
Users Guide

Adaptive Server® Enterprise
OLE DB Provider by Sybase
15.7

[Microsoft Windows]

DOCUMENT ID: DC00075-01-1570-01

LAST REVISED: June 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Users Guide iii

About This Book .. v

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider 1
Introduction to OLE DB .. 1

Supported platforms .. 2
ADO programming with Adaptive Server OLE DB Provider............. 2

Connecting to a database using the Connection object 3
Executing statements using the Command object 4
Querying the database with the Recordset object..................... 5
Working with the Rowset object .. 6
Updating data through a cursor... 6
Using transactions... 7

Supported OLE DB interfaces .. 8
OLE DB programming with Adaptive Server OLE DB Provider 10

Connecting to a data source using OLE DB............................ 10
Using threads and connections in OLE DB applications 11
Executing SQL statements.. 12
Working with result sets .. 18
Calling stored procedures ... 23
Handling errors.. 25
Mapping datatypes .. 25
Using computed columns .. 27
Using large identifiers for database objects 27

Adaptive Server OLE DB Provider sample..................................... 28
OLE DB DSN Migration.. 28

Migrating to Adaptive Server OLE DB Provider by Sybase..... 28
Migrating Data Source Names to Sybase drivers 28

CHAPTER 2 Connecting to a Database .. 31
Introduction to connections .. 31

Installing OLE DB MetaData stored procedures 31
How connection parameters work.. 32

Connection parameters passed as connection strings............ 32

Contents

iv Adaptive Server Enterprise OLE DB Provider

Saving connection parameters in OLE DB data sources 32
Connecting using a data source.. 33
Using connection parameters.. 33
Connecting from ADO ... 38

CHAPTER 3 Supported Adaptive Server Features .. 41
Microsecond granularity for time data .. 41
Supported Adaptive Server Cluster Edition features...................... 42

Login redirection.. 43
Connection migration .. 43
Connection failover enhancement... 43

Directory services... 45
LDAP as a directory service .. 45
Using directory services .. 46

Password encryption.. 48
Enabling password encryption .. 48

Password expiration handling .. 49
Data encryption using SSL... 50

SSL security levels in Adaptive Server OLE DB Provider 52
Validating the server by its certificate...................................... 52
Enabling SSL connections .. 53

Bookmark and batch operation support for OLE DB...................... 53
HA failover on Adaptive Server OLE DB Provider 53

Using failover in HA systems... 54
Confirming a successful failover.. 55
Verifying an unsuccessful failover ... 55

Kerberos authentication ... 56
Process overview .. 57
Requirements .. 58
Enabling Kerberos authentication ... 58
Obtaining an initial ticket from the Key Distribution Center 59

Adaptive Server OLE DB Provider participation in distributed
transactions .. 60

Programming for MS DTC... 60
Programming components deployed in MTS or COM+........... 61
Connection properties for Distributed Transaction support 61
Suppressing additional Row Format information..................... 62
Large Object (LOB) support .. 62
TDS protocol capture .. 62

Glossary ... 65

Index ... 67

Users Guide v

About This Book

Audience This document is for application developers who need access to data from
Adaptive Server® Enterprise on Microsoft Windows platforms using the
Adaptive Server Enterprise OLE DB Provider.

How to use this book The information in this book is organized as follows:

• Chapter 1, “Introduction to Adaptive Server OLE DB Provider,”
describes OLE DB programming and provides samples.

• Chapter 2, “Connecting to a Database,” describes how to connect to
Adaptive Server using ^ PRODUCT ^.

• Chapter 3, “Supported Adaptive Server Features,” describes
advanced Adaptive Server features supported by ^ PRODUCT ^.

Related documents See these books for more information:

• The Software Developer’s Kit Release Bulletin for your platform
contains important last-minute information about Adaptive Server
OLE DB Provider and Software Developer’s Kit (SDK).

• The Software Developer’s Kit and Open Server Installation Guide
contains information about installing SDK and its Adaptive Server
OLE DB Provider component.

• The Adaptive Server Enterprise Installation Guide contains
information about installing Adaptive Server.

• The Adaptive Server Enterprise Release Bulletin for your platform
contains information about known problems and recent updates to
Adaptive Server.

Other sources of
information

Use the Sybase Getting Started CD and the Sybase Product
Documentation Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation
guides in PDF format. It is included with your software. To read or
print documents on the Getting Started CD, you need Adobe Acrobat
Reader, which you can download at no charge from the Adobe Web
site using a link provided on the CD.

vi Adaptive Server Enterprise OLE DB Provider

• The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

 About This Book

Users Guide vii

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following conventions are used in this book.

• Functions, command names, command option names, program names,
program flags, properties, keywords, statements, and stored procedures
are printed as follows:

You can use IDBCreateSession::CreateSession() to create a session.

• Variables, parameters, and user-supplied words are in italics in syntax and
in paragraph text, are printed as follows:

For example, the statement int RowCount; where RowCount; is a
variable of type int.

• Names of database objects such as databases, tables, columns, and
datatypes, are printed as follows:

The value of the pubs2 object.

• Examples that show the use of functions are printed as follows:

ICommandText* pICommandText = NULL;
HRESULT hr = pIDBCreateCommand->CreateCommand(NULL,

IID_ICommandText, (IUnknown**)&pICommandText);

viii Adaptive Server Enterprise OLE DB Provider

pIDBCreateCommand->Release();

Syntax formatting conventions are summarized in the following table.

Table 1: Syntax formatting conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Software Developer’s Kit 15.7 and the HTML documentation have been tested
for compliance with U.S. government Section 508 Accessibility requirements.
Documents that comply with Section 508 generally also meet non-U.S.
accessibility guidelines, such as the World Wide Web Consortium (W3C)
guidelines for Web sites.

The online help for this product is also provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Key Definition
{ } Curly braces mean you must choose at least one of the enclosed

options. Do not include braces in the command.

[]

Brackets mean you can choose or omit enclosed options. Do not
include brackets in the command.

|

Vertical bars mean you can choose no more than one option
(enclosed in braces or brackets).

,

Commas mean you can choose as many options as you need
(enclosed in braces or brackets). Separate your choices with
commas, to be typed as part of the command.

Commas can also be required in other syntax contexts.

()

Parentheses are to be typed as part of the command.

... An ellipsis (three dots) means you can repeat the last unit as many
times as you need. Do not include ellipses in the command.

 About This Book

Users Guide ix

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

x Adaptive Server Enterprise OLE DB Provider

Users Guide 1

C H A P T E R 1 Introduction to Adaptive Server
OLE DB Provider

This chapter describes how to use the OLE DB interface to get full access
to Adaptive Server features from a Microsoft ActiveX Data Objects
(ADO) programming environment.

Many applications that use the OLE DB interface do so through the ADO
programming model rather than directly. This chapter also describes ADO
programming with Adaptive Server.

Introduction to OLE DB
OLE DB is a data access model from Microsoft. It uses the Component
Object Model (COM) interfaces and, unlike ODBC, does not assume that
the data source uses a SQL query processor.

Each OLE DB provider is a dynamic-link library. You need an OLE DB
provider for each type of data source you want to access. There are two
OLE DB providers you can use to access Adaptive Server:

• Sybase Adaptive Server OLE DB Provider The Adaptive Server
OLE DB Provider has been designed to work with OLE DB 2.5 and
later. It provides access to Adaptive Server as an OLE DB data source
without the need for ODBC components. The short name for this
provider is ASEOLEDB.

Topic Page
Introduction to OLE DB 1

ADO programming with Adaptive Server OLE DB Provider 2

Supported OLE DB interfaces 8

OLE DB programming with Adaptive Server OLE DB Provider 10

Adaptive Server OLE DB Provider sample 28

OLE DB DSN Migration 28

ADO programming with Adaptive Server OLE DB Provider

2 Adaptive Server Enterprise OLE DB Provider

• Microsoft OLE DB provider for ODBC Microsoft provides an OLE
DB provider with a short name of MSDASQL. The MSDASQL provider
makes ODBC data sources appear as OLE DB data sources. To do this, it
requires the Adaptive Server ODBC Driver.

Using the Adaptive Server OLE DB Provider brings the following benefits:

• ODBC is not required in your deployment.

• You can get full access to Adaptive Server features from OLE DB
programming environments. The MSDASQL provider allows OLE DB
clients to work with any ODBC driver but does not guarantee that you can
use the full range of functionality of each ODBC driver.

Supported platforms
See the Open Server and SDK New Features for Windows, Linux and UNIX for
a list of platforms on which the Adaptive Server OLE DB Provider is available.

ADO programming with Adaptive Server OLE DB
Provider

ActiveX Data Objects (ADO) is a data access object model exposed through an
Automation interface, which allows client applications to discover the methods
and properties of objects at runtime without any prior knowledge of the object.
Automation allows scripting languages like Visual Basic to use a standard data
access object model. ADO uses OLE DB to provide access to data on different
databases.

Using the Adaptive Server OLE DB Provider, you get full access to Adaptive
Server features from an ADO programming environment.

This section describes how to carry out basic tasks using ADO from Visual
Basic. It is not a complete guide to programming using ADO. For information
on programming in ADO, see your development tool documentation.

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 3

Connecting to a database using the Connection object
This section describes a simple Visual Basic routine that connects to a
database.

Sample code You can try this routine by placing a command button named Command1 on a
form, and pasting the routine into its Click event. Run the program and click
Command1 to connect and then disconnect.

Private Sub cmdTestConnection_Click()
' Declare variables
Dim myConn As New ADODB.Connection
On Error GoTo HandleError

' Establish the connection
myConn.Provider = "ASEOLEDB"
myConn.ConnectionString = "Data Source=MANGO:5000;User ID=sa;Pwd=;"
myConn.Open
MsgBox "Connection succeeded"
myConn.Close
Exit Sub

HandleError:
MsgBox "Connection failed"
Exit Sub

End Sub

Notes The sample carries out the following tasks:

• It declares the variables used in the routine.

• It establishes a connection, using the Adaptive Server OLE DB Provider,
to the sample database.

• It closes the connection.

When the ASEOLEDB provider is installed, it registers itself. This registration
process includes making registry entries in the COM section of the registry, so
that ADO can locate the DLL when the ASEOLEDB provider is called. If you
change the location of your DLL, you must re-register it using the following
steps:

❖ Registering the Adaptive Server OLE DB Provider

1 Open a command prompt.

2 Change to the directory where the Adaptive Server OLE DB Provider is
installed.

3 Register the provider:

ADO programming with Adaptive Server OLE DB Provider

4 Adaptive Server Enterprise OLE DB Provider

regsvr32 sybdrvoledb.dll

Executing statements using the Command object
This section describes a simple routine that sends a simple SQL statement to
the database.

Sample code You can try this routine by placing a command button named Command2 on a
form, and pasting the routine into its Click event. Run the program and click
Command2 to connect, display a message on the database server window, and
then disconnect.

Private Sub cmdUpdate_Click()
' Declare variables
Dim myConn As New ADODB.Connection
Dim myCommand As New ADODB.Command
Dim cAffected As Long

' Establish the connection
myConn.Provider = "ASEOLEDB"
myConn.ConnectionString = "Data Source = MANGO:5000; User ID=sa;PWD=;"+_

"Initial Catalog=pubs2;"
myConn.Open

'Execute a command
myCommand.CommandText = "INSERT INTO publishers values" +_

"('7777', 'American Books', 'Boston', 'MA')"
Set myCommand.ActiveConnection = myConn
myCommand.Execute cAffected
MsgBox CStr(cAffected) + " rows affected.", vbInformation
myConn.Close

End Sub

Notes After establishing a connection, the example code creates a Command object,
sets its CommandText property to an insert statement, and sets its
ActiveConnection property to the current connection. Then, it executes the insert
statement and displays the number of rows affected by the update in a message
box.

In this example, the insert statement is sent to the database and committed as
soon as it is executed.

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 5

Querying the database with the Recordset object
The ADO Recordset object represents the result set of a query. You can use it
to view data from a database.

Sample code You can try this routine by placing a command button named cmdQuery on a
form and pasting the routine into its Click event. Run the program and click
CmdQuery to connect, display a message on the database server window,
execute a query and display the first few rows in message boxes, and then
disconnect.

