Sybase*

Primary Database Guide

Replication Agent™

15.2

Linux, Microsoft Windows, and UNIX

DOCUMENT ID: DC00269-01-1520-01

LAST REVISED: April 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book		. vii
CHAPTER 1	Replication Agent for Microsoft SQL Server	1
	Microsoft SQL Server-specific considerations	
	Microsoft SQL Server requirements	
	Unsupported software features	
	DDL Replication	
	New commands	
	New configuration parameters	6
	Replication Agent connectivity	7
	Replication Agent permissions	
	The sybfilter driver	8
	Initialization of the primary data server and Replication Agent Microsoft is gl tool	
	Character case of database object names	
	Format of origin queue ID	
	Datatype compatibility	
	Replicating ntext datatypes	
	Replication Agent objects in the Microsoft SQL Server primary database	
	Replication Agent object names	
	Table objects	
	Procedure objects	
	Marker objects	
	Trigger objects	
	Administering the transaction log	
	Using Windows authentication with Microsoft SQL Server	
	Running Replication Agent and Microsoft SQL Server on different	
	machines	
CHAPTER 2	Replication Agent for Oracle	27
	Oracle-specific considerations	
	Unsupported software features	

	Replication Agent connectivity	. 30
	Replication Agent permissions	. 30
	Redo and archive log setup	. 33
	Supplemental logging	. 36
	Recycle bin setup	. 37
	Setting ddl_username and ddl_password	. 37
	Character case of database object names	. 39
	Format of origin queue ID	
	Replication Server and RSSD scripts	. 41
	Datatype compatibility	. 42
	Oracle datatype restrictions	. 46
	Oracle large object (LOB) support	. 48
	Oracle user-defined types	. 50
	Marking and unmarking sequences	. 53
	Enabling and disabling replication for sequences	. 58
	Running Replication Agent and Oracle on different machines	59
	Real Application Clusters (RAC)	. 60
	Automatic Storage Management	
	Replication Server set autocorrection command	. 66
	Partitioned tables	. 66
	Materialized views	. 68
	Unsupported table types	
	Replication Agent objects in the Oracle primary database	
	Replication Agent object names	
	Table objects	. 70
	Marker objects	
	Sequences	
	Marked procedures	
	Transaction log truncation	. 71
CHAPTER 3	Replication Agent for UDB	73
	IBM DB2 Universal Database-specific considerations	
	Feature differences in Replication Agent for UDB	
	Features not available in Replication Agent for UDB	
	IBM DB2 Universal Database Requirements	
	Running Replication Agent on a remote machine	
	Replication Agent for UDB connectivity parameters	
	Handling repositioning in the log	
	Replication Agent for UDB behavior	
	Character case of database object names	
	Format of origin queue ID	
	Datatype compatibility	
	Replication Agent objects in the IBM DB2 Universal Database prin	
	database	,

	Replication Agent objects
APPENDIX A	Upgrading Replication Agent for Microsoft SQL Server
APPENDIX B	Using the sybfilter driver 129 Requirements 129 Installation and setup 130 Troubleshooting 132 System environment variable is not set 132 Configuration file does not exist 132 Configuration file is not writeable 132 Microsoft SQL Server log files are locked 132 Using the trace log 133 sybfilter command reference 133
Glossary	
lu dan	440

About This Book

Replication AgentTM 15.2 extends the capabilities of Replication Server[®] by supporting non-Sybase primary data servers in a Sybase replication system.

Replication Agent is the software solution for replicating transactions from a primary database in one of the following data servers:

- IBM DB2 Universal Database (on UNIX and Microsoft Windows platforms)
- Microsoft SQL Server
- Oracle

Audience

This book is for anyone who needs to administer a Sybase replication system with non-Sybase primary data servers, or administer the non-Sybase primary data servers in a Sybase replication system.

If you are new to Sybase replication technology, see the following documents:

- The Replication Server Design Guide for an introduction to basic data replication concepts and Sybase replication systems
- The Replication Server Heterogeneous Replication Guide for an introduction to heterogeneous replication concepts and the issues peculiar to Sybase replication systems with non-Sybase data servers.

How to use this book

Refer to this book when you need detailed information about Replication Agent support for non-Sybase data servers.

This book is organized as follows:

Chapter 1, "Replication Agent for Microsoft SQL Server," describes replication system issues that are specific to Microsoft SQL Server, and details of the Replication Agent for Microsoft SQL Server.

Chapter 2, "Replication Agent for Oracle," describes replication system issues that are specific to Oracle, and details of the Replication Agent for Oracle.

Chapter 3, "Replication Agent for UDB," describes replication system issues that are specific to IBM DB2 Universal Database, and details of the Replication Agent for UDB.

Appendix A, "Upgrading Replication Agent," describes Replication Agent upgrades.

Appendix B, "Using the sybfilter driver," describes use of the sybfilter driver.

Related documents

A Sybase replication system comprises several components. You may find it helpful to have the following documentation available.

Replication Agent

• The Replication Agent Release Bulletin contains last-minute information that was too late to be included in the books.

A more recent version of the release bulletins may be available on the World Wide Web. To check for critical product or document information that was added after the release of the product CD, use the Sybase Product Manuals Web site.

- The *Replication Agent Installation Guide* describes how to install the Replication Agent software. It includes an installation and setup worksheet that you can use to collect the information you need to complete the software installation and Replication Agent setup.
- The Replication Agent Administration Guide introduces replication concepts and Sybase replication technology. This document also describes Replication Agent features and operations, and how to set up, administer, and troubleshoot the Replication Agent software.
- The Replication Agent Reference Manual describes all Replication Agent commands and configuration parameters in detail, including syntax, examples, and usage notes.

Java environment

Replication Agent 15.2 requires a Java Runtime Environment (JRE) on the machine that acts as the Replication Agent host.

- The *Replication Agent Release Bulletin* contains the most up-to-date information about Java and JRE requirements.
- Java documentation available from your operating system vendor describes how to set up and manage your Java environment.

Replication Server

 Administration Guide – includes information and guidelines for creating and managing a replication system, setting up security, recovering from system failures, and improving performance.

- Configuration Guide for your platform describes configuration
 procedures for Replication Server and related products, and explains how
 to use the rs_init configuration utility.
- *Design Guide* contains information about designing a replication system and integrating non-Sybase data servers into a replication system.
- Getting Started with Replication Server provides step-by-step instructions for installing and setting up a simple replication system.
- *Heterogeneous Replication Guide* describes how to implement a Sybase replication system with heterogeneous or non-Sybase data servers.
- Reference Manual contains the syntax and detailed descriptions of Replication Server commands in the Replication Command Language (RCL); Replication Server system functions; Replication Server executable programs; and Replication Server system tables.
- Troubleshooting Guide contains information to aid in diagnosing and correcting problems in the replication system.

Primary data servers

Sybase recommends that you or someone at your site be familiar with the software and database administration tasks for the non-Sybase data server(s) supported by Replication Agent:

IBM

- DB2 Universal Database
- Microsoft SQL Server
- Oracle

Adaptive Server Enterprise

If your replication system includes databases in Sybase Adaptive Server[®] Enterprise, make sure you have documentation that is appropriate for the version of Adaptive Server Enterprise that you use.

You can find more information about ASE on the Sybase Web site at http://www.sybase.com/support/manuals/.

Other sources of information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase Product Manuals Web site to learn more about your product:

 The Getting Started CD contains Release Bulletins and installation guides in PDF format, and may also contain other documents or updated information not included on the SyBooks CD. It is included with your software. To read or print documents on the Getting Started CD, you need Adobe Acrobat Reader, which you can download at no charge from the Adobe Web site using a link provided on the CD. The SyBooks CD contains product manuals and is included with your software. The Eclipse-based SyBooks browser allows you to access the manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can access through the PDF directory on the SyBooks CD. To read or print the PDF files, you need Adobe Acrobat Reader.

Refer to the *SyBooks Installation Guide* on the Getting Started CD, or the *README.txt* file on the SyBooks CD for instructions on installing and starting SyBooks.

 The Sybase Product Manuals Web site is an online version of the SyBooks CD that you can access using a standard Web browser. In addition to product manuals, you will find links to EBFs/Maintenance, Technical Documents, Case Management, Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications on the Web

Technical documentation at the Sybase Web site is updated frequently.

To find the latest information on product certifications

- Point your Web browser to Technical Documents at http://www.sybase.com/support/techdocs/.
- 2 Click Certification Report.
- 3 In the Certification Report filter, select a product, platform, and time frame, and then click Go.
- 4 Click a Certification Report title to display the report.

To find the latest information on component certifications

- 1 Point your Web browser to Availability and Certification Reports at http://certification.sybase.com/.
- 2 Either select the product family and product under Search by Base Product, or select the platform and product under Search by Platform.
- 3 Select Search to display the availability and certification report for the selection.

To create a personalized view of the Sybase Web site (including support pages)

Set up a MySybase profile. MySybase is a free service that allows you to create a personalized view of Sybase Web pages.

- 1 Point your Web browser to Technical Documents at http://www.sybase.com/support/techdocs/.
- 2 Click MySybase and create a MySybase profile.

Sybase EBFs and software maintenance

To find the latest information on EBFs and software maintenance

- Point your Web browser to the Sybase Support Page at http://www.sybase.com/support.
- Select EBFs/Maintenance. If prompted, enter your MySybase user name and password.
- 3 Select a product.
- 4 Specify a time frame and click Go. A list of EBF/Maintenance releases is displayed.

Padlock icons indicate that you do not have download authorization for certain EBF/Maintenance releases because you are not registered as a Technical Support Contact. If you have not registered, but have valid information provided by your Sybase representative or through your support contract, click Edit Roles to add the "Technical Support Contact" role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the product description to download the software.

Conventions

The following sections describe the style, syntax, and character case conventions used in this book.

Style conventions The following style conventions are used in this book:

• In a sample screen display, commands that you should enter exactly as shown appear like this:

pdb_setreptable authors, mark

• In the regular text of this document, variables or user-supplied words appear like this:

Specify the value of *table_name* to mark the table.

• In a sample screen display, variables or words that you should replace with the appropriate value for your site appear like this:

```
pdb_setreptable table_name, mark
```

Here, *table_name* is the variable you should replace.

- In the regular text of this document:
 - Names of programs, utilities, procedures, and commands appear like this:

Use the pdb_setreptable command to mark a table for replication.

• Names of database objects (such as tables, columns, stored procedures) appear like this:

Check the price column in the widgets table.

• Names of datatypes appear like this:

Use the date or datetime datatype.

• Names of files and directories appear like this:

Log files are located in the \$SYBASE/RAX-15_2/inst_name/log subdirectory.

Syntax conventions The following syntax conventions are used in this book:

Table 1: Syntax conventions

Key	Definition	
{ }	Curly braces indicate that you must choose at least one of the enclosed	
	options. Do not type the braces when you enter the command.	
[]	Brackets mean that choosing one or more of the enclosed options is	
	optional. Do not type the brackets when you enter the command.	
()	Type parentheses as part of the command.	
	The vertical bar means you can select only one of the options shown.	
,	The comma means you can choose as many of the options shown as you	
	like, separating your choices with commas that you type as part of the	
	command.	

Statements that show the syntax of commands appear like this:

ra_config param[, value]

The words *param* and *value* in the syntax are variables or user-supplied words.

Character case The following character case conventions are used in this book:

- All command syntax and command examples are shown in lowercase.
 However, Replication Agent command names are not case-sensitive. For example, PDB_XLOG, Pdb_Xlog, and pdb_xlog are equivalent.
- Names of configuration parameters are case-sensitive. For example,
 Scan_Sleep_Max is not the same as scan_sleep_max, and the former is interpreted as an invalid parameter name.
- Database object names are not case-sensitive in Replication Agent commands. However, to use a mixed-case object name in a command (to match a mixed-case object name in the database), delimit the object name with quote characters. For example:

pdb_setreptable "TableName", mark

Accessibility features

This document is available in an HTML version that is specialized for accessibility. You can navigate the HTML with an adaptive technology such as a screen reader, or view it with a screen enlarger.

Replication Agent 15.2 and the HTML documentation have been tested for compliance with U.S. government Section 508 Accessibility requirements. Documents that comply with Section 508 generally also meet non-U.S. accessibility guidelines, such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use. Some screen readers pronounce text based on its case; for example, they pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You might find it helpful to configure your tool to announce syntax conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility site includes links to information on Section 508 and W3C standards.

For a Section 508 compliance statement for Replication Agent 15.2, see Sybase Accessibility at http://www.sybase.com/detail?id=1028493.

If you need help

Each Sybase installation that has purchased a support contract has one or more designated people who are authorized to contact Sybase Technical Support. If you cannot resolve a problem using the manuals or online help, please have the designated person contact Sybase Technical Support or the Sybase subsidiary in your area.

CHAPTER 1 Replication Agent for Microsoft SQL Server

The term "Replication Agent for Microsoft SQL Server" refers to an instance of the Replication Agent 15.2 software that is installed and configured for a primary database that resides in a Microsoft SQL Server data server.

This chapter describes the characteristics of the Replication Agent that are unique to the Replication Agent for Microsoft SQL Server implementation.

Topic	Page
Microsoft SQL Server-specific considerations	1
Replication Agent objects in the Microsoft SQL Server primary database	20
Using Windows authentication with Microsoft SQL Server	24
Running Replication Agent and Microsoft SQL Server on different machines	25

Note For information on the basic functionality of Replication Agent 15.2, see the *Replication Agent Administration Guide* and *Replication Agent Reference Manual*.

Microsoft SQL Server-specific considerations

This section describes general issues and considerations that are specific to using Replication Agent 15.2 with the Microsoft SQL Server data server.

Replication Agent for Microsoft SQL Server reads the Microsoft SQL Server primary database log. To read the database log, Replication Agent must be installed where it can directly access the log files. Because the machine on which Replication Agent is installed must be of the same hardware and operating system as the machine on which the primary database resides, Replication Agent for Microsoft SQL Server is available only on the Windows platform. In this chapter, the term "Windows" refers to all supported Microsoft Windows platforms. For a complete list of supported platforms, see the *Replication Agent Release Bulletin*.

- Microsoft SQL Server requirements
- Unsupported software features
- DDL Replication
- New commands
- New configuration parameters
- Replication Agent connectivity
- Replication Agent permissions
- The sybfilter driver
- Initialization of the primary data server and Replication Agent
- Microsoft isql tool
- Character case of database object names
- Format of origin queue ID
- Datatype compatibility
- Replicating ntext datatypes

Microsoft SQL Server requirements

Observe the following requirements for Microsoft SQL Server:

 Replication Agent supports only Microsoft SQL Server 2005 Service Pack 2 and later, and the database compatibility level must be set to "SQL Server 2005 (90)".

- You cannot simultaneously use Microsoft replication and Replication Agent on the same Microsoft SQL Server database. Be sure to disable Microsoft replication before using Replication Agent for Microsoft SQL Server.
- You cannot create a Microsoft SQL Server publication on the primary database where Replication Agent for Microsoft SQL Server is running.
- The Microsoft SQL Server TCP/IP protocol must be enabled.

Unsupported software features

The following features are not supported for Sybase replication:

- Microsoft SOL Server clusters
- Microsoft SQL Server 2008
- Replication Server parallel DSI (for non-ASE databases)
- Replication Server warm standby (for non-ASE databases)
- Replication Server rs_init utility (for non-ASE databases)
- Replication Server rs_subcomp utility (for non-ASE databases)
- Replication Server automatic materialization (for non-ASE databases)
- Replication Server when replicating in an environment where other vendors are replicating (for non-ASE databases)

DDL Replication

Replication of Data Definition Language (DDL) commands is supported.

Note No translation or adjustment of DDL commands is provided by Replication Agent. DDL commands should therefore only be replicated to other Microsoft SQL Server databases.

Replication of DDL commands is enabled or disabled in Replication Agent using the pdb_setrepddl command. See the *Replication Agent Reference Manual*.

Replication Server uses the ddl_username parameter to execute DDL commands in the replicate database as the same user who executed the DDL commands in the primary database.

Setting ddl_username and ddl_password

To replicate DDL in Microsoft SQL Server, in addition to setting the value of pdb_setrepddl to enable, set the Replication Agent ddl_username and ddl_password parameters. The ddl_username parameter is the replicate database user name included in LTL for replicating DDL commands to the replicate or target database.

Permissions

In addition to the permission to execute all replicated DDL commands at the replicate database, the ddl_username should also have the impersonate permission granted for all users whose DDL commands may be replicated to the replicate database. This impersonate permission is necessary to switch session context in the replicate database when executing a DDL command. This user switches context to apply the DDL command using the same privileges and default schema settings as the user who executed the DDL command at the primary database. To provide this context switch, the ddl_username user must have permission to execute the execute as user Microsoft SQL Server command for any user who might execute DDL commands to be replicated from the primary database.

For example, user1 with a default schema of schema1 executes the following DDL at the primary database:

```
create table tabl (id int)
```

This results in the creation of a table named schema1.tab1 at the primary database. At the replicate database, user2 with a default schema of schema2, cannot immediately execute this DDL because it will generate a table named schema2.tab1. Therefore, user2, whose name is specified by the ddl_username configuration parameter, must first execute the following command at the replicate database to impersonate user1:

```
execute as user = 'user1'
```

The DDL can then be executed with the correct schema by user2 at the replicate database, generating a table named schema1.tab1.

See the Replication Agent Reference Manual.

Granting impersonate permission

There are two ways to grant impersonate permission to the ddl_username user:

You can grant database owner permission to the to the ddl_username user.
 In doing this, you implicitly grant impersonate permission.

 Alternately, you can grant impersonate permission explicitly with the following Microsoft SQL Server command:

```
GRANT IMPERSONATE ON USER::user1 TO ddl_user
```

Here, *user1* is a user whose DDL is expected to be replicated to the replicate database, and *ddl_user* is the ddl_username user.

Note This grant command must be executed in the replicate database, where the user defined to ddl_username executes the DDL commands.

When you replicate DDL in Microsoft SQL Server, use Microsoft SQL Server as the replicate database. You cannot replicate DDL commands from Microsoft SQL Server to non-Microsoft SQL Server replicate databases.

Note To replicate DDL, Replication Server must have a database-level replication definition with replicate DDL set in the definition. See the *Replication Server Reference Manual*.

DDL commands and objects filtered from replication

The following database-scope DDL commands are not replicated:

ALTER_APPLICATION_ROLE
ALTER_ASSEMBLY
ALTER_AUTHORIZATION_DATABASE
ALTER_CERTIFICATE
CREATE_APPLICATION_ROLE
CREATE_ASSEMBLY
CREATE_CERTIFICATE
CREATE_EVENT_NOTIFICATION
DROP_EVENT_NOTIFICATION

The following server-scope DDL commands are not replicated:

ALTER_AUTHORIZATION_SERVER
ALTER_DATABASE
ALTER_LOGIN
CREATE_DATABASE
CREATE_ENDPOINT
CREATE_LOGIN
DENY_SERVER
DROP_DATABASE
DROP_ENDPOINT

```
DROP_LOGIN
GRANT_SERVER
REVOKE_SERVER
```

Any object owned by users defined in the list of non-replicated users is not replicated. You can modify this list using the pdb_ownerfilter command. In addition, Sybase has provided a default list of owners whose objects will not be replicated. Use the pdb_ownerfilter command to return, add, or remove the list of owners whose objects will not be replicated. See the *Replication Agent Reference Manual*.

New commands

The following commands have been added for Replication Agent for Microsoft SQL Server:

```
pdb_ownerfilter
pdb_setrepddl
pdb_skip_op
ra_devicepath
ra helparticle
ra_helpdevice
ra_helpfield
ra_helplocator
ra_helpuser
ra truncatearticles
ra truncateusers
ra_updatedevices
rasd_backup
rasd restore
rs create repdef
rs_drop_repdef
```

See the Replication Agent Reference Guide.

New configuration parameters

The following parameters have been added for Replication Agent for Microsoft SQL Server:

```
ddl_password ddl_username
```

```
pdb_auto_create_repdefs
pdb_automark_tables
pds_dac_port_number
rasd_backup_dir
rasd_database
rasd_mirror_tran_log
rasd_trace_log_dir
rasd_tran_log
rasd_tran_log_mirror
```

See the Replication Agent Reference Guide.

Replication Agent connectivity

Replication Agent for Microsoft SQL Server uses the Java Database Connectivity (JDBC) protocol for communications with all replication system components.

Replication Agent connects to Microsoft SQL Server using the Microsoft SQL Server JDBC driver. You must download and install it on the Replication Agent host machine, and the directory where the JDBC driver is installed must be in the CLASSPATH environment variable.

See the *Replication Agent Administration Guide*.

Replication Agent permissions

Replication Agent for Microsoft SQL Server must create database objects to assist with replication tasks in the primary database.

The user ID that the Replication Agent instance uses to log in to the Microsoft SQL Server must have access to the primary database with the following permissions granted:

- create table Required to create tables in the primary database
- create trigger Required to create DDL triggers in the primary database
- create procedure Required to create procedures in the primary database
- db_owner role Required to allow Replication Agent to execute sp_repltrans and sp_repldone in the primary database. This role is also required for primary database initialization.

 sysadmin role – Required for Microsoft SQL Server data server initialization and deinitialization (using pdb_xlog init and pdb_xlog remove, respectively).

The sybfilter driver

Replication Agent must be able to read the Microsoft SQL Server log files. However, the Microsoft SQL Server process opens these log files with exclusive read permission, and the file cannot be read by any other processes, including Replication Agent. Before Replication Agent can replicate data, you must use the sybfilter driver to make the log files readable.

For the sybfilter driver to work properly, the Microsoft Filter Manager Library must be version 5.1.2600.2978 or later. To determine the version of the library, right-click *c:\windows\system32\fltlib.dll* in Windows Explorer, select Properties, and click the Version or Details tab in the Properties dialog. If the version is earlier than 5.1.2600.2978, go to the Microsoft Web site at http://windowsupdate.microsoft.com, and update your Windows system.

For details on installing and using the sybfilter driver, see Appendix B, "Using the sybfilter driver."

Initialization of the primary data server and Replication Agent

For Microsoft SQL Server initialization, Replication Agent for Microsoft SQL Server installs objects at both the data server and database level. The data server-level modifications are only required once. However, to make the server-level modifications, additional permission are required, the pds_dac_port_number parameter is used, and the primary database must be in standalone mode. Subsequent executions of pdb_xlog init do not modify the server again and do not require the additional permission or configurations.

First-time initialization

You must initialize the primary Microsoft SQL Server data server so that Replication Agent can open the supplemental log of a table or procedure that is marked for replication. Do this only once for a given primary data server.

Initializing the primary data server and Replication Agent for the first time

- Stop the Microsoft SQL Server Analysis Service. From the Microsoft Windows Control Panel, choose Administrative Tools | Services, and find the service named SQL Server Analysis Service(SERVER), where SERVER is the name of your Microsoft SQL Server data server. Stop this service.
- 2 Make sure Microsoft SQL Server is configured to allow a remote dedicated administrative connection (DAC). Use the Microsoft SQL Server Surface Area Configuration tool to enable a remote DAC:
 - a From the Windows Start menu, choose Microsoft SQL Server |
 Surface Area Configuration | Configuration Tools | SQL Server
 Surface Area Configuration | Surface Area Configuration for
 Features
 - b In the Surface Area Configuration for Features window, choose DAC under MSSQLSERVER/Database Engine, and make sure the Enable remote DAC check box is selected.
- 3 Determine the primary Microsoft SQL Server DAC port number.
 - a Open the *ERRORLOG* file in a text editor. This file is located in the log directory of your Microsoft SQL Server. For example,

```
C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\LOG\ERRORLOG
```

b Search for the string "Dedicated admin" to find an entry similar to the following:

```
2007-11-09 13:40:02.40 Server Dedicated admin connection support was established for listening locally on port 1348.
```

- c Record the port number specified in this entry.
- 4 Log in to your Replication Agent, and set the pds_dac_port_number configuration parameter:

```
ra_config pds_dac_port_number, port
```

Here, *port* is the DAC port number you recorded.

5 Also configure the following Replication Agent connectivity parameters for the Microsoft SQL Server primary database:

```
pds_server_name
pds_database_name
```

```
pds_username
pds_password
pds_port_number
```

For information about these configuration parameters, see the *Replication Agent Installation Guide* and *Replication Agent Reference Manual*.

- 6 Stop the Microsoft SQL Server service.
 - a From the Windows Control Panel, go to Administrative Tools | Services, and find the service named SQL Server (*SERVER*). Here *SERVER* is the name of your Microsoft SQL Server data server.
 - b Stop this service.
- Open a command window, and restart Microsoft SQL Server in singleuser mode:

```
"C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Binn\sqlservr.exe" -m -s
instanceName
```

Here, *instanceName* is the name of the Microsoft SQL Server instance.

- 8 Make sure that there are no other connections to the primary database, and verify that Replication Agent can connect to the primary database.
 - a Use isql to log in to the Replication Agent instance:

```
isql -Uusername -Ppassword -SinstanceName
```

Here, *username*, *password*, and *instanceName* are your user ID, password, and Replication Agent instance name.

b Issue the following command.

```
test_connection PDS
```

9 Initialize the Microsoft SQL Server data server and Replication Agent:

```
pdb_xlog init
```

In the primary database, Replication Agent creates all the tables, procedures, and triggers described in "Replication Agent objects in the Microsoft SQL Server primary database" on page 20. The sp_SybSetLogforReplTable and sp_SybSetLogforReplProc procedures are created in the mssqlsystemresource database with execute permission granted to Public.

10 Stop the Microsoft SQL Server in single-user mode in either of the following ways:

Log in to the server:

```
"C:\Program Files\Microsoft SQL
Server\90\Tools\Binn\SQLCMD.EXE" -U username -P
password -S serverName
```

Here, *username*, *password*, and *serverName* are your user ID, your password, and the name of the Microsoft SQL Server.

After you have logged in to the Microsoft SQL Server, use the shutdown command.

- In the Microsoft SQL Server server start window, type Ctrl+C.
- 11 Restart Microsoft SQL Server in multi-user mode (normal start).
 - a From Windows Control Panel, go to Administrative Tools | Services, and find the service named SQL Server (*SERVER*). Here *SERVER* is the name of your Microsoft SQL Server data server.
 - b Start this service.

If you want to start other Microsoft SQL Server services, such as Microsoft SQL Server Agent service or the Microsoft SQL Server Analysis Service, you can start these services now.

Subsequent initialization

If you have initialized Replication Agent for the first time, have subsequently de-initialized Replication Agent using pdb_xlog remove, and want to reinitialize this Replication Agent instance or another Replication Agent instance for a different database in the same primary data server, use the following procedure.

