SYBASE

Web Application Programmer’s Guide

EAServer
6.0

DOCUMENT ID: DC00466-01-0600-01
LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Trand ator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Devel opers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Ell Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (Iogo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, Globa FIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASIS, OASIS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business | nterchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optimat+, Partnershipsthat Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, Physical Architect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage |11 Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financia Server, Sybase Gateways, Sybase |Q, Sybase L earning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, Total Fix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite. NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, Visua Writer, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK'S, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and X TNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(2)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

WY o o 101 QI 0T = o Yo S vii
CHAPTER 1 Defining Web ApplicationS..........ucciiiiiiiie e 1
[(oo (U T i o] o TSP 1
Contents of a Web applicationcccoceeiiiiiiiiiiieeeee 2
Deploying Web appliCationsccooviiiiiiiiiiees i 6
Configuring Web application propertiesccccccceeeeiiiiiiieeniee s 7
Editing configuration filesccccciiiiiiiiiiiii 8
General PrOPErtiES.......uuuiiiiei ittt s e e e e e e e 9
Configuration Propertiesoucveieiieeeeiiiiiiiieee e 9
User configuration Propertiesoccveveeveeeriiiiivieeneeessssinneeenss 9
WED.XMI e 10

PaXo V7= TaTot=To [o] o] o LT o 1= USRS 10
Context initialization propertiescccoccoceeeiiiieenicieee e 11
Welcome and error page specificationsccccocceeeviceeens 11
Tag library descriptor references..........cccocevvcieeiiiiien e 12
Naming referenCesoooiiiiiiiie e 13
Servlet MaPPINGS....c.uvvieieee et e e senes 18
MIME MAPPINGS wevvveeeeiiiiiiiiiiieeeeesiiiieeee e e e e s ssinrreee s e e s e s snnnseeees 20
Additional J2EE property information...........ccccccevviiiiiiienneennnn 20
Localizing Web applicationSccuueeiiiiiiiiiiiiee i 22
Internationalization for servlets..........cocccovviiiiii e, 22
Deploying localized static fileS.........cccccceveeiiiiiiii e, 22
Language-selection algorithmccccceeeiiiiiiiiene e, 23
Localizing JSP CONtENTueiiiiiiiee e 23
CHAPTER 2 Creating Java ServIetS.........oovviveeeiiiiiicirrre e e e e ee e 25
Introduction to Java SErvletscccceeeeeiiiiiieiee e 25
Writing servlets for EASEIVErcooiiiieiiie e 26
datasource CaChingcceiiiiiiiiiiee e 26
Component INVOCALIONSooiuireeiiiee e eiee e eeeee e 27

B I 21 =Tz Vo 1 T USSR 29
(oo o 1 0o TR PR 29

Web Application Programmer’s Guide i

Contents

Request diSpatChing.........ccvveiviiiiiiiiiiie e 30
Response bUfferingcc.veeevveiiiiiiii e 31
Encoding responses and double-byte characters.................... 32
Installing and configuring servietsccccovieeiiiiic e 33
Configuring servlet propertiescccoccvvveeeeeeeecccivieee e 33
CHAPTER 3 Using Filters and Event LiSteNers.......ccccceeeeeeeeeeveveeeeeeenn 35
ServIet fILErS ..o 35
Application life cycle event listeners...........ccccveiiieeiiiiee e 39
CHAPTER 4 Creating JavaServer PAgEScoocveiieiiiiiiiee e 41
ADOUL JAVASEIVEr PAgESoeieiiiieeeiiiieeeeiiee e eeee e e eiee e eeeee e 41
How JavaServer Pages Workccccooiieeiiiiee s 42
What 8 JSP CONLAINSoveiiiiiieeeiiiiee e 42
WHY USE JSPS? ...ttt 44
SYNEAX SUMMATIY .ooiiiiiiiiiiiiee e 45
ODjJECES ANU SCOPES.....uviiiiiiee ittt e e e e e e e s 46
SCOPES e 46
IMPLICIE ODJECES .uvviiiiei i 46
Application [0giC iN IJSPSoiiiieee e a7
Error Nandling..........c.eeee i 49
USING JSPS iN EASEIVETvviiiiiiee ettt 51
JSP and EASEIVEr OVEIVIEWcccueieeiiieeaaiiieeeaieieeeeeieeens 51
CompPiliNG JSPS ...t 52
JSP file 10CatioNSoiiiiiiee e 52
Creating and configuring JSPs in EAServer.........cccccccovvvvvnen. 53
Internationalizationccccoiveeiiiiiee e 53
MAPPING JSPS oottt 54
RESPONSE CAChING......ccvviiiieeiiieee e 54
FIIEEIS e 54
CHAPTER 5 Creating JavaMallcccccoiviiiiiiii e e 55
Introduction to JavaMallcoooveieiiiiiiii e 55
Writing JavaMail for EASEIVEYcooiiiiiieiiiie e 56
Creating a JavaMail SESSIONcccceeiiiieeiiiiee e 56
CoNStructing @ MESSAQE........uuvrireeeeieiiiiirieeeeeeesiirrreeeeeeaeennnens 56
SeNdiNg @ MESSAGE i eeeeeieieeeeeiiie e e eiee e e eee e e e e 57
Sample EAServer JavaMail programcccceeeeeeeeieeeeennnne. 57
JavaMalil Providersccccovioiie i 58
Deploying JavaMail-enabled applicationsccccveevieeiiiiiinnnenn. 59
General PrOPEILIES.uuuiiiiiiiiiiiiee et 60
POP3 PrOPErtiES...cccciiiciiiiiiie ettt 60

iv EAServer

Contents

POP3S PrOPEIIES ...coeeeeeeiiiiee ettt 61
SMTP PrOPErtieSeieiiiiieei et 62
SMTPS PrOPErtieS ...coeeieiiieieiie et 64
1T = SRS 65

Web Application Programmer’s Guide Y

Contents

Vi EAServer

About This Book

Subject

Audience

How to use this book

Related documents

This book contains information about building distributed applications
that run on Sybase™ EAServer.

The Web Application Programmer’s Guide is for application developers
who are familiar with their chosen programming languages, specifically
Java.

For information on developing, configuring, and running Web
applications, servlets, and JavaServer Pages, see:

e Chapter 1, “Defining Web Applications’ describes how to deploy
and configure Web applications.

e Chapter 2, “Creating Java Servlets’ describeshow to deploy and run
Java servletsin EAServer.

e Chapter 3, “Using Filtersand Event Listeners’ describes how filters
and event listeners are used for EA Server hosted Web applications.

e Chapter 4, “Creating JavaServer Pages’ describes how to create and
run Java ServerPagesin EAServer.

e Chapter 5, “Creating JavaMail” describes how to use the JavaMail
API to access an Internet mail server from Java components or
servlets.

Core EAServer documentation The core EAServer documents are
availablein HTML and PDF format in your EA Server software
installation and on the SyBooks™ CD.

What's New in EAServer 6.0 summarizes new functionality in thisversion.

The EAServer API Reference Manual contains reference pages for
proprietary EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-
based configuration scriptsto:

» Define and configure entities, such as EJB modules, Web
applications, data sources, and servers

e Perform administrative and deployment tasks

Web Application Programmer’s Guide vii

Viii

The EAServer CORBA Components Guide explains how to:

e Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

¢ Usetheindustry-standard CORBA and Java APIs supported by EAServer
The EAServer Enterprise JavaBeans User’s Guide describes how to:

e Configure and deploy EJB modules

e Develop EJB clients, and create and configure EJB providers

¢ Create and configure applications clients

* RuntheEJB tutorid

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (JMS) clients and components to send, publish, and
receive JM'S messages.

The EAServer Migration Guide contains information about migrating
EA Server 5.x resources and entitiesto an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

¢ Understand the EA Server security architecture
e Configure role-based security for components and Web applications
e Configure SSL certificate-based security for client connections

¢ Implement custom security services for authentication, authorization, and
role membership evaluation

¢ Implement secure HTTP and I1OP client applications

« Deploy client applications that connect through Internet proxies and
firewalls

The EAServer System Administration Guide explains how to:

e Start the preconfigured server and manageit with the Sybase Management
Console

EAServer

About This Book

e Create, configure, and start new application servers
« Define database types and data sources

e Create clusters of application servers to host load-balanced and highly
available components and Web applications

« Monitor servers and application components
¢ Automate administration and monitoring tasks with command line tools

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EA Server, including:

e Support for standard Web services protocol s such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

« Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EA Server users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to alow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbcititle.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase softwarelicense depl oyments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

Web Application Programmer’s Guide iX

Conventions

Formatting example

The formatting conventions used in this manual are:

To indicate

commands and methods

When used in descriptive text, this font indicates keywords such as:
» Command names used in descriptive text

e C++ and Java method or class names used in descriptive text

» Javapackage names used in descriptive text

» Property names in the raw format, as when using jagtool to configure applications
rather than the Web Management Console

variable, package, or
component

Italic font indicates:
» Program variables, such as myCounter
 Parts of input text that must be substituted, for example:

Server.log
* Filenames

» Names of components, EAServer packages, and other entities that are registered in
the EA Server naming service

File| Save

Menu names and menu itemsare displayed in plaintext. The vertical bar showsyou how
to navigate menu sel ections. For example, File| Saveindicates" select SavefromtheFile
menu.”

package 1

Other sources of
information

Monospace font indicates:

» Information that you enter in the Web Management Console, acommand line, or as
program text

» Example program fragments

» Example output fragments

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

e The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

e The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manualsin an easy-to-use, HTML -based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

EAServer

About This Book

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

e The Sybase Product Manuals Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybﬁse \x/e{)tifications Technical documentation at the Sybase Web site is updated frequently.
on the We

[IFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.
Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.

ga A W DN

Click a Certification Report title to display the report.
[ICreating a personalized view of the Sybase Web site (including support
pages)

Set upaMySybase profile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.
Sybase EBFs and
software
maintenance

[JFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFg/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select aproduct.

Web Application Programmer’s Guide Xi

Accessibility
features

Xii

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Infoicon to display the EBF/Maintenance report, or click the
product description to download the software.

EA Server has been tested for compliance with U.S. government Section 508
Accessihility requirements. The online help for thisproduct isalso provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

TheWeb Services Toolkit plug-in for Eclipse supportsaccessibility featuresfor
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter accessibility inthe Search dialog box.
4

Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT asinitials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

EAServer

About This Book

Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary

in your area.

If you need help

Web Application Programmer’s Guide Xiii

Xiv EAServer

CHAPTER 1 Defining Web Applications

A Web application alows you to deploy interrelated Web content,
JavaServer Pages (JSPs), and Java servlets as a unit, and configure the
Web server properties required by the servlets and JSPs. The EA Server
Web application model follows the J2EE and Java Servlet 2.4
specifications. See the Java Servlet 2.4 specification at
http://java.coe.psu.ac.th/J2EE/Servlet2.4/servlet-2_4-fr-spec.pdf for
complete details.

Note For information on configuring clustered Web applications, see
Chapter 8, “Load Balancing, Failover, and Component Availability,” in
the EAServer System Administration Guide.

Topic Page
Introduction 1
Deploying Web applications 6
Configuring Web application properties 7
Localizing Web applications 22

Introduction
A Web application is a collection of:
o Servlets
e JSPs
e Utility classes
e Static documents (HTML, images, sounds, and so on)

¢ Client-side Java applets, and classes

Web Application Programmer’s Guide 1

Introduction

Descriptive metadata ties these el ements together. A Web application
representsasubset of thefilesavailable on aWeb server. Each Web application
has a

¢ Context path —formsaprefix for URL sthat accessthe JSPs, servlets, and
static pages. For example, http://myhost/Finance.

¢ Deployment directory —adirectory in the server’sfile system where the
Web application’s files are deployed. In EA Server, the deployment
directory for Web application wapp is this subdirectory in your EA Server
installation:

/deploy/webapps/wapp

Contents of a Web application

Servlets

Servlets are Java classes that create HTML pages with dynamic content,
images, XML files, and so on, and respond to requests from client applications
that are implemented asHTML forms or called directly. Servlets also alow
you to execute business logic from a Web browser or any other client
application that connects using the Hypertext Transfer Protocol (HTTP). For
more information, see Chapter 2, “ Creating Java Servlets.”

JSP files and tag libraries

Static files

JSPs allow you to embed snippets of Java code into HTML pages to create
dynamic content. JSP tag libraries allow you to extend the standard HTML
markup tags with custom tags backed by Java classes. They aretypically used
in the presentation layer, and provide a shorthand way to define servlets that
are converted into servlets at runtime. See Chapter 4, “Creating JavaServer
Pages,” for more information.

You can include files that provide static content for the site in a Web site,
including HTML, images, sounds, and so forth. You can also include Java
applet files. You can configure an application’s deployment descriptor to
specify security constraints for static files and any unique MIME types
required by your content.

EAServer

CHAPTER 1 Defining Web Applications

You must deploy static files to the following subdirectory in your EA Server
installation directory:

deploy/webapps/web-app

Where web-app is the name of the Web application. You can include
subdirectories, which are reflected in your application’s URL namespace.

Any Web archive (WAR) files that you import are expanded to the
depl oy/webapps/web-app directory.

Filters and event listeners

Java classes

Event listeners are classes that implement one or more servlet event listener
interfaces. When you deploy aWeb application, event listeners areinstantiated
and registered in the Web container.

