
Java Message Service User’s Guide

EAServer
6.0

easjms.book Page i Friday, July 14, 2006 12:33 PM

DOCUMENT ID: DC00486-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

easjms.book Page ii Friday, July 14, 2006 12:33 PM

Contents

Java Message Service User’s Guide iii

About This Book .. v

CHAPTER 1 Message Service Overview .. 1
Introduction .. 1

High availability and load balancing .. 2
Message security .. 2
Reliable delivery .. 2
Scalable notification .. 3
Transaction management.. 3
Client applications ... 3

New features .. 4

CHAPTER 2 Setting up the Message Service .. 7
Message queues and topics .. 8

Message queues ... 8
Message topics ... 14
Viewing message statistics ... 15

Connection factories .. 16
Listeners... 19

Message-driven beans .. 19
Managing dead messages .. 22

Message selectors ... 23
Threads .. 23

CHAPTER 3 Developing JMS Clients ... 25
Client runtime requirements ... 25
JMS client program flow... 25
Defining the initial naming context ... 26
Looking up a connection factory .. 28
Creating connections ... 29
Creating sessions... 31
Looking up destinations ... 33
Creating message producers and consumers................................ 33

easjms.book Page iii Friday, July 14, 2006 12:33 PM

Contents

iv EAServer

Creating message producers .. 34
Creating message consumers... 34

Sending and receiving messages .. 37
Creating messages ... 37
Sending messages.. 38
Publishing messages .. 38
Receiving messages ... 40
Implementing and installing message listeners....................... 40
Browsing messages .. 41

Creating JMS providers.. 42
General tab.. 42
JMS Settings tab ... 43
Pull Settings tab .. 44
Push Settings tab .. 44

Index ... 47

easjms.book Page iv Friday, July 14, 2006 12:33 PM

Java Message Service User’s Guide v

About This Book

Subject This book contains information about configuring the EAServer message
service and Java Message Service (JMS) client applications.

Audience This book is for anyone responsible for configuring the EAServer runtime
environment, or for creating and deploying packages and components on
EAServer.

How to use this book Chapter 1, “Message Service Overview,” describes the features of the
EAServer message service.

Chapter 2, “Setting up the Message Service,” explains how to use the
Management Console to configure message queues, topics, listeners,
connection factories, and listeners.

Chapter 3, “Developing JMS Clients,” describes how to create JMS client
applications.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML and PDF format in your EAServer software
installation and on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for
proprietary EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-
based configuration scripts to:

• Define and configure entities, such as EJB modules, Web
applications, data sources, and servers

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™
components and component-based applications

• Use the industry-standard CORBA and Java APIs supported by
EAServer

The EAServer Enterprise JavaBeans User’s Guide describes how to:

easjms.book Page v Friday, July 14, 2006 12:33 PM

vi EAServer

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (JMS) clients and components to send, publish, and
receive JMS messages.

The EAServer Migration Guide contains information about migrating
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

easjms.book Page vi Friday, July 14, 2006 12:33 PM

 About This Book

Java Message Service User’s Guide vii

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase software license deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

Conventions The formatting conventions used in this manual are:

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using Ant or jagtool to configure
applications rather than the Management Console

easjms.book Page vii Friday, July 14, 2006 12:33 PM

viii EAServer

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Management Console, a command line, or as
program text

• Example program fragments

• Example output fragments

Formatting example To indicate

easjms.book Page viii Friday, July 14, 2006 12:33 PM

 About This Book

Java Message Service User’s Guide ix

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

easjms.book Page ix Friday, July 14, 2006 12:33 PM

x EAServer

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

The Web Services Toolkit plug-in for Eclipse supports accessibility features for
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

easjms.book Page x Friday, July 14, 2006 12:33 PM

Java Message Service User’s Guide 1

C H A P T E R 1 Message Service Overview

The EAServer message service supports version 1.1 of the Java
Messaging Service (JMS) specification.

For more details on JMS, see the JMS specifications from Sun
Microsystems at http://java.sun.com/products/jms/.

Introduction
The message service allows you to send or publish messages to a queue or
topic, where they are stored until they can be delivered to either a client or
a component. The message service supports two messaging models, point-
to-point and publish/subscribe. Point-to-point messaging sends a message
to one consumer. The publish/subscribe model publishes messages that
are available to all consumers who subscribe to the message topic. You
can receive messages using message listeners. The message service
provides transient and persistent message storage for queued messages.

A messaging service provides a flexible solution for many business needs.
As a practical example, consider a scenario in which a supplier must
communicate prices to a number of retailers, and the retailers want to
place orders for items at updated prices.

The message service requires a listener to respond to incoming orders, and
a way to manage the list of retailers and add new ones. You must ensure
that each party receives and processes all the transactions that are sent its
way. If one of the retailers is offline, or network routing to its server fails,
your application must continue trying to establish communications until
the transaction can be completed. You must provide persistence for critical
transactions until all recipients acknowledge them. You also want to
ensure that all parties are granted access, are who they say they are, and
that transactions are secure during transmission.

Topic Page
Introduction 1

New features 4

easjms.book Page 1 Friday, July 14, 2006 12:33 PM

Introduction

2 EAServer

Many business transactions take place in an environment such as this, where
connectivity cannot be guaranteed and transactions require security. Inserting
a messaging service between business nodes in a network insulates your
application code from these issues.

The key features of the EAServer message service include:

• High availability and load balancing

• Message security

• Reliable delivery

• Scalable notification

• Transaction management

High availability and load balancing
The message service uses server clustering to provide high availability and
load balancing. For complete information about server clustering, see Chapter
6, “Clusters and Synchronization,” in the EAServer System Administration
Guide.

Message security
The message service provides role-based security for message queues and
message topics. The message service operations and the access categories
required to use them are:

You can assign permissions for access categories separately. See “Message
queues and topics” on page 8.

Reliable delivery
To ensure reliable message delivery, the message service provides:

Access
category Message service operations

Consumer Receiving messages and creating topic subscriptions

Producer Sending and publishing messages

easjms.book Page 2 Friday, July 14, 2006 12:33 PM

CHAPTER 1 Message Service Overview

Java Message Service User’s Guide 3

• IIOP/IIOPS connections for client notification.

• HTTP tunneling of IIOP connections. Messages can be delivered through
client-side firewalls that accept only HTTP/HTTPS.

• Persistent messages that guarantee message delivery, subject to the
reliability of the persistent store.

Scalable notification
Connection factory properties are available to support batching of both
producer (send and publish) and consumer (receive and acknowledge)
operations.

Transaction management
A transactional operation runs in the caller’s transaction, or, if the caller is not
enlisted in a transaction, in a new transaction. The following operations can be
transactional:

• publish A message producer can publish a message within a transaction.

• send A message producer can send a message within a transaction.

• acknowledge A client can acknowledge and process a message in the
same transaction.

• onMessage A listener component can process a message within the
same transaction as the automatic acknowledgment, which occurs when
onMessage returns.

• move A message can be moved from one queue to another only within
a transaction.

Client applications
To create EAServer message service client applications, you can use either:

• JMS 1.1 API – see Chapter 3, “Developing JMS Clients,” or

• CtsComponents::MessageService CORBA API – see the HTML interface
documentation in the html/ir subdirectory of your EAServer installation.

easjms.book Page 3 Friday, July 14, 2006 12:33 PM

New features

4 EAServer

New features
New messaging features in EAServer 6.0 include:

• Support for the complete JMS 1.1 API.

• Message-driven beans (MDBs) can receive message types other than JMS.
A J2EE Connector Architecture (JCA) 1.5 resource adapter integrates
messaging providers with the container.

• Messages can be processed in the order in which they are received, even
when multiple consumers access the same queue.

• Duplicate messages can be ignored.

• Application servers running on a mobile device can initiate pull and push
operations; both online and offline modes are supported.

• Header and system properties can be used to construct source or target
queue addresses; for pull, only system properties can be used.

• You can log in to the JMS provider using IIOP single sign-on scripts.

• For JMS clients, a new initial context factory class
com.sybase.jms.client.InitialContextFactory replaces
com.sybase.jms.InitialContextFactory.

• The com.sybase.jms.client.InitialContextFactory class supports four
provider URL forms:

• iiop://host:port – uses IIOP to access the message service.

• jms-provider:jmsProviderName – uses the named JMS provider.

• run-server.server_name – uses IIOP to access the message
service, starts the server in-process if it is not already running, and
selects the server’s first IIOP listener as the provider URL.

• start-server.server_name – uses IIOP to access the message
service, starts the server out-of-process if it is not already running, and
selects the server’s first IIOP listener as the provider URL.

• The com.sybase.jms.client.InitialContextFactory class performs JNDI
lookups to resolve names that are not preconfigured:

• A name ending with “queue” is assumed to be the name of a JMS
message queue.

• A name ending with “topic” is assumed to be the name of a JMS
message topic.

easjms.book Page 4 Friday, July 14, 2006 12:33 PM

CHAPTER 1 Message Service Overview

Java Message Service User’s Guide 5

• A name ending with “queueconnectionfactory” is assumed to be the
name of a JMS queue connection factory.