Subsequently initializing Replication Agent instances

- 1 Determine the primary Microsoft SQL Server DAC port number, and make sure Microsoft SQL Server is configured to allow a remote DAC. Use the Microsoft SQL Server Surface Area Configuration tool to enable a remote DAC:
 - From the Windows Start menu, choose Microsoft SQL Server |
 Surface Area Configuration | Configuration Tools | SQL Server
 Surface Area Configuration | Surface Area Configuration for
 Features.

- b In the Surface Area Configuration for Features window, choose DAC under MSSQLSERVER/Database Engine, and make sure the Enable remote DAC check box is selected.
- 2 Log in to your Replication Agent, and set the pds_dac_port_number configuration parameter.
- 3 Configure the following Replication Agent connectivity parameters for the Microsoft SQL Server primary database:

```
pds_server_name
pds_database_name
pds_username
pds_password
```

For information about these configuration parameters, see the *Replication Agent Installation Guide* and *Replication Agent Reference Manual*.

4 Verify that Replication Agent can connect to the primary database:

```
test_connection PDS
```

5 Initialize the Microsoft SQL Server data server and Replication Agent:

```
pdb_xlog init
```

Final cleanup

If you have removed all Replication Agent objects from all the databases on a given primary data server by issuing pdb_xlog remove in each database in which you had issued pdb_xlog init, and you want to remove all the remnants of Replication Agent, use the following procedure to completely clean the primary data server.

- Cleaning up all Replication Agent remnants from the primary data server
 - 1 Stop the Microsoft SQL Server service.
 - From the Windows Control Panel, go to Administrative Tools | Services, and find the service named SQL Server (*SERVER*). Here *SERVER* is the name of your Microsoft SQL Server data server.
 - b Stop this service.
 - Open a command window, and restart Microsoft SQL Server in singleuser mode:

```
"C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Binn\sqlservr.exe" -m -s
instanceName
```

Here, instanceName is the name of the Microsoft SQL Server instance.

- 3 Make sure the Microsoft SQL Server SQL Browser service is running, and connect to the data server using the sqlcmd utility with -A option or using the Management Studio. Specify the server name as Admin: servername. Here, servername is the name of your data server.
- 4 Remove the pds_username user if it has been created for Replication Agent:

```
drop user pds_username
```

5 Remove the special marking procedures from the mssqlsystemresource database:

```
drop procedure marking_proc_name;
drop procedure sp_SybSetLogforReplTable;
drop procedure sp_SybSetLogforReplProc;
```

- 6 Stop Microsoft SQL Server in single-user mode by shutting down the Windows service or by issuing the shutdown command with the sqlcmd utility.
- 7 To undo the affects of the sybfilter driver on each of the log devices, remove the log path entry by editing the configuration file or by using the sybfilter manager console.

For information on using the sybfilter manager console, see Appendix B, "Using the sybfilter driver."

- 8 Restart Microsoft SQL Server in multi-user mode (normal start).
 - a From Windows Control Panel, go to Administrative Tools | Services, and find the service named SQL Server (*SERVER*). Here, *SERVER* is the name of your Microsoft SQL Server data server.
 - b Start this service.

Microsoft isql tool

The database access tool provided with Microsoft SQL Server is Microsoft isql. You must use Microsoft isql (or a compatible tool) to access the Microsoft SQL Server database to execute some of the test scripts documented in this chapter.

Although the name of the Microsoft isql tool is the same as the Sybase tool called isql, the Sybase and Microsoft tools are not compatible. For example, you cannot use the Sybase isql tool to access the Microsoft SQL Server data server, and you cannot use the Microsoft isql tool to access the Replication Agent administration port.

If you have both Sybase and Microsoft isql tools loaded on the same computer, you may need to change an environment variable (possibly the *PATH* variable) to avoid problems when you invoke one of the isql tools.

Character case of database object names

Database object names must be delivered to the primary Replication Server in the same format as they are specified in replication definitions; otherwise, replication fails. For example, if a replication definition specifies a table name in all uppercase, then that table name must appear in all uppercase when it is sent to the primary Replication Server by the Replication Agent.

To specify the character case option you want, set the value of the ltl_character_case configuration parameter to one of the following three options:

- asis (the default) database object names are passed to Replication Server
 in the same format in which they are actually stored in the primary data
 server.
- lower database object names are passed to Replication Server in all lowercase, regardless of the way in which they are actually stored in the primary data server.
- upper database object names are passed to Replication Server in all
 uppercase, regardless of the way in which they are actually stored in the
 primary data server.

In Microsoft SQL Server, database object names are stored in the same case as entered (uppercase or lowercase). Therefore, you must use the asis option to send database object names to the primary Replication Server in the same case as they are stored in Microsoft SQL Server.

Format of origin queue ID

Each record in the transaction log is identified by an origin queue ID that consists of 64 hexadecimal characters (32 bytes). The format of the origin queue ID is determined by the Replication Agent instance, and it varies according to the primary database type.

Table 1-1 illustrates the format of the origin queue ID for the Replication Agent for Microsoft SQL Server.

Table 1-1: Replication Agent for Microsoft SQL Server origin queue ID

Character Bytes Description

Character	Bytes	Description
0–3	2	Database generation ID
4–11	4	Virtual file sequence number
12–19	4	Page start offset
20–23	2	Operation number
24–31	4	Available for specifying uniqueness
32–39	4	Oldest active transaction: virtual file sequence number
40–47	4	Oldest active transaction: page start offset
48–51	2	Oldest active transaction: operation number
52–59	4	Latest committed transaction: page start offset
60–63	2	Latest committed transaction: operation number

Datatype compatibility

Replication Agent processes Microsoft SQL Server transactions and passes transaction information to the primary Replication Server.

The primary Replication Server uses the datatype formats specified in the replication definition to receive the data from Replication Agent.

Table 1-2 describes the default conversion of Microsoft SQL Server datatypes to Sybase Replication Server datatypes.

Table 1-2: Microsoft SQL Server to Replication Server default datatype mapping

Microsoft SQL Server datatype	Microsoft SQL Server length/range	Sybase datatype	Sybase length/range	Notes
bit	Integer with value	bit	Integer with value	
	of 0 or 1		of 0 or 1	
bigint	-2^{63} to 2^{63} - 1	bigint	-2^{63} to 2^{63} - 1	
int	-2^{31} to 2^{31} - 1	int	-2^{31} to 2^{31} - 1	

Microsoft SQL Server datatype	Microsoft SQL Server length/range	Sybase datatype	Sybase length/range	Notes
smallint	Integer with value from -2 ¹⁵ to 2 ¹⁵ -	smallint	Integer with value from -2 ¹⁵ to 2 ¹⁵ -	
tinyint	Integer with value from 0 to 255	tinyint	Integer with value from 0 to 255	
decimal	Numeric from -10 ³⁸ to 10 ³⁸ - 1	decimal	Numeric from -10 ³⁸ to 10 ³⁸ - 1	
numeric	Synonym for decimal datatype	numeric	Synonym for decimal datatype	
money	Monetary from -2 ⁶³ to 2 ⁶³ - 1	money	Monetary from -2 ⁶³ to 2 ⁶³ - 1	
smallmoney	Monetary from -214,748.3648 to 214,748.3647	smallmoney	Monetary from -214,748.3648 to 214,748.3647	
float	Floating precision from -1.79E + 308 to 1.79E + 308	float	Floating precision from -1.79E + 308 to 1.79E + 308	Results in Sybase are machine dependent.
real	Floating precision from -3.40E + 38 to 3.40E + 38	real	Floating precision from -3.40E + 38 to 3.40E + 38	Results in Sybase are machine dependent.
datetime	Date and time from 01/01/1753 to 12/31/9999	datetime	Date and time from 01/01/1753 to 12/31/9999	
smalldatetime	Date and time from 01/01/1900 to 06/06/2079	datetime	Date and time from 01/01/1900 to 06/06/2079	
timestamp	Database-wide unique number	timestamp or varbinary	Database-wide unique number	For replication to Replication Server 15.0 and earlier versions, the Sybase datatype should be varbinary(8). For replication to Replication Server 15.1 or later, the Sybase datatype should be timestamp.
uniqueidentifier	Globally unique identifier	char	Globally unique identifier	No Sybase equivalent. Map to char(38).
char	Fixed length up to 8000 characters	char	32K	
varchar	Variable length up to 8000 characters	varchar	32K	

Microsoft SQL Server datatype	Microsoft SQL Server length/range	Sybase datatype	Sybase length/range	Notes
varchar(max)	Variable length up to 2 ³¹ - 1 characters	text	2GB	
text	Variable length up to 2 ³¹ - 1 characters	text	2GB	
nchar	Fixed length Unicode up to 4000 characters	unichar or char	32K	Actual maximum length is @@ncharsize * number of characters.
nvarchar	Variable length Unicode up to 4000 characters	univarchar or varchar	32K	Actual maximum length is @@ncharsize * number of characters.
nvarchar(max)	Variable length Unicode up to 2 ³⁰ - 1 characters	unitext or image	2GB	For Replication Server 15.0 and later versions, nvarchar(max) maps to unitext. For earlier versions of Replication Server, nvarchar(max) maps to image.
ntext	Variable length Unicode up to 2 ³⁰ - 1 characters	unitext or image	2GB	For Replication Server 15.0 and later versions, ntext maps to unitext. For earlier versions of Replication Server, ntext maps to image.
binary	Fixed length up to 8000 bytes	binary	32K	
varbinary	Variable length up to 8000 bytes	varbinary	32K	
image	Variable length up to 2 ³¹ - 1 bytes	image	2GB	
sql_variant	Any datatype except text, ntext, timestamp, and sql_variant, up to 8000 bytes	varchar or opaque	32K	For replication to Replication Server 15.0 and earlier versions, the Sybase datatype should be varchar. For replication to Replication Server 15.1 or later, the Sybase datatype should be opaque.

Replication Server 15.0 unsigned datatype mapping

For Replication Server 15.0, unsigned datatypes are supported and can be specified in the replication definitions.

For versions of Replication Server earlier than 15.0, these datatypes cannot be specified. Table 1-3 identifies the replication definition datatypes that should be used.

Table 1-3: Unsigned integer replication definition datatype mapping

RepServer 15.0 unsigned datatypes	Replication definition datatypes
unsigned bigint	NUMERIC (20)
unsigned int	NUMERIC (10)
unsigned smallint	INT
unsigned tinyint	TINYINT

Replicating *ntext* datatypes

Microsoft SQL Server stores double-byte ntext datatype values in little-endian byte order. By default, the byte order of ntext data is converted during replication to big-endian so that the data may be transmitted over networks using big-endian, which is the common network byte order.

If the target database is also Microsoft SQL Server, Microsoft SQL Server does not automatically convert the replicated data from the sent big-endian order to the little-endian order desired by Microsoft SQL Server. To support replicating ntext data to a Microsoft SQL Server (or other replicate server that does not provide the necessary conversion), you may force the byte order to be sent using the lr_ntext_byte_order property by specifying a value of big (for big-endian) or little (for little-endian) as desired to meet the expectations of your replicate database.

The Ir_ntext_byte_order parameter is available for Microsoft SQL Server, and Oracle and is especially important for replication between two different database types and between databases that reside on different platforms. For example, for replication between two Microsoft SQL Server databases, both the primary and replicate database store data in little-endian byte order because Microsoft SQL Server only runs on Windows. Therefore, the Ir_ntext_byte_order parameter should be set to little. However, if the replicate database is not a Microsoft SQL Server, you should determine its byte order and set the Ir_ntext_byte_order parameter accordingly.

Note The default behavior of Replication Agent for Microsoft SQL Server is to force any unicode data to big-endian order as defined by the ltl_big_endian_unitext configuration property. To allow the lr_ntext_byte_order configuration property to successfully override the Microsoft SQL Server byte order, you must also set ltl_big_endian_unitext configuration property to false whenever the lr_ntext_byte_order property is used.

The Itl_big_endian_unitext parameter specifies whether unitext data should be converted from little-endian to big-endian before sending LTL to Replication Server. Valid values are true and false. When setting this parameter, you must know how the Ir_ntext_byte_order parameter is set. If the Ir_ntext_byte_order parameter is set to send the correct byte order for the replicate database, the Itl_big_endian_unitext parameter must be set to false so that the byte order is not changed.

The Itl_big_endian_unitext and Ir_ntext_byte_order configuration properties have important differences. By default, the Itl_big_endian_unitext property is true. When the Itl_big_endian_unitext property is true, Replication Agent for Microsoft SQL Server ensures all unicode data is sent in big-endian order. When the Itl_big_endian_unitext property is false, Replication Agent for Microsoft SQL Server allows unicode data to be sent in whatever byte order is used when the data is stored in the transaction log file. The Ir_ntext_byte_order property forces the result of unicode data read from the transaction log to be in the requested byte order, regardless of how it normally exists in the transaction log file.

Replication Agent objects in the Microsoft SQL Server primary database

Note This section describes the details of the Replication Agent objects for a Microsoft SQL Server database. For more general information, see the *Replication Agent Administration Guide*.

Replication Agent creates objects in the Microsoft SQL Server primary database to assist with replication tasks.

The Replication Agent objects are created by invoking the pdb_xlog command with the init keyword. When you invoke this command, Replication Agent generates a SQL script that contains the SQL statements for the objects created or modified in the primary database. This script is stored in the *partinit.sql* file in the *RAX-15_2\inst_name\scripts\xlog* directory. The objects must be created before any primary database objects can be marked for replication.

Note The generated scripts are for informational purposes only and cannot be run manually to initialize the primary database or Replication Agent.

Replication Agent object names

There are two variables in the transaction log component database object names shown in this chapter:

- prefix represents the one- to three-character string value of the pdb_xlog_prefix parameter (the default is ra_).
- xxx represents an alphanumeric counter, a string of characters that is (or may be) added to a database object name to make that name unique in the database.

The value of the pdb_xlog_prefix parameter is the prefix string used in all Replication Agent object names.

The value of the pdb_xlog_prefix_chars parameter is a list of the nonalphanumeric characters allowed in the prefix string specified by pdb_xlog_prefix. This list of allowed characters is database-specific. For example, in Microsoft SQL Server, the only nonalphanumeric characters allowed in a database object name are the \$, #, @, and _ characters.

Use the pdb_xlog command to view the names of Replication Agent transaction log components in the primary database.

See the *Replication Agent Administration Guide* for details on setting up log object names.

Table objects

Table 1-4 lists the tables that are considered Replication Agent objects. Insert and delete permissions are granted to Public only on the DDL shadow table. No permissions are granted on the other tables.

Table 1-4: Replication Agent table objects

Table	Database name
DDL shadow table	prefixddl_trig_xxx
Object marking table	<pre>prefixmarkObject_xxx</pre>
Object verifying table	prefixcheckObject_xxx

Procedure objects

Table 1-5 lists the procedure objects that are considered Replication Agent objects. The sp_SybSetLogforReplTable and sp_SybSetLogforReplProc procedures are created in the Microsoft SQL Server mssqlsystemresource system database. Although execute permission on these procedures is granted to Public, only the Replication Agent pds_username user is able to successfully execute the procedures because only the pds_username user is granted select permission on the sys.sysschobjs table. No permissions are granted on the other procedures when they are created.

Note The stored procedures listed in Table 1-5 have no effect when executed outside the context of replication.

Table 1-5: Replication Agent procedure objects

	<u> </u>
Object	Database name
Marks/unmarks an object	prefixmark_xxx
Verifies an object	prefixcheck_xxx
Retrieves the ID of the last committed transaction	prefixlct_sql_xxx
Marks/unmarks a table	sp_SybSetLogforReplTable
Marks/unmarks a procedure	sp_SybSetLogforReplProc

Marker objects

Table 1-6 lists the marker procedures and marker shadow tables that are considered Replication Agent objects. No permissions are granted when these procedures and tables are created.

Table 1-6: Replication Agent marker objects

,	•
Object	Database name
Transaction log marker procedure	rs_marker_xxx
Dump marker procedure	rs_dump_xxx
Transaction log marker shadow table	prefixsh_rs_marker_xxx
Dump marker shadow table	prefixsh_rs_dump_xxx

Trigger objects

Table 1-7 lists Replication Agent trigger objects.

Table 1-7: Replication Agent trigger objects

Object	Database name
Captures DDL commands	prefixddl_trig_xxx
Captures create_table DDL	prefixcreatetable_trig_xxx
commands	

Administering the transaction log

The only transaction log administration required is backing up the transaction log and truncation.

Backing up and restoring the transaction log

Replication Agent does not support backing up and restoring the transaction log automatically. Instead, Sybase recommends that you use the database backup utilities provided with your Microsoft SQL Server software to periodically back up the transaction log.

Note Replication Agent does not support replaying transactions from a restored log.

Truncating the transaction log

Replication Agent provides features for both automatic and manual log truncation.

Replication Agent provides two options for automatic transaction log truncation:

- Periodic truncation, based on a time interval you specify
- Automatic truncation whenever Replication Agent receives a new LTM Locator value from the primary Replication Server

You also have the option to switch off automatic log truncation. By default, automatic log truncation is switched off.

To specify the automatic truncation option you want (including none), use the ra_config command to set the value of the truncation_type configuration parameter.

To truncate the transaction log automatically based on a time interval, use the ra_config command to set the value of the truncation_interval configuration parameter.

At any time, you can truncate the Replication Agent transaction log manually by invoking the pdb_truncate_xlog command at the Replication Agent administration port.

To truncate the transaction log at a specific time, use a scheduler utility to execute the pdb_truncate_xlog command automatically.

Replication Agent for Microsoft SQL Server truncates the primary database log in units of transactions. After Replication Agent for Microsoft SQL Server receives the LTM locator from Replication Server, Replication Agent for Microsoft SQL Server queries the primary database to obtian the transaction ID of the newest transaction that can be truncated. Replication Agent for Microsoft SQL Server then marks as reusable the transaction log space before the newest transaction. Microsoft SQL Server can then write log records into the reusable space.

The sp_repltrans and sp_repldone Microsoft SQL Server commands are issued by Replication Agent to control log truncation within Microsoft SQL Server. These commands require that the Replication Agent user have the db_owner role permission.

Note Microsoft SQL Server allows only one session to control log truncation using the sp_repltrans and sp_repldone commands. You should not use these commands while Replication Agent is controlling the log truncation processing.

Using Windows authentication with Microsoft SQL Server

When running Replication Agent for Microsoft SQL Server on a Windows platform, you have the option of configuring it to connect to Microsoft SQL Server using Windows credentials to authenticate the user.

Using Windows authentication

- 1 In your primary Microsoft SQL Server, add the user who will be starting Replication Agent, <*rauser*>, as a Windows-authenticated user, including the user domain as appropriate. Be sure to add the <*ra_user*> to the primary database and grant the appropriate permissions. For additional information, see the Microsoft SQL Server documentation.
- 2 On the machine on which the Replication Agent for Microsoft SQL Server is running, add *<domain>**<ra_user>* to the Windows user account. If no domain exists, add only the *<ra_user>* to the Windows user account.

3 On the same machine, copy the *sqljdbc_auth.dll* file from the Microsoft SQL Server JDBC driver location to a directory on the Windows system path. When you installed the Microsoft SQL Server JDBC driver, the *sqljdbc_auth.dll* files were installed in the following location:

```
<install_dir>\sqljdbc_<version>\<language>\auth\
```

Note On a 32-bit processor, use the *sqljdbc_auth.dll* file in the x86 folder. On a 64-bit processor, use the *sqljdbc_auth.dll* file in the x64 folder.

- 4 On the same machine, login as the *<ra_user>* and start the Replication Agent for Microsoft SQL Server instance.
- 5 Log in to Replication Agent and configure the following parameters using values appropriate for the primary Microsoft SQL Server:

```
ra_config pds_server_name, <server>
ra_config pds_port_number, <port>
ra_config pds_database_name, <database>
ra_config pds_username, <ra_user>
ra_config pds_integrated_security, true
```

6 Continue configuring and using Replication Agent as described in Replication Agent documentation.

Running Replication Agent and Microsoft SQL Server on different machines

Do the following to run Replication Agent and the primary Microsoft SQL Server data server on different machines.

- Setting up Replication Agent and Microsoft SQL Server to run on different machines
 - Install the sybfilter driver on the same machine as the primary Microsoft SQL Server, and use this driver to make the transaction logs readable for Replication Agent.
 - 2 On the machine on which the primary Microsoft SQL Server is running, share the drive or drives containing the transaction log files so that the drives can be mounted on the machine on which Replication Agent is to be installed.

- 3 Install the Replication Agent on a machine of the same type of hardware and operating system as the machine on which the primary Microsoft SQL Server data server is running.
- 4 Install the Microsoft SQL Server JDBC driver on the same machine as Replication Agent.
- 5 On the Replication Agent machine, map network drives that contain the primary Microsoft SQL Server database transaction log files. Use the ra_devicepath command to point Replication Agent to the mapped database log files.

CHAPTER 2 Replication Agent for Oracle

The term "Replication Agent for Oracle" refers to an instance of Replication Agent 15.2 software that is installed and configured for a primary database that resides in an Oracle data server.

This chapter describes the characteristics of the Replication Agent that are unique to the Replication Agent for Oracle implementation.

Topic	Page
Oracle-specific considerations	27
Replication Agent objects in the Oracle primary database	69

Note For information on the basic functionality of Replication Agent 15.2, see the *Replication Agent Administration Guide* and *Replication Agent Reference Manual*.

Oracle-specific considerations

This section describes general issues and considerations that are specific to using Replication Agent 15.2 with the Oracle data server.

- Unsupported software features
- Replication Agent connectivity
- Replication Agent permissions
- Redo and archive log setup
- Supplemental logging
- Recycle bin setup
- Setting ddl_username and ddl_password
- Character case of database object names
- Format of origin queue ID

- Replication Server and RSSD scripts
- Datatype compatibility
- Oracle datatype restrictions
- Oracle large object (LOB) support
- Oracle user-defined types
- Marking and unmarking sequences
- Enabling and disabling replication for sequences
- Running Replication Agent and Oracle on different machines
- Real Application Clusters (RAC)
- Automatic Storage Management
- Replication Server set autocorrection command
- Partitioned tables
- Materialized views
- Unsupported table types

Unsupported software features

The following features are not supported for Sybase replication:

- Oracle index-organized tables
- Oracle materialized views
- Oracle packaged stored procedures and functions (standalone procedures and functions are supported)
- Oracle procedures and functions having a BOOLEAN parameter
- Oracle 10g Flashback and Flashback Recovery Area
- Oracle RMAN utility
- Replication Server parallel DSI (for non-ASE databases)
- Replication Server warm standby (for non-ASE databases)
- Replication Server rs_init utility (for non-ASE databases)
- Replication Server rs_subcomp utility (for non-ASE databases)

- Replication Server automatic materialization (for non-ASE databases)
- Replication Server when replicating in an environment where other vendors are replicating (for non-ASE databases)

Oracle 11g support

While most Oracle 11g features are supported as of Replication Agent 15.1 ESD #3, the following features are not supported:

- SecureFiles this feature is a redesign of the implementation of large object (LOB) storage in Oracle 11g. You can mark tables containing these types of columns for replication, but the columns are not replicated.
- Virtual columns Replication Agent supports the replication of tables containing computed (or virtual) columns in Oracle 11g. However, the replication of individual computed columns is not supported. You can mark virtual columns for replication using the force option, but these columns are not replicated.
- Encrypted tablespaces You cannot mark encrypted tables and columns in encrypted tables for replication.
- Encrypted columns you can mark tables containing encrypted columns for replication using the force option, but these columns are not replicated.

Replication Agent connectivity

Connectivity between the Replication Agent for Oracle and the Oracle data server is through the Oracle JDBC thin driver.

The Oracle JDBC driver must be installed on the Replication Agent host machine, and the directory this driver is installed in must be in the CLASSPATH environment variable.

The TNS Listener Service must be installed and running on the primary database so the Replication Agent instance can connect to it. See the *Oracle Database Net Services Administrator's Guide*.

Replication Agent permissions

Replication Agent for Oracle uses the pds_username to connect to Oracle and must have the following Oracle permissions:

- create session required to connect to Oracle.
- select_catalog_role required to select from the DBA_* views.
- alter system required to perform redo log archive operations.
- alter on *TABLE_NAME* required to replicate user-defined datatypes if table-level supplemental logging has not been enabled for the specified *TABLE NAME*.
- execute on DBMS_FLASHBACK required to execute DBMS_FLASHBACK.get_system_change_number.
- alter any procedure required to manage procedures for replication.
- create table required to create tables in the primary database.
- create procedure required to create rs_marker and rs_dump proc procedures.
- create public synonym required to create synonyms for created tables in the primary database.
- create sequence required to support replication.
- drop public synonym required to drop created synonyms.
- select on SYS.ARGUMENT\$ required to process procedure DDL commands.
- SYS.ATTRIBUTE\$ required to process Oracle types.

- select on SYS.CCOL\$ required to support table replication (column constraint information).
- select on SYS.CDEF\$ required for table (constraint information) replication support.
- select on SYS.COL\$ required for table (column information) replication support.
- select on SYS.COLLECTION\$ required for VARRAY replication support.
- select on SYS.COLTYPE\$ required to support table replication.
- select on SYS.CON\$ required for table (constraint information) replication support.
- select on SYS.IND\$ required to identify indexes.
- select on SYS.INDCOMPART\$ required to identify indexes.
- select on SYS.INDPART\$ required to identify indexes.
- select on SYS.INDSUBPART\$ required to identify indexes.
- select on SYS.LOB\$ required for LOB replication support.
- select on SYS.LOBCOMPPART\$ required to support partitioned LOB replication.
- select on SYS.LOBFRAG\$ required to support partitioned LOB replication.
- select on SYS.MLOG\$ required to filter materialized view log tables.
- select on SYS.NTAB\$ required to support table replication.
- select on SYS.OBJ\$ required for processing procedure DDL commands in the repository.
- select on SYS.PROCEDUREINFO\$ required for procedure replication support.
- select on SYS.SEQ\$ required to support sequence replication.
- select on SYS.SNAP\$ required to filter out materialized view tables.
- select on SYS.TAB\$ required to support table replication.
- select on SYS.TABCOMPART\$ required to support partitioned table replication.
- select on SYS.TABPART\$ required to support partitioned table replication.

- select on SYS.TABSUBPART\$ required to support partitioned table replication.
- select on SYS.TS\$ required to identify tablespace encryption in Oracle 11g.
- select on SYS.TYPE\$ required to process Oracle predefined and userdefined types.
- select on SYS.USER\$ required for Oracle user identification.

Note The permissions for SYS.CON\$ and SYS.CDEF\$ are required to handle the constraint information in the CREATE and ALTER TABLE DDL operations.

