
Web Application Programmer’s Guide

EAServer
6.0

DOCUMENT ID: DC00466-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Web Application Programmer’s Guide iii

About This Book .. vii

CHAPTER 1 Defining Web Applications... 1
Introduction .. 1

Contents of a Web application .. 2
Deploying Web applications ... 6
Configuring Web application properties ... 7

Editing configuration files .. 8
General properties... 9
Configuration properties .. 9
User configuration properties .. 9
Web.xml .. 10
Advanced properties ... 10
Context initialization properties ... 11
Welcome and error page specifications 11
Tag library descriptor references... 12
Naming references .. 13
Servlet mappings... 18
MIME mappings .. 20
Additional J2EE property information 20

Localizing Web applications ... 22
Internationalization for servlets.. 22
Deploying localized static files... 22
Language-selection algorithm ... 23
Localizing JSP content .. 23

CHAPTER 2 Creating Java Servlets.. 25
Introduction to Java servlets .. 25
Writing servlets for EAServer ... 26

datasource caching ... 26
Component invocations... 27
Threading .. 29
Logging.. 29

Contents

iv EAServer

Request dispatching.. 30
Response buffering ... 31
Encoding responses and double-byte characters 32

Installing and configuring servlets .. 33
Configuring servlet properties ... 33

CHAPTER 3 Using Filters and Event Listeners.. 35
Servlet filters .. 35
Application life cycle event listeners... 39

CHAPTER 4 Creating JavaServer Pages .. 41
About JavaServer Pages ... 41

How JavaServer Pages work .. 42
What a JSP contains ... 42

Why use JSPs?.. 44
Syntax summary .. 45
Objects and scopes.. 46

Scopes .. 46
Implicit objects... 46

Application logic in JSPs .. 47
Error handling... 49
Using JSPs in EAServer .. 51

JSP and EAServer overview ... 51
Compiling JSPs ... 52
JSP file locations ... 52
Creating and configuring JSPs in EAServer............................ 53
Internationalization .. 53
Mapping JSPs ... 54
Response caching... 54
Filters... 54

CHAPTER 5 Creating JavaMail .. 55
Introduction to JavaMail ... 55
Writing JavaMail for EAServer ... 56

Creating a JavaMail session ... 56
Constructing a message.. 56
Sending a message... 57
Sample EAServer JavaMail program 57
JavaMail providers .. 58

Deploying JavaMail-enabled applications 59
General properties... 60
POP3 properties.. 60

Contents

Web Application Programmer’s Guide v

POP3S properties ... 61
SMTP properties ... 62
SMTPS properties ... 64

Index ... 65

Contents

vi EAServer

Web Application Programmer’s Guide vii

About This Book

Subject This book contains information about building distributed applications
that run on Sybase™ EAServer.

Audience The Web Application Programmer’s Guide is for application developers
who are familiar with their chosen programming languages, specifically
Java.

How to use this book For information on developing, configuring, and running Web
applications, servlets, and JavaServer Pages, see:

• Chapter 1, “Defining Web Applications” describes how to deploy
and configure Web applications.

• Chapter 2, “Creating Java Servlets” describes how to deploy and run
Java servlets in EAServer.

• Chapter 3, “Using Filters and Event Listeners” describes how filters
and event listeners are used for EAServer hosted Web applications.

• Chapter 4, “Creating JavaServer Pages” describes how to create and
run Java ServerPages in EAServer.

• Chapter 5, “Creating JavaMail” describes how to use the JavaMail
API to access an Internet mail server from Java components or
servlets.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML and PDF format in your EAServer software
installation and on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for
proprietary EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-
based configuration scripts to:

• Define and configure entities, such as EJB modules, Web
applications, data sources, and servers

• Perform administrative and deployment tasks

viii EAServer

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User’s Guide describes how to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (JMS) clients and components to send, publish, and
receive JMS messages.

The EAServer Migration Guide contains information about migrating
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management
Console

 About This Book

Web Application Programmer’s Guide ix

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase software license deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

x EAServer

Conventions The formatting conventions used in this manual are:

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications
rather than the Web Management Console

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Web Management Console, a command line, or as
program text

• Example program fragments

• Example output fragments

 About This Book

Web Application Programmer’s Guide xi

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

xii EAServer

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

The Web Services Toolkit plug-in for Eclipse supports accessibility features for
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

 About This Book

Web Application Programmer’s Guide xiii

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xiv EAServer

Web Application Programmer’s Guide 1

C H A P T E R 1 Defining Web Applications

A Web application allows you to deploy interrelated Web content,
JavaServer Pages (JSPs), and Java servlets as a unit, and configure the
Web server properties required by the servlets and JSPs. The EAServer
Web application model follows the J2EE and Java Servlet 2.4
specifications. See the Java Servlet 2.4 specification at
http://java.coe.psu.ac.th/J2EE/Servlet2.4/servlet-2_4-fr-spec.pdf for
complete details.

Note For information on configuring clustered Web applications, see
Chapter 8, “Load Balancing, Failover, and Component Availability,” in
the EAServer System Administration Guide.

Introduction
A Web application is a collection of:

• Servlets

• JSPs

• Utility classes

• Static documents (HTML, images, sounds, and so on)

• Client-side Java applets, and classes

Topic Page
Introduction 1

Deploying Web applications 6

Configuring Web application properties 7

Localizing Web applications 22

Introduction

2 EAServer

Descriptive metadata ties these elements together. A Web application
represents a subset of the files available on a Web server. Each Web application
has a:

• Context path – forms a prefix for URLs that access the JSPs, servlets, and
static pages. For example, http://myhost/Finance.

• Deployment directory – a directory in the server’s file system where the
Web application’s files are deployed. In EAServer, the deployment
directory for Web application wapp is this subdirectory in your EAServer
installation:

/deploy/webapps/wapp

Contents of a Web application

Servlets

Servlets are Java classes that create HTML pages with dynamic content,
images, XML files, and so on, and respond to requests from client applications
that are implemented as HTML forms or called directly. Servlets also allow
you to execute business logic from a Web browser or any other client
application that connects using the Hypertext Transfer Protocol (HTTP). For
more information, see Chapter 2, “Creating Java Servlets.”

JSP files and tag libraries

JSPs allow you to embed snippets of Java code into HTML pages to create
dynamic content. JSP tag libraries allow you to extend the standard HTML
markup tags with custom tags backed by Java classes. They are typically used
in the presentation layer, and provide a shorthand way to define servlets that
are converted into servlets at runtime. See Chapter 4, “Creating JavaServer
Pages,” for more information.

Static files

You can include files that provide static content for the site in a Web site,
including HTML, images, sounds, and so forth. You can also include Java
applet files. You can configure an application’s deployment descriptor to
specify security constraints for static files and any unique MIME types
required by your content.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 3

You must deploy static files to the following subdirectory in your EAServer
installation directory:

deploy/webapps/web-app

Where web-app is the name of the Web application. You can include
subdirectories, which are reflected in your application’s URL namespace.

Any Web archive (WAR) files that you import are expanded to the
deploy/webapps/web-app directory.

Filters and event listeners

Event listeners are classes that implement one or more servlet event listener
interfaces. When you deploy a Web application, event listeners are instantiated
and registered in the Web container.

A filter transforms the content of HTTP requests, responses, and header
information. Filters do not generally create a response or respond to a request,
rather they modify requests for a resource, and modify responses from a
resource.

See Chapter 3, “Using Filters and Event Listeners” for more information.

Java classes

The Web container creates an implementation class from the .jsp file for each
servlet and JSP, and for any server-side utility classes used by the servlets and
JSPs.

EAServer uses a custom class loader to run a Web application’s servlets and
classes referenced by servlet and JSP code. This allows hot refresh of servlets
and JSPs. The custom class loader also allows each Web application to run with
its own Java class path. To work with the custom loader and for hot refresh to
be supported, you must deploy your Web application classes as described
below.

Class and JAR file locations

Deployed WAR files have two subdirectories that can contain Java classes;
WEB-INF/classes and WEB-INF/lib. If you make any changes to a Web
application, redeploy it. Do not manually copy files to these locations.

The class loader for a Web application (where app_name is the name of the
Web application) loads files in this order:

Introduction

4 EAServer

1 From the Web application’s class loader:

• deploy/webapps/app_name/WEB-INF/compiled_jsps – JSP
implementation classes.

• deploy/webapps/app_name/WEB-INF/classes – for class files used by
servlets and JSPs in the Web application.

• deploy/webapps/app_name/WEB-INF/lib – for classes contained in
JAR files. All JAR files in this directory are automatically part of the
Web application’s effective class path.

2 From the application’s class loader

3 From the lib-default-ext class loader – this points to the JAR files in
$DJC_HOME/lib/default/ext

4 From the system class loader

Sharing EJB classes To share your EJB class files, store your EJB-Jars and Web applications inside
an EAR file, which establishes class sharing. However, if you want to separate
EJB Jars from the Web application, the ideal way to share the classes is to set
the Web application’s parent class loader to that of the EJB components, using
deploy with the -parentCL option. For example, to set the parent class loader of
mywebapp to the EJB myejb, which allows the Web application to access the
EJB classes enter:

deploy -parentCL ejb.components.myejb mywebapp.war

Classes loaded by the custom class loader

To allow hot refresh, class references in your servlet and JSP code must be
resolved by the EAServer custom class loader. Class instances loaded by the
system class loader cannot be refreshed. Class instances loaded by the custom
class loader cannot be assigned to references loaded by the system class loader,
or vice-versa.

Nearly all references are resolved by the custom loader. The exceptions are
references made with class loader calls with an explicit reference to the system
class loader or another custom class loader. The following class references are
all resolved by the custom class loader when they occur in servlet code:

• Classes referenced by import statements and declarations.

• Classes loaded dynamically using Class.forName(String). For example:

obj = Class.forName("com.foo.MyClass");

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 5

• Classes loaded by explicitly calling the java.lang.ClassLoader associated
with the servlet instance, which can be retrieved with this code (this refers
to the servlet instance):

ClassLoader loader = this.getClassLoader();

When possible, rewrite code that uses the system class loader to use the servlet
class loader. The system class loader cannot load classes from the Web
application WEB-INF/classes or WEB-INF/lib directories unless you add these
locations to the server BOOTCLASSPATH and CLASSPATH environment
variables.

Deployment descriptor

The application’s deployment descriptor catalogs the servlets, JSPs, and files
contained in the application, as well as the properties of each. The descriptor
must be formatted in XML, using the DTD specified in the Java Servlet
Specification Version 2.4. You can create a descriptor using a J2EE-compliant
development tool. For backwards compatibility EAServer also supports Java
Servlet Specification Version 2.3.

J2EE properties defined in the deployment descriptor are stored in the web.xml
file and any user configuration is stored in the Repository. When you import a
Web application from a WAR file, the XML descriptor is converted to format
recognized by the repository. If you make any changes to the web.xml file, you
must then redeploy the Web application to EAServer for the changes to take
effect. You cannot make changes directly from the Web console.

Servlet mappings

Servlet mappings are part of the deployment descriptor for your Web
application. Servlet mappings control how you access a Web application’s
servlet. For example, you can prepend a Web application’s context path to an
alias that is mapped to a servlet.The following URL invokes a servlet mapped
to the alias “Account” in the application with context path “Finance:”

http://myhost/Finance/Account?type=add

Deploying Web applications

6 EAServer

Deploying Web applications
You can use the Web Management Console to deploy Web applications into
EAServer. Alternatively, you can use the deploy command to deploy, or
redeploy your Web application. See the deploy command, in Chapter 12,
“Command Line Tools,” of the EAServer System Administration Guide.

❖ Deploying a Web application into EAServer

1 Right-click the Web Applications folder and select Deploy.

2 The Deploy wizard displays in the right pane of the Management Console.

3 Follow the wizard instructions to deploy your Web application, making
entries in these fields:

1 File Name – the name of the file that contains your J2EE Web
application.

2 Web Application Module Name – (optional) the module that contains
the Web application. For example, if your Web application file is
test.war, the default name given to your Web application is “test.”
test.war is stored in web.components.test. The WAR file name is
lowercase. This page contains these buttons:

• Use the Default Module Name – select this option to use the
default module name.