• A name ending with “topicconnectionfactory” is assumed to be the
name of a JMS topic connection factory.

• Any other name ending with “connectionfactory” is assumed to be the
name of a common JMS connection factory.

Note Name comparisons are case-insensitive.

easjms.book Page 5 Friday, July 14, 2006 12:33 PM

New features

6 EAServer

easjms.book Page 6 Friday, July 14, 2006 12:33 PM

Java Message Service User’s Guide 7

C H A P T E R 2 Setting up the Message Service

Before you can use the message service to send and receive messages, you
must add and configure the message service parts. Once you configure the
message service, it is available to every server that you create.

You can use the Management Console to add and configure message
service parts:

• Permanent destinations – message queues and topics. Add one
message queue for each message recipient. To identify the subject of
messages to which you want to subscribe, add message topics. You
can also create message queues and topics using the CORBA API or
the JMS createQueue and createTopic methods. Although these JMS
methods are not portable, creating message queues and topics
programmatically can significantly reduce the system administrator’s
work.

To restrict access to a message queue, define security roles for
message queue producers and consumers. You can also add security
roles to a topic.

• Connection factories – connection factories enable JMS client
applications to establish connections with the message service.

• Message listeners – to provide asynchronous message notification for
clients and components, implement a message listener, and install it
on a message queue or topic.

Topic Page
Message queues and topics 8

Connection factories 16

Listeners 19

Message selectors 23

Threads 23

easjms.book Page 7 Friday, July 14, 2006 12:33 PM

Message queues and topics

8 EAServer

Message queues and topics
To provide permanent destinations for JMS client applications, use the
Management Console to define message queues and message topics. When you
create a message queue or topic, you can optimize its configuration properties,
which benefits every JMS client application that uses the destination.

Message queues
The EAServer JMS provider allows you to create and configure JMS message
queues; however, you need not preconfigure message queues unless their
properties require nondefault values. A JMS client that uses the JMS initial
context factory com.sybase.jms.client.InitialContectFactory can look up
preconfigured queues by name. To look up queues that have not been
preconfigured, clients can either use a JNDI name that ends with “Queue,” or
use the javax.jms.Session.createQueue API. You can also use this API to look
up preconfigured queues.

To override default properties for JMS temporary queues, name the message
queue “javax.jms.TemporaryQueue.”

❖ Adding a message queue

1 In the Management Console, expand the Resources folder, select JMS
Message Queues, right-click, and select Add.

2 In the wizard, enter a name for the message queue, and select Finish.

❖ Configuring message queue properties

1 Select the message queue to configure.

2 In the right pane, configure the properties on these tabs:

• General tab

• Security tab

General tab

Table 2-1 defines the properties you can set on the General tab for message
queues and topics.

easjms.book Page 8 Friday, July 14, 2006 12:33 PM

CHAPTER 2 Setting up the Message Service

Java Message Service User’s Guide 9

Table 2-1: Message queue and topic general properties

Property Datatype Default value Description

Queue ID string none Message queues only. A short name for the message queue.

Cluster Partition string default The name of the cluster partition that serves the message
queue. The “default” cluster partition contains all the servers
in the cluster. If a server fails, another server in the same
partition takes over management of the queue. If the server is
not in a cluster, this property is ignored.

Data Source string message.db The name of a data source, which identifies the database
where persistent and transient overflow messages are stored.
If a message queue uses a different data source than other
resources involved in a transaction (such as direct JDBC
access or EJB entity beans), all the data sources must be
configured for two-phase commit to achieve atomicity
between message queue operations and other resource access.
Sybase recommends that you not change this property value.

Database Table string jms_pm The name of the database table in which persistent and
transient overflow messages for this message queue are
stored.

Automatic
Recovery
Timeout

long 60 The number of seconds before unacknowledged messages are
recovered. When a client receives a message from a queue, but
does not acknowledge it, the message is recovered
automatically so that it can be received again.

If the timeout is exceeded, the client is assumed to have failed.
If the messages for a particular queue require a long time for
clients to process, increase this value accordingly.

Duplicate
Detection Key

string JMSMessageID To detect duplicate messages, the message service compares
the value in this database field.

Duplicate
Detection
Protocol

string optimistic Select the protocol to use for detecting duplicate messages:
optimistic, pessimistic, or none.

To optimize the duplicate detection by using deferred inserts,
and checking for duplicate key exceptions (in the duplicate
detection table), set to optimistic. If duplicates are detected,
transactions are rolled back, and automatic transaction retry
adds non-deferred duplicate checking.

To always use non-deferred duplicate checking, set to
pessimistic.

When there are few duplicates, optimistic is more efficient.
When there are many duplicates, pessimistic may be more
efficient.

Duplicate
Detection Table

string jms_dd The database table in which the Duplicate Detection Key
exists.

easjms.book Page 9 Friday, July 14, 2006 12:33 PM

Message queues and topics

10 EAServer

Duplicate
Detection
Timeout

long 3600 seconds The number of seconds before an attempt to detect a duplicate
message times out.

Idle Connection
Timeout

long 60 The number of seconds a queue remains in memory when it is
idle; that is, when it is not being accessed by a client or a server
component.

Set to 0 or a negative number for no timeout. Transient
messages that are in memory when a timeout occurs are
discarded.

Maximum
Messages In
Memory

long 10 The maximum number of messages to store in memory for this
message queue. Typically, keeping messages in memory
improves performance.

Persistent messages are always stored in the database; some
are additionally held in memory.

Nonpersistent (transient) messages are held in memory, and
stored in the database only if both the value of
maximumMessagesInMemory is exceeded and the value of
storeTransientMessages is true. Nonpersistent messages are
discarded from memory if both the value of
maximumMessagesInMemory is exceeded and the value of
storeTransientMessages is false.

Maximum
Received
Messages
Waiting For
Acknowledgment

long 0 The maximum number of messages that can be received from
this message queue without being acknowledged. Once the
maximum is reached, no more messages can be received by
clients until the outstanding messages have been
acknowledged.

If this property (maximumWaitingForAcknowledge) value is
either set to 0, or greater than the value of
maximumMessagesInMemory, the value of
maximumMessagesInMemory takes precedence.

Property Datatype Default value Description

easjms.book Page 10 Friday, July 14, 2006 12:33 PM

CHAPTER 2 Setting up the Message Service

Java Message Service User’s Guide 11

Pull Messages
From

string none To pull messages into a message queue from a queue on a
remote JMS provider, or to pull messages into a topic from a
topic on a remote JMS provider, specify the queue or topic
name and the provider using:

remote-destination@provider-name
where remote-destination identifies one or more remote
destinations (queues or topics) and provider-name is the name
of a configured JMS provider. Specify each remote destination
as either:

• queue:queue-name

• topic:topic-name

Specify multiple destinations in a comma-separated list.

Persistent messages are sent exactly once if you are either
using a JMS provider configured with a
com.sybase.jms.client.InitialContextFactory type Initial
Context Factory, or if the JMS provider uses a resource
adapter that supports two-phase commit. Otherwise, messages
are sent at least once.

The remote message queue or topic name can contain one or
more substitution expressions of the form “${var},” where var
is the name of a local Java system property.

Property Datatype Default value Description

easjms.book Page 11 Friday, July 14, 2006 12:33 PM

Message queues and topics

12 EAServer

Push Messages
To

string none To push messages from this queue to one or more queues or
topics on a remote JMS provider, specify the provider and
destination using:

remote-destination@provider-name
where remote-destination identifies one or more remote
destinations (queues or topics) and provider-name is the name
of a configured JMS provider. Specify each remote destination
as either:

• queue:queue-name

• topic:topic-name

Specify multiple destinations in a comma-separated list.

Persistent messages are sent exactly once if you are either
using a JMS provider configured with a
com.sybase.jms.client.InitialContextFactory type Initial
Context Factory, or if the JMS provider uses a resource
adapter that supports two-phase commit. Otherwise, messages
are sent at least once.

A destination name can contain one or more substitution
expressions of the form “${var},” where var is the name of
either a local Java system property or a JMS message header
property. If a property referenced by a substitution expression
exists as both a message header property and a system
property, the message header property takes precedence.

Note Using message header properties to identify the
destination queue or topic provides a limited form of content-
based routing.

Compress Stored
Messages

boolean false Select to compress messages before saving in the database.
Enabling message compression increases CPU usage of the
application server, and reduces the CPU and disk usage of the
database server. Sybase recommends that you test system
performance to determine whether enabling message
compression is beneficial.

Ignore Duplicate
Messages

boolean false This property is currently not used.

Property Datatype Default value Description

easjms.book Page 12 Friday, July 14, 2006 12:33 PM

CHAPTER 2 Setting up the Message Service

Java Message Service User’s Guide 13

Security tab

Select the Security tab, and configure the properties defined in Table 2-2.