In addition, the user who starts the Replication Agent for Oracle instance must have read access to the Oracle redo log files and the Oracle archive directory that contains the archive log files to be accessed for replication. If the Replication Agent is configured to remove old archive files, the user must have update authority to the directory and the archive log files. If Oracle redo logs or archived redo logs are stored within ASM, the user who starts Replication Agent for Oracle must have read access to the ASM disk devices that contain the redo log data.

Replication Agent for Oracle requires the alter system privilege to issue the alter system archive log command. If Replication Agent is configured to access only online Oracle redo logs, Replication Agent issues the alter system archive log sequence command when the online redo log is no longer needed for replication (as when all data from the log has been replicated). Regardless of online or archive log processing, Replication Agent uses the alter system privilege to issue the alter system archive log current command when Replication Agent is instructed to move processing to the end of the Oracle log. By issuing the alter system archive log current command, Replication Agent insures that the current redo log file does not contain old data. Replication Agent moves processing to the end of the Oracle redo log when requested by the move_truncpt options of the pdb_xlog init command. Replication Agent may also move processing to the end of the Oracle redo log during migration from one version of Replication Agent to another.

Redo and archive log setup

Note The Replication Agent for Oracle must be installed on a machine where it can directly access the Oracle redo log and archive log files.

By default, you can access both online and archive logs. You can configure Replication Agent to access only the online logs, but doing so requires you to turn auto-archiving off and requires Replication Agent to issue manual archive log commands to Oracle.

Accessing archive logs

When you are using the default, for archive log files to be accessed, configure Replication Agent to use the directory path where archive log files are located. By default, an Oracle instance creates multiple directories under the flash recovery area specified by the DB_RECOVERY_FILE_DEST parameter of the Oracle ALTER SYSTEM command, each directory corresponding to and named after a separate day. However, Replication Agent requires archived redo log files to reside in a single directory. Consequently, you must configure Oracle to archive to a single directory to be read by Replication Agent.

Note To prevent conflicts with other archive file processes, you may want to configure Oracle to duplex the archive log files into an additional destination directory that is used only for replication.

For information on specifying archive log destinations for your Oracle environment, see the Oracle ALTER SYSTEM command and LOG_ARCHIVE_DEST_n parameter.

Note This section discusses how to access Oracle archived redo logs that are stored as file-system files. If the archived redo logs are stored using the Oracle ASM, see "Automatic Storage Management" on page 62.

Replication Agent for Oracle requires the following settings in your Oracle database:

Redo log archiving must be enabled:

alter database ARCHIVELOG;

Note If you are using Oracle Real Application Clusters (RAC), you must enable redo log archiving for each instance in the cluster.

Verify that log archiving is enabled:

```
select log_mode from v$database;
```

If you are using Oracle RAC, use the following SQL to verify that log archiving has been enabled:

```
select instance, name, log_mode from gv$database;
```

If ARCHIVELOG (ARCHIVELOG or MANUAL in Oracle 10g) is returned, then log archiving is enabled.

Accessing archive log files

In the Replication Agent, set the pdb_archive_path configuration property to the expected location of archived redo log files. You can also set the Replication Agent pdb_remove_archives configuration parameter to true to allow the Replication Agent to remove these archive log files when they are no longer needed to support replication.

Setting archiving for Replication Agent When pdb_include_archives is set to true (the default), Replication Agent does not archive, and Sybase recommends that you configure Oracle to perform automatic archiving of redo logs.

When the pdb_include_archives configuration parameter is set to false, Replication Agent for Oracle also requires you to disable automatic archiving of Oracle redo logs. Archiving is performed manually by Replication Agent as the data in the redo log files is replicated.

Replication Agent for Oracle requires the following settings in your Oracle database depending on the Oracle version.

For Oracle 10g

Disabling automatic archiving

- 1 Make sure you have sysdba administrator privileges, and close the database.
- 2 Enter the following:

```
alter database ARCHIVELOG MANUAL;
```

3 To verify that log archiving is disabled:

```
select log_mode from v$database;
```

If MANUAL is returned, then automatic log archiving is disabled.

For Oracle 11g

Disabling automatic archiving

To change the LOG_ARCHIVE_START parameter, either manually edit the server start-up parameter file, or use the following Oracle command:

```
alter system set log_archive_start=false
scope=spfile;
```

2 To check the setting of the LOG ARCHIVE START parameter:

```
select value from v$system_parameter where name =
'log_archive_start';
```

- 3 If false is returned, the value in the server parameter file has been correctly modified to prevent automatic archiving when you re-start the Oracle server. For information about the LOG_ARCHIVE_START parameter or the ALTER SYSTEM commands, see the *Oracle Database Reference Guide*.
- 4 Automatic archiving must be disabled in the active server and when you re-start the Oracle server. To stop automatic archiving in the active server, enter the following:

```
alter system archive log stop;
```

5 To disable automatic archiving when you re-start the Oracle server, change the value of the server's LOG_ARCHIVE_START parameter to false.

Note If pdb_include _archives is set to false: For redo log file processing after Replication Agent for Oracle is initialized, automatic archiving must never be enabled, even temporarily. If automatic archiving is enabled or if manual archiving is performed, causing a redo log file not yet processed by the Replication Agent to be overwritten, the data in the lost redo log file is not replicated. You can recover from this situation by reconfiguring the Replication Agent to access archive log files. Set pdb_include_archives to true, set pdb_archive_path to the directory location that contains the archive of the file that has been overwritten, and resume. After catching up, suspend the Replication Agent, and reset pdb_include_archives to false.

Forced logging of all database changes

You can enable the forced logging of all database changes to the Oracle redo log file. Sybase recommends setting this option to insure that all data that should be replicated is logged. To enable the force logging command, execute the following statement on the primary database:

```
alter database FORCE LOGGING;
```

To verify the current setting of the force logging command, execute the following statement on the primary database:

```
select force_logging from v$database;
```

Supplemental logging

In Oracle release 9.2 and later, minimal supplemental logging and supplemental logging of primary key data and index columns must be enabled. To enable supplemental logging, execute the following Oracle commands enter the following:

```
alter database add SUPPLEMENTAL LOG DATA; alter database add SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE INDEX) COLUMNS;
```

To verify that minimal supplemental logging and supplemental logging of primary key and unique index information is enabled:

```
select SUPPLEMENTAL_LOG_DATA_MIN,
SUPPLEMENTAL_LOG_DATA_PK, SUPPLEMENTAL_LOG_DATA_UI
from v$database;
```

If YES is returned for each column, supplemental logging of primary key information is enabled.

Table-level supplemental logging

To replicate updates to user-defined object type attributes, Replication Agent must enable table-level supplemental logging. Table-level supplemental logging can be enabled manually as follows:

```
alter table THE_TABLE add supplemental log data (ALL)
columns;
```

Here, *THE_TABLE* is the name of the table on which supplemental logging is being enabled. Verify that table-level supplemental logging has been enabled with the following command:

```
select count(*) from ALL_LOG_GROUPS where
LOG_GROUP_TYPE='ALL COLUMN LOGGING' and OWNER=THE_OWNER
and TABLE_NAME=THE_TABLE
```

Here, *THE_OWNER* is the table owner. If this command returns a value of 1, table-level supplemental logging has been enabled for this table.

Recycle bin setup

The Oracle flashback feature available in Oracle 10g is not supported in Replication Agent for Oracle. Oracle requires that you disable the recycle bin. To disable the recycle bin (which requires sysdba privileges), enter the following command, and then restart Oracle:

```
purge dba_recyclebin;
alter system set recyclebin=OFF scope=spfile;
```

Note If you are using Oracle RAC, disable the recycle bin for each instance in the cluster.

To view the contents of the recycle bin, enter the following:

```
select * from dba_recyclebin;
```

To view the current recycle bin configuration, enter the following:

```
select inst_id, value from gv$parameter
```

Setting ddl_username and ddl_password

To replicate DDL in Oracle, in addition to setting the value of pdb_setrepddl to enable, you must set the Replication Agent ddl_username and ddl_password parameters. The ddl_username parameter is the database user name included in LTL for replicating DDL commands to the replicate or target database. This user must have permission to execute all replicated DDL commands at the target database. The ddl_password parameter is the password corresponding to the database user name. In addition, the ddl_username database user must have permission to issue the ALTER SESSION SET CURRENT_SCHEMA command for any primary database user that might issue a DDL command to be replicated. See the *Replication Agent Reference Manual*.

When you replicate DDL in Oracle, use Oracle as the replicate database. You cannot replicate DDL commands from Oracle to non-Oracle replicate databases.

Special usage notes

The value of the ddl_username parameter cannot be the same as the value of the maintenance user defined in Replication Server for the replicate connection. If these names are the same, a Replication Server error results.

The value of the ddl_username parameter is sent in the LTL for all replicated DDL statements. When DDL is replicated, Replication Server connects to the replicate database using the user ID and password specified by the ddl_username and ddl_password parameters. Replication Server then issues the following command:

```
ALTER SESSION SET CURRENT_SCHEMA=user
```

Here, *user* is the user ID that generated the DDL operation at the primary database. The actual DDL command is then executed against the replicate database. If the user ID specified in ddl_username does not have permission to issue the ALTER SESSION SET CURRENT_SCHEMA or to execute the DDL command against the user schema, the command fails.

Note To replicate DDL, Replication Server must have a database-level replication definition with replicate DDL set in the definition. See the *Replication Server Reference Manual*.

DDL commands and objects filtered from replication

The following DDL commands are not replicated:

alter database alter system create database link drop database link alter session create snapshot create snapshot log alter snapshot alter snapshot log drop snapshot drop snapshot/log alter rollback segment create rollback segment drop rollback segment create control file create pfile from spfile create schema authorization create spfile from pfile explain lock table rename

set constraints set role set transaction analyze audit no audit create tablespace alter tablespace drop tablespace

The following objects are not replicated:

- Any objects that are owned by SYS.
- Any object owned by users defined in the list of non-replicated users. You can modify this list using the pdb_ownerfilter command. In addition,
 Sybase has provided a default list of owners whose objects will not be replicated. However, you cannot remove the SYS owner. Use the pdb_ownerfilter command to return, add, or remove the list of owners whose objects will not be replicated. See the Replication Agent Reference Manual.

Note The truncate table command is replicated as rs_truncate.

Character case of database object names

Database object names must be delivered to the primary Replication Server in the same format as they are specified in replication definitions; otherwise, replication fails. For example, if a replication definition specifies a table name in all lowercase, then that table name must appear in all lowercase when it is sent to the primary Replication Server by the Replication Agent.

To control the way Replication Agent 15.2 treats the character case of database object names when it sends LTL to the primary Replication Server, set the ltl_character_case configuration parameter to one of the following values:

- asis (the default) database object names are passed to Replication Server in the same format as they are actually stored in the primary data server.
- lower database object names are passed to Replication Server in all lowercase, regardless of the way they are actually stored in the primary data server.

 upper – database object names are passed to Replication Server in all uppercase, regardless of the way they are actually stored in the primary data server.

In the Oracle data server, database object names are stored in all uppercase by default. However, if you create a case-sensitive name, the case sensitivity is retained in Oracle.

See the following examples using the asis option:

- create table tabA is stored as TABA
- create table Tabb is stored as TABB
- create table 'TaBc' is stored as TaBc

See the following examples using the upper option:

- create table tabA is rendered in LTL as TABA
- create table Tabb is rendered in LTL as TABB
- create table 'TaBc' is rendered in LTL as TABC

Format of origin queue ID

Each record in the transaction log is identified by an origin queue ID that consists of 64 hexadecimal characters (32 bytes). The format of the origin queue ID is determined by the Replication Agent instance, and it varies according to the primary database type.

Table 2-1 illustrates the format of the origin queue ID for the Replication Agent for Oracle.

rubic 2 1. Replication Agent for Gradie origin queue 12			
Character	Bytes	Description	
0–3	2	Database generation ID	
4–15	6	System change number	
16–19	2	Redo log thread	
20-23	2	System change number subindex	
24–43	10	Redo log record block address	
44–55	6	System change number of the oldest active transaction begin	
56-63	4	Locator ID	

Table 2-1: Replication Agent for Oracle origin queue ID

Replication Server and RSSD scripts

The Replication Agent installation includes supplemental script changes to support additional Replication Server user-defined datatypes for new Oracle datatypes and replication of DDL commands.

The following revised Replication Server scripts are shipped with Replication Agent 15.2 and must be applied when the installed Replication Server is version 15.0.1 or earlier:

```
$SYBASE/RAX-15_2/scripts/oracle/
hds_oracle_new_setup_for_replicate.sql
$SYBASE/RAX-15_2/scripts/oracle/oracle_create_error_class_1_rs.sql
$SYBASE/RAX-15_2/scripts/oracle/
oracle_create_error_class_2_rssd.sql
$SYBASE/RAX-15_2/scripts/oracle/oracle_create_error_class_3_rs.sql
```

The following Replication Server scripts should be run manually against the RSSD when the installed Replication Server is version 15.0.1 or earlier:

```
$SYBASE/RAX-15_2/scripts/oracle/hds_oracle_funcstrings.sql
$SYBASE/RAX-15_2/hds_oracle_udds.sql
$SYBASE/RAX-15_2/hds_clt_ase_to_oracle.sql
```

Applying the script changes for user-defined datatypes

1 If your Replication Server is version 15.0.1 or earlier, apply the following script to support replication of DDL to an Oracle replicate database:

\$SYBASE/RAX-15_2/scripts/oracle/hds_oracle_new_setup_replicate.sql

This script defines Replication Server objects that must be created in the replicate database. Use this script instead of the

hds_oracle_setup_replicate.sql script provided in the Replication Server install directory. This revised script contains additional changes to support Oracle-to-Oracle DDL replication.

- 2 To correctly define the Oracle error class for Replication Server 15.0.1 or an earlier version:
 - Apply the following script at Replication Server:

```
$SYBASE/RAX-15_2/scripts/oracle/
oracle_create_error_class_1_rs.sql
```

• Apply the following against your RSSD:

```
$SYBASE/RAX-15_2/scripts/oracle/
oracle_create_error_class_2_rssd.sql
```

• Apply the following script at Replication Server:

```
$SYBASE/RAX-15_2/scripts/oracle/
oracle_create_error_class_3_rs.sql
```

See Chapter 4, "Database Server Issues," in the *Replication Server Heterogeneous Replication Guide*.

Datatype compatibility

Replication Agent for Oracle processes Oracle transactions and passes data to the primary Replication Server. In turn, the primary Replication Server uses the datatype formats specified in the replication definition to receive the data from Replication Agent for Oracle.

Table 2-2 describes the conversion of Oracle datatypes to Sybase datatypes.

Table 2-2: Recommended Oracle datatype mapping

Oracle datatype	Oracle length/range	Sybase datatype	Sybase length/range	Notes
BINARY_FLOAT	5 bytes, 32-bit single precision floating point number datatype	rs_oracle_float	4 or 8 bytes, depending on precision	 Maximum positive finite value is 3.40282E+38F. Minimum positive finite value is 1.17549E-38F.

Oracle datatype	Oracle length/range	Sybase datatype	Sybase length/range	Notes
BINARY_DOUBLE	9 bytes, 64-bit single precision floating point number datatype	double	8 bytes	 Maximum positive finite value is 1.79769313486231E+3 08. Minimum positive finite value is 2.22507485850720-308.
CHAR	255 bytes	char	32K	
DATE	8 bytes, fixed- length	datetime or rs_oracle_datetime	8 bytes	Replication Server supports dates from January 1, 1753 to December 31, 9999.
				Oracle supports dates from January 1, 4712 BC to December 31, 9999 AD.
				If pdb_convert_datetime is true, the Sybase datatype used should be datetime. The value replicated is YYYYMMDD HH:MM:SS.sss. If pdb_convert_datetime is false, the Sybase datatype used should be rs_oracle_datetime. The format replicated is MM/DD/YYYY HH:MI:SS.
TIMESTAMP(n)	21-31 bytes, variable-length	datetime or rs_oracle_timestamp9	8 bytes	Replication Server supports dates from January 1, 1753 to December 31, 9999.
				Oracle supports dates from January 1, 4712 BC to December 31, 4712 AD.
				If pdb_convert_datetime is true, the Sybase datatype used should be datetime. If pdb_convert_datetime is false, the Sybase datatype used should be rs_oracle_timestamp9.

0	Oracle	0.4	Sybase	Nata
Oracle datatype	length/range	Sybase datatype	length/range	Notes
TIMESTAMP(n) WITH [LOCAL] TIME ZONE	Variable-length	rs_oracle_timestamptz		
INTERVAL YEAR(n) TO MONTH	Variable-length	rs_oracle_interval		
INTERVAL DAY(n) TO SECOND(n)	Variable-length	rs_oracle_interval		
LONG	2GB, variable- length character data	text		
LONG RAW	2GB, variable- length binary data	image		
BLOB	4GB, variable- length binary large object	image	2GB	
CLOB	4GB, variable- length character large object	text	2GB	
NCHAR	255 bytes, multi- byte characters	unichar or char	32K	
NCLOB	4GB, variable- length multibyte character large object	unitext or text	2GB	For Replication Server 15.0 and later versions, the NCLOB datatype maps to unitext. For earlier versions of Replication Server, the NCLOB datatype maps to image.
NVARCHAR2	2000 bytes, variable-length, multibyte character data	univarchar or varchar	32K	
BFILE	4GB, locator points to large binary file	image	2GB	
MLSLABEL	5 bytes, variable- length binary OS label			Not supported.

Oracle datatype	Oracle length/range	Sybase datatype	Sybase length/range	Notes
NUMBER (p,s)	21 bytes, variable-length numeric data	float, int, real, number, decimal, or rs_oracle_decimal	float is 4 or 8 bytes. int is 4 bytes. real is 4 bytes.	The float datatype can convert to scientific notation if the range is exceeded.
			number and decimal are 2 to 17 bytes.	Integers (int) are truncated if they exceed the Replication Server range of 2,147,483,647 to -2,147,483,648 or 1x10 ⁻¹³⁰ to 9.99x10 ²⁵ .
				The number and decimal datatypes are truncated if they exceed the range of -10 ³⁸ to 10 ³⁸ -1.
				Oracle precision ranges from 1 to 38 digits. Default precision is 18 digits.
				Oracle scale ranges from -84 to 127. Default scale is 0.
RAW	2000 bytes, variable-length binary data	rs_oracle_binary	32K	
ROWID	6 bytes, binary data representing row addresses	rs_oracle_rowid	32K	
SIMPLE_INTEGER	4 bytes representing signed integers	integer		SIMPLE_INTEGER is an extension of the Oracle PLS_INTEGER datatype. Both are only for use with PL/SQL. The SIMPLE_INTEGER datatype is new as of Oracle 11g.
UDD object type	Variable length character data	rs_rs_char_raw	32K	See "Oracle user-defined types" on page 50.
VARCHAR2	2000 bytes, variable-length character data	varchar	32K	

Replication Server 15.0 unsigned datatype mapping

For Replication Server 15.0, unsigned datatypes are supported and can be specified in the replication definitions.

For versions of Replication Server earlier than 15.0, these datatypes cannot be specified and the following table identifies the replication definition datatypes that should be used.

Table 2-3: Unsigned integer replication definition datatype mapping

RepServer 15.0 unsigned datatypes	Replication definition datatypes
unsigned bigint	NUMERIC (20)
unsigned int	NUMERIC (10)
unsigned smallint	INT
unsigned tinyint	TINYINT

Oracle datatype restrictions

Note See the *Replication Agent Release Bulletin* for the latest information on datatype restrictions.

Replication Server and Replication Agent impose the following constraints on the Oracle NUMBER datatype:

- In the integer representation:
 - The corresponding Sybase int datatype has a smaller absolute maximum value.

The Oracle NUMBER absolute maximum value is 38 digits of precision, between 9.9×10^{125} and 1×10^{-130} . The Sybase int value is between 2^{31} - 1 and -2³¹ (2,147,483,647 and -2,147,483,648), inclusive.

- Oracle NUMBER values greater than the Sybase int maximum are rejected by Replication Server.
- In the floating point representation:
 - The precision of the floating point representation has the same range limitation as the integer representation.

• If the floating point value is outside the Sybase range of 2³¹ - 1 and -2³¹ (2,147,483,647 and -2,147,483,648), Replication Agent for Oracle converts the number into exponential format to make it acceptable to Replication Server. No loss of precision or scale occurs.

Replication Server and Replication Agent impose the following constraints on the Oracle TIMESTAMP WITH [LOCAL] TIME ZONE datatype:

- When a TIMESTAMP WITH TIME ZONE datatype is replicated, the time zone information is used to resolve the timestamp value to the "local" time zone and then the resolved value is replicated. (The time zone information itself is not replicated.)
- For example, if a TIMESTAMP WITH TIME ZONE datatype is recorded in Oracle as "01-JAN-05 09:00:00.000000 AM -8:00" and the "local" time zone is -6:00, the replicated value is "01-JAN-05 11:00:00.000000". The timestamp value is adjusted for the difference between the recorded timezone of -8:00 and the local time zone of -6:00, and the adjusted value is replicated.

If you use a version of Replication Server earlier than 12.5, the following size restrictions are imposed on Oracle datatypes:

- Oracle BLOB, CLOB, NCLOB, and BFILE datatypes that contain more than 2GB are truncated to 2GB.
- Oracle CHAR, RAW, ROWID, and VARCHAR2 datatypes that contain more than 255 bytes are truncated to 255 bytes.
- Oracle NCHAR and NVARCHAR2 multibyte character datatypes are replicated as char or varchar single-byte datatypes.

The following Oracle datatypes are not supported:

- Oracle REF type
- Oracle VARRAY type
- Oracle NESTED TABLE type
- Oracle-supplied types

See also

Replication Server Reference Manual for information on replication definitions and the create replication definition command.

Oracle SQL Reference guide for a complete list of Oracle-supplied types.

Oracle large object (LOB) support

Oracle LOB data can exist in several formats in Oracle. The LOB datatypes in Oracle are:

- Character:
 - LONG
 - CLOB
 - NCLOB
- Binary:
 - LONG RAW
 - BLOB
 - BFILE

BFILE points to file contents stored outside of the Oracle database.

For those types stored in the database (all types except BFILE), Oracle records the content of the LOB in the redo files. The Replication Agent reads the LOB data from the redo file and submits the data for replication.

Because BFILE type data is stored outside of the database, the BFILE contents are not recorded in the redo file. To replicate the content of a BFILE, the Replication Agent connects to the primary Oracle database and issues a query to select the data from the BFILE. Selecting the BFILE data separate from other data in the redo log can provide a temporary out-of-sync condition if the BFILE contents are changed multiple times. As described in the *Replication Agent Administration Guide*, querying LOB data from the database "outside" the transaction log's contents allows only the last change to that BFILE to be replicated. Values from earlier transactions might not be sent to the replicate site. See "Enabling and disabling replication for LOB columns" in the *Replication Agent Administration Guide* for additional information.

Special handling for off row LOBS

LOB types that are stored within the Oracle database (BLOB, CLOB and NCLOB) can be defined with certain storage characteristics. One of those characteristics, "disable storage in row," indicates that the data for the LOB should always be recorded separate from the rest of the data in the row the LOB belongs to. This off-row storage requires special handling for replication of updates to these LOB values.

When an off-row LOB value is updated, the change recorded in the redo log is for the index that holds the LOB's data; the row the LOB belongs to is not changed. As a result, information is missing from the redo log to identify which row in the table the LOB belongs to.

For example, when a non-LOB column is updated in a table, the column data that identifies the changed values and lookup columns is recorded. The command updated myTable set col2 = 2 where col1 = 1 records values in the redo log for the values of both "col2" and "col1."

In contrast, a command that only updates a LOB that has been defined with the disable storage in row clause records only the LOB data's change to its index, and not the table that holds the LOB. So the command updated myTable set ClobColumn = 'more data' where col1 = 1 only records the value changed, and does not include the value of "col1".

Because the value of the columns in the where clause are not logged in that update, there is insufficient information to build the correct where clause to be used to apply the data at the replicate site. To resolve this problem, Replication Agent for Oracle requires that an update to a LOB column defined with disable storage in row must be immediately accompanied by an insert or update to the same row in the table the LOB belongs to.

The Replication Agent uses the additional column data from the associated operation to correctly build the where clause required to support replication.

For example, the following transaction sequences support replication of updates to LOB column "ClobColumn" when it has been defined with the disable storage in row clause:

```
begin
insert into myTable (col1, col2, ClobColumn, updated)
values (1,1,empty_clob(), sysdate);
update myTable set ClobColumn = 'more data' where col1
= 1;
commit

begin
update myTable set updated = sysdate() where col1 = 1;
update myTable set ClobColumn = 'more data' where col1
= 1;
commit

begin
update myTable set ClobColumn = 'more data' where col1
= 1;
update myTable set ClobColumn = 'more data' where col1
= 1;
update myTable set updated = sysdate() where col1 = 1;
```

commit

Note For purposes of replication, LOB objects populated with the empty_clob or empty_lob function are replicated as NULL values. Replication definitions for LOB columns should therefore include the "null" keyword as part of the column definition.

The following transaction sequences are not supported for LOB columns defined with the disable storage in row clause and result in a failure to supply the LOB data to the replicate site:

Missing accompanying change to the same row:

```
begin
update myTable set ClobColumn = 'more data' where
col1 = 1;
commit.
```

 Accompanying change for the same row is not immediately adjacent to the LOB change:

```
begin
update myTable set updated = sysdate where col1 = 1;
update myTable set col2 = 5 where col1 = 5;
update myTable set ClobColumn = 'more data' where
col1 = 1;
commit.
```

This limitation only applies to LOB columns that have been defined with the disable storage in row clause.

You can identify the LOB columns in your database that have this constraint using the following query against your Oracle database:

```
select owner, table_name, column_name from dba_lobs where in_row = 'NO';
```

Oracle user-defined types

User-defined datatypes (UDD) use Oracle built-in datatypes and other user-defined datatypes as building blocks that model the structure and behavior of data in applications.

Replication Agent for Oracle 15.2 supports replication of user-defined object types. Object types are abstractions of real-world entities, such as purchase orders, that application programs deal with. An object type is a schema object with three kinds of components:

- A name, which identifies the object type uniquely within that schema.
- Attributes, which are built-in types or other user-defined types. Attributes model the structure of the real-world entity.
- Methods, which are functions or procedures written in PL/SQL and stored in the database, or written in a language such as C or Java and stored externally. Methods implement operations the application can perform on the real-world entity.

Replicating UDDs

To replicate user-defined datatypes in Oracle, the datatype specified in the replication definition must be rs_rs_char_raw. If you are using Replication Server 15.1 or earlier, see "Replication Server and RSSD scripts" on page 41 first.

Creating a datatype definition in Replication Server

To create the datatype requires Replication Server administrator privileges or granted permission.