Private Sub cmdQuery_Click()
' Declare variables
Dim myConn As New ADODB.Connection
Dim myCommand As New ADODB.Command
Dim myRS As New ADODB.Recordset
On Error GoTo ErrorHandler

' Establish the connection
myConn.Provider = "ASEOLEDB"
myConn.ConnectionString = "Data Source = MANGO:5000; User ID=sa;PWD=;" +

"Initial Catalog=pubs2;"
myConn.Open

'Execute a query
Set myRS = New Recordset
myRS.CacheSize = 50
myRS.Source = "Select * from customer"
myRS.ActiveConnection = myConn
myRS.LockType = adLockOptimistic
myRS.Open

'Scroll through the first few results
For i = 1 To 5

MsgBox myRS.Fields("company_name"), vbInformation
myRS.MoveNext

Next
myRS.Close
myConn.Close
Exit Sub

ErrorHandler:
MsgBox Error(Err)
Exit Sub

End Sub

ADO programming with Adaptive Server OLE DB Provider

6 Adaptive Server Enterprise OLE DB Provider

Notes The Recordset object in this example holds the results from a query on the
Customer table. The For loop scrolls through the first several rows and displays
the “company_name” value for each row.

This is a simple example of using a cursor from ADO.

Working with the Rowset object
When working with Adaptive Server, the ADO Rowset represents a cursor. You
can choose the type of cursor by declaring a CursorType property of the Rowset
object before you open the Rowset. The choice of cursor type controls the
actions you can take on the Rowset and has performance implications.

Cursor types The set of cursor types supported by Adaptive Server is described in the
Adaptive Server Enterprise Transact-SQL Users Guide.

ADO has its own naming convention for cursor types. Following are the
available cursor types, the corresponding cursor type constants, and the
Adaptive Server types they are equivalent to:

Sample code The following code sets the cursor type for an ADO Rowset object:

Dim myRS As New ADODB.Rowset myRS.CursorType=_
adOpenForwardOnly

Updating data through a cursor
The Adaptive Server OLE DB Provider lets you update a result set through a
cursor. This capability is not available through the MSDASQL provider.

Updating record sets You can update the database through a record set.

Private Sub Command6_Click()
Dim myConn As New ADODB.Connection
Dim myRS As New ADODB.Recordset
Dim SQLString As String
' Connect
myConn.Provider = "ASEOLEDB"
myConn.ConnectionString = "Data Source=MANGO:5000;User ID=sa;Pwd=;"

ADO cursor type ADO constant ASE type

Static cursor adOpenStatic Insensitive cursor

Forward only adOpenForwardOnly No-scroll cursor

Scrollable adOpenStatic Scrollable

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 7

myConn.Open
myConn.BeginTrans
SQLString = "Select * from customer"
myRS.Open SQLString, myConn, adOpenDynamic, adLockBatchOptimistic
If myRS.BOF And myRS.EOF Then

MsgBox "Recordset is empty!", 16, "Empty Recordset"
Else

MsgBox "Cursor type: " + CStr(myRS.CursorType), vbInformation
myRS.MoveFirst

For i = 1 To 3
MsgBox "Row: " + CStr(myRS.Fields("id")), vbInformation
If i = 2 Then

myRS.Update "City", "Toronto"
myRS.UpdateBatch

End If
myRS.MoveNext
Next i '
myRS.Close

End If
myConn.CommitTrans
myConn.Close

End Sub

Notes If you use the adLockBatchOptimistic setting on the record set, the myRS.Update
method does not make any changes to the database itself. Instead, it updates a
local copy of the Recordset.

The myRS.UpdateBatch method makes the update to the database server but
does not commit it, because it is inside a transaction. If an UpdateBatch method
is invoked outside a transaction, the change is committed.

The myConn.CommitTrans method commits the changes. The Recordset object
has been closed by this time, so there is no issue of whether the local copy of
the data is changed or not.

Using transactions
By default, any change you make to the database using ADO is committed as
soon as it is executed. This includes explicit updates, as well as the
UpdateBatch method on a Recordset. However, the previous section illustrated
that you can use the BeginTrans and RollbackTrans or CommitTrans methods on
the Connection object to use transactions.

Transaction isolation level is set as a property of the Connection object. The
IsolationLevel property can take on one of the following values:

Supported OLE DB interfaces

8 Adaptive Server Enterprise OLE DB Provider

Supported OLE DB interfaces
The OLE DB API consists of a set of interfaces. Table 1-1 describes the
support for each interface in the Adaptive Server OLE DB Provider.

Table 1-1: Supported OLE DB interfaces

ADO isolation level Constant ASE level

Unspecified adXactUnspecified Not applicable. Set to
0.

Chaos adXactChaos Unsupported. Set to 0.

Browse adXactBrowse 0

Read uncommitted adXactReadUncommitted 0

Cursor stability adXactCursorStability 1

Read committed adXactReadCommitted 1

Repeatable read adXactRepeatableRead 2

Isolated adXactIsolated 3

Serializable adXactSerializable 3

Interface Purpose Limitations

IAccessor Define bindings between client memory and
data store values.

DBACCESSOR_PASSBYREF
not supported.

DBACCESSOR_OPTIMIZED
not supported.

IColumnsInfo Get simple information about the columns of
a rowset.

N/A.

IColumnsRowset Get information about optional metadata
columns in a rowset, and get a rowset of
column metadata.

N/A.

ICommand Execute SQL commands. To find properties that could not
have been set, it does not
support calling
ICommandProperties:
GetProperties with
DBPROPSET_PROPERTIESI
NERROR.

ICommandPrepare Prepare commands. N/A.

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 9

ICommandProperties Set Rowset properties for rowsets created by
a command. Most commonly used to specify
the interfaces the rowset should support.

N/A.

ICommandText Set the SQL command text for ICommand. Only the DBGUID_DEFAULT
SQL dialect is supported.

ICommandWithParameters Set or get parameter information for a
command.

No support for parameters
stored as vectors of scalar
values.

IConvertType N/A.

IDBCreateCommand Create commands from a session. N/A.

IDBCreateSession Create a session from a data source object. N/A.

IDBInfo Find information about keywords unique to
this provider (that is, find nonstandard SQL
keywords).

Also, find information about literals, special
characters used in text matching queries, and
other literal information.

N/A.

IDBInitialize Initialize data source objects and
enumerators.

N/A.

IDBProperties Manage properties on a data source object or
enumerator.

N/A.

IDBSchemaRowset Get information about system tables, in a
standard form (a rowset).

N/A.

IErrorLookup

IErrorRecords

Support ActiveX error object. N/A.

IGetDataSource Return an interface pointer to the session's
data source object.

N/A.

IMultipleResults Retrieve multiple results (rowsets or row
counts) from a command.

N/A.

IOpenRowset Access a database table by its name, in a non-
SQL way.

Opening a table by its name is
supported, not by a GUID.

IRowset Access rowsets. N/A.

IRowsetChange,
IRowsetUpdate

Allow changes to rowset data, reflected back
to the data store.

InsertRow/SetData for blobs not yet
implemented.

N/A.

IRowsetIdentity Compare row handles. N/A.

ISequentialStream Retrieve a blob column. Supported for reading only.

No support for SetData with this
interface.

Interface Purpose Limitations

OLE DB programming with Adaptive Server OLE DB Provider

10 Adaptive Server Enterprise OLE DB Provider

OLE DB programming with Adaptive Server OLE DB
Provider

This section describes how to carry out basic tasks in OLE DB while using
Adaptive Server OLE DB Provider.

Connecting to a data source using OLE DB
The following describes how to use OLE DB interfaces to establish a
connection to an Adaptive Server database.

There are two ways to set up a connection using OLE DB, described as follows:

❖ Connecting to a data source using IDBInitialize

1 Call CoCreateInstance.

2 Pass the clsid obtained from CLSIDFromProgID("ASEOLEDB").

3 Set the connection properties using IDBInitialize.

❖ Connecting to a data source using IDataInitialize

1 Call CoCreateInstance.

2 Pass the clsid obtained from MSDAINITIALIZE.

3 Set the connection properties using IDataInitialize.

Code example A code example for establishing an OLE DB connection follows:

wchar_t* szInitializationString = L"Provider=ASEOLEDB;
User ID=sa;Password=;Initial Catalog=pubs2;

ISessionProperties Get session property information. N/A.

ISourcesRowset Get a rowset of data source objects and
enumerators.

N/A.

ITableDefinition Create, drop, and alter tables, with
constraints.

N/A.

ITransaction Commit or abort transactions. Not all the flags are supported.

ITransactionLocal Handle transactions on a session.

Not all the flags are supported.

N/A.

Interface Purpose Limitations

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 11

Data Source=MANGO:5000;"

IDataInitialize* pIDataInitialize = NULL;
HRESULT hr = CoCreateInstance(

__uuidof(MSDAINITIALIZE), NULL, CLSCTX_ALL,
__uuidof(IDataInitialize), (void**)&pIDataInitialize);

IDBInitialize* pIDBInitialize = NULL;
hr = pIDataInitialize->GetDataSource(NULL, CLSCTX_ALL,

szInitializationString,
__uuidof(IDBInitialize), (IUnknown**)&pIDBInitialize);

hr = pIDBInitialize->Initialize();

IDBCreateSession* pIDBCreateSession = NULL;
hr = pIDBInitialize->QueryInterface(

IID_IDBCreateSession, (void**)&pIDBCreateSession);

IDBCreateCommand* pIDBCreateCommand = NULL;
hr = pIDBCreateSession->CreateSession(NULL,

IID_IDBCreateCommand,
(IUnknown**)&pIDBCreateCommand);

ICommandText* pICommandText = NULL;
hr = pIDBCreateCommand->CreateCommand(NULL,

IID_ICommandText, (IUnknown**)&pICommandText);

// use the command object
// ...

pICommandText->Release();

pIDBCreateSession->Release();
pIDBCreateCommand->Release();
pIDBInitialize->Release();
pIDataInitialize->Release();

Using threads and connections in OLE DB applications
You can develop multithreaded OLE DB applications for Adaptive Server.
Sybase recommends that you use a separate connection for each thread.
However, you are allowed to share an open connection among multiple
threads.

OLE DB programming with Adaptive Server OLE DB Provider

12 Adaptive Server Enterprise OLE DB Provider

Executing SQL statements
OLE DB includes several functions for executing SQL statements:

• Direct execution Adaptive Server parses the SQL statement, prepares
an access plan, and executes the statement. Parsing and access plan
preparation are called preparing the statement.

• Bound parameter execution You can construct and execute a SQL
statement using bound parameters to set values for statement parameters
at runtime. Bound parameters are also used with prepared statements to
provide performance benefits for statements that are executed more than
once.

• Prepared execution The statement preparation is carried out separately
from the execution. For statements that are you want to execute repeatedly,
this avoids repeated preparation and, as a result, improves performance.

Executing statements directly

The ICommandText::Execute() function prepares and executes a SQL statement.
The code samples in this section describe how to execute a statement without
parameters. Optionally, the statement can include parameters.

❖ Executing a statement without parameters

1 Obtain a Command object from the session:

ICommandText* pICommandText;
hr = pIDBCreateCommand->CreateCommand(

NULL, IID_ICommandText,
(IUnknown**)&pICommandText);

2 Set the SQL statement the command will execute:

hr = pICommandText->SetCommandText(
DBGUID_DBSQL,
L"DELETE FROM publishers where pub_id = '7777'

");

3 Execute the command. The cRowsAffected contain the number of rows
inserted, deleted, or updated by the command. The pIRowset is assigned
to the Rowset object created by the command, as shown:

DBROWCOUNT cRowsAffected;
IRowset* pIRowset;
hr = pICommandText->Execute(

NULL, IID_IRowset, NULL,
&cRowsAffected, (IUnknown**)&pIRowset);

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 13

Executing statements with bound parameters

The code samples in this section describe how to construct and execute a SQL
statement, using bound parameters to set values for statement parameters at
runtime.

