
UltraLite®
Database Management and Reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Copyright © 2010 iAnywhere Solutions, Inc. Portions copyright © 2010 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207


Contents

About this book .....................................................................................  v

About the SQL Anywhere documentation ......................................................... v

Introducing UltraLite .............................................................................  1

UltraLite feature comparison .............................................................................. 1
UltraLite limitations ............................................................................................. 7
UltraLite data architecture .................................................................................. 8
UltraLite storage and file name conventions .................................................... 9
UltraLite transaction and state management .................................................. 11
UltraLite isolation levels ................................................................................... 15

Implementing an UltraLite solution ....................................................  19

UltraLite supported platforms and protocols ................................................. 19
Choosing an UltraLite data management component ................................... 19
Choosing an UltraLite programming interface ............................................... 20

Using UltraLite databases ...................................................................  23

Creating and configuring UltraLite databases ................................................ 23
Connecting to an UltraLite database ............................................................... 34
Deploying UltraLite to devices ......................................................................... 41
Working with UltraLite databases .................................................................... 52
UltraLite CustDB samples ................................................................................. 72
UltraLite performance and optimization .......................................................... 81

UltraLite as a MobiLink client .............................................................  93

UltraLite clients .................................................................................................. 93
Using ActiveSync with UltraLite on Windows Mobile .................................. 108
UltraLite synchronization parameters and network protocol options ........ 110

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 iii



UltraLite database reference ............................................................  135

UltraLite creation parameters ......................................................................... 135
UltraLite database properties ......................................................................... 158
UltraLite database options .............................................................................. 162
UltraLite connection parameters .................................................................... 167
UltraLite utilities ............................................................................................... 185
UltraLite system tables ................................................................................... 219

UltraLite SQL reference .....................................................................  225

UltraLite SQL elements ................................................................................... 225
UltraLite SQL functions ................................................................................... 266
UltraLite SQL statements ................................................................................ 366

UltraLite support for spatial data .....................................................  413

Introduction to spatial data ............................................................................. 413
Compliance and support ................................................................................. 413
ST_Geometry type ........................................................................................... 414
Functions for spatial data ............................................................................... 415

Troubleshooting UltraLite .................................................................  425

Unable to start the UltraLite engine ............................................................... 425
Unable to connect to databases after upgrade ............................................. 425
Database corruption ........................................................................................ 426
Database size not stabilizing .......................................................................... 427
Importing ASCII data into a new database .................................................... 427
Utilities still running as the previous version ............................................... 428
Result set changes unpredictably ................................................................. 428
UltraLite engine client fails with error -764 ................................................... 429

Index ...................................................................................................  431

UltraLite® - Database Management and Reference

iv Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



About this book
This book introduces the UltraLite database system for small devices.

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats:

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation on the web.

To access the documentation, go to http://dcx.sybase.com.

● HTML Help On Windows platforms, the HTML Help contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools.

To access the documentation, choose Start » Programs » SQL Anywhere 12 » Documentation »
HTML Help (English).

● Eclipse On Unix platforms, the complete Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere installation.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information.

To access the PDF documentation on Windows operating systems, choose Start » Programs » SQL
Anywhere 12 » Documentation » PDF (English).

To access the PDF documentation on Unix operating systems, use a web browser to open /documentation/
en/pdf/index.html under the SQL Anywhere installation directory.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. Typically, the behavior of the software is the same on all
platforms, but there are variations or limitations. These are commonly based on the underlying operating
system (Windows, Unix), and seldom on the particular variant (IBM AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems
as follows:

● Windows The Microsoft Windows family includes platforms that are used primarily on server,
desktop, and laptop computers, as well as platforms used on mobile devices. Unless otherwise

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 v

http://dcx.sybase.com/


specified, when the documentation refers to Windows, it refers to all supported Windows-based
platforms, including Windows Mobile.

Windows Mobile is based on the Windows CE operating system, which is also used to build a variety
of platforms other than Windows Mobile. Unless otherwise specified, when the documentation refers
to Windows Mobile, it refers to all supported platforms built using Windows CE.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all supported
Unix-based platforms, including Linux and Mac OS X.

For the complete list of platforms supported by SQL Anywhere, see “Supported platforms” [SQL
Anywhere 12 - Introduction].

Directory and file names
Usually references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the
details are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. You can usually convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the
directory separator. For example, the PDF form of the documentation is found in install-dir
\Documentation\en\PDF (Windows form).