- 1 Log in to the RSSD.
- 2 Add a row to the rs_datatype table using the following example as a guide:

```
/* rs_oracle_udd_raw - char with no delimiters */
insert into rs_datatype values(
                     /* prsid */
0x000000001000008, /* classid */
'rs oracle udd',
                     /* name */
0x0000000000010210, /* dtid */
0,
                     /* base_coltype */
255,
                     /* length */
0,
                     /* status */
                     /* length_err_act */
1,
'CHAR',
                     /* mask */
0,
                     /* scale */
                     /* default len */
0,
11,
                     /* default val */
0,
                     /*-delim_pre_len-*/
'',
                     /* delim pre */
                     /*-delim post len-*/
0,
```

```
'',
                   /* delim_post */
                   /* min_boundary_len */
0,
'',
                   /* min boundary */
                   /* min_boundary_err_act */
3,
                   /* max_boundary_len */
0,
'',
                   /* max_boundary_err_act */
0
                    /* rowtype */
)
go
```

- 3 You must restart Replication Server after adding a new type.
- 4 In Replication Server, test the new type:

The new type has been defined correctly if the sentence was translated correctly.

Example

The following example demonstrates how to create a replication definition, using the rs_rs_char_raw type defined in Replication Server. The following Oracle table and type definitions are used in the example:

- Oracle UDD object type name: NAME_T
- Oracle table name: USE NAME T
- Oracle table columns: PKEY INT, PNAME NAME_T

```
create replication definition use_name_t_repdef
with primary at ra_source_db.ra_source_ds
with all tables named 'USE_NAME_T'
(
    PKEY int,
    PNAME rs_rs_char_raw
)
primary key (PKEY)
searchable columns (PKEY)
go
```

Note The ltl_character_case must be upper for this example.

Replicating object type attributes

To replicate updates to user-defined object type attributes, Replication Agent must enable table-level supplemental logging. Table-level supplemental logging can be enabled manually. Replication Agent also attempts to enable this logging when marking a table that contains a user-defined object type. However, for Replication Agent to mark such a table, there must already be an Oracle user specified by the pds_username parameter that has ALTER permission granted for the table.

If table-level supplemental logging has not been enabled for a table containing a user-defined object type and Replication Agent encounters an update log record in the Oracle log, Replication Agent changes its status from Replicating to Admin with the following error:

There is insufficient column data in the log to support Oracle UDD update command processing. Please make sure table-level supplemental logging is enabled.

In this case, use the pdb_skip_op to skip this log record. See the *Replication Agent Reference Manual*.

Marking and unmarking sequences

Support for Oracle sequence replication is supported for replication to Oracle only. No support is provided for replicating a sequence value to a non-Oracle replicate database.

Replication Agent supports replication of sequences in the primary database. To replicate a sequence invoked in a primary database, the sequence must be marked for replication, and replication must be enabled for that sequence. This is analogous to marking and enabling replication for tables.

Note Marking a sequence for replication is separate from enabling replication for the sequence. If the value of the pdb_dflt_object_repl parameter is true, replication is enabled automatically at the time a sequence is marked. See "Enabling and disabling replication for sequences" on page 58.

Oracle does not log information every time a sequence is incremented. Sequence replication occurs when the Replication Agent captures the system table updates that occur when the sequence's cache is refreshed. Therefore, the sequence value replicated when a sequence is marked for replication is the "next" sequence value to be used when the current cache expires. The result is that not every individual increment of a sequence is replicated, but the replicate site will always have a value greater than the primary site's currently available cached values.

To temporarily suspend replication of a marked sequence, you can disable replication for the sequence.

Replication Server changes to support sequence replication

By default, Replication Server is not installed with support for replication of Oracle sequence objects. Changes are required to Replication Server and the replicate Oracle database before replication of Oracle sequences is possible.

For Replication Server, you must create a replication definition that defines a stored procedure to assist with sequence replication. Execute the \$SYBASE/RAX-15_2/scripts/oracle/oracle_create_rs_sequence_repdef.sql script against your primary Replication Server after editing the script to replace values {pds} and {pdb} with the name of your primary Replication Server connection. These values can also be found in the rs_source_ds and rs_source_db Replication Agent configuration properties.

Note The replication definition assumes that a database replication definition exists. You may need to alter the definition if a database replication definition does not exist. For details, see comments in the *oracle_create_rs_sequence_repdef.sql* script.

In the replicate Oracle database, you must create a stored procedure to support sequence replication. Log into the replicate Oracle database as the maintenance user defined in your Replication Server connection to the replicate database. Execute the \$SYBASE/RAX-15_2/scripts/oracle/

oracle_create_replicate_sequence_proc.sql script to create the necessary stored procedure.

Note The maintenance user defined in your Replication Server connection to the replicate database must have sufficient privileges to execute functions in the Oracle DBMS_SQL package. Also, this maintenance user must have authority at the replicate Oracle database to update any sequence that is replicated.

Marking a sequence for replication

- Log in to the Replication Agent instance with the administrator login.
- 2 Determine if the sequence is already marked in the primary database:

```
pdb_setrepseq pdb_seq
```

Here, *pdb_seq* is the name of the sequence in the primary database that you want to mark for replication.

- If the pdb_setrepseq command returns information that the specified sequence is marked, you do not need to continue this procedure.
- If the pdb_setrepseq command returns information that the specified sequence is not marked, continue this procedure to mark the sequence for replication.
- 3 Mark the sequence for replication.

The pdb_setrepseq command allows you to mark the primary sequence to be replicated and specify a different sequence name to use in the replicate database.

 Use the following command to mark the sequence for replication when the sequence name you wish to increment at the replicate site has the same name:

pdb_setrepseq pdb_seq, mark

Here, *pdb_seq* is the name of the sequence in the primary database that you want to mark for replication.

Note Replicating a sequence with a different name that is provided is consistent with other marking commands but is not a typical configuration.

• Use the following command to mark the sequence for replication using a different sequence name:

```
pdb_setrepseq pdb_seq, rep_seq, mark
```

Here, pdb_seq is the name of the sequence in the primary database that you want to mark for replication, and rep_seq is the name of the sequence in the replicate database that you wish to increment.

Note Replicating sequence values to a sequence with a different name at the replicate site assumes that the replicate site sequence has the same attributes and starting value as the primary site's sequence.

- If the value of the pdb_dflt_object_repl parameter is true, the sequence marked for replication with the pdb_setrepseq command is ready for replication after you invoke the pdb_setrepseq command successfully.
- If the value of the pdb_dflt_object_repl parameter is true (the default value), you can skip step 4 in this procedure.
- If the value of the pdb_dflt_object_repl parameter is false, you must enable replication for the sequence before replication can take place.
- 4 Enable replication for the marked sequence:

```
pdb_setrepseq pdb_seq, enable
```

Here, *pdb_seq* is the name of the marked sequence for which you want to enable replication.

After replication is enabled for the sequence, you can begin replicating invocations of that sequence in the primary database.

Note To replicate a sequence, you must also run the oracle_create_replicate_sequence_proc.sql script in the \$SYBASE/RAX-15_2/scripts/oracle directory at the replicate site to create a procedure named rs_update_sequence.

Unmarking a sequence

- 1 Log in to the Replication Agent instance with the administrator login.
- 2 Confirm that the sequence is marked in the primary database:

```
pdb_setrepseq pdb_seq
```

Here, *pdb_seq* is the name of the sequence that you want to unmark.

- If the pdb_setrepseq command returns information that the specified sequence is marked, continue this procedure to unmark the sequence.
- If the pdb_setrepseq command does not return information that the specified sequence is marked, you do not need to continue this procedure.
- 3 Disable replication of the sequence:

```
pdb_setrepseq pdb_seq, disable
```

Here, *pdb_seq* is the name of the sequence that you want to unmark.

4 Remove the replication marking from the sequence:

```
pdb_setrepseq pdb_seq, unmark
```

Here, pdb seq is the name of the sequence that you want to unmark.

To force the unmark, use the following command:

```
pdb_setrepseq pdb_seq, unmark, force
```

5 Confirm that the sequence is no longer marked for replication:

```
pdb_setrepseq pdb_seq
```

Here, *pdb_seq* is the name of the sequence in the primary database that you unmarked.

Enabling and disabling replication for sequences

To temporarily suspend replication of a sequence, use the pdb_setrepseq command to disable replication for the marked sequence. When you are ready to resume replication of the marked sequence, use the pdb_setrepseq command to enable replication.

Note By default, no sequences are marked for replication.

To replicate updates of a sequence in the primary database, the sequence must be marked for replication and replication must be enabled for that sequence.

Marking a sequence for replication is separate from enabling replication for the sequence. See "Marking a sequence for replication" on page 55.

Enabling replication for a marked sequence

- 1 Log in to the Replication Agent instance with the administrator login.
- 2 Verify that replication is disabled for the sequence:

```
pdb_setrepseq pdb_seq
```

Here, *pdb_seq* is the name of the marked sequence you want to enable replication for.

If the pdb_setrepseq command returns information that the sequence is marked and has replication disabled, continue this procedure to enable replication for the sequence.

Note A sequence must be marked for replication before replication can be enabled or disabled for the sequence.

3 Enable replication for the sequence:

```
pdb_setrepseq pdb_seq, enable
```

Here, *pdb_seq* is the name of the marked sequence for which you want to enable replication.

After replication is enabled for the sequence, any invocation of that sequence is replicated.

4 Use the pdb_setrepseq command again to verify that replication is now enabled for the sequence:

```
pdb_setrepseq pdb_seq
```

Here, *pdb_seq* is the name of the marked sequence for which you want to verify that replication is enabled.

Disabling replication for a marked sequence

- 1 Log in to the Replication Agent instance with the administrator login.
- 2 Verify that replication is enabled for the sequence:

```
pdb_setrepseq pdb_seq
```

Here, *pdb_seq* is the name of the marked sequence you want to disable replication for.

If the pdb_setrepseq command returns information that the sequence is marked and has replication enabled, continue this procedure to disable replication for the sequence.

Note A sequence must be marked for replication before replication can be enabled or disabled for that sequence.

3 Disable replication for the sequence:

```
pdb_setrepseq pdb_seq, disable
```

Here, *pdb_seq* is the name of the marked sequence for which you want to disable replication.

After replication is disabled for the sequence, any invocation of that sequence will not be captured for replication until replication is enabled again.

4 Use the pdb_setrepseq command again to verify that replication is now disabled for the sequence:

```
pdb_setrepseq pdb_seq
```

Here, *pdb_seq* is the name of the marked sequence for which you want to verify that replication is disabled.

Running Replication Agent and Oracle on different machines

Do the following to run Replication Agent and the primary Oracle data server on different machines.

Setting up Replication Agent and Oracle to run on different machines

- Install the Replication Agent on a machine of the same type of hardware and operating system as the machine on which the primary Oracle data server is running.
- 2 Install the Oracle JDBC driver on the same machine as Replication Agent.
- 3 If the *timezone.dat* file is not in a location accessible to both machines, copy the \$ORACLE_HOME/oracle/zone.dat file to the Replication Agent machine.

Note Be sure to copy the *timezone.dat* file of the Oracle server that Replication Agent is reading.

- 4 Set the Replication Agent pdb_timezone_file configuration parameter to the full path name of the *timezone.dat* file.
- Make sure the Oracle online and archive logs reside in a location accessible to both machines. Use the ra_devicepath command to point Replication Agent to Oracle log files.

Real Application Clusters (RAC)

Replication Agent for Oracle 15.2 provides support for Oracle 10g and 11g RAC environments. When a Replication Agent for Oracle instance is initialized, the Oracle database is queried to determine how many nodes are supported by the cluster. Based on this information, Replication Agent automatically configures itself to process the redo log information from all nodes.

To process the redo log data from all nodes in an Oracle RAC cluster, the Replication Agent must execute from a location that has access to the same shared storage used by the Oracle nodes to store their redo data. The Replication Agent must also have read access to the shared storage where the online and archived redo logs exist.

Configure Replication Agent to connect to a single Oracle instance by supplying the required host, port, and Oracle SID values to the pds_host_name, pds_port_number and pds_database_name configuration parameters. In an Oracle RAC environment, Replication Agent must be able to connect to any node in the cluster in the event that a node fails or otherwise becomes unavailable. To support the configuration of multiple node locations, Replication Agent supports connectivity to all possible RAC nodes by obtaining needed information from an Oracle *tnsnames.ora* file for one specified entry. As a result, instead of configuring individual host, port and instance names for all nodes, Replication Agent only requires the location of a *tnsnames.ora* file and the name of the TNS connection to use.

Sybase recommends that you point Replication Agent to a *tnsnames.ora* entry that contains the address for all nodes in the cluster.

For example, if the following entry exists in a *tnsnames.ora* file for a three-node cluster, Replication Agent can be instructed to use that entry by providing the *tnsnames.ora* file location to the pds_tns_filename configuration property and specifying RAC10G as the value for the pds_tns_connection configuration property:

See the *Replication Agent Reference Manual* for details about the pds_tns_filename and pds_tns_connection parameters.

Note Replication Agent must have read access to the *tnsnames.ora* file.

pdb_archive_path

The pdb_archive_path configuration parameter identifies the directory path where Replication Agent expects to find archived Oracle redo log files. In an Oracle RAC environment, each Oracle instance can be configured to point to one or more archive log destinations. To support replication, all instances in the Oracle RAC cluster must provide a copy of their archive log files to a shared location that Replication Agent for Oracle can use to access all archived redo logs. The pdb_archive_path configuration parameter must be configured to point to a location to which all Oracle instances write archived log data. Replication Agent must have read access to this directory and all archived redo logs within that directory.

Note Archived redo logs can also be stored within ASM. See "Automatic Storage Management" on page 62 for details on how the pdb_archive_path configuration should be specified for ASM usage.

Replication Agent can be configured to remove archived logs from the location specified by pdb_archive_path, using the pdb_archive_remove configuration parameter. This allows Replication Agent to remove archived log files that are no longer needed to support replication. If pdb_archive_remove is set to true, Replication Agent must have update authority to the archive log directory and delete authority on the individual archive log files.

Oracle instance failover

If the Oracle instance to which Replication Agent is connected fails for any reason, Replication Agent attempts to reconnect to any surviving instance, choosing from the list of instances defined in the *tnsnames.ora* file entry the Replication Agent is configured to use. No manual intervention or configuration is required. If none of the instances are available, Replication Agent reports an error and continues processing as long as redo log file information is still available.

Automatic Storage Management

Replication Agent for Oracle supports the use of the Oracle Automatic Storage Management (ASM) feature. ASM provides file system and volume management support for an Oracle database environment. ASM can be used in both Real Application Cluster (RAC) and non-RAC environments.

ASM provides similar benefits as a redundant array of independent disks (RAID) or a logical volume manager (LVM). Similar to those technologies, ASM allows the definition of a single disk group from a collection of individual disks. ASM attempts to balance loads across all devices defined in the disk group. ASM also provides striping and mirroring capabilities.

Unlike RAID or LVMs, ASM only supports files created and read by the Oracle database. ASM cannot be used for a general-purpose file system and cannot store binaries or flat files. Also, ASM files cannot be directly accessed by the operating system.

ASM striping and mirroring

ASM provides striping by dividing files into equal-sized extents. Fine-grained striping extents are 128KB in size. For Oracle 10g, coarse-grained striping extents are 1MB in size. For Oracle 11g, coarse-grained striping extents can be 1, 2, 4, 8, 16, 32, or 64MB in size. Striping spreads each file extent evenly across all disks in the assigned disk group.

ASM also provides automatic mirroring of ASM files and allows the mirroring level to be specified by group. This mirroring occurs at the extent level. If a disk group is mirrored, each extent has one or more mirrored copies, and mirrored copies are always kept on different disks in the disk group.

There are three ASM mirroring options:

- Two-way mirroring Each extent has one mirrored copy in this option.
- Three-way mirroring Each extent has two mirrored copies in this option.
- Unprotected mirroring ASM provides no mirroring in this option, which is used when mirroring is provided by the disk subsystem.

ASM features supported by Replication Agent for Oracle

When using Replication Agent for Oracle:

- Online redo log files managed by ASM can be used for replication.
- Archive log files managed by ASM can be used for replication.
- ASM disk groups can be changed without interfering with replication.
 When disks are added or dropped from an ASM disk group, Replication
 Agent for Oracle recognizes the change and automatically updates its
 device information for affected log devices.

 Replication Agent for Oracle tolerates multiple disk failures within the same disk group without affecting replication.

Archive log removal and configuration

Archive logs that are managed by ASM can be removed from ASM when they are no longer needed by Replication Agent for Oracle. When the pdb_archive_remove configuration parameter is set to true and the archive logs are managed by ASM, the pdb_archive_path configuration parameter must be set to the name of the ASM disk group in which the archive logs are stored. The disk group name must be preceded with a plus sign (+) indicating that the path is an ASM path. For example:

```
pdb_archive_remove=true
pdb_archive_path=+DISK_GROUP1
```

Archive logs stored in and managed by ASM are owned by the corresponding unique Oracle database name. If the Oracle database name differs from the global unique database name, the pdb_archive_path configuration parameter must be set to both the name of the ASM disk group and the globally unique name of the database in which the archive logs are stored:

```
pdb_archive_path=+DISK_GROUP1/database_name
```

In addition to automatic removal of archive logs from ASM, manual removal is supported with the pdb_truncate_xlog command. The pdb_archive_path must be set to the ASM disk group name and preceded with a plus (+) sign for archive logs to be manually removed.

Disk failure recovery

ASM provides automatic recovery for disk failures. When a disk fails, ASM reconfigures all ASM-managed files in the disk group with the failed disk and removes the failed disk from the disk group. This is known as a rebalance.

When Replication Agent for Oracle detects a disk failure, it automatically switches to reading disk group mirrors. If the disk group is configured to have the mirror and mirror copy, Replication Agent for Oracle can recover from multiple disk failures. If the disk group is configured for no mirroring or if too many disks have failed and the log cannot be read, Replication Agent for Oracle checks to see if an ASM rebalance is occurring or has occurred. Log device information is updated with new ASM information when the rebalance is complete. The time required for a complete rebalance can vary, depending on how many disk are in the failing disk group.

Log device information can be manually updated by issuing the ra_updatedevices command. If a disk group must be changed by adding or removing a disk, ra_updatedevices can be issued to ensure log devices obtain the new disk group configuration. This command must be issued only after the disk group is changed and ASM has completed its rebalance.

If Replication Agent for Oracle cannot recover on its own from a disk failure or disk group change, ra_updatedevices can be used to update log device information before resuming replication.

Configuration parameters

The following configuration parameters must be set if your log files are being managed by ASM:

```
asm_password
asm_tns_connection
asm_tns_filename
asm_username
```

The ASM user ID for asm_username must have sysdba permission. For Oracle 10g or 11g, set asm_username as follows:

```
asm_username="sys as sysdba"
```

Alternately, for Oracle 11g, you can set asm_username as follows:

```
asm_username="sys as sysasm"
```

See the Replication Agent Reference Manual.

Replication Server set autocorrection command

The Replication Server set autocorrection command prevents failures that would otherwise be caused by missing or duplicate rows in a replicated table. The set autocorrection command corrects discrepancies that may occur during materialization by converting each update or insert operation into a delete followed by an insert. To use this command, a replication definition must specify replicate minimal columns so that Replication Agent can send all columns for a row, not just those that have changed, in the autocorrection insert statement. However, Replication Agent for Oracle does not send all columns for an update statement to Replication Server. Consequently, when autocorrection is set on a replication definition for an Oracle primary, the insert statement applied by Replication Server may omit some columns. Replication Agent for Oracle therefore does not support use of the Replication Server set autocorrection command.

Partitioned tables

Replication Agent supports Oracle partitioning functionality. Partitioning allows a table, index, or index-organized table to be subdivided into smaller pieces, where each piece of such a database object is called a partition. Each partition has its own name and may optionally have its own storage characteristics. Any table can be partitioned into many separate partitions except those tables containing columns with LONG or LONG RAW datatypes.

Unstructured data (such as images and documents) stored in a LOB column in the database can also be partitioned. When a table is partitioned, all the columns reside in the tablespace for that partition, with the exception of LOB columns, which can be stored in their own tablespace. For additional information about Oracle Partitioning, see the Oracle Database VLDB and Partitioning Guide.

at http://download.oracle.com/docs/cd/B28359_01/server.111/b32024/toc.htm

Note Index Organized Tables (IOTs) whether partitioned or not, are not supported.

Replicating the truncate partition command

There are two ways to replicate the truncate partition command:

Use the lr_send_trunc_partition_ddl configuration property

• Wrap the truncate partition command in a stored procedure, and replicate the procedure

Using Ir_send_trunc_partition_ddl

A configuration property has been added to Replication Agent, lr_send_trunc_partition_ddl, which can be used to determine whether truncate partition commands are sent as DDL or DML to the replicate database. The configuration can be:

- true (default) the truncate partition command is sent as a DDL command (alter table). Use this setting to replicate to Oracle.
- false the truncate partition is sent as a DML operation. Use this setting
 when replicating to databases that treat truncate partition commands as
 DML (for example, Microsoft SQL Server).

For information about Replication Agent configuration properties, see the *Replication Agent Reference Manual*.

Wrapping the truncate partition command

Alternately, you can wrap the truncate partition command in a stored procedure definition and replicate the procedure.

For example, to replicate truncate partition commands from an Oracle primary to an ASE replicate, create the following stored procedure at the primary database:

```
create procedure sp_truncate_partition
as
begin
execute immediate 'ALTER TABLE myTable TRUNCATE
PARTITION part1';
end;
```

Create a corresponding stored procedure at the replicate database:

```
create proc sp_truncate_partition as
truncate table myTable part1
```

Mark the sp_truncate_partition procedure for replication. When sp_truncate_partition is executed at the primary database, the truncate partition command is replicated to the replicate database.

Materialized views

A materialized view is a stored view query result. The data on which the view is defined is referred to as the master table or tables. The materialized view is stored in its own table, which is refreshed based on changes to the master table or tables. Oracle supports the following types of materialized views:

- Read-only content is based entirely on the master table or tables.
- Writable content can be changed temporarily, but changes are overwritten when the table containing the materialized view is refreshed.
- Updateable updates are also made to the corresponding master table or tables. Updates to the master tables are still reflected in the materialized view upon refresh, so updates can be made in two ways. Additionally, changes to the master table or tables are also reflected in any remote updateable materialized view upon refresh. Here, remote means that the materialized view is defined in a database other than that containing the master table or tables.

For a complete description of materialized view architecture and behavior, see the Oracle documentation.

Instead of replicating the table containing a materialized view, Replication Agent replicates only the master table or tables on which the view query is defined. The materialized view table is subsequently refreshed according to the contents of the replicated master tables. Replication Agent does not support direct replication of the table containing a materialized view. Do not attempt to replicate such a table.

Note If you are using replication for disaster recovery, and your primary database contains the master table or tables for a remote materialized view, and you fail over to the standby database, the database containing the remote materialized view must be redirected to point to the standby database before a refresh of the remote materialized view occurs. Otherwise, the refresh fails.

Unsupported table types

Replication Agent does not support Oracle Index Organized Tables (IOTs) or Oracle nested tables.

Replication Agent objects in the Oracle primary database

Note This section describes the Replication Agent objects for an Oracle database. For more general information, see the *Replication Agent Administration Guide*.

Replication Agent creates objects in the Oracle primary database to assist with replication tasks.

The Replication Agent objects are created by invoking the pdb_xlog command with the init keyword. When you invoke this command, Replication Agent generates a SQL script that contains the SQL statements for the objects created or modified in the primary database. This script is stored in the *partinit.sql* file in the *RAX-15_2\inst_name\scripts\xlog* directory. The objects must be created before any primary database objects can be marked for replication.

Note The generated scripts are for informational purposes only and cannot be run manually to initialize the primary database or Replication Agent. This is also true for the procedure marking and unmarking scripts that are generated when you use pdb_setrepproc. Scripts are no longer generated when marking and unmarking tables with pdb_setreptable.

Replication Agent object names

There are two variables in the Replication Agent database object names shown in this chapter:

- prefix represents the one- to three-character string value of the pdb_xlog_prefix parameter (the default is ra_).
- xxx represents an alphanumeric counter, a string of characters that is (or may be) added to a database object name to make that name unique in the database.

The value of the pdb_xlog_prefix parameter is the prefix string used in all Replication Agent object names.

The value of the pdb_xlog_prefix_chars parameter is a list of the nonalphanumeric characters allowed in the prefix string specified by pdb_xlog_prefix. This list of allowed characters is database-specific. For example, in Oracle, the only nonalphanumeric characters allowed in a database object name are the \$, #, and _ characters.

Use the pdb_xlog command to view the names of Replication Agent transaction log components in the primary database.

See the *Replication Agent Administration Guide* for details on setting up object names.

Finding the names of the objects created

 At the Replication Agent administration port, invoke the pdb_xlog command with no keywords:

The pdb_xlog command returns a list of all the Replication Agent objects.

Table objects

Table 2-4 lists the tables that are considered Replication Agent objects.

Table 2-4: Replication Agent tables

Table	Database name
Procedure-active table	prefixPROCACTIVE_[xxx]

Marker objects

Table 2-5 lists the Replication Agent objects related to Replication Server markers. No permissions are granted when these objects are created.

Table 2-5: Replication Agent marker objects

Object	Database name
Transaction log marker procedure	RS_MARKER[xxx]
Dump marker procedure	RS_DUMP[xxx]
Transaction log marker shadow table	prefixSH_RS_MARKER_[xxx]
Dump marker shadow table	prefixSH_RS_DUMP_[xxx]

Sequences

Table 2-6 lists the Oracle sequences that are considered Replication Agent objects.

Table 2-6: Replication Agent sequences

Sequence	Database name
Assign procedure call	prefixPCALL_[xxx]

Marked procedures

Table 2-7 lists the Replication Agent objects that are created for each primary procedure that is marked for replication. These objects are created only when a procedure is marked for replication.

Table 2-7: Replication Agent objects for each marked procedure

	-	 	<u> </u>	
Object		Datab	pase name	
Shadow table		prefixS	SH_xxx	

Transaction log truncation

Replication Agent provides features for both automatic and manual log truncation.

Replication Agent provides two options for automatic transaction log truncation:

- Periodic truncation, based on a time interval you specify
- Automatic truncation whenever Replication Agent receives a new LTM Locator value from the primary Replication Server

You also have the option to switch off automatic log truncation. By default, automatic log truncation is enabled and is set to truncate the log whenever Replication Agent receives a new LTM locator value from the primary Replication Server.

When pdb_include_archives is set to true, the default, and pdb_remove_archives is set false, the Replication Agent does not perform any online or archived transaction log truncation.

When pdb_include_archives is set to true, the default, and pdb_remove_archives is set true, Replication Agent deletes from the pdb_archive_path location the archive redo logs that have already been processed. The Replication Agent is not responsible for archiving online transaction logs.