Table 2-2: Message queue and topic security properties

Process
Messages In
Order

boolean false Indicates whether to process messages strictly in the order that
they are received. Messages are usually processed in order;
however, when multiple receivers process the same queue, or
messages are received and not acknowledged (then
subsequently recovered), there is a possibility of processing
messages out of order. Setting this value to true is equivalent
to setting Maximum Received Messages to 1, which ensures
that messages are processed in sequence, one at a time.

Store Transient
Messages

boolean false Select to store transient (nonpersistent) messages in the
message store when either the queue overflows—see
Maximum Messages In Memory—or the queue times out due
to client inactivity. If not selected and the queue either
overflows or times out, messages are discarded.

Suspend Message
Delivery

boolean false Select to suspend message delivery for this queue.

Property Datatype Default value Description

Property Datatype
Default
value Description

Producer Roles string none To send messages to a message queue, or to publish messages with
the specified topic, a client must be a member of at least one of the
security roles.

• Select – select individual security roles from the list.

• All – clients must be a member of at least one of the listed
security roles.

• None – anyone can send messages to the queue, or publish
messages with the topic.

Consumer Roles string none To browse or receive messages from this queue, or to receive
messages with the specified topic, a client must be a member of at
least one of the security roles.

• Select – select individual security roles from the list.

• All – clients must be a member of at least one of the listed
security roles.

• None – anyone can read messages in this queue, or receive
messages with the specified topic.

easjms.book Page 13 Friday, July 14, 2006 12:33 PM

Message queues and topics

14 EAServer

❖ Deleting a message queue

1 Remove any listeners attached to the queue.

2 Expand the JMS Message Queues folder, then select the message queue to
delete.

3 Right-click the queue, and select Delete.

4 In the wizard, confirm that you want to delete the queue.

Message topics
The EAServer JMS provider allows you to create and configure JMS message
topics. You need not preconfigure message topics unless their properties
require nondefault values. A JMS client that uses the JMS initial context
factory com.sybase.jms.client.InitialContectFactory can look up preconfigured
topics by name. To look up topics that have not been preconfigured, clients can
either use a JNDI name that ends with “Topic,” or use the
javax.jms.Session.createTopic API. You can also use this API to look up
preconfigured topics.

Each message topic subscription is managed internally by a corresponding
message queue, which is called a subscription queue. The property values for
each subscription queue are the same as the property values for the
corresponding topic. In other words, topic properties are used as templates for
the properties of the internal subscription queues. Internal subscription queues
have names that begin with either “ds~” (for durable subscriptions) or “ts~”
(for transient subscriptions). You may see these names when viewing statistics
or browsing the jms_pm or jms_ts database tables. Sybase recommends that
you do not explicitly configure properties for internal subscription queues—
instead, set topic properties to indirectly configure the internal subscription
queues.

❖ Adding a message topic

To override default properties for JMS temporary topics, name the topic
“javax.jms.TemporaryTopic.”

1 Expand the Resources folder, select JMS Message Topics, right-click, and
select Add.

2 In the wizard, enter a name for the message topic, and select Finish.

❖ Configuring message topic properties

1 Select the message topic to configure.

easjms.book Page 14 Friday, July 14, 2006 12:33 PM

CHAPTER 2 Setting up the Message Service

Java Message Service User’s Guide 15

2 In the right pane, select the General tab, and enter the topic properties
described in Table 2-1 on page 9. The property values apply to both the
message topic and the corresponding subscription queue.

3 Select the Security tab, and configure the properties defined in Table 2-2
on page 13.

❖ Deleting a message topic

1 In the JMS Message Topics folder, select the topic to delete, right-click,
and select Delete.

2 In the wizard, confirm that you want to delete the message topic.

Viewing message statistics
You can view message statistics using either a spreadsheet program or the
Management Console.

❖ Viewing message statistics using a spreadsheet program

• In a spreadsheet program, use a Web query to import statistics. For
example, in Microsoft Excel, select Data | Import External Data | New
Web Query. As the URL, enter
http://host:port/wsh/run?command=get-statistics, where host
and port are the server’s host name and HTTP port, respectively.

❖ Viewing message queue and topic statistics using the Management
Console

1 Expand the Servers folder, select the server, then select Statistics.

2 To view message queue statistics, select the MessageQueue tab—see
“MessageQueue tab” in Chapter 11, “Runtime Monitoring,” in the
EAServer System Administration Guide.

To view message topic statistics, select the MessageTopic tab—see
“MessageTopic tab” in Chapter 11, “Runtime Monitoring,” in the
EAServer System Administration Guide.

easjms.book Page 15 Friday, July 14, 2006 12:33 PM

Connection factories

16 EAServer

Connection factories
To enable JMS applications to establish connections with the message service,
you can create queue connection factories for point-to-point messaging, topic
connection factories for publish/subscribe messaging, and generic connection
factories, which you can use to create connections for both types of messaging.

A JMS client application can also use a connection factory that has not been
preconfigured—see “Looking up a connection factory” on page 28.

You can use the Management Console to add and configure connection
factories.

❖ Adding a JMS connection factory

1 In the Management Console, expand the Resources folder.

2 To add a generic connection factory, select JMS Connection Factories; to
add a queue connection factory, select JMS Queue Connection Factories;
to add a topic connection factory, select JMS Topic Connection Factories.

3 Right-click, and select Add.

4 Enter a name for the connection factory, and select Finish.

❖ Configuring JMS connection factories

1 In the Management Console, expand the Resources folder.

2 Select one of JMS Connection Factories, JMS Queue Connection
Factories, or JMS Topic Connection Factories.

3 Highlight the connection factory you want to configure.

4 On the General tab, enter the connection factory properties described in
Table 2-3.

Table 2-3: Connection factory properties

Property Datatype Default value Description

Client ID string blank Optional. If a JMS client uses a connection factory with
an unspecified clientID, the client use its TCP/IP host
name as the clientID. If this is insufficient, either:

• The client can call the
javax.jms.Connection.setClientID method to set the
clientID, or

• The administrator can create a distinct connection
factory for each client. Sybase does not
recommended this method, as it can make the
administrator unnecessarily busy.

easjms.book Page 16 Friday, July 14, 2006 12:33 PM

CHAPTER 2 Setting up the Message Service

Java Message Service User’s Guide 17

Command
Batch Size

long 0 Some communication between a JMS client and the
JMS server can be batched to improve message
throughput (possibly at the expense of increasing
message delivery times). The commandBatchSize
property allows you to configure the maximum number
of commands in a batch. A value of 0 indicates that the
client should supply its own value; for example, 20.

Sybase recommends that you test different values to
determine which value provides the best performance
in your environment. Different client applications
might benefit from different values. Values that are too
large may cause a client to consume excessive amounts
of memory. A reasonable starting value is 20.

Command
Batch Wait

long 1 The maximum time (in milliseconds) that the client
waits for a batch to fill up before sending it to the
server, partially filled. The configuration property
name is commandBatchWait.

Sybase recommends that you test different values, to
determine which value provides the best performance
in your environment. Values that are too large may
cause delays in message delivery. A reasonable starting
value is 1 millisecond.

Receive
Batch Size

long 0 A JMS client runtime may receive messages in batches
to improve communication with the JMS server. If set
to 0, clients must provide their own value. The
configuration property name is receiveBatchSize.

Sybase recommends that you test different values to
determine which value provides the best performance
in your environment. Values that are too large may
cause a client to consume excessive amounts of
memory. A reasonable starting value is 20.

Note If a client receives only a small number of
messages, then closes its connection, a value of 20 may
be too large, because prefetched messages would need
to be “unreceived.” In such cases, set the value to 1,
then increase in small increments until you determine
the best performance value.

Property Datatype Default value Description

easjms.book Page 17 Friday, July 14, 2006 12:33 PM

Connection factories

18 EAServer

Temporary
Queue
Template

string javax.jms.TemporaryQueue If a session associated with this connection factory
creates a JMS temporary queue, the queue’s
configuration properties are copied from this named
queue. The configuration property name is
temporaryQueueTemplate.

Temporary
Topic
Template

string javax.jms.TemporaryTopic If a session associated with this connection factory
creates a JMS temporary topic, the topic’s
configuration properties are copied from this named
topic. The configuration property name is
temporaryTopicTemplate.

Batch
Persistent
Messages

boolean false Select to enable client-side batching of persistent
messages. This may improve throughput for
applications that use transacted sessions, but should
be used only if the client can resend (potentially) lost
messages upon reconnection. The configuration
property name is batchPersistentMessages.

Within a transaction, if all a client’s sent messages are
derived from messages that were received in the same
transaction, you can safely enable this option, even
though client failure might result in batched transaction
commits not being sent to the server. This is because
when a client restarts, messages that were previously
received but not acknowledged are received again, and
any lost transactions can be reissued.

Batch
Transaction
Commits

boolean false Select to enable client-side batching of transaction
commits. This may improve throughput for
applications that use transacted sessions, but should be
used only if the client can resend (potentially) lost
messages upon reconnection. The configuration
property name is batchTransactionCommits.

