
Enterprise JavaBeans User’s Guide

EAServer
6.0

DOCUMENT ID: DC00428-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Enterprise JavaBeans User’s Guide iii

About This Book .. vii

CHAPTER 1 Enterprise JavaBeans Overview.. 1
About Enterprise JavaBeans components 1

EJB component types ... 3
EJB container services.. 5
EJB transaction settings.. 6

EAServer EJB support ... 8
Deploying EJB components to EAServer.................................. 9
EJB clients connecting to EAServer.. 9
For more information ... 9

EJB version levels .. 10
EJB 2.1 differences from 2.0 ... 10
EJB 2.0 differences from 1.1 ... 14
EJB 1.1 differences from EJB 1.0 ... 16

CHAPTER 2 Deploying and Configuring EJB Components 19
Deploying an EJB-JAR file ... 19
Configuring EJB component properties.. 20

Structure of the configuration file... 21
Updating component properties .. 22

Commonly configured properties ... 24
ejb.accessControl .. 25
ejb.allowedPorts .. 27
ejb.rolePrefix ... 27
ejb.automaticFailover .. 27
ejb.clusterPartition... 28
ejb.copyValues .. 28
ejb.logExceptions .. 29
ejb.enableProfiling... 29
ejb.enableTracing.. 30
ejb.isolationLevel ... 30
ejb.localNamePrefix .. 34

Contents

iv EAServer

ejb.localNameSuffix... 34
ejb.localThreadMonitor.. 34
ejb.remoteNamePrefix... 35
ejb.remoteNameSuffix... 35
ejb.remoteThreadMonitor .. 35
ejb.serviceThreadMonitor.. 36
ejb.transactionBatch.. 36
ejb.transactionRetry .. 37
ejb.passivateTimeout .. 38
ejb.removeTimeout.. 38
ejb.poolTimeout... 39
jca.connectionFactory ... 39
sql.createTables .. 39
sql.dataSource .. 40
sql.isolationLevel ... 41

CHAPTER 3 Developing EJB Clients .. 43
Client runtime requirements ... 43
EJB client program flow ... 44
Instantiating home interface proxies .. 45

Obtaining an initial naming context ... 45
Resolving JNDI names.. 51

Instantiating remote or local interface proxies................................ 52
Calling remote interface methods .. 54
Calling local interface methods .. 54
Managing transactions ... 55
Serializing and deserializing bean proxies 56
Using EJB providers... 57
Running EAServer 5.x clients against 6.0 or later servers............. 59

CHAPTER 4 Creating Application Clients... 61
About application clients .. 61
Deploying application clients.. 62
Configuring application client properties .. 64

General tab.. 64
Configuration tab ... 65
Advanced tab .. 65

Running application clients .. 65
Setting up a client’s workstation .. 65
Starting the runtime container ... 66

CHAPTER 5 Interoperability... 67

Contents

Enterprise JavaBeans User’s Guide v

Intervendor EJB interoperability ... 67
Interoperable naming URLs .. 69

Classes for RMI/IIOP connections from third-party containers 70
Invoking EJB components from PowerBuilder clients.................... 70
Invoking EJB components from CORBA/C++ clients..................... 71

Supported datatypes ... 71
Generating required header files... 72
Calling the home interface... 73
Serializing and deserializing instance references 75

CHAPTER 6 Tutorial: Creating Enterprise JavaBeans Components and Clients
77
Overview of the sample components ... 77
Tutorial requirements ... 77
Creating the application ... 78

Start EAServer and the Management Console 78
Create the EJB-JAR file .. 79
Deploy the EJB-JAR file to EAServer...................................... 80
Create the glossary database and data source....................... 81
Create a user account ... 85
Create the client application .. 85
Run the client application .. 85

Automating deployment and configuration..................................... 87

Index ... 89

Contents

vi EAServer

Enterprise JavaBeans User’s Guide vii

About This Book

Subject This book describes how to deploy and configure Enterprise JavaBeans
(EJB) components to EAServer and create Enterprise JavaBeans clients
that connect to EAServer.

Audience This book is intended for EJB developers and application providers as
well as administrators that deploy packaged EJB applications to
EAServer.

How to use this book Chapter 1, “Enterprise JavaBeans Overview,” summarizes the Enterprise
JavaBeans component model and how it is supported in EAServer.

Chapter 2, “Deploying and Configuring EJB Components,” describes
how to deploy EJB components to EAServer and configure EJB modules
after deployment.

Chapter 3, “Developing EJB Clients,” describes the EJB client model
supported by EAServer.

Chapter 4, “Creating Application Clients,” describes how to deploy EJB
clients packaged using the J2EE application client packaging model.

Chapter 5, “Interoperability,” describes interoperability between
EAServer and other EJB application servers, and interoperability between
EJB components and other component models supported by EAServer.

Chapter 6, “Tutorial: Creating Enterprise JavaBeans Components and
Clients,” walks you through the creation of sample EJB entity and session
beans and an EJB client.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML and PDF format in your EAServer software
installation and on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for
proprietary EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-
based configuration scripts to:

viii EAServer

• Define and configure entities, such as EJB modules, Web applications,
data sources, and servers

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User’s Guide (this book) describes how
to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (JMS) clients and components to send, publish, and
receive JMS messages.

The EAServer Migration Guide contains information about migrating
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

 About This Book

Enterprise JavaBeans User’s Guide ix

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6

x EAServer

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase software license deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

Conventions The formatting conventions used in this manual are:

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using Ant or jagtool to configure
applications rather than the Management Console

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Management Console, a command line, or as
program text

• Example program fragments

• Example output fragments

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title

 About This Book

Enterprise JavaBeans User’s Guide xi

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

http://sybooks.sybase.com/nav/base.do
http://www.sybase.com/support/techdocs/
http://www.sybase.com/support/techdocs/

xii EAServer

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

The Web Services Toolkit plug-in for Eclipse supports accessibility features for
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

http://www.sybase.com/support

 About This Book

Enterprise JavaBeans User’s Guide xiii

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/accessibility

xiv EAServer

Enterprise JavaBeans User’s Guide 1

C H A P T E R 1 Enterprise JavaBeans Overview

EAServer supports version 2.1 of the EJB specification. For compatibility
with previous EAServer versions and other EJB servers, EAServer
supports earlier EJB versions, from EJB 1.1 onwards.

For more details on the EJB architecture, see the EJB specifications from
Sun Microsystems at http://java.sun.com/products/ejb/.

About Enterprise JavaBeans components
The Enterprise JavaBeans (EJB) technology defines a model for the
development and deployment of reusable Java server components, called
EJB components.

An EJB component is a nonvisual server component with methods that
typically provide business logic in distributed applications. A remote
client, called an EJB client, can invoke these methods, which typically
results in the updating of a database. Since EAServer uses CORBA IIOP
protocols, EJB components running in EAServer can be called by any
other type of EAServer client or component, and even CORBA clients
using ORBs from other vendors that are compatible with CORBA 2.3.

Figure 1-1 shows the components in the EJB architecture.

Topic Page
About Enterprise JavaBeans components 1

EAServer EJB support 8

EJB version levels 10

http://java.sun.com/products/ejb/

About Enterprise JavaBeans components

2 EAServer

Figure 1-1: EJB Architecture

Application server The application server contains the EJB container and
can contain other features such as a Web application container to host Web
components such as JavaServer Pages (JSPs) and Java servlets. EAServer is an
application server.

EJB container The EJB container runs EJB components and provides
required services such as enforcing application security constraints, managing
transactions that involve multiple components and databases, and providing
the naming service that maps components and resources to logical names. The
container provides the infrastructure required to run distributed components,
allowing client and component developers to focus on programming business
logic, and not system-level code.

CHAPTER 1 Enterprise JavaBeans Overview

Enterprise JavaBeans User’s Guide 3

EJB client An EJB client usually provides the user-interface logic on a client
machine. The EJB client makes calls to remote EJB components on a server
and needs to know how to find the EJB server and how to interact with the EJB
components. EJB components and Web components can act as an EJB client
by calling methods in another EJB component.

Session Beans and Entity Beans EJB components can be of two types.
Most applications include session beans to be invoked directly by clients.
Session beans provide the interface between base clients and the server-side
implementation of the application. Entity beans provide an abstraction of an
object that is stored in a database. Entity beans are not typically invoked
directly by base clients. “EJB component types” on page 3 describes the EJB
component types in more detail.

All types of EJB are implemented by a Java class that contains
implementations of the remote interface methods and additional methods for
lifecycle management.

Client interfaces An EJB client does not communicate directly with an EJB
component. The container provides proxy objects that implement the
components home and remote interfaces. The component’s remote interface
defines the business methods that can be called by the client. The client calls
the home interface methods to create and destroy proxies for the remote
interface. Clients use the Java name service to resolve components; the name
service maps the component’s logical name to a proxy objects that implement
the home and remote interfaces. The proxies contain generated code required
to invoke the component over the network.

Beginning in EJB version 2.0, EJB and Web components running in the same
server can execute EJB components using the component’s local interface.
Using the local interface can improve performance. If an EJB component is not
meant to be invoked directly by client applications, you can include only local
interfaces for the component.

EJB component types
You can implement four types of EJB component, each for a different purpose:

• Stateful session beans

• Stateless session beans

• Entity beans

• Message driven beans

About Enterprise JavaBeans components

4 EAServer

Stateful session beans

A stateful session bean manages complex processes or tasks that require the
accumulation of data, such as adding items to a Web catalog’s shopping cart.
Stateful session beans have the following characteristics:

• They manage tasks that require more than one method call to complete,
but are relatively short-lived. For example, a session bean might manage
the process of making an airline reservation.

• They typically store session state information in class instance data, and
do not survive server crashes unless they are run in a cluster that has
persistent storage enabled for the component.

• There is an affinity between each instance and one client from the time the
client creates the instance until it is destroyed by the client or by the server
in response to an expired instance timeout limit.

For example, if you create a session bean on a Web server that tracks a user’s
path through the site, the session bean is destroyed when the user leaves the site
or idles beyond a specified time.

Stateless session beans

A stateless session bean manages tasks that do not require the keeping of client
session data between method calls. Stateless session beans have the following
characteristics:

• Method invocations do not depend on data stored by previous method
invocations.

• There is no affinity between a component instance and a particular client.
Each call to a client’s proxy may invoke a different instance.

• From the client’s perspective, different instances of the same component
are identical.

Unlike stateful session beans, stateless session beans can be pooled by the
server, improving overall application performance.

Entity beans

An entity bean models a business concept that is a real-world object. For
example, an entity bean might represent a scheduled airplane flight, a seat on
the airplane, or a passenger’s frequent-flyer account. Entity beans have the
following characteristics:

CHAPTER 1 Enterprise JavaBeans Overview

Enterprise JavaBeans User’s Guide 5

• Each instance represents a row in a persistent database relation, such as a
table, view, or the results of a complex query.

• The bean has a primary key that corresponds to the database relation’s key,
and is represented by a Java datatype or class.

Message-driven beans

A Message Driven Bean (MDB) responds asynchronous messages delivered
by the application server’s message engine. The MDB model integrates the
EJB component architecture with the Java Message Service (JMS)
asynchronous messaging API and other messaging APIs.

An MDB component is similar to an EJB stateless session bean, but the MDB
component responds only to asynchronous messages and has no direct client
interface. Rather than having remote or local interfaces, an MDB that responds
to JMS messages must implement the javax.jms.MessageListener interface.
EAServer calls the onMessage method to deliver messages to the MDB.

An MDB must be attached to a message source such as a JMS message queue
or topic. You can invoke the MDB asynchronously by posting a message to this
queue or topic.

For more information, see “Message-driven beans” in the JMS User’s Guide.

EJB container services
The EJB container provides services to EJB components as listed below.

Transaction support An EJB container must support transactions. EJB
specifications provide an approach to transaction management called
declarative transaction management. In declarative transaction management,
you specify the type of transaction support required by your EJB component.
When the bean is deployed, the container provides the necessary transaction
support.

Persistence support An EJB container can provide support for persistence
of EJB components. An EJB component is persistent if it is capable of saving
and retrieving its state. A persistent EJB component saves its state to some type
of persistent storage (usually a file or a database). With persistence, an EJB
component does not have to be re-created with each use.

About Enterprise JavaBeans components

6 EAServer

An EJB component can manage its own persistence (by means of the logic you
provide in the bean) or delegate persistence services to the EJB container.
Container-managed persistence means that the data appears as member data
and the container performs all data retrieval and storage operations for the EJB
component.

Naming support An EJB container must provide an implementation of Java
Naming and Directory Interface (JNDI) API to provide naming services for
EJB clients and components. Naming services provide:

• Location transparency Clients can instantiate components by name,
and do not need to know the details about the server hosting the
component.

• Deployment flexibility Beginning in EJB version 1.1, EJB components
can be configured with naming aliases for components and resources such
as databases, JavaMail sessions, and JMS message queues. Using aliases
simplifies the procedure to deploy the component on a server where the
accessed components and resources use different JNDI names.

EJB transaction settings
In the deployment descriptor you must configure the transaction settings to
specify whether EAServer manages transactions automatically, based on the
method transaction attributes, or the bean manages transactions
programmatically.

Container-managed transactions versus bean-managed transactions

When you design an EJB component, you must decide how the bean will
manage transaction demarcation: either programmatically in the business
methods, or whether the transaction demarcation will be managed by the
container based on the value of the transaction attribute in the deployment
descriptor.

Session beans and message-driven beans can use either bean-managed
transaction demarcation or container-managed transaction demarcation; you
cannot create a session bean where some methods use container-managed
demarcation and others use bean-managed demarcation. An entity bean must
use container-managed transaction demarcation.

CHAPTER 1 Enterprise JavaBeans Overview

Enterprise JavaBeans User’s Guide 7

When using bean-managed transactions, you must explicitly begin, commit,
and roll back new, independent transactions by using the
javax.transaction.UserTransaction interface. Transactions begun by the
component execute independently of the client’s transaction. If the component
has not begun a transaction, the component’s database work is performed
independently of any EAServer transaction.

Method transaction attributes

When using container-managed transactions, the method transaction attributes
specify how the component participates in transactions. When a client or
another component calls a method, the transaction attribute determines
whether the method executes in the same transaction context, in a new
transaction context, or cannot execute in transactions at all.

Table 1-1 lists the transaction attribute values. Requires, Supports, Requires
New, or Mandatory are the values that specify container-managed transaction
demarcation. You can set the Transaction Attribute for the component and for
individual methods in the home and remote interfaces. Values set at the method
level override the component setting.

EAServer EJB support

8 EAServer

Table 1-1: Transaction attribute values

EAServer EJB support
EAServer can host Enterprise JavaBeans (EJB) components developed
according to version 2.1, 2.0, or 1.1 of the EJB specification, in other words,
all EJB versions between 1.1 and 2.1, inclusive.

Attribute Description

NotSupported (The component-level default.) The EJB component's methods
never execute as part of a transaction. If the EJB component is
activated by a client that has a pending transaction, the EJB
component’s work is performed outside the existing
transaction.

Since entity beans are almost always involved in transactions,
this value is not usually used for an entity bean.

Supports The EJB component can execute in the context of an EAServer
transaction, but a transaction is not required to execute the
component’s methods. If a method is called by a base client
that has a pending transaction, the method’s database work
occurs in the scope of the client’s transaction. Otherwise, the
EJB component’s database work is done outside of any
transaction.

Required The EJB component always executes in a transaction. Use this
option when your EJB component’s database activity needs to
be coordinated with other components, so that all components
participate in the same transaction.

RequiresNew Whenever the EJB component is instantiated, a new
transaction begins.

Mandatory EJB component methods must be called in the context of a
pending transaction. If a client calls a method without an open
transaction, the EAServer ORB throws an exception.

Never The component’s methods never execute as part of a
transaction, and the component may cannot be called in the
context of a transaction. If a client or another component calls
the component with an outstanding transaction, EAServer
throws an exception.

CHAPTER 1 Enterprise JavaBeans Overview

Enterprise JavaBeans User’s Guide 9

Deploying EJB components to EAServer
EJB components can be deployed in an EJB-JAR file. The EJB-JAR file
packages the component classes and a deployment descriptor in the standard
Java archive (JAR) format. The deployment descriptor describes the
components included in the JAR and sets standard properties such as the home
and remote interface names, transaction attribute values, required user roles,
and so forth.

You can use several tools to create EJB-JAR files, including Ant, Eclipse, and
popular IDEs such as Borland JBuilder. You can deploy the EJB-JAR to
EAServer using several tools including:

• The Management Console

• The deploy utility

• The jagant and jagtool utilities.

EAServer also supports the Enterprise JavaBeans client model. You can
generate EJB-style proxies for any IDL interface, and use the proxies to call
methods on components that implement that interface.

EJB clients connecting to EAServer
EAServer also supports the Enterprise JavaBeans client model by generating
EJB proxies and providing an EJB-compliant implementation of the JNDI
Context interface. The Context implementation allows clients to connect to
EAServer, look up proxy stubs for the home interface, and invoke EJB
components. In the server, EJB and Web components also use this same API
for intercomponent calls.

For more information

For information about See this chapter or section

Creating, importing, and exporting EJB
components.

Chapter 2, “Deploying and
Configuring EJB Components”

Creating EJB clients, generating EJB
stubs, instantiating home and remote
interface proxies, managing transactions,
and serializing and deserializing bean
proxies.

Chapter 3, “Developing EJB
Clients”

EJB version levels

10 EAServer

EJB version levels
The current version of the EJB specification supported by EAServer is 2.1. Past
EJB versions include 2.0, 1.1, and 1.0. If migrating from an earlier version,
consider the version differences described below.

