
Primary Database Guide

Replication Agent™ 15.7.1
SP100

Linux, Microsoft Windows, and UNIX

DOCUMENT ID: DC00269-01-1571100-02
LAST REVISED: July 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Conventions ...1
Replication Agent for Oracle ..5

Oracle-Specific Considerations5
Unsupported Oracle Software Features5
Unsupported Oracle Datatypes, Data, and

Structures ..6
Supported Oracle Datatypes, Data, and

Structures ..7
Replication Agent Connectivity8
Replication Agent Permissions8
Multiple Replication Agents13
High Availability ..15
Redo and Archive Log Setup15
Supplemental Logging ...19
DDL Replication ...20
Character Case of Database Object Names22
Format of Origin Queue ID23
LTL Origin Commit Time Granularity23
Replication Server and RSSD Scripts23
Oracle Datatype Compatibility24
Oracle Datatype Restrictions32
Oracle Large Object (LOB) Support35
Oracle User-Defined Types39
Sequence Marking and Unmarking41
Sequence Replication Enabling and Disabling44
Setting Up Replication Agent and Oracle on

Different Machines ...45
Real Application Clusters (RAC)46
Automatic Storage Management48
Replication Server set autocorrection Command

...50

Primary Database Guide iii

Partitioned Tables ..50
Materialized Views ...51
Index-Organized Tables56
Replicate Database Trigger Execution Control57
Alteration of Replication Definitions from the

Primary Data Server ..57
Oracle Data Guard ...58
Database Resynchronization59
Oracle Transaction and Operation

Troubleshooting ...59
Stored Procedure Replication with BOOLEAN

Arguments ...60
Oracle Warm Standby ..62
Oracle Flashback ...63
XMLTYPE Data Replication66
Oracle 11g Release 2 ..69
Oracle 9i ..71

Replication Agent Objects in the Oracle Primary
Database ..71

Replication Agent Object Names72
Table Objects ...72
Marker Objects ..75
Sequences ...75
Marked Procedures ...75
Transaction Log Truncation76

Replication Agent for Microsoft SQL Server79
Microsoft SQL Server-Specific Considerations79

Microsoft SQL Server Requirements79
Microsoft SQL Server Restrictions79
Unsupported Software Features80
Unsupported Datatypes81
Applying Microsoft SQL Server Patches81
DDL Replication ...83
Replication Agent Connectivity85
Replication Agent Permissions and Roles85

Contents

iv Replication Agent

The sybfilter Driver ...85
Initialization of the Primary Data Server and

Replication Agent ..86
Character Case of Database Object Names 90
Format of Origin Queue ID 91
Microsoft SQL Server Datatype Compatibility 91
ntext Datatype Replication96
Alteration of Replication Definitions from the

Primary Data Server ..97
Replication Server set autocorrection Command

...98
Computed Columns ...98

Replication Agent Objects in the Microsoft SQL Server
Primary Database .. 99

Replication Agent Object Names99
Using Windows Authentication with Microsoft SQL

Server ...103
Setting Up Replication Agent and Microsoft SQL

Server on Different Machines104
Replication Agent for UDB ..105

IBM DB2-Specific Considerations105
Unsupported Software Features105
Unsupported Datatypes106
Feature Differences in Replication Agent for

UDB ...106
IBM DB2 Requirements107
Java Heap Size ..109
Replication Agent and a DB2 Server on Different

Machines ...109
Replication Agent for UDB Connectivity

Parameters ..111
Repositioning in the Log111
Replication Agent for UDB Behavior112
Character Case of Database Object Names114
Format of Origin Queue ID114

Contents

Primary Database Guide v

DB2 Datatype Compatibility115
Replication Server set autocorrection Command

...120
Large Identifiers ...120
Compression ..120

Replication Agent Objects in the DB2 Primary
Database ..120

Replication Agent Object Names121
Table Objects ...121
Java Procedure Objects122
Finding the Names of Replication Agent Objects

...123
Marked Objects Table ..123
Transaction Log Truncation124

Upgrading and Downgrading Replication Agent127
Upgrade and Migration Procedures for Replication

Agent for Oracle ...127
Upgrading Replication Agent for Oracle to 15.7.1

SP100 ..128
Migrating Replication Agent for Oracle 15.7.1

SP100 When Upgrading Oracle 10g to 11g . 129
Upgrade Procedures for Replication Agent for

Microsoft SQL Server ...129
Upgrading Replication Agent for Microsoft SQL

Server to 15.7.1 SP100130
Upgrade and Migration Procedures for Replication

Agent for UDB ..131
Upgrading Replication Agent for UDB to 15.7.1

SP100 ..131
Migrating Replication Agent for UDB When DB2

is Upgraded from Version 8.2 or 9.1 to Version
9.5 or 9.7 ...133

Downgrading Replication Agent for Oracle134
Downgrading Replication Agent for Microsoft SQL

Server ...135

Contents

vi Replication Agent

Downgrading Replication Agent for UDB136
sybfilter Driver Reference ...139

Determining the Microsoft Filter Manager Library
Version ..139

Installing and Setting Up the sybfilter Driver139
Troubleshooting ..141
Using the Trace Log ..142
sybfilter Command Reference142

add ...142
check ...142
exit ...143
help ..143
list ..143
refresh ..143
remove ...143
start ..143
stop ..144
trace ...144

Glossary ...145
Index ..153

Contents

Primary Database Guide vii

Contents

viii Replication Agent

Conventions

These style and syntax conventions are used in Sybase® documentation.

Style conventions

Key Definition

monospaced (fixed-
width)

• SQL and program code

• Commands to be entered exactly as shown

• File names

• Directory names

italic monospaced In SQL or program code snippets, placeholders for user-specified
values (see example below).

italic • File and variable names

• Cross-references to other topics or documents

• In text, placeholders for user-specified values (see example be-
low)

• Glossary terms in text

bold sans serif • Command, function, stored procedure, utility, class, and meth-
od names

• Glossary entries (in the Glossary)

• Menu option paths

• In numbered task or procedure steps, user-interface (UI) ele-
ments that you click, such as buttons, check boxes, icons, and so
on

If necessary, an explanation for a placeholder (system- or setup-specific values) follows in
text. For example:

Run:
installation directory\start.bat

where installation directory is where the application is installed.

Conventions

Primary Database Guide 1

Syntax conventions

Key Definition

{ } Curly braces indicate that you must choose at least one of the enclosed options. Do
not type the braces when you enter the command.

[] Brackets mean that choosing one or more of the enclosed options is optional. Do
not type the brackets when you enter the command.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options shown.

, The comma means you can choose as many of the options shown as you like,
separating your choices with commas that you type as part of the command.

... An ellipsis (three dots) means you may repeat the last unit as many times as you
need. Do not include ellipses in the command.

Case-sensitivity

• All command syntax and command examples are shown in lowercase. However,
replication command names are not case-sensitive. For example, RA_CONFIG,
Ra_Config, and ra_config are equivalent.

• Names of configuration parameters are case-sensitive. For example, Scan_Sleep_Max is
not the same as scan_sleep_max, and the former would be interpreted as an invalid
parameter name.

• Database object names are not case-sensitive in replication commands. However, to use a
mixed-case object name in a replication command (to match a mixed-case object name in
the primary database), delimit the object name with double quote characters. For example:
pdb_get_tables "TableName"

• Identifiers and character data may be case-sensitive, depending on the sort order that is in
effect.
• If you are using a case-sensitive sort order, such as “binary,” you must enter identifiers

and character data with the correct combination of uppercase and lowercase letters.
• If you are using a sort order that is not case-sensitive, such as “nocase,” you can enter

identifiers and character data with any combination of uppercase or lowercase letters.

Terminology
Replication Agent™ is a generic term used to describe the Replication Agents for Adaptive
Server® Enterprise, Oracle, Microsoft SQL Server, and IBM DB2 for Linux, Unix and
Windows. The specific names are:

• RepAgent – Replication Agent thread for Adaptive Server Enterprise
• Replication Agent for Oracle

Conventions

2 Replication Agent

• Replication Agent for Microsoft SQL Server
• Replication Agent for IBM DB2 UDB

Conventions

Primary Database Guide 3

Conventions

4 Replication Agent

Replication Agent for Oracle

Review the features of Replication Agent that are unique to Replication Agent for Oracle.

The term "Replication Agent for Oracle" refers to an instance of Replication Agent software
that is installed and configured for a primary database that resides in an Oracle data server.

Note: For information on the basic features and operation of Replication Agent, see the
Replication Agent Administration Guide and Replication Agent Reference Manual.

Oracle-Specific Considerations
These general issues and considerations are specific to using Replication Agent with the
Oracle data server.

Unsupported Oracle Software Features
Review the Oracle features that are not supported by Replication Agent.

These features are not supported:
• Oracle virtual columns
• Oracle label security
• Oracle-packaged stored procedures and functions (standalone procedures and functions

are supported)
• Oracle schema objects in encrypted tablespaces
• Replication Server® parallel DSI
• Replication Server rs_init utility
• Replication Server rs_subcomp utility
• Replication Server automatic materialization
• Replication Server when replicating in an environment where other vendors are

replicating

Replication of Deferred Updates on Primary Keys
Updates to the unique column index in a table is not supported by traditional replication, and
the Replication Server reports errors.

The replication of updates to the unique column index in a table is not supported, and
Replication Server reports errors. For example, table t has a unique index on column c, with
values 1, 2, 3, 4 and 5. A single update statement is applied to the table:
update t set c = c+1

Using traditional replication, this statement results in:
update t set c = 2 where c = 1
update t set c = 3 where c = 2

Replication Agent for Oracle

Primary Database Guide 5

update t set c = 4 where c = 3
update t set c = 5 where c = 4
update t set c = 6 where c = 5

The first update attempts to insert a value of c=2 into the table. However, this value already
exists in the table. Replication Server displays error 2601—an attempt to insert a duplicate
key.

The Replication Server DSI stops working if you attempt to replicate updates to a non-Sybase
table that has a unique column index. To work around this problem, broaden the unique index
definition.

Unsupported Oracle Datatypes, Data, and Structures
Review the Oracle datatypes that are not supported by Replication Agent.

These datatypes are not supported:

• Oracle-supplied datatypes:
• “Any” Types (SYS.ANYTYPE, SYS.ANYDATASET), except for SYS.ANYDATA.

• MLSLABEL
• Spatial Types (MDSYS.SDO_GEOMETRY, SDO_TOPO_GEOMETRY,

SDO_GEORASTER)

• Media Types (ORDSYS.ORDAudio, ORDSYS.ORDImage,
ORDSYS.ORDImageSignature, ORDSYS.ORDVideo, ORDSYS.ORDDoc,
SI_StillImage, SI_Color, SI_AverageColor, SI_ColorHistogram,
SI_PositionalColor, SI_Texture, SI_FeatureList)

• Datatypes used with Oracle Expression Filter
• ANYDATA, if it is being replicated to a non-ANYDATA column or if the data exceeds

16KB, which is the size constraint of the Replication Server OPAQUE datatype.

• BFILE, UROWID, or REF data stored in an ANYDATA column

• BLOB or object user-defined datatype data being replicated to a replicate database
other than Oracle or Adaptive Server® Enterprise (ASE). When replicating to Oracle,
use ExpressConnect for Oracle since data of these types is not supported by Enterprise
Connect™ Data Access (ECDA) for Oracle.

• REF
• UROWID

• User-defined datatypes containing LOB data
• User-defined datatypes defined as NOT FINAL
• Partial updates to Oracle LOBs are not supported.
• Virtual columns – Replication Agent supports the replication of tables containing

computed (or virtual) columns in Oracle 11g. However, the replication of individual
computed columns is not supported. You can mark tables with virtual columns for
replication using the force option, but the virtual columns are not replicated.

Replication Agent for Oracle

6 Replication Agent

Data stored in the Oracle XML DB Repository is not supported if it is accessed with these
protocols or methods:

• Internet protocols like FTP, HTTP, HTTPS, and WebDAV
• The Oracle XML DB Repository API

These user-defined object types and structures are not supported:

• Associative arrays
• Nested tables
• VARRAY
• Nested tables or VARRAY stored in an ANYDATA column

Predefined PL/SQL Numeric Datatypes
Replication Agent does not support marking procedures containing the PLS_INTEGER or
BINARY_INTEGER predefined PL/SQL numeric datatypes.

Replication Agent does support marking procedures with the SIMPLE_INTEGER datatype,
which is a subtype of PLS_INTEGER. However, Replication Agent does not support marking
procedures containing any other subtypes of the aforementioned types, including NATURAL,
NATURALN, POSITIVE, POSITIVEN, and SIGNTYPE.

Supported Oracle Datatypes, Data, and Structures
Replication Agent supports the replication of encrypted data, compressed data, and
SecureFiles.

Encrypted Data
Replication Agent transparently supports the replication of data in encrypted columns,
partitions, and tablespaces for Oracle versions 11g Release 1 and later.

If your primary Oracle database version is earlier than 11g Release 1, you can still mark tables
containing encrypted columns, partitions, and tablespaces using the force option, but the
columns are not replicated.

Compressed Data
Replication Agent supports the replication of compressed tables, compressed tablespaces, and
data compressed for Oracle direct-load operations (bypassing I/O buffers) for Oracle versions
11g Release 2 and later.

Note: If you want to replicate tables compressed for online transaction processing (OLTP),
apply first the Oracle patch# 129050503.

SecureFile Data
Replication Agent supports the replication of Oracle data stored with the SecureFile option.

Replication Agent supports the replication of Oracle LOB data stored with the SecureFile
option for Oracle versions 11g Release 2 and later. If your primary Oracle database version is

Replication Agent for Oracle

Primary Database Guide 7

earlier than 11g Release 2, you can still mark tables containing SecureFile LOB columns
using the force option, but the columns are not replicated.

Replication Agent Connectivity
Replication Agent for Oracle uses JDBC™ for communications with all replication system
components.

The Oracle JDBC driver must be installed on the Replication Agent host machine, and the
directory this driver is installed in must be in the CLASSPATH environment variable.

The TNS Listener Service must be installed and running on the primary database so the
Replication Agent instance can connect to it. See the Oracle Database Net Services
Administrator's Guide. See the Replication Agent Installation Guide for the specific JDBC
driver and version to install.

Replication Agent Permissions
Replication Agent for Oracle uses the pds_username to connect to Oracle and must have
certain Oracle permissions.

These permissions are required:

• GRANT ALTER ANY PROCEDURE – required to manage procedures for replication.
• GRANT ALTER DATABASE – required for Replication Agent to read from a Data Guard

standby database transaction log.
• GRANT ALTER ON TABLE_NAME – required to replicate user-defined datatypes if table-

level supplemental logging has not been enabled for the specified TABLE_NAME.
• GRANT ALTER SYSTEM – required to perform redo log archive operations.
• GRANT CREATE ANY PROCEDURE – required to mark procedures for replication.
• GRANT CREATE PROCEDURE – required to create rs_marker and rs_dump proc

procedures.
• GRANT CREATE PUBLIC SYNONYM – required to create synonyms for created tables in

the primary database.
• GRANT CREATE SEQUENCE – required to support replication.
• GRANT CREATE SESSION – required to connect to Oracle.
• GRANT CREATE TABLE – required to create tables in the primary database.
• GRANT DROP PUBLIC SYNONYM – required to drop created synonyms.
• GRANT EXECUTE_CATALOG_ROLE – required to use Oracle LogMiner.
• GRANT EXECUTE ON DBMS_FLASHBACK – required to execute

DBMS_FLASHBACK.get_system_change_number.

• GRANT EXECUTE ON SYS.DBMS_LOCK – required to generate commit log records at the
primary database.

• GRANT SELECT ANY TRANSACTION – required to use Oracle LogMiner.
• GRANT SELECT_CATALOG_ROLE – required to select from the DBA_* views.

Replication Agent for Oracle

8 Replication Agent

• GRANT SELECT ON SYS.OPQTYPE$ – required for DDL replication and XMLTYPE data
replication.

• GRANT SELECT ON SYS.RECYCLEBIN$ – required to use Oracle Flashback with
Replication Agent.

• GRANT SELECT ON SYS.ARGUMENT$ – required to process procedure DDL commands.
• GRANT SELECT ON SYS.CCOL$ – required to support table replication (column

constraint information).
• GRANT SELECT ON SYS.CDEF$ – required to support table replication (constraint

information).
• GRANT SELECT ON SYS.COL$ – required to support table replication (column

information).
• GRANT SELECT ON SYS.COLLECTION$ – required to support table replication.
• GRANT SELECT ON SYS.COLTYPE$ – required to support table replication.
• GRANT SELECT ON SYS.CON$ – required to support table replication (constraint

information).
• GRANT SELECT ON SYS.DEFERRED_STG$ – required to suppress replication of

compressed tables on Oracle 11g Release 2, on which LogMiner does not support
compressed tables.

• GRANT SELECT ON SYS.IND$ – required to identify indexes.
• GRANT SELECT ON SYS.INDCOMPART$ – required to identify indexes.
• GRANT SELECT ON SYS.INDPART$ – required to identify indexes.
• GRANT SELECT ON SYS.INDSUBPART$ – required to identify indexes.
• GRANT SELECT ON SYS.LOB$ – required for LOB replication support.
• GRANT SELECT ON SYS.LOBCOMPPART$ – required to support partitioned LOB

replication.
• GRANT SELECT ON SYS.LOBFRAG$ – required to support partitioned LOB replication.
• GRANT SELECT ON SYS.MLOG$ – required to filter materialized view log tables.
• GRANT SELECT ON SYS.NTAB$ – required to support table replication.
• GRANT SELECT ON SYS.OBJ$ – required for processing procedure DDL commands in

the repository.
• GRANT SELECT ON SYS.PROCEDUREINFO$ – required for procedure replication

support.
• GRANT SELECT ON SYS.SEG$ – required to suppress replication of compressed tables

on versions of Oracle where LogMiner does not support compressed tables.
• GRANT SELECT ON SYS.SEQ$ – required to support sequence replication.
• GRANT SELECT ON SYS.SNAP$ – required to filter out materialized view tables.
• GRANT SELECT ON SYS.TAB$ – required to support table replication.
• GRANT SELECT ON SYS.TABCOMPART$ – required to support partitioned table

replication.
• GRANT SELECT ON SYS.TABPART$ – required to support partitioned table replication.

Replication Agent for Oracle

Primary Database Guide 9

• GRANT SELECT ON SYS.TABSUBPART$ – required to support partitioned table
replication.

• GRANT SELECT ON SYS.TS$ – required to identify tablespace encryption in Oracle 11g.
• GRANT SELECT ON SYS.TYPE$ – required to process Oracle predefined and user-

defined types.
• GRANT SELECT ON SYS.USER$ – required for Oracle user identification.
• GRANT SELECT ON SYS.ATTRIBUTE$ – required to process Oracle types.
• GRANT SELECT ON V_$LOGMNR_CONTENTS – required to use Oracle LogMiner.
• GRANT SELECT ON V_$LOGMNR_LOGS – required to use Oracle LogMiner.
• GRANT SELECT ON SYS.PARTOBJ$ – required to support partitioned table replication.
• GRANT SELECT ON SYS.ICOL$ – required to support the use of a unique index on

columns as the primary key of the replication definition when there is no primary key
defined for that table.

For supplemental logging at table level, the script generated from either ra_admin prepare for
a new instance, or from ra_admin supplemental_logging_level, table, turns on table-level
supplemental logging of these Oracle system tables:

• SYS.ARGUMENT$
• SYS.ATTRIBUTE$
• SYS.COLLECTION$
• SYS.COLTYPE$
• SYS.DEFERRED_STG$
• SYS.INDCOMPART$
• SYS.INDPART$
• SYS.INDSUBPART$
• SYS.LOB$
• SYS.LOBCOMPPART$
• SYS.LOBFRAG$
• SYS.MLOG$
• SYS.NTAB$
• SYS.OPQTYPE$
• SYS.PROCEDUREINFO$
• SYS.RECYCLEBIN$
• SYS.SEQ$
• SYS.SNAP$
• SYS.TABPART$
• SYS.TABCOMPART$
• SYS.TABSUBPART$
• SYS.TYPE$

If the Replication Agent is configured to remove old archive files, the user must have UPDATE
authority to the directory and the archive log files.

Replication Agent for Oracle

10 Replication Agent

Replication Agent for Oracle requires the ALTER SYSTEM privilege to issue the ALTER
SYSTEM ARCHIVE LOG command. If Replication Agent is configured to access only online
Oracle redo logs, Replication Agent issues the ALTER SYSTEM ARCHIVE LOG SEQUENCE
command when the online redo log is no longer needed for replication (as when all data from
the log has been replicated). Regardless of online or archive log processing, Replication Agent
uses the ALTER SYSTEM privilege to issue the ALTER SYSTEM ARCHIVE LOG CURRENT
command when Replication Agent is instructed to move processing to the end of the Oracle
log. By issuing the ALTER SYSTEM ARCHIVE LOG CURRENT command, Replication Agent
ensures that the current redo log file does not contain old data. Replication Agent moves
processing to the end of the Oracle redo log when requested by the move_truncpt option of the
ra_locator command. Replication Agent may also move processing to the end of the Oracle
redo log during migration from one version of Replication Agent to another.

Oracle 10g and 11g Privileges for DDL Replication

Note: Issuing GRANT ALL PRIVILEGES TO DDLUSER turns the DDL user into a superuser,
like the SYS or SYSTEM user.

Different versions of Oracle have different permission requirements. For Oracle 10g and 11g,
grant the DDL user permission to execute these commands:

• GRANT ALTER ANY INDEX

• GRANT ALTER ANY INDEXTYPE

• GRANT ALTER ANY PROCEDURE

• GRANT ALTER ANY TABLE

• GRANT ALTER ANY TRIGGER

• GRANT ALTER ANY TYPE

• GRANT ALTER SESSION

• GRANT BECOME USER

• GRANT CREATE ANY INDEX

• GRANT CREATE ANY INDEXTYPE

• GRANT CREATE ANY PROCEDURE

• GRANT CREATE ANY SYNONYM

• GRANT CREATE ANY TABLE

• GRANT CREATE ANY TRIGGER

• GRANT CREATE ANY TYPE

• GRANT CREATE ANY VIEW

• GRANT CREATE INDEXTYPE

• GRANT CREATE MATERIALIZED VIEW

• GRANT CREATE PROCEDURE

• GRANT CREATE PUBLIC SYNONYM

• GRANT CREATE SYNONYM

• GRANT CREATE TABLE

Replication Agent for Oracle

Primary Database Guide 11

• GRANT CREATE TRIGGER

• GRANT CREATE TYPE

• GRANT CREATE VIEW

• GRANT DELETE ANY TABLE

• GRANT DROP ANY INDEX

• GRANT DROP ANY INDEXTYPE

• GRANT DROP ANY MATERIALIZED VIEW

• GRANT DROP ANY PROCEDURE

• GRANT DROP ANY SYNONYM

• GRANT DROP ANY TABLE

• GRANT DROP ANY TRIGGER

• GRANT DROP ANY TYPE

• GRANT DROP ANY VIEW

• GRANT DROP PUBLIC SYNONYM

• GRANT INSERT ANY TABLE

• GRANT SELECT ANY TABLE

• GRANT UPDATE ANY TABLE

Revoke user permission from the DDL user to execute:

• GRANT ALTER DATABASE

• GRANT ALTER ROLLBACK SEGMENT

• GRANT ALTER SYSTEM

• GRANT ALTER TABLESPACE

• GRANT ANALYZE ANY

• GRANT AUDIT ANY

• GRANT AUDIT SYSTEM

• GRANT CREATE DATABASE LINK

• GRANT CREATE ROLLBACK SEGMENT

• GRANT CREATE TABLESPACE

• GRANT DROP PUBLIC DATABASE LINK

• GRANT DROP ROLLBACK SEGMENT

• GRANT DROP TABLESPACE

• GRANT LOCK ANY TABLE

Oracle 10g and 11g Privileges for the ra_admin_owner User
If you configure the ra_admin_owner user, these permissions are required:

• GRANT CREATE SESSION

• GRANT CREATE TABLE

• GRANT CREATE SEQUENCE

Replication Agent for Oracle

12 Replication Agent

• GRANT CREATE ANY PROCEDURE

• GRANT SELECT_CATALOG_ROLE

Multiple Replication Agents
Multiple Replication Agent instances allow transactions to be replicated in parallel along
multiple independent paths, increasing replication throughput and performance, and reducing
resource contention.

Using multiple Replication Agent instances with Replication Server Multi-Path Replication™

enables the replication of data through different streams, maintaining data consistency within
a path but not adhering to the commit order across different paths. Replication Agent for
Oracle supports the use of multiple Replication Agent instances to replicate Oracle tables and
procedures.

Figure 1: Multipath Replication

Note: All Replication Agent instances in a common Replication Agent group must be of the
same version.

For a description of end-to-end Multi-Path Replication scenarios, see the Replication Server
Heterogeneous Replication Guide.

Configuration
In a Replication Server Multi-Path Replication scenario, multiple Replication Agent for
Oracle instances are grouped together and share common system resources to coordinate in a
Multi-Path Replication solution:

• Every Replication Agent for Oracle instance in a Replication Agent group must use the
same value for the ra_admin_owner and ra_admin_prefix parameters.

Replication Agent for Oracle

Primary Database Guide 13

• Each Replication Agent for Oracle instance in a Replication Agent group must use a
unique value for the ra_admin_instance_prefix parameter. This parameter distinguishes
Replication Agent for Oracle instances within a group.

See the Replication Agent Reference Manual.

DDL Replication with Multiple Replication Agents
You can configure each Replication Agent instance to replicate all DDL operations or no DDL
operations in the primary database.

In a Replication Agent group, you can also configure each Replication Agent instance to
replicate:

• DDL operations for all objects marked for replication by the instance
• DDL operations for all objects marked for replication by the instance and DDL operations

for objects not marked for replication by any instances

To avoid DDL synchronization errors with multiple Replication Agents, use these keywords
with the pdb_setrepddl command:

• all specifies that all DDL operations are to be replicated by the instance.
• marked specifies that only DDL operations for objects that have been marked for

replication by the instance are to be replicated.
• unmarked specifies that DDL operations for objects that have not been marked for

replication by any instance are to be replicated. Nonschema DDL operations are also
replicated by an instance that specifies this keyword.

Example
A Replication Agent group containing three instances replicates DDL operations performed
on these tables in the primary database:

• table_A is marked for replication by instance ra_instance_1.

• table_B is marked for replication by instance ra_instance_2.

• table_C is marked for replication by instance ra_instance_3.

• table_D is not marked for replication by any instance.

The Replication Agent instances use the pdb_setrepddl command to specify which DDL to
replicate:
ra_instance_1>pdb_setrepddl enable, marked
ra_instance_1>pdb_setrepddl enable, unmarked
ra_instance_2>pdb_setrepddl enable, marked
ra_instance_3>pdb_setrepddl enable, marked

The DDL is replicated as follows:

Replication Agent for Oracle

14 Replication Agent

Replication Agent
Instance

DDL Replicated

ra_instance_1 DDL for table_A, table_D, and nonschema DDL operations

ra_instance_2 DDL for table_B
ra_instance_3 DDL for table_C

High Availability
A primary data server may employ a high-availability solution, such as failover clustering, to
minimize downtime in the event of hardware or software failure.

Although Replication Agent does not provide any high-availability solutions, it works with a
third-party high-availability solution for the primary database if:

• Replication Agent is installed on a shared file system, such as OCFS, a Network File
System (NFS), or a Veritas Cluster Server (VCS). The Replication Agent binaries,
configuration files, and RASD files must be installed on the system.

• A third-party cluster-management solution—such as Sun Cluster Manager, Veritas
Cluster Manager, or Oracle Cluster Ready Services (CRS) —is used to automatically start
Replication Agent in the event of failover.

Redo and Archive Log Setup
By default, you can access both online and archive logs. You can configure Replication Agent
to access only the online logs, but doing so requires you to turn Oracle automatic archiving off
and requires Replication Agent to issue manual archive log commands to Oracle.

Note: If Replication Agent for Oracle is configured to truncate Oracle archive logs directly
—rman_enabled is set to false and pdb_archive_remove is set to true—it must be installed on
a host that has direct access to the Oracle archive log files.

Archive Log Access
When you are using the default, for archive log files to be accessed, configure Replication
Agent to use the directory path where archive log files are located. By default, an Oracle
instance creates multiple directories under the flash recovery area specified by the
DB_RECOVERY_FILE_DEST parameter of the Oracle ALTER SYSTEM command, each
directory corresponding to and named after a separate day. However, Replication Agent
requires archived redo log files to reside in a single directory. Consequently, you must
configure Oracle to archive to a single directory to be read by Replication Agent.

Note: To prevent conflicts with other archive file processes, you may want to configure Oracle
to duplex the archive log files into an additional destination directory that is used only for
replication.

Replication Agent for Oracle

Primary Database Guide 15

For information on specifying archive log destinations for your Oracle environment, see the
Oracle ALTER SYSTEM command and LOG_ARCHIVE_DEST_n parameter.

Note: Accessing Oracle archived redo logs that are stored as file-system files is discussed in
this section. If the archived redo logs are stored using the Oracle ASM, see the discussion of
Automatic Storage Management.

Replication Agent for Oracle requires that redo log archiving is enabled at your Oracle
database:
alter database ARCHIVELOG;

Note: If you are using Oracle Real Application Clusters (RAC), you must enable redo log
archiving for each instance in the cluster.

Verify that log archiving is enabled:

select log_mode from v$database;

If you are using Oracle RAC, use this SQL statement to verify that log archiving has been
enabled:
select instance, name, log_mode from gv$database;

If ARCHIVELOG (ARCHIVELOG or MANUAL in Oracle 10g) is returned, then log
archiving is enabled.

Archive Log File Access
In the Replication Agent, set the pdb_archive_path configuration property to the expected
location of archived redo log files. You can also set the Replication Agent
pdb_archive_remove configuration parameter to true to allow the Replication Agent to
remove these archive log files when they are no longer needed to support replication.

The rman_enabled parameter enables Replication Agent to use the Oracle RMAN utility to
truncate old archive log files. See the Replication Agent Reference Manual.

Replication Agent Archive Setup
When pdb_include_archives is set to true (the default), Replication Agent does not archive,
and Sybase recommends that you configure Oracle to perform automatic archiving of redo
logs.

When the pdb_include_archives configuration parameter is set to false, Replication Agent
for Oracle also requires you to disable automatic archiving of Oracle redo logs. Archiving is
performed manually by Replication Agent as the data in the online redo log files is replicated.

Replication Agent for Oracle requires these settings in your Oracle database depending on the
Oracle version.

See also
• Automatic Storage Management on page 48

Replication Agent for Oracle

16 Replication Agent

Disabling Automatic Archiving for Oracle 10g
Disable automatic archiving for Oracle 10g.

1. Make sure you have sysdba administrator privileges, and close the database.

2. Enter:

alter database ARCHIVELOG MANUAL;
3. To verify that log archiving is disabled, enter:

select log_mode from v$database;

If MANUAL is returned, then automatic log archiving is disabled.

Disabling Automatic Archiving for Oracle 11g
Disable automatic archiving for Oracle 11g.

1. To change the LOG_ARCHIVE_START parameter, either manually edit the server start-
up parameter file, or enter:

alter system set log_archive_start=false scope=spfile;
2. To check the setting of the LOG_ARCHIVE_START parameter, enter:

select value from v$system_parameter where name =
'log_archive_start';

3. If false is returned, the value in the server parameter file has been correctly modified to
prevent automatic archiving when you restart the Oracle server. For information about the
LOG_ARCHIVE_START parameter or the ALTER SYSTEM commands, see the Oracle
Database Reference Guide.

4. Automatic archiving must be disabled in the active server and when you restart the Oracle
server. To stop automatic archiving in the active server, enter:

alter system archive log stop;
5. To disable automatic archiving when you restart the Oracle server, change the value of the

server LOG_ARCHIVE_START parameter to false.