Within a single transaction, if all of a client’s sent
messages are derived from messages received in the
same transaction, then this option can be safely
enabled, even though client failure can result in
batched-transaction commits not being sent to the
server. This is because upon client restart, messages
that were previously received but not acknowledged are
received again, and any lost transactions can be
reissued.

Property Datatype Default value Description

easjms.book Page 18 Friday, July 14, 2006 12:33 PM

CHAPTER 2 Setting up the Message Service

Java Message Service User’s Guide 19

Listeners
Message listeners allow you to receive messages asynchronously. Once you
have implemented a listener and installed it on a message consumer, the
listener can send the message to other consumers, or notify one or more
components. A message listener can be:

• A client-side JMS message listener that is associated with a consumer
using javax.jms.MessageConsumer.setMessageListener. See
“Implementing and installing message listeners” on page 40.

• An EJB message-driven bean (MDB) that implements the
javax.jms.MessageListener interface. See “Message-driven beans” on
page 19.

• An EAServer class that implements the CtsComponents::MessageListener
interface. See the HTML documentation in the html/ir subdirectory of
your EAServer installation.

Message-driven beans
An MDB is a type of Enterprise JavaBean (EJB) specifically designed as a
message consumer. You can install an MDB as a listener on a message queue
or topic. MDBs can listen for messages from either the EAServer JMS provider
or a JCA 1.5 resource adapter.

Disable
Transient
Exceptions

boolean false To optimize the performance of a JMS application, set
to false. The configuration property name is
disableTransientExceptions.

Transient exceptions occur when the JMS client
runtime determines that the failure or restart of a server
may have resulted in the loss of some nonpersistent
messages. If transient exceptions occur, the client can
handle them, or you can install an exception listener
(using the javax.jms.Connection.setExceptionListener
method) to handle them.

If clients do not care about losing nonpersistent
messages, set to true.

Property Datatype Default value Description

easjms.book Page 19 Friday, July 14, 2006 12:33 PM

Listeners

20 EAServer

By listening for messages from a resource adapter, MDBs can receive message
types other than JMS. Resource adapters also enable an MDB to listen for
messages from third-party JMS providers.

MDBs implement the javax.jms.MessageListener interface, which contains
only the onMessage method. This example illustrates the skeleton code for a
message listener:

class QueueMessageListener implements MessageListener
{

public void onMessage(javax.jms.Message msg)
{

// process message, notify component
}

}

Unlike other EJBs, message-driven beans do not have a home or remote
interface, and clients cannot directly access an MDB. When an MDB is
installed as a listener on a message queue or topic and a message arrives,
EAServer instantiates the MDB and calls onMessage to notify the MDB that a
message has been delivered to the queue or topic on which it is installed.

MDB interface
methods

An MDB must implement the MessageDrivenBean interface, which consists of
the following methods:

An MDB instance with container-managed transactions can call these
MessageDrivenContext interface methods:

For information about Enterprise JavaBeans, see the EJB User’s Guide.

Method name Description

ejbCreate Creates an instance of an MDB.

setMessageDrivenContext Associates an MDB instance with its context, which
EAServer maintains. This provides the MDB instance
access to the MessageDrivenContext interface.

ejbRemove Notifies the MDB instance that it is being removed and
should release its resources.

Method name Description

setRollbackOnly To specify that the current transaction must be rolled back.

getRollbackOnly To test whether the current transaction has been marked to roll
back.

getUserTransaction Returns the javax.transaction.UserTransaction interface, with
which the MDB can set and obtain transaction status.

easjms.book Page 20 Friday, July 14, 2006 12:33 PM

CHAPTER 2 Setting up the Message Service

Java Message Service User’s Guide 21

❖ Installing and configuring an MDB as a message listener

1 Deploy the EJB-JAR file that contains the MDB, as described in Chapter
2, “Deploying and Configuring EJB Components,” in the EJB User’s
Guide.

When you deploy an EJB-JAR, EAServer creates an Ant configuration
file, which contains the component property settings read from the
EJB-JAR deployment descriptor. You may need to customize these
settings.

2 The following example sets properties for the MDB called
“MyQueueListener,” which is implemented by the
ejb.components.cmstests.MyQueueListener component:

<setProperties component="ejb.components.cmstests.MyQueueListener">
<property name="ejbName" value="MyQueueListener" />
<property name="ejbClass"

value="ejb.components.cmstests.MyQueueListener_EJB" />
<property name="j2eeType" value="MessageDrivenBean" />
<messageListener queue="MyQueueListenerQueue" name="" />
<activationConfig name="acknowledgeMode" value="Auto-acknowledge" />
<classLoader name="ejb.components.cmstests" />
<threadMonitor name="${ejb.serviceThreadMonitor}" />
<instancePool timeout="${ejb.poolTimeout}" />
<transaction type="NotSupported" batch="${ejb.transactionBatch}"

retry="${ejb.transactionRetry}" />
</setProperties>

To assign the MDB as a listener for a message queue or topic:

a In the Management Console, expand the EJB Modules folder, and
select the package that contains the MDB.

b On the User Configuration tab, find the messageListener definition
inside the <setProperties> tags for the MDB component.

To assign the listener to a message queue, set the value of
messageListener queue to the name of a message queue; for example:

<setProperties component="ejb.components.cmstests.MyQueueListener">
<messageListener queue="cts-mdb-test-queue" topic=""

threadCount="1" />
</setProperties>

To assign the listener to a message topic, set the value of
messageListener topic to the name of a message topic; for example:

<setProperties component="ejb.components.cmstests.MyQueueListener">
<messageListener queue="" topic="cts-mdb-test-topic"

easjms.book Page 21 Friday, July 14, 2006 12:33 PM

Listeners

22 EAServer

threadCount="1" />
</setProperties>

3 To configure the MDB to listen on the inbound resource adapter of a JCA
1.5 connector, instead of the JMS provider, set the value of
messageListener name to the name of a
com.sybase.djc.connector.MessageListener component; for example:

<setProperties component="ejb.components.cmstests.MyQueueListener">
<messageListener name="myConnectorMessageListener" />

</setProperties>

4 Reconfigure or recompile the MDB properties—see “Updating
component properties” in Chapter 2, “Deploying and Configuring EJB
Components,” in the EAServer Enterprise JavaBeans User’s Guide.

Managing dead messages
A message is considered “dead” when repeated attempts to receive the message
fail and the transactions roll back.

You can specify transaction retry parameters in the Ant configuration script
that defines the message listener; for example:

<setProperties component="ejb.components.mymodule.MyListener">
...
<transaction retry="true" retryCount="5" retryDelay="60"/>

</setProperties>

Dead messages for a message queue named xxx are moved to a message queue
named deadMessages:xxx. To view the messages in a deadMessages:xxx
queue, you can use the JMS API QueueBrowser (see “Browsing messages” on
page 41). To move a message from deadMessages:xxx to another message
queue:

1 Obtain a transacted session (see “Creating sessions” on page 31).

2 Receive the message from deadMessages:xxx (see “Receiving messages”
on page 40).

3 Acknowledge the message.

4 If the message should be recovered, send it to the xxx message queue;
otherwise, send it to any message queue (see “Sending messages” on page
38).

5 Commit the transacted session.

easjms.book Page 22 Friday, July 14, 2006 12:33 PM

CHAPTER 2 Setting up the Message Service

Java Message Service User’s Guide 23

You can download the JMS 1.1 API Specification from the JMS Download site
at http://java.sun.com/products/jms/docs.html.

To check the message store for dead (persistent) messages, you can run an SQL
query, such as:

select pm_qid, count(*) from jms_pm
where pm_qid like '%'
group by pm_qid

Message selectors
To filter the messages you receive and to subscribe to specific message topics,
use a message selector.

Message selectors must conform to the JMS selector specification, which is a
subset of the SQL-92 syntax—see the JMS 1.1 Specification at
http://java.sun.com/products/jms/.

❖ Adding a message selector to an MDB

• Edit the user configuration script for the EJB-JAR in which the MDB
component is defined.

For example, to receive all published messages with the stock symbol
“SY,” use the following message listener configuration:

<setProperties component="ejb.components.cmstests.MyTopicListener">
<messageListener queue="" topic="StockPrice"

selector="symbol = 'SY'" durable="true" threadCount="1" />
</setProperties>

Threads
You can define the number of threads dedicated to an MDB listener.