❖ Constructing and executing a SQL statement

1 Create a Command object from the session:

ICommandText* pICommandText;
hr = pIDBCreateCommand->CreateCommand(

NULL, IID_ICommandText,
(IUnknown**)&pICommandText);

2 Set the SQL statement you want to execute:

hr = pICommandText->SetCommandText(
DBGUID_DBSQL,
L"DELETE FROM department WHERE dept_id = ?");

3 Create an array to describe the parameters:

DB_UPARAMS paramOrdinal[1] = { 1 };
DBPARAMBINDINFO paramBindInfo[1] = {

{
L"DBTYPE_I4",
NULL,
sizeof(int),
DBPARAMFLAGS_ISINPUT,
0,

0
}

};

4 Get the ICommandWithParameters interface from the Command object. Set
the parameter information for this command:

ICommandWithParameters* pi;
hr = pICommandText->QueryInterface(

IID_ICommandWithParameters, (void**)&pi);
hr = pi->SetParameterInfo(1, rgParamOrdinals,
rgParamBindInfo);
pi->Release();

5 The following is a structure that holds the data for all of the parameters. In
this case, there is a single int parameter, as shown:

struct Parameters {
int dept_id;

};

OLE DB programming with Adaptive Server OLE DB Provider

14 Adaptive Server Enterprise OLE DB Provider

6 The following array describes the fields in the parameters structure:

static DBBINDING ExactBindingsParameters [1] = {
{

1, // iOrdinal
offsetof (Parameters,dept_id), // obValue
0, // No length binding
0, // No Status binding
NULL, // No TypeInfo
NULL, // No Object
NULL, // No Extensions
DBPART_VALUE,
DBMEMOWNER_CLIENTOWNED, // Ignored
DBPARAMIO_INPUT,
sizeof (int),
0,
DBTYPE_I4,
0, // No Precision
0 // No Scale

}
};

7 The following interface is the IAccessor interface from the Command
object:

IAccessor* pIAccessor;
hr = pICommandText->QueryInterface(

IID_IAccessor, (void**)&pIAccessor);

8 Create an accessor on the Command object for the parameters:

DBBINDSTATUS status[1];
HACCESSOR hAccessor;
HRESULT hr = pIAccessor-
>CreateAccessor(DBACCESSOR_PARAMETERDATA,

1, ExactBindingsParameters,
sizeof(ExactBindingsParameters),

&hAccessor, status);
pIAccessor->Release();

9 Create an array of parameters. Each element in the array is a complete set
of parameters. The Execute method executes the SQL statement once for
each parameter set in the array, as shown:

Parameters param = { 1 };
DBPARAMS params[1] = {

{
¶m,
1,

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 15

hAccessor
}

};

10 Execute the command:

DBROWCOUNT cRowsAffected;
IRowset* pIRowset;
hr = pICommandText->Execute(

NULL, IID_IRowset, params,
&cRowsAffected, (IUnknown**)&pIRowset);

Executing prepared statements

The Adaptive Server OLE DB Provider provides a full set of functions for
using prepared statements, which provide performance advantages for
statements that are used repeatedly. The following code samples show how to
use the prepared statements.

Note To enable compilation and preparation of the statement on Adaptive
Server, set DynamicPrepare=1.

❖ Using prepared statements

1 Get a Command object from the session:

ICommandText* pICommandText;
hr = pIDBCreateCommand->CreateCommand(

NULL, IID_ICommandText,
(IUnknown**)&pICommandText);

2 Set the SQL statement you want to execute:

hr = pICommandText->SetCommandText(
DBGUID_DBSQL,
L"DELETE FROM department WHERE dept_id = ?");

3 Get the ICommandPrepare interface from the Command object. Then,
prepare the command by calling Prepare, as shown:

ICommandPrepare* pICommandPrepare;
hr = pICommandText->QueryInterface(

__uuidof(ICommandPrepare),
(void**)&pICommandPrepare);

hr = pICommandPrepare->Prepare(cExpectedRuns);
pICommandPrepare->Release();

OLE DB programming with Adaptive Server OLE DB Provider

16 Adaptive Server Enterprise OLE DB Provider

4 Create an array to describe the parameters:

DB_UPARAMS paramOrdinal[1] = { 1 };
DBPARAMBINDINFO paramBindInfo[1] = {

{
L"DBTYPE_I4",
NULL,
sizeof(int),
DBPARAMFLAGS_ISINPUT,
0,
0

};

5 Get the ICommandWithParameters interface from the Command object and
set the parameter information:

ICommandWithParameters* pi;
hr = pICommandText->QueryInterface(

IID_ICommandWithParameters, (void**)&pi);
hr = pi->SetParameterInfo(1, rgParamOrdinals,
rgParamBindInfo);
pi->Release();

6 Create a struct to hold the parameter data. This struct contains all of the
parameters for this command, as shown:

struct Parameters {
int dept_id;

};

The following describes the struct to the command:

static DBBINDING ExactBindingsParameters [1] = {
{

1, // iOrdinal
offsetof (Parameters,dept_id), // obValue
0, // No length binding
0, // No Status binding
NULL, // No TypeInfo
NULL, // No Object
NULL, // No Extensions
DBPART_VALUE,
DBMEMOWNER_CLIENTOWNED, // Ignored
DBPARAMIO_INPUT,
sizeof (int),
0,
DBTYPE_I4,
0, // No Precision

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 17

0 // No Scale
}
};

IAccessor* pIAccessor;
hr = pICommandText->QueryInterface(IID_IAccessor,
(void**)&pIAccessor);

DBBINDSTATUS status[1];
HACCESSOR hAccessor;
HRESULT hr = pIAccessor->CreateAccessor(

DBACCESSOR_PARAMETERDATA, 1,
ExactBindingsParameters,

sizeof(ExactBindingsParameters),
&hAccessor, status);

pIAccessor->Release();

Parameters param = { 1 };
DBPARAMS params[1] = {

{
¶m,
1,
hAccessor

}
};

DBROWCOUNT cRowsAffected;
IRowset* pIRowset;
hr = pICommandText->Execute(

NULL, IID_IRowset, params,
&cRowsAffected, (IUnknown**)&pIRowset);

7 Create an accessor for the parameter struct, using the IAccessor interface:

IAccessor* pIAccessor;
hr = pICommandText->QueryInterface(IID_IAccessor,
(void**)&pIAccessor);

DBBINDSTATUS status[1];
HACCESSOR hAccessor;
HRESULT hr = pIAccessor->CreateAccessor(

DBACCESSOR_PARAMETERDATA, 1,
ExactBindingsParameters,

sizeof(ExactBindingsParameters),
&hAccessor, status);

pIAccessor->Release();

The following is an array of the parameter sets:

OLE DB programming with Adaptive Server OLE DB Provider

18 Adaptive Server Enterprise OLE DB Provider

Parameters param = { 1 };
DBPARAMS params[1] = {

{
¶m,
1,
hAccessor

}
};

8 Execute the command:

DBROWCOUNT cRowsAffected;
IRowset* pIRowset;
hr = pICommandText->Execute(

NULL, IID_IRowset, params,
&cRowsAffected, (IUnknown**)&pIRowset);

Working with result sets
OLE DB functions that execute statements and manipulate result sets use
cursors to carry out their tasks. Applications open a cursor implicitly when they
execute a statement that returns a result set.

For applications that move through a result set only in a forward direction and
do not update the result set, cursor behavior is relatively straightforward. By
default, OLE DB applications request this behavior. OLE DB defines a read-
only, forward-only cursor, and the Adaptive Server OLE DB Provider provides
a cursor optimized for performance in this case.

To limit the number of rows returned in a row set, use the
DBPROP_MAXROWS rowset property. The default value of this property is
0, which indicates no limit to the number of returned rows.

Note To enable server-side cursors, set the UseCursor property to 1.

Retrieving data

The following code example demonstrates how to retrieve data.

❖ Retrieving data

1 Create a Command object:

ICommandText* pICommandText;

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 19

hr = pIDBCreateCommand->CreateCommand(
NULL, IID_ICommandText,
(IUnknown**)&pICommandText);

2 Set the SQL statement:

hr = pICommandText->SetCommandText(
DBGUID_DBSQL,
L"SELECT * FROM testReadStringData");

3 Create and describe the rowset data structure. This structure contains
fields for each column you want accessed, as shown:

IAccessor* pIAccessor;
hr = pICommandText->QueryInterface(IID_IAccessor,
(void**)&pIAccessor);

static DBBINDING ExactBindings [1] = {
{

1, // iOrdinal
offsetof (ExactlyTheSame,s), // obValue
0, // No length binding
0, // No Status binding
NULL, // No TypeInfo
NULL, // No Object
NULL, // No Extensions
DBPART_VALUE,
DBMEMOWNER_CLIENTOWNED, // Ignored
DBPARAMIO_NOTPARAM,
sizeof(mystr), // number of bytes
0,
DBTYPE_WSTR | DBTYPE_BYREF,
0, // No Precision
0 // No Scale

}
};

DBBINDSTATUS status[1];
HACCESSOR hAccessor;
HRESULT hr = pIAccessor->CreateAccessor(

DBACCESSOR_ROWDATA, 1, ExactBindings,
sizeof(ExactlyTheSame), &hAccessor, status);

pIAccessor->Release();

4 Execute the rowset:

DBROWCOUNT cRowsAffected;
IRowset* pIRowset;
hr = pICommandText->Execute(

OLE DB programming with Adaptive Server OLE DB Provider

20 Adaptive Server Enterprise OLE DB Provider

NULL, IID_IRowset, params,
&cRowsAffected, (IUnknown**)&pIRowset);

5 Use the following code to get the rows one row at a time:

DBCOUNTITEM cRowsReturned;
HROW hRow[1];
HROW* pRow = hRow;
hr = pIRowset->GetNextRows(NULL, 0, 1,
&cRowsReturned, &pRow);

6 Use IMalloc to free the memory allocated by GetData:

CComPtr<IMalloc> pIMalloc = NULL;
hr = CoGetMalloc(MEMCTX_TASK, &pIMalloc);

while (hr == S_OK)
{

7 Retrieve the data for the specified row, for example:

ExactlyTheSame pData[1] = { {NULL} };
hr = pIRowset->GetData(hRow[0], hAccessor,

pData);
wchar_t* value = pData[0].s;

8 Free the allocated memory:

// client owned memory must be freed by the
client

pIMalloc->Free(pData[0].s);
pData[0].s = NULL;

9 Release the rows:

hr = pIRowset->ReleaseRows(1, pRow, NULL, NULL,
NULL);

10 Get the next row:

hr = pIRowset->GetNextRows(NULL, 0, 1,
&cRowsReturned, &pRow);

}

pIRowset->Release();
pICommandText->Release();

To retrieve rows from a database, execute a SELECT statement using
ICommandText::Execute. This opens a cursor on the statement.Then, use
IRowset::GetNextRows to fetch rows through the cursor. When an application
frees the statement by releasing the rowset, it closes the cursor.

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 21

Using scrollable cursors

IRowset::GetNextRows supports scrollable cursors, which allows both
forward and backward movement within the rowset. The rowset moves
backward through the results when you specify negative values for the
lRowsOffset or cRows parameters of GetNextRows.

The Adaptive Server OLE DB Provider supports the Static Insensitive
scrollable cursor. It implements the IRowset::GetNextRows() method, which is
a standard method defined in Microsoft Open Database Connectivity Software
Development Kit Programmer’s Reference Volume 2, that is part of the MSDN
library. Go to the Microsoft Web site at http://msdn.microsoft.com/ for more
information.

The OLE DB Provider supports the following scrolling types:

• Next – returns the next row.

• Prior – returns the prior row.

• Relative n rows – returns the row, n rows from the current rowset.

Setting the UseCursor connection property

To determine whether client-side or server-side scrollable cursors are used, you
must set the UseCursor property:

• When the UseCursor connection property is set to 1, server-side scrollable
cursors are used, if the Adaptive Server version is 15.0 or later. For earlier
versions of the Adaptive Server, server-side scrollable cursors are not
available.

• When the UseCursor connection property is set to 0, client-side scrollable
cursors (cached result sets) are used, regardless of the Adaptive Server
version.

 Warning! Using client-side scrollable cursors is resource intensive.

Setting scrollable cursor attributes

You must set the following attributes to use scrollable cursors:

• DBPROP_CANSCROLLBACKWARDS – if set to VARIANT_TRUE, the
rowset allows the lRowsOffset parameter of GetNextRows to be negative.

• DBPROP_CANFETCHBACKWARDS – if set to VARIANT_TRUE, the
rowset will allow the cRows parameter of GetNextRows to be negative.