Note: If pdb_include _archives is set to false: For redo log file processing after
Replication Agent for Oracle is initialized, automatic archiving must never be enabled,
even temporarily. If automatic archiving is enabled or if manual archiving is performed,
causing a redo log file not yet processed by the Replication Agent to be overwritten, the
data in the lost redo log file is not replicated. You can recover from this situation by
reconfiguring the Replication Agent to access archive log files. Set pdb_include_archives
to true, set pdb_archive_path to the directory location that contains the archive of the file
that has been overwritten, and resume. After catching up, suspend the Replication Agent,
and reset pdb_include_archives to false.

Replication Agent for Oracle

Primary Database Guide 17

Forcing the Logging of All Database Changes
Sybase recommends that you enable forced logging of all database changes to the Oracle redo
log file to ensure that all data that should be replicated is logged.

1. In the primary database, execute:

alter database FORCE LOGGING;
2. Verify the current setting by executing:

select force_logging from v$database;

UNC Paths for Windows Archive and Online Redo Log Paths
If Replication Agent for Oracle is running as a Windows service and the primary Oracle data
server is installed on a separate machine, configure the archive and online redo log paths
according to the Microsoft Windows Universal Naming Convention (UNC):
\\oracle_server_machine\oracle_log_path

where oracle_server_machine is where the primary Oracle data server resides, and
oracle_log_path is the archive or redo log file. For example, to set the location of archive redo
log files to the oracle directory on the machine named labratx64, enter:

1> ra_config pdb_archive_path, \\labratx64\oracle
2> go

Configuring Oracle LogMiner
Configure Oracle LogMiner on the primary Oracle database.

1. Go to $ORACLE_HOME/rdbms/admin.

2. Log in as a “sys as sysdba” user.

3. Execute the Oracle LogMiner installation script:

@dbmslm.sql
4. After LogMiner is installed, create a public synonym so that you do not have to log in as the

owner to execute LogMiner functions:

CREATE PUBLIC SYNONYM DBMS_LOGMNR FOR
 SYS.DBMS_LOGMNR;

Note: This step is required if you are using Oracle 10g.

5. Grant these privileges to pds_username:

• EXECUTE_CATALOG_ROLE

• SELECT ON V_$LOGMNR_CONTENTS

• SELECT ON V_$LOGMNR_LOGS

• SELECT ANY TRANSACTION

Replication Agent for Oracle

18 Replication Agent

Note: The ra_migrate command verifies that these privileges have been granted to
pds_username. If these privileges have not been granted at the time ra_migrate is
invoked, a warning message is returned and logged in the Replication Agent log file.

Supplemental Logging
Enable supplemental logging and supplemental logging of primary key data and index
columns.

To enable supplemental logging, execute these Oracle commands:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE
 INDEX) COLUMNS;

To verify that minimal supplemental logging and supplemental logging of primary key and
unique index information is enabled, enter:

select SUPPLEMENTAL_LOG_DATA_MIN, SUPPLEMENTAL_LOG_DATA_PK,
SUPPLEMENTAL_LOG_DATA_UI from v$database;

If YES is returned for each column, supplemental logging of primary key information is
enabled.

Table-Level Supplemental Logging
To replicate updates to user-defined object type attributes, Replication Agent must enable
table-level supplemental logging.

Manually enable table-level supplemental logging by entering:

ALTER TABLE THE_TABLE ADD SUPPLEMENTAL LOG DATA (ALL)
COLUMNS;

where THE_TABLE is the name of the table on which supplemental logging is being enabled.
Verify that table-level supplemental logging has been enabled by executing:

select count(*) from ALL_LOG_GROUPS where
LOG_GROUP_TYPE='ALL COLUMN LOGGING' and OWNER=THE_OWNER
and TABLE_NAME=THE_TABLE

where THE_OWNER is the table owner. If this command returns a value of 1, table-level
supplemental logging has been enabled for this table.

You can also enable supplemental logging from Replication Agent for Oracle using the
ra_set_autocorrection command as described in the Replication Agent Reference Manual.

Replication Agent for Oracle

Primary Database Guide 19

DDL Replication
Replication of data definition language (DDL) commands is supported, but only to Oracle
databases. You cannot replicate DDL commands from Oracle to non-Oracle replicate
databases.

Replication of DDL commands is enabled or disabled in Replication Agent using the
pdb_setrepddl command. Replication Agent for Oracle can disable or enable the replication
of specific DDL commands by object, owner, statement, or user. Replication Server uses the
ddl_username parameter to execute DDL commands in the replicate database as the same
user who executed the DDL commands in the primary database.

Note: By default, Replication Agent for Oracle filters SYS user DDL and if you want to
replicate the SYS user DDL, you can manually remove the filter.

See Replication Agent Reference Manual > Command Reference > pdb_setrepddl and
Replication Agent Reference Manual > Configuration Parameters > ddl_username for details
on using pdb_setrepddl and ddl_username.

DDL parameters
Set the ddl_username and ddl_password parameters.

To replicate DDL in Oracle, use pdb_setrepddl to set filtering rules accordingly. You must
also set the Replication Agent ddl_username and ddl_password parameters. ddl_username
is the database user name used to execute the replicated DDL command at the target database.
This user must have permission to execute all replicated DDL commands at the target
database. ddl_password is the corresponding password for ddl_username. In addition, the
ddl_username database user must have permission to issue the ALTER SESSION SET
CURRENT_SCHEMA command for any primary database user that might issue a DDL
command to be replicated. See the Replication Agent Reference Manual.

Special Usage Notes
The value of ddl_username cannot be the same as the maintenance user defined in Replication
Server for the replicate connection. If these names are the same, a Replication Server error
results.

The value of the ddl_username parameter is sent in the LTL for all replicated DDL statements.
When DDL is replicated, Replication Server connects to the replicate database using the user
ID and password specified by the ddl_username and ddl_password parameters. Replication
Server then issues:

ALTER SESSION SET CURRENT_SCHEMA=user

where user is the user ID that generated the DDL operation at the primary database. The actual
DDL command is then executed against the replicate database. If the user ID specified in
ddl_username does not have permission to issue the ALTER SESSION SET

Replication Agent for Oracle

20 Replication Agent

CURRENT_SCHEMA or to execute the DDL command against the user schema, the command
fails.

Note: To replicate DDL, Replication Server must have a database-level replication definition
with replicate DDL set in the definition. See the Replication Server Reference Manual.

DDL Commands and Objects Filtered from Replication
Some Oracle DDL commands and objects are not replicated.

These DDL commands are not replicated:

• alter database

• alter rollback segment

• alter session

• alter snapshot

• alter snapshot log

• alter system

• alter tablespace

• analyze

• audit

• create control file

• create database link

• create pfile from spfile

• create rollback segment

• create schema authorization

• create snapshot

• create snapshot log

• create spfile from pfile

• create tablespace

• drop database link

• drop rollback segment

• drop snapshot

• drop snapshot/log

• drop tablespace

• explain

• lock table

• no audit

• rename

• set constraints

• set role

• set transaction

Any objects that are owned by SYS are not replicated. Any object owned by users defined in
the list of nonreplicated users is not replicated. You can modify this list using the

Replication Agent for Oracle

Primary Database Guide 21

pdb_ownerfilter command. In addition, Sybase has provided a default list of owners whose
objects are not replicated. However, you cannot remove the SYS owner. Use the
pdb_ownerfilter command to return, add, or remove the list of owners whose objects are not
replicated. See the Replication Agent Reference Manual.

Note: The truncate table command is replicated as rs_truncate.

Character Case of Database Object Names
Database object names must be delivered to the primary Replication Server in the same format
as specified in replication definitions; otherwise, replication fails. For example, if a replication
definition specifies a table name in all lowercase, then that table name must appear in all
lowercase when it is sent to the primary Replication Server by the Replication Agent.

To control the way Replication Agent treats the character case of database object names sent to
the primary Replication Server, set the ltl_character_case configuration parameter to one of
these values:

• asis – (the default) database object names are passed to Replication Server in the same
format as stored in the primary data server.

• lower – database object names are passed to Replication Server in all lowercase, regardless
of how they are stored in the primary data server.

• upper – database object names are passed to Replication Server in all uppercase,
regardless of how they are stored in the primary data server.

In the Oracle data server, by default, database object names are stored in all uppercase.
However, if you create a case-sensitive name, the case-sensitivity is retained in Oracle.

These examples use the asis option:

• create table tabA is stored as TABA
• create table Tabb is stored as TABB
• create table ‘TaBc’ is stored as TaBc
These examples use the upper option:

• create table tabA is rendered in LTL as TABA
• create table Tabb is rendered in LTL as TABB
• create table ‘TaBc’ is rendered in LTL as TABC

Replication Agent for Oracle

22 Replication Agent

Format of Origin Queue ID
Each record in the transaction log is identified by an origin queue ID that consists of 64
hexadecimal characters (32 bytes). The format of the origin queue ID is determined by the
Replication Agent instance and varies according to the primary database type.

Table 1. Replication Agent for Oracle Origin Queue ID Format

Character Bytes Description

0–3 2 Database generation ID

4–15 6 System change number

16–19 2 System change number generation ID

20–23 2 Redo log thread

24–43 10 Redo log record block address

44–55 6 System change number of the oldest active transaction begin

56–63 4 Locator ID

LTL Origin Commit Time Granularity
For Oracle, the precision of the origin commit time does not include milliseconds.

Replication Agent retrieves the origin commit time from the Oracle redo log. Timestamps in
the redo log have a granularity only of seconds, not milliseconds.

Replication Server and RSSD Scripts
Replication Agent provides supplemental scripts to support additional Replication Server
user-defined datatypes for Oracle datatypes and the replication of DDL commands.

These Replication Server scripts are shipped with Replication Agent and must be applied
when the installed Replication Server is version 15.0.1 or earlier:

• $SYBASE/RAX-15_5/scripts/oracle/
hds_oracle_new_setup_for_replicate.sql

• $SYBASE/RAX-15_5/scripts/oracle/
oracle_create_error_class_1_rs.sql

• $SYBASE/RAX-15_5/scripts/oracle/
oracle_create_error_class_2_rssd.sql

• $SYBASE/RAX-15_5/scripts/oracle/
oracle_create_error_class_3_rs.sql

Manually run these Replication Server scripts against the RSSD when the installed
Replication Server is version 15.0.1 or earlier:

Replication Agent for Oracle

Primary Database Guide 23

• $SYBASE/RAX-15_5/scripts/oracle/hds_oracle_funcstrings.sql
• $SYBASE/RAX-15_5/hds_oracle_udds.sql
• $SYBASE/RAX-15_5/hds_clt_ase_to_oracle.sql

Applying Script Changes for User-Defined Datatypes
Apply these script changes to use Oracle user-defined datatypes.

To use Oracle user-defined datatypes:

1. If your Replication Server is version 15.0.1 or earlier, apply this script to support
replication of DDL to an Oracle replicate database:

$SYBASE/RAX-15_5/scripts/oracle/
hds_oracle_new_setup_replicate.sql
This script defines Replication Server objects that must be created in the replicate
database. Use this script instead of the hds_oracle_setup_replicate.sql
script provided in the Replication Server install directory. This revised script contains
additional changes to support Oracle-to-Oracle DDL replication.

2. To correctly define the Oracle error class for Replication Server 15.0.1 or an earlier
version:

• Apply this script at Replication Server:
$SYBASE/RAX-15_5/scripts/oracle/
oracle_create_error_class_1_rs.sql

• Apply this script against your RSSD:
$SYBASE/RAX-15_5/scripts/oracle/
oracle_create_error_class_2_rssd.sql

• Apply this script at Replication Server:
$SYBASE/RAX-15_5/scripts/oracle/
oracle_create_error_class_3_rs.sql

See Replication Server Heterogeneous Replication Guide > Oracle Primary Data Server
Issues.

Oracle Datatype Compatibility
Replication Agent for Oracle processes Oracle transactions and passes data to the primary
Replication Server. In turn, the primary Replication Server uses the datatype formats specified
in the replication definition to receive the data from Replication Agent for Oracle.

You can define a column that is CHAR or VARCHAR2 as char or varchar datatype
respectively in the replication definition. If the primary database character set is different from
the Replication Server character set, you must define the column as varchar datatype in the
replication definition and make sure that the size (in bytes) is large enough to accommodate
maximum size of characters in the primary database column.

Replication Agent for Oracle

24 Replication Agent

For example, if the character encoding is UTF-16 for the primary database (Oracle) and
UTF-32 for Replication Server, and if a column is CHAR(10) or VARCHAR2(10) in the
primary database, define the datatype as varchar(20) in the replication definition.

If the replication definition is automatically created by Replication Agent, Replication Agent
can measure the correct size of the datatype and perform accurate datatype mapping.

Table 2. Recommended Oracle Datatype Mapping

Oracle Datatype Oracle
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

BINARY_DOUBLE 9 bytes, 64-bit
single preci-
sion floating
point number
datatype

double 8 bytes • Maximum
positive fi-
nite value is
1.79769313
486231E
+308.

• Minimum
positive fi-
nite value is
2.22507485
850720-308.

BINARY_FLOAT 5 bytes, 32-bit
single preci-
sion floating
point number
datatype

rs_ora-
cle_floa
t

4 or 8 bytes,
depending on
precision

• Maximum
positive fi-
nite value is
3.40282E
+38F.

• Minimum
positive fi-
nite value is
1.17549E-38
F.

BLOB 4GB, variable-
length binary
large object

image 2GB

BOOLEAN 1 byte rs_ora-
cle_deci-
mal

17 bytes. The BOOLEAN
datatype is only
for use with PL/
SQL.

Replication Agent for Oracle

Primary Database Guide 25

Oracle Datatype Oracle
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

CHAR 2000 bytes char 32K Note: If the pri-
mary database
character set is
different from
the Replication
Server character
set, define
CHAR column
as varchar data-
type in the repli-
cation definition.

CLOB 4GB, variable-
length charac-
ter large object

image or

unitext
2GB For Replication

Server 15.0 and
later versions,
the CLOB data-

type maps to
unitext. For

earlier versions
of Replication
Server, the
NCLOB data-

type maps to
image.

Replication Agent for Oracle

26 Replication Agent

Oracle Datatype Oracle
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

DATE 8 bytes, fixed-
length

datetime
or rs_ora-
cle_date-
time

8 bytes Replication
Server supports
dates from Janu-
ary 1, 1753 to
December 31,
9999.

Oracle supports
dates from Janu-
ary 1, 4712 BC to
December 31,
9999 AD.

Note: Use the
Replication
Server heteroge-
neous datatype
support (HDS)
feature for data-
type conversion
and translation.

INTERVAL DAY(n)
TO SECOND(n)

Variable-
length

rs_ora-
cle_in-
terval

INTERVAL YEAR(n)
TO MONTH

Variable-
length

rs_ora-
cle_in-
terval

LONG 2GB, variable-
length charac-
ter data

text

LONG RAW 2GB, variable-
length binary
data

image

NCHAR 2000 bytes,
multibyte
characters

unichar or

char
32K

Replication Agent for Oracle

Primary Database Guide 27

Oracle Datatype Oracle
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

NCLOB 4GB, variable-
length multi-
byte character
large object

unitext or

text
2GB For Replication

Server 15.0 and
later versions,
the NCLOB da-

tatype maps to
unitext. For

earlier versions
of Replication
Server, the
NCLOB data-

type maps to
image.

Replication Agent for Oracle

28 Replication Agent

Oracle Datatype Oracle
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

NUMBER (p,s) 21 bytes, vari-
able-length
numeric data

float,

int, real,

number,

decimal, or

rs_ora-
cle_deci-
mal

float is 4 or

8 bytes. int
is 4 bytes.
real is 4

bytes. num-
ber and

decimal
are 2 to 17
bytes.

The float da-

tatype can con-
vert to scientific
notation if the
range is excee-
ded.

Integers (int)

are truncated if
they exceed the
Replication
Server range of
2,147,483,647 to
-2,147,483,648
or 1x10-130 to
9.99x1025.

The number
and decimal
datatypes are
truncated if they
exceed the range
of -1038 to
1038-1.

Oracle precision
ranges from 1 to
38 digits. Default
precision is 18
digits.

Oracle scale
ranges from -84
to 127. Default
scale is 0.

NVARCHAR2 4000 bytes,
variable-
length, multi-
byte character
data

uni-
varchar or

varchar

32K

Replication Agent for Oracle

Primary Database Guide 29

Oracle Datatype Oracle
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

RAW 2000 bytes,
variable-
length binary
data

rs_ora-
cle_bina-
ry

32K

ROWID 10 bytes, bina-
ry data repre-
senting row
addresses

rs_ora-
cle_row-
id

32K

SIMPLE_INTEGER 4 bytes repre-
senting signed
integers

integer SIMPLE_IN-
TEGER is new

as of Oracle 11g
and is only for
use with PL/
SQL.

Note: Marking
procedures with
PLS_INTE-
GER and prede-

fined PL/SQL
numeric data-
types other than
SIMPLE_IN-
TEGER is not

supported.

Replication Agent for Oracle

30 Replication Agent

Oracle Datatype Oracle
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

TIMESTAMP(n) 21-31 bytes,
variable-
length

datetime
or rs_ora-
cle_time-
stamp9

8 bytes Replication
Server supports
dates from Janu-
ary 1, 1753 to
December 31,
9999.

Oracle supports
dates from Janu-
ary 1, 4712 BC to
December 31,
4712 AD.

Note: Use the
Replication
Server heteroge-
neous datatype
support (HDS)
feature for data-
type conversion
and translation.

TIMESTAMP(n) WITH
[LOCAL] TIME ZONE

Variable-
length

rs_ora-
cle_time-
stamptz

UDD object type Variable-
length charac-
ter data

rs_rs_ch
ar_raw

32K

VARCHAR2 4000 bytes,
variable-
length charac-
ter data

varchar 32K

XMLTYPE 4GB, variable-
length charac-
ter large object

text 2GB XMLTYPE data

is implicitly han-
dled as Oracle
CLOB data.

See also
• Oracle User-Defined Types on page 39

Replication Agent for Oracle

Primary Database Guide 31

Replication Server 15.0 Unsigned Datatype Mapping
For Replication Server 15.0 and later, unsigned datatypes are supported and can be specified in
the replication definitions.

Table 3. Unsigned Integer Replication Definition Datatype Mapping

RepServer 15.0 Unsigned Datatypes Replication Definition Datatypes

unsigned bigint numeric (20)
unsigned int numeric (10)
unsigned smallint int
unsigned tinyint tinyint

Oracle ANYDATA Datatype Compatibility
Replication Agent supports the replication of data stored in ANYDATA columns.

• Both the primary and replicate databases must be Oracle databases.
• Both the primary database table and replicate database tables must have the same

ANYDATA columns.

The pdb_ignore_unsupported_anydata configuration parameter determines how
Replication Agent handles data of unsupported datatypes stored in columns of type
ANYDATA. See the Replication Agent Reference Manual.

Oracle XMLTYPE Datatype Compatibility
Replication Agent supports the replication of XMLTYPE column data stored CLOB or XML
from an Oracle 10g or 11g primary database to an Oracle 10g or 11g or Adaptive Server
Enterprise replicate database.

Replication Agent also supports the replication of XMLTYPE table data stored as CLOB or
XML from an Oracle 10g or 11g primary database to an Oracle 10g or 11g replicate database.

See also
• Oracle 10g and 11g XMLTYPE Restrictions on page 34

• XMLTYPE Data Replication on page 66

Oracle Datatype Restrictions
Replication Server and Replication Agent impose some constraints on the Oracle NUMBER
datatype.

See the Replication Server Options Release Bulletin for the latest information on datatype
restrictions.

Replication Agent for Oracle

32 Replication Agent

These constraints are:

• In the integer representation:
• The corresponding Sybase int datatype has a smaller absolute maximum value.

The Oracle NUMBER absolute maximum value is 38 digits of precision, between 9.9 x
10125 and 1 x 10-130. The Sybase int value is between 231 - 1 and -231 (2,147,483,647
and -2,147,483,648), inclusive.

• Oracle NUMBER values greater than the Sybase int maximum are rejected by
Replication Server.

• In the floating point representation:
• The precision of the floating point representation has the same range limitation as the

integer representation.
• If the floating point value is outside the Sybase range of 231 - 1 and -231 (2,147,483,647

and -2,147,483,648), Replication Agent for Oracle converts the number into
exponential format to make it compatible with Replication Server. No loss of precision
or scale occurs.

Replication Agent does not support replication of these special values for BINARY_FLOAT
and BINARY_DOUBLE datatypes:

• NaN (not a number)
• Inf (positive infinity)
• -Inf (negative infinity)

Replication Server and Replication Agent impose these constraints on the Oracle
TIMESTAMP WITH [LOCAL] TIME ZONE datatype.

When a TIMESTAMP WITH TIME ZONE datatype is replicated, the time zone information
is used to resolve the timestamp value to the “local” time zone and then the resolved value is
replicated. The time zone information itself is not replicated.

For example, if a TIMESTAMP WITH TIME ZONE datatype is recorded in Oracle as “01-
JAN-05 09:00:00.000000 AM -8:00” and the “local” time zone is -6:00, the replicated value is
“01-JAN-05 11:00:00.000000”. The timestamp value is adjusted for the difference between
the recorded time zone of -8:00 and the local time zone of -6:00, and the adjusted value is
replicated.

Oracle ANYDATA Datatype Restrictions
Replication Agent does not support the replication of data stored in ANYDATA columns under
some circumstances.

Replication of ANYDATA is not supported when:

• The replicate database table column is not of type ANYDATA. An attempt to replicate data
stored in an ANYDATA column to a column that is not of the ANYDATA type causes the
Replication Server Data Server Interface (DSI) thread to fail.

Replication Agent for Oracle

Primary Database Guide 33

• The size of the data stored in an ANYDATA column exceeds the maximum size of the
Replication Server opaque datatype, which is 16K.

• Replication Agent does not replicate data of these Oracle datatypes or structures stored in a
column of type ANYDATA:

• BFILE
• Nested tables
• REF
• UROWID
• VARRAY

The pdb_ignore_unsupported_anydata configuration parameter determines how
Replication Agent handles data of unsupported datatypes stored in columns of type
ANYDATA.

See the Replication Server Reference Manual for information on replication definitions and
create replication definition.

See the Oracle SQL Reference guide for a complete list of Oracle-supplied types.

See the Replication Agent Reference Manual for information on
pdb_ignore_unsupported_anydata.

Oracle 10g and 11g XMLTYPE Restrictions
Replication Agent supports the replication of XMLTYPE columns and tables if they are stored
as CLOB or XML data. Replication Agent does not support the replication of XMLTYPE data in
object-relational XML storage or binary XML storage.

Replication Agent supports the replication of XMLTYPE columns from an Oracle primary
database to an Oracle or Adaptive Server Enterprise replicate database, but no other platforms
are supported. Replication Agent replicates XMLTYPE tables only from an Oracle primary
database to an Oracle replicate database.

Note: The XMLTYPE datatype is supported only for replication to Oracle 10g replicate
databases and from Oracle 10g and 11g primary databases.

See also
• Oracle XMLTYPE Datatype Compatibility on page 32

• XMLTYPE Data Replication on page 66

Oracle ROWID Datatype Restrictions
When Replication Agent replicates ROWID data, the value replicated always represents the
value stored in the table in the primary database and has no relationship to the ROWID value in
the replicate database. There is no attempt to convert or adjust ROWID data to match the data in
the replicate database.

Replication Agent for Oracle

34 Replication Agent

Oracle Large Object (LOB) Support
Oracle LOB data can exist in several formats in Oracle.

The LOB datatypes in Oracle are:

• Character:
• LONG
• CLOB
• NCLOB

• Binary:
• LONG RAW
• BLOB
• BFILE–points to file contents stored outside of the Oracle database

For those types stored in the database (all types except BFILE), Oracle records the content of
the LOB in the redo log. The Replication Agent reads the LOB data from the redo log and
submits the data for replication.

Because BFILE type data is stored outside of the database, the BFILE contents are not
recorded in the redo log. To replicate the content of a BFILE, the Replication Agent connects
to the primary Oracle database and issues a query to select the data from the BFILE. Selecting
the BFILE data separately from other data in the redo log can provide a temporary out-of-sync
condition if the BFILE contents are changed multiple times.

See also
• Replication of LOB Columns on page 35

Replication of LOB Columns
Oracle logs all LOB data (except for BFILE datatypes) in the Oracle redo log. This allows the
Replication Agent to apply each individual LOB change. However, for BFILE data, the same
technique is used and the same limitation exists—BFILE data is not logged but read from the
database at the time the rest of the transaction is processed.

For instructions on enabling and disabling replication for LOB columns, see the Replication
Agent Administration Guide.

Transaction Integrity and LOB Data
Because of the way Replication Agent processes the LOB column data when replicating
transactions, transaction integrity may be compromised. For example, if two transactions
change the data in a LOB column and the Log Reader does not process the first transaction
until after the second transaction has been committed, when the LOB data is read from the
primary database, the value of that data is the result of the second transaction. In this event, the
value of the LOB data in the first transaction is never sent to the replicate database. After the
second transaction is processed by the Log Reader, the primary and replicate databases are

Replication Agent for Oracle

Primary Database Guide 35

synchronized again, but for a period of time between processing the first and second
transactions, the replicate database contains data that does not match the originating
transaction.

This problem occurs only when a LOB column is changed more than once by a sequence of
transactions. The period of time over which the problem exists may be significant if the
replication system throughput is slow or if a replication system component fails. As soon as
the last transaction that changes the LOB column is processed at the replicate site, the problem
is corrected.

Large Object Replication Limitation
Replication Agent does not support the replication of partial updates to LOB columns.

For example, use of the Oracle DBMS_LOB.WRITE() function, which updates LOB data from
a specified offset, is not replicated.

Special Handling for Off-Row Large Objects
Learn how Replication Agent handles off-row stored LOBs.

LOB types that are stored within the Oracle database (BLOB, CLOB, and NCLOB) may be
defined with certain storage characteristics. One of those characteristics, “disable storage in
row,” indicates that the data for the LOB should always be recorded separately from the rest of
the data in the row the LOB belongs to. This off-row storage requires special handling for
replication of updates to these LOB values.

When an off-row LOB value is updated, the change recorded in the redo log is for the index
that holds the LOB data; the row the LOB belongs to is not changed. As a result, information is
missing from the redo log to identify which row in the table the LOB belongs to.

For example, when a non-LOB column is updated in a table, the column data that identifies the
changed values and lookup columns is recorded. The command updated myTable set
col2 = 2 where col1 = 1 records values in the redo log for the values of both “col2”
and “col1.”

In contrast, a command that only updates a LOB that has been defined with the disable
storage in row clause records only the LOB data change to its index, and not the table that
holds the LOB. So the command updated myTable set ClobColumn = 'more
data' where col1 = 1 only records the value changed, and does not include the value
of “col1”.

Because the value of the columns in the where clause are not logged in that update, there is
insufficient information to build the correct where clause to be used to apply the data at the
replicate site. To resolve this problem, Replication Agent for Oracle requires that an update to
a LOB column defined with disable storage in row must be immediately accompanied by an
insert or update to the same row in the table the LOB belongs to.

The Replication Agent uses the additional column data from the associated operation to
correctly build the where clause required to support replication.

Replication Agent for Oracle

36 Replication Agent

For example, these transaction sequences support replication of updates to LOB column
“ClobColumn” when it has been defined with the disable storage in row clause:

begin
insert into myTable (col1, col2, ClobColumn, updated)
values (1,1,empty_clob(), sysdate);
update myTable set ClobColumn = 'more data' where col1 = 1;
commit

begin
update myTable set updated = sysdate() where col1 = 1;
update myTable set ClobColumn = 'more data' where col1 = 1;
commit

begin
update myTable set ClobColumn = 'more data' where col1 = 1;
update myTable set updated = sysdate() where col1 = 1;
commit

Note: For purposes of replication, LOB objects populated with the empty_clob or empty_lob
function are replicated as NULL values. Replication definitions for LOB columns should
therefore include the “null” keyword as part of the column definition.

These transaction sequences are not supported for LOB columns defined with the disable
storage in row clause and result in a failure to supply the LOB data to the replicate site:

• Missing accompanying change to the same row:
begin
update myTable set ClobColumn = 'more data' where col1 = 1;
commit

• Accompanying change for the same row is not immediately adjacent to the LOB change:
begin
update myTable set updated = sysdate where col1 = 1;
update myTable set col2 = 5 where col1 = 5;
update myTable set ClobColumn = 'more data' where col1 = 1;
commit

This limitation applies only to LOB columns that have been defined with the disable storage
in row clause.

You can identify the LOB columns in your database that have this constraint using this query
against your Oracle database:

select owner, table_name, column_name from dba_lobs
where in_row = 'NO';

Replicating CLOB and NCLOB Datatypes
Oracle NCLOB (National Character Large Object) is a datatype that stores large character data
using a multibyte national character set. Similarly, the CLOB datatype may also store character

Replication Agent for Oracle

Primary Database Guide 37

data using a multibyte national character set, when the Oracle database is defined with a
double-byte or variable-width character set.

By default, the byte order of the multibyte characters stored in the NCLOB datatype (and CLOB
when the database is defined with a double-byte or variable-width character set) is converted
during replication to big-endian byte order. This allows the data to be transmitted over
networks using big-endian order, which is the common network byte order.

The datatype in a replication definition for an NCLOB or CLOB should be unitext. This
prevents Replication Server from attempting character set conversion on the data. If the
Replication Server version does not support unitext, use the image datatype.

If the target database that is to receive this NCLOB or CLOB data is installed on a little-endian
platform, the database may not automatically convert the replicated data from the sent big-
endian order to the little-endian order. To support replicating NCLOB or CLOB data to a
database server that does not provide the necessary conversion from big-endian (network
order) to little-endian, force the byte order to be sent by the Replication Agent using the
lr_ntext_byte_order parameter to set a value of big (for big-endian) or little (for little-endian).

The lr_ntext_byte_order parameter is available for Microsoft SQL Server and Oracle, andis
important for replication between two databases that reside on different platforms. For
example, for replication between Oracle and Microsoft SQL Server, the primary database
stores the data in big-endian byte order, but the replicate database stores data in little-endian
byte order because Microsoft SQL Server only runs on Windows. Therefore, set the
lr_ntext_byte_order parameter to little to force the Replication Agent to convert the data to
little-endian (the format expected by SQL Server). However, if the replicate database is not a
Microsoft SQL Server, determine its byte order and set the lr_ntext_byte_order parameter
accordingly.

Note: The default behavior of Replication Agent for Oracle is to force any Unicode data to
big-endian order as defined by the ltl_big_endian_unitext configuration parameter. To allow
the lr_ntext_byte_order configuration parameter to successfully override the Oracle byte
order, you must also set the ltl_big_endian_unitext configuration parameter to false whenever
the lr_ntext_byte_order parameter is used.

The ltl_big_endian_unitext parameter specifies whether unitext data should be converted
from little-endian to big-endian before sending LTL to the Replication Server. Valid values are
true and false. When setting this parameter, you must know how lr_ntext_byte_order is set. If
lr_ntext_byte_order is set to send the correct byte order for the replicate database, the
ltl_big_endian_unitext parameter must be set to false so that the byte order is not changed.
ltl_big_endian_unitext is true, by default. The ltl_big_endian_unitext and
lr_ntext_byte_order configuration parameters have differences:

• When ltl_big_endian_unitext is true, Replication Agent for Oracle sends all Unicode data
in big-endian order.

• When ltl_big_endian_unitext is false, Replication Agent for Oracle allows Unicode data
to be sent in a byte order that is used when the data is stored in the transaction log file.

Replication Agent for Oracle

38 Replication Agent

lr_ntext_byte_order forces the result of Unicode data that is read from the transaction log to be
in the correct byte order, regardless of how it normally exists in the transaction log file.

Oracle User-Defined Types
User-defined datatypes (UDDs) use Oracle built-in datatypes and other user-defined
datatypes as building blocks that model the structure and behavior of data in applications.