A filter transforms the content of HT TP requests, responses, and header
information. Filters do not generally create aresponse or respond to a request,
rather they modify requests for aresource, and modify responses from a
resource.

See Chapter 3, “Using Filters and Event Listeners’ for more information.

The Web container creates an implementation class from the .jsp file for each
servlet and JSP, and for any server-side utility classes used by the servlets and
JSPs.

EAServer uses a custom class loader to run a Web application’s servlets and
classes referenced by servlet and JSP code. This allows hot refresh of servlets
and JSPs. The custom class|oader al so allows each Web applicationto run with
its own Java class path. To work with the custom loader and for hot refresh to
be supported, you must deploy your Web application classes as described
below.

Class and JAR file locations

Deployed WAR files have two subdirectories that can contain Java classes;
WEB-INF/classes and WEB-INF/lib. If you make any changesto aWeb
application, redeploy it. Do not manually copy files to these locations.

The class |oader for a Web application (where app_name is the name of the
Web application) loads filesin this order:

Web Application Programmer’s Guide 3

Introduction

Sharing EJB classes

1 From the Web application’s class loader:

¢ deploy/webapps/app_name/WEB-INF/compiled_jsps — JSP
implementation classes.

e deploy/webapps/app_name/WEB-INF/classes—for classfilesused by
servlets and JSPs in the Web application.

e deploy/webapps/app_name/WEB-INF/lib —for classes contained in
JAR files. All JAR filesin this directory are automatically part of the
Web application’s effective class path.

2 From the application’s class |oader

3 Fromthelib-default-ext class loader — this points to the JAR filesin
$DJIC_HOME/lib/defaul t/ext

4 From the system class | oader

To shareyour EJB classfiles, store your EJB-Jars and Web applications inside
an EAR file, which establishes class sharing. However, if you want to separate
EJB Jars from the Web application, the ideal way to share the classesisto set
the Web application’s parent class loader to that of the EJB components, using
deploy with the -parentCL option. For example, to set the parent class|oader of
mywebapp t0 the EJB myejb, which allows the Web application to access the
EJB classes enter:

deploy -parentCL ejb.components.myejb mywebapp.war

Classes loaded by the custom class loader

To alow hot refresh, class referencesin your servlet and JSP code must be
resolved by the EA Server custom class |oader. Class instances |oaded by the
system class|oader cannot be refreshed. Classinstances |oaded by the custom
classloader cannot be assigned to references|oaded by the system class|oader,
or vice-versa

Nearly all references are resolved by the custom loader. The exceptions are
references made with class loader callswith an explicit reference to the system
classloader or another custom class |oader. The following class references are
all resolved by the custom class |loader when they occur in servlet code:

e Classes referenced by import statements and declarations.
¢ Classesloaded dynamically using Class.forName(String). For example:

obj = Class.forName ("com.foo.MyClass") ;

EAServer

CHAPTER 1 Defining Web Applications

« Classesloaded by explicitly calling the java.lang.ClassLoader associated
with the servlet instance, which can beretrieved with this code (this refers
to the servlet instance):

ClassLoader loader = this.getClassLoader () ;

When possible, rewrite code that usesthe system class|oader to use the servlet
class loader. The system class |oader cannot load classes from the Web
application WEB-INF/classes or WEB-INF/lib directories unlessyou add these
locations to the server BOOTCLASSPATH and CLASSPATH environment
variables.

Deployment descriptor

The application’s deployment descriptor catalogs the servlets, JSPs, and files
contained in the application, as well as the properties of each. The descriptor
must be formatted in XML, using the DTD specified in the Java Serviet
Specification Version 2.4. You can create adescriptor using a 2EE-compliant
development tool. For backwards compatibility EAServer also supports Java
Servlet Specification Version 2.3.

J2EE properties defined in the deployment descriptor are stored in the web.xml
file and any user configuration is stored in the Repository. When you import a
Web application from aWAR file, the XML descriptor is converted to format
recognized by therepository. If you make any changes to the web.xml file, you
must then redeploy the Web application to EA Server for the changes to take
effect. You cannot make changes directly from the Web console.

Servlet mappings

Servlet mappings are part of the deployment descriptor for your Web
application. Servlet mappings control how you access a Web application’s
servlet. For example, you can prepend a Web application’s context path to an
aliasthat is mapped to a servlet. The following URL invokes a servlet mapped
tothe alias“Account” in the application with context path “Finance:”

http://myhost/Finance/Account?type=add

Web Application Programmer’s Guide 5

Deploying Web applications

Deploying Web applications

You can use the Web Management Console to deploy Web applications into
EAServer. Alternatively, you can use the deploy command to deploy, or
redeploy your Web application. See the deploy command, in Chapter 12,
“Command Line Tools,” of the EAServer System Administration Guide.

[IDeploying a Web application into EAServer
1 Right-click the Web Applications folder and select Deploy.

2 TheDeploy wizard displaysin theright pane of the Management Console.

3 Follow the wizard instructions to deploy your Web application, making
entriesin these fields:

1 File Name—the name of the file that contains your J2EE Web
application.

2 Web Application Module Name — (optional) the modul e that contains
the Web application. For example, if your Web application fileis
test.war, the default name given to your Web application is “test.”
test.war is stored in web.components.test. The WAR file nameis
lowercase. This page contains these buttons:

¢ Usethe Default Module Name — select this option to use the
default module name.

e Specified Module — enter the desired module name, if other than
the default.

e Overwriteif ThisName Already Exists—overwritesany existing
modul e with the same name.

3 Do vdidation during deployment — validates the Web application’s
deployment descriptors during deployment. The default istrue.

4 Context Path — (optional) the context path for the Web application.
For example, default context path for test.war is“test” (the name of
the WAR file, case preserved, without the .war extension).

e UseDefault Context Path— uses the default modul e context path.

¢ Specified Context Path — enter the desired context path name, if
other than the default.

6 EAServer

CHAPTER 1 Defining Web Applications

5 Run JSP Compiler During the Deployment — valid only for Web
modules and J2EE application modules that contain JSP files. Runs
the JSP compiler during deployment if this option is set to true (the
default).

6 Server —select aserver into which you want to add this module. The
module is started by the server after the server isrefreshed. The
default server isthe server on which the Web Management consoleis
running. If you do not want to install this module to any server, leave
this option unselected. To install the module after deployment, select
“Install This Module into the Selected Server”.

7 Directory Name— during deployment, if the archive does not contain
an EA Server-specific configuration file in the META-INF directory
(located in the depl oy/webapps/web_app_name subdirectory of your
EA Server installation, whereweb_app_nameisthe name of your Web
application), one is generated. Use this option to save a copy of the
archive, which includes a copy of the generated configuration file to
an optional location.

8 Summary —the summary page displays your deployment settings.
Verify that they are correct and select Finish to deploy the Web
application, or Back to change any settings.

The wizard displays informational messages to the console asiit
attempts to deploy the Web application. When complete, a message
informs you whether the deployment succeeded or failed:

e Successful —the Web application is deployed under the Web
applications folder. Configure the Web application by following
the procedures described in *“ Configuring Web application
properties’ on page 7.

¢ Unsuccessful — check the undeploy.log and deploy.log files for
additional information. Log files are located in the logs
subdirectory of your EAServer installation.

Configuring Web application properties

You can configure certain properties for a Web application from the Web
Administration Console. If you have created a Web archive (WAR) file using
another tool and imported or deployed it into EA Server, most properties are
automatically set during the import/deploy process.

Web Application Programmer’s Guide 7

Configuring Web application properties

The Automated Configuration Tools Guide describes the configuration system
used by EAServer 6.0, including how to:

e Set up and run Ant configuration scripts
e Define user configuration files to override default settings

e Perform configuration tasks beyond those that can be described in the
deployment descriptor

Editing configuration files

You cannot edit theweb.xml fileor other configuration filesfor adeployed Web
application. If you make modifications, you must redeploy the Web
application.

[IDisplaying the Web application’s properties
To display a Web application’s properties and dialog boxes:

1 Expand the Web Applications folder, then highlight the icon that
represents your Web application.

2 Theright pane displays the Web application property tabs, including:
e General properties
e Configuration properties
e User configuration properties
e Web.xml
e Advanced properties

[IDisplaying EAServer system components

You can display system and EA Server modul es, for example, console.console,
wfs, or wib. By default, the Web Management Console displays only user
deployed modules in the Web Management Console tree view.

To display system modules:

1 Select Preferences, expand the Plugins folder, and select EAServer
Manager on the right frame.

2 Select Show EAServer system components.

8 EAServer

CHAPTER 1 Defining Web Applications

General properties
General propertiesinclude:
e Description An optional text description of the Web application.
e Class Loader Select the classloader from the drop-down list.

« Context Path Therequest-path prefix that clients usein URLsto access
your Web application’s static content, servlets, and JSPs. For example, if
you enter “estore,” users access your Web application with the prefix:

http://host:port/estore/
The default context path is the name of your Web application.

e Virtual Host The name of the virtual host (if any) from which you can
access the Web application.

Configuration properties

Select the Configuration tab to display and modify properties defined in the
Web application’s configuration file (webapp-webappname.xml). Click Apply
to apply any changes, or Reset to undo any changes that have not been applied.

If you deploy the same Web application more than once, the new configuration
file overwritesthe previous configuration file. The old fileis saved, and can be
viewed by selecting it from the drop-down list.

See the user documentation of your development tool for information about
setting the various Web application properties and depl oyment descriptors.
You can also refer to the Java Servlet 2.4 specification for additional
information.

User configuration properties

Select the User Configuration tab to display and modify properties defined in
the Web application’s user configuration file (webapp-webappname-user.xml).
Click Apply to apply any changes, or Reset to undo any changes that have not
been applied. Set any propertiesin thisfile to override the parent settings.

Web Application Programmer’s Guide 9

Configuring Web application properties

Web.xml

Select the web.xml tab to view the deployment descriptor elements defined in
the web.xml file of your deployed Web application.

See the Java Servlet 2.4 specification for information about all of the Web
application deployment descriptors.

Advanced properties

Select the Advanced tab to display and modify the Web application’s advanced
properties. Click Apply to apply any changes, or Reset to undo any changes
that have not been applied. Advanced properties include:

10

Synchronize — synchronizes advanced properties with configuration
properties. If you make any changes on the advanced properties page, you
must synchronize them for them to be valid on the Configuration tab. You
should aso run reconfigure for the changes to take effect.

Class Loader Name— by default, named class|oaders are created when an
entity isdeployed. Thenamed classloader isnamed according to the entity
name. The class path for the loader includes any relevant JAR files
deployed and the class path from the manifest file. The class loader name
looks similar to this:

<setProperties classLoader="ejbjar-sample">
<property name="classPath" value="~/ejbjars/*.jar"/>
<property name="parentFist” value="true”/>
<property name="parentClassLoader” value="app-sample”/>
<property name="classloaderImpl"
value="com.sybase.djc.util.NamedClassLoader"/>

</setProperties>

Log Exceptions Enabled — writes error, stack trace information, and
explanatory error messages to the server log file.

Permit Access — defines the ports and roles which have access to this
resource.

Trace Public Methods Enabled — generates a response containing all
instances of the headers sent in atrace request.

EAServer

CHAPTER 1 Defining Web Applications

Context initialization properties

All servlets and JSPsin a Web application share a common set of context
initialization properties specified by the deployment descriptor. Servlet code
can retrieve the values by calling the getinitParamers() and
getinitParameterNames() methods in the javax.Servlet.ServletContext interface.

Environment properties can be used for the same purpose as context-
initialization properties, and allow additiona datatypes besides
java.lang.String. See “ Environment properties’ on page 17 for more
information.

Welcome and error page specifications

You can customize the list of welcome files and error-response files in your
application. These settings take effect when Web clients are browsing in your
Web application’s subset of the server’'s URL namespace.

Welcome files

Welcome files are used to satisfy HTTP requests that end in adirectory name,
rather than specifying the full path to afile or apath that is mapped to a servlet
invocation. For each request that maps to a directory, the server searches the
directory for files that occur in the Web application’s list of welcomefiles, in
thelisted order. For example, if thewelcome-filelistis“index.html, index.htm,
welcome.jsp”, the server looks for index.html, then index.htm, then
welcome,jsp. If the server finds a static file on the welcome-file list, the server
returns its content. If a JSP exists on the welcome-file list, the server invokes
the JSP. If no match existsin the directory, the server returnsan HTTP 404 (file
not found) error, because EA Server does not support directory listings.

Error pages

Error pages alow you to customize the response that the server sendsto Web
clientswhen an error occurs. You can specify HTML filesto send in response
toHTTPerror codes and to Javaexceptionsthrown in JSPs or servlets. You can
also define error pages at the server level. If your Web application does not
specify an error page, EA Server invokes the corresponding server-level error
page.

Web Application Programmer’s Guide 11

Configuring Web application properties

When an exception is thrown, the servlet engine searches the error page
mappings for the exception and its super classes. For example, assume
AException extends BException and BException extends CException and
CException extendsjava.lang.Exception. When AException isthrown, EA Server
checks if AException is mapped. If not, EAServer checks if BException is
mapped, and so forth.

