Contents

CHAPTER 1: Getting Started with Data Movement Modeling ... 1
 Creating a DMM ... 2
 DMM Properties ... 4
 Opening Legacy ILMs in the DMM ... 4
 Customizing your Modeling Environment .. 4
 Setting Model Options .. 5
 Setting DMM Display Preferences ... 5
 Extending your Modeling Environment ... 6
 Linking Objects with Traceability Links ... 6

CHAPTER 2: Data Movement Diagrams ... 7
 Data Movement Diagram Objects .. 8
 Replication Processes (DMM) ... 10
 Creating a Replication Process ... 11
 Replication Process Properties ... 11
 Replication Server Properties .. 13
 Replicating Data with the Replication Wizard ... 13
 Visualizing and Refining Data Replications with the Mapping Editor .. 16
 Creating a Data Connection with the Database Connection Wizard 18
 Mapping Editor Window .. 20
 Transformation Processes (DMM) ... 23
 Creating a Transformation Process .. 24
 Transformation Process Properties .. 24
 Creating a Data Transformation with the Transformation Wizard ... 25
Creating a Data Transformation with the Convert Mappings to ETL Wizard ...29
Mapping Conversion ...31

Databases (DMM) ...33
Creating a Database ...34
Database Properties ...34
Replication Server Primary Database Properties36
Database Contextual Menu ..38

XML Documents (DMM) ...39
Creating an XML Document ...40
XML Document Properties ...40

Business Processes (DMM) ...41
Creating a Business Process ...41
Business Process Properties ...42

Flat Files (DMM) ..42
Creating a Flat File ..43
Flat File Properties ...43

Servers (DMM) ..44
Creating a Server ..45
Server Properties ..45

Publications (DMM) ...46
Adding or Removing Publications from a Replication Process........47
Publication Properties ...48
Replication Server Database Replication Definition Properties49
Replication Server Publication Properties ..50

Articles (DMM) ..51
Adding or Removing Articles from a Publication51
Article Properties ...52
Replication Server Replication Definition and Article Properties53

Columns (DMM) ..54
Adding or Removing Columns from an Article55
Column Properties ...56
CHAPTER 3: Data Transformation and Control Flow Diagrams

Data Transformation Diagrams
- Data Transformation Diagram Objects
- Data Transformation Task Properties
- Data Structure Mapping Editor
 - Creating a Mapping from the Data Structure
 - Mapping Editor

Transformation Control Flow Diagrams
- Transformation Control Flow Diagram Objects
- Transformation Control Flow Properties

Data Inputs (DMM)
- Creating a Data Input
- Data Input Properties

Actions (DMM)
- Creating an Action
- Action Properties
- Inserting a Script Execution
- Inserting a Data Query Execution
- Inserting a Data Aggregation
- Inserting a Data Sort
- Inserting a Data Filter
- Inserting a Data Split
- Inserting a Data Merge
- Inserting a Data Join
- Inserting a Data Lookup
- Inserting a Data Projection
- Inserting a Data Calculator

Data Outputs (DMM)
- Creating a Data Output
- Data Output Properties

Data Flows (DMM)
Modeling for Multi-Path Replication ..163
 Logical Paths ...165
 Binding Database Objects to Connections or Logical Paths165
Modeling for SQL Statement Replication165
Modeling Replications to a Sybase IQ Data Warehouse166
 Generating Scripts for Replication to IQ168
 Transferring Staged Data to IQ ...168
 Replication Server Object Properties169
Generating for Replication Server170
 Generating an alter replication definition Statement171
 Archiving a Replication Environment172
Reverse Engineering for Replication Server172
 Reverse Engineering a Single Replication Process Object172
 Reverse Engineering Several Replication Processes173

Index ..175
CHAPTER 1
Getting Started with Data Movement Modeling

A data movement model (DMM) provides a global view of the movement of information in your organization. You can analyze and document where your data originates, where it moves to, and how it is transformed on the way, including replications and ETL.

The PowerDesigner® DMM allows you to model the movement, replication, and transformation of data in your enterprise with the following diagrams:

- Data movement diagram (see Chapter 2, Data Movement Diagrams on page 7) allows you to model:
 - Data replication – lets you describe and configure replication processes where a source database is replicated into one or more remote databases via replication engines. You can generate and reverse engineer Replication Server® files.
 - Data transformation – shows a high-level view of a data transformation, where data from diverse sources are combined to be loaded to output sources via ETL (Extract Transform and Load) and EII (Enterprise Information Integration). The transformations are modeled in more detail in data transformation and transformation control flow diagrams.

- Data transformation diagram - lets you detail how data is extracted from data inputs, transformed by actions, and loaded into data outputs (see Data Transformation Diagrams on page 92).

- Transformation control flow diagram - lets you represent a sequence of data transformations (see Transformation Control Flow Diagrams on page 97).

The following example shows how the various diagrams work together when modeling a data transformation. The data movement diagram contains the transformation process with its input and output sources. You can build one or more data transformation diagram(s) to detail your transformations, and a transformation control flow diagram to show the order in which these transformations are executed:
Creating a DMM

You create a new data movement model by selecting **File > New Model**.

The New Model dialog is highly configurable, and your administrator may hide options that are not relevant for your work or provide templates or predefined models to guide you through model creation. When you open the dialog, one or more of the following buttons will be available on the left hand side:

- **Categories** - which provides a set of predefined models and diagrams sorted in a configurable category structure.
- **Model types** - which provides the classic list of PowerDesigner model types and diagrams.
- **Template files** - which provides a set of model templates sorted by model type.
1. Select File > New Model to open the New Model dialog.
2. Click a button, and then select a category or model type (Data Movement Model) in the left-hand pane.
3. Select an item in the right-hand pane. Depending on how your New Model dialog is configured, these items may be first diagrams or templates on which to base the creation of your model.

 Use the Views tool on the upper right hand side of the dialog to control the display of the items.
4. Enter a model name.

 The code of the model, which is used for script or code generation, is derived from this name using the model naming conventions.
5. [optional] Click the Select Extensions button and attach one or more extensions to your model.
6. Click OK to create and open the data movement model.

 Note: Sample DMMs are available in the Example Directory.
DMM Properties

You open the model property sheet by right-clicking the model in the Browser and selecting Properties.

Each data movement model has the following model properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the model. The name should clearly convey the model's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the model. By default the code is auto-generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Filename</td>
<td>Specifies the location of the model file. This box is empty if the model has never been saved.</td>
</tr>
<tr>
<td>Author</td>
<td>Specifies the author of the model. If you enter nothing, the Author field in diagram title boxes displays the user name from the model property sheet Version Info tab. If you enter a space, the Author field displays nothing.</td>
</tr>
<tr>
<td>Version</td>
<td>Specifies the version of the model. You can use this box to display the repository version or a user defined version of the model. This parameter is defined in the display preferences of the Title node.</td>
</tr>
<tr>
<td>Default diagram</td>
<td>Specifies the diagram displayed by default when you open the model.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

Opening Legacy ILMs in the DMM

The data movement model (DMM) was formerly called the information liquidity model (ILM) and model files had a *.ilm extension. All new DMMs are created with a *.dmm extension. In addition to supporting *.dmm files, the DMM will also open and save *.ilm files. To save a *.ilm file as a *.dmm file, select File > Save As.

Customizing your Modeling Environment

The PowerDesigner data movement model provides various means for customizing and controlling your modeling environment.
Setting Model Options

You can set DMM model options by selecting **Tools > Model Options** or right-clicking the diagram background and selecting **Model Options**.

You can set the following options on the Model Settings page:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code case sensitive</td>
<td>Specifies that the names and codes for all objects are case sensitive, allowing you to have two objects with identical names or codes but different cases in the same model. If you change case sensitivity during the design process, we recommend that you check your model to verify that your model does not contain any duplicate objects.</td>
</tr>
<tr>
<td>Enable links to requirements</td>
<td>Displays a Requirements tab in the property sheet of every object in the model, which allows you to attach requirements to objects (see Requirements Modeling).</td>
</tr>
<tr>
<td>External Shortcut Properties</td>
<td>Specifies the properties that are stored for external shortcuts to objects in other models for display in property sheets and on symbols. By default, All properties appear, but you can select to display only Name/Code to reduce the size of your model.</td>
</tr>
</tbody>
</table>

Note: This option only controls properties of external shortcuts to models of the same type (PDM to PDM, EAM to EAM, etc). External shortcuts to objects in other types of model can show only the basic shortcut properties.

For information about controlling the naming conventions of your models, see *Core Features Guide > The PowerDesigner Interface > Objects > Object Properties > Naming Conventions.*

Setting DMM Display Preferences

PowerDesigner display preferences allow you to customize the format of object symbols, and the information that is displayed on them. To set data movement model display preferences, select **Tools > Display Preferences** or right-click the diagram background and select **Display Preferences** from the contextual menu.

For detailed information about customizing and controlling the attributes and collections displayed on object symbols, see *Core Features Guide > The PowerDesigner Interface > Diagrams, Matrices, and Symbols > Display Preferences.*
Extending your Modeling Environment

You can customize and extend PowerDesigner metaclasses, parameters, and file generation with extensions, which can be stored as part of your model or in separate extension files (*.xem) for reuse with other models.

To access extension defined in a *.xem file, simply attach the file to your model. You can do this when creating a new model by clicking the Select Extensions button at the bottom of the New Model dialog, or at any time by selecting Model > Extensions to open the List of Extensions and clicking the Attach an Extension tool.

In each case, you arrive at the Select Extensions dialog, which lists the extensions available, sorted on sub-tabs appropriate to the type of model you are working with:

To get started extending objects, see Core Features Guide > The PowerDesigner Interface > Objects > Extending Objects. For detailed information about working with extensions, see Customizing and Extending PowerDesigner > Extension Files.

Linking Objects with Traceability Links

You can create traceability links to show any kind of relationship between two model objects (including between objects in different models) via the Traceability Links tab of the object's property sheet. These links are used for documentation purposes only, and are not interpreted or checked by PowerDesigner.

For more information about traceability links, see Core Features Guide > Linking and Synchronizing Models > Getting Started with Linking and Syncing > Creating Traceability Links.
A *data movement diagram* provides a high-level graphical view of the movement of your information, including data sources, replications, and ETL operations.

Note: To create a data movement diagram in an existing DMM, right-click the model in the Browser and select **New > Data Movement Diagram**. To create a new model, select **File > New Model**, choose Data Movement Model as the model type and **Data Movement Diagram** as the first diagram, and then click **OK**.

You can create the following types of data movement diagrams:

- **Replication diagram** – lets you model the replication of data from source to remote databases via replication processes (see *Replication Processes (DMM)* on page 10). Replication processes contain publications and article definitions that define which data are replicated. Scripts can be generated for the Replication Server engine.

 In the following example, data contained in the *New York* primary database is replicated by the *Europe* replication process into the *Paris*, *Berlin*, and *Madrid* remote databases:

- **Transformation diagram** – lets you model ETL and EII transformations of data from input to output sources via transformation processes (see *Transformation Processes (DMM)* on page 23). The transformation is specified in detail in one or more data transformation diagrams (see *Data Transformation Diagrams* on page 92) which can be linked together in transformation control flow diagrams (see *Transformation Control Flow Diagrams* on page 97).

 In the following example, multiple input sources are transformed by the *Data Fusion and Reorganization* transformation process, and then loaded to the *Giant Corp* data warehouse:
功率Designer 支持所有构建数据移动图所需的对象。

Data Movement Diagram Objects

PowerDesigner supports all the objects necessary to build data movement diagrams.

<table>
<thead>
<tr>
<th>Object</th>
<th>Tool</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication process</td>
<td>![Replication Process Icon]</td>
<td>![Replication Process Symbol]</td>
<td>Instance of a data replication engine that replicates data from one or more source databases to one or more remote databases. See Replication Processes (DMM) on page 10.</td>
</tr>
<tr>
<td>Replication Server</td>
<td>![Replication Server Icon]</td>
<td>![Replication Server Symbol]</td>
<td>Instance of a Replication Server replication engine that replicates data from one or more primary databases to one or more remote databases. This tool only displays when a Replication Server XEM is attached to the DMM. See Chapter 6, Working with Replication Server on page 155.</td>
</tr>
<tr>
<td>Object</td>
<td>Tool</td>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Database</td>
<td></td>
<td></td>
<td>Data store modeled in one or more physical data models. See Databases (DMM) on page 33.</td>
</tr>
<tr>
<td>XML Document</td>
<td></td>
<td></td>
<td>Data store modeled in an XML model. See XML Documents (DMM) on page 39.</td>
</tr>
<tr>
<td>Business process</td>
<td></td>
<td></td>
<td>Data store modeled in a business process model. See Business Processes (DMM) on page 41.</td>
</tr>
<tr>
<td>Flat file</td>
<td></td>
<td></td>
<td>Text file which contains records. See Flat Files (DMM) on page 42.</td>
</tr>
<tr>
<td>Server</td>
<td></td>
<td></td>
<td>Network device to which other objects are deployed. See Servers (DMM) on page 44.</td>
</tr>
<tr>
<td>Publication</td>
<td></td>
<td></td>
<td>Set of tables, views and stored procedures to replicate via articles. See Publications (DMM) on page 46.</td>
</tr>
<tr>
<td>Article</td>
<td></td>
<td></td>
<td>Table or view to replicate. See Articles (DMM) on page 51.</td>
</tr>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td>Table or view column to replicate. See Columns (DMM) on page 54.</td>
</tr>
<tr>
<td>Procedure</td>
<td></td>
<td></td>
<td>Precompiled collection of SQL statements stored under a name in the database and processed as a unit. See Procedures (DMM) on page 58.</td>
</tr>
<tr>
<td>Subscription</td>
<td></td>
<td></td>
<td>Request for a replication engine to maintain a replicated copy of database objects (such as tables, views or stored procedures) in a remote database at a specified location. See Subscriptions (DMM) on page 61.</td>
</tr>
<tr>
<td>User</td>
<td></td>
<td></td>
<td>Person or group who is allowed to log onto the replication process. See Users (DMM) on page 64.</td>
</tr>
<tr>
<td>Event script</td>
<td></td>
<td></td>
<td>Stored procedure to execute on a replication process or an article. See Event Scripts (DMM) on page 66.</td>
</tr>
<tr>
<td>Data connection</td>
<td></td>
<td></td>
<td>Link between a database or other data store and a replication process or transformation process that specifies the way data is moved. See Data Connections (DMM) on page 67.</td>
</tr>
<tr>
<td>Object</td>
<td>Tool</td>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Connection group</td>
<td>[none]</td>
<td>[none]</td>
<td>Set of data connections that provides a backup in case the primary database goes down. See Data Connection Groups (DMM) on page 79.</td>
</tr>
<tr>
<td>Process connection</td>
<td></td>
<td></td>
<td>Link between two replication processes that specifies the way data is moved. See Process Connections (DMM) on page 82.</td>
</tr>
</tbody>
</table>

Replication Processes (DMM)

A *replication process* is an instance of a replication engine that copies data from one or more source databases to one or more remote databases or other replication processes.

Note: You should use a replication process when your main focus is to copy all or part of a database as a backup, or to synchronize remote sites. For more complex operations, you should use a transformation process (Transformation Processes (DMM) on page 23).

In the following example, the *Europe* replication process copies data contained in the *World* source database into the *Paris* replication process, which in turn copies data into the *Finance* and *HR* remote databases:

A replication process can contain the following items:

- *Publications* - specify the tables, views or procedures to replicate (see Publications (DMM) on page 46).
- *Subscriptions* - specify to which remote databases the publications will be replicated (see Subscriptions (DMM) on page 61).
- *Users* - specify people who are granted appropriate permissions on the replication process (see Users (DMM) on page 64).
- *Connection groups* - specify a set of data connections in which one acts as a backup for the other (see Data Connection Groups (DMM) on page 79).
• **Event scripts** - specify instructions for executing a global function in a database (see *Event Scripts (DMM)* on page 66).

Note: You must deploy your replication process to a server (see *Servers (DMM)* on page 44) to ensure correct script generation.

Although you can create all the objects necessary to model data replication by hand in any order, we recommend that you use the following workflow:

1. Create a PDM to represent the schema of your source database, or be ready to reverse engineer one from a data source.
2. Create a DMM and launch the Replication Wizard to create your basic replication environment (see *Replicating Data with the Replication Wizard* on page 13).
3. [optional] Launch the Mapping Editor to visualize and refine the details of your replications (see *Visualizing and Refining Data Replications with the Mapping Editor* on page 16).
4. Add additional objects to your environment as necessary either by hand or by relaunching the Replication Wizard (see *Completing your Replication Environment* on page 158).
5. Generate scripts for your replication or synchronization engine.

Creating a Replication Process

You can create a replication process using a Wizard or from the Toolbox, Browser, or **Model** menu.

- Use the **Replication Wizard** (see *Replicating Data with the Replication Wizard* on page 13).
- Use the **Replication Process** tool in the Toolbox.
- Select **Model > Replication Processes** to access the List of Replication Processes, and click the **Add a Row** tool.
- Right-click the model (or a package) in the Browser, and select **New > Replication Process**.

For general information about creating objects, see *Core Features Guide > The PowerDesigner Interface > Objects.*

Replication Process Properties

To view or edit a replication process's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the replication process type. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• Undefined – to model any standard replication engine.</td>
</tr>
<tr>
<td></td>
<td>• Replication Server – to model data replication from one or more primary databases to one or more remote databases (see Chapter 6, Working with Replication Server on page 155).</td>
</tr>
<tr>
<td></td>
<td>The type controls the display of additional information and tabs. Types are defined in the extensions (XEM) attached to the model. Click the Preview tab to view the generated code according to the type you selected.</td>
</tr>
<tr>
<td>Server</td>
<td>Specifies the name of the server to which the replication process is deployed (see Servers (DMM) on page 44). Use the tools to the right of the list to create, browse for, or view the properties of the currently selected server.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

The following tabs are also available:

- Publications - lists the publications the replication process has to replicate (see Publications (DMM) on page 46).
- Subscriptions - lists the subscriptions to the publications associated with the replication process (see Subscriptions (DMM) on page 61).
- Connection Groups - lists a set of data connections that can alternatively play the role of the backup database to which the replication process will replicate data (see Data Connection Groups (DMM) on page 79).
• Event Scripts - lists the event scripts associated with the replication process (see Event Scripts (DMM) on page 66).
• Users - lists the users who have appropriate rights to log onto the replication process (see Users (DMM) on page 64).
• Database Connection - lets you specify the data source connection parameters to send orders to the replication process (see Database Properties on page 34).

Replication Server Properties

Replication Server property sheets contain all the standard replication process tabs, along with the RepServer Connection tab.

The RepServer Connection tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| Replication Server connection options | Specifies the connection information for Replication Server. You have to specify the following options:
 • Port number – specifies the Replication Server port number (Scripting name: PortNumber)
 • User name – specifies the name of the administration user (Scripting name: UserName)
 • Password – specifies the password of the administration user (Scripting name: Password) |
| RSSD database options | Specifies the connection information for the RSSD. You have to specify the following options:
 • Host name (Scripting name: HostName)
 • Port number (Scripting name: PortNumber)
 • Database name (Scripting name: DatabaseName)
 • Database type [v12.6 and higher] (Scripting name: DatabaseType) |

Replicating Data with the Replication Wizard

The Replication Wizard guides you through creating all the objects necessary to replicate data from a source to a remote database. You can replicate the entire database or choose specific tables to replicate. You can run the wizard as many times as necessary to create additional replications on one or multiple replication processes.

Prerequisites

To produce a meaningful replication, we recommend that you, as a minimum, create a PDM to represent the schema of your source database or be ready to reverse engineer one from a data source.
Task
The Replication Wizard can create a replication environment from scratch, or be launched from the contextual menu of an existing source database or replication process. When launched from an existing environment, unnecessary wizard pages will not be displayed. The procedure in this topic shows the creation of a replication environment from scratch.

1. Select **Tools > Replication Wizard** to launch the Replication Wizard, and then click **Next** to go to the next step.

2. The Source Database page lets you specify the database that provides the data to replicate. You can:
 - Create a new database in your DMM by entering a new name in the Source database field
 - Select an existing database from the list of available databases by clicking the **Select a Database** tool.

 Make your selection, and then click **Next**.

3. The Source Physical Data Models page lets you specify the schema of the source database. You can:
 - Select one or more existing PDMs. Note that only PDMs open in the workspace are listed on this page.
 - Create a new PDM. Select a DBMS, and click the **Share** or **Copy** radio button. To reverse engineer a PDM from a live data source, select the **Reverse engineer the database using a data source** option, click the **Connect to a Data Source** tool, and specify your data source and connection parameters.
4. The Replication Process page lets you specify the replication process to use for the replication of the source database tables. You can:
 • Create a replication process by entering a new name in the Replication Process field and selecting a type to identify your replication engine.
 • Select an existing replication process by clicking the Browse tool.

Make your selection, and then click Next.

5. The Publications page lets you specify the publications that define the data to be replicated. You can:
 • Create a single publication for all the tables to replicate by entering a new name in the Publication field.
 • Select an existing publication.
 • Create a separate publication for each table, and manage them individually.

[Optional - Replication Server only] Select a publication type to specify a replication mode for your replication process.

Make your selection, and then click Next.

6. The Data to Replicate page lets you select tables, views and procedures to include in publications for replication.

Make your selection, and then click Next.

7. The Remote Database Connection page lets you specify the database and database connections to which your data will be replicated. You can:
 • Create a new database in your DMM by entering a new name in the Remote Database Connection field.
 • Select an existing database from the list of available databases by clicking the Select a Database tool.
 • Select one or more existing data connections in the lower part of the page.

Make your selection, and then click Next.

8. The Remote Physical Data Models page lets you specify the schema of the remote database. You can:
 • Select one or more existing PDMs. Note that only PDMs open in the workspace are listed on this page.
 • Create a new PDM. Select a DBMS, and click the Share or Copy radio button. To reverse engineer a PDM from a live data source, select the Reverse engineer the database using a data source option, click the Connect to a Data Source tool, and specify your data source and connection parameters.

Make your selection, and then click Next.
9. The Completing the Replication page summarizes what the Replication Wizard will do when you will click **Finish**. Select the checkbox to instruct it to update the remote database with the replicated source tables.

When you click **Finish**, the wizard creates all the objects necessary to model your data replication.

![Replication Wizard: Congratulations!](image)

Visualizing and Refining Data Replications with the Mapping Editor

The Mapping Editor provides a quick and convenient way to visually create and refine data replications between source and remote databases. Each replication displays as an arrow linking source and target objects.

Prerequisites

You must, as a minimum, have created a replication process in your DMM to create replications with the Mapping Editor. If no source and remote databases are connected to the replication process, you must specify them (see *Creating a Data Connection with the Database Connection Wizard* on page 18).

Task

1. Right-click the replication process symbol, and select **Mapping Editor**.
2. The Mapping Editor opens and display the replications specified for the replication process as links between source and target objects. If no source or remote database is connected to the replication process, you must specify one (see *Creating a Data Connection with the Database Connection Wizard* on page 18).
3. Review and refine existing replications in any of the following ways:
 - Create a new replication. The replication is represented by a link joining source and target objects. You will generally perform the following types of drag and drops:
 - Drag a source table, view or procedure onto a target table, view or procedure to create any replication. Sub-objects with same name and code are also replicated. An article or procedure for the parent replicated object is created in the properties pane, along with an article column for each replicated sub-object, and displays the details of the replication. You can delete the replication of unwanted columns.
 - Drag a source table or view column onto a target table or view column. The source column is replicated to the target column. An article column for the replicated column is created in the properties pane, and displays the details of the replication.
 - Delete a replication. Select a replication link, and press Del.
 - Edit a replication properties. Double-click an article, procedure, or article column in the properties pane to open its property sheet, and edit its properties.

In the following example, the name column of the Customer table in the source database is replicated to the Customer name column of the Customer table in the remote database. The properties of the replicated column are displayed in the properties pane in the lower part of the window:
4. [optional] Double-click the replication object in the properties pane to open its property sheet, and edit its properties then click **OK** to return to the editor.

5. Click **OK** to close the editor and return to the diagram. If you have specified a database with the Database Connection Wizard, you can display the databases linked to the replication process by right-clicking the diagram background, and select **Diagram > Show Symbols**.

 Note: Click the Play Demo tool in the lower-left corner of the Mapping Editor window to launch a video that briefly illustrates its main features.

Creating a Data Connection with the Database Connection Wizard

The Database Connection Wizard can be launched from the Mapping Editor to connect a source or remote database to your replication process. The wizard will create a data connection and a database associated with a PDM to specify its schema. You must have at least one source database and one remote database connected to your replication process to create replications.

1. Click the **Create Data Connection** tool in the Source or Target pane to launch the Database Connection Wizard.
2. On the Databases page, you can:
• Create a database by entering a new name for the database in the Database field.
• Select an existing database from the list of available databases by clicking the Select a Database tool.

Make your selection, and then click Next.

3. [new database] The Physical Data Models page lets you associate a PDM with your database to specify its schema. Select one or more PDMs among the list of models open in your workspace, and click Finish to close the wizard.

The database is now connected to your replication process, and displayed in the appropriate pane in the Mapping Editor.

In the following example, the Source_PDM Project Management PDM is selected as the source database for the replication process and the Target_PDM Project Implementation PDM is selected as the remote database for the replication process:
Mapping Editor Window

The Mapping Editor window is divided into three panes:

- The Source pane [white background] - is on the left of the window and displays the data to replicate. You need to have at least one data connection (see Creating a Data Connection with the Database Connection Wizard on page 18) in this pane to specify the PDM that represents your source database.

