are
needed by all client applications.

CORBA Components Guide 179

Using other CORBA ORB implementations

Table 13-2: Predefined EAServer IDL files
Filename Description

SessionManager.idl | Defines interfaces for session-based creation of EA Server
component instances.

BCD.idl Defines the CORBA datatypes for EAServer’s binary and
fixed-point numeric datatypes.

MJD.idl Definesthe CORBA datatypes for EAServer’s date and time
datatypes.

TabularResults.idl Defines the CORBA datatypes that represent result sets
returned by a method invocation.

Warning! When creating stubs for another ORB, do not overwrite the
EA Server Java stubs. Use different package names when creating stubs for
third-party ORBs or create the third-party ORB stubs under a different code

base.
Instantiating EA Server’s naming service cannot be used with other client ORBs, so you
components using a must use the EAServer SessionManager::Manager interface to instantiate

third-party ORB
re-party components from another ORB, as described in “Instantiating proxy

instances’ on page 162. Set the org.omg.CORBA.ORBClass property to the
name of the class provided by your ORB vendor.

Connecting to third-party ORBs using the EAServer ORB

You can use the EA Server client-side ORB to execute components hosted by
another vendor’s server-side ORB, as long as the server-side ORB accepts
I1OP connections and the required interfaces are defined in standard CORBA
IDL.

[dimplement your client as follows:

1 Import al the required IDL modulesinto EAServer, as described in
“Managing IDL in EAServer” on page 36.

2 Generate stubs for each imported module, as described in “ Generating
Java stubs’ on page 162.

3 Implement code to connect to the third-party server and instantiate
components, following the vendor’ s documentation.

180 EAServer

cuapTeErR 14 lutorial: Creating CORBA Java
Components and Clients

Inthistutorial, you will create a CORBA Java component, install it in
EA Server, and create a CORBA Javaclient that connectsto EA Server and
calls amethod in the component.

Topic Page
Overview of the sample application 181
Tutorial requirements 181
Creating the application 182

Overview of the sample application

The application performs the following steps:

1 Theclient-side application, developed with Java, instantiates the
middle-tier Java component, JavaArithmetic.

2 Theclient calls the multiply method in JavaArithmetic.

3 The multiply method computes the product of the input values, then
returns the result.

4 Theclient application displays the result for the end user.

Tutorial requirements
To create the tutorial application, you need:
e TheEAServer software

The EAServer Installation Guide for your platform describes how to
install the software.

CORBA Components Guide 181

Creating the application

Java development environment

The tutorial steps use the JDK software and Apache Ant software that is
included with your EA Server installation. You can also use Eclipse,
JBuilder, or any other development tool that is compatible with JDK 1.4
or later.

Creating the application
To create and run the sample application:

1
2
3

o N o o b~

Start EA Server and the Management Console.
Import the IDL interface.

Define the package and component.

Compile the component implementation.
Generate stubs and skeletons.

Create a user account.

Create the client program.

Run the client program.

Start EAServer and the Management Console

Start the Management Console and connect to EAServer as described in
Chapter 1, “Getting Started,”in the System Administration Guide.

Import the IDL interface

CORBA component interfaces must be defined using IDL. Your EA Server
installation includes a predefined IDL file, JavaArithmetic.idl in the
samples/tutorial/java-corba directory. The component interface has one
method, multiply.

182

EAServer

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

[dimporting the IDL file

1 If you haven't already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “ Getting
Started,”in the System Administration Guide.

2 Inthe Management Console, click the IDL Modules folder to display the
IDL typesinthe EAServer repository. Right-click the IDL Modulesfolder
and choose Deploy. The Deploy Wizard displays.

3 Browseto the samples/tutorial/java-corba directory in your EAServer
installation and select JavaArithmetic.idl.

Define the package and component

This section showsyou how to use Management Consol e to create the package,
component, and method for the sampl e application.

Define a new package

In EAServer, CORBA packages allow you to group CORBA components that
perform related tasks. Before a component can be instantiated by clients, it
must beinstalled in a package, and that package must beinstalled in the server.

[ICreating the javatut package

1 IntheManagement Console, click the CORBA packages folder under the
Local Server folder. Thisfolder displays all packagesinstalled in the
server that you are connected to.

2 Right-click the CORBA Packagesfolder, and select Add. The Add wizard
displays. For the package name, enter javatut.

3 When you finish the wizard, the package properties display. L eave these
properties at their default settings.

Define and install a new component
You will define anew Java/CORBA component, JavaArithmetic.

[IDefining the new component

1 Expandthejavatut package and right-click the Componentsfolder beneath
it, then select Add. The New Component Wizard displays. Apply the
following settings as you page through the wizard:

CORBA Components Guide 183

Creating the application

e For component name, enter JavaArithmetic.
e For component type, choose CORBA/Java.

