
Performance and Tuning Guide

Sybase IQ 15.4

DOCUMENT ID: DC00169-01-1540-02
LAST REVISED: August 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Audience ...1
Performance Considerations ..3
Managing System Resources ...5

Optimize Memory Use ..5
Paging Increases Available Memory5
Utilities to Monitor Swapping6
Server Memory ..6
Manage Buffer Caches ..7
Determine the Sizes of the Buffer Caches7
Set the Buffer Cache Sizes10
Specify the Page Size ..11
Optimize for Large Numbers of Users11
Platform-Specific Memory Options13

The Process Threading Model16
Balancing I/O ..17

Raw I/O (on UNIX Operating Systems)17
Sybase IQ and Disk Striping18
Internal Striping ...19
Strategic File Locations19

Options for Tuning Resource Use21
Restricting Concurrent Queries21
Setting the Number of CPUs Available22
Limiting Temporary dbspace Use By a Query22
Limiting Queries by Rows Returned23
Forcing Cursors to be Non-Scrolling24
Limiting the Number of Cursors25
Limiting the Number of Statements25
Prefetching Cache Pages26
Optimizing for Typical Usage26
Controlling the Number of Prefetched Rows27

Other Ways to Improve Resource Use27

Performance and Tuning Guide iii

Managing Disk Space in Multiplex Databases27
Managing Multiplex Resources Using Logical

Servers ..28
Load Balancing Among Query Servers28

Managing Database Size and Structure29
Network Performance ...30

Monitoring and Tuning Performance33
Getting Information Using Stored Procedures33
Profiling Database Procedures34

Viewing Procedure Profiling Statistics34
Database Object Profiles35
Procedure Profiling Statistics36

Data Model Recommendations39
Indexing Tips ...39
When and Where to use Indexes40
Simple Index Selection Criteria41
HG Index Loads ...42
Multi-Column Indexes ..44
Join Column ...45
Primary Keys ...46
Foreign Keys ..46
Proper Data Type Sizing47
IQ UNIQUE and MINIMIZE_STORAGE48
Null Values ...49
Unsigned Data Types ...49
LONG VARCHAR and LONG VARBINARY50
Large Object Storage ...51
Temporary Tables ..52
Denormalizing for Performance53
UNION ALL Views for Faster Loads54

Monitoring Performance Statistics56
Monitoring Performance at the Server Level56
Memory Usage Statistics57
Cache Statistics ...58
CPU Usage Statistics ..59

Contents

iv Sybase IQ

Thread Statistics ..60
Connection Statistics ...61
Request Statistics ..62
Transaction Statistics ...63
Store I/O Statistics ...63
DBspace Usage Statistics 64
Network Statistics ..65

Monitoring the Buffer Caches66
Starting the Buffer Cache Monitor 66
Output Options ...67
Checking Results While the Monitor Runs 77
Stopping the Buffer Cache Monitor77
Examining and Saving Monitor Results78

Buffer Cache Structure ...78
Avoid Buffer Manager Thrashing 79

Monitoring Paging on Windows Systems80
Monitoring Paging on UNIX-like Operating

Systems ...81
Buffer Cache Monitor Checklist 81
System Utilities to Monitor CPU Use86

Optimizing Queries and Deletions87
Tips for Structuring Queries ..87

Enhancing ORDER BY Query Performance87
Improved Subquery Performance88
Using Caching Methods88

Planning Queries ..89
Query Evaluation Options89
The Query Tree ..91
Using Query Plans ...91

Controlling Query Processing92
Setting Query Time Limits92
Setting Query Priority .. 93
Setting Query Optimization Options93
Setting User-Supplied Condition Hints 94
Monitoring Workloads ..95

Contents

Performance and Tuning Guide v

Optimizing Delete Operations96
HG Delete Operations ...96
WD Delete Operations ...97
TEXT Delete Operations98

Index ..101

Contents

vi Sybase IQ

Audience

This document is intended for database administrators, database designers, and developers
who want to configure Sybase® IQ for improved performance.

Audience

Performance and Tuning Guide 1

Audience

2 Sybase IQ

Performance Considerations

Performance is usually measured in response time and throughput. A good design and
indexing strategy leads to the largest performance gains.

Response Time
Response time is the time it takes for a single task to complete. Several factors affect response
time:

• Reducing contention and wait times, particularly disk I/O wait times
• Using faster components
• Reducing the amount of time the resources are needed (increasing concurrency)

Throughput
Throughput refers to the volume of work completed in a fixed time period. Throughput is
commonly measured in transactions per second (tps), but can be measured per minute, per
hour, per day, and so on.

Design Considerations
To realize the largest performance gains run Sybase IQ on a correctly configured system,
establish a good design,and choose the correct indexing strategy.

Other considerations, such as hardware and network analysis, can locate bottlenecks in your
installation.

Performance Considerations

Performance and Tuning Guide 3

Performance Considerations

4 Sybase IQ

Managing System Resources

Tuning your hardware and software configuration provides better performance and faster
queries.

Optimize Memory Use
Understanding how Sybase IQ allocates memory can help you get the best performance from
your system.

Paging Increases Available Memory
Although paging increases the amount of available memory, avoid or minimize page
swapping for good memory management.

When there is not enough memory on your system, performance can degrade severely. If this
is the case, you need to find a way to make more memory available. The more memory you can
allocate to Sybase IQ, the better.

However, there is always a fixed limit to the amount of memory in a system, so sometimes
operating systems can have only part of the data in memory and the rest on disk. When the
operating system must go out to disk and retrieve any data before a memory request can be
satisfied, it is called paging or swapping. The primary objective of good memory management
is to avoid or minimize paging or swapping.

The most frequently used operating system files are swap files. When memory is exhausted,
the operating system swaps pages of memory to disk to make room for new data. When the
pages that were swapped are called again, other pages are swapped, and the required memory
pages are brought back. This is very time-consuming for users with high disk usage rates. In
general, try to organize memory to avoid swapping and, thus, to minimize use of operating
system files.

To make the maximum use of your physical memory, Sybase IQ uses buffer caches for all
reads and writes to your databases.

Note: Your swap space on disk must be at least large enough to accommodate all of your
physical memory. Having swap/paging space striped across fast disks is essential.

See also
• Utilities to Monitor Swapping on page 6
• Server Memory on page 6
• Manage Buffer Caches on page 7
• Determine the Sizes of the Buffer Caches on page 7
• Set the Buffer Cache Sizes on page 10

Managing System Resources

Performance and Tuning Guide 5

• Specify the Page Size on page 11
• Optimize for Large Numbers of Users on page 11
• Platform-Specific Memory Options on page 13

Utilities to Monitor Swapping
Use the utilities on your operating system to find out if your system is paging excessively.

Use the UNIX vmstat command, the UNIX sar command, or the Windows Task Manager, to
get statistics on the number of running processes and the number of page-outs and swaps. Use
this information to find out if the system is paging excessively, then make any necessary
adjustments. You may want to put your swap files on special fast disks.

See also
• Paging Increases Available Memory on page 5
• Server Memory on page 6
• Manage Buffer Caches on page 7
• Determine the Sizes of the Buffer Caches on page 7
• Set the Buffer Cache Sizes on page 10
• Specify the Page Size on page 11
• Optimize for Large Numbers of Users on page 11
• Platform-Specific Memory Options on page 13

Server Memory
Sybase IQ allocates heap memory for buffers, transactions, databases, and servers. Shared
memory may also be used, but in much smaller quantities.

At the operating system level, Sybase IQ server memory consists of heap memory. For the
most part, you do not need to be concerned with whether memory used by Sybase IQ is heap
memory or shared memory. All memory allocation is handled automatically. However, you
may need to make sure that your operating system kernel is correctly configured to use shared
memory before you run .Sybase IQ

Managing Multiplex Memory
Each server in the multiplex can be on its own host or share a host with other servers. Two or
more servers on the same system consume no more CPU time than a single combined server
handling the same workload, but separate servers might need more physical memory than a
single combined server, because the memory used by each server is not shared by any other
server.

See also
• Paging Increases Available Memory on page 5
• Utilities to Monitor Swapping on page 6
• Manage Buffer Caches on page 7

Managing System Resources

6 Sybase IQ

• Determine the Sizes of the Buffer Caches on page 7
• Set the Buffer Cache Sizes on page 10
• Specify the Page Size on page 11
• Optimize for Large Numbers of Users on page 11
• Platform-Specific Memory Options on page 13

Manage Buffer Caches
Default cache sizes (16MB for the main and 12MB for the temporary cache) are too low for
most databases. Allocate as much memory as possible to the IQ main and temporary buffer
caches.

Sybase IQ needs more memory for buffer caches than for any other purpose. Sybase IQ has
two buffer caches, one for the IQ store and one for the temporary store. It uses these two buffer
caches for all database I/O operations—for paging, for insertions into the database, and for
backup and restore. Data is stored in one of the two caches whenever it is in memory. All user
connections share these buffer caches. Sybase IQ keeps track of which data is associated with
each connection.

See also
• Paging Increases Available Memory on page 5
• Utilities to Monitor Swapping on page 6
• Server Memory on page 6
• Determine the Sizes of the Buffer Caches on page 7
• Set the Buffer Cache Sizes on page 10
• Specify the Page Size on page 11
• Optimize for Large Numbers of Users on page 11
• Platform-Specific Memory Options on page 13

Determine the Sizes of the Buffer Caches
Calculating the correct buffer cache size depends on several factors.

• The total amount of physical memory on your system
• How much of this memory Sybase IQ, the operating system, and other applications need to

do their tasks
• Whether you are doing loads, queries, or both
• The schema configuration and query workload

See also
• Paging Increases Available Memory on page 5
• Utilities to Monitor Swapping on page 6
• Server Memory on page 6
• Manage Buffer Caches on page 7

Managing System Resources

Performance and Tuning Guide 7

• Set the Buffer Cache Sizes on page 10

• Specify the Page Size on page 11

• Optimize for Large Numbers of Users on page 11

• Platform-Specific Memory Options on page 13

Operating System and Other Applications
Most operating systems use a large percent of available memory for file system buffering.
Understand the buffering policies for your operating system to avoid over-allocating memory.

See your application and operating system documentation for memory requirements for
applications that run in conjunction with Sybase IQ.

See also
• Memory Overhead on page 8

• Main and Temp Buffer Caches on page 9

Memory Overhead
After you determine how much physical memory the operating system and other applications
require, calculate how much of the remaining memory is required by Sybase IQ.

Raw Partitions Versus File Systems
For UNIX systems, databases using file systems rather than raw partitions may require
another 30% of the remaining memory to handle file buffering by the operating system. On
Windows, file system caching should be disabled by setting
OS_FILE_CACHE_BUFFERING = ‘OFF’ (the default for new databases).

Multiuser Database Access
For multiuser queries of a database, Sybase IQ needs about 10MB per “active” user. Active
users are defined as users who simultaneously access or query the database. For example, 30
users may be connected to Sybase IQ, but only 10 or so may be actively using a database at any
one time.

Memory for Thread Stacks
Processing threads require a small amount of memory. The more Sybase IQ processing
threads you use, the more memory needed. The -iqmt server switch controls the number of
threads for Sybase IQ. The -iqtss and -gss server switches control the amount of stack
memory allocated for each thread. The total memory allocated for IQ stacks is roughly equal
to: (-gn * (-gss + -iqtss)) + (-iqmt * -iqtss).

If you have a large number of users, the memory needed for processing threads increases. The
-gn switch controls the number of tasks (both user and system requests) that the database
server can execute concurrently. The -gss switch controls—in part—the stack size for server
execution threads that execute these tasks. IQ calculates the stack size of these worker threads
using the following formula: (-gss + -iqtss).

Managing System Resources

8 Sybase IQ

The total number of threads (-iqmt plus -gn) must not exceed the number allowed for your
platform.

Other Memory Use
All commands and transactions use some memory. The following operations are the most
significant memory users in addition to those discussed previously:

• Backup. The amount of virtual memory used for backup is a function of the IQ PAGE SIZE
specified when the database was created. It is approximately 2 * number of CPUs * 20 *
(IQ PAGE SIZE/16). On some platforms you may be able to improve backup performance
by adjusting BLOCK FACTOR in the BACKUP command, but increasing BLOCK
FACTOR also increases the amount of memory used.

• Database validation and repair. When you check an entire database, the sp_iqcheckdb
procedure opens all Sybase IQ tables, their respective fields, and indexes before initiating
any processing. Depending on the number of Sybase IQ tables and the cumulative number
of columns and indexes in those tables, sp_iqcheckdb may require very little or a large
amount of virtual memory. To limit the amount of memory needed, use the sp_iqcheckdb
options to check or repair a single index or table.

• Dropping leaked blocks. The drop leaks operation also needs to open all Sybase IQ tables,
files, and indexes, so it uses as much virtual memory as sp_iqcheckdb uses when checking
an entire database. It uses the Sybase IQ temp buffer cache to keep track of blocks used.

See also
• Operating System and Other Applications on page 8

• Main and Temp Buffer Caches on page 9

Main and Temp Buffer Caches
A general guideline for cache sizes is 40% for the main buffer cache and 60% for the temp
buffer cache. Start with this guideline, monitor server performance, then adjust the cache size
as necessary.

Buffer Caches and Physical Memory
The total memory used for Sybase IQ main and temporary buffer caches, plus Sybase IQ
memory overhead, and memory used for the operating system and other applications, must not
exceed the physical memory on your system.

For optimal performance, allocate as much memory as possible to the IQ main and temporary
buffer caches. For example, if you have 4GB of physical memory on your machine available to
Sybase IQ, you can split that amount between the main and temporary shared buffer caches.

Other Considerations
Buffer cache size requirements depend on use. For maximum performance, change the
settings between inserting, querying the database, and mixed use. In a mixed-use
environment, however, it is not always feasible to require all users to exit the database so that

Managing System Resources

Performance and Tuning Guide 9

you can reset buffer cache options. In those cases, you may need to favor either load or query
performance.

Note:

• These guidelines assume you have one active database on your system at a time. If you
have more than one active database, you need to further split the remaining memory
among the databases you expect to use.

• On some UNIX platforms, you may need to set other server switches to make more
memory available for buffer caches.

See also
• Operating System and Other Applications on page 8

• Memory Overhead on page 8

Set the Buffer Cache Sizes
Sybase IQ initially sets the size of the main and temporary buffer caches to 16MB and 12MB
respectively. Change the default size of the main and temporary buffer caches to accommodate
your applications.

Table 1. Buffer Cache Size Settings

Method When to use it How long the setting is effective

-iqmc and -iqtc server switches Recommended method.
Sets cache sizes at startup.

From the time the server is started until it is
stopped

The -iqmc and -iqtc server startup options
only remain in effect while the server is
running, so you need to include them every
time you restart the server.

See also
• Paging Increases Available Memory on page 5

• Utilities to Monitor Swapping on page 6

• Server Memory on page 6

• Manage Buffer Caches on page 7

• Determine the Sizes of the Buffer Caches on page 7

• Specify the Page Size on page 11

• Optimize for Large Numbers of Users on page 11

• Platform-Specific Memory Options on page 13

Managing System Resources

10 Sybase IQ

Specify the Page Size
Page size and buffer cache size affect memory use and disk I/O throughput for the database.

Note: The page size cannot be changed and determines the upper size limit on some database
objects and whether LOB features can be used.

Page Size
Sybase IQ performs I/O in units of page size. When you create a database, you specify a
separate page size for the catalog store and the IQ store. The temporary store has the same page
size as the IQ store.

Page size for the catalog store has no real impact on performance. The default value of 4096
bytes should be adequate. The IQ page size determines two other performance factors, the
default I/O transfer block size, and the maximum data compression for your database.

Data Compression
Sybase IQ compresses all data. The amount of compression is determined on the IQ page
size.

Saving Memory
If your machine does not have enough memory, increase the memory and decrease the buffer
cache sizes. Decreasing the buffer caches too much, however, can make your data loads or
queries inefficient or incomplete due to insufficient buffers.

See also
• Paging Increases Available Memory on page 5
• Utilities to Monitor Swapping on page 6
• Server Memory on page 6
• Manage Buffer Caches on page 7
• Determine the Sizes of the Buffer Caches on page 7
• Set the Buffer Cache Sizes on page 10
• Optimize for Large Numbers of Users on page 11
• Platform-Specific Memory Options on page 13

Optimize for Large Numbers of Users
To support the maximum number of users, you may need to increase the temporary dbspace,
adjust the operating system parameters, and change the startup parameters.

See also
• Paging Increases Available Memory on page 5
• Utilities to Monitor Swapping on page 6
• Server Memory on page 6

Managing System Resources

Performance and Tuning Guide 11

• Manage Buffer Caches on page 7

• Determine the Sizes of the Buffer Caches on page 7

• Set the Buffer Cache Sizes on page 10

• Specify the Page Size on page 11

• Platform-Specific Memory Options on page 13

Startup Options
Use the following startup options for operations with large numbers of users.

-gm
Sets the default number of connections.
 -gm #_connections_to_support

Although this represents the total number of connections the server will support, not all
connections will be active at any one time.

-iqgovern
Places a ceiling on the maximum number of queries to execute at once. If more users than the
-iqgovern limit have submitted queries, new queries will be queued until one of the active
queries is finished.
-iqgovern #_ ACTIVE_ queries_to_support

The optimal value for -iqgovern depends on the nature of your queries, number of CPUs, and
size of the Sybase IQ buffer cache. The default value is 2*numCPU + 10. With a large number
of connected users, you may find that setting this option to 2*numCPU + 4 provides better
throughput.

-gn
Sets the number of execution threads for the catalog store and connectivity while running with
multiple users.
 -gn number of tasks (both user
and system requests) that the database server can execute
concurrently

The correct value for -gn depends on the value of -gm. The start_iq utility calculates -gn and
sets it appropriately. Setting -gn too low can prevent the server from operating correctly.
Setting -gn above 480 is not recommended.

-c
Sets the catalog store cache size.
 -c catalog_store_cache_size

The catalog cache size is highly dependent on schema size and the number of objects. The
catalog store buffer cache is also the general memory pool for the catalog store. To specify in
MB, use the form -c nM, for example, -c 64M. Sybase recommends these values:

Managing System Resources

12 Sybase IQ

Table 2. Catalog Buffer Cache Settings

For this many
users

Set -c to this minimum value or higher

up to 1000 64MB

up to 200 48MB (start_iq default for 64-bit); larger numbers of users may benefit from
64MB

-cl and -ch
Set upper (-ch) and lower (-cl) limits for the catalog store cache size.

-cl minimum cache size -ch maximum cache size

If the standard catalog cache size is too small, set -cl and -ch parameters. On 32-bit platforms,
try these settings:
-cl 128M
-ch 256M

Do not use -c in the same configuration file or command line with -ch or -cl. For related
information, see the -ch cache-size option.

Warning! To control catalog store cache size explicitly, you must do either of the following,
but not both, in your configuration file (.cfg) or on the UNIX command line for server
startup:

• Set the -c parameter
• Set specific upper and lower limits for the catalog store cache size using the -ch and -cl

parameters

Specifying different combinations of the parameters above can produce unexpected results.

-iqmt
Sets the number of processing threads.

If -iqmt is set too low for the -gm setting, then thread starvation can occur.

Platform-Specific Memory Options
The total amount of usable memory is limited only by the virtual memory of the system.

Wired Memory Pool
On HP and Solaris platforms, you can designate a specified amount of memory as wired
memory. Wired memory is shared memory that is locked into physical memory. The kernel
cannot page this memory out of physical memory.

Wired memory may improve Sybase IQ performance when other applications are running on
the same machine at the same time. Dedicating wired memory to Sybase IQ, however, makes it
unavailable to other applications on the machine.

Managing System Resources

Performance and Tuning Guide 13

To create a pool of wired memory on these UNIX platforms only, specify the -iqwmem
command-line switch, indicating the number of MB of wired memory. (You must be user root
to set -iqwmem, except on Solaris.) On 64-bit platforms, the only upper limit on -iqwmem is
the physical memory on the machine.

For example, on a machine with 14GB of memory, you may be able to set aside 10GB of wired
memory. To do so, you specify:
-iqwmem 10000

Note: Use -iqwmem only if you have enough memory to dedicate the amount you specify for
this purpose. Otherwise, you can cause serious performance degradation.

• On Solaris, -iqwmem always provides wired memory.
• On HP, -iqwmem provides wired memory if you start the server as root. It provides

unwired memory if you are not root when you start the server. This behavior may change in
a future version.

Impact of Other Applications and Databases
Server memory comes out of a pool of memory used by all applications and databases. If you
try to run multiple servers or multiple databases on the same machine at the same time, or if
you have other applications running, you may need to reduce the amount of memory your
server requests.

You can also issue the UNIX command ipcs -mb to see the actual number of segments.