• Specified Module – enter the desired module name, if other than
the default.

• Overwrite if This Name Already Exists – overwrites any existing
module with the same name.

3 Do validation during deployment – validates the Web application’s
deployment descriptors during deployment. The default is true.

4 Context Path – (optional) the context path for the Web application.
For example, default context path for test.war is “test” (the name of
the WAR file, case preserved, without the .war extension).

• Use Default Context Path– uses the default module context path.

• Specified Context Path – enter the desired context path name, if
other than the default.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 7

5 Run JSP Compiler During the Deployment – valid only for Web
modules and J2EE application modules that contain JSP files. Runs
the JSP compiler during deployment if this option is set to true (the
default).

6 Server – select a server into which you want to add this module. The
module is started by the server after the server is refreshed. The
default server is the server on which the Web Management console is
running. If you do not want to install this module to any server, leave
this option unselected. To install the module after deployment, select
“Install This Module into the Selected Server”.

7 Directory Name – during deployment, if the archive does not contain
an EAServer-specific configuration file in the META-INF directory
(located in the deploy/webapps/web_app_name subdirectory of your
EAServer installation, where web_app_name is the name of your Web
application), one is generated. Use this option to save a copy of the
archive, which includes a copy of the generated configuration file to
an optional location.

8 Summary – the summary page displays your deployment settings.
Verify that they are correct and select Finish to deploy the Web
application, or Back to change any settings.

The wizard displays informational messages to the console as it
attempts to deploy the Web application. When complete, a message
informs you whether the deployment succeeded or failed:

• Successful – the Web application is deployed under the Web
applications folder. Configure the Web application by following
the procedures described in “Configuring Web application
properties” on page 7.

• Unsuccessful – check the undeploy.log and deploy.log files for
additional information. Log files are located in the logs
subdirectory of your EAServer installation.

Configuring Web application properties
You can configure certain properties for a Web application from the Web
Administration Console. If you have created a Web archive (WAR) file using
another tool and imported or deployed it into EAServer, most properties are
automatically set during the import/deploy process.

Configuring Web application properties

8 EAServer

The Automated Configuration Tools Guide describes the configuration system
used by EAServer 6.0, including how to:

• Set up and run Ant configuration scripts

• Define user configuration files to override default settings

• Perform configuration tasks beyond those that can be described in the
deployment descriptor

Editing configuration files
You cannot edit the web.xml file or other configuration files for a deployed Web
application. If you make modifications, you must redeploy the Web
application.

❖ Displaying the Web application’s properties

To display a Web application’s properties and dialog boxes:

1 Expand the Web Applications folder, then highlight the icon that
represents your Web application.

2 The right pane displays the Web application property tabs, including:

• General properties

• Configuration properties

• User configuration properties

• Web.xml

• Advanced properties

❖ Displaying EAServer system components

You can display system and EAServer modules, for example, console.console,
wfs, or wlb. By default, the Web Management Console displays only user
deployed modules in the Web Management Console tree view.

To display system modules:

1 Select Preferences, expand the Plugins folder, and select EAServer
Manager on the right frame.

2 Select Show EAServer system components.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 9

General properties
General properties include:

• Description An optional text description of the Web application.

• Class Loader Select the class loader from the drop-down list.

• Context Path The request-path prefix that clients use in URLs to access
your Web application’s static content, servlets, and JSPs. For example, if
you enter “estore,” users access your Web application with the prefix:

http://host:port/estore/

The default context path is the name of your Web application.

• Virtual Host The name of the virtual host (if any) from which you can
access the Web application.

Configuration properties
Select the Configuration tab to display and modify properties defined in the
Web application’s configuration file (webapp-webappname.xml). Click Apply
to apply any changes, or Reset to undo any changes that have not been applied.

If you deploy the same Web application more than once, the new configuration
file overwrites the previous configuration file. The old file is saved, and can be
viewed by selecting it from the drop-down list.

See the user documentation of your development tool for information about
setting the various Web application properties and deployment descriptors.
You can also refer to the Java Servlet 2.4 specification for additional
information.

User configuration properties
Select the User Configuration tab to display and modify properties defined in
the Web application’s user configuration file (webapp-webappname-user.xml).
Click Apply to apply any changes, or Reset to undo any changes that have not
been applied. Set any properties in this file to override the parent settings.

Configuring Web application properties

10 EAServer

Web.xml
Select the web.xml tab to view the deployment descriptor elements defined in
the web.xml file of your deployed Web application.

See the Java Servlet 2.4 specification for information about all of the Web
application deployment descriptors.

Advanced properties
Select the Advanced tab to display and modify the Web application’s advanced
properties. Click Apply to apply any changes, or Reset to undo any changes
that have not been applied. Advanced properties include:

• Synchronize – synchronizes advanced properties with configuration
properties. If you make any changes on the advanced properties page, you
must synchronize them for them to be valid on the Configuration tab. You
should also run reconfigure for the changes to take effect.

• Class Loader Name – by default, named class loaders are created when an
entity is deployed. The named class loader is named according to the entity
name. The class path for the loader includes any relevant JAR files
deployed and the class path from the manifest file. The class loader name
looks similar to this:

<setProperties classLoader="ejbjar-sample">
 <property name="classPath" value="~/ejbjars/*.jar"/>
 <property name=”parentFist” value=”true”/>
 <property name=”parentClassLoader” value=”app-sample”/>
 <property name="classloaderImpl"
value="com.sybase.djc.util.NamedClassLoader"/>
</setProperties>

• Log Exceptions Enabled – writes error, stack trace information, and
explanatory error messages to the server log file.

• Permit Access – defines the ports and roles which have access to this
resource.

• Trace Public Methods Enabled – generates a response containing all
instances of the headers sent in a trace request.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 11

Context initialization properties
All servlets and JSPs in a Web application share a common set of context
initialization properties specified by the deployment descriptor. Servlet code
can retrieve the values by calling the getInitParamers() and
getInitParameterNames() methods in the javax.Servlet.ServletContext interface.

Environment properties can be used for the same purpose as context-
initialization properties, and allow additional datatypes besides
java.lang.String. See “Environment properties” on page 17 for more
information.

Welcome and error page specifications
You can customize the list of welcome files and error-response files in your
application. These settings take effect when Web clients are browsing in your
Web application’s subset of the server’s URL namespace.

Welcome files

Welcome files are used to satisfy HTTP requests that end in a directory name,
rather than specifying the full path to a file or a path that is mapped to a servlet
invocation. For each request that maps to a directory, the server searches the
directory for files that occur in the Web application’s list of welcome files, in
the listed order. For example, if the welcome-file list is “index.html, index.htm,
welcome.jsp”, the server looks for index.html, then index.htm, then
welcome.jsp. If the server finds a static file on the welcome-file list, the server
returns its content. If a JSP exists on the welcome-file list, the server invokes
the JSP. If no match exists in the directory, the server returns an HTTP 404 (file
not found) error, because EAServer does not support directory listings.

Error pages

Error pages allow you to customize the response that the server sends to Web
clients when an error occurs. You can specify HTML files to send in response
to HTTP error codes and to Java exceptions thrown in JSPs or servlets. You can
also define error pages at the server level. If your Web application does not
specify an error page, EAServer invokes the corresponding server-level error
page.

Configuring Web application properties

12 EAServer

When an exception is thrown, the servlet engine searches the error page
mappings for the exception and its super classes. For example, assume
AException extends BException and BException extends CException and
CException extends java.lang.Exception. When AException is thrown, EAServer
checks if AException is mapped. If not, EAServer checks if BException is
mapped, and so forth.

Tag library descriptor references
JSPs can use tag libraries to serve content formatted with custom tags. The tag
library is a Java class with methods to parse content that is tagged with custom
tags and output formatted content to be returned in the response stream. Each
tag library must have a type library descriptor (TLD) file that describes the
available tags and specifies the corresponding Java classes and methods.

JSPs use a type library by specifying the location of the TLD file as a URL. In
your Web application, you can specify a mapping so that TLD URLs in JSPs
map to a local URL. For example, you may refer to a tag library as:

<%@ taglib uri="/example.tld" prefix="ex" %>

You can also map this path to another location, such as:

/WEB-INF/tlds/PRlibrary_1_4.tld

You do not have to map TLD URLs in the Web application. If there is no
mapping that matches a TLD URL, EAServer loads the file at the URL
specified in the JSP and raises an error if the file does not exist.

Mapping TLD URLs allows you to:

• Keep TLD files together in a common location.

• Avoid multiple copies of a TLD when JSPs use different paths to refer to
the same type library.

• Code JSPs with simple paths, such as tlds/example.tld, while the actual
TLD is stored in a versioned directory tree. For example, you can alias
tlds/example.tld to WEB-INF/tlds/example/v1.6/example.tld. This allows
you to easily test new versions and roll back to previous versions if a
problem occurs.

In an XML deployment descriptor, TLD URL mappings are specified by taglib
elements.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 13

Tag library classes A Web application’s tag library classes must be
deployed in either:

• The WEB-INF/lib or WEB-INF/classes directories, with the other Java
classes required by your Web application. (See “Java classes” on page 3
for more information) or,

• A JAR file containing a tag library in the lib/default/ext subdirectory to
make it available to all Web applications.

Naming references
Web applications allow you to use logical names for JNDI lookups in your
servlet and JSP code. Logical names allow your application to run in
environments where the JNDI name space does not match the names hard
coded in your application. When deploying an application, you can map the
logical names to actual names that match the server’s configuration.

When developing an application, you must use JNDI to obtain database
connections, mail sessions, and EJB proxies. You must catalog the JNDI names
used by your code in the application’s deployment descriptor.

All logical JNDI names used in your application must be prefixed with
java:comp/env. The J2EE specification requires the following hierarchy, based
on resource type:

• java:comp/env/ejb for EJB references

• java:comp/env/jdbc for JDBC javax.sql.DataSource references

• java:comp/env/mail for JavaMail session references

• java:com/env/url for java.net.URL references

• java:com/env/jms for javax.jms references

EJB references

Servlets and JSPs use EJB references to instantiate proxies for EJB home
interfaces. See the Enterprise JavaBeans User’s Guide for more information.
EJB references must be cataloged in the deployment descriptor so that the Web
application can run independent of a specific naming configuration. When
deploying the Web application, a site administrator can specify site-specific
EJB JNDI names.

Configuring Web application properties

14 EAServer

Servlets and JSPs can look up an EJB by specifying the reference name
prefixed with java:comp/env/. For example, if you enter ejb/catalog in
EAServer Manager, use java:comp/env/ejb/catalog in your JSP or servlet
source code.

ejb-ref tags include these fields:

• Name Specifies the JNDI name used in your code to refer to the called
EJB. The aliased name displays in the Link Value field. Enter the part of
the JNDI name that begins with ejb/. For example, if your code refers to
java:comp/env/ejb/MyBean, enter ejb/MyBean.

• Type Choose Session for session beans or Entity for entity beans.

• Home The Java class name of the EJB home interface, specified in dot
notation. For example, com.sybase.MyBeanHome.

• Remote The Java class name of the EJB remote interface, specified in
dot notation. For example, com.sybase.MyBeanRemote.

• Link Value The actual JNDI name EJB component that is installed in the
server where your component, Web application, or application client is to
be deployed. This must match the JNDI name property in the component
properties of the called EJB component.

For example, your web.xml file might have an entry similar to this:

 <ejb-ref>
 <ejb-ref-name>ejb/myBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.sybase.MyBeanHome</home>
 <remote>com.sybase.MyBeanRemote</remote>
 <ejb-link>JNDIName</ejb-link>
 </ejb-ref>

EJB local references

To access an EJB’s local interface, define an EJB local reference. Local
interfaces are available only to EJB components, Java servlets, and JSPs hosted
on the same server as the target component.

EJB local reference tags include these fields:

• Name Specifies the JNDI name used in your code to refer to the called
EJB. The aliased name is displayed in the Link Value field. Enter the part
of the JNDI name that begins with ejb/. For example, if your code refers
to java:comp/env/ejb/MyBean, enter ejb/MyBeanLocal.