- The Target pane [gray background] - is on the right of the window and displays the location to where data will be replicated. You need to have at least one data connection (see Creating a Data Connection with the Database Connection Wizard on page 18) in this pane to specify the PDM that represents your target database.

- The properties pane - is on the lower part of the window, and displays the following objects depending on the item you select in the Source pane.

<table>
<thead>
<tr>
<th>Selected item</th>
<th>Properties pane displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data connection, model or folder</td>
<td>A summary of the publications (see Publications (DMM) on page 46) the selected item contains.</td>
</tr>
<tr>
<td>Selected item</td>
<td>Properties pane displays...</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Parent object (table, view, procedure)</td>
<td>A list of articles (see Articles (DMM) on page 51) or procedures (see Procedures (DMM) on page 58) that contain the selected item for replication.</td>
</tr>
<tr>
<td>Sub-object (table or view column)</td>
<td>A list of article columns (see Columns (DMM) on page 54) that contain the selected item for replication.</td>
</tr>
</tbody>
</table>

You can replicate the same source object to multiple target objects. The details of its replications are listed in the properties pane. Use the **Customize Columns and Filters** tool from the properties pane toolbar to display additional object properties columns. In the following example, the Mapping Editor displays how the source Contact table and its columns are replicated to both the Contact and Customer remote tables. Note that the properties pane lists two articles, one for each of the remote tables.

Source and Target panes tools

The following tools are available in the Source and Target panes:
<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Properties - Opens the property sheet of the selected source object.</td>
</tr>
<tr>
<td></td>
<td>Create Data Connection - Launches the Database Connection Wizard that allows you to specify a database connection (see Creating a Data Connection with the Database Connection Wizard on page 18).</td>
</tr>
<tr>
<td></td>
<td>Delete Data Connection - Deletes the selected database connection. Related mappings, if any, are automatically deleted.</td>
</tr>
<tr>
<td></td>
<td>Add Models to Database - Opens a selection dialog to let you add one or more models to an existing database connection.</td>
</tr>
<tr>
<td></td>
<td>Remove Model from Database - Removes the selected model from the database connection. Related mappings, if any, are automatically deleted.</td>
</tr>
<tr>
<td></td>
<td>Create Mapping Between Source and Target Objects - Creates a mapping between the selected source and target objects. The mapping details appear in the properties pane. This tool is only available when a mapping between the two selected objects is appropriate.</td>
</tr>
<tr>
<td></td>
<td>Delete Mappings - Deletes all the mappings for the selected object.</td>
</tr>
<tr>
<td></td>
<td>[source only] Filter Mappings - Filters the mappings shown between the Source and Target panes. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• All Mappings</td>
</tr>
<tr>
<td></td>
<td>• Only Mappings Of The Selected Object And Its Sub-Objects</td>
</tr>
<tr>
<td></td>
<td>• Only Mappings Of The Selected Object</td>
</tr>
<tr>
<td></td>
<td>[source only] Filter Objects - Filters source objects to show:</td>
</tr>
<tr>
<td></td>
<td>• All Objects</td>
</tr>
<tr>
<td></td>
<td>• Only Objects With Mappings</td>
</tr>
<tr>
<td></td>
<td>• Only Objects Without Mappings</td>
</tr>
<tr>
<td></td>
<td>Find Source/Target Object - Finds and highlights an object in the selected pane.</td>
</tr>
</tbody>
</table>
Transformation Processes (DMM)

A transformation process is an instance of a data transformation engine that extracts data from input sources, transforms it, and loads it to output sources. Input and output sources can be databases, flat files, XML documents, or business processes.

Note: You should use a transformation process when your main focus is complex transformations of data, such as are required for data warehousing. For simple copying of data, you should use a replication process (see Replication Processes (DMM) on page 10).

In the following example, multiple input sources are transformed by the Data Fusion and Reorganization transformation process, and then loaded to the Giant Corp data warehouse:

- Small Corp
- Acme
- Small Corp Web Service
- Acme Data
- Data Fusion and Reorganization
- Giant Corp

Note: You must deploy your transformation process to a server (see Servers (DMM) on page 44) to ensure correct script generation.

Although you can create all the objects necessary to model a data transformation by hand in any order, we recommend that you use the following workflow:

1. Identify any input and output sources. These may be existing PDMs, XSMs, BPMs and flat files or live data sources that can be reversed engineered.
2. Create a DMM and launch one of the following wizards to create your basic transformation environment:
 • Transformation Wizard – see Creating a Data Transformation with the Transformation Wizard on page 25.
 • Convert Mappings to ETL Wizard [for existing PDM mappings] – see Creating a Data Transformation with the Convert Mappings to ETL Wizard on page 29.

3. Press Ctrl, and double-click the transformation process symbol to open its created data transformation diagram, and specify any other necessary transformation objects, such as data query executions, calculators, etc. (see Data Transformation Diagrams on page 92).

4. [optional] Create a control flow diagram to detail the order in which a series of data transformation tasks is executed (see Transformation Control Flow Diagrams on page 97).

You can use the completed model to guide you in writing a data transformation for your ETL engine.

Creating a Transformation Process

You can create a transformation process using a Wizard or from the Toolbox, Browser, or Model menu.

• Use the Transformation Wizard (see Creating a Data Transformation with the Transformation Wizard on page 25).
• Use the Convert Mappings to ETL Wizard (see Creating a Data Transformation with the Convert Mappings to ETL Wizard on page 29).
• Use the Transformation Process tool in the Toolbox.
• Select Model > Transformation Processes to access the List of Transformation Processes, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Transformation Process.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Transformation Process Properties

To view or edit a transformation process's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:
The following tabs are also available:

- Data Transformation Tasks - lists the data transformation tasks representing the data transformation diagrams in the transformation process (see Data Transformation Diagrams on page 92).
- Transformation Control Flows - lists the control flows representing the transformation control flow diagrams in the transformation process (see Transformation Control Flow Diagrams on page 97).

Creating a Data Transformation with the Transformation Wizard

The Transformation Wizard helps you to set up a basic transformation process with input and output sources, and automatically creates one or more data transformation diagrams.

The Transformation Wizard can create a transformation environment from scratch, or be launched from the contextual menu of a transformation process, an input or output source, a task in the Browser. When launched from an existing environment, unnecessary wizard pages will not be displayed. The procedure in this topic shows the creation of a transformation environment from scratch:
CHAPTER 2: Data Movement Diagrams

1. Select **Tools > Transformation Wizard** to launch the Transformation Wizard, and then click **Next** to go to the next step.

![Transformation Wizard](image)

2. The Transformation Process page lets you specify the transformation process to use for the data to be transformed. You can:
 - Create a transformation process by entering a new name in the Transformation Process field, and selecting a type to identify your transformation engine.
 - Select an existing transformation process by clicking the **Browse** tool.

Make your selection, and then click **Next**.

3. The Transformation Tasks page lets you specify the task(s) that will contain the details of your transformation. You can:
 - Create a single task for all the source objects in the same data transformation diagram.
 - Select an existing task.
 - Create a separate task and a data transformation diagram for each source object, and manage them individually.

Make your selection, and then click **Next**.

4. The Source Models page lets you select the source models from which to extract the data to be transformed, and which will become input sources in the data movement diagram. Select one or more models open in the workspace. You can also:
 - Click the **Open Model** tool to browse for other model files.
 - Click the **Reverse Engineer** tool to create a new model by reverse engineering a database, XML schema or process language.
5. The Source Objects page lets you select the source tables, views, elements, operations, and flat files to transform, and which will become data inputs in the data transformation diagram.

Make your selection, and then click **Next**.

6. The Target Mode page lets you specify the location where you want to load your transformed data. You can:
 - Select existing models – in the following pages, you will select target models and objects, in which to load the data.
 - Create a new model [default if creating a task for each input source]. Enter a model name, type, and language, and click the **Share** or **Copy** radio button. Click **Next** to go to the completion page.
 - No target model [only available if creating a task for each input source]. Click **Next** to go to the completion page.

Make your selection, and then click **Next**.

7. The Target Models page [only available if creating a single task for all source objects] lets you select the target models to which to load the transformed data, and which will become output sources in the data movement diagram. Select one or more models open in the workspace. You can also:
 - Click the **Open Model** tool to browse for other model files.
 - Click the **Reverse Engineer** tool to create a new model by reverse engineering a database or XML schema.
Make your selection, and then click **Next**.

8. The Target Objects page [not available for new models] lets you select the target tables, views, elements, and flat files that will contain the transformed data, and which will become data outputs in the data transformation diagram.

![Transformation Wizard](image)

Select target objects to receive the transformed data.

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
<td>EMPLOYEE</td>
<td>Physical Data Model'...</td>
</tr>
<tr>
<td>Division</td>
<td>DIVISION</td>
<td>Physical Data Model'...</td>
</tr>
<tr>
<td>Customer</td>
<td>CUSTOMER</td>
<td>Physical Data Model'...</td>
</tr>
<tr>
<td>Project</td>
<td>PROJECT</td>
<td>Physical Data Model'...</td>
</tr>
<tr>
<td>Team</td>
<td>TEAM</td>
<td>Physical Data Model'...</td>
</tr>
</tbody>
</table>

Make your selection, and then click **Next**.

9. The last page of the wizard summarizes the objects that will be created. You can choose to create a default transformation to connect input to output sources, and create a default replication, if their names match. This option is not available if you chose the No target model option.

When you click **Finish** the wizard creates:

- A data movement diagram containing a transformation process connected to its input and output sources.
- One or more data transformation diagrams containing data inputs and, if required data outputs. Press **Ctrl** and double-click the transformation process to open diagrams.
Creating a Data Transformation with the Convert Mappings to ETL Wizard

You can create a data transformation from an existing PDM-PDM mapping with the Convert Mappings to ETL Wizard. It helps you set up your transformation process with PDMs connected to it as input and output sources, along with basic data transformation diagrams with the appropriate data inputs and outputs, and appropriate actions.

The Convert Mappings to ETL Wizard can be launched from the Tools menu and from the contextual menu of a target database whose attached PDM(s) contain mappings, thus some pages may not be available.

1. Select Tools > Convert Mappings to ETL Wizard to launch the Convert Mappings to ETL Wizard, and click Next to go to the next step.
2. The Database Selection page lets you specify the target database containing mappings. You can:
 • Create a new database in your DMM by entering a new name in the Target Database field.
 • Select an existing database from the list of available databases by clicking the Select a Database tool.

 Make your selection, and then click Next.

3. The Target Models page lets you select the target models from which to extract the mapping information, and which will serve as the targets for the transformation. Any models attached to the previously selected database are selected by default. You can click the Open Model tool to browse for other model files.

 Make your selection, and then click Next.

4. The Transformation Process page lets you specify the transformation process to use for the data to be transformed. You can:
 • Create a transformation process by entering a new name in the Transformation Process field, and selecting a type to identify your transformation engine.
 • Select an existing transformation process by clicking the Browse tool.

 Make your selection, and then click Next.

5. The Transformation Tasks page lets you specify the task(s) that will contain the details of your transformation. You can:
 • Create a single task for all the mapped tables in the same data transformation diagram.
 • Select an existing task.
• Create a separate task and a data transformation diagram for each mapped table, and manage them individually.

Make your selection, and then click **Next**.

6. The Target Objects page lets you select the target tables that will contain the transformed data.

Make your selection, and then click **Next**.

7. The last page of the wizard summarizes the objects that will be created:

When you click **Finish** the wizard creates:

• A data movement diagram containing a transformation process connected to its input and output sources.

• One or more data transformation diagrams containing data inputs and outputs, and any appropriate actions retrieved from the mapping conversion. Press **Ctrl** and double-click the transformation process to open diagrams.

Mapping Conversion

A PDM-PDM mapping is specified in a query or a textual expression defined in a target table, and from which its source(s) and associated model(s) can be retrieved.

When you select a target mapped table, the wizard creates the corresponding output and retrieves the input sources from the mapped table. Additional objects (actions) can be created, if at least one of the following situations occurs:

• The mapped table owns criteria (Where, Group by).

• The mapped table has more than one source.
• The columns of the mapped table have more than one source.

In the following example, the GiantCorp target table is mapped to the Acme and BlueCorp source tables, has Where and Group by criteria, and has an Address column mapped to the Street and City source columns:

The Convert Mappings to ETL Wizard will create the following objects in a data transformation diagram:

• The Acme and BlueCorp data inputs and a data join for the source tables.
• A data calculator for the two column sources and the Where criterion.
• A data aggregation for the Group by criterion.
• The GiantCorp data output for the mapped target table.
Databases (DMM)

A *database* can serve as an input to or output from a replication process or a transformation process. The structure of the database is modeled in one or more Physical Data Models (PDM) that can, in turn, be linked to a live database.

In the following example, data from the *New York* source database is replicated by the *Europe* replication process (see *Replication Processes (DMM)* on page 10) to the *Paris* and *Berlin* remote databases:

In the following example, data from the *Small Corp* and *Acme* databases is transformed by the *Data Fusion and Reorganization* transformation process (see *Transformation Processes (DMM)* on page 23), and loaded to the *Giant Corp* data warehouse:
You can generate to or reverse-engineer from your live database using the commands available from the database contextual menu (see *Database Contextual Menu* on page 38).

Creating a Database

You can create a database from the Toolbox, Browser, or *Model* menu.

- Use the *Database* tool in the Toolbox.
- Select *Model > Databases* to access the List of Databases, and click the *Add a Row* tool.
- Right-click the model (or a package) in the Browser, and select *New > Database*.

For general information about creating objects, see *Core Features Guide > The PowerDesigner Interface > Objects*.

Database Properties

To view or edit a database's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The *General* tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Type | Specifies the database type. You can choose between:
 - **Undefined** – any standard relational database.
 ![Database](image1.png)
 - **RepConnector™** – a database which captures database changes in real time and deliver them in XML to message queues, that can be used by any supported message queuing system.
 ![RepConnector](image2.png)
 - **UltraLite®** – a relational database with synchronization features for small, mobile, and embedded devices (PDA, Pocket PC etc.).
 ![UltraLite](image3.png)
 Types are specified in the extensions (XEM) attached to the model. Click the **Preview** tab to view the generated code according to the type you selected. |
| Server | Specifies the name of the server to which the database is deployed. Use the tools to the right of the list to create a server, browse the complete tree of available servers or view the properties of the selected server (see *Servers (DMM)* on page 44). |
| Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas. |

Physical Data Models Tab

This tab lets you associate one or more PDMs with the database in order to describe its structure. PDMs must be open in the workspace to create associations. Click the **Add Existing Physical Data Models** tool in the toolbar to open a selection list, select one or more PDMs and click **OK**. You can click the **Open Model** tool in the toolbar to open the associated PDM.

Database Connection Tab

This tab allows PowerDesigner to communicate with the database in order to generate your models and reverse engineer your data sources. The following properties are available:
Property	Description
Data source | Specifies the connection profile that is used to connect to your database. Click the **Select a Data Source** tool to open the Select a Data Source dialog and select one of the following radio buttons, depending on your chosen method for connecting to your data source:
- **ODBC machine data source**
- **ODBC file data source** - use the tool to the right of the data source field to browse to a new file.
- **Connection profile** - use the tools to the right of the data source field to browse to a new directory or file.

Use the **Modify** and **Configure** buttons to modify or configure your data source connection. Click **OK** to close the dialog.

For detailed information about creating, configuring, and using connection profiles, see *Core Features Guide > The PowerDesigner Interface > Getting Started > Connecting to a Database*.

Login | Specifies the name of the user ID with which you log on to the database.

Password | Specifies the password for the connection.

Replication Server Primary Database Properties

Primary databases connected to a Replication Server replication process have additional properties.

The **RepAgent Options** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use replication agent</td>
<td>Specifies if a replication agent should be used for primary database. This option is not necessary if the PDM of the primary database is defined and opened.</td>
</tr>
<tr>
<td>Scripting name: UseReplicationAgent</td>
<td></td>
</tr>
<tr>
<td>RepAgent type</td>
<td>Specifies the replication agent type (Oracle, DB2, SQL Server, Informix, Mirror Activator).</td>
</tr>
<tr>
<td>Scripting name: RepAgentType</td>
<td></td>
</tr>
<tr>
<td>RepAgent name</td>
<td>Specifies the replication agent instance name. It is used to generate replication agent script using isql.</td>
</tr>
<tr>
<td>Scripting name: RepAgentName</td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>RepAgent port number</td>
<td>Specifies the replication agent port number.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentPortNumber</td>
</tr>
<tr>
<td>RepAgent user name</td>
<td>Specifies the replication agent user login name. It is used to generate replication agent script using isql.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentUserName</td>
</tr>
<tr>
<td>RepAgent password</td>
<td>Specifies the replication agent user login password. It is used to generate replication agent script using isql.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentPassword</td>
</tr>
<tr>
<td>Primary database port number</td>
<td>Specifies the primary database port number.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentPrimDBPortNumber</td>
</tr>
<tr>
<td>Primary database user name</td>
<td>Specifies the primary database server user login name for the replication agent instance.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentPrimDBUserName</td>
</tr>
<tr>
<td>Primary database password</td>
<td>Specifies the primary database server user login password for the replication agent instance.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentPrimDBPassword</td>
</tr>
<tr>
<td>RSSD user name</td>
<td>Specifies the RSSD user login name for the replication agent instance.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentRSSDUserName</td>
</tr>
<tr>
<td>RSSD password</td>
<td>Specifies the RSSD user login password for the replication agent instance.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentRSSDPassword</td>
</tr>
<tr>
<td>RSSD character set</td>
<td>[v15.1 and higher] Specifies the character set used in communication with the RSSD of the primary Replication Server. Its value should be a Sybase® character name.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentRSSDCharSet</td>
</tr>
<tr>
<td>RepServer user name</td>
<td>Specifies the Replication Server user login name for the replication agent instance.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentRepServerUserName</td>
</tr>
<tr>
<td>RepServer password</td>
<td>Specifies the Replication Server user login password for the replication agent instance.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: RepAgentRepServerPassword</td>
</tr>
</tbody>
</table>
Property

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RepServer character set</td>
<td>[v15.1 and higher] Specifies the character set used in communication with the Replication Server. Its value should be a Sybase character name. Scripting name: RepAgentRepServerCharSet</td>
</tr>
<tr>
<td>LTL character case</td>
<td>[v15.1 and higher] Specifies the character case in which the Replication Agent sends database object names to the Replication Server. Scripting name: Ltl_Character_Case</td>
</tr>
<tr>
<td>Create LTL character parameter automatically</td>
<td>[v15.1 and higher] Instructs PowerDesigner to automatically create the LTL character parameter. Scripting name: CreateLTLCharacterParameterAutomatically</td>
</tr>
</tbody>
</table>

Logical Paths Tab

The **Logical Paths** tab lists the logical paths defined for the primary database (see *Logical Paths* on page 165).

Database Contextual Menu

The database contextual menu contains commands that let you perform a wide range of actions.

This menu contains the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate Scripts</td>
<td>Generates a script to prepare the replication of tables.</td>
</tr>
<tr>
<td>Generate and Execute Scripts</td>
<td>Generates and executes a script on the connected database to replicate tables.</td>
</tr>
<tr>
<td>Generate Database</td>
<td>Generates a database creation script from the associated PDM (see Data Modeling > Working with Data Models > Generating and Reverse-Engineering Databases > Generating a Database from a PDM).</td>
</tr>
<tr>
<td>Modify Database</td>
<td>Modifies an existing database schema by synchronizing it with your model (see Data Modeling > Working with Data Models > Generating and Reverse-Engineering Databases > Modifying a Database).</td>
</tr>
<tr>
<td>Reverse Engineer Database</td>
<td>Reverse engineers an existing database schema into an existing PDM. The database schema can either be from script files or from a data source (see Data Modeling > Working with Data Models > Generating and Reverse-Engineering Databases > Reverse Engineering a Database into a PDM).</td>
</tr>
</tbody>
</table>
Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect</td>
<td>Connects to a data source (see Core Features Guide > The PowerDesigner Interface > Getting Started > Connecting to a Database).</td>
</tr>
<tr>
<td>Execute SQL</td>
<td>Opens the Execute SQL Query window to let you send SQL queries to a connected data source and display the result. If you are not already connected to the data source, the Connect to Data Source window opens. Choose your connection profile, and click Connect to open the Execute SQL Query window. Enter one or more SQL statements in the dialog to query your database, and click the Run button to apply them to the data source, and display the query results in the Results window.</td>
</tr>
</tbody>
</table>

The following commands are available for replication server environments:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Engineering</td>
<td>[v15.7 and higher] Reverses table and procedure bindings to data connections and logical paths.</td>
</tr>
<tr>
<td>Bind Tables/Procedures</td>
<td>[v15.7 and higher] Opens a dialog to allow you to bind tables or procedures to data connections or a logical path (see Binding Database Objects to Connections or Logical Paths on page 165).</td>
</tr>
<tr>
<td>Show Table/Procedure Binding Matrix</td>
<td>[v15.7 and higher] Opens a matrix to allow you to bind tables or procedures to data connections (see Binding Database Objects to Connections or Logical Paths on page 165).</td>
</tr>
<tr>
<td>Create Standby Database</td>
<td>Creates a standby database for a warm standby application (see Modeling a Warm Standby Application on page 161)</td>
</tr>
</tbody>
</table>

XML Documents (DMM)

An *XML document* can serve as an input to or output from a transformation process. The structure of the XML document is modeled in an XML model (XSM) which is associated with the XML document.

In the following example, data from the Acme Data XML file is transformed by the Data Fusion transformation process (see Transformation Processes (DMM) on page 23), and loaded to the Giant Corp data warehouse (see Databases (DMM) on page 33) and to the Acme Corp XML file:
Creating an XML Document

You can create an XML document from the Toolbox, Browser, or Model menu.

- Use the XML Document tool in the Toolbox.
- Select Model > XML Documents to access the List of XML Documents, and click the Add a Row tool.
- Right-click the model (or a package) in the Browser, and select New > XML Document.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

XML Document Properties

To view or edit an XML document's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>XML file path</td>
<td>Specifies the location of the XML file that contains the data. Enter a file path or click the Select File tool to the right of the field to select a file.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>XSD file path</td>
<td>Specifies the location of the file that contains the XML schema which describes the structure of the XML file. Enter a file path or click the Select File tool to the right of the field to select a file.</td>
</tr>
</tbody>
</table>
| Source model | Specifies the XML model (XSM) that defines the structure of the XML document. You choose the model from the list of models open in the workspace. You have access to the following XSM-specific commands from the XML document contextual menu:
• **Generate Schema** – to generate a schema file and describe the structure of the XSM.
• **Reverse Engineer Schema** – to reverse engineer a schema file and create an XSM.
• **Open Model** - to open the associated XSM. |
| Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas. |

Business Processes (DMM)

A *business process* can serve as an input to a transformation process. The structure of the business process is modeled in a business process model (BPM) which is associated with the business process.

In the following example, the **Small Corp Web Service** business process is transformed by the **Data Reorganization** transformation process (see *Transformation Processes (DMM)* on page 23), and then loaded to the **Medium Corp** data warehouse (see *Databases (DMM)* on page 33).

![Business Process Diagram](image)

Creating a Business Process

You can create a business process from the Toolbox, Browser, or Model menu.

- Use the **Business Process** tool in the Toolbox.
- Select **Model > Business Process** to access the List of Business Processes, and click the **Add a Row tool**.
- Right-click the model (or a package) in the Browser, and select **New > Business Process**.
For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Business Process Properties

To view or edit a business process's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
</tbody>
</table>
| Source model | Specifies the Business Process Model (BPM) that defines the business process. You choose the model from the list of BPMs open in the workspace. You have access to the following BPM-specific commands from the business process contextual menu:
 - **Generate Business Language** – to generate objects from a BPM.
 - **Reverse Engineer Business Language** – to reverse engineer a business process language file into a BPM.
 - **Open Model** - to open the associated BPM. |
| Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas. |

Flat Files (DMM)

A flat file can serve as an input to or output from a transformation process. A flat file is a text file containing data in which each line holds one record.

In the following example, the **Acme CSV** text file is transformed by the **Data Conversion** transformation process (see Transformation Processes (DMM) on page 23), and then loaded to the **Acme Corp** data warehouse (see Databases (DMM) on page 33) and **Acme Fixed Length** text file.
Creating a Flat File

You can create a flat file from the Toolbox, Browser, or Model menu.

- Use the Flat File tool in the Toolbox.
- Select Model > Flat Files to access the List of Flat Files, and click the Add a Row tool.
- Right-click the model (or a package) in the Browser, and select New > Flat File.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Flat File Properties

To view or edit a flat file's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Separator</td>
<td>Specifies a column separator which separates fields. Select the Custom Delimiter mode in order to select a predefined value or enter a new one.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Row delimiter</td>
<td>Specifies a row delimiter, which separates records. Select the Custom Delimiter mode in order to select a predefined value or enter a new one. Default: comma</td>
</tr>
<tr>
<td>Mode</td>
<td>You can choose one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• CSV (Comma Separated Value) [default] - Specifies a file which contains tabular data, and which uses a comma to separate fields. When you select this option, the Separator field and the Row Delimiter field are not available.</td>
</tr>
<tr>
<td></td>
<td>• Custom Delimiter – Lets you specify a column separator and a row delimiter to separate records.</td>
</tr>
<tr>
<td></td>
<td>• Fixed Length – Lets you specify a row delimiter to separate records. When you select this option, the Separator field is not available.</td>
</tr>
<tr>
<td>Header</td>
<td>Specifies whether the file whose path is specified in the Path field contains a header.</td>
</tr>
<tr>
<td>Path</td>
<td>Specifies the path to the file containing data. Click the Select File tool to the right of the field to browse for a file.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

The following tabs are also available:

- Columns - lists the data structure columns associated with the flat file (see *Data Structure Columns (DMM)* on page 119). Click the **Retrieve Columns by Parsing File Header** tool, if you want to retrieve columns by parsing the header of the file, whose path is specified in the Path field. The list of columns can be ordered.