❖ Defining the number of listener threads

• In the user configuration script for the EJB-JAR in which the MDB is
defined, set the value of the threadCount property; for example:

<setProperties component="ejb.components.cmstests.MyTopicListener">

easjms.book Page 23 Friday, July 14, 2006 12:33 PM

Threads

24 EAServer

<messageListener threadCount="1" />
</setProperties>

Note To enable EAServer to create multiple instances of the MDB, set the
threadCount property to a value greater than 1.

easjms.book Page 24 Friday, July 14, 2006 12:33 PM

Java Message Service User’s Guide 25

C H A P T E R 3 Developing JMS Clients

Client runtime requirements
To run JMS clients, you must have:

• An EAServer client runtime installation

• A Java Runtime Environment (JRE) or JDK installation, version
1.4.2 or later

JMS client program flow
The steps in the table below describe the program flow in a typical JMS
client:

Topic Page
Client runtime requirements 25

JMS client program flow 25

Defining the initial naming context 26

Looking up a connection factory 28

Creating connections 29

Creating sessions 31

Looking up destinations 33

Creating message producers and consumers 33

Sending and receiving messages 37

Creating JMS providers 42

Step Action For more information

1 Define the initial naming context. See “Defining the initial naming context” on page 26.

2 Obtain a connection factory. See “Looking up a connection factory” on page 28.

easjms.book Page 25 Friday, July 14, 2006 12:33 PM

Defining the initial naming context

26 EAServer

Figure 3-1 illustrates the relationship of the objects in a JMS application.

Figure 3-1: JMS application

Defining the initial naming context
A JMS client application must instantiate a Sybase InitialContext, and provide
information to connect to a JMS provider.

3 Create a connection. See “Creating connections” on page 29.

4 Create one or more sessions. See “Creating sessions” on page 31.

5 Look up message queues and
topics.

See “Looking up destinations” on page 33.

6 Create message producers and
consumers.

See “Creating message producers and consumers” on page 33.

7 Send and receive messages. See “Sending and receiving messages” on page 37.

Step Action For more information

easjms.book Page 26 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 27

The core JNDI interface used by client applications is javax.naming.Context,
which represents the initial naming context used to resolve names to
connection factories, message queues, and topics. To obtain an initial naming
context:

1 Initialize a java.util.Properties instance:

java.util.Properties props = new java.util.Properties()

2 Set the InitialContext.INITIAL_CONTEXT_FACTORY property:

props.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sybase.jms.client.InitialContextFactory")

3 To define the connection properties, either specify a JMS provider or set
the properties manually. EAServer includes a JMS provider named
“default.”

To use the connection properties defined by the default JMS provider:

a Initialize an instance of a JMS provider:

com.sybase.jms.client.JmsProvider _jmsProvider =
new com.sybase.jms.client.JmsProvider()

b Set the InitialContext.PROVIDER_URL property to
“jms-provider:default”:

props.put(Context.PROVIDER_URL, "jms-provider:default")

This provides the information that is needed to connect to the default
JMS provider. You can configure the properties of the default JMS
provider and create new providers using the Management Console—
see “Creating JMS providers” on page 42.

To set the connection properties manually, set the URL for the server’s
IIOP port, the user name (principal), and the password (credentials):

props.put(Context.PROVIDER_URL, "iiop://myhost:2000")
props.put(Context.SECURITY_PRINCIPAL, "jmsuser")
props.put(Context.SECURITY_CREDENTIALS, "jmspass1")

4 Create the InitialContext instance:

return new InitialContext(props)

easjms.book Page 27 Friday, July 14, 2006 12:33 PM

Looking up a connection factory

28 EAServer

The JMS provider uses properties defined in the local client installation, not the
server installation. You cannot use a JMS provider in an applet, since this
feature requires access to configuration files in the EAServer installation. To
run a JMS client application that uses a JMS provider, verify that the operating
system library search path includes the server’s lib subdirectory. For example,
on Windows, PATH must include %DJC_HOME%\lib, and on UNIX,
LD_LIBRARY_PATH must include $DJC_HOME/lib.

If you are creating a client application that must be portable to other servers,
use an external mechanism to specify properties, rather than hard-coding
values in the source code. For example, in a Java application, use command
line arguments or a serialized Java properties file. To specify properties used
by a Java applet, use parameters in the HTML Applet tag that loads the applet.

This example runs the JMS client application JMSClientClass and sets the
InitialContext factory, URL, user name, and password properties at runtime:

java
-Djava.naming.factory.initial=com.sybase.jms.client.InitialContextFactory
-Djava.naming.provider.url=iiop://myhost:9000
-Djava.naming.security.principal=”jmsuser”
-Djava.naming.security.credentials=”jmspass1”
JMSClientClass

Looking up a connection factory
A connection factory allows you to create connections with the EAServer JMS
provider, and specify a set of configuration properties that define the
connections.

Beginning in version 6.0, EAServer provides a common connection factory
that you can use to create both queue and topic connections. Queue connections
allow you to send and receive messages using the point-to-point messaging
model. Topic connections allow you to publish and receive messages using the
publish/subscribe messaging model.

To create and configure connection factories, use the Management Console—
see “Connection factories” on page 16. However, you need not preconfigure
connection factories unless their properties require nondefault values.

To look up preconfigured connection factories by name, use the JMS initial
context factory com.sybase.jms.client.InitialContectFactory.

To look up connection factories that have not been preconfigured:

easjms.book Page 28 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 29

• Common connection factories – use a JNDI name that ends with
“ConnectionFactory”; the name cannot end with either
“QueueConnectionFactory” or “TopicConnectionFactory.”

• Queue connection factories – use a JNDI name that ends with
“QueueConnectionFactory.”

• Topic connection factories – use a JNDI name that ends with
“TopicConnectionFactory.”

The following example illustrates how clients can use JNDI to look up a
connection factory object, where ctx is the initial naming context:

// Look up a common connection factory that has not been preconfigured.
// You can use this connection factory to create queue and topic connections.

ConnectionFactory myConnFactry=
(ConnectionFactory) ctx.lookup(“MyConnectionFactory”);

// Look up a preconfigured queue connection factory

QueueConnectionFactory queueCF =
(QueueConnectionFactory) ctx.lookup(“MyTestQueueCF”);

// Look up a preconfigured topic connection factory

TopicConnectionFactory topicCF =
(TopicConnectionFactory) ctx.lookup(“MyTestTopicCF”);

If the connection factory cannot be found, EAServer throws a
javax.naming.NamingException.

Creating connections
Beginning in version 6.0, EAServer provides a common connection type that
you can use for both message queues and topics.

To create a connection to the EAServer JMS provider, a JMS client must have
access to a ConnectionFactory object. See “Looking up a connection factory”
on page 28.

easjms.book Page 29 Friday, July 14, 2006 12:33 PM

Creating connections

30 EAServer

Once you have created a connection, you must explicitly start it before
EAServer can deliver messages on the connection. To avoid message delivery
before a client has finished setting up, you may want to delay starting the
connection. This code fragment uses a common connection factory to create a
connection, then starts the connection:

Connection myConnect = myConnFactry.createConnection();

// other setup procedures

myConnect.start();

You can stop message delivery using the Connection.stop method, then use start
to resume delivery. While a connection is stopped, receive calls do not return
with a message, and messages are not delivered to message listeners. Any calls
to receive or message listeners that are in progress when stop is called,
complete before the stop method returns.

When you no longer need a connection, close it by calling Connection.close to
release its resources and help your application run more efficiently.

With a single connection to EAServer, the message service can send and
receive multiple messages. Therefore, a JMS client usually needs only one
connection.

Setting the client ID A connection for a durable topic subscriber must have a client ID associated
with it so that EAServer can uniquely identify a client if it disconnects and later
reconnects.

The default client ID is the client’s TCP/IP host name. To set the client ID to
another value, you can either:

• Use the Management Console to set the client ID when you create the
connection factory—see “Configuring JMS connection factories” on page
16, or

• Set it immediately after creating the connection and before performing any
other action on the connection. After this point, attempting to set the client
ID throws an IllegalStateException. This code fragment illustrates how to
set a connection’s client ID:

myConnect.setClientID(“Client ID String”);

For more information about topic subscribers, see “Creating message
consumers” on page 34.

easjms.book Page 30 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 31

ExceptionListener To enable EAServer to asynchronously notify clients of serious connection
problems, create and register an ExceptionListener. The
javax.jms.ExceptionListener must implement this method:

void onException(JMSException exception);

To register a listener, call the Connection::setExceptionListener method, for
example:

myConnect.setExceptionListener(MyExceptionListener);

If an exception occurs and a listener has been registered, EAServer calls the
onException method and passes the JMSException, which describes the
problem.

Creating sessions
Once a client has established a connection with EAServer, it must create one
or more sessions. A session serves as a factory for creating message producers,
message consumers, and temporary destinations.

Beginning in version 6.0, EAServer provides a session object that you can use
for both message queues and topics.

To create a Session object, use a previously created Connection object as
follows:

Session mySession = myConnect.createSession(true,
Session.AUTO_ACKNOWLEDGE);

When you create a session, set the first parameter to true if you want a
transacted session. When you publish or send messages in a transacted
session, a transaction begins automatically. Once a transacted session starts, all
messages published or sent in the session become part of the transaction until
the transaction is committed or rolled back. When a transaction is committed,
all published or sent messages are delivered. If a transaction is rolled back, any
messages that are produced in the session are destroyed, and any consumed
messages are recovered. When a transacted session is committed or rolled
back, the current transaction ends and the next transaction begins. See Chapter
2, “CORBA Component Life Cycles and Transaction Semantics,” in the
EAServer CORBA Components Guide for more information about
transactions.

easjms.book Page 31 Friday, July 14, 2006 12:33 PM

Creating sessions

32 EAServer

Set the first parameter to false when you do not want a transacted session. If a
client has an active transaction context, it can still achieve transactional
behavior, even if it does not create a transacted session.