• Type Choose Session for session beans or Entity for entity beans.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 15

• Home The Java class name of the EJB local home interface, specified in
dot notation. For example, com.sybase.MyBeanLocalHome.

• Local The Java class name of the EJB local interface, specified in dot
notation. For example, com.sybase.MyBeanLocal.

• Link Value The actual JNDI name of the EJB component that is installed
in the server where your component or Web application is to be deployed.
This is specified by the JNDI Name property in the Component Properties
of the called EJB component.

Resource references

Resource references are used to obtain connector and database connections,
and to access JMS connection factories, JavaMail sessions, and URL links.

Note The configuration file is the same for Web applications, application
clients, and EJB components. For example, you would modify the ejb-jar.xml
file to modify an EJB.

❖ Adding or modifying a resource reference

1 Display the Configuration tab.

2 Modify the reference tags of interest. For example:

<resource-ref id="HTMLGenerator105_jdbc_default">
 <res-ref-name>jdbc/default</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-ref id="HTMLGenerator105_jdbc_JavaCache">
 <res-ref-name>jdbc/JavaCache</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

• Name The partial JNDI name used in servlet and JSP code. Use the
prefix mail/ for JavaMail references, jdbc/ for data source references,
url/ for java.net.URL references, and jms/ for javax.jms references.
For example, if your code refers to java:comp/env/jdbc/MyDatabase,
enter jdbc/MyDatabase.

• Type Choose the type of resource:

• javax.sql.DataSource for JDBC connections.

Configuring Web application properties

16 EAServer

• java.mail.Session for JavaMail sessions. See Chapter 5,
“Creating JavaMail” for more information.

• java.net.url for aliased URLs.

• javax.jms.QueueConnectionFactory for JMS queue connection
factories.

• javax.jms.TopicConnectionFactory for JMS topic connection
factories.

• Sharing Scope Choose Sharable or Unsharable. By default,
connections to a resource manager are sharable across EJBs in an
application that use the same resource in the same transaction context.

Note The sharing scope is available only to Web applications and
EJB components.

• Authentication Select the source of the authentication credentials:

• Application – use the credentials configured for the connection
cache.

• Container – use the credentials of the caller who logged in to
EAServer and created the component instance.

• Resource Link Specify the resource link for the resource type:

• javax.sql.DataSource – select the name of the EAServer
connection cache or connector to be used for this resource.

• java.mail.Session – specify the SMTP mail server for outgoing
mail.

• java.net.url – enter the URL string, as it would be used to
construct a java.net.URL instance by calling the
URL(java.lang.String) constructor. URLs must contain a protocol
and host address, for example: http://www.sybase.com or
ftp://pub.sybase.com.

• javax.jms.QueueConnectionFactory – select the name of the queue
connection factory.

• javax.jms.TopicConnectionFactory – select the name of the topic
connection factory.

3 Click Apply.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 17

Resource environment references

Resource environment references are logical names applied to objects
administered by EAServer, which can be accessed by Web applications,
application clients, and EJB components.

To add or configure a resource environment reference, follow the procedures
described in “Resource references” on page 15.

Edit the reference fields of interest as follows:

• Name The partial JNDI name used in servlet and JSP code. Use the
prefix jms/ for JMS reference. For example, if your code refers to
java:comp/env/jms/MyQueue, enter jms/MyQueue.

• Type Choose the type of resource:

• javax.jms.Queue for JMS message queues.

• java.jms.Topic for JMS message topics.

• Link Value If the resource type is javax.jms.Queue, enter the name of a
configured queue; if the resource type is javax.jms.Topic, enter the name of
a configured topic.

Environment properties

Environment properties allow you to specify global read-only data for use by
servlets and JSPs in the Web application.

Servlets and JSPs must use JNDI to retrieve environment properties, using the
prefix java:comp/env in JNDI lookups. Unlike context initialization
properties, environment properties can have datatypes other than
java.lang.String.

The deployment descriptor catalogs the environment properties used by your
servlets and JSPs, as well as each property’s Java datatype and default value.
Deployers can tailor the values to match a server’s configuration. For example,
you may have environment properties to specify the name of a logging file, or
to tune cache usage.

To add or configure an environment property, follow the procedures described
in “Resource references” on page 15.

For the selected property, add or modify:

• Entry The environment property’s JNDI name, relative to the
java:comp/env prefix.

• Type Choose the Java datatype that matches the property value.

Configuring Web application properties

18 EAServer

• Value The initial or post-deployment value of the property, specified as
text in a format that is valid for the specified datatype.

• Description An optional comment that explains how the property is
used.

Servlet mappings
Your application’s deployment descriptor must specify the servlet mappings
for the application’s servlets and JSPs. You can map full paths, partial paths, or
file extensions to servlets. Path mappings are specified relative to the
application’s context path.

To map request paths to a JSP, the JSP must be defined in EAServer Manager
as a Web component. See Chapter 4, “Creating JavaServer Pages,” for more
information.

EAServer uses the precedence rules defined in the Servlet 2.4 specification to
evaluate each URL:

1 EAServer checks whether a mapping uses the exact path.

2 EAServer checks whether a directory in the path is mapped to a servlet,
starting at the most deeply nested directory in the path, and working back
using the forward-slash character (/) as a separator. For example, if the
application’s context path is MyApp and the URL path is
MyApp/Accounts/Manage/add.jsp, EAServer checks for servlets mapped
to /Accounts/Manage, then /Accounts.

3 If the last node in the path contains an extension, EAServer checks for a
servlet mapped to that file extension. A file extension is defined as the part
of the URL that follows a period occurring after the last slash in the URL.
For example, in the path MyApp/Accounts/Manage/add.calc, the
extension is calc.

4 If neither of the previous two rules results in a match, EAServer invokes
the application’s default servlet if defined. The default servlet is mapped
to the path /. If no default servlet is defined, EAServer looks for a static
file matching the path.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 19

Implicit JSP mapping The jsp extension is implicitly mapped to invoke
EAServer’s JSP engine. You can override this mapping in the explicit
mappings for your Web application by mapping *.jsp to a servlet or JSP.
However, if you do so, there is no way to invoke the EAServer JSP engine to
compile and run arbitrary JSP files. Sybase recommends you not use explicit
*.jsp mappings.

Use these rules to format the path specification when editing the servlet name
and mapped path:

• All mappings are relative to the Web application’s root request directory.

• To map a directory, enter a path that ends in a “*”, for example /foo/* or
/foo/stuff/*.

• To map an extension, enter *.ext, where ext is the extension.

• To specify a default servlet for the application, enter the path as a single
forward slash (/).

• To specify an exact match, enter the full path relative to the Web
application’s root request directory.

Here is an example:

<servlet-mapping>
 <servlet-name>delete</servlet-name>
 <url-pattern>/delete</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>edit</servlet-name>
 <url-pattern>/edit</url-pattern>
 </servlet-mapping>
 <servlet-mapping>

 <servlet-name>get</servlet-name>
 <url-pattern>/get</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>main</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>

Configuring Web application properties

20 EAServer

MIME mappings
A file’s MIME type specifies how a server or browser should interpret the file.
For example, whether the file contains plain text, formatted HTML, an image,
or a sound recording. In a Web server, MIME mappings specify how a static
file should be interpreted by mapping file extensions to MIME types. MIME
mappings affect only static files. Servlets and JSPs must be coded to specify a
MIME type for their response.

For more information on MIME types, visit:

http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html

EAServer includes preconfigured MIME mappings that you can customize
using your Web application’s properties. Web application MIME mappings
override EAServer’s preconfigured mappings.

MIME mappings include these properties:

• Extension The file extension for files of this type.

• MIME Type The MIME specification, for example, text/plain or
text/sgml.

Here is an example:

<mime-mapping>
 <extension>war</extension>
 <mime-type>application/zip.war</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>jar</extension>
 <mime-type>application/zip.jar</mime-type>
 </mime-mapping>

Additional J2EE property information
All J2EE properties, such as security, listener, response caching, and so on, are
maintained in the Web application’s web.xml file. This section briefly describes
some of those properties. For complete information about J2EE properties,
refer to the Java Servlet 2.4 specification at
http://java.coe.psu.ac.th/J2EE/Servlet2.4/servlet-2_4-fr-spec.pdf.

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 21

Security properties

Use security properties to configure user authentication for the Web application
and authorize access to URLs served by the Web application. Chapter 3,
“Using Web Application Security,” in the EAServer Security Administration
and Programming Guide describes how to configure these properties.

Response caching properties

You can to improve the response time for servlets and JSPs in your Web
application by configuring default caching options for Web components that
have caching enabled. For more information, see “Dynamic response caching”
in Chapter 5, “Web Application Tuning,” in the EAServer Performance and
Tuning Guide.

Listener properties

The EAServer implementation of application life cycle events enables you to
register event listeners that can respond to state changes in a Web application’s
ServletContext and HttpSession objects. See “Application life cycle event
listeners” on page 39 for more information.

Filter mapping properties

A filter is a Java class that is called to process client requests or the server’s
response. You can use filters to modify the request header or the content of a
servlet request or response. Chapter 3, “Using Filters and Event Listeners,”
describes how to create filters.

You can map filters to a URL or a servlet name. When a filter is mapped to a
URL (path-mapped), the filter applies to every servlet and JSP in the Web
application. When a filter is mapped to a servlet name (servlet-mapped), it
applies to a single servlet or JSP. The path-mapped filters are executed first,
followed by the servlet-mapped filters.

Localizing Web applications

22 EAServer

Localizing Web applications
EAServer supports the HTTP 1.1 internationalization features defined in the
Java Servlet 2.4 specification. Using these features, you can develop servlets
that respond in the language specified by the request header, or configure
localized versions of Web site’s static pages.

For complete information about HTTP 1.1 internationalization, refer to the
Java Servlet 2.4 specification and the HTTP 1.1 specification.

Internationalization for servlets
For servlet development, EAServer supports internationalization-compliant
methods that are described in the Java Servlet 2.4 specification. These methods
are getLocale and getLocales on the ServletRequest interface and setLocale on
the ServletResponse interface:

• getLocale and getLocales – parse the accept-language header, extract the
language and quality value information, and return the specified locale
names. If the request specifies no locale, return the server’s default locale.

• setLocale – sets the language attributes in the content-language header.
The default is the server’s default locale.

Deploying localized static files
Along with a default directory, a separate directory is required for each
supported language. EAServer refers to these directories to locate different
language versions of a document. For example, if the client requests this URL:

http://www.someplace.com/somepage.html

and EAServer supports English and French, there will be two versions of the
page on the server, plus the default:

• The English version –
http://www.someplace.com/en/somepage.html

• The French version –
http://www.someplace.com/fr/somepage.html

• A default version – http://www.someplace.com/somepage.html

CHAPTER 1 Defining Web Applications

Web Application Programmer’s Guide 23

Language-selection algorithm
A language-selection algorithm selects the appropriate language after
evaluating the override criteria and the quality values specified. If multiple
languages are specified, the algorithm checks the various options in descending
order of priority. For example, if the client requests this URL with en, fr
specified in the accept-language header:

http://www.someplace.com/somepage.html

EAServer first looks for:

http://www.someplace.com/en/somepage.html

If not found, the server looks for:

http://www.someplace.com/fr/somepage.html

If this is not found, the server tries to load the default page:

http://www.someplace.com/somepage.html

Similarly, for static Web resources in a Web applications, the language name
tag is prefixed to the static Web resource URL to construct the URL for the
resource. EAServer provides multiple language support to the following Web
application resources:

• Servlets

• Web application with static Web resources

• Static Web pages

Localizing JSP content
JSPs that use a character set other than the server default require additional
changes in source code and deployment properties.

In your JSP source code, specify the encoding in the page declaration, for
example:

<%@ page contentType="text/html;charset=BIG5" %>

When initializing strings, pass the encoding name to the String constructor, for
example:

byte[] b = { (byte)'\u00A4', (byte)'\u00A4',
(byte)'\u00A4', (byte)'\u00E5' };

String s = new String(b, "big5");

Localizing Web applications

24 EAServer

If you do not specify the encoding name, the byte array may be converted
incorrectly.