» For Java Class Name, enter

com.sybase.easerver.tutorials.java.JavaArithmeticImpl.

e For IDL Home Interface, leave blank. (EAServer generates the
default home interface later in the tutorial.)

* For IDL Remote Interface, enter Tutorial: :JavaArithmetic.

When you finish the wizard, the component properties display.

2 Inthe component properties, select the General tab. Confirm or apply the
settingsin the table below. Leave the remaining fields at their default
settings.

Field Value
Component Type CORBA/Java
Java Class com.sybase.easerver.tutorials.java.JavaArithmeticImpl

IDL Home Interface

Leave blank.

IDL Remote Interface

Tutorial::JavaArithmetic

Automatic Failover Checked
Pooled Checked
Thread Safe Checked

3

Click Apply to save changes made to the component properties.

Compile the component implementation

The component implementation classes must be placed in the Java class path
for EA Server before we can generate skeletons and the EJB wrapper that
integrates the component code into EA Server.

184

Your EAServer installation includes an Ant project to compile the component
in the subdirectory samples/tutorial/java-corba. Source for the component is
in JavaArithmeticlmpl.java in the subdirectory
src/conVsybase/easerver/tutorials/java.

The build.xml file defines an Ant project to compile the component and a test
client. To ensurethe component classesarein the EA Server Javaclasspath, the
Ant project compiles them to the EA Server genfiles/java/classes subdirectory.

EAServer

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

[ICompiling the component implementation

1

At acommand prompt, change to the EA Server samples/tutorial/java-
corba subdirectory.

Make surethe DJC_HOME environment variable specifiesthelocation of
your EAServer installation, then running the build script or batch file. For
example, if on Windows:

set DJC_HOME=D:\Sybase\eas60
cd $DJC_HOME%\samples\tutoriall\java-corba
build

Or, if running UNIX with C shell:

setenv DJC_HOME /opt/Sybase/eas60
cd $DJC_HOME/samples/tutorial/java-corba
build

The build script or batch file runs the EAServer djc-ant command, which
invokes Ant on the default build file, build.xml in the current directory.

Generate stubs and skeletons

Onceyou have created the package and component, you must generate thefiles
that allow your C++ implementation to run in EAServer and clients to invoke
the component. These include the EJB wrapper component that EA Server
generates to invoke the component and client stub interface files that clients
use to call the component methods.

[IGenerating the server-side files

1

In the Management Console, expand the javatut package. Beneath it, right-
click the JavaArithmetic component and choose Refresh.

The Management Consol e generatesthe required files. If generation fails,
check the server log file for a description of the problem.

[IGenerating CORBA/Java stubs

If using Windows, run the following command at a prompt:

$DJC_HOME%\bin\idl-compiler -v Tutoriall\JavaArithmetic.idl
Tutorial\JavaArithmeticHome.idl -f $DJC_HOME%\genfiles\javal\src -java

If using UNIX, run the following command at a prompt:

$DJC_HOME/bin/idl-compiler.sh -v Tutorial/JavaArithmetic.idl
Tutorial/JavaArithmeticHome.idl -f $DJC HOME/genfiles/java/src -java

CORBA Components Guide

185

Creating the application

Create a user account

You must have a user account the client application uses to connect to the
server. If you don't already have a user account defined, createit as described
here. Alternatively, edit the client application source code to use an existing
account.

[ICreating the Guest user account

1 IntheManagement Console, expand the Security folder and right-click the
Users folder beneath it. Choose Add from the context menu.

2 Inthe New User wizard, enter cuest as the user name and click Finish.

3 Anicon appears for the Guest wizard under the Users folder. Right-click
thisicon and choose Set Password.

4 Inthe Set Password wizard, enter GuestPassword2 for the password and
click Apply.

Create the client program

//p

*

/

L

186

The Ant project for the component

The Ant project islocated in the subdirectory samples/tutorial/java-corba.
Source for the client isin Arith.java in the subdirectory
client-src/convVsybase/easer ver/tutorials/java/client.

Thisis asimple command-line application that:
» Connectsto EAServer.

» Creates an authenticated session using the Guest account that we created
earlier.

e Createsaproxy for the component.
e Cdllsthe component multiply method.
Here is the source for Arith.java:

ackage com.sybase.easerver.tutorials.java.client;

This is a sample command-line Java application that
invokes the JavaArithmetic component created in the EAServer
CORBA/Java component tutorial. Usage:
<pre>
Arith iiop://<host>:<ports>

EAServer

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

L T R

*

*</pres>

*/
import
import

import

public

Where:
<host> is the host name or IP address of the server machine.

<iiop-port> is the server's IIOP port (2000 in the

default configuration) .

org.omg.CORBA. *;
SessionManager. *;
Tutorial.*; // Package for EAServer stub classes

class Arith ({

static public final String compName = "javatut/JavaArithmetic";

static public void main(String options[]) {

String usage = "Usage: Arith iiop://<host>:<port>\n";
String ior = null;

try {

if (options.length >= 1)

{

_ior = options[0];

}

else

{

System.out.println(usage);
return;

//
// Initialize the CORBA client-side ORB and

// obtain a stub for the EAServer component instance.