Servers (DMM)

A server is a network device to which a database, a replication process or a transformation process is deployed. You should assign each of these objects to a server to ensure correct script generation.

In the following example, each of the databases and the replication process are deployed on a separate server:
To deploy an object to a server, drag and drop the database or process onto the server symbol. To detach the database or process from the server symbol, drag it outside the server symbol.

Creating a Server

You can create a server from a database or process property sheet, or from the Toolbox, Browser, or Model menu.

- Use the **Server** tool in the Toolbox.
- Open a database or a process property sheet, and click the **Create** tool.
- Select **Model > Servers** to access the List of Servers, and click the **Add a Row** tool.
- Right-click the model (or a package) in the Browser, and select **New > Server**.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Server Properties

To view or edit a server's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:
Publications (DMM)

A *publication* specifies the data to replicate and enables remote databases to subscribe to them as a group. You must specify a data connection between the source database and the replication process before you can create a publication. Publications have no symbol in the diagram but are listed on the Publications tab of a replication process property sheet.

A publication can contain the following items:

- *Articles* - contains tables or views to replicate (see *Articles (DMM)* on page 51).
- *Procedures* - are stored procedures to replicate (see *Procedures (DMM)* on page 58).
- *Subscriptions* - specify which data is replicated and where (see *Subscriptions (DMM)* on page 61). This list is also available from the replication process property sheet.

In the following example, the New York publication contains three articles, each of which contains a table to be replicated.
Note: When a data connection is deleted, all publications attached to it are deleted.

Adding or Removing Publications from a Replication Process

You can create or delete a publication using the tools available on the Publications tab of a replication process property sheet.

The Publications tab contains the following tools:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add a Row – Creates a new publication for which you must specify a data connection to enable the creation.</td>
</tr>
<tr>
<td></td>
<td>Add Publications for Data Connections – Opens a selection dialog listing all the data connections incoming to the parent replication process. Select one or more data connections in the list, and then click OK to create publications in the replication process.</td>
</tr>
<tr>
<td></td>
<td>Delete - Removes the selected publication from the replication process.</td>
</tr>
</tbody>
</table>

Note: The Replication Wizard (see Replicating Data with the Replication Wizard on page 13) can automatically create publications as part of your replication environment.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.
Publication Properties

To view or edit a publication’s properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>[read-only] Specifies the replication process to which the publication belongs (see Replication Processes (DMM) on page 10).</td>
</tr>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object’s purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Data Connection</td>
<td>Specifies the connection from which the data are published. Select a data connection incoming to the parent replication process from the list (see Data Connections (DMM) on page 67).</td>
</tr>
</tbody>
</table>
| Type | [Replication Server only] Specifies the publication type. Click the Preview tab to view the generated code. You can choose one of the following values to replicate:
| | • Database – the entire database.
| | • Publication – publications, replication definitions and articles.
| | • Replication Definition – replication definitions only. |
| Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas. |

The following tabs are also available:

- Articles - lists the tables or views to replicate (see Articles (DMM) on page 51).
- Procedures - lists the stored procedures to replicate (see Procedures (DMM) on page 58).
- Subscriptions - lists the remote database subscriptions to the publication (see Subscriptions (DMM) on page 61).
Replication Server Database Replication Definition Properties

Replication Server replication definition property sheets contain all the standard publication tabs, along with the RepServer Options tab.

The RepServer Options tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicate DDL (v12.6 and higher)</td>
<td>Specifies whether the Data Definition Language (DDL) should be replicated. Scripting name: ReplicateDDL</td>
</tr>
<tr>
<td>DDL User Name (v15.2 and higher)</td>
<td>[Oracle or SQL Server primary database] Specifies the DDL user name for the replication agent. Scripting name: DDLUserName</td>
</tr>
<tr>
<td>DDL Password (v15.2 and higher)</td>
<td>[Oracle or SQL Server primary database] Specifies the DDL password for the replication agent. Scripting name: DDLPassword</td>
</tr>
<tr>
<td>Replicate table (v12.6 and higher)</td>
<td>Specifies the list of tables to replicate for the database. Scripting name: ReplicateTable</td>
</tr>
<tr>
<td>Replicate function (v12.6 and higher)</td>
<td>Specifies the list of stored procedures to replicate for the database. Scripting name: ReplicateFunction</td>
</tr>
<tr>
<td>Replicate transaction (v12.6 and higher)</td>
<td>Specifies the list of transactions to replicate for the database. Scripting name: ReplicateTransaction</td>
</tr>
<tr>
<td>Replicate system procedure</td>
<td>Specifies the list of stored procedures to replicate for the database. Scripting name: ReplicateSystemProcedure</td>
</tr>
<tr>
<td>Transaction set (v12.6 and higher)</td>
<td>Specifies the list of transactions to replicate for the database. Scripting name: TransactionSet</td>
</tr>
<tr>
<td>Threshold (v15.2 and higher)</td>
<td>[ASE primary databases] Specifies the minimum number of rows that a replicated SQL statement must impact before SQL statement replication is activated for the database. Scripting name: Threshold</td>
</tr>
</tbody>
</table>
Replication Server Publication Properties

Replication Server publication property sheets include a specific Type property on the General tab. The name of the tabs for articles and procedures changes with the publication type.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Specifies the type of the publication. You can choose from one of the following properties:</td>
</tr>
<tr>
<td></td>
<td>• Undefined – no type is specified. Tabs for articles and procedures are renamed into the Articles & Replication Definitions tab and the Articles & Function Replication Definitions tab.</td>
</tr>
<tr>
<td></td>
<td>• Database – specifies the creation of a database replication limited to the tables listed in articles. Tabs for articles and procedures are renamed into the Tables tab and the Procedures tab.</td>
</tr>
<tr>
<td></td>
<td>• Publication – specifies the creation of an article and of a replication definition for each article. The validation of the publication is also generated. Tabs for articles and procedures are renamed into the Articles & Replication Definitions tab and the Articles & Function Replication Definitions tab.</td>
</tr>
<tr>
<td></td>
<td>• Replication Definitions – specifies the creation of a replication definition for each article. Tabs for articles and procedures are renamed into the Replication Definitions tab and the Function Replication Definitions tab.</td>
</tr>
</tbody>
</table>
Articles (DMM)

An article is the basic unit of replication and contains either a table or a view to replicate. Articles are gathered together into a publication to be replicated by the replication process. Articles have no symbol in the diagram, but are listed on the Articles tab of a publication property sheet.

An article can contain the following items:

- **Columns** – contains the table or view columns to replicate (see Columns (DMM) on page 54).
- **Scripts** – specify instructions for executing a specific function in a database (see Event Scripts (DMM) on page 66).
- **Where Clauses** – let you filter rows out of an article to publish.

In the following example, the Contact and Customer articles contain tables with the same names and are included in the Glasgow publication:

Adding or Removing Articles from a Publication

You can create or delete an article using the tools available on the Articles tab of a publication property.

The Articles tab contains the following tools:
Tool Description

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add a Row - Creates a new article for which you must select a source table or view to enable the creation.</td>
</tr>
<tr>
<td></td>
<td>Add Articles from Source Database - Opens a selection dialog listing all the tables and views not yet selected for the publication from the source database. Select one or more objects in the list, and then click OK to create articles in the publication.</td>
</tr>
<tr>
<td></td>
<td>Delete - Removes the selected article from the publication.</td>
</tr>
</tbody>
</table>

Note: The Replication Wizard (see *Replicating Data with the Replication Wizard* on page 13) can automatically create articles as part of your replication environment.

For general information about creating objects, see *Core Features Guide > The PowerDesigner Interface > Objects.*

Article Properties

To view or edit an article's properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication</td>
<td>[read-only] Specifies the publication to which the article belongs (see Publications (DMM) on page 46).</td>
</tr>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Source table</td>
<td>Specifies the source table or view which the article contains. Click the Properties tool to the right of the field to display the source object property sheet.</td>
</tr>
<tr>
<td>Remote table</td>
<td>Specifies the remote table or view to which the article will be replicated.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>
Article Property Sheet Where Clause Tab

The Where Clause tab lets you specify a Where clause to filter the table or view rows to replicate in a script editor.

Where clauses can help maximize application performance by reducing the amount of data replicated or control the availability of data by restricting its replication to specific subscriptions.

For example you could replicate all the data of the French HR department to the US headquarters, and use a Where clause to provide a filtered subset of this data to the Asia office.

Note: Click the **Open Auto Completion List** tool or press **Ctrl+Space** to display a list of items and operators available for use in the clause.

The following tabs are also available:

- Columns - lists the columns to replicate (see *Columns (DMM)* on page 54).
- Event Scripts - lists the event scripts associated with the article (see *Event Scripts (DMM)* on page 66).

Replication Server Replication Definition and Article Properties

Replication Server replication definition and article property sheets contain all the standard article tabs, along with the RepServer Options tab.

The RepServer Options tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable replication</td>
<td>Enables replication for a table.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: EnableReplicate</td>
</tr>
<tr>
<td>Primary table name</td>
<td>Specifies the name of the table in the primary database to be replicated.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: PrimaryTableName</td>
</tr>
<tr>
<td>Replication definition name</td>
<td>Specifies the name of the replication definition.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: ReplicationDefinitionName</td>
</tr>
<tr>
<td>Multiple owner</td>
<td>Specifies the mode of the table to replicate, so that both the table name and the owner name are considered for replication.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: MultipleOwner</td>
</tr>
<tr>
<td>Column replication type</td>
<td>Specifies the type of the column replication: "all columns", "minimal columns".</td>
</tr>
<tr>
<td></td>
<td>Scripting name: ColumnReplication</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Standby type</td>
<td>Specifies the type of standby: "all", "replication definition". Scripting name: StandBy</td>
</tr>
<tr>
<td>Dynamic SQL (v15.1 and higher)</td>
<td>Specifies the mode (on, off, default) of the connection so that the replication definition allows the execution of dynamic SQL statements. Additional configuration parameters linked to dynamic SQL are only available when the mode is set to "on". Scripting name: DynamicSQL</td>
</tr>
<tr>
<td>Threshold (v15.2 and higher)</td>
<td>Specifies the minimum number of rows that a replicated SQL statement must impact before SQL statement replication is activated. Scripting name: RepDefThreshold</td>
</tr>
<tr>
<td>Replicate SQLDML (v15.2 and higher)</td>
<td>[ASE primary databases] Enables SQL statement replication. If this option is enabled, you can select any of the following statement types for replication: Update, Delete, Insert select, Select into Scripting name: ReplicateSQLDML</td>
</tr>
<tr>
<td>Request alter from primary database (v15.5 and higher)</td>
<td>Specifies that the alter repdef command will be requested from the primary database. Scripting name: AlterFromPDB</td>
</tr>
<tr>
<td>With DSI_suspended (v15.2 and higher)</td>
<td>Specifies that the with DSI_suspended option will be generated for the alter statement. Scripting name: SuspendDSI</td>
</tr>
</tbody>
</table>

Columns (DMM)

An article column contains a table or view column to replicate. Article columns belong to articles which are gathered together into publications to be replicated by the replication process. Article columns have no symbol in the diagram, but are listed on the Columns tab of an article property sheet.

Note: When you create an article, all the columns of the source table or view are added by default. You can review and refine the replication of columns graphically in the Mapping.
In the following example, the SalesRep article contains two columns to replicate:

![Article Properties - SalesRep (SalesRep)](image)

Adding or Removing Columns from an Article

You can create or delete columns using the tools available on the **Columns** tab of an article property sheet.

The **Columns** tab contains the following tools:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add a Row - Creates a new column for which you must select a source table or view column to enable the creation.</td>
</tr>
<tr>
<td></td>
<td>Add Article Columns from Source Database - Opens a selection dialog listing all the columns not yet selected for the article from the source database. Select one or more objects in the list, and then click OK to create columns in the article.</td>
</tr>
<tr>
<td></td>
<td>Delete - Removes the selected column from the article.</td>
</tr>
</tbody>
</table>

Note: The Replication Wizard (see *Replicating Data with the Replication Wizard* on page 13) can automatically create columns as part of your replication environment.
For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Column Properties

To view or edit a column's properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article</td>
<td>[read-only] Specifies the article to which the column belongs (see Articles (DMM) on page 51).</td>
</tr>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Source column</td>
<td>Specifies the source table or view column to replicate. Click the Properties tool to the right of the field to display the source object property sheet.</td>
</tr>
<tr>
<td>Remote column</td>
<td>Specifies the remote table or view column to which the column will be replicated.</td>
</tr>
<tr>
<td>Data type</td>
<td>Specifies the data type of the column.</td>
</tr>
<tr>
<td>Length</td>
<td>Specifies the maximum length of the data type.</td>
</tr>
<tr>
<td>Precision</td>
<td>Specifies the maximum number of places after the decimal point.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

Replication Server Article Column Properties

Replication Server article column property sheets contain all the standard article column tabs, along with the RepServer Options tab.

The RepServer Options tab contains the following properties:
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| Column replication type | Specifies an event for the replication of an article column. You can choose from one of the following values:
• always_replicate
• replicate_if_changed
• do_not_replicate
Scripting name: ColumnReplication |
| Primary key | Specifies whether the column is a primary key column. |
| | Scripting name: IsPrimary |
| Mandatory | Specifies whether the column is mandatory in the replicated table. |
| | Scripting name: IsMandatory |
| Searchable | Specifies whether the article column is searchable. |
| | Scripting name: Searchable |
| Data type | Specifies the datatype of a column after a column-level datatype translation, but before any class-level translation and presentation to the replicated database.
Scripting name: PublishedDataType |
| Identity (v15.1 and higher) | Specifies an article column computed from a table column when the source column attribute is specified. Only numerical typed column such as integer, numeric, or smallint can have this property.
Scripting name: Identity |
| References (v15.5 and higher) | Specifies a referential constraint (include foreign key and check constraints) to another table. During the bulk applying time, HVAR replication will load inserts (or deletes) to the referenced tables before (or after) the replication definition table.
Scripting name: References |
Procedures (DMM)

A procedure contains a stored procedure to replicate from a source to a remote database. Procedures have no symbol in the diagram, but are listed on the Procedures tab of a publication property sheet.

Adding or Removing Procedures from a Publication

You can create or delete a procedure using the tools available on the Procedures tab of a publication property sheet.

The Procedures tab contains the following tools:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add a Row - Creates a new procedure (with the same name and code) for which you have to select a source procedure to enable the creation.</td>
</tr>
<tr>
<td></td>
<td>Add Procedures from Source Database - Opens a selection dialog listing all the procedures not yet selected for the publication from the source database. Select one or more objects in the list, and then click OK to make them procedures for the publication.</td>
</tr>
<tr>
<td></td>
<td>Delete - Removes the selected procedure from the publication.</td>
</tr>
</tbody>
</table>

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Procedure Properties

To view or edit a procedure's properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication</td>
<td>[read-only] Specifies the publication in which the procedure is defined (see Publications (DMM) on page 46).</td>
</tr>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
</tbody>
</table>
Property | Description
--- | ---
Stereotype | Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.

Source procedure | Specifies the source procedure to be replicated. Click the Properties tool to the right of the field to display the source object property sheet.

Remote procedure | Specifies the remote procedure to which the procedure will be replicated. By default its name is identical to the source procedure name, but you can select another procedure in the list.

Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.

Procedure Property Sheet Parameters Tab

This tab lists the call parameters of the procedure. Stored procedures can use parameters to accept values from and return values to the calling replication process.

For example, the `rs_delexception` procedure used to delete a transaction in the exceptions log takes the `transaction_id` parameter, which specifies the number of the transaction to delete.

Each parameter contains the following properties:

### Property	Description
Procedure | [read-only] Specifies the procedure to which the parameter belongs.

Name/Code/Comment | Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.

Stereotype | Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.

Data type | Specifies the data type of the parameter.

Length | Specifies the maximum length of the data type.

Precision | Specifies the maximum number of places after the decimal point.

Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.
Replication Server Function Replication Definition Properties

Replication Server function replication definition property sheets contain all the standard procedure tabs, along with the RepServer Options tab.

The RepServer Options tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby type</td>
<td>Specifies the type of standby. You can choose from one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• All</td>
</tr>
<tr>
<td></td>
<td>• Replication definition</td>
</tr>
<tr>
<td></td>
<td>Scripting name: StandBy</td>
</tr>
<tr>
<td>Primary procedure name</td>
<td>Specify the name of the procedure.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: PrimaryProcedureName</td>
</tr>
<tr>
<td>Procedure option</td>
<td>Logs the execution of the stored procedure you are replicating either in the current database (log_current) or in the database where the stored procedure resides (log_sproc).</td>
</tr>
<tr>
<td></td>
<td>Scripting name: ProcedureOption</td>
</tr>
<tr>
<td>Stored procedure option</td>
<td>Specifies the options for the stored procedure. You can choose from one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• Function: Enables replication for a stored procedure associated with a function replication definition.</td>
</tr>
<tr>
<td></td>
<td>• Table: Enables replication for a stored procedure associated with a table replication definition. This option is equivalent to executing sp_setreplicate on the procedure.</td>
</tr>
<tr>
<td></td>
<td>• false: Disables replication for the stored procedure.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: StoredProcedureOption</td>
</tr>
<tr>
<td>System procedure</td>
<td>Specifies that the function is a stored procedure.</td>
</tr>
<tr>
<td>(v15.2 and higher)</td>
<td>Scripting name: IsSystemProcedure</td>
</tr>
<tr>
<td>Function replication</td>
<td>Specifies the name of the function replication definition.</td>
</tr>
<tr>
<td>definition name</td>
<td>Scripting name: FunctionReplicationDefinitionName</td>
</tr>
<tr>
<td>Request (v15.1 and</td>
<td>Specifies whether the function replication definition is a request.</td>
</tr>
<tr>
<td>higher)</td>
<td>Scripting name: Request</td>
</tr>
</tbody>
</table>
Subscriptions (DMM)

A *subscription* specifies where a publication must be replicated. Subscriptions can include Where clauses to filter the data to be replicated to the remote database. Subscriptions have no symbol in the diagram, but are listed on the Subscriptions tab of a replication process property sheet.

In the following example, the NY subscription instructs the Singapore replication process to replicate data published via the New York publication in the Tokyo remote database:
Adding or Removing Subscriptions from a Replication Process or Publication

You can create or delete a subscription using the tools available on the Subscriptions tab of a replication process or publication property sheet.

The Subscriptions tab contains the following tools:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![replication process] Add a Row</td>
<td>Creates a new subscription for which you have to select a publication and a data connection to enable the creation.</td>
</tr>
<tr>
<td>![publication] Add Subscriptions</td>
<td>Opens a selection dialog listing all the subscriptions not yet selected for the publication. Select one or more objects in the list, and then click OK to create subscriptions to the publication.</td>
</tr>
<tr>
<td>![Delete]</td>
<td>Removes the selected subscription from the replication process or publication.</td>
</tr>
</tbody>
</table>

Note: The Replication Wizard (see Replicating Data with the Replication Wizard on page 13) can automatically create subscriptions as part of your replication environment.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Subscription Properties

To view or edit a subscription's properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>[read-only] Specifies the replication process to which the subscription belongs.</td>
</tr>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Publication</td>
<td>Specifies the publication that contains the data to be replicated.</td>
</tr>
</tbody>
</table>
The following tabs are also available:

- **Where Clause** - lets you create Where clauses in a script editor to filter rows out of a table or view to subscribe to (see Article Properties on page 52).

Replication Server Subscription Properties

Replication Server subscription property sheets contain all the standard subscription tabs, along with additional properties.

For v15.7 and higher, the **General** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary connection</td>
<td>Specifies the data connection from the primary database to the source replication server which carries the data being subscribed to.</td>
</tr>
<tr>
<td>Replicate connection</td>
<td>Specifies the data connection from the replication server to the replicated database which carries the subscription.</td>
</tr>
</tbody>
</table>

RepServer Options Tab

The **RepServer Options** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For new articles</td>
<td>Option for new articles</td>
</tr>
<tr>
<td>Subscribe for truncated tables</td>
<td>Specifies subscription for truncated tables.</td>
</tr>
<tr>
<td>Materialization</td>
<td>You can choose from one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• Incrementally</td>
</tr>
<tr>
<td></td>
<td>• Without holdlock</td>
</tr>
<tr>
<td></td>
<td>• Without materialization</td>
</tr>
</tbody>
</table>
Property Description

<table>
<thead>
<tr>
<th>Suspend replication</th>
<th>Specifies the replication suspension. You can choose from one of the following values:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Suspension – specifies the Data Server Interface (DSI) suspension for the replicate database after you change the subscription status.</td>
</tr>
<tr>
<td></td>
<td>• Suspension at active replicate only – specifies the active database DSI suspension in a warm standby application.</td>
</tr>
</tbody>
</table>

Users (DMM)

A user is a person or a group who is allowed to log onto the replication process, and act as a replication system administrator. Users have no symbol in the diagram, but are listed on the Users tab of a replication process property sheet.

In the following example, Dave, Tracy, and Ben are authorized users for the World replication process:

![Replication Process Properties - World (World)](image)
Creating a User

You can create a user from the property sheet of, or in the Browser under, a replication process.

- Click the Users tab in the property sheet of a replication process, and click the Add a Row tool.
- Right-click a replication process in the Browser, and select New > User.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

User Properties

To view or edit a user’s properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>[read-only] Specifies the replication process to which the active user belongs.</td>
</tr>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

Replication Server User Properties

Replication Server user property sheets contain all the standard user tabs, along with the RepServer Options tab.

The RepServer Options tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permission</td>
<td>Specifies the permission granted to the user.</td>
</tr>
<tr>
<td>Password</td>
<td>Specifies the user password.</td>
</tr>
</tbody>
</table>
Event Scripts (DMM)

An event script is a stored procedure that is run on a replication process (for global actions) or an article (for specific actions) when the associated event occurs. The event scripts available to your specific replication process are specified in the extension file attached to your model. For example, you can create a global event script which handles connection errors and that will be executed whenever the replication process encounters a SQL error.

Event scripts have no symbol in the diagram, but are listed on the Event Scripts tab of a replication process property sheet.

Creating an Event Script

You can create an event script from the property sheet of, or in the Browser under, a replication process or article.

- Select the Event Scripts tab in a replication process or article property sheet, click the Add Event Scripts tool to open the Event Selection dialog, select an event script and click OK to close the dialog.
- Right-click a replication process or an article in the Browser, and select New > Event Script.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Event Script Properties

To view or edit an event script's properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>[read-only] Specifies the object to which the active event script belongs. This can be a replication process or an article.</td>
</tr>
<tr>
<td>Event</td>
<td>Specifies the event script. You can select another event from the list of available event scripts.</td>
</tr>
<tr>
<td>Comment</td>
<td>Specifies a descriptive comment for the event script.</td>
</tr>
<tr>
<td>Version</td>
<td>Specifies the version of the script.</td>
</tr>
<tr>
<td>[Text box]</td>
<td>Specifies the script definition. You can use the Open Auto Completion List tool or press Ctrl+Space to display a contextual help for typing the clause. Click inside the clause text to close the list.</td>
</tr>
</tbody>
</table>
Replication Server Function String Properties

Replication Server function string property sheets contain all the standard event script tabs, along with the RepServer Options tab.

The RepServer Options tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function string class name</td>
<td>Specifies the name of the function class.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: FunctionClass</td>
</tr>
<tr>
<td>Overwrite function class</td>
<td>Specifies whether or not you want to overwrite the function.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: FunctionClassOverwrite</td>
</tr>
<tr>
<td>Function string name</td>
<td>Specifies a name for the function. You can type one of the following values:</td>
</tr>
<tr>
<td></td>
<td>rs_select, "rs_select_with_lock", "rs_get_textptr", "rs_textptr_init",</td>
</tr>
<tr>
<td></td>
<td>"rs_writetext" events.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: FunctionString</td>
</tr>
<tr>
<td>Log type</td>
<td>Specifies the type of the log. You can choose from one of the following</td>
</tr>
<tr>
<td></td>
<td>values: "use primary log", "with log" or "no log".</td>
</tr>
<tr>
<td></td>
<td>Scripting name: Log</td>
</tr>
<tr>
<td>Scan template</td>
<td>Specifies the input template of a function string for the where clause</td>
</tr>
<tr>
<td></td>
<td>in a Create Subscription command.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: ScanTemplate</td>
</tr>
<tr>
<td>Script output type</td>
<td>Specifies the type of the output script. You can choose from one of the</td>
</tr>
<tr>
<td></td>
<td>following values: "language", "rpc", "writetext", or "none".</td>
</tr>
<tr>
<td></td>
<td>Scripting name: ScriptOutput</td>
</tr>
</tbody>
</table>

Data Connections (DMM)

A data connection sends data between a database or other data store and a replication process or transformation process.

In the following example, data is sent from the New York and Dallas databases to the Europe replication process, and then replicated to the Paris database:
In the following example, data is sent from the Acme web service and Small Corp database to the Data Fusion transformation process, and then loaded to the Giant Corp data warehouse:

Creating a Data Connection

You can create a data connection from the Toolbox, Browser, or Model menu.

- Use the Connection tool in the Toolbox.
- Select Model > Data Connections to access the List of Data Connections, and click the Add a Row tool.
- Right-click the model (or a package) in the Browser, and select New > Data Connection.