When deploying localized JSPs, group JSPs for each language in their own
directory tree under your Web application’s context root. For example, all files
under /en are English, 8859_1 encoded, and all files under /ko are Korean,
KSC5601 encoded.

Web Application Programmer’s Guide 25

C H A P T E R 2 Creating Java Servlets

EAServer supports the Java Servlet Specification Version 2.4. Running in
EAServer, servlets can create HTML pages with dynamic content,
images, XML files, and so on, and respond to requests from client
applications that are implemented as HTML forms or called directly.
Servlets also allow you to execute business logic from any Web browser
or any other client application that connects using the Hypertext Transfer
Protocol (HTTP).

Introduction to Java servlets
The Java Servlet API is a set of Java Standard Extension Java classes that
extend the functionality of a Web server.

Use of servlets in
EAServer

Java servlets respond to HTTP requests from Web browser clients (or any
other client that connects to EAServer using the HTTP protocol). You can
associate an HTTP URL with a servlet that you have installed in
EAServer. The servlet can dynamically create HTML documents, or act
as a gateway between HTML-forms based applications and EAServer
components. For example, you might create servlets to:

• Create dynamic HTML page content Your servlet creates pages
for an online catalog by selecting part descriptions from a database.

• Act as a gateway between HTML forms and EAServer
components Your client application consists of an HTML page
with embedded HTML forms that submits data to the servlet. When
invoked, the servlet calls EAServer components, supplying the form
data as parameters. For simple user interfaces, HTML forms can offer
better performance than Java applet clients, since the browser does
not download applet code.

Topic Page
Introduction to Java servlets 25

Writing servlets for EAServer 26

Installing and configuring servlets 33

Writing servlets for EAServer

26 EAServer

EAServer provides an extended version of the Servlet API so that servlets may
use EAServer services such as interserver component invocations and data
source caching.

Java servlets versus
Java components

Java servlets enhance the functionality offered by Java components, but do not
replace Java components. Servlets in EAServer can be invoked only by HTTP
clients, and must return all output by writing to a ServletOutputStream instance.
Typically, servlets are invoked from HTML pages loaded in a Web browser and
return formatted HTML as their output.

Java components can be executed by any EAServer client model, and can
return complex objects in their natural format. To invoke Java components
from a Web browser, you must create a Java applet that connects to EAServer
and instantiates proxy objects for the component.

Servlets can make use of some, but not all, server-side services; for example,
servlets can use cached database connections and can issue in-memory calls to
components installed on the same server. Servlets cannot, however, participate
in EAServer transactions, except as base clients. Servlets cannot use other
server-side APIs other than datasource caching and the Java ORB.

Java components have access to all Java server-side APIs and can participate
in EAServer transactions.

For more information The JavaSoft Servlet Web pages at http://java.sun.com/products/servlet/ describe
how to code servlet classes.

Writing servlets for EAServer
You can implement servlets for EAServer as you would for any other server
that follows the Java servlet specification. Servlets for EAServer can be coded
to the standard Java servlet API and use classes in the javax.servlet and
javax.servlet.http packages. This section lists coding information specific to
EAServer and describes the EAServer extensions to the standard servlet API.

datasource caching
Servlets can use these classes to retrieve cached datasources:

• com.sybase.jaguar.jcm.JCMCache, which represents a configured
datasource and provides methods to manage connections in the cache.

CHAPTER 2 Creating Java Servlets

Web Application Programmer’s Guide 27

• com.sybase.jaguar.jcm.JCM, which provides access to JDBC datasource
defined in EAServer Manager. JCM is a factory for JCMCache instances.

Component invocations
Servlets in EAServer can instantiate component instances using the same
technique used within EJB or Java/CORBA components. Use the EJB
technique when portability to other J2EE servers is required.

Using the EJB
technique

To invoke component methods, use the lookup method in class
javax.naming.InitialContext to resolve the bean’s home interface, then create a
reference to the remote interface. For example:

import javax.ejb.*;
import javax.naming.*;

QueryBean _queryBean;
String _queryBeanName =

"java:comp/env/ejb/querybean" ;
Context ctx = getInitialContext();
try {

Object h = ctx.lookup(_queryBeanName);
QueryBeanHome qbHome = (QueryBeanHome)
javax.rmi.PortableRemoteObject.narrow(h,

QueryBeanHome.class);
_queryBean = qbHome.create();

}
catch (NamingException ne)
{

System.out.println("Error: Naming exception: "
+ ne.getExplanation() + ne.toString());

throw new Exception(
"Lookup failed for EJB " + _queryBeanName);

}

Note Although PortableRemoteObject.narrow is optional when using remote
EJB interfaces with EAServer, you should use it so your code is portable to
other EJB containers.

Writing servlets for EAServer

28 EAServer

For more information on the EJB client interfaces, see the Enterprise
JavaBeans User’s Guide. You can define an EJB reference in the Web
application properties to alias the servlet name used in your source code. The
EJB reference allows the Web application to be deployed on another J2EE
server without changing your servlet code. See “EJB references” on page 13
for more information.

Using the
Java/CORBA
technique

To invoke component methods, create an ORB instance to obtain a proxy for
the components, then invoke methods on the proxy object reference. For
components on the same server, call the string_to_object method with the IOR
string specified as Package/Component. For example, the fragment below
obtains a proxy object for a component called Payroll that is installed in the
Finance package:

java.util.Properties props = new
java.util.Properties();
props.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
ORB orb = ORB.init((java.lang.String[])null, props);
Payroll payroll =
PayrollHelper.narrow(orb.string_to_object(

"Finance/Payroll"));

By default, servlets run without a user name and password. A servlet client,
authenticated by EAServer, runs with the client’s user name and password. If
an unauthenticated servlet client invokes a component method, the component
is instantiated without a user name and password. If roles limit access to a
component or method and the servlet has no user name, a method invocation
attempt fails. To specify a user name, use this syntax:

orb.string_to_object("iiop://0:0:user_name:password/Package/Component"));

You can retrieve the system user name and password with these methods in
class com.sybase.CORBA.ORB, which both return strings:

• getSystemUser() returns the system user name.

• getSystemPassword() returns the system password.

When called from components, string_to_object returns an instance running on
the same server if the component is locally installed; otherwise, it attempts to
resolve a remote instance using the naming server.

CHAPTER 2 Creating Java Servlets

Web Application Programmer’s Guide 29

Threading
If possible, code servlets to be thread-safe, so the service method can be called
concurrently from multiple threads. This threading model is the default for
servlets running in EAServer and, in most cases, offers the best performance.
If your servlet cannot support this threading model, code the servlet to
implement the SingleThreadModel marker interface. This interface has no
methods; the server recognizes that instances of any class that implements the
interface must be single-threaded.

Logging
Servlets can log error messages or other text to the EAServer servlet log file,
using the standard servlet log methods in the ServletContext class (or the
equivalent methods in the GenericServlet class). EAServer records servlet log
messages in the server log file, located in the EAServer logs subdirectory.

Error pages

You can create customize error and exception reports that are sent to clients.
When the servlet engine detects an error or catches an exception thrown by a
servlet, it searches for a corresponding error page to handle the response. You
can declare error pages for a Web application, or at the server level.

This example illustrates how to declare an error page for a Web application in
the deployment descriptor:

<error-page>
<error-code>404</error-code>
<location>/etc/404.html</location>

</error-page>

The location is the path relative to the Web application’s context root. For
example, /etc/404.html corresponds to this file in your EAServer installation
directory, where web-app is the name of the Web application:

deploy/webapps/web-app/etc/404.html

Writing servlets for EAServer

30 EAServer

Request dispatching
A RequestDispatcher instance allows one servlet to invoke another and either
forward a request, or include the target servlet’s response with its own. The
RequestDispatcher interface provides methods to accomplish both. To obtain
an object that implements the RequestDispatcher interface, use one of these
ServletContext methods:

• getRequestDispatcher(<URL map to resource>)

• getNamedDispatcher(<servlet name>)

To forward a request, the initial servlet calls the forward method of the
RequestDispatcher interface. The target servlet returns the response. This
method can be called only if no output has been committed to the client. Before
the forward method returns, the response must be committed and closed by the
servlet container.

To include a target servlet’s response with its own, the initial servlet calls the
include method of the RequestDispatcher interface. The target servlet has full
access to the request object but can write only to the ServletOutputStream or
Writer of the response object and it cannot modify the response headers. The
target servlet can commit a response by either writing past the end of the
response buffer, or explicitly calling the flush method of the ServletResponse
interface.

URL interpretation

The ServletContext and ServletRequest objects both contain methods to retrieve
a RequestDispatcher instance. ServletContext methods require an absolute
URL. ServletRequest methods can interpret a relative URL. Both URL types
must follow these guidelines:

• The path cannot include the context.

• Mappings must agree with the servlet mappings defined for the Web
application—if a mapping does not exist, use the static page in the Web
application’s deployment subdirectory located in the EAServer
subdirectory /deploy/webapps/<web-app-name>.

• You must resolve dots in the path before mapping the URL.

• There can be no static content access at WEB-INF/META-INF.

CHAPTER 2 Creating Java Servlets

Web Application Programmer’s Guide 31

A ServletContext.getRequestDispatcher URL must begin with a forward slash
(“/”). If a ServletRequest.getRequestDispatcher URL begins with a forward
slash, the servlet engine interprets it as an absolute URL. Otherwise, the servlet
engine appends the relative URL to the current request’s URI path. For
example, if the current request is /catalog/garden.html and the relative URL is
sports.html, then the new URL is /catalog/sports.html.

Implementation

The EAServer servlet engine passes all servlet invocation requests through a
RequestDispatcherobject instance. When the servlet engine receives a request
from a client, it calls the RequestDispatcher.service method. This method loads,
initializes, and handles instance pooling of single-threaded servlets. It also
invokes the servlet and handles errors.

Static content

A RequestDispatcher instance is typically used for servlets and JSPs, but can
also be used for static content. If the servlet engine forwards a request to a static
content RequestDispatcher, the RequestDispatcher must set the response status,
the response headers, and the response data. If a static content
RequestDispatcher is called to set the data for the current request, it needs only
return the content of the static page.

Response buffering
The Java servlet API supports response buffering that allows the servlet to
control how the servlet container buffers responses, and when to send a
response to a client. The ServletResponse interface provides these methods that
allow a servlet to access buffering information:

• getBufferSize – returns the size of the response buffer; if buffering is not
used, returns integer value of zero.

• setBufferSize – sets buffer size greater than or equal to the servlet’s request.

• isCommitted – returns a Boolean value to indicate whether any part of the
response has been returned to the client.

• reset – clears the buffer of an uncommitted response.

• flushBuffer – writes buffer contents to a client.

Writing servlets for EAServer

32 EAServer

See the Java Servlet Specification, v2.4 for detailed information about using
response buffering.

Encoding responses and double-byte characters
When you compile a Java servlet, the characters are encoded according to the
locale of your machine, unless you specify encoding in the javac compile
command. When a client sends a request from a browser, the parameters are
always ISO 8859-1 encoded.

To provide a client’s browser with the encoding information it needs to
translate the content of a response correctly, declare the encoding in the
response header. If you specify the content type without the encoding
information, for instance:

response.setContentType("text.html");

the client’s browser assumes that the content is ISO 8859-1 encoded. If the
content has been encoded using some other standard, the client’s browser does
not translate the data correctly. This example specifies the double-byte
character set big5, the encoding name of traditional Chinese characters:

response.setContentType("text/html;charset=big5");

To encode the response content, compile the servlet with this encoding option:

javac -encode iso-8859-1 <java source file>

or convert static strings within the servlet code, for instance:

String origMsg = "<double-byte character string>";
String newMsg = new String(origMsg.getBytes(),

"iso-8859-1");

CHAPTER 2 Creating Java Servlets

Web Application Programmer’s Guide 33

Installing and configuring servlets
After you have created or obtained the Java class that implements your
servlet’s functionality, and defined the servlet with a J2EE development tool,
you can configure the properties that control how the servlet’s class is loaded
and executed.

Note Some important differences regarding servlets in EAServer version 6.0
and version 5.x:

• You cannot add a new servlet to a EAServer 6.0 Web application using the
Management console.