//

System.out.println("... Creating session.");

//
// Initialize the ORB.

//

java.util.Properties props = new java.util.Properties() ;

props.put ("org.omg.CORBA.ORBClass", "com.sybase.CORBA.ORB") ;

CORBA Components Guide

187

Creating the application

ORB orb = ORB.init (options, props);

//
// Create an instance of the EAServer SessionManager: :Manager
// CORBA IDL object.

//

Manager manager = ManagerHelper.narrow(orb.string to object(ior));

//
// Create an authenticated session with user "Guest" and password
// "GuestPassword2".

//

Session session = manager.createSession("Guest", "GuestPassword2") ;
System.out.println("... Creating component instance.");

//

// Create a stub object instance for the
// Tutorial/JavaArithmetic EAServer component.
//
JavaArithmetic comp =
JavaArithmeticHelper.narrow (
session.create (compName)) ;

if (comp == null)

{

System.out.print ("ERROR: Null component instance. ");
System.out.print (

"Werify that the component " + compName +
"exists and that it implements the " +
"Tutorial: :JavaArithmetic IDL interface.");
return;
System.out.println("... Created component instance.");
//
// Invoke the multiply method.
//
System.out.println("... Multiplying:\n") ;

double ml = 3.1;
double m2 = 2.5;
double result = comp.multiply(ml, m2) ;
System.out.println (" "+ ml + "*" + m2 + "=" + result);

188 EAServer

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

// Explicitly catch exceptions that can occur due to user error,
// and print a generic error message for any other CORBA system
// exception.

} catch (org.omg.CORBA.COMM FAILURE cfe)

// The server is not running, or the specified URL is

// wrong.
System.out.println (
"Error: could not connect to server at " + _ior + "\n"

+ "Make sure the specified address is correct and the "
+ "server is running.\n\n" + _usage);
} catch (org.omg.CORBA.OBJECT NOT EXIST cone)
{
// Requested object (component) does not exist.
System.out.println (
"Error: CORBA OBJECT NOT_EXIST exception. Check the "
+ "server log file for more information. Also verify "
+ "that the " + compName
+ "component has been created properly. \n");

} catch (org.omg.CORBA.NO PERMISSION npe) {
// Login failed, or the component requires an authorization role

// that this user is not a member of.
System.out.println("Error: CORBA NO_ PERMISSION exception.

+ " Does the Guest account exist and have"
+ " you set the password to match this example"
+ " code?");

npe.printStackTrace() ;

} catch (org.omg.CORBA.SystemException se)
{
// Generic CORBA exception
System.out.println (
"Received CORBA system exception:
+ se.toString());
se.printStackTrace () ;

n

return;

} // main()

CORBA Components Guide 189

Creating the application

[ICompiling the client application

» Compilethe application source using the component Ant project,
specifying the c1ient target. For example, on Windows

set DJC_HOME=D:\Sybase\eas60
cd $DJC_HOME%\samples\tutoriall\java-corba
build client

Or, if running UNIX with C shell:

setenv DJC_HOME /opt/Sybase/eas60
cd $sDJC_HOME/samples/tutorial/java-corba
build client

The build script or batch file runs the EAServer djc-ant command, which
invokes Ant on the default build file, build.xml in the current directory.

Run the client program

190

If you have not refreshed or restarted the server since creating the
JavaArithmetic component, refresh the server before running the client
program.

Create a batch file or UNIX shell script to run the client application, then run
it. The batch file or shell script configures the CLASSPATH environment
variable, then runs the application using the JDK 1.4 java program included
with your EAServer installation.

If necessary, you can run the client on a different machine than the server host,
aslong as your server uses areal host address and not localhost or 127.0.0.1.

If everything isworking, the application prints the results from the invocation
of the multiply method. If not, check the error text printed on the console where
you ran the client, and check for error messagesin the server log file.

[IRunning the client on Windows
1 Create afile named runclient.bat containing the commands below:

setlocal

call %DJC_HOME%\bin\djc-setenv.bat

cd $DJC_HOME%\samples\tutorial\java-corba

set CLASSPATH=%CLASSPATH%; .\client-classes

$JAVA HOMES%\jre\bin\java
com.sybase.easerver.tutorials.java.client.Arith %*

EAServer

CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients

2 Run theclient by running the batch file and specifying the server’s [IOP
URL on the command line, for example;

set DJC_HOME=D:\Sybase\eas60
runclient iiop://myhost:2000
[IRunning the client on UNIX
1 Createafile named runclient containing the commands below:

#!/bin/sh
$DJC_HOME/bin/djc-setenv.sh
cd $DJC_HOME/samples/tutorial/java-corba
CLASSPATH=3$CLASSPATH: ./client-classes export CLASSPATH
$JAVA HOME/jre/bin/java com.sybase.easerver.tutorials.java.client.Arith