Tag library descriptor references

12

JSPs can use tag libraries to serve content formatted with custom tags. The tag
library is aJavaclass with methods to parse content that is tagged with custom
tags and output formatted content to be returned in the response stream. Each
tag library must have atype library descriptor (TLD) file that describes the
available tags and specifies the corresponding Java classes and methods.

JSPsuse atypelibrary by specifying the location of the TLD fileasaURL. In
your Web application, you can specify a mapping so that TLD URLsin JSPs
map to alocal URL. For example, you may refer to atag library as:

<%@ taglib uri="/example.tld" prefix="ex" %>
You can aso map this path to another location, such as:
/WEB-INF/tlds/PRlibrary 1 4.tld

You do not have to map TLD URLs in the Web application. If thereisno
mapping that matchesa TLD URL, EAServer loads the file at the URL
specified in the JSP and raises an error if the file does not exist.

Mapping TLD URLs alows you to:
* Keep TLD filestogether in acommon location.

e Avoid multiple copies of a TLD when JSPs use different paths to refer to
the same type library.

¢ Code JSPs with simple paths, such as tlds/example.tld, while the actual
TLD isstored in aversioned directory tree. For example, you can alias
tlds/example.tid to WEB-INF/tlds/example/v1.6/example.tid. This alows
you to easily test new versions and roll back to previous versionsif a
problem occurs.

Inan XML deployment descriptor, TLD URL mappings are specified by taglib
elements.

EAServer

CHAPTER 1 Defining Web Applications

Tag library classes A Web application’stag library classes must be
deployed in either:

* The WEB-INF/lib or WEB-INF/classes directories, with the other Java
classes required by your Web application. (See “ Java classes’ on page 3
for more information) or,

« A JARfilecontaining atag library in the lib/default/ext subdirectory to
make it available to all Web applications.

Naming references

Web applications allow you to use logical names for INDI lookupsin your
servlet and JSP code. Logical names alow your application to run in
environments where the INDI name space does not match the names hard
coded in your application. When deploying an application, you can map the
logical names to actual names that match the server’s configuration.

When devel oping an application, you must use JNDI to obtain database
connections, mail sessions, and EJB proxies. You must catalog the INDI names
used by your code in the application’s deployment descriptor.

All logical INDI names used in your application must be prefixed with
java:comp/env. The J2EE specification requiresthe following hierarchy, based
on resource type:

e java:comp/env/ejb for EJB references

* java:comp/env/jdbc for JIDBC javax.sql.DataSource references
* java:comp/env/mail for JavaMail session references

e java:com/enviurl for java.net.URL references

* java:com/envijmsfor javax.jms references

EJB references

Servlets and JSPs use EJB references to instantiate proxies for EJB home
interfaces. See the Enterprise JavaBeans User’s Guide for more information.
EJB references must be cataloged i n the deployment descriptor so that the Web
application can run independent of a specific naming configuration. When
deploying the Web application, a site administrator can specify site-specific
EJB INDI names.

Web Application Programmer’s Guide 13

Configuring Web application properties

Servlets and JSPs can look up an EJB by specifying the reference name
prefixed with java: comp/env/. For example, if you enter ejb/catalog in
EA Server Manager, use java: comp/env/ejb/catalog in your JSP or servlet
source code.

gjb-ref tagsinclude these fields:

<ejb-refs>

Name Specifiesthe INDI name used in your codeto refer to the called
EJB. The aliased name displaysin the Link Vauefield. Enter the part of
the INDI name that begins with ejb/. For example, if your code refersto
java: comp/env/ejb/MyBean, enter ejb/MyBean.

Type Choose Session for session beans or Entity for entity beans.

Home The Java class name of the EJB home interface, specified in dot
notation. For example, com. sybase . MyBeanHome.

Remote The Javaclass name of the EJB remote interface, specifiedin
dot notation. For example, com. sybase . MyBeanRemote.

Link Value Theactual INDI name EJB component that isinstalled in the
server where your component, Web application, or application client isto
be deployed. This must match the INDI name property in the component
properties of the called EJB component.

For example, your web.xml file might have an entry similar to this;

<ejb-ref-name>ejb/myBean</ejb-ref-name>
<ejb-ref-types>Entity</ejb-ref-type>
<home>com. sybase .MyBeanHome</home >
<remote>com. sybase.MyBeanRemote</remotex>
<ejb-1link>JNDIName</ejb-link>

</ejb-ref>

EJB local references

14

To access an EJB’s local interface, define an EJB local reference. Local
interfacesare available only to EJB components, Java servlets, and JSPshosted
on the same server as the target component.

EJB local reference tags include these fields:

Name Specifies the INDI name used in your code to refer to the called
EJB. The diased nameis displayed in the Link Value field. Enter the part
of the INDI name that beginswith ejb/. For example, if your code refers
to java: comp/env/ejb/MyBean, enter ejb/MyBeanLocal.

Type Choose Session for session beans or Entity for entity beans.

EAServer

CHAPTER 1 Defining Web Applications

e Home TheJavaclassname of the EJB local homeinterface, specifiedin
dot notation. For example, com. sybase . MyBeanLocalHome.

+ Local TheJavaclassname of the EJB local interface, specified in dot
notation. For example, com. sybase . MyBeanLocal.

e Link Value Theactual INDI nameof the EJB component that isinstalled
in the server where your component or Web application isto be deployed.
Thisis specified by the INDI Name property in the Component Properties
of the called EJB component.

Resource references

Resource references are used to obtain connector and database connections,
and to access IM S connection factories, JavaMail sessions, and URL links.

Note The configuration file isthe same for Web applications, application
clients, and EJB components. For example, you would modify the gjb-jar.xml
file to modify an EJB.

[JAdding or modifying a resource reference
1 Display the Configuration tab.

2 Moaodify the reference tags of interest. For example:

<resource-ref id="HTMLGeneratorl05_jdbc_default">

<res-ref-name>jdbc/default</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res-auth>Container</res-auths>

</resource-ref>

<resource-ref id="HTMLGeneratorl05_jdbc_JavaCache">
<res-ref-name>jdbc/JavaCache</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res-auth>Container</res-auths>

</resource-ref>

 Name Thepartial INDI name used in servlet and JSP code. Use the
prefix mail/ for JavaMail references, jdbc/ for data source references,
url/ for java.net.URL references, and jmg/ for javax.jms references.
For example, if your code refersto java: comp/env/jdbc/MyDatabase,
enter jdbc/Mybatabase.

« Type Choose the type of resource:

e javax.sgl.DataSource for JDBC connections.

Web Application Programmer’s Guide 15

Configuring Web application properties

16

e java.mail.Session for JavaMail sessions. See Chapter 5,
“Creating JavaMail” for more information.

e java.net.url for aliased URLS.

¢ javax.jms.QueueConnectionFactory for IMS queue connection
factories.

¢ javax.jms.TopicConnectionFactory for JM S topic connection
factories.

Sharing Scope Choose Sharable or Unsharable. By default,
connections to a resource manager are sharable across EJBsin an
application that use the same resource in the same transaction context.

Note The sharing scope is available only to Web applications and
EJB components.

Authentication Select the source of the authentication credentials:

e Application — use the credentials configured for the connection
cache.

¢ Container — use the credentials of the caller who logged in to
EA Server and created the component instance.

Resource Link Specify the resource link for the resource type:

e javax.sgl.DataSource — select the name of the EA Server
connection cache or connector to be used for this resource.

e java.mail.Session — specify the SMTP mail server for outgoing
mail.

e java.net.url —enter the URL string, asit would be used to
construct ajava.net.URL instance by calling the
URL (java.lang.String) constructor. URLs must contain a protocol
and host address, for example: http://www.sybase.com Of
ftp://pub.sybase.comn.

e javax.jms.QueueConnectionFactory —select the name of the queue
connection factory.

e javax.jms.TopicConnectionFactory — select the name of the topic
connection factory.

3 Click Apply.

EAServer

CHAPTER 1 Defining Web Applications

Resource environment references

Resource environment references are logical names applied to objects
administered by EA Server, which can be accessed by Web applications,
application clients, and EJB components.

To add or configure a resource environment reference, follow the procedures
described in “ Resource references’ on page 15.

Edit the reference fields of interest as follows:

e Name Thepartia INDI name used in servlet and JSP code. Use the
prefix jms/ for IMS reference. For example, if your code refers to
java: comp/env/jms/MyQueue, enter jms /MyQueue.

« Type Choose the type of resource:
¢ javax.jms.Queue for JMS message queues.
e java.jms.Topic for IM S message topics.

« Link Value If theresource type isjavax.jms.Queue, enter the name of a
configured queue; if theresource typeisjavax.jms.Topic, enter the name of
a configured topic.

Environment properties

Environment properties allow you to specify global read-only data for use by
servlets and JSPs in the Web application.

Servlets and JSPs must use JNDI to retrieve environment properties, using the
prefix java:comp/env in INDI lookups. Unlike context initialization
properties, environment properties can have datatypes other than
java.lang.String.

The deployment descriptor catal ogs the environment properties used by your

servlets and JSPs, as well as each property’s Java datatype and default value.

Deployers cantailor the valuesto match aserver’s configuration. For example,
you may have environment propertiesto specify the name of alogging file, or
to tune cache usage.

To add or configure an environment property, follow the procedures described
in “Resource references’” on page 15.

For the selected property, add or modify:

e Entry Theenvironment property’s INDI name, relative to the
java:comp/env prefix.

« Type Choosethe Java datatype that matches the property value.

Web Application Programmer’s Guide 17

Configuring Web application properties

Servlet mappings

Value Theinitial or post-deployment value of the property, specified as
text in aformat that is valid for the specified datatype.

Description An optional comment that explains how the property is
used.

Your application’s deployment descriptor must specify the servliet mappings
for the application’s servlets and JSPs. You can map full paths, partia paths, or
file extensions to servlets. Path mappings are specified relative to the
application’s context path.

To map request paths to a JSP, the JSP must be defined in EAServer Manager
as aWeb component. See Chapter 4, “ Creating JavaServer Pages,” for more
information.

EA Server uses the precedence rules defined in the Servlet 2.4 specification to
evaluate each URL:

1
2

18

EA Server checks whether a mapping uses the exact path.

EA Server checks whether a directory in the path is mapped to a servlet,
starting at the most deeply nested directory in the path, and working back
using the forward-dlash character (/) as a separator. For example, if the
application’s context path is MyApp and the URL path is
MyApp/Accounts/Manage/add.jsp, EA Server checks for servlets mapped
to /Accounts/Manage, then /Accounts.

If the last node in the path contains an extension, EA Server checks for a
servlet mapped to that file extension. A file extension is defined asthe part
of the URL that follows a period occurring after the last slash in the URL.
For example, in the path MyApp/AccountsManage/add.calc, the
extensioniscalc.

If neither of the previous two rules results in amatch, EA Server invokes
the application’s default servlet if defined. The default servlet is mapped
to the path /. If no default servlet is defined, EA Server looks for a static
file matching the path.

EAServer

CHAPTER 1 Defining Web Applications

Implicit JSP mapping The jsp extension isimplicitly mapped to invoke
EA Server’s JSP engine. You can override this mapping in the explicit
mappings for your Web application by mapping *.jsp to a servlet or JSP.
However, if you do so, there is no way to invoke the EA Server JSP engine to
compile and run arbitrary JSP files. Sybase recommends you not use explicit

* jSp mappings.

Use these rules to format the path specification when editing the serviet name
and mapped path:

« All mappings are relative to the Web application’s root request directory.

« Tomap adirectory, enter apath that endsina“*”, for example /foo/* Or
/foo/stuff/*.

« Tomap an extension, enter * . ext, where ext is the extension.

« To specify adefault servlet for the application, enter the path as asingle
forward dlash (/).

* To specify an exact match, enter the full path relative to the Web
application’s root request directory.

Hereisan example:

<servlet-mapping>

<servlet-name>delete</servlet-name>
<url-pattern>/delete</url-patterns>

</servlet-mapping>

<servlet-mapping>
<servlet-name>edit</servlet-name>
<url-pattern>/edit</url-patterns>

</servlet-mapping>

<servlet-mapping>

<servlet-name>get</servlet-name>
<url-patterns>/get</url-patterns>
</servlet-mapping>
<servlet-mapping>
<servlet-name>main</servlet-name>
<url-pattern>/</url-patterns>
</servlet-mapping>

Web Application Programmer’s Guide 19

Configuring Web application properties

MIME mappings

A file sMIME type specifies how a server or browser should interpret the file.
For example, whether the file contains plain text, formatted HTML, an image,
or a sound recording. In aWeb server, MIME mappings specify how a static
file should be interpreted by mapping file extensions to MIME types. MIME
mappings affect only static files. Servlets and JSPs must be coded to specify a
MIME typefor their response.

For more information on MIME types, visit:
http://www.oac.uci.edu/indiv/ehood/MIME/MIME. html

EA Server includes preconfigured MIME mappings that you can customize
using your Web application’s properties. Web application MIME mappings
override EAServer’s preconfigured mappings.

MIME mappings include these properties:
« Extension Thefileextension for files of thistype.

« MIME Type The MIME specification, for example, text /plain Or
text/sgml.