Replication Agent for Oracle supports replication of user-defined object types. Object types
are abstractions of real-world entities, such as purchase orders, that application programs deal
with. An object type is a schema object with three kinds of components:

• A name, which identifies the object type uniquely within that schema.
• Attributes, which are built-in types or other user-defined types. Attributes model the

structure of the object.
• Methods, which are functions or procedures written in PL/SQL and stored in the database,

or written in a language such as C or Java and stored externally. Methods implement
operations the application can perform on the object.

Creating a Datatype Definition in Replication Server
Create a definition for your user-defined datatype.

Prerequisites
You must have Replication Server administrator privileges or permission. Also, if you are
using Replication Server 15.1 or earlier, see "Replication Server and RSSD Scripts" first.

Task

To replicate user-defined datatypes in Oracle, the datatype specified in the replication
definition must be rs_char_raw.

1. Log in to the RSSD.

2. Add a row to the rs_datatype table using this example as a guide:

/* rs_oracle_udd_raw - char with no delimiters */
insert into rs_datatype values(
0, /* prsid */
0x0000000001000008, /* classid */
'rs_oracle_udd', /* name */
0x0000000000010210, /* dtid */
0, /* base_coltype */
255, /* length */
0, /* status */
1, /* length_err_act */
'CHAR', /* mask */
0, /* scale */
0, /* default_len */
'', /* default_val */
0, /*-delim_pre_len-*/
'', /* delim_pre */

Replication Agent for Oracle

Primary Database Guide 39

0, /*-delim_post_len-*/
'', /* delim_post */
0, /* min_boundary_len */
'', /* min_boundary */
3, /* min_boundary_err_act */
0, /* max_boundary_len */
'', /* max_boundary_err_act */
0 /* rowtype */
)
go

3. Restart Replication Server.

4. In Replication Server, test the new type:

admin translate, 'The quick brown fox jumped over the lazy
dog.', 'char(255)', 'rs_oracle_udd'
go
Delimiter Prefix Translated Value Delimiter
Postfix

NULL The quick brown fox jumped over the lazy dog.
NULL

The new type is defined correctly if the sentence translates correctly.

See also
• Replication Server and RSSD Scripts on page 23

Example: Create a Replication Definition
This example demonstrates how to create a replication definition using the rs_char_raw
type defined in Replication Server.

These Oracle table and type definitions are used in the example:

• Oracle UDD object type name: NAME_T
• Oracle table name: USE_NAME_T
• Oracle table columns: PKEY INT, PNAME NAME_T

create replication definition use_name_t_repdef
with primary at ra_source_db.ra_source_ds
with all tables named 'USE_NAME_T'
(
 PKEY int,
 PNAME rs_rs_char_raw
)
primary key (PKEY)
searchable columns (PKEY)
go

Note: For this example, ltl_character_case must be upper.

Replication Agent for Oracle

40 Replication Agent

Object Type Attribute Replication
To replicate updates to user-defined object type attributes, Replication Agent must enable
table-level supplemental logging. Table-level supplemental logging can be enabled manually.

Replication Agent also attempts to enable this logging when marking a table that contains a
user-defined object type. However, for Replication Agent to mark such a table, there must
already be an Oracle user specified by the pds_username parameter that has ALTER
permission granted for the table.

If table-level supplemental logging has not been enabled for a table containing a user-defined
object type and Replication Agent encounters an update log record in the Oracle log,
Replication Agent changes its status from Replicating to Admin with this error:

There is insufficient column data in the log to support Oracle UDD
update command processing. Please make sure table-level supplemental
logging is enabled.

In this case, use the pdb_skip_op to skip this log record. See the Replication Agent Reference
Manual.

Sequence Marking and Unmarking
Support for Oracle sequence replication is supported only for replication to Oracle. No
support is provided for replicating a sequence value to a non-Oracle replicate database.

Replication Agent supports replication of sequences in the primary database. To replicate a
sequence invoked in a primary database, the sequence must be marked for replication, and
replication must be enabled for that sequence. This is analogous to marking and enabling
replication for tables.

Note: Marking a sequence for replication is separate from enabling replication for the
sequence. If the value of the pdb_dflt_object_repl parameter is true, replication is enabled
automatically at the time a sequence is marked.

Oracle does not log information every time a sequence is incremented. Sequence replication
occurs when the Replication Agent captures the system table updates that occur when the
sequence's cache is refreshed. Therefore, the sequence value replicated when a sequence is
marked for replication is the “next” sequence value to be used when the current cache expires.
The result is that not every individual increment of a sequence is replicated, but the replicate
site always has a value greater than the primary site's currently available cached values.

To temporarily suspend replication of a marked sequence, you can disable replication for the
sequence.

See also
• Sequence Replication Enabling and Disabling on page 44

Replication Agent for Oracle

Primary Database Guide 41

Replication Server Changes to Support Sequence Replication
By default, Replication Server does not support replication of Oracle sequence objects. You
must make changes to Replication Server and the replicate Oracle database before you can
replicate Oracle sequences.

For Replication Server, you must create a replication definition that defines a stored procedure
to assist with sequence replication. Execute the $SYBASE/RAX-15_5/scripts/
oracle/oracle_create_rs_sequence_repdef.sql script against your primary
Replication Server after editing the script to replace values {pds} and {pdb} with the name of
your primary Replication Server connection. You can find these values in the rs_source_ds
and rs_source_db Replication Agent configuration properties.

Note: The replication definition assumes that a database replication definition exists. You may
need to alter the definition if a database replication definition does not exist. For details, see
comments in the oracle_create_rs_sequence_repdef.sql script.

In the replicate Oracle database, you must create a stored procedure to support sequence
replication. Log in to the replicate Oracle database as the maintenance user defined in your
Replication Server connection to the replicate database. Execute the $SYBASE/
RAX-15_5/scripts/oracle/
oracle_create_replicate_sequence_proc.sql script to create the necessary
stored procedure.

Note: The maintenance user defined in the Replication Server connection to the replicate
database must have sufficient privileges to execute functions in the Oracle DBMS_SQL
package. Also, this maintenance user must have authority at the replicate Oracle database to
update any replicated sequence.

Marking a Sequence for Replication
Mark a sequence for replication.

1. Log in to the Replication Agent instance with the administrator login.

2. Determine whether or not the sequence is marked in the primary database:

pdb_setrepseq pdb_seq

where pdb_seq is the name of the sequence you want to mark for replication.

• If pdb_setrepseq returns information that the specified sequence is marked, you do
not need to continue this procedure.

• If pdb_setrepseq returns information that the specified sequence is not marked,
continue this procedure to mark the sequence for replication.

3. Mark the sequence for replication.

pdb_setrepseq allows you to mark the primary sequence to be replicated and specify a
different sequence name to use in the replicate database.

Replication Agent for Oracle

42 Replication Agent

• If the sequence name you want to increment at the replicate site has the same name as at
the primary site, use this command to mark the sequence for replication:
pdb_setrepseq pdb_seq, mark

Note: Replicating a sequence with a different name than is provided is consistent with
other marking commands but is not a typical configuration.

• To mark the sequence for replication using a different sequence name, use:
pdb_setrepseq pdb_seq, rep_seq, mark

where rep_seq is the name of the sequence that you want to increment in the replicate
database.

Note: Replicating sequence values to a sequence with a different name at the replicate
site assumes that the replicate site sequence has the same attributes and starting value
as the primary site's sequence.

• If the value of pdb_dflt_object_repl is true, the sequence marked for replication
with pdb_setrepseq is ready for replication after you successfully invoke
pdb_setrepseq.

• If the value of pdb_dflt_object_repl is true (the default value), skip step 4.
• If the value of pdb_dflt_object_repl is false, you must enable replication for the

sequence before replication can take place.

4. Enable replication for the sequence:

pdb_setrepseq pdb_seq, enable

After replication is enabled for the sequence, you can begin replicating invocations of that
sequence in the primary database.

Note: To replicate a sequence, you must also run the
oracle_create_replicate_sequence_proc.sql script in the $SYBASE/
RAX-15_5/scripts/oracle directory at the replicate site to create a procedure named
rs_update_sequence.

Unmarking a Sequence
Unmark a sequence.

1. Log in to the Replication Agent instance with the administrator login.

2. Determine whether or not the sequence is marked in the primary database:

pdb_setrepseq pdb_seq

where pdb_seq is the name of the sequence you want to unmark.

• If pdb_setrepseq returns information that the specified sequence is marked, continue
this procedure to unmark the sequence.

Replication Agent for Oracle

Primary Database Guide 43

• If pdb_setrepseq does not return information that the specified sequence is marked,
you do not need to continue this procedure.

3. Disable replication for the sequence:

pdb_setrepseq pdb_seq, disable
4. Remove the replication marking from the sequence:

pdb_setrepseq pdb_seq, unmark

To force the unmarking, use:
pdb_setrepseq pdb_seq, unmark, force

5. Confirm that the sequence is no longer marked for replication:

pdb_setrepseq pdb_seq

Sequence Replication Enabling and Disabling
To temporarily suspend replication of a sequence, use pdb_setrepseq to disable replication
for the marked sequence. When you are ready to resume replication of the marked sequence,
use pdb_setrepseq again to enable replication.

Note: By default, no sequences are marked for replication.

To replicate updates of a sequence in the primary database, the sequence must be marked for
replication and, replication must be enabled for that sequence.

Marking a sequence for replication is separate from enabling replication for the sequence.

See also
• Marking a Sequence for Replication on page 42

Enabling Replication for a Marked Sequence
Enable replication for a marked sequence.

1. Log in to the Replication Agent instance with the administrator login.

2. Determine whether or not replication is enabled for the sequence:

pdb_setrepseq pdb_seq

where pdb_seq is the name of the sequence for which you want to enable replication.

If pdb_setrepseq returns information that the specified sequence is marked and has
replication disabled, continue this procedure to enable replication for the sequence.

Note: A sequence must be marked for replication before replication can be enabled or
disabled for the sequence.

3. Enable replication for the sequence:

pdb_setrepseq pdb_seq, enable

Replication Agent for Oracle

44 Replication Agent

After replication is enabled for the sequence, any invocation of that sequence is replicated.

4. Use pdb_setrepseq again to verify that replication is now enabled for the sequence:

pdb_setrepseq pdb_seq

Disabling Replication for a Marked Sequence
Disable replication for a marked sequence.

1. Log in to the Replication Agent instance with the administrator login.

2. Determine whether or not replication is enabled for the sequence:

pdb_setrepseq pdb_seq

where pdb_seq is the name of the sequence for which you want to disable replication.

If pdb_setrepseq returns information that the specified sequence is marked and has
replication enabled, continue this procedure to disable replication for the sequence.

Note: A sequence must be marked for replication before replication can be enabled or
disabled for the sequence.

3. Disable replication for the sequence:

pdb_setrepseq pdb_seq, disable

After replication is disabled for the sequence, any invocation of that sequence is not
captured for replication until replication is reenabled.

4. Use pdb_setrepseq again to verify that replication is now disabled for the sequence:

pdb_setrepseq pdb_seq

Setting Up Replication Agent and Oracle on Different Machines
Run Replication Agent and the primary data server on different machines.

1. Install Replication Agent on a machine of the same hardware and operating system as the
machine on which the primary data server is running.

2. Install the JDBC driver on the same machine as Replication Agent.

3. If the timezone.dat file is not accessible to both machines, copy the
$ORACLE_HOME/oracle/timezone.dat file to the Replication Agent machine.

Note: Be sure to copy the timezone.dat file of the Oracle server that Replication
Agent is replicating from.

4. Set the Replication Agent pdb_timezone_file configuration parameter to the full path
name of the timezone.dat file.

Replication Agent for Oracle

Primary Database Guide 45

5. If Replication Agent for Oracle is configured to truncate Oracle archive logs directly, make
sure the Oracle archive logs are accessible to both machines. Use the ra_devicepath
command to point Replication Agent to the log files.

Real Application Clusters (RAC)
Replication Agent for Oracle provides support for Oracle 10g and 11g RAC environments.
When a Replication Agent for Oracle instance is initialized, the Oracle database is queried to
determine how many nodes are supported by the cluster. Based on this information,
Replication Agent automatically configures itself to process the redo log information from all
nodes.

To process the redo log data from all nodes in an Oracle RAC cluster, the Replication Agent
must execute from a location that has access to the same shared storage used by the Oracle
nodes to store their redo data.

Configure Replication Agent to connect to a single Oracle instance by supplying the required
host, port, and Oracle SID values to the pds_host_name, pds_port_number and
pds_database_name configuration parameters. However, in an Oracle RAC environment,
Replication Agent must be able to connect to any node in the cluster in the event that a node
fails or otherwise becomes unavailable. To support the configuration of multiple node
locations, Replication Agent supports connectivity to all possible RAC nodes by obtaining
needed information from an Oracle tnsnames.ora file for one specified entry. As a result,
instead of configuring individual host, port and instance names for all nodes, Replication
Agent only requires the location of a tnsnames.ora file and the name of the TNS
connection to use.

Sybase recommends that you point Replication Agent to a tnsnames.ora entry that
contains the address for all nodes in the cluster.

For example, if this entry exists in a tnsnames.ora file for a three-node cluster, instruct
Replication Agent to use that entry by providing the tnsnames.ora file location to the
pds_tns_filename configuration property and specifying RAC10G as the value for the
pds_tns_connection configuration property:

RAC10G =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (LOAD_BALANCE = yes)
 (FAILOVER = ON)
 (ADDRESS = (PROTOCOL = TCP)(HOST = www.xxx.yyy.zz1)
 (PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = www.xxx.yyy.zz2)
 (PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = www.xxx.yyy.zz3)
 (PORT = 1521))
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = rac10g)

Replication Agent for Oracle

46 Replication Agent

)
)

The tnsnames.ora file must also contain a connect descriptor for each node in the cluster:

NODE1-VIP =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = www.xxx.yyy.zz1)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = rac10g)
 (INSTANCE_NAME = node1-vip)
)
)
NODE2-VIP =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = www.xxx.yyy.zz2)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = rac10g)
 (INSTANCE_NAME = node2-vip)
)
)
NODE3-VIP =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = www.xxx.yyy.zz3)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = rac10g)
 (INSTANCE_NAME = node3-vip)
)
)

If the tnsnames.ora file does not contain a connect descriptor for each node, Replication
Agent cannot generate commit records correctly.

See the Replication Agent Reference Manual for details about pds_tns_filename and
pds_tns_connection.

Note: Replication Agent must have read access to the tnsnames.ora file.

pdb_archive_path
The pdb_archive_path configuration parameter identifies where Replication Agent expects
to find archived Oracle redo log files.

If Replication Agent for Oracle is configured to truncate archive redo logs without using the
Oracle Recovery Manager (RMAN), make sure Replication Agent has permission to truncate
the Oracle archive redo logs. Oracle can be configured to archive to different locations and
Oracle finds these locations using the destination column of the V$ARCHIVE_DEST system

Replication Agent for Oracle

Primary Database Guide 47

table. Replication Agent must have read access to the archive redo logs and the directories
containing them.

Note: Archived redo logs can also be stored within ASM.

You can configure Replication Agent to remove archived logs from the location specified by
pdb_archive_path, using the pdb_archive_remove configuration parameter. This allows
Replication Agent to remove archived log files that are no longer needed to support
replication. If pdb_archive_remove is set to true, Replication Agent must have update
authority to the archive log directory and delete authority on the individual archive log files. If
rman_enabled or the pdb_archive_path configuration parameter is pointed to an ASM path,
then update authority to the archive log directory and delete authority on the individual archive
logs are not required.

Note: The rman_enabled parameter enables Replication Agent to use the Oracle RMAN
utility to truncate old archive log files. See the Replication Agent Reference Manual.

See also
• Automatic Storage Management on page 48

• Marking a Sequence for Replication on page 42

Oracle Instance Failover
If the Oracle instance to which Replication Agent is connected fails for any reason,
Replication Agent attempts to reconnect to any surviving instance, choosing from the list of
instances defined in the tnsnames.ora file entry.

No manual intervention or configuration is required. If none of the instances are available,
Replication Agent reports an error and continues processing as long as redo log file
information is still available.

Automatic Storage Management
Replication Agent for Oracle supports the use of the Oracle Automatic Storage Management
(ASM) feature. ASM provides file system and volume management support for an Oracle
database environment. ASM can be used in both Real Application Cluster (RAC) and non-
RAC environments.

Archive Log Removal and Configuration
Archive logs that are managed by ASM can be removed from ASM when they are no longer
needed by Replication Agent for Oracle.

When pdb_archive_remove is set to true and the archive logs are managed by ASM,
pdb_archive_path must be set to the name of the ASM disk group in which the archive logs
are stored. The disk group name must be preceded with a plus sign (+) indicating that the path
is an ASM path. For example:

Replication Agent for Oracle

48 Replication Agent

pdb_archive_remove=true
pdb_archive_path=+DISK_GROUP1

Archive logs stored in and managed by ASM are owned by the corresponding unique Oracle
database name. If the Oracle database name differs from the global unique database name,
pdb_archive_path must be set to both the name of the ASM disk group and the globally
unique name of the database in which the archive logs are stored:

pdb_archive_path=+DISK_GROUP1/database_name

In addition to automatic removal of archive logs from ASM, manual removal is supported with
pdb_truncate_xlog. pdb_archive_path must be set to the ASM disk group name and
preceded with a plus (+) sign for archive logs to be manually removed.

Note: rman_enabled enables Replication Agent to use the Oracle RMAN utility to truncate old
archive log files. See the Replication Agent Reference Manual.

Configuration Parameters
Some configuration parameters must be set if your log files are being managed by ASM.

These configuration parameters are:

• asm_tns_filename – The fully-qualified file name identifying the Oracle
tnsnames.ora file that contains the Oracle ASM connection parameters. This
configuration parameter is required only when the connection parameter information
required for ASM does not exist in the tnsnames.ora file pointed to by the
pds_tns_filename configuration parameter.

• asm_tns_connection – The Oracle connection name that identifies the connection
parameters for the Oracle Automatic Storage Management (ASM) connection in the
Oracle tnsnames.ora file. If configuration parameter asm_tns_filename is not
configured, the tnsnames.ora file identified by pds_tns_filename is used.

• asm_username – The login name that Replication Agent uses to access the Oracle ASM
server. The ASM user ID for asm_username must have sysdba permission. For Oracle
10g or 11g, set asm_username as follows:
asm_username="sys as sysdba"

Alternately, for Oracle 11g, you can set asm_username as follows:
asm_username="sys as sysasm"

• asm_password – The password associated with the configuration parameter
asm_username user to access the Oracle Automatic Storage Management (ASM) server
instance.

For example:

asm_tns_filename=/u01/app/11.2.0/grid/network/admin/tnsnames.ora
asm_tns_connection=+ASM1
asm_username=sys as sysasm
asm_password=Sybase123

See the Replication Agent Reference Manual.

Replication Agent for Oracle

Primary Database Guide 49

Replication Server set autocorrection Command
The Replication Server set autocorrection command prevents failures that would otherwise
be caused by missing or duplicate rows in a replicated table.

The set autocorrection command corrects discrepancies that may occur during
materialization by converting each update or insert operation into a delete followed by an
insert.

To set autocorrection from:

• Replication Agent for one or all tables in the primary database, use the Replication Agent
ra_set_autocorrection command as described in the Replication Agent Reference
Manual.

• Replication Server, use the set autocorrection command in a replication definition. You
must do this from Replication Server, however, because Replication Agent cannot alter the
autocorrection setting on a replication definition.

Replication Agent for Oracle does not support use of the autocorrection feature for large-
object (LOB), LONG, LONG RAW, or user-defined datatypes. Also, pds_username must have
the ALTER ANY TABLE privilege to execute these commands:

• ALTER TABLE tablename ADD SUPPLEMENTAL LOG DATA (ALL)
COLUMNS;

• ALTER TABLE tablename DROP SUPPLEMENTAL LOG DATA (ALL)
COLUMNS;

Partitioned Tables
Replication Agent supports Oracle partitioning functionality.

Partitioning allows a table, index, or index-organized table to be subdivided into smaller
pieces, where each piece of such a database object is called a partition. Each partition has its
own name and may optionally have its own storage characteristics. Any table can be
partitioned into many separate partitions except those tables containing columns with LONG
or LONG RAW datatypes.

Unstructured data (such as images and documents) stored in a LOB column in the database
can also be partitioned. When a table is partitioned, all the columns reside in the tablespace for
that partition, with the exception of LOB columns, which can be stored in their own
tablespace. For additional information about Oracle partitioning, see the Oracle Database
VLDB and Partitioning Guide at http://download.oracle.com/docs/cd/B28359_01/server.
111/b32024/toc.htm.

Replication of the truncate partition Command
Replication Agent supports replication of the truncate partition command.

Replicate the truncate partition command either by:

Replication Agent for Oracle

50 Replication Agent

http://download.oracle.com/docs/cd/B28359_01/server.111/b32024/toc.htm
http://download.oracle.com/docs/cd/B28359_01/server.111/b32024/toc.htm

• Using lr_send_trunc_partition_ddl

• Wrapping truncate partition in a stored procedure and replicating the procedure

Use lr_send_trunc_partition_ddl
Use the Replication Agent configuration parameter lr_send_trunc_partition_ddl to
determine whether truncate partition commands are sent as DDL or DML to the replicate
database. The configuration can be:

• true (default) – the truncate partition command is sent as a DDL command (alter table).
Use this setting to replicate to Oracle.

• false – the truncate partition is sent as a DML operation. Use this setting when replicating
to databases that treat truncate partition commands as DML (for example, Microsoft SQL
Server).

For information about Replication Agent configuration properties, see the Replication Agent
Reference Manual.

Wrap the truncate partition command
You can wrap the truncate partition command in a stored procedure definition and replicate
the procedure.

For example, to replicate truncate partition commands from an Oracle primary to an Adaptive
Server Enterprise replicate, create this stored procedure at the primary database:

create procedure sp_truncate_partition
as
begin
execute immediate ‘ALTER TABLE myTable TRUNCATE PARTITION part1’;
end;

Create a corresponding stored procedure at the replicate database:

create proc sp_truncate_partition as
truncate table myTable part1

Mark the sp_truncate_partition procedure for replication. When sp_truncate_partition is
executed at the primary database, the truncate partition command is replicated to the replicate
database.

Materialized Views
A materialized view is a stored view query result.

The data on which the view is defined is referred to as the master table (or tables). The
materialized view is stored in its own table, which is refreshed based on changes to the master
table. A materialized view may be local, in which it is defined on the same database as the
master table, or remote, in which the materialized view is defined on a different database than
the master table.

Oracle supports these types of materialized views:

Replication Agent for Oracle

Primary Database Guide 51

• Read-only – materialized view content is derived from the corresponding master table or
tables, and the view content cannot be changed.

• Writeable – materialized view content can be changed temporarily, but any changes are
overwritten when the table containing the materialized view is refreshed based on changes
to the corresponding master table or tables.

• Updatable – updates made to a materialized view are written back to the corresponding
master table or tables when the materialized view is refreshed.

For a complete description of materialized views, see the Oracle documentation.

Replication and Materialized Views
An Oracle materialized view allocates space to hold the result set of its base query. Replication
Agent can replicate transactions involving the data on which a materialized view is defined as
well as on the materialized view itself.

Materialized View DDL
By default, Replication Agent does not replicate Oracle DDL commands used for
materialized views, for example, CREATE MATERIALIZED VIEW, ALTER MATERIALIZED
VIEW, or DROP MATERIALIZED VIEW. Materialized view DDL commands are disabled from
replication unless otherwise specified using the pbd_setrepddl command. See the
Replication Agent Reference Manual > Command Reference > pdb_setrepddl.

Materialized Views at the Primary and Replicate Databases
A materialized view may exist on both the primary database and the replicate database. Such a
situation might arise, for example, if materialized view DDL has been enabled for replication
with the pdb_setrepddl command or if the replicate database has been materialized from a
primary database dump.

If the master table on which the materialized view is defined exists in the primary database,
Replication Agent replicates this master table. The materialized view at the replicate database
refreshes according to the contents of the replicated master table. Under no circumstances
does Replication Agent replicate the table in which a materialized view is stored in the primary
database, and you should not attempt to replicate such a table.

If the materialized view is remote—meaning that the master table on which the materialized
view is defined does not exist in the primary database—the materialized view at the replicate
database must be redirected so that it points to the database on which the master table is
located. If the replicate database is not redirected, a refresh of the materialized view fails at the
replicate database. In redirecting the replicate database, re-create the Oracle database link that
the replicate database uses to connect to the database containing the master table.

Writeable and Updatable Materialized Views
Instead of replicating changes to the table containing a materialized view, Replication Agent
replicates changes to the master table if the master table has been marked for replication.
Replication Agent therefore does not replicate changes made to a writeable materialized view.
However, because changes made to an updatable materialized view are written back to the

Replication Agent for Oracle

52 Replication Agent

corresponding master table or tables when the materialized view is refreshed, Replication
Agent replicates changes made to an updatable materialized view on the primary database to
the corresponding master table on the replicate database. Changes made to an updatable
materialized view on the replicate database affect only the local master table unless
bidirectional replication has been enabled.

Materialized View Replication Scenarios
In this figure, a materialized view and a corresponding master table reside on both the primary
database and the replicate database.

Figure 2: Master Table and Materialized View on Primary Database

In this situation, DDL commands affecting the master table can be replicated as well as objects
affected by the DML that are marked for replication.

DDL commands affecting the materialized view are not replicated unless such DDL is enabled
with the pdb_setrepddl command. Since a materialized view also exists on the replicate
database, all master tables on which the materialized view is defined must also be replicated.
Otherwise, the contents of the materialized view on the replicate database may become
invalid.

If the materialized view on the primary database is updatable, changes made to this view are
written back to the corresponding master table and, if the master table has been marked for
replication, replicated to the replicate database. If the materialized view on the replicate
database is updatable, changes made to this view are written back to the corresponding master
table on the replicate database, but the master table on the primary database is not changed
accordingly unless bidirectional replication has been enabled.

In this figure, the master table on which the primary database materialized view is defined
resides on a different, or remote, database.

Replication Agent for Oracle

Primary Database Guide 53

Figure 3: Master Table on Remote Database, Materialized View on Primary
Database

In this situation, neither DML nor DDL affecting the master table is replicated. DDL
commands affecting the materialized view are not replicated unless such DDL is enabled with
the pdb_setrepddl command. Since the materialized view also exists on the replicate
database, a database link must be created so that it points to the database containing the master
table on which the materialized view is defined.

If the materialized views on the primary and replicate databases are both updatable and are
properly linked to the master table at the remote database, changes made to one of these views
are written back to the master table, and the changes are reflected in both materialized views
upon refresh.

In the figure below, a materialized view resides on a remote database, and the master table on
which the materialized view is defined resides on the primary database. A copy of this master
table also resides on the replicate database, and the database link between the remote and
primary databases is subsequently broken.

Replication Agent for Oracle

54 Replication Agent

Figure 4: Master Table on Primary Database, Materialized View on Remote
Database

In this situation, DDL commands affecting the master table at the primary database can be
replicated as well as DML commands that are marked for replication. DDL commands
affecting the materialized view cannot be replicated because there is no corresponding
materialized view on the replicate database. If the database link between the remote and
primary databases is broken, the remote database must create a link to the replicate database
before a refresh occurs.

If the materialized view on the remote database is updatable, changes made to this view are
written back to the master table on the database to which the remote database is currently
linked.

In the figure below, a master table resides on two different remote databases, one of which is a
replicate database. A materialized view resides on the primary database and the replicate
database. The materialized view at the replicate database is initially defined by the master
table on the remote database, but its database link becomes broken, and the replicate database
re-creates a link to the remote replicate database instead.

Replication Agent for Oracle

Primary Database Guide 55

Figure 5: Master Tables on Remote Databases, Materialized Views on Primary
and Replicate Databases

If the materialized view on the replicate database is updatable, changes made to this view are
written back to the master table on the database to which the replicate database is currently
linked. Before the database link between the replicate database and the remote database
becomes broken, updates to the materialized view on the replicate database are written back
only to the master table on the remote database. After a link is created between the replicate
database and the remote replicate database, updates to the materialized view on the replicate
database are written back only to the master table on the remote replicate database.

Index-Organized Tables
Replication Agent can replicate DML for Oracle index-organized tables (IOTs).

DML for these types of index-organized tables can be replicated for Oracle 10g and 11g
databases:

• Simple IOTs
• IOTs with including and overflow clauses
• IOTs with composite partitions
• IOTs with mapping tables
• Index-compressed IOTs
• IOTs with row dependencies
• IOTs with large objects
• IOTs with secondary indexes

Replication Agent cannot replicate IOTs with nested tables and columns of type VARRAY.

Replication Agent for Oracle

56 Replication Agent

Replicate Database Trigger Execution Control
Trigger execution in a replication system can cause problems when both the transaction that
caused a trigger to fire and the transactions that resulted from the trigger are replicated.

This may result in data duplication in the case where a trigger causes data to be recorded twice
for a single operation performed on an audited table. It may also result in data inconsistency in
the case where a trigger results in DML commands being performed twice: once as a result of
the trigger firing at the primary database and a second time as a result of the trigger firing at the
replicate database to which trigger-altered data has already been replicated. To avoid data
duplication and inconsistency, it is important to control trigger execution in the replication
system. However, Oracle provides no session-level command to disable trigger execution.

Replication Server allows you to disable trigger execution at the session or connection level.
You can control trigger firing each time a PL/SQL command is executed against the replicate
database. Controlling trigger execution at the replicate database eliminates data duplication
and inconsistency caused by the absence of any trigger control at the replicate database.

For a complete description of the Replication Server rs_triggers_reset function, see the
Replication Server Reference Manual. For complete instructions on controlling trigger
execution at the replicate database, see "Oracle Replicate Data Server Issues" in the
Replication Server Heterogeneous Replication Guide.

Alteration of Replication Definitions from the Primary Data Server
You can alter replication definitions from the primary data server.

To avoid having to quiesce the replication system before altering a replication definition, you
can issue the Replication Server alter replication definition command from the primary data
server and make schema changes to primary database objects at the same time. The
propagation of changes to a replication definition can be automatically coordinated with data
replication without having to stop the replication process.

To issue the Replication Server alter replication definition command from the primary data
server, create a stored procedure named rs_send_repserver_cmd in the primary Oracle
database. The SQL for creating this procedure is contained in the appropriate connection
profile on Replication Server. For a list of connection profiles, use the Replication Server
admin show_connection_profiles command.

For a full description of rs_send_repserver_cmd and the alter replication definition
Replication Server command, see the Replication Server Reference Manual.

Security Considerations
When the rs_send_repserver_cmd procedure is invoked at the primary data server,
Replication Agent passes corresponding Replication Command Language (RCL) directly to
Replication Server. You should therefore consider carefully to whom execution privileges are

Replication Agent for Oracle

Primary Database Guide 57

assigned for the rs_send_repserver_cmd procedure, and assign privileges as appropriate for
your environment and security policy.

Limitations
You cannot use the rs_send_repserver_cmd procedure to alter replication definitions for
tables that contain columns of certain datatypes.

These types are:

• BINARY ROWID
• BINARY UROWID
• DATE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND
• MLSLABEL
• RAW
• REF
• TIMESTAMP
• TIMESTAMP WITH LOCAL TZ
• TIMESTAMP WITH TZ

Note: If you manually change a table-level replication definition in Replication Server, you
must then suspend and resume replication in the Replication Agent to ensure that the
Replication Agent clears and refreshes its cache.

Oracle Data Guard
Data Guard is a disaster-protection architecture consisting of a primary Oracle database and
one or more standby Oracle databases to which the primary database copies its data. These
standby copies can be used in the event that the primary Oracle database fails. Replication
Agent supports replication of data from an Oracle database system that uses Data Guard.

Recommended Configuration
Although you can configure Replication Agent to replicate data from either the Data Guard
primary database or a Data Guard standby database, Sybase recommends that you configure
Replication Agent to read from a Data Guard standby database transaction log. This way, if the
primary Data Guard database fails over to the standby Data Guard database, Replication
Agent is already connected to a working Oracle database, and replication is not disrupted.