$*

2 Changethefile permissions to allow the script to be executed. For
example:

chmod 777 runclient

3 Runtheclient by running the batch file and specifying the server’s I1OP
URL on the command line, for example:

setenv DJC_HOME /opt/Sybase/eas60
runclient iiop://myhost:2000

CORBA Components Guide 191

Creating the application

192 EAServer

Index

A

activation, component
definitionof 7
addresses, network
specifying in C++clients 108
specifying in Javaclients 168
applications
C++ 125
CORBA 181
attributes, IDL
defining 31
authentication
and secure ports 169
in C++clients 109
inJavaclients 168
authentication, mutual SSL
inJavaclients 169

B

BCD IDL module

usein C++clients 73
BCD.hpp

C++ header file 103
BCD::Binary IDL datatype 32
BCD::Decimal IDL datatype 32
BCD::Money IDL datatype 32
building

C++clients 120

C++ components 81
Byte datatype 59

C

C components
setting transaction statein -~ 96
C++

CORBA Components Guide

client codefor 133
clients 101

compilersfor 131, 132, 137
component code 130
components 77

data source accessin 84
generating filesfor 130
running clients 139
tutoria 125

using namespacesin 80, 103

C++ clients

compiling and linking 120
configuring ORB propertiesfor 104
deployment of 120
developing 101

generating stubsfor 102
header filesfor 103

IDL datatype mappingsfor 72
implementing 102
introductionto 71, 101
invoking methods from 110
ORB initidlizationin 104
processing result setsin 110
requirementsfor 72

using naming servicesin 121
using third-party ORBswith 121

C++ components

accessing database connectionsin 84
compiling and linking 81
datatypesusedin 72

debugging 98

development procedurefor 77

file naming conventions 79
generating source filesfor 78
handling errorsin 98

implementing 80

issuing intercomponent callsfrom 97
obtaining database connectionsin 84
raising exceptionsin 98

system requirementsfor 72

193

Index

when to regenerate skeletonsfor 80
caches, connection

C code examplesusing 85, 87

using in C++ components 84
certificates, SSL

accessing in Java components 158
Character datatype 59
character sets

specifying for C++ clients 105
Client-Library

connection caches defined for 84

control structures 87

header filesfor 86
clients 67

C++ 125,133

developing 67

Java 186
CM_CACHE C control structure 84, 87, 89
code

C++client 133

C++ component 130

for Javaclients 186

generating for C++ 130

Javacomponent 184
com.sybase. CORBA .local

Java ORB property name 166
com.sybase. CORBA .ProxyHost

Java ORB property name 166
com.sybase. CORBA .ProxyPort

Java ORB property name 166
COMM_FAILURE CORBA system exception
compiling

C++clients 120, 137

C++ components 81, 131, 132
completeWork method in Javainterface I nstanceContext

158

components

C++ 7798, 125,128

creation and destruction of 6

deactivationof 9

deploying 62

developing 56

Java 147-160, 183

Javacodefor 184

lifecycleof 5,6

propertiesfor C++ 129

119, 177

194

propertiesfor Java 184

recycling of instances 10

serializing referencesin - 175

stateful 8

stateful vs. stateless 8

stateless 6, 8,9

transactional properties 15
components, C++

building 131, 132

compiling 131, 132
components, Java 181
connection caches

C code examplesusing 85, 87
connection management

C language examplesfor 85, 87

in C++ components 84
Connection object 67
connection timeout

configuring for C++ clients 106

configuring for CORBA clients 164

configuring for Javaclients 165
ConnectionTimeout

Java/lCORBA client property 164
constructor

for C++ components 80

for Java components 150
control structures

Client-Library 87

for connection management

OCl8x 89
conventions xii

naming 65
CORBA

See also IDL; ORB, C++; ORB, Java

and C++ clients 71, 101

and Javaclients 141

Any datatype 144

C++ components 77

C++ tutorial for 125

creating Java applicationswith 181

IDL 27

interoperable object references 97, 108, 152, 168

Javatutoria for 181

system exceptions 119, 176

Typecode datatype 144

user-defined exceptions 120, 177

84, 87,89

EAServer

CosNaming CORBA IDL module
usein C++clients 121
create method in IDL interface
SessionManager::Session 109, 172
Createl nstance, TransactionServer method 61
createServerResultSet method in Java class JContext

155
createServerResultSetM etaData method in Java class
JContext 154

createSession method in IDL interface
SessionManager::Manager 109, 171
creating
Javacomponents 147
CtsSecurity IDL module 158
CtsSecurity::UserCredentials IDL interface 158