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions,
with a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv12.exe. On Unix, it is dbsrv12.

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY12 is created and refers to this location. The documentation refers to
this location as install-dir.

About this book

vi Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



For example, the documentation may refer to the file install-dir/readme.txt. On Windows, this is
equivalent to %SQLANY12%\readme.txt. On Unix, this is equivalent to $SQLANY12/readme.txt or $
{SQLANY12}/readme.txt.

For more information about the default location of install-dir, see “SQLANY12 environment
variable” [SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP12 is created and refers to this location.
The documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, choose Start » Programs » SQL Anywhere
12 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP12 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax
Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS
prompt) and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend
its capabilities beyond simple commands. These features are driven by special characters. The special
characters and features vary from one shell to another. Incorrect use of these special characters often
results in syntax errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain
characters that the shell considers special, the command may require modification for the specific shell.
The modifications are beyond the scope of this documentation, but generally, use quotes around the
parameters containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"

● Semicolons On Unix, semicolons should be enclosed in quotes.

● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the
traditional use of quotes to enclose the parameter. For example, to specify an encryption key whose

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 vii



value contains double-quotes, you might have to enclose the key in quotes and then escape the
embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

You can leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Go to http://dcx.sybase.com.

Finding out more and requesting technical support

Newsgroups
If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the
build number of your version of SQL Anywhere. You can find this information by running the following
command: dbeng12 -v.

The newsgroups are located on the forums.sybase.com news server.

About this book

viii Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://dcx.sybase.com/


The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor
is iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service
and ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time.
They offer their help on a volunteer basis and may not be available regularly to provide solutions and
information. Their ability to help is based on their workload.

Developer Centers
The SQL Anywhere Tech Corner gives developers easy access to product technical documentation. You
can browse technical white papers, FAQs, tech notes, downloads, techcasts and more to find answers to
your questions as well as solutions to many common issues. See http://www.sybase.com/developer/library/
sql-anywhere-techcorner.

The following table contains a list of the developer centers available for use on the SQL Anywhere Tech
Corner:

Name URL Description

SQL Anywhere .NET Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
microsoft-net

Get started and get
answers to specific
questions regarding
SQL Anywhere
and .NET develop-
ment.

PHP Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
php

An introduction to us-
ing the PHP (PHP
Hypertext Preproces-
sor) scripting lan-
guage to query your
SQL Anywhere data-
base.

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 ix

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php


Name URL Description

SQL Anywhere Windows Mobile Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
windows-mobile

Get started and get
answers to specific
questions regarding
SQL Anywhere and
Windows Mobile de-
velopment.

About this book

x Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile


Introducing UltraLite
UltraLite is a compact relational database with many of the same features as SQL Anywhere. It can be
used as an embedded, in-process database for mobile applications.

UltraLite also includes a built-in synchronization client that tracks changes made in the database and
exchanges updates with a MobiLink server over a network. As a MobiLink synchronization client,
UltraLite ensures that mobile applications can stay synchronized with a central database and with other
UltraLite databases.

See also
● “Understanding MobiLink synchronization” [MobiLink - Getting Started]
● “MobiLink clients” [MobiLink - Client Administration]
● “MobiLink - Getting Started”
● “MobiLink - Client Administration”
● “MobiLink - Server Administration”

UltraLite feature comparison
In the C/C++ version, the UltraLite database and management system adds 400-500 KB to the size of
your application. The SQL Anywhere database, database server, and synchronization client add
approximately 6 MB.

Feature SQL
Any-
where

Ultra-
Lite

Considerations

Transac-
tion pro-
cessing,
referential
integrity,
and multi-
table joins

X X

Triggers,
stored pro-
cedures,
and views

X

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1



Feature SQL
Any-
where

Ultra-
Lite

Considerations

External
stored pro-
cedures
(callable
external
DLLs)

X

Built-in
referential
and entity
integrity

X X Declarative referential integrity, where deletes and updates are casca-
ded, is a feature that is not supported in UltraLite databases, except
during synchronization when deletes are cascaded for this purpose.

UltraLiteJ does not enforce foreign key constraints.

See “Avoiding synchronization issues with foreign key cy-
cles” on page 104.

Cascading
updates
and dele-
tes

X Limi-
ted

Dynamic,
multiple
database
support

X X With the UltraLite engine only.