Troubleshooting HP Memory Issues
On HP-UX, check the value of the maxdsiz_64bit kernel parameter. This parameter restricts
the amount of virtual memory available to Sybase IQ on 64-bit HP processors. See your
Installation and Configuration Guide for the recommended value.

See also
• Paging Increases Available Memory on page 5

• Utilities to Monitor Swapping on page 6

• Server Memory on page 6

• Manage Buffer Caches on page 7

• Determine the Sizes of the Buffer Caches on page 7

• Set the Buffer Cache Sizes on page 10

• Specify the Page Size on page 11

• Optimize for Large Numbers of Users on page 11

Managing System Resources

14 Sybase IQ

Controlling File System Buffering
On some file systems, you can turn file system buffering on or off. Turning file system
buffering off usually reduces paging and improves performance.

To disable file system buffering for IQ Main dbspaces of existing databases, issue the
following statement:
SET OPTION "PUBLIC".OS_FILE_CACHE_BUFFERING = OFF

To disable file system buffering for IQ Temporary dbspaces of existing databases, issue the
following statement:
SET OPTION "PUBLIC".OS_FILE_CACHE_BUFFERING_TEMPDB = OFF

You can only set this option for the PUBLIC group. Shut down the database and restart it for
the change to take effect.

Multiplex databases do not support direct I/O file system devices. The direct I/O performance
option is only available for simplex databases.

This direct I/O performance option is available on Solaris UFS, Linux, Linux IBM, AIX, and
Windows file systems only. This option has no effect on HP-UX and HP-UXi and does not
affect databases on raw disk. In Linux, direct I/O is supported in kernel versions 2.6.x

To enable direct I/O on Linux kernel version 2.6 and AIX, also set the environment variable
IQ_USE_DIRECTIO to 1. Direct I/O is disabled by default in Linux kernel version 2.6 and
AIX. IQ_USE_DIRECTIO has no effect on Solaris and Windows.

Note:

• Sybase IQ does not support direct I/O on Linux kernel version 2.4. If you set the
IQ_USE_DIRECTIO environment variable on Linux kernel version 2.4, the Sybase IQ
server does not start. The error “Error: Invalid Block I/O argument,
maybe <pathname> is a directory, or it exceeds maximum file
size limit for the platform, or trying to use Direct IO on
unsupported OS” is reported.

• Solaris does not have a kernel parameter to constrain the size of its file system buffer cache.
Over time, the file system buffer cache grows and displaces the IQ buffer cache pages,
leading to excess operating system paging activity and reduced Sybase IQ performance.
Because of this, Sybase strongly recommends raw devices for databases on Solaris.

• Windows can bias the paging algorithms to favor applications at the expense of the file
system. This bias is recommended for Sybase IQ performance.

See also
• Options for Java-Enabled Databases on page 16

Managing System Resources

Performance and Tuning Guide 15

Options for Java-Enabled Databases
Setting the JAVA_HEAP_SIZE option prevents run-away Java applications from using too
much memory.

The JAVA_HEAP_SIZE option of the SET OPTION command sets the maximum size (in
bytes) of that part of the memory that is allocated to Java applications on a per connection
basis. Per connection memory allocations typically consist of the user's working set of
allocated Java variables and Java application stack space. While a Java application is
executing on a connection, the per connection allocations come out of the fixed cache of the
database server, so it is important that a run-away Java application is prevented from using up
too much memory.

See also
• Controlling File System Buffering on page 15

The Process Threading Model
Sybase IQ uses operating system kernel threads for best performance. By default, Sybase IQ
allocates the number of threads based on the number of CPUs on the system.

Lightweight processes are underlying threads of control that are supported by the kernel. The
operating system decides which lightweight processes (LWPs) should run on which processor
and when. It has no knowledge about what the user threads are, but does know if they are
waiting or able to run.

The operating system kernel schedules LWPs onto CPU resources. It uses their scheduling
classes and priorities. Each LWP is independently dispatched by the kernel, performs
independent system calls, incurs independent page faults, and runs in parallel on a
multiprocessor system.

A single, highly threaded process serves all Sybase IQ users. Sybase IQ assigns varying
numbers of kernel threads to each user connection, based on the type of processing being done
by that connection, the total number of threads available, and the various option settings.

Insufficient Threads Error
If there are insufficient threads for a query, Sybase IQ generates this error:
Not enough server threads available for this query

This condition may well be temporary. When some other query finishes, threads are made
available and the query may succeed the next time. If the condition persists, you may need to
restart the server and specify more Sybase IQ threads. It is also possible that -iqmt is set too
low for the number of connections.

Managing System Resources

16 Sybase IQ

Sybase IQ Options for Managing Thread Usage

• Use the server start-up option -iqmt to set the maximum number of threads. The default
value is calculated from the number of connections and the number of CPUs and is usually
adequate.

• Use the server start-up option -iqtss to set the stack size of the internal execution threads.
The default value is generally sufficient, but may be increased if complex queries return an
error indicating that the depth of the stack exceeded this limit.

• Use the SET OPTION MAX_IQ_THREADS_PER_CONNECTION command to set the
maximum number of threads for a single user. The SET OPTION
MAX_IQ_THREADS_PER_TEAM sets the number of threads available to a team of
threads.
Use these options to control the amount of resources a particular operation consumes. For
example, the DBA can set this option before issuing an INSERT, LOAD, BACKUP, or
RESTORE command.

Balancing I/O
Discusses disk striping, random and sequential file disk access, and ways to control the size of
the message log file.

Raw I/O (on UNIX Operating Systems)
You can create a database or dbspace on a raw device or a file system file.

Disk partitions are typically accessed in two modes: file system mode (for example through
the UFS file system) or raw mode. Raw mode does unbuffered I/O, generally making a data
transfer to or from the device with every read or write system call. UFS is the default UNIX file
system, and is a buffered I/O system which collects data in a buffer until it can transfer an
entire buffer at a time.

You create a database or dbspace on a raw device or a file system file. Sybase IQ determines
automatically from the path name you specify whether it is a raw partition or a file system file.
Raw partitions can be any size.

For more information, see “Working with database objects” in System Administration Guide:
Volume 1 > Working with Database Objects.

See also
• Sybase IQ and Disk Striping on page 18

• Internal Striping on page 19

• Strategic File Locations on page 19

Managing System Resources

Performance and Tuning Guide 17

Sybase IQ and Disk Striping
Striping data across multiple disks is an essential technique for good performance.

Disk striping can be performed at different places in a system, often as part of RAID hardware
or software, for example:

• At the device layer, such as on a disk array or controller.
• In the operating system or dedicated device management software, such as Veritas.
• In the application.

By default, IQ internally stripes pages across all files within a dbspace , so additional striping
at the software or hardware level are not needed for performance. Of course, additional
striping may be necessary as part of implementing storage redundancy for the database, for
example if RAID-5 is used.

Best performance in Sybase IQ with storage redundancy is achieved with simple mirroring or
“RAID-1”. As stated above, Sybase IQ will distribute the data across all of the 2-disk mirror
sets within a dbspace.

Due to cost, most Sybase IQ databases will not use mirroring, and will be implemented with
RAID-5 or a similar RAID level to achieve redundancy. With RAID-5, choosing an
appropriate chunk size (how much data is written to one disk before moving on to the next
disk) will have a significant performance impact on the system, since RAID-5 has a significant
write overhead. If your application does frequent or time-sensitive loads, updates, or deletes,
or if queries often do temp dbspace I/O, a smaller chunk size in the range of 25-50% of the size
of a Sybase IQ database page will likely give best performance. If your application is mostly
reads, with little write activity, a larger chunk size 75-100% of an IQ page size will likely
provide best performance

Since Sybase IQ normally attempts to prefetch multiple reads or flush multiple writes in
parallel, even with only a single active query, using a very small chunk size to spread each page
read or write across many disks will have little benefit, and will usually hurt performance.

When using RAID, best performance is usually achieved using hardware (such as controller or
array) based RAID. Software based RAID tools will work well, but may add a modest
additional performance load on the server’s CPUs.

See also
• Raw I/O (on UNIX Operating Systems) on page 17

• Internal Striping on page 19

• Strategic File Locations on page 19

Managing System Resources

18 Sybase IQ

Internal Striping
Disk striping takes advantage of multiple disk spindles and provides the speed of parallel disk
writes.

Sybase IQ provides disk striping, options without using third-party software. If you already
have a disk striping solution through third-party software and hardware, use that method
instead. Disk striping can be enabled by specifying the STRIPING ON option to the CREATE
DBSPACE command.

Turning Disk Striping On or Off
To change the default striping when creating a dbspace:

SET OPTION "PUBLIC".DEFAULT_DISK_STRIPING = { ON | OFF }
The default for the DEFAULT_DISK_STRIPING option is ON for all platforms. When disk
striping is ON, incoming data is spread across all dbspaces with space available. When disk
striping is OFF, dbspaces (disk segments) are filled up from the front on the logical file, filling
one disk segment at a time.

If you change the value of DEFAULT_DISK_STRIPING, it will affect all subsequent
CREATE DBSPACE operations that do not specify a striping preference.

You can remove a file from a dbspace using the ALTER DBSPACE DROP command when
disk striping is on. Before dropping the dbspace, however, you must relocate all of the data in
the dbspace using the sp_iqemptyfile stored procedure. Because disk striping spreads
data across multiple files, the sp_iqemptyfile process may require the relocation of
many tables and indexes. Use the sp_iqdbspaceinfo and sp_iqdbspace stored
procedures to determine which tables and indexes reside on a dbspace.

See also
• Raw I/O (on UNIX Operating Systems) on page 17
• Sybase IQ and Disk Striping on page 18
• Strategic File Locations on page 19

Strategic File Locations
Provide additional storage resources to improve file disk I/O.

Performance related to randomly accessed files can be improved by increasing the number of
disk drives devoted to those files, and therefore, the number of operations per second
performed against those files. Random files include those for the IQ store, the temporary store,
the catalog store, programs (including the Sybase IQ executables, user and stored procedures,
and applications), and operating system files.

Conversely, performance related to sequentially accessed files can be improved by locating
these files on dedicated disk drives, thereby eliminating contention from other processes.
Sequential files include the transaction log and message log files.

Managing System Resources

Performance and Tuning Guide 19

To avoid disk bottlenecks, follow these suggestions:

• Keep random disk I/O away from sequential disk I/O. Also for best performance, use only
one partition from a physical device (disk or HW RAID set) per dbspace.

• Isolate Sybase IQ database I/O from I/O in other databases, such as Adaptive Server®

Enterprise, or any other I/O intensive application.
• Place the database file, temporary dbspace, and transaction log file on the same physical

machine as the database server.

Place the transaction log on a separate device or partition from the database to avoid database
file fragmentation when using the -m option to truncate the transaction log.

See also
• Raw I/O (on UNIX Operating Systems) on page 17

• Sybase IQ and Disk Striping on page 18

• Internal Striping on page 19

Transaction Log
The transaction log file contains recovery and auditing information.

The transaction log stores all changes to the database. By default, all databases use transaction
logs. Running a database with a transaction log provides greater protection against failure and
better performance.

The timestamp of a transaction log file is updated only when the file grows or when it is closed.
If database operations cause the transaction log file to grow without the database file growing,
the timestamp of the transaction log file is more recent than the timestamp of the database file.
If the database is shut down, the transaction log file and the database timestamps are updated.

To move or rename the transaction log file, use the Transaction Log utility (dblog). See
Transaction Log utility (dblog) in the Utility Guide.

The size of the transaction log can also affect recovery times. To control transaction log file
growth, ensure that all your tables have compact primary keys. If you perform updates or
deletes on tables that do not have a primary key or a unique index not allowing NULL, the
entire contents of affected rows are entered in the transaction log. If you define a primary key,
the database server needs to store only the primary key column values to uniquely identify a
row. If the table contains many columns or wide columns, the transaction log pages fill up
much faster if no primary key is defined. Writing extra data affects performance and consumes
disk space.

If a primary key does not exist, the server looks for a UNIQUE NOT NULL index on the table
(or a UNIQUE constraint). A UNIQUE index that allows NULL is not enough.

To truncate the transaction log, start the server with the -m server startup switch. After
truncation, shut down the server and restart it without the switch. See -m iqserv15 server
option in the Utility Guide.

Managing System Resources

20 Sybase IQ

Warning! The Sybase IQ transaction log file is different from most relational database
transaction log files. If for some reason you lose your database files, then you lose your
database (unless it is the log file that is lost). However, if you have an appropriate backup, then
you can reload the database.

See also
• Message Log on page 21

Message Log
Limit the size of the message log to conserve disk space.

Sybase IQ logs all messages in the message log file, including error, status, and insert
notification messages. You can turn off notification messages using parameters in the LOAD
and INSERT statements.

At some sites the message log file tends to grow rapidly, due to the number of insertions, LOAD
option and low NOTIFY_MODULUS database option settings, or certain other conditions.
Sybase IQ lets you limit the size of this file by wrapping the message log or by setting a
maximum file size and archiving log files when the active Sybase IQ message log is full.

For information on setting the maximum log file size, archiving message log files, and
enabling message log wrapping, see “Message logging” in System Administration Guide:
Volume 1 > Overview of Sybase IQ System Administration.

See also
• Transaction Log on page 20

Options for Tuning Resource Use
Tune your resources for faster query execution.

Restricting Concurrent Queries
Set the -iqgovern switch to specify the number of concurrent queries on a particular server.
This is not the same as the number of connections, which is controlled by your license.

There is an optimal value for -iqgovern that will provide the correct number of concurrent
query access to provide optimal throughput. If -iqgovern is set over this threshold, contention
or resourse starvation occurs, slowing down all requests.

By specifying the -iqgovern switch, you can help Sybase IQ optimize paging of buffer data out
to disk, and avoid over committing memory. The default value of -iqgovern is (2 x the number
of CPUs) + 10. You may need to experiment to find an ideal value. For sites with large numbers
of active connections, try setting -iqgovern slightly lower.

Managing System Resources

Performance and Tuning Guide 21

See also
• Setting the Number of CPUs Available on page 22
• Limiting Temporary dbspace Use By a Query on page 22
• Limiting Queries by Rows Returned on page 23
• Forcing Cursors to be Non-Scrolling on page 24
• Limiting the Number of Cursors on page 25
• Limiting the Number of Statements on page 25
• Prefetching Cache Pages on page 26
• Optimizing for Typical Usage on page 26
• Controlling the Number of Prefetched Rows on page 27

Setting the Number of CPUs Available
Set the -iqnumbercpus startup switch to specify the number of CPUs available. This
parameter overrides the physical number of CPUs for resource planning purposes.

Using the -iqnumbercpus switch is recommended only:

• On machines with Intel® CPUs and hyperthreading enabled, set -iqnumbercpus to the
actual number of cores

• On machines where an operating system utility has been used to restrict Sybase IQ to a
subset of the CPUs within the machine

See “Setting the number of CPUs” in System Administration Guide: Volume 1 > Running
Sybase IQ.

See also
• Restricting Concurrent Queries on page 21
• Limiting Temporary dbspace Use By a Query on page 22
• Limiting Queries by Rows Returned on page 23
• Forcing Cursors to be Non-Scrolling on page 24
• Limiting the Number of Cursors on page 25
• Limiting the Number of Statements on page 25
• Prefetching Cache Pages on page 26
• Optimizing for Typical Usage on page 26
• Controlling the Number of Prefetched Rows on page 27

Limiting Temporary dbspace Use By a Query
Set the QUERY_TEMP_SPACE_LIMIT to specify the maximum estimated amount of temp
space before a query is rejected.

The QUERY_TEMP_SPACE_LIMIT option causes queries to be rejected if their estimated
temp space usage exceeds the specified size. By default, there is no limit on temporary store
usage by queries.

Managing System Resources

22 Sybase IQ

Sybase IQ estimates the temporary space needed to resolve the query. If the estimate exceeds
the current QUERY_TEMP_SPACE_LIMIT setting, Sybase IQ returns an error:

Query rejected because it exceeds total space resource limit

If this option is set to 0 (the default), there is no limit, and no queries are rejected based on their
temporary space requirements.

To limit the actual temporary store usage per connection, set the
MAX_TEMP_SPACE_PER_CONNECTION option for all DML statements, including
queries. MAX_TEMP_SPACE_PER_CONNECTION monitors and limits the actual run time
temporary store usage by the statement. If the connection exceeds the quota set by the
MAX_TEMP_SPACE_PER_CONNECTION option, an error is returned and the current
statement rolls back.

See also
• Restricting Concurrent Queries on page 21
• Setting the Number of CPUs Available on page 22
• Limiting Queries by Rows Returned on page 23
• Forcing Cursors to be Non-Scrolling on page 24
• Limiting the Number of Cursors on page 25
• Limiting the Number of Statements on page 25
• Prefetching Cache Pages on page 26
• Optimizing for Typical Usage on page 26
• Controlling the Number of Prefetched Rows on page 27

Limiting Queries by Rows Returned
Set the value of the QUERY_ROWS_RETURNED_LIMIT option to prevent the optimizer from
rejecting queries with large result sets.

The QUERY_ROWS_RETURNED_LIMIT option tells the query optimizer to reject queries
that might otherwise consume too many resources. If the query optimizer estimates that the
result set from a query will exceed the value of this option, it rejects the query with the
message:
Query rejected because it exceed resource: Query_Rows_Returned_Limit

If you use this option, set it so that it only rejects queries that consume vast resources.

See also
• Restricting Concurrent Queries on page 21
• Setting the Number of CPUs Available on page 22
• Limiting Temporary dbspace Use By a Query on page 22
• Forcing Cursors to be Non-Scrolling on page 24
• Limiting the Number of Cursors on page 25

Managing System Resources

Performance and Tuning Guide 23

• Limiting the Number of Statements on page 25

• Prefetching Cache Pages on page 26

• Optimizing for Typical Usage on page 26

• Controlling the Number of Prefetched Rows on page 27

Forcing Cursors to be Non-Scrolling
Eliminate the temporary store node in queries that return a very large result set to improve
performance.

When you use scrolling cursors with no host variable declared, Sybase IQ creates a temporary
store node where query results are buffered. This storage is separate from the temporary store
buffer cache. The temporary store node enables efficient forward and backward scrolling
when your application searches through a result set.

However, if the query returns very large numbers (such as millions) of rows of output, and if
your application performs mostly forward-scrolling operations, the memory requirements of
the temporary store node may degrade query performance. To improve performance,
eliminate the temporary store node by issuing the following command:

SET TEMPORARY OPTION FORCE_NO_SCROLL_CURSORS = ‘ON’
Note: If your application performs frequent backward-scrolling, setting the
FORCE_NO_SCROLL_CURSORS option to ON may actually degrade query performance, as
the absence of the temporary cache forces Sybase IQ to re-execute the query for each
backward scroll.

If your application rarely performs backward-scrolling, make
FORCE_NO_SCROLL_CURSORS = ‘ON’ a permanent PUBLIC option. It will use less
memory and improve query performance.

See also
• Restricting Concurrent Queries on page 21

• Setting the Number of CPUs Available on page 22

• Limiting Temporary dbspace Use By a Query on page 22

• Limiting Queries by Rows Returned on page 23

• Limiting the Number of Cursors on page 25

• Limiting the Number of Statements on page 25

• Prefetching Cache Pages on page 26

• Optimizing for Typical Usage on page 26

• Controlling the Number of Prefetched Rows on page 27

Managing System Resources

24 Sybase IQ

Limiting the Number of Cursors
Set the MAX_CURSOR_COUNT option to prevent a single connection from taking too much
available memory or CPU resources.

The MAX_CURSOR_COUNT option limits the maximum number of cursors that a connection
can use at once. The default is 50. Setting this option to 0 allows an unlimited number of
cursors.

See also
• Restricting Concurrent Queries on page 21

• Setting the Number of CPUs Available on page 22

• Limiting Temporary dbspace Use By a Query on page 22

• Limiting Queries by Rows Returned on page 23

• Forcing Cursors to be Non-Scrolling on page 24

• Limiting the Number of Statements on page 25

• Prefetching Cache Pages on page 26

• Optimizing for Typical Usage on page 26

• Controlling the Number of Prefetched Rows on page 27

Limiting the Number of Statements
Set the MAX_STATEMENT_COUNT option to limit the number of prepared statements for a
connection can make.

The MAX_STATEMENT_COUNT option limits the maximum number of prepared statements
that a connection can use at once. If a server needs to support more than the default number
(50) of prepared statements at any one time for any one connection, then you can set the
MAX_STATEMENT_COUNT option to a higher value

See also
• Restricting Concurrent Queries on page 21

• Setting the Number of CPUs Available on page 22

• Limiting Temporary dbspace Use By a Query on page 22

• Limiting Queries by Rows Returned on page 23

• Forcing Cursors to be Non-Scrolling on page 24

• Limiting the Number of Cursors on page 25

• Prefetching Cache Pages on page 26

• Optimizing for Typical Usage on page 26

• Controlling the Number of Prefetched Rows on page 27

Managing System Resources

Performance and Tuning Guide 25

Prefetching Cache Pages
Set the BT_PREFETCH_MAX_MISS option to control prefetch memory behavior.