OLE DB programming with Adaptive Server OLE DB Provider

22 Adaptive Server Enterprise OLE DB Provider

Executing scrollable cursors

❖ Executing a scrollable cursor

1 Set the scrollable cursor properties on the rowset:

DBPROP RowsetProperties[2];
for(int i = 0; i < 2; i++)

VariantInit(&RowsetProperties[i].vValue);

RowsetProperties[0].dwPropertyID = DBPROP_CANFETCHBACKWARDS;
RowsetProperties[0].vValue.vt = VT_BOOL;
RowsetProperties[0].vValue.boolVal = VARIANT_TRUE;
RowsetProperties[0].dwOptions = DBPROPOPTIONS_REQUIRED;
RowsetProperties[0].colid = DB_NULLID;
RowsetProperties[1].dwPropertyID = DBPROP_CANSCROLLBACKWARDS;
RowsetProperties[1].vValue.vt = VT_BOOL;
RowsetProperties[1].vValue.boolVal = VARIANT_TRUE;
RowsetProperties[1].dwOptions = DBPROPOPTIONS_REQUIRED;
RowsetProperties[1].colid = DB_NULLID;

DBPROPSET rgRowsetPropSet[1];
rgRowsetPropSet[0].guidPropertySet = DBPROPSET_ROWSET;
rgRowsetPropSet[0].cProperties = 2;
rgRowsetPropSet[0].rgProperties = RowsetProperties;

2 Open the rowset:

IRowset* pIRowset = ds.OpenRowset("book", 1, rgRowsetPropSet);

3 Fetch the rows forward:

DBCOUNTITEM cRowsReturned;
HROW hRow[3];
HROW* pRows = hRow;
hr = pIRowset->GetNextRows(NULL, 0, 3, &cRowsReturned, &pRows);

4 Release the rows:

hr = pIRowset->ReleaseRows(cRowsReturned, pRows, NULL, NULL, NULL);

5 Fetch the rows backward:

DBCOUNTITEM cRowsReturned;
HROW hRow[3];
HROW* pRows = hRow;
hr = pIRowset->GetNextRows(NULL, 0, -3, &cRowsReturned, &pRows);

6 Release the rows:

hr = pIRowset->ReleaseRows(cRowsReturned, pRows, NULL, NULL, NULL);

7 Release the rowset:

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 23

pIRowset->Release()

Looking at results

To identify the results and the result set interpretation, after you execute a
scrollable cursor, refer to the Microsoft MSDN library at
http://msdn.microsoft.com/

Example of scrollable static insensitive cursor program

For an example of a scrollable, static-insensitive cursor program refer to
“Executing scrollable cursors” on page 22.

Calling stored procedures
This section describes how to call stored procedures and process the results
from an OLE DB application.

For a full description of stored procedures and triggers, see the Adaptive Server
Enterprise Reference Manual.

❖ Calling stored procedures and processing the results

1 Create a command:

ICommandText* pICommandText;
hr = pIDBCreateCommand->CreateCommand(

NULL, IID_ICommandText,
(IUnknown**)&pICommandText);

2 Set the command’s text:

hr = pICommandText->SetCommandText(
DBGUID_DBSQL,
L"{ call sp_foo(?) }");

3 Define the parameters:

DB_UPARAMS paramOrdinal[1] = { 1 };
DBPARAMBINDINFO paramBindInfo[1] = {

{
L"DBTYPE_I4",
NULL,
sizeof(int),
DBPARAMFLAGS_ISINPUT,
0,
0

OLE DB programming with Adaptive Server OLE DB Provider

24 Adaptive Server Enterprise OLE DB Provider

}
};

4 Set the parameter information on the command:

ICommandWithParameters* pi;
hr = pICommandText->QueryInterface(

IID_ICommandWithParameters, (void**)&pi);
hr = pi->SetParameterInfo(1, rgParamOrdinals,
rgParamBindInfo);
pi->Release();

5 Define the parameter's data structure:

struct Parameters {
int dept_id;
};

static DBBINDING ExactBindingsParameters [1] = {
{

1, // iOrdinal
offsetof (Parameters,dept_id), // obValue
0, // No length binding
0, // No Status binding
NULL, // No TypeInfo
NULL, // No Object
NULL, // No Extensions
DBPART_VALUE,
DBMEMOWNER_CLIENTOWNED, // Ignored
DBPARAMIO_INPUT,
sizeof (int),
0,
DBTYPE_I4,
0, // No Precision
0 // No Scale

}
};

6 Create an accessor for the parameters:

IAccessor* pIAccessor;
hr = pICommandText->QueryInterface(IID_IAccessor,
(void**)&pIAccessor);
DBBINDSTATUS status[1];
HACCESSOR hAccessor;
HRESULT hr = pIAccessor->CreateAccessor(

DBACCESSOR_PARAMETERDATA, 1,
ExactBindingsParameters,

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 25

sizeof(ExactBindingsParameters),
&hAccessor, status);

pIAccessor->Release();

7 Define the parameter data:

Parameters param = { 1 };
DBPARAMS params[1] = {

{
¶m,
1,
hAccessor

}
};

DBROWCOUNT cRowsAffected;
IRowset* pIRowset;
hr = pICommandText->Execute(

NULL, IID_IRowset, params,
&cRowsAffected, (IUnknown**)&pIRowset);

Handling errors
Errors are reported by returning a failure from a method. All methods return an
HRESULT. To determine if a failure has occurred, call FAILED(hr). To get
information about the error, call GetErrorInfo.

Example The following code fragment uses FAILED(hr) and GetErrorInfo:

if (FAILED(hr))
{

IErrorInfo* pIErrorInfo;
GetErrorInfo(0, &pIErrorInfo);
BSTR desc;
pIErrorInfo->GetDescription(&desc);
// use the desc
SysFreeString(desc);
pIErrorInfo->Release();

}

Mapping datatypes
The following table describes the Adaptive Server OLE DB Provider datatype
mappings.

OLE DB programming with Adaptive Server OLE DB Provider

26 Adaptive Server Enterprise OLE DB Provider

Table 1-2: Adaptive Server datatypes and OLE DB datatypes

ASE datatype OLE DB datatype C++ datatype

bigdatetime DBTYPE_DBTIMESTAMP TIMESTAMP_STRUCT

bigint DBTYPE_I8 long long

bigtime DBTYPE_DBTIME TIME_STRUCT

binary DBTYPE_BYTES unsigned char[]

bit DBTYPE_BOOL BOOL

char DBTYPE_STR,
DBTYPE_BSTR

char[], BSTR

date DBTYPE_DBDATE DATE_STRUCT

datetime DBTYPE_DBTIMESTAMP TIMESTAMP_STRUCT

decimal DBTYPE_DECIMAL SQL_NUMERIC

double DBTYPE_R8 double

float(<16) DBTYPE_R4 float

float(>=16) DBTYPE_R8 double

image DBTYPE_IUNKNOWN,
DBTYPE_BYTES

IUnknown, unsigned char[]

Note Sybase recommends that
you use streams through
IUnknown interfaces. It can
also be bound as unsigned
char[].

int[eger] DBTYPE_I4 long

money DBTYPE_CY long long

nchar DBTYPE_STR,
DBTYPE_BSTR

char[], BSTR

numeric DBTYPE_NUMERIC SQL_NUMERIC

nvarchar DBTYPE_STR,
DBTYPE_BSTR

char[], BSTR

real DBTYPE_R4 float

smalldatetime DBTYPE_DBTIMESTAMP TIMESTAMP_STRUCT

smallint DBTYPE_I2 short

smallmoney DBTYPE_CY long long

text DBTYPE_IUNKNOWN,
DBTYPE_STR

IUnknown, char[]

Note Sybase recommends that
you use streams through
IUnknown interfaces. It can
also be bound as char[].

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 27

Using computed columns
The Adaptive Server OLE DB Provider supports computed columns that allow
you to create a shorthand term for an expression, such as “Pay” for “Salary +
Commission,” and to make that column indexable, as long as its datatype can
be indexed. Computed columns are defined by an expression, whether from
regular columns in the same row, functions, arithmetic operators, and path
names, including their metadata information.

Using large identifiers for database objects
The Adaptive Server OLE DB Provider supports object names or identifiers
that have lengths of up to 255 bytes. For information on Adaptive Server large
identifiers, see What’s New in Adaptive Server Enterprise 15.0?

 Warning! If you use large identifiers in C++ programs or client applications,
you must allocate sufficient buffer lengths to avoid data truncation.

time DBTYPE_DBTIME TIME_STRUCT

timestamp DBTYPE_BYTES unsigned char[]

tinyint DBTYPE_UI1 unsigned char

unichar DBTYPE_WSTR,
DBTYPE_BSTR

wchar_t[], BSTR

unitext DBTYPE_IUNKNOWN,
DBTYPE_WSTR

IUnknown, wchar_t[]

Note Sybase recommends that
you use IUnknown.

univarchar DBTYPE_WSTR,
DBTYPE_BSTR

wchar_t[], BSTR

unsignedbigint DBTYPE_UI8 unsigned long long

unsignedint DBTYPE_UI4 unsigned long

unsignedsmallint DBTYPE_UI2 unsigned short

varbinary DBTYPE_BYTES unsigned char[]

varchar DBTYPE_STR,
DBTYPE_BSTR

char[], BSTR

ASE datatype OLE DB datatype C++ datatype

Adaptive Server OLE DB Provider sample

28 Adaptive Server Enterprise OLE DB Provider

Adaptive Server OLE DB Provider sample
A Visual Basic sample that uses the Adaptive Server OLE DB Provider is
located in the %SYBASE%\DataAccess\OLEDB\samples directory.

OLE DB DSN Migration
You can use the OLE DB DSN migration tool to migrate your data source
definitions (DSNs) from the OLE DB Driver Kit to the Adaptive Server OLE
DB Provider by Sybase. The migrated DSNs will use the Adaptive Server OLE
DB Provider by Sybase instead of the OLE DB Driver Kit.

Migrating to Adaptive Server OLE DB Provider by Sybase
To migrate OLE DB applications to use the Adaptive Server OLE DB Provider
by Sybase, edit the connection string used by OLE DB client applications. The
provider short name for the Adaptive Server OLE DB Provider is
“ASEOLEDB.”

Note The Adaptive Server OLE DB Provider connection string syntax differs
from that of OLE DB Driver Kit. Although the OLE DB Driver Kit syntax is
supported, Sybase recommends that you migrate your connection string syntax
to the Adaptive Server OLE DB Provider syntax when possible.

Migrating Data Source Names to Sybase drivers
There are two methods to migrate data source names (DSNs) from the OLE DB
Driver Kit to the drivers created by Sybase:

• Using the Sybase Adaptive Server Data Source Administrator

• Using the DSN migration tool

CHAPTER 1 Introduction to Adaptive Server OLE DB Provider

Users Guide 29

Using the Sybase Adaptive Server Data Source Administrator

The Sybase Adaptive Server Data Source Administrator allows you to migrate
existing OLE DB Driver Kit data sources, and to create new data sources for
the Adaptive Server OLE DB Provider.

❖ Migrating data sources using the Data Source Administrator

1 On the main window titled “Sybase Data Source Administrator,” choose
the data source.

2 Click Migrate.

The Sybase Data Source Administrator allows you to add, remove, configure,
or test the OLE DB data sources.

Using the DSN migration tool

The DSN migration tool can help you migrate the data sources from the OLE
DB Driver Kit to the OLE DB Driver by Sybase.

The dsnmigrate tool uses switches to control which DSNs are migrated. From
the command line, enter:

dsnmigrate.exe [/?|/h|/help][/oledb]
[/l|/ul|/sl][/a|/ua|/sa] [[/dsn|/udsn|/sdsn]=dsn]
[/suffix=suffix]

For all converted OLE DB DSNs, the new Sybase DSNs will have the same
name.

Conversion switches Table 1-3 lists and describes the switches used in the conversion.

Table 1-3: Conversion switches

Switches Description of results

/?,/h,/help Displays available dsnmigrate switches. These switches also
appears if dsnmigrate is called with no command line
arguments.

/oledb Places dsnmigrate into OLEDB-mode. By default, ODBC
DSNs are migrated.

/l Displays a list of all OLE DB Driver Kit user and system
DSNs.

/ul Displays a list of all OLE DB Driver Kit user DSNs.

/sl Displays a list of all OLE DB Driver Kit system DSNs.

/a Converts all OLE DB Driver Kit user and system DSNs.

/ua Converts all OLE DB Driver Kit user DSNs.

/sa Converts all OLE DB Driver Kit system DSNs.

OLE DB DSN Migration

30 Adaptive Server Enterprise OLE DB Provider

/dsn Converts specific OLE DB Driver Kit user or system DSNs.

/udsn Converts specific OLE DB Driver Kit user DSNs.

/sdsn Converts specific OLE DB Driver Kit system DSNs.

dsn The name of the DSN to be converted.

/suffix An optional switch that changes the way DSNs are named. If
this switch is used, the original DSN is retained and the new
DSN is named “<dsn>-<suffix>.”

suffix The suffix that is used to name the new DSN.

Switches Description of results

Users Guide 31

C H A P T E R 2 Connecting to a Database

This chapter describes how client applications connect to the Adaptive
Server Enterprise using the Adaptive Server OLE DB Provider.

Introduction to connections
Any client application that uses Adaptive Server must establish a
connection to that server before any work can be done. The connection
forms a channel through which all activity from the client application
takes place. For example, your user ID determines permissions to carry
out actions on the database—and the database server has your user ID
because it is part of the request to establish a connection.

The Adaptive Server OLE DB Provider uses connection information
included in the call from the client application, perhaps together with
information held on disk in an initialization file, to locate and connect to
an Adaptive Server server running the required database.

Installing OLE DB MetaData stored procedures
You must install the OLE DB MetaData stored procedures on any
Adaptive Server that you want to connect to using the OLE DB Provider.