Hereisan example:

<mime-mapping>
<extensions>war</extensions
<mime-types>application/zip.war</mime-type>
</mime-mapping>
<mime-mapping>
<extension>jar</extension>
<mime-type>application/zip.jar</mime-type>
</mime-mappings>

Additional J2EE property information

All J2EE properties, such as security, listener, response caching, and so on, are
mai ntai ned i n the Web application’sweb.xml file. Thissection briefly describes
some of those properties. For complete information about J2EE properties,
refer to the Java Servlet 2.4 specification at
http://java.coe.psu.ac.th/J2EE/Servlet2.4/servlet-2_4-fr-spec.pdf.

20 EAServer

CHAPTER 1 Defining Web Applications

Security properties

Use security propertiesto configure user authentication for the Web application
and authorize access to URL s served by the Web application. Chapter 3,
“Using Web Application Security,” in the EAServer Security Administration
and Programming Guide describes how to configure these properties.

Response caching properties

Listener properties

You can to improve the response time for servlets and JSPsin your Web
application by configuring default caching options for Web components that
have caching enabled. For moreinformation, see* Dynamic response caching”
in Chapter 5, “Web Application Tuning,” in the EAServer Performance and
Tuning Guide.

The EAServer implementation of application life cycle events enables you to
register event listenersthat can respond to state changesin aWeb application’s
ServletContext and HttpSession objects. See “ Application life cycle event
listeners’ on page 39 for more information.

Filter mapping properties

A filter isaJavaclassthat is called to process client requests or the server’s
response. You can use filters to modify the request header or the content of a
servlet request or response. Chapter 3, “Using Filters and Event Listeners,”
describes how to createfilters.

You can map filtersto aURL or a servlet name. When afilter is mapped to a
URL (path-mapped), the filter applies to every serviet and JSP in the Web
application. When afilter is mapped to a servlet name (servlet-mapped), it
appliesto asingle servlet or JSP. The path-mapped filters are executed first,
followed by the servlet-mapped filters.

Web Application Programmer’s Guide 21

Localizing Web applications

Localizing Web applications

EA Server supports the HTTP 1.1 internationalization features defined in the
Java Servlet 2.4 specification. Using these features, you can develop servlets
that respond in the language specified by the request header, or configure
localized versions of Web site’s static pages.

For complete information about HTTP 1.1 internationalization, refer to the
Java Servlet 2.4 specification and the HTTP 1.1 specification.

Internationalization for servlets

For servlet development, EA Server supports internationalization-compliant
methodsthat are described in the Java Servlet 2.4 specification. These methods
are getLocale and getLocales on the ServletRequest interface and setLocale on
the ServletResponse interface:

e getLocale and getLocales — parse the accept-language header, extract the
language and quality value information, and return the specified locale
names. |f the request specifies no locale, return the server’s default locale.

e setLocale — sets the language attributes in the content-language header.
The default is the server’s default locale.

Deploying localized static files

22

Along with adefault directory, a separate directory is required for each
supported language. EA Server refers to these directories to locate different
language versions of adocument. For example, if the client requests this URL :

http://www.someplace.com/somepage.html

and EA Server supports English and French, there will be two versions of the
page on the server, plus the default:

e TheEnglish version —
http://www.someplace.com/en/somepage.html

e TheFrench version —
http://www.someplace.com/fr/somepage.html

. A default version — http://www.someplace.com/somepage . html

EAServer

CHAPTER 1 Defining Web Applications

Language-selection algorithm

A language-selection agorithm selects the appropriate language after
evaluating the override criteria and the quality values specified. If multiple
languages are specified, the a gorithm checksthe various optionsin descending
order of priority. For example, if the client requests this URL with en, fr
specified in the accept-language header:

http://www.someplace.com/somepage.html
EAServer first looks for:
http://www.someplace.com/en/somepage.html
If not found, the server looks for:
http://www.someplace.com/fr/somepage.html
If thisis not found, the server tries to load the default page:
http://www.someplace.com/somepage.html

Similarly, for static Web resources in a Web applications, the language name
tag is prefixed to the static Web resource URL to construct the URL for the
resource. EA Server provides multiple language support to the following Web
application resources:

o Servlets
* Web application with static Web resources
e Static Web pages

Localizing JSP content

JSPs that use a character set other than the server default require additional
changes in source code and deployment properties.

In your JSP source code, specify the encoding in the page declaration, for
example:

<%@ page contentType="text/html;charset=BIG5" %>

When initializing strings, pass the encoding name to the String constructor, for
example:

bytel] b { (byte) '\uo0a4', (byte)'\u00a4',
(byte) '\u00A4', (byte) '\uOO0E5' };

String s = new String(b, "big5");

Web Application Programmer’s Guide 23

Localizing Web applications

If you do not specify the encoding name, the byte array may be converted
incorrectly.

When deploying localized JSPs, group JSPs for each language in their own
directory tree under your Web application’s context root. For example, al files
under /en are English, 8859 1 encoded, and all files under /ko are Korean,
KSC5601 encoded.

24 EAServer

CHAPTER 2 Creating Java Servlets

EAServer supportsthe Java Serviet Specification Veersion 2.4. Running in
EAServer, servlets can create HTML pages with dynamic content,
images, XML files, and so on, and respond to requests from client
applications that are implemented as HTML forms or called directly.
Servlets also allow you to execute business logic from any Web browser
or any other client application that connects using the Hypertext Transfer
Protocol (HTTP).

Topic Page
Introduction to Java servlets 25
Writing servlets for EAServer 26
Installing and configuring servlets 33

Introduction to Java servlets

The Java Servlet APl isaset of Java Standard Extension Java classes that
extend the functionality of a Web server.

Use of servlets in Javaservletsrespond to HT TP requests from Web browser clients (or any

EAServer other client that connectsto EAServer using the HTTP protocol). You can
associate an HTTP URL with aservlet that you haveinstaled in
EAServer. The servlet can dynamically create HTML documents, or act
as a gateway between HTML-forms based applications and EA Server
components. For example, you might create servlets to:

+ Create dynamic HTML page content Your servlet creates pages
for an online catal og by selecting part descriptions from a database.

» Act as a gateway between HTML forms and EAServer
components Your client application consists of an HTML page

with embedded HTML forms that submits data to the servlet. When
invoked, the servlet calls EA Server components, supplying the form
dataas parameters. For simple user interfaces, HTML formscan offer
better performance than Java applet clients, since the browser does
not download applet code.

Web Application Programmer’s Guide 25

Writing servlets for EAServer

Java servlets versus
Java components

For more information

EA Server provides an extended version of the Serviet API so that servlets may
use EA Server services such as interserver component invocations and data
source caching.

Javaservlets enhance the functionality offered by Java components, but do not
replace Java components. Servletsin EAServer can beinvoked only by HTTP
clients, and must return all output by writing to aServletOutputStream instance.
Typically, servletsareinvoked from HTML pagesloaded in aWeb browser and
return formatted HTML as their output.

Java components can be executed by any EA Server client model, and can
return complex objectsin their natural format. To invoke Java components
from a Web browser, you must create a Java appl et that connects to EA Server
and instantiates proxy objects for the component.

Servlets can make use of some, but not all, server-side services, for example,
servlets can use cached database connections and can issuein-memory callsto
componentsinstalled on the same server. Servlets cannot, however, participate
in EAServer transactions, except as base clients. Servlets cannot use other
server-side APIs other than datasource caching and the Java ORB.

Java components have access to al Java server-side APIs and can participate
in EAServer transactions.

The JavaSoft Servlet Web pages at http://java.sun.com/products/serviet/ describe
how to code servlet classes.

Writing servlets for EAServer

You can implement servlets for EAServer as you would for any other server
that follows the Java servlet specification. Servletsfor EAServer can be coded
to the standard Java serviet APl and use classes in the javax.servlet and
javax.servlet.http packages. This section lists coding information specific to
EA Server and describes the EA Server extensions to the standard serviet API.

datasource caching

26

Servlets can use these classes to retrieve cached datasources:

¢ com.sybase.jaguar.jcm.JCMCache, which represents a configured
datasource and provides methods to manage connections in the cache.

EAServer

CHAPTER 2 Creating Java Servlets

e com.sybase.jaguar.jcm.JCM, which provides access to JDBC datasource
defined in EAServer Manager. JCM is afactory for JCMCache instances.

Component invocations

Servletsin EAServer can instantiate component instances using the same
technique used within EJB or Java/lCORBA components. Use the EJB
technique when portability to other J2EE serversis required.

Using the EJB To invoke component methods, use the lookup method in class
technique javax.naming.InitialContext to resolve the bean’s home interface, then create a
reference to the remote interface. For example:

import javax.ejb.*;
import javax.naming.*;

QueryBean _queryBean;

String queryBeanName =
"java:comp/env/ejb/querybean"

Context ctx = getInitialContext () ;

try {
Object h = ctx.lookup (_queryBeanName) ;
QueryBeanHome gbHome = (QueryBeanHome)

javax.rmi.PortableRemoteObject.narrow (h,
QueryBeanHome.class) ;
_queryBean = gbHome.create() ;

}

catch (NamingException ne)
{
System.out.println ("Error: Naming exception: "
+ ne.getExplanation() + ne.toString());
throw new Exception (
"Lookup failed for EJB " + _queryBeanName) ;

Note Although PortableRemoteObject.narrow is optional when using remote
EJB interfaces with EA Server, you should use it so your code is portable to
other EJB containers.

Web Application Programmer’s Guide 27

Writing servlets for EAServer

Using the
Java/CORBA
technique

For more information on the EJB client interfaces, see the Enterprise
JavaBeans User’s Guide. You can define an EJB reference in the Web
application properties to alias the servlet name used in your source code. The
EJB reference alows the Web application to be deployed on another J2EE
server without changing your servlet code. See “EJB references’” on page 13
for more information.

To invoke component methods, create an ORB instance to obtain a proxy for
the components, then invoke methods on the proxy object reference. For
components on the same server, cal the string_to_object method with the IOR
string specified as Package/Component. For example, the fragment below
obtains a proxy object for a component called Payroll that isinstalled in the
Finance package:

java.util.Properties props = new

java.util.Properties() ;

props.put ("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB") ;

ORB orb = ORB.init((java.lang.String[])null, props);

Payroll payroll =

PayrollHelper.narrow (orb.string to object (
"Finance/Payroll")) ;

By default, servlets run without a user name and password. A servlet client,
authenticated by EA Server, runs with the client’s user name and password. If
an unauthenticated servlet client invokes acomponent method, the component
isinstantiated without a user name and password. If roles limit accessto a
component or method and the servlet has no user name, a method invocation
attempt fails. To specify a user name, use this syntax:

orb.string to object ("iiop://0:0:user name:password/Package/Component")) ;

28

You can retrieve the system user name and password with these methods in
class com.sybase.CORBA.ORB, which both return strings:

e getSystemUser() returns the system user name.
e getSystemPassword() returns the system password.

When called from components, string_to_object returns an instance running on
the same server if the component islocally installed; otherwise, it attempts to
resolve a remote instance using the naming server.

EAServer

CHAPTER 2 Creating Java Servlets

Threading

Logging

Error pages

If possible, code servletsto be thread-safe, so the service method can be called
concurrently from multiple threads. This threading model is the default for
servlets running in EAServer and, in most cases, offers the best performance.
If your servlet cannot support this threading model, code the servlet to
implement the SingleThreadModel marker interface. This interface has no
methods; the server recognizes that instances of any class that implements the
interface must be single-threaded.

Servlets can log error messages or other text to the EAServer servlet log file,
using the standard servlet log methods in the ServietContext class (or the
equivalent methods in the GenericServiet class). EAServer records servlet log
messages in the server log file, located in the EAServer logs subdirectory.

You can create customize error and exception reports that are sent to clients.
When the servlet engine detects an error or catches an exception thrown by a
servlet, it searchesfor a corresponding error page to handle the response. You
can declare error pages for a Web application, or at the server level.

This exampleillustrates how to declare an error page for aWeb application in
the deployment descriptor:

<error-page>
<error-code>404</error-code>
<location>/etc/404 .html</location>
</error-page>

The location is the path relative to the Web application’s context root. For
example, /etc/404.html corresponds to this file in your EA Server installation
directory, where web-app is the name of the Web application:

deploy/webapps/web-app/etc/404 . html

Web Application Programmer’s Guide 29

Writing servlets for EAServer

Request dispatching

URL interpretation

30

A RequestDispatcher instance allows one servlet to invoke another and either
forward arequest, or include the target servlet’s response with its own. The
RequestDispatcher interface provides methods to accomplish both. To obtain
an object that implements the RequestDispatcher interface, use one of these
ServletContext methods:

e getRequestDispatcher(<URL map to resource>)
e getNamedDispatcher(<servliet name>)

To forward arequest, theinitial servlet calls the forward method of the
RequestDispatcher interface. The target servlet returns the response. This
method can be called only if no output has been committed to the client. Before
the forward method returns, the response must be committed and closed by the
servlet container.

To include atarget servlet’s response with its own, the initial servlet callsthe
include method of the RequestDispatcher interface. The target servlet has full
access to the request object but can write only to the ServletOutputStream or
Writer of the response object and it cannot modify the response headers. The
target servlet can commit aresponse by either writing past the end of the
response buffer, or explicitly calling the flush method of the ServietResponse
interface.