D

dataaccess 60
datasources 85
C code examplesusing 85
JDBC, accessing from NVOs 60
Sybase native, accessing from NVOs 60
using in C++ components 84
database connections
accessing in C++ components 84
accessing in Javacomponents 153
DataStore system object 59
datatype mappings, PowerBuilder to EJB 57
datatypes
asusedin C++clients 72
as used in Javacomponents 142
Byte 59
Character 59
defininginIDL 32
Javastubsfor 149
predefined in EAServer 32
used in C++ components 72

user-defined 33
deactivation

See also early deactivation

definitionof 7
debugging

C++ components 98
debugging remotely 66

CORBA Components Guide

Index

declarations, IDL

for attributes 31

for interfaces 28

for operations 29
defining

C++ component 128

Javacomponents 147
deploying components 62
deployment

of C++clients 120

of C++ components 82

of Javaclients 178
destructor

for C++ components 80
developing

C++clients 101

C++ components 77

clients 67

components 56

Javaclients 161

Javacomponents 147
development environments

Java 182
DisableCommit, TransactionServer method 61
DLLs

building for C++ components 81
done method in Javainterface JServerResultSet 155
dynamic enlistment 20

E

early deactivation 9
definitionof 6
EAServer
component lifecyclemodel 5
transaction processing model 12
EAServer Transaction Manager 21
recovery limitations 22
resource manager 25
resource recovery and transaction logging 22
transaction interoperability 23
EA Server transactions
benefitsof 13
explanation of 12
EJB datatype mappings 57

195

Index

EJBConnection class 68
EnableCommit, TransactionServer method 61
errors
See also exceptions
handling in C++ components 98
handling in Java components 150
logging in C++ components 98
logging in Java components 151
examples
intercomponent cals 97, 152
using JagCmGetCachebyUser 85
exceptions
CORBA system 119, 176
defininginIDL 35
generating C++ stubsfor 79
generating Javastubsfor 149
handling in Javaclients 176
listing in IDL method declarations 29, 30
raising in C++ components 98
raising in Javacomponents 150
user-defined 120, 177

F

files, repository 65
forwarding

result sets from Java components 154
forwardResultSet method in Java class JContext

G

garbage collection, Java
configuring for Javaclients 164
generated code 64
generating
C++ component sourcefiles 78
C++files 130
C++stubs 102
Java component sourcefiles 149
Javafiles 185
Javastubs 162

196

H

header files
for C connection manager routines 84
for C++ clients 103

holder classes, Java
for Javacomponents 145

IDL
and C++clients 71, 101
and Javaclients 141
defining attributesin 31
defining datatypesin 32
defining exceptionsin 35
defining methodsin 29
defining modules 27
defining operationsin 29
deploying to EAServer 36
generating documentation for 38, 39
interfaces 28
learning 27
stub generation directives 38
using in EAServer 27

I10OPS
usein Javaapplets 169
importing
Java packages required for Java components 149
inheritance, interface 28
init Java ORB method 167, 168
instance pooling
adding support for 10
definitionof 6
InstanceContext Javainterface 151
intercomponent calls
and EAServer transactions 13
example 97,152
issuing from C++ components 97
issuing from Java components 151
Interface Definition Language.
SeeIDL
interfaces, IDL
explanation of 28
structureof 28
suggested naming conventionsfor 29
EAServer

Index

interoperable object reference, CORBA. configuring ORB propertiesfor 163

SeelORs creating 161
I0ORs deploying 178

for C++ client ORB 108 generating stubsfor 162

for C++ intercomponent calls 97 handling exceptionsin 176

for Javaclient ORB 168 instantiating proxiesin 162

for Javaintercomponent calls 152 introductionto 141

seriadlizing and deseridlizing 175 invoking methods from 175
is_nil C++ ORB method 103 ORB initidlizationin 163
IslnTransaction, TransactionServer method 61 serializing component referencesin - 175
IsTransactionAborted, TransactionServer method 61 using naming servicesin 162

using third-party ORBswith 179
Java components
accessing SSL certificatesin = 158

J constructor for 150
JAG_CODESET environment variable 105 creating 147
jag_dbg_stop C function 99 datatypesusedin 142
JAG_HTTP environment varigble 105 defining 147
JAG_HTTPUSEPOST environment variable 105 developing 147
JAG_LOGFILE environment variable 105 issuing intercomponent callsfrom 151
JAG_NO_NAMESPACE C++ macro 103 logging errorsin -~ 151
JAG_RETRY COUNT environment variable 105 managing database connections 153
JAG_RETRYDELAY environment variable 105 refreshing after changes 160
JagCmGetCachebyName C routine 86, 88 setting transaction statein -~ 158
JagCmGetCachebyUser C routine 85, 86, 88 system requirementsfor 142
JagCmGetConnection C routine 85, 87, 88 Javapackages 64
JagCmReleaseConnection C routine 88 Java Transaction Service. See JTS
JagCompleteWork C routine 96 JContext Javaclass 154, 155
JagContinueWork C routine 97 JDBC data sources, configuring 60
JagDisallowCommit C routine 97 JNDI name, configuring for aJDBC datasource 60
JagLog C routine 98 JServerResultSet Javainterface 154, 155
jagpublic.h C header file 84 JServerResultSetMetaData Javainterface 154, 155
JagRollbackWork C routine 97 JTs
Jaguar.writeLog() Javamethod 151 transaction options 15
Java