The second parameter indicates whether the message producer or the consumer
will acknowledge messages. This parameter is valid only for nontransacted
sessions. In transacted sessions, acknowledgment is determined by the
outcome of the transaction.

Session.recover To stop message delivery within a session and redeliver all the
unacknowledged messages, you can use the Session.recover method. When
you call recover for a session, the message service:

1 Stops message delivery within the session.

2 Marks all unacknowledged messages as “redelivered,” including those
that have been delivered.

3 Restarts sending all unacknowledged messages, beginning with the oldest
message.

The Session.recover method can be called only in a non-transacted session; it
throws an IllegalStateException if it is called by a transacted session.

Session.close The JMS provider can allocate resources on behalf of a session outside the
JVM. Clients should use Session.close to close a session when it is no longer
needed, to release its resources and help the application run more efficiently.

Temporary
destinations

A temporary destination is generated automatically, and its scope is the
connection in which it is created. A typical use for a temporary destination is
as the destination to which a reply to a message should be sent. Specify this
destination in the message header field JMSReplyTo.

Acknowledgment mode Description

AUTO_ACKNOWLEDGE The session automatically acknowledges
messages.

CLIENT_ACKNOWLEDGE The client explicitly acknowledges a message,
which automatically acknowledges all messages
delivered in the session.

DUPS_OK_ACKNOWLEDGE EAServer implements this the same as
AUTO_ACKNOWLEDGE.

easjms.book Page 32 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 33

Looking up destinations
JMS destinations are message queues and topics. Use the Management
Console to create and configure JMS destinations—see “Message queues and
topics” on page 8. However, you need not preconfigure message queues or
topics, unless you want to set their properties to non-default values.

A JMS client can use the JMS initial context factory
com.sybase.jms.client.InitialContectFactory to look up preconfigured message
queues and topics by name. For example, if you create a message queue called
“myMessageQueue” using the Management Console, you can look up the
queue as follows, where ctx is the initial naming context:

Queue myQueue = (Queue) ctx.lookup(“myMessageQueue”);

To look up a message queue that has not been preconfigured, you can use
either:

• JNDI to look up a name ending with “Queue”; for example:

Queue myQueue = (Queue) ctx.lookup(“newQueue”);

Look ups are not case sensitive.

• The javax.jms.Session.createQueue API; for example:

Queue myQueue =
(Queue) mySession.createQueue(“newQueue”)

You can also use this API to look up preconfigured queues.

When you look up a message queue or topic that has not been preconfigured,
the message service initializes an instance of the message queue or topic using
default property values.

To look up message topics that have not been preconfigured, clients can use
either a JNDI name ending with “Topic,” or use the
javax.jms.Session.createTopic API. You can also use this API to look up
preconfigured topics.

Creating message producers and consumers
Clients use message producers to send or publish messages, and message
consumers to receive messages. To create message producers or consumers,
you need a valid JMS session.

easjms.book Page 33 Friday, July 14, 2006 12:33 PM

Creating message producers and consumers

34 EAServer

Creating message producers
Create one or more message producers for sending and publishing messages.

Beginning in version 6.0, EAServer provides a common message producer
object that you can use for both sending and publishing messages.

The following code fragment creates a MessageProducer object called
“mySender” using the previously created Session object mySession, and
specifies the name of the message queue destination myQueue:

MessageProducer mySender =
mySession.createProducer(myQueue);

When you create a message producer, you can specify default values for the
following properties:

• DeliveryMode – the mode of message delivery can be either:

• PERSISTENT – messages are delivered once and only once. Saving
messages to a data store provides consistent, nonduplicated message
delivery.

• NON_PERSISTENT – messages are delivered at most once.
Messages are not saved to a data store. If the JMS provider fails,
messages can be lost, but they are not delivered more than once. This
mode requires less system overhead.

• Priority – the priority of a message can range from 0 – 9, where 0 is the
lowest priority. Typically, 0 – 4 are considered normal priority levels, and
5 – 9 are expedited priority levels.

• Time-to-live – the number of milliseconds, which together with the GMT,
defines a message expiration time.

When you no longer need a message producer, call MessageProducer.close to
release its resources.

Creating message consumers
Message consumers receive messages that are either sent to a queue or
published.

easjms.book Page 34 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 35

Beginning in version 6.0, EAServer provides a message consumer object,
which you can use for receiving messages that are either sent or published. In
earlier versions of EAServer, two types of message consumers were required,
one for receiving messages that are sent to a queue and one for subscribing to
published messages.

The following code fragment uses a previously created Session object
mySession, and creates a MessageConsumer to retrieve messages that are sent
to the message queue myQueue:

MessageConsumer myConsumer =
mySession.createConsumer(myQueue);

A MessageConsumer object that acts as a topic subscriber receives published
messages and can be either durable or nondurable. A nondurable subscriber
can only receive published messages while it is connected to EAServer. If you
want guaranteed message delivery, make the subscriber durable. For example,
if you create a durable subscription on a topic, EAServer saves all published
messages for the topic in a database. If a durable subscriber is temporarily
disconnected from EAServer, its messages are delivered when the subscriber
reconnects. Messages are deleted from the database only after they are
delivered to the durable subscriber.

This example illustrates how to create both durable and nondurable topic
subscribers. In both cases, reference previously created Topic and Session
objects:

// Create a durable subscriber

MessageConsumer subscriber =
mySession.createDurableSubscriber(myTopic,

“mySubscription”)

// Create a non-durable subscriber

MessageConsumer subscriber =
mySession.createSubscriber(myTopic);

To remove a durable topic subscription, call the Session.unsubscribe method,
and pass in the subscription name; for example:

mySession.unsubscribe(“subscriptionName”);

When you no longer need a message consumer, call MessageConsumer.close
to release its resources.

easjms.book Page 35 Friday, July 14, 2006 12:33 PM

Creating message producers and consumers

36 EAServer

Filtering messages using selectors

You can use selectors to specify which messages you want delivered to a
message queue. Once you add a selector to a queue, the message service
delivers only those messages whose message topic matches the selector. You
can define message selectors in the Ant configuration file that defines the
component—see “Message selectors” on page 23. You can also create message
selectors programmatically. The following example illustrates how to create a
message selector and use it when you are creating a new MessageConsumer:

// Create a selector to receive only text messages whose value
// property equals 100.

String mySelector = “value = 100 and Type = ‘TextMessage’”;

// Create a MessageConsumer for a queue using mySelector.

MessageConsumer receiver = mySession.createConsumer(myQueue, mySelector);

This code sample sends two messages to the message queue we just created.
The properties of the first message match those of the message queue’s
selector. The properties of the second message do not.

// Create and send a message whose properties match the message queue selector.

TextMessage textMsg = mySession.createTextMessage(“Text Message”);
textMsg.setIntProperty(“Value”, 100);
textMsg.setStringProperty(“Type”, “TextMessage”);
sender.send(textMsg);

// Create and send a Bytes message, whose value property equals 200.

BytesMessage bytesMsg = mySession.createBytesMessage();
bytesMsg.setIntProperty(“Value”, 200);
bytesMsg.setStringProperty(“Type”, “BytesMessage”);
sender.send(bytesMsg);

When messages are retrieved from the message queue, the text message is
returned but the bytes message is not.

easjms.book Page 36 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 37

Sending and receiving messages

Creating messages
To create a message, you must first create an instance of a Session object. See
“Creating sessions” on page 31 for details. The following sample code creates
a JMS text messages using the session called mySession:

javax.jms.TextMessage myTextMsg =
mySession.createTextMessage(“Text message”);

EAServer supports six message types that a message producer can send or
publish. Table 3-1 describes the message types and the javax.jms.Session
interface APIs used to create instances of each.

Table 3-1: JMS message types

To improve interoperability with non-Java clients or components and to
improve message receivers’ ability to filter messages, Sybase recommends that
you use either plain messages or text messages.

Message selectors allow you to filter messages based on text in the message
properties. You cannot filter messages based on text in the message body.

For more information about message types and message properties, see the
JMS 1.1 API documentation at http://java.sun.com/products/jms/docs.html.

Message
type Create message API Comments

Plain Session.createMessage Creates a message without a message body.

Text Session.createTextMessage Creates a message that can contain a string in
the message body.

Object Session.createObjectMessage Creates a message that can contain a
serializable Java object in the message body.

Stream Session.createStreamMessage Creates a message that can contain a stream of
Java primitives in the message body. Fill and
read the message sequentially.

Map Session.createMapMessage Creates a message whose body can contain a
set of name-value pairs where names are
Strings and values are Java primitive types.