EJB 2.1 differences from 2.0
EJB 2.1 introduces the following enhancements:

• Web services support

• Message driven beans support additional message types

• Timer service

• EJB-QL enhancements

Web services support

In EJB 2.1, stateless session beans can be exposed as Web services. EJB
components of any type can declare Web service references to alias a Web
service proxy to a JNDI name.

Exposing stateless session beans as Web services

This feature allows a stateless session bean to be invoked using standard Web
services protocols, specifically XML-based web service invocations using
WSDL 1.1 and SOAP 1.1 over HTTP 1.1 in conformance with the
requirements of the JAX-RPC specification.

Invoking non-EJB components from EJB
clients and invoking EJB components
from non-EJB clients, and using
EAServer with EJB 2.0 containers from
other vendors.

Chapter 5, “Interoperability”

Running the EJB tutorial Chapter 6, “Tutorial: Creating
Enterprise JavaBeans Components
and Clients”

For information about See this chapter or section

CHAPTER 1 Enterprise JavaBeans Overview

Enterprise JavaBeans User’s Guide 11

To expose a stateless session bean as a Web service, you must:

• Define a Web service endpoint interface that satisfies the requirements
described below.

• Declare the endpoint interface in the deployment descriptor using a
service-endpoint element.

The Web service endpoint interface defines the methods in the bean that can be
invoked by Web services clients. Each method in the endpoint interface
describes a Web service operation to be exposed in the WSDL interface for the
Web service.

The mapping of EJB methods to WSDL interface operations is based on the
JAX-RPC specification. Specifically, the Bean implementation and interface
must satisfy these requirements:

• The endpoint interface must extend the java.rmi.Remote interface.

• The methods in the endpoint interface must follow the rules for JAX-RPC
service endpoint interfaces. Specifically:

• Their argument and return values must be of valid types for JAX-
RPC, and their throws clause must include java.rmi.RemoteException
(in addition to the application exceptions to match those thrown by the
equivalent bean implementation method).

• You cannot pass references to the bean instance, other beans, or other
object references that are not valid outside the scope of the bean’s
implementation. These references include EJB instance references
(class EJBObject), EJB local instance references (EJBLocalObject),
timer and timer handle references, local, remote, home, and local
home classes, and managed collections that are used for entity beans
with container-managed persistence. These types cannot be used as a
parameter, return type, or in arrays or complex types used as
parameters and return types.

To support WSDL output and input-output operations, use JAX-RPC
holder classes. Holder classes implement the javax.xml.rpc.holders.Holder
interface.

• The web service endpoint interface must not include constant (as public
final static) declarations.

EJB version levels

12 EAServer

• The bean implementation class must contain an equivalent method for
each method in the endpoint interface. The methods must have the same
name, take the same argument list, and return the same type. The service
interface method must throw all exceptions listed in the throws clause of
the implementation method (in addition to java.rmi.RemoteException).

Using Web-services references

EJB components of any type can declare Web service references to alias a Web
service proxy to a JNDI name.

In the EJB-JAR file, declare Web service references using the service-ref
element as shown in the following example:

<service-ref>
<description>
This is a reference to the stock quote
service used to estimate portfolio value.
</description>
<service-ref-name>service/StockQuoteService</service-ref-name>
<service-interface>com.example.StockQuoteService
</service-interface>

</service-ref>

In the corresponding implementation code, the Web service proxy is bound to
the name java:comp/env/service/StockQuoteService and can be retrieved as
shown in the Java code below:

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the stock quote service in the environment.
com.example.StockQuoteService sqs =

(com.example.StockQuoteService)initCtx.lookup(
"java:comp/env/service/StockQuoteService");

// Get the stub for the service endpoint
com.example.StockQuoteProvider sqp =
sqs.getStockQuoteProviderPort();

// Get a quote
float quotePrice = sqp.getLastTradePrice(...);

After deploying an EJB-JAR that contains Web service references, you must
configure the references to specify a local implementation of the Web service
proxy class and other details required to connect to the Web service’s host
server.

CHAPTER 1 Enterprise JavaBeans Overview

Enterprise JavaBeans User’s Guide 13

Message driven beans support additional message types

In EJB 2.1, message driven beans support other message types besides JMS.
You can provide a J2EE Connector Architecture (JCA) 1.5 resource adapter to
pull messages from other messaging systems. For more information, see
“Message-driven beans” in the JMS User’s Guide.

Timer service

The EJB Timer Service provides methods to allow callbacks to be scheduled
for time-based events. Stateless session beans and entity beans may call the
timer API to register for timer event notifications. Notifications may be
scheduled to occur at a specific time, after a specific elapsed duration, or at
specific recurring intervals.

The EJB Timer Service is a coarse-grained timer notification service that is
designed for use in the modeling of application-level processes. It is not
intended for the modeling of real-time events. While timer durations are
expressed in millisecond units, this is because the millisecond is the unit of
time granularity used by the APIs of the J2SE platform. It is expected that most
timed events will correspond to hours, days, or longer.

An enterprise bean accesses the timer service through its EJBContext interface.
The timer service provides methods for the creation and cancellation of timers,
as well as for locating the timers that are associated with a bean. A timer is
created to schedule timed callbacks. The bean class of an enterprise bean that
uses the timer service must implement the javax.ejb.TimedObject interface. This
interface has a single method, the timer callback method, ejbTimeout. When the
time specified at timer creation elapses, the container invokes the ejbTimeout
method of the bean. A timer may be cancelled by a bean before its expiration.
If a timer is cancelled, the ejbTimeout method is not called. A timer is cancelled
by calling its cancel method.

Invocations of the methods to create and cancel timers and of the ejbTimeout
method are typically made within a transaction. The timer service is intended
for the modelling of long-lived business processes. Timers survive container
crashes and the activation/passivation and load/store cycles of the enterprise
beans that are registered with them.

EJB-QL enhancements

For EJB 2.1 EJB-QL has been enhanced with:

• Addition of ORDER BY clause

EJB version levels

14 EAServer

• Addition of Aggregate Functions AVG, MIN, MAX, SUM, COUNT to
SELECT clause

• Addition of MOD Function to WHERE clause

• Clarification of requirements for returning null values from queries and
finder and select methods

EJB 2.0 differences from 1.1
EJB 2.0 introduces support for message driven beans, new home interface
method syntax, local interfaces, and inter-vendor interoperability. EJB 2.0 also
enhances the container managed persistence model defined in EJB 1.1.

Message-driven beans

EJB 2.0 integrates the EJB component architecture with the Java Message
Service (JMS) asynchronous messaging API. EJB 2.0 allows you to define
message-driven bean (MDB) components to respond to JMS messages. An
MDB component is similar to an EJB stateless session bean, but the MDB
component responds only to JMS messages and has no direct client interface.

For information on JMS, see For more information, see “Message-driven
beans” in the JMS User’s Guide.

Home interface methods

EJB 2.0 allows you to define business methods in the home interface for an
entity bean and changes the syntax of create methods.

Create method syntax Previously, create methods were restricted to methods named create. In EJB
2.0, you can use any name that begins with create, such as createNewAccount.

Home interface
business methods

You can add business methods to the home interface for an entity bean to
perform operations that are not specific to a single instance. For example, a
home business method might return the average employee salary. For each
home business method, the entity bean’s implementation class must have a
method with the same name, except for the prefix ejbHome, and the same
signature. For example, if the home interface declares:

public double averageSalary();

Then the implementation class must contain:

public double ejbHomeAverageSalary();

CHAPTER 1 Enterprise JavaBeans Overview

Enterprise JavaBeans User’s Guide 15

Local interfaces

The EJB 2.0 architecture introduces local interfaces for calls to an EJB
component from within the same Java Virtual Machine. In EAServer, you can
use local interfaces for intercomponent calls, and for component invocations
made from servlets and JSPs hosted by the same server as the component. To
use local interfaces, you must configure a local EJB reference for the JSP or
EJB component that issues the call.

Using local interfaces can improve performance for calls to components hosted
in the same server, but in coding you must be aware of the restrictions listed in
“Calling local interface methods” on page 54.

CMP enhancements

EJB 2.0 enhances the Container Managed Persistence (CMP) model for entity
beans as follows:

• The deployment descriptor more fully describes the persistent fields in the
bean and the required database queries, making for less work after
deploying an EJB JAR file that contains CMP entity beans.

• CMP entity beans in the same EJB JAR (which maps to an EAServer
module) can have container-managed relationships. For example, an
Order bean may have an items field that consists of a collection of
Inventory bean instances representing the items being purchased. Or, an
Employee bean may be related to itself, with manager and employees
fields that contain Employee instances.

EJB 2.0 interoperability

EAServer 4.0 complies with the interoperability requirements in the EJB 2.0
specification to allow interoperability with other EJB 2.0 servers. EAServer
continues to support CORBA-2.2 based interoperability, for interacting with
other CORBA-based application servers and to allow interoperability between
EJB components hosted by EAServer and EAServer components of other
types. For more information, see Chapter 5, “Interoperability.”

EJB version levels

16 EAServer

EJB 1.1 differences from EJB 1.0
The main change in EJB 1.1 involves the packaging of components. EJB 1.1
uses an XML deployment descriptor, and allows abstraction of container-
specific resource references used within the source code. In addition, there are
minor changes to the Java interfaces and classes.

Component differences

JNDI names in deployment descriptors

EJB 1.1 and later deployment descriptors do not specify JNDI names for
deployed EJB components. Consequently, EJB 1.1 components imported into
EAServer use the default JNDI name assigned by the deployment tool. After
deploying, you can reconfigure the component to change the JNDI bindings.

Environment properties

EJB 1.1 allows environment properties to be accessed using JNDI, and the
EJBContext.getEnvironment method is now deprecated. Environment
properties can also contain values of types other than String.

Environment properties used within a bean must be cataloged in the bean’s
deployment descriptor. After deployment, you can edit the property values in
the component properties—see Chapter 2, “Deploying and Configuring EJB
Components.”

You must call the JNDI Context.lookup method to access environment
properties. To locate the naming context, create a javax.naming.InitialContext
object for java:comp/env. In this example, the application retrieves the value
of the environment property maxExemptions and uses that value to determine
an outcome:

Context initContext = new InitialCopntext();
Context myEnv =

(Context)initContext.lookup(“java:comp/env”);

// Get the maximum number of tax exemptions
Integer max=(Integer)myEnv.lookup(“maxExemptions”);

// Get the minimum number of tax exemptions
Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use these properties to customize the business logic
if (numberOfExemptions > max.intValue() ||

CHAPTER 1 Enterprise JavaBeans Overview

Enterprise JavaBeans User’s Guide 17

(numberOfExemptions < min.intValue())
throw new InvalidNumberOfExemptionsException();

.

EJB and resource references

EJB 1.1 allows components to use logical names to access database
connections, JavaMail sessions, and the home interfaces of other components.
These names must be catalogued in the bean’s deployment descriptor. After
deployment, you can configure the target of the reference in the component
properties—see Chapter 2, “Deploying and Configuring EJB Components.”

Security access-control changes

The getCallerIdentity and isCallerInRole(java.security.Identity) methods in the
EJBContext interface are deprecated in EJB 1.1. Instead of getCallerIdentity, call
getCallerPrincipal. Instead of isCallerInRole(java.security.Identity), call
isCallerInRole(java.lang.String).

You can configure role references for your component. Role references allow
you to map names used in isCallerInRole(java.lang.String) calls to role names
that exist on the server. Role references allow your component to be deployed
on servers that do not have the same security configuration. After deploying,
you can configure the component to assign server role names to the role
reference names used in the component.

Declarative access control for EJB 1.1 and later version components uses
method-level settings. You configure access restrictions for methods with
<method-permission> elements in the deployment descriptor, listing the
methods that the permission constraint applies to inside the <method-
permission> element. When you deploy the EJB-JAR to EAServer, EAServer
creates role configurations and security settings to apply the security
constraints. For details, see the description of the ejb.accessControl Ant
configuration property on page 25.

❖ Configuring role references

Role references in the EJB JAR deployment descriptor allow you to map
logical role names used in the isCallerInRole Java method. While the EJB
specification encourages declarative security constraints, you can
programmatically check role membership with this method. The role reference
allows you to logical role names when calling isCallerInRole, then map them to
roles that exist on the deployment server.

EJB version levels

18 EAServer

When you deploy an EJB-JAR that contains role references, EAServer
generates commands in the module configuration file to alias the role to
another role. You can edit or reconfigure the role reference as follows:

1 If necessary, define new EAServer roles to be used by callers of the
component.

2 Edit the EJB module configuration file as described in “Configuring EJB
component properties” on page 20.

For each role reference in the deployment descriptor, EAServer generates
the following in the configuration target:

<addRoles toRole="LinkedRole">
RoleUsedInCode
</addRoles>

Where RoleUsedInCode is the logical role name used in the EJB code
(specified by role-name in the deployment descriptor security-role-
ref element) and LinkedRole is the role name specified by link-role in
the deployment descriptor. This command makes RoleUsedInCode have
the same included and excluded users as LinkedRole.

Transaction isolation level

In EJB 1.1 and later version EJB deployment descriptors, you cannot declare
an EJB component’s transaction isolation level. However, when deploying to
EAServer, you can modify the component property that specifies the isolation
level (by setting the sqlIsolationLevel attribute of the transaction property).

Client model differences

Except for the differences below, the EJB 1.1 client model is identical to the
EJB 1.0 model:

• Finder method return types Finder methods in EJB 1.1 clients can
return java.util.Collection or java.util.Enumeration. Finder methods in EJB
1.0 must return java.util.Enumeration. The use of java.util.Collection is
recommended for new development.

• Home interface serialization You can call the Home.getHandle method
to serialize a home interface proxy in an EJB 1.1 client.

• EJBMetaData enhancements The EJBMetaData interface, used by
development tools to dynamically inspect EJB components, provides an
isStatelessSession method that returns true if the component is a stateless
session bean.

Enterprise JavaBeans User’s Guide 19

C H A P T E R 2 Deploying and Configuring EJB
Components

Deploying an EJB-JAR file
EJB components can be deployed in an EJB-JAR file. The EJB-JAR file
packages the component classes and a deployment descriptor in the
standard Java archive (JAR) format. The deployment descriptor describes
the components included in the JAR and sets standard properties such as
the home and remote interface names, transaction attribute values,
required user roles, and so forth.

You can use several tools to create EJB-JAR files, including Ant, Eclipse,
and popular IDEs such as Borland JBuilder. You can deploy the EJB-JAR
to EAServer using several tools including:

• The Management Console, as described below.

• The deploy utility, as described in Chapter 12, “Command Line
Tools,” in the System Administration Guide.

• The jagant and jagtool utilities.

❖ Deploying EJB-JARs with the Management Console

1 Start the Management Console and connect to EAServer as described
in Chapter 1, “Getting Started,”in the System Administration Guide.

2 In the Management Console, right-click the EJB Modules folder in
the left pane and choose Deploy. The Deploy wizard pages appear in
the right pane. Fill in the Wizard settings as listed in the table below.

Topic Page
Deploying an EJB-JAR file 19

Configuring EJB component properties 20

Commonly configured properties 24

Configuring EJB component properties

20 EAServer

Click Finish on the final wizard page. The Management Console deploys
the EJB-JAR and shows the deployment status in the right pane. When
your browser finishes downloading the status page, scroll to the bottom.
You see Build Successful if everything went ok.

Configuring EJB component properties
When deploying an EJB-JAR, EAServer creates an Ant build script that
contains targets to configure the component properties and generate the classes
required to run the components in EAServer.

The configuration script contains settings read from the EJB-JAR deployment
descriptor. You may need to customize settings such as those listed below to
match the server configuration:

Setting Explanation

File Name Enter the full path to the EJB-JAR file, or browse to
select the file.

Module Name Enter a name for the package to be created. The
default is the base name of the EJB-JAR file.

Overwrite if Package
Already Exists.

Enable to overwrite an existing package that has the
same name.

Do Validation During
Deployment

Enable to enforce validation of the XML
deployment descriptor. In accord with the J2EE
specification, this option is enabled by default.
Disabling validation may allow you to deploy
archives that have invalid XML but are otherwise
correctly packaged.

Server Name The name of the server to install the module to. The
default is the name of the server that you are
connected to.

Install Module Into
Selected Server

Deselect if you don’t want the package installed into
any server. The package must be installed in a server
before clients of that server can call the components.

Directory Name If you specify a directory name, EAServer creates a
copy of the archive file in the specified directory.
The copy is identical to the source, except that an
EAServer configuration file is added to the META-
INF directory. The directory must exist and be a full
path or a path relative to the EAServer bin directory.

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 21

• For entity beans that use container-managed persistence, the Persistence
settings.

• Role mappings and method-level permissions.

• Resource references.

• EJB references to components that are not installed with the JAR file or
when multiple beans use the same home and remote interfaces. It is
impossible to infer EJB references if more than one bean uses the home
and remote interfaces specified by the reference properties in the
deployment descriptor.

• Environment properties.

• Resource Environment Refs properties.

• Run As Identity properties.

Structure of the configuration file
For an introduction to configuration with Ant, see Chapter 2, “Ant-Based
Configuration,” in the Automated Configuration Guide.

For EJB components, the configuration file includes the following:

• Ant property definitions for commonly configured properties, described in
“Commonly configured properties” on page 24.

• A configure-default target, which sets the package and component
properties. This target executes when you configure the component using
the Management Console or the configure command-line tool.

• A recompile-default target, which regenerates the classes required to
run the components in EAServer. This target executes when you recompile
the component using the Management Console or the recompile
command-line tool. This target also executes the configure-default
target.

