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64-bit Deployment

You can create PowerBuilder applications to deploy on 32-bit and 64-bit systems.

Migrated applications will default to “32-bit.” You can also set the Platform Target build
option to “32-bit or 64-bit.” The latter option allows you to use 32-bit libraries in applications
you will deploy as a 64-bit.

Other targets—WCF Service, WPF Web Service DataWindow, WCF Client, REST Client—
are all callees, so the application type determines the running mode. You cannot select the
platform; they build as “AnyCPU” mode.

Compilation
Depending on the Platform Target setting, the application you developed compiles in different
ways.

• 32-bit (default): compiles the application or assembly to run by any 32-bit, x86-
compatible common language runtime

• 32-bit or 64-bit: compiles an application or assembly that runs on any Windows platform

Microsoft uses the names "x86" and "AnyCPU."

Performance
64-bit deployment gives you an interface to develop different types of applications, especially
applications for 64-bit Windows platforms. This kind of application can use more than 4GB of
RAM, and has better performance than their 32-bit counterpart.

Limitation in 12.5.1
Some PowerBuilder features are not available when running a “32-bit or 64-bit” application
on a 64-bit platform.

• Some PowerBuilder assemblies developed using C++ will be loaded at runtime
accompany these features. We will only provide one 32-bit version of these C++
assemblies with PowerBuilder .NET 12.5.1.
The assemblies are:
• Sybase.PowerBuilder.Interop.dll
• Sybase.DataWindow.Interop.dll
• Sybase.PowerBuilder.DataSource.Db.dll
• Sybase.PowerBuilder.DataWindow.Interop.dll
• Sybase.PowerBuilder.Editmask.Interop.dll
• Sybase.PowerBuilder.Graph.Interop.dll
• Sybase.PowerBuilder.RTC.Interop.dll

• The following features are not supported in 64-bit PB WPF application because of the
unsupported assemblies (listed above):
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• The OLE related objects such as PBOmObject, PBOleObject, PBOmControl,
PBOleControl and PBOleCustomControl

• PBMailSession
• Some string functions that end with ‘A’, such as FillA(), LeftA(), LenA(), MidA(),

PosA(), ReplaceA() and RightA()
• Read PSR files and save data in Excel 8 format in DataWindow
• No non-ADO.NET drivers are supported
• PBNI
• MobiLink synchronization
• Any calls into assemblies listed here are not supported
• InkEdit feature in DataWindow
• Pipeline

• For WCF WebService projects, compiled assemblies behave like WPF assemblies. They
are compiled using AnyCPU mode. If a WCF WebService references 32-bit libraries or
assemblies, the hosting IIS or application pool should be configured as “Enable 32-bit
application.” Once configured like this, IIS will run on x64 environment in WOW64 mode.
That means the IIS or application pool runs as WOW64 mode, so it can hold 32-bit web
services.

Error Messages and Runtime Exceptions
The most common exception caused by this feature is BadImageFormatException. It is
thrown when the file image of a dynamic link library (DLL) or an executable program is
invalid.

Main application
format

Platform Format of the as-
semblies loaded
at runtime

Remarks

32-bit 32-bit 32-bit, 32-bit or 64-bit

32-bit 64-bit 32-bit, 32-bit or 64-bit WOW64

32-bit or 64-bit 32-bit 32-bit, 32-bit or 64-bit

32-bit or 64-bit 64-bit 64-bit, 32-bit or 64-bit

The main application determines the runtime environment in the whole application lifecycle.
This exception will be raised when the format of an assembly conflict with the format of main
application at runtime.

Dynamically Load Assemblies

You can dynamically switch window, visual object, menu, and some other objects defined in
different PB assemblies at runtime. There are three new system functions in
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PowerBuilder .NET to allow this: AddAssemblyReference, SetAssemblyReference and
GetAssemblyReference.

These system functions enable you to add a reference to a PowerBuilder assembly deployed
by PowerBuilder .NET at runtime. After adding a reference, all types defined in it can be
consumed at runtime. Types in the referenced assembly cannot be directly used to define a
variable, a return value, or a parameter. Types are typically used in some system functions as a
string parameter where the value is the datatype you want to create.

AddAssemblyReference
Adds new PB assembly files to the reference list of the current application at runtime.

Syntax
Int AddAssemblyReference(string assemblyFullPath)

Argument Description

assemblyFullPath String. A semicolon-separated list of file names.
Specify the full file name with its extension. It can
be a relative path if the assembly is in the same
directory with the current application. Otherwise,
it must be an absolute path.

Returns
Integer. Returns 1 if all files in the list are successfully added. If an error occurs, it returns
-1. If any argument’s value is null, it returns null.

Usage
After the function is invoked successfully at runtime, types in the referenced assembly can be
consumed in PB .NET.

Invoking a Dynamically Loading Assembly
int ret
ret = addassemblyreference("D:\Dynamic Loading\PB125\pbassembly.out
\bin\release\pbassembly.dll")

if ret = 1 then
    MessageBox("OK", "OK")
elseif ret = -1 then
    MessageBox("Error", "D:\Dynamic Loading\PB125\pbassembly.out\bin
\release\pbassembly.dll Not Found")
else
    MessageBox("Error", "Null argument")
end if
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SetAssemblyReference
Changes PB assembly files to the reference list of the current application at runtime. The
difference with AddAssemblyReference is that all PB assemblies in the reference list will be
replaced after invoking the function.

Syntax
Int SetAssemblyReference(string assemblyFullPath)

Argument Description

assemblyFullPath String. A semicolon-separated list of file names.
Specify the full file name with its extension. It can
be a relative path if the assembly is in the same
directory with the current application. Otherwise,
it must be an absolute path.

Returns
Integer. Returns 1 if all files in the list are successfully added. If an error occurs, it returns
-1. If any argument’s value is null, it returns null.

Usage
After the function is invoked successfully at runtime, types in the referenced assembly can be
consumed in PB .NET.

GetAssemblyReference
Gets valid PB assembly files from the reference list of the current application at runtime.

Syntax
String GetAssemblyReference()

Returns
String. Returns the current referenced assembly list. Multiple assemblies are separated by
semicolons. Only valid PB assembly files in the referenced assembly list can be returned.
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Working with Dynamically Loaded Assemblies
These are some examples of how to work with dynamically loaded assemblies.

Open a Window

The window “w_test” is defined in a referenced assembly.
window w
Open(w, "w_test")

Open an Object

The user object “u_cvuo” is defined in a referenced assembly.
UserObject u
w_window.OpenUserObject(u, “u_cvuo”)

Create a Menu

The menu “m_test” is defined in a referenced assembly.
Menu m
m = create using “m_test”
w_window.MenuID = m

Dynamically Load Assemblies
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