SYBASE

Cmpy

New Features

PowerBuilder® 12.5

DOCUMENT ID: DC00357-01-1250-01

LAST REVISED: July 25, 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. A ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of the respective companies
with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568

http://www.sybase.com/detail?id=1011207

Contents

PowerBuilder Classic and .NETcccciiiiiiiiiiiiiieeeee 1
AUtOWIidth Propertycooovviiieeiiicciei e 1
Support for Tab Sequence, Enabled, and Show Focus

Rectangle Properties.........ccccvvvvveiviiiiiiie e 1
Support for New ASE 15.5 Datatypescccccuvvvnnreeennn. 2
PowerBuilder ClasSiCccovvviiiiiiii i 2
Window Control transparent Value and transparency
PIOPEITY ..t ees 2
Sharing Datasources with NEToooiiiiiiiiiiiiinee, 3
RTF and Images in the DataWindow Object................... 4
User-Drawn Controls in DataWindow Objects................. 4

PowerBuilder .NEToouiiiiiiiiee et 5
NET 4.0 Frameworkcoeieiiiiiiiiiiiiiiie e 5
Visual Studio 2010 Isolated Shell..............ccovvviviiiiiinnnnns 5
Script Editor Changes ..o 6
Batch Command Processingccceeeeevvevieiiiieeeeeininnnnn. 6
Multithreading SUPPOIT.......ccooviiiieeiiiiiiee e 6
TANGELS ot 6

WECF SEIVICES ...ceviviiiiiiiiiie et 6
Support for CVUOs in .NET Assemblies................ 7
Support for Split Assemblies in WPF Targets........ 7
PB Assembly Targetccccoeeiieeiveiii e 8
REST Clientooeeeeiiiiiiie e 9
Language Enhancements............couveiiiiiiee v 9
Consume .NET Eventsccoooeiiiiiiiiiiiiiieeei, 9
Enhancement of the .NET Assembly Target........ 10
WPF DataWindow Enhancements...........cccceeeevivineeens 11
Optimized SRD SyntaXccceeeeveeeviiiiiieeeeeennnnnnn, 11
Data Buffers in the Debugger.........ccccccoeiiieiiiinns 11
Child DataWindow Control Support..................... 12
Candlestick Graphs ... 12

New Features iii

Contents

Global FUNCHONS LiSt .. cuoviiiee e 13

iv PowerBuilder

PowerBuilder Classic and .NET

PowerBuilder Classic and .NET

This section describes new features that are common to both PowerBuilder® Classic and
PowerBuilder .NET.

AutoWidth Property

In the PowerBuilder Classic DataWindow and PowerBuilder .NET WPF DataWindow, the
AutoWidth property allows you to choose the option to automatically compute the width of a
column in a grid style DataWindow.

Applies to
Columns in grid style DataWindows

Usage
The AutoWidth property takes one of these numeric values:

* 0 - No AutoWidth: This is the default value.

e 1- AutoWidth is computed for visible rows (monotonic) and does not decrease when the
widest column is reduced when scrolling.

e 2 - AutoWidth is computed for visible rows (non-monotonic)
e 3 - AutoWidth is computed for all retrieved rows.

You can set the AutoWidth property:

 Inthe painter - in the Properties view, select one of the values in the drop-down list for the
AutoWidth property.

e Inscripts - set the AutoWidth property to one of the numeric values.

Support for Tab Sequence, Enabled, and Show Focus
Rectangle Properties

These properties are supported in the PowerBuilder Classic DataWindow.
PowerBuilder .NET WPF DataWindow supports only Tab Sequence and Enabled.

The Tab Sequence property is not expressionable, but Enabled and Show Focus Rectangle
are.

* The default value of Tab Sequence is zero for all non-column controls, replicating the
previous behavior. You can edit it as needed.

e The default value for the Enabled property is "yes."

New Features 1

PowerBuilder Classic

e The default value of the Show Focus Rectangle property is "no."

Note: The Show Focus Rectangle property is supported only in PowerBuilder Classic.

The following DataWindow controls now have the Tab Sequence, Enabled, and Show Focus
Rectangle properties:

« Button (Show Focus Rectangle does not apply)
e Computed Field

e Graph

* Picture

e TableBlob

o Text

The Column control does not have the Enabled property because it has existing mechanisms
which achieve the same effect.

PowerBuilder Classic supports these properties for OLE Objects and OLE Database Blobs.

Support for New ASE 15.5 Datatypes
PowerBuilder supports the new datatypes in ASE 15.5: BIGTIME and BIGDATETIME.

e BIGTIME: Includes the hour, minute, second, and fraction of a second. The fraction is
stored to six decimal places.