Note: The Replication Wizard (see Replicating Data with the Replication Wizard on page 13) can automatically create data connections as part of your replication environment.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.
Data Connection Properties

To view or edit a data connection's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>[Data store]</td>
<td>Specifies the database, flat file, XML document or business process at the second extremity of the data connection. Use the tools to the right of the list to create, browse for, or view the properties of the currently selected object.</td>
</tr>
<tr>
<td>Process</td>
<td>Specifies the replication process or transformation process at one extremity of the data connection. Use the tool to the right of the list to view the properties of the selected object.</td>
</tr>
<tr>
<td>Access type</td>
<td>Specifies the kinds of data flow permitted along the connection. You can choose one of the following values:</td>
</tr>
</tbody>
</table>

- Write-only - the process can only write data to the data store.
- Read only - the process can only read data from the data store.
- Read/Write - the process can read data from and write data to the data store.

In the following example, the Europe replication process can read data from the Dublin database, can read data from and write data to the New York database, and can write data to the Berlin database:
Property	**Description**
Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.

Replication Server Connection Properties

Replication Server connection property sheets contain all the standard data connection tabs, along with additional property tabs.

Connection Tab

The following properties are available on the Connection tab:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection option</td>
<td>Option for a connection: dsi_suspended or log transfer on. Scripting name: ConnectionOption</td>
</tr>
<tr>
<td>Connection profile (v15.2 and higher)</td>
<td>Specifies a connection profile that will create the necessary connection configurations and replicate database object definitions. Select the appropriate profile from the list. Scripting name: ConnectionProfile</td>
</tr>
<tr>
<td>Connection profile version (v15.2 and higher)</td>
<td>Specifies the version of the connection profile to use. Scripting name: ConnectionProfileVersion</td>
</tr>
<tr>
<td>Function string class</td>
<td>Name of the function class. Scripting name: FunctionClass</td>
</tr>
<tr>
<td>Error string class</td>
<td>Name of the error class. Scripting name: ErrorClass</td>
</tr>
<tr>
<td>User name</td>
<td>Maintenance user name. Scripting name: UserName</td>
</tr>
<tr>
<td>Password</td>
<td>Maintenance user password. Scripting name: Password</td>
</tr>
<tr>
<td>Dump marker</td>
<td>If this connection is in a connection group, then it can be flagged as dump marker. Scripting name: DumpMarker</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Default connection (v15.7 and higher)</td>
<td>Indicates that the connection is the default connection between the two points when more than one connection is specified. Scripting name: DefaultConnection</td>
</tr>
</tbody>
</table>

Database Options tab
The following properties are available on the Database Options tab:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of commands in log</td>
<td>Specifies the number of commands to write into the exceptions log for a transaction. The value "–1" stands for all commands. Scripting name: DatabaseParameter_dsi_max_cmds_to_log</td>
</tr>
<tr>
<td>Number of bytes in log</td>
<td>Specifies the number of bytes to write into the exceptions log for each rs_writetext function in a failed transaction. Change this parameter to prevent transactions with large text, image or raw object columns from filling the RSSD or its log. The value "-1" means all text, image, or rawobject columns. Scripting name: DatabaseParameter_dsi_max_text_to_log</td>
</tr>
<tr>
<td>Number of transactions in group</td>
<td>Specifies the maximum number of transactions in a group. Larger numbers may improve data latency at the replicate database. Range of values: 1 – 100. Scripting name: DatabaseParameter_dsi_max_xact_in_group</td>
</tr>
<tr>
<td>Number of parallel threads</td>
<td>Specifies the number of parallel DSI threads to be reserved for use with large transactions. The maximum value is one less than the value of dsi_num_threads. Scripting name: DatabaseParameter_dsi_num_large_xact_threads</td>
</tr>
<tr>
<td>Cache size</td>
<td>Specifies the maximum SQT (Stable Queue Transaction interface) cache memory for the database connection, in bytes. The default, "0," means that the current setting of sqt_max_cache_size is used as the maximum cache size for the connection. To confirm the current value of sqt_max_cache_size, execute rs_configure. Scripting name: DatabaseParameter_dsi_sqt_max_cache_size</td>
</tr>
<tr>
<td>Group size</td>
<td>Specifies the maximum number of bytes, including stable queue overhead, to place into one grouped transaction. A grouped transaction is multiple transactions that the DSI applies as a single transaction. A value of -1 means no grouping. Scripting name: DatabaseParameter_dsi_xact_group_size</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Number of commands per timeslide</td>
<td>Specifies the number of LTL commands an LTI or RepAgent Executor thread can possess before it must yield the CPU to other threads. Scripting name: DatabaseParameter_exec_cmds_per_timeslice</td>
</tr>
<tr>
<td>Save interval</td>
<td>Specifies the number of minutes that the Replication Server saves messages after they have been successfully passed to the destination data server. Scripting name: DatabaseParameter_save_interval</td>
</tr>
<tr>
<td>Partitioning rule</td>
<td>Specifies the partitioning rules (one or more) the DSI uses to partition transactions among available parallel DSI threads. Scripting name: DatabaseParameter_dsi_partitioning_rule</td>
</tr>
<tr>
<td>Use batch markers (v15.0 and higher)</td>
<td>Controls the processing of function strings rs_batch_start and rs_batch_end. If use_batch_markers is set to on, the rs_batch_start function string is prepended to each batch of commands and the rs_batch_end function string is appended to each batch of commands. Set use_batch_markers to on only for replicate data servers that require additional SQL to be sent at the beginning or end of a batch of commands that is not contained in the rs_begin function string. Scripting name: DatabaseParameter_use_batch_markers</td>
</tr>
<tr>
<td>Dynamic sql</td>
<td>Specifies the mode (on, off, default) of the connection so that the replication definition allows the execution of dynamic SQL statements. Additional configuration parameters linked to dynamic SQL are only available when the mode is set to "on". Scripting name: DatabaseParameter_DynamicSQL</td>
</tr>
<tr>
<td>Replication</td>
<td>Specifies whether or not transactions applied by the DSI are marked in the transaction log as being replicated. Scripting name: DatabaseParameter_dsi_replication</td>
</tr>
<tr>
<td>Serialization method</td>
<td>Specifies the method used to maintain serial consistency between parallel DSI threads when applying transactions to a replicate data server. Scripting name: DatabaseParameter_dsi_serialization_method</td>
</tr>
<tr>
<td>SQL data style</td>
<td>Formats datatypes (particularly date/time, binary, bit and money) to be compatible with: DB2 ("db2"), Lotus Notes ("notes"), SQL Anywhere, formerly Watcom SQL ("watcom") or SQL Remote ("sqlremote"). Scripting name: DatabaseParameter_dsi_sql_data_style</td>
</tr>
</tbody>
</table>

CHAPTER 2: Data Movement Diagrams
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| Text convert multiplier | Changes the length of text datatype columns at the replicate site. Use dsi_text_convert_multiplier when text datatype columns must expand or contract due to character set conversion. Replication Server multiplies the length of primary text data by the value of dsi_text_convert_multiplier to determine the length of text data at the replicate site. Its type is float.
 Scripting name: DatabaseParameter_dsi_text_convert_multiplier |
| Dump load | Enables coordinated dump when set to "on" at replicate sites only.
 Scripting name: DatabaseParameter_dump_load |
| Distributor write request limit | Specifies the amount of memory available to the Distributor for messages waiting to be written to the outbound queue.
 Scripting name: DatabaseParameter_md_sqm_write_request_limit |
| Subscription write request limit | Specifies the memory available to the subscription materialization or dematerialization thread for messages waiting to be written to the outbound queue.
 Scripting name: DatabaseParameter_sub_sqm_write_request_limit |
| LTI write request limit | Specifies the amount of memory available to the LTI or RepAgent Executor thread for messages waiting to be written to the inbound queue.
 Scripting name: DatabaseParameter_exec_sqm_write_request_limit |
| Parallel DSI | Provides a shorthand method for configuring parallel DSI threads. A setting of "on" configures these values: dsi_num_threads to 5
 dsi_num_large_xact_threads to 2
 dsi_serialization_method to "wait_for_commit"
 dsi_sqt_max_cache_size to 1 million bytes
 A setting of "off" configures these parallel DSI values to their defaults.
 Scripting name: DatabaseParameter_parallel_dsi |
| Replication DDL (v15.0 and higher) | Specifies whether or not transactions are to be replicated back to the original database to support bidirectional replication. When set to "on", DSI sends set replication off to the replicate database, which instructs it to mark the succeeding DDL transactions available in the system log not to be replicated. Therefore, these DDL transactions are not replicated back to the original database, which enables DDL transaction replication in bidirectional MSA replication environment.
 Scripting name: DatabaseParameter_dsi_replication_ddl |
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| Dynamic sql cache management (v15.0.1 and higher) | Specifies the dynamic SQL cache for a connection. You can choose from one of the following values:
 • mru (default) – specifies that once dynamic_sql_cache_size is reached, the old dynamic SQL prepared statements are deallocated to give room for new statements.
 • fixed – specifies that once the dynamic_sql_cache_size is reached, allocation for new dynamic SQL statements stops.
 Scripting name: DatabaseParameter_dynamic_sql_cache_management |
| Dynamic SQL cache size (v15.0.1 and higher) | Specifies an estimation of the number of database objects which can be used by SQL for a connection. This can be used to limit resource demand on a data server. Minimum value 1 is and Maximum value is 65,535.
 Scripting name: DatabaseParameter_dynamic_sql_cache_size |

Security Tab
The following properties are available on the Security tab:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| Message confidentiality | Specifies whether Replication Server sends and receives encrypted data. If set to "required," outgoing data is encrypted. If set to "not required," Replication Server accepts incoming data that is encrypted or not.
 Scripting name: SecurityParameter_msg_confidentiality |
| Unified login | Specifies how Replication Server seeks to log in to remote data servers and accepts incoming logins.
 Scripting name: SecurityParameter_unified_login |
| Use security services | Specifies whether Replication Server can use security services. If use_security_services is "off," no security features take effect. This parameter can only be set by configuring Replication Server.
 Scripting name: SecurityParameter_use_security_services |
| Message integrity | Specifies whether data is checked for tampering.
 Scripting name: SecurityParameter_msg_integrity |
| Message origin check | Specifies whether the source of data should be verified.
 Scripting name: SecurityParameter_msg_origin_check |
Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| Message replay detection | Specifies whether data should be checked to make sure it has not been read or intercepted.
 Scripting name: SecurityParameter_msg_replay_detection |
| Message sequence check | Specifies whether data should be checked for interception.
 Scripting name: SecurityParameter_msg_sequence_check |
| Mutual authorization | Requires remote server to provide proof of identify before a connection is established.
 Scripting name: SecurityParameter_mutual_auth |
| Security mechanism | The name of the third-party security mechanism enabled for the pathway.
 Scripting name: SecurityParameter_security_mechanism |

Transaction Options Tab

The following properties are available on the Transaction Options tab:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| Disk affinity| Specifies an allocation hint for assigning the next partition. Enter the logical name of the partition to which the next segment should be allocated when the current partition is full.
 Scripting name: DatabaseParameter_disk_affinity |
| Packet size | Specifies the maximum size of a network packet. During database communication, the network packet value must be within the range accepted by the database. You may change this value if you have a System 10 or later SQL Server or Adaptive Server that has been reconfigured.
 Scripting name: DatabaseParameter_db_packet_size |
| Batch | Specifies how Replication Server sends commands to data servers. When batch is "on," Replication Server may send multiple commands to the data server as a single command batch. When batch is "off," Replication Server sends commands to the data server one at a time.
 Scripting name: DatabaseParameter_batch |
| Batch begin | Specifies whether a begin transaction can be sent in the same batch as other commands (such as insert, delete, and so on).
 Scripting name: DatabaseParameter_batch_begin |
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command retry</td>
<td>Specifies the number of times to retry a failed transaction. The value must be greater than or equal to 0.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_command_retry</td>
</tr>
<tr>
<td>Command batch size</td>
<td>Specifies the maximum number of bytes that Replication Server places into a command batch.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_cmd_batch_size</td>
</tr>
<tr>
<td>Command separator</td>
<td>Specifies the character that separates commands in a command batch.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_cmd_separator</td>
</tr>
<tr>
<td>Character convert</td>
<td>The specification for handling character-set conversion on data and identifiers between the primary Replication Server and the replicate Replication Server. This parameter applies to all data and identifiers to be applied at the DSI in question.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_charset_convert</td>
</tr>
<tr>
<td>Check locks interval</td>
<td>Specifies the number of milliseconds (ms) the DSI executor thread waits between executions of the rs_dsi_check_thread_lock function string. Used with parallel DSI function string. Used with parallel DSI.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_commit_check_locks_intrvl</td>
</tr>
<tr>
<td>Stop Unsupported Commands (v15.0 and higher)</td>
<td>When set to on, DIST suspends itself if a command is not supported by downstream Replication Server. When set to off, DIST ignores the unsupported command. Regardless of dist_stop_unsupported_cmd parameter's setting, Replication Server always logs an error message when it sees the first instance of a command that cannot be sent over to a lower-version Replication Server.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dist_stop_unsupported_cmd</td>
</tr>
<tr>
<td>DSI bulk copy (v15.1 and higher)</td>
<td>Turns the bulk copy-in feature on or off for a connection. If dynamic_sql and dsi_bulk_copy are both on, DSI applies bulk copy-in. Dynamic SQL is used if bulk copy-in is not used.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_bulk_copy</td>
</tr>
<tr>
<td>DSI dataserver make (v15.5 and higher)</td>
<td>[Non-ASE replicate database connections] Specifies the data server type that contains the replicate database that you want to use RTL for.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: ConnectionParameter_dsi_dataserver_make</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>DSI compile enable (v15.5 and higher)</td>
<td>[Primary database connections] Enables High Volume Adaptive Replication (HVAR), in which Replication Server compiles log-ordered, row-by-row changes to net-row changes. Scripting name: DatabaseParameter_dsi_compile_enable</td>
</tr>
<tr>
<td>Check locks times</td>
<td>Specifies the number of times the DSI executor thread executes the rs_dsi_check_thread_lock function string before logging a warning message. Used with parallel DSI. Scripting name: DatabaseParameter_dsi_commit_check_locks_logs</td>
</tr>
<tr>
<td>Max check locks times</td>
<td>Specifies the maximum number of times a DSI executor thread checks whether it is blocking other transactions in the replicate database before rolling back its transaction and retrying it. Used with parallel DSI. Scripting name: DatabaseParameter_dsi_commit_check_locks_max</td>
</tr>
<tr>
<td>Commit control</td>
<td>Specifies whether commit control processing is handled internally by Replication Server using internal tables (on) or externally using the rs_threads system table (off). Scripting name: DatabaseParameter_dsi_commit_control</td>
</tr>
<tr>
<td>Request stored procedure</td>
<td>Turns on or off request stored procedures at the DSI of the primary Replication Server. Scripting name: DatabaseParameter_dsi_exec_request_sproc</td>
</tr>
<tr>
<td>Fade out time</td>
<td>Specifies the number of seconds of idle time before a DSI connection is closed. A value of "-1" specifies that a connection will not close. Scripting name: DatabaseParameter_dsi fadeout_time</td>
</tr>
<tr>
<td>Ignore underscore name</td>
<td>When the transaction partitioning rule is set to "name," specifies whether or not Replication Server ignores transaction names that begin with an underscore. Scripting name: DatabaseParameter_dsi_ignore_underscore_name</td>
</tr>
<tr>
<td>Keep triggers</td>
<td>Specifies whether triggers should fire for replicated transactions in the database. Set off to cause Replication Server to set triggers off in the Adaptive Server database, so that triggers do not fire when transactions are executed on the connection. Set on for all databases except standby databases. Scripting name: DatabaseParameter_dsi_keep_triggers</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Number of transactions in log</td>
<td>Specifies the number of commands allowed in a transaction before the transaction is considered to be large.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_large_xact_size</td>
</tr>
<tr>
<td>Number of threads</td>
<td>Specifies the number of parallel DSI threads to be used. The maximum value is 255.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_num_threads</td>
</tr>
<tr>
<td>DSI isolation level (v15.0 and higher)</td>
<td>Specifies the isolation level for transactions. The ANSI standard and Adaptive Server supported values are: 0 – ensures that data written by one transaction represents the actual data. 1 – prevents dirty reads and ensures that data written by one transaction represents the actual data. 2 – prevents non-repeatable reads and dirty reads, and ensures that data written by one transaction represents the actual data. 3 – prevents phantom rows, non-repeatable reads, and dirty reads, and ensures that data written by one transaction represents the actual data. NoteData servers supporting other isolation levels are supported as well through the use of the rs_set_isolation_level function string. Replication Server supports all values for replicate data servers. The default value is the current transaction isolation level for the target data server.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_isolation_level</td>
</tr>
<tr>
<td>DSI bulk threshold (v15.1 and higher)</td>
<td>Specifies the number of insert commands that, when reached, triggers Replication Server to use bulk copy-in. When Stable Queue Transaction (SQT) encounters a large batch of insert commands, it retains in memory the number of insert commands specified to decide whether to apply bulk copy-in. Because these commands are held in memory, Sybase suggests that you do not configure this value much higher than the configuration value for dsi_large_xact_size. Minimum: 1</td>
</tr>
<tr>
<td></td>
<td>Scripting name: DatabaseParameter_dsi_bulk_threshold</td>
</tr>
<tr>
<td>DSI connector type (v15.5 and higher)</td>
<td>[non-ASE replicate database connections] Specifies the connector type used for the connector implementation, such as Open Client, JDBC and ODBC. When multiple connectors are available, RepServer will designate one as the default.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: ConnectionParameter_dsi_connector_type</td>
</tr>
</tbody>
</table>
Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSI compile max cmds (v15.5 and higher)</td>
<td>Specifies when HVAR replication should finish current transaction grouping and start a new group. If there are no more commands to read, it will finish the current group even if the group has not reached to the maximum number of commands. The default value is 100,000 commands, with a minimum of 100. Scripting name: DatabaseParameter_dsi_compile_max_cmds</td>
</tr>
</tbody>
</table>

Replicate Tables Tab
For Replication Server v15.5 and higher, the Replicate Tables tab is available for connections to replicate databases and lists the tables to replicate (see Replicate Tables on page 162).

Bound Procedures and Bound Tables Tabs
For Replication Server v15.7 and higher, the Bound Procedures and Bound Tables tabs is available for connections to primary databases and lists the procedures and tables to replicate via this connection. You can alternately bind procedures and tables to logical connections that can, in turn, be associated with a default and multiple alternate data connections (see Logical Paths on page 165).

Data Connection Groups (DMM)

A data connection group allows you to specify a set of data connections, in which one active database is supported by any number of backups. In case the active database fails for any reason, RepServer can switch to a backup database, and resume operations.

In the following example, if the Boston database fails, the Boston Backup resumes operations:

Data Movement Modeling

79
Creating a Data Connection Group

You can create a data connection group from the Connection Groups tab of a replication process property sheet.

1. Open a replication process property sheet, and click the Connection Groups tab.
2. Click the Add a Row tool, and enter a name for the new connection group.
3. Double-click the new connection group to open its property sheet, and click the Connections tab.
4. Click the Add Data Connections tool, select one or more data connections in the list, and click OK to return to the Connections tab.
5. Click the General tab, and select a data connection in the Default connection field to act as the active database.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Data Connection Group Properties

To view or edit a data connection group's properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>[read only] Specifies the replication process to which the active connection group belongs.</td>
</tr>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Default connection</td>
<td>Specifies the default data connection used by the replication process to get data from the active database.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

The following tabs are also available:
• Connections - lists the data connections that can be used as a backup for the active database (see Data Connections (DMM) on page 67). This list populates the Default connection field in the General tab.

Replication Server Logical Connection Properties

Replication Server logical connection property sheets contain all the standard data connection groups tabs along with the Connection Options tab.

The Connection Options tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical name</td>
<td>Specifies a logical name for a logical connection.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: LogicalName</td>
</tr>
<tr>
<td>Replication minimum</td>
<td>Specifies whether Replication Server should send all replication definition columns for all transactions or only those needed to perform update or delete operations at the standby database. Replication Server uses this value in standby situations only when a replication definition does not contain a "send standby" option with any parameter. In the other case, Replication Server uses the "replicate minimal columns" or "replicate all columns" parameter in the replication definition.</td>
</tr>
<tr>
<td>columns</td>
<td>Scripting name: ReplicateMinimalColumns</td>
</tr>
<tr>
<td>Materialization save</td>
<td>Specifies the materialization queue save interval. This parameter is only used for standby databases in a warm standby application.</td>
</tr>
<tr>
<td>interval</td>
<td>Scripting name: MaterializationSaveInterval</td>
</tr>
<tr>
<td>Save interval</td>
<td>Specifies the number of minutes the Replication Server takes to save messages after they have been successfully passed to the destination data server. For more information, see the Replication Server Administration Guide.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: SaveInterval</td>
</tr>
<tr>
<td>Send standby columns</td>
<td>Specifies which columns Replication Server should send to the standby database for a logical connection and overrides the "send standby" option in the replication definition that tell Replication Server which table columns to send to the standby database.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: SendStandbyRepdefCols</td>
</tr>
<tr>
<td>Send truncate table</td>
<td>Specifies the truncated tables to send.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: SendTruncateTable</td>
</tr>
<tr>
<td>Distribution</td>
<td>Specifies values for distribution: On or Off.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: Distribution</td>
</tr>
</tbody>
</table>
Process Connections (DMM)

A *process connection* sends data between two replication processes to let you model a data replication system with more than one replication process.

In the following example, data is sent from the **New York** database to the **World** replication process which distributes data to the **London** and **Singapore** replication processes, which in turn replicate data to multiple databases:

![Diagram of process connections](image)

Creating a Process Connection

You can create a process connection from the Toolbox, Browser, or **Model** menu.

- Use the **Connection** tool in the Toolbox.
- Select **Model > Process Connections** to access the List of Process Connections, and click the **Add a Row** tool.
• Right-click the model (or a package) in the Browser, and select **New > Process Connection**.

For general information about creating objects, see *Core Features Guide > The PowerDesigner Interface > Objects*.

Process Connection Properties

To view or edit a process connection's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Source Process</td>
<td>Specifies the source replication process for the connection. Use the Properties tool to the right of the list to view the properties of the currently selected replication process.</td>
</tr>
<tr>
<td>Target Process</td>
<td>Specifies the target replication process for the connection. Use the tools to the right of the list to create, browse for, or view the properties of the currently selected replication process.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

Replication Server Route Properties

Replication Server route property sheets contain all the standard process connection tabs, along with the Route Options tab and the Security tab.

Route Options Tab

The following properties are available on the Route Options tab:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User name</td>
<td>Specifies a name for the user.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: UserName</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Password</td>
<td>Specifies a password for the user. Scripting name: Password</td>
</tr>
<tr>
<td>Next site</td>
<td>Specifies that the connection passes through an intermediate Replication Server site. Scripting name: NextSite</td>
</tr>
<tr>
<td>Disk affinity</td>
<td>Specifies an allocation hint for assigning the next partition. Enter the logical name of the partition to which the next segment should be allocated when the current partition is full. Scripting name: RouteParameter_disk_affinity</td>
</tr>
<tr>
<td>RSI batch size</td>
<td>Specifies a number of bytes sent to another Replication Server before a truncation point is requested. The range is 1024 to 262144. Scripting name: RouteParameter_rsi_batch_size</td>
</tr>
<tr>
<td>Save interval</td>
<td>Specifies the number of minutes that the Replication Server takes to save messages after they have been successfully passed to the destination Replication Server. Scripting name: RouteParameter_save_interval</td>
</tr>
<tr>
<td>Large message</td>
<td>Specifies route behavior if a large message is encountered. This parameter is applicable only to direct routes where the site version at the replicate site is 12.1 or earlier. Values are "skip" and "shutdown." Scripting name: RouteParameter_rsi_xact_with_large_msg</td>
</tr>
<tr>
<td>RSI synchronize interval</td>
<td>Specifies the number of seconds between RSI synchronization inquiry messages. The Replication Server uses these messages to synchronize the RSI outbound queue with destination Replication Servers. Values must be greater than 0. Scripting name: RouteParameter_rsi_sync_interval</td>
</tr>
<tr>
<td>RSI packet size</td>
<td>Specifies the packet size, in bytes, for communications with other Replication Servers. The range is 1024 to 8192. Scripting name: RouteParameter_rsi_packet_size</td>
</tr>
<tr>
<td>RSI fadeout time</td>
<td>Specifies the number of seconds of idle time before Replication Server closes a connection with a destination Replication Server. The value -1 specifies that Replication Server will not close the connection. Scripting name: RouteParameter_rsi_fadeout_time</td>
</tr>
</tbody>
</table>
Security Tab

The following properties are available on the Security tab:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message confidentiality</td>
<td>Specifies whether Replication Server sends and receives encrypted data. If set to "required," outgoing data is encrypted. If set to "not required," Replication Server accepts incoming data that is encrypted or not encrypted.</td>
</tr>
<tr>
<td>Unified login</td>
<td>Specifies how Replication Server seeks to log in to remote data servers and accepts incoming logins.</td>
</tr>
<tr>
<td>Use security services</td>
<td>Specifies whether to use security services. If use_security_services is "off," no security features take effect. This parameter can only be set by configuring replication server.</td>
</tr>
<tr>
<td>Message integrity</td>
<td>Specifies whether data is checked for tampering.</td>
</tr>
<tr>
<td>Message origin check</td>
<td>Specifies whether the source of data should be verified.</td>
</tr>
<tr>
<td>Message replay detection</td>
<td>Specifies whether data should be checked to make sure it has not been read or intercepted.</td>
</tr>
<tr>
<td>Message sequence check</td>
<td>Specifies whether data should be checked for interception.</td>
</tr>
<tr>
<td>Mutual authorization</td>
<td>Specifies a remote server to provide proof of identity before a connection is established.</td>
</tr>
</tbody>
</table>

Property	Description
Primary connection | [v15.7 and higher] Specifies the data connection which carries the data that will transit on the route. If this property is set to None, then the route will accept data arriving from any data connection.