If you configure Replication Agent to read from a Data Guard standby database transaction
log, pds_username must have alter database permission.

Replication Agent for Oracle

58 Replication Agent

Database Resynchronization
You can avoid having to quiesce the primary database when you initialize Replication Agent
for Oracle if your replication system is configured for database resynchronization.

For information on configuring database resynchronization, see the Replication Server
Heterogeneous Replication Guide > Oracle Replicate Database Resynchronization.

Oracle Transaction and Operation Troubleshooting
The ra_dumptran and ra_helpop commands return information for use in troubleshooting a
specified Oracle database transaction or database operation, respectively.

The ra_dumptran and ra_helpop commands use information gathered by Oracle LogMiner to
help you troubleshoot Replication Agent for Oracle. Oracle LogMiner consists of Oracle
procedures and views that allow you to obtain detailed information about database activities
from the Oracle redo logs. To use ra_dumptran and ra_helpop, you must install Oracle
LogMiner, or these commands return errors. For details on using these commands, see the
Replication Agent Reference Manual.

Setting Up Replication Agent and Oracle to use ra_dumptran and ra_helpop
Troubleshoot using ra_dumptran and ra_helpop.

1. Go to $ORACLE_HOME/rdbms/admin.

2. Log in as a “sys as sysdba” user.

3. Execute the Oracle LogMiner installation script:

@dbmslm.sql
4. After LogMiner is installed, create a public synonym so that you do not have to log in as the

owner to execute LogMiner functions:

CREATE PUBLIC SYNONYM DBMS_LOGMNR FOR
 SYS.DBMS_LOGMNR;

Note: This step is required if you are using Oracle 10g.

5. Grant these privileges to pds_username:

• EXECUTE_CATALOG_ROLE

• SELECT ON V_$LOGMNR_CONTENTS

• SELECT ON V_$LOGMNR_LOGS

• SELECT ANY TRANSACTION

Note: The ra_migrate command verifies that these privileges have been granted to
pds_username. If these privileges have not been granted at the time ra_migrate is
invoked, a warning message is returned and logged in the Replication Agent log file.

6. Use ra_dumptran and ra_helpop according to instructions provided in the Replication
Agent Reference Manual.

Replication Agent for Oracle

Primary Database Guide 59

Stored Procedure Replication with BOOLEAN Arguments
Learn how to replicate Oracle stored procedures with arguments of boolean type.

To replicate an Oracle stored procedure with an argument of type BOOLEAN, Replication
Agent sends the BOOLEAN argument to Replication Server as an integer. Replication Server
then uses a function string to convert the argument back to a BOOLEAN value so that the stored
procedure can be executed on the replicate database. On Replication Server, you must
manually create this function string for each Oracle stored procedure that has an argument of
type BOOLEAN.

Some replicate databases do not support BOOLEAN stored procedure arguments. In these
cases, the Oracle stored procedure BOOLEAN argument should be mapped to an integer
argument in the corresponding stored procedure at the replicate database. A function string is
then unnecessary.

These examples illustrate how to replicate an Oracle stored procedure with an argument of
type BOOLEAN to a Oracle replicate database and to a non-Oracle replicate database.

Example: Replicating to an Oracle Replicate Database
Replicate a stored procedure with BOOLEAN arguments to an Oracle replicate database.

To replicate a stored procedure defined by these PL/SQL statements:

CREATE PROCEDURE boolproc (a IN BOOLEAN, b INT) AS
 BEGIN
 IF (a = true) THEN
 DBMS_OUTPUT.PUT_LINE('True');
 ELSE
 DBMS_OUTPUT.PUT_LINE('False or NULL');
 ENDIF;
 END;
1. Manually create a replication definition on Replication Server using this RCL command:

create function replication definition ra$xxx_boolproc
 with primary at myprimary.pdb
 with all functions named boolproc (
 @"a" rs_oracle_decimal
 @"b" rs_oracle_decimal)
 searchable parameters(@"a", @"b")
 send standby all parameters

Note: If the Replication Agent pdb_auto_create_repdefs configuration parameter is set
to true, a replication definition will be created automatically.

2. Mark the stored procedure for replication:

pdb_setrepproc boolproc, mark
3. Create a function string on Replication Server:

create function string ra$xxx_boolproc.boolproc
 for rs_oracle_function_class

Replication Agent for Oracle

60 Replication Agent

 output language
 'begin execute immediate "begin
ra_user.boolproc
(?a!param?=1,?b!param?);;end;;";;end;;'
 go

4. Create a subscription on Replication Server for the replication definition:

create subscription sub_intproc
 for ra$xxx_boolproc
 with replicate at myreplicate.rdb
 go

The stored procedure is replicated when it is executed at the primary database:

EXECUTE boolproc(true,1);

Example: Replicating to a Non-Oracle Database
Replicate a stored procedure with BOOLEAN arguments to a non-Oracle replicate database.

To replicate a stored procedure defined by these PL/SQL statements:

CREATE PROCEDURE boolproc (a IN BOOLEAN, b INT) AS
 BEGIN
 IF (a = true) THEN
 DBMS_OUTPUT.PUT_LINE('True');
 ELSE
 DBMS_OUTPUT.PUT_LINE('False or NULL');
 ENDIF;
 END;
1. Manually create a replication definition on Replication Server using this RCL command:

create function replication definition ra$xxx_boolproc
 with primary at myprimary.pdb
 with all functions named boolproc (
 @"a" rs_oracle_decimal
 @"b" rs_oracle_decimal)
 searchable parameters(@"a", @"b")
 send standby all parameters

Note: If the Replication Agent pdb_auto_create_repdefs configuration parameter is set
to true, a replication definition will be created automatically.

2. Mark the stored procedure for replication:

pdb_setrepproc boolproc, mark
3. Adaptive Server Enterprise does not support BOOLEAN stored procedure arguments, so

you must map the Oracle stored procedure BOOLEAN argument to an integer argument for
the corresponding stored procedure at the replicate database.

4. Create a stored procedure, defined by this Transact-SQL® statement, at the replicate
database:

create proc boolproc (@a int, @b int) as
 if @a = 1
 print 'True'

Replication Agent for Oracle

Primary Database Guide 61

 else
 print 'False or NULL'
 go

5. Create a subscription on Replication Server for the replication definition:

create subscription sub_intproc
 for ra$xxx_boolproc
 with replicate at myreplicate.rdb
 go

The stored procedure is replicated when it is executed at the primary database:

EXECUTE boolproc(true,1);

However, the boolproc procedure at the replicate Adaptive Server Enterprise will be invoked
with an integer value instead of a BOOLEAN argument:

boolproc 1, 1
go

Oracle Warm Standby
Using Replication Server, you can create and maintain a warm standby environment for an
Oracle database.

In standby mode, Replication Agent:

• Scans the transaction log and keeps the Replication Agent System Database (RASD)
current

• Does not send any LTL to Replication Server
• Continues to perform log truncation

When the active database fails or when you want to perform maintenance on the active
database, you can switch to the standby database. For instructions on switching the active and
standby database, see “Managing Heterogeneous Warm Standby for Oracle” in the
Replication Server Heterogeneous Replication Guide.

To function in warm standby mode:

• Replication Agent must be installed on both the primary and standby side and must also be
successfully initialized. The Replication Agent on the standby side should be running in
standby mode with the ra_standby parameter set to true.

• Replication Agent should have the rs_source_ds and rs_source_db parameters
configured as physical connections to Replication Server.

• Replication Agent should enable or disable the replication of DDL statements as desired
using the pdb_setrep_ddl command.

• Replication Agent should set the pdb_auto_create_repdefs, pdb_dflt_column_repl,
pdb_dflt_object_repl, and pdb_automark_tables parameters to true.

For details on using these commands and configuration parameters, see the Replication Agent
Reference Manual. For detailed steps involved in creating and managing warm standby for
Oracle, see the Replication Agent Heterogeneous Replication Guide.

Replication Agent for Oracle

62 Replication Agent

Oracle Flashback
Replication Agent can replicate Oracle Flashback operations performed at the table level and
the transaction level.

• Replication Agent can replicate Flashback Table commands to restore a database back to a
System Change Number (SCN), timestamp, or restore point within the threshold specified
by the Oracle UNDO_RETENTION parameter. If a table has been marked for replication,
Replication Agent can replicate any DML changes that result from executing the contents
of the UNDO_SQL column of the Oracle FLASHBACK_TRANSACTION_QUERY view.

• Replication Agent replicates these Oracle DDL commands:
• DROP TABLE table (when the Recycle Bin is enabled)
• FLASHBACK TABLE table TO BEFORE DROP

• PURGE TABLE table
• PURGE INDEX index
• PURGE TABLESPACE tablespace
• PURGE RECYCLEBIN

• PURGE DBA_RECYCLEBIN

Note: Since the replicate database may not be an exact copy of the primary database, these
DDL commands may not execute successfully at the replicate database or may have a
different result at the replicate database. For example, the PURGE DBA_RECYCLEBIN
command purges more objects at the replicate database if the Recycle Bin for the replicate
database contains more objects than the primary database Recycle Bin.

• Replication Agent can read from the Oracle Flash Recovery Area if the pdb_archive_path
configuration parameter is set to that location.

Requirements for Oracle Flashback
Observe these requirements when using Oracle Flashback with Replication Agent.

To use Oracle Flashback with Replication Agent:

• The user ID for pds_username must have select permission on SYS.RECYCLEBIN$.
• For Replication Agent to replicate the Oracle PURGE DBA_RECYCLEBIN command, the

user ID for ddl_username must have sysdba permission and should be suffixed with "as
sysdba". For example:
ra_config ddl_username, "myuser as sysdba"
go

• Replication Agent replicates Flashback operations from Oracle 10g and 11g databases but
not from earlier versions of Oracle.

Replication Agent for Oracle

Primary Database Guide 63

Limitations to Oracle Flashback
Replication of Oracle Flashback commands is subject to some limitations.

• If the replicate database does not have the Recycle Bin enabled, Flashback commands, the
PURGE command, and any command that accesses Recycle Bin objects fails, even if a
DROP TABLE command has been successfully replicated.

• Replication Agent does not support the translation of DDL commands between a primary
and replicate database of different types. Consequently, DDL replication must be disabled
when replicating from an Oracle primary database to a non-Oracle replicate database, and
Flashback DDL commands cannot be replicated in this case.

• If an Oracle FLASHBACK TABLE command is issued with the RENAME TO clause,
Replication Agent does not automatically update the replication definition with the new
table name. You must do this manually.

• Replication Agent reconstructs Flashback commands based on the original object name,
not on the object Recycle Bin name. When there are multiple versions of an object in the
Recycle Bin, Replication Agent reconstructs a Flashback command to use the most recent
version of the object that exists in the Recycle Bin at the replicate database. Consequently,
subsequent Oracle commands that affect the Recycle Bin may result in inconsistency
between the primary and replicate databases.
For example, the primary Oracle database contains these dropped versions of table
TAB1:

SQL> SELECT object_name as recycle_name, original_name,
 FROM recyclebin;
RECYCLE_NAME ORIGINAL_NAME TYPE
-------------------------------- ------------- -----
BIN$zyxwvutsrqponmlkjihgfedcba$1 TAB1 TABLE
BIN$zyxwvutsrqponmlkjihgfedcba$2 TAB1 TABLE
BIN$zyxwvutsrqponmlkjihgfedcba$3 TAB1 TABLE

The replicate Oracle database contains these dropped versions of table TAB1:

SQL> SELECT object_name as recycle_name, original_name, type
 FROM recyclebin;
RECYCLE_NAME ORIGINAL_NAME TYPE
-------------------------------- ------------- -----
BIN$abcdefghijklmnopqrstuvwxyz$1 TAB1 TABLE
BIN$abcdefghijklmnopqrstuvwxyz$2 TAB1 TABLE
BIN$abcdefghijklmnopqrstuvwxyz$3 TAB1 TABLE

This Flashback command is executed at the primary Oracle database:
FLASHBACK TABLE "BIN$zyxwvutsrqponmlkjihgfedcba$2" TO BEFORE
DROP;

Because Replication Agent reconstructs Flashback commands based on the original
object name and uses the most recent version of a dropped object in the Flashback
command, this command is executed at the replicate Oracle database:
FLASHBACK TABLE "BIN$abcdefghijklmnopqrstuvwxyz$3" TO BEFORE
DROP;

Replication Agent for Oracle

64 Replication Agent

If BIN$zyxwvutsrqponmlkjihgfedcba$2 differs in content from BIN
$abcdefghijklmnopqrstuvwxyz$3, the primary and replicate databases have
become inconsistent.

Disabling Oracle Recycle Bin
If you do not intend to use the Recycle Bin at the replicate Oracle database, you can manually
disable it.

Prerequisites
Disabling the Recycle Bin requires the sysdba privilege.

Task
Enter this command, and then restart the replicate Oracle database:

ALTER SYSTEM SET RECYCLEBIN=OFF SCOPE=SPFILE;

Or, if you are using a version of Oracle that does not have the RECYCLEBIN parameter, enter:

ALTER SYSTEM SET "_recyclebin"=FALSE SCOPE=BOTH;

Note: If you are using Oracle RAC, disable the recycle bin for each instance in the cluster.

Dropped Objects and Article Status
If a marked table is dropped while the Recycle Bin is enabled at the primary database, the
ra_helparticle command still reports the status of the corresponding article as Current.
ra_helparticle reports the status of the corresponding article as Dropped only after the
dropped table is purged from the primary database Recycle Bin.

Disabling Flashback Replication with Recycle Bin Disabled
Disable the replication of Oracle Flashback DDL commands when the Recycle Bin is
disabled.

If the replicate Oracle database does not have the Recycle Bin enabled, any command that
accesses Recycle Bin objects at the replicate database fails. You should therefore disable the
replication of Flashback DDL commands.

Disable the replication of Flashback DDL commands in one of these ways:

• Use the pdb_setrepddl command to prevent the replication of Flashback DDL commands.
See the Replication Agent Reference Manual.

• Add a “warning” error action for Flashback DDL execution failure to Replication Server
so that replication can continue with the replicate Recycle Bin disabled. Run this
Replication Server script against the RSSD:
$SYBASE/RAX-15_5/scripts/oracle/
hds_oracle_setup_flashback_errors.sql
After you run this script, you must restart Replication Server.

Note: This script uses the rs_oracle_error_class default error class as a template. If you
are using a custom error class and want Replication Server to continue replicating without

Replication Agent for Oracle

Primary Database Guide 65

interruption, you must instruct Replication Server to display warning messages 38305 and
38307 in its error log:

assign action warn for your_error_class to 38305, 38307

where your_error_class is the name of your custom error class.

To remove the “warning” error action for Flashback DDL execution failure to Replication
Server, run this Replication Server script against the RSSD:
$SYBASE/RAX-15_5/scripts/oracle/
hds_oracle_remove_flashback_errors.sql

XMLTYPE Data Replication
When an Oracle table is created with an XMLTYPE column but without any XML schema
specification, a hidden CLOB column is automatically created to store the XML data. The
XMLTYPE column becomes a virtual column for the hidden CLOB column. In the
corresponding Oracle base table, the hidden column immediately follows the XMLTYPE
column that it represents and is named SYS_NCnnnnn$, where nnnnn represents the position
of the hidden column in the base table.

For example, a table is created in the Oracle database with this DDL command:

CREATE TABLE sampletable
(col1 INT,
, col2 INT,
, xml1 XMLTYPE
, xml2 XMLTYPE);

The Oracle database creates hidden columns named SYS_NC00004$ and
SYS_NC00006$, which respectively correspond to the xml1 and xml2 columns. These
hidden CLOB columns cannot be accessed directly. However, they can be viewed by querying
the col$ and obj$ base tables of the Oracle data dictionary. See the Oracle documentation.

See also
• Oracle XMLTYPE Datatype Compatibility on page 32

• Oracle 10g and 11g XMLTYPE Restrictions on page 34

Example: Replicating XMLTYPE Column Data from Oracle to Oracle
Replicate XMLTYPE column data from an Oracle primary database to an Oracle replicate
database.

To replicate a table defined by this DDL statement:

CREATE TABLE sampletable
(col1 INT,
 col2 INT,
 xml1 XMLTYPE,
 xml2 XMLTYPE);

Replication Agent for Oracle

66 Replication Agent

1. Manually create a replication definition on Replication Server this RCL command:

create replication definition ra$xxx_sampletable
with primary at myprimary.pdb
with all tables named sampletable (
col1 int,
col2 int,
xml1 as SYS_NC00004$ text,
xml2 as SYS_NC00006$ text)
primary key (col1, col2)
go

Note: If the Replication Agent pdb_auto_create_repdefs configuration parameter is set
to true, a replication definition is created automatically.

2. Mark the table for replication:

pdb_setreptable sampletable, mark
3. Because of the hidden CLOB columns, you must enable replication for the table using

pdb_setrepcol:

pdb_setrepcol sampletable, enable
4. Create a corresponding table at the replicate Oracle database:

CREATE TABLE sampletable
(col1 INT,
 col2 INT,
 xml1 XMLTYPE,
 xml2 XMLTYPE);

Note: If DDL replication has been enabled, manually create the replicate table.

Example: Replicating XMLTYPE Column Data from Oracle to Adaptive Server
Enterprise
Replicate XMLTYPE column data from an Oracle primary database to an Adaptive Server
Enterprise replicate database.

To replicate a table defined by this DDL statement:

CREATE TABLE sampletable
(col1 INT,
 col2 INT,
 xml1 XMLTYPE,
 xml2 XMLTYPE);

1. Manually create a replication definition on Replication Server using this RCL command:

create replication definition ra$xxx_sampletable
with primary at myprimary.pdb
with all tables named sampletable (
col1 int,
col2 int,
xml1 as SYS_NC00004$ text,
xml2 as SYS_NC00006$ text)

Replication Agent for Oracle

Primary Database Guide 67

primary key (col1, col2)
go

Note: If the Replication Agent pdb_auto_create_repdefs configuration parameter is set
to true, a replication definition is created automatically.

2. Mark the table for replication:

pdb_setreptable sampletable, mark
3. Because of the hidden CLOB columns, you must enable replication for the table using

pdb_setrepcol:

pdb_setrepcol sampletable, enable
4. Create a corresponding table at the replicate Adaptive Server Enterprise database using the

hidden column names from the primary database table:

create table sampletable
(col1 int,
col2 int,
SYS_NC00004$ text,
SYS_NC00006$ text)
go

Note: The XMLTYPE columns from the Oracle primary database table map to text
columns in the Adaptive Server Enterprise replicate database table.

Example: Replicating an XMLTYPE Table from Oracle to Oracle
Replicate an XMLTYPE table from an Oracle primary database to an Oracle replicate
database.

This statement creates a simple XMLTYPE table with one implicit CLOB column that can be
accessed through a default pseudocolumn named XMLDATA:

CREATE TABLE sampletable OF XMLTYPE;

To replicate a table defined by this DDL statement:

1. Manually create a replication definition on Replication Server using this RCL command
and the hidden column SYS_NC_OID$, which contains the object ID for
sampletable:

create replication definition ra$xxx_sampletable
with primary at myprimary.pdb
with all tables named sampletable (
SYS_NC_OID$ rs_oracle_binary,
XMLDATA text)
primary key (SYS_NC_OID$)
go

The Replication Server name for the Oracle RAW datatype is rs_oracle_binary.

Replication Agent for Oracle

68 Replication Agent

Note: If the Replication Agent pdb_auto_create_repdefs configuration parameter is set
to true, a replication definition is created automatically.

2. Mark the table for replication:

pdb_setreptable sampletable, mark
3. Create a corresponding table at the replicate Oracle database:

CREATE TABLE sampletable OF XMLTYPE;

Oracle 11g Release 2
All of the functionality that Replication Agent supports for Oracle Database 11g Release 1 is
also supported by Replication Agent for Oracle Database 11g Release 2. Replication Agent
also supports some functionality introduced by Oracle Database 11g Release 2.

Note: If you want to replicate tables compressed for online transaction processing (OLTP),
apply first the Oracle patch# 129050503.

Replication Agent supports functionality common to both Oracle Database 11g Release 1 and
Oracle Database 11g Release 2, including:

• Oracle DDL and DML replication in systems with and without Automatic Storage
Management (ASM) and Real Application Clusters (RAC).

• Use of the Oracle Recovery Manager (RMAN) utility to truncate old archive log files.
• Use of the Oracle Recycle Bin and replication of Oracle Flashback operations.
• Oracle Data Guard.

Replication Agent also supports some features that are new as of Oracle Database 11g Release
2:

• Use of the FORCE option with a CREATE OR REPLACE TYPE statement on types with
type dependencies.

• DDL statements on tables enabled for Flashback Data Archive.
• Version 11.2 time zone files and new time zone behavior.

Network Configuration File Location and Structure
The tnsnames.ora file is located in ORACLE_HOME\network\admin. In an Oracle
Database 11g Release 2 instance running ASM or RAC, the tnsnames.ora file is read by
default from the grid infrastructure home directory at Grid_home\network\admin.

If you are using an Oracle Database 11g Release 2 instance running ASM or RAC, set the
Replication Agent asm_tns_filename parameter to Grid_home\network\admin
\tnsnames.ora.

By default, the tnsnames.ora file at Grid_home\network\admin contains an
incomplete ASM entry that lacks information in the DESCRIPTION and SERVICE_NAME
fields. If you are using an Oracle Database 11g Release 2 instance running ASM, set the
Replication Agent asm_tns_connection parameter to the ASM connection name specified in

Replication Agent for Oracle

Primary Database Guide 69

this incomplete ASM entry. Replication Agent completes the DESCRIPTION and
SERVICE_NAME fields, and you can then use the tnsnames.ora file in Grid_home
\network\admin to connect to the ASM instance server.

Time Zone File
By default, Oracle Database 11g Release 2 uses the large time zone file,
timezone_11.dat. This file contains all the time zones defined in the database.

If you are using Oracle Database 11g Release 2, set the Replication Agent pdb_timezone_file
parameter to the location of the timezone_11.dat file:

ra_config pdb_timezone_file, $ORACLE_HOME/oracore/zoneinfo/
timezone_11.dat

User-Defined Type Dependencies
You can use the CREATE OR REPLACE TYPE command to change the definition for an
existing user-defined type. However, this command throws an error if the referenced type has
table or type dependencies.

Oracle Database 11g Release 2 allows you to use FORCE with the CREATE OR REPLACE
TYPE command to replace a type that has a type dependency:

CREATE TYPE mytype1 AS OBJECT (a number) NOT FINAL;
CREATE TYPE mytype2 UNDER mytype1 (b varchar(10));
CREATE OR REPLACE TYPE mytype1 FORCE AS OBJECT (c varchar(20));

Oracle Database 11g Release 2 does not allow you to use FORCE with the CREATE OR
REPLACE TYPE command to replace a type that has a table dependency:

CREATE TABLE mytable1 (colA mytype1);
CREATE OR REPLACE TYPE mytype1 FORCE AS OBJECT (d number);

The last command results in an error because mytype1 has a table dependency on
mytable1:

ERROR at line 1:
ORA-22866: cannot replace a type with table dependents

Replication Agent supports use of the FORCE option with the CREATE OR REPLACE TYPE
command in Oracle Database 11g Release 2 to replace types with type dependencies but not
for types with table dependencies.

Flashback Data Archive Support for DDL Commands
Oracle Flashback allows database administrators and users to view past states of database
objects and to restore database objects to a previous state without using point-in-time
recovery. Users can query past data, query metadata to build a detailed history of changes,
recover data to a previous point in time, and roll back transactions while the database is online.

Replication Agent for Oracle

70 Replication Agent

Replication Agent supports the replication of DDL commands on tables that are being tracked
with the Flashback Data Archive in Oracle Database 11g Release 2. These DDL commands
include:

• Add, Drop, Rename, Modify Column

• Drop, Truncate Partition

• Rename, Truncate Table

• Add, Drop, Rename, Modify Constraint

Oracle 9i
Replication Agent supports Oracle 9i when Oracle 10g or 11g is running in 9i compatibility
mode.

Limitations to Oracle 9i
Some Replication Agent features cannot be used with Oracle 9i.

These Replication Agent features cannot be used with Oracle 9i:

• Oracle index-organized tables and the ANYDATA datatype

• Autocorrection
• Replication of XMLTYPE data

• Flashback
• RAC
• ASM

Replication Agent Objects in the Oracle Primary Database
Replication Agent creates objects in the primary database to assist with replication tasks.

The Replication Agent objects are created by invoking the ra_admin command with the init
keyword. When you invoke this command, Replication Agent generates a SQL script that
contains the SQL statements for the objects created or modified in the primary database. This
script is stored in the partinit.sql file in the RAX-15_5\inst_name\scripts
\xlog directory. You must create these objects before marking any primary database objects
for replication.

Note: The generated scripts are for informational purposes only. You cannot run them
manually to initialize the primary database or Replication Agent. This is also true for the
procedure marking and unmarking scripts that are generated when you use pdb_setrepproc.
Scripts are no longer generated when marking and unmarking tables with pdb_setreptable.

See the Replication Agent Administration Guide.

Replication Agent for Oracle

Primary Database Guide 71

Replication Agent Object Names
Replication Agent creates objects in the primary database to assist with replication tasks.

There are two variables in Replication Agent database object names:

• prefix – represents the one-to-three-character string value of the
ra_admin_instance_prefix parameter (used for Replication Agent for Microsoft SQL
Server or Replication Agent for UDB) or the ra_admin_prefix parameter.

• xxx – represents an alphanumeric counter, a string of characters that is (or may be) added
to a database object name to make that name unique in the database.

The value of the ra_admin_instance_prefix parameter is the prefix string used in all
Replication Agent object names.

The value of the ra_admin_prefix_chars parameter is a list of the nonalphanumeric characters
allowed in the prefix string specified by ra_admin_instance_prefix. This list of allowed
characters is database-specific. For example, in Oracle, the only nonalphanumeric characters
allowed in a database object name are the $, #, and _ characters.

Use the ra_admin command to view the names of Replication Agent transaction log
components in the primary database.

See the Replication Agent Administration Guide for details on setting up object names.

Finding the Names of the Objects Created
Find the names of Replication Agent objects created in the primary Oracle database.

Use the ra_admin command to return a list of all the Replication Agent objects created in the
primary database.

Table Objects
Replication Agent creates table objects in the Oracle primary database.

These tables are considered Replication Agent objects.

Table 4. Replication Agent Tables

Table Database Name

Procedure-active table <prefix>PROCACTIVE

Multiple Replication Agents instances table <prefix>AGENT

Multiple Replication Agents marked-tables table <prefix>TABLE

Multiple Replication Agents marked-procedures
table

<prefix>PROCEDURE

Replication Agent for Oracle

72 Replication Agent

Procedure-Active Table
Maintains information about the actively running procedures during replication.

Table 5. Procedure-Active Table

Column Name Type Contents

callseq NUMBER The procedure call sequence.

sid NUMBER The ID of the session the procedure is executed
on.

owner VARCHAR2(256) The procedure owner.

sproc VARCHAR2(256) The procedure name.

spid NUMBER The procedure object ID.

shadow VARCHAR2(256) The procedure shadow table name.

shid NUMBER The procedure shadow table object ID.

objtype NUMBER The procedure object type.

sqlerrm VARCHAR2(256) The text of the SQL error message for any error
that occurred during procedure execution.

Multiple Replication Agents Instances Table
Maintains information about each Replication Agent instance in a Replication Agent group.

The multiple Replication Agents instances table is named ra_admin_prefixAGENT, where
ra_admin_prefix is the prefix string used for Replication Agent system object names.

Table 6. Multiple Replication Agents Instances Table

Column Name Type Contents

prefix VARCHAR2(3) The instance prefix for this Replication Agent
instance. This prefix is determined by the setting
of the ra_admin_instance_prefix parameter.

locator VARCHAR2(128) The truncation point for this Replication Agent
instance.

inittime TIMESTAMP The time at which this Replication Agent instance
was initialized.

version VARCHAR2(8) The version of this Replication Agent instance.

rasd_export_file VARCHAR(255) The file to which RASD data is exported.

Replication Agent for Oracle

Primary Database Guide 73

Column Name Type Contents

upg_from_ver VARCHAR(16) The version from which Replication Agent has
been upgraded.

upg_fin_ts TIMESTAMP The time at which the upgrade finished.

Multiple Replication Agents Marked-Tables Table
Maintains information about tables marked for replication in a Replication Agent group.

The multiple Replication Agents marked-tables table is named ra_admin_prefixTABLE,
where ra_admin_prefix is the prefix string used for Replication Agent system object names.

Table 7. Multiple Replication Agents Marked-Tables Table

Column Name Type Contents

prefix VARCHAR2(3) The instance prefix for this Replication Agent
instance. This prefix is determined by the setting
of the ra_admin_instance_prefix parameter.

tableid NUMBER The object ID for this marked table.

autocorrection NUMBER(38) Indicates whether or not autocorrection is ena-
bled for the marked table. If autocorrection is
enabled, this column has a value of 1. Otherwise,
the column has a value of 0 (default).

ruletype NUMBER(38) Not used.

rulevalue VARCHAR2(30) Not used.

Multiple Replication Agents Marked-Procedures Table
Maintains information about procedures marked for replication in a Replication Agent group.

The multiple Replication Agents marked-procedures table is named
ra_admin_prefixPROCEDURE, where ra_admin_prefix is the prefix string used for
Replication Agent system object names.

Table 8. Multiple Replication Agents Marked-Procedures Table

Column Name Type Contents

prefix VARCHAR2(3) The instance prefix for this Replication Agent
instance. This prefix is determined by the setting
of the ra_admin_instance_prefix parameter.

procid NUMBER The object ID for this marked procedure.

Replication Agent for Oracle

74 Replication Agent

Column Name Type Contents

shadowtable VARCHAR2(30) The object ID of the shadow table corresponding
to this procedure.

ruletype NUMBER(38) Not used.

rulevalue VARCHAR2(30) Not used.

Marker Objects
Replication Agent creates marker objects in the primary database.

These Replication Agent objects are related to Replication Server markers. No permissions
are granted when these objects are created.

Table 9. Replication Agent Marker Objects

Object Name

Transaction log marker procedure RS_MARKER

Dump marker procedure RS_DUMP

Transaction log marker shadow table <prefix>MARKERSH[xxx]

Dump marker shadow table <prefix>DUMPSH[xxx]

Sequences
Replication Agent creates sequences in the Oracle primary database.

These Oracle sequences are considered Replication Agent objects.

Table 10. Replication Agent Sequences

Sequence Database Name

Assign procedure call <prefix>PCALL_[xxx]

Marked Procedures
Replication Agent creates objects for each primary procedure marked for replication in the
Oracle primary database.

These Replication Agent objects are created for each primary procedure that is marked for
replication. These objects are created only when a procedure is marked for replication.

Replication Agent for Oracle

Primary Database Guide 75

Table 11. Replication Agent Objects for Each Marked Procedure

Object Name

Shadow table <prefix><procedure_name>SH

Shadow Table
Maintains information about the procedure call sequence and also maintains a column for
every procedure argument where the column definition matches the definition of the
argument.

Table 12. Shadow Table

Column Name Type Contents

callseq NUMBER The procedure call sequence.

Transaction Log Truncation
Replication Agent supports both automatic and manual log truncation.

Replication Agent provides two options for automatic transaction log truncation:

• Periodic truncation, based on a time interval you specify
• Automatic truncation whenever Replication Agent receives a new LTM locator value from

the primary Replication Server. You also have the option to switch off automatic log
truncation. By default, automatic log truncation is enabled and is set to truncate the log
whenever Replication Agent receives a new LTM locator value from the primary
Replication Server.

To configure Replication Agent log truncation, observe these guidelines:

• When pdb_include_archives is set to true, the default, and pdb_archive_remove is set
false, the Replication Agent does not perform any online or archived transaction log
truncation. When pdb_include_archives is set to true, the default, and
pdb_archive_remove is set to true, Replication Agent deletes from the pdb_archive_path
location the archive redo logs that have already been processed. The Replication Agent is
not responsible for archiving online transaction logs.