• The preferred way to add a servlet to EAServer 6.0 is by using a J2EE
development tool. Deploy servlets to EAServer using the deploy
command. If you make changes to a servlet, you must redeploy it.

• EAServer 6.0 does not support servlets outside a Web application.

Configuring servlet properties
See the Java Servlet Specification Version 2.4 for information about various
servlet properties. All EAServer 6.0 servlet properties are maintained in either
the Web application’s web.xml file (for J2EE servlets) or the config file (for
non-J2EE servlets). To modify any of these properties, make changes to the
corresponding file and redeploy the Web application to which the servlet
belongs. See “Deploying Web applications” on page 6.

Servlets are contained in the Web Components folder under the Web
application.

Init-param settings Servlets may require initialization parameters that are specified outside of the
source code. For example, you might specify the name of an EAServer data
source as an initialization parameter. You can use the Init-param property to
define optional initialization parameters for the server.

For each parameter, enter the parameter name and the text of the value. The
servlet can retrieve the value as a Java String, as explained below.

Your servlet’s init method can retrieve the specified settings using the
ServletConfig.getInitParameter(String) and
ServletConfig.getInitParameterNames() methods. The following code fragment
shows how:

Installing and configuring servlets

34 EAServer

void init(ServletConfig config) throws ServletException
{

....
Enumeration paramNames =

config.getInitParameterNames();
while (paramNames.hasMoreElements())
{

String name = (String) paramNames.nextElement();
String value = config.getInitParameter(name);

}

Web Application Programmer’s Guide 35

C H A P T E R 3 Using Filters and Event Listeners

This chapter discusses how to use servlet filters and listeners that can
respond to application life cycle events.

Servlet filters
You can use filters to modify the header or the content of a servlet request
or response. Within a Web application, you can define many filters, and a
single filter can act on one or more servlets or JavaServer Pages (JSPs).
Filters can help you accomplish a number of tasks, including data
authentication, logging, and encryption.

You can map filters to a URL or a servlet name. When a filter is mapped
to a URL (path-mapped), the filter applies to every servlet and JSP in the
Web application. When a filter is mapped to a servlet name (servlet-
mapped), it applies to a single servlet or JSP. EAServer constructs a list of
the filters declared in a Web application’s deployment descriptor; this list
is called a filter chain. The order of the filters in the filter chain determines
the order in which the filters are executed. EAServer constructs the filter
chain by first adding the path-mapped filters, in the order in which they
are declared in the deployment descriptor, then adding the servlet-mapped
filters in the order in which they appear in the deployment descriptor. As
a result, the path-mapped filters are executed first, followed by the
servlet-mapped filters.

This sample declares the path-mapped filter, MyFilter:

<filter>
<filter-name>

MyFilter
</filter-name>

Topic Page
Servlet filters 35

Application life cycle event listeners 39

Servlet filters

36 EAServer

<filter-class>
MyFilter

</filter-class>

</filter>

<filter-mapping>
<filter-name>MyFilter</filter-name>
<url-pattern>/*</url-pattern>

<filter-mapping>

Use the Web Management Console to add a new filter to a Web application and
map it to either a servlet name or a URL pattern.

❖ Adding a new filter to a Web application

1 Create a filter using a J2EE development tool.

2 Redeploy the WAR file (see the deploy command, described in Chapter
12, “Command Line Tools,” of the EAServer System Administration
Guide), or “Deploying Web applications” on page 6.

The settings for the filter are maintained in the web.xml file. You can add
filters at the request dispatcher level. “Filter mapping properties” on page
21 describes how to map a Web application filter.

Servlet filters must implement the javax.servlet.Filter interface and define these
methods:

Interface method Description

init Calls a filter into service and sets the filter’s
configuration object

doFilter Performs the filtering work

getFilterConfig Returns the filter’s configuration object

destroy Removes a filter from service

CHAPTER 3 Using Filters and Event Listeners

Web Application Programmer’s Guide 37

To initialize each filter, EAServer calls the init method and passes in a
FilterConfig object, which provides the filter with access to the Web
application’s ServletContext, the initialization parameters, and the filter name.
After all the filters in a chain have been initialized, EAServer calls
FilterChain::doFilter for the first filter in the chain and passes it a reference to
the filter chain. Subsequently, each filter passes control to the next filter in the
chain by calling the doFilter method. The requested resource, servlet or JSP, is
served after all the filters in the chain have been served. To halt further filter
and servlet processing from within a filter, do not call doFilter. To notify a filter
that it is being removed from service, EAServer calls the destroy method.
Within this method, the filter should clean up any resources that it holds:
memory, file handles, threads, and so on. destroy is called only once after all
the threads within the filter’s doFilter method have exited.

Here is a sample implementation of a servlet filter, which records either the
amount of time it takes to process the request, or the time the request finishes
processing. The time is recorded using the ServletContext::log method. The
filter uses the value of the initialization parameter type to determine whether to
record the absolute time the filter finished, or the amount of time it took to
process the request. If the value of type is “absolute,” the filter logs the time the
request completes; otherwise, it logs the processing time, in milliseconds.

package filters;

import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;
import java.util.Date;

public class TimerFilter implements Filter
{

private FilterConfig _filterConfig = null;

/**
* The server calls this method to initialize the Filter and
* passes in a FilterConfig object.
*/
public void init (FilterConfig filterConfig)

throws javax.servlet.ServletException
{

_filterConfig = filterConfig;
}

/**
* Return the FilterConfig object
*/
public FilterConfig getFilterConfig()

Servlet filters

38 EAServer

{
return _filterConfig;

}

/**
* EAServer calls this method each time a servlet, JSP or static Web
* resource is invoked.
*/
public void doFilter (ServletRequest request,

ServletResponse response,
FilterChain chain)

throws java.io.IOException, javax.servlet.ServletException
{

// This is executed before the servlet/jsp/static resource is served.
long startTime = System.currentTimeMillis();

// Pass control to the next filter in the chain.
chain.doFilter(request, response);

// This is executed after the servlet/jsp/static resource has been served.
long endTime = System.currentTimeMillis();

// Get the ServletContext from the FilterConfig
ServletContext context = _filterConfig.getServletContext();

// Get the type parameter from the filter's initialization
// paramters. Return null if the parameter was not set
String type = (String)_filterConfig.getInitParameter("type");

// Get the filter’s name to include in the log
String filterName = _filterConfig.getFilterName();

HttpServletRequest httprequest = (HttpServletRequest)request;
String path = httprequest.getRequestURI();

// By default, record the absolute time
if ((type == null) || (type.equals("absolute")))
{

Date date = new Date(endTime);
context.log(filterName + " - " + path + " finished: " +

date.toString());
}
else
{

context.log(filterName + " - time to process " + path + ": " +
(endTime - startTime) + "ms");

CHAPTER 3 Using Filters and Event Listeners

Web Application Programmer’s Guide 39

}
}
/**
* Notifies the filter that it is being taken out of service.
*/
public void destroy()
{

// free resources
}

}

Application life cycle event listeners
The EAServer implementation of application life cycle events enables you to
register event listeners that can respond to state changes in a Web application’s
ServletContext and HttpSession objects. When a Web application starts up,
EAServer instantiates the listeners that are declared in the deployment
descriptor. See “Event Types and Listener Interfaces” in the Java Servlet 2.4
specification for a description of the listener interfaces, which EAServer calls
when each event occurs.

Sample listener Here is an example of how a ServletContextListener can be used to maintain a
database connection for each servlet context. The database connection that is
created is stored in the ServletContext object as an attribute, so it is available to
all the servlets in the Web application.

package listeners;

import javax.servlet.*;
import java.sql.*;

public final class ContextListener implements ServletContextListener
{

ServletContext _context = null;
Connection _connection = null;

/**
* This method gets invoked when the ServletContext has
* been destroyed. It cleans up the database connection.
*/
public void contextDestroyed(ServletContextEvent event)
{

Application life cycle event listeners

40 EAServer

// Destroy the database connection for this context.
_context.setAttribute("DBConnection", null);
_context = null;

try {
_connection.close();

} catch (SQLException e) {
// ignore the exception
}

}

/**
* This method is invoked after the ServletContext has
* been created. It creates a database connection.
*/
public void contextInitialized(ServletContextEvent event)
{

_context = event.getServletContext();
String jdbcDriver="com.sybase.jdbc2.jdbc.SybDriver";
String dbURL="jdbc:sybase:Tds:localhost:2638";
String user="dba";
String password="";

try {
// Create a connection and store it in the ServletContext
// as an attribute of type Connection.

Class.forName(jdbcDriver).newInstance();
Connection conn =

DriverManager.getConnection(dbURL,user,password);
_connection = conn;
_context.setAttribute("DBConnection", conn);

} catch (Exception e) {
// Unable to create the connection, set it to null.
_connection = null;
_context.setAttribute("DBConnection", null);

}
}

}

Web Application Programmer’s Guide 41

C H A P T E R 4 Creating JavaServer Pages

This chapter provides an overview of JavaServer Pages (JSP) and their
place in distributed application development, as well as configuration
instructions for running your JSPs in EAServer.

For detailed information about JavaServer Pages technology, see the
JavaServer Pages specification, available at
http://java.sun.com/products/jsp/download.html.

About JavaServer Pages
JavaServer Pages (JSP) technology enables you to create Web pages with
both static and dynamic content. JSPs are text-based documents that
contain static markup, usually in HTML or XML, as well as Java content
in the form of scripts and calls to Java components. JSPs extend the Java
Servlet API and have access to all Java APIs and components.

You can use JSPs many different ways in Web-based applications. As part
of the J2EE application model, JSPs typically run on a Web server in the
middle tier, responding to HTTP requests from clients, and invoking the
business methods of Enterprise JavaBeans (EJB) components on a
transaction server.

Topic Page
About JavaServer Pages 41

Why use JSPs? 44

Syntax summary 45

Objects and scopes 46

Application logic in JSPs 47

Error handling 49

Using JSPs in EAServer 51

About JavaServer Pages

42 EAServer

How JavaServer Pages work
JSPs are executed in a JSP engine (also called a JSP container) that is installed
on a Web or application server. The JSP engine receives a request from a client
and delivers it to the JSP. The JSP can create or use other objects to create a
response. For example, a JSP can forward the request to a servlet or an EJB
component, which processes the request and returns a response to the JSP. The
response is formatted according to the template in the JSP and returned to the
client.

Translating into a
servlet class

You can deploy JSPs to the server in either source or compiled form. If a JSP
is in source form, the JSP engine typically translates the page into a class that
implements the servlet interface and stores it in the server’s memory.
Depending on the implementation of the JSP engine, translation can occur at
any time between initial deployment and the receipt of the first request. As long
as the JSP remains unchanged, subsequent requests reuse the servlet class,
reducing the time required for those requests.

Deploying the JSP as a compiled servlet class eliminates the time required to
compile the JSP when the first request is received. It also eliminates the need
to have the Java compiler on the server.

Requests and
responses

Some JSP engines can handle requests and responses that use several different
protocols, but all JSP engines can handle HTTP requests and responses. The
JspPage and HttpJspPage classes in the javax.servlet.jsp package define the
interface for the compiled JSP, which has three methods:

• jspInit()

• jspDestroy()

• _jspService(HttpServletRequest request,
HttpServletResponse response)

For more information about the EAServer implementation of the JSP engine,
see “Using JSPs in EAServer” on page 51.

What a JSP contains
A JSP contains static template text that is written to the output stream. It also
contains dynamic content that can take several forms:

• Directives provide global information for the page, or include a file of text
or code.

CHAPTER 4 Creating JavaServer Pages

Web Application Programmer’s Guide 43

• Scripting elements (declarations, scriptlets, and expressions) manipulate
objects and perform computations.

• Standard tags perform common actions such as instantiating or getting or
setting the properties of a JavaBeans component, downloading a plug-in,
or forwarding a request.

• Custom tags perform additional actions defined in a custom tag library.

For more detailed information about using these content types, see
“Application logic in JSPs” on page 47.