class names as extended IDL datatypes 34

clients 161

components 147-160 L

defining components 183 life cycles

development environments 182 component statesin 6

generating filesfor 185 of componentsin general 5

holder classes 145 linking

skeletons 185 C++clients 120

stubs 185 C++ components 81

tutorial for 181 liveediting 63
Javaclients log file

CORBA Components Guide 197

Index

writing to from C++ components 98 N
writing to from Java components 151
logging namespaces
for C++ 80, 103

errors from Java components 151 . -
Po naming conventions 65

for C++ component files 79

for interfaces and methods 29
M naming services

usein C++clients 121

ma|f<ef I(|:ef+ - useinJavaclients 162
or components next method in Javainterface JServerResultSet 155
for UNIX 82

for Windows 83 NO_PERMISSION CORBA system exception 119,

" Consol 173, 176, 177
anagement L.onsole NonVisual Object. See NVOs
editing IDL fileswith 27
ating Jav t fileswith 149 NVOs
generating a component source Tiies wi defined 56

Manager IDL interface in module SessonManager 108,
168, 171
method overloading
for C++ stubs and components 30
for Java stubs and components 30

JDBC data sources, accessing from 60
Sybase native data sources, accessing from 60

in C++ components 76 O
ininterface definitions 30 . .
methods ob! ect persistence 22
See also method overloading 0bj eszterﬁf)eéenc&.
defininginIDL 29 S .
invoking from C++ dlients 110 OBJECT_NOT_EXIST CORBA system exception
invoking from Javaclients 175 . 119’ 173,17
overloaded 30 object_to_string Java ORB method 175
suggested naming conventionsfor 29 ocl
MJD IDL module control structuresfor 89
ODBC

useinJavaclients 73
MJD.hpp

C++ header file 103
MJD::Date IDL datatype 32

connection caches defined for 84
control structuresfor 84
header filesfor 84, 86

MJD::Time IDL datatype 32 Opeégl_ODS, |D|59

MJD::Timestamp IDL datatype 32 '”;‘t%d . o 2

module definition files sugg naming conventions for
ORB, C++

for C++ components 83

use of to build C++ DLLs 83
modules, IDL

explanation of 27

managing in EAServer 36

stub generationfor 38
mutual SSL authentication

inJavaclients 169

configuring 104

connecting to third-party server-side ORBs 123
generating stubsfor 102

initialization of 104

specifying IORsfor 108

specifying propertiesfor 104

third-party 121

usein C++ components 97

ORB, Java

198 EAServer

configuring 163

connecting to third-party server-side ORBs 180

generating stubsfor 162

initialization of 163

specifying IORsfor 168

specifying propertiesfor 163

support for 142

third-party 179

usein Javacomponents 151, 152
ORB_init C++ ORB method 104
ORBCodeSet

C++ ORB property name 105
ORBforceSSL

C++ ORB property name 106
ORBHttp

C++ ORB property name 105
ORBHttpUsePost

C++ ORB property name 105
ORBidleConnectionTimeout

C++ ORB property name 106
ORBLogFile

C++ ORB property name 105
ORBProxyHost

C++ ORB property name 106
ORBProxyPort

C++ ORB property name 106
ORBRetryCount

C++ ORB property name 105
ORBRetryDelay

C++ ORB property name 105
overloaded methods

defininginIDL 30

for C++ stubs and components 30

for Java stubs and components 30

P

packages, Java

importing in Java components 149
parameters

defininginIDL 29

for Java component methods 142

specifying datatypesfor 32
passwords

specifyingin C++clients 109

CORBA Components Guide

Index

specifyingin Javaclients 171
port numbers

specifyingin C++ clients 108

specifyingin Javaclients 168
ports, secure

connectingto 169
PowerBuilder

clients 67

components 62

to EJB datatype mappings 57
properties

for C++client ORB 104

for C++ components 129

for Javaclient ORB 163

for Javacomponents 184
proxies

instantiation in Javaclients 162

R

refreshing
Javacomponents 160
remote debugging 66
repository files 65
requirements
for C++ clients 72
for C++ components 72
for Java 182
for Javacomponents 142
resource manager 25
resource recovery 22
result sets
constructing with Javacalls 155
forwarding from Java components 154
processing in C++ clients 110
returning from Java components 153
sending from Java components 153
ResultSet
returntype 59
ResultSet IDL datatype in module TabularResults 32
ResultSet Java class, forwarding 154
ResultSets IDL datatype in module TabularResults 32
return types
defininginIDL 29
for component method declarations 29