Scripting name: PrimaryConnection
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security mechanism</td>
<td>Specifies the name of the third-party security mechanism enabled for the</td>
</tr>
<tr>
<td></td>
<td>pathway.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: SecurityParameter_security_mechanism</td>
</tr>
</tbody>
</table>

Migrating Deprecated Model Container Objects into a Project

Until v15.0 you could use an information liquidity model (the former name of the data movement model) to display groups of models and the generation and mapping links between them. Now PowerDesigner projects are used to organize your models and project diagrams provide improved visibility for the interconnections between your models.

The following objects are no longer available in the Data Movement Model:

- Conceptual data – container for conceptual data models.
- Data access application – container for object-oriented models.
- Data access link – relationship that documents the way data are mapped between model containers.
- Generation link – relationship that documents generation dependencies between model containers.

In the following example, a deprecated ILM shows how a CDM, a PDM, and an OOM are linked by generation and data access links:
PowerDesigner projects enable you to:

- Gather together and display in a diagram any types of PowerDesigner models and other files.
- Display different types of link, such as shortcuts, references, traceability links and so on.
- Benefit from the automatic update of links.
- Check all the models and other files contained within the project into and out of the repository in one operation.

For detailed information about projects, see Core Features Guide > The PowerDesigner Interface > Projects and Frameworks.

Creating a Project

Create a project to contain the models whose links you want to view.

1. Select **File > New Project** to open the New Project dialog box.
2. Select **Empty Project** in the tree, enter a project name and location, and select the **Append Name To Location** check box if you want to add the project name to the root directory.
3. Click **OK** to close the dialog box, and create the project.

The project is created in the Browser, and an empty project diagram opens.

Adding Models to a Project Diagram

Complement a project diagram by adding models whose links you want to view.

- Drag and drop one or more models from the file system to the Browser or from the Browser to the project diagram, or
- Click the **Add Project Document** tool in the Toolbox, click in the diagram to open a standard Open dialog box, browse to and select one or more models in your file system, and then click **Open**.

In order to maximize the convenience of the project as a container, you should create (or place) all the associated models inside the project directory. However, you can also link to files outside the project directory. Such files are listed under the project node in the Browser, but display small icons on their symbol to indicate that they are located outside the project folder.

You can, at any time, right-click a model in the Browser or its symbol in the diagram, and select Move to Project Directory to move it inside the project.

Note: We recommend that your models are open when you add them to a project in order to guarantee that their dependency links are correctly rebuilt.
Rebuilding Dependency Links in a Project Diagram

The dependency links (for example, generation, mappings, shortcuts, and so on) shown in a project diagram are automatically generated when you add linked models to it. You cannot manually create them.

Models that are included in the project, but which are not displayed in the project diagram will not be added nor have their links represented when you rebuild dependency links.

Note: Models must be present in the project diagram before you can rebuild their dependency links.

1. Select **Tools > Rebuild Dependency Links** to open the Rebuild Dependency Links dialog box.
2. Select the check boxes that correspond to the dependency links you want to rebuild.
3. Click **OK** to close the dialog box and return to the diagram.

Any missing links are updated in the diagram.

The following example shows models in a project diagram connected by a variety of dependency links:

You can explore the details of any of the dependency links in your diagram by right-clicking it and selecting Show Dependencies. Each type of link has its own viewer:
• Generation – displays the generation links between models in the Generation Links Viewer (see Core Features Guide > Linking and Synchronizing Models > Generating Models and Model Objects).
• Mapping – displays the mapping links between models in the Mapping Editor (see Core Features Guide > Linking and Synchronizing Models > Object Mappings).
• Reference – displays the shortcuts and replications between models in the Shortcuts and Replications dialog box (see Core Features Guide > Linking and Synchronizing Models > Shortcuts and Replicas).
The data movement model lets you model and document ETL and EII processes in a rich graphical environment, supported by sophisticated metadata. By modeling your transformations in PowerDesigner, you can benefit from its powerful traceability and impact analysis features.

In most enterprises, information is stored in multiple databases, data warehouses and applications. Such a situation requires the recombination and transformation of data coming from diverse sources into new formats for replication reporting or other consumption. ETL (Extract Transform and Load) and EII (Enterprise Information Integration) are two technologies that address this need:

- **ETL** is a process in data warehousing that refers to three separate functions combined into a single programming tool:
 - Extract – reads data from a specified source system.
 - Transform – manipulates the extracted data to convert it for particular specialized consumption.
 - Load – writes the resulting data to a target.

- **EII** combines raw data by orchestrating and organizing queries to diverse source systems without any previous aggregation of the content. The data is not permanently moved into a new location.

The DMM lets you model and analyze data transformations in high-level and detailed views as follows:

- Data movement diagram – high-level diagram, which enables you to model a high-level view of your data transformations by specifying:
 - Input sources – Databases (PDMs), XML documents (XSMs), business processes (BPMs), and flat files such as .CSV and .XLS
 - Transformation process – where the transformations occur. It contains lower level detailed transformation diagrams (see *Transformation Processes (DMM)* on page 23).
 - Output sources – Databases (PDMs), XML documents (XSMs), and flat files such as .CSV and .XLS
- Data transformation diagram – low level diagram, which enables you to model a transformation task by specifying how data is extracted from data inputs, transformed by actions and loaded into data outputs. Data inputs and outputs are linked to the input and output sources specified in the high-level diagram.
• Transformation control flow diagram – low level diagram, which enables you to specify the sequence of execution of a series of tasks.

The following example shows how input and output sources can be linked to a transformation process at a high level, and how the transformation is modeled in the lower level diagrams:

Data Transformation Diagrams

A *data transformation diagram* provides a graphical view of the inputs, outputs, and steps involved in a data transformation task.

Note: You create a data transformation diagram by opening the property sheet of a transformation process to the **Data Transformation Tasks** tab, clicking the **Add a Row** tool to create a new transformation task, and then clicking the **Open Data Transformation Diagram** tool to navigate to the new diagram. Alternately, double-click a transformation process symbol that has no sub-diagram. A task and a data transformation diagram are created.
Data comes from *data inputs*, are transformed by *actions*, and loaded to *data outputs*. These steps are linked together by *data flows*. The data that is to be transformed is represented by *data structure columns*, which are contained in each of these steps.

In the following example, data extracted from the Acme and Small Corp database inputs are merged into DataMerge, filtered by DataFilter, sorted by DataSort, and are then loaded into the Giant Corp database output:

You can display a step's data structure columns directly in its symbol. To toggle between the basic and the detail formats:

- Right-click a symbol, and select Show Detail.

 or

- Select one or more symbols, and press *ctrl + Q*.

The number of displayed columns is specified in the Object View page of the Display Preferences dialog box. See *Setting DMM Display Preferences* on page 5.

In the following example, Acme, Data Filter, DataSort, and DataProjection_2 display their data structure columns in their symbol:
Data Transformation Diagram Objects

PowerDesigner supports all the objects necessary to build data transformation diagrams.

- Data inputs — represent the sources from where data is extracted, such as a database or an XML document.
- Actions — specify how the data is transformed using, for example, data query executions or data aggregations.
- Data outputs — represent the targets to where data is loaded, such as a database or an XML document.
- Data flows — conveys data structure columns from one object to another.

Data Transformation Task Properties

To view or edit a data transformation task's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

The following tabs are also available:

- **Inputs** - lists the inputs associated with the transformation task and allows you to create, edit, or delete inputs (see *Data Inputs (DMM)* on page 99).
- **Actions** - lists the actions associated with the transformation task and allows you to create, edit, or delete actions (see *Actions (DMM)* on page 102).
- **Outputs** - lists the outputs associated with the transformation task and allows you to create, edit, or delete outputs (see *Data Outputs (DMM)* on page 114).
- **Parameters** - lists the parameters associated with the transformation task and allows you to create, edit, or delete parameters (see *Transformation Parameters (DMM)* on page 121).

Data Structure Mapping Editor

The Data Structure Mapping Editor allows you to visualize or define data structure columns in the Data Transformation Task Diagram. You can open it from the contextual menu of any data transformation step (data inputs, data outputs, and actions) or data flow symbol or from the Data Structure Columns tab of their property sheets using the Open Mapping Editor tool.

You can use the Data Structure Mapping Editor to represent the mapping between the data structure columns of the source and target objects of a data flow.

The output data structure of a step becomes the input data structure of the next step and a mapping is defined between the output of the previous step and the input of the current step.

Types of Mapping

The object symbol from which you open the Data Structure Mapping Editor determines the type of mapping you can perform:
<table>
<thead>
<tr>
<th>Open from a...</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data input</td>
<td>Allows the mapping of a source PDM, XSM, BPM or flat file data structure columns to the current data input data structure columns. The target pane is active.</td>
</tr>
<tr>
<td>Action</td>
<td>Allows the mapping of the data structure columns of a previous step to the current action data structure columns. The target pane is active.</td>
</tr>
<tr>
<td>Data output</td>
<td>Allows the mapping of a target PDM, XSM, or flat file data structure columns to the current data output data structure columns. The source pane is active.</td>
</tr>
<tr>
<td>Data flow</td>
<td>Allows the mapping of the data structure columns of the source and target objects of the flow. The target pane is generally active, except when the data flow links an action and an output. In this case the Source pane is active.</td>
</tr>
</tbody>
</table>

In the following example, the Mapping Editor shows the mapping between the Employee Name and the Name data structure columns. The Target pane is active, and the Data Flows pane lets you add source objects for the current column, and edit its source expression:
Creating a Mapping from the Data Structure Mapping Editor

You can create a mapping in the Mapping Editor in various ways.

- Drag an object from one pane and drop it on an object in the other.
- Select an object in each of the target and source panes, and then click the Create Mapping between Source and Target Objects tool.
- Select an object in each of the target and source panes, right-click one, and select Create Mapping.

For detailed information about mappings and the Mapping Editor, see *Core Features Guide > Linking and Synchronizing Models > Object Mappings.*

Transformation Control Flow Diagrams

A *transformation control flow diagram* provides a graphical view of the order in which a series of data transformation tasks is linked together in a control flow.

Note: You create a transformation control flow diagram by opening the property sheet of a transformation process to the **Transformation Control Flows** tab, clicking the Add a Row tool to create a new transformation control flow, and then clicking the **Open Transformation Control Flow Diagram** tool to navigate to the new diagram.

The transformation control flow can include *starts, task executions, decisions, synchronizations,* and ends, which are linked together by control flows.

In the following example, the Paris Sales, Shanghai Sales, and New York Sales tasks are performed in parallel. If it is Friday, the Sales Central DataWarehouse task is executed. Whether or not it is Friday, the Sales Data Mart transformation task execution is performed:
Transformation Control Flow Diagram Objects

PowerDesigner supports all the objects necessary to build transformation control flow diagrams.

<table>
<thead>
<tr>
<th>Object</th>
<th>Tool</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformation start</td>
<td></td>
<td></td>
<td>Starting point, which initiates the execution of a transformation control flow (see Transformation Starts (DMM) on page 124).</td>
</tr>
<tr>
<td>Transformation task execution</td>
<td></td>
<td></td>
<td>Instance of one or more data transformation tasks (see Transformation Task Executions (DMM) on page 126).</td>
</tr>
<tr>
<td>Transformation synchronization</td>
<td></td>
<td></td>
<td>Synchronization of the execution of several tasks (see Transformation Synchronizations (DMM) on page 128).</td>
</tr>
<tr>
<td>Transformation decision</td>
<td></td>
<td></td>
<td>Choice to make when different paths are possible (see Transformation Decisions (DMM) on page 129).</td>
</tr>
<tr>
<td>Transformation end</td>
<td></td>
<td></td>
<td>Ending point, which terminates the execution of a transformation control flow (see Transformation Ends (DMM) on page 131).</td>
</tr>
<tr>
<td>Control flow</td>
<td></td>
<td></td>
<td>Oriented link between objects (see Control Flows (DMM) on page 132).</td>
</tr>
</tbody>
</table>

Transformation Control Flow Properties

To view or edit a transformation control flow's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
</tbody>
</table>
The following tabs are also available:

- **Task Executions** - lists the task executions associated with the transformation control flow and allows you to create, edit, or delete task executions (see *Transformation Task Executions (DMM)* on page 126).

Data Inputs (DMM)

A *data input* represents a source of data in a data transformation diagram, and is linked to a database, an XML document, a web service or a flat file.

In the following example, the Small Corp and Acme databases in the data movement diagram are represented by the Small Corp and Acme database inputs in the data transformation diagram:

You can create the following data inputs in a data transformation diagram:
Creating a Data Input

You can create a data input from the Browser or Model menu, or in a data transformation diagram.

- Drag a source data store (database, XML document, business process, or flat file) from the browser or from a data movement diagram, and drop it onto the data transformation diagram.
- Drag a PDM table or view, an XSM element, or a BPM operation from the browser, and drop it onto the data transformation diagram.
- Use the appropriate Data Input tool in the Toolbox.
- Right-click a data transformation task in the Browser, and select New > Data Input.
- Open a transformation task property sheet, click the Inputs tab, and click the Add a Row tool.
- Select Model > Data Inputs to access the List of Data Inputs, and click the Add a Row tool.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Data Input Properties

To view or edit a data input's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:
Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Data connection</td>
<td>Specifies the data store represented by the input. You must select a data connection to access the list of available data stores. This field will be automatically completed if you drag the data store from the browser, and drop it onto the diagram.</td>
</tr>
<tr>
<td>Source object</td>
<td>[XML and Web service inputs only] Specifies the particular object from the source model to be used as input. Use the tools to the right of the list to browse for an object or view the properties of the currently selected object.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

The following tabs are also available:

- **Data Structure Source Objects** - [database inputs] Lists the source objects to which the object is attached. Use the **Add Source Object** tool to add a new object.
- **Data Structure Columns** - Lists the data structure columns associated with the object (see *Data Structure Columns (DMM)* on page 119).
- **SQL Query** - [database inputs] Allows you to edit the default SQL query to help you create your data structure columns. The following tools are available:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retrieve Columns by Parsing Query — Parses the query you have specified in the textbox using the SQL Editor. The columns of the query are automatically created in the Data Structure Columns tab and their parent tables or views are displayed in the Data Structure Source Objects tab. You can also click this tool to update data structure columns and source tables when you have modified source expressions of data structure columns.</td>
</tr>
<tr>
<td></td>
<td>Edit SQL Query — Opens the query in the SQL editor that helps you select PDM objects (tables, views, columns, procedures, and users) to build the SQL query script.</td>
</tr>
</tbody>
</table>
Actions (DMM)

An action represents a transformation to execute on input flows in a data transformation diagram. Filtering, aggregating or duplicating data are examples of transformation you may need to perform in your activities.

Actions are linked to the previous step (data input or another action) using a data flow. Values of the input flow automatically appear in the Data Structure Columns tab of the action.

In the following example, the values of the Acme database input are propagated to the DataProjection_1 action, and are in turn propagated to the DataMerge action, and so on until they reach the GiantCorp database output:

You can create the following actions in a data transformation diagram:

<table>
<thead>
<tr>
<th>Object</th>
<th>Tool</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script execution</td>
<td>![Script Icon]</td>
<td>![Script Icon]</td>
<td>Executes a script (see Inserting a script execution on page 105).</td>
</tr>
<tr>
<td>Data query execution</td>
<td>![Data Query Icon]</td>
<td>![Data Query Icon]</td>
<td>Executes an SQL Query in the database (see Inserting a data query execution on page 105).</td>
</tr>
<tr>
<td>Data aggregation</td>
<td>![Aggregation Icon]</td>
<td>![Aggregation Icon]</td>
<td>Reduces the number of rows from an input data flow in order to group the data (see Inserting a data aggregation on page 106).</td>
</tr>
<tr>
<td>Data sort</td>
<td>![Sort Icon]</td>
<td>![Sort Icon]</td>
<td>Sorts input rows from an input data flow (see Inserting a data sort on page 107).</td>
</tr>
<tr>
<td>Object</td>
<td>Tool</td>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Data filter</td>
<td></td>
<td></td>
<td>Filters rows from an input data flow (see Inserting a data filter on page 108).</td>
</tr>
<tr>
<td>Data split</td>
<td></td>
<td></td>
<td>Duplicates an input data flow into several output data flows (see Inserting a data split on page 109).</td>
</tr>
<tr>
<td>Data join</td>
<td></td>
<td></td>
<td>Joins data from several input data flows into one output data flow (see Inserting a data join on page 110).</td>
</tr>
<tr>
<td>Data lookup</td>
<td></td>
<td></td>
<td>Finds the corresponding value to a key column and store it in a new column of the output data flow (see Inserting a Data Lookup on page 111).</td>
</tr>
<tr>
<td>Data merge</td>
<td></td>
<td></td>
<td>Merges all the rows from several input data flows into one output data flow (see Inserting a data merge on page 109).</td>
</tr>
<tr>
<td>Data projection</td>
<td></td>
<td></td>
<td>Defines basic data transformations, such as removing columns or changing the order of columns (see Inserting a data projection on page 113).</td>
</tr>
<tr>
<td>Data calculator</td>
<td></td>
<td></td>
<td>Defines complex data transformations, such as filtering or aggregating data (see Inserting a data calculator on page 113).</td>
</tr>
</tbody>
</table>

Creating an Action
You can create an action from the Toolbox, Browser, or Model menu.

- Use the Action tool in the Toolbox.
- Select Model > Actions to access the List of Actions, and click the Add a Row tool.
- Right-click a data transformation task in the Browser, and select New > Action.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Action Properties
To view or edit an action’s properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
</tbody>
</table>
| Mode | [Data lookup only] Specifies the mean by which values are mapped. You can choose between the following options:
| | • Database – [Default] The mapping is performed against a database table. This option triggers the display of the Script tab.
| | • Predefined – The mapping is performed against a list of key value pairs. This option triggers the display of the Lookup Keys tab. |
| Source column | [Data lookup only] Specifies the source column key to replace. |
| Target column | [Data lookup only] Specifies the target column, which contains the resulting value. |
| Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas. |

The following tabs are also available:

- **Script** [script executions, data query executions, and data lookups] - specifies the script executed by the action.
- **Aggregation Columns** [data aggregations] - lists the columns to be aggregated.
- **Sort Columns** [data sorts] - lists the columns on which to sort.
- **Criteria** [data filters and data calculators] - specifies the SQL query used by the action.
- **Joins** [data joins] - lists the joins used to combine the input flows.
- **Data Structure Columns** - lists the data structure columns received via the incoming flow, and on which the action operates.
- **Data Structure Source Objects** [data query executions] - lists the source tables or views affected by the query.
Inserting a Script Execution

A script execution executes a script for each row of the input flow. For example, it can be used to create a log file, a mail or a text file related to the input flow.

1. Select the Script Execution tool in the Toolbox, and create the action in the diagram.
2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the script execution to initialize it with the incoming data structure columns.
3. Double-click the script execution symbol to open its property sheet, click the Script tab, select or enter a script language, and enter a script in the textbox.

4. [optional] Click the Data Structure Columns tab, and add, edit, reorder or delete columns as appropriate.
5. Click OK to save your changes and return to the diagram.

Inserting a Data Query Execution

A data query execution executes an SQL Query against a database for each row of the input flow to transform it, and create a new data flow. Data from the input flow can be used as parameter.

1. Select the Data Query Execution tool in the Toolbox, and create the action in the diagram.
2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data query execution.
3. Double-click the data query execution symbol to open its property sheet, click the Script tab, and select a data connection to access the database.

4. Enter an SQL query script in the textbox or click the Edit SQL Query tool to select PDM objects in the SQL Editor, and build the script.

5. Click the Retrieve Columns by Parsing Query tool that lets you parse the query you have specified in the textbox using the SQL Editor. The columns of the query are automatically created in the Data Structure Columns tab, and their parent tables or views are displayed in the Data Structure Source Objects tab.

6. [optional] Click the Data Structure Columns tab, and add, edit, reorder or delete columns as appropriate.

7. Click OK to save your changes and return to the diagram.

Inserting a Data Aggregation

A *data aggregation* aggregates incoming data using functions such as Avg, Min, Max, Count, Sum etc.

1. Select the Data Aggregation tool in the Toolbox, and create the action in the diagram.

2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data aggregation to initialize it with the incoming data structure columns.

3. Double-click the data aggregation symbol to open its property sheet, click the Aggregation Columns tab, and click the Select Aggregation Columns tool to open a selection dialog.
box, which allows you to select one or more columns to aggregate. Make your selection, click OK to add the columns and return to the tab, then click Apply.

4. Click the Data Structure Column tab and for each column, enter an aggregation function in the Source Expression column. Delete columns that will not be aggregated.

5. Click OK to save your changes and return to the diagram.

Note: You can right-click a data aggregation symbol, and select Aggregated Columns to access the Aggregation Columns tab directly.

Inserting a Data Sort

A *data sort* sorts incoming rows by one or more data structure columns.

1. Select the Data Sort tool in the Toolbox, and create the action in the diagram.

2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data sort to initialize it with the incoming data structure columns.

3. Double-click the data sort symbol to open its property sheet, click the Sort Columns tab and click the Select Sort Columns tool to open a selection dialog box, which allows you to select one or more columns to sort by. Make your selection, click OK to add the columns and return to the tab.

4. For each of the sort column, click in the Order column, and specify whether it should be sorted in ascending (default) or descending order.
5. Click OK to save your changes and return to the diagram.

Note: You can right-click a data sort symbol, and select Sorted Columns to access the Sort Columns tab directly.

Inserting a Data Filter

A data filter filters incoming rows using SQL criteria.

1. Select the Data Filter tool in the Toolbox, and create the action in the diagram.
2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data filter to initialize it with the incoming data structure columns.
3. Double-click the data filter symbol to open its property sheet, click the Criteria tab, and enter a criterion expression to filter by.
4. Click OK to save your changes and return to the diagram.

Note: You can right-click a data filter symbol, and select Criteria to access the Criteria tab directly.

Inserting a Data Split

A *data split* duplicates a simple input data flow into two or more identical output data flows.

1. Select the Data Split tool in the Toolbox, and create the action in the diagram.
2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data split to initialize it with the incoming data structure columns.
3. Click OK to save your changes and return to the diagram.

Note: When a data input or an action has more than one output flow, you can right-click the data input or action, and select Insert Split. This automatically creates a data split after the data input or action. Conversely, you can select Remove Split to display each output flow instead of the data split.

Inserting a Data Merge

A *data merge* combines two or more identical input flows into a single output flow.

To combine different input flows, see *Inserting a data join* on page 110.
1. Select the Data Merge tool in the Toolbox, and create the action in the diagram.
2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data merge to initialize it with the incoming data structure columns.
3. Click OK to save your changes and return to the diagram.

Note: When a data output or an action has more than two input flows, you can right-click the data output or action and select Insert Merge. It automatically creates a data merge before the data output or action. Conversely, you can select Remove Merge to display each input flow instead of the data merge.

Inserting a Data Join

A *data join* performs a join on two or more input flows, and combines them.

1. Select the Data Join tool in the Toolbox, and create the action in the diagram.
2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data join to initialize it with the incoming data structure columns.
3. Double-click the data join symbol to open its property sheet, click the Join Columns tab and click the Add a Row tool to create a join.
4. Click Column 1 and select a column to join on. Click Column 2, and select a second column to join on.
5. Click the Join Expression column to select a join expression, and click Apply.
6. [optional] Click the Data Structure Columns tab and delete any unnecessary columns. For example, you may want to delete one of the two columns you selected for the join.

7. Click OK to save your changes and return to the diagram.

Note: You can right-click a data join symbol, and select Joins to access the Joins tab directly.

Inserting a Data Lookup

A *data lookup* lets you find the corresponding value to a key column, and replace it by creating a new column for the output data flow. The mapping between the key column and its value can come from database tables or from a predefined list of key value pairs.

1. Select the Data Lookup tool in the Toolbox, and create the action in the diagram.

2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data lookup to initialize it with the incoming data structure columns.

3. Double-click the data lookup symbol to open its property sheet, and select one of the following modes:

 - **Database mode** - Select the source column from which you want to draw the values to be replaced. Create the target column, which will contain the values returned by the lookup. The target column will automatically replace the source column in the Data Structure Columns tab.

 Click the Script tab, select a data connection, and specify a SQL query in the textbox. The query will be executed against the database tables and will return two columns (a key column to search for a corresponding value and a value column to store the corresponding value).
• Predefined mode - Select the source column from which you want to draw the values to be replaced. Create the target column, which will contain the values returned by the lookup. The target column will automatically replace the source column in the Data Structure Columns tab.

Click the Lookup Keys tab, and enter key value pairs in the list as appropriate.
4. Click OK to save your changes and return to the diagram.

Inserting a Data Projection

A *data projection* performs basic data transformations, such as removing columns or changing the order of columns.

For more advanced transformations, see *Inserting a data calculator* on page 113.

1. Select the Data Projection tool in the Toolbox, and create the action in the diagram.
2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data projection to initialize it with the incoming data structure columns.
3. Double-click the data projection symbol to open its property sheet, and click the Data Structure Columns tab, which is automatically completed with the values from the input flow. Reorder or delete columns as appropriate.
4. Click OK to save your changes and return to the diagram.

Inserting a Data Calculator

A *data calculator* allows you to perform any kind of data transformations, by specifying an SQL query.