The ServletContext and ServletRequest objectsboth contain methodsto retrieve
aRequestDispatcher instance. ServletContext methods require an absolute
URL. ServiletRequest methods can interpret arelative URL. Both URL types
must follow these guidelines:

e The path cannot include the context.

e Mappings must agree with the servlet mappings defined for the Web
application—if amapping does not exist, use the static page in the Web
application’s deployment subdirectory located in the EAServer
subdirectory /depl oy/webapps/< web-app-name>.

e You must resolve dots in the path before mapping the URL.
e There can be no static content access at WEB-INF/META-INF.

EAServer

CHAPTER 2 Creating Java Servlets

A ServletContext.getRequestDispatcher URL must begin with aforward slash
(*/"). If aServletRequest.getRequestDispatcher URL begins with aforward
slash, the servlet engineinterpretsit as an absolute URL . Otherwise, the servlet
engine appends the relative URL to the current request’s URI path. For
example, if the current request is/catalog/garden.html and therelative URL is
sports.html, then the new URL is/catal og/sports.html.

Implementation

The EA Server servlet engine passes all servlet invocation requests through a
RequestDispatcherobject instance. When the servlet engine receives a request
fromaclient, it callsthe RequestDispatcher.service method. This method | oads,
initializes, and handles instance pooling of single-threaded servlets. It also
invokes the servlet and handles errors.

Static content

A RequestDispatcher instance is typically used for servlets and JSPs, but can
also beused for static content. If the servlet engineforwardsarequest to astatic
content RequestDispatcher, the RequestDispatcher must set the response status,
the response headers, and the response data. If a static content
RequestDispatcher is called to set the datafor the current request, it needs only
return the content of the static page.

Response buffering

The Java servlet API supports response buffering that allows the servlet to
control how the servlet container buffers responses, and when to send a
responseto aclient. The ServletResponse interface providesthese methodsthat
allow a servlet to access buffering information:

* getBufferSize — returns the size of the response buffer; if buffering is not
used, returns integer value of zero.

» setBufferSize —setsbuffer size greater than or equal to the servlet’srequest.

e isCommitted — returns a Boolean value to indicate whether any part of the
response has been returned to the client.

* reset — clears the buffer of an uncommitted response.

* flushBuffer —writes buffer contents to a client.

Web Application Programmer’s Guide 31

Writing servlets for EAServer

See the Java Servlet Specification, v2.4 for detailed information about using
response buffering.

Encoding responses and double-byte characters

When you compile a Java servlet, the characters are encoded according to the
locale of your machine, unless you specify encoding in the javac compile
command. When a client sends a request from a browser, the parameters are
always SO 8859-1 encoded.

To provide a client’s browser with the encoding information it needs to
translate the content of a response correctly, declare the encoding in the
response header. If you specify the content type without the encoding
information, for instance:

response.setContentType ("text.html") ;

the client’s browser assumes that the content is SO 8859-1 encoded. If the
content has been encoded using some other standard, the client’s browser does
not translate the data correctly. This example specifies the double-byte
character set big5, the encoding name of traditional Chinese characters:

response.setContentType ("text/html;charset=big5") ;

To encode the response content, compil e the servlet with this encoding option:
javac -encode iso-8859-1 <java source file>

or convert static strings within the servlet code, for instance:

String origMsg = "<double-byte character string>";
String newMsg = new String(origMsg.getBytes(),
"iso-8859-1") ;

32 EAServer

CHAPTER 2 Creating Java Servlets

Installing and configuring servlets

After you have created or obtained the Java class that implements your
servlet’s functionality, and defined the servlet with a J2EE devel opment tool,
you can configure the properties that control how the servlet’s classis |oaded
and executed.

Note Some important differences regarding servietsin EAServer version 6.0
and version 5.x:

* Youcannot add anew servlet to a EAServer 6.0 Web application using the
Management console.

* Thepreferred way to add a serviet to EAServer 6.0 is by using a J2EE
development tool. Deploy servietsto EA Server using the deploy
command. If you make changes to a servlet, you must redeploy it.

* EAServer 6.0 does not support servlets outside a Web application.

Configuring servlet properties

See the Java Serviet Specification Version 2.4 for information about various
servlet properties. All EAServer 6.0 servlet properties are maintained in either
the Web application’s web.xml file (for J2EE servlets) or the config file (for
non-J2EE servlets). To modify any of these properties, make changes to the
corresponding file and redepl oy the Web application to which the servlet
belongs. See “ Deploying Web applications’ on page 6.

Servlets are contained in the Web Components folder under the Web
application.

Init-param settings Servlets may require initialization parameters that are specified outside of the
source code. For example, you might specify the name of an EA Server data
source as an initialization parameter. You can use the I nit-param property to
define optiona initialization parameters for the server.

For each parameter, enter the parameter name and the text of the value. The
servlet can retrieve the value as a Java String, as explained below.

Your servlet’sinit method can retrieve the specified settings using the
ServletConfig.getinitParameter(String) and
ServletConfig.getinitParameterNames() methods. The following code fragment
shows how:

Web Application Programmer’s Guide 33

Installing and configuring servlets

void init (ServletConfig config) throws ServletException

{

Enumeration paramNames =
config.getInitParameterNames () ;

while (paramNames.hasMoreElements())
String name = (String) paramNames.nextElement () ;
String value = config.getInitParameter (name) ;

}

34 EAServer

CHAPTER 3

Servlet filters

Using Filters and Event Listeners

This chapter discusses how to use servlet filters and listeners that can
respond to application life cycle events.

Topic Page
Servlet filters 35
Application life cycle event listeners 39

You can usefiltersto modify the header or the content of a servlet request
or response. Within aWeb application, you can define many filters, and a
single filter can act on one or more servlets or JavaServer Pages (JSPs).
Filters can help you accomplish anumber of tasks, including data
authentication, logging, and encryption.

You can map filters to a URL or aservlet name. When afilter is mapped
to aURL (path-mapped), thefilter appliesto every servliet and JSPin the
Web application. When afilter is mapped to a servlet name (serviet-
mapped), it appliesto asingle servlet or JISP. EAServer constructsalist of
thefilters declared in a Web application’s deployment descriptor; thislist
iscaled afilter chain. The order of thefiltersin thefilter chain determines
the order in which thefilters are executed. EAServer constructs the filter
chain by first adding the path-mapped filters, in the order in which they
aredeclared in the deployment descriptor, then adding the servlet-mapped
filtersin the order in which they appear in the deployment descriptor. As
aresult, the path-mapped filters are executed first, followed by the
servlet-mapped filters.

This sample declares the path-mapped filter, MyFilter:

<filters>
<filter-name>
MyFilter
</filter-name>

Web Application Programmer’s Guide 35

Servlet filters

<filter-class>
MyFilter
</filter-classs>

</filter>

<filter-mapping>
<filter-name>MyFilter</filter-name>
<url-pattern>/*</url-patterns
<filter-mapping>

Use the Web Management Consol e to add anew filter to aWeb application and
map it to either a servlet name or a URL pattern.

[1Adding a new filter to a Web application
1 Create afilter using a J2EE development tool.

2 Redeploy the WAR file (see the deploy command, described in Chapter
12, “Command Line Tools,” of the EAServer System Administration
Guide), or “Deploying Web applications’ on page 6.

The settings for thefilter are maintained in the web.xml file. You can add
filtersat the request dispatcher level. “ Filter mapping properties’ on page
21 describes how to map a Web application filter.

Servlet filters must implement the javax.serviet.Filter interface and define these
methods:

Interface method

Description

init

Cdlsafilter into service and sets the filter's
configuration object

doFilter

Performs the filtering work

getFilterConfig

Returns the filter’s configuration object

destroy

36

Removes afilter from service

EAServer

CHAPTER 3 Using Filters and Event Listeners

Toinitialize each filter, EAServer calls the init method and passesin a
FilterConfig object, which provides the filter with access to the Web
application’s ServletContext, the initialization parameters, and the filter name.
After all thefiltersin a chain have been initialized, EAServer calls
FilterChain::doFilter for the first filter in the chain and passesit areference to
thefilter chain. Subsequently, each filter passes control to the next filter in the
chain by calling the doFilter method. The requested resource, servlet or JSP, is
served after al the filters in the chain have been served. To halt further filter
and servlet processing from within afilter, do not call doFilter. To notify afilter
that it is being removed from service, EA Server calls the destroy method.
Within this method, the filter should clean up any resources that it holds:
memory, file handles, threads, and so on. destroy is called only once after al
the threads within the filter’s doFilter method have exited.

Hereis a sample implementation of a servlet filter, which records either the
amount of time it takes to process the request, or the time the request finishes
processing. Thetimeis recorded using the ServletContext::log method. The
filter usesthe value of theinitialization parameter type to determine whether to
record the absolute time the filter finished, or the amount of time it took to
processtherequest. If the value of typeis*“absolute,” thefilter logsthetimethe
request completes; otherwise, it logs the processing time, in milliseconds.
package filters;

import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;
import java.util.Date;

public class TimerFilter implements Filter

{

private FilterConfig filterConfig = null;

/**
* The server calls this method to initialize the Filter and
* passes in a FilterConfig object.
*/
public void init (FilterConfig filterConfig)
throws javax.servlet.ServletException
{

}

/**

* Return the FilterConfig object

*/

public FilterConfig getFilterConfig/()

_filterConfig = filterConfig;

Web Application Programmer’s Guide 37

Servlet filters

38

/**

* EAServer calls this method each time a servlet,

return filterConfig;

* resource is invoked.

*/

public void doFilter (ServletRequest request,

ServletResponse response,
FilterChain chain)

JSP or static Web

throws java.io.IOException, javax.servlet.ServletException

// This is executed before the servlet/jsp/static resource is served.

long startTime = System.currentTimeMillis() ;

// Pass control to the next filter in the chain.
chain.doFilter (request, response) ;

// This is executed after the servlet/jsp/static resource has been served.

long endTime = System.currentTimeMillis() ;

// Get the ServletContext from the FilterConfig
ServletContext context = filterConfig.getServletContext () ;

// Get the type parameter from the filter's initialization
// paramters. Return null if the parameter was not set
String type = (String)_ filterConfig.getInitParameter ("type");

// Get the filter’s name to include in the log
String filterName = filterConfig.getFilterName () ;

HttpServletRequest httprequest = (HttpServletRequest)request;
String path = httprequest.getRequestURI () ;

// By default, record the absolute time
if ((type == null) || (type.equals("absolute")))
{
Date date = new Date (endTime) ;
context.log(filterName + " - " + path + " finished: " +
date.toString()) ;

}

else

{

context.log(filterName + " - time to process " + path + ":

(endTime - startTime) + "ms");

EAServer

CHAPTER 3 Using Filters and Event Listeners

}

/**

* Notifies the filter that it is being taken out of service.
*/

public void destroy ()

{
}

// free resources

Application life cycle event listeners

The EA Server implementation of application life cycle events enables you to
register event listenersthat can respond to state changesin aWeb application’s
ServletContext and HttpSession objects. When a Web application starts up,

EA Server instantiates the listeners that are declared in the deployment
descriptor. See “Event Types and Listener Interfaces’ in the Java Serviet 2.4
specification for adescription of the listener interfaces, which EAServer calls
when each event occurs.

Sample listener Hereis an example of how a ServletContextListener can be used to maintain a
database connection for each servlet context. The database connection that is
created is stored in the ServletContext object as an attribute, soit isavailableto
al the servletsin the Web application.

package listeners;

import javax.servlet.*;
import java.sqgl.*;

public final class ContextListener implements ServletContextListener

{

ServletContext context = null;
Connection connection = null;

/**

* This method gets invoked when the ServletContext has
* been destroyed. It cleans up the database connection.
*/

public void contextDestroyed (ServletContextEvent event)

{

Web Application Programmer’s Guide 39

Application life cycle event listeners

40

// Destroy the database connection for this context.

__context.setAttribute ("DBConnection", null);
_context = null;

try {

_connection.close() ;
} catch (SQLException e)
// ignore the exception

}

* This method is invoked after the ServletContext has
* been created. It creates a database connection.

public void contextInitialized(ServletContextEvent event)

_context = event.getServletContext () ;

String jdbcDriver="com.sybase.jdbc2.jdbc.SybDriver";
String dbURL="jdbc:sybase:Tds:localhost:2638";
String user="dba";

String password="";

try {

// Create a connection and store it in the ServletContext

// as an attribute of type Connection.

Class.forName (jdbcDriver) .newInstance() ;

Connection conn =
DriverManager.getConnection (dbURL, user, password) ;

_connection = conn;

_context.setAttribute ("DBConnection", conn) ;

} catch (Exception e) ({
// Unable to create the connection, set it to null.
_connection = null;
_context.setAttribute ("DBConnection", null) ;

EAServer

CHAPTER 4 Creating JavaServer Pages

This chapter provides an overview of JavaServer Pages (JSP) and their

place in distributed application development, as well as configuration
instructions for running your JSPsin EA Server.

For detailed information about JavaServer Pages technology, see the
JavaServer Pages specification, available at
http://java.sun.com/products/jsp/download.html.

Topic Page
About JavaServer Pages 41
Why use JSPs? a4
Syntax summary 45
Objects and scopes 46
Application logic in JSPs 47
Error handling 49
Using JSPsin EAServer 51

About JavaServer Pages

JavaServer Pages (JSP) technology enables you to create Web pages with
both static and dynamic content. JSPs are text-based documents that
contain static markup, usually inHTML or XML, aswell as Java content
in the form of scripts and calls to Java components. JSPs extend the Java

Servlet API and have access to al Java APIs and components.