The BT_PREFETCH_MAX_MISS option determines whether to continue prefetching pages
for a given query. If queries using HG indexes run more slowly than expected, try gradually
increasing the value of this option.

See also
• Restricting Concurrent Queries on page 21

• Setting the Number of CPUs Available on page 22

• Limiting Temporary dbspace Use By a Query on page 22

• Limiting Queries by Rows Returned on page 23

• Forcing Cursors to be Non-Scrolling on page 24

• Limiting the Number of Cursors on page 25

• Limiting the Number of Statements on page 25

• Optimizing for Typical Usage on page 26

• Controlling the Number of Prefetched Rows on page 27

Optimizing for Typical Usage
Set the USER_RESOURCE_RESERVATION option to adjust memory use for the number of
current users.

Sybase IQ tracks the number of open cursors and allocates memory accordingly. In certain
circumstances, USER_RESOURCE_RESERVATION option can be set to adjust the minimum
number of current cursors that Sybase IQ thinks is currently using the product and hence
allocate memory from the temporary cache more sparingly.

This option should only be set after careful analysis shows it is actually required. Contact
Sybase Technical Support with details if you need to set this option.

See also
• Restricting Concurrent Queries on page 21

• Setting the Number of CPUs Available on page 22

• Limiting Temporary dbspace Use By a Query on page 22

• Limiting Queries by Rows Returned on page 23

• Forcing Cursors to be Non-Scrolling on page 24

• Limiting the Number of Cursors on page 25

• Limiting the Number of Statements on page 25

• Prefetching Cache Pages on page 26

• Controlling the Number of Prefetched Rows on page 27

Managing System Resources

26 Sybase IQ

Controlling the Number of Prefetched Rows
Set the PrefetchRows and PrefetchBuffer parameters to improve performance on cursors
under certain conditions. This is a client option that you can set on the ODBC connection
dialog, or in the .odbc.ini file.

Prefetching improves performance on cursors that only fetch relative 1 or relative 0. Two
connection parameters let you change cursor prefetch defaults. PrefetchRows (PROWS) sets
the number of rows prefetched; PrefetchBuffer (PBUF) sets the memory available to this
connection for storing prefetched rows. Increasing the number of rows you prefetch may
improve performance under certain conditions:

• The application fetches many rows (several hundred or more) with very few absolute
fetches.

• The application fetches rows at a high rate, and the client and server are on the same
machine or connected by a fast network.

• Client/server communication is over a slow network, such as a dial-up link or wide area
network.

See also
• Restricting Concurrent Queries on page 21
• Setting the Number of CPUs Available on page 22
• Limiting Temporary dbspace Use By a Query on page 22
• Limiting Queries by Rows Returned on page 23
• Forcing Cursors to be Non-Scrolling on page 24
• Limiting the Number of Cursors on page 25
• Limiting the Number of Statements on page 25
• Prefetching Cache Pages on page 26
• Optimizing for Typical Usage on page 26

Other Ways to Improve Resource Use
There are several ways to adjust your system for maximum performance or better use of disk
space.

Managing Disk Space in Multiplex Databases
Get users to commit their current transactions periodically, and allow the write server to drop
old table versions to free disk blocks. Specifying the auto_commit option helps minimize
space due to minimize version buildup.

Sybase IQ cannot drop old versions of tables while any user on any server might be in a
transaction that might need the old versions. Sybase IQ may therefore consume a very large
amount of disk space when table updates and queries occur simultaneously in a multiplex

Managing System Resources

Performance and Tuning Guide 27

database. The amount of space consumed depends on the nature of the data and indexes and
the update rate.

You can free disk blocks by allowing the write server to drop obsolete versions no longer
required by queries. All users on all servers should commit their current transactions
periodically to allow recovery of old table versions. The servers may stay up and are fully
available. The sp_iqversionuse stored procedure can be used to display version usage
for remote servers.

See also
• Managing Multiplex Resources Using Logical Servers on page 28

• Load Balancing Among Query Servers on page 28

Managing Multiplex Resources Using Logical Servers
Logical servers enable you to manage the use of multiplex resources most effectively. Use
logical servers to assign different sets of multiplex servers to different applications to meet
their individual performance requirements.

In a multiplex, each connection operates under a single logical server context. When you
submit a query to a multiplex server, its execution may be distributed to one or more multiplex
servers, depending upon the configuration of the connection's logical server. To dynamically
adjust the resources assigned to a logical server, add or remove multiplex servers from the
logical server to meet the changing needs of the applications that it serves.

See also
• Managing Disk Space in Multiplex Databases on page 27

• Load Balancing Among Query Servers on page 28

Load Balancing Among Query Servers
Using the IQ Network Client to balance the query load among multiplex query servers
requires an intermediate system that is able to dispatch the client connection to a machine in a
pool.

To use this method, on the client system you create a special ODBC DSN, with the IP address
and port number of this intermediate load balancing system, a generic server name, and the
VerifyServerName connection parameter set to NO. When a client connects using this DSN,
the load balancer establishes the connection to the machine it determines is least loaded.

For details on how to define an ODBC DSN for use in query server load balancing, see
“VerifyServerName parameter [Verify]” in System Administration Guide: Volume 1 >
Connection and Communication Parameters.

Note: Third-party software is required. VerifyServerName simply allows this method to work.

Managing System Resources

28 Sybase IQ

See also
• Managing Disk Space in Multiplex Databases on page 27

• Managing Multiplex Resources Using Logical Servers on page 28

Managing Database Size and Structure
Database size depends largely on indexing and data quantity. Create indexes for faster queries.
Drop unnecessary objects to free disk space and shorten load times.

Index Fragmentation

• Internal index fragmentation occurs when index pages are not being used to their
maximum volume.

• Row fragmentation occurs when rows are deleted. Deleting an entire page of rows frees the
page, but if some rows on a page are unused, the unused space remains on the disk.

• DML operations (INSERT, UPDATE, DELETE) on tables can cause index fragmentation.

Run these stored procedures for information about fragmentation issues:

• sp_iqrowdensity reports row fragmentation at the FP index level. See “sp_iqrowdensity
procedure,” in “System Procedures,” in Reference: Building Blocks, Tables, and
Procedures.

• sp_iqindexfragmentation reports internal fragmentation within supplemental indexes.
See “sp_iqindexfragmentation procedure,” in Reference: Building Blocks, Tables, and
Procedures > System Procedures.

Review the output and decide whether you want to recreate, reorganize, or rebuild the indexes.
You can create other indexes to supplement the FP index.

Minimizing Catalog File Growth
Growth of the catalog files is normal and varies depending on the application and catalog
content. The size of the .db file does not affect performance, and free pages within the .db
file are reused as needed.

To minimize catalog file growth:

• Avoid using IN SYSTEM on CREATE TABLE statements

• Issue COMMIT statements after running system stored procedures

• Issue COMMIT statements during long-running transactions

Managing System Resources

Performance and Tuning Guide 29

Network Performance
Minor changes in your environment can solve some network performance issues.

To improve network throughput, provide multiple network adaptors. Classes of users can be
assigned to different networks depending on service level agreements.

In case A in Figure 12-4, clients accessing two different database servers use one network
card. That means that clients accessing Servers A and B have to compete over the network and
past the network card. In the case B, clients accessing Server A use a different network card
than clients accessing Server B.

It would be even better to put your database servers on different machines. You may also want
to put heavy users of different databases on different machines.

Figure 1: Isolating heavy network users

Managing System Resources

30 Sybase IQ

Put Small Amounts of Data in Small Packets
If you send small amounts of data over the network, keep the default network packet size small
(default is 512 bytes). The -p server start-up option lets you specify a maximum packet size.
Your client application may also let you set the packet size.

Put Large Amounts of Data in Large Packets
If most of your applications send and receive large amounts of data, increase default network
packet size. This will result in fewer (but larger) transfers.

Process at the Server Level
Filter as much data as possible at the server level.

Managing System Resources

Performance and Tuning Guide 31

Managing System Resources

32 Sybase IQ

Monitoring and Tuning Performance

Describes the tools you use to determine whether your system is making optimal use of
available resources.

Getting Information Using Stored Procedures
Several stored procedures display database information.

Table 3. Name Statistics

Name Description

sp_iqconnection Shows information about connections and versions, including which users are
using temporary dbspace, which users are keeping versions alive, what the
connections are doing inside Sybase IQ, connection status, database version
status, and so on.

See Reference: Building Blocks, Tables, and Procedures > System Procedures >
System stored procedures > sp_iqconnection procedure

sp_iqcontext Tracks and displays, by connection, information about statements that are cur-
rently executing.

See Building Blocks, Tables, and Procedures > System Procedures > System
stored procedures > sp_iqcontext procedure

sp_iqcheckdb Checks validity of the current database. Optionally corrects allocation problems
for dbspaces or databases.

See Building Blocks, Tables, and Procedures > System Procedures > System
stored procedures > sp_iqcheckdb procedure

sp_iqdbstatistics Reports results of the most recent sp_iqcheckdb.

See Building Blocks, Tables, and Procedures > System Procedures > System
stored procedures > sp_iqdbstatistics procedure

sp_iqdbsize Displays the size of the current database.

See Building Blocks, Tables, and Procedures > System Procedures > System
stored procedures > sp_iqdbsize procedure

sp_iqspaceinfo Displays space usage by each object in the database

See Building Blocks, Tables, and Procedures > System Procedures > System
stored procedures > sp_iqspaceinfo procedure

Monitoring and Tuning Performance

Performance and Tuning Guide 33

Name Description

sp_iqstatus Displays miscellaneous status information about the database.

See Building Blocks, Tables, and Procedures > System Procedures > System
stored procedures > sp_iqstatus procedure

sp_iqtablesize Displays the number of blocks used by each object in the current database and
the name of the dbspace in which the object is located.

See Building Blocks, Tables, and Procedures > System Procedures > System
stored procedures > sp_iqtablesize procedure

See Reference: Building Blocks, Tables, and Procedures for syntax details and examples of all
Sybase IQ stored procedures.

Profiling Database Procedures
Procedure profiling tracks the execution times of procedures, triggers, and other system
events. Use profiling in Sybase Cental to identify performance issues for the database or
database object.

Viewing Procedure Profiling Statistics
Set the database profiling options in Sybase Central to monitor the execution times of stored
procedures, functions, events, and triggers.

Database Profile Properties

Table 4. Database Profile Properties.

Property Name Description

Name Lists the name of the object.

Owner Lists the owner of the object.

Table Lists which table a trigger belongs to (this column only appears on the
database Profile tab).

Event Shows the type of trigger for system triggers. This can be Update or
Delete.

Type Lists the type of object, for example, a procedure.

Exes. lists the number times each object has been called.

#msecs. Lists the total execution time for each object.

Monitoring and Tuning Performance

34 Sybase IQ

See also
• Database Object Profiles on page 35

• Procedure Profiling Statistics on page 36

Database Object Profiles
Database objects include stored procedures, functions, events, and triggers. Database object
profile properties appear line by line, and summarize execution times.

Table 5. Object Profile Properties.

Property name Description

Calls Lists the number of times the object has been called.

Milliseconds Lists the total execution time for each object.

Line Lists the line number beside each line of the procedure.

Source Displays the SQL procedure, line by line.

See also
• Viewing Procedure Profiling Statistics on page 34

• Procedure Profiling Statistics on page 36

Setting Database Profiling Properties in Sybase Central
Setting database profiling properties in Sybase Central requires DBA authority. Your server
must be running, and you must be connected to a database.

1. In Sybase Central, right-click your database, choose Properties.

2. Click the Profiling Settings tab.

3. See online help for other profiling options.

See also
• Viewing Profiling Information For a Class of Database Objects on page 35

• Viewing Profiling Information For a Specific Database Object on page 36

Viewing Profiling Information For a Class of Database Objects
To display profiling information in Sybase Central about a class of database objects, click the
parent folder, then review the object’s profile.

1. Open an object folder:

• Procedures and Functions
• Events

Monitoring and Tuning Performance

Performance and Tuning Guide 35

• Triggers
• System Triggers

2. Click the Profile tab in the right pane.

Profiling information about the object appears on the Profile tab in the right pane.

See also
• Setting Database Profiling Properties in Sybase Central on page 35

• Viewing Profiling Information For a Specific Database Object on page 36

Viewing Profiling Information For a Specific Database Object
To display profiling information in Sybase Central about a specific database object, choose an
object, then review the object’s profile.

1. Open an object folder:

• Procedures and Functions
• Events
• Triggers
• System Triggers

2. Click an object in the parent folder.

3. Click the Profile tab in the right pane.

Profiling information about the object appears on the Profile tab in the right pane.

See also
• Setting Database Profiling Properties in Sybase Central on page 35

• Viewing Profiling Information For a Class of Database Objects on page 35

Procedure Profiling Statistics
Set the database profiling options, then use the profiling options to return performance
statistics for stored procedures, functions, events, and triggers.

sa_procedure_profile_summary
sa_procedure_profile_summary is a system procedure that reports summary information
about the execution times for all procedures, functions, events, or triggers that have been
executed in a database. This procedure provides the same information for these objects as the
Profile tab in Sybase Central.

Monitoring and Tuning Performance

36 Sybase IQ

Table 6. sa_procedure_profile_summary Statistics

Column name Description

object_type Identifies the object type:

• P (Stored procedure)

• F (Function)

• T (Trigger)

• E (Event)

• S (System trigger)

object_name Lists the name of the object.

executions Lists the number times each object has been called.

owner_name Lists the owner of the object.

table_name Specifies which table to profile triggers.

executions Lists the number of times the object has been called.

Milliseconds Identifies the time to execute the line, in milliseconds.

foreign_owner Identifies the database user who owns the foreign table for a system trigger.

foreign_table Identifies The name of the foreign table for a system trigger.

See also
• Viewing Procedure Profiling Statistics on page 34

• Database Object Profiles on page 35

Procedure Profile
sa_procedure_profile reports information about the execution time for each line within
procedures, functions, events, or triggers executed in a database.

Table 7. sa_procedure_profile Statistics

Column name Description

object_type Identifies the object type:

• P (Stored procedure)

• F (Function)

• T (Trigger)

• E (Event)

• S (System trigger)

Monitoring and Tuning Performance

Performance and Tuning Guide 37

Column name Description

object_name Lists the name of the object.

owner_name Lists the owner of the object.

table_name Identifies the table associated with a trigger (the value is NULL for other
object types).

Line_number Identifies the line number within the procedure.

executions Lists the number of times the object has been called

Milliseconds Lists the objects execution time

percentage Identified the percentage of the total execution time required for the spe-
cific line.

foreign_owner Identifies the database user who owns the foreign table for a system trigger.

foreign_table Identifies the name of the foreign table for a system trigger.

Setting Database Profiling Options with Interactive SQL
Use sa_server_option to set database profiling options in Interactive SQL. Your server must
be running, and you must have DBA authority, and be connected to a database.
In Interactive SQL, run sa_server_option, and set the procedure_profiling options.

For example:
CALL sa_server_option ('procedure_profiling', 'ON')

For other options, see SQL Anywhere Server - SQL Reference > System procedures >
Alphabetical list of system procedures > sa_server_option system procedure.

Note: This reference points to SQL Anywhere documentation.

See also
• Generating Profiling Information with Interactive SQL on page 38

Generating Profiling Information with Interactive SQL
sa_procedure_profile and sa_procedure_profile_summary generate execution statistics for
procedures, functions, events, and triggers.
In Interactive SQL, run sa_procedure_profile or sa_procedure_profile summary. For
example:
CALL sa_server_option ('procedure_profiling', 'ON')

For other options, see SQL Anywhere Server – SQL Reference.

Note: This reference points to SQL Anywhere documentation.

Monitoring and Tuning Performance

38 Sybase IQ

http://dcx.sybase.com/index.html#1201/en/dbreference/sa-server-option-sysproc.html
http://dcx.sybase.com/index.html#1201/en/dbreference/sa-server-option-sysproc.html
http://dcx.sybase.com/index.html#1201/en/dbreference/dbreference12.html

See also
• Setting Database Profiling Options with Interactive SQL on page 38

Data Model Recommendations
Good database performance begins with good database design. Take the time to incorporate
Sybase IQ's unique design features into your schema during development for better response
time and faster query results.

Indexing Tips
Choose the correct column index type to make your queries run faster.

Sybase IQ provides some indexes automatically—an index on all columns that optimizes
projections, and an HG index for UNIQUE and PRIMARY KEYS and FOREIGN KEYS.
While these indexes are useful for some purposes, you may need other indexes to process
certain queries as quickly as possible.

Index Advisor
The index advisor generates messages when the optimizer would benefit from an additional
index on one or more columns in your query.

To activate the index advisor, set the INDEX_ADVISOR option ON. Messages print as part of a
query plan or as a separate message in the message log (.iqmsg) if query plans are not
enabled, and output is in OWNER.TABLE.COLUMN format. For details, see
“INDEX_ADVISOR option,” in “Database Options,” in Reference: Statements and
Options.

LF or HG Indexes
Consider creating either an LF or HG index on grouping columns referenced by the WHERE
clause in a join query if the columns are not using enumerated FP storage. The Sybase IQ
optimizer may need metadata from the enumerated FP or HG/LF index to produce an optimal
query plan. Non-aggregated columns referenced in the HAVING clause may also benefit from a
LF or HG index to help with query optimization. For example:

SELECT c.name, SUM(l.price * (1 - l.discount))
FROM customer c, orders o, lineitem l
WHERE c.custkey = o.custkey
 AND o.orderkey = l.orderkey
 AND o.orderdate >= "1994-01-01"
 AND o.orderdate < "1995-01-01"
GROUP by c.name
HAVING c.name NOT LIKE "I%"
 AND SUM(l.price * (1 - l.discount)) > 0.50
ORDER BY 2 desc

Adding indexes increases storage requirements and load time. Add indexes only if there is a
net benefit to query performance.

Monitoring and Tuning Performance

Performance and Tuning Guide 39

See also
• When and Where to use Indexes on page 40
• Simple Index Selection Criteria on page 41
• HG Index Loads on page 42
• Multi-Column Indexes on page 44
• Join Column on page 45
• Primary Keys on page 46
• Foreign Keys on page 46
• Proper Data Type Sizing on page 47
• IQ UNIQUE and MINIMIZE_STORAGE on page 48
• Null Values on page 49
• Unsigned Data Types on page 49
• LONG VARCHAR and LONG VARBINARY on page 50
• Large Object Storage on page 51
• Temporary Tables on page 52
• Denormalizing for Performance on page 53
• UNION ALL Views for Faster Loads on page 54

When and Where to use Indexes
Indexes are the primary tuning mechanisms inside Sybase IQ. Knowing when and where to
use indexes can make your queries run faster.

Always use indexes on:

• Join columns (HG index regardless of cardinality)

• Searchable columns (HG or LF index based on cardinality)

• DATE, TIME, and DATETIME/TIMESTAMP columns (DATE, TIME, DTTM)

The DATE, TIME, or DATETIME/TIMESTAMP column should also have an LF or HG
index depending on data cardinality.

• If you are uncertain whether the column will be used heavily, place an LF or HG index on
the column. Workload Management can subsequently be enabled to monitor the use of
indexes.

• Use PRIMARY KEY, UNIQUE CONSTRAINT, or UNIQUE HG indexes where
appropriate, as they provide IQ with additional information about the unique data in the
indexed column(s).

• A column with an HNG or CMP index should have a corresponding LF or HG index

• Indexes are not needed on columns whose data is ONLY returned to the client (projected)

See also
• Indexing Tips on page 39
• Simple Index Selection Criteria on page 41

Monitoring and Tuning Performance

40 Sybase IQ

• HG Index Loads on page 42

• Multi-Column Indexes on page 44

• Join Column on page 45

• Primary Keys on page 46

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

Simple Index Selection Criteria
Answers to some simple questions can help you choose the right index for a column.

To determine the best indexes for your datamodel without regard for queries, ask yourself
these simple questions about each column:

• Is the cardinality greater than 1500-2000?
If the answer is yes, place an HG index on this column. If not, place an LF index on the
column.

• Does the column contain DATE, TIME, DATETIME, or TIMESTAMP data?

If the answer is yes, place a DATE, TIME, or DTTM index on this column. You should also
place an LF or HG on the column.