Multi-
threaded
applica-
tion sup-
port

X X

Row-level
locking

X X

XML un-
load and
load utilit-
ies

X UltraLite uses separate administration tools to complete XML load
and unloads. It is not built into the runtime. See “UltraLite Load
XML to Database utility (ulload)” on page 205 and “UltraLite Data-
base Unload utility (ulunload)” on page 214.

XML ex-
port and
import
utilities

X SQL Anywhere uses SQL statements to export/import data to XML.
You can also use dbunload to export your data. See “Importing and
exporting data” [SQL Anywhere Server - SQL Usage].

Introducing UltraLite

2 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Feature SQL
Any-
where

Ultra-
Lite

Considerations

SQLX
function-
ality

X

SQL func-
tions

X X Not all SQL functions are available for use in UltraLite applications.
If you use an unsupported function, you trigger a Feature not
available in UltraLite error. See “UltraLite SQL func-
tions” on page 266.

SQL state-
ments

X Limi-
ted

The scope of SQL statements are limited in UltraLite compared to
SQL Anywhere. See “UltraLite SQL statements” on page 366.

Integrated
HTTP
server

X

Strong en-
cryption
for data-
base files
and net-
work com-
munica-
tions

X X

Event
schedul-
ing and
handling

X X UltraLite event model differs from SQL Anywhere. UltraLiteJ does
not support events.

High-per-
formance,
self-tun-
ing, cost-
based
query opti-
mizer

X UltraLite has a query optimizer, but it is not as extensive as that of
SQL Anywhere. Therefore, the UltraLite optimizer may not provide
as high performance as the SQL Anywhere optimizer on complex
queries.

Choice of
several
thread-
safe APIs

X X UltraLite gives application developers a uniquely flexible architec-
ture that allows for the creation of applications for changing and/or
varied deployment environments. See “Choosing an UltraLite pro-
gramming interface” on page 20.

UltraLite feature comparison

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 3



Feature SQL
Any-
where

Ultra-
Lite

Considerations

Cursor
support

X X See “UltraLite limitations” on page 7.

Dynamic
cache siz-
ing with
an ad-
vanced
cache
manage-
ment sys-
tem

X Cache sizing is static in UltraLite. Nonetheless, UltraLite allows you
to set the cache size when the database is started, which gives you
the ability to scale cache size. See “UltraLite CACHE_SIZE connec-
tion parameter” on page 167.

Database
recovery
after sys-
tem or ap-
plication
failure

X X

Binary
Large Ob-
ject
(BLOB)
support

X X UltraLite cannot index or compare BLOBs.

Windows
Perform-
ance Mon-
itor inte-
gration

X

Online ta-
ble and in-
dex de-
fragmenta-
tion

X

Online
backup

X

Introducing UltraLite

4 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Feature SQL
Any-
where

Ultra-
Lite

Considerations

Small
footprint,
which can
be as
small as
500 KB

X Small footprint devices tend to have relatively slow processors. Ul-
traLite employs algorithms and data structures that are targeted for
these devices, so UltraLite continues to provide high performance
and low memory use.

Direct de-
vice con-
nections
to a Win-
dows Mo-
bile de-
vice from
the desk-
top.

X SQL Anywhere databases need a database server before allowing
desktop connections to the database that you deploy on a Windows
Mobile device. On UltraLite, you simply need to prefix the connec-
tion string with WCE:\. See “Windows Mobile” on page 37.

High-per-
formance
updates
and re-
trievals
through
the use of
indexes

X X UltraLite uses a mechanism to determine whether each table is
searched using an index or by scanning the rows directly.

Additionally, you can hash indexes to speed up data retrieval. See
“UltraLite max_hash_size creation parameter” on page 143.

Synchro-
nizing to
Oracle,
DB2, Syb-
ase Adap-
tive Serv-
er Enter-
prise, Mi-
crosoft
SQL Serv-
er, My
SQL Syb-
ase, or
SQL Any-
where

X X

UltraLite feature comparison

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 5



Feature SQL
Any-
where

Ultra-
Lite

Considerations

Built-in
synchroni-
zation

X Unlike SQL Anywhere deployments, UltraLite does not require a cli-
ent agent for synchronization. Synchronization is built into the Ultra-
Lite runtime to minimize the components you need to deploy. See
“UltraLite clients” on page 93.

In-process
execution

X

Computed
columns

X

Declared
temporary
tables/
global
temporary
tables

X

System
functions

X UltraLite does not support SQL Anywhere system functions, includ-
ing property functions. You cannot include them as part of your Ul-
traLite application.