• A refresh-default target, which loads or reloads the implementation
classes and generated classes into the server. This target also applies
changes to properties that affect run-time behavior, such as JNDI name
bindings or security constraints.

Configuring EJB component properties

22 EAServer

Updating component properties
You can update component properties in the Management Console or by using
command-line tools.

For deployed EJB modules, the Management Console displays properties on
these tabbed pages:

• General Displays the module name and an optional description

• Configuration Displays the configuration script that deployment
generated based on the settings in the deployment descriptor.

• ejb-jar.xml Displays the contents of the deployment descriptor for
reference only.

• User Configuration Displays the contents of the user configuration
script if present. You can create a user-configuration script as described
below.

• Advanced Allows you to modify properties in the configuration scripts
graphically.

You should modify component properties from a user configuration script
rather than the default configuration script that is generated by deployment. If
you modify the default script, redeployment overwrites your changes.

❖ Creating a user-configuration script with the Management Console

1 Start the Management Console and connect to EAServer as described in
Chapter 1, “Getting Started,”in the System Administration Guide.

2 In the Management Console, expand the EJB Modules folder in the left
pane and highlight the icon for your EJB package. The right frame
displays the properties for the package.

3 If the properties do not include a User Configuration tab, create the user
configuration script as described in “Creating user-configuration scripts”
in Chapter 2, “Ant-Based Configuration,” in the Automated
Configuration Guide.

Note You can also embed a user-configuration script in your EJB-JAR file so
that the settings are applied automatically when deploying. For details, see
“Embedding configuration scripts in J2EE archives” in Chapter 2, “Ant-Based
Configuration,” in the Automated Configuration Guide.

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 23

❖ Modifying user-configuration properties with the Management Console

1 Click the User Configuration tab to display the contents of the user-
configuration script. Make required edits and click Apply to save your
changes. For property descriptions, see “Commonly configured
properties” on page 24.

2 Follow the steps in “Configuring, recompiling, and refreshing
components with the Management Console” on page 23 to reload the
components so the property changes take affect.

❖ Using the Advanced tab in the Management Console

The Advanced tab allows you to modify properties in the configuration scripts
graphically.

1 Click the Advanced tab to display the graphical controls. Controls are
provided for commonly configured properties such as name bindings. For
property descriptions, see “Commonly configured properties” on page 24.

2 If you change settings, click Apply to save the changes to the EAServer
repository, then click Synchronize to apply the same changes to the
configuration script. If you do not synchronize changes to the
configuration script, your property changes can be undone by running the
configure or recompile targets in the configuration scripts.

3 Follow the steps in “Configuring, recompiling, and refreshing
components with the Management Console” on page 23 to reload the
components so the property changes take affect.

❖ Configuring, recompiling, and refreshing components with the
Management Console

After modifying component properties, follow the steps below to update the
generated code and reload the component implementation. You must do this
before property changes take affect:

1 In the left frame, right-click the icon for your EJB package and choose one
of the following:

• Configure, to apply the XML configuration file to the module and
component properties.

• Recompile, to apply the XML configuration file to the module and
component properties and recreate generated classes.

2 In the left frame, right-click the icon for your EJB package and choose
Refresh. EAServer reloads the implementation classes and generated
classes.

Commonly configured properties

24 EAServer

❖ Updating component properties with the command line

1 Use a text or XML editor to edit the contents of the user configuration file
for your package, ejbjar-module-user.xml in the EAServer config
directory, where module is the name of the package. For property
descriptions, see “Commonly configured properties” on page 24.

2 Run the recompile utility to apply the changes to the component and
recreate generated classes. Alternatively, run the configure utility to update
the component properties without regenerating affected code. See Chapter
12, “Command Line Tools,” in the System Administration Guide for
details on these utilities.

3 Run the refresh utility to reload the implementation classes and generated
classes.

Commonly configured properties
The default EJB configuration script defines top-level Ant properties for
settings that are most commonly configured. For example, since all beans in a
JAR file typically connect to the same database, a sql.dataSource property
is defined as follows:

<property name="sql.dataSource" value="default"/>

This property specifies the default for the data source name that is bound to any
resource reference names used in the package. It also specifies the default data
source used for field storage in CMP entity beans.

To override the Ant property values in the default configuration script, define
the same property in your user-configuration script, above any target
definitions.

In some cases, modifying the Ant property may not suffice because more than
one value is required in the component configuration. For example, two
enterprise beans in the module may connect to different data sources bound to
JNDI name. In this case, you must override the default <bind> command in the
module configuration by running a different <bind> command in the user-
configuration script.

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 25

For an introduction to configuration with Ant, see Chapter 2, “Ant-Based
Configuration,” in the Automated Configuration Guide. For details on the
syntax of Ant commands, see the following file in your EAServer installation:

html\help\en\index.html

ejb.accessControl
Specifies the type of security access control for components in the module. The
Ant property value sets the default for <accessControl> subcommands in the
<setProperties> commands for the EJB components and the EJB module.
Allowable values are:

• default, to specify use of EAServer’s default role- and port-based access
control mechanism.

• jacc, to specify use of the JACC (Java™ Authorization Contract for
Containers) mechanism, with policies enforced the Java system
implementation or by a custom JACC policy provider implementation.

• none, to specify that no access control restrictions. Any user can call the
component methods.

Using the default access control type

When using the default access control type, EAServer enforces port-based
access control based on the EAServer roles that the client user belongs to and
the port number that the client has connected with.

To apply role-based constraints, the default configuration runs <permitAccess>
commands to configure component and method role constraints based on the
method permissions defined in the deployment descriptor. The default
configuration also creates these roles for each role name defined in the EJB
deployment descriptor:

• role, where role is the role name used in the deployment descriptor.

• ejb-role-prefix.role, where ejb-role-prefix is the value of the
ejb.rolePrefix Ant property.

For evaluating a method role constraints, a user is considered a member of a
role if they are a member of either the role with a matching name, or the role
ejb-role-prefix.role where ejb-role-prefix is the value of the ejb.rolePrefix Ant
property for the EJB module configuration. In other words, to allow access to
a user, you can add them to either role.

Commonly configured properties

26 EAServer

Port-based access cannot be specified in the EJB deployment descriptor. By
default, EAServer allows access through any port. In your user configuration,
you can set the ejb.allowedPorts Ant property to restrict access to clients that
connect through the specified port numbers. Changing the Ant property affects
access to all methods unless you override the default security configuration
commands.

In your user-configuration, you can override the default <accessControl> and
<permitAccess> commands to fine tune the security settings. For example, you
can enable auditing of permitted or denied access, or disable access to remote
interface methods to allow only local-interface invocations. See the reference
for the <permitAccess> and <denyAccess> commands for more information.

For example, to enable auditing:

<target name="configure-user">
<setProperties package="ejb.components.example">
 <accessControl

 type="default"
 auditDeny="true"
 auditPermit="true"

/>
</setProperties>

</target>

To enable auditing, auditing must also be enabled for the security domain (the
security domain auditAccessDenied and auditAccessPermitted properties must
both be true).

Using the JACC access control type

The JACC (Java™ Authorization Contract for Containers) mechanism
authorizes method and component access using the Java system
implementation or by a custom JACC policy provider implementation.

The JACC mechanism must be configured by deploying the EJB-JAR with the
-jacc command-line option. Deployment with this option creates an
additional configuration script to configure the JACC settings for the module.
You must also configure the JACC settings for the EAServer security domain.
For details, see “JACC (JSR-115) support” in Chapter 10, “Security
Configuration Tasks,” in the Security Administration and Programming
Guide.

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 27

ejb.allowedPorts
Specifies port numbers to restrict client access when using the default security
access control mechanism. Allowable values are all, to allow access through
any port, or a comma-separated list of port numbers to restrict access to just
those ports. See ejb.accessControl for more information.

ejb.rolePrefix
Specifies a prefix for EAServer security role names created to apply role-based
access constraints from the EJB deployment descriptor. See ejb.accessControl
for more information.

ejb.automaticFailover
Specifies whether proxies for components in the module can transparently fail
over when deployed in a cluster. The default configuration applies this Ant
property value to the <automaticFailover> subcommand in the <setProperties>
command for each component in the module. To override the setting for an
individual component, add a <setProperties> command to your user
configuration that include the <automaticFailover> subcommand. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<automaticFailover enable="true"/>
</setProperties>

</target>

For more information on failover, see Chapter 6, “Clusters and
Synchronization,” in the System Administration Guide.

Commonly configured properties

28 EAServer

ejb.clusterPartition
If deploying to a cluster, specifies a global cluster partition name applied to the
the properties of all components in the module. The component runs only on
servers that are in the partition. The default configuration applies this Ant
property value to the <clusterPartition> subcommand in the <setProperties>
command for each component in the module. To override the setting for an
individual component, add <setProperties> command to your user
configuration to configure the component’s that correspond to the enterprise
bean’s public interfaces. Include the <clusterPartition> subcommand. For
example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<clustePartition name="salesPartition"/>
</setProperties>
<setProperties component="ejb.components.myjar.MyCompHome">

<clustePartition name="salesPartition"/>
</setProperties>

</target>

For more information on clusters and partitioning, see Chapter 6, “Clusters and
Synchronization,” in the System Administration Guide.

ejb.copyValues
Specifies a global value to enable or disable by-reference parameter passing for
in-server remote interface invocations of the module’s components. A value of
true means parameters are passed by creating temporary copies, making in-
server remote interface calls behave like calls to a remote server. A value of
false enables by-reference parameter passing, effectively making in-server
remote interface invocations behave like local interface invocations. By-
reference parameter passing can improve server performance, but may change
the behavior of component code that modifies or retains references to variables
passed as parameters to remote interface invocations.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <copyValues> subcommand.
For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<copyValues enable="true"/>
</setProperties>

</target>

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 29

ejb.logExceptions
Specifies a global value to enable or disable logging of exceptions thrown by
components in the module. If set to true, EAServer logs application and
system exceptions that are thrown by the business methods for any component
in the EJB module.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <logExceptions>
subcommand. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<logExceptions enable="true"/>
</setProperties>

</target>

You can disable logging of exceptions for all components in the server by
setting the server Log System Exceptions and Log Application Exception
properties. If exception logging is disabled in the server properties, the
component settings have no affect.

ejb.enableProfiling
Specifies a global value to enable or disable profiling of home, remote, and
local interface method invocations. A value of true causes generation of
additional method profiling code. However, to collect and view profiling
statistics, the server’s Disable Statistics property (disableStatistics) must be set
to false.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <profilePublicMethods>
subcommand. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<profilePublicMethods enable="true"/>
</setProperties>

</target>

Profiling data is included in the server statistics output. There are several ways
to view this data, including spreadsheet software, the Management Console,
and as text files output periodically by the server. For more information, see
“Viewing server statistics” in Chapter 11, “Runtime Monitoring,” in the
System Administration Guide.

Commonly configured properties

30 EAServer

If you change this setting for the EJB module, recompile the module and restart
the server for the change to take affect. If you change the server Disable
Statistics setting, restart the server for the change to take affect.

ejb.enableTracing
Specifies a global value to enable or disable tracing of home, remote, and local
interface method invocations. A value of true causes generation of additional
tracing code. EAServer writes trace messages to the server log if tracing is
enabled for the server. To enable EJB method tracing for the server, specify the
-ejbTrace option when starting the server with the start-server command, or set
the Enable EJB Tracing (ejbTrace) server property.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <tracePublicMethods>
subcommand. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<tracePublicMethods enable="true"/>
</setProperties>

</target>

ejb.isolationLevel
Specifies a global logical transaction isolation level for EJB-CMP entity beans
in the module. This setting specifies the effective transaction isolation level for
transactions managed using EAServer’s query caching and optimistic
concurrency control (OCC) mechanisms. This setting allows the performance
benefits of OCC and caching, while also enforcing an effective transaction
isolation level as you would use with pessimistic concurrency control. For
more information on configuring concurrency control mechanisms, see
Chapter 4, “EJB CMP Tuning,” in the Performance and Tuning Guide.

The sql.isolationLevel Ant property specifies the database transaction isolation
level used on the connection to the remote database.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <persistentObject>
subcommand. Specify the isolation level in the isolationLevel attribute. You can
supply additional attributes to further tune the settings, for example the
cacheTimeout attribute specifies a timeout for cached data.

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 31

Table 2-1 lists the allowable isolation levels.

Table 2-1: Logical isolation level values

Setting Effect

ReadCache Queries are satisfied by reading from the local query cache if possible.
Otherwise, data is loaded from the remote database.

Not recommended, as use of this isolation level can result in “lost” updates:
updates made from the entity bean may go through even if the data has been
modified since first read from the database. If lost updates are unacceptable,
use ReadCacheVerifyUpdates and verify that the concurrency control
configuration allows for locking or OCC version control.

ReadCacheVerifyUpdates Queries are satisfied by reading from the object cache if possible.
Otherwise, data is loaded from the remote database. If the entity is changed
or removed, the corresponding SQL update or delete verifies that the data
was not changed after it was loaded from the DBMS.

This setting is suitable when it is acceptable for a read-only transaction to
use stale cache data. To limit the use of stale data, specify a cache timeout
by setting the cacheTimeout attribute for the <persistentObject> command,
or by setting the cacheTimeout attribute for <queryMethod> commands.

ReadCommitted Queries are satisfied by reading from the remote database. If the entity is
changed or removed, the corresponding SQL update or delete does not
verify that the data was not changed after it was loaded from the DBMS.

Not recommended, as use of this isolation level can result in “lost” updates.
If lost updates are unacceptable, use ReadCommittedVerifyUpdates
and verify that the concurrency control configuration allows for locking or
OCC version control.

ReadCommittedVerifyUpdates Queries are satisfied by reading from the remote database. If the entity is
changed or removed, the corresponding SQL update or delete verifies that
the data was not changed after it was loaded from the DBMS.

This setting provides a good balance of data integrity and performance.
However, for some application data models, the maintenance of full data
integrity requires a higher isolation level such as RepeatableRead.

ReadCommittedVerifyUpdatesWithCache may provide better
performance.

Commonly configured properties

32 EAServer

ReadCommittedWithCache Queries are satisfied by reading from the object cache if possible.
Otherwise, data is loaded from the remote database. If the entity is changed
or removed, the corresponding SQL update or delete does not verify that the
data was not changed after it was loaded from the DBMS. Otherwise, for
read-only access, and only if data was loaded from the local cache, a
commit-time verify step ensures that the data has not changed since it was
originally loaded from the DBMS. This ensures that any cached data that
was used is still current at commit time, but does not prevent concurrent or
conflicting updates.

This setting is not recommended, as it can result in lost updates. Instead, use
ReadCommittedVerifyUpdatesWithCache.

ReadCommittedVerifyUpdates

WithCache

Queries are satisfied by reading from the local cache if possible. Otherwise
data is loaded from the remote database. If the entity is changed or
removed, the corresponding SQL update/delete verifies that the data was
not changed after it was loaded from the DBMS. Otherwise, for read-only
access, and only if data was loaded from the local cache, a commit-time
verify step ensures that the data has not changed since it was originally
loaded from the DBMS. This ensures that any cached data that was used is
still current at commit time. This setting does not prevent concurrent
updates but does prevent conflicting updates.

This setting is suitable when it is not acceptable for a read-only transaction
to use stale data, and where commit-time verification is cheaper than
satisfying queries from the DBMS; in particular, where a table timestamp
is specified with the <persistentObject> tableVersion attribute, or where a
JDBC/JIT driver wrapper is used (the JIT driver wrappers can batch
verification statements together at commit-time).

Setting Effect

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 33

RepeatableRead Queries are satisfied by reading from the remote database. If the entity is
changed or removed, the corresponding SQL update or delete will verify
that the data was not changed after it was loaded from the DBMS.
Otherwise, for read-only access, a commit-time verification ensures that
the data has not changed since it was loaded from the DBMS.

If pessimistic locking is enabled with the <persistentObject>
selectWithSharedLock or selectWithUpdateLock attribute, and is supported
by the DBMS, verification is skipped as the shared/exclusive locks that are
obtained at load time will prevent conflicting updates.

 Warning! Pessimistic locking may increase the occurrence of deadlock.

This setting is suitable for cases where uncontrolled concurrent updates
may result in data integrity problems (even for read-only access).

RepeatableReadWithCache may provide better performance, although
if many transactions are updating the same rows, pessimistic locking with
no cache is probably preferable.

RepeatableReadWithCache Queries are satisfied by reading from the local cache if possible. Otherwise,
data is loaded from the remote database. If the entity is changed or
removed, the corresponding SQL update or delete verifies that the data was
not changed after it was loaded from the DBMS. Otherwise, for read-only
access, a commit-time verification ensures that the data has not changed
since it was originally loaded from the DBMS.

This setting is suitable for cases where uncontrolled concurrent updates
may result in data integrity problems (even for read-only access), where it
is not acceptable for a read-only transaction to use stale cache data, and
where commit-time verification is cheaper than satisfying queries from the
DBMS; in particular, where a table timestamp is specified with the
<persistentObject> tableVersion attribute, or where a JDBC/JIT driver
wrapper is used (the JIT driver wrappers can batch verification statements
together at commit-time).

If many transactions from other sources are updating the same rows, you
may get better performance using RepeatableRead with pessimistic
locking.

Serializable Like RepeatableRead, except guarantees that the set of rows satisfying
the query cannot change before the current transaction completes.

Note This isolation level is not supported when using Oracle databases.
Use RepeatableRead instead, or add additional application-level data
version checking code.