Note Sybase recommends you configure the Replication Agent to remove archive log files only if an additional archive log directory is used.

When the configuration parameter pdb_include_archives is set to false, Replication Agent performs online redo log truncation (either scheduled or manual) by issuing the alter system command with the archive log sequence keywords. The command uses the log sequence number of the redo log file whose contents have been processed by the Replication Agent and are ready to be archived.

Note The alter system command syntax in Oracle allows redo log files to be archived in addition to the single log sequence specified in the command. To avoid the possibility of unintentional archiving, Replication Agent only issues this command when it is processing the redo log file whose status is current.

Automatic transaction log truncation

You can specify the automatic truncation option you want (including none) by using the ra_config command to set the value of the truncation_type configuration parameter.

If you want to truncate the transaction log automatically based on a time interval, use the ra_config command to set the value of the truncation_interval configuration parameter.

Manual transaction log truncation

You can truncate the Replication Agent transaction log manually, at any time, by invoking the pdb_truncate_xlog command at the Replication Agent administration port.

CHAPTER 3 Replication Agent for UDB

The term "Replication Agent for UDB" refers to an instance of Replication Agent 15.2 software that is configured for a primary database that resides in an IBM DB2 Universal Database (UDB) server.

This chapter describes the characteristics of Replication Agent that are unique to the Replication Agent for UDB implementation.

Topic	Page
IBM DB2 Universal Database-specific considerations	73
Replication Agent objects in the IBM DB2 Universal Database primary database	87

Note For information on the basic features and operation of Replication Agent 15.2, see the *Replication Agent Administration Guide* and *Replication Agent Reference Manual*.

IBM DB2 Universal Database-specific considerations

This section describes general issues and considerations that are specific to using Replication Agent 15.2 with the IBM DB2 Universal Database server.

- Feature differences in Replication Agent for UDB
- Features not available in Replication Agent for UDB
- IBM DB2 Universal Database Requirements
- Running Replication Agent on a remote machine
- Replication Agent for UDB connectivity parameters
- Handling repositioning in the log
- Replication Agent for UDB behavior

- Character case of database object names
- Format of origin queue ID
- Datatype compatibility

Feature differences in Replication Agent for UDB

The following Replication Agent features have unique behavior in the Replication Agent for UDB:

- Initializing Replication Agent
- Marking a table for replication

Initializing Replication Agent

The Replication Agent for UDB provides the same features for initiliazing Replication Agent and creating its objects in the primary database as other implementations of the Replication Agent. Replication Agent for UDB creates only a few tables in the primary database to store its system information. The Replication Agent for UDB does not create any stored procedures or triggers in the primary database.

Because the Replication Agent for UDB requires access to the IBM DB2 Universal Database transaction log, the user ID that the Replication Agent uses to access the primary database must have either SYSADM or DBADM authority in the database; otherwise, the pdb_xlog init command returns an error. This user ID is stored in the Replication Agent pds_username configuration parameter.

See "Replication Agent objects in the IBM DB2 Universal Database primary database" on page 87.

Marking a table for replication

The Replication Agent for UDB provides the same features for marking and unmarking tables for replication as other implementations of the Replication Agent. However, the Replication Agent for UDB does not create any stored procedures or triggers in the primary database.

When marking a table for replication, Replication Agent for UDB alters the table to set the IBM DB2 Universal Database DATA CAPTURE attribute to DATA CAPTURE CHANGES. When the table is unmarked, the table is altered to return to its original DATA CAPTURE attribute.

Note Do not manually change the DATA CAPTURE attribute of a table that has been marked for replication by Replication Agent for UDB. Doing so may adversely effect replication results.

Features not available in Replication Agent for UDB

The following Replication Agent features are not available with the Replication Agent for UDB:

- Stored procedure replication
- · DDL replication

Note When you invoke Replication Agent commands related to these features, you receive an error.

Stored procedure replication

Stored procedure replication is not available with the Replication Agent for UDB. Therefore, the pdb_setrepproc command is not supported.

DDL replication

Replication of data definition language (DDL) commands and system procedures executed in the primary database is not supported.

IBM DB2 Universal Database Requirements

This section provides a summary of all the IBM DB2 Universal Database requirements.

- The database must be at least version 8.2.2 (the same as version 8.1 with FixPak 9) or later.
- The database must have a valid JDK path configured. The JDK_PATH configuration parameter should contain the full path to the directory above the *bin* directory, which contains the *java* executable. To determine the database manager JDK_PATH setting, use the following IBM DB2 Universal Database command:

get dbm cfg

Note A 64-bit IBM DB2 Universal Database instance requires a 64-bit JDK, and a 32-bit IBM DB2 Universal Database instance requires a 32-bit JDK.

- If Replication Agent is installed on Solaris, AIX or HP Itanium, a 64-bit IBM DB2 Universal Database instance must be configured. This can be a server or client instance.
- The database LOGARCHMETH1 configuration parameter must be set to LOGRETAIN or DISK:<path>. Here, <path> is a directory to which logs are archived. This enables archive logging in place of circular logging. To determine the LOGARCHMETH1 setting, use the following IBM DB2 Universal Database command:

```
get db cfg for <db-alias>
```

- The IBM DB2 Universal Database connectivity autocommit parameter
 must be turned on (automcommit=1). The autocommit parameter is
 specified in the DB2 call level interface (CLI) configuration file for the
 primary database. If the autocommit parameter is not turned on, a deadlock
 problem can occur.
 - On Windows, the file is:

```
%DB2DIR%\sqllib\db2cli.ini
```

Here, %DB2DIR% is the path to the IBM DB2 Universal Database client installation

• On UNIX, the file is:

\$HOME/sqllib/cfg/db2cli.ini

Here, \$HOME is the home directory of the IBM DB2 Universal Database instance owner (for an IBM DB2 Universal Database client or server instance)

- To initialize Replication Agent without error, the database must have a table space created with the following characteristics:
 - The table space should be a user temporary table space. By default, user temporary table spaces are not created when a database is created.
 - The table space must be a system-managed space (SMS).
 - The PAGESIZE parameter must be set to 8192 (8 kilobytes) or greater.

- The user ID you specify as the pds_username user must have either SYSADM or DBADM authority to access the primary database transaction log.
- All the IBM DB2 Universal Database environment variables must be set before you start the Replication Agent. Replication Agent uses the IBM DB2 Universal Database CLI driver to connect to the primary IBM DB2 Universal Database database. For UNIX, the driver is contained in libdb2.so, libdb2.sl, or libdb2.a, depending on the operating system. For Windows, the DB2 driver is contained in db2cli.dll. Replication Agent also uses IBM DB2 Universal Database API libraries to read the transaction log. The library path environment variable must therefore be set for Replication Agent to load the correct driver and API libraries at runtime.

For UNIX and Linux, the 32-bit and 64-bit versions of the libraries are located in the \$HOME/sqllib/lib32 and \$HOME/sqllib/lib64 directories, respectively, where \$HOME is the home directory of the IBM DB2 Universal Database instance owner. If Replication Agent is installed on AIX, Solaris, or HP Itanium, the library path environment variable must point to the 64-bit libraries. For Windows and Linux, the library path environment variable must point to the 32-bit libraries.

The exact name of the library path environment variable depends on the operating system:

- For Linux, the library path variable is named LD LIBRARY PATH.
- For Windows, the library path variable is named PATH.
- On Windows, the IBM DB2 Universal Database server or client installation sets all necessary environment variables.
- On UNIX or Linux, you must source the IBM DB2 Universal Database *db2cshrc* (for C-shell) or the *db2profile* (for Bourne and Korn shells) script before starting the Replication Agent. These scripts are located at *\$HOME/sqllib*, where *\$HOME* is the home directory of the IBM DB2 Universal Database instance owner (for a IBM DB2 Universal Database client or server instance).

Running Replication Agent on a remote machine

If the Replication Agent for UDB software is installed on a different host machine from the IBM DB2 Universal Database server, you must install the IBM DB2 Universal Database Administration Client on the same host machine as the Replication Agent.

If the Replication Agent for UDB software is installed on the same host machine as the IBM DB2 Universal Database server, a separate IBM DB2 Universal Database Administration Client is not required.

If the Replication Agent for UDB software is installed on AIX, Solaris, or HP Itanium, a 64-bit IBM DB2 Universal Database client instance must be configured. On Windows and Linux, a 32-bit IBM DB2 Universal Database client instance may be configured.

Configuring IBM DB2 Universal Database connectivity

On a Windows system, you must configure an ODBC data source in the IBM DB2 Universal Database Administration Client, then use the database name and database alias specified for that ODBC data source when you configure Replication Agent for UDB connectivity.

On a UNIX system, instead of using ODBC, simply catalog the node and the primary database in IBM DB2 Universal Database. Set the Replication Agent pds_datasource_name parameter to the database alias.

Cataloging the remote TCP/IP node from the IBM DB2 Universal Database client

1 Log in as the IBM DB2 Universal Database instance owner.

Logging in sets up your IBM DB2 Universal Database environment variables by executing the environment scripts. You can also execute these scripts manually as follows.

In Korn shell, source the db2profile file:

. \$HOME/sqllib/db2profile

In C shell, source the *db2cshrc* file:

source \$HOME/sqllib/db2cshrc

Here, \$HOME is the home directory of the IBM DB2 Universal Database instance owner.

2 Start the DB2 command-line processor by typing the db2 command.

3 Catalog the remote TCP/IP node using the following command at the DB2 prompt:

```
catalog tcpip node MYNODE remote MYHOST server XXXX
```

Here, *MYNODE* is the node name, *MYHOST* is the host name or IP address of the data server, and *XXXX* is the data server port number.

4 Verify the catalog entry:

```
list node directory
```

DB2 should return something similar to the following:

```
Node 1 entry:

Node name = MYNODE

Comment =

Directory entry type = LOCAL

Protocol = TCPIP

Hostname = MYHOST

Service name = XXXX
```

Cataloging the primary database from the IBM DB2 Universal Database client

1 Catalog the primary database using the following command at the DB2 prompt:

```
catalog database MYDB as MYDB_ALIAS at node MYNODE
```

Here, *MYDB* is the database name, *MYDB_ALIAS* is an alias for the database, and *MYNODE* is the node name used in the catalog tcpip node command.

2 Verify the catalog entry:

```
list database directory
```

DB2 should return something similar to the following:

```
System Database Directory

Number of entries in the directory = 1

Database 1 entry:

Database alias = MYDB_ALIAS

Database name = MYDB

Node name = MYNODE

Database release level = b.00

Comment =
```

```
Directory entry type = Remote
```

Configuring pds_datasource_name

1 In Replication Agent, set the pds_datasource_name parameter to the database alias:

```
ra_config pds_datasource_name, MYDB_ALIAS
```

Here, *MYDB_ALIAS* is the database alias that was used when cataloging the primary database.

2 Also set the following Replication Agent parameters:

```
pds_database_name
pds_username
pds_password
```

See the Replication Agent Reference Manual.

Replication Agent for UDB connectivity parameters

The following Replication Agent configuration parameters are required to configure a connection between the Replication Agent for UDB and a IBM DB2 Universal Database server:

- pds_username must have DBADM authority, for example, repuser
- pds_password for user ID specified in pds_username, for example, repuser_pwd
- pds_database_name IBM DB2 Universal Database database name, for example, TEST_DB1
- pds_datasource_name IBM DB2 Universal Database data source name, for example, TEST DB1 DS

Handling repositioning in the log

The Replication Agent uses the value of the LTM locator received from the primary Replication Server to determine where it should begin looking in the IBM DB2 Universal Database transaction log for transactions to be sent to the Replication Server.

The Replication Agent for UDB uses the LTM locator value as follows:

 When the value of the LTM locator received from Replication Server and the LTM locator stored by Replication Agent are both zero (0), the Replication Agent positions the Log Reader component at the end of the IBM DB2 Universal Database transaction log.

Warning! In the event that both LTM locator values are zero, two specific conditions could cause data loss:

- Repositioning the Log Reader at the end of the transaction log may cause data loss if there are replicated transactions that have not been processed at the time the Log Reader is repositioned.
- When the Replication Agent Log Reader component goes to the Replicating state, it does so asynchronously. When you receive a prompt after invoking the resume command, the Log Reader component may not be finished getting into the Replicating state and positioning itself at the end of the log. If you mark a table immediately after the prompt returns from the resume command, the record containing the mark information could be written to the log before the Log Reader component has positioned itself. In that case, the Log Reader component will miss that record and not replicate any subsequent data for that table. To avoid this problem, wait a short time after invoking the resume command before you mark a table for replication.
- When both the value of the LTM locator received from Replication Server and the LTM locator stored by Replication Agent are not zero, Replication Agent uses the LTM locator value it received from Replication Server to determine the starting position of the oldest open transaction and positions the Log Reader component at that location in the IBM DB2 Universal Database transaction log.
- When the value of the LTM locator received from Replication Server is zero (0) and the value of the LTM locator stored by Replication Agent is not zero, Replication Agent uses the LTM locator value it has stored to determine the starting position of the oldest open transaction and positions the Log Reader component at that location in the IBM DB2 Universal Database transaction log.

Replication Agent for UDB behavior

The following Replication Agent issues are unique to Replication Agent for UDB:

- Marking tables immediately after going to Replicating state, when the value of the LTM locator is 0 (zero)
- Forcing applications off the primary database with the DB2 FORCE APPLICATION command
- Determining the read buffer size
- Replicating LOBs

Marking tables immediately after resume when LTM locator is zero

When the Replication Agent instance goes to Replicating state, the Log Reader component reads the primary database transaction log and uses the value of the origin queue ID to determine the position in the log to start reading. When the value of the LTM locator is 0 (zero), the Log Reader starts reading at the end of the log.

Because the Log Reader's operation is asynchronous, the Replication Agent instance can return to the operating system prompt after the resume command but before the Log Reader has completed its start-up process. If you immediately invoke the pdb_setreptable command to mark a table for replication after the resume command returns, the mark object entry can be placed in the transaction log before the Log Reader finds the end of the log. In that event, the Log Reader misses the mark table entry, and table marking fails.

To avoid this problem, wait 5 to 10 seconds after invoking the resume command before invoking the pdb_setreptable command to mark a table.

Marking or unmarking all tables simultaneously

Marking or unmarking all tables at once in the primary database using pdb_setreptable all, mark or pdb_setreptable all, unmark is not supported in Replication Agent for UDB. You must mark or unmark each table individually.

Forcing applications off the database

The DB2 FORCE APPLICATION command causes the data server to drop its connections with an application. The FORCE APPLICATION ALL command causes the data server to drop its connections with all applications.

If you invoke the FORCE APPLICATION command and specify either the Replication Agent application handle or the ALL keyword, the data server drops its connections with the Replication Agent instance. In that event, the Replication Agent receives DB2 error code -30081 and cannot recover, so the Replication Agent instance shuts itself down.

To avoid this situation, invoke the Replication Agent shutdown command before using the DB2 FORCE APPLICATION command.

Determining read buffer size

The Replication Agent for UDB LogReader component uses the value of the max_ops_per_scan parameter to determine the maximum number of bytes to be read from the transaction log during each scan. Because the LogReader reads bytes, it requires a buffer to store the bytes read.

The LogReader component determines the maximum size of this buffer by multiplying the value of the max_ops_per_scan parameter by 10. For example, if the value of the max_ops_per_scan parameter is 1000 (the default), the size of the LogReader read buffer is 10,000 bytes.

It is very difficult to identify a minimum buffer size that will always work. The value range of max_ops_per_scan is 25 to 2,147,483,647, which means the smallest size of the buffer is 250 bytes.

If the read buffer size is too small to read one operation, LogReader shuts down the Replication Agent instance and reports a -30081 error. Unfortunately, this error message covers general communication errors, not just an insufficient buffer size.

Replicating LOBs

To replicate large-object columns of a marked table that also contains GRAPHIC or VARGRAPHIC columns, Replication Agent for UDB requires that the table have a primary key.

Character case of database object names

Database object names must be delivered to the primary Replication Server in the same format as they are specified in replication definitions; otherwise, replication fails. For example, if a replication definition specifies a table name in all uppercase, then that table name must appear in all uppercase when it is sent to the primary Replication Server by the Replication Agent.

To specify the character case option you want, set the value of the ltl_character_case configuration parameter with one of the following options:

- asis (the default) database object names are passed to Replication Server in the same format as they are actually stored in the primary data server.
- lower database object names are passed to Replication Server in all lowercase, regardless of the way they are actually stored in the primary data server.
- upper database object names are passed to Replication Server in all uppercase, regardless of the way they are actually stored in the primary data server.

In the IBM DB2 Universal Database server, database object names are stored in all uppercase.

Format of origin queue ID

Each record in the transaction log is identified by an origin queue ID that consists of 64 hexadecimal characters (32 bytes). The format of the origin queue ID is determined by the Replication Agent instance, and it varies according to the primary database type.

Table 3-1 illustrates the format of the origin queue ID for the Replication Agent for UDB.

		- ·
Character	Bytes	Description
0–3	2	Database generation ID
4–19	8	Operation sequence number
20–35	8	Transaction ID
36–51	8	First operation sequence number of oldest active transaction
52-55	2	Operation type
		(begin = 0, data/LOB = 1, commit/rollback = 7FFF)
56-59	2	LOB sequence ID
60-63	2	Unused

Table 3-1: Replication Agent for UDB origin queue ID

Datatype compatibility

Replication Agent for UDB processes transactions and passes data to the primary Replication Server.

The primary Replication Server uses the datatype formats specified in the replication definition to receive the data from Replication Agent for UDB.

The following table describes the default conversion of IBM DB2 Universal Database datatypes to Sybase datatypes.

For each datatype in Table 3-2, lengths in the second column are described as:

- Character datatypes maximum number of bytes.
- Graphic datatypes maximum number of characters.
- Numeric datatypes range from smallest to largest values.

• Temporal datatypes – range from earliest time to latest time.

Table 3-2: IBM DB2 Universal Database to Sybase default datatype mapping

IBM DB2 UDB datatype	IBM DB2 UDB length/range	Sybase datatype	Sybase length/range	Notes
BIGINT	-9,223,372,036, 854,775,808 to 9,223,372,036, 854,775,807	bigint	10 ⁻³⁸ to 10 ³⁸ , 38 significant digits	
BLOB	variable length, 2GB, binary data	image	2GB	
CHAR	254 bytes	char	32K	
CHAR FOR BIT DATA	254 bytes, binary data	binary	32K	
CLOB	variable length, 2GB, character data	text	2GB	
DATE	0001-01-01 to 9999-12-31	char, date, or datetime	32K (char)	If the pdb_convert_datetime parameter is false, DATE values are sent as char datatype strings. If the pdb_convert_datetime parameter is true, DATE values are converted to date or datetime values.
DBCLOB	variable length, 2GB, double-byte character data	unitext or image	2GB	For Replication Server 15.0 and later versions, DBCLOB maps to unitext. For earlier versions of Replication Server, DBCLOB maps to image.
DECIMAL	-10 ³¹ +1 to 10 ³¹ -1, 31 digits of precision	decimal	10 ⁻³⁸ to 10 ³⁸ , 38 significant digits	
DOUBLE				See FLOAT.
FLOAT	8 bytes, -1.79769 ³⁰⁸ to 1.79769 ³⁰⁸	float	Precision and range corresponds to a C double datatype, approximately 16 significant digits	Extremely small values are truncated to 16 digits to the right of the decimal. Extremely large values retain their precision.
GRAPHIC	127 characters, double-byte character data	unichar	32K	
INTEGER	-2,147,483,648 to 2,147,483,647	int	-2,147,483,648 to 2,147,483,647	

IBM DB2 UDB datatype	IBM DB2 UDB length/range	Sybase datatype	Sybase length/range	Notes
LONG VARCHAR	variable length, 32,700 bytes, character data	text	2GB	
LONG VARCHAR FOR BIT DATA	32,700 bytes, binary data	image	2GB	
LONG VARGRAPHIC	16,350 characters, double-byte character data	unitext or image	2GB	For Replication Server 15.0 and later versions, LONG VARGRAPHIC maps to unitext. For earlier versions of Replication Server, LONG VARGRAPHIC maps to image.
NUMERIC (synonym for DECIMAL)				See DECIMAL.
REAL	-3.402^{38} to 3.402^{38}	decimal	10 ⁻³⁸ to 10 ³⁸ , 38 significant digits	
SMALLINT	-32,768 to 32,767	smallint	-32,768 to 32,767	
TIME	00:00:00 to 24:00:00	char, time, or datetime	32K (char)	
TIMESTAMP	0001-01-01- 00.00.00.0000000 to 9999-12-31- 24.00.00.000000	char or datetime	32K (char)	If the pdb_convert_datetime parameter is false, TIMESTAMP values are sent as char datatype strings. If the pdb_convert_datetime parameter is true, TIMESTAMP values are converted to datetime values.
VARCHAR	32,672 bytes	varchar	32K	
VARCHAR FOR BIT DATA	32,672 bytes, binary data	varbinary	32K	
VARGRAPHIC	16,336 characters, double-byte character data	univarchar	32K	

Replication Server 15.0 unsigned datatype mapping

For Replication Server 15.0, unsigned datatypes are supported and can be specified in the replication definitions.

For versions of Replication Server earlier than 15.0, these datatypes cannot be specified and the following table identifies the replication definition datatypes that should be used.

Table 3-3: Unsigned integer re	eplication definition	datatype mapping

RepServer 15.0 unsigned datatypes	Replication definition datatypes
unsigned bigint	NUMERIC (20)
unsigned int	NUMERIC (10)
unsigned smallint	INT
unsigned tinyint	TINYINT

Replication Agent objects in the IBM DB2 Universal Database primary database

Note This section describes the schema and details of Replication Agent objects for a primary database that resides in the IBM DB2 Universal Database server. For more general information, see the *Replication Agent Administration Guide*.

Replication Agent creates objects in the IBM DB2 Universal Database primary database to assist with replication tasks. Replication Agent also uses the native database transaction log maintained by the IBM DB2 Universal Database server to capture transactions in the primary database for replication.

Replication Agent for UDB creates tables in the primary database for its system information. Replication Agent also creates Java stored procedures used to truncate transaction log files in the primary database. To create the procedures, Replication Agent installs jar files into the primary database. The Replication Agent system tables and procedures are created when the pdb_xlog command is invoked with the init keyword. When you invoke this command, Replication Agent generates a SQL script that is run in the primary database. This script is stored in the *create.sql* file in the *RAX-15_2\inst_name\scripts\xlog* directory.

The *create.sql* script creates the Replication Agent objects. These objects must be created before any tables can be marked for replication in the primary database.

Note The JAR files are installed when the pdb_xlog init command is executed. The pdb_xlog remove command uninstalls the JAR files from the primary database. You must issue pdb_xlog remove command before reinitializing Replication Agent. See "Java procedure objects" on page 89.

Replication Agent objects

This section describes objects that Replication Agent creates in the primary database to support replication.

Replication Agent object names

There are two variables in the Replication Agent object names shown in this chapter:

- *prefix* represents the one- to three-character string value of the pdb_xlog_prefix parameter (the default is ra_).
- xxx represents an alphanumeric counter, a string of characters that is (or may be) added to a table name to make that name unique in the database.

The value of the pdb_xlog_prefix parameter is the prefix string used in all Replication Agent object names.

If this value conflicts with the names of existing database objects in your primary database, you can change the value of the pdb_xlog_prefix parameter by using the ra_config command.

Note Replication Agent uses the value of pdb_xlog_prefix to find its objects in the primary database. If you change the value of pdb_xlog_prefix after you create the Replication Agent objects, the Replication Agent instance will not be able to find the objects that use the old prefix.

Use the pdb_xlog command to view the names of Replication Agent objects in the primary database.

See the *Replication Agent Administration Guide* for details on setting up replication object names.

Table objects

Table 3-4 lists the Replication Agent tables. No permissions are granted on these tables when they are created. All of these tables contain at least one index, and some contain more than one index.

Table 3-4: Replication Agent tables

Table	Database name
System table	prefixxlog_system_
Marked objects table	prefixmarked_objs_xxx
LOB columns table	prefixblob_columns_xxx
Log Admin work table	prefixrawork_xxx
Proc active table	prefixprocactive_xxx
Force record table	prefixforce_record_xxx
rs_marker shadow table	prefixmarkersh_xxx
rs_dump shadow table	prefixdumpsh_xxx

Java procedure objects

Replication Agent for UDB installs SYBRAUJAR.jar and SYBTRUNCJAR.jar into the following directories.

- On Windows, the files are installed in \$DB2DIR/SQLLIB/FUNCTION/jar/pds_username. Here, \$DB2DIR is the path to the IBM DB2 Universal Database installation, and pds_username is the value of pds_username.
- On UNIX, the files are installed in \$HOME/sqllib/function/jar/pds_username. Here, \$HOME is the home directory of the IBM DB2 Universal Database instance owner, and pds_username is the value of pds_username.

These jar files implement several Java procedures in the IBM DB2 Universal Database primary database. Table 3-5 lists the Java procedures that are created and used in log truncation.

Table 3-5: Java procedures for truncation

Procedure	Database name
Retrieves the name of the log file that contains the current LSN	prefixget_log_name_
Retrieves the version of the get_log_name Java class	prefixget_version_str_
Truncates the database log file or files from the archive log directory	prefixtrunc_log_files_
Retrieves the version of the trunc_log_files Java class	prefixget_trunc_ver_str_

Getting actual names of the Replication Agent objects

The Replication Agent instance generates the names of its database objects. To find out the actual names of these objects, use the pdb_xlog command.

Finding out the names of Replication Agent objects

 At the Replication Agent administration port, invoke the pdb_xlog command with no keywords:

The pdb_xlog command returns a list of objects in the primary database.

Marked objects table

One of the Replication Agent objects is the **marked objects table**. The marked objects table contains an entry for each marked table in the primary database. Each marked table entry contains the following information:

- Name of the marked primary object (table)
- Primary object's replicated name
- Type of the primary object (table only, in Replication Agent for UDB)
- "Replication enabled" flag for the primary object
- Owner of the primary object
- "Send owner" flag
- Tablespace ID of the primary object
- Table ID of the primary object
- "Convert datetime" flag

Original value of the table's DATA CAPTURE attribute

Administering the transaction log

The Replication Agent for UDB supports truncating transaction logs. All IBM DB2 Universal Database transaction logs are maintained through the data server.

Truncating the transaction logs

Replication Agent for UDB can be configured to truncate transaction logs from either the active or the archive log directory. When you have enabled IBM DB2 Universal Database archiving with LOGARCHMETH1, you can also configure a second archive location by setting the LOGARCHMETH2 IBM DB2 Universal Database configuration parameter. IBM DB2 Universal Database then archives logs into the two directories. You can then configure Replication Agent to automatically truncate the processed archives from one of these directories.