A simple example This sample JSP contains a directive, a scripting element (in this case an
expression), and a standard tag. The dynamic content is shown in bold:

<HTML>
<HEAD><TITLE>Simple JSP</TITLE>
</HEAD>
<BODY>
<P>This page uses three kinds of dynamic content: </P>
A page directive that imports the java util
package.
<%@ page import = "java.util.*" %>
An expression to get the current date using
java.util.Date. Today's date is <%= new Date() %>.
An include tag to include data from another file
without parsing the content.
<jsp:include page="includedpage.txt" flush="true"/>

</BODY>
</HTML>

The page referenced is a text file that contains one sentence and is in the same
directory as the JSP file. The included page might also be another resource,
such as a JSP file, and its location can be specified using a URI path.

You can call the JSP from an HTML page with a hypertext reference:

<html><body>
<p>Click here to send a
request to the simple JSP.</p>
</body></html>

This HTML is returned to the browser:

<HTML>
<HEAD><TITLE>Simple JSP</TITLE>
</HEAD>
<BODY>
<P>This page uses three kinds of dynamic content: </P>

Why use JSPs?

44 EAServer

A page directive that imports the java util
package.
An expression to get the current date using
java.util.Date. Today's date is Mon Feb 14 17:03:51 EST
2000.
An include tag to include data from another file
without parsing the content.
In this case the included file is a static file
containing this sentence.

</BODY>
</HTML>

Why use JSPs?
JavaServer Pages inherit the concepts of applications, servletContexts,
sessions, requests, and responses from the Java Servlets API and offer the same
portability, performance, and scalability as servlets.

About Java servlets Java servlets overcome many of the deficiencies of CGI, ISAPI, and NSAPI.
Although the CGI-BIN interface is not platform-specific, code must be
recompiled for different platforms, and performance is poor for large-scale
applications because each new CGI request requires a new server process.
Similar platform-specific interfaces such as ISAPI and NSAPI improve
performance, but at the cost of even less portability.

Because Java servlets are written in Java, they are completely platform- and
server-independent. They provide superior performance and scalability
because they can be compiled, loaded into memory, and reused by multiple
clients while running in a single thread, and they can take advantage of
connection caching or pooling.

Java servlets are described in more detail in Chapter 2, “Creating Java
Servlets.”

Java servlets and
JSPs

Java servlets and JSPs are based on the same API, and either can be used to fill
some roles in a Web application. But while Java servlets are Java code with
embedded HTML, JSPs are HTML (or XML) pages with embedded Java code.
This difference provides additional advantages.

CHAPTER 4 Creating JavaServer Pages

Web Application Programmer’s Guide 45

Servlets must be recompiled and deployed whenever there is a change to the
page presentation, so they are best used where such changes are not required.
Use servlets to generate binary data—such as image files—dynamically, and to
perform complex processing with no presentation component.

Separating logic and
presentation

The JavaServer Pages API provides tags that make it easy for a Web-page
developer to add dynamic content to a Web page without writing Java code.
The application logic in the page can be separated from page format and
design. This separation supports multitiered development. An application
developer can build EJBs, JavaBeans, and custom tag libraries. The page
author needs only know how to call these components and what arguments to
pass.

Application
partitioning

In a typical architecture for multitier applications, a Web server communicates
with a client via HTTP, with a transaction server hosting components that
handle database transactions. JSPs make it easier to partition and maintain an
application on multiple servers. The JSP runs on the Web server and can be
updated whenever the page designer needs to change elements of the
presentation. The components called by the JSP run on the transaction server,
or on a cluster of transaction servers, and can be updated whenever the business
logic needs to change.

You can also separate request handling from presentation using JSPs as front
components and presentation components. A front component receives a
request from the client, creates, updates, or accesses server components, then
forwards the request to a presentation component. A presentation component
incorporates fixed template data and returns the response to the client. Both
types of JSP typically use custom actions to access the server-side data.

Syntax summary
For complete syntax details, see the JavaServer Pages 2.0 for J2EE 1.4
specification, available at http://java.sun.com/products/jsp/download.html.

Objects and scopes

46 EAServer

Objects and scopes
When a JSP processes a request, it has access to a set of implicit objects, each
of which is associated with a given scope. Other objects can be created in
scripts. These created objects have a scope attribute that defines where the
reference to that object is created and removed.

Scopes
There are four scopes:

• Page – accessible only in the page in which the object is created. Released
when the response is returned or the request forwarded.

• Request – accessible from pages processing the request in which the object
is created. Released when the request has been processed.

• Session – accessible from pages processing requests in the same session in
which the object is created. Released when the session ends.

• Application – accessible from pages processing requests in the same
application in which the object is created. Released when the runtime
environment reclaims the ServletContext.

References to the object are stored in the PageContext, Request, Session, or
Application object, according to the object’s scope.

Implicit objects
The following implicit objects are always available within scriptlets and
expressions:

• Request – the request triggering the service invocation.

• Response – the response to the request.

• PageContext – the page context for this JSP.

• Session – the session object created for the requesting client (if any).

• Application – the servlet context obtained from the servlet configuration,
as in the call getservletConfig().getContext().

• Out – an object that writes to the output stream.

• Config – the ServletConfig for this JSP.

CHAPTER 4 Creating JavaServer Pages

Web Application Programmer’s Guide 47

• Page – the instance of this page’s implementation class that is processing
the current request. A synonym for this when the programming language
is Java.

For information about the scope and type of each implicit object, see the
JavaServer Pages Syntax Card at http://java.sun.com/products/jsp/syntax.pdf.

The exception implicit
object

If the JSP is an error page (the page directive’s isErrorPage attribute is set to
true), the following implicit object is also available:

• exception – the uncaught Throwable that resulted in the error page being
invoked.

For more information, see “Error handling” on page 49.

Application logic in JSPs
The application logic in JSPs can be provided by components such as servlets,
JavaBeans, and EJBs, customized tag libraries, scriptlets and expressions.
Scriptlets and expressions hold the components and tags together in the page.

JavaBeans You can easily use JavaBeans components in a JSP with the useBean directive.

Enterprise JavaBeans To use an EJB component, write a scriptlet that uses JNDI to establish an initial
naming context for the EJB’s home interface. For more information about
establishing the naming context and calling remote methods on the EJB’s home
interface, see the Enterprise JavaBeaans User’s Guide. This example,
HotSpots.jsp, uses an EJB called HotSpots to return a list of places to go that
fit a category and date requirement passed in the HTTP request:

<HTML>
<HEAD></HEAD><BODY>
<%@ page language="java" import="hotspots.*"

session="true" errorPage="ErrorPage.jsp" %>
<%@ include file="header.htm" %>
<h1>HotSpots</h1>
<%-- GET SEARCH PARAMETERS FROM REQUEST OBJECT --%>
<%

String category =
request.getParameter("category");

String date = request.getParameter("date");
%>
<%-- CREATE FORM WITH SEARCH PARAMETERS --%>
<form action="HotSpots.jsp">

Application logic in JSPs

48 EAServer

<table border=0>
<tr><td>Category:</td><td>
<input name="category" value="<%= category %>">
</td></tr>
<tr><td>Date:</td><td><input name="date"

value="<%= date %>"></td>
</tr>
</table>

<input type="submit" value="Search">

</form>
<%-- INSERT TABLE TO SHOW RESULTS AND USE SCRIPTLET TO
GET A REFERENCE TO THE HOTSPOTS HOME INTERFACE AND GET
A RESULT SET--%>
<p><table border=1 cellpadding=4>
<tr><th>Book</th><th>Place</th><th>Date</th>

<th>Price</th></tr>
<%
if (category !=null && date!=null) {
 try {
 java.util.Properties

p = new java.util.Properties();
p.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.sybase.ejb.InitialContextFactory");
p.put(javax.naming.Context.PROVIDER_URL,

"iiop://localhost:9000");
p.put(javax.naming.Context.SECURITY_PRINCIPAL,

"jagadmin");
p.put(javax.naming.Context.SECURITY_CREDENTIALS,

 "");
javax.naming.InitialContext ctx =

new javax.naming.InitialContext(p);
HotSpotsHome home = (HotSpotsHome)

ctx.lookup("HotSpots");
HotSpots hotSpots = home.create();
java.sql.ResultSet rs =

com.sybase.helper.IDL.getResultSet(
hotSpots.getList(category, date));

while (rs.next()) {
%>
<%-- POPULATE TABLE WITH RESULT SET --%>
<tr><td><a href=Payment.jsp?trip=

<%= rs.getInt("trip_id") %>
&amount=<%= rs.getDouble("price") %> >
</td>

<td><%= rs.getString("place") %></td>
<td><%= rs.getDate("date") %></td>

CHAPTER 4 Creating JavaServer Pages

Web Application Programmer’s Guide 49

<td><%= rs.getDouble("price") %></td>
</tr>

<%-- CLOSE WHILE LOOP AND TRY CATCH BLOCK --%>
<%

}
 } catch (Exception e) {

out.println(e);
 }
}
%>
</table>
</BODY></HTML>

Customized tag
libraries

Customized tag libraries, also called tag extensions, extend the capabilities of
JSPs. Tag libraries define a set of actions to be used within a JSP for a specific
purpose, such as handling SQL requests.

JSP authors can use tag libraries whether they are editing a page manually or
using an authoring tool. To associate a tag library with the page, the page author
uses a taglib directive that identifies the tag library’s URI. The URI identifying
the tag library is associated with a tag library descriptor (TLD) file and with tag
handler classes. Tag libraries are usually packaged as JAR files with a tag
library descriptor file named META-INF/taglib.tld.

A tag handler is a Java class that defines the semantics of an action. The
implementation class for the JSP instantiates a tag handler object for each
action in the page. Tag handler objects implement the
javax.servlet.jsp.tagext.Tag interface which defines basic methods required by
all tag handlers, including doStartTag and doEndTag. The BodyTag interface
extends the Tag interface by adding methods that enable the handler to
manipulate its body.

You can use the same tag library in multiple Web applications by placing the
JAR file containing the tag library in the EAServer extensions subdirectory.

Error handling
When a client request is processed, runtime errors can occur in the body of the
implementation class for the JSP, or in Java code that is called by the page.
These exceptions can be handled in the code in the JSP using the Java
language’s exception mechanism.

Error handling

50 EAServer

Uncaught exceptions Any exceptions that are thrown from the body of the implementation class and
are not caught can be handled with an error page that you specify by using a
page directive. Both the client request and the uncaught exception are
forwarded to the error page. The java.lang.Throwable exception is stored in the
javax.ServletRequest instance for the client request using the putAttribute
method, using the name javax.servlet.jsp.jspException.

Using an error page
JSP

If you specify a JSP as the error page, you can use its implicit exception
variable to obtain information about the exception. The exception variable is of
type java.lang.Throwable and is initialized to the throwable reference when the
uncaught exception is thrown.

To specify an error page for a JSP, set its errorPage attribute to the URL of the
error page in a page directive:

<%@ page errorPage="ErrorPage.jsp" %>

To define a JSP as an error page, set its isErrorPage attribute to true in a page
directive:

<%@ page isErrorPage="true" %>

This sample error page JSP uses the exception variable’s toString method to
return the name of the actual class of this object and the result of the
getMessage method for the object. If no message string was provided, toString
returns only the name of the class.

The example also uses the getParameterNames and getAttributeNames methods
of the request object to obtain information about the request.

<%@ page language="java" import="java.util.*"
isErrorPage="true" %>

<H1 align="Center">Exceptions</H1>

<%= exception.toString() %>
<%! Enumeration parmNames; %>
<%! Enumeration attrNames; %>

Parameters:
<% parmNames = request.getParameterNames();

while (parmNames.hasMoreElements()) {
%>

<%= parmNames.nextElement().toString() %>
<%

}
%>

Attributes:
<% attrNames = request.getAttributeNames();

while (attrNames.hasMoreElements()) {
%>

CHAPTER 4 Creating JavaServer Pages

Web Application Programmer’s Guide 51

<%= attrNames.nextElement().toString() %>
<%

}
%>

Using JSPs in EAServer
For JSPs to run in EAServer, they must belong to a Web application. In
addition, you can create servlet mappings for JSPs. The URL pattern to which
the servlet is mapped executes the JSP. This section discusses:

• “JSP and EAServer overview” on page 51

• “Compiling JSPs” on page 52

• “JSP file locations” on page 52

• “Creating and configuring JSPs in EAServer” on page 53

• “Internationalization” on page 53

• “Mapping JSPs” on page 54

• “Response caching” on page 54

• “Filters” on page 54

JSP and EAServer overview
EAServer fully supports the features described in the JavaServer Pages 2.0 for
J2EE 1.4 specification as well as mapping requests to JSPs as described in the
Java Servlet 2.4 specification. In EAServer, the JSP engine is implemented as
a generic servlet, which is referred to as the JSP servlet. The JSP servlet
handles runtime translation and compilation of JSPs, if required, as well as
invoking the generated servlet for a given JSP.