• Will the column be used in range searches or aggregations?
If the answer is yes, place an HNG index on the column. You should also place an LF or HG
should be on the column. If the aggregation contains more than just the column, an HNG
may not be appropriate. In most cases an HNG index is not needed as the LF or HG indexes
have more than enough capability to perform the aggregations. This does not apply to
DATE, TIME, or DATETIME types.

• Will this column be used for word searching?
If the answer is yes, place a WD index on the column. An LF or HG index is not necessary
and would consume significant space.

• Will this column be used for full text searching?
If the answer is yes, place a TEXT index on the column. An LF or HG is not necessary and
would consume significant space.

• Will two columns in the same table be compared to each other (A = B, A < B, A >
B, A <= B, A > + B)?

Monitoring and Tuning Performance

Performance and Tuning Guide 41

If the answer is yes, place a CMP index on the two columns.
• Will this column, or set of columns, be used in GROUP BY or ORDER BY statements?

If the answer is yes, place an HG index on the column, or columns in the GROUP BY or
ORDER BY statement. Each column should also have a corresponding HG or LF index.

• Is this column part of a multicolumn primary key, constraint, or index?
If the answer is yes, place an HG or LF index on each column in the multicolumn index.

See also
• Indexing Tips on page 39
• When and Where to use Indexes on page 40
• HG Index Loads on page 42
• Multi-Column Indexes on page 44
• Join Column on page 45
• Primary Keys on page 46
• Foreign Keys on page 46
• Proper Data Type Sizing on page 47
• IQ UNIQUE and MINIMIZE_STORAGE on page 48
• Null Values on page 49
• Unsigned Data Types on page 49
• LONG VARCHAR and LONG VARBINARY on page 50
• Large Object Storage on page 51
• Temporary Tables on page 52
• Denormalizing for Performance on page 53
• UNION ALL Views for Faster Loads on page 54

HG Index Loads
Relative to other IQ indexes, the HG indexes are more expense to maintain during data loads
and deletions. A main contributor to the performance of the HG index is the location of the data
within the HG index structure: the sparsity or density of the operation.

Dense HG operations are those in which the affected rows are tightly grouped around certain
keys. Sparse operations are those where there may be just a few rows per key that must be
affected. For instance, dates on data are typically grouped around the time the operation was
logged, data modified, etc. This means that new data will be placed at the end of the HG index
strucutre. When deleting data in the date HG index, said data would typically come off in
chunks of days, weeks, months, etc and thus be removed from the beginning of the HG btree or
be tightly grouped around a few keys for deletion. These operations are very fast, relatively
speaking, as IQ will operate on a few pages and affect a tremendous number of rows.

Data that is rather sparse, like Prices, Customer IDs, City, Country, etc., are very different. As
“pricing" data, for instance, is loaded each value will vary widely across all data already in the
index. If the column is tracking stock prices the numeric field to store that data will be densely

Monitoring and Tuning Performance

42 Sybase IQ

updated because the data being changed will be across the nearly the entire range of values
already loaded. These operations are slower due to the amount of index pages that must be
maintained for each row being affected. A worst case scenario is that IQ is forced to read and
write 1 page for EACH ROW being loaded or deleted. While this can be less than optimal,
Sybase IQ has been design to parallel process phase 2 of the HG index loads and the deletes so
that the impact is greatly reduced.

All of this is well and good, but how does it affect the data model design and indexing? Typical
tuning and optimization within Sybase IQ generally boils down to indexes or the lack thereof.
Knowing how the indexes can be affected by the data and loading is an important aspect when
deciding which indexes to put in place and which to leave off. Because HG indexes take,
relatively, more time to load than other indexes they are often the subject of focus when it
comes to use and design. Certainly, HG indexes can help with query performance. There are
times, though, where adding an index may have a slight positive impact on queries but have
more of an impact to data loads. In these situations, it is important to understand why the load
or delete took longer and what can be done about it.

The sparsity or density of new data with respect to currently loaded data plays a critical role in
this. If a relatively random column of a Customer ID must be indexed for fast query
performance and an index must be on that column. Suppose, though, that a primary key exists
on the table and it is the Customer ID and a Date field storing a transaction datetime. If the
ordering were left as (customer_id, transaction_date) the data would be sparsely
loaded or deleted from the table in most case. Data being loaded will be done so by transaction
date. Since the Customer ID column is first in the multicolumn index, though, it will force IQ
to touch data throughout the entire HG index structure.

A simple change in order to (transaction_date, customer_id) changes this
behavior. The index is still in place to control referential integrity for the primary key. The
ordering of the columns is immaterial for primary key enforcement. As such, we can change
the column order without causing any downstream ill effects. This simple change will now
force all new data being loaded by transaction date to be inserted at the end of the HG index
structure in a very dense manner. Over time the loads will perform consistently as the data is,
generally, always going to the end of the HG structure.

Simply changing the column ordering in a multicolumn index can have drastic impacts on
performance. The size of the HG index shouldn't change much as the data is still the same width
regardless of order. What will change is how fast the data is loaded or deleted from the table.

See also
• Indexing Tips on page 39
• When and Where to use Indexes on page 40
• Simple Index Selection Criteria on page 41
• Multi-Column Indexes on page 44
• Join Column on page 45
• Primary Keys on page 46

Monitoring and Tuning Performance

Performance and Tuning Guide 43

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

Multi-Column Indexes
Currently, only HG, UNIQUE HG, UNIQUE CONSTRAINT, and PRIMARY KEY indexes
support multiple columns in index creation, but multi-column indexes are also useful for
GROUP BY and ORDER BY statements.

From a statistics point of view, multi-column indexes provide enough information in multi-
column table joins to let the optimizer know the exact statistics of the join and whether or not it
is a many-to-many or one-to-many join. The optimizer is also smart enough to use the
statistics for optimization, but use individual HG/LF indexes for the actual work. The
optimizer costs out all join and sort scenarios and decides which index(es) is best for that
operation. The statistics help it get to that point.

Some items to keep in mind about the HG indexes:

• HG inserts are the most expensive in Sybase IQ

• Try to guarantee that inserts will happen at the end of the index
Place generally incrementing data, like a transaction date or batch number (sequential
data), at the beginning of the index list. Something that will try to guarantee a sequential
key

See the previous section the HG index loads.

See also
• Indexing Tips on page 39

• When and Where to use Indexes on page 40

• Simple Index Selection Criteria on page 41

• HG Index Loads on page 42

• Join Column on page 45

• Primary Keys on page 46

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

Monitoring and Tuning Performance

44 Sybase IQ

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

Join Column
For joins, keep the data types as narrow as possible to reduce disk I/O and memory
requirements.

Because integer comparisons are quicker than character comparisons, use integer data types
(unsigned if possible) in joins. Keeping the data types as narrow as possible improves join
performance by reducing disk I/O and memory requirements. Because the HG index has
slightly more capability from a join perspective, use an HG index on join columns rather than a
cardinality appropriate index (LF or HG) . This should be weighed against the potential
increase in time to load the HG index as compared to the LF index.

See also
• Indexing Tips on page 39

• When and Where to use Indexes on page 40

• Simple Index Selection Criteria on page 41

• HG Index Loads on page 42

• Multi-Column Indexes on page 44

• Primary Keys on page 46

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

Monitoring and Tuning Performance

Performance and Tuning Guide 45

Primary Keys
Multi-column primary keys should have an additional LF or HG index placed on each column
specified in the primary key. This must be done manually as IQ only creates an HG index on the
composite columns.

UNIQUE constraint, UNIQUE HG, and primary key share an identical structure. That
structure uses an HG index with no G-Array to store the row ids. When possible, use primary
keys on tables. This helps the optimizer make more informed query path decisions even if the
index is not used. The index structure provides detailed statistics to help the optimizer make
better choices as well as providing a structure to traverse the data.

See also
• Indexing Tips on page 39

• When and Where to use Indexes on page 40

• Simple Index Selection Criteria on page 41

• HG Index Loads on page 42

• Multi-Column Indexes on page 44

• Join Column on page 45

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

Foreign Keys
As with primary keys, use foreign keys to improve query join performance. This gives IQ one
more piece of information on how tables are joined and the statistics behind those joins. IQ
automatically creates an HG Index on the foreign key column, so no additional HG or LF index
is necessary. A foreign key requires that a primary key exists on referenced table.

See also
• Indexing Tips on page 39

• When and Where to use Indexes on page 40

Monitoring and Tuning Performance

46 Sybase IQ

• Simple Index Selection Criteria on page 41
• HG Index Loads on page 42
• Multi-Column Indexes on page 44
• Join Column on page 45
• Primary Keys on page 46
• Proper Data Type Sizing on page 47
• IQ UNIQUE and MINIMIZE_STORAGE on page 48
• Null Values on page 49
• Unsigned Data Types on page 49
• LONG VARCHAR and LONG VARBINARY on page 50
• Large Object Storage on page 51
• Temporary Tables on page 52
• Denormalizing for Performance on page 53
• UNION ALL Views for Faster Loads on page 54

Proper Data Type Sizing
Size all data types as accurately as possible, especially character-based data types.

To decide which data type to use for a column, consider these factors:

• Sybase IQ includes a large number od data types. Using the correct data types for your
application leads to optimal performance gains.

• If HOUR, MINUTE and SECOND information is not necessary, use DATE instead of
DATETIME

• If the data will fit within a TINYINT or SMALLINT datatype use that rather than
INTEGER or BIGINT

• Do not over allocate storage when defining NUMERIC() or DECIMAL() as it can be
costly for data that does not need all that level of precision

• CHAR() and VARCHAR() types are fixed width in the default Flat FP index. The only
difference is the addition of 1 byte to each VARCHAR() row that represents the number of
bytes in use.

Sybase IQ includes new compression algorithms that compress large repeating patterns often
seen in BINARY(), CHAR(), VARCHAR(), and VARBINARY() data types.

See also
• Indexing Tips on page 39
• When and Where to use Indexes on page 40
• Simple Index Selection Criteria on page 41
• HG Index Loads on page 42
• Multi-Column Indexes on page 44
• Join Column on page 45

Monitoring and Tuning Performance

Performance and Tuning Guide 47

• Primary Keys on page 46

• Foreign Keys on page 46

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

IQ UNIQUE and MINIMIZE_STORAGE
Using IQ UNIQUE and MINIMIZE_STORAGE can save disk space and improve
performance.

Use IQ UNIQUE and MINIMIZE_STORAGE whenever possible to help minimize storage
usage for the default FP index types. By default, optimal data compression is not enabled via
these options which can lead to some additional space consumption. Employing either of
these options in the data model helps compress the data as much as possible to achieve
maximum storage and performance.

See also
• Indexing Tips on page 39

• When and Where to use Indexes on page 40

• Simple Index Selection Criteria on page 41

• HG Index Loads on page 42

• Multi-Column Indexes on page 44

• Join Column on page 45

• Primary Keys on page 46

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

Monitoring and Tuning Performance

48 Sybase IQ

Null Values
Defining columns as NULL or NOT NULL helps the optimizer work more efficiently.

Specifying NULL or NOT NULL allows the optimizer a more educated guess at joins and
search criteria by having one more piece of information about the characteristics of the data.
NULL data does not save space on the database page, as it would in other databases. NULL data
will, however, be compressed out when stored on disk due to the IQ compression algorithms
and optimized indexes.

• Always specify NULL or NOT NULL
• Open Client and ODBC connections have different default behavior when table is created

• Give the optimizer an additional piece of information about the characteristics of the data
for joins and search arguments

See also
• Indexing Tips on page 39

• When and Where to use Indexes on page 40

• Simple Index Selection Criteria on page 41

• HG Index Loads on page 42

• Multi-Column Indexes on page 44

• Join Column on page 45

• Primary Keys on page 46

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

Unsigned Data Types
In some cases, using unsigned data types can eliminate sign comparisons and create faster
queries.

Use unsigned data types when the sign of the data does not matter as all data will always be
greater than or equal to zero. The lack of sign storage results in column comparisons that no
longer have to perform sign comparison. This increases performance and eliminates a step in
the joining and searching of data, particularly for key columns.

Monitoring and Tuning Performance

Performance and Tuning Guide 49

See also
• Indexing Tips on page 39
• When and Where to use Indexes on page 40
• Simple Index Selection Criteria on page 41
• HG Index Loads on page 42
• Multi-Column Indexes on page 44
• Join Column on page 45
• Primary Keys on page 46
• Foreign Keys on page 46
• Proper Data Type Sizing on page 47
• IQ UNIQUE and MINIMIZE_STORAGE on page 48
• Null Values on page 49
• LONG VARCHAR and LONG VARBINARY on page 50
• Large Object Storage on page 51
• Temporary Tables on page 52
• Denormalizing for Performance on page 53
• UNION ALL Views for Faster Loads on page 54

LONG VARCHAR and LONG VARBINARY
Use VARCHAR() and VARBINARY() to increase column storage without using large object
storage mechanisms.

Typically, developers and DBAs think of VARBINARY() and VARCHAR() data as being
limited to 255 bytes. IQ supports VARCHAR() and VARBINARY() widths of up to 32K (also
known as LONG VARCHAR or LONG VARBINARY). This allows for much larger storage of
text or binary data without needing to move into the highly specialized large objects storage
mechanism of BLOB/CLOB or IMAGE/TEXT data types.

• Can be used to store moderate amounts of text or binary data
• Maximum width is 32K (64K ASCII hex for VARBINARY())

• The WORD and TEXT index is the only index allowed on VARCHAR() data wider than 255
bytes

• Storage will be allocated in 256 byte chunks
• A 257 byte string will require 512 bytes of storage
• A 511 byte string will also require 512 bytes of storage

See also
• Indexing Tips on page 39
• When and Where to use Indexes on page 40
• Simple Index Selection Criteria on page 41
• HG Index Loads on page 42

Monitoring and Tuning Performance

50 Sybase IQ

• Multi-Column Indexes on page 44
• Join Column on page 45
• Primary Keys on page 46
• Foreign Keys on page 46
• Proper Data Type Sizing on page 47
• IQ UNIQUE and MINIMIZE_STORAGE on page 48
• Null Values on page 49
• Unsigned Data Types on page 49
• Large Object Storage on page 51
• Temporary Tables on page 52
• Denormalizing for Performance on page 53
• UNION ALL Views for Faster Loads on page 54

Large Object Storage
Use Large Object data types for data that requires more than 32K in storage.

• Large object data types store ASCII (TEXT/CLOB) and binary (IMAGE/BLOB) data. Each
BLOB/CLOB cell of data is stored on one or more pages

• Assuming the page size is 128K
• If the data is 129K, it will require 2 pages to store the information
• If the data is 1K, it will require 1 page to store the data
• In either case, the page(s) are compressed on disk into multiples of the block size

• Can be used to store binary or text based objects
• Extends the long binary data type from a maximum size of 6K to an unlimited size
• The TEXT index is the only viable index

• Can be fully searched with the TEXT index and its search capabilities

• Special function to return the size of an object (byte_length64)

• Special function to return portions of the object, not the entire contents
(byte_substr64)

• Can extract contents of a binary object cell to an individual file with the BFILE() function

See also
• Indexing Tips on page 39
• When and Where to use Indexes on page 40
• Simple Index Selection Criteria on page 41
• HG Index Loads on page 42
• Multi-Column Indexes on page 44
• Join Column on page 45
• Primary Keys on page 46
• Foreign Keys on page 46

Monitoring and Tuning Performance

Performance and Tuning Guide 51

• Proper Data Type Sizing on page 47

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

• UNION ALL Views for Faster Loads on page 54

Temporary Tables
If you want the data to persist through transaction commits, use the ON COMMIT PRESERVE
ROWS option when you create global temporary tables or declare local temporary tables.

There are three types of Temporary Tables:

• # tables

CREATE TABLE temp table(col1 int)
• Local Temporary Tables

DECLARE LOCAL TEMPORARY TABLE temp table (col1 int)

Local Temporary Tables behave just like # tables

• Global Temporary Tables
CREATE GLOBAL TEMPORARY TABLE table temp table (col1 int)

Global Temporary Table structure is static across connections and reboots

Normal hash (#) tables do not need the ON COMMIT PRESERVE ROWS option because the
data in a hash table will always persist through transaction commits.

See also
• Indexing Tips on page 39

• When and Where to use Indexes on page 40

• Simple Index Selection Criteria on page 41

• HG Index Loads on page 42

• Multi-Column Indexes on page 44

• Join Column on page 45

• Primary Keys on page 46

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

Monitoring and Tuning Performance

52 Sybase IQ

• LONG VARCHAR and LONG VARBINARY on page 50
• Large Object Storage on page 51
• Denormalizing for Performance on page 53
• UNION ALL Views for Faster Loads on page 54

Denormalizing for Performance
Although denormalizing your database can improve performance, there are risks and
disadvantages.

Risks
Denormalization can be successfully performed only with thorough knowledge of the
application and should be performed only if performance issues indicate that it is needed.
Consider the effort required to keep your data up-to-date.

This is a good example of the differences between decision support applications, which
frequently need summaries of large amounts of data, and transaction processing needs, which
perform discrete data modifications. Denormalization usually favors some processing, at a
cost to others.

Denormalization has the potential for data integrity problems, which must be carefully
documented and addressed in application design.

Deciding to Denormalize
Analyze the data access requirements of the applications in your environment and their actual
performance characteristics, including:

• What are the critical queries, and what is the expected response time?
• What tables or columns do they use? How many rows per access?
• What is the usual sort order?
• What are concurrency expectations?
• How big are the most frequently accessed tables?
• Do any processes compute summaries?

See also
• Indexing Tips on page 39
• When and Where to use Indexes on page 40
• Simple Index Selection Criteria on page 41
• HG Index Loads on page 42
• Multi-Column Indexes on page 44
• Join Column on page 45
• Primary Keys on page 46
• Foreign Keys on page 46
• Proper Data Type Sizing on page 47

Monitoring and Tuning Performance

Performance and Tuning Guide 53

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• UNION ALL Views for Faster Loads on page 54

UNION ALL Views for Faster Loads
UNION ALL views can improve load performance when it is too expensive to maintain
secondary indexes for all rows in a table.

Sybase IQ lets you split the data into several separate base tables (for example, by date). You
load data into these smaller tables. You then join the tables back together into a logical whole
by means of a UNION ALL view, which you can then query.

This strategy can improve load performance, but may negatively impact the performance of
some types of queries. Most types of queries have roughly similar performance against a
single base table or against a UNION ALL view over smaller base tables, as long as the view
definition satisfies all constraints. However, some types of queries, especially those involving
DISTINCT or involving joins with multiple join columns, may perform significantly slower
against a UNION ALL view than against a single large base table. Before choosing to use this
strategy, determine whether the improvements in load performance are worth the degradation
in query performance for your application.

UNION ALL views can be efficient to administer. If the data is partitioned by month, for
example, you can drop an entire month’s worth of data by deleting a table and updating the
UNION ALL view definition appropriately. You can have many view definitions for a year, a
quarter, and so on, without adding extra date range predicates.

To create a UNION ALL view, choose a logical means of dividing a base table into separate
physical tables. The most common division is by month. For example, to create a view
including all months for the first quarter, enter:

CREATE VIEW
SELECT * JANUARY
UNION ALL
SELECT * FEBRUARY
UNION ALL
SELECT * MARCH
UNION ALL

Each month, you can load data into a single base table—JANUARY, FEBRUARY, or
MARCH in this example. Next month, load data into a new table with the same columns, and
the same index types.

For syntax details, see UNION operation in the Reference: Statements and Options.

Monitoring and Tuning Performance

54 Sybase IQ

Note: You cannot perform an INSERT...SELECT into a UNION ALL view. UNION ALL
operators are not fully parallel in this release. Their use may limit query parallelism.

See also
• Indexing Tips on page 39

• When and Where to use Indexes on page 40

• Simple Index Selection Criteria on page 41

• HG Index Loads on page 42

• Multi-Column Indexes on page 44

• Join Column on page 45

• Primary Keys on page 46

• Foreign Keys on page 46

• Proper Data Type Sizing on page 47

• IQ UNIQUE and MINIMIZE_STORAGE on page 48

• Null Values on page 49

• Unsigned Data Types on page 49

• LONG VARCHAR and LONG VARBINARY on page 50

• Large Object Storage on page 51

• Temporary Tables on page 52

• Denormalizing for Performance on page 53

Optimizing Queries That Reference UNION ALL Views
To adjust performance for queries that reference UNION ALL views, set the
JOIN_PREFERENCE option, which affects joins between UNION ALL views.

All partitions in a UNION ALL view must have a complete set of indexes defined for
optimization to work. Queries with DISTINCT will tend to run more slowly using a UNION
ALL view than a base table.

Sybase IQ includes optimizations for UNION ALL views, including:

• Split GROUP BY over UNION ALL view

• Push-down join into UNION ALL view

A UNION can be treated as a partitioned table only if it satisfies all of the following constraints:

• It contains only one or more UNION ALL.