Setting Effect

Commonly configured properties

34 EAServer

ejb.localNamePrefix
The ejb.localNamePrefix and ejb.localNameSuffix Ant properties define the
suffix and prefix, respectively, for JNDI names bound to local interfaces in the
module. Each local interface is bound to a JNDI name comprised of the prefix,
the suffix, and the name of the enterprise bean.

To add additional name bindings, add <bind> commands to your user
configuration script. For example:

<target name="configure-user">
<setProperties package="ejb.components.myjar">

<bind name="myapp/MyComp"
component="ejb.components.example.MyCompRemoteHome"/>

<bind name="myapp/MyOtherComp"
interface="com.example.bank.MyOtherHome"/>

<bind name="java:comp/env/ejb/MyComp"
component="ejb.components.example.MyCompRemoteHome"/>

</setProperties>
</target>

ejb.localNameSuffix
See ejb.localNamePrefix.

ejb.localThreadMonitor
Specifies the name of a thread monitor to govern local interface invocations.
For details on thread monitors, see “Monitoring threads” in Chapter 3,
“Creating and Configuring Servers,” in the System Administration Guide.

SerializableWithCache Like RepeatableReadWithCache, except guarantees that the set of rows
satisfying the query cannot change before the current transaction
completes.

Note This isolation level is not supported when using Oracle databases.
Use RepeatableReadCache instead, or add additional application-level
data version checking code.

Setting Effect

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 35

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <threadMonitor>
subcommand. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompLocal">

<threadMonitor name="myMonitor"/>
</setProperties>

</target>

ejb.remoteNamePrefix
The ejb.remoteNamePrefix and ejb.remoteNameSuffix Ant properties define the
suffix and prefix, respectively, for JNDI names bound to remote interfaces in
the module. Each remote interface is bound to a JNDI name comprised of the
prefix, the suffix, and the name of the enterprise bean.

To add additional name bindings, add <bind> commands to your user
configuration script. See ejb.localNamePrefix for an example.

ejb.remoteNameSuffix
See ejb.remoteNamePrefix

ejb.remoteThreadMonitor
Specifies the name of a thread monitor to govern remote interface invocations.
For details on thread monitors, see “Monitoring threads” in Chapter 3,
“Creating and Configuring Servers,” in the System Administration Guide.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <threadMonitor>
subcommand. See ejb.localThreadMonitor for an example.

Commonly configured properties

36 EAServer

ejb.serviceThreadMonitor
Not used in the default configuration. If you create a user configuration to run
an enterprise bean as an EAServer service component, you can reference this
property to specify the thread monitor name. For details on service
components, see Chapter 4, “Creating Service Components,” in the Automated
Configuration Guide.

ejb.transactionBatch
Specifies the name of the transaction batch set in the transaction properties of
components in the module. A value of “none” or “default” indicates no
transaction batching will be performed. Transaction batching allows container-
managed transactions from independent threads to be grouped into a single
transaction.This can help to increase throughput, especially when using
container-managed persistence and EAServer’s query-caching features with a
JIT data source driver wrapper. Transaction batches must be defined with a
separate <setProperties> command, for example:

<target name="configure-user">
<setProperties transactionBatch="MyTransactionBatch">
<property name="maximumBatchSize" value="5"/>
<property name="maximumBatchWait" value="20"/>

</setProperties>
</target>

To override the global transaction batch setting for individual components,
create a <setProperties> command in your user configuration that runs the
<transaction> subcommand and sets the batch attribute in addition to other
attributes copied from the component’s <setProperties> command in the
default configuration. For example:

<target name="configure-user">
<setProperties component="ejb.components.example.MyCompRemote">
<transaction type="Required" batch="myTxBatch"/>

</setProperties>
</target>

Note The <transaction> type attribute specifies the transaction attribute from
the EJB deployment descriptor. Copy the value from the default configuration
so as not to change the transactional behavior of the application.

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 37

To override the transaction settings for individual methods, include the method
signature as the method attribute value. For example:

<target name="configure-user">
<setProperties component="ejb.components.example.MyCompRemote">

<transaction method="buy(int, java.lang.String)" type="Required"
batch="myTxBatch"/>

<transaction method="sell(int, java.lang.String)" type="Required"
batch="myTxBatch"/>

</setProperties>
</target>

ejb.transactionRetry
Globally enables or disables automatic retry of container-managed transactions
for components in the module. If automatic retry is enabled, the transaction
manager may automatically retry transactions that are rolled back for any
reason, including use of the setRollbackOnly API.

To override this setting for individual components or methods, create a
<setProperties> command in your user configuration that runs the <transaction>
subcommand and sets the retry, retryCount, and retryDelay attributes. For
example:

<target name="configure-user">
<setProperties component="ejb.components.example.MyCompRemote">

<!-- enable retry for sell transactions, with a retry count of 2
 and a retry delay of 2 seconds (2000 milliseconds). -->

<transaction method="sell(int, java.lang.String)"
type="Required"
retry="true"
retryCount="2"
retryDelay="2000"/>

<!-- Disable transaction retry for other methods. -->
<transaction type="Required"

retry="false" />
</setProperties>

</target>

Note The <transaction> type attribute specifies the transaction attribute from
the EJB deployment descriptor. Copy the value from the default configuration
so as not to change the transactional behavior of the application.

Commonly configured properties

38 EAServer

ejb.passivateTimeout
Globally configures the passivation timeout for EJB stateful session beans in
the module. The value is the allowed idle time in seconds. If an instance is idle
for more than this amount of time, EAServer removes the instance from
memory by serializing it to persistent storage. If the client calls a method on a
passivated instance, EAServer deserializes the instance back into memory to
service the invocation. You can also set the ejb.removeTimeout property to
specify a timeout for complete removal of idle instances.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <ejbPassivate> subcommand
and sets the timeout attribute. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<ejbPassivate timeout="100"/>
</setProperties>

</target>

EAServer passivates instances by storing in the ejb_session database table
using the session.db data source. In the default, as-installed configuration,
the session.db data source is an alias for the default data source, which
connects to the preconfigured default database server.

ejb.removeTimeout
Globally configures the removal timeout for EJB stateful session beans in the
module. The value is the allowed idle time in seconds. If an instance is idle for
more than this amount of time, EAServer removes the instance. Client
invocations fail after the instance has been removed.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <ejbRemove> subcommand
and sets the timeout attribute. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<ejbRemove timeout="1200"/>
</setProperties>

</target>

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 39

ejb.poolTimeout
Globally configures an instance pool timeout value for the entity beans and
stateless session beans in the module (stateful session beans are not pooled). If
a pooled instance remains idle for more than this amount of time, EAServer
discards the instance.

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <instancePool> subcommand
and sets the timeout attribute. For example:

<target name="configure-user">
<setProperties component="ejb.components.example.MyCompRemote">

<instancePool timeout="100"/>
</setProperties>

</target>

jca.connectionFactory
Specifies the default JCA administered object bound to any JCA resource
references names used in the module. To override the JCA administered object
bound to a JNDI name, create a <setProperties> command in your user
configuration that contains a <bind> command specifying the JNDI name and
the JCA administered object to bind it to. For example:

<target name="configure-user">
<setProperties package="ejb.components.myjarname">

<bind name="java:comp/env/jdbc/MyConnector"
administeredObject="myConnector"/>

</setProperties>
</target>

sql.createTables
Specifies whether database tables for CMP entity beans should be created by
EAServer when the module is created. Automatic table creation can be useful
for debugging during development of new CMP entity beans.

Automatic table creation is for testing only
For deployment to production servers, you or your DBA should create the
tables, using an optimized index model and any other necessary optimizations,
such as enabling row-level locking.

Commonly configured properties

40 EAServer

If you use automatic table creation, you can override the <loadComponents>
command in the default configuration and add the dropTables attribute. This
attribute causes old tables to be dropped when redeploying. For example:

<target name="configure-user">
<loadComponents package="ejb.components.myjarname"

sqlCompile="true"
createTables="true"
dropTables="true"/>

</target>

If you do not specify dropTables as true, tables are not created unless the tables
don’t already exist.

When running against predefined tables, review the <persistentObject> and
<persistentField> commands in the default configuration. If a table names do
not match the EJB entity bean name, you must override the <persistentObject>
setting in your user configuration. If column names do not match the
corresponding persistent field name, you must override the <persistentField>
setting in your user configuration.

sql.dataSource
Specifies the default for the data source name that is bound to any JDBC
resource reference names used in the module. It also specifies the default data
source used for field storage in CMP entity beans.

To override the data source bound to a JNDI name, create a <setProperties>
command in your user configuration that contains a <bind> command
specifying the JNDI name and the data source to bind it to. For example:

<target name="configure-user">
<setProperties package="ejb.components.example">
<bind name="java:comp/env/jdbc/MyDataSource" dataSource="myDB"/>

</setProperties>
</target>

To override the data source for CMP entity bean field storage, create a
<setProperties> command in your user configuration to configure the CMP
entity bean. Copy and paste the <persistentObject> from the default
configuration’s <setProperties> command for this component, then modify the
dataSource attribute. For example:

<target name="configure-user">
<setProperties component="ejb.components.example.CustomerInventory">
<persistentObject

CHAPTER 2 Deploying and Configuring EJB Components

Enterprise JavaBeans User’s Guide 41

table="cust_inv"
isolationLevel="RepeatableRead"
dataSource=”myDB”
/>

</setProperties>
</target>

sql.isolationLevel
Specifies the global JDBC connection SQL isolation level used for container-
managed transactions (by calling method setTransactionIsolation in class
java.sql.Connection). The precise interpretation of this property, particularly
Serializable, is database-specific. Allowable values are:

• ReadUncommitted

• ReadCommitted

• RepeatableRead

• Serializable

If you are using container-managed persistence, Sybase recommends you set
the SQL isolation level to ReadCommitted and configure the CMP logical
isolation level for <persistentObject> and <queryMethod> commands to best
match the characteristics of the application. This allows the persistence
manager more options for database concurrency management, and thus may
help you to obtain better performance. For details on the CMP logical isolation
level, see ejb.isolationLevel.

Commonly configured properties

42 EAServer

Enterprise JavaBeans User’s Guide 43

C H A P T E R 3 Developing EJB Clients

Client runtime requirements
To run EJB clients, you must have:

• A Java Runtime Environment (JRE) or JDK installation, version
1.4.2 or later. Compatible versions of JDK 1.4 and JDK 1.5 are
included in the EAServer client runtime installation.

• An EAServer client runtime installation. The Java class path must
contain the EAServer JAR file lib/eas-client-14.jar or
lib/eas-client-15.jar to run in JRE 1.4 or JRE 1.5, respectively. If you
package these classes in a different archive or location, you must set
the djc.home Java system property to indicate the location of the
EAServer installation. For example:

java -Ddjc.home=%DJC_HOME% com.foo.MyClass

If you do not set this property, the client runtime infers the default
from the first class path entry that ends with lib/eas-client-14.jar or
lib/eas-client-15.jar.

• Stubs for the components that your client invokes.

Topic Page
Client runtime requirements 43

EJB client program flow 44

Instantiating home interface proxies 45

Instantiating remote or local interface proxies 52

Calling remote interface methods 54

Calling local interface methods 54

Managing transactions 55

Serializing and deserializing bean proxies 56

Using EJB providers 57

Running EAServer 5.x clients against 6.0 or later servers 59

EJB client program flow

44 EAServer

EAServer generates client stubs on demand. If stubs are not available, the
client runtime generates and compiles stub classes when you first invoke a
component.

You must have a full JDK installation to generate compiled stubs at runtime.
To deploy client applications to run in a JRE installation, you must include the
generated stubs. When you deploy an EJB-JAR file, EAServer automatically
creates stubs under the genfiles/java/classes subdirectory of the EAServer
installation. Stub classes are in the Java package named by appending
iiop_stubs to the package name of the interface class. For example, for interface
com.sybase.easerver.tutorials.ejb.Query, the Java stub package is
com.sybase.easerver.tutorials.ejb.iiop_stubs.

You can also manually generate stubs with the stub-compiler command. For
details, see Chapter 12, “Command Line Tools,” in the System Administration
Guide.

EJB client program flow
The steps in the table below describe the program flow in a typical EJB client:

Step Action For more information

1 Add code to create the initial
naming context and instantiate the
home interface proxies.

See “Instantiating home interface
proxies” on page 45.

2 Add code to instantiate remote or
local interface proxies.

See “Instantiating remote or local
interface proxies” on page 52.

3 Add code to call remote or local
interface methods.

See “Calling remote interface
methods” on page 54 or “Calling local
interface methods” on page 54.

4 Optionally add code to control
transactions and serialize and
deserialize instances.

See:

• “Managing transactions” on page 55

• “Serializing and deserializing bean
proxies” on page 56

CHAPTER 3 Developing EJB Clients

Enterprise JavaBeans User’s Guide 45

Instantiating home interface proxies
EJB clients use the Java Naming and Directory Interface (JNDI) to resolve
logical bean JNDI names to proxy instances for a bean’s home interface. Each
EJB container vendor provides an implementation of this interface that works
with the vendor’s server and network protocol.

Obtaining an initial naming context
The core JNDI interface used by client applications is javax.naming.Context,
which represents the initial naming context used to resolve names to bean
proxies. To obtain an initial naming context, initialize a java.util.Properties
instance and set the properties listed in Table 3-1. Pass the properties instance
to the javax.naming.InitialContext constructor. The code fragment below shows
a typical call sequence:

import javax.naming.*;

static public Context getInitialContext() throws Exception {
java.util.Properties p = new java.util.Properties();

// Sybase implementation of InitialContextFactory
p.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sybase.ejb.InitialContextFactory");

// URL for the Server’s IIOP port
p.put(Context.PROVIDER_URL, "iiop://myhost:2000");

// Username "pooh", password is "tigger2"
p.put(Context.SECURITY_PRINCIPAL, "pooh");
p.put(Context.SECURITY_CREDENTIALS, "tigger2");

// Now create an InitialContext that uses the properties
return new InitialContext(p);

}

EJB servers from different vendors require different InitialContext property
settings. If you are creating a client application that must be portable to other
EJB servers, use an external mechanism to specify properties rather than hard-
coding values in the source code. For example, in a Java application use
command-line arguments or a serialized Java properties file. To specify
properties used by a Java applet, use parameters in the HTML Applet tag that
loads the applet.

iiop://myhost:2000

Instantiating home interface proxies

46 EAServer

Sybase InitialContext properties

The Sybase InitialContext implementation recognizes the properties in the
following table. You can create multiple contexts with different properties. For
example, you might create one context for proxies that connect with plain IIOP
and another for proxies that connect using SSL. When using the EAServer
context factory, the com.sybase.ejb prefix is optional for context properties.

Table 3-1: Sybase EJB InitialContext Properties

Property name Description

java.naming.factory.
initial

Specifies the fully qualified Java class name of the class that returns
javax.naming.InitialContext instances that interact with the naming provider. Use
com.sybase.ejb.InitialContextFactory for EAServer EJB clients.

java.naming.provider.
url

Specifies the URL to connect to the EAServer name server, in the format described in
“Connection URL formats” on page 48.

java.naming.security.
principal

Specifies the user name for the EAServer session. Required if user name/password
authentication is enabled for your server.

java.naming.security.
credentials

Specifies the password for the EAServer session. Required if user name/password
authentication is enabled for your server.

com.sybase.ejb.
socketTimeout

The timeout for the network connection, specified in seconds. The default is 600 (10
minutes). The timeout determines how long underlying network API calls to connect to
and read data from the server may block before the client runtime throws an exception
or fails over to another server in a cluster.

com.sybase.ejb.
idleConnectionTimeout

Specifies the time, in seconds, that a connection is allowed to sit idle. When the timeout
expires, the ORB closes the connection. The default is 0, which specifies that
connections can never timeout. The connection timeout does not affect the life of proxy
instance references; the client runtime may close and reopen connections transparently
between proxy method calls. Specifying a finite timeout for your client applications can
improve server performance. If many instances of the client run simultaneously, a finite
client connection timeout limits the number of server connections that are devoted to
idle clients. A finite timeout also allows rebalancing of server load in an application that
uses a cluster of servers.

com.sybase.ejb.
lookupCacheTimeout

Specifies the time, in seconds, that previously resolved names may be cached in the
client runtime. The default is 600 (10 minutes). Caching can improve performance by
avoiding network round trips to resolve previously resolved names.

com.sybase.ejb.
dataCompression

Whether to compress data when reading and writing to the server connection. The
default is false, which disables compression. When compression is enabled, EAServer
compresses data using the GZIP format (provided by the Java package java.util.zip).

com.sybase.ejb.
disableResolveHost

When set to true, disables resolution of host names in the naming context URL
(java.naming.provider.url). The default is false. A setting of true can be useful when
running the server in the same process as the client or running the server and client on
the same machine using localhost as the server’s listener host name as the host name
in the naming context URL. In these scenarios, host name resolution may cause
network errors if the host machine lacks an active network connection.

CHAPTER 3 Developing EJB Clients

Enterprise JavaBeans User’s Guide 47

com.sybase.ejb.
automaticFailover

When running in a cluster, a value of true allows component proxies to automatically
fail over to run component instances on another server regardless of whether failover is
configured in the component properties. The default of false does not allow failover
unless the component properties are configured to support failover.