« BIGDATETIME: Includes the year, month, day, hour, minute, second, and fraction of a
second. The fraction is stored to six decimal places.

PowerBuilder Classic

This section describes new features for the PowerBuilder Classic IDE only.

Window Control transparent Value and transparency
property

PowerBuilder 12.5 introduces two new features for window controls

 transparent value for window control BackColor
 transparency property for window control

The following controls support the new value and property:

PictureButton

2 PowerBuilder

Sharing Datasources with .NET

CheckBox
RadioButton
StaticHyperlink
GroupBox
SingleLineEdit
EditMask
MultiLineEdit
RichTextEdit
DropDownListBox
DropDownPictureListBox
ListView
TreeView

Tab

Graph

UserObject

PowerBuilder Classic

New support is added for sharing ADO.NET connections

PowerBuilder 12.5 provides the ability to share ADO.NET connections between
PowerBuilder (Win32) and third-party .NET assemblies exposed in COM. A PowerBuilder
native application provides the capability to import an ADO.NET connection from a third-
party .NET assembly and to export an ADO.NET connection to a third-party assembly. This
feature already exists in PowerBuilder.NET, but the PowerBuilder Classic IDE supports a

native version of this feature using .NET COM Interop.

Two methods have been added to the PowerBuilder Transaction NVO:

bool SetAdoConnection(oleobject connectionProxy)
Imports an external ADO.NET connection.
oleobject GetAdoConnection()

Exports an ADO.NET connection from a connected PB Transaction instance.

You can invoke these two method to get or set the proxy to share an ADO.NET DB Connection

between a PB app and third-party .NET assembly.

New Features

PowerBuilder Classic

RTF and Images in the DataWindow Object

PowerBuilder 12.5 introduces the RTF, Image, and XPS Database Blobs, as well as RichText
and RichTextFile expression functions for Computed Fields.

The RTF, Image, and XPS Database Blob feature is a port of the existing feature from
PowerBuilder .NET.

The RichText expression function takes as argument a string expression interpreted as RTF
file and renders it as such. If the argument is not RTF, nothing renders.

The RichTextFile takes as argument a string expression interpretation of the name of the RTF
file and renders it as such. If the argument is not an RTF file, nothing renders.

User-Drawn Controls in DataWindow Objects

The Paint expression functions allow you to draw objects in the DataWindow such as
polygons, arrow tips, pie slices, and so on.

The Paint expression function takes one string expression argument and returns the same
string. This allows you to paint inside a DataWindow in a way that respects the position and
z-order of other DataWindow objects.

Syntax

Pai nt (expr) where expr can be any valid DataWindow expression. It should contain a
function call to a drawing global function with rendering logic. If expr is astring expression
and the value is not null, the Computed Field will render the evaluated string expression.

This feature also provides the following supporting functions:

e GetPaintDC()

e GetPaintRectX()

» GetPaintRectY()

e GetPaintRectWidth()

» GetPaintRectHeight()

Get Pai nt DC() returns the GDI context to which to draw. The clip region of the GDI
context is guaranteed to be the same as the rectangle defined by the other functions.

Get Pai nt Rect X(), Get Pai nt Rect Y(), Get Pai nt Rect W dt h(), and
CGet Pai nt Rect W dt h() return the bounds of the computed field. The device context is
clipped within these bounds.

This example instantiates the drawing functions and, if the drawing function returns false, the
text "Bail out" displays.

Pai nt

(

4 PowerBuilder

PowerBuilder .NET

MyDr awPi eSl i ce

(
Get Pai nt DC() ,
Get Pai nt Rect X(),
Get Pai nt Rect Y(),
Get Pai nt Rect Wdt h(),
Get Pai nt Rect Hei ght (),
Get Row() *100/ RowCount ()
)
)
Pai nt
(
MyDr awPi eSl i ce
(
Get Pai nt DC() ,
Get Row() *100/ RowCount ()
Pai nt
(
if (MyDrawPi eSlice(getpaintdc()),"","Bail out")

PowerBuilder .NET

This section describes new features for the PowerBuilder .NET IDE only.

NET 4.0 Framework
PowerBuilder upgrades the runtime library for .NET 4.0

PowerBuilder 12.5 was built using the Microsoft .NET 4.0 Framework. This means that the
runtime library has been upgraded to take advantage of the improvements offered, such as
improved security for NET applications, improved exception handling within the framework,
as well as using WPF 4 enhancements for the WPF Controls.