• Each arm of the UNION has only one table in its FROM clause, and that table is a physical
base table.

• No arm of the UNION has a DISTINCT, a RANK, an aggregate function, or a GROUP BY
clause.

• Each item in the SELECT clause within each arm of the UNION is a column.

Monitoring and Tuning Performance

Performance and Tuning Guide 55

• The sequence of data types for the columns in the SELECT list of the first UNION arm is
identical to the sequence in each subsequent arm of the UNION.

See also
• Managing UNION ALL View Performance on page 56

Managing UNION ALL View Performance
Structure queries to evaluate the DISTINCT operator before the ORDER BY, where the sort
order is ASC.

Certain optimizations, such as pushing a DISTINCT operator into a UNION ALL view, are
not applied when the ORDER BY is DESC because the optimization that evaluates
DISTINCT below a UNION does not apply to DESC order. For example, the following query
would impact performance:

SELECT DISTINCT state FROM testVU ORDER BY state DESC;

To work around this performance issue, queries should have the DISTINCT operator
evaluated before the ORDER BY, where the sort order is ASC and the optimization can be
applied:

SELECT c.state FROM (SELECT DISTINCT state
 FROM testVUA) c
ORDER BY c.state DESC;

See also
• Optimizing Queries That Reference UNION ALL Views on page 55

Monitoring Performance Statistics
Use Performance Monitor in Sybase Central to display statistics for simplex and multiplex
servers. Statistics display in a dynamic chart in real time.

Note: Topics in this section describes cover simplex servers only. See Using Sybase IQ
Multiplex level for multiplex servers.

Monitoring Performance at the Server Level
Use Performance monitor in Sybase Central to monitor statistics on a simplex or multiplex
server.

1. To start Performance monitor, click the server name in the Sybase Central folders view.

2. In the right pane, click the Performance monitor tab.

See Servers > Monitoring performance in Sybase IQ help for more information and options.

Monitoring and Tuning Performance

56 Sybase IQ

See also
• Memory Usage Statistics on page 57

• Cache Statistics on page 58

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Connection Statistics on page 61

• Request Statistics on page 62

• Transaction Statistics on page 63

• Store I/O Statistics on page 63

• DBspace Usage Statistics on page 64

• Network Statistics on page 65

Memory Usage Statistics
Memory usage statistics show server memory statistics.

Table 8. Memory Usage

Name Description Monitored By Default?

Memory Allocated Memory allocated by the IQ
server in megabytes

Yes

Maximum Memory Allocated Maximum memory allocated by
the IQ server in megabytes

No

See also
• Monitoring Performance at the Server Level on page 56

• Cache Statistics on page 58

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Connection Statistics on page 61

• Request Statistics on page 62

• Transaction Statistics on page 63

• Store I/O Statistics on page 63

• DBspace Usage Statistics on page 64

• Network Statistics on page 65

Monitoring and Tuning Performance

Performance and Tuning Guide 57

Cache Statistics
Cache statistics describe cache use.

Table 9. Cache Statistics

Name Description Monitored By De-
fault?

Catalog Cache Hits Number of catalog cache hits per
second.

No

Temporary Cache Hits Number of temporary cache hits
per second.

No

Main Cache Hits Number of main cache hits per
second.

No

Catalog Cache Reads Number of catalog cache page
lookups per second.

Yes

Temporary Cache Reads Number of temporary cache page
lookups per second.

No

Main Cache Reads Number of main cache page look-
ups per second.

No

Catalog Cache Current Size Current catalog cache size in meg-
abytes.

No

Temporary Cache Current Size Current temporary cache size in
megabytes.

No

Main Cache Current Size Current main cache size in mega-
bytes.

No

Catalog Cache in Use Percentage Percentage of catalog cache in use. No

Temporary Cache in Use Percent-
age

Percentage of Temporary cache in
use.

No

Main Cache in Use Percentage Percentage of Main cache size in
use.

No

Catalog Cache Pinned Number of pinned catalog cache
pages.

No

Temporary Cache Pinned Number of pinned temporary
cache pages.

No

Main Cache Pinned Number of pinned main cache pa-
ges.

No

Monitoring and Tuning Performance

58 Sybase IQ

Name Description Monitored By De-
fault?

Catalog Cache Pinned Percentage Percentage of catalog cache pin-
ned.

No

Temporary Cache Pinned Percent-
age

Percentage of temporary cache
pinned.

No

Main Cache Pinned Percentage Percentage of main cache pinned. No

Catalog Cache Dirty Pages Per-
centage

Percentage of catalog cache dirty
pages.

No

Temporary Cache Dirty Pages Per-
centage

Percentage of temporary cache
dirty pages.

No

Main Cache Dirty Pages Percent-
age

Percentage of main cache dirty pa-
ges.

No

See also
• Monitoring Performance at the Server Level on page 56

• Memory Usage Statistics on page 57

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Connection Statistics on page 61

• Request Statistics on page 62

• Transaction Statistics on page 63

• Store I/O Statistics on page 63

• DBspace Usage Statistics on page 64

• Network Statistics on page 65

CPU Usage Statistics
CPU usage statistics show the percentage of CPU resources in use.

Table 10. CPU Usage

Name Description Monitored By Default?

CPU Usage IQ process CPU usage percent-
age, including both system and
user usage.

Yes

CPU System Usage IQ process CPU system usage
percentage.

No

Monitoring and Tuning Performance

Performance and Tuning Guide 59

Name Description Monitored By Default?

CPU User Usage IQ process CPU user usage per-
centage.

No

See also
• Monitoring Performance at the Server Level on page 56
• Memory Usage Statistics on page 57
• Cache Statistics on page 58
• Thread Statistics on page 60
• Connection Statistics on page 61
• Request Statistics on page 62
• Transaction Statistics on page 63
• Store I/O Statistics on page 63
• DBspace Usage Statistics on page 64
• Network Statistics on page 65

Thread Statistics
Thread statistics describe thread use.

Table 11. Thread Statistics

Name Description Monitored By De-
fault?

IQ Threads in Use Number of threads used by the IQ
server

No

IQ Threads Available Number of threads available in the
IQ server

No

SA Threads in Use Number of threads used by the
SQL Anywhere engine.

No

See also
• Monitoring Performance at the Server Level on page 56
• Memory Usage Statistics on page 57
• Cache Statistics on page 58
• CPU Usage Statistics on page 59
• Connection Statistics on page 61
• Request Statistics on page 62
• Transaction Statistics on page 63
• Store I/O Statistics on page 63

Monitoring and Tuning Performance

60 Sybase IQ

• DBspace Usage Statistics on page 64

• Network Statistics on page 65

Connection Statistics
Connection statistics display connection activities.

Table 12. Connection Statistics

Name Description Monitored By De-
fault?

Total Connections Total number of connections in-
cluding user and INC connections.

Yes

User Connections Number of user connections. No

INC Incoming Connections Number of INC incoming connec-
tions

No

INC Outgoing Connections Number of INC outgoing connec-
tions

No

User Connections Per Minute Number of user connections per
minute

No

User Disconnections Per Minute Number of user disconnections
per minute

No

See also
• Monitoring Performance at the Server Level on page 56

• Memory Usage Statistics on page 57

• Cache Statistics on page 58

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Request Statistics on page 62

• Transaction Statistics on page 63

• Store I/O Statistics on page 63

• DBspace Usage Statistics on page 64

• Network Statistics on page 65

Monitoring and Tuning Performance

Performance and Tuning Guide 61

Request Statistics
Request statistics describe activities devoted to responding to requests from client
applications.

Table 13. Request Statistics

Name Description Monitored By De-
fault?

Requests Number of times per second the
server has been entered to allow it
to handle a new request or contin-
ue processing an existing request.

No

Unscheduled Requests Number of requests that are cur-
rently queued up waiting for an
available server thread.

No

IQ Waiting Operations Number of IQ operations waiting
for the resource governor

No

IQ Active Operations Number of active IQ operations No

See also
• Monitoring Performance at the Server Level on page 56

• Memory Usage Statistics on page 57

• Cache Statistics on page 58

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Connection Statistics on page 61

• Transaction Statistics on page 63

• Store I/O Statistics on page 63

• DBspace Usage Statistics on page 64

• Network Statistics on page 65

Monitoring and Tuning Performance

62 Sybase IQ

Transaction Statistics
Transaction statistics display transaction activity.

Table 14. Transaction Statistics

Name Description Monitored By De-
fault?

Total Transaction Count Total number of active transactions
including user and INC transac-
tions.

No

User Transaction Count Number of active user transactions No

INC Transaction Count Number of active INC transactions No

Active Load Table Statements Number of active load table state-
ments

No

See also
• Monitoring Performance at the Server Level on page 56

• Memory Usage Statistics on page 57

• Cache Statistics on page 58

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Connection Statistics on page 61

• Request Statistics on page 62

• Store I/O Statistics on page 63

• DBspace Usage Statistics on page 64

• Network Statistics on page 65

Store I/O Statistics
Store I/O statistics describe disk reads and writes.

Table 15. Store I/O Statistics

Name Description Monitored By De-
fault?

Catalog Store Disk Reads Number of kilobytes per second
that have been read from the cata-
log store.

No

Monitoring and Tuning Performance

Performance and Tuning Guide 63

Name Description Monitored By De-
fault?

Temporary Store Disk Reads Number of kilobytes per second
that have been read from the tem-
porary store.

No

Main Store Disk Reads Number of kilobytes per second
that have been read from the main
store.

No

Catalog Store Disk Writes Number of kilobytes per second
that have been written to the cata-
log store.

No

Temporary Store Disk Writes Number of kilobytes per second
that have been written to the tem-
porary store.

No

Main Store Disk Writes Number of kilobytes per second
that have been written to the main
store.

No

See also
• Monitoring Performance at the Server Level on page 56

• Memory Usage Statistics on page 57

• Cache Statistics on page 58

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Connection Statistics on page 61

• Request Statistics on page 62

• Transaction Statistics on page 63

• DBspace Usage Statistics on page 64

• Network Statistics on page 65

DBspace Usage Statistics
DBspace usage statistics identify dbspace availability.

Table 16. DBSpace Usage

Name Description Monitored By De-
fault?

DBSpace File Size in Use DBSpace size in use. There is one
such statistic per dbspace.

No

Monitoring and Tuning Performance

64 Sybase IQ

Name Description Monitored By De-
fault?

Percentage of DBSpace Size
Available

Percentage of free space available
for every dbspace file. There is one
such statistic per dbspace per file.

No

See also
• Monitoring Performance at the Server Level on page 56

• Memory Usage Statistics on page 57

• Cache Statistics on page 58

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Connection Statistics on page 61

• Request Statistics on page 62

• Transaction Statistics on page 63

• Store I/O Statistics on page 63

• Network Statistics on page 65

Network Statistics
Network statistics display network activity.

Table 17. Network Statistics

Name Description Monitored By De-
fault?

Bytes Received Number of bytes per second re-
ceived during client/server com-
munications.

Yes

Bytes Received Uncompressed Number of bytes per second that
would have been received during
client/server communications if
compression was disabled.

No

Bytes Sent Number of bytes per second sent
during client/server communica-
tions.

Yes

Bytes Sent Uncompressed Number of bytes per second that
would have been sent during cli-
ent/server communications if
compression was disabled.

No

Monitoring and Tuning Performance

Performance and Tuning Guide 65

Name Description Monitored By De-
fault?

Free Communication Buffers Number of available network
communication buffers.

No

Total Communication Buffers Total number of network commu-
nication buffers.

No

See also
• Monitoring Performance at the Server Level on page 56

• Memory Usage Statistics on page 57

• Cache Statistics on page 58

• CPU Usage Statistics on page 59

• Thread Statistics on page 60

• Connection Statistics on page 61

• Request Statistics on page 62

• Transaction Statistics on page 63

• Store I/O Statistics on page 63

• DBspace Usage Statistics on page 64

Monitoring the Buffer Caches
Buffer cache performance is a key factor in overall performance. Buffer cache monitor logs
buffer cache, memory, and I/O statistics.

Use the buffer cache monitor to fine-tune main and temp buffer cache memory allocation. If
one cache performs significantly more I/O than the other, reallocate some of the memory in
small amounts, such as 10 percent of the cache allocation on an iterative basis. After
reallocating, rerun the workload and monitor the performance changes.

Starting the Buffer Cache Monitor
Run the buffer cache monitor from Interactive SQL. Each time you start the monitor it runs as a
separate kernel thread within Sybase IQ .

Use this syntax to start the monitor:

IQ UTILITIES { MAIN | PRIVATE }
 INTO dummy_table_name
 START MONITOR 'monitor_options […]'
MAIN starts monitoring of the main buffer cache, for all tables in the IQ Store of the database
you are connected to.

Monitoring and Tuning Performance

66 Sybase IQ

PRIVATE starts monitoring of the temp buffer cache, for all tables in the Temporary Store of
the database you are connected to.

You need to issue a separate command to monitor each buffer cache. You must keep each of
these sessions open while the monitor collects results; a monitor run stops when you close its
connection. A connection can run up to a maximum of two monitor runs, one for the main and
one for the temp buffer cache.

dummy_table_name can be any Sybase IQ base or temporary table. The table name is required
for syntactic compatibility with other IQ UTILITIES commands. It is best to have a table that
you use only for monitoring.

To control the directory placement of monitor output files, set the
MONITOR_OUTPUT_DIRECTORY option. If this option is not set, the monitor sends output
to the same directory as the database. All monitor output files are used for the duration of the
monitor runs. They remain after a monitor run has stopped.

Either declare a temporary table for use in monitoring, or create a permanent dummy table
when you create a new database, before creating any multiplex query servers. These solutions
avoid DDL changes, so that data stays up on query servers during production runs.

Note: To simplify monitor use, create a stored procedure to declare the dummy table, specify
its output location, and start the monitor.

Note: The interval, with two exceptions, applies to each line of output, not to each page. The
exceptions are -cache_by_type and -debug, where a new page begins for each display.

Output Options
Buffer cache monitor output depends on the switches you include with the monitor_options
argument.

-summary
Displays summary information for both the main and temp buffer caches. If you do not specify
any monitor options, you receive a summary report.

Usage
monitor_options -summary

Output

Table 18. -summary Output Fields

Output field Description

Users Number of users connected to the buffer cache

IO Combined physical reads and writes by the buffer cache

Monitoring and Tuning Performance

Performance and Tuning Guide 67

See also
• -cache on page 68

• -cache_by_type on page 70

• -file_suffix on page 70

• -io on page 71

• -bufalloc on page 72

• -contention on page 73

• -threads on page 74

• -interval on page 75

• -append | - truncate on page 76

• -debug on page 76

-cache
Displays main or temp buffer cache activity in detail. Critical fields are Finds, HR%, and
BWaits.

Usage
monitor_options -cache

Output

Table 19. -cache Output Fields

Output field Description

Finds Find requests to the buffer cache. If the Finds value suddenly drops
to zero and remains zero, the server is deadlocked. When the server
has any activity, the Finds value is expected to be non-zero.

Creats Requests to create a page within the database

Dests Requests to destroy a page within the database

Dirty Number of times the buffer was dirtied (modified)

HR% Hit rate, the percentage of above satisfied by the buffer cache with-
out requesting any I/O. The higher the Hit Rate the better, usually
90% - 100% if you set the cache large enough. For a large query, Hit
Rate may be low at first, but increase as prefetching starts to work.

BWaits Find requests forced to wait for a busy page (page frame conten-
tion). Usually it is low, but is some special cases it may be high. For
example, if identical queries are started at the same time, both need
the same page, so the second request must wait for the first to get
that page from disk.

Monitoring and Tuning Performance

68 Sybase IQ

Output field Description

ReReads Approximate number of times the same portion of the store needed
to be reread into the cache within the same transaction. Should
always be low, but a high number is not important for Sybase IQ
12.4.2 and above.

FMiss False misses, number of times the buffer cache needed multiple
lookups to find a page in memory. This number should be 0 or very
small. If the value is high, it is likely that a rollback occurred, and
certain operations needed to be repeated

Cloned Number of buffers that Sybase IQ needed to make a new version for
a writer, while it had to retain the previous version for concurrent
readers. A page only clones if other users are looking at that page.

Reads/Writes Physical reads and writes performed by the buffer cache

PF/PFRead Prefetch requests and reads done for prefetch.

GDirty Number of times the LRU buffer was grabbed dirty and Sybase IQ
had to write it out before using it. This value should not be greater
than 0 for a long period. If it is, you may need to increase the number
of sweeper threads or move the wash marker.

Pin% Percentage of pages in the buffer cache in use and locked.

Dirty% Percentage of buffer blocks that were modified. Try not to let this
value exceed 85-90%; otherwise, GDirty will become greater than
0.

See also
• -summary on page 67

• -cache_by_type on page 70

• -file_suffix on page 70

• -io on page 71

• -bufalloc on page 72

• -contention on page 73

• -threads on page 74

• -interval on page 75

• -append | - truncate on page 76

• -debug on page 76

Monitoring and Tuning Performance

Performance and Tuning Guide 69

-cache_by_type
Breaks -cache results down by IQ page type. (An exception is the Bwaits column, which
shows a total only.) This format is most useful when you need to supply information to Sybase
Technical Support.

Usage
monitor_options -cache_by_type

See also
• -summary on page 67

• -cache on page 68

• -file_suffix on page 70

• -io on page 71

• -bufalloc on page 72

• -contention on page 73

• -threads on page 74

• -interval on page 75

• -append | - truncate on page 76

• -debug on page 76

-file_suffix
Creates a monitor output file named <dbname>.<connid>-<main_or_temp>-
<suffix>. If you do not specify an optional file extension, the file extension defaults to
iqmon.

Usage
monitor_options -file_suffix {extension}

See also
• -summary on page 67

• -cache on page 68

• -cache_by_type on page 70

• -io on page 71

• -bufalloc on page 72

• -contention on page 73

• -threads on page 74

• -interval on page 75

• -append | - truncate on page 76

• -debug on page 76

Monitoring and Tuning Performance

70 Sybase IQ

-io
Displays main or temp (private) buffer cache I/O rates and compression ratios during the
specified interval. These counters represent all activity for the server; the information is not
broken out by device.

Usage
monitor_options -io

Output

Table 20. -io Output Fields

Output field Description

Reads Physical reads performed by the buffer cache

Lrd(KB) Logical kilobytes read in (page size multiplied by
the number of requests)

Prd(KB) Physical kilobytes read in

Rratio Compression ratio of logical to physical data read
in, a measure of the efficiency of the compression
to disk for reads

Writes Physical writes performed by the buffer cache

Lwrt(KB) Logical kilobytes written

Pwrt(KB) Physical kilobytes written

Wratio Compression ratio of logical to physical data
written

See also
• -summary on page 67

• -cache on page 68

• -cache_by_type on page 70

• -file_suffix on page 70

• -bufalloc on page 72

• -contention on page 73

• -threads on page 74

• -interval on page 75

• -append | - truncate on page 76

• -debug on page 76

Monitoring and Tuning Performance

Performance and Tuning Guide 71

-bufalloc
Displays information on the main or temp buffer allocator, which reserves space in the buffer
cache for objects like sorts, hashes, and bitmaps.

Usage
monitor_options -bufalloc

Output

Table 21. -bufalloc Output Fields

Output field Description

OU User_Resource_Reservation option setting (formerly Opti-
mize_For_This_Many_Users)

AU Current number of active users

MaxBuf Number buffers under control of the buffer allocator

Avail Number of currently available buffers for pin quota allocation

AvPF Number of currently available buffers for prefetch quota allocation

Slots Number of currently registered objects using buffer cache quota

PinUser Number of objects (for example, hash, sort, and B-tree objects) using
pin quota

PFUsr Number of objects using prefetch quota

Posted Number of objects that are pre-planned users of quota

UnPost Number of objects that are ad hoc quota users

Locks Number of mutex locks taken on the buffer allocator

Waits Number of times a thread had to wait for the lock

See also
• -summary on page 67
• -cache on page 68
• -cache_by_type on page 70
• -file_suffix on page 70
• -io on page 71
• -contention on page 73
• -threads on page 74
• -interval on page 75

Monitoring and Tuning Performance

72 Sybase IQ

• -append | - truncate on page 76

• -debug on page 76

-contention
Displays many key buffer cache and memory manager locks. These lock and mutex counters
show the activity within the buffer cache and heap memory and how quickly these locks were
resolved. Timeout numbers that exceed 20% indicate a problem.