1. Select the Data Calculator tool in the Toolbox, and create the action in the diagram.
2. Select the Data Flow tool, and draw a flow from the preceding step (a data input or action) to the data calculator to initialize it with the incoming data structure columns.
3. Double-click the data calculator symbol to open its property sheet, click the Criteria tab, and enter the appropriate SQL script to perform the desired data transformation.

![Data Calculator Properties - Compute cost and margin](image)

4. [optional] Click the Data Structure Columns tab, and add, edit, reorder or delete columns as appropriate.

5. Click OK to save your changes and return to the diagram.

Note: You can right-click a data calculator symbol, and select Criteria to access the Criteria tab directly.

Data Outputs (DMM)

A *data output* represents a target destination to load data in a data transformation diagram, and is linked to a database, an XML document, or a flat file.

In the following example, the Giant Corp database in the data movement diagram is represented by the Giant Corp database output in the data transformation diagram:
You can create the following data outputs in a data transformation diagram:

<table>
<thead>
<tr>
<th>Object</th>
<th>Tool</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database output</td>
<td></td>
<td></td>
<td>Database to where data is loaded.</td>
</tr>
<tr>
<td>XML output</td>
<td></td>
<td></td>
<td>XML document to where data is loaded.</td>
</tr>
<tr>
<td>Flat file output</td>
<td></td>
<td></td>
<td>Flat file to where data is loaded.</td>
</tr>
</tbody>
</table>
Creating a Data Output

You can create a data output from the Browser or Model menu, or in a data transformation diagram.

- Drag a target data store (database, XML document, or flat file) from the browser or from a data movement diagram, and drop it onto the data transformation diagram.
- Drag a PDM table or view, or an XSM element from a model attached to a target data store in the browser, and drop it onto the data transformation diagram.
- Use the appropriate Data Output tool in the Toolbox.
- Right-click a data transformation task in the Browser, and select New > Data Output.
- Open a transformation task property sheet, click the Outputs tab, and click the Add a Row tool.
- Select Model > Data Outputs to access the List of Data Outputs, and click the Add a Row tool.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Data Output Properties

To view or edit a data output’s properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| **Mode** | [Database output only] Specifies the type of action the database output performs on the target object by analyzing its input flows. You can choose one of the following options:
 • Clear – Deletes rows in the target object.
 • Delete & insert – Deletes rows in the target object, and inserts a new row.
 • Insert – Inserts a row in a target object.
 • Insert or update – Looks for a row in a target object, and inserts it if it does not exist or updates it.
 • Update – Looks for an existing row in a target object, and updates it. |
| **Data connection** | Specifies the data store represented by the output. You must select a data connection to access the list of available data stores. This field will be automatically completed if you drag the data store from the browser, and drop it onto the diagram. |
| **Target object** | [Database and XML document outputs only] Specifies the particular object from the target model to be used as output. Use the tools to the right of the list to browse for an object or view the properties of the currently selected object. |
| **Keywords** | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas. |

Data Flows (DMM)

A **data flow** conveys data between steps in a data transformation diagram.

In the following example, data flows convey data from the Acme database input through several actions, and to the Giant Corp database output:
When you link two steps with a data flow, the data structure of the destination object is initialized with the data structure of the source object.

Any name, code or data type changes you perform on the data structure columns of a source object are automatically applied to the data structure columns of the target object, when they match.

Creating a Data Flow

You can create a data flow from the Toolbox or **Model** menu.

- Use the Data Flow tool in the Toolbox.
- Select **Model > Data Flows** to access the List of Data Flows, and click the Add a Row tool.

Data flows can be created in a list of data flows only if you have previously defined the required source and destination objects.

For general information about creating objects, see *Core Features Guide > The PowerDesigner Interface > Objects.*

Data Flow Properties

To view or edit a data flow's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The **General** tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Source</td>
<td>Specifies the object from which the data flow originates. Use the tools to the right of the list to create, browse for, or view the properties of the currently selected object.</td>
</tr>
<tr>
<td>Destination</td>
<td>Specifies the object to which the data flow leads. Use the tools to the right of the list to create, browse for, or view the properties of the currently selected object.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>
Data Structure Columns (DMM)

A data structure column represents a database table column, a flat file column, an XML element or attribute, or an output parameter of a web service operation at a particular point in the transformation.

For example, you may have a column called Name in your source database, which is extracted and processed by a number of transformation actions before being loaded into your target database. Each of these steps in the transformation task will contain a data structure column, which represents the column at that point in the transformation. The column may be renamed, filtered, reordered, and/or have its data type, length, default value etc, changed, and you can trace each of these changes by referring to the data structure column at the relevant point in the transformation.

You can use the Data Structure Mapping Editor (see Data Structure Mapping Editor on page 95) to show how source and target objects data structure columns are mapped.

Creating a Data Structure Column

When you draw a data flow from one step to the next, the data structure columns in the first step will automatically be created in the second step. You can also manually create data structure columns by using the Add Columns and Add a Row tools on the Data Structure Columns tab of a data input, an action or a data output.

These tools may not be available for actions, such as a data lookup or data split object, which do not modify the structure of the data format.

Note: If you delete a data flow connecting two steps, any data structure columns automatically created by the flow will be deleted, except when the second step is an output and the columns have mappings attached.

Data Structure Column Properties

To view or edit a data structure column's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:
### Property	Description
Name/Code/Comment | Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.
Stereotype | Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.
Data type | Specifies the type of the column, such as numeric, alphanumeric, boolean, etc. If you change the type of the transformation process, the data type used by the data structure column will be converted to its equivalent in the new transformation engine. For more information about data types, see Customizing and Extending PowerDesigner > DBMS Definition Files > Script/Data Type Category.
Length | Specifies the maximum length of the data type.
Precision | Specifies the maximum number of places after the decimal point.
Mandatory | Specifies a column that must be assigned a not null value.
Default value | Specifies a default value for the data structure column.
Target object | Specifies the target object in which the data structure column is loaded. You can use the tools to the right of the list to browse the complete tree of available objects or view the properties of the currently selected object.
Identifier | Specifies the data structure column as an identifier. This is useful when you update the target tables used to create a join.
Keywords | Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.

Data Structure Source Objects Tab

This tab lists the source objects to which the object is attached and is generally automatically propagated and read-only. However, you can add or delete source objects for data structure columns belonging to the following types of steps:

- Inputs
- Script execution, data query execution, data calculator, data aggregation, and data projection actions
- Outputs

To specify a more complex source expression using functions, click the **Edit Source Expression** tool, in the lower part of the dialog box, to open the Source Expression Editor.

Note: You can also add or delete source objects for the following steps:
• Inputs (see Data Inputs (DMM) on page 99) – source objects correspond to objects of source data stores linked to a database, an XML document, a web service or a flat file.
• Data query executions (see Inserting a Data Query Execution on page 105) – source objects originate from the previous steps to which data query executions are linked.

Transformation Parameters (DMM)

A parameter is an input or output variable global to a transformation task that you can use to customize your data transformations. A parameter is available to all diagrams within a given task. For example, if you manipulate sales figures, you might require a parameter specifying the sales region you are interested in.

Parameters are used in the source expression of data structure columns (see Data Structure Columns (DMM) on page 119).

Creating a Transformation Parameter

You can create a transformation parameter from the property sheet of, or in the Browser under, a transformation task.

• Open a transformation task property sheet, click the Parameter tab, and click the Add a Row tool.
• Right-click a data transformation task in the Browser, and select New > Transformation Parameter.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Transformation Parameter Properties

To view or edit a transformation parameter's properties, double-click its Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>[read-only] Specifies the parent task.</td>
</tr>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
</tbody>
</table>

Data Movement Modeling
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the type of the parameter. You can choose one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• In – specifies an input parameter.</td>
</tr>
<tr>
<td></td>
<td>• Out – specifies an output parameter.</td>
</tr>
<tr>
<td>Data type</td>
<td>Specifies the type of the parameter. If you change the type of the transformation process, the data type used by the parameter will be converted to its equivalent in the new transformation engine. For more information about data types, see Customizing and Extending PowerDesigner > DBMS Definition Files > Script/Data Type Category.</td>
</tr>
<tr>
<td>Default value</td>
<td>Specifies a default value for the parameter.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

Example: Assigning a Parameter to a Data Structure Column

You can assign a parameter to a data structure column whose source expression can be modified.

1. Create a parameter and call it SourceUserName.
2. Open a step's property sheet whose data structure columns can be modified.
3. Click the Data Structure Columns tab, and double-click a data structure column to open its property sheet.
4. Click the Data Structure Source Objects tab, and in the source expression box, click the Edit Source Expression tool to open the corresponding editor.
5. Click Parameters in the Source field to display the available parameters in the Source Columns field, position the cursor in the script textbox where you want to add the parameter, and then double-click the SourceUserName parameter to add it to the query script.
6. Complete the script as appropriate.
7. Click OK to close the dialog box.

The source expression of the data structure column is updated.
8. Click OK to close the dialog box.

Transformation Starts (DMM)

A transformation start initiates the sequence of execution of a series of data transformation tasks in a transformation control flow diagram.

In the following example, TransformationStart initiates the sequence of the Paris Sales, Shanghai Sales and New York Sales tasks:
Creating a Transformation Start

You can create a transformation start from the Toolbox, Browser, or Model menu.

- Use the Transformation Start tool in the Toolbox.
- Select Model > Starts to access the List of Transformation Starts, and click the Add a Row tool.
- Right-click a transformation control flow in the Browser, and select New > Transformation Start.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Transformation Start Properties

To view or edit a transformation start's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
</tbody>
</table>
Transformation Task Executions (DMM)

A *transformation task execution* is an instance of one or more data transformation tasks in a transformation control flow diagram. Tasks can be executed serially or in parallel.

In the following example, the Paris Sales, Shanghai Sales and New York Sales tasks are executed in parallel:

![Diagram of Transformation Task Executions]

Creating a Transformation Task Execution

You can create a transformation task execution from the Toolbox, Browser, or Model menu.

- Drag a data transformation task from the browser and drop it onto a transformation control flow diagram.
- Use the Transformation Task Execution tool in the Toolbox.
- Select **Model > Transformation Task Executions** to access the List of Transformation Task Executions, and click the Add a Row tool.
- Right-click a transformation control flow in the Browser, and select **New > Transformation Task Execution**.

Note: You can also create and automatically link multiple task executions (see *Creating multiple transformation task executions* on page 127).
For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Transformation Task Execution Properties

To view or edit a transformation task execution's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

Transformation Task Execution Property Sheet Tasks Tab

The Tasks tab displays a list of data transformation tasks, and allows you to add, edit or delete tasks. Each transformation task execution must be associated with a data transformation task (see Data Transformation Diagrams on page 92)

Creating Multiple Transformation Task Executions

You can create multiple transformation task executions in your diagram and manage the mode (parallel or serial) and order of execution.

1. Click the diagram background, and select Create Task Executions (or Right-click a transformation control flow in the Browser, and select Create Task Executions) to open the Create Task Executions dialog box.
2. Select one or more data transformation tasks to add to your diagram.
3. [optional] Reorder the selected task executions according to your needs, using the arrows at the bottom of the dialog box.
4. Specify the execution mode. You can choose between:
 - Parallel
 - Serial
A task execution is created for each selected data transformation task. You can open the diagram of the data transformation task associated with the task execution, by pressing Ctrl and double-clicking the symbol. If several tasks are associated, a selection dialog box opens to let you select the diagram you want.

Transformation Synchronizations (DMM)

A transformation synchronization enables the synchronization of control flows between two or more concurrent actions.

In the following example, the output flows of the Friday decision and of the Sales Central DataWarehouse task are synchronized into one output flow, which goes to the Sales Data Mart task execution:

A transformation synchronization can be either a:

- **Fork** – Splits a single input flow into several independent output flows executed in parallel:

- **Join** – Merges multiple input flows into a single output flow. All input flows must reach the join before the single output flow continues:

Creating a Transformation Synchronization

You can create a transformation synchronization from the Toolbox, Browser, or Model menu.

- Use the Transformation Synchronization tool in the Toolbox.
- Select Model > Transformation Synchronizations to access the List of Transformation Synchronizations, and click the Add a Row tool.
- Right-click a transformation control flow in the Browser, and select New > Transformation Synchronization.
By default, the transformation synchronization symbol is created horizontally. To toggle between horizontal and vertical display, right-click the symbol and select Change to Vertical or Change to Horizontal in the contextual menu.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Transformation Synchronization Properties

To view or edit a transformation synchronization's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

Transformation Decisions (DMM)

A transformation decision lets you choose between different paths by evaluating guard conditions, which must be satisfied for an associated flow to execute some action.

In the following example, the Sales Central DataWarehouse task will only be executed on Friday:

![Diagram showing a transformation decision for Sales Central DataWarehouse on Friday]

A transformation decision allows you to create complex flows, such as:
• if ... then ... else ...
• switch ... case ...
• do ... while ...
• loop
• for ... next ...

Note: It is not possible to attach two flows of opposite directions to the same corner on a transformation decision symbol.

Creating a Transformation Decision

You can create a transformation decision from the Toolbox, Browser, or Model menu.

• Use the Transformation Decision tool in the Toolbox.
• Select Model > Transformation Decisions to access the List of Transformation Decisions, and click the Add a Row tool.
• Right-click a transformation control flow in the Browser, and select New > Transformation Decision.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Transformation Decision Properties

To view or edit a transformation decision's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Type</td>
<td>Dynamically specifies the type of the transformation decision: conditional branch, merge, or incomplete.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>
Condition Tab

The **Condition** tab contains the following properties:

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>Specifies a short name for the condition, to be displayed in the transformation decision symbol.</td>
</tr>
<tr>
<td>Condition (text box)</td>
<td>Specifies a condition to be evaluated to determine how the transformation decision should be traversed. You can enter any appropriate information in this box, as well as open, insert and save text files.</td>
</tr>
</tbody>
</table>

Transformation Ends (DMM)

A *transformation end* terminates the sequence of execution of a series of tasks in a transformation control flow diagram, and specifies the result for the execution, which can be either Success or Error.

In the following example, TransformationEnd terminates the sequence of execution of Sales Central DataWarehouse and Sales Data Mart:

![Diagram of Transformation Ends](image)

You can create several ends within the same diagram if you want to show different end cases. In the following example, two different ends are possible depending on whether or not it is the end of the quarter.

![Diagram of Different Ends](image)
Creating a Transformation End

You can create a transformation end from the Toolbox, Browser, or Model menu.

- Use the Transformation End tool in the Toolbox.
- Select Model > Transformation Ends to access the List of Transformation Ends, and click the Add a Row tool.
- Right-click a transformation control flow in the Browser, and select New > Transformation End.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Transformation End Properties

To view or edit a transformation end's properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name should clearly convey the object's purpose to non-technical users, while the code, which is used for generating code or scripts, may be abbreviated, and should not normally include spaces. You can optionally add a comment to provide more detailed information about the object. By default the code is generated from the name by applying the naming conventions specified in the model options. To decouple name-code synchronization, click to release the = button to the right of the Code field.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies whether the control flow execution has succeeded (Success) or has failed (Error).</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>

Control Flows (DMM)

A control flow connects transformation starts, task executions, decisions, synchronizations and ends.

In the following example, a synchronization is connected to the Sales Data Mart task execution, which is in turn connected to TransformationEnd:
Creating a Control Flow

You can create a control flow from the Toolbox, Browser, or Model menu.

- Use the Control Flow tool in the Toolbox.
- Select Model > Control Flows to access the List of Control Flows, and click the Add a Row tool.
- Right-click a transformation control flow in the Browser, and select New > Control Flow.

For general information about creating objects, see Core Features Guide > The PowerDesigner Interface > Objects.

Control Flow Properties

To view or edit a control flow’s properties, double-click its diagram symbol or Browser or list entry. The property sheet tabs and fields listed here are those available by default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code/Comment</td>
<td>Identify the object. The name and code are read-only. You can optionally add a comment to provide more detailed information about the object.</td>
</tr>
<tr>
<td>Stereotype</td>
<td>Extends the semantics of the object. You can enter a stereotype directly in this field, or add stereotypes to the list by specifying them in an extension file.</td>
</tr>
<tr>
<td>Source</td>
<td>Specifies the object from which the control flow originates. Use the tools to the right of the list to create, browse for, or view the properties of the currently selected object.</td>
</tr>
<tr>
<td>Destination</td>
<td>Specifies the object to which the control flow leads. Use the tools to the right of the list to create, browse for, or view the properties of the currently selected object.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Provide a way of loosely grouping objects through tagging. To enter multiple keywords, separate them with commas.</td>
</tr>
</tbody>
</table>
CHAPTER 3: Data Transformation and Control Flow Diagrams
CHAPTER 4 Generating and Reverse Engineering Replication Objects

PowerDesigner can generate and reverse engineer replication objects.

Generating Replication Objects

You can generate replication scripts for one or more replication engines.

1. Select Tools > Target > Generate Scripts to open the Generation dialog.
2. Enter the directory to which you want to generate the scripts, and select if you want to perform a check model before generating.
3. On the Targets tab, select the replication engines that you want to generate scripts for.
4. [optional] Click the Selection tab and specify the objects that you want to generate from. By default, all objects are generated, and PowerDesigner remembers for any subsequent generation the changes you make.
5. [optional] Click the Options tab and set any necessary generation options.
6. [optional] Click the Generated Files tab and specify which files will be generated. By default, all files are generated, and PowerDesigner remembers for any subsequent generation the changes you make.
7. [optional] Click the Tasks tab and specify any additional generation tasks to perform.
8. Click OK to begin generation.

Reverse Engineering Replication Processes

You can reverse engineer Replication Server objects from the embedded Replication Server database (RDSS) via a database connection to create or update them in your DMM.

1. Choose whether to reverse engineer to a single or multiple replication processes:
 - For a single replication process, right-click its symbol and select Reverse Engineering.
 - For multiple replication processes, select Tools > Reverse Engineering Replication Server, select the replication processes to reverse engineer in the selection dialog, and then click OK.
2. If one or more of your replication processes does not have a data source defined, you will be prompted to specify it.
For detailed information about creating, configuring, and using connection profiles, see *Core Features Guide > The PowerDesigner Interface > Getting Started > Connecting to a Database.*

3. If you have not yet created the consolidated or remote databases in your model, PowerDesigner will prompt you to specify the appropriate data sources, and create them for you.

4. Once the reverse engineering is complete, the Merge Models window opens to allow you to select the changes that you want to apply to your model. Select the changes that you want to apply and then click **OK** to apply the merge.

 For detailed information about merging models, see *Core Features Guide > The PowerDesigner Interface > Comparing and Merging Models.*

Generating Other Models from a DMM

You can generate another DMM from your DMM. When changes are made to the source model, they can then be easily propagated to the generated models using the Update Existing Model generation mode.

1. Select **Tools > Generate Data Movement Model** to open the Data Movement Model Generation Options Window.

2. On the **General** tab, select a radio button to generate a new or update an existing model, and complete the appropriate options.

3. [optional] Click the **Detail** tab and set any appropriate options. We recommend that you select the **Check model** option to check the model for errors and warnings before generation.

4. [optional] Click the **Target Models** tab and specify the target models for any generated shortcuts.

5. [optional] Click the **Selection** tab and select or deselect objects to generate.

6. Click **OK** to begin generation.

Note: For detailed information about the options available on the various tabs of the Generation window, see *Core Features Guide > Linking and Synchronizing Models > Generating Models and Model Objects.*
CHAPTER 5

Checking a DMM

The data movement model is a very flexible tool, which allows you quickly to develop your model without constraints. You can check the validity of your DMM at any time.

A valid DMM conforms to the following kinds of rules:

- Each object name in a DMM must be unique within its namespace
- Each replication process must be linked to at least one process using a process connection or to at least one database or XML document using a data connection

Note: We recommend that you check your data movement model before generating scripts or another model from it. If the check encounters errors, generation will be stopped. The **Check model** option is enabled by default in the Generation dialog box.

You can check your model in any of the following ways:

- Press F4, or
- Select **Tools > Check Model**, or
- Right-click the diagram background and select Check Model from the contextual menu

The Check Model Parameters dialog opens, allowing you to specify the kinds of checks to perform, and the objects to apply them to. The following sections document the DMM-specific checks available by default. For information about checks made on generic objects available in all model types and for detailed information about using the Check Model Parameters dialog, see *Core Features Guide > The PowerDesigner Interface > Objects > Checking Models*.

Database Checks

PowerDesigner provides default model checks to verify the validity of databases.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>Automatic correction - None.</td>
</tr>
<tr>
<td>Check</td>
<td>Description and Correction</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Name/Code contains synonyms of glossary terms | [if glossary enabled] Names and codes must not contain synonyms of glossary terms.
 - Manual correction - Modify the name or code to contain only glossary terms.
 - Automatic correction - Replaces synonyms with their associated glossary terms. |
| Name/Code uniqueness | Object names must be unique in the namespace.
 - Manual correction - Modify the duplicate name or code.
 - Automatic correction - Appends a number to the duplicate name or code. |
| Existence of data connection or data access link | A database must either be linked to at least one replication process or transformation process using a data connection, or to at least one data store [database, data access application or XML document] using a data access link
 - Manual correction: Add any missing data connection links between the database and the replication process or the transformation process or add any missing data access links between the database and the data store
 - Automatic correction: None |
| Database code maximum length | The database code length is limited by the maximum length specified in the XEM definition [CodeMaxLen entry, in the Objects > Settings category] and in the naming conventions of the model options.
 - Manual correction: Modify the code length to meet this requirement
 - Automatic correction: Truncates the code length to the maximum length specified in the XEM definition |
| Existence of model | At least one model must be attached to the database.
 - Manual correction: Add any missing models in the Physical Data Models tab of the database property sheet
 - Automatic correction: None |

Replication Process Checks

PowerDesigner provides default model checks to verify the validity of replication processes.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Name/Code contains terms not in glossary | [if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.
 - Manual correction - Modify the name or code to contain only glossary terms.
 - Automatic correction - None. |
Check Description and Correction

| Name/Code contains synonyms of glossary terms | [if glossary enabled] Names and codes must not contain synonyms of glossary terms.
- Manual correction - Modify the name or code to contain only glossary terms.
- Automatic correction - Replaces synonyms with their associated glossary terms. |
|-------------------------------|--|
| Name/Code uniqueness | Object names must be unique in the namespace.
- Manual correction - Modify the duplicate name or code.
- Automatic correction - Appends a number to the duplicate name or code. |
| Existence of data or process connection | A replication process must be linked to at least one process using a process connection or to at least one database or XML document using a data connection.
- Manual correction: Add any missing connections to the replication process
- Automatic correction: None |

Publication Checks

PowerDesigner provides default model checks to verify the validity of publications.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Name/Code contains terms not in glossary | [if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.
- Manual correction - Modify the name or code to contain only glossary terms.
- Automatic correction - None. |
| Name/Code contains synonyms of glossary terms | [if glossary enabled] Names and codes must not contain synonyms of glossary terms.
- Manual correction - Modify the name or code to contain only glossary terms.
- Automatic correction - Replaces synonyms with their associated glossary terms. |
| Name/Code uniqueness | Object names must be unique in the namespace.
- Manual correction - Modify the duplicate name or code.
- Automatic correction - Appends a number to the duplicate name or code. |
<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Publication code maximum length | The publication code length is limited by the maximum length specified in the XEM definition [CodeMaxLen entry, in the Objects > Settings category] and in the naming conventions of the model options.
 • Manual correction: Modify the code length to meet this requirement
 • Automatic correction: Truncates the code length to the maximum length specified in the XEM definition |
| Existence of data connection | A publication must be linked to a data connection.
 • Manual correction: Add any missing data connection links to publication from the replication property sheet
 • Automatic correction: None |
| Existence of subscription | A subscription establishes a link between a publication and a database connection to define where data published via the publication must be replicated.
 A publication should be linked to at least one subscription.
 • Manual correction: Add any missing subscription links to publication from the replication property sheet
 • Automatic correction: None |

Subscription Checks

PowerDesigner provides default model checks to verify the validity of subscriptions.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Name/Code contains terms not in glossary | [if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.
 • Manual correction - Modify the name or code to contain only glossary terms.
 • Automatic correction - None. |
| Name/Code contains synonyms of glossary terms | [if glossary enabled] Names and codes must not contain synonyms of glossary terms.
 • Manual correction - Modify the name or code to contain only glossary terms.
 • Automatic correction - Replaces synonyms with their associated glossary terms. |
Check Description and Correction

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
<tr>
<td>Existence of data connection</td>
<td>A subscription must be linked to a data connection.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Add any missing data connection links to subscription from the replication property sheet</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
<tr>
<td>Existence of publication</td>
<td>A subscription establishes a link between a publication and a database connection to define where data published via the publication must be replicated.</td>
</tr>
<tr>
<td></td>
<td>A subscription must be linked to at least one publication.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Add any missing publications to subscription from the replication property sheet</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
</tbody>
</table>

Article, Article Column, and Procedure Checks

PowerDesigner provides default model checks to verify the validity of articles, article columns, and procedures.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - None.</td>
</tr>
<tr>
<td>Name/Code contains synonyms of glossary terms</td>
<td>[if glossary enabled] Names and codes must not contain synonyms of glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Replaces synonyms with their associated glossary terms.</td>
</tr>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
</tbody>
</table>
Check | Description and Correction
--- | ---
Code maximum length / Article source table maximum length / Article remote table maximum length | The code length is limited by the maximum length specified in the XEM definition ([Settings > object > CodeMaxLen](#)) and in the naming conventions of the model options.
 - Manual correction: Modify the code length to meet this requirement
 - Automatic correction: Truncates the code length to the maximum length specified in the XEM definition

Undefined source | An article must be linked to a table or a view, an article column to a table or view column, and a procedure to a stored procedure.
 - Manual correction: Specify the appropriate source table, column, or procedure on the General tab of the property sheet.
 - Automatic correction: None