❖ Installing OLE DB stored procedures on Adaptive Server

1 Change to the sp directory under the OLE DB installation directory.

• For OLE DB 32-bit: %SYBASE%\DataAccess\oledb\sp

• For OLE DB 64-bit: %SYBASE%\DataAccess64\oledb\sp

2 Execute the install_oledb_sprocs script:

Topic Page
Introduction to connections 31

How connection parameters work 32

How connection parameters work

32 Adaptive Server Enterprise OLE DB Provider

install_oledb_sprocs ServerName username [password]

where:

• ServerName is the name of the Adaptive Server.

• username is the user name to connect to the server.

• [password] is the password for the user name. If the value is null,
leave the parameter empty.

How connection parameters work
When an application connects to a database, it uses a set of connection
parameters to define the connection, such as the server name, the database
name, and a user ID. A keyword-value pair (of the form parameter=value)
specifies each connection parameter. For example, you specify the user ID
connection parameter as follows:

User ID=sa

Connection parameters passed as connection strings
Connection parameters are assembled into a connection string, in which a
semicolon separates each connection parameter, as shown:

parameter1=value1;parameter2=value2;...

In general, the connection string built by an application and passed to the driver
does not correspond directly to the way a user enters the information. Instead,
a user can fill in a dialog, or the application can read connection information
from an initialization file.

The connection string is then passed to the Adaptive Server OLE DB Provider.

Saving connection parameters in OLE DB data sources
When connecting to the database, an OLE DB application can use OLE DB
data sources, which are sets of connection parameters stored in a file.

Use the Sybase Data Source Administrator to configure OLE DB data sources.

CHAPTER 2 Connecting to a Database

Users Guide 33

Connecting using a data source
OLE DB applications typically use data sources on the client computer for each
database you want to connect to. You can store sets of Adaptive Server
Enterprise connection parameters as an OLE DB data source. If you have a data
source, your connection string can simply name the data source by using the
DataSource connection parameter:

Data Source=my data source;

Using connection parameters
Following is a list of connection parameters that can be supplied to the
Adaptive Server OLE DB Provider.

Table 2-1: Connection parameters

Property names Description Required Default value

AnsiNull Strict compliance where you cannot use
“= NULL.” Instead, you must use
“IsNull.”

No 1

ApplicationName The name Adaptive Server uses to
identify the client application.

No Empty

BufferCacheSize Keeps the input and output buffers in
pool. When large results will occur,
increase this value to boost performance.

No 20

CharSet Specifies the character set that is used to
communicate to Adaptive Server. By
default, the Adaptive Server OLE DB
Driver negotiates the same default
character set as the Adaptive Server.

No Empty

ClientCharset Specifies the client character set. In cases
where ClientCharset is different from
CharSet, the Adaptive Server OLE DB
Provider converts the client's character set
to the character set specified by CharSet.

No The character
set currently
used by the
operating
system.

ClientHostName The name of the client host passed in the
login record to the server.

No Empty

ClientHostProc The identity of the client process on this
host machine passed in the login record to
the server.

No Empty

CodePageType Specifies the type of character encoding
used. The valid values are ANSI and
OEM.

No ANSI

How connection parameters work

34 Adaptive Server Enterprise OLE DB Provider

CRC By default, the driver returns the total
records updated when multiple update
statements are executed in a stored
procedure. This count will also include all
updates happening as part of the triggers
set on an update or an insert.

Set this property to 0 if you want the
driver to return only the last update count.

No 1

DataIntegrity Enables Kerberos Data Integrity. No 0 (disabled)

Data Source The Data Source you want to connect in
Server:Port format.

No, if server and
port are
specified.

Empty

DSPassword The password used to authenticate on the
LDAP server, if the LDAP server does not
allow anonymous access. The password
can be specified in the DSURL as well.

No Empty

DSPrincipal The user name used to authenticate on the
LDAP server, if the LDAP server does not
allow anonymous access. The Principal
can be specified in the DSURL as well.

No Empty

DSURL The URL to the LDAP server. No Empty

DynamicPrepare When set to 1, the driver sends
SQLPrepare calls to Adaptive Server to
compile/prepare. This can boost
performance if you use the same query
repeatedly.

No 0

EnableServerPacketSize Allows Adaptive Server 15.0 or later to
choose the optimal packetsize.

No 1

EncryptedPassword Specifies whether password is transmitted
in an encrypted format:

• 0 – use plain text password.

• 1 – use encrypted password. If it is not
supported, return an error message.

• 2 – use encrypted password. If it is not
supported, use plain text password.

Note When password encryption is
enabled, and the server supports
asymmetric encryption, asymmetric
encryption is used instead of symmetric
encryption.

No 0

Property names Description Required Default value

CHAPTER 2 Connecting to a Database

Users Guide 35

Encryption The designated encryption. Possible
values: ssl.

No Empty

HASession Specifies if high availability is enabled:
0 indicates high availability disabled, 1
high availability enabled.

No 0

Initial Catalog, Database The database to which you want to
connect.

No Empty

Language The language in which Adaptive Server
returns error messages.

No Empty –
Adaptive Server
uses English by
default.

LoginTimeOut Number of seconds to wait for a login
attempt before returning to the
application. If set to 0, the timeout is
disabled and a connection attempt waits
for an indefinite period of time.

No 15

MutualAuthentication Enables Kerberos Mutual Authentication. No 0 (disabled)

oldpassword The current password. If oldpassword
contains a value that is not null or an
empty string, the current password is
changed to the value contained in PWD.

No Empty

PacketSize The number of bytes per network packet
transferred between Adaptive Server and
the client.

No Server-
determined
when driver is
connected to
Adaptive Server
15.0 or later. For
older Adaptive
Server the
default is 512.

Port The port number of the Adaptive Server
server.

No, if data source
is specified.

Empty

ProtocolCapture Enable this property to capture
communication between an OLE DB
application and the server.

See “TDS protocol capture” on page 62.

No Empty

Property names Description Required Default value

How connection parameters work

36 Adaptive Server Enterprise OLE DB Provider

PWD, Password Contains the value of the password. When
performing a normal login, oldpassword
is not set and PWD contains the value of
the current password. When changing the
password, oldpassword is set to the
current password and PWD contains the
value of the new password.

No, if the user
name does not
require a
password.

Empty

QuotedIdentifier Specifies if Adaptive Server treats
character strings enclosed in double
quotes as identifiers: 0 indicates do not
enable quoted identifiers, 1 indicates
enable quoted identifiers.

No 0

ReplayDetection Enables Kerberos Replay Detection. No 0

RestrictMaximum
PacketSize

If the you have memory constraints when
EnableServerPacketSize is set to 1, then
set this property to an int value in
multiples of 512 to a maximum of 65536.

No 0

RetryCount, RetryDelay Control the connection retry behavior.

RetryCount is the number of times to
attempt to connect to the server before
reporting the connection failed. Between
each retry, the driver delays for
RetryDelay number of seconds.

By default, the OLE DB application
does not retry the connection.

You can also specify these values in
SQL.INI and LDAP interfaces:

• RetryCount can be specified as
Retry Count in SQL.INI and as
sybaseRetryCount in LDAP.

• RetryDelay can be specified as
Loop Delay in SQL.INI and as
sybaseRetryDelay in LDAP.

No 0

SecondaryPort The port number of the Adaptive Server
acting as a failover server in an active-
active or active-passive setup.

Yes, if
HASession is set
to 1

Empty

SecondaryServer The name or the IP address of the
Adaptive Server acting as a failover
server in an active-active or active-
passive setup.

Yes, if
HASession is set
to 1

Empty

Server The name or the IP address of the
Adaptive Server.

No, if data source
is specified.

Empty

Property names Description Required Default value

CHAPTER 2 Connecting to a Database

Users Guide 37

ServerInitiated
Transactions

When ServerInitiatedTransactions is set
to 1, Adaptive Server starts managing
transactions as needed. The driver issues a
set chained on command on the
connection. Set this property to 0 if you
require that your connection not use
“chained” transaction mode.

No 1

SuppressControlTokens Specifies that Adaptive Server should not
send TDS_CONTROL tokens.

Values:

• 0 – forces Adaptive Server to send
TDS_CONTROL tokens where
possible.

• 1– the default value; forces Adaptive
Server to suppress TDS_CONTROL
tokens.

No 1

SuppressParamFormat Specifies that the OLE DB application
should send parameter format tokens only
when the format changes.

Values:

• 0 – forces the OLE DB application to
always send the parameter format
tokens on every execution.

• 1– the default value; requests the OLE
DB application to suppress sending
parameter format tokens when the
format has already been set.

No 1

SuppressRowFormat Specifies that Adaptive Server should
send row format tokens only on first
execution or when the format changes.

Values:

• 0 – forces Adaptive Server to send the
format information on every
execution.

• 1– the default value; requests Adaptive
Server to suppress sending row format
tokens when possible.

No 1

Property names Description Required Default value

How connection parameters work

38 Adaptive Server Enterprise OLE DB Provider

Connecting from ADO
Microsoft ActiveX Data Objects (ADO) is an object-oriented programming
interface. In ADO, the Connection object represents a unique session with a
data source. You can use the following Connection object features to initiate a
connection:

• The Provider property holds the name of the provider. If you do not supply
a Provider name, ADO uses the MSDASQL provider.

• The ConnectionString property holds an Adaptive Server connection
string. You can supply either OLE DB data source names, or explicit
UserID, Password, DatabaseName, and other parameters, just as in other
connection strings.

• The Open method uses the connection objects to initiate a connection.

SuppressRowFormat2 Specifies that Adaptive Server should
send data using the TDS_ROWFMT byte
sequence where possible instead of the
TDS_ROWFMT2 byte sequence.

Values:

• 0 – the default value; forces Adaptive
Server to send data in
TDS_ROWFMT2 where necessary.

• 1– forces Adaptive Server to send data
in TDS_ROWFMT where possible.

See “Suppressing additional Row Format
information” on page 62.

No 0

TextSize The maximum size of binary or text data
that will be sent over the wire.

No Empty.
Adaptive Server
default is 32K.

TrustedFile If encryption is set to ssl, this property
should be set to the path to the Trusted
File.

No Empty

UseCursor Specifies whether cursors are to be used
by the driver: 0 indicates do not use
cursors, and 1 indicates use cursors.

No 0

User ID, UserID, UID A case-sensitive user ID required to
connect to the Adaptive Server server.

Yes None

Property names Description Required Default value

CHAPTER 2 Connecting to a Database

Users Guide 39

Example

The following Visual Basic code uses the connection objects to initiate an OLE
DB connection to Adaptive Server:

’ Declare the connection object
Dim myConn as New ADODB.Connection
myConn.Provider = "ASEOLEDB"
myConn.ConnectionString ="Data Source=MANGO:5000; User ID=sa"
myConn.Open

How connection parameters work

40 Adaptive Server Enterprise OLE DB Provider

Users Guide 41

C H A P T E R 3 Supported Adaptive Server
Features

This chapter describes the Adaptive Server features you can use with the
Adaptive Server OLE DB Provider.

Microsecond granularity for time data
The Adaptive Server OLE DB Provider provides microsecond-level
precision for time data by supporting the SQL datatypes bigdatetime and
bigtime.

bigdatetime and bigtime function similarly to and have the same data
mappings as the SQL datetime and time datatypes:

Topic Page
Microsecond granularity for time data 41

Supported Adaptive Server Cluster Edition features 42

Directory services 45

Password encryption 48

Password expiration handling 49

Data encryption using SSL 50

Bookmark and batch operation support for OLE DB 53

HA failover on Adaptive Server OLE DB Provider 53

Kerberos authentication 56

Adaptive Server OLE DB Provider participation in distributed
transactions

60

Suppressing additional Row Format information 62

Large Object (LOB) support 62

Supported Adaptive Server Cluster Edition features

42 Adaptive Server Enterprise OLE DB Provider

• bigdatetime corresponds to the Adaptive Server bigdatetime datatype and
indicates the number of microseconds that have passed since January 1,
0000 0:00:00.000000. The range of legal bigdatetime values is from
January 1, 0001 00:00:00.000000 to December 31, 9999 23:59:59.999999.

• bigtime corresponds to the Adaptive Server bigtime datatype and indicates
the number of microseconds that have passed since the beginning of the
day. The range of legal bigtime values is from 00:00:00.000000 to
23:59:59.999999.

Usage • When connecting to Adaptive Server 15.5, the Adaptive Server OLE DB
Provider transfers data using the bigdatetime and bigtime datatypes even if
the receiving Adaptive Server columns are defined as datetime and time.