You can configure automatic failover with the default setting by enabling failover in the
properties of the components that can support it. If the component properties support
failover, EAServer adds automatic failover code to the component stubs.

com.sybase.ejb.
HttpTunnelling

Forces use of HTTP tunnelling. A value of true causes the client runtime to use HTTP
tunnelling without trying to use plain IIOP first. The default is false. With the default
setting, the proxy tries to open a connection using plain IIOP, and switches to HTTP
tunnelling if the plain IIOP connection is refused. The default is appropriate when some
users connect through firewalls that require tunnelling and others do not; the same
application can serve both types. If you know tunnelling is required, set this property to
true. This setting eliminates a slight bit of overhead that is incurred by trying plain IIOP
connections before tunnelling is used.

com.sybase.ejb.
HttpExtraHeader

Applicable only to Java
application clients.

An optional setting to specify what extra information is appended to the header of each
HTTP packet when connecting through a Web proxy. There is no need to set this
property unless your HTTP proxy server has special protocol requirements. By default,
the following line is appended to each packet:::

User-agent: Jaguar/major.minor

where major and minor are the major and minor version numbers of your EAServer
client software, respectively.

You can set this property to specify text to be included at the end of each HTTP header.
If multiple lines are included in the setting, they must be separated by carriage return
and line feed characters. If the setting does not include a User-agent: line, then the
default setting above is included in the HTTP header.

See Chapter 9, “Deploying Applications Around Proxies and Firewalls,” in the
EAServer Security Administration and Programming Guide for more information.

com.sybase.ejb.
HttpTunnellingSecure

If set to true when using a a reverse proxy server, forces use of SSL for the connection
to the reverse proxy. Set this property to true if the connection to the reverse proxy must
use SSL (HTTPS) tunnelling, but the connection from the proxy to the server does not
use SSL tunnelling. For more information, see Chapter 9, “Deploying Applications
Around Proxies and Firewalls,” in the EAServer Security Administration and
Programming Guide.

com.sybase.ejb.
UseJavaURLConnection

When using HTTP tunnelling, a setting of true causes the client runtime to use
java.net.URLConnection rather than java.net.HTTPConnection to connect to the server.
The default of false causes the client to connect using java.net.HTTPConnection.

com.sybase.ejb.
ReverseProxyHost

Specifies the machine name or the IP address of a reverse proxy server. See Chapter 9,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer Security
Administration and Programming Guide for more information.

Property name Description

Instantiating home interface proxies

48 EAServer

Connection URL formats

The java.naming.provider. url initial context property specifies the URL to
connect to the EAServer name server. There are several variations on the URL
format:

com.sybase.ejb.
ReverseProxyPort

Specifies the port number of a reverse proxy server. See Chapter 9, “Deploying
Applications Around Proxies and Firewalls,” in the EAServer Security Administration
and Programming Guide for more information.

com.sybase.ejb.
WebProxyHost

Applicable only to Java
application clients.

Specifies the host name or IP address of a Web proxy server. Applies to Java
applications only. Java applets running in a Web browser will use the proxy address
specified by the browser’s proxy configuration. In Java applications, there is no default
for this property, and you must specify both the host name and port number properties.
See Chapter 9, “Deploying Applications Around Proxies and Firewalls,” in the
EAServer Security Administration and Programming Guide for more information.

com.sybase.ejb.
WebProxyPort

Applicable only to Java
application clients.

Specifies the port number at which the Web proxy server accepts connections. Applies
to Java applications only. Java applets running in a Web browser will use the proxy
address specified by the browser’s proxy configuration. In Java applications, there is no
default for this property, and you must specify both the host name and port properties.
See Chapter 9, “Deploying Applications Around Proxies and Firewalls,” in the
EAServer Security Administration and Programming Guide for more information.

com.sybase.ejb.
HttpExtraHeader

Applicable only to Java
application clients.

An optional setting to specify what extra information is appended to the header of each
HTTP packet when connecting through a Web proxy. See Chapter 9, “Deploying
Applications Around Proxies and Firewalls,” in the EAServer Security Administration
and Programming Guide for more information.

com.sybase.ejb.
SSLCallback

Applicable only to Java
application clients.

Required if you are using SSL and you wish to provide a callback class to set required
SSL settings on an as-needed basis. Specify the name of a Java class that implements
the CtsSecurity.SSLCallbackIntf interface. For example:

com.acme.AcmeSSLCallback

Chapter 4, “Using SSL in Java Clients,” in the EAServer Security Administration and
Programming Guide describes how to code a callback class.

com.sybase.ejb.
userData

Applicable only to Java
application clients.

Specifies user data (String datatype). This is an optional property. Client code can set
user data during NamingContext initialization and access it using
SSLSessionInfo::getProperty method in the SSL callback implementation. This may be
useful as a mechanism to store context information that is otherwise not available
through the SSLSessionInfo interface.

com.sybase.ejb.
useJSSE

Use the Java Secure Sockets Extension (JSSE) classes for secure HTTP tunnelled
(HTTPS protocol) connections. JSSE provides an alternative to the built-in SSL
implementations when secure connections are needed from an applet running in a Web
browser. Additional configuration may be required to use this option. See Chapter 4,
“Using SSL in Java Clients,” in the EAServer Security Administration and
Programming Guide for more information.

Property name Description

CHAPTER 3 Developing EJB Clients

Enterprise JavaBeans User’s Guide 49

• URLs to connect to a running server

• URLs to start the server

• URLs to specify an EJB Provider name

• URLs that use the corbaname format for EJB interoperability

• URLs that specify connection properties

URLs to connect to a running server

This is the most common format of URL for distributed applications, allowing
you to specify the address to connect to a remote (or local) naming server. The
format is:

iiop://hostname:iiop-port/initial-context

where:

• hostname is the host machine name for the server that serves as the name
server for your application. If omitted, the default is localhost.

• iiop-port is the IIOP port number for the server.

• initial-context is the initial naming context. This can be used to set a
default prefix for name resolution. For example, if you specify
USA/Sybase/, all names that you resolve with the context are assumed to
be relative to this location in the name hierarchy. When specifying the
initial context, the trailing slash is optional; it is added automatically if you
do not specify an initial context that ends with a slash.

If you do not set this property, the default is iiop://hostname:2000/, where
hostname is the name of the machine that you are running the client on.

URLs to start the server

This URL format allows you to start the server when your client program needs
to connect to it. You can specify that the server runs in process with the client
or in a separate process on the same machine. This feature is useful when you
have applications that users must be able to run when disconnected from the
network. You must deploy the client application with an export configuration
that includes the files required to run the server and all server-side components
hosted in the server. For more information, see Chapter 7, “Exporting Server
Modules,” in the System Administration Guide.

To start the server in-process, use the URL format:

run-server:server

iiop://hostname:iiop-port/initial-context
iiop://hostname:2000/

Instantiating home interface proxies

50 EAServer

Where server is the name of the server to run. To start the server in a separate
process, use the URL format:

start-server:server

URLs to specify an EJB Provider name

You can create EJB providers using the Management Console or an XML
configuration file. The EJB provider contains a client property configuration
that can be referenced by name in connection URLs. The format to reference
the provider is:

ejb-provider:provider

Where provider is the EJB provider name. See “Using EJB providers” on page
57 for more information.

URLs that use the corbaname format for EJB interoperability

The EJB client runtime supports corbaname URLs as described in
“Interoperable naming URLs” on page 69.

URLs that specify connection properties

In any URL format, EAServer properties can also be set by appending them to
the URL passed to the java.naming.provider.url, for example:

iiop://myhost:2000?dataCompression=true&socketTimeout=20

Configuring error output

The client runtime writes errors to the console by default. In Java applications,
you can modify this behavior by specifying the profile name as the Java system
property djc.logFile. For example:

java -Ddjc.rmiTrace=true "-Ddjc.logFile=%DJC_HOME%\logs\rmiClientTrace.log”

For more information, see “Configuring system logging” in Chapter 3,
“Creating and Configuring Servers,” in the System Administration Guide.

Running in Java applets

EJB clients that run as applets can set the APPLET parameter for the
javax.naming.InitialContext instance used to connect to EAServer. For example:

java.util.Hashtable p = new java.util.Hashtable();
p.put(Context.APPLET, this);

iiop://myhost:2000?dataCompression=true&socketTimeout=20

CHAPTER 3 Developing EJB Clients

Enterprise JavaBeans User’s Guide 51

// Sybase implementation of InitialContextFactory
p.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sybase.ejb.InitialContextFactory");

// URL for the Server's IIOP port. Host defaults to
// the applet download host.
p.put(Context.PROVIDER_URL, "iiop://:2000");

// Username "Guest", password is "GuestPassword"
p.put(Context.SECURITY_PRINCIPAL, "Guest");
p.put(Context.SECURITY_CREDENTIALS, "GuestPassword");

// Now create an InitialContext that uses the
// properties.
InitialContext ic = new InitialContext(p);

Setting the APPLET parameter activates the following convenient features:

• The host name can be omitted in the initial context URL that is specified
as the PROVIDER_URL context parameter. The default host is the applet
download host.

• You can set the com.sybase.ejb.autoProxy property and it will work as
documented in Chapter 9, “Deploying Applications Around Proxies and
Firewalls,” in the EAServer Security Administration and Programming
Guide.

Resolving JNDI names
Call the Context.lookup method to resolve a bean’s JNDI name to a proxy for
the bean’s home interface. If the server or cluster where the bean is installed
has a name context configured, pass the server’s name context as part of the
bean JNDI name, in the format:

Server-name-context/Bean-home

Where Server-name-context is the server’s initial naming context, and Bean-
home is the component’s JNDI name, or, for server-side code executing in EJB
or Web components, the aliased JNDI name in the calling component’s EJB
reference properties.

Instantiating remote or local interface proxies

52 EAServer

Call javax.rmi.PortableRemoteObject.narrow to narrow the returned object to
the bean’s home (or local home) interface class. narrow requires as parameters
the object to be narrowed and a java.lang.Class reference that specifies the
interface type to returned. To obtain the java.lang.Class reference, use
Home.class, where Home is the bean’s home interface type. Cast the object
returned by the narrow method to the bean’s Java home interface.

The lookup method throws javax.naming.NamingException if the bean JNDI
name cannot be resolved or the home interface proxy cannot be created. This
can happen for any of the following reasons:

• The server address specified with the Context.PROVIDER_URL property is
incorrect or the server is not running.

• Authentication with the specified credentials failed.

• The bean is incorrectly configured on the server. For example, a skeleton
has not been generated, or the bean’s properties specify the wrong
implementation class.

Check the server’s log file if the cause of the error is not clear from the
exception’s detail message.

The call below instantiates a proxy for a bean with Java home interface
test.p1.Stateless1Home and bean JNDI name of test/p1/Stateless1:

import test.p1.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;

try {
Object o = ctx.lookup("test/p1/Stateless1");
Stateless1Home home = (Stateless1Home)
PortableRemoteObject.narrow(o, Stateless1Home.class);

} catch (NamingException ne) {
System.out.println("Error: Naming exception: "
+ ne.getExplanation());

}

Instantiating remote or local interface proxies
Use the home interface create and finder methods to create proxies for session
beans and entity beans.

CHAPTER 3 Developing EJB Clients

Enterprise JavaBeans User’s Guide 53

Instantiating proxies
for a session bean

A session bean’s home interface can have several create methods. Each creates
an instance with different initial-value criteria. The fragment below shows a
typical call:

try {
Inventory inv = invHome.create();

} catch (CreateException ce)
{

System.out.println("Create Exception:"
+ ce.getMessage());

}

Instantiating proxies
for an entity bean

Each instance of an entity bean represents a row in an underlying database
table. An entity bean’s home interface may contain both finder methods and
create methods.

Finder methods Finder methods return instances that match an existing row
in the underlying database.

A home interface may contain several finder methods, each of which accepts
parameters that constrain the search for matching database rows. Every entity
bean home interface has a findByPrimaryKey method that accepts a structure
that represents the primary key for a row to look up.

Finder methods throw javax.ejb.FinderException if no rows match the specified
search criteria.

Create methods Create methods insert a row into the underlying database.

When instantiating an entity bean proxy, call a finder method first if you are
not sure whether an entity bean’s data is already in the database. Create
methods throw a javax.ejb.CreateException exception if you attempt to insert a
duplicate database row.

Example: instantiating an entity bean This example instantiates an entity
bean that represents a customer credit account. The primary key class has two
fields: custName is a string and creditType is also a string. The example looks
for a customer named Morry using the findByPrimaryKey method. If
FinderException is thrown, the example calls a create method to create a new
entity for customer Morry:

String _custName = "Morry";
String _creditType = "VISA";

custCreditKey custKey = new custCreditKey();
custKey.custName = _custName;
custKey.creditType = _creditType;
custMaintenance cust;

Calling remote interface methods

54 EAServer

try {
System.out.println(

"Looking for customer " + _custName);
cust = custHome.findByPrimaryKey(custKey);

} catch (FinderException fe) {
System.out.println(

"Not found. Creating customer " + _custName);
try {

cust = custHome.create(_custName, 2000);
} catch (CreateException ce)

System.out.println(
"Error: could not create customer "
+ _custName);

}
}

Calling remote interface methods
After instantiating a proxy for the bean, call the remote interface methods to
invoke the bean’s business logic. You can call the proxy methods as you would
invoke methods on any other object.

Calling local interface methods
You can use EJB local invocations in servlet, JSP, or EJB component code to
call EJB components hosted on the same server. Proxies for a local bean can be
instantiated with almost the same code that would be used to instantiate remote
proxies. The differences are:

• You must create a local EJB reference for the called EJB component, and
use the aliased JNDI name defined in the EJB local reference.

• Parameters that are not primitive types are passed by reference, not by
value. Changes to a parameter in the component implementation affect the
variable passed from the caller.

• You must narrow to the local home interface type, not the home interface
type.

CHAPTER 3 Developing EJB Clients

Enterprise JavaBeans User’s Guide 55

• Local interfaces are available only to EJB components, Java servlets, and
JSPs hosted on the same server as the target component.

• If local interfaces are used, both the caller and the called component must
be loaded by the same custom class loader.

When an EJB 2.0 component provides local interfaces, any other component
or Web application that calls the local interface must use the same class loader.
ClassCastException errors occur when local interface calls are made from
entities that use a different class loader. Configure the custom class lists for the
calling and called components and parent entries to allow sharing of the class
instances as described in Chapter 10, “Configuring Java Class Loaders,” in the
System Administration Guide.

Managing transactions
EJB clients can begin transactions using the javax.transaction.UserTransaction
interface. Obtain an instance from the initial naming context by resolving the
name javax.transaction.UserTransaction. For example:

import javax.transaction.*;
import javax.naming.*;

Context ctx;

... ctx has been initialized ...
UserTransaction uTrans =

(UserTransaction) ctx.lookup(
"javax.transaction.UserTransaction");

You can call the begin(), commit(), and rollback() methods to begin and end
transactions. You can enlist multiple component methods in a transaction, with
these restrictions:

• Each method must allow inheritance of an existing transaction context.
That is, the method’s transaction attribute must be Supports, Requires, or
Mandatory. Methods with other transaction attributes run outside the
scope of your transaction. See “EJB transaction settings” on page 6 for
more information.

• All components must be on the same server, and all must use the same
transaction coordinator.

• All methods must be invoked by the thread that began the transaction.

Serializing and deserializing bean proxies

56 EAServer

Serializing and deserializing bean proxies
Serialization allows you to save a bean proxy as a file. Deserialization allows
you to extract the proxy from the file in another process or on another machine,
and, if the component instance is still active, reestablish your session with the
component.

To serialize a proxy Call the getHandle method on the remote interface, which returns a
javax.ejb.Handle instance. You can serialize the Handle instance using the
standard Java serialization protocol, as shown in the example below:

String _serializeTo; // Name of file to save to
Stateful1 proxy; // Active proxy instance

try {
System.out.println("Serializing to " + _serializeTo);
Handle handle = proxy.getHandle();
FileOutputStream ostream = new
FileOutputStream(_serializeTo);
ObjectOutputStream p = new
ObjectOutputStream(ostream);
p.writeObject(handle);
p.flush();
ostream.close();

} catch (Exception e)
{

System.out.println("Serialization failed. Exception "
+ e.toString());

e.printStackTrace();
return;
}

To deserialize the
proxy

Use the standard Java deserialization protocol to extract the Handle instance,
then call getEJBObject to restore the proxy, as shown in the example below:

String _serializeFrom; // Name of file to read from
Stateful1 proxy;

try {
System.out.println("Deserializing proxy from "

+ _serializeFrom);
FileInputStream istream = new
FileInputStream(_serializeFrom);
ObjectInputStream p = new ObjectInputStream(istream);
Handle handle = (Handle)p.readObject();
proxy = (Stateful1) handle.getEJBObject();
istream.close();

CHAPTER 3 Developing EJB Clients

Enterprise JavaBeans User’s Guide 57

} catch (Exception e)
{

System.out.println(
"Deserialization failed. Exception "
+ e.toString());

e.printStackTrace();
return;

}

Using EJB providers
An EJB provider allows you to define a set of client property settings that can
be referenced by name when running clients. For example, you might wish all
clients to run with data compression enabled. You can define EJB providers
with the Management Console or using an XML configuration file. To set up
an EJB provider for use by clients, you must:

• Deploy the client using an export configuration that includes the EJB
provider definition, as described in Chapter 7, “Exporting Server
Modules,”in the System Administration Guide.

• Add the EAServer lib subdirectory to the operating system library search
path. On Windows, add it to the PATH environment variable. On UNIX or
Linux, add it to the environment variable that spefies the directory search
order to load shared libraries, for example LD_LIBRARY_PATH for
Solaris and Linux.

To run clients with the EJB provider settings, specify the name in the value of
the java.naming.provider. url property using the format described in “URLs to
specify an EJB Provider name” on page 50.