You can use JSPs many different waysin Web-based applications. As part
of the J2EE application model, JSPs typically run on a Web server in the
middle tier, responding to HT TP requests from clients, and invoking the
business methods of Enterprise JavaBeans (EJB) components on a

transaction server.

Web Application Programmer’s Guide

41

About JavaServer Pages

How JavaServer Pages work

JSPs are executed in a JSP engine (al so called a JSP container) that isinstalled
on aWeb or application server. The JSP enginereceives arequest from aclient
and deliversit to the JSP. The JSP can create or use other objects to create a
response. For example, a JSP can forward the request to a servlet or an EJB
component, which processes the request and returns aresponse to the JSP. The
response is formatted according to the template in the JSP and returned to the
client.

Translating into a You can deploy JSPsto the server in either source or compiled form. If a JSP

serviet class isin source form, the JSP engine typically trand ates the page into a class that
implements the servlet interface and storesit in the server’s memory.
Depending on the implementation of the JSP engine, translation can occur at
any time between initial deployment and the receipt of thefirst request. Aslong
as the JSP remains unchanged, subsequent requests reuse the servlet class,
reducing the time required for those requests.

Deploying the JSP as a compiled servlet class eliminates the time required to
compile the JSP when the first request is received. It also eliminates the need
to have the Java compiler on the server.

Requests and Some JSP engines can handle requests and responses that use several different

responses protocols, but all JSP engines can handle HTTP requests and responses. The
JspPage and HttpJspPage classes in the javax.serviet.jsp package define the
interface for the compiled JSP, which has three methods:

e jsplnit()
¢ jspDestroy()

e _jspService(HttpServletRequest request,
HttpServiletResponse response)

For more information about the EA Server implementation of the JSP engine,
see “Using JSPsin EAServer” on page 51.

What a JSP contains

A JSP contains static template text that is written to the output stream. It also
contains dynamic content that can take several forms:

« Directives provide global information for the page, or include afile of text
or code.

42 EAServer

CHAPTER 4 Creating JavaServer Pages

A simple example

Scripting elements (declarations, scriptlets, and expressions) manipulate
objects and perform computations.

Sandard tags perform common actions such asinstantiating or getting or
setting the properties of a JavaBeans component, downloading a plug-in,
or forwarding arequest.

Custom tags perform additional actions defined in a custom tag library.

For more detailed information about using these content types, see
“Application logic in JSPS’ on page 47.

This sample JSP contains a directive, a scripting element (in this case an
expression), and a standard tag. The dynamic content is shown in bold:

<HTML >

<HEAD><TITLE>Simple JSP</TITLE>

</HEAD>

<BODY >

<P>This page uses three kinds of dynamic content: </P>
A page directive that imports the java util
package.

<%@ page import = "java.util.*" %>

An expression to get the current date using
java.util.Date. Today's date is <%= new Date() %>.
An include tag to include data from another file
without parsing the content.

<jsp:include page="includedpage.txt" flush="true"/>

</BODY>

</HTML>

The page referenced is atext file that contains one sentence and isin the same
directory as the JSP file. The included page might also be another resource,
such as a JSP file, and its location can be specified using a URI path.

You can call the JSP from an HTML page with a hypertext reference:

<html><body>

<p>Click here to send a
request to the simple JSP.</p>

</body></html>

ThisHTML isreturned to the browser:

<HTML>

<HEAD><TITLE>Simple JSP</TITLE>

</HEAD>

<BODY >

<P>This page uses three kinds of dynamic content: </P>

Web Application Programmer’s Guide 43

Why use JSPs?

A page directive that imports the java util
package.

An expression to get the current date using
java.util.Date. Today's date is Mon Feb 14 17:03:51 EST
2000.

An include tag to include data from another file
without parsing the content.

In this case the included file is a static file
containing this sentence.

</BODY>

</HTML>

Why use JSPs?

About Java servlets

Java servlets and
JSPs

44

JavaServer Pages inherit the concepts of applications, servlietContexts,
sessions, requests, and responses from the Java Servlets APl and offer the same
portability, performance, and scalability as servlets.

Java servlets overcome many of the deficiencies of CGlI, ISAPI, and NSAPI.
Although the CGI-BIN interfaceis not platform-specific, code must be
recompiled for different platforms, and performance is poor for large-scale
applications because each new CGI request requires a new server process.
Similar platform-specific interfaces such as ISAPI and NSAPI improve
performance, but at the cost of even less portability.

Because Java servlets are written in Java, they are completely platform- and
server-independent. They provide superior performance and scal ability
because they can be compiled, loaded into memory, and reused by multiple
clientswhile running in a single thread, and they can take advantage of
connection caching or pooling.

Java servlets are described in more detail in Chapter 2, “Creating Java
Servlets.”

Java servlets and JSPs are based on the same AP, and either can be used tofill
somerolesin aWeb application. But while Java servlets are Java code with
embedded HTML, JSPsareHTML (or XML) pageswith embedded Java code.
This difference provides additional advantages.

EAServer

CHAPTER 4 Creating JavaServer Pages

Separating logic and
presentation

Application
partitioning

Servlets must be recompiled and deployed whenever thereis a change to the
page presentation, so they are best used where such changes are not required.
Use servletsto generate binary data—such asimagefiles—dynamically, and to
perform complex processing with no presentation component.

The JavaServer Pages API provides tags that make it easy for a Web-page
developer to add dynamic content to a Web page without writing Java code.
The application logic in the page can be separated from page format and
design. This separation supports multitiered development. An application
developer can build EJBs, JavaBeans, and custom tag libraries. The page
author needs only know how to call these components and what arguments to
pass.

Inatypical architecture for multitier applications, a\Web server communicates
with aclient viaHTTR, with atransaction server hosting components that
handle database transactions. JSPs make it easier to partition and maintain an
application on multiple servers. The JSP runs on the Web server and can be
updated whenever the page designer needs to change elements of the
presentation. The components called by the JSP run on the transaction server,
or on acluster of transaction servers, and can be updated whenever the business
logic needsto change.

You can also separate request handling from presentation using JSPs as front
components and presentation components. A front component receives a
request from the client, creates, updates, or accesses server components, then
forwards the request to a presentation component. A presentation component
incorporates fixed template data and returns the response to the client. Both
types of JSP typically use custom actions to access the server-side data.

Syntax summary

For complete syntax details, see the JavaServer Pages 2.0 for J2EE 1.4
specification, available at http://java.sun.com/products/jsp/download.html .

Web Application Programmer’s Guide 45

Objects and scopes

Objects and scopes

Scopes

Implicit objects

46

When a JSP processes arequest, it has accessto a set of implicit objects, each
of which is associated with a given scope. Other objects can be created in
scripts. These created objects have a scope attribute that defines where the
reference to that object is created and removed.

There are four scopes:

¢ Page—accessible only in the page in which the object is created. Released
when the response is returned or the request forwarded.

¢ Reguest —accessiblefrom pages processing the request in which the object
is created. Released when the request has been processed.

¢ Session-—accessible from pages processing requestsin the same sessionin
which the object is created. Released when the session ends.

e Application — accessible from pages processing requests in the same
application in which the object is created. Released when the runtime
environment reclaims the ServletContext.

References to the object are stored in the PageContext, Request, Session, or
Application object, according to the object’s scope.

The following implicit objects are always available within scriptlets and
expressions.

¢ Request — the request triggering the service invocation.

¢ Response — the response to the request.

« PageContext — the page context for this JSP.

e Session —the session object created for the requesting client (if any).

e Application —the servlet context obtained from the servlet configuration,
asinthe call getservlietConfig().getContext().

¢ Out —an object that writes to the output stream.
¢ Config —the ServletConfig for this JSP.

EAServer

CHAPTER 4 Creating JavaServer Pages

« Page-—theinstance of this page'simplementation class that is processing
the current request. A synonym for this when the programming language
isJava.

For information about the scope and type of each implicit object, see the
JavaServer Pages Syntax Card at http://java.sun.com/products/jsp/syntax.pdf.

The exception implicit If the JSPis an error page (the page directive' s isErrorPage attribute is set to
object true), the following implicit object is also available:

e exception —the uncaught Throwable that resulted in the error page being
invoked.

For more information, see “Error handling” on page 49.

Application logic in JSPs

The application logic in JSPs can be provided by components such as servlets,
JavaBeans, and EJBs, customized tag libraries, scriptlets and expressions.
Scriptlets and expressions hold the components and tags together in the page.

JavaBeans You can easily use JavaBeans componentsin a JSP with the useBean directive.

Enterprise JavaBeans To usean EJB component, write ascriptlet that uses INDI to establish aninitial
naming context for the EJB’s home interface. For more information about
establishing the naming context and calling remote methods on the EJB’shome
interface, see the Enterprise JavaBeaans User’s Guide. This example,
HotSpots.jsp, uses an EJB called HotSpots to return alist of placesto go that
fit a category and date requirement passed in the HTTP request:

<HTML >

<HEAD></HEAD><BODY>

<%@ page language="java" import="hotspots.*"
session="true" errorPage="ErrorPage.jsp" %>

<%@ include file="header.htm" %>

<hl>HotSpots</hl>

<%-- GET SEARCH PARAMETERS FROM REQUEST OBJECT --%>

o
<3

String category =
request.getParameter ("category") ;
String date = request.getParameter ("date");
%>
<%-- CREATE FORM WITH SEARCH PARAMETERS --%>
<form action="HotSpots.jsp">

Web Application Programmer’s Guide 47

Application logic in JSPs

48

<table border=0>
<tr><td>Category:</td><td>

<input name="category" value="<%= category %>">

</td></tr>

<tr><tds>Date:</td><td><input name="date"
value="<%= date %>"></td>

</tr>

</table>

<input type="submit" value="Search">

</form>

°
<%--

INSERT TABLE TO SHOW RESULTS AND USE SCRIPTLET TO

GET A REFERENCE TO THE HOTSPOTS HOME INTERFACE AND GET
A RESULT SET--%>

<p><table border=1 cellpadding=4>
<tr><th>Book</th><th>Place</th><th>Date</th>

<th>Price</th></tr>
<%
if (category !=null && date!=null) {
try {

java.util.Properties
p = new java.util.Properties() ;

p.put (javax.naming.Context . INITIAL CONTEXT_FACTORY,

"com.sybase.ejb.InitialContextFactory") ;
p.put (javax.naming.Context.PROVIDER URL,
"iiop://localhost:9000") ;

p.put (javax.naming.Context.SECURITY PRINCIPAL,

"jagadmin") ;

p.put (javax.naming.Context.SECURITY CREDENTIALS,

")

javax.naming.InitialContext ctx =

new javax.naming.InitialContext (p) ;
HotSpotsHome home = (HotSpotsHome)

ctx.lookup ("HotSpots") ;
HotSpots hotSpots = home.create() ;
java.sgl.ResultSet rs =

com. sybase.helper.IDL.getResultSet (

hotSpots.getlList (category, date));

while (rs.next()) {

%-- POPULATE TABLE WITH RESULT SET --%>
tr><td><a href=Payment.jsp?trip=

<%= rs.getInt("trip_ id") %>
&amount=<%= rs.getDouble ("price") %> >
</td>

<td><%= rs.getString("place") %></td>
<td><%= rs.getDate("date") %></td>

EAServer

CHAPTER 4 Creating JavaServer Pages

Customized tag
libraries

<td><%= rs.getDouble ("price") %$></td>
</tr>

<%-- CLOSE WHILE LOOP AND TRY CATCH BLOCK --%>

<
}
} catch (Exception e)
out.println(e) ;
}

}

%>

</table>
</BODY></HTML>

oe

Customized tag libraries, also called tag extensions, extend the capabilities of
JSPs. Tag libraries define a set of actions to be used within a JSP for a specific
purpose, such as handling SQL requests.

JSP authors can use tag libraries whether they are editing a page manually or
using an authoring tool. To associate atag library with the page, the page author
usesataglib directivethat identifiesthetaglibrary’s URI. The URI identifying
thetag library isassociated with atag library descriptor (TLD) fileand with tag
handler classes. Tag libraries are usually packaged as JAR files with atag
library descriptor file named META-INF/taglib.tld.

A tag handler is a Java class that defines the semantics of an action. The
implementation class for the JSP instantiates a tag handler object for each
action in the page. Tag handler objects implement the
javax.servlet.jsp.tagext. Tag interface which defines basic methods required by
all tag handlers, including doStartTag and doEndTag. The BodyTag interface
extends the Tag interface by adding methods that enable the handler to
manipulate its body.

You can use the same tag library in multiple Web applications by placing the
JAR file containing the tag library in the EAServer extensions subdirectory.

Error handling

When aclient request is processed, runtime errors can occur in the body of the
implementation class for the JSP, or in Java code that is called by the page.
These exceptions can be handled in the code in the JSP using the Java
language's exception mechanism.

Web Application Programmer’s Guide 49

Error handling

Uncaught exceptions

Using an error page
JSP

50

Any exceptionsthat are thrown from the body of the implementation class and
are not caught can be handled with an error page that you specify by using a
page directive. Both the client request and the uncaught exception are
forwarded to the error page. Thejava.lang. Throwable exception is stored in the
javax.ServletRequest instance for the client request using the putAttribute
method, using the name javax.servlet.jsp.jspException.