The JSP servlet supports translation of JSPs containing JSP standard
directives, standard actions, custom tags, and scripting elements such as
declarations, scriptlets, and expressions. For JSPs that include custom JSP tags,
a tag handler is loaded every time it is needed. Tag handlers are not pooled. The
JSP servlet also supports all the semantics associated with the “extends”
attribute.

Using JSPs in EAServer

52 EAServer

A Web application is a collection of resources that is mapped to a specific URI
prefix. These resources may include JSPs, servlets, HTML files, and images.
The URI that is stored in the request data structure is used to retrieve a JSP. The
JSP servlet creates a unique name for a generated servlet. These generated
servlet names are stored in a hash table. For a given request URI, the JSP
servlet determines the generated servlet name to which it corresponds. It then
looks up the generated servlet name in the hash table; an entry in the hash table
indicates that the JSP has been precompiled.

If a JSP is not precompiled, the JSP servlet invokes the compiler and saves the
generated files in the appropriate directory. It then executes the page by
invoking the _jspService method on the generated servlet.

If a JSP is precompiled, the JSP servlet compares the timestamp of the JSP and
all its nested include files, if any, with the timestamp of the generated servlet.
If any timestamp of the JSP is more recent than that of the generated servlet,
the JSP is recompiled. If the generated servlet is current, the JSP servlet creates
a new instance of the precompiled servlet class and calls _jspService method
on it.

Compiling JSPs
When you create a JSP, the load during startup deployment descriptor
determines if your JSPs are compiled at server start-up or the first time the JSP
is called. You can use a command line utility to compile your JSPs, which
allows you to debug and test your JSPs without running the server.

jsp compiler You can compile JSPs with the jagtool or jagant compilejsp command.

Compiler options include:

• <file> A file to be parsed as a JSP.

• -jspdir <dir> A directory containing a Web application. All JSPs are
recursively parsed.

JSP file locations
JSPs are contained within Web applications. JSP source code and class files are
stored relative to the Web application to which they belong.

You can find the source code in the same directory as the JSP class files. The
Java files generated from JSPs are stored in the same location as the class files.

CHAPTER 4 Creating JavaServer Pages

Web Application Programmer’s Guide 53

EAServer compiles and loads JSP classes from:

$DJC_HOME/deploy/webapps/WebAppName/WEB-
INF/compiled_jsps

Where WebAppName is the Web application name.

EAServer keeps the Java source code after compiling a JSP.

JSPs in the EAServer html subdirectory
In the as-installed configuration, you cannot create JSPs in the EAServer html
subdirectory. The html directory is registered as EAServer’s default HTTP
context to define the Web server’s context root. An HTTP context can serve
static content only. In order to serve JSPs from the root context, you must create
a Web application and set its context path to “/” to override the server’s default
root context. You must also change the Resource Base property for the default
HTTP context to point some place besides the EAServer html subdirectory. For
details on creating a Web application, see Chapter 1, “Defining Web
Applications.” For details on HTTP context configuration, see “HTTP tab” in
Chapter 3, “Creating and Configuring Servers,” in the System Administration
Guide.

Creating and configuring JSPs in EAServer
Define the JSP with a J2EE development tool, and deploy it into EAServer
using the deploy command.

You can also add compiled .jsp files to the
$DJC_HOME/deploy/webapps/WebAppName/WEB-INF/compiled_jsps
directory to make them available in EAServer. WebAppName is the name of the
Web application to which the JSP is added.

Internationalization
EAServer supports international versions of your Web application resources:
Servlets, static Web pages, and so on. For more information, see “Localizing
Web applications” on page 22.

Using JSPs in EAServer

54 EAServer

Mapping JSPs
EAServer supports path mappings as described in the Java Servlet 2.4
specification. Mappings are defined at the Web application level. See Chapter
1, “Defining Web Applications” for information about Servlet mappings.

Response caching
EAServer supports response caching, which improves the performance of
servlet and JSP requests. When response caching is enabled for a servlet or JSP
Web component, the cache is checked before the Web component is invoked.
For more information, see “Dynamic response caching” in Chapter 5, “Web
Application Tuning,” in the EAServer Performance and Tuning Guide.

Filters
EAServer supports servlet filters as described in the Java Servlet 2.4
specification. Filters are defined at the Web application-level. For information
on creating filters, see Chapter 3, “Using Filters and Event Listeners.”

Web Application Programmer’s Guide 55

C H A P T E R 5 Creating JavaMail

EAServer supports version 1.4 of the JavaMail API. JavaMail allows you
to send electronic mail from Java servlets, Java components, or standalone
Java applications. The JavaMail API provides a standard Java interface to
the most widely-used Internet mail protocols.

Introduction to JavaMail
JavaMail is a Java standard extension that provides a set of abstract classes
that define the common objects and their interfaces for any general mail
system. JavaMail providers implement the API to provide the concrete
functionality needed to communicate using specific protocols such as the
Simple Mail Transfer Protocol (SMTP) and the Internet Message Access
Protocol (IMAP).

Using JavaMail APIs in EAServer, you can send e-mail messages from
Java components, servlets, or JSPs. For example, a Web-based bookstore
could send e-mail to a customer acknowledging an order, or to a System
Administrator warning that a database is full.

Note EAServer supports only the ability to build and send mail.

For information on how to design a JavaMail program, see the JavaMail
Web site at http://java.sun.com/products/javamail. For information on many
of the standards relating to Internet mail, see the Internet Mail Consortium
Web site at http://www.imc.org.

Topic Page
Introduction to JavaMail 55

Writing JavaMail for EAServer 56

Deploying JavaMail-enabled applications 59

Writing JavaMail for EAServer

56 EAServer

Writing JavaMail for EAServer
You can implement JavaMail for EAServer as you would for any other server
that follows the JavaMail specification. JavaMail for EAServer can be coded
to the standard JavaMail API and uses classes in the javax.mail and
javax.mail.internet packages.

Creating a JavaMail session
The javax.mail.Session object is responsible for managing a user’s mail
configuration settings and handling authentication for the individual transports
used during the session.

To create platform-independent applications, a JavaMail program can use a
resource factory reference to obtain a JavaMail session. A resource factory is
an object that provides access to specific resources within a program’s
deployed environment using the specific naming conventions defined by JNDI.
All resource factory references are organized by resource type in the
application’s component environment. For example, JavaMail resource factory
references are found in java:comp/env/mail. For more information on using
resource factory references, see Resource references, in Chapter 1, “Defining
Web Applications”.

To obtain an initial JNDI naming context for your JavaMail session, create an
instance of the javax.naming.InitialContext object. Then call the lookup method
to invoke the javax.mail.Session factory reference to obtain a JavaMail session.
This session will map to the local mail server as defined for the environment in
which your JavaMail program is deployed. See “Deploying JavaMail-enabled
applications” on page 59 for information on specifying your local resources.

Constructing a message
Message is an abstract class in the JavaMail API. Subclasses of Message
implement the concrete functionality needed for specific messaging systems.
The JavaMail reference implementation includes a MimeMessage class that
implements the standard for basic Internet messages and the Multipurpose
Internet Mail Extensions (MIME).

To construct a message, instantiate a MimeMessage object, set the required
attributes (headers), and provide the appropriate header values and body
content. At a minimum, specify From, To, and Date headers.

CHAPTER 5 Creating JavaMail

Web Application Programmer’s Guide 57

Use the setFrom method to set the From header field using the value of
InternetAddress. Use the setRecipients method to set the specified recipient
type to a given address. Use the setSentDate method to set the date.

Sending a message
Use the Transport class to send a message. If you create a JavaMail session that
uses the SMTP provider included with EAServer, you can simply use the
Transport.send method to send your completed message to all the recipient
addresses specified.

Sample EAServer JavaMail program
In this example, an e-mail message is sent to the user of a Web-based travel
reservation system confirming the user’s reservation.

public String mailIt
(java.lang.String from,
java.lang.String to,
java.lang.String subject,
java.lang.String textmessage)

{
String status = “Your message was sent”;
try {

//Obtain the initial JNDI context
InitialContext ctx = new InitialContext();

//Perform a JNDI lookup to obtain the resource
//reference object
Session session = (Session) ctx.lookup

(“java:comp/env/mail/mymailserver”);

//Construct the message
MimeMessage message = new MimeMessage(session);

//Set the from address
Address[] fromAddress =

InternetAddress.parse(from);
message.addFrom(fromAddress);

//Set the to address
Address[] toAddress = InternetAddress.parse(to);

Writing JavaMail for EAServer

58 EAServer

message.setRecipients(Message.RecipientType.TO,
toAddress);

//Set the subject and text
message.setSubject(subject);
message.setText(textmessage);

//Send the message
Transport.send(message);

} catch(AddressException e) {
status = “There was an error parsing theaddresses”+e;
} catch(SendFailedException e) {
status = “There was an error sending the message”+e;
} catch (MessagingException e) {
status = “There was an unexpected error”+e;
} catch (NamingException e) {
status = “The mail session could not be created.”;
}
System.out.println(“The status is:”+ status);
return status;
}

JavaMail providers
JavaMail is extensible, which means that when new protocols are developed,
providers for those protocols can be added to a system and used by preexisting
JavaMail enabled applications. Applications can use the Provider Registry
detect which providers are available to them via the Provider Registry.

The providers that come with the JavaMail reference implementation are listed
in javamail.default.providers. If you add a package containing a new provider,
it should include a javamail.providers file in its META-INF directory.

To list the available providers on your system:

import javax.mail.*;
class ListProviders
{

public static void main(String[] args)
{

java.util.Properties properties =
System.getProperties();

Session session = Session.getInstance(properties,
null);

CHAPTER 5 Creating JavaMail

Web Application Programmer’s Guide 59

Provider[] providers = session.getProviders();
for (int i = 0; i < providers.length; ++i)

{
System.out.println(providers[i]);
}

}

Deploying JavaMail-enabled applications
If you use JavaMail in Web applications or EJB components, you can configure
resource references to alias a JavaMail session to a JNDI name. The resource
reference allows you to use JNDI to obtain mail sessions, as described in
“Creating a JavaMail session” on page 56. The use of logical names allows
your application to run in environments where the JNDI namespace does not
match the names hard-coded in your application. When you deploy the
application, you map the logical names to actual names that match the server’s
configuration. You must catalog the JNDI names used by your code in the
application’s deployment descriptor. Once your JavaMail-enabled Web
application is deployed to a host server, you must configure the
javax.mail.Session resource settings.

❖ Adding a JavaMail session in EAServer

1 From the Web Management console, expand the Resources folder, right-
click the Mail Sessions folder, and select Add.

2 Follow the wizard instructions to add the JavaMail session.

3 Click Finish when done, then define the properties for this mail session.

❖ Defining the properties for a JavaMail session:

1 From the Web Management Console, expand the Resources folder, and
expand the Mail Sessions folder. Select the mail session for which you are
defining the properties.

2 Configure the mail session’s properties by selecting these tabs:

• General

• POP3

• POP3S

• SMTP

Deploying JavaMail-enabled applications

60 EAServer

• SMTPS

These properties map directly to the properties listed in Appendix A of the
JavaMail specification. When the name service has a binding for an object
of type javax.mail.Session, an instance of the
com.sybase.djc.mail.MailSession component is created and calls a
getMailSession method on it. The method creates a new
javax.mail.Session, passing in the mail properties which you have defined.
The method returns the newly created javax.mail.Session to be bound in the
name service.

3 Click Apply.

General properties
From the General tab, you can configure:

• Host – the name of the mail host machine.

• User – the name of the default user for retrieving e-mail messages.

• From – the default return address.