Note: Sybase recommends that you configure the Replication Agent to remove archive log
files only if an additional archive log directory is used.

• When the configuration parameter pdb_include_archives is set to false, Replication
Agent performs online redo log truncation (either scheduled or manual) by issuing the
alter system command with the archive log sequence keywords. The command uses the
log sequence number of the redo log file whose contents have been processed by the
Replication Agent and are ready to be archived.

Note: The alter system command syntax in Oracle allows redo log files to be archived in
addition to the single log sequence specified in the command. To avoid unintentional

Replication Agent for Oracle

76 Replication Agent

archiving, Replication Agent issues this command only when it is processing the redo log
file whose status is current.

• You can specify the automatic truncation option you want (including none) by using
ra_config to set the value of the truncation_type configuration parameter.
To truncate the transaction log automatically based on a time interval, use ra_config to set
the value of the truncation_interval configuration parameter.

• You can truncate the Replication Agent transaction log manually, at any time, by invoking
pdb_truncate_xlog at the Replication Agent administration port.

For more information on these properties, see the Replication Agent Reference Manual. For a
more detailed description of truncating, see "Administering Replication Agent” in the
Replication Agent Administration Guide.

Replication Agent for Oracle

Primary Database Guide 77

Replication Agent for Oracle

78 Replication Agent

Replication Agent for Microsoft SQL Server

Review the features of Replication Agent that are unique to Replication Agent for Microsoft
SQL Server.

The term "Replication Agent for Microsoft SQL Server" refers to an instance of Replication
Agent software that is installed and configured for a primary database that resides in a
Microsoft SQL Server data server.

Note: For information on the basic features and operation of Replication Agent, see the
Replication Agent Administration Guide and Replication Agent Reference Manual.

Microsoft SQL Server-Specific Considerations
These general issues and considerations are specific to using Replication Agent with the
Microsoft SQL Server data server.

Replication Agent for Microsoft SQL Server reads the Microsoft SQL Server primary
database log. To read the database log, Replication Agent must be installed where it can
directly access the log files. Because the machine on which Replication Agent is installed
must be of the same hardware and operating system as the machine on which the primary
database resides, Replication Agent for Microsoft SQL Server is available only on the
Windows platform. The term “Windows” refers to all supported Microsoft Windows
platforms. For a complete list of supported platforms, see the Replication Agent Installation
Guide.

Microsoft SQL Server Requirements
Observe these requirements for Microsoft SQL Server.

• You cannot simultaneously use Microsoft replication and Replication Agent on the same
Microsoft SQL Server database. Disable Microsoft replication before using Replication
Agent for Microsoft SQL Server.

• You must disable Change Data Capture for Microsoft SQL Server (all versions).
• The Microsoft SQL Server TCP/IP protocol must be enabled.

Microsoft SQL Server Restrictions
Microsoft SQL Server imposes these restrictions as the primary database with Replication
Agent.

• Use of the TRUNCATE TABLE command on a table that has been marked for replication is
forbidden.

Replication Agent for Microsoft SQL Server

Primary Database Guide 79

• Dropping a stored procedure that has been marked for replication is forbidden.

Unsupported Software Features
These features are not supported for Sybase replication.

• Microsoft SQL Server clusters
• Microsoft SQL Server virtual computed columns
• Replication Server warm standby (for non-Adaptive Server Enterprise databases)
• Replication Server rs_subcomp utility (for non-Adaptive Server Enterprise databases)
• Database level materialization

Note: Direct load type of automatic materialization and bulk materialization (database
level/manual) are supported.

• Some Microsoft SQL Server 2008 features

Replication Agent does not support these Microsoft SQL Server 2008 features.

• Column sets
• MERGE SQL statements
• Procedures with table-valued parameters
• Sparse columns
• Transparent data encryption (TDE)

A table or stored procedure that uses these features cannot be marked, even by using
pdb_setreptable with the force keyword.

Replication of Deferred Updates on Primary Keys
Updates to the unique column index in a table is not supported by traditional replication, and
the Replication Server reports errors.

The replication of updates to the unique column index in a table is not supported, and
Replication Server reports errors. For example, table t has a unique index on column c, with
values 1, 2, 3, 4 and 5. A single update statement is applied to the table:
update t set c = c+1

Using traditional replication, this statement results in:
update t set c = 2 where c = 1
update t set c = 3 where c = 2
update t set c = 4 where c = 3
update t set c = 5 where c = 4
update t set c = 6 where c = 5

The first update attempts to insert a value of c=2 into the table. However, this value already
exists in the table. Replication Server displays error 2601—an attempt to insert a duplicate
key.

Replication Agent for Microsoft SQL Server

80 Replication Agent

The Replication Server DSI stops working if you attempt to replicate updates to a non-Sybase
table that has a unique column index. To work around this problem, broaden the unique index
definition.

Unsupported Datatypes
These datatypes are not supported for Sybase replication.

• cursor
• table
• xml
Replication Agent does not support these Microsoft SQL Server 2008 datatypes.

• date
• datetime2
• datetimeoffset
• filestream
• geography
• geometry
• hierarchyid
• time
• Large user-defined datatypes

Tables containing columns of unsupported types can be marked by using pdb_setreptable
with the force keyword, but replication might fail at runtime time when parsing log of such
tables.

Applying Microsoft SQL Server Patches
Apply Microsoft SQL Server patches on a database that is being replicated.

1. Be sure that all data has been replicated to the replicate site.

Note: All activities must stop before this step, and all users except the pds_username
must log off from the primary database.

For each existing Replication Agent for Microsoft SQL Server instance, verify that it is in
Replicating state and allow replication to finish. To verify that replication has finished,
quiesce the Replication Agent instance by issuing the quiesce command.

Note: It may take a while for the command to return because Replication Agent reads all
data from the log file and sends it to the Replication Server.

2. Disable the Replication Agent triggers.

If the pdb_automark_tables configuration parameter is set to true, log on to the primary
database and disable the automark trigger by issuing:
DISABLE TRIGGER ra_createtable_trig_ ON DATABASE

Replication Agent for Microsoft SQL Server

Primary Database Guide 81

where ra_createtable_trig_ is the name of the automark trigger created by
Replication Agent.

Note: The trigger name is based on the prefix and suffix setting for database object name.

3. Apply the service patch using the instructions in the Microsoft documentation.

4. Regenerate the objects in the Microsoft SQL Server system resource database.

• Restart Microsoft SQL Server in single-user mode by opening a new command
window and executing:
"C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Binn\sqlservr.exe" -m
-sserverName\instanceName

where instanceName is the name of the Microsoft SQL Server instance.
• Log in to the Replication Agent instance:

isql -U username -P password -S instanceName
• Reinitialize Microsoft SQL Server :

server_xlog remove, force
go
server_xlog init
go

• Restart Microsoft SQL Server in multiuser mode.

5. If the pdb_automark_tables configuration parameter is set to true before applying the
patch:

• Log in to the primary database, and enable the automark trigger by issuing:
ENABLE TRIGGER ra_createtable_trig_ ON DATABASE

where ra_createtable_trig_ is the name of the automark trigger created by Replication
Agent.

• Log on to the primary database, and enable the DDL trigger by issuing:
ENABLE TRIGGER ra_ddl_trig_ ON DATABASE

where ra_ddl_trig_ is the name of the DDL trigger created by Replication Agent.

6. Zero the LTM locator, and move the truncation point to the end of the log:

• Zero the LTM locator by logging in to RSSD and issuing:
rs_zeroltm < ra_instance > , < pdb_name >

• Move the truncation point to the end of log by logging in to Replication Agent and
issuing:
ra_locator move_truncpt

7. Resume replication or other operations in Replication Agent.

Replication Agent for Microsoft SQL Server

82 Replication Agent

DDL Replication
Replication of data definition language (DDL) commands is supported, but only to to
Microsoft SQL Server databases.

Note: No translation or adjustment of DDL commands is provided by Replication Agent.
DDL commands should therefore be replicated only to other Microsoft SQL Server databases.

Replication of DDL commands is enabled or disabled in Replication Agent using the
pdb_setrepddl command. Replication Server uses the ddl_username parameter to execute
DDL commands in the replicate database as the same user who executed the DDL commands
in the primary database.

See Replication Agent Reference Manual > Command Reference > pdb_setrepddl and
Replication Agent Reference Manual > Configuration Parameters > ddl_username for details
on using pdb_setrepddl and ddl_username.

DDL parameters
To replicate DDL in Microsoft SQL Server, in addition to setting the value of pdb_setrepddl
to enable, set the Replication Agent ddl_username and ddl_password parameters.

The ddl_username parameter is the replicate database user name included in LTL for
replicating DDL commands to the replicate or target database.

Permissions
In addition to the permission to execute all replicated DDL commands at the replicate
database, the ddl_username must also have the impersonate permission granted for all
users whose DDL commands may be replicated to the replicate database. This
impersonate permission is necessary to switch session context in the replicate database
when executing a DDL command. This user switches context to apply the DDL command
using the same privileges and default schema settings as the user who executed the DDL
command at the primary database. To provide this context switch, the ddl_username user
must have permission to execute the execute as user Microsoft SQL Server command for any
user who might execute DDL commands to be replicated from the primary database.

For example, user1 with a default schema of schema1 executes this DDL command at the
primary database:

create table tab1 (id int)

This results in the creation of a table named schema1.tab1 at the primary database. At the
replicate database, user2 with a default schema of schema2, cannot immediately execute
this DDL because it generates a table named schema2.tab1. Therefore, user2, whose
name is specified by the ddl_username configuration parameter, must impersonate user1
by issuing this command at the replicate database:

execute as user = 'user1'

Replication Agent for Microsoft SQL Server

Primary Database Guide 83

The DDL can then be executed with the correct schema by user2 at the replicate database,
generating a table named schema1.tab1.

See the Replication Agent Reference Manual.

Impersonate Permission
There are two ways to grant impersonate permission to the ddl_username user:

• You can grant database owner permission to the to the ddl_username user. In doing this,
you implicitly grant impersonate permission.

• Alternately, you can grant impersonate permission explicitly:

GRANT IMPERSONATE ON USER::user1 TO ddl_user

where user1 is a user whose DDL is expected to be replicated to the replicate database, and
ddl_user is the ddl_username user.

Note: This grant command must be executed in the replicate database, where the user defined
to ddl_username executes the DDL commands.

When you replicate DDL in Microsoft SQL Server, use Microsoft SQL Server as the replicate
database. You cannot replicate DDL commands from Microsoft SQL Server to non-Microsoft
SQL Server replicate databases.

Note: To replicate DDL, Replication Server must have a database-level replication definition
with replicate DDL set in the definition. See the Replication Server Reference Manual.

DDL Commands and Objects Filtered from Replication
These database-scope DDL commands are not replicated.

• ALTER_APPLICATION_ROLE

• ALTER_ASSEMBLY

• ALTER_AUTHORIZATION_DATABASE

• ALTER_CERTIFICATE

• CREATE_APPLICATION_ROLE

• CREATE_ASSEMBLY

• CREATE_CERTIFICATE

• CREATE_EVENT_NOTIFICATION

• DROP_EVENT_NOTIFICATION

These server-scope DDL commands are not replicated:

• ALTER_AUTHORIZATION_SERVER

• ALTER_DATABASE

• ALTER_LOGIN

• CREATE_DATABASE

• CREATE_ENDPOINT

Replication Agent for Microsoft SQL Server

84 Replication Agent

• CREATE_LOGIN

• DENY_SERVER

• DROP_DATABASE

• DROP_ENDPOINT

• DROP_LOGIN

• GRANT_SERVER

• REVOKE_SERVER

Any object owned by users defined in the list of nonreplicated users is not replicated. You can
modify this list using the pdb_ownerfilter command. In addition, Sybase has provided a
default list of owners whose objects are not replicated. Use the pdb_ownerfilter command to
return, add, or remove the list of owners whose objects are not replicated. See the Replication
Agent Reference Manual.

Replication Agent Connectivity
Replication Agent for Microsoft SQL Server uses JDBC™ for communications with all
replication system components.

The Microsoft SQL Server JDBC driver must be installed on the Replication Agent host
machine, and the JAR file path must be set in the CLASSPATH environment variable.

See the Replication Agent Installation Guide for the specific JDBC driver and version to
install.

Replication Agent Permissions and Roles
Replication Agent for Microsoft SQL Server must create database objects to assist with
replication tasks in the primary database.

These permissions must be granted to the user specified by the pds_username parameter:

• create table – required to create tables in the primary database.
• create trigger – required to create DDL triggers in the primary database.
• create procedure – required to create procedures in the primary database.

The user specified by the pds_username parameter must be added to these roles in the
primary database:

• db_owner – required to allow Replication Agent to execute sp_repltrans and
sp_repldone in the primary database. This role is also required for primary database
initialization.

• sysadmin – required for Microsoft SQL Server data server initialization and
deinitialization (using ra_admin init and ra_admin deinit, respectively).

The sybfilter Driver
Replication Agent must be able to read the Microsoft SQL Server log files. However, the
Microsoft SQL Server process opens these log files with exclusive read permission, and the

Replication Agent for Microsoft SQL Server

Primary Database Guide 85

file cannot be read by any other processes, including Replication Agent. Before Replication
Agent can replicate data, you must use the sybfilter driver to make the log files readable.

See also
• sybfilter Driver Reference on page 139

Initialization of the Primary Data Server and Replication Agent
For Microsoft SQL Server initialization, Replication Agent for Microsoft SQL Server installs
objects at both the data server and database level.

Data-server-level modifications are only required once. However, to make the server-level
modifications, additional permissions are required, the pds_dac_port_number parameter is
used, and the primary database must be in standalone mode. Subsequent executions of
ra_admin init do not modify the server again and do not require the additional permission or
configurations.

First-Time Initialization
You must initialize the primary Microsoft SQL Server so that Replication Agent can open the
supplemental log of a table or procedure that is marked for replication. Do this only once for
each primary data server.

When initializing the primary data server and Replication Agent for the first time:

1. Stop the Microsoft SQL Server Analysis Service. In Control Panel > Administrative
Tools > Services, find the service named SQL Server Analysis Services. Stop this service.

2. Make sure Microsoft SQL Server allows a remote dedicated administrative connection
(DAC):

sp_configure 'remote admin connections', 1
GO
RECONFIGURE
GO

To execute sp_configure with both parameters to change a configuration option or to run
the RECONFIGURE statement, you must be granted the ALTER SETTINGS server-level
permission. This permission is implicitly held by the sysadmin and serveradmin fixed
server roles.

3. Determine the primary Microsoft SQL Server DAC port number.

a) Open the ERRORLOG file in a text editor. This file is located in the log directory of your
Microsoft SQL Server. For example,

C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG
\ERRORLOG

b) Search for the string “Dedicated admin” to find an entry similar to:

Replication Agent for Microsoft SQL Server

86 Replication Agent

2007-11-09 13:40:02.40 Server Dedicated admin
connection support was established for listening
locally on port 1348.

c) Record the port number specified in this entry.

4. Update your sql.ini file with the instance name and port number of your Replication
Agent instance.

5. Log in to your Replication Agent, and set the pds_dac_port_number configuration
parameter:

ra_config pds_dac_port_number, port

where port is the DAC port number you recorded.

6. Also configure these Replication Agent connectivity parameters for the Microsoft SQL
Server primary database:

• pds_server_name

• pds_database_name

• pds_username

• pds_password

• pds_port_number

For information about these configuration parameters, see the Replication Agent
Installation Guide and Replication Agent Reference Manual.

7. Stop the Microsoft SQL Server service.

a) In Control Panel > Administrative Tools > Services, find the service named SQL
Server (SERVER), where SERVER is the name of your Microsoft SQL Server data
server.

b) Stop this service.

8. Open a command window, and restart Microsoft SQL Server in single-user mode.

For example:
"C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Binn\sqlservr.exe” -m -s
instanceName

Note: The directory path may vary depending on the version of Microsoft SQL Server.

where instanceName is the name of the Microsoft SQL Server instance.

9. Make sure that there are no other connections to the primary database, and verify that
Replication Agent can connect to the primary database.

a) Log in to the Replication Agent instance:

isql -U username -P password -S instanceName

where username, password, and instanceName are your user ID, password, and
Replication Agent instance name.

Replication Agent for Microsoft SQL Server

Primary Database Guide 87

b) Issue:

test_connection PDS
10. Initialize the Microsoft SQL Server data server and Replication Agent:

server_xlog init
ra_admin init

In the primary database, Replication Agent creates tables, procedures, and triggers. The
sp_SybSetLogforReplTable, sp_SybSetLogforReplProc, and sp_SybSetLogforLOBCol
procedures are created in the mssqlsystemresource database with execute
permission granted to Public.

11. Stop the Microsoft SQL Server service again by using CTRL+C at the command prompt.
Alternatively, at the command prompt, run the SHUTDOWN command.

12. Restart Microsoft SQL Server in multiuser mode (normal start).

a) In Control Panel > Administrative Tools > Services, find the service named SQL
Server (SERVER), where SERVER is the name of your Microsoft SQL Server data
server.

b) Start this service.

Start other Microsoft SQL Server services, such as Microsoft SQL Server Agent
service or the Microsoft SQL Server Analysis Service.

See also
• Replication Agent Objects in the Microsoft SQL Server Primary Database on page 99

Subsequent Initialization
After you have initialized Replication Agent for the first time and have subsequently
deinitialized Replication Agent using ra_admin deinit, you may want to reinitialize this
Replication Agent instance or another Replication Agent instance for a different database in
the same primary data server.

When initializing a Replication Agent instance subsequent to the first-time initialization:

1. Determine the primary Microsoft SQL Server DAC port number, and make sure Microsoft
SQL Server allows a remote DAC:

sp_configure 'remote admin connections', 1
GO
RECONFIGURE
GO

To execute sp_configure with both parameters to change a configuration option or to run
the RECONFIGURE statement, you must be granted the ALTER SETTINGS server-level
permission. The ALTER SETTINGS permission is implicitly held by the sysadmin and
serveradmin fixed server roles.

Replication Agent for Microsoft SQL Server

88 Replication Agent

2. Log in to your Replication Agent, and set the pds_dac_port_number configuration
parameter.

3. Configure these Replication Agent connectivity parameters for the Microsoft SQL Server
primary database:

• pds_server_name

• pds_database_name

• pds_username

• pds_password

For information about these configuration parameters, see the Replication Agent
Installation Guide and Replication Agent Reference Manual.

4. Verify that Replication Agent can connect to the primary database:

test_connection PDS
5. Initialize the Microsoft SQL Server data server and Replication Agent:

ra_admin init

Final Cleanup
After you have removed all Replication Agent objects from all the databases on a given
primary data server by issuing ra_admin deinit in each database in which you had issued
ra_admin init, you may want to remove all the remnants of Replication Agent and completely
clean the primary data server.

To clean up all Replication Agent remnants from the primary data server:

1. Stop the Microsoft SQL Server service.

a) In Control Panel > Administrative Tools > Services, find the service named SQL
Server (SERVER), where SERVER is the name of your Microsoft SQL Server data
server.

b) Stop this service.

2. Open a command window, and restart Microsoft SQL Server in single-user mode:

"C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Binn
\sqlservr.exe” -m -s instanceName

where instanceName is the name of the Microsoft SQL Server instance.

3. Make sure the Microsoft SQL Server SQL Browser service is running, and connect to the
data server using the sqlcmd utility with -A option or using the Management Studio.
Specify the server name as Admin: servername, where servername is the name of your
data server.

4. Remove the pds_username user if it has been created for Replication Agent:

drop user pds_username
5. Remove the special marking procedures from the mssqlsystemresource

database:

Replication Agent for Microsoft SQL Server

Primary Database Guide 89

drop procedure sp_SybSetLogforReplTable;
drop procedure sp_SybSetLogforReplProc;
drop procedure sp_SybSetLogforLOBCol;

6. Stop Microsoft SQL Server in single-user mode by shutting down the Windows service or
by issuing the shutdown command with the sqlcmd utility.

7. To undo the effects of the sybfilter driver on each of the log devices, remove the log path
entry by editing the configuration file or by using the sybfilter manager console.

8. Restart Microsoft SQL Server in multiuser mode (normal start).

a) In Control Panel > Administrative Tools > Services, find the service named SQL
Server (SERVER), where SERVER is the name of your Microsoft SQL Server data
server.

b) Start this service.

See also
• sybfilter Driver Reference on page 139

Character Case of Database Object Names
Database object names must be delivered to the primary Replication Server in the same format
as specified in replication definitions; otherwise, replication fails. For example, if a replication
definition specifies a table name in all lowercase, then that table name must appear in all
lowercase when it is sent to the primary Replication Server by the Replication Agent.

To control the way Replication Agent treats the character case of database object names sent to
the primary Replication Server, set the ltl_character_case configuration parameter to one of
these values:

• asis – (the default) database object names are passed to Replication Server in the same
format as stored in the primary data server.

• lower – database object names are passed to Replication Server in all lowercase, regardless
of how they are stored in the primary data server.

• upper – database object names are passed to Replication Server in all uppercase,
regardless of how they are stored in the primary data server.

In Microsoft SQL Server, database object names are stored in the same case as entered
(uppercase or lowercase).

Replication Agent for Microsoft SQL Server

90 Replication Agent

Format of Origin Queue ID
Each record in the transaction log is identified by an origin queue ID that consists of 64
hexadecimal characters (32 bytes). The format of the origin queue ID is determined by the
Replication Agent instance and varies according to the primary database type.

Table 13. Replication Agent for Microsoft SQL Server Origin Queue ID Format

Character Bytes Description

0–3 2 Database generation ID

4–11 4 Virtual file sequence number

12–19 4 Page start offset

20–23 2 Operation number

24–31 4 Available for specifying uniqueness

32–39 4 Oldest active transaction: virtual file sequence number

40–47 4 Oldest active transaction: page start offset

48–51 2 Oldest active transaction: operation number

52–59 4 Latest committed transaction: page start offset

60–63 2 Latest committed transaction: operation number

Microsoft SQL Server Datatype Compatibility
Replication Agent processes Microsoft SQL Server transactions and passes transaction
information to the primary Replication Server. The primary Replication Server uses the
datatype formats specified in the replication definition to receive the data from Replication
Agent.

Table 14. Microsoft SQL Server to Replication Server Default Datatype Mapping

Microsoft SQL Server
Datatype

Microsoft
SQL Server
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

bigint -263 to 263 - 1 bigint -263 to 263 - 1

binary Fixed-length
up to 8000
bytes

binary 32K

Replication Agent for Microsoft SQL Server

Primary Database Guide 91

Microsoft SQL Server
Datatype

Microsoft
SQL Server
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

bit Integer with
value of 0 or 1

bit Integer with
value of 0 or 1

char Fixed-length
up to 8000
characters

char 32K

datetime Date and time
from
01/01/1753 to
12/31/9999

datetime Date and time
from
01/01/1753 to
12/31/9999

decimal Decimal type
with precision
between 1 and
38 and scale
from 1 to 38

decimal Numeric from
-1038 to 1038 -
1

float Floating point
number -1.79E
+ 308 through
-2.23E - 308, 0
and 2.23E +
308 through
1.79E + 308.

float Floating preci-
sion from
-1.79E + 308
to 1.79E + 308

Results in Syb-
ase are machine
dependent.

image Variable-
length binary
data up to 231 -
1 bytes

image 2GB

int -231 to 231 - 1 int -231 to 231 - 1

money Monetary
from -263 to
263 - 1

money Monetary
from -263 to
263 - 1

nchar Fixed-length
Unicode up to
4000 charac-
ters

unichar or

char
32K Actual maxi-

mum length is
@@ncharsize *
number of char-
acters.

Replication Agent for Microsoft SQL Server

92 Replication Agent

Microsoft SQL Server
Datatype

Microsoft
SQL Server
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

ntext Variable-
length Unicode
up to 230 - 1
characters

unitext or

image
2GB For Replication

Server 15.0 and
later versions,
ntext maps to

unitext. For

earlier versions
of Replication
Server, ntext
maps to image.

nvarchar Variable-
length Unicode
up to 4000
characters

uni-
varchar or

varchar

32K Actual maxi-
mum length is
@@ncharsize *
number of char-
acters.

nvarchar(max) Variable-
length Unicode
up to 230 - 1
characters

unitext or

image
2GB The nvarch-

ar(max) da-

tatype cannot be
replicated to data
servers other
than Microsoft
SQL Server.

For Replication
Server 15.0 and
later versions,
nvarch-
ar(max)
maps to uni-
text. For earli-

er versions of
Replication
Server,
nvarch-
ar(max)
maps to image.

Replication Agent for Microsoft SQL Server

Primary Database Guide 93

Microsoft SQL Server
Datatype

Microsoft
SQL Server
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

numeric Synonym for
decimal
datatype

numeric Synonym for
decimal
datatype

real Floating point
number from
-3.40E + 38 to
3.40E + 38

real Floating preci-
sion from
-3.40E + 38 to
3.40E + 38

Results in Syb-
ase are machine
dependent.

smalldatetime Date and time
from
01/01/1900 to
06/06/2079

datetime Date and time
from
01/01/1900 to
06/06/2079

smallint Integer with
value from
-215 to 215 - 1

smallint Integer with
value from
-215 to 215 - 1

smallmoney Monetary
from
-214,748.3648
to
214,748.3647

smallmo-
ney

Monetary
from
-214,748.3648
to
214,748.3647

sql_variant Any datatype
except text,

ntext,

time-
stamp, and

sql_var-
iant, up to

8000 bytes

varchar or

opaque
32K For replication to

Replication
Server 15.0 and
earlier versions,
the Sybase data-
type should be
varchar. For

replication to
Replication
Server 15.1 or
later, the Sybase
datatype should
be opaque.

text Variable-
length up to 231

- 1 characters

text 2GB

Replication Agent for Microsoft SQL Server

94 Replication Agent

Microsoft SQL Server
Datatype

Microsoft
SQL Server
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

timestamp Database-wide
unique number

time-
stamp or

varbina-
ry

Database-wide
unique number

For replication to
Replication
Server 15.0 and
earlier versions,
the Sybase data-
type should be
varbina-
ry(8). For

replication to
Replication
Server 15.1 or
later, the Sybase
datatype should
be time-
stamp.

tinyint Integer with
value from 0 to
255

tinyint Integer with
value from 0 to
255

uniqueidentifier Globally
unique identi-
fier

char Globally
unique identi-
fier

No Sybase
equivalent. Map
to char(38).

varbinary Variable-
length up to
8000 bytes

varbina-
ry

32K

varbinary(max) Variable-
length up to 231

- 1 bytes

image 2GB The varbi-
nary(max)
datatype cannot
be replicated to
data servers oth-
er than Microsoft
SQL Server.

varchar Variable-
length up to
8000 charac-
ters

varchar 32K

Replication Agent for Microsoft SQL Server

Primary Database Guide 95

Microsoft SQL Server
Datatype

Microsoft
SQL Server
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

varchar(max) Variable-
length up to 231

- 1 characters

text 2GB The var-
char(max)
datatype cannot
be replicated to
data servers oth-
er than Microsoft
SQL Server.

Replication Server 15.0 Unsigned Datatype Mapping
For Replication Server 15.0 and later, unsigned datatypes are supported and can be specified in
the replication definitions.

Table 15. Unsigned Integer Replication Definition Datatype Mapping

RepServer 15.0 Unsigned Datatypes Replication Definition Datatypes

unsigned bigint numeric (20)
unsigned int numeric (10)
unsigned smallint int
unsigned tinyint tinyint

ntext Datatype Replication
Microsoft SQL Server stores double-byte ntext datatype values in little-endian byte order.
By default, the byte order of ntext data is converted during replication to big-endian so that
the data may be transmitted over networks using big-endian, which is the common network
byte order.

To support replicating ntext data to a Microsoft SQL Server (or other replicate server that
does not provide the necessary conversion), you may force the byte order to be sent using the
lr_ntext_byte_order property by specifying a value of big (for big-endian) or little (for little-
endian) as desired to meet the expectations of your replicate database.

The lr_ntext_byte_order parameter is available for Microsoft SQL Server, and Oracle and is
especially important for replication between two different database types and between
databases that reside on different platforms. For example, for replication between two
Microsoft SQL Server databases, both the primary and replicate database store data in little-
endian byte order because Microsoft SQL Server runs only on Windows. Therefore, the
lr_ntext_byte_order parameter should be set to little. However, if the replicate database is not

Replication Agent for Microsoft SQL Server

96 Replication Agent

a Microsoft SQL Server, determine its byte order and set the lr_ntext_byte_order parameter
accordingly.

Note: The default behavior of Replication Agent for Microsoft SQL Server is to force any
Unicode data to big-endian order as defined by the ltl_big_endian_unitext configuration
property. To allow the lr_ntext_byte_order configuration property to successfully override the
Microsoft SQL Server byte order, you must also set ltl_big_endian_unitext configuration
property to false whenever the lr_ntext_byte_order property is used.

The ltl_big_endian_unitext parameter specifies whether unitext data should be converted
from little-endian to big-endian before sending LTL to Replication Server. Valid values are
true and false. When setting this parameter, you must know how the lr_ntext_byte_order
parameter is set. If the lr_ntext_byte_order parameter is set to send the correct byte order for
the replicate database, the ltl_big_endian_unitext parameter must be set to false so that the
byte order is not changed.

The ltl_big_endian_unitext and lr_ntext_byte_order configuration properties have important
differences. By default, the ltl_big_endian_unitext property is true. When the
ltl_big_endian_unitext property is true, Replication Agent for Microsoft SQL Server ensures
all Unicode data is sent in big-endian order. When the ltl_big_endian_unitext property is
false, Replication Agent for Microsoft SQL Server allows Unicode data to be sent in whatever
byte order is used when the data is stored in the transaction log file. The lr_ntext_byte_order
property forces the result of Unicode data read from the transaction log to be in the requested
byte order, regardless of how it normally exists in the transaction log file.

Alteration of Replication Definitions from the Primary Data Server
You can alter replication definitions from the primary data server.

To avoid having to quiesce the replication system before altering a replication definition, you
can issue the Replication Server alter replication definition command from the primary data
server and make schema changes to primary database objects at the same time. The
propagation of changes to a replication definition can be automatically coordinated with data
replication without having to stop the replication process.

To issue the Replication Server alter replication definition command from the primary data
server, create a stored procedure named rs_send_repserver_cmd in the primary Microsoft
SQL Server database. The SQL for creating this procedure is contained in the appropriate
connection profile on Replication Server. For a list of connection profiles, use the Replication
Server admin show_connection_profiles command.

For a full description of rs_send_repserver_cmd and the alter replication definition
Replication Server command, see the Replication Server Reference Manual.

Security Considerations
When the rs_send_repserver_cmd procedure is invoked at the primary data server,
Replication Agent passes corresponding Replication Command Language (RCL) directly to

Replication Agent for Microsoft SQL Server

Primary Database Guide 97

Replication Server. You should therefore consider carefully to whom execution privileges are
assigned for the rs_send_repserver_cmd procedure, and assign privileges as appropriate for
your environment and security policy.

Limitations
You cannot use the rs_send_repserver_cmd procedure to alter replication definitions for
tables that contain columns of certain datatypes.

These types are:

• nvarchar(max)
• varbinary(max)
• varchar(max)

Note: If you manually change a table-level replication definition in Replication Server, you
must then suspend and resume replication in the Replication Agent to ensure that the
Replication Agent clears and refreshes its cache.

Replication Server set autocorrection Command
The Replication Server set autocorrection command prevents failures that would otherwise
be caused by missing or duplicate rows in a replicated table.

The set autocorrection command corrects discrepancies that may occur during
materialization by converting each update or insert operation into a delete followed by an
insert.