This means that Adaptive server may silently truncate the values from the
Adaptive Server OLE DB Provider to fit Adaptive Server columns. For
example, a bigtime value of 23:59:59.999999 is saved as 23:59:59.996 in
an Adaptive Server column with datatype time.

• When connecting to Adaptive Server 15.0.x and earlier, the Adaptive
Server OLE DB Provider transfers data using the datetime and time
datatypes.

• Earlier versions of Adaptive Server OLE DB Provider continue to use the
datetime and time datatypes.

Supported Adaptive Server Cluster Edition features
This section describes the Adaptive Server OLE DB Provider features that
support the Cluster Edition, where multiple Adaptive Servers connect to a
shared set of disks and a high-speed private interconnection. This allows
Adaptive Server to scale using multiple physical and logical hosts.

For more information about Cluster Edition, see the Adaptive Server
Enterprise Users Guide to Clusters.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 43

Login redirection
At any given time, some servers within a Cluster Edition environment are
usually more loaded with work than others. When a client application attempts
to connect to a busy server, the login redirection feature helps balance the load
of the servers by allowing the server to redirect the client connection to less
busy servers within the cluster. The login redirection occurs during the login
sequence and the client application does not receive notification that it was
redirected. Login redirection is enabled automatically when a client application
connects to a server that supports this feature.

Note When a client application connects to a server that is configured to
redirect clients, the login time may increase because the login process is
restarted whenever a client connection is redirected to another server.

Connection migration
Connection migration allows a server in a Cluster Edition environment to
dynamically distribute load, and seamlessly migrate an existing client
connection and its context to another server within the cluster. This feature
enables the Cluster Edition environment to achieve optimal resource utilization
and decrease computing time. Because migration between servers is seamless,
the connection migration feature also helps create a truly high availability
(HA), zero-downtime environment. Connection migration is enabled
automatically when a client application connects to a server that supports this
feature.

Note Command execution time may increase during server migration. Sybase
recommends that you increase the command timeouts accordingly.

Connection failover enhancement
Existing connection failover allows a client application to switch to an alternate
Adaptive Server if the primary server becomes unavailable due to an
unplanned event, like power outage or a socket failure. This feature has been
enhanced to allow client applications to fail over numerous times to multiple
servers using dynamic failover addresses.

Supported Adaptive Server Cluster Edition features

44 Adaptive Server Enterprise OLE DB Provider

With high availability enabled, the client application does not need to be
configured to know the possible failover targets. Adaptive Server keeps the
client updated with the best failover list based on cluster membership, logical
cluster usage, and load distribution. During failover, the client refers to the
ordered failover list while attempting to reconnect. If the driver successfully
connects to a server, the driver internally updates the list of host values based
on the list returned. Otherwise, the driver throws a connection failure
exception.

Enabling Cluster Edition connection failover
Using the OLEDB
user interface

One way to enable the extended connection failover in Adaptive Server OLE
DB Provider is through its user interface.

❖ Using the user interface to enable extended failover

1 Open the Configure Data Source dialog box of the Sybase Datasource
Administrator.

2 Go to the Connection tab.

3 Select Enable High Availability.

4 Optionally, enter the alternate servers and ports in the Alternate Servers
field using the format:

server1:port1,server2:port2,...,serverN:portN;

OLE DBIn establishing a connection, the Adaptive Server Provider first
attempts to connect to the primary host and port defined in the General tab of
the Configure Data Source dialog box. If the Adaptive Server OLE DB
Provider fails to establish a connection, OLE DB goes through the list of hosts
and ports specified in the Alternate Servers field.

Using the OLEDB
connection string

You can also use the OLE DB connection string to enable extended failover by
setting the HASession connection string property to 1. For example:

Provider=ASEOLEDB;User ID=sa;Password=;
InitialCatalog=sdc;Data Source=server1:port1;
ProviderString='HASession=1;AlternateServers=
server2:port2,...,serverN:portN';

CHAPTER 3 Supported Adaptive Server Features

Users Guide 45

In the preceding example, Data Source defines the primary server and port. The
Adaptive Server OLE DB Provider attempts to establish connection to the
primary server first. If unsuccessful, and alternate servers are defined, OLE DB
goes through the servers listed in the Alternate Servers field until a connection
is established or until the end of the list is reached.

Note The list of alternate servers specified in the GUI or the connection string
is used only during initial connection. After the connection is established with
any available instance and the client supports high availability, the client
receives an updated list of the best possible failover targets from the server.
This new list overrides the specified list.

Directory services
Using directory services, the Adaptive Server OLE DB Provider can get
connection and other information from a central LDAP server to connect to an
Adaptive Server. It uses a property called Directory Service URL (DSURL) that
indicates which LDAP server to use.

LDAP as a directory service
Lightweight Directory Access Protocol (LDAP) is an industry standard for
accessing directory services. Directory services allow components to look up
information by a distinguished name (DN) from an LDAP server that stores
and manages server, user, and software information that is used throughout the
enterprise or over a network.

The LDAP server can be located on a different platform than Adaptive Server
or the clients. LDAP defines the communication protocol and the contents of
messages exchanged between clients and servers. The LDAP server can store
and retrieve information about:

• Adaptive Server, such as IP address, port number, and network protocol

• Security mechanisms and filters

• High availability companion server names

Directory services

46 Adaptive Server Enterprise OLE DB Provider

See the Adaptive Server Enterprise System Administration Guide for more
information.

The LDAP server can be configured with these access restrictions:

• Anonymous authentication – all data is visible to any user.

• User name and password authentication – Adaptive Server uses the default
user name and password from the file.

User name and password authentication properties establish and end a session
connection to an LDAP server.

Using directory services
To use directory services, add the following properties to the ConnectString:

DSURL= ldap://SYBLDAP:389/dc=sybase,dc=com??one?sybase
Servername=MANGO

The URL is an LDAP URL and uses LDAP libraries to resolve the URL.

To support high availability on the LDAP server, the DSURL accepts multiple
URLs, each separated with a semicolon. For example:

DSURL={ldap://SYBLDAP:389/dc=sybase,dc=com??one?sybase
Servername=MANGO;
ldap://SYBLDAP1:389/dc=sybase,dc=com??one?sybaseServer
name=MANGO}

The provider attempts to get the properties from the LDAP servers in the order
specified.

An example of DSURL follows:

ldap://hostport/dn[?attrs[?scope[?filter[?userdn?userp
ass]]]]

where:

• hostport is a host name with an optional portnumber, for example:
SYBLDAP1:389

• dn is the search base. For example:
dc=sybase, dc-com

• attrs is a comma-separated list of attributes requested from the LDAP
server. You must leave it blank. Data Provider requires all attributes.

• scope is one of three strings:

CHAPTER 3 Supported Adaptive Server Features

Users Guide 47

• base (the default) – searches the base.

• one – searches immediate children.

• sub – searches the sub-tree.

• filter is the search filter, generally, the sybaseServername. You can leave
it blank and set the Data Source or Server Name property in the
ConnectionString.

• userdn is the user's distinguished name (dn). If the LDAP server does not
support anonymous login, you can set the user's dn here, or you can set the
DSPrincipal property in the ConnectionString.

• userpass is the password. If the LDAP server does not support anonymous
login, you can set the password here, or you can set the DSPassword
property in the ConnectionString.

Interfaces file

When you use an interfaces file it appears similar to any of the following:

• file///mils1/sybase/ini/sql.ini

• file:///c:/sybase/ini/sql.ini

• file://c:\sybase\ini\sql.ini

• file:///sql.ini

In this case, the URL is a file and resolves to the location of the interfaces file.
By default the Adaptive Server OLE DB Provider assumes a complete file
URL for the interfaces file. If a complete path is not specified, the driver looks
for that file in the $SYBASE tree structure, the default location of the interfaces
file for all Sybase products.

The URL can contain sybaseServername or you can set the property Server
Name to the service name of the LDAP Sybase server object.

The following properties are useful when using Directory Services:

• DSURL – set to LDAP URL. The default is an empty string.

• Server – the Service Name of the LDAP Sybase server object. The default
is an empty string.

• DSPrincipal – the user name to log on to the LDAP server if it is not a part
of DSURL and the LDAP server does not allow anonymous access.

Password encryption

48 Adaptive Server Enterprise OLE DB Provider

• DSPassword or Directory Service Password – the password to authenticate
on the LDAP server if it is not a part of DSURL and the LDAP server does
not allow anonymous access.

Password encryption
By default, the Adaptive Server OLE DB Provider sends plain text passwords
over the network to Adaptive Server for authentication. However, Adaptive
Server OLE DB Provider also supports symmetrical and asymmetrical
password encryption; you can change the default behavior and encrypt your
passwords before they are sent over the network.

The symmetrical encryption mechanism uses the same key to encrypt and
decrypt the password, whereas an asymmetrical encryption mechanism uses
one key (the public key) to encrypt the password and another key (the private
key) to decrypt the password. Because the private key is not shared across the
network, the asymmetrical encryption is considered more secure than
symmetrical encryption. When password encryption is enabled, and the server
supports asymmetric encryption, this format is used instead of symmetric
encryption.

You can encrypt login and remote passwords using the Sybase Common
Security Infrastructure (CSI). CSI 2.6 complies with the Federal Information
Processing Standard (FIPS) 140-2.

Enabling password encryption
To enable password encryption, you must set the EncryptPassword connection
property, which specifies whether the password is transmitted in encrypted
format. When password encryption is enabled, the password is sent over the
wire only after a login is negotiated; the password is first encrypted and then
sent. The EncryptPassword values are:

• 0 – use plain text password. This is the default value.

• 1 – use encrypted password. If it is not supported, return an error message.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 49

• 2 – use encrypted password. If it is not supported, use plain text password.

Note To use asymmetrical password encryption, your server must support
asymmetrical encryption, such as Adaptive Server 15.0.2. Asymmetrical
encryption requires additional processing time, and may cause a slight delay in
login time.

❖ Encrypting passwords

1 Launch the Sybase Data Source Administrator.

2 Select Data Source.

3 Check Encrypt Password.

Note You can only use the user interface to set EncryptPassword to 0 or 1. To
set EncryptPassword to 2, use a connection string.

Example Data Source=MANGO:5000;UserID=sa;pwd=sybase;EncryptPassword=2

Password expiration handling
Every company has a specific set of password policies for its database system.
Depending on the policies, the password expires at a specific date and time.
Unless the password is reset, the Adaptive Server drivers connected to a
database throw password expired errors and suggest that the user change the
password using isql. The password change feature enables users to change their
expired passwords without having to use another tool.

To change your password, set these two connection properties:

• oldpassword – the current password. If oldpassword contains a value that
is not null or an empty string, the current password is changed to the value
contained in pwd.

• pwd – contains the value of the new password entered by the user. If
oldpassword does not exist or is null, pwd contains the value of the current
password.

Data encryption using SSL

50 Adaptive Server Enterprise OLE DB Provider

Data encryption using SSL
Secure Sockets Layer (SSL) is an industry standard for sending wire- or
socket-level encrypted data over client-to-server and server-to-server
connections. Before the SSL connection is established, the server and the client
negotiate and agree upon a secure encrypted session. This is called the “SSL
handshake.”

Note Additional overhead is required to establish a secure session, because
data increases in size when it is encrypted, and it requires additional
computation to encrypt or decrypt information. Typically, the additional I/O
accrued during the SSL handshake can make user login 10 to 20 times slower.

SSL handshake When a client application requests a connection, the SSL-enabled server
presents its certificate to prove its identity before data is transmitted.
Essentially, the SSL handshake consists of the following steps:

1 The client sends a connection request to the server. The request includes
the SSL (or Transport Layer Security, TLS) options that the client
supports.

Note Transport Layer Security (TSL) is an enhanced version of SSL 3.0,
and an alias for the SSL version 3.0 CipherSuites.

2 The server returns its certificate and a list of supported CipherSuites
(described in the next section), which includes SSL/TLS support options,
the algorithms used for key exchange, and digital signatures.

3 A secure, encrypted session is established when both client and server
have agreed upon a CipherSuite, described next.

CipherSuites During the SSL handshake, the client and server negotiate a common security
protocol through a CipherSuite. CipherSuites are preferential lists of key-
exchange algorithms, hashing methods, and encryption methods used by the
SSL protocol.

By default, the strongest CipherSuite supported by both the client and the
server is the CipherSuite used for the SSL-based session. Server connection
parameters are specified in the connection string or through directory services
such as LDAP.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 51

The Adaptive Server OLE DB Provider and Adaptive Server support the cipher
suites that are available with the SSL Plus library API and the cryptographic
engine called Security Builder, both from Certicom Corporation.

Note The following list of CipherSuites conform to the TLS specification.