To configure Replication Agent to truncate logs from the archive log directory, set the following configuration parameters:

- Set pdb_archive_path to point to the location specified by either LOGARCHMETH1 or LOGARCHMETH2.
- Set pdb_archive_remove to true if you want Replication Agent to delete the archives that are no longer necessary.

Note By default, the pdb_archive_remove property is set to false. You must configure the pdb_archive_path property before setting pdb_archive_remove to true.

 To enable automatic truncation, set truncation_type to interval, and set truncation_interval to a value greater than "0" (zero), which will cause the log files to be deleted at the designated interval. Alternately, set truncation_type to locator_update, which causes truncation to occur each time Replication Agent receives a new LTM Locator value from the primary Replication Server. For manual truncation, execute the Replication Agent pdb_truncate_xlog command, which causes Replication Agent to immediately truncate the transaction log based on the most recent truncation point received from the primary Replication Server.

Warning! If you enable truncation without also setting pdb_archive_path, Replication Agent deletes the primary database log files it no longer needs from the active log directory.

When IBM DB2 Universal Database truncate runs, the oldest LSN for which Replication Agent has not processed a commit/rollback (oldest active LSN) is obtained and the archive log file that contains the LSN is determined. All archive log files up to but not including the file with the oldest active LSN are deleted.

For more information on these properties see the *Replication Agent Reference Manual*. For a more detailed description of truncating, see "Chapter 3, Administering Replication Agent" in the *Replication Agent Administration Guide*. For a list of the stored procedures used for truncation, see Table 3-5 on page 90.

APPENDIX A Upgrading Replication Agent

Topic	Page
Upgrading Replication Agent for Microsoft SQL Server	93
Upgrading Replication Agent for Oracle	111
Upgrading Replication Agent for UDB	124

Upgrading Replication Agent for Microsoft SQL Server

Replication Agent for Microsoft SQL Server 15.2 must be installed on the same Windows host on which the primary Microsoft SQL Server is running, and Replication Agent for Microsoft SQL Server 15.2 cannot be installed on a UNIX or Linux host. Before upgrading, you must therefore consider where the existing instance of the earlier version of Replication Agent is installed and the current version of the primary data server.

When you use any of the upgrade procedures described in this section, the new Replication Agent for Microsoft SQL Server 15.2 instances will have the same configuration as previously existing instances, including instance names, administrative user IDs and passwords, and administrative port numbers.

Note Replication Agent for Microsoft SQL Server 15.2 does not support downgrading to an earlier version.

Upgrading a trigger-based Replication Agent (version 15.0) when the primary Microsoft SQL Server is version 2005

This section describes how to upgrade Replication Agent 15.0 to 15.2 in the following specific situations:

Note All of these upgrades are based on the primary Microsoft SQL Server 2005.

- Replication Agent 15.2 is installed on the same Windows host as the earlier version of Replication Agent.
- Replication Agent 15.2 is installed on a different Windows host than the earlier version of Replication Agent.
- Replication Agent 15.2 is installed on a Windows host, but the earlier version of Replication Agent is installed on a UNIX or Linux host.

Note Replication Agent 15.2 must be installed on the same host on which the primary Microsoft SQL Server is running.

Replication Agent 15.2 is installed on the same Windows host as the earlier version, and the current version of Microsoft SQL Server is 2005

- Upgrading when the previous Replication Agent version and Replication Agent 15.2 are on the same Windows host
 - 1 For each existing Replication Agent for Microsoft SQL Service instance, Sybase recommends that you back up the complete existing Replication Agent instance directory.
 - 2 Install the Replication Agent 15.2 software as described in "Installing the Replication Agent software" in the *Replication Agent Installation Guide*. Sybase recommends that you install Replication Agent 15.2 into the same SYBASE directory as the earlier version of Replication Agent.
 - 3 On the host on which the primary data server is running, verify that the Microsoft Filter Manager Library is the correct version as described in "The sybfilter driver" on page 8.
 - 4 Verify that your primary data server meets the requirements described in "Microsoft SQL Server requirements" on page 2.

- 5 Stop the Microsoft SQL Server Analysis Service. From the Microsoft Windows Control Panel, choose Administrative Tools | Services, and find the service named SQL Server Analysis Service(SERVER), where SERVER is the name of your Microsoft SQL Server data server. Stop this service.
- 6 Make sure Microsoft SQL Server is configured to allow a remote DAC connection. Use the Microsoft SQL Server Surface Area Configuration tool to enable a remote DAC connection:
 - a From the Windows Start menu, choose Microsoft SQL Server | Surface Area Configuration | Configuration Tools | SQL Server Surface Area Configuration | Surface Area Configuration for Features
 - b In the Surface Area Configuration for Features window, choose DAC under MSSQLSERVER/Database Engine, and make sure the Enable remote DAC check box is selected.
- 7 In the primary Microsoft SQL Server, grant each previously existing pds_username user the additional required privileges. See "Replication Agent permissions" on page 7.
- 8 Use the Replication Agent 15.2 sybfilter driver to make the Microsoft SQL Server transaction log files readable by Replication Agent. For details on installing and using the sybfilter driver, see Appendix B, "Using the sybfilter driver." However, at this time, it is not necessary to stop and restart Microsoft SQL Server since it is done in a later step in this procedure.
- 9 Create the 15.2 version of all valid existing Replication Agent instances:

Note This step creates new Replication Agent 15.2 instances for all valid existing instances of the earlier version of Replication Agent, regardless of whether the existing instances are for Oracle, IBM DB2 Universal Database, or Microsoft SQL Server. To complete the upgrade for Oracle or UDB instances, see the appropriate section in this appendix. If you do not want to run a newly created instance on this host, simply delete the new instance directory.

- a Open a command window.
- b Change directory to the Replication Agent 15.2 bin directory:
 - cd %SYBASE%\RAX-15_2\bin
- c Create new versions of all valid existing instances:

```
ra_admin -u src_directory
```

Here, *src_directory* is the full path name of the earlier version's Replication Agent installation directory. This is the source directory. For example:

```
ra_admin -u d:\sybase\RAX-15_0
```

For information about instances that did not upgrade successfully, see the administration logs (...\RAX-15_2\admin_logs). After you correct the problem, re-run this command. Be aware that this command does not affect those Replication Agent instances that have already been successfully upgraded.

- 10 If necessary, set the RA_JAVA_DFLT_CHARSET environment variable in each of the Replication Agent 15.2 RUN_instance scripts to the name of the Java character set that is equivalent to the one being used at the primary database. See the Replication Agent Administration Guide.
- 11 If necessary, override the default maximum amount of memory available to the JRE by setting the RA_JAVA_MAX_MEM environment variable in the Replication Agent 15.2 *RUN_instance* script. Replication Agent 15.2 does not set the RA_JAVA_MAX_MEM environment variable in the executable or run scripts, which allows the JVM to use its default for the maximum heap size. See the *Replication Agent Administration Guide*.
- 12 Determine the primary Microsoft SQL Server DAC port number:
 - Using a text editor, open the ERRORLOG file in the root directory of your Microsoft SQL Server. For example:

```
C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\LOG\ERRORLOG
```

b Search for the string "Dedicated admin," and you will find an entry similar to this:

```
2008-11-09 13:40:02.40 Server Dedicated admin connection support was established for listening locally on port 1348.
```

- Make note of the port number specified; it is used in a later step in this procedure.
- 13 To prevent any loss of replicated data, deny users other than the previously existing Replication Agent pds_username users from any further access to the primary databases.

- 14 For each of the previously existing Replication Agent for Microsoft SQL Server instances, verify that it is in *Replicating* state and allow replication to finish. To verify that replication has completed:
 - a Periodically issue the ra_statistics command, watching until all of the following statistics are zero (0):

Operation queue size
Operation data hash size
Input queue size
Output queue size

- b When all of these values are zero, note the Last QID Sent from the last set of statistics.
- c Issue the ra_locator update command so that Replication Agent retrieves the truncation point from Replication Server.
- d Wait, then issue the ra_locator command again and compare the displayed locator with that of the Last QID Sent. If they are different, wait and repeat this step.
- Quiesce the Replication Agent instance by issuing the quiesce command.
- f Shut down the Replication instance by issuing the shutdown command.
- 15 When all previously existing Replication Agent instances have been shut down, stop the Microsoft SQL Server service:
 - a In Control Panel | Administrative Tools | Services, find the service named SQL Server (*SERVER*). Here, *SERVER* is the name of your SQL Server data server. For example,

```
SOL Server (TEAMSTER)
```

- b Stop the service.
- 16 Restart Microsoft SQL Server in single-user mode by opening a new command window and executing this command:

```
"C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Binn\sqlservr.exe" -m -s
instanceName
```

Here, *instanceName* is the name of the Microsoft SQL Server instance.

- 17 Download and install the Microsoft SQL Server JDBC driver, and set the CLASSPATH environment variable, as described in the *Replication Agent Installation Guide*. If the CLASSPATH contains any other Microsoft SQL Server JDBC driver, remove it. Only the Microsoft SQL Server JDBC driver required by Replication Agent 15.2 can be in the CLASSPATH.
- 18 Start and log in to each of the Replication Agent for Microsoft SQL Server 15.2 instances and do the following:
 - a Verify that Microsoft SQL Server has been configured to allow a remote DAC connection.
 - b Set the pds_dac_port_number configuration parameter:

```
ra_config pds_dac_port_number, port
```

Here, *port* is the DAC port number you found in step 9.

- c Set the rs_charset configuration parameter to match the Replication Server character set, as described in the Replication Agent Reference Manual.
- d Use the test_connection command to ensure that Replication Agent can connect to both Microsoft SQL Server and Replication Server.
- e Initialize the Replication Agent instance and migrate the Replication Agent instance's metadata by issuing the ra_migrate command.

When this command executes in the first Replication Agent 15.2 instance, it will also initialize the Microsoft SQL Server. In subsequent Replication Agent 15.2 instances, it will only initialize the instance and migrate the instance's metadata.

- 19 Stop the Microsoft SQL Server in single-user mode:
 - a Log in to the server:

```
"C:\Program Files\Microsoft SQL
Server\90\Tools\Binn\SQLCMD.EXE" -U username -P
password -S serverName
```

Here, *username*, *password*, and *serverName* are your user ID, password, and Microsoft SQL Server name.

- b Issue the shutdown command.
- 20 Restart Microsoft SQL Server in multi-user mode (normal start):
 - a In Control Panel | Administrative Tools | Services, find the service named SQL Server (*SERVER*). Here, *SERVER* is the name of your Microsoft SQL Server data server. For example,

SQL Server (TEAMSTER)

- b Start the service.
- 21 Log in to each of the Replication Agent Microsoft SQL Server 15.2 instances and resume replication by issuing the resume command.
- 22 Allow all users to access the primary databases.

Replication Agent 15.2 is installed on a different Windows host than the earlier version of Replication Agent, and the current version of Microsoft SQL Server is 2005

Upgrading when Replication Agent 15.2 is on a different Windows host than earlier versions

- For each existing Replication Agent for Microsoft SQL Server instance, Sybase recommends that you back up the complete existing Replication Agent instance directory.
- 2 Make the installation directory of the earlier version of Replication Agent available as the source directory for the upgrade procedure:
 - On the Windows host on which the earlier version of Replication Agent is running, share the drive on which the Replication Agent is installed.
 - On the Windows host on which Replication Agent 15.2 is installed, map a network drive to the host and drive in the previous step. On this mapped network drive, use the installation directory of the earlier version of Replication Agent as the source directory for the upgrade.
- 3 Starting with step 3 of the procedure "Replication Agent 15.2 is installed on the same Windows host as the earlier version, and the current version of Microsoft SQL Server is 2005" on page 94, follow the steps to complete the upgrade.

Replication Agent 15.2 is installed on a Windows host, but the earlier version is installed on a UNIX or Linux host, and the current version of Microsoft SQL Server is 2005

- Upgrading when Replication Agent 15.2 is on Windows, but the earlier version of Replication Agent is on UNIX or Linux, and the current version of Microsoft SQL Server is 2005
 - 1 For each existing Replication Agent for Microsoft SQL Server instance, Sybase recommends that you back up the complete existing Replication Agent instance directory.
 - 2 On the Windows host, create a substitute installation directory and instance subdirectories for the existing instances in the earlier version of Replication Agent that is on the UNIX host:
 - a On the Windows host, in the *SYBASE* directory in which you installed Replication Agent 15.2, create a directory with the name of the earlier version of Replication Agent that you are upgrading from. For Replication Agent 15.0, name the directory *RAX-15_0*. You will use this newly created directory as the source directory for the upgrade.
 - In the directory you just created, create a subdirectory for each existing Replication Agent for Microsoft SQL Server instance that is on your UNIX host. The names of the instance subdirectories you create must exactly match the names of the instance subdirectories on the UNIX host. Within each of these instance subdirectories that you just created, create two subdirectories named *log* and *scripts*.
 - c For each of the existing Replication Agent instances, copy its configuration (.cfg) file from the UNIX host into the instance subdirectory you created in the previous step. The instance configuration file on the UNIX host is located in the \$SYBASE/RAX-nn_n/instname directory. Here, RAX-nn_n is the previous Replication Agent installation directory, and instname is the name of the instance.
 - 3 Starting with step 3 in the procedure "Replication Agent 15.2 is installed on the same Windows host as the earlier version, and the current version of Microsoft SQL Server is 2005" on page 94, follow the steps to complete the upgrade.

Upgrading a trigger-based Replication Agent (version 15.0) when the primary Microsoft SQL Server is version 7 or 2000

Note Replication Agent 15.2 requires that the primary Microsoft SQL Server be version 2005 SP2.

This section describes how to simultaneously upgrade Replication Agent 15.0 to 15.2 and upgrade Microsoft SQL Server 7 or 2000 to 2005 in the following specific situations:

- Replication Agent 15.2 is installed on the same Windows host as the earlier version of Replication Agent
- Replication Agent 15.2 is installed on a different Windows host than the earlier version of Replication Agent
- Replication Agent 15.2 is installed on a Windows host, but the earlier version of Replication Agent is installed on a UNIX or Linux host

Note Replication Agent 15.2 must be installed on the same host on which the primary Microsoft SQL Server is running.

Replication Agent 15.2 is installed on the same Windows host as the earlier version of Replication Agent, and the current version of Microsoft SQL Server is 7 or 2000

Installing Replication Agent 15.2 on the same Windows host as the earlier version

- For each existing Replication Agent for Microsoft SQL Server instance, Sybase recommends that you back up the complete existing Replication Agent instance directory.
- 2 Sybase recommends that you install Replication Agent 15.2 into the same SYBASE directory as the earlier version of Replication Agent.
- On the host on which the primary data server is running, verify that the Microsoft Filter Manager Library is the correct version as described in "The sybfilter driver" on page 8.

4 Create the 15.2 version of all valid existing Replication Agent instances.

Note This step creates new Replication Agent 15.2 instances for all valid existing instances of the earlier version of Replication Agent, regardless of whether the existing instances are for Oracle, IBM DB2 Universal Database, or Microsoft SQL Server. To complete the upgrade for Oracle or UDB instances, see the appropriate section in this appendix. If you do not want to run a newly created instance on this host, simply delete the new instance directory.

- a Open a command window.
- b Change directory to the Replication Agent 15.2 *bin* directory:

```
cd %SYBASE%\RAX-15_2\bin
```

c Create new versions of all valid existing instances:

```
ra_admin -u src_directory
```

Here, *src_directory* is the full path name of the earlier version's Replication Agent installation directory. This is the source directory. For example:

```
ra_admin -u d:\sybase\RAX-15_0
```

For information about the instances that did not upgrade successfully, see the administration logs (...\RAX-15_2\admin_logs). After you correct the problem, re-run this command. This command does not affect those Replication Agent instances that have already been successfully upgraded.

- 5 If necessary, set the RA_JAVA_DFLT_CHARSET environment variable in each of the Replication Agent 15.2 *RUN_instance* scripts to the name of the Java character set that is equivalent to the one being used at the primary database. See the *Replication Agent Administration Guide*.
- If necessary, override the default maximum amount of memory available to the JRE by setting the RA_JAVA_MAX_MEM environment variable in the Replication Agent 15.2 *RUN_instance* script. Replication Agent 15.2 does not set the RA_JAVA_MAX_MEM environment variable in the executable or run scripts, which allows the JVM to use its default for the maximum heap size. See the *Replication Agent Administration Guide*.
- 7 To prevent loss of any replicated data, deny users (other than the previously existing Replication Agent pds_username users) any further access to the primary databases.

- 8 For each of the previously existing Replication Agent for Microsoft SQL Server instances, verify that it is in *Replicating* state and allow replication to finish. To verify that replication has completed:
 - a Periodically issue the ra_statistics command, watching until all of the following statistics are zero (0):

Operation queue size
Operation data hash size
Input queue size
Output queue size

- b When all of these values are zero, note the Last QID Sent from the last set of statistics
- c Issue the ra_locator update command so that Replication Agent retrieves the truncation point from Replication Server.
- d Wait, then issue the ra_locator command again and compare the displayed locator with that of the Last QID Sent. If they are different, wait and repeat this step
- Quiesce the Replication Agent instance by issuing the quiesce command
- f Shut down the Replication instance by issuing the shutdown command.
- 9 When all previously existing Replication Agent instances have been stopped, upgrade the Microsoft SQL Server installation to version 2005 SP2. See Microsoft documentation for instructions. Verify that your primary data server meets the requirements described in "Microsoft SQL Server requirements" on page 2.
- 10 In the primary Microsoft SQL Server, grant each previously existing pds_username user the additional required privileges. See "Replication Agent permissions" on page 7.
- 11 Download and install the Microsoft SQL Server JDBC driver, and set the CLASSPATH environment variable, as described in the Replication Agent Installation Guide. If the CLASSPATH contains any other Microsoft SQL Server JDBC driver, remove it. Only the Microsoft SQL Server JDBC driver required by Replication Agent 15.2 should be in the CLASSPATH.

- 12 Use the Replication Agent 15.2 sybfilter driver to make the Microsoft SQL Server transaction log files readable by Replication Agent. For details on installing and using the sybfilter driver, see Appendix B, "Using the sybfilter driver." However, at this time, it is not necessary to stop and restart Microsoft SQL Server because it is done in a later step in this procedure.
- 13 Determine the primary Microsoft SQL Server DAC port number:
 - Using a text editor, open the *ERRORLOG* file in the root directory of your Microsoft SQL Server. For example:

```
C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\LOG\ERRORLOG
```

b Search for the string "Dedicated admin," and you will find an entry similar to this:

```
2008-11-09 13:40:02.40 Server Dedicated admin connection support was established for listening locally on port 1348
```

- c Make note of the port number specified; it is used in a later step in this procedure.
- 14 Stop the Microsoft SQL Server service:
 - a In Control Panel | Administrative Tools | Services, find the service named SQL Server (*SERVER*). Here, *SERVER* is the name of your Microsoft SQL Server data server. For example,

```
SQL Server (TEAMSTER)
```

- b Stop the service.
- 15 Restart Microsoft SQL Server in single-user mode by opening a new command window and executing this command:

```
"C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Binn\sqlservr.exe" -m -s
instanceName
```

Here, *instanceName* is the name of the Microsoft SQL Server instance.

- 16 Start and log in to each of the Replication Agent for Microsoft SQL Server 15.2 instances and do the following:
 - a Verify that Microsoft SQL Server has been configured to allow a remote DAC connection.
 - b Set the pds_dac_port_number configuration parameter:

```
ra_config pds_dac_port_number, port
```

Here, *port* is the DAC port number you found in step 12.

- Set the rs_charset configuration parameter to match the Replication Server character set, as described in the *Replication Agent Reference Manual*.
- d Use the test_connection command to ensure that Replication Agent can connect to both Microsoft SQL Server and Replication Server.
- e Initialize the Replication Agent instance and migrate the Replication Agent instance's metadata by issuing the ra_migrate command.

When this command executes in the first Replication Agent 15.2 instance, it will also initialize the Microsoft SQL Server. In subsequent Replication Agent 15.2 instances, it will only initialize the instance and migrate the instance's metadata.

- 17 Stop the Microsoft SQL Server in single-user mode:
 - a Log in to the server:

```
"C:\Program Files\Microsoft SQL
Server\90\Tools\Binn\SQLCMD.EXE" -U username -P
password -S serverName
```

Here, *username*, *password*, and *serverName* are your user ID, password, and Microsoft SQL Server name.

- b Issue the shutdown command.
- 18 Restart Microsoft SQL Server in multi-user mode (normal start):
 - a In Control Panel | Administrative Tools | Services, find the service named SQL Server (*SERVER*). Here, *SERVER* is the name of your Microsoft SQL Server data server. For example,

```
SQL Server (TEAMSTER)
```

- b Stop the service.
- 19 Log in to each of the Replication Agent Microsoft SQL Server 15.2 instances and resume replication:
 - a Use isql to log in to the Replication Agent instance:

```
isql -Uusername -Ppassword -SinstanceName
```

Here, *username*, *password*, and *instanceName* are your user ID, password, and Replication Agent instance name.

- b Issue the resume command.
- 20 Allow all users to access the primary databases.

Replication Agent 15.2 is installed on a different Windows host than the earlier version, and the current version of Microsoft SQL Server is 7 or 2000

- Upgrading when Replication Agent 15.2 is on a different host than a earlier version, and the current version of Microsoft SQL Server is 7 or 2000
 - 1 For each existing Replication Agent for Microsoft SQL Server instance, Sybase recommends that you back up the complete existing Replication Agent instance directory.
 - 2 Make the installation directory of the earlier version of Replication Agent available as the source directory for the upgrade procedure:
 - a On the Windows host on which the earlier version of Replication Agent is running, share the drive on which the Replication Agent is installed.
 - b On the Windows host on which Replication Agent 15.2 is installed, map a network drive to the host and drive in the previous step. On this mapped network drive, use the installation directory of the earlier version of Replication Agent as the source directory for the upgrade.
 - 3 Starting with step 3 in the procedure called "Replication Agent 15.2 is installed on the same Windows host as the earlier version of Replication Agent, and the current version of Microsoft SQL Server is 7 or 2000" on page 101, follow the steps to complete the upgrade.

Replication Agent 15.2 is installed on a Windows host but the earlier version of Replication Agent is installed on a UNIX or Linux host, and the current version of Microsoft SQL Server is 7 or 2000

- Upgrading when Replication Agent 15.2 is on Windows, but the earlier version is on UNIX or Linux
 - 1 For each existing Replication Agent for Microsoft SQL Server instance, Sybase recommends that you back up the complete existing Replication Agent instance directory.
 - 2 On the Windows host, create a substitute installation directory and instance subdirectories for the existing instances in the earlier version of Replication Agent that is on the UNIX host:

- a On the Windows host, in the *SYBASE* directory in which you installed Replication Agent 15.2, create a directory with the name of the earlier version of Replication Agent that you are upgrading from. For Replication Agent 15.0, name the directory *RAX-15_0*. You will use this newly created directory as the source directory for the upgrade.
- b In the directory you just created, create a subdirectory for each existing Replication Agent for Microsoft SQL Server instance that is on your UNIX host. The names of the instance subdirectories you create must exactly match the names of the instance subdirectories on the UNIX host. Within each of these instance subdirectories that you just created, create two subdirectories named *log* and *scripts*.
- c For each of the existing Replication Agent instances, copy its configuration (.cfg) file from the UNIX host into the instance subdirectory you created in the previous step. The instance configuration file on the UNIX host is located in the \$SYBASE/RAX-nn_n/instname directory. Here, RAX-nn_n is the previous Replication Agent installation directory, and instname is the name of the instance.
- 3 Starting with step 3 of the procedure called "Replication Agent 15.2 is installed on the same Windows host as the earlier version of Replication Agent, and the current version of Microsoft SQL Server is 7 or 2000" on page 101, follow the steps to complete the upgrade.

Upgrading a log-based Replication Agent (version 15.1)

This section describes how upgrade Replication Agent 15.1 to 15.2.

Note Replication Agent 15.2 must be installed on the same host on which the primary Microsoft SOL Server is running.

Upgrading Replication Agent 15.1 to 15.2

1 For each existing Replication Agent for Microsoft SQL Server instance, Sybase recommends that you first back up the Replication Agent System Database (RASD) as described in the *Replication Agent Administration Guide*. Back up the complete existing Replication Agent instance directory.

- 2 Install the Replication Agent 15.2 software as described in "Installing the Replication Agent software" in the *Replication Agent Installation Guide*. Sybase recommends that you install Replication Agent 15.2 into the same *SYBASE* directory as the earlier version of Replication Agent.
- 3 Use the Replication Agent 15.2 sybfilter driver to make the Microsoft SQL Server transaction log files readable by Replication Agent. For details on installing and using the sybfilter driver, see Appendix B, "Using the sybfilter driver." However, at this time, it is not necessary to stop and restart Microsoft SQL Server since it is done in a later step in this procedure.
- 4 Create the 15.2 version of all valid existing Replication Agent instances.

Note This step creates new Replication Agent 15.2 instances for all valid existing instances of the earlier version of Replication Agent, regardless of whether the existing instances are for Oracle, IBM DB2 Universal Database, or Microsoft SQL Server. To complete the upgrade for Oracle or UDB instances, see the appropriate section in this appendix. If you do not want to run a newly created instance on this host, simply delete the new instance directory.

- a Open a command window.
- b Set the SYBASE environment variables by changing to the *SYBASE* directory in which Replication Agent 15.2 is installed and executing the *SYBASE.bat* script.
- c Change directory to the Replication Agent 15.2 bin directory:

```
cd %SYBASE%\RAX-15_2\bin
```

d Create new versions of all valid existing instances:

```
ra_admin -u src_directory
```

Here, *src_directory* is the full path name of the earlier version's Replication Agent installation directory. This is the source directory. For example:

```
ra_admin -u d:\sybase\RAX-15_0
```

For information about the instances that did not upgrade successfully, see the administration logs (...\RAX-15_2\admin_logs). After you correct the problem, re-run this command. This command does not affect those Replication Agent instances that have already been successfully upgraded.