Usage
monitor_options -contention

Output

Table 22. -contention Output Fields

Output field Description

AU Current number of active users

LRULks Number times the LRU was locked (repeated for the temp cache)

woTO Number times lock was granted without timeout (repeated for the
temp cache)

Loops Number times Sybase IQ retried before lock was granted (repeated
for the temp cache)

TOs Number of times Sybase IQ timed out and had to wait for the lock
(repeated for the temp cache)

BWaits Number of Busy Waits for a buffer in the cache (repeated for the
temp cache)

IOLock Number of times Sybase IQ locked the compressed I/O pool (re-
peated for the temp cache); can be ignored

IOWait Number of times Sybase IQ had to wait for the lock on the com-
pressed I/O pool (repeated for the temp cache); can be ignored

HTLock Number of times Sybase IQ locked the block maps hash table
(repeated for the temp cache)

HTWait Number of times Sybase IQ had to wait for the block maps hash
table (repeated for the temp cache); HTLock and HTWait indicate
how many block maps you are using

FLLock Number of times Sybase IQ had to lock the free list (repeated for the
temp cache)

Monitoring and Tuning Performance

Performance and Tuning Guide 73

Output field Description

FLWait Number of times Sybase IQ had to wait for the lock on the free list
(repeated for the temp cache)

MemLks Number of times Sybase IQ took the memory manager (heap) lock

MemWts Number of times Sybase IQ had to wait for the memory manager
lock

Note: Due to operating system improvements, Sybase IQ no longer uses spin locks. As a
result, the woTO, Loops, and TOs statistics are rarely used.

See also
• -summary on page 67

• -cache on page 68

• -cache_by_type on page 70

• -file_suffix on page 70

• -io on page 71

• -bufalloc on page 72

• -threads on page 74

• -interval on page 75

• -append | - truncate on page 76

• -debug on page 76

-threads
Displays the processing thread manager counts. Values are server-wide (i.e., it does not matter
whether you select this option for main or private). They represent new events after the last
page of the report.

Usage
monitor_options -threads

Output

Table 23. -threads Output Fields

Output field Description

cpus Number of CPUs Sybase IQ is using; this may be less than the number
on the system

Limit Maximum number of threads Sybase IQ can use

Monitoring and Tuning Performance

74 Sybase IQ

Output field Description

NTeams Number of thread teams currently in use

MaxTms Largest number of teams that has ever been in use

NThrds Current number of existing threads

Resrvd Number of threads reserved for system (connection) use

Free Number of threads available for assignment. Monitor this value if it is
very low, it indicates thread starvation

Locks Number of locks taken on the thread manager

Waits Number of times Sybase IQ had to wait for the lock on the thread
manager

See also
• -summary on page 67

• -cache on page 68

• -cache_by_type on page 70

• -file_suffix on page 70

• -io on page 71

• -bufalloc on page 72

• -contention on page 73

• -interval on page 75

• -append | - truncate on page 76

• -debug on page 76

-interval
Specifies the reporting interval in seconds. The default is every 60 seconds. The minimum is
every 2 seconds. You can usually get useful results by running the monitor at the default
interval during a query or time of day with performance problems. Short intervals may not
give meaningful results. Intervals should be proportional to the job time; one minute is
generally more than enough.

Usage
monitor_options -interval

Output
The first display shows counters from the start of the server. Subsequent displays show the
difference from the previous display.

Monitoring and Tuning Performance

Performance and Tuning Guide 75

See also
• -summary on page 67

• -cache on page 68

• -cache_by_type on page 70

• -file_suffix on page 70

• -io on page 71

• -bufalloc on page 72

• -contention on page 73

• -threads on page 74

• -append | - truncate on page 76

• -debug on page 76

-append | - truncate
Append or truncate output to existing output file. Truncate is the default.

Usage
monitor_options -append | -truncate

See also
• -summary on page 67

• -cache on page 68

• -cache_by_type on page 70

• -file_suffix on page 70

• -io on page 71

• -bufalloc on page 72

• -contention on page 73

• -threads on page 74

• -interval on page 75

• -debug on page 76

-debug
Displays all information available to the performance monitor, whether or not there is a
standard display mode that covers the same information. -debug is used mainly to supply
information to Sybase Technical Support.

Usage
monitor_options -debug

Monitoring and Tuning Performance

76 Sybase IQ

Output
The top of the page is an array of statistics broken down by disk block type. This is followed by
other buffer cache statistics, memory manager statistics, thread manager statistics, free list
statistics, CPU utilization, and finally buffer allocator statistics.

The buffer allocator statistics are then broken down by client type (hash, sort, and so on) and a
histogram of the most recent buffer allocations is displayed. Memory allocations indicate how
much is allocated after the last page of the report.

See also
• -summary on page 67

• -cache on page 68

• -cache_by_type on page 70

• -file_suffix on page 70

• -io on page 71

• -bufalloc on page 72

• -contention on page 73

• -threads on page 74

• -interval on page 75

• -append | - truncate on page 76

Checking Results While the Monitor Runs
On UNIX systems, you can watch monitor output as queries are running.

For example, you could start the monitor using the following command:
iq utilities main into monitor_tab
start monitor “-cache -interval 2 -file_suffix iqmon”

This command sends output to an ASCII file with the name dbname.conn#-[main|
temp]-iqmon. So, for the database iqdemo, results would be sent to iqdemo.2-main-
iqmon.

To watch results, issue the following command at the system prompt:
$ tail -f iqdemo.2-main-iqmon

Stopping the Buffer Cache Monitor
The command you use to stop a monitor run is similar to the one you use to start it, except that
you do not need to specify any options.

Use this syntax to stop the Sybase IQ buffer cache monitor:

IQ UTILITIES { MAIN | PRIVATE }
 INTO dummy_table_name STOP MONITOR

Monitoring and Tuning Performance

Performance and Tuning Guide 77

Note: In order for certain option settings to take effect you must restart the database. If the
monitor is running you need to shut it down so that the database can be restarted.

Examining and Saving Monitor Results
Buffer cache monitor logs the results of each run.

The default names of the logs:

• dbname.connection#-main-iqmon for main buffer cache results

• dbname.connection#-temp-iqmon for temp buffer cache results

The prefix dbname.connection# represents your database name and connection number. If
you see more than one connection number and are uncertain which is yours, you can run the
Catalog stored procedure sa_conn_info. This procedure displays the connection number, user
ID, and other information for each active connection to the database.

You can use the -file_suffix parameter on the IQ UTILITIES command to change the suffix
iqmon to a suffix of your choice.

To see the results of a monitor run, use a text editor or any other method you would normally
use to display or print a file.

When you run the monitor again from the same database and connection number, by default it
overwrites the previous results. If you need to save the results of a monitor run, copy the file to
another location before starting the monitor again from the same database or use the -append
option.

Buffer Cache Structure
Changing the CACHE_PARTITIONS value may improve load or query performance in a
multi-CPU configuration.

Sybase IQ automatically calculates the number of cache partitions for the buffer cache
according to the number of CPUs on your system. If load or query performance in a multi-
CPU configuration is slower than expected, you may be able to improve it by changing the
value of the CACHE_PARTITIONS database option. For details, see CACHE_PARTITIONS
option in Reference: Statements and Options.

As buffers approach the Least Recently Used (LRU) end of the cache, they pass a wash marker.
Sybase IQ writes the oldest pages—those past the wash marker—out to disk so that the cache
space they occupy can be reused. A team of Sybase IQ processing threads, called sweeper
threads, sweeps (writes) out the oldest buffers.

When Sybase IQ needs to read a page of data into the cache, it grabs the LRU buffer. If the
buffer is still “dirty” (modified) it must first be written to disk. The Gdirty column in the
monitor -cache report shows the number of times the LRU buffer was grabbed dirty and
Sybase IQ had to write it out before using it.

Monitoring and Tuning Performance

78 Sybase IQ

Usually Sybase IQ is able to keep the Gdirty value at 0. If this value is greater than 0 for more
than brief periods, you may need to adjust one of the database options that control the number
of sweeper threads and the wash marker. See “SWEEPER_THREADS_PERCENT option” or
“WASH_AREA_BUFFERS_PERCENT option” in Reference: Statements and Options.

Avoid Buffer Manager Thrashing
Thrashing occurs when the system must write a dirty page before it can read a requested page,
which drastically slows down the system. For optimum performance, always allocate enough
cache to allow the page writers to keep up with the free space demand.

Buffer Cache Thrashing
Buffer cache thrashing is similar to system thrashing, and occurs when there are not enough
clean buffers available for reads. This causes the same kind of ‘write first then read’ delay in
the cache, and can happen when the buffer cache is not large enough to accommodate all of the
objects referenced in a query.

To eliminate buffer cache thrashing, you must allocate more memory for the buffer caches. Do
not over allocate the buffer caches. Allocating too much memory can induce system thrashing
by allocating memory for the database buffer cache. In extreme cases, allocating too much
memory can introduce multiple levels of thrashing without solving the buffer cache thrashing
problem.

Another more subtle form of buffer cache thrashing can occur in multiuser contexts or when
skew or uncertainty caused by query complexity causes the optimizer to choose a HASH
algorithm in a circumstance where the HASH object needed to be built with significantly
larger number of values than fits in the cache available to the query.

Setting Buffer Sizes
When you set buffer sizes, keep in mind the following trade-off:

• If the Sybase IQ buffer cache is too large, the operating system is forced to page as Sybase
IQ tries to use all of that memory.

• If the Sybase IQ buffer cache is too small, then Sybase IQ thrashes because it cannot fit
enough of the query data into the cache.

If you are experiencing dramatic performance problems, you should monitor paging to
determine if thrashing is a problem. If so, then reset your buffer sizes.

Queries and Hash Algorithms
If you monitor paging and determine that thrashing is a problem, you can also limit the amount
of thrashing during the execution of a statement which includes a query that involves hash
algorithms. Adjusting the HASH_THRASHING_PERCENT database option controls the
percentage of hard disk I/Os allowed before the statement is rolled back and an error is
returned.

Monitoring and Tuning Performance

Performance and Tuning Guide 79

The default value of HASH_THRASHING_PERCENT is 10%. Increasing
HASH_THRASHING_PERCENT permits more paging to disk before a rollback and
decreasing HASH_THRASHING_PERCENT permits less paging before a rollback.

Queries involving hash algorithms that executed in earlier versions of Sybase IQ may now be
rolled back when the default HASH_THRASHING_PERCENT limit is reached. Sybase IQ
reports the error Hash insert thrashing detected or Hash find
thrashing detected. Take one or more of the following actions to provide the query
with the resources required for execution:

• Relax the paging restriction by increasing the value of HASH_THRASHING_PERCENT.

• Increase the size of the temporary cache (DBA only). Keep in mind that increasing the size
of the temporary cache requires an equal size reduction in main cache allocation to prevent
the possibility of system thrashing.

• Attempt to identify and alleviate why Sybase IQ is misestimating one or more hash sizes
for this statement. For example, check that all columns that need an LF or HG index have
one. Also consider if a multicolumn index is appropriate.

• Decrease the value of the database option HASH_PINNABLE_CACHE_PERCENT.

For more information on these database options, see the sections
“HASH_THRASHING_PERCENT option” and
“HASH_PINNABLE_CACHE_PERCENT option” in Reference: Statements and Options.

To identify possible problems with a query, generate a query plan by running the query with
the temporary database options QUERY_PLAN = 'ON' and QUERY_DETAIL = 'ON',
then examine the estimates in the query plan. The generated query plan is in the message log
file.

Monitoring Paging on Windows Systems
Use the Windows Performance tool to monitor paging and object memory.

To access System Monitor, select the object Logical Disk, the instance of the disk containing
the file PAGEFILE.SYS, and the counter Disk Transfers/Sec. Put the Windows page files on
different disks than your database dbspace devices. You can also monitor the Object Memory
and the counter Pages/Sec. However, this value is the sum of all memory faults which includes
both soft and hard faults.

See also
• Monitoring Paging on UNIX-like Operating Systems on page 81

Monitoring and Tuning Performance

80 Sybase IQ

Monitoring Paging on UNIX-like Operating Systems
Use vmstat, top, or topas to monitor system activity such as paging.

Table 24. Monitoring Utilities on UNIX-like Operating Systems

Command Platform Description

vmstat Solaris, Linux,
HP-UX

vmstat displays virtural memory statistics.

top Solaris, Linux,
HP-UX

top displays top CPU processor activities.

topas AIX topas generates local system statistics.

Note: See your operating system documentation for syntax and options.

See also
• Monitoring Paging on Windows Systems on page 80

Buffer Cache Monitor Checklist
Review this checklist to adjust cache behavior that falls outside the normal range.

Table 25. Buffer Cache Monitor Checklist

Statistic Normal behavior Behavior that needs ad-
justing

Recommended
action

HR% (Cache
hit rate)

Above 90%.

For individual internal data
structures like garray, barray,
bitmap (bm), hash object, sort
object, variable-length btree
(btreev), fixed-length btree
(btreef), bit vector (bv), dbext,
dbid, vdo, store, checkpoint
block (ckpt), the hit rate should
be above 90% while a query
runs. It may be below 90% at
first. Once prefetch starts
working (PF or PrefetchReqs
> 0), the hit rate should gradu-
ally grow to above 90%.

Hit rate below 90% after prefetch
is working.

Note: Some objects do not do
prefetching, so their hit rate may
be low normally.

Try rebalancing the
cache sizes of main
versus temp by adjust-
ing -iqmc and -iqtc.

Also try increasing the
number of prefetch
threads by adjusting
PRE-
FETCH_THREADS
_PERCENT option.

Monitoring and Tuning Performance

Performance and Tuning Guide 81

Statistic Normal behavior Behavior that needs ad-
justing

Recommended
action

Gdirty (Grab-
bed Dirty)

0 in a system with a modest
cache size (< 10GB).

GDirty > 0

Note: Sweeper threads are acti-
vated only when the number of
dirty pages reaches a certain per-
centage of the wash area. If
GDirty/GrabbedDirty is above 0
and the I/O rate (Writes) is low,
the system may simply be lightly
loaded, and no action is necessa-
ry.

Adjust SWEEP-
ER_THREADS_PE
RCENT option (de-

fault 10%) or
WASH_AREA_
BUFFERS_PER-
CENT option (default

20%) to increase the
size of the wash area.

BWaits (Buf-
fer Busy
Waits)

0 Persistently > 0, indicating that
multiple jobs are colliding over
the same buffers.

If the I/O rate (Writes)
is high, Busy Waits
may be caused by
cache thrashing.
Check Hit Rate in the
cache report to see if
you need to rebalance
main versus temp
cache.

If a batch job is starting
a number of nearly
identical queries at the
same time, try stagger-
ing the start times.

LRU Waits
(LRUNum
TimeOuts
percentage in
debug report)

20% or less > 20%, which indicates a serious
contention problem.

Check the operating
system patch level and
other environment set-
tings. This problem
tends to be an O.S. is-
sue.

IOWait (ION-
umWaits)

10% or lower > 10% Check for disk errors
or I/O retries

Monitoring and Tuning Performance

82 Sybase IQ

Statistic Normal behavior Behavior that needs ad-
justing

Recommended
action

FLWait
(FLMutex-
Waits)

20% or lower > 20% Check the dbspace
configuration:

Is the database almost
out of space?

Is DISK_STRIPING
ON?

Does sp_iqcheckdb

report fragmentation
greater than 15%?

HTWait
(BmapHT-
NumWaits)

MemWts
(MemNti-
mesWaited)

(PFMgrCond
VarWaits)

10% or lower > 10% Contact Sybase Tech-
nical Support.

Monitoring and Tuning Performance

Performance and Tuning Guide 83

Statistic Normal behavior Behavior that needs ad-
justing

Recommended
action

CPU time
(CPU Sys
Seconds,
CPU Total
Seconds, in
debug report)

CPU Sys Seconds < 20% CPU Sys Seconds > 20%

If CPU Total Seconds also re-
ports LOW utilization, and there
are enough jobs that the system is
busy, the cache may be thrashing
or parallelism may be lost.

Adjust -iqgovern to re-
duce allowed total
number of concurrent
queries.

Check Hit Rate and I/
O Rates in the cache
report for cache
thrashing. Also check
if hash object is thrash-
ing by looking at the
hit rate of the has ob-
ject in cache_by_type
(or debug) report: is it
<90% while the I/O
rate (Writes) is high?

Check query plans for
attempted parallelism.
Were enough threads
available?

Does the system have a
very large number of
CPUs? Strategies such
as multiplex configu-
ration may be necessa-
ry.

InUse% (Buf-
fers in use)

At or near 100% except during
startup

Less than about 100% The buffer cache may
be too large.

Try rebalancing the
cache sizes of main
versus temp by adjust-
ing -iqmc and -iqtc.

Monitoring and Tuning Performance

84 Sybase IQ

Statistic Normal behavior Behavior that needs ad-
justing

Recommended
action

Pin% (Pinned
buffers)

< 90% > 90 to 95%, indicating system is
dangerously close to an Out of
Buffers condition, which would
cause transactions to roll back

Try rebalancing the
cache sizes of main
versus temp.

If rebalancing buffer
cache sizes is not pos-
sible, try reducing -iq-

govern to limit the
number of jobs run-
ning concurrently.

Free threads
(ThrNum-
Free)

Free > Resrvd If the number of free threads
drops to the reserved count, the
system may be thread starved.

Try one of the follow-
ing:

Increase the number of
threads by setting -
iqmt.

Reduce thread-related
options:
MAX_IQ_THREAD
S_ PER_CON-
NECTION,

MAX_IQ_THREAD
S_ PER_TEAM.

Restrict query engine
resource allocations by
setting USER_RE-
SOURCE_ RES-
ERVATION.

Limit the number of
jobs by setting -iqgo-

vern.

FlOutOf-
Space (debug
only)

0, indicating that the free list
for this store is not full; unal-
located pages are available

1, indicating that this store (main
or temporary) is fully allocated

Add more dbspace to
that store

Monitoring and Tuning Performance

Performance and Tuning Guide 85

System Utilities to Monitor CPU Use
OS-specific utilities are available to monitor CPU usage.

Table 26. OS-Specific Monitoring Utilities

OS Utility Description

UNIX top (Solaris, Linux, HP-
UX), topas (IBM-AIX)

Provides an ongoing look at processor activity in real
time.

ps Reports process status.

vmstat Displays information about system processes, mem-
ory, paging, block IQ, traps, and CPU activity.

iostat -x Displays disk subsystem information.

Windows System Monitor Task Man-
ager

Provide detailed information about computer per-
formance and running applications, processes, CPU
usage, and other system services.

Monitoring and Tuning Performance

86 Sybase IQ

Optimizing Queries and Deletions

Recommendations to help you plan, structure, and control your queries.

Tips for Structuring Queries
Improving query structures can make your queries run faster.

• In some cases, command statements that include subqueries can also be formulated as
joins and may run faster.

• If you group on multiple columns in a GROUP BY clause, list the columns by descending
order by number of unique values if you can. This will give you the best query
performance.

• You can improve performance by using an additional column to store frequently
calculated results.

See also
• Planning Queries on page 89

• Controlling Query Processing on page 92

• Optimizing Delete Operations on page 96

Enhancing ORDER BY Query Performance
Using multicolumn HG indexes can enhance the performance of ORDER BY queries.

You can use multicolumn HG indexes to enhance the performance of ORDER BY queries with
reference to multiple columns in a single table query. This change is transparent to users, but
improves query performance.

Queries with multiple columns in the ORDER BY clause may run faster using multicolumn HG
indexes. For example, if the user has multicolumn index HG(x,y,z) on table T, then this
index is used for ordered projection:

SELECT abs (x) FROM T
ORDER BY x, y

In the above example, the HG index vertically projects x and y in sorted order.

If the ROWID() function is in the SELECT list expressions, multicolumn HG indexes are also
used. For example:

SELECT rowid()+x, z FROM T
ORDER BY x,y,z

Optimizing Queries and Deletions

Performance and Tuning Guide 87

If ROWID() is present at the end of an ORDER BY list, and if the columns of that list—except
for ROWID()— exist within the index, and the ordering keys match the leading HG columns
in order, multicolumn indexes are used for the query. For example:
SELECT z,y FROM T
ORDER BY x,y,z,ROWID()

See also
• Improved Subquery Performance on page 88

• Using Caching Methods on page 88

Improved Subquery Performance
Use SUBQUERY_FLATTENING_PREFERENCE and
SUBQUERY_FLATTENING_PERCENT to control subquery flattening.

Subquery flattening is an optimization technique in which the optimizer rewrites a query
containing a subquery into a query that uses a join. Sybase IQ flattens many but not all
subqueries. Use SUBQUERY_FLATTENING_PREFERENCE and
SUBQUERY_FLATTENING_PERCENT to control when the optimizer chooses to use this
optimization.

The FLATTEN_SUBQUERIES option has been deprecated in Sybase IQ 15.0.

See also
• Enhancing ORDER BY Query Performance on page 87

• Using Caching Methods on page 88

Using Caching Methods
Set the SUBQUERY_CACHING_PREFERENCE option to choose caching methods for a
correlated subquery.