You can set autocorrection from Replication Agent for one or all marked tables in the primary
database by using the ra_set_autocorrection command as described in the Replication Agent
Reference Manual. To set autocorrection from Replication Server, use the set autocorrection
command in a replication definition. You must do this from Replication Server because
Replication Agent cannot alter the autocorrection setting on a replication definition. See the
Replication Server Administration Guide.

Computed Columns
Tables containing computed columns that are physically stored in a table—columns marked
as PERSISTED in Microsoft SQL Server—can be marked for replication, and these columns
will be replicated.

Tables containing virtual computed columns—computed columns that are not physically
stored in a table—can be marked for replication, but these columns are not replicated. To
maintain consistency between the primary and replicate databases for a marked table
containing a virtual computed column, make sure that the expression defining the virtual
computed column is the same in both the primary and replicate databases.

Replication Agent for Microsoft SQL Server

98 Replication Agent

Replication Agent Objects in the Microsoft SQL Server
Primary Database

Replication Agent creates objects in the primary database to assist with replication tasks.

The Replication Agent objects are created by invoking the ra_admin command with the init
keyword. When you invoke this command, Replication Agent generates a SQL script that
contains the SQL statements for the objects created or modified in the primary database. This
script is stored in the partinit.sql file in the RAX-15_5\inst_name\scripts
\xlog directory. You must create these objects before marking any primary database objects
for replication.

Note: The generated scripts are for informational purposes only. You cannot run them
manually to initialize the primary database or Replication Agent.

See the Replication Agent Administration Guide.

Replication Agent Object Names
Replication Agent creates objects in the primary database to assist with replication tasks.

There are two variables in Replication Agent database object names:

• prefix – represents the one-to-three-character string value of the
ra_admin_instance_prefix parameter (used for Replication Agent for Microsoft SQL
Server or Replication Agent for UDB) or the ra_admin_prefix parameter.

• xxx – represents an alphanumeric counter, a string of characters that is (or may be) added
to a database object name to make that name unique in the database.

The value of the ra_admin_instance_prefix parameter is the prefix string used in all
Replication Agent object names.

The value of the ra_admin_prefix_chars parameter is a list of the nonalphanumeric characters
allowed in the prefix string specified by ra_admin_instance_prefix. This list of allowed
characters is database-specific. For example, in Oracle, the only nonalphanumeric characters
allowed in a database object name are the $, #, and _ characters.

Use the ra_admin command to view the names of Replication Agent transaction log
components in the primary database.

See the Replication Agent Administration Guide for details on setting up object names.

Table Objects
Replication Agent creates table objects in the Microsoft SQL Server primary database.

These tables are considered Replication Agent objects. Insert and delete permissions are
granted to public only on the DDL shadow table. No permissions are granted on the other
tables.

Replication Agent for Microsoft SQL Server

Primary Database Guide 99

Table 16. Replication Agent Table Objects

Object Name

DDL shadow table prefixddl_trig_xxx

Instance table prefixinstance_xxx

Object marking table prefixmarkObject_xxx

Object verifying table prefixcheckObject_xxx

Microsoft SQL Server System Tables
At initialization, Replication Agent creates some system tables in the primary database using
the Microsoft SQL Server sp_replicationdboption stored procedure.

These tables are also removed with sp_replicationdboption when the Replication Agent
ra_admin deinit command is used. Do not modify these tables directly. For more information
about sp_replicationdboption, see the Microsoft SQL Server documentation.

Procedure Objects
Replication Agent creates procedure objects in the Microsoft SQL Server primary database.

The table below lists the procedure objects that are considered Replication Agent objects. The
sp_SybSetLogforReplTable, sp_SybSetLogforReplProc, and sp_SybSetLogforLOBCol
procedures are created in the Microsoft SQL Server mssqlsystemresource system
database. Although execute permission on these procedures is granted to Public, only the
Replication Agent pds_username user can successfully execute the procedures because
only the pds_username user is granted select permission on the sys.sysschobjs
table. No permissions are granted on the other procedures when they are created.

Note: The stored procedures listed here have no effect when executed outside the context of
replication.

Table 17. Replication Agent Procedure Objects

Object Name

Marks/unmarks an object prefixmark_xxx

Verifies an object prefixcheck_xxx

Retrieves the ID of the last committed transaction prefixlct_sql_xxx

Marks/unmarks a table sp_SybSetLogforReplTable

Marks/unmarks a procedure sp_SybSetLogforReplProc

Marks/unmarks LOB column sp_SybSetLogforLOBCol

Replication Agent for Microsoft SQL Server

100 Replication Agent

Marker Objects
Replication Agent creates marker objects in the primary database.

These marker procedures and marker shadow tables are considered Replication Agent
objects. No permissions are granted when these objects are created.

Table 18. Replication Agent Marker Objects

Object Name

Transaction log marker procedure rs_marker_xxx

Dump marker procedure rs_dump_xxx

Transaction log marker shadow table prefixmarkersh_xxx

Dump marker shadow table prefixdumpsh_xxx

Trigger Objects
Replication Agent creates trigger objects in the Microsoft SQL Server primary database.

Table 19. Replication Agent Trigger Objects

Object Name

Captures DDL commands prefixddl_trig_xxx

Captures create_table DDL commands prefixcreatetable_trig_xxx

Transaction Log Administration
The only transaction log administration tasks required are backing up and truncating the
transaction log.

Transaction Log Backup and Restoration
Replication Agent does not support backing up and restoring the transaction log
automatically.

Note: Replication Agent does not support replaying transactions from a restored log.

Transaction Log Truncation
Replication Agent supports both automatic and manual log truncation.

Replication Agent provides two options for automatic transaction log truncation:

• Periodic truncation, based on a time interval you specify
• Automatic truncation whenever Replication Agent receives a new LTM locator value from

the primary Replication Server. You also have the option to switch off automatic log

Replication Agent for Microsoft SQL Server

Primary Database Guide 101

truncation. By default, automatic log truncation is based on LTM locator value from the
primary Replication Server.

To configure Replication Agent log truncation, observe these guidelines:

• You can specify the automatic truncation option you want (including none) by using
ra_config to set the value of the truncation_type configuration parameter.
The valid values are:
• command – Replication Agent truncates the transaction log only when the

pdb_truncate_xlog command is invoked.
• locator_update (default) – Replication Agent automatically truncates the transaction

log whenever it receives a new LTM Locator value from the primary Replication
Server.

• interval – Replication Agent automatically truncates the transaction log when
determined by a configurable interval of time. Interval is set in minutes (0 (never) to
720) in the truncation_interval parameter.

To truncate the transaction log automatically based on a time interval, use ra_config to set
the value of the truncation_interval configuration parameter.

• You can truncate the Replication Agent transaction log manually, at any time, by invoking
pdb_truncate_xlog at the Replication Agent administration port.
To truncate the transaction log at a specific time, use a scheduler utility to execute the
pdb_truncate_xlog command automatically.

• Replication Agent for Microsoft SQL Server truncates the primary database log in units of
transactions. After Replication Agent for Microsoft SQL Server receives the LTM locator
from Replication Server, Replication Agent for Microsoft SQL Server queries the primary
database to obtain the transaction ID of the newest transaction that can be truncated.
Replication Agent for Microsoft SQL Server then marks as reusable the transaction log
space before the newest transaction. Microsoft SQL Server can then write log records into
the reusable space.

• The sp_repltrans and sp_repldone Microsoft SQL Server commands are issued by
Replication Agent to control log truncation within Microsoft SQL Server. These
commands require that the Replication Agent user have the db_owner role permission.

Note: Microsoft SQL Server allows only one session to control log truncation using the
sp_repltrans and sp_repldone commands. You should not use these commands while
Replication Agent is controlling the log truncation processing.

For more information on these properties, see the Replication Agent Reference Manual. For a
more detailed description of truncating, see "Administering Replication Agent” in the
Replication Agent Administration Guide.

Replication Agent for Microsoft SQL Server

102 Replication Agent

Using Windows Authentication with Microsoft SQL Server
When running Replication Agent for Microsoft SQL Server on a Windows platform, you have
the option of configuring it to connect to Microsoft SQL Server using Windows credentials to
authenticate the user.

To configure Replication Agent to use Windows authentication:

1. In your primary Microsoft SQL Server, add the user who will be starting Replication
Agent, <ra_user>, as a Windows-authenticated user, including the user domain as
appropriate. Add the <ra_user> to the primary database and grant the appropriate
permissions. For additional information, see the Microsoft SQL Server documentation.

2. On the machine on which the Replication Agent for Microsoft SQL Server is running, add
<domain>\<ra_user> to the Windows user account. If no domain exists, add only the
<ra_user> to the Windows user account.

3. On the same machine, copy the sqljdbc_auth.dll file from the Microsoft SQL
Server JDBC driver location to a directory on the Windows system path. When you
installed the Microsoft SQL Server JDBC driver, the sqljdbc_auth.dll files were
installed in this location:

<install_dir>\sqljdbc_<version>\<language>\auth\

Note: On a 32-bit processor, use the sqljdbc_auth.dll file in the x86 folder. On a
64-bit processor, use the sqljdbc_auth.dll file in the x64 folder.

4. On the same machine, login as the <ra_user> and start the Replication Agent for Microsoft
SQL Server instance.

5. Log in to Replication Agent and configure these parameters using values appropriate for
the primary Microsoft SQL Server:

ra_config pds_server_name, <server>
ra_config pds_port_number, <port>
ra_config pds_database_name, <database>
ra_config pds_username, <ra_user>
ra_config pds_integrated_security, true

6. Continue configuring and using Replication Agent as described in Replication Agent
documentation.

Replication Agent for Microsoft SQL Server

Primary Database Guide 103

Setting Up Replication Agent and Microsoft SQL Server on
Different Machines

Run Replication Agent and the primary data server on different machines.

1. Install the sybfilter driver on the same machine as the primary Microsoft SQL Server, and
use this driver to make the transaction logs readable for Replication Agent.

2. On the machine on which the primary Microsoft SQL Server is running, share the drive or
drives containing the transaction log files so that the drives can be mounted on the machine
on which Replication Agent is to be installed.

3. Install Replication Agent on a machine of the same hardware and operating system as the
machine on which the primary data server is running.

4. Install the JDBC driver on the same machine as Replication Agent.

5. On the Replication Agent machine, map network drives that contain the primary Microsoft
SQL Server database transaction log files. Use the ra_devicepath command to point
Replication Agent to the log files.

Replication Agent for Microsoft SQL Server

104 Replication Agent

Replication Agent for UDB

Review the features of Replication Agent that are unique to Replication Agent for UDB.

The term "Replication Agent for UDB" refers to an instance of Replication Agent software
that is installed and configured for a primary database that resides in an IBM DB2 for Linux,
Unix, and Windows server.

Note: For information on the basic features and operation of Replication Agent, see the
Replication Agent Administration Guide and Replication Agent Reference Manual.

IBM DB2-Specific Considerations
These general issues and considerations are specific to using Replication Agent with the IBM
DB2 for Linux, Unix, and Windows server.

Unsupported Software Features
These features are not supported for Sybase replication.

• DB2 data definition language (DDL) commands
• DB2 stored procedures
• Replication Server parallel DSI
• Replication Server rs_init utility
• Replication Server rs_subcomp utility
• Replication Server when replicating in an environment where other vendors are

replicating

Replication of Deferred Updates on Primary Keys
Updates to the unique column index in a table is not supported by traditional replication, and
the Replication Server reports errors.

The replication of updates to the unique column index in a table is not supported, and
Replication Server reports errors. For example, table t has a unique index on column c, with
values 1, 2, 3, 4 and 5. A single update statement is applied to the table:
update t set c = c+1

Using traditional replication, this statement results in:
update t set c = 2 where c = 1
update t set c = 3 where c = 2
update t set c = 4 where c = 3
update t set c = 5 where c = 4
update t set c = 6 where c = 5

Replication Agent for UDB

Primary Database Guide 105

The first update attempts to insert a value of c=2 into the table. However, this value already
exists in the table. Replication Server displays error 2601—an attempt to insert a duplicate
key.

The Replication Server DSI stops working if you attempt to replicate updates to a non-Sybase
table that has a unique column index. To work around this problem, broaden the unique index
definition.

Unsupported Datatypes
These datatypes are not supported for Sybase replication.

• ROWID
• XML
• User-defined datatypes

These datatypes are not supported when the replicate database is IBM DB2:

• BLOB
• CLOB
• DBCLOB
• LONG VARCHAR
• LONG VARGRAPHIC
Note:

If graphic datatypes are used in a non-unicode database, Replication Agent does not replicate
the values in these columns with the correct charset encoding (except for UTF-16BE
encoding).

Feature Differences in Replication Agent for UDB
These Replication Agent features have unique behavior in Replication Agent for UDB.

Initializing Replication Agent
The Replication Agent for UDB provides the same features for initializing Replication Agent
and creating its objects in the primary database as other implementations of the Replication
Agent. Replication Agent for UDB creates only a few tables in the primary database to store its
system information.The Replication Agent for UDB creates four procedures in the primary
IBM DB2 UDB database for the archive log related feature. For example:

• RA_GET_LOG_NAME_
• RA_GET_VERSION_STR_
• RA_TRUNC_LOG_FILES_
• RA_GET_TRUNC_VER_STR_

Because the Replication Agent for UDB requires access to the UDB transaction log, the user
ID that the Replication Agent uses to access the primary database must have either SYSADM

Replication Agent for UDB

106 Replication Agent

or DBADM authority in the database; otherwise, the ra_admin init command returns an error.
This user ID is stored in the Replication Agent pds_username configuration parameter.

Marking a Table for Replication
The Replication Agent for UDB provides the same features for marking and unmarking tables
for replication as other implementations of the Replication Agent. However, the Replication
Agent for UDB does not create any stored procedures or triggers in the primary database.

When marking a table for replication, Replication Agent for UDB alters the table to set the
UDB DATA CAPTURE attribute to DATA CAPTURE CHANGES. When the table is unmarked,
the table is altered to return to its original DATA CAPTURE attribute.

Note: Do not manually change the DATA CAPTURE attribute of a table that has been marked
for replication by Replication Agent for UDB. Doing so may adversely effect replication
results.

Unavailable Features
These Replication Agent features are not available with Replication Agent for UDB:

• Stored procedure replication–the replication of stored procedures is not available with the
Replication Agent for UDB. Therefore, the pdb_setrepproc command is not supported.

• DDL replication–the replication of data definition language (DDL) commands and system
procedures executed in the primary database is not supported.

• Altering replication definitions from the primary data server–this involves stored
procedure replication, which is not supported.

• Automatically creating replication definitions–this requires use of the Replication Agent
rs_create_repdef command.

Note: When you invoke Replication Agent commands related to these features, you receive an
error.

See also
• Replication Agent Objects in the DB2 Primary Database on page 120

IBM DB2 Requirements
Observe these requirements for IBM DB2 for Linux, Unix, and Windows.

• The database must be version 9.1, 9.5, or 9.7.
• If you have a UDB client instance and a UDB server instance on different machines, the

client and server must be of the same UDB version.
• The database must have a valid JDK path configured. The JDK_PATH configuration

parameter must contain the full path to the directory above the bin directory, which
contains the java executable. To determine the database manager JDK_PATH setting,
use this DB2 command:
get dbm cfg

Replication Agent for UDB

Primary Database Guide 107

Note: A 64-bit IBM DB2 instance requires a 64-bit JDK, and a 32-bit DB2 instance
requires a 32-bit JDK.

• If Replication Agent is installed on a Linux or UNIX host, you must configure a client or
server 64-bit DB2 instance.

• The database LOGARCHMETH1 configuration parameter must be set to LOGRETAIN
or DISK:<path>, where <path> is a directory to which logs are archived. This enables
archive logging in place of circular logging. To determine the LOGARCHMETH1 setting,
use this DB2 command:
get db cfg for <db-alias>

• On a Windows system, the DB2 connectivity autocommit parameter must be turned on
(automcommit=1). The autocommit parameter is specified in the DB2 call level interface
(CLI) configuration file for the primary database. If the autocommit parameter is not
turned on, a deadlock problem can occur. The path to the CLI configuration file is:
%DB2DIR% \sqllib\db2cli.ini
where %DB2DIR% is the path to the DB2 client installation.
Alternatively, to turn on autocommit, open the DB2 administrative command line console
and run:
db2set DB2OPTIONS=+c

• To initialize Replication Agent without error, the database must have a tablespace created
with these characteristics:
• The tablespace should be a user temporary tablespace. By default, user temporary

tablespaces are not created when a database is created.
• The tablespace must be a system-managed space (SMS).
• The PAGESIZE parameter must be set to 8192 (8 kilobytes) or greater.

• The user ID you specify as the pds_username user must have either SYSADM or
DBADM authority to access the primary database transaction log.

• All the DB2 environment variables must be set before you start the Replication Agent.
Replication Agent uses the DB2 CLI driver to connect to the primary DB2 database. For
UNIX, the driver is contained in libdb2.so, libdb2.sl, or libdb2.a, depending
on the operating system. For Windows, the DB2 driver is contained in db2cli.dll.
Replication Agent also uses DB2 API libraries to read the transaction log. The library path
environment variable must therefore be set for Replication Agent to load the correct driver
and API libraries at runtime.
For UNIX and Linux, the 64-bit versions of the libraries are located in the $HOME/
sqllib/lib64 directory, where $HOME is the home directory of the DB2 instance
owner. If Replication Agent is installed on Linux or UNIX, the library path environment
variable must point to the 64-bit libraries. For Windows, the library path environment
variable must point to the 32-bit libraries.
The exact name of the library path environment variable depends on the operating system.
For Linux, the library path variable is named LD_LIBRARY_PATH. For Windows, the
library path variable is named PATH.
On Windows, the DB2 server or client installation sets all necessary environment
variables. On UNIX or Linux, you must source the DB2 db2cshrc (for C-shell) or the

Replication Agent for UDB

108 Replication Agent

db2profile (for Bourne and Korn shells) script before starting the Replication Agent.
These scripts are located at $HOME/sqllib, where $HOME is the home directory of the
DB2 instance owner (for a DB2 client or server instance).

Java Heap Size
Make sure the size of the JVM heap is large enough for your primary DB2 UDB data server.

Set the DB2 UDB java_heap_sz configuration parameter to 2048 or a larger value.

Replication Agent and a DB2 Server on Different Machines
If the Replication Agent for UDB software is installed on a different host machine from the
DB2 server, you must install the DB2 Administration Client on the same host machine as the
Replication Agent.

If the Replication Agent for UDB software is installed on the same host machine as the DB2
server, a separate DB2 Administration Client is not required.

If the Replication Agent for UDB software is installed on Linux or UNIX, a 64-bit DB2 client
instance must be configured. On Windows, a 32-bit DB2 client instance must be configured.

DB2 Connectivity
On a Windows system, you must configure a DB2 Universal Database JDBC data source in the
DB2 Administration Client, then use the database name and database alias specified for that
DB2 Universal Database JDBC data source when you configure Replication Agent for UDB
connectivity.

On a UNIX system, instead of using ODBC, simply catalog the node and the primary database
in DB2. Set the Replication Agent pds_datasource_name parameter to the database alias.
Also set the pds_host_name and pds_host_number.

Cataloging the Remote TCP/IP Node from the DB2 Client
Catalog the remote DB2 client node.

1. Log in as the DB2 instance owner.

Logging in sets up your DB2 environment variables by executing the environment scripts.
You can also execute these scripts manually as follows.

In Korn shell, source the db2profile file:

. $HOME/sqllib/db2profile

In C shell, source the db2cshrc file:

source $HOME/sqllib/db2cshrc

where $HOME is the home directory of the DB2 instance owner.

2. Start the DB2 command-line processor by typing the db2 command.

Replication Agent for UDB

Primary Database Guide 109

3. Catalog the remote TCP/IP node using this command at the DB2 prompt:

catalog tcpip node MYNODE remote MYHOST server XXXX

where MYNODE is the node name, MYHOST is the host name or IP address of the data
server, and XXXX is the data server port number.

4. Verify the catalog entry:

list node directory

DB2 should return something similar to:

Node 1 entry:
 Node name = MYNODE
 Comment =
 Directory entry type = LOCAL
 Protocol = TCPIP
 Hostname = MYHOST
 Service name = XXXX

Cataloging the Primary Database from the DB2 Client
Catalog the primary database.

1. Catalog the primary database using this command at the DB2 prompt:

catalog database MYDB as MYDB_ALIAS at node MYNODE

where MYDB is the database name, MYDB_ALIAS is an alias for the database, and
MYNODE is the node name used in the catalog tcpip node command.

2. Verify the catalog entry:

list database directory

DB2 should return something similar to:

System Database Directory

Number of entries in the directory = 1

Database 1 entry:

Database alias = MYDB_ALIAS
Database name = MYDB
Node name = MYNODE
Database release level = b.00
Comment =
Directory entry type = Remote

Configuring pds_datasource_name
Set the Replication Agent pds_datasource_name parameter.

1. In Replication Agent, set pds_datasource_name to the database alias:

ra_config pds_datasource_name, MYDB_ALIAS

Replication Agent for UDB

110 Replication Agent

where MYDB_ALIAS is the database alias that was used when cataloging the primary
database.

2. Also set these Replication Agent parameters:

• pds_database_name

• pds_username

• pds_password

• pds_host_name

• pds_port_number

See the Replication Agent Reference Manual.

Replication Agent for UDB Connectivity Parameters
These Replication Agent configuration parameters are required to configure a connection
between the Replication Agent for UDB and a DB2 server.

• pds_username – must have DBADM authority, for example, repuser.
• pds_password – for user ID specified in pds_username, for example, repuser_pwd.
• pds_database_name – DB2 database name, for example, TEST_DB1.
• pds_datasource_name – DB2 data source name, for example, TEST_DB1_DS.
• pds_host_name – name of the host on which the primary DB2 data server resides.
• pds_port_number – port number of the primary DB2 data server.

Repositioning in the Log
The Replication Agent uses the value of the LTM locator received from the primary
Replication Server to determine where to begin looking in the DB2 transaction log for
transactions to be sent to the Replication Server.

The Replication Agent for UDB uses the LTM locator value as follows:

• When the value of the LTM locator received from Replication Server and the LTM locator
stored by Replication Agent are both zero (0), the Replication Agent positions the Log
Reader component at the end of the DB2 transaction log.

Warning! In the event that both LTM locator values are zero, two specific conditions may
cause data loss:
• When the Replication Agent Log Reader component goes to the Replicating state, it

does so asynchronously. When you receive a prompt after invoking the resume
command, the Log Reader component may not be finished getting into the Replicating
state and positioning itself at the end of the log. If you mark a table immediately after
the prompt returns from the resume command, the record containing the mark
information may be written to the log before the Log Reader component has positioned
itself. In that case, the Log Reader component misses that record and does not replicate
any subsequent data for that table. To avoid this problem, wait a short time after
invoking the resume command before you mark a table for replication.

Replication Agent for UDB

Primary Database Guide 111

• If you mark a table for replication, insert data into the table, and then resume
replication, the data is not replicated if the LTM locators for Replication Agent and
Replication Server are zero (as they would be at the beginning of replication). This
problem occurs because when both LTM locators are zero, resuming replication
repositions the Log Reader component at the end of the log, skipping over any previous
transactions. To avoid this problem when the LTM locators for Replication Agent and
Replication Server are zero, mark the table for replication after you have issued the
resume command.

• When both the value of the LTM locator received from Replication Server and the LTM
locator stored by Replication Agent are not zero, Replication Agent uses the LTM locator
value it received from Replication Server to determine the starting position of the oldest
open transaction and positions the Log Reader component at that location in the DB2
transaction log.

• When the value of the LTM locator received from Replication Server is 0 (zero) and the
value of the LTM locator stored by Replication Agent is not zero, Replication Agent uses
the LTM locator value it has stored to determine the starting position of the oldest open
transaction and positions the Log Reader component at that location in the DB2
transaction log.

Replication Agent for UDB Behavior
These Replication Agent issues are unique to Replication Agent for UDB.

Table Marking Immediately After Resume When LTM Locator Is Zero
When the Replication Agent instance goes to Replicating state, the Log Reader component
reads the primary database transaction log and uses the value of the origin queue ID to
determine the position in the log to start reading. When the value of the LTM locator is 0
(zero), the Log Reader starts reading at the end of the log.

Because the Log Reader operation is asynchronous, the Replication Agent instance can return
to the operating system prompt after the resume command but before the Log Reader has
completed its start-up process. If you immediately invoke the pdb_setreptable command to
mark a table for replication after the resume command returns, the mark object entry can be
placed in the transaction log before the Log Reader finds the end of the log. In that event, the
Log Reader misses the mark table entry, and table marking fails.

To avoid this problem, wait 5 to 10 seconds after invoking resume before invoking
pdb_setreptable to mark a table.

DB2 FORCE APPLICATION Command
The DB2 FORCE APPLICATION command causes the data server to drop its connections with
an application. FORCE APPLICATION ALL causes the data server to drop its connections with
all applications.

If you invoke FORCE APPLICATION and specify either the Replication Agent application
handle or the ALL keyword, the data server drops its connections with the Replication Agent

Replication Agent for UDB

112 Replication Agent

instance. In that event, the Replication Agent receives DB2 error code -30081 and cannot
recover, so the Replication Agent instance shuts itself down.

To avoid this situation, invoke the Replication Agent shutdown command before using
FORCE APPLICATION.

Read Buffer Size
The Replication Agent for UDB Log Reader component uses the value of the
lr_read_buffer_size parameter to determine the maximum number of bytes to be read from
the transaction log during each scan. Because the Log Reader reads bytes, it requires a buffer
to store the bytes read.

It is difficult to identify a minimum buffer size that always works. The value range of
lr_read_buffer_size is 10000 to 2147483647. Sybase recommends that you set value of
lr_read_buffer_size to the default value (64000).

If the read buffer size is too small to read one operation, Replication Agent goes into the
Admin state, and the Log Reader component shuts down and reports the DB2 -2650 error.
Unfortunately, this error message covers general communication errors, not just an
insufficient buffer size.

LOB Replication
When replication is enabled for a LOB column, Replication Agent makes an entry in the
prefixvblob_columns_ table to support replication for that column.

When Replication Agent processes a transaction that affects a LOB column, the LOB data
may not be stored in the transaction log because of its possible size. Instead, the Replication
Agent Log Reader component reads the LOB data directly from the primary database at the
time it processes the transaction.

Note: If you do not specify the primary key for a table that contains columns with approximate
numeric datatypes, the LOB and long field columns may be replicated as NULL values.

For instructions on enabling and disabling replication for LOB columns, see the Replication
Agent Administration Guide.

Transaction Integrity and LOB Data
Because of the way Replication Agent processes the LOB column data when replicating
transactions, transaction integrity may be compromised. For example, if two transactions
change the data in a LOB column and the Log Reader does not process the first transaction
until after the second transaction has been committed, when the LOB data is read from the
primary database, the value of that data is the result of the second transaction. In this event, the
value of the LOB data in the first transaction is never sent to the replicate database. After the
second transaction is processed by the Log Reader, the primary and replicate databases are
synchronized again, but for a period of time between processing the first and second
transactions, the replicate database contains data that does not match the originating
transaction.

Replication Agent for UDB

Primary Database Guide 113

This problem occurs only when a LOB column is changed more than once by a sequence of
transactions. The period of time over which the problem exists may be significant if the
replication system throughput is slow or if a replication system component fails. As soon as
the last transaction that changes the LOB column is processed at the replicate site, the problem
is corrected.

Character Case of Database Object Names
Database object names must be delivered to the primary Replication Server in the same format
as specified in replication definitions; otherwise, replication fails. For example, if a replication
definition specifies a table name in all lowercase, then that table name must appear in all
lowercase when it is sent to the primary Replication Server by the Replication Agent.

To control the way Replication Agent treats the character case of database object names sent to
the primary Replication Server, set the ltl_character_case configuration parameter to one of
these values:

• asis – (the default) database object names are passed to Replication Server in the same
format as stored in the primary data server.

• lower – database object names are passed to Replication Server in all lowercase, regardless
of how they are stored in the primary data server.

• upper – database object names are passed to Replication Server in all uppercase,
regardless of how they are stored in the primary data server.

In the DB2 server, database object names are stored in all uppercase.

Format of Origin Queue ID
Each record in the transaction log is identified by an origin queue ID that consists of 64
hexadecimal characters (32 bytes). The format of the origin queue ID is determined by the
Replication Agent instance and varies according to the primary database type.

Table 20. Replication Agent for DB2 Origin Queue ID Format

Character Bytes Description

0–3 2 Database generation ID

4–19 8 Operation sequence number

20–35 8 Transaction ID

36–51 8 First operation sequence number of oldest active transaction

52–55 2 Operation type

(begin = 0, data/LOB = 1, commit/rollback = 7FFF)

56–59 2 LOB sequence ID

Replication Agent for UDB

114 Replication Agent

Character Bytes Description

60–63 2 Unused

DB2 Datatype Compatibility
Replication Agent for UDB processes transactions and passes data to the primary Replication
Server. The primary Replication Server uses the datatype formats specified in the replication
definition to receive the data from Replication Agent for UDB.

This table describes the default conversion of DB2 datatypes to Sybase datatypes. For each
datatype in this table, lengths in the second column are described as:

• Character datatypes – maximum number of bytes.
• Graphic datatypes – maximum number of characters.
• Numeric datatypes – range from smallest to largest values.
• Temporal datatypes – range from earliest time to latest time.

Table 21. DB2 to Sybase Default Datatype Mapping

DB2 Datatype DB2
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

BIGINT -9,223,372,03
6, 854,775,808
to
9,223,372,036
, 854,775,807

bigint 10-38 to 1038,
38 significant
digits

BLOB Variable-
length, 2GB,
binary data

image 2GB

CHAR 254 bytes char 32K

CHAR FOR BIT DATA 254 bytes, bi-
nary data

binary 32K

CLOB Variable-
length, 2GB,
character data

text 2GB

Replication Agent for UDB

Primary Database Guide 115

DB2 Datatype DB2
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

DATE 0001-01-01 to
9999-12-31

char,

date, or

datetime

32K (char) Use the Replica-
tion Server heter-
ogeneous data-
type support
(HDS) feature
for datatype con-
version and
translation.

DBCLOB Variable-
length, 2GB,
double-byte
character data

unitext or

image
2GB For Replication

Server 15.0 and
later versions,
DBCLOB maps

to unitext.

For earlier ver-
sions of Replica-
tion Server,
DBCLOB maps

to image.

DECFLOAT(16) 8 bytes,
-9.999999999
999999 x 10384

to -1.0 x 10-383

and1.0 x 10-383

to
9.9999999999
99999 x 10384

float Precision and
range corre-
sponds to a C
double da-

tatype, approx-
imately 16 sig-
nificant digits

Some loss of pre-
cision may re-
sult.

Replication Agent for UDB

116 Replication Agent

DB2 Datatype DB2
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

DECFLOAT(34) 16 bytes,
-9.999999999
9999999
99999999999
999999 x
106144 to -1.0 x
10-6143

and

1.0 x 10-6143 to
9.9999999999
99999999999
99999999999
9 x 106144

float Precision and
range corre-
sponds to a C
double da-

tatype, approx-
imately 16 sig-
nificant digits

Some loss of pre-
cision may re-
sult.

DECIMAL -1031+1 to
1031-1, 31 dig-
its of precision

decimal 10-38 to 1038,
38 significant
digits

DOUBLE See FLOAT.

FLOAT 8 bytes,
-1.79769308 to
1.79769308

float Precision and
range corre-
sponds to a C
double da-

tatype, approx-
imately 16 sig-
nificant digits

Extremely small
values are trun-
cated to 16 digits
to the right of the
decimal. Ex-
tremely large
values retain
their precision.