If you specify a JSP asthe error page, you can use itsimplicit exception
variableto obtain information about the exception. The exception variableis of
typejava.lang.Throwable and isinitialized to the throwabl e reference when the
uncaught exception is thrown.

To specify an error page for a JSP, set its errorPage attribute to the URL of the
error page in a page directive:

<%@ page errorPage="ErrorPage.jsp" %>

To define a JSP as an error page, set itsisErrorPage attribute to true in a page
directive:

<%@ page isErrorPage="true" %>

This sample error page JSP uses the exception variabl€'s toString method to
return the name of the actual class of this object and the result of the
getMessage method for the object. If no message string was provided, toString
returns only the name of the class.

The example also usesthe getParameterNames and getAttributeNames methods
of the request object to obtain information about the request.

<%@ page language="java" import="java.util.*"
isErrorPage="true" %>

<H1 align="Center">Exceptions</H1l>

<%= exception.toString() %>

<%! Enumeration parmNames; %>

<%! Enumeration attrNames; %>

Parameters:

<% parmNames = request.getParameterNames () ;
while (parmNames.hasMoreElements()) {

%>

<%= parmNames.nextElement () .toString() %>

<%
}

%>

Attributes:

<% attrNames = request.getAttributeNames () ;
while (attrNames.hasMoreElements())

o°
\%

EAServer

CHAPTER 4 Creating JavaServer Pages

)

<%= attrNames.nextElement () .toString() %>

N
o°

o\°
\

Using JSPs in EAServer

For JSPsto run in EAServer, they must belong to a Web application. In
addition, you can create servlet mappings for JSPs. The URL pattern to which
the servlet is mapped executes the JSP. This section discusses:

e “JSPand EAServer overview” on page 51

e “Compiling JSPs’ on page 52

« “JSPfilelocations’ on page 52

e “Creating and configuring JSPsin EAServer” on page 53
e “Internationalization” on page 53

e “Mapping JSPS’ on page 54

* “Response caching” on page 54

e “Filters’ on page 54

JSP and EAServer overview

EAServer fully supportsthe features described in the JavaServer Pages 2.0 for
J2EE 1.4 specification as well as mapping requeststo JSPs as described in the
Java Servlet 2.4 specification. In EAServer, the JSP engine isimplemented as
ageneric servlet, which is referred to as the JSP servlet. The JSP servlet
handles runtime tranglation and compilation of JSPs, if required, as well as
invoking the generated servlet for a given JSP.

The JSP servlet supports trandation of JSPs containing JSP standard
directives, standard actions, custom tags, and scripting elements such as
declarations, scriptlets, and expressions. For JSPsthat include custom JSPtags,
atag handler isloaded every timeitisneeded. Tag handlersare not pooled. The
JSP servlet also supports al the semantics associated with the “extends”
attribute.

Web Application Programmer’s Guide 51

Using JSPs in EAServer

A Web application isacollection of resourcesthat is mapped to aspecific URI
prefix. These resources may include JSPs, servlets, HTML files, and images.
The URI that isstored in the request data structureisused to retrieve aJSP. The
JSP servlet creates a unique name for a generated servlet. These generated
servlet names are stored in a hash table. For a given request URI, the JSP
servlet determines the generated servlet name to which it corresponds. It then
looks up the generated servlet namein the hash table; an entry in the hash table
indicates that the JSP has been precompiled.

If aJSPisnot precompiled, the JSP servlet invokes the compiler and savesthe
generated filesin the appropriate directory. It then executes the page by
invoking the _jspService method on the generated servlet.

If aJSPisprecompiled, the JSP servlet compares the timestamp of the JSP and
al its nested include files, if any, with the timestamp of the generated servlet.
If any timestamp of the JSP is more recent than that of the generated servlet,
the JSPisrecompiled. If the generated servlet is current, the JSP servlet creates
anew instance of the precompiled servlet class and calls _jspService method
onit.

Compiling JSPs

When you create a JSP, the load during startup deployment descriptor
determinesif your JSPs are compiled at server start-up or thefirst time the JSP
is called. You can use acommand line utility to compile your JSPs, which
allows you to debug and test your JSPs without running the server.

jsp compiler You can compile JSPs with the jagtool or jagant compilejsp command.
Compiler options include:
« <file> A fileto be parsed asaJSP.

« -jspdir <dir> A directory containing a Web application. All JSPs are
recursively parsed.

JSP file locations

JSPsare contained within Web applications. JSP source code and classfilesare
stored relative to the Web application to which they belong.

You can find the source code in the same directory asthe JSP classfiles. The
Javafiles generated from JSPs are stored in the same location asthe classfiles.

52 EAServer

CHAPTER 4 Creating JavaServer Pages

EA Server compiles and loads JSP classes from:

$DJC_HOME/deploy/webapps/WebAppName/WEB -
INF/compiled jsps

Where WebAppName is the Web application name.
EA Server keeps the Java source code after compiling a JSP.

JSPs in the EAServer html subdirectory
In the as-installed configuration, you cannot create JSPsin the EAServer html

subdirectory. The html directory isregistered as EAServer’s default HTTP
context to define the Web server’s context root. An HT TP context can serve
static content only. In order to serve JSPsfrom the root context, you must create
aWeb application and set its context path to “/” to override the server’s default
root context. You must al so change the Resource Base property for the default
HTTP context to point some place besidesthe EA Server html subdirectory. For
details on creating a Web application, see Chapter 1, “Defining Web
Applications.” For details on HTTP context configuration, see“HTTPtab” in
Chapter 3, “Creating and Configuring Servers,” in the System Administration
Guide.

Creating and configuring JSPs in EAServer

Define the JSP with a J2EE development tool, and deploy it into EAServer
using the deploy command.

You can also add compiled .jsp files to the

$DJC_HOME/depl oy/webapps/\WWebAppName/WEB-INF/compiled_jsps
directory to makethem availablein EA Server. WebAppNameisthe name of the
Web application to which the JSP is added.

Internationalization

EAServer supports international versions of your Web application resources:
Servlets, static Web pages, and so on. For more information, see “Localizing
Web applications’ on page 22.

Web Application Programmer’s Guide 53

Using JSPs in EAServer

Mapping JSPs
EA Server supports path mappings as described in the Java Serviet 2.4

specification. Mappings are defined at the Web application level. See Chapter
1, “Defining Web Applications’ for information about Servlet mappings.

Response caching

EA Server supports response caching, which improves the performance of
servlet and JSP requests. When response caching is enabled for aservlet or JSP
Web component, the cache is checked before the Web component is invoked.
For more information, see “Dynamic response caching” in Chapter 5, “Web
Application Tuning,” in the EAServer Performance and Tuning Guide.

Filters

EA Server supports servlet filters as described in the Java Servlet 2.4
specification. Filters are defined at the Web application-level. For information
on creating filters, see Chapter 3, “Using Filters and Event Listeners.”

54 EAServer

CHAPTER 5

Creating JavaMail

EA Server supportsversion 1.4 of the JavaMail API. JavaMail allowsyou
to send electronic mail from Java servlets, Javacomponents, or standalone
Javaapplications. The JavaMail API providesastandard Javainterfaceto
the most widely-used Internet mail protocols.

Topic Page
Introduction to JavaMail 55
Writing JavaMail for EAServer 56
Deploying JavaMail-enabled applications 59

Introduction to JavaMalil

JavaMail isaJavastandard extension that providesaset of abstract classes
that define the common objects and their interfaces for any general mail
system. JavaMail providersimplement the API to provide the concrete
functionality needed to communicate using specific protocols such asthe
Simple Mail Transfer Protocol (SMTP) and the Internet Message A ccess
Protocol (IMAP).

Using JavaMail APIsin EAServer, you can send e-mail messages from
Java components, servlets, or JSPs. For example, a Web-based bookstore
could send e-mail to a customer acknowledging an order, or to a System
Administrator warning that a database is full.

Note EAServer supports only the ability to build and send mail.

For information on how to design a JavaMail program, see the JavaMail
Web site at http://java.sun.com/products/javamail. For information on many
of the standards relating to Internet mail, see the Internet Mail Consortium
Web site at http://www.imc.org.

Web Application Programmer’s Guide 55

Writing JavaMail for EAServer

Writing JavaMail for EAServer

You can implement JavaMail for EAServer asyou would for any other server
that follows the JavaMail specification. JavaMail for EAServer can be coded
to the standard JavaMail APl and uses classes in the javax.mail and
javax.mail.internet packages.

Creating a JavaMail session

The javax.mail.Session object is responsible for managing a user’s mail
configuration settings and handling authentication for theindividual transports
used during the session.

To create platform-independent applications, a JavaMail program can use a
resource factory reference to obtain a JavaMail session. A resource factory is
an object that provides access to specific resources within a program’s

depl oyed environment using the specific naming conventionsdefined by JNDI.
All resource factory references are organized by resource typein the
application’scomponent environment. For example, JavaMail resourcefactory
references are found in java: comp/env/mail. For more information on using
resource factory references, see Resource references, in Chapter 1, “ Defining
Web Applications”.

To obtain aninitial INDI naming context for your JavaMail session, create an
instance of the javax.naming.InitialContext object. Then call the lookup method
toinvokethejavax.mail. Session factory reference to obtain a JJavaMail session.
This session will map to thelocal mail server as defined for the environment in
which your JavaMail program is deployed. See “ Deploying JavaMail-enabled
applications” on page 59 for information on specifying your local resources.

Constructing a message

56

Message is an abstract classin the JavaMail API. Subclasses of Message
implement the concrete functionality needed for specific messaging systems.
The JavaMail reference implementation includes a MimeMessage class that
implements the standard for basic Internet messages and the Multipurpose
Internet Mail Extensions (MIME).

To construct a message, instantiate a MimeMessage object, set the required
attributes (headers), and provide the appropriate header values and body
content. At aminimum, specify From, To, and Date headers.

EAServer

CHAPTER 5 Creating JavaMail

Use the setFrom method to set the From header field using the value of

InternetAddress. Use the setRecipients method to set the specified recipient

typeto a given address. Use the setSentDate method to set the date.

Sending a message

Usethe Transport classto send amessage. If you create a JavaMail session that

uses the SMTP provider included with EAServer, you can simply use the
Transport.send method to send your completed message to all the recipient

addresses specified.

Sample EAServer JavaMail program

In this example, an e-mail message is sent to the user of a Web-based travel

reservation system confirming the user’s reservation.

public String mailIt

(java.lang.String from,
java.lang.String to,
java.lang.String subject,
java.lang.String textmessage)

String status = “Your message was sent”;
try {

//Obtain the initial JNDI context
InitialContext ctx = new InitialContext () ;

//Perform a JNDI lookup to obtain the resource

//reference object

Session session = (Session) ctx.lookup
(“java:comp/env/mail/mymailserver”) ;

//Construct the message
MimeMessage message = new MimeMessage (session) ;

//Set the from address

Address[] fromAddress =
InternetAddress.parse (from) ;

message.addFrom (fromAddress) ;

//Set the to address

Address[] toAddress = InternetAddress.parse(to) ;

Web Application Programmer’s Guide

57

Writing JavaMail for EAServer

JavaMail providers

message.setRecipients (Message.RecipientType.TO,
toAddress) ;

//Set the subject and text
message.setSubject (subject) ;

message.setText (textmessage) ;

//Send the message
Transport.send (message) ;

} catch(AddressException e)

(
status = “There was an error parsing theaddresses”+e;
} catch(SendFailedException e) {
status = “There was an error sending the message”+e;
} catch (MessagingException e)
status = “There was an unexpected error”+e;
} catch (NamingException e)
status = “The mail session could not be created.”;

}

System.out.println(“The status is:”+ status);
return status;

}

JavaMail is extensible, which means that when new protocols are developed,
providersfor those protocols can be added to a system and used by preexisting
JavaMail enabled applications. Applications can use the Provider Registry
detect which providers are available to them viathe Provider Registry.

The

providersthat come with the JavaMail referenceimplementation arelisted

in javamail .default.providers. If you add a package containing a new provider,
it should include ajavamail.providersfile in its META-INF directory.

Toli

58

st the available providers on your system:

import javax.mail.*;

class ListProviders
public static void main(String[] args)

java.util.Properties properties =
System.getProperties () ;

Session session = Session.getInstance (properties,
null) ;

EAServer

CHAPTER 5 Creating JavaMail

Provider [] providers = session.getProviders();
for (int i = 0; 1 < providers.length; ++1i)

{

System.out.println(providers[i]) ;

}

Deploying JavaMail-enabled applications

If you use JavaMail in Web applications or EJB components, you can configure
resource references to alias a JavaMail session to a JNDI name. The resource
reference allows you to use INDI to obtain mail sessions, as described in
“Creating a JavaMail session” on page 56. The use of logical names alows
your application to run in environments where the INDI namespace does not
match the names hard-coded in your application. When you deploy the
application, you map thelogical namesto actual namesthat match the server’s
configuration. You must catalog the INDI names used by your code in the
application’s deployment descriptor. Once your JavaMail-enabled Web
application is deployed to a host server, you must configure the
javax.mail.Session resource settings.

[JAdding a JavaMail session in EAServer

1 From the Web Management console, expand the Resources folder, right-
click the Mail Sessionsfolder, and select Add.

2 Follow the wizard instructions to add the JavaMail session.
3 Click Finish when done, then define the properties for this mail session.