Bytes Session.createBytesMessage Creates a message that can contain a stream of
uninterpreted bytes in the message body.

easjms.book Page 37 Friday, July 14, 2006 12:33 PM

Sending and receiving messages

38 EAServer

Sending messages
To send a message, you must specify the destination message queue. The
message service notifies listeners that are registered for the queue and the
message remains in the queue until it is received and acknowledged.

Figure 3-2: Send message flow

Figure 3-2 illustrates the message flow that occurs when a client or component
sends a message.

This example notifies a client of a completed order; it creates a new message,
constructs the message text, and sends the message to the client’s queue:

public void notifyOrder(Session mySession,
Queue queue,
int orderNo,
String product)

{
String text = "Order " + orderNo + " for product " + product +
" was completed at " + time;

MessageProducer sender = mySession.createProducer(myQueue);
javax.jms.TextMessage textMsg = qSession.createTextMessage(text);

textMsg.setStringProperty(“ProductDescription”, product);
textMsg.setIntProperty(“OrderNumber”, orderNo);

sender.send(textMsg);
}

Publishing messages
When you publish a message, a copy is sent to all topic subscribers that have a
message selector registered with the specified topic. Figure 3-3 illustrates the
message flow when a client or component publishes a message.

easjms.book Page 38 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 39

Figure 3-3: Publish message flow

This example publishes a message that notifies clients of changes in a stock
value; it creates the message text, creates a MessageProducer and the message
using the Session object, then publishes the message:

public void notifyStockValue(Session mySession,
Topic topic,
String stock,
double value)

{
String text = time + ": The stock " + stock + " has value " + value;

// Create the publisher and message objects.

MessageProducer publisher = mySession.createProducer(topic);
javax.jms.TextMessage textMsg = mySession.createTextMessage(text);

// Publish a NON_PERSISTENT message with a priority of 9 and a
// time-to-live of 5000 milliseconds (5 seconds)

publisher.publish(textMsg, DeliveryMode.NON_PERSISTENT, 9, 5000);
}

To publish a persistent message using the default priority (4) and timeout
(never expires) values, use this syntax:

publisher.publish(textMsg);

easjms.book Page 39 Friday, July 14, 2006 12:33 PM

Sending and receiving messages

40 EAServer

Receiving messages
You can receive messages either synchronously or asynchronously. To receive
messages synchronously (get all the messages at one time), call the receive
method for the message consumer. The following code samples illustrate how
to receive all the messages from a queue, using three different timeout options:

// Get all the messages from the queue. If none exists, wait until a message
// arrives.

javax.jms.TextMessage queueTextMsg = (javax.jms.TextMessage)
receiver.receive();

// Get all the messages from the queue. If none exists, wait 5000 milliseconds
//(5 seconds) or until a message arrives, whichever comes first.

javax.jms.TextMessage queueTextMsg =
(javax.jms.TextMessage) receiver.receive(5000);

// Get all the messages from the queue. If none exists, return NULL.

javax.jms.TextMessage queueTextMsg =
(javax.jms.TextMessage) receiver.receiveNoWait();

To receive messages asynchronously (as they are delivered), implement a
message listener and install it on the message consumer, either a topic or a
queue. See “Implementing and installing message listeners” on page 40.

Implementing and installing message listeners
Message listeners allow you to receive messages asynchronously. Once you
have implemented a listener, install it on a message consumer. When a message
is delivered to the message consumer, the listener can process the message or
send it to other consumers.

The message service implements two types of JMS message listeners:

• Message-driven beans – see “Message-driven beans” on page 19.

• Client-side – you can associate a client-side JMS message listener with a
message consumer programmatically.

A message listener implements the javax.jms.MessageListener interface, which
contains only the onMessage method. This example illustrates the skeleton
code for a message listener:

easjms.book Page 40 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 41

class QueueMessageListener implements MessageListener
{

public void onMessage(javax.jms.Message msg)
{

// process message
}

}

To install a client-side message listener, first create a message consumer (see
“Creating message consumers” on page 34), then install the listener, using this
syntax:

myConsumer.setMessageListener(new MessageListener());

Browsing messages
You can use the QueueBrowser interface to look at messages in a queue without
removing them. You can browse through all the messages in a queue, or
through a subset of the messages. To browse through a queue’s messages,
create an instance of a QueueBrowser object using a previously created Session
object. To create a browser for viewing all the messages in a queue, call
createBrowser and pass the message queue:

QueueBrowser qbrowser =
mySession.createBrowser(myQueue);

To create a browser for viewing a subset of the messages in a queue, call
createBrowser and pass the message queue and a message selector string:

QueueBrowser qbrowser =
mySession.createBrowser(myQueue, mySelector);

For information about message selectors, see “Filtering messages using
selectors” on page 36.

Once you have access to the QueueBrowser object, call getEnumeration, which
returns an Enumeration that allows you to view the messages in the order that
they would be received:

java.util.Enumeration enum = qbrowser.getEnumeration();

easjms.book Page 41 Friday, July 14, 2006 12:33 PM

Creating JMS providers

42 EAServer

Creating JMS providers
A JMS provider supports a messaging system by implementing the JMS API,
and by providing other administrative and control functionality. You can define
new JMS providers using either the Management Console or an XML
configuration file.

You can run JMS application clients using the properties configured by the
JMS provider. Properties set in the JMS provider definition take precedence
over those set in the JMS client code or in Java system properties. See Chapter
4, “Creating Application Clients,” in the EAServer Enterprise JavaBeans
User’s Guide.

❖ Adding a JMS provider

1 Start the Web console and connect to EAServer as described in Chapter 1,
“Getting Started,” in the System Administration Guide.

2 Expand the Naming Providers folder and the JMS Providers folder
beneath it.

3 Right-click the JMS Providers folder, and select Add. Complete the
wizard to create the JMS provider.

4 Configure the JMS provider.

❖ Configuring a JMS provider

1 Expand the Naming Providers folder and the JMS Providers folder, then
select the provider to configure.

The JMS provider properties display on the following tabs:

• General tab

• JMS Settings tab

• Pull Settings tab

• Push Settings tab

On each tab, click Apply to save your changes.

General tab
On the General tab, enter:

easjms.book Page 42 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 43

• Use Resource Adapter Select this option if MDBs listen on a JCA
resource adapter. Using resource adapters allows EAServer to receive
messages from third-party JMS providers. Resource adapters can also
receive message types other than javax.jms.Message. The configuration
property name is useResourceAdapter.

• JNDI Initial Context Factory The initial context factory for the JMS
provider; for the default provider, the value is
“com.sybase.jms.client.InitialContextFactory.” The configuration
property name is java.naming.factory.initial.

• JNDI Provider URL The URL for the name server. The default is
“iiop://${host.name}:2000” (host.name represents the name of the
machine where EAServer is running). The configuration property name is
java.naming.provider.url.

• JNDI Security Principal A valid user name to access the name server;
the default is “${user.name}.” The configuration property name is
java.naming.security.principal.

• JNDI Security Credentials A valid password for the user. he
configuration property name is java.naming.security.credentials.

• Idle Connection Timeout The number of seconds before an idle
connection times out; the default is 60 (1 minute). The configuration
property name is idleConnectionTimeout.

• Lookup Cache Timeout The number of seconds cache entries remain
active before they must be refreshed; the default is 600 (10 minutes). The
configuration property name is lookupCacheTimeout.

• Socket Timeout The number of seconds a socket remains active; the
default is 600 (10 minutes). The configuration property name is
socketTimeout.

• Enable Automatic Failover If set to true, duplicate messages might be
published. The configuration property name is automaticFailover.

• Enable Data Compression Select to enable data compression. The
configuration property name is dataCompression.

JMS Settings tab
On the JMS Settings tab, enter:

easjms.book Page 43 Friday, July 14, 2006 12:33 PM

Creating JMS providers

44 EAServer

• JMS Queue Connection Factory Enter the name of the class that
provides queue connections; the default is QueueConnectionFactory. The
configuration property name is queueConnectionFactory.

• JMS Topic Connection Factory Enter the name of the class that
provides topic connections; the default is TopicConnectionFactory. The
configuration property name is topicConnectionFactory.

• JMS Connection Username If required, a user name for a JMS
connection. The configuration property name is jms.username.

• JMS Connection Password The password for the JMS connection user
name. The configuration property name is jms.password.

Pull Settings tab
On the Pull Settings tab, enter:

• Pull – Batch Size The number of messages to pull into a message queue
or topic from a queue or topic on a remote JMS provider, in a single batch.
The default is 1. The configuration property name is pullBatchSize.

• Pull – Receive Timeout The number of seconds to pull messages into a
message queue or topic from a queue or topic on a remote JMS provider,
before timing out. The default is 600 (10 minutes). The configuration
property name is pullReceiveTimeout.

• Pull – Wait After Success The number of seconds to wait after
successfully pulling messages into a message queue or topic, before
another pull operation is performed. The default is 0. The configuration
property name is pullWaitAfterSuccess.