Properties set in the EJB provider definition take precedence over those set in
the EJB client code or in Java system properties.

EJB providers cannot be used in applets, because this feature requires access to
configuration files in the EAServer installation directory.

❖ Creating EJB providers in the Management Console

1 Start the Management Console and connect to EAServer as described in
Chapter 1, “Getting Started,”in the System Administration Guide.

2 Expand the Naming Providers folder and EJB Providers folder beneath it.

Using EJB providers

58 EAServer

3 Right-click the EJB Providers folder and choose Add. Run the Add wizard
to create the EJB provider with a unique name.

4 Configure the properties listed in Table 3-2.

❖ Configuring EJB providers in the Management Console

1 Start the Management Console and connect to EAServer as described in
Chapter 1, “Getting Started,”in the System Administration Guide.

2 Expand the Naming Providers folder and EJB Providers folder beneath it.

3 Highlight the name of your EJB provider to display its properties in the
right frame. Configure the properties listed in Table 3-2. Each property
configures the indicated initial context property. See Table 3-1 on page 46
for descriptions of the initial context properties.

Table 3-2: EJB Provider settings

❖ Creating and configuring EJB providers in an Ant configuration file

You can create and configure an EJB provider in Ant configuration files, such
as that for the EJB package that contains the components that your application
invokes.

1 Edit the XML configuration file. In a configuration target, add an
invocation of the setProperties task with the following format:

<setProperties ejbProvider="provider">
<prop1=”value1”/>
<prop2=”value2”/>
...

Display name Initial context property

JNDI Initial Context Factory java.naming.factory.initial

JNDI Provider URL java.naming.provider.url

JNDI Security Principal (User name) java.naming.security.principal

JNDI Security Credentials (Password) java.naming.security.credentials

Idle Connection Timeout com.sybase.ejb.
idleConnectionTimeout

Lookup Cache Timeout com.sybase.ejb.
lookupCacheTimeout

Socket Timeout com.sybase.ejb.
socketTimeout

Enable Automatic Failover com.sybase.ejb.
disableAutomaticFailover

Enable Data Compression com.sybase.ejb.
enableAutomaticFailover

CHAPTER 3 Developing EJB Clients

Enterprise JavaBeans User’s Guide 59

</setProperties>

Where:

• provider is the EBJ provider name.

• prop1, value1, prop2, value2 are the names and values, respectively,
of the properties to be set. Use the initial context property names listed
in Table 3-2 on page 58.

2 Configure or recompile the entity that uses the configuration file.
EAServer creates the EJB provider if it does not exist then sets the
properties to match the values given in the configuration file.

Running EAServer 5.x clients against 6.0 or later
servers

Client code from applications running in an EAServer 5.x installation can be
recompiled to run in EAServer 6.0. You may need to change the initial context
properties used in your code—see “Sybase InitialContext properties” on page
46.

You can also connect to EAServer 6.0 servers using the runtime classes from
an EAServer 5.x installation (those classes in easclient.jar). To use both the 5.x
runtime classes (easclient.jar) and 6.0 runtime classes (eas-server-14.jar or
eas-server-15.jar) in the same application:

• Put easclient.jar ahead of eas-server-14.jar or eas-server-15.jar in the
CLASSPATH setting

• Use initial context factory com.sybase.ejb.InitialContextFactory
for 5.x client access, and
com.sybase.ejb.client.InitialContextFactory for 6.0 client
access.

If only eas-server-14.jar or eas-server-15.jar is present in the class path, both
context factory names work, and use 6.0 client runtime classes.

Running EAServer 5.x clients against 6.0 or later servers

60 EAServer

Enterprise JavaBeans User’s Guide 61

C H A P T E R 4 Creating Application Clients

EAServer supports the J2EE application client model. An application
client is a standalone Java application that uses the EJB client interface to
invoke components on EAServer and is run by the EAServer application
client container. This model simplifies the deployment of standalone EJB
client applications by allowing you to configure the client’s component
references, database connection references, and environment properties in
the deployment descriptor.

About application clients
An application client uses JNDI to look up and gain access to EJB
components, resources, and environment properties defined in an XML
deployment descriptor. You can code the application client like a
standalone EJB client. However, since the application client is packaged
with a deployment descriptor, you can alias the JNDI names used in code
to different names when deploying to different servers.

An application client connects to an EAServer component using a JNDI
environment naming context. Here is a simple implementation of an
application client:

InitialContext initCntxt = new InitialContext();

Object acctRef =
initCntxt.lookup(“java:comp/env/ejb/acctBean”);

acctBeanHome home = (acctBeanHome)
PortableRemoteObject.narrow(acctRef,
acctBeanHome.class);

Account acct = home.findByPrimaryKey(new

Topic Page
About application clients 61

Deploying application clients 62

Configuring application client properties 64

Running application clients 65

Deploying application clients

62 EAServer

AcctPK(1));
String name = acct.getName();
System.out.println(name);

The application client JAR file includes a deployment descriptor that defines
the JNDI environment naming context entries. This example defines the EJB
reference for an acctBean:

<application-client>
<display-name>MyClient</display-name>
<ejb-ref>

<ejb-ref-name>ejb/AcctBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.sybase.acct.acctBeanHome</home>
<remote>com.sybase.acct.Account</remote>

</ejb-ref>
</application-client>

Deploying application clients
You can create application clients with Ant, Eclipse, and popular IDEs such as
Borland JBuilder. Code your application clients as an EJB client or a JMS
client. For more information, see:

• Chapter 3, “Developing EJB Clients”

• Chapter 3, “Developing JMS Clients,” in the JMS Users Guide

Application clients can be packaged as a standalone JAR file or as part of an
enterprise application archive (EAR) file. You can deploy the JAR file to
EAServer using several tools including:

• The Management Console

• The deploy utility, as described in Chapter 12, “Command Line Tools,” in
the System Administration Guide

• The jagant and jagtool utilities

❖ Deploying application client JAR files with the Management Console

1 Start the Management Console and connect to EAServer as described in
Chapter 1, “Getting Started,”in the System Administration Guide.

CHAPTER 4 Creating Application Clients

Enterprise JavaBeans User’s Guide 63

2 In the Management Console, right-click the Application Clients folder in
the left pane and choose Deploy. The Deploy wizard pages appear in the
right pane. Fill in the Wizard settings as listed in the table below.

Click Finish on the final wizard page. The Management Console deploys
the EJB-JAR and shows the deployment status in the right pane. When
your browser finishes downloading the status page, scroll to the bottom.
You see Build Successful if everything went ok.

Setting Explanation

File Name Enter the full path to the EJB-JAR file, or browse to
select the file.

Module Name Enter a name for the application to be created. The
default is the base name of the JAR file. This name
will appear in the Management Console and in
configuration files.

Overwrite If This Name
Already Exists.

Enable to overwrite an existing application client
that has the same name.

Do Validation During
Deployment

Enable to enforce validation of the XML
deployment descriptor. In accord with the J2EE
specification, this option is enabled by default.
Disabling validation may allow you to deploy
archives that have invalid XML but are otherwise
correctly packaged.

Server Name The name of the server to install the module to. The
default is the name of the server that you are
connected to.

Install Module Into
Selected Server

Deselect if you don’t want the package installed into
any server. The package must be installed in a server
before clients of that server can call the components.

Directory Name If you specify a directory name, EAServer creates a
copy of the archive file in the specified directory.
The copy is identical to the source, except that an
EAServer configuration file is added to the META-
INF directory. The directory must exist and be a full
path or a path relative to the EAServer bin directory.

Configuring application client properties

64 EAServer

Configuring application client properties
You can configure an application client’s properties in the Management
Console. If you have deployed application clients as an Enterprise archive
(EAR) file, most properties are set correctly during the import process.

❖ Configuring application client properties

1 In the Management Console, expand the Application Clients folder in the
left pane, then highlight the icon that represents your application client.

2 The application client properties display in the right pane, on these pages:

• General tab

• Configuration tab

• Advanced tab

On each page, click Apply to save any changes made before leaving that
page.

General tab
The controls on this page configure high-level properties for the application
client, including:

• Description An optional text description of the application client.

• Classloader The Java class loader for the application client. For more
information, see Chapter 10, “Configuring Java Class Loaders” in the
System Administration Guide.

• Client Type The type of client, EJB or JMS. This setting must be set
before you can configure an EJB Provider or JMS Provider.

• EJB Provider If the client type is EJB, allows you to configure an EJB
Provider for the client. The EJB provider allows you to configure a group
of client properties. For more information, see “Using EJB providers” on
page 57.

• JMS Provider If the client type is JMS, allows you to configure a JMS
Provider for the client. The JMS provider allows you to configure a group
of client properties. For more information, see Chapter 3, “Developing
JMS Clients,” in the JMS Users Guide.

• Main Class The main Java class of the application client in dot notation;
for example, com.sybase.appclient.Myclient.

CHAPTER 4 Creating Application Clients

Enterprise JavaBeans User’s Guide 65

Configuration tab
This page allows you to view and edit the generated Ant configuration file for
the application client. As an alternative to using the other pages, you can edit
the configuration file to modify the application properties. For more
information, see Chapter 2, “Ant-Based Configuration,” in the Automated
Configuration Tools Guide.

Advanced tab
This page provides an alternate way to configure properties set by the
configuration script.

Running application clients
You can run application clients on the same machine as the server, or on client
workstations.

❖ To run an application client:

1 If running on a client workstation rather than the server host, set up the
environment—see “Setting up a client’s workstation” on page 65.

2 Copy the application client JAR file to the client’s machine and import the
JAR file—see “Deploying application clients” on page 62.

3 Start the application client’s runtime container—see “Starting the runtime
container” on page 66.

Setting up a client’s workstation
To set up a client’s workstation, install the EAServer client runtime files, as
described in the EAServer Installation Guide for your platform. UNIX scripts
and Windows batch files are provided to configure and launch the container
runtime, as described below.

Running application clients

66 EAServer

Starting the runtime container
The runtime container enables the application client to look up EJB and
resource references. The container also provides security and authenticates the
client when the application is started.

Run application clients using the script run-appclient.bat (on Windows) or
run-appclient.sh (on UNIX). The script takes the following arguments:

-client <appclient_name | appclient_jar | application_ear> [-name
<appclient_name> [-login <boolean>] [-systemProperties propsFile]

This example illustrates the command-line syntax to start an application
client’s runtime container, where my_client is the name of the client. On
Windows, the command is:

runclient -client my_appclient -login true

On UNIX, the command is:

runclient.sh -client my_appclient -login true

Option Description

-client Required, to specify one of the following:

• The application client name, as displayed in the Management Console. This option
works for all clients and does not require the deployment archive to be present.

• The application client JAR file name and path, if the client was deployed from a
standalone JAR file.

• The application EAR file name and path, if the client was deployed from the EAR file.
Also specify the application client name with the -name option.

-name When you specify an application EAR file for the -client option, specify the name of
the application client inside the EAR with this option. The name must match the base
name of the application client JAR file inside the EAR file. For example:

-client C:\apps\myapp.ear -name myappclient

-login If you specify true for this option, the script prompts the user for login credentials. If you
do not specify this option, the default is false.

-systemProperties Specifies the name and path to a file that contains InitialContext property settings for the
client. For example, to specify a user name and password, create a file that contains this
text:

java.naming.security.principal=Guest
java.naming.security.credentials=Guest123

An alternate way to specify properties is to configure an EJB or JMS provider on the
General tab properties for the client—see “General tab” on page 64.

Enterprise JavaBeans User’s Guide 67

C H A P T E R 5 Interoperability

EAServer not only hosts EJB components, it provides interoperability
between EJB clients and components and other technologies. There are
two areas of interest for EJB interoperability:

• Intervendor EJB interoperability, or how you can use EAServer with
other EJB application servers.

• Intercomponent interoperability, or how you combine EJB
components hosted in EAServer with components of other types in
the same application.

This chapter describes:

Intervendor EJB interoperability
EAServer complies with the interoperability requirements in the EJB 2.0
specification, allowing you to interoperate with EJB 2.0 compliant servers
from other vendors. There are two approaches to inter-vendor
interoperability:

• Using CORBA 2.2 client interfaces This option allows
interoperability between EAServer and other vendors that support
CORBA 2.2.

Using the EAServer Java or C++ CORBA client model, you can call
another vendor’s CORBA 2.2 compliant application server (the
server must support IIOP 1.0 or 1.1). Similarly, you can use another
vendor’s CORBA 2.2 compliant client ORB to call any component
hosted by EAServer (the client ORB must support IIOP 1.0 or 1.1).

Topic Page
Intervendor EJB interoperability 67

Classes for RMI/IIOP connections from third-party containers 70

Invoking EJB components from PowerBuilder clients 70

Invoking EJB components from CORBA/C++ clients 71

Intervendor EJB interoperability

68 EAServer

This option is simpler than the EJB 2.0 RMI/IIOP option, but does not
support some EJB 2.0 interoperability features such as transaction and
security context propagation.

• Using EJB 2.0 RMI/IIOP interoperability This option allows
interoperability between EJB 2.0 compliant application servers, but can be
more complex to program, particularly in languages other than Java.

RMI/IIOP interoperability depends on CORBA 2.3 IDL Valuetypes,
which has the following implications:

• Valuetypes and other IIOP 1.3 features cannot be used by pre-
CORBA-2.3 client ORBs.

• At the time of this writing, standard support for RMI/IIOP clients
(specifically Valuetypes) in languages other than Java is lacking.

RMI/IIOP interoperability supports some features not supported by
CORBA 2.2 interoperability, such as:

• Interoperable naming, when using the interoperable name formats
described in “Interoperable naming URLs” on page 69.

• Transaction propagation to other EJB servers.

• Security context propagation in accordance with the CSIv2
requirements outlined in the EJB 2.0 specification. For more
information on this feature, see “Intercomponent authentication for
EJB 2.0 components” in the EAServer Security Administration and
Programming Guide.

• Parameter and exception type inheritance and null value propagation
in method invocations.

EAServer supports RMI/IIOP interoperability for EJB clients and components,
without using CORBA 2.3 Valuetypes in the IDL interface definitions. The
generated stub and skeleton code can marshall parameters in accord with the
RMI/IIOP requirements, even though the IDL does not use Valuetypes. Since
the IDL does not use Valuetypes, EAServer EJB components remain
compatible with components of other types and with CORBA 2.2 clients.

EAServer can simultaneously support RMI/IIOP and CORBA 2.2 clients. The
client’s interoperability requirements are automatically detected at run time. To
use RMI/IIOP from another vendor’s EJB 2.0 container, you must use the
EAServer classes described in “Classes for RMI/IIOP connections from third-
party containers” on page 70.

CHAPTER 5 Interoperability

Enterprise JavaBeans User’s Guide 69

Interoperable naming URLs
You can use interoperable naming URLs for EJB 2.0 components and clients.
EAServer versions prior to 6.0 required that you use interoperable naming
URLs to enable the RMI/IIOP protocol, which is required for EJB 2.0
interoperability features such as caller credential propagation. EAServer 6.0
and later always use the RMI/IIOP protocol, and you can use the simplified
URL formats described in “Connection URL formats” on page 48.
Interoperable naming URLs are not required to connect to EAServer.

Interoperable naming URLs may be useful when integrating other vendor’s
application servers into an EAServer application, for example, when pulling
messages from another vendor’s JMS implementation.

To use RMI/IIOP as the network protocol, an EJB client must specify a
corbaname interoperable naming URL as the value of the JNDI context’s
PROVIDER_URL property. When using corbaname URLs, you must specify
the user name and password using the JAAS API.

When using the EAServer EJB client runtime, the URL syntax is:

corbaname:iiop:ver@host:port/NameService[rmi]

Or to use the default IIOP version number:

corbaname:iiop:host:port/NameService[rmi]

Where:

For example, this URL specifies a connection to the host moxy at port 2000,
using IIOP 1.2:

corbaname:iiop:1.2@moxy:2000/NameService

ver Is an optional version number. Supported versions are 1.1
and 1.2. The default version is 1.1, unless you append the
#rmi:/ suffix, which forces the IIOP version to 1.2.

host Is the server host name.

port Is the server’s IIOP port number.

[rmi] Is the optional naming prefix #rmi:/, which specifies RMI
Valuetype semantics. Valuetype semantics are required to
propagate null parameter values in method calls.

If connecting to EAServer 5.x, you must specify append
#rmi for this part of the URL. EAServer 6.0 and later EJB
clients always connect with valuetype semantics enabled.

Using this option forces the IIOP version to 1.2.

Classes for RMI/IIOP connections from third-party containers

70 EAServer

To connect to an EAServer 5.x server, which does not use valuetype semantics
by default, append #rmi to the URL:

corbaname:iiop:1.2@moxy:2000/NameService#rmi:/

This URL identifies a connection to the host moxy at port 2000, using IIOP 1.1:

corbaname:iiop:moxy:2000/NameService

The string /NameService is optional in all corbaname URLs. For example:

corbaname:iiop:1.2@moxy:2000#rmi:/

Or:

corbaname:iiop:1.2@moxy:2000

Classes for RMI/IIOP connections from third-party
containers

To connect to EAServer using another vendor’s EJB 2.0 client, application
client, EJB, or servlet or JSP within a Web container, add easportable.jar to the
CLASSPATH. easportable.jar is located in the EAServer lib subdirectory and
contains the classes in the com.sybase.ejb.portable package. These classes are:

• EJBMetaData

• Handle

• HomeHandle

Adding easportable.jar to the CLASSPATH enables you to call these methods
on a javax.ejb.EJBHome or javax.ejb.EJBObject instance residing on
EAServer:

• getEJBMetadata

• getHandle

• getHomeHandle

Invoking EJB components from PowerBuilder clients
There are two ways to call EJB components from PowerBuilder:

CHAPTER 5 Interoperability

Enterprise JavaBeans User’s Guide 71

• If using PowerBuilder, you can call EJB components hosted in EAServer
by generating proxies for the home, local, and remote interfaces then
calling the lookup method on the PowerBuilder Connection object to
instantiate the home interface proxy. Call the appropriate home interface
create method to instantiate a proxy for the remote interface, then call the
business methods as you would for any other EAServer component.