Following is the list of CipherSuites, ordered from strongest to weakest,
supported in Adaptive Server OLE DB Provider:

• TLS_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_WITH_RC4_128_SHA

• TLS_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_DHE_DSS_WITH_RC4_128_SHA

• TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_WITH_DES_CBC_SHA

• TLS_DHE_DSS_WITH_DES_CBC_SHA

• TLS_DHE_RSA_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT1024_WITH_RC4_56_SHA

• TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA

• TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

For more specific information about the SSL handshake and the SSL/TLS
protocol, see the Internet Engineering Task Force Web site at http://www.ietf.org.

For a complete description of CipherSuites, go to the IETF organization Web site
at http://www.ietf.org/rfc/rfc2246.txt.

Data encryption using SSL

52 Adaptive Server Enterprise OLE DB Provider

SSL security levels in Adaptive Server OLE DB Provider
In Adaptive Server OLE DB Provider, SSL provides the following levels of
security:

• After the SSL session is established, user name and password are
transmitted over a secure, encrypted connection.

• When establishing a connection to an SSL-enabled server, the server
authenticates itself—proves that it is the server you intended to contact—
and an encrypted SSL session begins before any data is transmitted.

• A check of the server certificate’s digital signature can determine if any
information received from the server was modified in transit.

Validating the server by its certificate
Any Adaptive Server OLE DB Provider client connection to an SSL-enabled
server requires that the server have a certificate file, which consists of the
server’s certificate and an encrypted private key. The certificate must also be
digitally signed by a signing/certification authority (CA). Adaptive Server
OLE DB Provider client applications establish a socket connection to Adaptive
Server similar to the way that existing client connections are established.
Before any user data is transmitted, an SSL handshake occurs on the socket
when the network transport-level connect call completes on the client side and
the accept call completes on the server side.

To make a successful connection to an SSL-enabled server, the following must
occur:

1 The SSL-enabled server must present its certificate when the client
application makes a connection request.

2 The client application must recognize the CA that signed the certificate. A
list of all “trusted” CAs is in the “trusted roots file,” described next.

The trusted roots file The list of known and trusted CAs is maintained in the trusted roots file. The
trusted roots file is similar in format to a certificate file, except that it contains
certificates for CAs known to the entity (client applications, servers, network
resources, and so on). The System Security Officer adds and deletes trusted
CAs using a standard ASCII-text editor.

The application program specifies the location of the trusted roots file using the
TrustedFile=trusted file path property in the ConnectString. A trusted roots file
with the most widely-used CAs (Thawte, Entrust, Baltimore, VeriSign, and
RSA) is installed in a file located at $SYBASE/config/trusted.txt.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 53

For more information about certificates, see the Open Client Client-Library/C
Reference Manual.

Enabling SSL connections
To enable SSL for Adaptive Server OLE DB Provider, add Encryption=ssl and
TrustedFile=<filename> (where filename is the path to the trusted roots file) to
the ConnectString. Then, Adaptive Server OLE DB Provider negotiates an SSL
connection with Adaptive Server.

Note Adaptive Server must be configured to use SSL. For more information
on SSL, see the Adaptive Server Enterprise System Administration Guide.

❖ Enabling SSL connections on Microsoft Windows

1 Set the Encryption property in the connection string to ssl.

2 Set the TrustedFile property in the connection string to the file name of the
trusted roots file. The file name should contain the path to the file as well.

Bookmark and batch operation support for OLE DB
Sybase supports bookmarks and SQL batch operations for the OLE DB
Provider.

Bookmark operations use the IRowsetLocate interface to provide methods for
comparing bookmarks and retrieving rows based on bookmarks. Batch
operations are supported through the IRowsetUpdate interface, which provides
methods for updating, inserting, and deleting batches of rows. For instructions
about using IRowsetLocate and IRowsetUpdate, see the Microsoft Developer
Network at http://msdn.microsoft.com.

HA failover on Adaptive Server OLE DB Provider
Table 3-1 lists the Adaptive Server OLE DB Provider connection parameters
used for high availability (HA) failover:

HA failover on Adaptive Server OLE DB Provider

54 Adaptive Server Enterprise OLE DB Provider

Table 3-1: HA failover connection parameters

Using failover in HA systems
An HA cluster includes two or more machines that are configured so that if one
machine (or application) is interrupted, the second machine assumes the
workload of both machines. Each node of the high availability cluster. A HA
cluster is used in an environment that must always be available, such as a
banking system to which clients must connect continuously, 365 days a year.

The machines are configured so that each machine can read the other machine's
disks, although not at the same time (all of the disks that are failed-over should
be shared disks).

For example, Adaptive Server 1, the primary companion server, fails. Adaptive
Server 2, as the secondary companion server, reads its disks (disks 1 – 4) and
manages any databases on them until Adaptive Server 1 can be restarted. Any
clients connected to Adaptive Server 1 are automatically connected to
Adaptive Server 2.

Failover allows Adaptive Server to work in a high availability cluster in either
an active-active or active-passive configuration.

During failover, clients connected to the primary companion using the failover
property automatically reestablish their network connections to the secondary
companion. Enable failover by setting the connection property HASession to 1
(default value is 0). If this property is not set, the session failover does not
occur, even if the server is configured for failover. You also must set
SecondaryServer (the IP address or the machine name of the secondary
Adaptive Server server) and SecondaryPort (the port number of the secondary
Adaptive Server server) properties. See the Adaptive Server Enterprise Using
Sybase Failover in a High Availability System for information about
configuring your system for HA.

Property names Description Required
Default
value

HASession Specifies if high availability is enabled. 0 indicates high
availability disabled, 1 high availability enabled.

No 0

SecondaryPort The port number of the Adaptive Server acting as a
failover server in an active-active or active-passive setup.

Yes, if HASession
is set to 1.

Empty

SecondaryServer The name or the IP address of the Adaptive Server acting
as a failover server in an active-active or active-passive
setup.

Yes, if HASession
is set to 1.

Empty

CHAPTER 3 Supported Adaptive Server Features

Users Guide 55

When the Adaptive Server OLE DB Provider detects a connection failure with
the primary Adaptive Server, it first tries to reconnect to the primary. If it
cannot reconnect, it assumes that a failover has occurred. Then, it
automatically tries to connect to the secondary Adaptive Server using the
connection properties set in SecondaryServer, and SecondaryPort.

Confirming a successful failover
If a connection to the secondary Adaptive Server is established, the Adaptive
Server OLE DB Provider returns “E_FAIL” for the function return HRESULT.

To confirm a successful failover, examine the dwMinor field in ERRORINFO
(returned from IErrorRecords::GetBasicErrorInfo), or the description returned
from IErrorInfo::GetDescription. The dwMinor value should be “30130” for a
successful HA failover. The description from IErrorInfo::GetDescription should
be as follows, where ASEServerName is the server name failed over to:

“Sybase server is not available or has terminated your
connection, you have successfully connected to the next
available HA server ASEServerName. All transactions has
been rolled back.”

Note Sybase recommends that you check the code returned by dwMinor to
determine the success of the failover rather than through examination of the
error description.

The client must then reapply the failed transaction with the new connection. If
failover happens while a transaction is open, only the changes that were
committed to the database before failover are retained.

Verifying an unsuccessful failover
If the connection to the secondary server is not established, the Adaptive Server
OLE DB Provider also returns “E_FAIL” for the function return HRESULT.
However, the dwMinor field in ERRORINFO (returned from
IErrorRecords::GetBasicErrorInfo) should be “30131”, and the description
returned from IErrorInfo::GetDescription should be:

“Connection to Sybase server has been lost, connection
to the next available HA server also failed. All
transactions have been rolled back.”

Kerberos authentication

56 Adaptive Server Enterprise OLE DB Provider

Sample code for checking failover

The following code snippet shows how to code for a failover:

/* Declare required variables */
...
/* Open Database connection */
...
/* Perform a transaction */
...
/*Check HRESULT and dwMinor in ERRORINFO, handle failover */
if (FAILED(hr))
{

IErrorInfo* pIErrorInfo;
GetErrorInfo(0, &pIErrorInfo);
IErrorRecords * pIErrorRecords;
HRESULT hr1 = pIErrorInfo->QueryInterface(IID_IErrorRecords,

(void **)&pIErrorRecords);
if (SUCCEEDED(hr1))
{

ERRORINFO errorInfo;
pIErrorRecords->GetBasicErrorInfo(0, &errorInfo);
pIErrorRecords->Release();
if (errorInfo.dwMinor == 30130)
{

//successful failover,
//retry the transaction

}
}

}

Kerberos authentication
Kerberos is an industry standard network authentication system that provides
simple login authentication as well as mutual login authentication. Kerberos
provides user and service authentication. Kerberos is used for single sign-on
across various applications in extremely secure environments. Instead of
passing passwords around the network, a Kerberos server holds encrypted
versions of the passwords for users and available services.

In addition, Kerberos uses encryption to provide confidentiality and data
integrity.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 57

Adaptive Server and the Adaptive Server OLE DB Provider support Kerberos
connections. The Adaptive Server OLE DB Provider specifically supports
MIT, CyberSafe, and Active Directory KDCs.

Process overview
The Kerberos authentication process works basically as follows:

1 A client application requests a “ticket” from the Kerberos server to access
a specific service.

2 The Kerberos server returns the ticket, which contains two packets, to the
client. The first packet is encrypted using the user password. The second
packet is encrypted using the service password. Inside each of these
packets is a “session key.”

3 The client decrypts the user packet to get the session key.

4 The client creates a new authentication packet and encrypts it using the
session key.

5 The client sends the authentication packet and the service packet to the
service.

6 The service decrypts the service packet to get the session key and decrypts
the authentication packet to get the user information.

7 The service compares the user information from the authentication packet
with the user information that was also contained in the service packet. If
the two match, the user has been authenticated.

8 The service creates a confirmation packet that contains service specific
information as well as validation data contained in the authentication
packet.

9 The service encrypts this data with the session key and returns it to the
client.

10 The client uses the session key obtained from the user packet it received
from Kerberos to decrypt the packet and validates that the service is what
it claims to be.

In this way the user and the service are mutually authenticated. All future
communication between the client and the service (in this case the Adaptive
Server database server) will be encrypted using the session key. This
successfully protects all data sent between the service and client from
unwanted viewers.

Kerberos authentication

58 Adaptive Server Enterprise OLE DB Provider

Requirements
To use Kerberos as an authentication system, you must configure Adaptive
Server Enterprise to delegate authentication to Kerberos. See the Adaptive
Server Enterprise System Administration Guide for more information.

If Adaptive Server has been configured to use Kerberos, any client that
interacts with Adaptive Server must install a Kerberos client library. This
varies for various operating system vendors:

• On Microsoft Windows, the Windows Active Directory client library
comes installed with the client library.

• CyberSafe and MIT client libraries are available for Microsoft Windows.

For additional information, see the endor documentation.

Enabling Kerberos authentication
To enable Kerberos for the drivers, add the following to your program:

AuthenticationClient=<one of 'mitkerberos' or
'cybersafekerberos' or 'activedirectory'> and
ServerPrincipal=<ASE server name>

where <ASE server name> is the logical name of the server or the principal as
configured in the Key Distribution Center (KDC). The drivers use this
information to negotiate Kerberos authentication with the configured KDC and
Adaptive Server.

If you want the Kerberos client to look for the TGT in another cache, you might
want to specify the userprincipal method.

If you use SQLDriverConnect with the SQL_DRIVER_NOPROMPT,
ConnectString appears similar to the following:

char ConnectString[BUFSIZ];
strcpy(ConnectString, "Driver=Adaptive Server Enterprise;");
strcat(ConnectString, "UserID=sa;Password=;");
strcat(ConnectString, "Server=sampleserver;");
strcat(ConnectString, "Port=4100;Database=pubs2;");
strcat(ConnectString, "UseCursor=1;");
strcat(ConnectString, "AuthenticationClient=mitkerberos;");
strcat(ConnectString, " ServerPrincipal=MANGO;");

CHAPTER 3 Supported Adaptive Server Features

Users Guide 59

Obtaining an initial ticket from the Key Distribution Center
To use Kerberos authentication, you must generate an initial ticket called
Ticket Granted Ticket (TGT) from the Key Distribution Center. The procedure
to obtain this ticket depends on the Kerberos libraries being used. For
additional information, refer to the vendor documentation.

❖ Generating TGTs for the MIT Kerberos client library

1 Start the kinit utility at the command line:

% kinit

2 Enter the kinit user name, such as your_name@YOUR.REALM.

3 Enter the password for your_name@YOUR.REALM, such as
“my_password.” When you enter your password, the kinit utility submits a
request to the Authentication Server for a Ticket Granting Ticket (TGT).