GRAPHIC 127 characters,
double-byte
character data

unichar 32K

INTEGER -2,147,483,64
8 to
2,147,483,647

int -2,147,483,64
8 to
2,147,483,647

LONG VARCHAR Variable-
length, 32,700
bytes, charac-
ter data

text 2GB

Replication Agent for UDB

Primary Database Guide 117

DB2 Datatype DB2
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

LONG VARCHAR FOR
BIT DATA

32,700 bytes,
binary data

image 2GB

LONG VARGRAPHIC 16,350 charac-
ters, double-
byte character
data

unitext or

image
2GB For Replication

Server 15.0 and
later versions,
LONG VAR-
GRAPHIC
maps to uni-
text. For earli-

er versions of
Replication
Server, LONG
VARGRAPHIC
maps to image.

NUMERIC (synonym for

DECIMAL)

See DECIMAL.

REAL -3.40238 to
3.40238

decimal 10-38 to 1038,
38 significant
digits

SMALLINT -32,768 to
32,767

smallint -32,768 to
32,767

TIME 00:00:00 to
24:00:00

char,

time, or

datetime

32K (char)

TIMESTAMP 0001-01-01-0
0.00.00.00000
0 to
9999-12-31-2
4.00.00.00000
0

char or da-
tetime

32K (char) Use the Replica-
tion Server heter-
ogeneous data-
type support
(HDS) feature
for datatype con-
version and
translation.

VARCHAR 32,672 bytes varchar 32K

Replication Agent for UDB

118 Replication Agent

DB2 Datatype DB2
Length/
Range

Sybase Da-
tatype

Sybase
Length/
Range

Notes

VARCHAR FOR BIT
DATA

32,672 bytes,
binary data

varbina-
ry

32K

VARGRAPHIC 16,336 charac-
ters, double-
byte character
data

uni-
varchar

32K

Replication Server 15.0 Unsigned Datatype Mapping
For Replication Server 15.0 and later, unsigned datatypes are supported and can be specified in
the replication definitions.

Table 22. Unsigned Integer Replication Definition Datatype Mapping

RepServer 15.0 Unsigned Datatypes Replication Definition Datatypes

unsigned bigint numeric (20)
unsigned int numeric (10)
unsigned smallint int
unsigned tinyint tinyint

DECFLOAT Datatype Compatibility
Replication Agent for UDB supports the replication of the DECFLOAT datatype. Both 16 and
34 digits of precision are supported.

When Replication Agent for UDB replicates DECFLOAT columns from the DB2 primary to
replicate databases that do not support the DECFLOAT type or an equivalent type, Replication
Agent maps the DECFLOAT type to the FLOAT type. Consequently, some loss of precision
may result.

In addition to a number value, a DECFLOAT column may contain special values that are not
supported by Replication Agent, such as positive and negative INFINITY, NAN, and SNAN.
Replication of these values is not supported. In these cases, Replication Agent replicates
special values to NULL, if the column is nullable, or to '0.0' if the column is not nullable.

XML Datatype Compatibility
Replication of the XML datatype is not supported by Replication Agent for UDB.

If you attempt to mark a table that has an XML column, Replication Agent reports an error. You
can mark a table containing an XML column using the force option of the pdb_setreptable
command, but this column is not replicated.

Replication Agent for UDB

Primary Database Guide 119

Replication Server set autocorrection Command
The Replication Server set autocorrection command prevents failures that would otherwise
be caused by missing or duplicate rows in a replicated table.

The set autocorrection command corrects discrepancies that may occur during
materialization by converting each update or insert operation into a delete followed by an
insert.

You can set autocorrection from Replication Agent for one or all marked tables in the primary
database by using the ra_set_autocorrection command as described in the Replication Agent
Reference Manual. To set autocorrection from Replication Server, use the set autocorrection
command in a replication definition. You must do this from Replication Server because
Replication Agent cannot alter the autocorrection setting on a replication definition. See the
Replication Server Administration Guide.

Large Identifiers
Replication Agent for UDB supports UDB 9.5 large identifiers—authorization ID, column,
and schema names up to 128 bytes long.

To support UDB 9.5 large identifiers, you must migrate Replication Agent instances from
versions 15.0, 15.1, and 15.2 to 15.5 or later to accommodate the modified Replication Agent
system tables. You must also migrate Replication Agent instances when DB2 is upgraded
from an earlier version to 9.5 to replicate tables with large identifiers.

See also
• Upgrade and Migration Procedures for Replication Agent for UDB on page 131

Compression
Replication Agent for UDB supports value compression—tables created with the VALUE
COMPRESSION clause—and row compression.

Replication Agent Objects in the DB2 Primary Database
Replication Agent creates objects in the primary database to assist with replication tasks.
Replication Agent also uses the native database transaction log maintained by the DB2 server
to capture transactions in the primary database for replication.

The Replication Agent objects are created by invoking the ra_admin command with the init
keyword. When you invoke this command, Replication Agent generates a SQL script that
contains the SQL statements for the objects created or modified in the primary database. This
script is stored in the create.sql file in the RAX-15_5\inst_name\scripts
\xlog\installed directory. You must create these objects before marking any primary
database objects for replication.

Replication Agent for UDB

120 Replication Agent

Note: The JAR files are installed when the ra_admin init command is executed. The ra_admin
deinit command uninstalls the JAR files from the primary database. You must issue ra_admin
deinit command before reinitializing Replication Agent.

See the Replication Agent Administration Guide.

See also
• Java Procedure Objects on page 122

Replication Agent Object Names
Replication Agent creates objects in the primary database to assist with replication tasks.

There are two variables in Replication Agent database object names:

• prefix – represents the one- to three-character string value of the
ra_admin_instance_prefix parameter (the default is ra_).

• xxx – represents an alphanumeric counter, a string of characters that is (or may be) added
to a table name to make that name unique in the database.

The value of ra_admin_instance_prefix is the prefix string used in all Replication Agent
system object names.

If this value conflicts with the names of existing database objects in your primary database,
you can change the value of ra_admin_instance_prefix by using the ra_config command.

Note: Replication Agent uses the value of ra_admin_instance_prefix to find its objects in the
primary database. If you change the value of ra_admin_instance_prefix after you create the
Replication Agent objects, the Replication Agent instance cannot find the objects that use the
old prefix.

Use the ra_admin command to view the names of Replication Agent objects in the primary
database.

See the Replication Agent Administration Guide for details on setting up replication object
names.

Table Objects
Replication Agent creates table objects in the DB2 primary database.

These tables are considered Replication Agent objects. No permissions are granted on these
tables when they are created. All of these tables contain at least one index, and some contain
more than one index.

Replication Agent for UDB

Primary Database Guide 121

Table 23. Replication Agent Tables

Table Database name

Articles table prefixvarticles_xxx

LOB columns table prefixvblob_columns_xxx

rs_dump shadow table prefixdumpsh_xxx

Force record table prefixforce_record_xxx

Marked objects table prefixvmarked_objs_xxx

rs_marker shadow table prefixmarkersh_xxx

Proc active table prefixprocactive_xxx

Log Admin work table prefixrawork_xxx

System table prefixxlog_system_xxx

Java Procedure Objects
Replication Agent creates Java procedure objects in the DB2 primary database.

Replication Agent for UDB installs SYBRAUJAR.jar and SYBTRUNCJAR.jar into these
directories.

• On Windows, the files are installed in $DB2DIR/SQLLIB/FUNCTION/jar/
pds_username, where $DB2DIR is the path to the DB2 installation, and pds_username is
the value of pds_username.

• On UNIX, the files are installed in $HOME/sqllib/function/jar/ pds_username,
where $HOME is the home directory of the DB2 instance owner, and pds_username is the
value of pds_username.

Note: If more than one Replication Agent instance is configured for a DB2 server—one
Replication Agent instance for each database—a unique primary database user name must be
specified in the pds_username configuration parameter for each Replication Agent instance.
This is required to install and uninstall these JAR files.

These JAR files implement several Java procedures in the UDB primary database and are
created and used in log truncation.

Table 24. Java Procedures for Truncation

Procedure Database name

Retrieves the name of the log file that contains the
current LSN

prefixget_log_name_

Replication Agent for UDB

122 Replication Agent

Procedure Database name

Retrieves the version of the get_log_name Java
class

prefixget_version_str_

Truncates the database log file or files from the
archive log directory

prefixtrunc_log_files_

Retrieves the version of the trunc_log_files Java
class

prefixget_trunc_ver_str_

Finding the Names of Replication Agent Objects
The Replication Agent instance generates the names of its database objects. To find out the
actual names of these objects, use the ra_admin command.

To obtain the generated names of Replication Agent objects in the primary DB2 database:

At the Replication Agent administration port, invoke the ra_admin command with no
keywords:

ra_admin

The ra_admin command returns a list of objects in the primary database.

Marked Objects Table
One of the Replication Agent objects is the marked objects table. The marked objects table
contains an entry for each marked table in the primary database.

Each marked table entry contains the:

• PRIMARY_NAME: Name of the marked primary object (table)
• REPL_NAME: Primary object replicated name
• OBJ_TYPE: Type of the primary object (table only, in Replication Agent for UDB)
• ENABLED: “Replication enabled” flag for the primary object
• SHADOW_NAME: Deprecated
• PROC_NAME: Deprecated
• OWNER: Owner of the primary object
• REPDEFMODE: “Send owner” flag
• TABLSP_ID: Tablespace ID of the primary object
• TABLE_ID: Table ID of the primary object
• CONVERT_DT: “Convert datetime” flag
• DATA_CAPTURE: Original value of the table DATA CAPTURE attribute
• AUTO_CORRECTION: Autocorrection flag
• VERSION: LSN of the end of log when the table is marked
• MARKED: "mark" flag

Replication Agent for UDB

Primary Database Guide 123

Transaction Log Truncation
Replication Agent supports both automatic and manual log truncation.

Replication Agent provides two options for automatic transaction log truncation:

• Periodic truncation, based on a time interval you specify
• Automatic truncation whenever Replication Agent receives a new LTM locator value from

the primary Replication Server

To configure Replication Agent log truncation, observe these guidelines:

• All DB2 transaction logs are maintained through the data server. You can configure
Replication Agent for UDB to truncate transaction logs from either the active or the
archive log directory. When you have enabled DB2 archiving with LOGARCHMETH1, you
can also configure a second archive location by setting the LOGARCHMETH2 DB2
configuration parameter. DB2 then archives logs into the two directories. You can then
configure Replication Agent to automatically truncate the processed archives from one of
these directories.
Set pdb_archive_path to point to the location specified by either LOGARCHMETH1 or
LOGARCHMETH2.

Warning! If you enable truncation without also setting pdb_archive_path, Replication
Agent deletes the primary database log files it no longer needs from the active log directory
using the DB2 prune command. Because the active directory is used for DB2 recovery,
Sybase recommends that you do not set pdb_archive_path to point to your active directory
and also that you do not enable truncation without first setting pdb_archive_path.

• Set pdb_archive_remove to true if you want Replication Agent to delete archives that are
no longer necessary.

Note: By default, pdb_archive_remove is set to false. You must configure
pdb_archive_path before setting pdb_archive_remove to true.

• To enable automatic truncation, set truncation_type to interval, and set
truncation_interval to a value greater than 0 (zero), which deletes log files at the
designated interval. Alternately, set truncation_type to locator_update, which causes
truncation to occur each time Replication Agent receives a new LTM locator value from
the primary Replication Server.

• You can truncate the Replication Agent transaction log manually, at any time, by invoking
pdb_truncate_xlog at the Replication Agent administration port.

• When DB2 truncate runs, the oldest LSN for which Replication Agent has not processed a
commit/rollback (oldest active LSN) is obtained and the archive log file that contains the
LSN is determined. All archive log files up to but not including the file with the oldest
active LSN are deleted.

For more information on these properties, see the Replication Agent Reference Manual. For a
more detailed description of truncating, see "Administering Replication Agent” in the
Replication Agent Administration Guide.

Replication Agent for UDB

124 Replication Agent

See also
• Java Procedure Objects on page 122

Replication Agent for UDB

Primary Database Guide 125

Replication Agent for UDB

126 Replication Agent

Upgrading and Downgrading Replication
Agent

Review the procedures for upgrading and downgrading Replication Agent.

Warning! Replication Agent cannot be downgraded after you use any new features. Before
you use any new features, test the new version of Replication Agent at the same functional
level as your previous version of Replication Agent. Only when you are satisfied with the new
version of Replication Agent at this existing functional level should you finalize the upgrade
by using new features. You should also make a backup copy of an instance of the Replication
Agent version to which you have upgraded before attempting to use any new feature.

Upgrade and Migration Procedures for Replication Agent
for Oracle

Replication Agent for Oracle 15.7.1 SP100 does not have to be installed on the same machine
as the primary Oracle data server.

Using any of the upgrade procedures described here, the new Replication Agent for Oracle
15.7.1 SP100 instances will have the same configuration as previously existing instances,
including instance names, administrative user IDs and passwords, and administrative port
numbers.

Replication Agent for Oracle 15.7.1 SP100 does not have to be installed on the same machine
as the primary Oracle data server. However:

• Replication Agent for Oracle must be installed on a host that has access to Oracle
LogMiner.

• If Replication Agent for Oracle is configured to automatically truncate Oracle logs, it must
be installed on a machine that has direct access to the Oracle logs.

If you install Replication Agent for Oracle 15.7.1 SP100 on the same host on which the
primary Oracle server is running, you must:

1. Obtain a local copy of the Oracle timezone file, so Replication Agent can correctly process
the Oracle timestamp with timezone datatype.

2. Configure the pdb_timezone_file parameter.

Note: For upgrades within a common release level, as in the case of an ESD applied to a
particular version of Replication Agent, use the ra_admin -u option applied to a particular
instance of Replication Agent or to all instances of Replication Agent. See the Replication
Agent Administration Guide.

Upgrading and Downgrading Replication Agent

Primary Database Guide 127

Upgrading Replication Agent for Oracle to 15.7.1 SP100
Upgrade Replication Agent for Oracle to version 15.7.1 SP100.

1. Set the SYBASE environment variables by changing to the SYBASE directory in which
Replication Agent 15.7.1 SP100 is installed and sourcing the SYBASE script:

• For C Shell: source SYBASE.csh
• For Bourne or Korn shell: . SYBASE.sh
• For Windows, run: SYBASE.bat

2. Change to the Replication Agent bin directory:

• On UNIX:
cd $SYBASE/RAX-15_5/bin

• On Windows:
cd %SYBASE%\RAX-15_5\bin

Note: The Replication Agent directory name for release 15.5 and later is RAX-15_5.

3. Upgrade the Replication Agent instances.

Upgrading
instances
within the
same product
installation

• To upgrade a specific Replication Agent instance in the
Replication Agent installation directory, at the command prompt,
run:
 ./ra_admin.sh -u instance=<instance_name>

• To upgrade all Replication Agent instances in the Replication
Agent installation directory, at the command prompt, run:
./ra_admin.sh -u all

Upgrading
instances in a
separate
product
installation

• To upgrade a specific Replication Agent instance in the specified
source instance directory from the current product installation
directory, run:
 ./ra_admin.sh -u <source_instance_directory>

• To upgrade all Replication Agent instances in the specified source
installation directory from the current product installation
directory, at the command prompt, run:
./ra_admin.sh -u
<source_installation_directory>

The configuration files are backed up before the upgrade for use in error recovery, if
required. If an error occurs, the upgrade is rolled back. The all option requires relatively
less space because upgrades are performed directly on instances within the current product
installation directory, not to copies. However, reversing an upgrade is more difficult for the
same reason.

Upgrading and Downgrading Replication Agent

128 Replication Agent

4. Start the Replication Agent instance:
$SYBASE/RAX-15_5/<instance>/RUN_<instance>

5. Log in to Replication Agent instance and migrate the Replication Agent metadata by
running:
ra_migrate

Note: You can use the ra_finalize_upgrade to manually force upgrade finalization of an
instance from a previous version and prevent downgrade to the previous version. You must
finalize the upgrade to enable any new functionality. See the Replication Agent Reference
Manual for details on using the ra_finalize_upgrade command.

6. Resume replication.
resume

Migrating Replication Agent for Oracle 15.7.1 SP100 When Upgrading
Oracle 10g to 11g

Migrate Replication Agent 15.7.1 SP100 when you are also upgrading Oracle 10g to 11g.

Replication Agent for Oracle migration to support upgrading Oracle 10g to Oracle 11g is
similar to upgrading Replication Agent for Oracle 15.1 or 15.2 to Replication Agent for
Oracle 15.7.1 ESD #2.

Note: Quiesce the Replication Agent before upgrading Oracle 10g to Oracle 11g. The
replication environment must have completed processing of all transactions before upgrading
Oracle because the Replication Agent moves the truncation point to the end of the log during
Replication Agent migration.

1. Follow the steps that Oracle provides in their documentation for upgrading from Oracle
10g to Oracle 11g.

2. After upgrading Oracle, restart the Replication Agent, and issue the ra_migrate command.

3. As with the log-based Replication Agent upgrade process, you may need to reconfigure
the Replication Agent for Oracle instance to read archive logs depending on the
configuration in Oracle. This may change following the Oracle upgrade.

If you are upgrading from log-based Replication Agent and upgrading Oracle 10g to Oracle
11g at the same time, migrate Replication Agent 15.7.1 ESD #2 only once.

Upgrade Procedures for Replication Agent for Microsoft
SQL Server

Replication Agent for Microsoft SQL Server must be installed on the same Windows host on
which the primary Microsoft SQL Server is running, and Replication Agent for Microsoft
SQL Server cannot be installed on a UNIX or Linux host. Before upgrading, consider where

Upgrading and Downgrading Replication Agent

Primary Database Guide 129

the existing instance of the earlier version of Replication Agent is installed and the current
version of the primary data server.

When you use any of the upgrade procedures described in this section, the new Replication
Agent for Microsoft SQL Server instances will have the same configuration as previously
existing instances, including instance names, administrative user IDs and passwords, and
administrative port numbers.

Upgrading Replication Agent for Microsoft SQL Server to 15.7.1 SP100
Upgrade Replication Agent for Microsoft SQL Server to version 15.7.1 SP100.

Note: Replication Agent 15.7.1 SP100 must be installed on the same host on which the
primary Microsoft SQL Server is running.

1. Open a command window.

2. Set the SYBASE environment variables by changing to the SYBASE directory in which
Replication Agent 15.7.1 is installed and executing the SYBASE.bat script.

3. Change to:

cd %SYBASE%\RAX-15_5\bin

Note: The Replication Agent directory name for release 15.5 and later is RAX-15_5.

4. Upgrade the Replication Agent instances.

Upgrading
instances
within the
same product
installation

• To upgrade a specific Replication Agent instance in the
Replication Agent installation directory, at the command prompt,
run:
ra_admin.bat -u instance=<instance_name>

• To upgrade all Replication Agent instances in the Replication
Agent installation directory, at the command prompt, run:
ra_admin.bat -u all

Upgrading
instances in a
separate
product
installation

• To upgrade a specific Replication Agent instance in the specified
source instance directory from the current product installation
directory, run:
ra_admin.bat -u <source_instance_directory>

• To upgrade all Replication Agent instances in the specified source
installation directory from the current product installation
directory, at the command prompt, run:
ra_admin.bat -u <source_installation_directory>

The configuration files are backed up before the upgrade for use in error recovery, if
required. If an error occurs, the upgrade is rolled back. The all option requires relatively
less space because upgrades are performed directly on instances within the current product

Upgrading and Downgrading Replication Agent

130 Replication Agent

installation directory, not to copies. However, reversing an upgrade is more difficult for the
same reason.

5. Start and log in to each of the Replication Agent for Microsoft SQL Server 15.7.1 SP100
instances and:
a) Set the rs_charset configuration parameter to match the Replication Server character

set, as described in the Replication Agent Reference Manual.
b) Use the test_connection command to ensure that Replication Agent can connect to

both Microsoft SQL Server and Replication Server.
c) Initialize the Replication Agent instance and migrate the Replication Agent instance's

metadata by issuing the ra_migrate command.

When this command executes in the first Replication Agent 15.7.1 instance, it will also
initialize the Microsoft SQL Server. In subsequent Replication Agent 15.7.1 instances,
it will only initialize the instance and migrate the instance metadata.

Note: You can use the ra_finalize_upgrade to manually force upgrade finalization of
an instance from a previous version and prevent downgrade to the previous version.
You must finalize the upgrade to enable any new functionality. See the Replication
Agent Reference Manual for details on using the ra_finalize_upgrade command.

6. Resume replication.
resume

Upgrade and Migration Procedures for Replication Agent
for UDB

Replication Agent for UDB 15.7.1 provides automatic upgrade of Replication Agent for UDB
version 15.0 and later instances, and automatic migration of a Replication Agent for UDB
instance when you upgrade the IBM DB2 from version 8.2 or 9.1 to version 9.5 or 9.7.

When you use any of the upgrade procedures described in this section, the new Replication
Agent for UDB 15.7.1 instances will have the same configuration as previously existing
instances, including instance names, administrative user IDs and passwords, and
administrative port numbers.

Replication Agent for UDB 15.7.1 does not support:

• Upgrading Replication Agent for UDB version 12.6 or earlier to version 15.0 or later.
• Migrating Replication Agent for UDB 12.6 when UDB is upgraded from version 6 or 7 to

version 8 or 9.

Upgrading Replication Agent for UDB to 15.7.1 SP100
Upgrade Replication Agent for UDB versions 15.5 and later to version 15.7.1 SP100.

1. Set the SYBASE environment variables by changing to the SYBASE directory in which
Replication Agent 15.7.1 SP100 is installed and sourcing the SYBASE script:

Upgrading and Downgrading Replication Agent

Primary Database Guide 131

• For C Shell: source SYBASE.csh
• For Bourne or Korn shell: . SYBASE.sh
• For Windows, run: SYBASE.bat

2. Change to the Replication Agent bin directory:

• On UNIX:
cd $SYBASE/RAX-15_5/bin

• On Windows:
cd %SYBASE%\RAX-15_5\bin

Note: The Replication Agent directory name for release 15.5 and later is RAX-15_5.

3. Upgrade the Replication Agent instances.

Upgrading
instances
within the
same product
installation

• To upgrade a specific Replication Agent instance in the
Replication Agent installation directory, at the command prompt,
run:
 ./ra_admin.sh -u instance=<instance_name>

• To upgrade all Replication Agent instances in the Replication
Agent installation directory, at the command prompt, run:
./ra_admin.sh -u all

Upgrading
instances in a
separate
product
installation

• To upgrade a specific Replication Agent instance in the specified
source instance directory from the current product installation
directory, run:
 ./ra_admin.sh -u <source_instance_directory>

• To upgrade all Replication Agent instances in the specified source
installation directory from the current product installation
directory, at the command prompt, run:
./ra_admin.sh -u
<source_installation_directory>

The configuration files are backed up before the upgrade for use in error recovery, if
required. If an error occurs, the upgrade is rolled back. The all option requires relatively
less space because upgrades are performed directly on instances within the current product
installation directory, not to copies. However, reversing an upgrade is more difficult for the
same reason.

4. Start the Replication Agent instance:
$SYBASE/RAX-15_5/<instance>/RUN_<instance>

5. Log in to Replication Agent instance and migrate the Replication Agent metadata by
running:
ra_migrate

Note: You can use the ra_finalize_upgrade to manually force upgrade finalization of an
instance from a previous version and prevent downgrade to the previous version. You must

Upgrading and Downgrading Replication Agent

132 Replication Agent

finalize the upgrade to enable any new functionality. See the Replication Agent Reference
Manual for details on using the ra_finalize_upgrade command.

6. Resume replication.
resume

Migrating Replication Agent for UDB When DB2 is Upgraded from
Version 8.2 or 9.1 to Version 9.5 or 9.7

Migrate Replication Agent for UDB when you are also upgrading DB2.

1. To prevent loss of any replicated data, deny users—other than the previously existing
Replication Agent pds_username users—any further access to the primary database.

2. Log in to the Replication Agent 15.7.1 SP100 instance, verify that it is in Replicating state,
and allow replication to finish. To verify that replication has completed:

a) Periodically issue the ra_statistics command, watching until all of these statistics are 0
(zero):

• Input queue size
• Output queue size

b) When all of these values are zero, note the Last QID Sent from the last set of
statistics.

c) Issue the ra_locator update command so that Replication Agent retrieves the
truncation point from Replication Server.

d) Wait, then issue the ra_locator command again and compare the displayed locator with
that of the Last QID Sent. If they are different, wait and repeat this step.

e) Quiesce the Replication Agent instance by issuing the quiesce command.
f) Shut down the Replication instance by issuing the shutdown command.

3. Follow the steps in the DB2 documentation for upgrading DB2.

4. Verify that all the primary database requirements are met.

Note: If the use_rssd configuration parameter was set to true before migration, skip this
step.

5. Start the Replication Agent instance, and set the use_rssd configuration parameter to
true:

ra_config use_rssd, true

Replication Agent for UDB uses this configuration to connect to the RSSD and to reset the
locator to zero.

6. Migrate the Replication Agent metadata by issuing the ra_migrate command.

Note: If the use_rssd configuration parameter was set to true before migration, skip this
step.

Upgrading and Downgrading Replication Agent

Primary Database Guide 133

7. In the Replication Agent 15.7.1 instance, resume replication by issuing the resume
command.

8. Allow all users to access the primary database.

Note: If you are upgrading Replication Agent and upgrading UDB from version 8.2 or 9.1 to
version 9.5 or 9.7 at the same time, you need to migrate Replication Agent only once.

See also
• IBM DB2 Requirements on page 107

Downgrading Replication Agent for Oracle
You can downgrade Replication Agent for Oracle from version 15.7.1 SP100 to version 15.7.1
ESD #2 or later.

You may need to downgrade Replication Agent if the upgrade process fails or if replication
fails after an upgrade. Replication may fail when new features fail to function as expected or if
there are changes to:

• DDL and how it is handled by Replication Agent
• The content or structure of the Replication Agent System Database (RASD)

If you are using any new features from Replication Agent 15.7.1 SP100, you cannot
downgrade. For a list of the new features for Replication Agent 15.7.1 SP100, see the
Replication Agent New Features.

Replication Agent 15.7.1 SP100 must be installed on the same platform on which the primary
Oracle server is running.

1. Change to the Replication Agent 15.7.1 SP100 bin directory:

• On UNIX:
cd $SYBASE/RAX-15_5/bin

• On Windows:
cd %SYBASE%\RAX-15_5\bin

The Replication Agent directory name for release 15.5 and later is RAX-15_5.

2. Run the ra_downgrade command at the Replication Agent instance from which you are
downgrading (the current version):

ra_downgrade

The ra_downgrade command extracts the contents of the Replication Agent System
Database (RASD) to a file named timestamp.export, where timestamp is a timestamp
taken at the moment ra_downgrade was invoked. This file is located in the import
subdirectory under the directory specified by the rasd_backup_dir configuration

Upgrading and Downgrading Replication Agent

134 Replication Agent

parameter of the Replication Agent instance to which you are downgrading (the earlier
version). The absolute path to this file is returned if ra_downgrade executes successfully.

Note: The ra_downgrade_prepare and ra_downgrade_accept commands are deprecated
as of Replication Agent 15.7.1.

3. Complete the downgrade by running the ra_migrate command at the Replication Agent
instance to which you are downgrading (the earlier version):

ra_migrate timestamp.export

where timestamp.export is the file to which the ra_downgrade command extracted
RASD contents.

If the ra_migrate command executes successfully, Replication Agent shuts down.

4. Start the Replication Agent instance to which you have downgraded (the earlier version),
and resume replication:

resume purge

The purge keyword is needed here to purge data from the Replication Server inbound
queue for the connection to which this Replication Agent is connected. Purging prevents
any duplicate records from being created in Replication Server as a result of the change in
OQID formats between the earlier and later versions of Replication Agent.

Downgrading Replication Agent for Microsoft SQL Server
You can downgrade Replication Agent for Microsoft SQL Server from version 15.7.1 SP100
to version 15.7.1 ESD #2 or later.

You may need to downgrade Replication Agent if the upgrade process fails or if replication
fails after an upgrade. Replication may fail when new features fail to function as expected or if
there are changes to:

• DDL and how it is handled by Replication Agent
• The format of the origin queue ID (OQID)
• The content or structure of the Replication Agent System Database (RASD)
• Replication Agent system objects in the primary database

If you are using any new features from Replication Agent 15.7.1 SP100, you cannot
downgrade. For a list of the new features for Replication Agent 15.7.1 SP100, see the
Replication Agent New Features.

1. Change to the Replication Agent 15.7.1 SP100 bin directory:

cd %SYBASE%\RAX-15_5\bin

Note: The Replication Agent directory name for release 15.5 and later is RAX-15_5.

Upgrading and Downgrading Replication Agent

Primary Database Guide 135

2. Run the ra_downgrade command at the Replication Agent instance from which you are
downgrading (the current version):

ra_downgrade

The ra_downgrade command extracts the contents of the Replication Agent System
Database (RASD) to a file named timestamp.export, where timestamp is a timestamp
taken at the moment ra_downgrade was invoked. This file is located in the import
subdirectory under the directory specified by the rasd_backup_dir configuration
parameter of the Replication Agent instance to which you are downgrading (the earlier
version). The absolute path to this file is returned if ra_downgrade executes successfully.

Note: The ra_downgrade_prepare and ra_downgrade_accept commands are deprecated
as of Replication Agent 15.7.1.

3. Complete the downgrade by running the ra_migrate command at the Replication Agent
instance to which you are downgrading (the earlier version):

ra_migrate timestamp.export

where timestamp.export is the file to which the ra_downgrade command extracted
RASD contents.

If the ra_migrate command executes successfully, Replication Agent shuts down.

4. Start the Replication Agent instance to which you have downgraded (the earlier version),
and resume replication:

resume purge

The purge keyword is needed here to purge data from the Replication Server inbound
queue for the connection to which this Replication Agent is connected. Purging prevents
any duplicate records from being created in Replication Server as a result of the change in
OQID formats between the earlier and later versions of Replication Agent.

Downgrading Replication Agent for UDB
You can downgrade Replication Agent for UDB from version 15.7.1 SP100 to version 15.7.1
ESD #2 or later.

You may need to downgrade Replication Agent if the upgrade process fails or if replication
fails after an upgrade.

If you are using any new features from Replication Agent 15.7.1 SP100, you cannot
downgrade. For a list of the new features for Replication Agent 15.7.1 SP100, see the
Replication Agent New Features.

1. Change to the Replication Agent 15.7.1 SP100 bin directory:

• On UNIX:

Upgrading and Downgrading Replication Agent

136 Replication Agent

cd $SYBASE/RAX-15_5/bin
• On Windows:

cd %SYBASE%\RAX-15_5\bin
The Replication Agent directory name for release 15.5 and later is RAX-15_5.

2. Log in to the Replication Agent for UDB 15.7 instance. Run the ra_downgrade command
at the Replication Agent instance from which you are downgrading (the current version):

ra_downgrade

The ra_downgrade command extracts the contents of the Replication Agent System
Database (RASD) to a file named timestamp.export, where timestamp is a timestamp
taken at the moment ra_downgrade was invoked. This file is located in the import
subdirectory under the directory specified by the rasd_backup_dir configuration
parameter of the Replication Agent instance to which you are downgrading (the earlier
version). The absolute path to this file is returned if ra_downgrade executes successfully.

Note: The ra_downgrade_prepare and ra_downgrade_accept commands are deprecated
as of Replication Agent 15.7.1.

3. Shut down the Replication instance by issuing the shutdown command.

4. Start and log in to the Replication Agent instance to which you are downgrading (the
earlier version), and run ra_migrate:

ra_migrate
5. Resume replication.

resume

Upgrading and Downgrading Replication Agent

Primary Database Guide 137

Upgrading and Downgrading Replication Agent

138 Replication Agent

sybfilter Driver Reference

Learn how to install, configure, use, and troubleshoot the sybfilter driver.

Replication Agent must be able to directly read Microsoft SQL Server log files. However, the
Microsoft SQL Server process opens these log files with exclusive read permission, and the
files cannot be read by any other processes, including Replication Agent. Before Replication
Agent can replicate data, you must use the sybfilter driver to make the log files readable.

Determining the Microsoft Filter Manager Library Version
For the sybfilter driver to work properly, the Microsoft Filter Manager Library must be version
5.1.2600.2978 or later.