199

Index

for Java component methods 142 stateful components
roles, security 65 definitionof 8
rollbackWork method in Java interface InstanceContext statel ess components
158 creating 8
runtime problems, troubleshooting 66 deactivation and instance pooling of 6
definitionof 9
states
in component lifecycle 6
S string_to_object C++ ORB method 97, 108
secure ports string_to_object Java ORB method 152, 171, 175
connectingto 169 stubs
security roles 65 C++ 130
Session IDL interface in module SessionManager 109, generating C++ 102
171 generating for Javaclients 162
SessionManager CORBA |IDL module generating Java 185
usein Javaclients 171 instantiation in Javaclients 162
SessionManager::Factory CORBA IDL interface stubs, C++
usein C++clients 171 for third-party ORBS 121
set<Object> method in Java interface JServerResultSet generating 102
155 stubs, Java
SetAbort, TransactionServer method 61 for third-party ORBs 179
setColumnCount method in Javainterface generating 162
JServerResultSetMetaData 154 system exceptions, CORBA 119, 176
setColumnDisplaySize method in Javainterface system requirements
JServerResultSetMetaData 154 for C++clients 72
setColumnType method in Javainterface for C++ components 72
JServerResultSetMetaData 154 for Java components 142

SetComplete, TransactionServer method 61
shared libraries, UNIX
building for C++ components 81

SharedObjects Javainterface 151 T
skeletons TabularResults IDL module
C++ 130 usein C++clients 111
generating for C++ components 78 TabularResults.hpp
generating Java 185 C++ header file 103
whentoregenerate 80 TabularResults::ResultSet IDL datatype 32
socketReuseLimit TabularResults::ResultSets IDL datatype 32
C++ ORB property name 106 threads
software requirements intercomponent callsfrom 166
for C++ components 72 timeouts, connection
for Java components 142 for C++clients 106
SSL authentication, mutual for CORBA clients 164
inJavaclients 169 for Javaclients 165
SSL certificates transaction interoperability 23
accessing in Java components 158 transaction logging 22
state primitives, for transactions 16 transaction options

200 EAServer

JIS 15
transaction, EA Server
definition of 12
TRANSACTION_ROLLEDBACK CORBA system
exception 119, 177
TransactionLogManager 23
transactions
and intercomponent calls 13
benefitsof using 13
controlling outcome of 16
defining how components participatein 14
dynamic enlistment for bean-managed 20
examplesof 13,19
how to commit and roll back 16
multi-component 16
overview of 12
semanticsof 14
server processing of 12
specifying coordinatorsfor 15
specifying how a component participatesin =~ 15
state primitivesfor 16
TransactionServer class 61
troubleshooting 66
tutorial, C++
client codefor 133
defining the component 128
generating filesfor 130
running 139
server-sidecode 130
tutorial, Java
client program for 186
component code for 184
defining the component 183
generate filesfor 185
tutorials
C++ 125
Java 181
two-phase commit, verifying support for 15
typographical conventions xii

U

user names
specifyingin C++clients 109
specifyingin Javaclients 171

CORBA Components Guide

Index

UserCredentials IDL interface in modul e CtsSecurity
158

using C++ keyword 80, 103

usinginC++ 85

W

Web DataWindow 68
Web services 64
deploying 64
writeLog method in Java class Jaguar 151

201

Index

202 EAServer

	CORBA Components Guide
	About This Book
	CHAPTER 1 CORBA Component Overview
	About CORBA
	CORBA components in EAServer
	The CORBA component development process
	CORBA component tutorials

	CHAPTER 2 CORBA Component Life Cycles and Transaction Semantics
	Component life cycles
	States in the component life cycle
	Stateful versus stateless components
	Supporting early deactivation in your component
	Supporting instance pooling in your component
	Long versus short transactions
	Long transactions
	Short transactions

	EAServer’s transaction processing model
	How EAServer transactions work
	Benefits of using EAServer transactions
	Defining transactional semantics
	Transaction coordinator
	Transactional component attribute
	Determining when transactions begin
	Using transaction state primitives

	Example
	Dynamic enlistment in bean-managed transactions

	EAServer Transaction Manager
	Resource recovery and transaction logging
	Recovering XA resources registered by user components

	Transaction interoperability
	Resource manager
	Enlisting XA resources with Transaction Manager

	CHAPTER 3 Using CORBA IDL
	Learning IDL
	IDL modules
	Preprocessor directives
	IDL interfaces
	Choosing an interface name
	Operation declarations
	Attribute declarations
	Datatypes for parameters and return values
	User-defined exceptions
	Interface stub generation directives

	Managing IDL in EAServer
	Deploying and viewing IDL with the Management Console
	Deploying IDL from the command-line
	Specifying Java package mappings for IDL modules

	Using IDL documentation comments
	Refreshing the HTML documentation
	Viewing HTML documentation for IDL modules