The password is used to compute a key, which in turn is used to decrypt
part of the response. The response contains the confirmation of the
request, as well as the session key. If you entered your password correctly,
you now have a TGT.

4 To verify that you have a TGT, enter the following at the command line:

% klist

The results of the klist command should be:

Ticket cache: /var/tmp/krb5cc_1234
Default principal: your_name@YOUR.REALM
Valid starting Expires Service principal
24-Jul-95 12:58:02 24-Jul-95 20:58:15 krbtgt/YOUR.REALM@YOUR.REALM

Explanation of results Ticket cache The ticket cache field tells you which file contains your
credentials cache.

Default principal The default principal is the login of the person who owns
the TGT (in this case, you).

Valid starting/Expires/Service principal The remainder of the output is a
list of your existing tickets. Because this is the first ticket you have requested,
there is only one ticket listed. The service principal
(krbtgt/YOUR.REALM@YOUR.REALM) shows that this ticket is a TGT. This
ticket is valid for approximately 8 hours.

Adaptive Server OLE DB Provider participation in distributed transactions

60 Adaptive Server Enterprise OLE DB Provider

Adaptive Server OLE DB Provider participation in
distributed transactions

This feature requires that Microsoft Distributed Transaction Coordinator (MS
DTC) be the transaction coordinator managing distributed transactions.

Sybase supports these programming models:

• Applications using MS DTC directly.

• Applications using Microsoft Transaction Server (MTS) or (COM+).

Programming for MS DTC

❖ Programming using Microsoft Distributed Transaction Coordinator
(MS DTC)

1 Connect to MS DTC using the DtcGetTransactionManager function. For
information about MS DTC, see Microsoft Distributed Transaction
Coordinator documentation.

2 Get the IDBSession for each Adaptive Server connection you want to
establish following the OLE DB steps.

3 Call the ITransactionDispenser::BeginTransaction function to begin an MS
DTC transaction and to obtain an OLE Transaction object that represents
the transaction.

4 Query ITransactionJoin from each IDBSession (OLE DB Connection) you
want to enlist in the MS DTC transaction, and call JoinTransaction with
the passed in parameter punkTransactionCoord as the Transaction object
(obtained in Step 3). Currently, Sybase supports only the isolation level of
ISOLATION LEVEL_READCOMMITTED for the distributed transaction, and
does not support ITransactionOptions.

5 To update SQL Server, follow the OLE DB steps for creating and
executing IDBCommand.

6 Call the ITransaction::Commit function to commit the MS DTC transaction.
The Transaction object is no longer valid.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 61

Programming components deployed in MTS or COM+
The following procedure describes how to create components that participate
in Distributed Transactions in MTS or COM+.

❖ Programming components deployed in MTS or COM+

1 Create an IDBSession for each Adaptive Server connection.

2 Create and execute IDBCommand for each update you would like to
perform.

3 Deploy your component to MTS or COM, and configure the transaction
attributes as needed.

The COM+, OLE DB Services, and OLE DB provider will take care of creating
the transaction, participating in the transaction, and committing or rolling back
the transaction.

OLE DB Services is needed for the Automatic Transaction Enlistment. To
enable the OLE DB Services, you must follow some rules to initialize the Data
Source (see the MS OLE DB documents). To enable the automatic transaction
enlistment, you can set the bit DBPROPVAL_OS_TXNENLISTMENT in the
OLE_DB_SERVICES registry and in the DBPROP_INIT_OLEDBSERVICES
property value, or pass OLE DB Services = 2 in the connection string.

Connection properties for Distributed Transaction support
The following describes the connection properties:

• Distributed Transaction Protocol (DistributedTransactionProtocol) – to
specify the protocol used to support the distributed transaction, either use
the XA Interface standard or MS DTC OLE Native protocol, select the
Distributed Transaction Protocol in the OLE DB Data Source Dialog, set the
property DistributedTransactionProtocol = OLE in the provider string part
of the connection string for OLE Native protocol, or the use default
protocol XA.

• Tightly Coupled Transaction (TightlyCoupledTransaction) – when a
distributed transaction using two resource managers points to the same
Adaptive Server, you may have a situation called “Tightly Coupled
Transaction.” Under these conditions, if you do not set this property to 1,
the Distributed Transaction may fail.

Adaptive Server OLE DB Provider participation in distributed transactions

62 Adaptive Server Enterprise OLE DB Provider

To summarize, if you open two database connections to the same Adaptive
Server and then enlist these connections in the same distributed transaction,
Sybase recommends that you set TightlyCoupledTransaction=1. To set this
property, select the Tightly Coupled Transaction in the OLE DB Data Source
dialog box, or pass the property TightlyCoupledTransaction=1 in the provider
string part of the connection string.

Suppressing additional Row Format information
Use the SuppressRowFormat2 connection string property to force Adaptive
Server to send data using the TDS_ROWFMT byte sequence where possible
instead of the TDS_ROWFMT2 byte sequence. TDS_ROWFMT contains less
data than TDS_ROWFMT2—which includes catalog, schema, table, and
column information—and can result in better performance for many small
select operations. Because Adaptive Server sends reduced result set metadata
when SuppressRowFormat2 is set to 1, some information is not available to
client programs. If your application relies on the missing metadata, you should
not enable this property.

Values:

• 0 – the default value; forces Adaptive Server to send data in TDS_ROWFMT2
where possible.

• 1 – forces Adaptive Server to send data in TDS_ROWFMT where possible.

Large Object (LOB) support
Adaptive Server OLE DB Provider supports using Large Object (LOB)
datatypes — text, unitext, and image as as input parameters in stored procedures
and as parameter marker datatypes when connected to Adaptive Server that
supports these features.

TDS protocol capture
The ProtocolCapture connection string can be used to capture Tabular Data
Stream™ (TDS) packets exchanged between an OLE DB application and the
Server for debugging purposes. This property is enabled by specifying the
capture file prefix.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 63

ProtocolCapture takes effect immediately, so that (TDS) packets exchanged
during connection establishment are written to a unique filename generated
using the specified file prefix. (TDS) packets are written to the file for the
duration of the connection. Use Ribo and other protocol translation tools to
interpret the (TDS) capture files.

For example, ProtocolCapture="cap" results in the first connection
generating cap0.tds, the second connection generates capt1.tds, and so forth.

Note Captured TDS protocol data saved to a file contains sensitive user
authentication information and may contain confidential company or customer
data. To protect this confidential data from unauthorized or accidental
disclosure, the files containing captured data must be properly protected using
file permissions or encryption.

Adaptive Server OLE DB Provider participation in distributed transactions

64 Adaptive Server Enterprise OLE DB Provider

Users Guide 65

Glossary

Active X Data Objects
(ADO)

A set of Component Object Model (COM) objects for accessing data
sources.

CipherSuite A named combination of authentication, encryption, and algorithms used
to negotiate the security settings for a network connection, using the
Transport Layer Security (TLS) or Secure Sockets Layer (SSL) protocol.

Connection parameter A keyword-value pair (of the form parameter=value) of a connection
string used to connect to a Database. For example, specify the user ID
connection parameter as follows:

User ID=sa

Connection string A string that specifies information about a data source and the means of
connecting to it.

Data source name (DSN) A Data Source Name (DSN) is a data structure that contains information
about a specific database.

Directory Service URL
(DSURL)

A property called Directory Service URL (DSURL) that indicates which
LDAP server to use.

Kerberos Authentication A mechanism for authentication and mutual authentication between a
client and a server, or between one server and another server.

Key Distribution Center
(KDC)

Part of a cryptosystem intended to reduce the risks inherent in exchanging
keys.

Lightweight Directory
Access Protocol (LDAP)

An application protocol for accessing and maintaining distributed
directory information services over an Internet Protocol (IP) network.

Microsoft Developer
Network (MSDN) Library

A source of information for developers using Microsoft tools, products,
technologies and services. The MSDN Library includes how-to, and
reference documentation, sample code, technical articles, and more.

Microsoft
DistributedTransaction
Coordinator (MS DTC)

A component that coordinates transactions, which span multiple resource
managers, such as databases, message queues, and file systems.

 Glossary

66 Adaptive Server Enterprise OLE DB Provider

Object Linking
Embedded Database
(OLEDB)

Secure Sockets Layers (SSL)/ Transport Layer Security (TLS) are
cryptographic protocols that provide communication security over the Internet.

Users Guide 67

A
Adaptive Server OLE DB Provider 3
ADO programming 2
advanced sample 23
authentication 56

B
bigdatetime 26, 41–42
bigtime 26, 41–42
bound parameters 13

C
certificate 52
CipherSuites 50
Command object

executing statements 4
connection

setting attributes 11
table of parameters 33

connection functions 10
Connnection object

connecting to a database 3
cursor types 6

D
data

retrieving 18
data source

connecting with 33
datatype mapping 25
datatypes

bigdatetime 26, 41–42
bigtime 26, 41–42

computed columns 27
large identifiers 27

directly executing SQL statements 12
directory services 45

using 46
DSURL 46

E
EncryptPassword 48
error handling 25
executing prepared statements 15
executing SQL statements 12

directly 12
with bound parameters 13

H
handling errors 25
handshake 50

K
Kerberos 56

process overview 57
requirements 58

kinit utility 59

L
LDAP 45

Index

Index

68 Adaptive Server Enterprise OLE DB Provider

M
microsecond granularity 41–42
MSDASQL 2

N
network authentication 56

O
OLE DB

interfaces 8
introduction 1

OLE DB Provider 3

P
password encryption 48
prepared statements 15
process overview

Kerberos 57

Q
querying 5

R
Recordset object 5
registering 3
requirements

Kerberos 58
result sets 18
retrieving data 18
return codes 25
Rowset object 6

S
samples 28

advanced 23
simple 18

Secure Sockets Layer (SSL)
enabling connections 53
in Adaptive Server OLE DB Provider 52
using 50
validation 52

setting connections attributes 11
simple sample 18
SQL statements

executing 12
executing directly 12
executing prepared statements 15
executing with bound parameters 13

SSL see Secure Sockets Layer 50
stored procedures

calling 23

T
threads 11
transactions 7
trusted roots file 52

V
validation 52

	Users Guide
	About This Book
	CHAPTER 1 Introduction to Adaptive Server OLE DB Provider
	Introduction to OLE DB
	Supported platforms

	ADO programming with Adaptive Server OLE DB Provider
	Connecting to a database using the Connection object
	Executing statements using the Command object
	Querying the database with the Recordset object
	Working with the Rowset object
	Updating data through a cursor
	Using transactions

	Supported OLE DB interfaces
	OLE DB programming with Adaptive Server OLE DB Provider
	Connecting to a data source using OLE DB
	Using threads and connections in OLE DB applications
	Executing SQL statements
	Executing statements directly
	Executing statements with bound parameters
	Executing prepared statements

	Working with result sets
	Retrieving data
	Using scrollable cursors

	Calling stored procedures
	Handling errors
	Mapping datatypes
	Using computed columns
	Using large identifiers for database objects

	Adaptive Server OLE DB Provider sample
	OLE DB DSN Migration
	Migrating to Adaptive Server OLE DB Provider by Sybase
	Migrating Data Source Names to Sybase drivers
	Using the Sybase Adaptive Server Data Source Administrator
	Using the DSN migration tool

	CHAPTER 2 Connecting to a Database
	Introduction to connections
	Installing OLE DB MetaData stored procedures

	How connection parameters work
	Connection parameters passed as connection strings
	Saving connection parameters in OLE DB data sources
	Connecting using a data source
	Using connection parameters
	Connecting from ADO
	Example

	CHAPTER 3 Supported Adaptive Server Features
	Microsecond granularity for time data
	Supported Adaptive Server Cluster Edition features
	Login redirection
	Connection migration
	Connection failover enhancement
	Enabling Cluster Edition connection failover

	Directory services
	LDAP as a directory service
	Using directory services
	Interfaces file

	Password encryption
	Enabling password encryption

	Password expiration handling
	Data encryption using SSL
	SSL security levels in Adaptive Server OLE DB Provider
	Validating the server by its certificate
	Enabling SSL connections

	Bookmark and batch operation support for OLE DB
	HA failover on Adaptive Server OLE DB Provider
	Using failover in HA systems
	Confirming a successful failover
	Verifying an unsuccessful failover
	Sample code for checking failover

	Kerberos authentication
	Process overview
	Requirements
	Enabling Kerberos authentication
	Obtaining an initial ticket from the Key Distribution Center

	Adaptive Server OLE DB Provider participation in distributed transactions
	Programming for MS DTC
	Programming components deployed in MTS or COM+
	Connection properties for Distributed Transaction support
	Suppressing additional Row Format information
	Large Object (LOB) support
	TDS protocol capture

	Glossary
	Index