- 5 If necessary, set the RA_JAVA_DFLT_CHARSET environment variable in each of the Replication Agent 15.2 *RUN_instance* scripts to the name of the Java character set that is equivalent to the one being used at the primary database. See the *Replication Agent Administration Guide*.
- 6 If necessary, override the default maximum amount of memory available to the JRE by setting the RA_JAVA_MAX_MEM environment variable in the Replication Agent 15.2 *RUN_instance* script. Replication Agent 15.2 does not set the RA_JAVA_MAX_MEM environment variable in the executable or run scripts, which allows the JVM to use its default for the maximum heap size. See the *Replication Agent Administration Guide*.
- 7 To prevent loss of any replicated data, deny users (other than the previously existing Replication Agent pds_username users) any further access to the primary databases.
- 8 For each of the previously existing Replication Agent for Microsoft SQL Server instances, verify that it is in *Replicating* state and allow replication to finish. To verify that replication has completed:
 - a Periodically issue the ra_statistics command, watching until all of the following statistics are zero (0):

Operation queue size
Operation data hash size
Input queue size
Output queue size

- b When all of these values are zero, note the Last QID Sent from the last set of statistics.
- c Issue the ra_locator update command so that Replication Agent retrieves the truncation point from Replication Server.
- d Wait, then issue the ra_locator command again and compare the displayed locator with that of the Last QID Sent. If they are different, wait and repeat this step.
- e Quiesce the Replication Agent instance by issuing the quiesce command.
- f Shut down the Replication instance by issuing the shutdown command.
- 9 When all previously existing Replication Agent instances have been shut down, stop the Microsoft SQL Server service:

a In Control Panel | Administrative Tools | Services, find the service named SQL Server (*SERVER*). Here, *SERVER* is the name of your SQL Server data server. For example,

```
SOL Server (TEAMSTER)
```

- b Stop the service.
- 10 If you are upgrading from Replication Agent 15.1 GA or 15.1 ESD #1, restart Microsoft SQL Server in single-user mode by opening a new command window and executing this command:

```
"C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Binn\sqlservr.exe" -m -s
instanceName
```

Here, *instanceName* is the name of the Microsoft SQL Server instance. If you are upgrading from Replication Agent 15.1 ESD #2 or later, skip this step.

- 11 Download and install the Microsoft SQL Server JDBC driver, and set the CLASSPATH environment variable, as described in the *Replication Agent Installation Guide*. If the CLASSPATH contains any other Microsoft SQL Server JDBC driver, remove it. Only the Microsoft SQL Server JDBC driver required by Replication Agent 15.2 should be in the CLASSPATH.
- 12 Start and log in to each of the Replication Agent for Microsoft SQL Server 15.2 instances and do the following:
 - a Set the rs_charset configuration parameter to match the Replication Server character set, as described in the *Replication Agent Reference Manual*.
 - b Use the test_connection command to ensure that Replication Agent can connect to both Microsoft SQL Server and Replication Server.
 - c Initialize the Replication Agent instance and migrate the Replication Agent instance metadata by issuing the ra_migrate command.

When this command executes in the first Replication Agent 15.2 instance, it also initializes the Microsoft SQL Server. In subsequent Replication Agent 15.2 instances, it only initializes the instance and migrates the instance metadata.

- 13 If you are upgrading from Replication Agent 15.1 GA or 15.1 ESD #1, stop the Microsoft SQL Server in single-user mode:
 - a Log in to the server:

```
"C:\Program Files\Microsoft SQL
```

Server\90\Tools\Binn\SQLCMD.EXE" -U username -P password -S serverName

Here, *username*, *password*, and *serverName* are your user ID, password, and Microsoft SQL Server name.

b Issue the shutdown command.

If you are upgrading from Replication Agent 15.1 ESD #2 or later, skip this step.

- 14 Restart Microsoft SQL Server in multi-user mode (normal start):
 - a In Control Panel | Administrative Tools | Services, find the service named SQL Server (*SERVER*). Here, *SERVER* is the name of your Microsoft SQL Server data server. For example,

```
SQL Server (TEAMSTER)
```

- b Start the service.
- 15 Log in to each of the Replication Agent Microsoft SQL Server 15.2 instances and resume replication:
 - a Use isql to log in to the Replication Agent instance:

```
isql -Uusername -Ppassword -SinstanceName
```

Here, *username*, *password*, and *instanceName* are your user ID, password, and Replication Agent instance name.

- b Issue the resume command.
- 16 Allow all users to access the primary databases.

Upgrading Replication Agent for Oracle

Replication Agent for Oracle 15.2 must be installed on the same host on which the primary Oracle server is running to directly access the Oracle transaction log files.

Using any of the upgrade procedures described in this section, the new Replication Agent for Oracle 15.2 instances will have the same configuration as previously existing instances, including instance names, administrative user IDs and passwords, and administrative port numbers.

Note Replication Agent for Oracle 15.2 does not support downgrading Replication Agent for Oracle 15.2 to an earlier log-based version.

- Upgrading a log-based Replication Agent (15.1)
- Migrating Replication Agent 15.2 when upgrading Oracle 10g to 11g
- Upgrading a trigger-based Replication Agent 12.5 when the primary Oracle is version 10g
- Downgrading a log-based Replication Agent 15.2 to a trigger-based Replication Agent 12.5

Note For upgrades within a common release level, as in the case of an ESD applied to a particular version of Replication Agent, you should use the ra_admin -u option applied to a particular instance of Replication Agent or to all instances of Replication Agent. See the *Replication Agent Administration Guide*.

Upgrading a log-based Replication Agent (15.1)

This section describes how to upgrade Replication Agent for Oracle 15.1 to 15.2.

Note Replication Agent 15.2 must be installed on the same host on which the primary Oracle server is running.

Upgrading a log-based Replication version 15.1 to 15.2

1 For each existing Replication Agent for Oracle instance, Sybase recommends that you first back up the RASD as described in the *Replication Agent Administration Guide*. Back up the complete existing Replication Agent instance directory.

- 2 Install the Replication Agent 15.2 software as described in "Installing the Replication Agent software" in the *Replication Agent Installation Guide*. Sybase recommends that you install Replication Agent 15.2 into the same *SYBASE* directory as the earlier version of Replication Agent.
- 3 Download and install the Oracle JDBC driver, and set the CLASSPATH environment variable, as described in the *Replication Agent Installation Guide*. If the CLASSPATH contains another Oracle JDBC driver, remove it. Only the Oracle JDBC driver required by Replication Agent 15.2 should be in the CLASSPATH.
- 4 Create the 15.2 version of all valid existing Replication Agent instances.

Note This step creates new Replication Agent 15.2 instances for all valid existing instances of the earlier version of Replication Agent, regardless of whether the existing instances are for Oracle, IBM DB2 Universal Database, or Microsoft SQL Server. To complete the upgrade for Microsoft SQL Server or UDB instances, see the appropriate section in this appendix. If you do not want to run a newly created instance on this host, simply delete the new instance directory.

- a On UNIX, set the SYBASE environment variables by changing to the *SYBASE* directory in which Replication Agent 15.2 is installed and sourcing the *SYBASE* script:
 - For C Shell: source SYBASE.csh
 - For Bourne or Korn shell: . SYBASE.sh
- b Change directory to the Replication Agent 15.2 bin directory:
 - On UNIX:

```
cd $SYBASE/RAX-15_2/bin
```

On Windows:

```
cd %SYBASE%\RAX-15_2\bin
```

c Create new versions of all valid existing instances:

```
ra_admin -u src_directory
```

Here, *src_directory* is the full path name of the earlier version's Replication Agent installation directory. This is the source directory. For example:

```
ra_admin -u d:\sybase\RAX-15_1
```

For information about the instances that did not upgrade successfully, see the administration logs (.../RAX-15_2/admin_logs). After you correct the problem, re-run this command. This command does not affect those Replication Agent instances that have already been successfully upgraded.

- 5 If necessary, set the RA_JAVA_DFLT_CHARSET environment variable in the Replication Agent 15.2 *RUN_instance* script to the name of the Java character set that is equivalent to the one being used at the primary database. See the *Replication Agent Administration Guide*.
- 6 If necessary, override the default maximum amount of memory available to the JRE by setting the RA_JAVA_MAX_MEM environment variable in the Replication Agent 15.2 *RUN_instance* script. Replication Agent 15.2 does not set the RA_JAVA_MAX_MEM environment variable in the executable or run scripts, which allows the JVM to use its default for the maximum heap size. See the *Replication Agent Administration Guide*.
- 7 In the primary Oracle database, grant the previously existing pds_username user any additional required privileges. See "Replication Agent permissions" on page 7.
- 8 To prevent any loss of replicated data, deny users (other than the previously existing Replication Agent pds_username user) any further access to the primary Oracle instance.
- 9 Log in to the previously existing Replication Agent instance, verify that it is in *Replicating* state and allow replication to finish. To verify that replication has completed:
 - a Periodically issue the ra_statistics command, watching until all of the following statistics are zero (0):

Input queue size
Output queue size

- b When all of these values are zero, note the Last QID Sent from the last set of statistics
- c Issue the ra_locator update command so that Replication Agent retrieves the truncation point from Replication Server.
- d Wait, then issue the ra_locator command again and compare the displayed locator with that of the Last QID Sent. If they are different, wait and repeat this step.
- e Quiesce the Replication Agent instance by issuing the quiesce command.

- f Shut down the Replication instance by issuing the shutdown command.
- 10 Start and log in to the Replication Agent 15.2 instance and migrate the Replication Agent metadata by issuing the ra_migrate command.
- 11 Allow all users to access the primary Oracle.
- 12 Log in to the RSSD, and set the Replication Server locator to zero:

```
rs_zeroltm source_ds, source_db
```

Here, *source_ds* matches the previous Replication Agent instance values for rs_source_ds, and *source_db* matches the previous Replication Agent instance values for rs_source_db.

Note This step is required because the format of the QID has changed in version 15.2, requiring the previous value held by Replication Server to be replaced. The rs_source_ds and rs_source_db values are migrated from the earlier version of Replication Agent and do not need to be changed.

- 13 In the Replication Agent 15.2 instance, do the following:
 - To have automatic archiving turned off, set pdb_include_archives to false. To have automatic archiving turned on, set pdb_include_archives to true, set pdb_archive_path to the directory containing the archive logs, and set pdb_archive_remove to false. See "Redo and archive log setup" on page 33.
 - Resume replication by issuing the resume command.

Migrating Replication Agent 15.2 when upgrading Oracle 10g to 11g

Replication Agent for Oracle migration to support upgrading Oracle 10g to Oracle 11g is similar to upgrading Replication Agent for Oracle 15.1 to Replication Agent 15.2.

Note Quiesce the Replication Agent before upgrading Oracle 10g to Oracle 11g. The replication environment must have completed processing of all transactions before upgrading Oracle because the Replication Agent moves the truncation point to the end of the log during Replication Agent migration.

Migrating from Oracle 10g to Oracle 11g

- Follow the steps that Oracle provides in their documentation for upgrading from Oracle 10g to Oracle 11g.
- 2 After upgrading Oracle, re-start the Replication Agent and issue the ra_migrate command.
- 3 As with the log-based Replication Agent upgrade process, you may need to reconfigure the Replication Agent for Oracle instance to read archive logs depending on the configuration in Oracle. This may change following the Oracle upgrade.

If you are upgrading from log-based Replication Agent and upgrading Oracle 10g to Oracle 11g at the same time, migrate Replication Agent 15.2 only once.

Upgrading a trigger-based Replication Agent 12.5 when the primary Oracle is version 10g

Upgrading a trigger-based Replication Agent 12.5 when the primary Oracle is 10g

- Back up the existing Replication Agent instance directory that contains the following configuration file:
 \$SYBASE/rax-12 5/<instance>.cfg.
- Install the Replication Agent 15.2 software on a machine where it can directly read the Oracle redo logs.
- 3 Create a Replication Agent 15.2 instance with a different name and port number than the Replication Agent 12.5 instance. The *port* and *port+1* must be unique on the machine.

Do not start the instance.

- 4 Update the appropriate interfaces file (*interfaces* for UNIX, *sql.ini* for Windows) with the new instance name and new port number so that the migration script can isql in to the new Replication Agent 15.2 instance.
- 5 Update the Replication Agent 15.2 instance configuration file by running the generation script at

\$SYBASE/RAX-15_2/bin/gen_RAO_migrate_with_parms.ksh:

```
cd $SYBASE/RAX-15_2/bin
./gen_RAO_migrate_with_parms.ksh mySrcRao myuid
mypwd /workdir /path/mySrcRao.cfg
../myTgtRao/myTgtRao.cfg
```

- *mySrcRao* is the name of the *interfaces* or *sql.ini* file entry for the Replication Agent 12.5.
- *myuid* is the user ID for logging in to the Replication Agent 12.5 instance.
- *mypwd* is the password for logging in to the Replication Agent 12.5 instance. If there is no password, use two double-quotes with nothing in between ("").
- /workdir is the path name of a directory to use as a work area and
 where the <src_instance>_migrate_<date>.cmds migration file is
 created.
- /path/mySrcRao.cfg is the full path name of the Replication Agent 12.5 instance configuration file.
- ../myTgtRao/myTgtRao.cfg is the path name of the Replication Agent 15.2 instance configuration file that was created in step 3.

The generation script copies to the Replication Agent 15.2 configuration file or creates parameter initialization commands in the migration file for most of the parameters in the Replication Agent 12.5 configuration file. The generated migration script is a file called

/<workdir>/<src_instance>_migrate_<date>.cmds. It contains Replication Agent commands that you will later run against the Replication Agent 15.2 instance to perform the following tasks:

- Initialize the primary database.
- Initialize the Replication Agent 15.2 instance (including incrementing the database generation ID).
- Re-mark all the tables, procedures, and LOB columns that were marked in the Replication Agent 12.5 instance.

If the Replication Agent 12.5 and the Replication Agent 15.2 instances are on different machines and both configuration files cannot be accessed at the same time, copy the Replication Agent 12.5 configuration file to a location on the Replication Agent 15.2 instance's machine where it can be read by the generation script.

Note When the Korn shell script is running on Windows and the following message appears, you can ignore it:

tail: write error on standard output: The pipe is being closed.

If the Replication Agent 15.2 instance is on a Windows machine that does not have Korn shell available, copy the generation script and the Replication Agent 15.2 instance's configuration file to a UNIX machine from which you can log in to the Replication Agent 12.5 instance. This copy of the Replication Agent 15.2 instance's configuration file is updated by the generation script. After it is updated, copy the configuration file back to the Replication Agent 15.2 instance directory.

Note After the migration script is generated, do not mark, unmark, enable, or disable any of the tables, LOB columns, or procedures. Also, do not modify any parameters in the Replication Agent 12.5 instance. If you do, these changes will not be applied to the Replication Agent 15.2 instance.

To see what objects will be marked and what LOB columns enabled, examine this generated file:

/<workdir>/<src_instance>_migrate_<date>.cmds.

If you want to change what is marked or enabled, you can make changes to this file. For example, you can set pdb_convert_datetime to true for some tables and procedures and to false for others.

Install the Oracle 10g JDBC driver for JDK 1.6 on the same machine where you installed Replication Agent 15.2, and add the JDBC driver's path to your CLASSPATH environment variable on this machine, as described in the *Replication Agent Installation Guide*.

Note No other Oracle drivers are allowed in the CLASSPATH.

- 8 Set the RA_JAVA_DFLT_CHARSET environment variable in the *RUN_instance* script to the name of the Java character set that is equivalent to the one being used at the primary database. See the *Replication Agent Administration Guide*.
- If necessary, override the default maximum amount of memory available to the JRE by setting the RA_JAVA_MAX_MEM environment variable in the Replication Agent 15.2 *RUN_instance* script. Replication Agent 15.2 does not set the RA_JAVA_MAX_MEM environment variable in the executable or run scripts, which allows the JVM to use its default for the maximum heap size. See the *Replication Agent Administration Guide*.
- 10 Start and log in to the Replication Agent 15.2 instance.
- 11 Set rs_charset to match the Replication Server character set, as described in the *Replication Agent Reference Manual*.

12 Test the primary database connection:

```
test_connection PDS
```

- 13 At the primary Oracle database, grant the Replication Agent 15.2 primary Oracle user (the user specified by the pds_username configuration parameter) the additional required privileges. See "Replication Agent permissions" on page 30.
- 14 Prevent users (other than the Replication Agent 15.2 pds_username user) from any further access to the primary database.
- 15 In the Replication Agent12.5 instance, verify that it is in *Replicating* state and allow replication to finish. To verify that replication has completed:
 - a Periodically issue the ra_statistics command, watching until all of the following statistics are zero (0):

Operation queue size Operation data hash size Input queue size Output queue size

- b When they are all zero, note the Last QID Sent from the last set of statistics.
- c Issue the ra_locator update command so that Replication Agent 12.5 retrieves the truncation point from Replication Server.
- d Wait, and then issue the ra_locator command and compare the displayed locator with that of the Last QID Sent. If they are different, wait and repeat this step.
- 16 Quiesce the Replication Agent 12.5 instance.
- 17 In the Replication Agent 12.5 instance, remove the Replication Agent transaction log:

```
pdb_xlog remove, force
```

- 18 Shut down the Replication Agent 12.5 instance.
- 19 In the primary Oracle database:
 - a Enable supplemental logging of primary key data.
 - b Enable archiving of redo logs.
 - c Archive all non-archived redo logs, and force Oracle to start writing to a clean log. For example:

alter system archive log current;

See "Replication Agent permissions" on page 30.

20 Run the migration script that was generated in step 5 against the Replication Agent 15.2 instance:

```
isql -S <myTgtRAO> -Usa -P -i
/<workdir>/<mySrcRao>_migrate_<date>.cmds
```

This script initializes the primary database, initializes Replication Agent 15.2 (including incrementing the database generation ID), and re-marks all the tables, procedures, and LOB columns that were marked in the Replication Agent 12.5 instance.

- 21 Allow users access to the primary database.
- 22 Log in to the RSSD and set the Replication Server's locator to zero:

```
rs_zeroltm source_ds, source_db
```

Here, *source_ds* matches the Replication Agent 15.2 instance value for rs_source_ds, and *source_db* matches the Replication Agent 15.2 instance value for rs_source_db.

Note The *rs_source_ds* and *rs_source_db* values were migrated from Replication Agent 12.5 and should not be changed.

- 23 In the Replication Agent 15.2 instance, resume replication.
- 24 Sybase recommends that you change the administration user ID and password in the Replication Agent 15.2 instance from the default values to the same values you used in the Replication Agent 12.5 instance.
- 25 Log out of the Replication Agent 15.2 instance.
- 26 Update the *interfaces* or *sql.ini* file entries if you want the Replication Agent 12. 5 instance name associated with the Replication Agent 15.2 instance machine and port number.

Downgrading a log-based Replication Agent 15.2 to a trigger-based Replication Agent 12.5

This procedure assumes that you are using a Replication Agent 15.2 instance. If the Replication Agent 12.5 instance no longer exists, create one using the Replication Agent 12.5 ra_admin or administrator command, and then follow the procedure in this section, using the

\$SYBASE/RAX-15_2/bin/gen_RAO_migrate_with_parms.ksh script, instead of the \$SYBASE/RAX-15_2/bin/gen_RAO_migrate.ksh script described next.

The difference between the two generation scripts is that the <code>gen_RAO_migrate_with_parms.ksh</code> script copies parameter values in addition to initializing the primary database and the Replication Agent, whereas the <code>gen_RAO_migrate.ksh</code> script assumes all parameters are already configured.

Note If you modified the *interfaces* or *sql.ini* file entries during your upgrade, you need to create a new entry (using a different name) to access the Replication Agent 12.5 instance.

Downgrading from Replication Agent 15.2 to version 12.5

1 To generate the downgrade script, run the \$SYBASE/RAX-15_2/bin/gen_RAO_migrate.ksh file:

```
cd $SYBASE/RAX-15_2/bin
```

- ./gen_RAO_migrate.ksh mySrcRao myuid mypwd /workdir
- *mySrcRao* is the name of the *interfaces* or *sql.ini* file entry for the Replication Agent 15.2 instance.
- *myuid* is the user ID for logging in to the Replication Agent 15.2 instance.
- mypwd is the password for logging in to the Replication Agent 15.2 instance. If no password exists, use two double-quotes with nothing in between ("").
- workdir is the path name of a directory to use as a work area and where the <src_instance>_migrate_<date>.cmds file is created.

The script generates a file called /<workdir>/<src_instance>_migrate_<date>.cmds, which contains Replication Agent commands that you will later run against the Replication Agent 12.5 instance to perform the following tasks:

Initialize the primary database.

- Initialize the Replication Agent 12.5 instance (including incrementing the database generation ID).
- Re-mark all the tables, procedures, and LOB columns that were marked in the Replication Agent 15.2 instance.

The script does not modify any of the Replication Agent 12.5 parameters except pdb_auto_run_scripts, pdb_dflt_column_repl, and pdb_convert_datetime, which will all be set to the same values as configured in the Replication Agent 15.2 instance.

Note If the following message appears when running the Korn shell script on Windows, you can ignore it:

```
tail: write error on standard output: The pipe is being closed.
```

After the migration script is generated, do not mark, unmark, enable, or disable any of the tables, LOB columns, or procedures. Also, do not modify any parameters in the Replication Agent 15.2 instance. If you do, these changes will not be applied to the Replication Agent 12.5 instance.

To see which objects will be marked and which LOB columns will be enabled, examine the following generated file:

```
/<workdir>/<src_instance>_migrate_<date>.cmds
```

If you want to change what is marked or enabled, you can make changes to this file. For example, you can set pdb_convert_datetime to true for some tables and procedures and to false for others.

- 3 Start and log in to the Replication Agent 15.2 instance.
- 4 Test the primary database connection:

```
test_connection PDS
```

- 5 Prevent users (other than the Replication Agent pds_username 15.2 user) from any further access to the primary database.
- Werify that the Replication Agent 15.2 instance is in Replicating state and allow replication to finish. To verify that replication has completed:
 - a Periodically issue the ra_statistics command, watching until the following statistics are zero (0):

Input queue size
Output queue size

- b When they are both zero, make note of the Last QID Sent from the last set of statistics.
- c Issue the ra_locator update command so that Replication Agent retrieves the truncation point from Replication Server.
- d Wait, and then issue the ra_locator command and compare the displayed locator with that of the Last QID Sent. If they are different, wait and repeat this step.
- 7 Quiesce the Replication Agent 15.2 instance.
- In the Replication Agent 15.2 instance, de-initialize the Replication Agent:

```
pdb_xlog remove, force
```

- 9 Shut down the Replication Agent 15.2 instance.
- 10 Be sure that the appropriate Oracle JDBC driver is in your CLASSPATH. The one required for Replication Agent 15.2 will not work with older versions of Replication Agent for Oracle.

Note No other Oracle drivers are allowed in the CLASSPATH.

11 Run the script that was generated in Step 1 above against the Replication Agent 12.5 instance, for example:

```
isql -S <myTgtRAO> -Umyuid -Pmypwd -i
/<workdir>/<mySrcRao>_migrate_<date>.cmds
```

- myTgtRAO is the name of the Replication Agent 12.5 instance.
- workdir is the path name of the directory that was used as a work area
 and where the <src_instance>_migrate_<date>.cmds file was
 created.
- *mySrcRao* is the name of the *interfaces* or *sql.ini* file for the path to the Replication Agent 15.2 instance.

The script initializes the primary database and the Replication Agent (including incrementing the database generation ID), and re-marks all the tables, procedures, and LOB columns that were marked in the Replication Agent 15.2 instance.

- 12 Allow users access to the primary database.
- 13 Log in to the RSSD and set the Replication Server's locator to zero:

```
rs_zeroltm source_ds, source_db
```

Here, *source_ds* and *source_db* match the Replication Agent 12.5 instance values for the rs_source_ds and rs_source_db parameters.

Note The rs_source_ds and rs_source_db values were migrated from Replication Agent 15.2 and should not be changed.

- 14 In the Replication Agent 12.5 instance, resume replication.
- 15 Log out of the Replication Agent 12.5 instance.
- 16 If you created a new *interfaces* or *sql.ini* entry when you upgraded to Replication Agent 15.2, update the entry so the Replication Agent 15.0 instance name is again associated with the old Replication Agent 12.5 instance machine and port number.
- 17 Revert the Oracle logging properties back to your desired setup in the primary database.
- 18 Revoke any additional privileges that were granted to the Replication Agent primary database user for the upgrade in the primary database.

Upgrading Replication Agent for UDB

Replication Agent for UDB 15.2 provides automatic upgrade of Replication Agent for UDB 15.1 instance, and automatic migration of Replication Agent for UDB 15.2 instance when you upgrade IBM DB2 Universal Database version 8 to version 9.

When you use any of the upgrade procedures described in this section, the new Replication Agent for UDB 15.2 instances will have the same configuration as previously existing instances, including instance names, administrative user IDs and passwords, and administrative port numbers.

Replication Agent for UDB 15.2 does not support:

- Upgrading Replication Agent for UDB version 12.6 or earlier to version 15.1 or later.
- Downgrading Replication Agent for UDB 15.2 to any version previous to 15.1.
- Migrating Replication Agent for UDB 15.1 or 15.2 when IBM DB2 Universal Database is upgraded from version 6 or 7 to version 8 or 9.

The following sections include these topics:

- Upgrading from Replication Agent for UDB 15.1
- Migrating Replication Agent 15.2 when upgrading UDB 8 to 9

Upgrading from Replication Agent for UDB 15.1

This section describes how to upgrade Replication Agent for UDB 15.1 to 15.2.

Upgrading from Replication Agent for UDB 15.1

- 1 For each existing Replication Agent for UDB instance, Sybase recommends that you back up the complete existing Replication Agent instance directory.
- 2 Install the Replication Agent 15.2 software as described in "Installing the Replication Agent software" in the *Replication Agent Installation Guide*. Sybase recommends that you install Replication Agent 15.2 into the same *SYBASE* directory as the earlier version of Replication Agent.
- 3 Create the 15.2 version of all valid existing Replication Agent instances.

Note This step creates new Replication Agent 15.2 instances for all valid existing instances of the earlier version of Replication Agent, regardless of whether the existing instances are for Oracle, IBM DB2 Universal Database, or Microsoft SQL Server. To complete the upgrade for Microsoft SQL Server or Oracle instances, please see the appropriate section in this appendix. If you do not want to run a newly created instance on this host, simply delete the new instance directory.