• Store Protocol – the protocol used for receiving mail; for example, Post
Office Protocol 3 (POP3), or Post Office Protocol 3 over SSL (POP3S).
See POP3 properties and POP3S properties for more information.

• Transport Protocol – either Simple Mail Transfer Protocol (SMTP) or
Simple Mail Transfer Protocol of SSL (SMTPS). See “SMTP properties”
on page 62 and “SMTPS properties” on page 64 for more information.

• Mail Debug Quote – defines the initial debug mode.

• Debug – if true, enables JavaMail debug output.

• Advanced Properties – select any of the options to display advanced
properties.

POP3 properties
POP3 is the standard for Internet mail servers. Many e-mail clients are POP3-
compliant, which means they can send e-mail messages to and receive e-mail
messages from any POP3 compliant messaging server. POP3 properties
include:

CHAPTER 5 Creating JavaMail

Web Application Programmer’s Guide 61

• Host – the host name of the mail server for the POP3 protocol. An entry in
this field overrides the Host property on the General tab.

• User – the user name to use when connecting to mail servers using the
POP3 protocol. An entry in this field overrides the User property in the
General tab.

• Advanced Properties, including:

• Port – the port number of the mail server for the POP3 protocol. If not
specified, the protocol’s default port number is used.

• APOP – Enable APOP, which is similar to POP, only secure. Use this
option if you want to send secure e-mail messages from a secure Web
site to a secure APOP e-mail account, and retrieve it using a secure
mail client. This allows messages to be secure from the Web site to the
end destination. The client receiving the e-mail message must be able
to decrypt the e-mail message. Most e-mail clients, such as Eudora,
can handle secure e-mail messages.

• Reset Before Quit – resets the status of the POP3 server, including
resetting the status of all messages to not be deleted before quitting
and closing the connection.

POP3S properties
POP3S is similar to POP3, with the addition of SSL support. POP3S properties
include:

• Host – the host name of the mail server for the POP3S protocol. An entry
in this field overrides the Host property in the General tab.

• User – the user name to use when connecting to mail servers using the
POP3S protocol. An entry in this field overrides the User property in the
General tab.

• Advanced Properties, including:

• Port – the port number of the mail server for the POP3S protocol. If
not specified, the protocol’s default port number is used.

• Reset before quit – resets the status of the POP3S server, including
resetting the status of all messages to not be deleted before quitting
and closing the connection.

Deploying JavaMail-enabled applications

62 EAServer

SMTP properties
The fields on the SMTP tab allow you to configure an e-mail server that uses
the Simple Mail Transfer Protocol.SMTP, which is used for sending outbound
e-mail. Properties include:

• Host – the host name of the mail server for the SMTP protocol. An entry
in this field overrides the Host property on the General tab.

• User – the user name to use when connecting to mail servers using the
SMTP protocol. An entry in this field overrides the User property on the
General tab.

• Advanced Properties, including:

• Port – the port number of the mail server for the SMTP protocol. If
not specified, the protocol’s default port number is used.

• From – to help prevent spoofing, you can enter the login name of the
sender of the e-mail message for this session.

• Submitter – the name of the SMTP responsible submitter.

• Extensions – enter a comma-separated list of SMTP service
extensions for this mail session. The table below lists SMTP service
extensions. The server response to a client EHLO command includes
a keyword for each service extension the server implements.

Extension Description

SEND Send as mail

SOML Send as mail or terminal

SAML Send as mail and terminal

EXPN Expand the mailing list

HELP Supply helpful information

TURN Turn the operation around

8BITMIME Use 8-bit data

SIZE Message size declaration. Requires a number parameter
that defines the size.

VERB Verbose

ONEX Allow only one message per transaction.

CHUNKING Chunk messages.

BINARYMIME Binary MIME formatting.

CHECKPOINT Checkpoint/Restart

PIPELINING Command Pipelining

DSN Delivery Status Notification

CHAPTER 5 Creating JavaMail

Web Application Programmer’s Guide 63

• Delivery Status Notification (DSN) – select the type of status
notification to enable:

• Negative – notify if the message was not delivered

• Positive – notify if the message was delivered.

• Delivery Status Notification RET – specifies whether or not the
message should be included in any failed status notification issued for
this message transmission:

• FULL – requests the entire message be returned in any failed
delivery status notification issued for this recipient.

• HDRS – requests only the headers of the message be returned.

• Send Partial – send the message even if it has some invalid addresses,
and report any failures. If unselected (the default), the message is not
sent to any of the recipients if there is an invalid recipient address.

• Quit Wait – causes the SMTP transport to wait for the response to the
QUIT command. If false, the QUIT command is sent and the
connection is immediately closed.

• Report Success – causes the SMTP transport to include an
SMTPAddressSucceededException for each address that is successful.

• Enable STARTTLS – create an encrypted connection over which e-
mail messages are sent.

ETRN Extended Turn

ENHANCEDSTATUSCO
DES

Enhanced Status Codes

STARTTLS Start TLS

NO-SOLICITING Notification of no soliciting. Requires keyword(s)
parameters to be used as the no solicitation message.

MTRK Message Tracking

SUBMITTER SMTP Responsible Submitter

ATRN Authenticated TURN

AUTH Authentication mechanism. Requires SASL mechanism
name(s) parameters.

BURL Remote Content. Requires allowed URL prefix
parameters.

Extension Description

Deploying JavaMail-enabled applications

64 EAServer

• SASL Realm – a Simple Authentication and Security Layer (SASL)
realm or domain for authentication and data security. EAServer may
have multiple realms defined. If this realm does not match one of the
realms or domains offered by the server, authentication fails.

• Enable EHLO – SASL supports several password types which have
differing security properties. Different SMTP clients may support
some or all of these password types. When the client issues an EHLO
command, the server informs the client which types it supports, for
example, STARTTLS or DIGEST-MD5. The client chooses the first
of the listed methods that it also supports, and issues an AUTH
request.

• Enable Auth – if selected, you must provide a user name and
password, and the server attempts to authenticate the client.

SMTPS properties
SMTPS allows you to configure the SMTP with SSL mail server, used for
sending outbound e-mail messages. The properties are the same as those used
for SMTP. See “SMTP properties” on page 62 for a description.

Web Application Programmer’s Guide 65

A
application lifecycle events 39

sample listener 39
application logic in JSPs 47
application object, JSP 46
application partioning and JSPs 45
application scope, JSP 46

C
compiling

JSPs 52
config object, JSP 46
context initialization for Web applications 11
context path

Web application property 9
conventions x
custom tags and JSPs 42
customized tag libraries for JSP 49

D
deployment

of JSPs 42
developing

Java servlets 25
directives

and JSPs 42

E
EAServer

JSP support 51
EJB components

JNDI names for 13
EJB references

Web application property 13
environment properties

for Web applications 17
error handling, JSP 49
error pages

for Web applications 11
JSP 50

examples
application lifecycle event listener 39
JSP 43
servlet filter 37

exception object, JSP 47

F
file locations, JSP 52
filters

adding to a Web application 36
for servlets and JSPs 35
sample 37

H
HTML files

in Web applications 2
HTTP requests and responses, JSPs 42

I
installing

filters in Web applications 36

J
J2EE application model and JSPs 41

Index

Index

66 EAServer

Java
servlets 23, 25

Java classes
for Web applications 3

Java servlets, developing 25
JavaBeans

use in JSPs 47
JavaMail

API usage 56
deployment properties for 59
explanation of 55
sample code 57
using in EAServer 55

JCM Java class 27
JCMCache Java class 26
JNDI

and environment properties 17
and resources 17
names for EJB components 13
using in Web applications 13

JSP
adding to a Web application 2
and application partioning 45
and servlets 44
and Web application development 41
application logic 47
application object 46
application scope 46
compiling 52
config object 46
custom tags 42
customized tag libraries 49
deploying 42
directives 42
EAServer support for 51
error handling 49
error pages 50
exception object 47
features 44
file locations 52
handling requests and responses 42
mapping to servlets 54
out object 46
overview 42
page object 47
page scope 46

pageContext object 46
request object 46
request scope 46
response object 46
sample page 43
scope 46
scripting elements 42
session object 46
session scope 46
standard tags 42
translating to a servlet class 42
uncaught exceptions 50
using in Web applications 18
using JavaBeans in 47
using tag libraries in 12

L
listeners

for application lifecycle events 39

M
mail, electronic

using in EAServer applications 55
mapping JSPs to servlets 54
MIME mappings

configuring in Web applications 20

N
naming services

about 35

O
out object, JSP 46
overview of JSPs 42

Index

Web Application Programmer’s Guide 67

P
page object for a JSP 47
page scope for JSP 46
PageContext object for a JSP 46
properties

of Java servlets 33
of Web applications 7

R
request object, JSP 46
request scope, JSP 46
RequestDispatcher

flush 30
forward 30
include 30
service 31

requests and responses, JSPs 42
resource references

Web application property 15, 17
response object, JSP 46

S
scope, JSP 46
scripting elements

and JSPs 42
server

naming service 35
server properties

naming service 35
servlet class, translating JSPs 42
ServletContext

getNamedDispatcher 30
getRequestDispatcher 30

ServletResponse
flushBuffer 31
getBufferSize 31
isCommitted 31
reset 31
setBufferSize 31

servlets
and JSPs 44
creating 25

filters 35
properties for 33
running in Web applications 2, 5
using in Web applications 18

session
JSP object 46
scope, JSP 46

standard tags
and JSPs 42

T
tag libraries

configuring in Web applications 12
typographical conventions x

U
uncaught exceptions, JSP 50

W
Web applications

contents of 2
creating 1
creating filters in 36
creating listeners for 39
definition of 1
deploying files in 2
deploying in EAServer Manager 6
deployment descriptor for 5
environment properties for 17
initialization of 11
Java classes for 3
mapping request paths in 18
properties for 7
using EJB components in 13

Web components
filters 35

welcome pages
for Web applications 11

Index

68 EAServer

	Web Application Programmer’s Guide
	About This Book
	CHAPTER 1 Defining Web Applications
	Introduction
	Contents of a Web application
	Servlets
	JSP files and tag libraries
	Static files
	Filters and event listeners
	Java classes
	Deployment descriptor

	Deploying Web applications
	Configuring Web application properties
	Editing configuration files
	General properties
	Configuration properties
	User configuration properties
	Web.xml
	Advanced properties
	Context initialization properties
	Welcome and error page specifications
	Welcome files
	Error pages

	Tag library descriptor references
	Naming references
	EJB references
	EJB local references
	Resource references
	Resource environment references
	Environment properties

	Servlet mappings
	MIME mappings
	Additional J2EE property information
	Security properties
	Response caching properties
	Listener properties
	Filter mapping properties

	Localizing Web applications
	Internationalization for servlets
	Deploying localized static files
	Language-selection algorithm
	Localizing JSP content

	CHAPTER 2 Creating Java Servlets
	Introduction to Java servlets
	Writing servlets for EAServer
	datasource caching
	Component invocations
	Threading
	Logging
	Error pages

	Request dispatching
	URL interpretation
	Implementation
	Static content

	Response buffering
	Encoding responses and double-byte characters

	Installing and configuring servlets
	Configuring servlet properties

	CHAPTER 3 Using Filters and Event Listeners
	Servlet filters
	Application life cycle event listeners

	CHAPTER 4 Creating JavaServer Pages
	About JavaServer Pages
	How JavaServer Pages work
	What a JSP contains

	Why use JSPs?
	Syntax summary
	Objects and scopes
	Scopes
	Implicit objects

	Application logic in JSPs
	Error handling
	Using JSPs in EAServer
	JSP and EAServer overview
	Compiling JSPs
	JSP file locations
	Creating and configuring JSPs in EAServer
	Internationalization
	Mapping JSPs
	Response caching
	Filters

	CHAPTER 5 Creating JavaMail
	Introduction to JavaMail
	Writing JavaMail for EAServer
	Creating a JavaMail session
	Constructing a message
	Sending a message
	Sample EAServer JavaMail program
	JavaMail providers

	Deploying JavaMail-enabled applications
	General properties
	POP3 properties
	POP3S properties
	SMTP properties
	SMTPS properties

	Index