Article and Replication Process Event Script Checks

PowerDesigner provides default model checks to verify the validity of article and replication process event scripts.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Event script code maximum length | The event script code length is limited by the maximum length specified in the XEM definition ([CodeMaxLen entry, in the Objects > Settings category](#)) and in the naming conventions of the model options.
 - Manual correction: Modify the code length to meet this requirement
 - Automatic correction: Truncates the code length to the maximum length specified in the XEM definition

| Event script event uniqueness | Event script events must be unique in the namespace.
 - Manual correction: Modify the duplicate event script event
 - Automatic correction: Deletes the duplicate event script event

| Undefined event | An event script allows you to define how events on an article are implemented. An event script must have its event defined.
 - Manual correction: Select an event from the Event Selection dialog box accessible from the Event Scripts tab of an article property sheet
 - Automatic correction: None |
Check

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined script</td>
<td>An event script allows you to define how events on the article are implemented. An event script must have its implementation script defined.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Type a script for the event in the Script column accessible from the Event Scripts tab of an article property sheet</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
</tbody>
</table>

XML Document Checks

PowerDesigner provides default model checks to verify the validity of XML documents.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - None.</td>
</tr>
<tr>
<td>Name/Code contains synonyms of glossary</td>
<td>[if glossary enabled] Names and codes must not contain synonyms of glossary terms.</td>
</tr>
<tr>
<td>terms</td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Replaces synonyms with their associated glossary terms.</td>
</tr>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
<tr>
<td>Existence of data connection or data</td>
<td>An XML document must be either linked to at least one transformation process using a data connection, or to at least one data store [database, data access application or XML document], using a data access link</td>
</tr>
<tr>
<td>access link</td>
<td>• Manual correction: Add any missing data connection links between the XML document and the transformation process, or add any missing data access links between the XML document and the data store</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
<tr>
<td>Existence of model</td>
<td>At least one model must be attached to the XML document.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Add any missing models in the XSM Models tab of the XML document property sheet</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
</tbody>
</table>
Business Process Checks

PowerDesigner provides default model checks to verify the validity of business processes.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - None.</td>
</tr>
<tr>
<td>Name/Code contains synonyms of glossary</td>
<td>[if glossary enabled] Names and codes must not contain synonyms of glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Replaces synonyms with their associated glossary terms.</td>
</tr>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
<tr>
<td>Existence of model</td>
<td>At least one model must be attached to the business process</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Add any missing models in the BPM Models tab of the business process property sheet</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None.</td>
</tr>
</tbody>
</table>

Flat File Checks

PowerDesigner provides default model checks to verify the validity of flat files.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - None.</td>
</tr>
</tbody>
</table>
Check

Description and Correction

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains synonyms of glossary terms</td>
<td>[if glossary enabled] Names and codes must not contain synonyms of glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Replaces synonyms with their associated glossary terms.</td>
</tr>
<tr>
<td>Name uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
<tr>
<td>Existence of data structure column</td>
<td>At least one data structure column must be defined in the flat file.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Add any missing data structure columns in the Data Structure Columns tab of the flat file.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
</tbody>
</table>

Transformation Process Checks

PowerDesigner provides default model checks to verify the validity of transformation processes.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - None.</td>
</tr>
<tr>
<td>Name/Code contains synonyms of glossary terms</td>
<td>[if glossary enabled] Names and codes must not contain synonyms of glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Replaces synonyms with their associated glossary terms.</td>
</tr>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
</tbody>
</table>
Data Transformation Task Checks

PowerDesigner provides default model checks to verify the validity of data transformation tasks.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Name/Code contains terms not in glossary | [if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.
 - Manual correction - Modify the name or code to contain only glossary terms.
 - Automatic correction - None. |
| Name/Code contains synonyms of glossary terms | [if glossary enabled] Names and codes must not contain synonyms of glossary terms.
 - Manual correction - Modify the name or code to contain only glossary terms.
 - Automatic correction - Replaces synonyms with their associated glossary terms. |
| Name/Code uniqueness | Object names must be unique in the namespace.
 - Manual correction - Modify the duplicate name or code.
 - Automatic correction - Appends a number to the duplicate name or code. |
| Existence of data transformation action | At least one data transformation action should be associated with the data transformation task.
 - Manual correction: Add any missing data transformation actions in the Actions tab of the data transformation action property sheet
 - Automatic correction: None |
| Existence of data input | At least one data input should be associated with the data transformation task.
 - Manual correction: Add any missing data inputs in the Inputs tab of the data transformation action property sheet
 - Automatic correction: None |
Data Input and Output Checks

PowerDesigner provides default model checks to verify the validity of data inputs and outputs.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - None.</td>
</tr>
<tr>
<td>Name/Code contains synonyms of glossary terms</td>
<td>[if glossary enabled] Names and codes must not contain synonyms of glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Replaces synonyms with their associated glossary terms.</td>
</tr>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
<tr>
<td>Existence of data connection</td>
<td>Data inputs and outputs must be linked to a data connection.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Select a data connection in the Data Connection list of the property sheet</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None.</td>
</tr>
<tr>
<td>Check</td>
<td>Description and Correction</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Existence of source object | Data inputs and outputs must have at least one data structure source object.
 - Manual correction: Add any missing source objects in the Data Structure Source Objects tab.
 - Automatic correction: None |
| Existence of data structure column | Data inputs and outputs must have at least one data structure column.
 - Manual correction: Add any missing data structure columns in the Data Structure Columns tab.
 - Automatic correction: None |
| Existence of target object | [data outputs only] A data output must have at least one data structure target object.
 - Manual correction: Add any missing target objects in the Data Structure Target Objects tab.
 - Automatic correction: None |
| Data structure mismatch | The data type between the data structure column and its source objects must match
 - Manual correction: Set the same data type for the data structure column and its source objects.
 - Automatic correction: None |

Data Transformation Action Checks

PowerDesigner provides default model checks to verify the validity of data transformation actions.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Name/Code contains terms not in glossary | [if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.
 - Manual correction - Modify the name or code to contain only glossary terms.
 - Automatic correction - None. |
| Name/Code contains synonyms of glossary terms | [if glossary enabled] Names and codes must not contain synonyms of glossary terms.
 - Manual correction - Modify the name or code to contain only glossary terms.
 - Automatic correction - Replaces synonyms with their associated glossary terms. |
<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
<tr>
<td>Existence of source object</td>
<td>A data transformation action must have at least one data structure source object.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Add any missing source objects in the Data Structure Source Objects tab of the data transformation action.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
<tr>
<td>Existence of data structure column</td>
<td>At least one data structure column must be defined in the data transformation action.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Add any missing data structure columns in the Data Structure Columns tab of the data transformation action.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
<tr>
<td>Existence of data structure sorted column</td>
<td>A data sort must have at least one sort column defined to sort data.</td>
</tr>
<tr>
<td>[data sort only]</td>
<td>• Manual correction: Add any missing sort columns in the Sort Columns tab of the data sort</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
<tr>
<td>Undefined script [script execution and data lookup only]</td>
<td>A script execution/data lookup must have a script defined.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Define any missing script in the Script tab of the script execution/data lookup</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
<tr>
<td>Existence of data connection [data query execution only]</td>
<td>A data query execution must be linked to a data connection to insert or update data in the database.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Select a data connection in the Data Connection list in the Script tab of the property sheet</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
<tr>
<td>Undefined source expression for data structure columns [data aggregation only]</td>
<td>A data aggregation must have at least one source expression defined to aggregate data.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Add any missing source expressions in the Source expression box in the Data Structure Source Object tab of the data aggregation</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
<tr>
<td>Check</td>
<td>Description and Correction</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| Existence of aggregated column [data aggregation only] | A data aggregation must have at least one aggregation column defined to aggregate data.
 - Manual correction: Add any missing aggregation columns in the Aggregation Columns tab of the data aggregation
 - Automatic correction: None |
| Undefined criterion [data filter only] | A data filter must have a criterion defined to filter data
 - Manual correction: Add any missing criteria in the Criteria tab of the data filter
 - Automatic correction: None |
| Existence of data structure join [data join only] | A data join must have a data structure defined
 - Manual correction: Add any missing data structure joins in the Join Columns tab of the data join
 - Automatic correction: None |
| Missing occurrences in join sources [data join only] | A data structure join must have two sources defined.
 - Manual correction: Add any missing sources for a data structure join in the Join Columns tab of the data join
 - Automatic correction: None |
| Match data structure column sources [data merge only] | The two data structure column sources of a data merge must be equivalent [same number of data structure columns and same data type]
 - Manual correction: Add any missing data structure column in the data merge sources and/or modify the source data type in the data structure column property sheet
 - Automatic correction: None |

Transformation Control Flow Checks

PowerDesigner provides default model checks to verify the validity of transformation control flows.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Name/Code contains terms not in glossary | [if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.
 - Manual correction - Modify the name or code to contain only glossary terms.
 - Automatic correction - None. |
<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
</table>
| Name/Code contains synonyms of glossary terms | [if glossary enabled] Names and codes must not contain synonyms of glossary terms.
 - Manual correction - Modify the name or code to contain only glossary terms.
 - Automatic correction - Replaces synonyms with their associated glossary terms. |
| Name/Code uniqueness | Object names must be unique in the namespace.
 - Manual correction - Modify the duplicate name or code.
 - Automatic correction - Appends a number to the duplicate name or code. |
| Existence of transformation start | At least one transformation start should be associated with the data transformation control flow.
 - Manual correction: Add any missing transformation starts in the Starts tab of the transformation control flow property sheet
 - Automatic correction: None |
| Existence of transformation end | At least one transformation end should be associated with the transformation control flow.
 - Manual correction: Add any missing transformation ends in the Ends tab of the transformation control flow property sheet
 - Automatic correction: None |
| Existence of control flow | At transformation control flow should contain at least one control flow between each start, end, transformation task execution and synchronization in the transformation control flow diagram.
 - Manual correction: Add any missing data flows in the transformation control flow diagram
 - Automatic correction: None |
Transformation Task Execution Checks

PowerDesigner provides default model checks to verify the validity of transformation task executions.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - None.</td>
</tr>
<tr>
<td>Name/Code contains synonyms of glossary terms</td>
<td>[if glossary enabled] Names and codes must not contain synonyms of glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Replaces synonyms with their associated glossary terms.</td>
</tr>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
<tr>
<td>Existence of data transformation task</td>
<td>A transformation task execution must be linked to a transformation task.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction: Select a transformation task in the Task list of the property sheet</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction: None</td>
</tr>
</tbody>
</table>

Other Object Checks

PowerDesigner provides default model checks to verify the validity of packages, users, data and process connections, connection groups, servers, data transformation and transformation
control flow diagrams, data and control flows, and transformation starts, ends, synchronizations, and decisions.

<table>
<thead>
<tr>
<th>Check</th>
<th>Description and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Code contains terms not in glossary</td>
<td>[if glossary enabled] Names and codes must contain only approved terms drawn from the glossary.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - None.</td>
</tr>
<tr>
<td>Name/Code contains synonyms of glossary terms</td>
<td>[if glossary enabled] Names and codes must not contain synonyms of glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the name or code to contain only glossary terms.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Replaces synonyms with their associated glossary terms.</td>
</tr>
<tr>
<td>Name/Code uniqueness</td>
<td>Object names must be unique in the namespace.</td>
</tr>
<tr>
<td></td>
<td>• Manual correction - Modify the duplicate name or code.</td>
</tr>
<tr>
<td></td>
<td>• Automatic correction - Appends a number to the duplicate name or code.</td>
</tr>
</tbody>
</table>
CHAPTER 5: Checking a DMM
Replication Server is a relational database replication engine which helps you to replicate data from a primary database to one or more replicate databases. PowerDesigner supports modeling for Replication Server version 12.5 and higher, including round-trip engineering.

The following example shows a data movement diagram representing a replication of data from a source database to two remote databases, each of which are modeled in Physical Data Models (PDMs):

Modeling for Replication Server

PowerDesigner supports the modeling of all the components required to deploy a Replication Server solution in your environment.

Network Components

The PowerDesigner DMM provides support for the following network components when modeling a Replication Server environment:

- **Replication Servers** – coordinate the data replication activities for the local data servers and exchange data with Replication servers at other sites. PowerDesigner models replication servers as replication processes (see Replication Processes (DMM) on page 10) with a Replication Server type and additional properties (see Replication Server Properties on page 13).

- **Primary and Replicate databases** – contain data that will be replicated and receive replicated data respectively. The structure of each database is modeled in an attached PDM. PowerDesigner models databases in a Replication Server environment as standard databases (see Databases (DMM) on page 33) with additional properties (see Replication Server Database Properties on page 36).
• **Servers** – provide a logical location for replication servers and databases. You should associate all of your network components to appropriate servers to ensure correct script generation and a model check is used to verify that each component is associated to a server (see **Servers (DMM)** on page 44).

Data Connections

Network components are connected via the following kinds of data connections:

- **Connections** – specify a message stream from a database to a Replication Server, or from a Replication Server to a database. PowerDesigner models connections as standard data connections (see **Data Connections (DMM)** on page 67) with additional properties (see **Replication Server Connection Properties** on page 70).
- **Routes** – specify one-way message streams that send requests from one Replication Server to another. PowerDesigner models routes as standard process connections (see **Process Connections (DMM)** on page 82) with additional properties (see **Replication Server Route Properties** on page 83).
- **Logical Connections** – consist of a pair of physical connections that are configured in a warm-standby environment (see **Creating a Warm Standby Database** on page 161) to link an active and a standby database. PowerDesigner models logical connections as data connection groups (see **Data Connection Groups (DMM)** on page 79) with additional properties (see **Replication Server Logical Connection Properties** on page 81).

Replication Definitions

Replication definitions describe the tables, views, databases, and stored procedures that you want to replicate:

- **Replication definitions** – describe a source table to be replicated, the columns you want to copy, and may also describe attributes of the destination table. Destination tables that match the specified characteristics can subscribe to the replication definition. PowerDesigner models Replication Server replication definitions as articles (see **Articles (DMM)** on page 51) with additional properties (see **Replication Server Replication Definition and Article Properties** on page 53).
- **Database replication definitions** – allow you to replicate an entire primary database to one or more replicate databases. PowerDesigner models database replication definitions as publications (see **Publications (DMM)** on page 46) with a Database type and additional properties (see **Replication Server Database Replication Definition Properties** on page 49).
- **Function replication definitions** – specify information about a stored procedure to replicate. PowerDesigner models function replication definitions as publication procedures (see **Procedures (DMM)** on page 58) with additional properties (see **Replication Server Function Replication Definition Properties** on page 60).
- **Articles** – specify a replication definition extension for tables or stored procedures that allow you to assign table or function replication definitions in a publication. PowerDesigner models Replication Server articles as standard articles (see **Articles**
Publications and Subscriptions
Replication definitions are grouped together into publications that replicate databases can subscribe to:

- **Publications** – collect replication definitions together, to simplify subscriptions. PowerDesigner models Replication Server publications as standard publications (see Publications (DMM) on page 46) with additional properties (see Replication Server Publication Properties on page 50).

- **Subscriptions** – instruct Replication Server to replicate the data specified in a replication definition or publication to a particular replicate database. PowerDesigner models Replication Server subscriptions as standard subscriptions (see Subscriptions (DMM) on page 61) with additional properties (see Replication Server Subscription Properties on page 63).

Other Objects
These sub-objects are created inside a Replication Server object:

- **Users** – specifies a user name and password to connect to a Replication Server. PowerDesigner models Replication Server users as standard users (see Users (DMM) on page 64) with additional properties (see Replication Server User Properties on page 65).

- **Function strings** – contain instructions for executing a function in a database. PowerDesigner models Replication Server function strings as event scripts (see Event Scripts (DMM) on page 66) with additional properties (see Replication Server Function String Properties on page 67).

Creating a Basic Replication Server Environment with the Replication Wizard
The replication wizard provides a quick way to configure a Replication Server process for replicating one database to another. You can replicate the entire database or choose specific tables to replicate. You can run the wizard as many times as necessary to create additional replications on a single or multiple Replication Servers.

Prerequisites
Although you can launch the Replication wizard without already having modeled your databases in PDMs, we recommend that you as a minimum create a PDM to represent the structure of your primary database. You can reverse-engineer an existing database by selecting File > Reverse Engineer > Database.
Task
1. Select File > New Model to open the New Model window and select Data Movement Model in the Model Type list and Data Movement Diagram in the Diagram pane.
2. Click the Select Extensions button to open the Select Extensions dialog, click the General Purpose sub-tab, select the appropriate version of Replication Server, and then click OK.
3. Click OK to create the DMM, which opens with an empty diagram.
4. Select Tools Replication Wizard to open a wizard that guides you through configuring Replication Server for replicating data between your source and remote databases (see Replicating Data with the Replication Wizard on page 13).

When you click OK to close the wizard, PowerDesigner will create source and remote database objects in your DMM, as well as all the necessary articles, publications, and subscriptions that Replication Server requires to manage the replication of data between them.

Completing your Replication Environment
Once you have created any appropriate replication processes, replication definitions, publications and subscriptions with the replication wizard, you should complete your environment with the following kinds of supporting objects.

Creating Servers
Though it is not compulsory to assign each of your databases and replication servers to a server, we strongly recommend that you do so, in order to enable the accurate generation of appropriate network addresses in your replication scripts and a model check is used to verify that each component is associated to a server.

For information about working with servers, see Servers (DMM) on page 44.

Creating Maintenance Users
In order to access all the databases in the environment, Replication Server needs you to allocate Maintenance Users in each primary and replicate database. The maintenance user needs to have permission rights to access the source tables in the primary database and the target tables in the remote database. These are specified on the Connection tab of the property sheet of the data connection that links the database to the replication server (see Replication Server Connection Properties on page 70).

A SQL script that contains the definition of permission rights for the maintenance user is generated for the primary database and the remote database on the tables referenced in the replication definition.

Creating Additional Replication Servers
In many replication environments, individual replication servers are located at each physical site, and connected by routes, oriented links that transfer requests from one Replication Server to another.
Use the connection tool to draw a route between replication processes.

The name of the administrator must be the same for both process servers. If the names differ, you must specify the user name and password for the target server in the Route Options tab of the route property sheet (see Replication Server Route Properties on page 83).

Controlling Subscription Materialization

Typically, creating a subscription causes Replication Server to immediately materialize the subscription by copying the initial requested data from the primary database to the replicate database. Once the subscription is created and materialized, Replication Server begins distributing primary data changes to the replicated data.

For large tables and non Sybase® Adaptive Server® Enterprise databases, it can be more efficient to delay materializing data until after the creation of a subscription, displacing it to a time when the network is less busy.

Use the Materialize Subscription generation option (see Generating for Replication Server on page 170) to control when materialization is performed.

Populating Database Objects

Database symbols provide various shortcuts to assist you in defining their structures. You can:

- Reverse-engineer an existing database – by right-clicking the database and selecting Reverse Engineer Database, to create a new PDM.
- Create a primary or replicate database structure from article or subscription information - by right-clicking the database and selecting Update Type Database to deduce the database structure from the definition of articles in the Replication server, in which a subscription must be specified.
- Associate the same PDM with the source database and the remote database - if the remote database has the same structure as the consolidated database.

Note: You can connect to the Replication Server System Database (RSSD) at any time by right-clicking the replication process, and selecting the Connect and the Execute SQL commands.
Previewing scripts
When modeling, you can preview the script that will be generated for any object by clicking the Preview tab in its property sheet. Objects that belong to a replication server (such as replication definitions, publications, and subscriptions) have their own Preview tabs, which show the part of the replication server script that is dedicated to them.

Modeling for Heterogeneous Replications with Replication Agents and ECDA
Heterogeneous databases are databases other than Sybase Adaptive Server Enterprise or Adaptive Server Anywhere/SQL Anywhere®. Replication agents allow Replication Server to communicate with heterogeneous primary databases.

Modeling a Heterogeneous Primary Database
The replication agent captures the changes made in the primary database and sends the transaction log to the primary Replication Server. To model for a heterogeneous primary database using a replication agent, you need to:

- Specify server objects to contain the primary database and replication process, each with the appropriate host machine name and port number (see Server Properties on page 45).
- Specify the appropriate properties for the Replication Server connection and RSSD database on the RepServer Connection tab of the replication process property sheet (see Replication Server Properties on page 13).
- Specify the RepAgent type, the RepAgent user (to access the replication server), the primary database user (to access the database), and the other properties on the RepAgent Options tab of the primary database property sheet (see Replication Server Database properties on page 36).

Note: In order to generate and execute the replication agent SQL file using isql, you must select the "Execute generated scripts in Replication Agent" on the Tasks tab of the Generation window (see Generating for Replication Server on page 170).

Modeling a Heterogeneous Replicate Database
The ECDA communicates replicated data from a replication server to a heterogeneous replicate database. To model for a heterogeneous replicate database, you need to:

- Specify server objects to contain the replicate database and replication process, each with the appropriate host machine name and port number (see Server Properties on page 45).
- Specify the DirectConnect instance name in the Code of the replicate database in its property sheet (see Replication Server Database properties on page 36).
Modeling a Warm Standby Application

A warm standby application is a pair of Adaptive Server or SQL Server databases, one of which is a backup of the other. Client applications update the active database, and Replication Server maintains the standby database as a copy of the active database.

1. Create a database in your DMM and link it to a PDM that contains the structure of the active database.
2. Create a Replication Server replication process, and link the database to it with a connection.
3. Right-click the database and select Create Standby Database.

PowerDesigner converts the standard connection into a logical connection (see Data Connection Groups (DMM) on page 79) between the active database, the replication process, and a standby database, that it creates and links to the PDM used to describe the active database.

Modeling for Mirror Activator

Mirror Activator™ is a combination of Mirror Replication Agent, Replication Server, and a third party disk replication system to add disk replication for transaction logs to the Replication Server transaction-based replication to provide an optimal disaster recovery solution.

The Mirror Replication replication agent reads the log file replicated by a disk replication system, and sends it to Replication Server. To model for a primary database to which the Mirror Replication replication agent is deployed, simply select Mirror Activator in the RepAgent type list on the RepAgent Options tab of its property sheet (see Replication Server Database properties on page 36).

Modeling for RepConnector

RepConnector™ allows you to use Sybase Real-Time Data Services to capture transactions in an ASE database and deliver them as events to external applications in real time.
PowerDesigner supports modeling for replication environments in which RepConnector is deployed, but does not generate specific orders for RepConnector itself.

To specify that an ASE database has RepConnector enabled, simply select RepConnector in the Type list on the General tab of the database property sheet. The database symbol changes to reflect the use of RepConnector:

Note: If you are working with PowerDesigner in the Eclipse environment, you can invoke the RepConnector Manager directly from the remote database object contextual menu.

Modeling for High Volume Adaptive Replication (HVAR)

For Replication Server v15.5 and higher, PowerDesigner supports modeling for HVAR, whereby log-ordered, row-by-row changes are compiled into net-row changes.

You can enable HVAR with the following properties:

- On the Transaction Options tab of a connection going from a replication server to a remote database (see Replication Server Connection Properties on page 70):
 - DSI compile enable
 - DSI compile max cmds
 - DSI bulk threshold
 - DSI dataserver make
- On the RepServer Options tab of a replicate table (see Replicate Tables on page 162):
 - DSI compile enable
 - DSI command convert
- On the RepServer Options tab of an article column (see Replication Server Article Column Properties on page 56):
 - References

Replicate Tables

For Replication Server v15.5 and higher, you can enable HVAR compilation of individual replicate tables.

Replicate tables are listed on the Replicate Tables tab of a connection going from a replication server to a remote database. The following properties are available on the RepServer Options tab of the replicate table property sheet:
Property

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSI compile enable</td>
<td>Enables HVAR compilation of a specified table. It takes effect only when HVAR replication is on. If replicating net-row changes cause unexpected consequences, users should turn off HVAR replication or dsi_compile_enable for the troublesome tables. By default, table level dsi_compile_enable is on.</td>
</tr>
<tr>
<td></td>
<td>Scripting name: TableParameter_dsi_compile_enable</td>
</tr>
<tr>
<td>DSI command convert</td>
<td>Specifies how a replicate command can be converted.Legal values are: "none", "i2u", "i2u2d", "u2d", "d2d", "i2i", "u2u", and "t2t", where "i" for insert, "u" for update, "d" for delete, "t" for truncate table, and "none" for no operation. Multiple values, separated by comma, are allowed, as long as there are no duplicated source operators. For example, "d2d" means do not replicate delete command. "i2i,u2u" means convert both insert and update to delete followed by insert (equivalent to auto-correction). To have "u2u" on, replication definition must specify "replicate all columns and always_replicate for text/image columns. This parameter can be configured at database level. The default value of this parameter is "none".</td>
</tr>
<tr>
<td></td>
<td>Scripting name: TableParameter_dsi_command_convert</td>
</tr>
</tbody>
</table>

Modeling for Multi-Path Replication

Replication Server v15.7 and higher supports multi-path replication™ of Adaptive Server Enterprise v15.7 and higher primary databases to increase replication throughput and performance, and reduce contention.

You can create multiple primary replication paths for multiple Replication Agent connections from a primary database to one or more Replication Servers, and multiple replicate paths from one or more Replication Servers to the replicate database. You can use multi-path replication in warm standby and multisite availability (MSA) environments. You can convey transactions over dedicated routes between Replication Servers to avoid congestion on shared routes, and you can dedicate an end-to-end replication path from the primary database through Replication Servers to the replicate database, to objects such as tables and stored procedures.

