
New Features

PowerBuilder® 12.5.1



DOCUMENT ID: DC00357-01-1251-01
LAST REVISED: January 31, 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. A ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of the respective companies
with which they are associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568

http://www.sybase.com/detail?id=1011207


Contents

64-bit Deployment ..................................................................1
Dynamically Load Assemblies .............................................2

AddAssemblyReference .................................................3
SetAssemblyReference ..................................................4
GetAssemblyReference ..................................................4
Working with Dynamically Loaded Assemblies ..............5

New Features iii



Contents

iv PowerBuilder



64-bit Deployment

You can create PowerBuilder applications to deploy on 32-bit and 64-bit systems.

Migrated applications will default to “32-bit.” You can also set the Platform Target build
option to “32-bit or 64-bit.” The latter option allows you to use 32-bit libraries in applications
you will deploy as a 64-bit.

Other targets—WCF Service, WPF Web Service DataWindow, WCF Client, REST Client—
are all callees, so the application type determines the running mode. You cannot select the
platform; they build as “AnyCPU” mode.

Compilation
Depending on the Platform Target setting, the application you developed compiles in different
ways.

• 32-bit (default): compiles the application or assembly to run by any 32-bit, x86-
compatible common language runtime

• 32-bit or 64-bit: compiles an application or assembly that runs on any Windows platform

Microsoft uses the names "x86" and "AnyCPU."

Performance
64-bit deployment gives you an interface to develop different types of applications, especially
applications for 64-bit Windows platforms. This kind of application can use more than 4GB of
RAM, and has better performance than their 32-bit counterpart.

Limitation in 12.5.1
Some PowerBuilder features are not available when running a “32-bit or 64-bit” application
on a 64-bit platform.

• Some PowerBuilder assemblies developed using C++ will be loaded at runtime
accompany these features. We will only provide one 32-bit version of these C++
assemblies with PowerBuilder .NET 12.5.1.
The assemblies are:
• Sybase.PowerBuilder.Interop.dll
• Sybase.DataWindow.Interop.dll
• Sybase.PowerBuilder.DataSource.Db.dll
• Sybase.PowerBuilder.DataWindow.Interop.dll
• Sybase.PowerBuilder.Editmask.Interop.dll
• Sybase.PowerBuilder.Graph.Interop.dll
• Sybase.PowerBuilder.RTC.Interop.dll

• The following features are not supported in 64-bit PB WPF application because of the
unsupported assemblies (listed above):

64-bit Deployment

New Features 1



• The OLE related objects such as PBOmObject, PBOleObject, PBOmControl,
PBOleControl and PBOleCustomControl

• PBMailSession
• Some string functions that end with ‘A’, such as FillA(), LeftA(), LenA(), MidA(),

PosA(), ReplaceA() and RightA()
• Read PSR files and save data in Excel 8 format in DataWindow
• No non-ADO.NET drivers are supported
• PBNI
• MobiLink synchronization
• Any calls into assemblies listed here are not supported
• InkEdit feature in DataWindow
• Pipeline

• For WCF WebService projects, compiled assemblies behave like WPF assemblies. They
are compiled using AnyCPU mode. If a WCF WebService references 32-bit libraries or
assemblies, the hosting IIS or application pool should be configured as “Enable 32-bit
application.” Once configured like this, IIS will run on x64 environment in WOW64 mode.
That means the IIS or application pool runs as WOW64 mode, so it can hold 32-bit web
services.

Error Messages and Runtime Exceptions
The most common exception caused by this feature is BadImageFormatException. It is
thrown when the file image of a dynamic link library (DLL) or an executable program is
invalid.

Main application
format

Platform Format of the as-
semblies loaded
at runtime

Remarks

32-bit 32-bit 32-bit, 32-bit or 64-bit

32-bit 64-bit 32-bit, 32-bit or 64-bit WOW64

32-bit or 64-bit 32-bit 32-bit, 32-bit or 64-bit

32-bit or 64-bit 64-bit 64-bit, 32-bit or 64-bit

The main application determines the runtime environment in the whole application lifecycle.
This exception will be raised when the format of an assembly conflict with the format of main
application at runtime.