	CHAPTER 4 Managing CORBA Packages and Components
	What is a CORBA package?
	Managing CORBA packages in the Management Console
	Managing CORBA packages with configuration scripts
	CORBA package property descriptions
	CORBA component property descriptions
	Transaction type values

	CHAPTER 5 Developing and Deploying PowerBuilder Components
	Developing PowerBuilder components
	Mapping datatypes
	Accessing data
	Logging errors
	Managing transactions

	Deploying components
	PowerBuilder components
	Java packages
	Web services
	Generated code
	Naming conventions
	Repository files
	Security roles

	Remote debugging
	Troubleshooting

	CHAPTER 6 Developing PowerBuilder Clients
	Developing clients
	Component access
	Web DataWindow

	CHAPTER 7 CORBA/C++ Overview
	Overview
	Requirements
	Supported datatypes
	C++ mappings for predefined IDL datatypes
	Using mapped IDL types
	Overloaded methods

	CHAPTER 8 Developing CORBA/C++ Components
	Procedure for creating C++ components
	Generating C++ component files
	C++ file naming conventions and locations
	Regenerating changed C++ component methods

	Writing the class implementation
	Compiling source files
	Compiling on UNIX platforms
	Compiling on Windows
	Visual C++

	Using data sources
	Using ODBC data sources
	Header files
	Data structures
	ODBC example

	Client-Library data sources
	Header files
	Data structures
	Client-Library example
	Client-Library error and message callbacks

	Oracle OCI data sources
	Oracle autocommit setting
	Header files
	Data structures
	OCI example

	Managing explicit OTS transactions
	Initializing the ORB
	Calling CosTransactions::Current interface methods
	Executing tasks outside of a transaction
	Exceptions

	Setting transaction state
	Issuing intercomponent calls
	To components on a non-EAServer ORB

	Handling errors
	Debugging C++ components

	CHAPTER 9 Developing CORBA/C++ Clients
	Procedure for creating CORBA C++ clients
	Generating stubs
	Writing CORBA C++ clients
	Adding required include and namespace declarations
	Instantiating component proxies
	Configure and initialize the ORB runtime
	Creating a Manager instance
	Creating sessions
	Creating stub instances

	Invoking methods
	Processing result sets
	Example of processing result sets
	Retrieving the result set
	Iterating through the rows and columns
	Retrieving the column datatype and processing values

	Handling exceptions
	CORBA system exceptions
	User-defined exceptions

	Compiling C++ clients
	Deploying C++ clients
	Using the CosNaming interface
	Using CORBA ORB implementations other than EAServer
	Connecting to EAServer with a third-party client ORB
	Generating compatible C++ stubs
	Instantiating components using a third-party ORB

	Connecting to third-party ORBs using the EAServer ORB

	CHAPTER 10 Tutorial: Creating C++ Components and Clients
	Overview of the sample application
	Tutorial requirements
	Creating the application
	Verify your environment
	Start EAServer and the Management Console
	Import the IDL interface
	Define the package and component
	Define a new package
	Define a new component

	Generate server integration code and implementation templates
	Write the server-side code
	Create a user account
	Write the client-side code
	Compile the client executable
	Run the client executable

	CHAPTER 11 CORBA/Java Overview
	Overview
	Requirements
	Java IDL datatype mappings
	Binary, Fixed-Point, and Date/Time types
	Result set types
	User-defined IDL types
	Camel case versus default IDL-to-Java mappings

	Holder classes for IDL types

	CHAPTER 12 Developing CORBA/Java Components
	Procedure for creating CORBA/Java components
	Write the Java source file
	Generate Java interface files for IDL types
	Add package import statements
	Code the constructor
	Add error handling code

	Advanced techniques
	Issue intercomponent calls
	Manage database connections
	Return result sets
	Forwarding a ResultSet object
	Sending results row-by-row

	Access SSL client certificates
	Set transactional state
	Retrieve user-defined component properties

	Generating EJB wrapper components
	Refreshing Java components

	CHAPTER 13 Developing CORBA/Java Clients
	Procedure for creating CORBA/Java clients
	Generating Java stubs
	Instantiating proxy instances
	Configuring and initializing the ORB runtime
	Creating a Manager instance
	Creating sessions
	Creating stub instances

	Executing component methods
	Serializing component instance references
	Handling exceptions
	Deploying and running Java clients
	Using other CORBA ORB implementations
	Connecting to EAServer with a third-party client ORB
	Connecting to third-party ORBs using the EAServer ORB

	CHAPTER 14 Tutorial: Creating CORBA Java Components and Clients
	Overview of the sample application
	Tutorial requirements
	Creating the application
	Start EAServer and the Management Console
	Import the IDL interface
	Define the package and component
	Define a new package
	Define and install a new component

	Compile the component implementation
	Generate stubs and skeletons
	Create a user account
	Create the client program
	Run the client program

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