Visual Studio 2010 Isolated Shell
PowerBuilder .NET 12.5 uses the Visual Studio 2010 isolated shell Service Pack 1.

The new shell comes with enhancements.

« Windows are no longer constrained to the editing frame of the integrated development
environment (IDE). You can now dock them to the edges, float outside the IDE, or move
them anywhere on the desktop. You can even move them to another monitor.

* The Help Viewer was completely redesigned. The documentation now appears in your
Web browser or browser frame.

New Features 5

PowerBuilder .NET

Script Editor Changes

The PowerScript editor has been enhanced.

Improvements include better semantic checking and support for identifiers, expressions and
assignment statements.

Batch Command Processing

PowerBuilder .NET introduces batch build processing.

The pbshell command supports batch building and deployment without direct intervention.

See Batch Command Processing in the PowerBuilder .NET Features Guide for more
information.

Multithreading Support

PowerBuilder enhances runtime support for multithreaded applications.

Applications that use shared objects can run in multithreaded environments. Previously, the
PowerBuilder .NET runtime library did not provide a way to synchronize data, so the data was
susceptible to corruption. Additionally, locking mechanisms for accessing static fields in
previous versions of PowerBuilder made assemblies using NVO instances susceptible to
problems associated with reentrance.

In PowerBuilder 12.5, the runtime library has been changed to solve the NVO assembly
problem with static fields. You can also use .NET Thread and .NET thread synchronization
functions for multithreaded applications.

See Using Multithreading for support in the PowerBuilder .NET IDE, or Using .NET
Synchronization for PowerBuilder Classic.

Targets

This section describes new features for the PowerBuilder .NET IDE only.

WCEF Services
A new PowerBuilder target builds applications using the Microsoft WCF model

Currently, PowerBuilder only creates traditional, WS-I profile conformant Web Services in
PowerBuilder. This is leveraged through the ASP.NET framework and built on top of PB.NET
Web Forms applications and runtime. It is made up of an .asmx file and an ASP.NET Web

6 PowerBuilder

PowerBuilder .NET

Service class that is built into a separate .NET assembly, both deployed to a virtual folder of an
I1S server. A traditional ASP.NET Web Service has limited functionalities; for example, it
supports only HTTP and HTTPS transports, and XML message encoding and transport level
security.

WCEF is the Microsoft unified programming model for building service-oriented applications.
It enables developers to build secure, reliable, transacted solutions that integrate across
platforms and interoperate with existing investments. When compared to a traditional Web
Service, a WCF Service supports more transports, including HTTP(S), TCP, MSMQ, and
Named Pipes. It also provides both transport and message level security, as well as many other
WS enhancement specs, for supporting such things as Reliable Messaging, Transaction.
PowerBuilder 12.5 provides a new target to take advantage of this new programming model.

Support for CVUOs in .NET Assemblies
The .NET Assembly target exposes custom visual user objects.

The .NET Assembly target exposes custom visual user objects (CVUOs). When you use the
output assembly ina .NET development environment, the visual objects are available as WPF
user controls that can be added to WPF windows or user controls.

This support is similar to the support for nonvisual objects (NVOs) in .NET assemblies,

providing the same wizard and project painter interface. Functions, events, properties, .NET
properties, instance variables, and indexers are exposed through the Objects tab in the project
painter. You can also provide Visual Studio IntelliSense descriptions for classes and methods.

Inthe .NET Assembly Project painter, you can choose to deploy only a CVUO by selecting the
Export only the CVO option in the Objects tab. When you choose this option, no other
elements are exported: to deploy other objects, you must unselect Export only the CVO first.

Limitations

* You can use standard visual user objects (SVUOSs) in .NET assemblies, but they are not
directly exposed.

« PowerBuilder exposes only customized events for a CVUO, not events for the inner
control.

Support for Split Assemblies in WPF Targets

The WPF Target provides the means to generate multiple assemblies from a build — one EXE
and one or more DLLs — instead of a single EXE.

The Project painter has two additional tabs: Assemblies and Dependencies.

Use the Assemblies tab to determine what assemblies should be built from the target's PBLs.
For each PBL in the WPF Target library list, you can select an output assembly. The drop-
down lists in the second column of the list view contain all the PBL names with ".DLL"
appended. Selecting an assembly name in the second column indicates that the PBL will be
included in an output assembly of that name. More than one PBL from the left column can be

New Features 7

PowerBuilder .NET

built to the same output assembly by selecting the same output name. Leaving the second
column value blank indicates the PBL will be built to the executable. You can also type a name
in the second column. The name is added to all drop-down lists, allowing multiple PBLs to be
built to the same output assembly of the given name.