A correlated subquery contains references to one or more tables outside of the subquery and is
re-executed each time the value in the referenced column changes. Use the
SUBQUERY_CACHING_PREFERENCE option to choose caching methods for executing the
correlated subquery.

See also
• Enhancing ORDER BY Query Performance on page 87

• Improved Subquery Performance on page 88

Optimizing Queries and Deletions

88 Sybase IQ

Planning Queries
Generating a query plan can help you understand the execution plan developed by the
optimizer.

If you have created the right indexes, the Sybase IQ query optimizer can usually execute
queries in the most efficient way - even if you have not used the most effective syntax.

Before it executes any query, the Sybase IQ query optimizer creates a query plan. Sybase
IQhelps you evaluate queries by letting you examine and influence the query plan, using the
options described in the sections that follow. For details of how to specify these options, see
Reference: Statements and Options.

See also
• Tips for Structuring Queries on page 87

• Controlling Query Processing on page 92

• Optimizing Delete Operations on page 96

Query Evaluation Options
Setting the appropriate options helps you evaluate the query plan.

• INDEX_ADVISOR – When set ON, the index advisor prints index recommendations as
part of the Sybase IQ query plan or as a separate message in the Sybase IQ message log file
if query plans are not enabled. These messages begin with the string “Index Advisor:” and
you can use that string to search and filter them from a Sybase IQ message file. This option
outputs messages in OWNER.TABLE.COLUMN format and is OFF by default.

See also the “sp_iqindexadvice procedure” in “System Procedures” in the Reference:
Building Blocks, Tables, and Procedures.

• INDEX_ADVISOR_MAX_ROWS – Used to limit the number of messages stored by the
index advisor. Once the specified limit has been reached, the INDEX_ADVISOR will not
store new advice. It will, however, continue to update count and timestamps for existing
advice.

• NOEXEC – When set ON, Sybase IQ produces a query plan but does not execute the entire
query. When the EARLY_PREDICATE_EXECUTION option is ON, some portions of a
query are still executed.
If EARLY_PREDICATE_EXECUTION is OFF, the query plan may be very different than
when the query is run normally, so turning it OFF is not recommended.

• QUERY_DETAIL – When this option and either QUERY_PLAN or
QUERY_PLAN_AS_HTML are both ON, Sybase IQ displays additional information about
the query when producing its query plan. When QUERY_PLAN and
QUERY_PLAN_AS_HTML are OFF, this option is ignored.

Optimizing Queries and Deletions

Performance and Tuning Guide 89

• QUERY_PLAN – When set ON (the default), Sybase IQ produces messages about queries.
These include messages about using join indexes, about the join order, and about join
algorithms for the queries.

• QUERY_PLAN_TEXT_ACCESS – When this option is turned ON, you can view, save, and
print IQ query plans from the Interactive SQL client. When
QUERY_PLAN_ACCESS_FROM_CLIENT is turned OFF, query plans are not cached,
and other query plan-related database options have no affect on the query plan display
from the Interactive SQL client. This option is OFF by default.

See “GRAPHICAL_PLAN function [String]” and “HTML_PLAN function [String]” in
Reference: Building Blocks, Tables, and Procedures.

• QUERY_PLAN_AFTER_RUN – When set ON, the query plan is printed after the query has
finished running. This allows the plan to include additional information, such as the actual
number of rows passed on from each node of the query. In order for this option to work,
QUERY_PLAN must be ON. This option is OFF by default.

• QUERY_PLAN_AS_HTML – Produces a graphical query plan in HTML format for
viewing in a Web browser. Hyperlinks between nodes make the HTML format much easier
to use than the text format in the .iqmsg file. Use the QUERY_NAME option to include the
query name in the file name for the query plan. This option is OFF by default.

• QUERY_PLAN_AS_HTML_DIRECTORY – When QUERY_PLAN_AS_HTML is ON and
a directory is specified with QUERY_PLAN_AS_HTML_DIRECTORY, Sybase IQ writes
the HTML query plans in the specified directory.

• QUERY_PLAN_TEXT_CACHING – Gives users a mechanism to control resources for
caching plans. With this option OFF (the default), the query plan is not cached for that user
connection.
If the QUERY_PLAN_TEXT_ACCESS option is turned OFF for a user, the query plan is
not cached for the connections from that user, no matter how
QUERY_PLAN_TEXT_CACHING is set.

See also “GRAPHICAL_PLAN function [String]” and “HTML_PLAN function [String]”
in Reference: Building Blocks, Tables, and Procedures.

• QUERY_TIMING – Controls the collection of timing statistics on subqueries and some
other repetitive functions in the query engine. Normally it should be OFF (the default)
because for very short correlated subqueries the cost of timing every subquery execution
can be very expensive in terms of performance.

Note: Query plans can add a lot of text to your .iqmsg file. When QUERY_PLAN is ON, and
especially if QUERY_DETAIL is ON, you might want to enable message log wrapping or
message log archiving to avoid filling up your message log file. For details, see “Message log
wrapping” in “Overview of Sybase IQ System Administration” of the System Administration
Guide: Volume 1.

See also
• The Query Tree on page 91

Optimizing Queries and Deletions

90 Sybase IQ

• Using Query Plans on page 91

The Query Tree
A query tree represents the query’s data flow.

The query tree consists of nodes. Each node represents a stage of work. The lowest nodes on
the tree are leaf nodes. Each leaf node represents a table in the query.

At the top of the plan is the root of the operator tree. Information flows up from the tables and
through any operators representing joins, sorts, filters, stores, aggregation, and subqueries.

See also
• Query Evaluation Options on page 89
• Using Query Plans on page 91

Using Query Plans
Set the QUERY_PLAN_AS_HTML option to generate an HTML version of the query plan that
you can view this file in a Web browser.

In the HTML query plan, each node in the tree is a hyperlink to the details. Each box is
hyperlinked to the tree. You can click on any node to navigate quickly through the plan.

Users can display, print, and save query plans in Interactive SQL plan window instead of
accessing the .iqmsg file or query plan files on the server.

SQL functions GRAPHICAL_PLAN and HTML_PLAN return IQ query plans in XML and
HTML format, respectively, as a string result set. Database options
QUERY_PLAN_TEXT_ACCESS and QUERY_PLAN_TEXT_CACHING control the
behavior of the new functions.

View query plans from the Interactive SQL plan window in the following ways:

• Execute the query and open the plan window. Depending on the plan type you selected
from the Plan option (Tools > Options > Plan), the appropriate plan displays in the plan
window.
The IQ query plan displays only if the GRAPHICAL_PLAN option is selected. Other plans
return the error message, “Plan type is not supported.”

• Enter the query in the SQL statements window and select from the menu SQL > Get Plan.
Depending on the plan type you selected from the Plan option (Tools > Options > Plan), the
appropriate plan displays in the plan window.
The IQ query plan displays only if the GRAPHICAL_PLAN option is selected. Other plans
return the error message, “Plan type is not supported.”

• Use the SQL functions, GRAPHICAL_PLAN and HTML_PLAN, to return the query plan
as a string result.

To access query plans, use the SQL functions, GRAPHICAL_PLAN and HTML_PLAN, for the
following queries: SELECT, UPDATE, DELETE, INSERT SELECT, and SELECT INTO.

Optimizing Queries and Deletions

Performance and Tuning Guide 91

To save query plans from Interactive SQL, use GRAPHICAL_PLAN or HTML_PLAN to
retrieve the query plan and save the output to a file using the OUTPUT statement.

To view saved plans, select File > Open from the Interactive SQL client menu and navigate to
the directory where you saved your plan. You can also print plans displayed on the plan
window by selecting File > Print.

See “GRAPHICAL_PLAN function [String]” and “HTML_PLAN function [String]” in
Reference: Building Blocks, Tables, and Procedures for details. For the options that support
these query plan functions, see “QUERY_PLAN_TEXT_ACCESS option” and
“QUERY_PLAN_TEXT_CACHING option” in Reference: Statements and Options.

See also
• Query Evaluation Options on page 89

• The Query Tree on page 91

Controlling Query Processing
Any user can set limits on the amount of time spent processing a particular query. Users with
DBA privileges can give certain users’ queries priority over others, or change processing
algorithms to influence the speed of query processing.

See also
• Tips for Structuring Queries on page 87

• Planning Queries on page 89

• Optimizing Delete Operations on page 96

Setting Query Time Limits
Set the MAX_QUERY_TIME option to limit the time a query can run. If a query takes longer to
execute than the MAX_QUERY_TIME , Sybase IQ stops the query with an appropriate error.

Note: Sybase IQ truncates all decimal option-value settings to integer values. For example,
the value 3.8 is truncated to 3.

See also
• Setting Query Priority on page 93

• Setting Query Optimization Options on page 93

• Setting User-Supplied Condition Hints on page 94

• Monitoring Workloads on page 95

Optimizing Queries and Deletions

92 Sybase IQ

Setting Query Priority
Setting query priority options assigns query processing priorities by user.

Queries waiting in queue for processing are queued to run in order of the priority of the user
who submitted the query, followed by the order in which the query was submitted. No queries
are run from a lower priority queue until higher priority queries have all been executed.

The following options assign queries a processing priority by user.

• IQGOVERN_PRIORITY – Assigns a numeric priority (1, 2, or 3, with 1 being the highest)
to queries waiting in the processing queue.

• IQGOVERN_MAX_PRIORITY – Allows the DBA to set an upper boundary on
IQGOVERN_PRIORITY for a user or a group.

• IQ_GOVERN_PRIORITY_TIME – Allows high priority users to start if a high priority
(priority 1) query has been waiting in the -iqgovern queue for more than a designated
amount of time.

To check the priority of a query, check the IQGovernPriority attribute returned by the
sp_iqcontext stored procedure.

See also
• Setting Query Time Limits on page 92

• Setting Query Optimization Options on page 93

• Setting User-Supplied Condition Hints on page 94

• Monitoring Workloads on page 95

Setting Query Optimization Options
Optimization options affect query processing speed.

• AGGREGATION_PREFERENCE – Controls the choice of algorithms for processing an
aggregate (GROUP BY, DISTINCT, SET functions). This option is designed primarily
for internal use; do not use it unless you are an experienced database administrator.

• DEFAULT_HAVING_SELECTIVITY_PPM – Sets the selectivity for all HAVING
predicates in a query, overriding optimizer estimates for the number of rows that will be
filtered by the HAVING clause.

• DEFAULT_LIKE_MATCH_SELECTIVITY_PPM – Sets the default selectivity for
generic LIKE predicates, for example, LIKE 'string%string' where % is a
wildcard character. The optimizer relies on this option when other selectivity information
is not available and the match string does not start with a set of constant characters
followed by a single wildcard.

• DEFAULT_LIKE_RANGE_SELECTIVITY_PPM – Sets the default selectivity for
leading constant LIKE predicates, of the form LIKE 'string%' where the match

Optimizing Queries and Deletions

Performance and Tuning Guide 93

string is a set of constant characters followed by a single wildcard character (%). The
optimizer relies on this option when other selectivity information is not available.

• MAX_HASH_ROWS – Sets the maximum estimated number of rows the query optimizer
will consider for a hash algorithm. The default is 2,500,000 rows. For example, if there is a
join between two tables, and the estimated number of rows entering the join from both
tables exceeds this option value, the optimizer will not consider a hash join. On systems
with more than 50MB per user of TEMP_CACHE_MEMORY_MB, you may want to
consider a higher value for this option.

• MAX_JOIN_ENUMERATION – Sets the maximum number of tables to be optimized for
join order after optimizer simplifications have been applied. Normally you should not
need to set this option.

See also
• Setting Query Time Limits on page 92

• Setting Query Priority on page 93

• Setting User-Supplied Condition Hints on page 94

• Monitoring Workloads on page 95

Setting User-Supplied Condition Hints
Selectivity hints help the optimizer choose an appropriate query strategy.

The Sybase IQ query optimizer uses information from available indexes to select an
appropriate strategy for executing a query. For each condition in the query, the optimizer
decides whether the condition can be executed using indexes, and if so, the optimizer chooses
which index and in what order with respect to the other conditions on that table. The most
important factor in these decisions is the selectivity of the condition; that is, the fraction of the
table’s rows that satisfy that condition.

The optimizer normally decides without user intervention, and it generally makes optimal
decisions. In some situations, however, the optimizer might not be able to accurately
determine the selectivity of a condition before it has been executed. These situations normally
occur only where either the condition is on a column with no appropriate index available, or
where the condition involves some arithmetic or function expression and is, therefore, too
complex for the optimizer to accurately estimate.

For syntax, parameters, and examples, see “User-supplied condition hints,” in “SQL
Language Elements” in Reference: Building Blocks, Tables, and Procedures.

See also
• Setting Query Time Limits on page 92

• Setting Query Priority on page 93

• Setting Query Optimization Options on page 93

• Monitoring Workloads on page 95

Optimizing Queries and Deletions

94 Sybase IQ

Monitoring Workloads
Use the stored procedures that monitor table, column, and index usage for better query
performance.

Indexes are often created to provide optimization metadata and to enforce uniqueness and
primary/foreign key relationships. Once an index is created, however, DBAs face the
challenge of quantifying benefits that the index provides.

Tables are often created in the IQ Main Store for the temporary storage of data that must be
accessed by multiple connections or over a long period. These tables might be forgotten while
they continue to use valuable disk space. Moreover, the number of tables in a data warehouse is
too large and the workloads are too complex to manually analyze usage.

Thus, unused indexes and tables waste disk space, increase backup time, and degrade DML
performance.

Sybase IQ offers tools for collecting and analyzing statistics for a defined workload. DBAs
can quickly determine which database objects are being referenced by queries and should be
kept. Unused tables/columns/indexes can be dropped to reduce wasted space, improve DML
performance, and decrease backup time.

Workload monitoring is implemented using stored procedures, which control the collection
and report detailed usage of table, column, and, index information. These procedures
complement INDEX_ADVISOR functionality, which generates messages suggesting
additional column indexes that may improve performance of one or more queries. Once
recommended indexes have been added, their usage can be tracked to determine if they are
worth keeping.

For details on workload monitoring procedures, see and “sp_iqcolumnuse
procedure,” “sp_iqindexadvice procedure,” “sp_iqindexuse procedure,” “sp_iqtableuse
procedure,” “sp_iqunusedcolumn procedure,” “sp_iqunusedindex
procedure,” “sp_iqunusedtable procedure,” and “sp_iqworkmon procedure” in Reference:
Building Blocks, Tables, and Procedures.

See also “INDEX_ADVISOR option” in Reference: Statements and Options.

See also
• Setting Query Time Limits on page 92

• Setting Query Priority on page 93

• Setting Query Optimization Options on page 93

• Setting User-Supplied Condition Hints on page 94

Optimizing Queries and Deletions

Performance and Tuning Guide 95

Optimizing Delete Operations
Sybase IQ chooses the best algorithm to process delete operations on columns with HG and WD
indexes.

See also
• Tips for Structuring Queries on page 87

• Planning Queries on page 89

• Controlling Query Processing on page 92

HG Delete Operations
Sybase IQ chooses one of three algorithms to process delete operations on columns with an HG
(High_Group) index.

• Small delete provides optimal performance when rows are deleted from very few groups.
It is typically selected when the delete is only 1 row or the delete has an equality predicate
on the columns with an HG index. The small delete algorithm can randomly access the HG.
Worst case I/O is proportional to the number of groups visited.

• Mid delete provides optimal performance when rows are deleted from several groups, but
the groups are sparse enough or few enough that not many HG pages are visited. The mid
delete algorithm provides ordered access to the HG. Worst case I/O is bounded by the
number of index pages. Mid delete has the added cost of sorting the records to delete.

• Large delete provides optimal performance when rows are deleted from a large number of
groups. The large delete scans the HG in order until all rows are deleted. Worst case I/O is
bounded by the number of index pages. Large delete is parallel, but parallelism is limited
by internal structure of the index and the distribution of group to deleted from. Range
predicates on HG columns can be used to reduce the scan range of the large delete.

HG Delete Costing
The delete cost model considers many factors including I/O costs, CPU costs, available
resources, index metadata, parallelism, and predicates available from the query.

Specifying predicates on columns that have HG, LF, or enumerated FP indexes greatly
improves costing. In order for the HG costing to pick an algorithm other than large delete, it
must be able to determine the number of distinct values (groups) affected by deletions.
Distinct count is initially assumed to be lesser of the number of index groups and the number
of rows deleted. Predicates can provide an improved or even exact estimate of the distinct
count.

Costing currently does not consider the effect of range predicates on the large delete. This can
cause mid delete to be chosen in cases where large delete would be faster. You can force the
large delete algorithm if needed in these cases, as described in the next section.

Optimizing Queries and Deletions

96 Sybase IQ

Using HG Delete Performance Option
You can use the HG_DELETE_METHOD option to control HG delete performance.

The value of the parameter specified with the HG_DELETE_METHOD option forces the use of
the specified delete algorithm as follows:

• 1 = Small delete
• 2 = Large delete
• 3 = Mid delete
• DML_OPTIONS5 = 4 (Disable Push Delete Predicates) Default 0 — Disables pushing

range predicates to the HG large delete.

For more information on the HG_DELETE_METHOD database option, see
“HG_DELETE_METHOD option” in “Database Options” in Reference: Statements and
Options.

See also
• WD Delete Operations on page 97

• TEXT Delete Operations on page 98

WD Delete Operations
Sybase IQ chooses one of three algorithms to process delete operations on columns with a WD
(Word) index.

• Small delete provides optimal performance when the rows deleted contain few distinct
words, so that not many WD pages need to be visited. The WD small delete algorithm
performs an ordered access to the WD. Worst case I/O is bounded by the number of index
pages. Small delete incorporates the cost of sorting the words and record IDs in the records
to delete.

• Mid delete for WD is a variation of WD small delete, and is useful under the same conditions
as small delete, that is, when the rows deleted contain few distinct words. Mid delete for WD
sorts only words in the records to delete. This sort is parallel, with parallelism limited by
the number of words and CPU threads available. For Word index, the mid delete method is
generally faster than small delete.

• Large delete provides optimal performance when the rows deleted contain a large number
of distinct words, and therefore need to visit a large number of “groups” in the index. The
large delete scans the WD in order, until all rows are deleted. Worst case I/O is bounded by
the number of index pages. Large delete is parallel, but parallelism is limited by the
internal structure of the index and the distribution of groups from which to delete.

WD Delete Costing
The WD delete cost model considers many factors including I/O costs, CPU costs, available
resources, index metadata, and parallelism.

Optimizing Queries and Deletions

Performance and Tuning Guide 97

You can use the WD_DELETE_METHOD database option to control WD delete performance.

Using WD Delete Performance Option
The value of the parameter specified with the WD_DELETE_METHOD option forces the use of
the specified delete algorithm as follows:

• 0 = Mid or large delete as selected by the cost model
• 1 = Small delete
• 2 = Large delete
• 3 = Mid delete

For more information on the WD_DELETE_METHOD database option, see
“WD_DELETE_METHOD option” in “Database Options” of Reference: Statements and
Options.

See also
• HG Delete Operations on page 96

• TEXT Delete Operations on page 98

TEXT Delete Operations
Sybase IQ chooses one of two algorithms to process delete operations on columns with a
TEXT index.

• Small delete provides optimal performance when the rows deleted contain few distinct
words, so that not many TEXT pages need to be visited. The TEXT small delete algorithm
performs an ordered access to the TEXT. Worst case I/O is bounded by the number of index
pages. Small delete incorporates the cost of sorting the words and record IDs in the records
to delete.

• Large delete provides optimal performance when the rows deleted contain a large number
of distinct words, and therefore need to visit a large number of “groups” in the index. The
large delete scans the TEXT in order, until all rows are deleted. Worst case I/O is bounded
by the number of index pages. Large delete is parallel, but parallelism is limited by the
internal structure of the index and the distribution of groups from which to delete.

TEXT Delete Costing
The TEXT delete cost model considers many factors including I/O costs, CPU costs, available
resources, index metadata, and parallelism.

You can use the TEXT_DELETE_METHOD database option to control TEXT delete
performance.

Using TEXT Delete Performance Option
The value of the parameter specified with the TEXT_DELETE_METHOD option forces the use
of the specified delete algorithm as follows:

Optimizing Queries and Deletions

98 Sybase IQ

• 0 = Mid or large delete as selected by the cost model
• 1 = Small delete
• 2 = Large delete

For more information on the TEXT_DELETE_METHOD database option, see
“TEXT_DELETE_METHOD option” in “TEXT Indexes and Text Configuration Objects” of
Unstructured Data Analytics in Sybase IQ.