Dynamically Load Assemblies

You can dynamically switch window, visual object, menu, and some other objects defined in
different PB assemblies at runtime. There are three new system functions in

Dynamically Load Assemblies

2 PowerBuilder



PowerBuilder .NET to allow this: AddAssemblyReference, SetAssemblyReference and
GetAssemblyReference.

These system functions enable you to add a reference to a PowerBuilder assembly deployed
by PowerBuilder .NET at runtime. After adding a reference, all types defined in it can be
consumed at runtime. Types in the referenced assembly cannot be directly used to define a
variable, a return value, or a parameter. Types are typically used in some system functions as a
string parameter where the value is the datatype you want to create.

AddAssemblyReference
Adds new PB assembly files to the reference list of the current application at runtime.

Syntax
Int AddAssemblyReference(string assemblyFullPath)

Argument Description

assemblyFullPath String. A semicolon-separated list of file names.
Specify the full file name with its extension. It can
be a relative path if the assembly is in the same
directory with the current application. Otherwise,
it must be an absolute path.

Returns
Integer. Returns 1 if all files in the list are successfully added. If an error occurs, it returns
-1. If any argument’s value is null, it returns null.

Usage
After the function is invoked successfully at runtime, types in the referenced assembly can be
consumed in PB .NET.

Invoking a Dynamically Loading Assembly
int ret
ret = addassemblyreference("D:\Dynamic Loading\PB125\pbassembly.out
\bin\release\pbassembly.dll")

if ret = 1 then
    MessageBox("OK", "OK")
elseif ret = -1 then
    MessageBox("Error", "D:\Dynamic Loading\PB125\pbassembly.out\bin
\release\pbassembly.dll Not Found")
else
    MessageBox("Error", "Null argument")
end if

Dynamically Load Assemblies

New Features 3



SetAssemblyReference
Changes PB assembly files to the reference list of the current application at runtime. The
difference with AddAssemblyReference is that all PB assemblies in the reference list will be
replaced after invoking the function.

Syntax
Int SetAssemblyReference(string assemblyFullPath)

Argument Description

assemblyFullPath String. A semicolon-separated list of file names.
Specify the full file name with its extension. It can
be a relative path if the assembly is in the same
directory with the current application. Otherwise,
it must be an absolute path.

Returns
Integer. Returns 1 if all files in the list are successfully added. If an error occurs, it returns
-1. If any argument’s value is null, it returns null.

Usage
After the function is invoked successfully at runtime, types in the referenced assembly can be
consumed in PB .NET.

GetAssemblyReference
Gets valid PB assembly files from the reference list of the current application at runtime.

Syntax
String GetAssemblyReference()

Returns
String. Returns the current referenced assembly list. Multiple assemblies are separated by
semicolons. Only valid PB assembly files in the referenced assembly list can be returned.

Dynamically Load Assemblies

4 PowerBuilder



Working with Dynamically Loaded Assemblies
These are some examples of how to work with dynamically loaded assemblies.

Open a Window

The window “w_test” is defined in a referenced assembly.
window w
Open(w, "w_test")

Open an Object

The user object “u_cvuo” is defined in a referenced assembly.
UserObject u
w_window.OpenUserObject(u, “u_cvuo”)

Create a Menu

The menu “m_test” is defined in a referenced assembly.
Menu m
m = create using “m_test”
w_window.MenuID = m

Dynamically Load Assemblies

New Features 5



Dynamically Load Assemblies

6 PowerBuilder


	New Features
	Contents
	64-bit Deployment
	Dynamically Load Assemblies
	AddAssemblyReference
	SetAssemblyReference
	GetAssemblyReference
	Working with Dynamically Loaded Assemblies