• If using PowerBuilder 9.0 or later, you can use the PowerBuilder EJB
client interfaces. These interfaces use Java and Sybase-provided
PowerBuilder extensions to invoke EJBs on any J2EE compatible
application server. While this approach allows interoperability with
servers from multiple vendors, the deployed client files are larger due to
the need for a Java Runtime Environment and additional PowerBuilder
libraries.

For more information, see the Application Techniques manual in the
PowerBuilder documentation.

Invoking EJB components from CORBA/C++ clients
CORBA C++ clients can instantiate an EJB component using a proxy for the
EJB component’s home interface, then call business methods using a proxy for
the EJB component’s remote interface.

For details on the C++/CORBA client interface, see Chapter 9, “Developing
CORBA/C++ Clients,” in the CORBA Components Guide.

Supported datatypes
C ++ clients can call methods that are defined using only IDL datatypes.
EAServer allows serializable Java classes to be used as parameters and return
values. IDL operations that use Java classes as a parameter or return value
cannot be called from C++ clients.

Invoking EJB components from CORBA/C++ clients

72 EAServer

Generating required header files
For deployed EJB modules, EAServer generates IDL for each home and
remote interface (unless you have disabled IDL generation with the -noidl
deploy option). To call EJB components from C++ clients, you must generate
C++ header files from the IDL types that define the component’s home and
remote interfaces.

You can find IDL for deployed components in the Repository/idl subdirectory.
The IDL files use a folder structure that matches the IDL module structure,
which corresponds to the Java package structure. For example, the Java
package com.sybase.easerver.tutorials.ejb translates to the IDL module
com::sybase::easerver::tutorials::ejb, and translated IDL types for classes in this
Java package are in the subdirectory com/sybase/easerver/tutorials/ejb.

Use the idl-compiler tool to generate C++ stubs for each IDL home and remote
interface. For example:

%DJC_HOME%\bin\idl-compiler.bat -v com\sybase\easerver\tutorials\ejb\Query.idl
-f %DJC_HOME%\include -cpp
%DJC_HOME%\bin\idl-compiler.bat -v
com\sybase\easerver\tutorials\ejb\QueryHome.idl -f %DJC_HOME%\include -cpp

For more information, see the idl-compiler reference page in Chapter 12,
“Command Line Tools,” in the System Administration Guide.

In the case of nested IDL modules, EAServer generates several header files.
For example, for the IDL interfaces com::foo::interfaces::MyInterface and
com::foo::interfaces::MyHomeInterface, these files are generated:

• com.hpp includes com_foo.hpp and headers for other modules nested
within module com.

• com_foo.hpp includes com_foo_interfaces.hpp and headers for any other
nested modules.

• com_foo_interfaces.hpp declares the C++ classes for
com::foo::interfaces::MyInterface and
com::foo::interfaces::MyHomeInterface, as well as any other types declared
in module com::foo::interfaces.

In your client program, you must include only those header file that define
types or interfaces used by your program. For example, if you use the types
com::foo::interfaces::MyInterface and com::foo::interfaces::MyHomeInterface,
include the header file com_foo_interfaces.hpp.

CHAPTER 5 Interoperability

Enterprise JavaBeans User’s Guide 73

Calling the home interface
The C++ representation of the home interface follows the standard IDL-to-
C++ language mappings. In EAServer’s interface repository, the EJB
FinderException and CreateException exceptions are represented by the IDL
exceptions javax::ejb::FinderException and javax::ejb::CreateException,
respectively.

Instantiating a proxy for the home interface

To instantiate a home interface, use a SessionManager::Manager instance to
create a SessionManager::Session instance, then call the
SessionManager::Session::lookup method, passing the EJB component’s home
interface name. Narrow the returned object to the C++ class for the EJB
component’s home interface.

In this example, the IDL home interface is bookStore::custMaintenanceHome
and the EJB component’s home interface name is bookStore/custMaintenance:

 // Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, 0);

// Obtain a SessionManager::Manager instance using the URL:
CORBA::Object_var obj =

orb->string_to_object(url);
SessionManager::Manager_var manager =
 SessionManager::Manager::_narrow(obj);

// Create an authenticated session for user Guest
// using password GuestPassword
SessionManager::Session_var session =

manager->createSession("Guest", "GuestPassword");

// Look up the EJB component's home interface
obj = session->lookup(component_name);
bookStore::custMaintenanceHome_var home

= bookStore::custMaintenanceHome::_narrow(obj);

Invoking EJB components from CORBA/C++ clients

74 EAServer

Instantiating a session bean

To instantiate a session bean, call one of the home interface create methods as
shown in the example below. All create methods can raise
javax::ejb::CreateException. The example below instantiates the home of a bean
with home interface name bookStore/inventory. The IDL remote interface is
bookStore::inventory:

try {
bookStore::inventory_var inventory = home->create();

}
catch (javax::ejb::CreateException &ce)
{

cout << "CreateException for component " << component_name << "\n"
<< "Message:" << ce.message << "\n";

}

Instantiating an entity bean

An entity bean represents a row in a database relation. In the home interface,
create methods create a row in the database, and finder methods return one or
more instances that represent existing rows. All create methods can raise
javax::ejb::CreateException, and finder methods can raise
javax::ejb::FinderException. The example below first tries to find an existing
row using findByPrimaryKey, and creates a row if javax::ejb::FinderException is
thrown. The entity bean in this example represents customer credit data. The
primary key, bookStore::custCreditKey, has two string fields, custName and
creditType. The IDL remote interface is bookStore::custMaintenance:

// Initialize a primary key for the bean
bookStore::custCreditKey custPk;
custPk.custName = CORBA::string_dup(customer_name);
custPk.creditType = CORBA::string_dup(credit_type);

bookStore::custMaintenance_var customer;
long balance = 2000;

// Look for an existing instance.
try {

cout << "Looking for customer named " << customer_name << "\n";
customer = home->findByPrimaryKey(custPk);

} catch (javax::ejb::FinderException &fe)
{

// Instance does not exist. Create it.
cout << "Customer " << customer_name << " does not exist. "

<< "Creating " << customer_name << " with initial balance of "

CHAPTER 5 Interoperability

Enterprise JavaBeans User’s Guide 75

<< balance << ".\n";
customer = home->create(customer_name, balance);

}catch (javax::ejb::FinderException &fe)
{

cout << "Error creating account for customer " << customer_name ;
}

Serializing and deserializing instance references
An EJB client is allowed to obtain a handle for a remote interface instance. The
handle is a binary encoding of the session state between the client and the bean.
The client can obtain a handle, save it to disk or mail it to another location, then
reestablish the session at a later time.

In a CORBA client, you can obtain the same functionality using the
Orb.object_to_string and Orb.string_to_object methods. The same restrictions
apply when deserializing bean proxies that apply to any other remote object.

Invoking EJB components from CORBA/C++ clients

76 EAServer

Enterprise JavaBeans User’s Guide 77

C H A P T E R 6 Tutorial: Creating Enterprise
JavaBeans Components and
Clients

In this tutorial, you will create two Enterprise JavaBeans (EJB)
components and a simple client to verify their operation.

Overview of the sample components
The application consists of two components used to manage a glossary of
terms and components, and a relational database that manages the
glossary data. You will create an EJB entity bean that allows you to search
for keyword entries, create and delete keyword entries, and modify
definitions. You will also create an EJB stateless session bean that can be
used to run arbitrary select queries against the database.

Tutorial requirements
To create the tutorial application, you need:

• The EAServer software

The EAServer Installation Guide for your platform describes how to
install the software.

• Java development environment

Topic Page
Overview of the sample components 77

Tutorial requirements 77

Creating the application 78

Automating deployment and configuration 87

Creating the application

78 EAServer

The tutorial steps use the JDK software and Apache Ant software that is
included with your EAServer installation. You can also use Eclipse,
JBuilder, or any other development tool that is compatible with JDK 1.4
or later.

• Adaptive Server Anywhere, version 9.0 or later

The sample database requires Adaptive Server Anywhere, version 9.0 or
later. This software is optionally installed with EAServer on Windows and
supported UNIX platforms such as Solaris, HP-UX, Linux, and IBM AIX.
See the EAServer Installation Guide for installation instructions.

If you are using another platform, see the EAServer Release Bulletin for
your platform.

Creating the application
To create and run the sample application:

1 Start EAServer and the Management Console.

2 Create the EJB-JAR file.

3 Deploy the EJB-JAR file to EAServer.

4 Create the glossary database and data source.

5 Create a user account.

6 Create the client application.

7 Run the client application.

Start EAServer and the Management Console
Start the Management Console and connect to EAServer as described in
Chapter 1, “Getting Started,”in the System Administration Guide.

CHAPTER 6 Tutorial: Creating Enterprise JavaBeans Components and Clients

Enterprise JavaBeans User’s Guide 79

Create the EJB-JAR file
The source for the EJB components and the EJB-JAR manifest are provided in
the samples/tutorials directory of your EAServer installation. Copy the
contents of the ejb subdirectory to a location where you can modify the files. If
necessary, change the permissions on this copy to allow write access.

Review the project layout component source files

You will use Ant project builds the EJB-JAR from the provided Java source
files and the deployment descriptor. Source files are beneath the src directory
in package subdirectory com/sybase/easerver/tutorials/ejb. The master copy of
the deployment descriptor is manifest/META-INF/ejb-jar.xml.

Table 6-1 describes the source files for the Glossary entity bean, which
interacts with the database to manage a glossary of terms and definitions:

Table 6-1: Glossary entity bean source files

Table 6-2 describes the source files for the Query stateless session bean, which
implements methods to lookup definitions by calling the Glossary bean.

Table 6-2: Query stateless session bean source files

The Ant project, defined by build.xml, does the following:

• Compiles the component source files to the jar-image directory, creating
the directory if necessary.

• Copies the deployment descriptor to the same location.

• Archives the contents of the jar-image directory to create the EJB-JAR
file, ejbtut.jar.

File Purpose

Glossary.java The remote interface

GlossaryHome.java The home interface

GlossaryBean.java Implements the component methods

File Purpose

Query.java The remote interface

QueryHome.java The home interface

QueryBean.java Implements the component methods

Creating the application

80 EAServer

If you wish, you can review the Ant commands to perform these tasks in the
definition of the ejbjar target in build.xml. However, you don’t need to know
Ant to run the tutorial. Documentation for Ant can be found on the Apache Web
site at http://ant.apache.org/.

Build the EJB-JAR file

Edit the file settings.bat using a text editor. Change the setting of the DJC_HOME
setting to match the location of your EAServer install. At a command prompt,
change to your working directory for the tutorial and run the following
command to build the EJB-JAR file:

./build

This command runs build.bat, which runs Ant to build the default target in the
project, the ejbjar target in build.xml. If successful, you should see ejbtut.jar
created in the same directory.

Deploy the EJB-JAR file to EAServer
We use the Management Console to deploy the EJB-JAR file. You could also
use the deploy command-line tool, or jagant, or jagtool.

❖ Deploying the EJB-JAR file

1 If you haven’t already, start EAServer and connect to the preconfigured
server with the Management Console as described in Chapter 1, “Getting
Started,”in the System Administration Guide.

2 In the Management Console, right-click the EJB Modules folder in the left
pane and choose Deploy. The Deploy wizard pages appear in the right
pane. Fill in the Wizard settings as follows:

a File Name – Enter the full path to the ejbtut.jar file, or browse to
select the file.

b Module Name – Accept the default of ejbtut.

c Server Name – Accept the default, which should be the name of the
server that you are connected to. Verify that the check box is selected
to install the module into this server.

d Optional location to store archive – Leave this blank.

http://ant.apache.org/

CHAPTER 6 Tutorial: Creating Enterprise JavaBeans Components and Clients

Enterprise JavaBeans User’s Guide 81

Click Finish on the final wizard page. The Management Console deploys
the EJB-JAR and shows the deployment status in the right pane. When
your browser finishes downloading the status page, scroll to the bottom.
You see Build Successful if everything went ok.

Create the glossary database and data source
The glossary data is stored in an Adaptive Server Anywhere database. To make
the data available to the components, we must define the data source that the
components use to connect to the database.

Copy the database file to the EAServer installation

If your EAServer installation does not include a data subdirectory, create this
directory. Copy gloss.db from the data directory of the EJB tutorial files to the
EAServer data subdirectory.

In the tutorial, we configure EAServer to start and stop the database server
automatically. Make sure the data subdirectory allows read, write and execute
for the user account that you use to run EAServer. Verify that the gloss.db file
permissions allow read and write access.

Create the data source

A data source maintains a pool of connections to a database server, increasing
performance by allowing connection sharing and reuse.

❖ Creating the data source

1 In the Management Console, expand the Resources folder and locate the
JDBC Data Sources folder beneath it. Right-click on JDBC Data Sources
folder and choose Add.

2 In the New Data Source wizard, enter Glossary as the name. Finish the
wizard to display the properties for the new Glossary data source.

3 Configure the properties on the General tab listed in Table 6-3, then click
Apply to save the changes. Leave properties that are not listed in Table 6-
3 at their default setting.

Note Be sure to click Apply to save changes when switching between tabs
in property pages.

Creating the application

82 EAServer

The Database Type setting determines the default settings for other data
source properties. In this case, setting it to Sybase_ASA (to indicate
Sybase Adaptive Server Anywhere) causes EAServer to use Sybase
jConnect as the database driver as well as making the default URL format
the one used by jConnect. You can define and modify database types to
change the default data source property values for that database type.

Table 6-3: Data source General tab settings

4 Configure the Database tab settings listed in Table 6-4 and click Apply.
These settings allow EAServer to start and stop the server automatically.
Leave settings that are not listed at their default value.

Table 6-4: Data source Database tab settings

Setting Value

Database Type Sybase_ASA

Server name localhost

Port Number 2640

Port numbers must match
Make sure the port number specified here matches the port number
you specify in the start command.

User name dba

Password sql

Setting Value

Database File ~/data/gloss.db

Database Create
Command

Leave blank. This setting can be configured to create a database file for EJB CMP entity beans.
We have already created the database file.

Database Start
Command

asa-start${.bat} -x tcpip(ServerPort=2640) -n ${dataSource}

${databaseFile}

This command runs asa-start (located in the EAServer bin directory), starting the server to listen
on port 2640, with engine name matching the data source name (Glossary), and database file
matching the value of the Database File setting (gloss.db).

Port numbers must match
Make sure the port number used in the General tab properties matches the port number you
specify in the start command. If you have a port number conflict, change the port number in both
settings.

Database Stop
Command

asa-stop${.bat} -y -c "uid=dba;pwd=sql;eng=${dataSource}"

This command runs asa-stop (located in the EAServer bin directory), stopping the server. The
command specifies the user name and password required to connect and the engine name.

CHAPTER 6 Tutorial: Creating Enterprise JavaBeans Components and Clients

Enterprise JavaBeans User’s Guide 83

5 Verify the data source properties as follows:

a Expand the Data Sources folder.

b Right-click the Glossary data source and choose Ping.

Since the server is starting the database, it will take some time before
Ping completes. If the Ping operation fails, confirm that you have
applied the settings correctly and that the database is running. You can
see the database commands on the server console and in the server log
file.

Modify the data source used by the EJB components

EJB components obtain database connections using JNDI. The EAServer
component and package properties bind data source to the JNDI names used in
the component implementation.

When we deployed the EJB-JAR file, EAServer bound the JNDI data source
names to the default data source. We must reconfigure the properties to use the
new data source that we just created.

❖ Changing the data source used by the EJB components

1 In the Management Console, expand the EJB Modules folder and click on
the ejbtut icon beneath it. The package configuration properties display.

2 Display the Configuration tab. This tab displays the Ant configuration file
that EAServer generated from the settings in the EJB-JAR deployment
descriptor. Since this configuration file is regenerated if you redeploy the
components, we will not modify it. Instead we will create a user-
configuration file.

3 Right-click the ejbtut icon beneath the EJB Modules folder and choose
Create User Configuration. You see a dialog saying the User
Configuration File is created. Right-click the ejbtut icon again and choose
Refresh to display the User Configuration tab.

Database
Command Echo

Enabled.

Database
Command Destroy
on Exit

Disabled.

Setting Value

Creating the application

84 EAServer

4 Click the User Configuration Tab to display the file contents. The
configuration information is the XML text of an Ant build file that sets the
package and component properties.

Add the following line above the import elements to define the data
source name that the components connect to:

<property name="sql.dataSource" value="Glossary"/>

Find the definition of the configure-user target, and add the statements
below inside the start and end tags for the target. The target definition in
your file should look like this:

<target name="configure-user">
<echo level="info" message="configure: ejbjar-ejbtut-user"/>
<echo level="info" message="sql.dataSource is ${sql.dataSource}"/>

</target>

Click Apply at the bottom of the page to save the changes.