The read-only Dependencies tab indicates how the output assemblies depend on one another
to determine build order. You can update the page by running the dependency checker.

The Dependency Check

Detailed dependencies information is available in the Assembly Dependencies tool window
after completing a full dependency check process. The dependency check process can be
triggered:

< manually from the menu Design > Check Dependencies or the WPF project object’s
context menu, or

« automatically by a full build process after changing the settings of the output assemblies.

All dependency errors indicated in the output window need to be solved before doing a full
build for the target.

To solve dependency errors (dependency on executable or circular dependency), you can try
the following methods.

1. Combine the PBLs that have dependency errors into one output assembly.
2. Move the objects from one PBL to another PBL.

3. Build global variables into an output assembly if they are heavily used in different objects
and different PBLs.

4. Refactor the code to use another object; for example, use local or instance variables instead
of global variables.

5. Move heavily used objects from many different PBLs into a new PBL and then build to a
single output assembly.

6. Solve dependency errors on global external functions by using local external functions
instead. This is due to a current limitation.

PB Assembly Target

Use the PB Assembly target to build a set of one or more PBLs into an assembly, which can be
referenced by another target.

The PB Assembly target is similar to the runtime library (.PBD) in PowerBuilder Classic. The
application object and all the global variables (system and user-defined) defined in the PB
Assembly target are used only within the PB Assembly target iteself; you cannot use them
across targets.

The PB Assembly target:

« Can contain all PowerBuilder object types

8 PowerBuilder

PowerBuilder .NET

» Exposes all PowerBuilder objects when a referenced PB Assembly is expanded in the
Solution Explorer

* Outputs a DLL assembly

* Can be identified by having an "AssemblyExtralnfo(true)" attribute

* Need not be built by any referencing targets once it has been built

* Is used directly in PowerBuilder (unlike the .NET Assembly target)

The global objects in the PB Assembly are not instantiated. They require a reference to the
instantiated variables from the application. Pass the global variable instantiated in the
application into the PB Assembly and assign it to the global variable defined in the PB
Assembly target.

REST client
PowerBuilder 12.5 includes a new REST client.

Using the REST client feature involves these steps:

1. Generate a PB proxy NVO using a REST client proxy project.
PowerBuilder generates a proxy NVO for each remote RESTful Service, using a URI,
method, and messaging format that you specify.

2. Parse complex message schemas and generate assemblies.
PowerBuilder runs XSD.exe from the Windows SDK for .NET Framework 4.0 to parse or
generate the schemas, and then to generate C# files. It then uses the C# compiler to build an
assembly. PowerBuilder generates one assembly for each request message and one for the
response message, if needed. These assemblies are automatically added to the
PowerBuilder WPF target references when the project is deployed.
You might not need to create assemblies for simple request or response messages like
integer or string types. Instead, you can skip the assembly generation and use
PowerBuilder primitive types.

3. Instantiate the proxy NVO and call the service.

Language Enhancements

This section describes new features for the PowerBuilder .NET IDE only.

Consume .NET Events
You can use PowerScript to dynamically connect methods to .NET events.

You can connect single or multiple methods to a .NET event in PowerScript. The method
could be a PowerBuilder global function, an instance function of a PowerBuilder object, or an
instance or static function of a .NET object. You can also connect PowerBuilder events

to .NET events in PowerScript.

You are not able to declare a variable or a parameter with a .NET event because a .NET event is
not a type at all. You are also not able to declare a new .NET event in PowerBuilder code; you

New Features 9

PowerBuilder .NET

can only consume a .NET event defined in other .NET languages with the += operator in
PowerBuilder.

The following examples demonstrate how to dynamically hook up to a .NET event in
PowerScript.

'Clicked' is a .NET event defined in the third-party .NET control
'system.windows.controls.button'. Suppose 'OnClickl' is a PowerBuilder event that has exact
same signature as the 'Clicked' .NET event of 'System.Windows.Controls.Button' control.
With this enhancement, you can support the following use cases.

Define a PowerBuilder event 'OnClickl":
Event OnC i ckl(system object sender, RouteEventArgs e)

Connect 'OnClick1' to the 'Clicked' .NET event of an instance of
'System.Windows.Controls.Button' control:

Syst em W ndows. Control s. Button chl
cbl = create System W ndows. Control s. Button()
cbl.clicked += Ondickl

Connect a PowerBuilder eventto a .NET event of the InnerControl of a PowerBuilder control:

Syst em W ndows. Control s. Button b
b = cb_1. 1 nnerControl
b.dick += Ondickl

Enhancement of the .NET Assembly Target

The .NET Assembly is expanded to expose additional PB language elements for use in .NET
application development.