- a On UNIX, set the SYBASE environment variables by changing to the *SYBASE* directory in which Replication Agent 15.2 is installed and sourcing the *SYBASE* script:
 - For C Shell: source SYBASE.csh
 - For Bourne or Korn shell: . SYBASE.sh
- b Change directory to the Replication Agent 15.2 *bin* directory:
 - On UNIX:cd \$SYBASE/RAX-15_2/bin
 - On Windows:

cd %SYBASE%\RAX-15_2\bin

c Create new versions of all valid existing instances:

```
ra_admin -u src_directory
```

Here, *src_directory* is the full path name of the earlier version's Replication Agent installation directory. This is the source directory. For example:

```
ra_admin -u d:\sybase\RAX-15_0
```

- 4 If necessary, set the RA_JAVA_DFLT_CHARSET environment variable in the Replication Agent 15.2 *RUN_instance* script to the name of the Java character set that is equivalent to the one being used at the primary database. See the *Replication Agent Administration Guide*.
- 5 If necessary, override the default maximum amount of memory available to the JRE by setting the RA_JAVA_MAX_MEM environment variable in the Replication Agent 15.2 *RUN_instance* script. Replication Agent 15.2 does not set the RA_JAVA_MAX_MEM environment variable in the executable or run scripts, which allows the JVM to use its default for the maximum heap size. See the *Replication Agent Administration Guide*.
- In the primary UDB, grant the previously existing pds_username user any additional required privileges.
- 7 Prevent users other than the previously existing Replication Agent pds_username user from any further access to the primary UDB database. This prevents any loss of replicated data.
- 8 Log in to the previously existing Replication Agent instance, verify that it is in *Replicating* state and allow replication to finish. To verify that replication has completed:
 - a Periodically issue the ra_statistics command, watching until all of the following statistics are zero (0):

Input queue size
Output queue size

- b When all of these values are zero, note the Last QID Sent from the last set of statistics
- c Issue the ra_locator update command so that Replication Agent retrieves the truncation point from Replication Server.
- d Wait, then issue the ra_locator command again and compare the displayed locator with that of the Last QID Sent. If they are different, wait and repeat this step.

- e Quiesce the Replication Agent instance by issuing the quiesce command.
- f Shut down the Replication instance by issuing the shutdown command.
- 9 Start and log in to the Replication Agent 15.2 instance, and migrate the Replication Agent's metadata by issuing the ra_migrate command.
- 10 In the Replication Agent 15.2 instance, resume replication by issuing the resume command.
- 11 Allow all users to access the primary UDB database.

Migrating Replication Agent 15.2 when upgrading UDB 8 to 9

This section describes how to migrate Replication Agent for UDB 15.2 when you upgrade IBM DB2 Universal Database from version 8 to version 9.

Migrating Replication Agent when upgrading UDB 8 to 9

- 1 To prevent any loss of replicated data, deny further access to users (other than the previously existing Replication Agent pds_username user) to the primary UDB database.
- 2 Log in to the Replication Agent 15.2 instance, verify that it is in *Replicating* state, and allow replication to finish. To verify that replication has completed:
 - a Periodically issue the ra_statistics command, watching until all of the following statistics are zero (0):

Input queue size
Output queue size

- b When all of these values are zero, note the Last QID Sent from the last set of statistics
- c Issue the ra_locator update command so that Replication Agent retrieves the truncation point from Replication Server.
- d Wait, then issue the ra_locator command again and compare the displayed locator with that of the Last QID Sent. If they are different, wait and repeat this step.
- e Quiesce the Replication Agent instance by issuing the quiesce command.

- f Shut down the Replication instance by issuing the shutdown command.
- 3 Follow the steps in the IBM DB2 Universal Database documentation for upgrading UDB version 8 to version 9.
- 4 Verify that all the primary database requirements are met as described in "IBM DB2 Universal Database Requirements" on page 75.

Note If the use_rssd configuration parameter was set to true before migration, skip the following step.

5 Start the Replication Agent instance, and set the use_rssd configuration parameter to true:

```
ra_config use_rssd, true
```

Replication Agent for UDB uses this configuration to connect to the RSSD and to reset the locator to zero.

6 Migrate the Replication Agent metadata by issuing the ra_migrate command.

Note If the use_rssd configuration parameter was set to true before migration, skip the following step.

7 After the migration, reset the use_rssd configuration parameter to false:

```
ra_config use_rssd, false
```

- 8 In the Replication Agent 15.2 instance, resume replication by issuing the resume command.
- 9 Allow all users to access the primary UDB database.

Note If you are upgrading Replication Agent and upgrading UDB 8 to UDB 9 at the same time, you need to migrate Replication Agent 15.2 only once.

APPENDIX B Using the sybfilter driver

Replication Agent must be able to read the Microsoft SQL Server log files directly. However, the Microsoft SQL Server process opens these log files with exclusive read permission, and the files cannot be read by any other processes, including Replication Agent. Before Replication Agent can replicate data, you must use the sybfilter driver to make the log files readable.

This appendix describes how to install, configure, use, and troubleshoot the sybfilter driver.

Topic	Page
Requirements	129
Installation and setup	130
Troubleshooting	132
Using the trace log	133
sybfilter command reference	133

Requirements

For the sybfilter driver to work properly, the Microsoft Filter Manager Library must be version 5.1.2600.2978 or later. To determine the version of the library, right-click *c:\windows\system32\fltlib.dll* in Windows Explorer, select Properties, and click the Version tab in the Properties dialog. If the version is earlier than 5.1.2600.2978, go to the Microsoft Web site at http://windowsupdate.microsoft.com, and update your Windows system.

Installation and setup

Perform the following steps to install and set up the sybfilter driver.

Note On Windows Vista, you must be logged in as an Administrator to install, set up, and run the sybfilter driver.

Installing and setting up the sybfilter driver

In Windows Explorer, navigate to the sybfilter driver installation directory. On Windows, this directory is located at *%SYBASE%\RAX-15_2\system\<platform>*.

Here, *<platform>* is winx86, winx64, or winvistax64.

2 Right-click the *sybfilter.inf* file to install the sybfilter driver.

Note There can be only one installation of the sybfilter driver on a Windows machine. Once the driver is installed, it works for all Replication Agent for Microsoft SQL Server instances running on the same machine.

- In any directory, create a configuration file to store all log file paths for primary databases. The configuration file must have a .cfg suffix. For example, under the directory %SYBASE%\RAX-15_2\system\<platform>, create a file named LogPath.cfg.
- 4 Add a system environment variable named *RACFGFilePath*, and set its value to the path of the configuration file.
 - a From the Control Panel, open System | Advanced | Environment Variables.
 - b Click New to add a new system variable.
 - c Name the variable *RACFGFilePath*, and set its value to the location of the your configuration file.
- 5 In Windows Explorer, navigate to "SYBASE" \(\RAX-15_2\) bin, and double-click the sybfiltermgr.exe file to start the sybfilter driver management console.
- 6 To start the sybfilter driver, enter start at the management console.
- Add the log file path to the sybfilter driver with the user manager or by modifying the configuration file.

User manager – use the add command in the management console.
 The syntax for this command is:

add serverName dbName logFilePath

For example, to add the log file named *pdb2_log.ldf* at *D:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data* to the *dbName* database on the *serverName* data server:

```
add myseverName dbName D:\Program
Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\pdb2_log.ldf
```

Note If you add the log file path with the user manager, the user manager automatically refreshes all log paths to the sybfilter driver after adding the log path into the configuration file.

• Configuration file – to add the log file path directly to the configuration file, open and manually edit the configuration file. The following is an example of log file path entries:

```
[myserver, pdb1]
log_file_path=D:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\pdb11_log.ldf
log_file_path=D:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\pdb12_log.ldf
[myserver, pdb2]
log_file_path=D:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\pdb2_log.ldf
```

Note Once you have added the log file paths to the configuration file, use the refresh command in the management console.

- 8 If you added a log file for your primary database before adding the log file path to the sybfilter driver, restart Microsoft SQL Server to make the log file readable.
- 9 At the management console, enter check to verify that log files are readable.

If some log files are unreadable, make sure the files have been created and that Microsoft SQL Server has been restarted, if necessary.

Troubleshooting

Consider the following issues when troubleshooting the sybfilter driver.

System environment variable is not set

Problem: The management console reports an error similar to:

ERROR: System environment variable RACFGFilePath has not been set. Please set its value before starting this manager. Fatal error occurs. Please press any key to quit.

Workaround: Set the RACFGFilePath environment variable.

Configuration file does not exist

Problem: In response to the list command, the management console reports:

ERROR: Cannot open config file.

Workaround: Create a configuration file.

Configuration file is not writeable

Problem: In response to the add command, the management console reports:

ERROR: Cannot open config file.

Workaround: Add write permission for the configuration file.

Microsoft SQL Server log files are locked

Problem: After restarting the machine on which Replication Agent for Microsoft SQL Server resides, you cannot open the Microsoft SQL Server log files because they are locked.

Workaround: Restart the sybfilter management console. Issue the stop command followed by the start command to restart the sybfilter driver. Restart the primary Microsoft SQL Server data server.

Using the trace log

Use sybfilter trace log information to diagnose and troubleshoot problems.

Using the trace log

1 Turn on tracing from the sybfilter management console with the trace command and the appropriate trace flag. For example, to find out why a Microsoft SQL Server log file is unreadable after a restart, turn on tracing with the T3 flag before restarting Microsoft SQL Server:

trace T3

- 2 Open the sybfilter trace log file *sybfilter.trc* to view logged messages.
- 3 Turn off tracing from the sybfilter management console:

trace off

sybfilter command reference

The following commands are available in the sybfilter management console. For a list and description of commands, enter the help command at the sybfilter management console.

add

Add a log file path to the sybfilter driver and configuration file.

Syntax:

add serverName dbName logFilePath

- serverName the name of the Microsoft SQL Server.
- *dbName* the name of the database to be replicated.
- logFilePath the path of the database log.

check

Check whether the sybfilter driver is running or not.

Check for differences between path names in the configuration file and the sybfilter driver.

Check whether or not configuration files for sybfilter are readable, and list any files that are not readable.

exit

Exit from the sybfilter management console.

help

Print help information for all sybfilter commands.

List all configured database names and the corresponding log file paths in the

configuration file.

refresh Refresh the content in the sybfilter configuration file.

remove Remove a log file path from the sybfilter driver and configuration file.

Syntax:

remove logFilePath

• *logFilePath* – path of the database log.

start Start the sybfilter driver.

stop Stop the sybfilter driver.

trace Trace sybfilter driver execution.

Syntax:

trace [T1] [T2] [T3] [T4] | all | off

- T1 log routine trace messages.
- T2 log operation status informational messages.
- T3 log normal messages.
- T4 log error messages.
- all log all messages for the T1, T2, T3, and T4 flags.
- off turn tracing off.

Glossary

Adaptive Server

This glossary describes terms used in this book.

The brand name for Sybase relational database management system (RDBMS) software products.

- Adaptive Server Enterprise manages multiple, large relational databases for high-volume online transaction processing (OLTP) systems and client applications.
- Adaptive Server IQ manages multiple, large relational databases with special indexing algorithms to support high-speed, high-volume business intelligence, decision support, and reporting client applications.
- SQL Anywhere (formerly Adaptive Server Anywhere) manages relational databases with a small DBMS footprint, which is ideal for embedded applications and mobile device applications.

See also **DBMS** and **RDBMS**.

atomic materialization

A materialization method that copies subscription data from a primary database to a replicate database in a single, atomic operation. No changes to primary data are allowed until the subscription data is captured at the primary database. See also **bulk materialization** and **nonatomic materialization**.

BCP utility

A bulk copy transfer utility that provides the ability to load multiple rows of data into a table in a target database. See also **bulk copy**.

bulk copy

An Open Client interface for the high-speed transfer of data between a database table and program variables. Bulk copying provides an alternative to using SQL insert and select commands to transfer data.

bulk materialization

A materialization method whereby subscription data in a replicate database is initialized outside of the replication system. You can use bulk materialization for subscriptions to table replication definitions or function replication definitions. See also **atomic materialization** and **nonatomic materialization**.

client In client/server systems, the part of the system that sends requests to servers

and processes the results of those requests. See also **client application**.

client application Software that is responsible for the user interface, including menus, data entry

screens, and report formats. See also **client**.

commit An instruction to the DBMS to make permanent the changes requested in a

transaction. See also transaction. Contrast with rollback.

data client A client application that provides access to data by connecting to a data server.

See also client, client application, and data server.

data distribution A method of locating (or placing) discrete parts of a single set of data in

multiple systems or at multiple sites. Data distribution is distinct from data replication, although a data replication system can be used to implement or

support data distribution. Contrast with **data replication**.

data replication The process of copying data to remote locations, and then keeping the

replicated data synchronized with the primary data. Data replication is distinct from data distribution. Replicated data is stored copies of data at one or more remote sites throughout a system, and it is not necessarily distributed data.

Contrast with data distribution. See also disk replication and

transaction replication.

data server A server that provides the functionality necessary to maintain the physical

representation of a table in a database. Data servers are usually database servers, but they can also be any data repository with the interface and functionality a data client requires. See also **client**, **client application**, and

data client.

database A collection of data with a specific structure (or schema) for accepting, storing,

and providing data for users. See also data server, DBMS, and RDBMS.

database connection A connection that allows Replication Server to manage the database and

distribute transactions to the database. Each database in a replication system can have only one database connection in Replication Server. See also

Replication Server and route.

datatype A keyword that identifies the characteristics of stored information on a

computer. Some common datatypes are: char, int, smallint, date, time, numeric,

and float. Different data servers support different datatypes.

DBMS An abbreviation for database management system, which is a computer-based

system for defining, creating, manipulating, controlling, managing, and using databases. The DBMS can include the user interface for using the database, or

it can be a standalone data server system. Compare with **RDBMS**.

disaster recovery A method or process used to restore the critical business functions interrupted

by a catastrophic event. A disaster recovery (or business continuity) plan defines the resources and procedures required for an organization to recover

from a disaster, based on specified recovery objectives.

failback A procedure that restores the normal user and client access to a primary

database, after a failover procedure switched access from the primary database

to a replicate database. See also failover.

failover A procedure that switches user and client access from a primary database to a

replicate database, particularly in the event of a failure that interrupts

operations at the primary database, or access to the primary database. Failover is an important fault-tolerance feature for systems that require high availability.

See also failback.

function A Replication Server object that represents a data server operation such as

insert, delete, or begin transaction. Replication Server distributes operations to

replicate databases as functions. See also **function string**.

function string A string that Replication Server uses to map a function and its parameters to a

data server API. Function strings allow Replication Server to support heterogeneous replication, in which the primary and replicate databases are different types, with different SQL extensions and different command features.

See also function.

gateway Connectivity software that allows two or more computer systems with different

network architectures to communicate.

inbound queue A stable queue managed by Replication Server to spool messages received

from a Replication Agent. See also outbound queue and stable queue.

interfaces file A file containing information that Sybase Open Client and Open ServerTM

applications need to establish connections to other Open Client and Open

Server applications. See also **Open Client** and **Open Server**.

isql An Interactive SQL client application that can connect and communicate with

any Sybase Open Server application, including Adaptive Server, Replication Agent, and Replication Server. See also **Open Client** and **Open Server**.

Java An object-oriented programming language developed by Sun Microsystems.

An object-oriented programming language developed by Sun Microsystems. A platform-independent, "write once, run anywhere" programming language.

Java VM The Java Virtual Machine. The Java VM (or JVM) is the part of the Java

Runtime Environment (JRE) that is responsible for interpreting Java byte

codes. See also Java and JRE.

JDBC An abbreviation for Java Database Connectivity, the standard communication

protocol for connectivity between Java clients and data servers. See also data

server and Java.

JRE An abbreviation for Java Runtime Environment, which consists of the Java

Virtual Machine (Java VM or JVM), the Java Core Classes, and supporting files. The JRE must be installed on a machine to run Java applications, such as

the Replication Agent. See also **Java VM**.

LAN An abbreviation for "local area network," a computer network located on the

> user's premises and covering a limited geographical area (usually a single site). Communication within a local area network is not subject to external

> regulations; however, communication across the LAN boundary can be subject

to some form of regulation. Contrast with **WAN**.

latency In transaction replication, the time it takes to replicate a transaction from a

> primary database to a replicate database. Specifically, latency is the time elapsed between committing an original transaction in the primary database

and committing the replicated transaction in the replicate database.

In disk replication, latency is the time elapsed between a disk write operation that changes a block or page on a primary device and the disk write operation that changes the replicated block or page on a mirror (or replicate) device.

See also disk replication and transaction replication.

LOB An abbreviation for large object, a type of data element that is associated with

a column that contains extremely large quantities of data.

Log Reader An internal component of the Replication Agent that interacts with the primary

database and mirror log devices to capture transactions for replication. See also

Log Transfer Interface and Log Transfer Manager.

Log Transfer An internal component of the Replication Agent that interacts with Replication Interface

Server to forward transactions for distribution to a replicate database. See also

Log Reader and Log Transfer Manager.

Log Transfer An internal component of the Replication Agent that interacts with the other Manager

Replication Agent internal components to control and coordinate Replication

Agent operations. See also **Log Reader** and **Log Transfer Interface**.

maintenance user A special user login name in the replicate database that Replication Server uses

to apply replicated transactions to the database. See also **Replication Server**.

materialization The process of copying the data from a primary database to a replicate

database, initializing the replicate database so that the system can begin replicating transactions. See also **atomic materialization**, **bulk**

materialization, and nonatomic materialization.

nonatomic A materialization method that copies subscription data without a lock on the materialization

primary database. Changes to primary data are allowed during data transfer, which may cause temporary inconsistencies between the primary and replicate

databases. Contrast with atomic materialization. See also bulk

materialization.

ODBC An abbreviation for Open Database Connectivity, an industry-standard

communication protocol for clients connecting to data servers. See also JDBC.

Open Client A Sybase product that provides customer applications, third-party products,

and other Sybase products with the interfaces needed to communicate with

Open Server applications. See also **Open Server**.

Open Client
An application that uses Sybase Open Client libraries to implement Open
application
Client communication protocols. See also Open Client and Open Server

Client communication protocols. See also **Open Client** and **Open Server**.

Open Server A Sybase product that provides the tools and interfaces required to create a

custom server. See also Open Client.

Open Server application that uses Sybase Open Server libraries to implement Open application

A server application that uses Sybase Open Server libraries to implement Open Server communication protocols. See also Open Client and Open Server.

outbound queue A stable queue managed by Replication Server to spool messages to a replicate

database. See also inbound queue and stable queue.

primary dataThe version of a set of data that is the source used for replication. Primary data

is stored and managed by the primary database. See also Replication Agent,

primary database, and Replication Server.

primary database The database that contains the data to be replicated to another database (the

replicate database) through a replication system. The primary database is the database that is the source of replicated data in a replication system. Sometimes called the active database. Contrast with **replicate database**. See also

primary data.

primary keyThe column or columns whose data uniquely identify each row in a table.

primary siteThe location or facility at which primary data servers and primary databases

are deployed to support normal business operations. Sometimes called the active site or main site. See also **primary database** and **replicate site**.

primary table A table used as a source for replication. Primary tables are defined in the

primary database schema. See also **primary data** and **primary database**.

primary transaction A transaction that is committed in the primary database and recorded in the

primary database transaction log. See also primary database, replicated

transaction, and transaction log.

quiesce To cause a system to go into a state in which further data changes are not

allowed. See also quiescent.

quiescent In a replication system, a state in which all updates have been propagated to

their destinations. Some Replication Agent and Replication Server commands

require that you first quiesce the replication system.

In a database, a state in which all data updates are suspended so that

transactions cannot change any data and the data and log devices are stable.

This term is interchangeable with quiesced and in quiesce. See also **quiesce**.

RASD An abbreviation for Replication Agent System Database. Information in the

RASD is used by the primary database to recognize database structure or

schema objects in the transaction log.

RCL An abbreviation for Replication Command Language, the command language

used to manage Replication Server.

RDBMS An abbreviation for relational database management system, an application

that manages and controls relational databases. Compare with **DBMS**. See also

relational database.

relational database A collection of data in which data is viewed as being stored in tables, which

consist of columns (data items) and rows (units of information). Relational

databases can be accessed by SQL requests. See also **SQL**.

replicated data A set of data that is replicated from a primary database to a replicate database

by a replication system. See also **primary database**, replication system.

and replicate database.

replicated A primary transaction that is replicated from a primary database to a replicate transaction

database by a transaction replication system. See also **primary database**,

primary transaction, replicate database, and transaction

replication.

Replication Agent

An application that reads a primary database transaction log to acquire information about data-changing transactions in the primary database, processes the log information, and then sends it to a Replication Server for distribution to a replicate database. See also **primary database** and **Replication Server**.

replication definition

A description of a table or stored procedure in a primary database, for which subscriptions can be created. The replication definition, maintained by Replication Server, includes information about the columns to be replicated and the location of the primary table or stored procedure. See also **Replication Server** and **subscription**.

Replication Server

The Sybase software product that provides the infrastructure for a robust transaction replication system. See also **Replication Agent**.

RSSD

An abbreviation for Replication Server System Database, which manages replication system information for a Replication Server. See also **Replication Server**.

replication system

A data processing system that replicates data from one location to another. Data can be replicated between separate systems at a single site, or from one or more local systems to one or more remote systems. See also **disk replication** and **transaction replication**.

rollback

An instruction to a database to back out of the changes requested in a unit of work (called a transaction). Contrast with **commit**. See also **transaction**.

route

A one-way message stream from a primary Replication Server to a replicate Replication Server. Routes carry data-changing commands (including those for RSSDs) and replicated functions (database procedures) between separate Replication Servers. See also **Replication Server**.

SQL

An abbreviation for Structured Query Language, a nonprocedural programming language used to process data in a relational database. ANSI SQL is an industry standard. See also **transaction**.

stable queue

A disk device-based, store-and-forward queue managed by Replication Server. Messages written into the stable queue remain there until they can be delivered to the appropriate process or replicate database. Replication Server provides a stable queue for both incoming messages (the inbound queue) and outgoing messages (the outbound queue). See also **database connection**,

Replication Server, and route.

replicate data

The data managed by a replicate database, which is the destination (or target) of a replication system. See also **data replication** and **replicate database**.

standby database

A database that contains data replicated from another database (the primary database) through a replication system. The standby database is the database that receives replicated data in a replication system. Sometimes called the replicate database. Contrast with **primary database**. See also **standby data**.

standby site

The location or facility at which standby data servers and standby databases are deployed to support disaster recovery, and normal business operations during scheduled downtime at the primary site. Sometimes called the alternate site or replicate site. Contrast with **primary site**. See also **standby database**.

subscription

A request for Replication Server to maintain a replicated copy of a table, or a set of rows from a table, in a standby database at a specified location. See also **replication definition** and **Replication Server**.

table

In a relational DBMS, a two-dimensional array of data or a named data object that contains a specific number of unordered rows composed of a group of columns that are specific for the table. See also **database**.

transaction

A unit of work in a database that can include zero, one, or many operations (including insert, update, and delete operations), and that is either applied or rejected as a whole. Each SQL statement that modifies data can be treated as a separate transaction, if the database is so configured. See also **SQL**.

transaction log

Generally, the log of transactions that affect the data managed by a data server. Replication Agent reads the transaction log to identify and acquire the transactions to be replicated from the primary database. See also **Replication Agent**, **primary database**, and **Replication Server**.

transaction replication

A data replication method that copies data-changing operations from a primary database transaction log to a standby database. See also **data replication** and **disk replication**.

transactional consistency

A condition in which all transactions in the primary database are applied in the standby database, in the same order that they were applied in the primary database.

WAN

An abbreviation for "wide area network," a system of local-area networks (LANs) connected together with data communication lines. Contrast with **LAN**.

Index

E
enabling stored procedure replication 58–59
ı
IBM DB2 Universal Database Administration Client 78 character case 83–84 communication error (-30081) 82, 83 DATA CAPTURE table attribute 75 datatypes 84 FORCE APPLICATION command 82 marked objects table 90 marking primary tables 74, 82 origin queue ID 84 primary database 73 Replication Agent user ID 74 requirements 75 transaction log positioning 80–81
J
java stored procedures 89 JDBC driver Oracle 30 L Log Reader component asynchronous operation 82 positioning in transaction log 80–81 read buffer size 83 log-based Replication Agent table marking 74, 82 Itl_character_case configuration parameter 14, 39– 40, 83–84

LTM locator 80–82	Р
origin queue ID 15, 40, 84	partitioned tables 66
	<pre>pdb_dflt_object_repl configuration parameter 56</pre>
	pdb_setrepproc command 55
M	pdb_setrepseq command 59
marked objects table	pdb_setreptable configuration parameter
IBM DB2 Universal Database 90	all keyword unsupported with mark unmark in
marker shadow tables 21, 70	Replication Agent for UDB 82
marking a primary table	pdb_xlog_prefix configuration parameter 69–70, 88
in IBM DB2 Universal Database 74, 82	prefix, transaction log 69–70, 88 primary databases
marking a sequence 53–57	IBM DB2 Universal Database 73
Microsoft SQL Server	Microsoft SQL Server 1
character case 14	Oracle 27
datatypes 15–17	Oracle database server 27
isql tool 13–14	Replication Agent user ID 7–8, 74
origin queue ID 15	primary tables
permissions 7–8	marking in IBM DB2 Universal Database 74, 82
primary database 1	-
Replication Agent user ID 7–8 Microsoft Windows platforms 2	
Microsoft Windows platforms 2	R
A.I	Replication Agent communications 7
N	Log Reader component 82
names	LTM locator 80–82
transaction log objects 69–70, 88–90	marked objects table 90
	origin queue ID 15, 40, 84
	primary database user ID 7–8, 74
0	transaction log 20, 69, 87
	transaction log prefix 69–70, 88
operating system	Replication Agent for Microsoft SQL Server 1
Microsoft Windows platforms 2	datatype compatibility 15
Oracle database server character case 39–40	permissions 7–8
character case 39–40 datatypes 42–47	primary database user ID 7–8
JDBC driver 30	transaction log 20
origin queue ID 40	Replication Agent for Oracle 27
primary database 27	datatype compatibility 42–47
TNS Listener Service 30	JDBC driver 30
Oracle partitioned tables 66	Running Oracle Server and Replication Agent on
origin queue ID	different machines 60 transaction log 69
IBM DB2 Universal Database 84	Replication Agent for UDB 73
Microsoft SQL Server 15	configuration parameters 80
Oracle 40	creating transaction log 74
	database communication error (-30081) 82, 83

datatype compatibility 84 marked objects table 90		U	
primary database user ID 74		unmarking a sequence 57 user IDs	
scan buffer size 83 transaction log 87		primary database 7–8, 74	
Replication Server			
LTM locator 80–82			
		W	
		Windows	
S		See Microsoft Windows platforms	s
sequence		_	
disabling replication 59			
marking 57			
unmarking 57			
sequences 71			
marking 53			
set autocorrection Replication Server command unsupported by Replication Agent for Oracle	66		
shadow tables	00		
marker 21, 70			
stored procedures			
enabling replication 58–59			
Т			
TNS Listener Service, Oracle 30			
transaction logs			
base objects 89			
creating 74 Log Reader positioning in 80–81			
marked objects table 90			
object names 69–70, 88–90			
prefix 69–70, 88			
Replication Agent for Microsoft SQL Server	20,		
Parlianting Asset for Orgalia (O			
Replication Agent for Oracle 69 Replication Agent for UDB 87			
shadow tables 21,70			
truncating 23, 71			
truncate partition command			
replicating 66			
truncation 80			
procedures 89			

Index