• Pull – Wait After Failure The number of seconds to wait after a failed
attempt to pull messages into a message queue or topic, before trying
again. The default is 60 (1 minute). The configuration property name is
pullWaitAfterFailure.

Push Settings tab
On the Push Settings tab, enter:

• Push – Batch Size The number of messages to push onto one or more
queues or topics on a remote JMS provider, in a single batch. The default
is 1. The configuration property name is pushBatchSize.

easjms.book Page 44 Friday, July 14, 2006 12:33 PM

CHAPTER 3 Developing JMS Clients

Java Message Service User’s Guide 45

• Push – Receive Timeout The number of seconds to push messages
from a message queue or topic to one or more queues or topics on a remote
JMS provider, before timing out. The default is 600 (10 minutes). The
configuration property name is pushReceiveTimeout.

• Push – Wait After Success The number of seconds to wait after
successfully pushing messages into a remote message queue or topic,
before another push operation is performed. The default is 0. The
configuration property name is pushWaitAfterSuccess.

• Push – Wait After Failure The number of seconds to wait after a failed
attempt to push messages into a remote message queue or topic, before
trying again. The default is 60 (1 minute). The configuration property
name is pushWaitAfterFailure.

easjms.book Page 45 Friday, July 14, 2006 12:33 PM

Creating JMS providers

46 EAServer

easjms.book Page 46 Friday, July 14, 2006 12:33 PM

Java Message Service User’s Guide 47

A
acknowledgment modes, session 32
automaticFailover, JMS provider property 43
automaticRecoveryTimeout

message queue property 9

B
batchPersistentMessages, connection factory property

18
batchTransactionCommits, connection factory property

18
browsing messages 41

C
client applications

path requirement 28
client ID, setting 30
clientID, connection factory property 16
clients

JMS, developing 25
sessions, creating 31

closing
connections 30
message consumers 35
message producers 34
sessions 32

clusterPartition
message queue property 9

commandBatchSize, connection factory property 17
commandBatchWait, connection factory property 17
compressStoredMessages

topic property 12
connection factories 7, 16

adding 16
configuration properties 16

looking up from a JMS client 28
connections

closing 30
creating 29
ExceptionListener 31
setting the client ID 30
start method 30
stop method 30

consumerRoles
message queue property 13

conventions vii
createConsumer method 35
createProducer method 34
createQueue method 33
createTopic method 33
creating

InitialContext object 26
JMS messages 37

D
databaseTable

message queue property 9
dataCompression, JMS provider property 43
dataSource

message queue property 9
delivery modes, message producer 34
destinations

permanent 7
permanent, looking up 33
temporary 32

developing JMS clients 25
disableTransientExceptions, connection factory property

19
duplicateDetectionKey property 9
duplicateDetectionProtocol

message queue property 9
duplicateDetectionTable

message queue property 9

Index

easjms.book Page 47 Friday, July 14, 2006 12:33 PM

Index

48 EAServer

duplicateDetectionTimeout
message queue property 10

E
environment variables

LD_LIBRARY_PATH 28
PATH 28

ExceptionListener, creating for a connection 31

F
filtering messages using selectors 36

G
getEnumeration method 41

H
high availability and load balancing 2

I
idleConnectionTimeout

message queue property 10
idleConnectionTimeout, JMS provider property 43
ignoreDuplicateMessages

message queue property 12
InitialContext object, creating for a JMS client 26

J
java.naming.factory.initial, JMS provider property 43
java.naming.provider.url, JMS provider property 43
java.naming.security.credentials, JMS provider property

43
java.naming.security.principal, JMS provider property 43
javax.jms.MessageListener interface 20, 40
JCA resource adapter 4

listening on 22
receiving messages 20

JMS
configuring 7
connection factories 16
connections, creating 29
message consumers, creating 34
message types 37
MessageListener interface 20, 40
messages, creating 37

JMS clients
connection factories, looking up 28
runtime requirements for 25

JMS message listeners 40
JMS providers

adding 42
configuring 42
pull settings 44
push settings 44

jms.password, JMS provider property 44
jms.username, JMS provider property 44
JMSReplyTo, message header field 32

L
LD_LIBRARY_PATH, environment variable 28
listeners 19

implementing and installing 40
message selectors, adding 23
threads 23

load balancing 2
lookupCacheTimeout, JMS provider property 43

M
maximumMessagesInMemory

message queue property 10
maximumWaitingForAcknowledge

message queue property 10
MDBs

See also message-driven beans
implementing 40
installing and configuring 21
interface methods 20

easjms.book Page 48 Friday, July 14, 2006 12:33 PM

Index

Java Message Service User’s Guide 49

multiple instances, enabling 24
threadCount property 23

message consumers
closing 35
creating 34
filtering messages with selectors 36

message delivery
stopping in a connection 30
stopping within a session 32

message listeners 7
implementing and installing 40
onMessage method 20

message producers
closing 34
creating 34
delivery modes 34

message queues 7, 8
adding 8
configuration properties 8
deleting 14
security roles 13

message security 2
message selectors

adding to a listener 23
filters, using as 36

message service
See also JMS
configuring 7
listeners 19
message delivery 2
permanent destinations 7, 8
scalable notification 3
security 2
setting up 1, 7
transaction management 3

message statistics, viewing 15
message topics

adding 14
configuring 14
deleting 15
security roles 15

message-driven beans 40
installing and configuring 21
multiple instances, enabling 24

MessageDrivenBean interface 20
MessageDrivenContext interface 20

messages
browsing 41
creating 37
enumerating though a list of 41
JMS types 37
priority levels 34
publishing 38
receiving 40
receiving using a JCA resource adapter 20
sending 38
starting delivery 30
stopping delivery 30
stopping delivery within a session 32
time-to-live property 34

O
onMessage, message listener method 20

P
PATH environment variable 28
permanent destinations

JMS 7
looking up 33

permanent destinations, JMS 8
priority levels, message 34
processMessagesInOrder

message queue property 13
producerRoles

message queue property 13
publishing messages 38
pullBatchSize, JMS provider property 44
pullMessagesFrom

message queue property 11
pullReceiveTimeout, JMS provider property 44
pullWaitAfterFailure, JMS provider property 44
pullWaitAfterSuccess, JMS provider property 44
pushBatchSize, JMS provider property 44
pushMessagesTo

message queue property 12
pushReceiveTimeout, JMS provider property 45
pushWaitAfterFailure, JMS provider property 45
pushWaitAfterSuccess, JMS provider property 45

easjms.book Page 49 Friday, July 14, 2006 12:33 PM

Index

50 EAServer

Q
QueueBrowser interface 41
QueueConnection, JMS connection type 29
queueConnectionFactory, JMS provider property 44
queueID, message queue property 9
QueueReceiver, message consumer 34
QueueSender, message producer 34

R
receiveBatchSize, connection factory property 17
receiving messages 40
recover, sessions 32
requirements for JMS client runtime 25
resource adapters, using 43
roles, security 7

S
security properties

message queue 13
message topics 15

security roles 7
selectors

adding to a listener 23
using to filter messages 36

sending messages 38
sessions

acknowledgment modes 32
closing 32
creating in a JMS client 31
recover 32
transacted 31

setting up the message service 1, 7
socketTimeout, JMS provider property 43
starting message delivery 30
statistics, message 15
stopping message delivery

connection, in a 30
session, within a 32

storeTransientMessages
message queue property 13

suspendMessageDelivery
message queue property 13

T
temporary destinations 32
temporaryQueueTemplate, connection factory property

18
temporaryTopicTemplate, connection factory property

18
threadCount, listener property 24
threads, defining for a listener 23
threads, MDB property 23
time-to-live, message property 34
TopicConnection, JMS connection type 29
topicConnectionFactory, JMS provider property 44
TopicPublisher, message producer 34
topics, configuring 14
TopicSubscriber, message consumer 34
typographical conventions vii

U
useResourceAdapter, JMS provider property 43

V
viewing message statistics 15

easjms.book Page 50 Friday, July 14, 2006 12:33 PM

	About This Book
	CHAPTER 1 Message Service Overview
	Introduction
	High availability and load balancing
	Message security
	Reliable delivery
	Scalable notification
	Transaction management
	Client applications

	New features

	CHAPTER 2 Setting up the Message Service
	Message queues and topics
	Message queues
	Message topics
	Viewing message statistics

	Connection factories
	Listeners
	Message-driven beans
	Managing dead messages

	Message selectors
	Threads

	CHAPTER 3 Developing JMS Clients
	Client runtime requirements
	JMS client program flow
	Defining the initial naming context
	Looking up a connection factory
	Creating connections
	Creating sessions
	Looking up destinations
	Creating message producers and consumers
	Creating message producers
	Creating message consumers

	Sending and receiving messages
	Creating messages
	Sending messages
	Publishing messages
	Receiving messages
	Implementing and installing message listeners
	Browsing messages

	Creating JMS providers
	General tab
	JMS Settings tab
	Pull Settings tab
	Push Settings tab

	Index