[IDefining the properties for a JavaMail session:

1 From the Web Management Console, expand the Resources folder, and
expand the Mail Sessionsfolder. Select the mail session for which you are
defining the properties.

2 Configure the mail session’s properties by selecting these tabs:

* Genera
« POP3

« POP3S
e SMTP

Web Application Programmer’s Guide 59

Deploying JavaMail-enabled applications

General properties

POP3 properties

60

e SMTPS

These propertiesmap directly to the propertieslisted in Appendix A of the
JavaMail specification. When the name service has abinding for an object
of type javax.mail.Session, an instance of the
com.sybase.djc.mail.MailSession component is created and callsa
getMail Session method on it. The method creates a new
javax.mail.Session, passing in the mail propertieswhich you have defined.
Themethod returnsthe newly created javax.mail.Session to be boundinthe
name service.

3 Click Apply.

From the General tab, you can configure:

Host — the name of the mail host machine.
User —the name of the default user for retrieving e-mail messages.
From —the default return address.

Store Protocol — the protocol used for receiving mail; for example, Post
Office Protocol 3 (POP3), or Post Office Protocol 3 over SSL (POP3S).
See POPS3 properties and POP3S properties for more information.

Transport Protocol — either Simple Mail Transfer Protocol (SMTP) or
Simple Mail Transfer Protocol of SSL (SMTPS). See“SMTP properties”
on page 62 and “SMTPS properties’ on page 64 for more information.

Mail Debug Quote — defines the initial debug mode.
Debug — if true, enables JavaMail debug output.

Advanced Properties — select any of the options to display advanced
properties.

POP3 isthe standard for Internet mail servers. Many e-mail clients are POP3-
compliant, which means they can send e-mail messages to and receive e-mail
messages from any POP3 compliant messaging server. POP3 properties
include:

EAServer

CHAPTER 5 Creating JavaMail

POP3S properties

Host — the host name of the mail server for the POP3 protocol. An entry in
thisfield overrides the Host property on the General tab.

User — the user name to use when connecting to mail serversusing the
POPS3 protocol. An entry in thisfield overrides the User property in the
General tab.

Advanced Properties, including:

e Port —the port number of the mail server for the POP3 protocol. If not
specified, the protocol’s default port number is used.

* APOP - Enable APOPR, which issimilar to POP, only secure. Usethis
option if you want to send secure e-mail messages from a secure Web
site to a secure APOP e-mail account, and retrieve it using a secure
mail client. Thisallows messagesto be securefromthe Web siteto the
end destination. The client receiving the e-mail message must be able
to decrypt the e-mail message. Most e-mail clients, such as Eudora,
can handle secure e-mail messages.

¢ Reset Before Quit — resets the status of the POP3 server, including
resetting the status of all messages to not be deleted before quitting
and closing the connection.

POP3Sissimilar to POP3, with the addition of SSL support. POP3S properties
include:

Host — the host name of the mail server for the POP3S protocol. An entry
in this field overrides the Host property in the General tab.

User — the user name to use when connecting to mail serversusing the
POP3S protocol. An entry in thisfield overrides the User property in the
General tab.

Advanced Properties, including:

* Port —the port number of the mail server for the POP3S protocol. If
not specified, the protocol’s default port number is used.

* Reset before quit — resets the status of the POP3S server, including
resetting the status of all messages to not be deleted before quitting
and closing the connection.

Web Application Programmer’s Guide 61

Deploying JavaMail-enabled applications

SMTP properties

62

The fields on the SMTP tab alow you to configure an e-mail server that uses
the Simple Mail Transfer Protocol . SMTP, which is used for sending outbound
e-mail. Properties include:

¢ Host —the host name of the mail server for the SMTP protocol. An entry
in thisfield overrides the Host property on the General tab.

e User —the user name to use when connecting to mail servers using the
SMTP protocol. An entry in this field overrides the User property on the
General tab.

e Advanced Properties, including:

e Port —the port number of the mail server for the SMTP protocol. If
not specified, the protocol’s default port number is used.

e From —to help prevent spoofing, you can enter the login name of the
sender of the e-mail message for this session.

e Submitter — the name of the SM TP responsible submitter.

e Extensions-—enter acomma-separated list of SMTP service
extensions for this mail session. The table below lists SMTP service
extensions. The server response to aclient EHL O command includes
akeyword for each service extension the server implements.

Extension Description

SEND Send as mail

SOML Send as mail or terminal

SAML Send as mail and terminal

EXPN Expand the mailing list

HELP Supply helpful information

TURN Turn the operation around

8BITMIME Use 8-bit data

SIZE Message size declaration. Requires a number parameter
that defines the size.

VERB Verbose

ONEX Allow only one message per transaction.

CHUNKING Chunk messages.

BINARYMIME Binary MIME formatting.

CHECKPOINT Checkpoint/Restart

PIPELINING Command Pipelining

DSN Delivery Status Notification

EAServer

CHAPTER 5 Creating JavaMail

Extension Description

ETRN Extended Turn

ENHANCEDSTATUSCO Enhanced Status Codes

DES

STARTTLS Start TLS

NO-SOLICITING Notification of no soliciting. Requires keyword(s)
parameters to be used as the no solicitation message.

MTRK Message Tracking

SUBMITTER SMTP Responsible Submitter

ATRN Authenticated TURN

AUTH Authentication mechanism. Requires SASL mechanism
name(s) parameters.

BURL Remote Content. Requires allowed URL prefix
parameters.

» Delivery Status Notification (DSN) — select the type of status
notification to enable:

* Negative —notify if the message was not delivered
* Positive—notify if the message was delivered.

» Delivery Status Notification RET — specifies whether or not the
message should beincluded in any failed status notification issued for
this message transmission:

* FULL —requests the entire message be returned in any failed
delivery status notification issued for this recipient.

* HDRS-requests only the headers of the message be returned.

* Send Partial — send the message eveniif it has someinvalid addresses,
and report any failures. If unselected (the default), the message is not
sent to any of the recipientsif thereisaninvalid recipient address.

* Quit Wait — causesthe SMTP transport to wait for the response to the
QUIT command. If false, the QUIT command is sent and the
connection isimmediately closed.

* Report Success — causes the SMTP transport to include an
SMTPAddressSucceededException for each addressthat is successful.

« Enable STARTTLS - create an encrypted connection over which e-
mail messages are sent.

Web Application Programmer’s Guide 63

Deploying JavaMail-enabled applications

SMTPS properties

SMTPS alows you to configure the SMTP with SSL mail server, used for
sending outbound e-mail messages. The properties are the same as those used
for SMTP. See“SMTP properties’ on page 62 for a description.

64

SASL Realm —a Simple Authentication and Security Layer (SASL)
realm or domain for authentication and data security. EA Server may
have multiple realms defined. If this realm does not match one of the
realms or domains offered by the server, authentication fails.

Enable EHLO — SASL supports several password types which have
differing security properties. Different SMTP clients may support
some or all of these password types. When the client issuesan EHLO
command, the server informs the client which typesiit supports, for
example, STARTTLS or DIGEST-MD?5. The client chooses the first
of the listed methods that it also supports, and issues an AUTH
request.

Enable Auth — if selected, you must provide a user name and
password, and the server attempts to authenticate the client.

EAServer

Index

A

application lifecycleevents 39
samplelistener 39

application logicinJSPs 47

application object, JSP 46

application partioning and JSPs 45

application scope, ISP 46

C
compiling
JSPs 52
config object, JSP 46
context initialization for Web applications
context path
Web application property 9
conventions X
custom tagsand JSPs 42
customized tag librariesfor JSP 49

D

deployment

of JISPs 42
developing

Javaservlets 25
directives

and JSPs 42

E

EAServer

JSP support 51
EJB components

JINDI namesfor 13
EJB references

Web Application Programmer’s Guide

Web application property 13
environment properties
for Web applications 17
error handling, JSP 49
error pages
for Web applications 11
JsP 50
examples
application lifecycle event listener 39
JSP 43
serviet filter 37
exception object, JISP 47

F

filelocations, JSP 52

filters
adding to aWeb application 36
for servletsand JSPs 35
sample 37

H

HTML files
in Web applications 2
HTTP requests and responses, JSPs 42

installing
filtersin Web applications 36

J

J2EE application model and JSPs 41

65

Index

Java

servlets 23,25
Java classes

for Web applications 3
Java servlets, developing 25

JavaBeans
useinJSPs 47
JavaMail
APl usage 56

deployment propertiesfor 59
explanationof 55
samplecode 57

usingin EAServer 55
JCM Javaclass 27
JCMCache Javaclass 26
JNDI

and environment properties 17
and resources 17

names for EJB components 13
using in Web applications 13
JSP

adding to aWeb application 2
and application partioning 45
and servlets 44

and Web application development 41
application logic 47
application object 46
application scope 46
compiling 52

config object 46
customtags 42

customized tag libraries 49
deploying 42

directives 42

EAServer support for 51
error handling 49

error pages 50

exception object 47
features 44

filelocations 52

handling requests and responses 42
mapping to servlets 54

out object 46

overview 42

page object 47

page scope 46

66

pageContext object 46
request object 46

request scope 46

response object 46
samplepage 43

scope 46

scripting elements 42
session object 46

session scope 46

standard tags 42

trandating to aservlet class 42
uncaught exceptions 50
using in Web applications 18
using JavaBeansin 47

using tag librariesin 12

L

listeners
for application lifecycleevents 39

M

mail, electronic

using in EAServer applications 55
mapping JSPsto servlets 54
MIME mappings

configuring in Web applications 20

N
naming services
about 35

O

out object, JSSP 46
overview of JSPs 42

EAServer

P

page object for aJSP 47
page scope for JSP 46
PageContext object for aJSP 46
properties

of Javaservlets 33

of Web applications 7

R

request object, ISP 46
request scope, ISP 46
RequestDi spatcher

flush 30

forward 30

include 30

service 31
requests and responses, JSPs 42
resource references

Web application property 15, 17
response object, JSSP 46

S

scope, ISP 46
scripting elements
and JSPs 42
server
naming service 35
server properties
naming service 35
serviet class, trandating JSPs 42
ServletContext
getNamedDispatcher 30
getRequestDispatcher 30
ServletResponse
flushBuffer 31
getBufferSize 31
isCommitted 31
reset 31
setBufferSize 31
servlets
and JSPs 44
creating 25

Web Application Programmer’s Guide

filters 35
propertiesfor 33

running in Web applications 2,5

using in Web applications
session

JSP object 46

scope, ISP 46
standard tags

and JSPs 42

T

tag libraries

18

configuring in Web applications

typographica conventions x

U

uncaught exceptions, JSP 50

w

Web applications
contentsof 2
creating 1
creating filtersin 36
creating listenersfor 39
definitionof 1
deploying filesin 2

12

deploying in EAServer Manager 6

deployment descriptor for
environment properties for
initilizationof 11
Javaclassesfor 3
mapping request pathsin
propertiesfor 7
using EJB componentsin
Web components
filters 35
welcome pages
for Web applications 11

5
17

18

13

Index

67

Index

68 EAServer

	Web Application Programmer’s Guide
	About This Book
	CHAPTER 1 Defining Web Applications
	Introduction
	Contents of a Web application
	Servlets
	JSP files and tag libraries
	Static files
	Filters and event listeners
	Java classes
	Deployment descriptor

	Deploying Web applications
	Configuring Web application properties
	Editing configuration files
	General properties
	Configuration properties
	User configuration properties
	Web.xml
	Advanced properties
	Context initialization properties
	Welcome and error page specifications
	Welcome files
	Error pages

	Tag library descriptor references
	Naming references
	EJB references
	EJB local references
	Resource references
	Resource environment references
	Environment properties

	Servlet mappings
	MIME mappings
	Additional J2EE property information
	Security properties
	Response caching properties
	Listener properties
	Filter mapping properties

	Localizing Web applications
	Internationalization for servlets
	Deploying localized static files
	Language-selection algorithm
	Localizing JSP content

	CHAPTER 2 Creating Java Servlets
	Introduction to Java servlets
	Writing servlets for EAServer
	datasource caching
	Component invocations
	Threading
	Logging
	Error pages

	Request dispatching
	URL interpretation
	Implementation
	Static content

	Response buffering
	Encoding responses and double-byte characters

	Installing and configuring servlets
	Configuring servlet properties

	CHAPTER 3 Using Filters and Event Listeners
	Servlet filters
	Application life cycle event listeners

	CHAPTER 4 Creating JavaServer Pages
	About JavaServer Pages
	How JavaServer Pages work
	What a JSP contains

	Why use JSPs?
	Syntax summary
	Objects and scopes
	Scopes
	Implicit objects

	Application logic in JSPs
	Error handling
	Using JSPs in EAServer
	JSP and EAServer overview
	Compiling JSPs
	JSP file locations
	Creating and configuring JSPs in EAServer
	Internationalization
	Mapping JSPs
	Response caching
	Filters

	CHAPTER 5 Creating JavaMail
	Introduction to JavaMail
	Writing JavaMail for EAServer
	Creating a JavaMail session
	Constructing a message
	Sending a message
	Sample EAServer JavaMail program
	JavaMail providers

	Deploying JavaMail-enabled applications
	General properties
	POP3 properties
	POP3S properties
	SMTP properties
	SMTPS properties

	Index