To determine the version of the library:

1. In Windows Explorer, right-click c:\windows\system32\fltlib.dll.

2. Select Properties, and click the Version tab in the Properties dialog.

3. If the version is earlier than 5.1.2600.2978, go to the Microsoft Web site at http://
windowsupdate.microsoft.com, and update your Windows system.

Installing and Setting Up the sybfilter Driver
Install and set up the sybfilter driver.

Note: On Windows Vista, you must be logged in as an Administrator to install, set up, and run
the sybfilter driver.

1. In Windows Explorer, navigate to the sybfilter driver installation directory. On Windows,
this directory is located at %SYBASE%\RAX-15_5\system\ <platform>.

where <platform> is one of:

• winx86–if your operating system is 32-bit version of Windows Server 2003, Windows
Server 2008, Windows Vista, or Windows XP.

• winx64–if your operating system is 64-bit version of Windows Server 2003 or
Windows XP.

• winvistax64–if your operating system is 64-bit version of Windows Server 2008 or
Windows Vista.

2. Right-click sybfilter.inf to install the sybfilter driver.

Note: There can be only one sybfilter driver on a Windows machine. Once the driver is
installed, it works for all Replication Agent for Microsoft SQL Server instances running

sybfilter Driver Reference

Primary Database Guide 139

http://windowsupdate.microsoft.com
http://windowsupdate.microsoft.com

on the same machine. The sybfilter driver must be installed on the same machine as the
primary Microsoft SQL Server.

3. In any directory, create a configuration file to store all log file paths for primary databases.
The configuration file must have a .cfg suffix.

For example, under the directory %SYBASE%\RAX-15_5\system\<platform>,
create a file named LogPath.cfg.

4. Add a system environment variable named RACFGFilePath, and set its value to the path of
the configuration file.

a) From the Control Panel, open System > Advanced > Environment Variables.
b) Click New to add a new system variable.
c) Name the variable RACFGFilePath, and set its value to the location of the your

configuration file.

5. In Windows Explorer, navigate to %SYBASE%\RAX-15_5\bin, and double-click
sybfiltermgr.exe to start the sybfilter driver management console.

6. To start the sybfilter driver, enter start at the management console.

7. Add the log file path to the sybfilter driver with the user manager or by modifying the
configuration file. Use directory and drive names that are recognizable to the primary
Microsoft SQL Server.

• User manager – use the add command in the management console. The syntax for this
command is:
add serverName dbName logFilePath

For example, to add the log file named pdb2_log.ldf at D:\Program Files
\Microsoft SQL Server\MSSQL.1\MSSQL\Data\ to the dbName
database on the serverName data server:
add myseverName dbName D:\Program Files\Microsoft SQL Server
\MSSQL.1\MSSQL\Data\pdb2_log.ldf

Note: If you add the log file path with the user manager, the user manager
automatically refreshes all log paths to the sybfilter driver after adding the log path into
the configuration file.

• Configuration file – to add the log file path directly to the configuration file, open and
manually edit the configuration file. This is an example of log file path entries:
[myserver, pdb1]
log_file_path=D:\Program Files\Microsoft SQL Server\MSSQL.
1\MSSQL\Data\pdb11_log.ldf
log_file_path=D:\Program Files\Microsoft SQL Server\MSSQL.
1\MSSQL\Data\pdb12_log.ldf
[myserver, pdb2]
log_file_path=D:\Program Files\Microsoft SQL Server\MSSQL.
1\MSSQL\Data\pdb2_log.ldf

sybfilter Driver Reference

140 Replication Agent

Note: Once you have added the log file paths to the configuration file, use the refresh
command in the management console.

8. If you added a log file for your primary database before adding the log file path to the
sybfilter driver, restart Microsoft SQL Server to make the log file readable.

9. At the management console, enter check to verify that log files are readable.

If some log files are unreadable, make sure the files have been created and that Microsoft
SQL Server has been restarted, if necessary.

Troubleshooting
Consider these issues when troubleshooting the sybfilter driver.

Table 25. Known issues for the sybfilter driver

Problem description

System environment variable is not set.

Problem: The management console reports an error similar to:

ERROR: System environment variable RACFGFilePath has
not been set. Please set its value before starting this
manager. Fatal error occurs. Please press any key to
quit.
Workaround: Set the RACFGFilePath environment variable.

Configuration file does not exist.

Problem: In response to the list command, the management console reports:

ERROR: Cannot open config file.
Workaround: Create a configuration file.

Configuration file is not writeable.

Problem: In response to the add command, the management console reports:

ERROR: Cannot open config file.
Workaround: Add write permission for the configuration file.

Microsoft SQL Server log files are locked.

Problem: After restarting the machine on which Replication Agent for Microsoft SQL Server resides,
you cannot open the Microsoft SQL Server log files because they are locked.

Workaround: Restart the sybfilter management console. Issue the stop command followed by the
start command to restart the sybfilter driver. Restart the primary Microsoft SQL Server data server.

sybfilter Driver Reference

Primary Database Guide 141

Using the Trace Log
Use sybfilter trace log information to diagnose and troubleshoot problems.

1. Turn on tracing from the sybfilter management console with the trace command and the
appropriate trace flag. For example, to find out why a Microsoft SQL Server log file is
unreadable after a restart, turn on tracing with the T3 flag before restarting Microsoft SQL
Server:

trace T3
2. Open the sybfilter trace log file sybfilter.trc to view logged messages.

3. Turn off tracing from the sybfilter management console:

trace off

sybfilter Command Reference
These commands are available in the sybfilter management console. For a list and description
of commands, enter the help command at the sybfilter management console.

add
Add a log file path to the sybfilter driver and configuration file.

Syntax
add serverName dbName logFilePath

Parameters

• serverName – the name of the Microsoft SQL Server.
• dbName – the name of the database to be replicated.
• logFilePath – the path of the database log.

check
Check whether the sybfilter driver is running. Check for differences between path names in the
configuration file and the sybfilter driver. Check whether configuration files for sybfilter are
readable, and list any files that are not readable.

Syntax
check

sybfilter Driver Reference

142 Replication Agent

exit
Exit from the sybfilter management console.

Syntax
exit

help
Print help information for all sybfilter commands.

Syntax
help

list
List all configured database names and the corresponding log file paths in the configuration
file.

Syntax
list

refresh
Refresh the content in the sybfilter configuration file.

Syntax
refresh

remove
Remove a log file path from the sybfilter driver and configuration file.

Syntax
remove logFilePath

Parameters

• logFilePath – path of the database log.

start
Start the sybfilter driver.

Syntax
start

sybfilter Driver Reference

Primary Database Guide 143

stop
Stop the sybfilter driver.

Syntax
stop

trace
Trace sybfilter driver execution.

Syntax
trace [T1] [T2] [T3] [T4] | all | off

Parameters

• T1 – log routine trace messages.
• T2 – log operation status informational messages.
• T3 – log normal messages.
• T4 – log error messages.
• all – log all messages for the T1, T2, T3, and T4 flags.
• off – turn tracing off.

sybfilter Driver Reference

144 Replication Agent

Glossary

This glossary describes Replication Server Options terms.

• Adaptive Server® – the brand name for Sybase relational database management system
(RDBMS) software products.

• Adaptive Server® Enterprise manages multiple, large relational databases for high-
volume online transaction processing (OLTP) systems and client applications.

• Sybase®IQ manages multiple, large relational databases with special indexing
algorithms to support high-speed, high-volume business intelligence, decision
support, and reporting client applications.

• SQL Anywhere® (formerly Adaptive Server Anywhere) manages relational databases
with a small DBMS footprint, which is ideal for embedded applications and mobile
device applications.

See also DBMS and RDBMS.
• atomic materialization – a materialization method that copies subscription data from a

primary database to a replicate database in a single, atomic operation. No changes to
primary data are allowed until the subscription data is captured at the primary database.
See also bulk materialization and nonatomic materialization.

• BCP utility – a bulk copy transfer utility that provides the ability to load multiple rows of
data into a table in a target database. See also bulk copy.

• bulk copy – an Open Client™ interface for the high-speed transfer of data between a
database table and program variables. Bulk copying provides an alternative to using SQL
insert and select commands to transfer data.

• bulk materialization – a materialization method whereby subscription data in a replicate
database is initialized outside of the replication system. You can use bulk materialization
for subscriptions to table replication definitions or function replication definitions. See
also atomic materialization and nonatomic materialization.

• client – in client/server systems, the part of the system that sends requests to servers and
processes the results of those requests. See also client application.

• client application – software that is responsible for the user interface, including menus,
data entry screens, and report formats. See also client.

• commit – an instruction to the DBMS to make permanent the changes requested in a
transaction. See also transaction. Contrast with rollback.

• database – a collection of data with a specific structure (or schema) for accepting, storing,
and providing data for users. See also data server, DBMS, and RDBMS.

• database connection – a connection that allows Replication Server to manage the
database and distribute transactions to the database. Each database in a replication system

Glossary

Primary Database Guide 145

can have only one database connection in Replication Server. See also Replication Server
and route.

• data client – a client application that provides access to data by connecting to a data server.
See also client, client application, and data server.

• data distribution – a method of locating (or placing) discrete parts of a single set of data in
multiple systems or at multiple sites. Data distribution is distinct from data replication,
although a data replication system can be used to implement or support data distribution.
Contrast with data replication.

• data replication – the process of copying primary data to remote locations and
synchronizing the copied data with the primary data. Data replication is different from data
distribution. Replicated data is a stored copy of data at one or more remote sites throughout
a system, and it is not necessarily distributed data. Contrast with data distribution. See also
transaction replication.

• data server – a server that provides the functionality necessary to maintain the physical
representation of a table in a database. Data servers are usually database servers, but they
can also be any data repository with the interface and functionality a data client requires.
See also client, client application, and data client.

• datatype – a keyword that identifies the characteristics of stored information on a
computer. Some common datatypes are: char, int, smallint, date, time, numeric, and float.
Different data servers support different datatypes.

• DBMS – an abbreviation for database management system, a computer-based system for
defining, creating, manipulating, controlling, managing, and using databases. The DBMS
can include the user interface for using the database, or it can be a standalone data server
system. Compare with RDBMS.

• ERSSD – an abbreviation for Embedded Replication Server System Database, which
manages replication system information for a Replication Server. See also Replication
Server.

• failback – a procedure that restores the normal user and client access to a primary
database, after a failover procedure switches access from the primary database to a
replicate database. See also failover.

• failover – a procedure that switches user and client access from a primary database to a
replicate database, particularly in the event of a failure that interrupts operations at the
primary database, or access to the primary database. Failover is an important fault-
tolerance feature for systems that require high availability. See also failback.

• function – a data server object that represents an operation or set of operations.
Replication Server distributes operations to replicate databases as functions. See also
stored procedure.

• function string – a string that Replication Server uses to map a function and its parameters
to a data server API. Function strings allow Replication Server to support heterogeneous
replication, in which the primary and replicate databases are different types, with different
SQL extensions and different command features. See also function.

Glossary

146 Replication Agent

• gateway – connectivity software that allows two or more computer systems with different
network architectures to communicate.

• inbound queue – a stable queue managed by Replication Server to spool messages
received from a Replication Agent. See also outbound queue and stable queue.

• interfaces file – a file containing information that Sybase Open Client and Open Server™

applications need to establish connections to other Open Client and Open Server
applications. See also Open Client and Open Server.

• isql – an Interactive SQL client application that can connect and communicate with any
Sybase Open Server application, including Adaptive Server, Replication Agent, and
Replication Server. See also Open Client and Open Server.

• Java – an object-oriented programming language developed by Sun Microsystems. A
platform-independent, “write once, run anywhere” programming language.

• Java VM – the Java Virtual Machine. The Java VM (or JVM) is the part of the Java
Runtime Environment (JRE) that is responsible for interpreting Java byte codes. See also
Java and JRE.

• JDBC – an abbreviation for Java Database Connectivity. JDBC is the standard
communication protocol for connectivity between Java clients and data servers. See also
data server and Java.

• JRE – an abbreviation for Java Runtime Environment. The JRE consists of the Java Virtual
Machine (Java VM or JVM), the Java Core Classes, and supporting files. The JRE must be
installed on a machine to run Java applications, such as Replication Agent. See also Java
VM.

• LAN – an abbreviation for “local area network,” a computer network located on the user
premises and covering a limited geographical area (usually a single site). Communication
within a local area network is not subject to external regulations; however, communication
across the LAN boundary can be subject to some form of regulation. Contrast with
WAN.

• latency – in transaction replication, the time it takes to replicate a transaction from a
primary database to a replicate database. Specifically, latency is the time elapsed between
committing an original transaction in the primary database and committing the replicated
transaction in the replicate database.

In disk replication, latency is the time elapsed between a disk write operation that changes
a block or page on a primary device and the disk write operation that changes the replicated
block or page on a replicate device.

See also transaction replication.
• LOB – an abbreviation for large object, a large collection of data stored as a single entity in

a database.
• Log Reader – an internal component of Replication Agent that interacts with the primary

database to capture transactions for replication. See also Log Transfer Interface and Log
Transfer Manager.

Glossary

Primary Database Guide 147

• Log Transfer Interface – an internal component of Replication Agent that interacts with
Replication Server to forward transactions for distribution to Replication Server. See also
Log Reader and Log Transfer Manager.

• Log Transfer Language – the proprietary protocol used between Replication Agent and
Replication Server to replicate data from the primary database to Replication Server. See
also Log Reader and Log Transfer Interface.

• Log Transfer Manager – an internal component of Replication Agent that interacts with
the other Replication Agent internal components to control and coordinate Replication
Agent operations. See also Log Reader and Log Transfer Interface.

• maintenance user – a special user login name in the replicate database that Replication
Server uses to apply replicated transactions to the database. See also replicate database and
Replication Server.

• materialization – the process of copying the data from a primary database to a replicate
database, initializing the replicate database so that the replication system can begin
replicating transactions. See also atomic materialization, bulk materialization, and
nonatomic materialization.

• Multi-Path Replication™ – Replication Server feature that improves performance by
enabling parallel paths of data from the source database to the target database. These
multiple paths process data independently and are applicable when sets of data can be
processed in parallel without transactional consistency requirements between them.

• nonatomic materialization – a materialization method that copies subscription data
without a lock on the primary database. Changes to primary data are allowed during data
transfer, which may cause temporary inconsistencies between the primary and replicate
databases. Contrast with atomic materialization. See also bulk materialization.

• ODBC – an abbreviation for Open Database Connectivity, an industry-standard
communication protocol for clients connecting to data servers. See also client, data server,
and JDBC.

• Open Client – a Sybase product that provides customer applications, third-party products,
and other Sybase products with the interfaces needed to communicate with Open Server
applications. See also Open Server.

• Open Client application – An application that uses Sybase Open Client libraries to
implement Open Client communication protocols. See also Open Client and Open
Server.

• Open Server – a Sybase product that provides the tools and interfaces required to create a
custom server. See also Open Client.

• Open Server application – a server application that uses Sybase Open Server libraries to
implement Open Server communication protocols. See also Open Client and Open
Server.

• outbound queue – a stable queue managed by Replication Server to spool messages to a
replicate database. See also inbound queue, replicate database, and stable queue.

• primary data – the data source used for replication. Primary data is stored and managed
by the primary database. See also primary database.

Glossary

148 Replication Agent

• primary database – the database that contains the data to be replicated to another
database (the replicate database) through a replication system. The primary database is the
source of replicated data in a replication system. Sometimes called the active database.
Contrast with replicate database. See also primary data.

• primary key – a column or set of columns that uniquely identifies each row in a table.
• primary site – the location or facility at which primary data servers and primary databases

are deployed to support normal business operations. Sometimes called the active site or
main site. See also primary database and replicate site.

• primary table – a table used as a source for replication. Primary tables are defined in the
primary database schema. See also primary data and primary database.

• primary transaction – a transaction that is committed in the primary database and
recorded in the primary database transaction log. See also primary database, replicated
transaction, and transaction log.

• quiesce – to cause a system to go into a state in which further data changes are not allowed.
See also quiescent.

• quiescent – in a replication system, a state in which all updates have been propagated to
their destinations. Some Replication Agent and Replication Server commands require that
you first quiesce the replication system.

In a database, a state in which all data updates are suspended so that transactions cannot
change any data, and the data and log devices are stable.

This term is interchangeable with quiesced and in quiesce. See also quiesce.
• RASD – an abbreviation for Replication Agent System Database. Information in the

RASD is used by the primary database to recognize database structure or schema objects
in the transaction log.

• RCL – an abbreviation for Replication Command Language, the command language used
to manage Replication Server. See also Replication Server.

• RDBMS – an abbreviation for relational database management system, an application that
manages and controls relational databases. Compare with DBMS. See also relational
database.

• relational database – a collection of data in which data is viewed as being stored in tables,
which consist of columns (data items) and rows (units of information). Relational
databases can be accessed by SQL requests. Compare with database. See also SQL.

• replicate data – A set of data that is replicated from a primary database to a replicate
database by a replication system. See also primary database, replication system, and
replicate database.

• replicate database – a database that contains data replicated from another database (the
primary database) through a replication system. The replicate database is the database that
receives replicated data in a replication system. Contrast with primary database. See also
replicate data, replicated transaction, and replication system.

Glossary

Primary Database Guide 149

• replicated transaction – a primary transaction that is replicated from a primary database
to a replicate database by a transaction replication system. See also primary database,
primary transaction, replicate database, and transaction replication.

• replicate site – the location or facility at which replicate data servers and replicate
databases are deployed to support normal business operations during scheduled downtime
at the primary site. Contrast with primary site. See also replicate database.

• Replication Agent – an application that reads a primary database transaction log to
acquire information about data-changing transactions in the primary database, processes
the log information, and then sends it to a Replication Server for distribution to a replicate
database. See also primary database and Replication Server.

• replication definition – a description of a table or stored procedure in a primary database,
for which subscriptions can be created. The replication definition, maintained by
Replication Server, includes information about the columns to be replicated and the
location of the primary table or stored procedure. See also Replication Server and
subscription.

• Replication Server – a Sybase software product that provides the infrastructure for a
transaction replication system. See also Replication Agent.

• replication system – a data processing system that replicates data from one location to
another. Data can be replicated between separate systems at a single site, or from one or
more local systems to one or more remote systems. See also transaction replication.

• rollback – an instruction to a database to back out of the changes requested in a unit of
work (called a transaction). Contrast with commit. See also transaction.

• route – A one-way message stream from a primary Replication Server to a replicate
Replication Server. Routes carry data-changing commands (including those for RSSDs)
and replicated functions (database procedures) between separate Replication Servers. See
also Replication Server.

• RSSD – an abbreviation for Replication Server System Database, which manages
replication system information for a Replication Server. See also Replication Server.

• SQL – an abbreviation for Structured Query Language, a nonprocedural programming
language used to process data in a relational database. ANSI SQL is an industry standard.
See also transaction.

• stable queue – a disk device-based, store-and-forward queue managed by Replication
Server. Messages written into the stable queue remain there until they can be delivered to
the appropriate process or replicate database. Replication Server provides a stable queue
for both incoming messages (the inbound queue) and outgoing messages (the outbound
queue). See also database connection, Replication Server, and route.

• stored procedure – a data server object that represents an operation or set of operations.
This term is often used interchangeably with function.

• subscription – a request for Replication Server to maintain a replicated copy of a table, or
a set of rows from a table, in a replicate database at a specified location. See also replicate
database, replication definition, and Replication Server.

Glossary

150 Replication Agent

• table – in a relational DBMS, a two-dimensional array of data or a named data object that
contains a specific number of unordered rows composed of a group of columns that are
specific for the table. See also database.

• transaction – a unit of work in a database that can include zero, one, or many operations
(including insert, update, and delete operations), and that is either applied or rejected as a
whole. Each SQL statement that modifies data can be treated as a separate transaction, if
the database is so configured. See also SQL.

• transactional consistency – A condition in which all transactions in the primary database
are applied in the replicate database, and in the same order that they were applied in the
primary database.

• transaction log – generally, the log of transactions that affect the data managed by a data
server. Replication Agent reads the transaction log to identify and acquire the transactions
to be replicated from the primary database. See also Replication Agent, primary database,
and Replication Server.

• transaction replication – a data replication method that copies data-changing operations
from a primary database to a replicate database. See also data replication.

• UDB – IBM DB2 Universal Database (formerly IBM DB2 for Linux, UNIX, and
Windows).

• WAN – an abbreviation for “wide area network,” a system of local-area networks (LANs)
connected together with data communication lines. Contrast with LAN.

Glossary

Primary Database Guide 151

Glossary

152 Replication Agent

Index
A
Administration Client 109

B
base objects, transaction log 120, 121

C
CLASSPATH environment variable 8
commands

pdb_setrepproc 42
pdb_setrepseq 45

communications
JDBC driver 8

configuration parameters
pdb_dflt_object_repl 43

conventions
style 1
syntax 1

creating
transaction log 106

D
datatypes

UDB 115
DB2

origin queue ID 114
requirements 107

DB2 UDB
heap 109

deferred updates 5, 80, 105

F
FORCE APPLICATION command 112

H
heap

DB2 UDB 109

I
IBM DB2 Universal Database

See UDB

J

Java stored procedures 122
JDBC driver

Oracle 8

L

Log Reader component
asynchronous operation 112
read buffer size 113

log-based Replication Agent
table marking 106

LTM locator
origin queue ID 23, 91, 114

M

marked objects table
UDB 123

marked procedures 75
marker shadow tables 75, 100
marking a primary table

in UDB 106
marking a sequence 42
Microsoft SQL Server

origin queue ID 91
permissions 85
primary database 79
Replication Agent user ID 85
roles 85

Microsoft Windows platforms 79
multiple Replication Agents instances table 73
multiple Replication Agents marked-procedures

table 74
multiple Replication Agents marked-tables table

74

O

operating system
Microsoft Windows platforms 79

Index

Primary Database Guide 153

Oracle database server
JDBC driver 8
origin queue ID 23
primary database 5
TNS Listener Service 8

Oracle partitioned tables 50
origin commit time

Oracle 23
origin queue ID

DB2 114
Microsoft SQL Server 91
Oracle 23

P
partitioned tables 50
pdb_dflt_object_repl configuration parameter 43
pdb_setrepproc command 42
pdb_setrepseq command 45
pdb_setreptable configuration parameter

all keyword unsupported with mark | unmark in
Replication Agent for UDB 106

primary databases
Microsoft SQL Server 79
Oracle database server 5
Replication Agent user ID 85, 106
UDB 105

primary tables
marking in UDB 106
transaction log objects 113

procedure-active table 73

R
Replication Agent

Log Reader component 112
marked objects table 123
origin queue ID 23, 91, 114
primary database user ID 85, 106
transaction log 71, 99, 120

Replication Agent for Microsoft SQL Server 79
datatype compatibility 91
permissions 85
primary database user ID 85
roles 85
transaction log 99

Replication Agent for Oracle 5
JDBC driver 8
Running Oracle Server and Replication Agent

on different machines 46

transaction log 71
Replication Agent for UDB 105

configuration parameters 111
creating transaction log 106
database communication error (-30081) 112,

113
datatype compatibility 115
marked objects table 123
primary database user ID 106
scan buffer size 113
transaction log 120

S

sequence
marking 42, 43
unmarking 43

sequences 75
marking 41
unmarking 41

shadow table 76
shadow tables

marker 75, 100

T

TNS Listener Service, Oracle 8
transaction logs

base objects 121
creating 106
marked objects table 123
primary table objects 113
Replication Agent for Microsoft SQL Server

99, 101
Replication Agent for Oracle 71
Replication Agent for UDB 120
shadow tables 75, 100
truncating 76

truncate partition command
replicating 50

truncation
procedures 122

U

UDB
communication error (-30081) 112, 113
DATA CAPTURE table attribute 106
datatypes 115

Index

154 Replication Agent

marked objects table 123
marking primary tables 106
primary database 105
Replication Agent user ID 106

unmarking a sequence 43
user IDs

primary database 85, 106

W

Windows
See Microsoft Windows platforms

Index

Primary Database Guide 155

Index

156 Replication Agent

	Primary Database Guide
	Contents
	Conventions
	Replication Agent for Oracle
	Oracle-Specific Considerations
	Unsupported Oracle Software Features
	Replication of Deferred Updates on Primary Keys

	Unsupported Oracle Datatypes, Data, and Structures
	Predefined PL/SQL Numeric Datatypes

	Supported Oracle Datatypes, Data, and Structures
	Replication Agent Connectivity
	Replication Agent Permissions
	Multiple Replication Agents
	DDL Replication with Multiple Replication Agents

	High Availability
	Redo and Archive Log Setup
	Disabling Automatic Archiving for Oracle 10g
	Disabling Automatic Archiving for Oracle 11g
	Forcing the Logging of All Database Changes
	UNC Paths for Windows Archive and Online Redo Log Paths
	Configuring Oracle LogMiner

	Supplemental Logging
	Table-Level Supplemental Logging

	DDL Replication
	DDL parameters
	DDL Commands and Objects Filtered from Replication

	Character Case of Database Object Names
	Format of Origin Queue ID
	LTL Origin Commit Time Granularity
	Replication Server and RSSD Scripts
	Applying Script Changes for User-Defined Datatypes

	Oracle Datatype Compatibility
	Replication Server 15.0 Unsigned Datatype Mapping
	Oracle ANYDATA Datatype Compatibility
	Oracle XMLTYPE Datatype Compatibility

	Oracle Datatype Restrictions
	Oracle ANYDATA Datatype Restrictions
	Oracle 10g and 11g XMLTYPE Restrictions
	Oracle ROWID Datatype Restrictions

	Oracle Large Object (LOB) Support
	Replication of LOB Columns
	Large Object Replication Limitation
	Special Handling for Off-Row Large Objects
	Replicating CLOB and NCLOB Datatypes

	Oracle User-Defined Types
	Creating a Datatype Definition in Replication Server
	Example: Create a Replication Definition
	Object Type Attribute Replication

	Sequence Marking and Unmarking
	Replication Server Changes to Support Sequence Replication
	Marking a Sequence for Replication
	Unmarking a Sequence

	Sequence Replication Enabling and Disabling
	Enabling Replication for a Marked Sequence
	Disabling Replication for a Marked Sequence

	Setting Up Replication Agent and Oracle on Different Machines
	Real Application Clusters (RAC)
	pdb_archive_path
	Oracle Instance Failover

	Automatic Storage Management
	Archive Log Removal and Configuration
	Configuration Parameters

	Replication Server set autocorrection Command
	Partitioned Tables
	Replication of the truncate partition Command

	Materialized Views
	Replication and Materialized Views

	Index-Organized Tables
	Replicate Database Trigger Execution Control
	Alteration of Replication Definitions from the Primary Data Server
	Security Considerations
	Limitations

	Oracle Data Guard
	Database Resynchronization
	Oracle Transaction and Operation Troubleshooting
	Setting Up Replication Agent and Oracle to use ra_dumptran and ra_helpop

	Stored Procedure Replication with BOOLEAN Arguments
	Example: Replicating to an Oracle Replicate Database
	Example: Replicating to a Non-Oracle Database

	Oracle Warm Standby
	Oracle Flashback
	Requirements for Oracle Flashback
	Limitations to Oracle Flashback
	Disabling Oracle Recycle Bin
	Dropped Objects and Article Status
	Disabling Flashback Replication with Recycle Bin Disabled

	XMLTYPE Data Replication
	Example: Replicating XMLTYPE Column Data from Oracle to Oracle
	Example: Replicating XMLTYPE Column Data from Oracle to Adaptive Server Enterprise
	Example: Replicating an XMLTYPE Table from Oracle to Oracle

	Oracle 11g Release 2
	Network Configuration File Location and Structure
	Time Zone File
	User-Defined Type Dependencies
	Flashback Data Archive Support for DDL Commands

	Oracle 9i
	Limitations to Oracle 9i

	Replication Agent Objects in the Oracle Primary Database
	Replication Agent Object Names
	Finding the Names of the Objects Created

	Table Objects
	Procedure-Active Table
	Multiple Replication Agents Instances Table
	Multiple Replication Agents Marked-Tables Table
	Multiple Replication Agents Marked-Procedures Table

	Marker Objects
	Sequences
	Marked Procedures
	Shadow Table

	Transaction Log Truncation

	Replication Agent for Microsoft SQL Server
	Microsoft SQL Server-Specific Considerations
	Microsoft SQL Server Requirements
	Microsoft SQL Server Restrictions
	Unsupported Software Features
	Replication of Deferred Updates on Primary Keys

	Unsupported Datatypes
	Applying Microsoft SQL Server Patches
	DDL Replication
	DDL parameters
	DDL Commands and Objects Filtered from Replication

	Replication Agent Connectivity
	Replication Agent Permissions and Roles
	The sybfilter Driver
	Initialization of the Primary Data Server and Replication Agent
	First-Time Initialization
	Subsequent Initialization
	Final Cleanup

	Character Case of Database Object Names
	Format of Origin Queue ID
	Microsoft SQL Server Datatype Compatibility
	Replication Server 15.0 Unsigned Datatype Mapping

	ntext Datatype Replication
	Alteration of Replication Definitions from the Primary Data Server
	Security Considerations
	Limitations

	Replication Server set autocorrection Command
	Computed Columns

	Replication Agent Objects in the Microsoft SQL Server Primary Database
	Replication Agent Object Names
	Table Objects
	Microsoft SQL Server System Tables

	Procedure Objects
	Marker Objects
	Trigger Objects
	Transaction Log Administration
	Transaction Log Backup and Restoration
	Transaction Log Truncation

	Using Windows Authentication with Microsoft SQL Server
	Setting Up Replication Agent and Microsoft SQL Server on Different Machines

	Replication Agent for UDB
	IBM DB2-Specific Considerations
	Unsupported Software Features
	Replication of Deferred Updates on Primary Keys

	Unsupported Datatypes
	Feature Differences in Replication Agent for UDB
	IBM DB2 Requirements
	Java Heap Size
	Replication Agent and a DB2 Server on Different Machines
	DB2 Connectivity
	Cataloging the Remote TCP/IP Node from the DB2 Client
	Cataloging the Primary Database from the DB2 Client
	Configuring pds_datasource_name

	Replication Agent for UDB Connectivity Parameters
	Repositioning in the Log
	Replication Agent for UDB Behavior
	Character Case of Database Object Names
	Format of Origin Queue ID
	DB2 Datatype Compatibility
	Replication Server 15.0 Unsigned Datatype Mapping
	DECFLOAT Datatype Compatibility
	XML Datatype Compatibility

	Replication Server set autocorrection Command
	Large Identifiers
	Compression

	Replication Agent Objects in the DB2 Primary Database
	Replication Agent Object Names
	Table Objects
	Java Procedure Objects
	Finding the Names of Replication Agent Objects
	Marked Objects Table
	Transaction Log Truncation

	Upgrading and Downgrading Replication Agent
	Upgrade and Migration Procedures for Replication Agent for Oracle
	Upgrading Replication Agent for Oracle to 15.7.1 SP100
	Migrating Replication Agent for Oracle 15.7.1 SP100 When Upgrading Oracle 10g to 11g

	Upgrade Procedures for Replication Agent for Microsoft SQL Server
	Upgrading Replication Agent for Microsoft SQL Server to 15.7.1 SP100

	Upgrade and Migration Procedures for Replication Agent for UDB
	Upgrading Replication Agent for UDB to 15.7.1 SP100
	Migrating Replication Agent for UDB When DB2 is Upgraded from Version 8.2 or 9.1 to Version 9.5 or 9.7

	Downgrading Replication Agent for Oracle
	Downgrading Replication Agent for Microsoft SQL Server
	Downgrading Replication Agent for UDB

	sybfilter Driver Reference
	Determining the Microsoft Filter Manager Library Version
	Installing and Setting Up the sybfilter Driver
	Troubleshooting
	Using the Trace Log
	sybfilter Command Reference
	add
	check
	exit
	help
	list
	refresh
	remove
	start
	stop
	trace

	Glossary
	Index