PowerDesigner provides support for multi-path replication by letting you:

- Draw multiple parallel connections between a database and replication server and between replication servers and specify which is the default path.
- Specify logical paths to which you bind tables and procedures to replicate, and to which you can associate a primary and multiple alternative physical paths.

In the following example dual paths are specified for replication to both the US and European nodes:
PowerDesigner's support for multi-path replication is available in the following objects:

- **Primary databases:**
 - The **Logical Paths** tab (see Replication Server Primary Database Properties on page 36) lists the logical paths (see Logical Paths on page 165) defined for the database.
 - Right-click the database symbol and select **Bind Tables** or **Bind Procedures** to bind database objects to one or more connections or logical paths (see Binding Database Objects to Connections or Logical Paths on page 165).

- **Connections:**
 - Selecting the **Default connection** checkbox on the Connections tab specifies that this is the default connection between the database and replication server (see Replication Server Connection Properties on page 70).
 - The **Bound Procedures** and **Bound Tables** tabs list the procedures and tables that are allocated to the connection.

- **Routes:**
 - In an environment with multiple parallel routes between replication servers, the **Primary connection** field on the Route Options tab specifies the data connection which carries the data that will transit on the route. If this property is set to None, then the route will accept data arriving from any data connection (see Replication Server Route Properties on page 83).

- **Logical Connections:**
 - In a warm standby environment with multiple parallel logical connections, select one as the primary connection and choose it in the **Primary logical connection** list on the Connection Options tab of the other logical connections (see Replication Server Logical Connection Properties on page 81).
Logical Paths
For Replication Server v15.7 and higher, you can specify logical paths to group database objects to reduce binding definitions to each physical paths.

Logical paths are listed on the Logical Paths tab of a primary database. The following tabs are available:

- **Bound Procedures** - lists the procedures (see Procedures (DMM) on page 58) associated with the logical path.
- **Bound Tables** - lists the tables (see Articles (DMM) on page 51) associated with the logical path.
- **Data Connections** - lists the connections (see Data Connections (DMM) on page 67) associated with the logical path. Select the Default connection property on a data connection property sheet to specify it as the default connection for the logical path.

Binding Database Objects to Connections or Logical Paths
PowerDesigner provides tools to help you bind tables and procedures to data connections and logical paths.

1. Right-click the primary database and select **Bind Tables** or **Bind Procedures**.
2. Select all the tables or procedures from the database that you want to bind to a data connection or logical path and click **OK**.
3. Select one or more data connections to bind the objects to. Select:
 - A single data connection - to bind the tables or procedures to that data connection.
 - Multiple data connections - to bind the tables or procedures to a logical path which is, in turn, associated with each of the selected data connections, with the first in the list selected as the default connection.
4. Click **OK** to confirm your choice and then click **OK** on the message displaying the results to complete the binding.
5. [optional] To review bindings between tables or procedures and data connections, right-click the primary database and select **Show Table Binding Matrix** or **Show Procedure Binding Matrix**. The matrices list the tables or procedures along the top and the available data connections down the side. Click in a cell and press the spacebar or V key to add or remove a binding.

For detailed information about working with dependency matrices, see *Core Features Guide > The PowerDesigner Interface > Diagrams, Matrices, and Symbols > Dependency Matrices*.

Modeling for SQL Statement Replication
For Replication Server v15.2 and higher, PowerDesigner supports modeling for SQL statement replication.

You can enable SQL statement replication with the following properties:
• On Article, Replication Definition, and Database Replication Definition property sheet RepServer Options tab (see Replication Server Replication Definition and Article Properties on page 53 and Replication Server Database Replication Definition Properties on page 49):
 • Threshold
 • Replicate SQDML

Modeling Replications to a Sybase IQ Data Warehouse

Sybase® IQ (IQ) is a high-performance decision support server designed specifically for data warehousing. Since IQ is not optimized for inserting, updating and deleting row by row, you should implement a staging database to replicate data from OLTP databases to an IQ data warehouse.

PowerDesigner can automate the creation of the staging database. You create a standard replication with Sybase IQ as the remote database, and then, a single command allows you to create all the artifacts required to implement the staging database.

1. Create a PDM to represent the structure of your primary database. You can reverse-engineer an existing database by selecting **File > Reverse Engineer > Database**.

2. Select **File > New Model** to open the New Model window and select **Data Movement Model** in the Model Type list and Data Movement Diagram in the Diagram pane.

3. Click the **Select Extensions** button to open the Select Extensions dialog, click the **General Purpose** sub-tab, select the appropriate version of Replication Server and the IQ Staging extension file, and then click **OK** to return to the New Model window.

4. Click **OK** to create the DMM, which opens with an empty diagram.

5. Click the **Replication Server** tool in the Toolbox, and then click in the center of the diagram to create a replication process. Right-click the Replication server symbol, and select **Replication Wizard** to open a wizard that guides you through configuring Replication Server for replicating data between your source and remote databases (see Replicating Data with the Replication Wizard on page 13).

The source database can be any supported database and the remote database must be Sybase IQ.

When you click OK to close the wizard, PowerDesigner will create source and remote database objects in your DMM, as well as all the necessary articles, publications, and subscriptions that Replication Server requires to manage the replication of data between them:

6. Open the property sheet of the IQ database, select the Staging Database tab, and enter the appropriate properties:
<table>
<thead>
<tr>
<th>Staging database options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sybase ASE version</td>
<td>Version of the Sybase ASE staging database automatically created.</td>
</tr>
<tr>
<td>Database name</td>
<td>PDM name of the staging database.</td>
</tr>
<tr>
<td>Database code</td>
<td>PDM code of the staging database.</td>
</tr>
<tr>
<td>Server name</td>
<td>Server name of the staging database.</td>
</tr>
<tr>
<td>Server code</td>
<td>Server code of the staging database.</td>
</tr>
<tr>
<td>Use insert table in Sybase IQ</td>
<td>Indicates that an insert staging table will be used in Sybase IQ to copy</td>
</tr>
<tr>
<td></td>
<td>inserted rows from staging database in order to support transformation inside</td>
</tr>
<tr>
<td></td>
<td>Sybase IQ.</td>
</tr>
<tr>
<td>Support update in Sybase IQ</td>
<td>Indicates that an update statement will cause an update in Sybase IQ.</td>
</tr>
<tr>
<td></td>
<td>If you do not select this option, update statements will be replaced by delete</td>
</tr>
<tr>
<td></td>
<td>and insert statements.</td>
</tr>
<tr>
<td>Insert table code</td>
<td>Template for defining the code of an insert table.</td>
</tr>
<tr>
<td>Update table code</td>
<td>Template for defining the code of an update table.</td>
</tr>
<tr>
<td>Delete table code</td>
<td>Template for defining the code of a delete table.</td>
</tr>
<tr>
<td>Use stored procedure for function</td>
<td>Creates stored procedures in the staging database and uses them in RepServer</td>
</tr>
<tr>
<td>strings</td>
<td>function strings.</td>
</tr>
<tr>
<td>Insert procedure code</td>
<td>Template for defining the code of insert stored procedures.</td>
</tr>
<tr>
<td>Update procedure code</td>
<td>Template for defining the code of update stored procedures.</td>
</tr>
<tr>
<td>Delete procedure code</td>
<td>Template for defining the code of delete stored procedures.</td>
</tr>
</tbody>
</table>

7. Click OK to return to the diagram and then select **Tools > Check Model** to verify that your model contains no errors and then save the model for reference.

8. Select **Tools > Generate Data Movement Model** to open the Generate dialog.

9. Click the **Enable transformations** button on the **Detail** tab, and then click the **Extensions** tab and select the **IQ Staging** xem.

10. Click **OK** to launch the generation of a new DMM that recreates the original transformation but with an ASE staging database and an IQ Staging transformation process inserted between the replication server and the IQ database to represent the data transfer between the staging database and IQ:
The RepServer definition is modified, it is no longer directly connected to Sybase IQ but to the Sybase ASE staging database, and function strings to replicate data into the Sybase ASE staging database have been added:

- Creating a Sybase ASE database with the same structure as Sybase IQ.
- Creating the stored procedures used by RepServer function strings in the staging database.
- Changing the RepServer connection to the staging database.
- Creating or modifying RepServer function strings to invoke the stored procedures.
- Creating staging tables in Sybase IQ to move data from the staging database into temporary tables in Sybase IQ before moving the data into Sybase IQ tables.
- Creating a stored procedure in Sybase IQ to load data from the staging database into Sybase IQ.
- Creating a stored procedure in the staging database to clean transferred data.

Note: If you need to change any aspect of your replication definitions, you must do so in the original DMM, and then regenerate to recreate the staging database. Any changes made to replication definitions in the generated DMM will not be accurately reflected in the staging database.

Generating Scripts for Replication to IQ

To generate the RepServer definition and Sybase ASE staging database, you need to generate the RepServer definition, the Sybase ASE staging database, and the Sybase IQ database.

1. Right click the Replication Server process symbol and select **Generate Scripts**. Click the **Tasks** tab and select the **Execute generated scripts in Replication Server** task.

 The Replication Server creation script is generated and executed using ISQL.

2. Click **OK** in the Generation dialog box.

3. Right-click the Sybase ASE staging database symbol and select **Generate Database**. Specify any appropriate database generation options and click **OK** to start generation.

4. Right-click the Sybase IQ database symbol and select **Generate Database** or **Modify Database**. Specify any appropriate database generation or modification options and click **OK** to start generation.

Transferring Staged Data to IQ

When the replication is set up, you can start RepServer to begin data replication. Data modifications made in the source database are replicated to the Sybase ASE staging database or the staging tables in Sybase IQ. At some point, you need to transfer the data from the staging database into Sybase IQ.

You automate this process using a script that performs the following tasks periodically.

1. Suspend replication to make sure data will not change during the transfer from staging database to Sybase IQ.
2. Run the IQ_LOAD_STAGING stored procedure in Sybase IQ to move data into Sybase IQ.
3. Run the IQ_CLEAN_STAGING stored procedure in Sybase ASE staging database to remove the already transferred data.
4. Resume replication.

Replication Server Object Properties

When modeling for a Replication Server environment, you use standard DMM objects with additional properties.

<table>
<thead>
<tr>
<th>Replication Server Object</th>
<th>PowerDesigner Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication servers (see Replication Server Properties on page 13)</td>
<td>Replication processes</td>
</tr>
<tr>
<td>Primary and replicate databases (see Replication Server Primary Database Properties on page 36)</td>
<td>Databases</td>
</tr>
<tr>
<td>Connections (see Replication Server Connection Properties on page 70)</td>
<td>Data connections</td>
</tr>
<tr>
<td>Routes (see Replication Server Route Properties on page 83)</td>
<td>Process connections</td>
</tr>
<tr>
<td>Logical connections (see Replication Server Logical Connection Properties on page 81)</td>
<td>Data connection groups</td>
</tr>
<tr>
<td>Replication definitions and articles (see Replication Server Replication Definition and Article Properties on page 53)</td>
<td>Articles</td>
</tr>
<tr>
<td>Database replication definitions (see Replication Server Database Replication Definition Properties on page 49)</td>
<td>Publications</td>
</tr>
<tr>
<td>Function replication definitions (see Replication Server Function Replication Definition Properties on page 60)</td>
<td>Procedures</td>
</tr>
<tr>
<td>Article columns (see Replication Server Article Column Properties on page 56)</td>
<td>Article columns</td>
</tr>
<tr>
<td>Publications (see Replication Server Publication Properties on page 50)</td>
<td>Publications</td>
</tr>
<tr>
<td>Subscriptions (see Replication Server Subscription Properties on page 63)</td>
<td>Subscriptions</td>
</tr>
<tr>
<td>Users (see Replication Server User Properties on page 65)</td>
<td>Users</td>
</tr>
</tbody>
</table>
Generating for Replication Server

You can generate Replication Server scripts (*.sql) for the replication process, and/or for the primary and remote databases.

One SQL file is generated per server and contains all the orders for the server. The SQL file cannot be executed using an live database connection. You need to use the isql command to execute this SQL file. You can preview the script that will be generated for each object on the Preview tab of its property sheet.

Note: In order for you to connect properly to the replication process you must verify that:

- The code of the replication process object corresponds to the instance name of the Replication Server
- The User name and Password extended attributes correspond to the Replication Server login user name and password
- Each database has been generated using one of the Generate commands from its contextual menu

```
isql.exe -e -U USRNAME -P PWD -S SVR_TEST -i SVR_TEST.sql
```

1. Select **Tools > Replication Server version** > **Generate Scripts** to open the Generate dialog.

 You can, alternately, right-click any database or replication process in the replication environment and select **Generate Scripts** to open the Generate dialog and generate a script for that element only.

2. Specify a directory in which to generate the scripts.

3. [optional] Select the **Check Model** option to verify the validity of your model before generation.

4. On the **Targets** tab, select the replication engine(s) that you want to generate for. This tab may not appear if you are generating for only a single replication process.

5. On the **Selection** tab, select the objects that you want to include in the generation. Use the sub-tabs to navigate between separate lists of object types. The selections you make here will affect the files that are available to select on the Generated Files tab.

6. On the **Options** tab, set generation options as appropriate. The following options are available:
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create replication object</td>
<td>Specifies to include create statements for this type of replication object in the generated script.</td>
</tr>
<tr>
<td>Drop replication object before creation if it already exists</td>
<td>Specifies to include drop statements for this type of replication object in the generated script before inserting the appropriate create statement.</td>
</tr>
<tr>
<td>Materialize subscriptions</td>
<td>Specifies how the data associated with subscriptions is to be materialized.</td>
</tr>
</tbody>
</table>

7. On the **Tasks** tab, select generation tasks as appropriate. The following tasks are available:

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute generated scripts in Replication Server</td>
<td>Allows you to directly execute the generated scripts in Replication Server.</td>
</tr>
<tr>
<td>Execute generated scripts in RepAgent</td>
<td>Allows you to directly execute the generated scripts in RepAgent.</td>
</tr>
</tbody>
</table>

Note: To execute these tasks, you must have OpenClient isql installed on your machine. For information on how to install OpenClient isql for Replication Server, see the Replication Server documentation.

8. Click OK to generate the scripts in the specified directory.

When the generation is complete, the Generated Files dialog opens listing the scripts, each of which you can open and review by selecting it and clicking Edit.

The Replication Server file is generated in the destination directory.

Generating an alter replication definition Statement

For Replication Server v15.5 and higher, PowerDesigner supports the generation of alter replication definition statements to update your replication environment.

To generate an alter replication definition statement you must have an archived DMM and associated PDMs to represent the current replication environment. Any changes between the archived DMM and your current model will be generated in the statement.

1. Right-click the replication server for which you want to generate the alter replication definition statement and select **Update Replication Definition**.
2. In the Update Replication Definition dialog, select the archived DMM that you want to use as a baseline, and specify a file to which you want to generate the script.
3. Click **OK** to begin generation of the script. If you are prompted to open any of the associated PDMs, then click **Yes**.

 The script is generated to the specified file.
Archiving a Replication Environment

You can archive a DMM and its associated PDMs at any time. For Replication Server v15.5 and higher, the archived replication environment can be used as a baseline for use when generating an alter replication definition statement.

1. Open the DMM representing the state of your replication environment that you want to use as a baseline.
2. Select File > Save as and select Archived DMM in the Save as type list.
3. Specify a name for your archived DMM and click Save.
 You will be prompted to save the associated PDMs as archives.
4. Click Yes to archive the PDMs referenced in the DMM.
 If any of the PDMs has not previously been saved, you will be prompted to specify a name for its archive.

Your replication environment is saved as an archive, which can be used as a baseline against which to generate an alter replication definition statement.

Reverse Engineering for Replication Server

You can reverse engineer an existing Replication Server definition into a DMM using one live connection for the consolidated database and one for the remote database.

There are two ways for reverse engineering Replication Server objects:

• Reverse engineer a single replication process using the Reverse Engineering command from its contextual menu
• Reverse engineer several replication processes using the Tools > Reverse Engineering Replication Server command that allows you to select the replication processes to reverse engineer

The process of reverse engineering replication processes equals to retrieve Replication Server objects from the embedded Replication Server database (RDSS) via a live connection to create the corresponding DMM objects.

Reverse Engineering a Single Replication Process Object

You reverse engineer a single replication process object using the Reverse Engineering command from its contextual menu. It allows you to also reverse engineer all its related objects.

1. Open a replication process property sheet to define the data source, user name and password of the consolidated database in the Database Connection tab.
(If you do not define the data source, the Select a Data Source dialog box opens during the reverse engineering process).

2. If you have already defined the consolidated database and remote database, you can create a data connection from the consolidated database to the replication process and another data connection from the replication process to the remote database.

If you have not defined the consolidated database or remote database, PowerDesigner creates a default one for you during the reverse engineering process.

3. Right-click the replication process symbol and select Reverse Engineering from the contextual menu that is displayed.

If you have not defined the data source for the remote database in the Database Connection tab of the remote database property sheet, PowerDesigner asks you to select the data source of the remote database.

Once the reverse engineering is performed, PowerDesigner displays the Merge Models window to show you the differences between the reverse engineered model and the current model. You can decide whether you want to accept or not the created or modified objects.

For more information about comparing and merging models, see Core Features Guide > The PowerDesigner Interface > Comparing and Merging Models.

The objects are added to your model. They are visible in the diagram and in the Browser. They are also listed in the Reverse tab of the Output window, located in the lower part of the main window.

Reverse Engineering Several Replication Processes

You reverse engineer several replication processes using the Tools > Reverse Engineering Replication Server command from the Menu bar.

You can customize your objects selection for reverse engineering.

1. For each replication process, define the data source, user name and password of the consolidated database in the Database Connection tab of the replication process property sheet.

(If you do not define the data source, the Select a Data Source dialog box opens during the reverse engineering process)

3. Select the replication processes you want to reverse engineer.

For each remote database, PowerDesigner asks you to select the data source of the remote database.

Once the reverse engineering is performed, PowerDesigner displays the Merge Models window to show you the differences between the reverse engineered model and the current model. You can decide whether you want to accept or not the created or modified objects.
Index

A

alter replication definition statement 172
archive DMM 172
article
 check model 141
 create 51
 define 51
 object 8
 properties 52
 Where clause 52
article column 56
 check model 141
ASE staging database generation 168

B

business process
 check model 144
 create 41
 define 41
 object 8
 properties 42

C

check model 137
 article 141
 article column 141
 business process 144
 control flow 152
 data input 147
 data output 147
 data transformation action 148
 data transformation task 146
 database 137
 event script (article) 142
 event script (replication process) 142
 flat file 144
 procedure 141
 publication 139
 replication process 138
 subscription 140
 transformation control flow 150
 transformation process 145
 transformation task execution 152
 XML document 143
 column
 create 55
 define 54
 object 8
 properties 56
 conceptual data
 deprecated model container 86
 migrated into project 86
 connection
 Connection tab in data connection 70
 Database Options tab in data connection 70
 Security tab in data connection 70
 Transaction Options tab in data connection 70
 connection group
 object 8
 control flow
 check model 152
 create 133
 define 132
 properties 133
 Convert Mappings to ETL Wizard 29
 ctrl+Q shortcut for detailed view 94

D

data
 replicate with Replication Server 157
 replicate with Replication Wizard 13
 data access application
 deprecated model container 86
 migrated into project 86
 data access link
 deprecated model container 86
 migrated into project 86
 data aggregation
 aggregation column 106
 create 103
 define 102, 106
 properties 103
 data calculator
 create 103
 define 102, 113
 properties 103
Index

data connection
create 68
define 67
object 8
properties 69
read-only 69
read/write 69
write-only 69
data connection group
backup database 79
create 80
define 79
properties 80
data filter
create 103
define 102, 108
properties 103
data flow
create 118
define 117
delete 119
properties 118
data input
check model 147
data join
create 103
define 102, 110
join column 110
properties 103
data lookup
create 103
database 111
define 102, 111
Lookup Keys 111
predefined 111
properties 103
script 111
data merge
create 103
define 102, 109
properties 103
data movement diagram 1, 7
Data Movement Model 1
data output
check model 147
data projection
create 103
criteria 113
define 102, 113
properties 103
data query execution
create 103
define 102, 105
properties 103
script 105
data sort
create 103
criteria 108
define 102, 107
properties 103
sort column 107
data source 34
data split
create 103
define 102, 109
properties 103
data structure column
create 119
define 119
properties 119
Data Structure Mapping Editor 95, 119
data transformation action (check model) 148
data transformation diagram 1
basics 92
create 92
objects 94
data transformation task
check model 146
define 92
properties 94
database
associate a PDM 34
check model 137
create 34
define 33
object 8
properties 34
Replication Wizard from contextual menu 13
type 34
database connection
creation wizard 18
database input
create 100
define 99
properties 100
database output
create 116
define 114
properties 116
 database replication definition
 properties in Replication Server 49
Direct Connect 160
display preferences 5
DMM
 check model 137
 control flow 132
 data flow 117
 Data Structure Mapping Editor 95
 data transformation task 92
 objects 94, 98
 overview 1
 transformation decision 129
 transformation end 131
 transformation parameter 121
 transformation start 124
 transformation task execution 126

E
 event script
 create 66
 define 66
 object 8
 properties 66
 event script (article)
 check model 142
 event script (replication process)
 check model 142
 execute query 38
 extended generation
 MobiLink 135
 Replication Server 135
 extended model definition 135
 extension 6
 extension file 6

F
 flat file
 check model 144
 create 43
 define 42
 object 8
 properties 43
 flat file input
 create 100
 define 99
 flat file output
 create 116
 define 114
 properties 116
 fork 128
 function replication definition
 properties in Replication Server 60
 function string
 properties in Replication Server 67

G
generate
 alter repdef statement 171
 ASE staging database 168
 DMM to DMM 136
 RepServer definition 168
 target 135
generation link
 deprecated model container 86
 migrated into project 86

H
 HVAR 162

I
 ilm files 4
 input flow
 fork 128
 join 128
 IQ_CLEAN_STAGING 168
 IQ_LOAD_STAGING 168

J
 join 128

L
 legacy ilm files 4
 logical connection
 Connection Options tab in Replication Server 81
 logical paths 165
Index

M
mapping
create with the Data Structure Mapping Editor 97

Mapping Editor
create database connection 18
create replications 16
visualize replications 16

Mapping Editor for replication
Source pane 20
Target pane 20

Mirror Activator 161

MobiLink
object 8
model
create 2
DMM 1
model options 5
properties 4
model options 5
modeling environment
customize 4
models
adding to project diagram 87
multi-path replication 163

O
object
DMM 8, 94, 98
open auto completion list 52
output flow
fork 128
join 128

P
parameter for procedure 58
PDM
associate with database 34
procedure
check model 141
create 58
define 58
object 8
parameters 58
properties 58
process connection
create 82
define 82
object 8
properties 83
replication process 82
transformation process 82

project
creating 87

project diagrams
adding models 87
rebuilding inter-model links 88

publication
check model 139
create 47
define 46
object 8
properties 48
properties in Replication Server 50

Q
query
SQL 38

R
rebuilding
inter-model links 88
RepAgent 160
collection 160
generation 160
RepConnector 161
replicate data with Replication Server 157
replicate data with Replication Wizard 13
replicate tables 162
replication
Mapping Editor 16
replication definition
properties in Replication Server 53
replication process
check model 138
create 11
define 10
object 8
properties 11
Replication Wizard from contextual menu 13
type 11
Replication Server
alter replication definition 172
article 155
article column 56
components 155
connection 70, 155
consolidated database 155
consolidated database server 155
create the consolidated database 158
create warm standby database 161
data replication 157
database 36
database replication definition 49, 155
Direct Connect 160
function replication definition 60, 155
function string 67, 155
generate alter repdef statement 171
generate script file 170
global process 155
HVAR 162
introduction 155
logical connection 81, 155
logical paths 165
multi-path replication 163
object 8
publication 50, 155
publication type 50, 53
remote database 155
RepAgent 160
replicate tables 162
replication definition 53, 155
reverse engineer 172, 173
reverse engineering 172
route 83, 155
server 13
SQL statement replication 165
subscription
check model 140
create 62
define 61
object 8
properties 62
properties in Replication Server 63
Sybase ASE staging database 166
Sybase IQ 166
transfer data from the staging database 168
S
script execution
create 103
define 102, 105
insert script 105
properties 103
server
create 45
define 44
object 8
properties 45
Server
RepServer Connection tab 13
Show Detail 94
SQL
query 38
SQL statement replication 165
staging database 166
transfer data to Sybase IQ 168
standby database 161
subscription
check model 140
create 62
define 61
object 8
properties 62
properties in Replication Server 63
Sybase ASE staging database 166
Sybase IQ 166
transfer data from the staging database 168
T
task execution
create 127
traceability link 6
transformation
create with the Convert Mappings to ETL Wizard 29
create with the Transformation Wizard 25
data format 119
Data Structure Mapping Editor 95
transformation action
properties 103
transformation control flow
check model 150
define 97
properties 98
Index

transformation control flow diagram
create 97
transformation control flow diagram 1
objects 98
transformation decision
create 130
define 129
properties 130
transformation end
create 132
define 131
properties 132
transformation parameter
create 121
define 121
properties 121
transformation process
check model 145
create 23, 24
object 8
properties 24
transformation start
create 125
define 124
properties 125
transformation synchronization
create 128
define 128
properties 129
transformation task execution
check model 152
create 126
define 126
properties 127
Transformation Wizard 23, 25

type
database 34
replication process 11

U

user
create 65
define 64
object 8
properties 65
properties in Replication Server 65

W

Web service input
create 100
define 99
properties 100
Where Clause tab
article 52

X

xem 6
XEM
Replication Server 170
XML document
check model 143
create 40
define 39
object 8
properties 40
XML input
create 100
define 99
properties 100
XML output
create 116
define 114
properties 116