Structure of the configuration file
The generated configuration file contains several Ant property elements.
These define values that can be used in subsequent setProperties tasks. In
this case, the sql.dataSource property is used in the setProperties task for
the ejbtut package, to bind the JNDI name to the data source name. By
setting this property in the user configuration file, you have overridden the
definition of the same property in the generated configuration file. The
commands in the generated configuration file bind the datasource name
(specified by the Ant property) to the JNDI name used in the component
code (specified by the EJB-JAR deployment descriptor).

5 Right-click on the ejbtut icon beneath the EJB Modules folder and choose
Run Ant Recompile. The Management Console runs the Recompile task
defined in the configuration file, applying the changes to the package and
component properties and regenerating the runtime classes required to
integrate the components into EAServer.

Review the output that displays in the right pane. You see Build Successful
at the bottom of the output if everything goes ok.

CHAPTER 6 Tutorial: Creating Enterprise JavaBeans Components and Clients

Enterprise JavaBeans User’s Guide 85

Create a user account
You must have a user account the client application uses to connect to the
server. If you don’t already have a user account defined, create it as described
here. Alternatively, edit the client application source code to use an existing
account.

❖ Creating the Guest user account

1 In the Management Console, expand the Security folder and right-click the
Users folder beneath it. Choose Add from the context menu.

2 In the New User wizard, enter Guest as the user name and click Finish.

3 An icon appears for the Guest wizard under the Users folder. Right-click
this icon and choose Set Password.

4 In the Set Password wizard, enter GuestPassword2 for the password and
click Apply.

Create the client application
The source for the client application is in the client-src directory of the EJB
tutorial files, file TestClient.java in the package subdirectory
com/sybase/easerver/tutorials/ejb/client.

The client connects to EAServer and calls the Glossary component to create
three entries. It then calls the Query component to display all the entries in the
database.

No changes are required to the source code unless you need to connect with a
different account than the one created in the step “Create a user account” on
page 85. In that case, edit the source and change the user name and password
values.

Build the test client with Ant by running this command in your copy of the EJB
tutorial directory:

build client

Run the client application
If you have not refreshed or restarted your server since last modifying the
tutorial components, data source, or user account, refresh the server now before
running the client. Otherwise, verify that the server is running.

Creating the application

86 EAServer

Run the client from using a batch file or UNIX shell script. The batch file or
shell script configures the CLASSPATH environment variable, then runs the
application using the JDK 1.4 java program included with your EAServer
installation.

❖ Creating the Windows batch file

• Create a file named runtest.bat in your copy of the EJB tutorial directory,
containing the commands below:

@SETLOCAL
@echo off
call settings.bat
call %DJC_HOME%\bin\djc-setenv.bat
set JAVAHOME=%DJC_JAVA_HOME_14%
set CLASSPATH=%DJC_HOME%\lib\eas-server-14.jar
set CLASSPATH=%CLASSPATH%;%DJC_HOME%\deploy\ejbjars\ejbtut
set CLASSPATH=%CLASSPATH%;.\client-classes
set CLASSPATH=%CLASSPATH%;%DJC_HOME%\genfiles\java\classes
"%JAVAHOME%\jre\bin\java"
com.sybase.easerver.tutorials.ejb.client.TestClient %*

❖ Creating the UNIX shell script

1 Create a file named runtest containing the commands below:

#!/bin/sh
. settings.sh
. $DJC_HOME/bin/djc-setenv.sh
set JAVAHOME=$DJC_JAVA_HOME_14
set CLASSPATH=${DJC_HOME}/lib/eas-server-14.jar
set CLASSPATH=$CLASSPATH:${DJC_HOME}/deploy/ejbjars/ejbtut
set CLASSPATH=$CLASSPATH:./client-classes
set CLASSPATH=$CLASSPATH:${DJC_HOME}/genfiles/java/classes
export CLASSPATH
export JAVAHOME
"$JAVAHOME/jre/bin/java"
com.sybase.easerver.tutorials.ejb.client.TestClient $*

2 Change the file permissions to allow the script to be executed. For
example:

chmod 777 runtest

❖ Running the client application

• Run the batch or script file, specifying the server host name and IIOP port
number on the command line as follows:

runtest iiop://host:iiop-port

iiop://host:iiop-port

CHAPTER 6 Tutorial: Creating Enterprise JavaBeans Components and Clients

Enterprise JavaBeans User’s Guide 87

For example:

runtest iiop://myhost:2000

The client application:

1 Creates a proxy for the Glossary entity bean’s home interface, then calls
the create method to populate the database with some glossary entries.

2 Creates a proxy for Query session bean’s home interface, then calls the
runQuery method to get a result set containing all the entries, then prints
them.

If errors occur, check the server log file for information on how to correct the
problem.

Automating deployment and configuration
This section demonstrates how to modify the Ant build to deploy the EJB-JAR
file to EAServer and how to use a Sybase configuration file to automate the
post-deployment configuration steps.

❖ Running the automated deploy and configure

1 In your working copy of the tutorial files, copy the file sybase-ejbjar-
config.xml from the example-config subdirectory to the
manifest/META-INF directory.

The sybase-ejbjar-config.xml contains definitions of a configure-user
and recompile-user target. EAServer calls these targets after deploying
the EJB-JAR file. The configure-user target creates the data source
used to connect to the database and the sample user account that the client
uses to login.

2 Edit build.xml with a text or XML editor. Find the definition of the
eas.host and eas.http.port properties. These must match the host
name and HTTP port number of the server that you deploy to. As shipped,
the eas.host value matches the string returned by the HOSTNAME
environment variable (on UNIX platforms) or COMPUTERNAME
environment variable (on Windows platforms). Edit the values if you are
deploying to a server on another machine or the server uses a different
HTTP port number than the default 8000.

iiop://myhost:2000

Automating deployment and configuration

88 EAServer

3 Create a wlogin session to the server that you are deploying to, using the
default system account, admin@system, or another account with admin-
role membership. You can use the same account that you use to login to
the Management Console. For information on wlogin, see Chapter 12,
“Command Line Tools,” in the System Administration Guide.

Wlogin treats host names as case-sensitive
If you are running on Windows, and you did not change the value of the
eas.host and eas.http.port properties in the Ant build file, specify the
host name in all uppercase letters when running wlogin. As installed, this
property uses the value of the Windows COMPUTERNAME environment
variable, which is typically set in all uppercase letters.

4 Optionally undeploy the tutorial components from EAServer. You can do
this with the undeploy command-line tool. For example:

undeploy -server host:8000 ejbjar-ejbtut

For information on undeploy, see Chapter 12, “Command Line Tools,” in
the System Administration Guide.

5 At a command prompt, change to your working directory for the tutorial
and run the following command to rebuild and deploy the EJB-JAR file:

./build deploy

This command runs build.bat, which runs Ant to build the deploy target.
This target:

a Rebuilds ejbtut.jar (because this target depends on the JAR file).

b Deploys ejbtut.jar to the server address specified by the eas.host
and eas.http.port properties.

c Copies the database file, gloss.db, to the data subdirectory in the
EAServer installation if it is not already there. If successful, you
should see the output of the EAServer deployment.

6 Restart or refresh the server and run the test client as described in “Create
the client application” on page 85 and “Run the client application” on
page 85.

Enterprise JavaBeans User’s Guide 89

A
access control

and port numbers 27
configuring 25
JACC 26
types of 25

Adaptive Server Anywhere
starting 81
using in EJB tutorial 78

addresses, network
restricting access by 27
specifying in EJB clients 46

Ant
configuring properties with 20
example project 79
properties 24
used in tutorial 79

application clients 61–66
configuring properties for 64
creating 61
deploying 65
general properties 64
running 65, 66
set up for 65
starting the runtime container 66

application server, definition of 2
applications

client 61
EJB 78
EJB client 43

architecture
EJB 2
EJB component 1

authorization
configuring 25
JACC 26
roles created by deployment 25

automatic transaction retry 37

B
batching transactions 36
by-reference parameter passing 28

C
C++

clients 71
datatypes 71

C++ clients,invoking EJB components in 71
clients

application 61
C++ 71
EJB 43, 85
error logging for 50
PowerBuilder 70

clusters
partitioning 28
properties for 28

code
for C++ client 73
for EJB client 85

com.sybase.ejb.ProxyHost
InitialContext property name 47

com.sybase.ejb.ProxyPort
InitialContext property name 48

components
C++ 71
EJB 1, 19, 79
PowerBuilder 70

configuring
authorization 25
EJB modules 19
failover 27
JNDI names 34
properties 24

configuring, role references 17
connection timeout

Index

Index

90 EAServer

configuring for EJB clients 46
conventions x
CORBA

interoperability with EJB 67
creating

data sources 81

D
data sources

associating with components 40, 83
associating with EJB components 83
creating 81, 83

databases
for EJB tutorial 81
starting automatically 82

datatypes, C++ 71
deploying

database files 81, 88
EJB-JAR files 9, 19, 88

development environments, Java 77

E
EAServer

EJB component support in 8
interoperability 67

EJB
See also EJB clients, EJB components
architecture 2
clients 43, 77, 85
creating components 79
EAServer support for 8
entity beans 77
generating stubs for 43
interoperability 67
interoperability with PowerBuilder 70
overview of 1
requirements for 77
sample components 77
session beans 77
timer service 13
tutorial for 77
tutorial steps 78

version levels 10
EJB client

definition of 3
generating stubs for 43
runtime requirements for 43

EJB components
and EJB version 10
configuring 19
creating 19
deploying 9, 19
exposing as Web services 10
introduction to 1
invoking from C++ clients 71
invoking from PowerBuilder clients 70
JNDI names for 16
properties of 20, 24
security configuration for 17
tutorial for 77
types of 3
undeploying 88
using transactions in 6
version levels and 16

EJB container
definition of 2
services provided by 5

EJB modules
configuring 19
deploying 19
undeploying 88

ejb.accessControl Ant property 25
ejb.allowedPorts Ant property 27
ejb.automaticFailover Ant property 27
ejb.clusterPartition Ant property 28
ejb.copyValues Ant property 28
ejb.enableProfiling Ant property 29
ejb.enableTracing Ant property 30
ejb.isolationLevel

values for 31
ejb.isolationLevel Ant property 30, 41
ejb.localNamePrefix Ant property 34
ejb.localNameSuffix Ant property 34
ejb.localThreadMonitor Ant property 34
ejb.logExceptoins Ant property 29
ejb.passivateTimeout Ant property 38
ejb.poolTimeout Ant property 39
ejb.remoteNamePrefix Ant property 35

Index

Enterprise JavaBeans User’s Guide 91

ejb.remoteNameSuffix Ant property 35
ejb.remoteThreadMonitor Ant property 35
ejb.removeTimeout Ant property 38
ejb.rolePrefix Ant property 27
ejb.serviceThreadMonitor Ant property 36
ejb.transactionBatch Ant property 36
ejb.transactionRetry Ant property 37
EJB-JAR files

creating 79
deploying 9, 19, 88
undeploying 88

Enterprise JavaBeans
See EJB

entity bean
definition of 3, 4
EJB component type 3
used in tutorial 79

errors
logging 29
logging in clients 50

exceptions
logging 29

F
failover, configuring 27

G
generating EJB stubs 43

H
home interface

instantiating in clients 45
invoking with C++ 73

home interface, definition of 3

I
interoperability

overview of 67

with C++ clients and components 71
with other application servers 67
with PowerBuilder clients and components 70

isolation level
configuring 30, 41
explanation of 30, 41

J
JACC 26
Java development environments 77
JavaBeans

See also EJB
jca.connectionFactory Ant property 39
JNDI names

configuring 34
in deployment descriptor 16

L
load balancing

and cluster partitions 28
properties for 28

logging
for clients 50
of exceptions 29

M
Mandatory

method transaction attribute 8
message driven bean

definition of 5

N
naming, properties for 34
Never, method transaction attribute 8
NotSupported, method transaction attribute 8

Index

92 EAServer

P
parameters, passing by reference 28
passivation 38
pooling 39
port numbers

restricting access with 27
specifying in EJB clients 46

PowerBuilder, invoking EJB components in 70
profiling

enabling 29
viewing data 29

properties
Ant 24
configuring 24
data source 81
EJB component 20, 24, 83

R
ReadCache transaction isolation level 31
ReadCacheVerifyUpdates transaction isolation level 31
ReadCommitted transaction isolation level 31
ReadCommittedVerifyUpdates transaction isolation level

31
ReadCommittedVerifyUpdatesWIthCache transaction

isolation level 32
ReadCommittedWithCache transaction isolation level 32
remote interface, definition of 3
RepeatableRead transaction isolation level 33
RepeatableReadWithCache transaction isolation level 33
Required, method transaction attribute 8
requirements

for EJB client runtime 43
for EJB tutorial 77

RequiresNew
method transaction attribute 8

resource references
deployment settings for 40
for EJB components 83

role references, configuring 17
roles

and isCallerInRole method 17
created by deployment 25, 27
referencing in code 17

run-appclient command-line tool 66

S
security roles

created by deployment 27
Serializizable transaction isolation level 33
SerializizableWithCache transaction isolation level 34
session bean

definition of 3
EJB component type 3
stateful 4
stateless 4

sessions, timeouts for 38
socketTimeout EJB initial context property 46
sql.createTables Ant property 39
sql.dataSource Ant property 40, 83
stateful session beans

definition of 4
timeouts for 38

stateless session bean
definition of 4
used in tutorial 79

stubs
generating for EJB clients 43

stubs, EJB
generating 43

Supports, method transaction attribute 8

T
thread monitors 34, 35, 36
timeouts

for clients 46
for entity beans 39
for stateful session beans 38
for stateless session beans 39

timeouts, connection
for EJB clients 46

timer service 13
trace data 30
tracing, deployment property for 30
transactions

automatic retry of 37
batching 36
bean-managed 6
container-managed 6
isolation level 30

Index

Enterprise JavaBeans User’s Guide 93

method attribute for 7
use in EJB components 6

tutorial, EJB
creating the client 85
steps for 78

tutorials
client 77
EJB 77

typographical conventions x

U
undeploying EJB-JAR files 88
user names, specifying in EJB clients 46

V
versions, of EJB specificiation 10

W
Web services 10

Index

94 EAServer

	Enterprise JavaBeans User’s Guide
	About This Book
	CHAPTER 1 Enterprise JavaBeans Overview
	About Enterprise JavaBeans components
	EJB component types
	Stateful session beans
	Stateless session beans
	Entity beans
	Message-driven beans

	EJB container services
	EJB transaction settings
	Container-managed transactions versus bean-managed transactions
	Method transaction attributes

	EAServer EJB support
	Deploying EJB components to EAServer
	EJB clients connecting to EAServer
	For more information

	EJB version levels
	EJB 2.1 differences from 2.0
	Web services support
	Message driven beans support additional message types
	Timer service
	EJB-QL enhancements

	EJB 2.0 differences from 1.1
	Message-driven beans
	Home interface methods
	Local interfaces
	CMP enhancements
	EJB 2.0 interoperability

	EJB 1.1 differences from EJB 1.0
	Component differences
	Client model differences

	CHAPTER 2 Deploying and Configuring EJB Components
	Deploying an EJB-JAR file
	Configuring EJB component properties
	Structure of the configuration file
	Updating component properties

	Commonly configured properties
	ejb.accessControl
	Using the default access control type
	Using the JACC access control type

	ejb.allowedPorts
	ejb.rolePrefix
	ejb.automaticFailover
	ejb.clusterPartition
	ejb.copyValues
	ejb.logExceptions
	ejb.enableProfiling
	ejb.enableTracing
	ejb.isolationLevel
	ejb.localNamePrefix
	ejb.localNameSuffix
	ejb.localThreadMonitor
	ejb.remoteNamePrefix
	ejb.remoteNameSuffix
	ejb.remoteThreadMonitor
	ejb.serviceThreadMonitor
	ejb.transactionBatch
	ejb.transactionRetry
	ejb.passivateTimeout
	ejb.removeTimeout
	ejb.poolTimeout
	jca.connectionFactory
	sql.createTables
	sql.dataSource
	sql.isolationLevel

	CHAPTER 3 Developing EJB Clients
	Client runtime requirements
	EJB client program flow
	Instantiating home interface proxies
	Obtaining an initial naming context
	Sybase InitialContext properties
	Connection URL formats
	Configuring error output
	Running in Java applets

	Resolving JNDI names

	Instantiating remote or local interface proxies
	Calling remote interface methods
	Calling local interface methods
	Managing transactions
	Serializing and deserializing bean proxies
	Using EJB providers
	Running EAServer 5.x clients against 6.0 or later servers

	CHAPTER 4 Creating Application Clients
	About application clients
	Deploying application clients
	Configuring application client properties
	General tab
	Configuration tab
	Advanced tab

	Running application clients
	Setting up a client’s workstation
	Starting the runtime container

	CHAPTER 5 Interoperability
	Intervendor EJB interoperability
	Interoperable naming URLs

	Classes for RMI/IIOP connections from third-party containers
	Invoking EJB components from PowerBuilder clients
	Invoking EJB components from CORBA/C++ clients
	Supported datatypes
	Generating required header files
	Calling the home interface
	Instantiating a proxy for the home interface
	Instantiating a session bean
	Instantiating an entity bean

	Serializing and deserializing instance references

	CHAPTER 6 Tutorial: Creating Enterprise JavaBeans Components and Clients
	Overview of the sample components
	Tutorial requirements
	Creating the application
	Start EAServer and the Management Console
	Create the EJB-JAR file
	Review the project layout component source files
	Build the EJB-JAR file

	Deploy the EJB-JAR file to EAServer
	Create the glossary database and data source
	Copy the database file to the EAServer installation
	Create the data source
	Modify the data source used by the EJB components

	Create a user account
	Create the client application
	Run the client application

	Automating deployment and configuration

	Index