See also
• HG Delete Operations on page 96

• WD Delete Operations on page 97

Optimizing Queries and Deletions

Performance and Tuning Guide 99

Optimizing Queries and Deletions

100 Sybase IQ

Index
-append | - truncate 76
-bufalloc 72
-cache 68
-cache_by_type 70
-ch 13
-cl 13
-contention 73
-debug 76
-file_suffix 70
-gm 12
-interval 75
-io 71
-summary 67
-threads 74

A
AGGREGATION_ALGORITHM_

PREFERENCE 93

B
balancing I/O

internal striping 19
raw I/O 17
strategic file locations 19

block size
relationship to IQ page size 11

BT_PREFETCH_MAX_MISS 26
buffer cache

block size 11
cache size 10
considerations 9
data compression 11
database access, multiuser 8
IQ main and temporary buffers 10
main 9
main database 10
managing 7
memory use 8
memory, applications 8
memory, operating system 8
memory, saving 11
monitor 66
monitor checklist 81

monitor output options 67
overhead 8
page size 11
physical memory 9
setting sizes 10
settings, catalog 12
size requirements 9
temp 9
temp orary store 10
thread stacks 8

buffer cache monitor 66
buffer cache options

MAIN_CACHE_MEMORY_MB 10
TEMP_CACHE_MEMORY_MB 10

buffer caches
determining sizes 7
layout 78

buffer manager
thrashing 79

buffer manager thrashing
actions to take 79
HASH_PINNABLE_CACHE_PERCENT 79
HASH_THRASHING_PERCENT 79

buffers
disabling operating system buffering 13

C
cache

IQ main and temporary buffer size 10
prefetching pages 26
See Also buffer cache 66
statistics 58

CACHE_PARTITIONS 78
caching methods

using 88
Catalog buffer cache settings 12
Catalog Store

file growth 29
columns

significant number of null values 87
conditions

user-supplied 94
connections

connection requests 11
limiting statements 25

Index

Performance and Tuning Guide 101

statistics 61
CPU

availability 22
monitoring 86
monitoring (UNIX) 81
monitoring (Windows) 80
setting number 22
statistics 59

cursors
forcing non-scrolling 24
limiting number of 25

D
data compression

page size 11
Data Model Recommendations 39

Foreign Keys 46
HG Index Loads 42
IQ Unique and Minimize_Storage 48
Join Column 45
Large Object Storage 51
LONG VARCHAR and LONG VARBINARY

50
Multi-Column Indexes 44
Null Values 49
Primary Keys 46
Proper Data Type Sizing 47
Simple Index Selection Criteria 41
Temporary Tables 52
Unsigned Data Types 49
When and Where to use Indexes 40

Data types
LONG VARCHAR and LONG VARBINARY

50
Null Values 49
Proper Data Type Sizing 47
Unsigned Data Types 49

database
profilingsettings 35

database access
multiuser 8

databases
denormalizing for performance 53
managing 29
object profiles 35
object profiling 35
procedure profiling 34
procedures 34
profiling 36

profiling statistics 34
dbspace

limiting use 22
dbspaces

usage statistics 64
DEFAULT_HAVING_SELECTIVITY 93
DEFAULT_LIKE_MATCH_SELECTIVITY 93
DEFAULT_LIKE_RANGE_SELECTIVITY 93
delete operations

HG 96
optimizing 96
TEXT 98
WD 97

denormalization
reasons for 53

direct I/O 13
disk space

multiplex databases 27
swap space 5

disk striping
internal 19

distributed query processing 28
dynamic performance monitor 56

E

EARLY_PREDICATE_EXECUTION 93
evaluation options

queries 89
events

viewing profiling data 34

F

file system buffering 15
files

locating for best performance 19
FLATTEN_SUBQUERIES 88
FORCE_NO_SCROLL_CURSORS 24
Foreign Keys 46
fragmentation 13
FROM clause 55
functions

viewing profiling data 34

H

HASH_PINNABLE_CACHE_PERCENT 79
HASH_THRASHING_PERCENT 79

Index

102 Sybase IQ

heap
low-fragmentation 13

HG Index Loads 42
HG indexes

multicolumn 87
hyperthreading

server switch 22

I

I/O
direct 13
performance recommendations 17

IN_SUBQUERY_PREFERENCE 93
INDEX_ADVISOR 89
INDEX_PREFERENCE 93
indexes

choosing 39
HG 39, 87
index advisor 39
LF 39
multicolumn 87
types 39

Indexes
HG Index Loads 42
Multi-Column Indexes 44
Simple Index Selection Criteria 41
When and Where to use Indexes 40

internal striping 19
IOS_FILE_CACHE_BUFFERING 15
IQ PATH option

choosing a raw device 17
IQ Store

buffer cache size 10
IQ Unique and Minimize_Storage 48
IQ_USE_DIRECTIO 15
iqgovern switch

restricting queries to improve performance 21
IQGOVERN_MAX_PRIORITY option 93
IQGOVERN_PRIORITY 93
IQMSG log

setting maximum size 21
iqnumbercpus

setting number of CPUs 22
iqwmem switch 13

J

JAVA_HEAP_SIZE 16

Join Column 45
join indexes

performance impact 39
JOIN_ALGORITHM_PREFERENCE 93
JOIN_PREFERENCE 55

K

Keys
Foreign Keys 46
Primary Keys 46

L

Large Object Storage 51
lightweight processes 16
load balancing

among query servers 28
logical servers 28
LONG VARCHAR and LONG VARBINARY 50
low-fragmentation heap 13

M

main database
buffer cache size 10

MAIN_CACHE_MEMORY_MB 10
management, resources 5

buffer cache 3, 7
MAX_CURSOR_COUNT 25
MAX_HASH_ROWS 93
MAX_QUERY_TIME option 92
MAX_STATEMENT_COUNT 25
memory

applications 8
balancing I/O 17
buffer cache 7
buffer cache size 7
connection requests 11
database access, multiuser 8
file system buffering 15
fragmentation 13
increasing 5
IOS_FILE_CACHE_BUFFERING 15
IQ_USE_DIRECTIO 15
JAVA_HEAP_SIZE 16
Java-enabled databases 16
lightweight processes 16
multiplex databases 6

Index

Performance and Tuning Guide 103

multithreading 16
operating system 8
optimizing 5
optimizing for users 12
overhead 8
platform-specific memory options 13
process threading model 16
raw partitions 8
server 6
startup options 12
swapping 6
thread stacks 8
wired 13

memory usage statistics 57
memory use

other 8
memory, saving

page size 11
message log

Sybase IQ 21
monitor

IQ UTILITIES syntax 66
setting output file location 67
starting and stopping 66

monitor output options
-append | - truncate 76
-bufalloc 72
-cache 68
-cache_by_type 70
-contention 73
-debug 76
-file_suffix 70
-interval 75
-io 71
-summary 67
-threads 74

monitoring
transaction status 56

monitoring workloads 95
Multi-Column Indexes 44
multicolumn indexes 87
multiplex

performance monitor 56
multiplex databases

disk space 27
memory 6

multiplex resources
dynamically adjusting 28

multithreading
performance impact 16

N

network statistics 65
networks

large data transfers 30
networks 30
performance 30
performance suggestions 30
settings 30

NOEXEC 89
Null Values 49

O

optimizing queries 39, 87
Optimizing queries 87
option value

truncation 89
options

AGGREGATION_ALGORITHM_
PREFERENCE 93

BT_PREFETCH_MAX_MISS 26
CACHE_PARTITIONS 78
DEFAULT_HAVING_SELECTIVITY 93
DEFAULT_LIKE_MATCH_SELECTIVITY

93
DEFAULT_LIKE_RANGE_SELECTIVITY

93
EARLY_PREDICATE_EXECUTION 93
FLATTEN_SUBQUERIES 88
HASH_PINNABLE_CACHE_PERCENT 79
HASH_THRASHING_PERCENT 79
IN_SUBQUERY_PREFERENCE 93
INDEX_ADVISOR 89
INDEX_PREFERENCE 93
IQ_USE_DIRECTIO 15
JAVA_HEAP_SIZE 16
JOIN_ALGORITHM_PREFERENCE 93
JOIN_PREFERENCE 55
MAIN_CACHE_MEMORY_MB 10
MAX_HASH_ROWS 93
MAX_STATEMENT_COUNT 25
NOEXEC 89
OS_FILE_CACHE_BUFFERING 15
OS_FILE_CACHE_BUFFERING_TEMPDB

15

Index

104 Sybase IQ

PREFETCH_BUFFER_LIMIT 26
QUERY_DETAIL 89
QUERY_PLAN 89
QUERY_PLAN_AFTER_RUN 89
QUERY_PLAN_AS_HTML 89
QUERY_PLAN_AS_HTML_DIRECTORY

89
QUERY_PLAN_TEXT_ACCESS 89
QUERY_PLAN_TEXT_CACHING 89
QUERY_TIMING 89
SET OPTION 16
SUBQUERY_CACHING_PREFERENCE 88
SUBQUERY_FLATTENING_PERCENT 88
SUBQUERY_FLATTENING_PREFERENC

E 88
SWEEPER_THREADS_PERCENT 78
TEMP_CACHE_MEMORY_MB 10
USER_RESOURCE_RESERVATION 26
WASH_AREA_BUFFERS_PERCENT 78

options, buffer cache
MAIN_CACHE_MEMORY_MB 10
TEMP_CACHE_MEMORY_MB 10

options, query optimization
AGGREGATION_ALGORITHM_

PREFERENCE 93
DEFAULT_HAVING_SELECTIVITY 93
DEFAULT_LIKE_MATCH_SELECTIVITY

93
DEFAULT_LIKE_RANGE_SELECTIVITY

93
EARLY_PREDICATE_EXECUTION 93
IN_SUBQUERY_PREFERENCE 93
INDEX_PREFERENCE 93
JOIN_ALGORITHM_PREFERENCE 93
MAX_HASH_ROWS 93

options, query plans
INDEX_ADVISOR 89
NOEXEC 89
QUERY_DETAIL 89
QUERY_PLAN 89
QUERY_PLAN_AFTER_RUN 89
QUERY_PLAN_AS_HTML 89
QUERY_PLAN_AS_HTML_DIRECTORY

89
QUERY_PLAN_TEXT_ACCESS 89
QUERY_PLAN_TEXT_CACHING 89
QUERY_TIMING 89

ORDER BY
query performance 87

ORDER BY clause 87
OS_FILE_CACHE_BUFFERING 15
OS_FILE_CACHE_BUFFERING_TEMPDB 15
output options

buffer cache monitor 67
output options, monitor 76

-bufalloc 72
-cache 68
-cache_by_type 70
-contention 73
-debug 76
-file_suffix 70
-interval 75
-io 71
-summary 67
-threads 74

overhead
buffer cache 8

P
page size

block size 11
data compression 11
determining 11
memory, saving 11
reducing memory 11

paging
managing 5
monitoring on UNIX 81
monitoring on Windows 80

partitioned table 55
partitions

definition 17
Peformance

monitoring and tuning 33
performance

balancing I/O 17
choosing correct index type 39
consideration 3
database procedure profiles 34
definition 3
designing for 3
dynamic monitor 56
monitoring 66
multi-user 26
restricting queries with iqgovern 21
subqueries 88

performance monitor
server level 56

Index

Performance and Tuning Guide 105

physical memory
buffer cache 9

planning
queries 89
query plans 91

PREFETCH_BUFFER_LIMIT 26
prefetched cache pages 26
prefetched rows

controlling 27
Primary Keys 46
procedure profile

ISQL 38
sa_procedure_profile 37, 38
sa_procedure_profile_summary 38

procedure profiling
procedures 34
summary of procedures 36
viewing data in Interactive SQL 36

procedures, system
sp_iqcolumnuse 95
sp_iqindexuse 95
sp_iqtableuse 95
sp_iqunusedcolumn 95
sp_iqunusedindex 95
sp_iqunusedtable 95
sp_iqworkmon 95

process threading model 16
processes

growth 13
Proper Data Type Sizing 47
pushdown join 55

Q
queries 93

caching methods 88
condition hints 94
controlling 93
delete operations 96
evaluation options 89
HG delete operations 96
joins 93
limiting by row 23
optimization, delte options 96
optimizer simplications 93
optimizing 39, 93
ORDER BY, enhancing 87
planning 89
query plans 91
query priority 93

query processing 92
query tree 91
restricting concurrent 21
subquery performance 88
TEXT delete operations 98
time limits 92
WD delete operations 97
workload monitoring 95

queries,
Optimizing queries 87
structuring 87

query execution
distributed 28

query optimization options
AGGREGATION_ALGORITHM_

PREFERENCE 93
DEFAULT_HAVING_SELECTIVITY 93
DEFAULT_LIKE_MATCH_SELECTIVITY

93
DEFAULT_LIKE_RANGE_SELECTIVITY

93
EARLY_PREDICATE_EXECUTION 93
IN_SUBQUERY_PREFERENCE 93
INDEX_PREFERENCE 93
JOIN_ALGORITHM_PREFERENCE 93
MAX_HASH_ROWS 93

query plans 89
evaluation options 89
generating without executing 89
graphical 91
using 91

query plans, options
INDEX_ADVISOR 89
NOEXEC 89
QUERY_DETAIL 89
QUERY_PLAN 89
QUERY_PLAN_AFTER_RUN 89
QUERY_PLAN_AS_HTML 89
QUERY_PLAN_AS_HTML_DIRECTORY

89
QUERY_PLAN_TEXT_ACCESS 89
QUERY_PLAN_TEXT_CACHING 89
QUERY_TIMING 89

query processing
controlling 92, 94
monitoring 95
priority 93

query server
balancing loads 28

Index

106 Sybase IQ

query tree 91

R

raw devices
effect on performance 17

raw partitions
file systems 8
memory use 8

RAWDETECT
disk striping option 19

request statistics 62
resource management

buffer cache 7
resource use

improving 27
indexing 39
load balancing 28
Loading with UNION ALL 54
multiplex disk space 27
network performance 30

resource use options 21
forcing non-scrolling cursors 24
limiting cursors 25
limiting dbspace use 22
limiting queries by row 23
limiting statements 25
prefetched rows 27
prefetcing cache pages 26
restricting concurrent queries 21
setting available CPUs 22
typical usage 26

resources
multiplex 28

response time 3

S

sa_procedure_profile 37
sequential disk I/O 19
servers

monitoring performance 56
SET OPTION 16
Simple Index Selection Criteria 41
sp_iqcolumnuse 95
sp_iqindexuse 95
sp_iqtableuse 95
sp_iqunusedcolumn 95
sp_iqunusedindex 95

sp_iqunusedtable 95
sp_iqworkmon 95
startup options 12

-c 12
-ch 12
-cl 12
-gm 12
-gn 12
-iqgovern 12
-iqmt 12

statements
limiting statements 25

statistics
dynamic 56

store I/O statistics 63
stored procedures

performance monitoring 33
viewing profiling data 34

strategic file locations 19
structuring queries 87
subqueries

flattening 88
improving performance 88

subquery flattening 88
subquery performance 88
SUBQUERY_CACHING_PREFERENCE 88
SUBQUERY_FLATTENING_PERCENT 88
SUBQUERY_FLATTENING_PREFERENCE 88
swap files

effect on performance 5
swapping

disk space requirement 5
monitoring 6

sweeper threads 78
SWEEPER_THREADS_PERCENT 78
system procedures

sp_iqcolumnuse 95
sp_iqindexuse 95
sp_iqtableuse 95
sp_iqunusedcolumn 95
sp_iqunusedindex 95
sp_iqunusedtable 95
sp_iqworkmon 95

system resources
connections 12
managing 5
memory 5
performance considerations 3
resource use options 21

Index

Performance and Tuning Guide 107

startup options 12
system triggers

viewing profiling data 34

T

tables
collapsing 39
joining 39

TEMP_CACHE_MEMORY_MB 10
Temporary Store

buffer cache size 10
Temporary Tables 52
thrashing, buffer manager

actions to take 79
HASH_PINNABLE_CACHE_PERCENT 79
HASH_THRASHING_PERCENT 79

thread stacks
memory 8

thread statistics 60
threads

buffer caches 78
monitoring 74

throughput 3
transaction log

about 20
truncating 20

transaction statistics 63
transaction status

monitoring 56
Tuning

performance 33

U

UNION ALL
loading with 54
rules 55
view performance 56
views 55

Unsigned Data Types 49
usage

typical 26
USER_RESOURCE_RESERVATION 26
user-supplied conditions

for queries 94

V

viewing procedure profiling information in
Interactive SQL 36

virtual memory
fragmentation 13

vmstat command
monitoring buffer caches on UNIX 81

W

WASH_AREA_BUFFERS_PERCENT 78
WD delete operations 97
When and Where to use Indexes 40
wired memory 13
workload monitoring 95

Index

108 Sybase IQ

	Performance and Tuning Guide
	Contents
	Audience
	Performance Considerations
	Managing System Resources
	Optimize Memory Use
	Paging Increases Available Memory
	Utilities to Monitor Swapping
	Server Memory
	Manage Buffer Caches
	Determine the Sizes of the Buffer Caches
	Operating System and Other Applications
	Memory Overhead
	Main and Temp Buffer Caches

	Set the Buffer Cache Sizes
	Specify the Page Size
	Optimize for Large Numbers of Users
	Startup Options

	Platform-Specific Memory Options
	Controlling File System Buffering
	Options for Java-Enabled Databases

	The Process Threading Model
	Balancing I/O
	Raw I/O (on UNIX Operating Systems)
	Sybase IQ and Disk Striping
	Internal Striping
	Strategic File Locations
	Transaction Log
	Message Log

	Options for Tuning Resource Use
	Restricting Concurrent Queries
	Setting the Number of CPUs Available
	Limiting Temporary dbspace Use By a Query
	Limiting Queries by Rows Returned
	Forcing Cursors to be Non-Scrolling
	Limiting the Number of Cursors
	Limiting the Number of Statements
	Prefetching Cache Pages
	Optimizing for Typical Usage
	Controlling the Number of Prefetched Rows

	Other Ways to Improve Resource Use
	Managing Disk Space in Multiplex Databases
	Managing Multiplex Resources Using Logical Servers
	Load Balancing Among Query Servers

	Managing Database Size and Structure
	Network Performance

	Monitoring and Tuning Performance
	Getting Information Using Stored Procedures
	Profiling Database Procedures
	Viewing Procedure Profiling Statistics
	Database Object Profiles
	Setting Database Profiling Properties in Sybase Central
	Viewing Profiling Information For a Class of Database Objects
	Viewing Profiling Information For a Specific Database Object

	Procedure Profiling Statistics
	Procedure Profile
	Setting Database Profiling Options with Interactive SQL
	Generating Profiling Information with Interactive SQL

	Data Model Recommendations
	Indexing Tips
	When and Where to use Indexes
	Simple Index Selection Criteria
	HG Index Loads
	Multi-Column Indexes
	Join Column
	Primary Keys
	Foreign Keys
	Proper Data Type Sizing
	IQ UNIQUE and MINIMIZE_STORAGE
	Null Values
	Unsigned Data Types
	LONG VARCHAR and LONG VARBINARY
	Large Object Storage
	Temporary Tables
	Denormalizing for Performance
	UNION ALL Views for Faster Loads
	Optimizing Queries That Reference UNION ALL Views
	Managing UNION ALL View Performance

	Monitoring Performance Statistics
	Monitoring Performance at the Server Level
	Memory Usage Statistics
	Cache Statistics
	CPU Usage Statistics
	Thread Statistics
	Connection Statistics
	Request Statistics
	Transaction Statistics
	Store I/O Statistics
	DBspace Usage Statistics
	Network Statistics

	Monitoring the Buffer Caches
	Starting the Buffer Cache Monitor
	Output Options
	-summary
	-cache
	-cache_by_type
	-file_suffix
	-io
	-bufalloc
	-contention
	-threads
	-interval
	-append | - truncate
	-debug

	Checking Results While the Monitor Runs
	Stopping the Buffer Cache Monitor
	Examining and Saving Monitor Results

	Buffer Cache Structure
	Avoid Buffer Manager Thrashing
	Monitoring Paging on Windows Systems
	Monitoring Paging on UNIX-like Operating Systems

	Buffer Cache Monitor Checklist
	System Utilities to Monitor CPU Use

	Optimizing Queries and Deletions
	Tips for Structuring Queries
	Enhancing ORDER BY Query Performance
	Improved Subquery Performance
	Using Caching Methods

	Planning Queries
	Query Evaluation Options
	The Query Tree
	Using Query Plans

	Controlling Query Processing
	Setting Query Time Limits
	Setting Query Priority
	Setting Query Optimization Options
	Setting User-Supplied Condition Hints
	Monitoring Workloads

	Optimizing Delete Operations
	HG Delete Operations
	WD Delete Operations
	TEXT Delete Operations

	Index