With the enhanced Assembly target, you are able to restructure your applications and provide
a development framework to your users.

The Objects tab of the Project painter exposes additional language elements:

« Functions with generic types or delegates as parameters
» Parameterized constructors

e Events

e Indexers

* .NET properties

e Instance variables

Indexers and constructors cannot be renamed.

10 PowerBuilder

PowerBuilder .NET

Table 1. Additional language elements in .NET Assembly

Additional language | NVOs VOs Can be re- Can have de-
elements named? scription?
Functions with generic Yes Yes Yes Yes

types or delegates as pa-

rameters

Parameterized construc- Yes No No Yes

tors

Events No Yes Yes Yes

Indexers Yes Yes No Yes

.NET properties Yes Yes Yes Yes

Instance variables Yes Yes Yes Yes

PowerScript Syntax

The following examples demonstrate the PowerScript syntax for those additional language

elements that can be exposed in the .NET assembly.

« Functions with generic types or delegates as parameters: publ i ¢ functi on
i nteger f1(System Col |l ection.List<string> s)

« Parameterized constructors: event constructor(string s)

e Indexers: public integer this[lnteger i][get, set]
e .NET properties: publ i ¢ i nt eger

WPF DataWindow Enhancements

pl[get, set]
e Instance variables: public string sl

This section describes new features for the PowerBuilder .NET IDE only.

Optimized SRD Syntax

Based on the design of the native DataWindow, the redundant syntax of Number, Boolean, and
String properties has been omitted in generated SRD syntax.

This rule is applied to expression properties.

Data Buffers in the Debugger

The debugger visualizers for DataWindows can be used to view the primary, filtered, and

deleted data buffers.

The DataWindow visualizer and ListView visualizer display the values of the corresponding

buffer using either the DataWindow style or a simple list.

New Features

11

PowerBuilder .NET

The DataWindow visualizer does not support crosstab, composite styles and report controls.
The ListView visualizer does not support composite style or report controls. The blob data is
displayed as System.Byte[] in the ListView visualizer.

Child DataWindow Control Support

The Child DataWindow control can be nested for many levels.

When a nested report is inserted into a DataWindow, a print preview-mode DataWindow
control is used. A Child DataWindow is editable if you use the control in a Composite style
DataWindow.

Candlestick Graphs

Use the candlestick graph to visually display the prices of stocks, bonds, commodities, and so
on.

« The end points of the line show the highest price and the lowest price at the date or time.

< The top and bottom of the rectangle show the opening price and closing price, which
depends on whether the opening price is higher or lower than the closing price.

« Anempty rectangle indicates that there was appreciation. A filled rectangle indicates
depreciation.

COMPX
27701
—
27501 M .
R

.g 27301

2710 P i

| M T .
26901 [
2670 T T T T T T T
1/3/2011 1/6/2011 1/11/2011 1/14/2011 1/20/2011 1/25/2011 1/28/2011
Date

Using the Palette

You can define palettes for any graph, which is useful for setting colors; for example, in some
countries red has a negative connotation and is used for depreciation, but in other countries it
has a positive connotation and is used for appreciation.

e The brush color at index 0 is for depreciation.
e The brush color at index 1 is for appreciation.

12

PowerBuilder

PowerBuilder .NET

Global Functions List
Global functions are listed in the expression dialog for DataWindow objects.

New Features 13

PowerBuilder .NET

14 PowerBuilder

	New Features
	Contents
	PowerBuilder Classic and .NET
	AutoWidth Property
	Support for Tab Sequence, Enabled, and Show Focus Rectangle Properties
	Support for New ASE 15.5 Datatypes

	PowerBuilder Classic
	Window Control transparent Value and transparency property
	Sharing Datasources with .NET
	RTF and Images in the DataWindow Object
	User-Drawn Controls in DataWindow Objects

	PowerBuilder .NET
	.NET 4.0 Framework
	Visual Studio 2010 Isolated Shell
	Script Editor Changes
	Batch Command Processing
	Multithreading Support
	Targets
	WCF Services
	Support for CVUOs in .NET Assemblies
	Support for Split Assemblies in WPF Targets
	PB Assembly Target
	REST client

	Language Enhancements
	Consume .NET Events
	Enhancement of the .NET Assembly Target

	WPF DataWindow Enhancements
	Optimized SRD Syntax
	Data Buffers in the Debugger
	Child DataWindow Control Support
	Candlestick Graphs
	Global Functions List