Time-
stamp col-
umns

X X SQL Anywhere Transact-SQL timestamp columns are created with
the DEFAULT TIMESTAMP default.

UltraLite timestamp columns are created with the DEFAULT CUR-
RENT TIMESTAMP default. Therefore, UltraLite does not automat-
ically update the timestamp when the row is updated.

User-
based per-
mission
scheme to
determine
object-
based
ownership
and access

X UltraLite is primarily designed for single user databases in which an
authorization system is not needed. However, you can include up to
four user IDs and passwords, which are used for authentication pur-
poses only. These users have access to all database objects. See “Ul-
traLite user authentication” on page 39.

Spatial da-
ta

X Limi-
ted

UltraLite and UltraLiteJ both support point data only.

Full text
data

X

Introducing UltraLite

6 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite limitations
To compare UltraLite limitations with SQL Anywhere limitations, see “SQL Anywhere size and number
limitations” [SQL Anywhere Server - Database Administration].

Statistic Maximum for UltraLite

Number of connec-
tions per database

Up to 14 for single threaded applications.

Number of concur-
rent open connections

Up to 32 for all OS.

Total number of con-
current connections
per application

Up to 64 for all OS.

SQL communication
areas (SQLCA)

Up to 63.

File-based persistent
store (database size)

2 GB file or OS limit on file size.

Rows per table Up to 16 million.1

Row Size The length of each packed row must not exceed the page size. See “Row pack-
ing and table definitions” on page 53.

Character strings are stored without padding when they are shorter than the col-
umn size. This restriction excludes columns declared as long binary and long
varchar as these are stored separately

Rows per database Limited by persistent store.

Table size Limited only by database size.

Tables per database Limited only by database size.

Columns per table Row size is limited by page size, so the practical limit on the number of col-
umns per table is derived from this size. Typically, this practical limit is much
less than 4000.

Indexes per table Limited only by database size.

Tables referenced per
transaction

No limit.

UltraLite limitations

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 7



Statistic Maximum for UltraLite

Stored procedure
length

Not applicable.

Stored procedures per
database

Not applicable.

Triggers per database Not applicable.

Nesting Not applicable.

Number of publica-
tions

Up to 63.

Database page size 16 KB.

Cursors per connec-
tion

The number of maximum allowable cursors on a given connection to an Ultra-
Lite database is 64 (all platforms).

Long binary/long var-
char size

Limited only by database size.

UltraLiteJ Compati-
bility

UltraLite databases are not interchangeable with UltraLiteJ databases.

1Sometimes changes to the row (deletes and updates) and other state information are maintained with the
row data. This information allows those changes to be synchronized. So, the actual row limit can be
smaller than 16 million, depending on the number of transactions on a table between synchronization, or
whether the table is synchronized at all. See “UltraLite transaction processing” on page 14.

UltraLite data architecture
UltraLite is a mobile database designed to create custom solutions for small-footprint devices such as cell
phones, handheld computers, and embedded devices.

UltraLite provides you with a complete database management system including:

● Development layer UltraLite supports several programming interfaces that keep you from getting
locked into one deployment platform, development tool, or set of IT infrastructure products.

For information about which API you should choose, see “Choosing an UltraLite programming
interface” on page 20.

To help you maintain your UltraLite project, UltraLite completes its development support with a
comprehensive set of administration tools. You can run these tools either as command line utilities or
as wizards in the UltraLite plug-in for Sybase Central.

Introducing UltraLite

8 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● Data management layer and synchronization client You can connect to an UltraLite database
with an in-process runtime library or a separate process called an engine. Both processes control
connection and data access requests. They also include a built-in bi-directional synchronization client
that links UltraLite databases with enterprise back-end systems.

For information about which process you should choose, see “Choosing an UltraLite data
management component” on page 19.

● Data layer This layer is the local data repository stored as a file. See “UltraLite storage and file
name conventions” on page 9.

The data, management, and development layers are represented in the following figure.

UltraLite storage and file name conventions
The file management requirements of a device dictate how an UltraLite database is stored and what
database name conventions must be used. Depending on platform restrictions, you may be able to create a
database on the development desktop, and then deploy it to one or more platforms.

See also
● “Specifying file paths in an UltraLite connection parameter” on page 36

UltraLite database schema

UltraLite storage and file name conventions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 9



The logical framework of the database is known as a schema. In UltraLite, the schema is maintained as a
catalog of system tables that hold the metadata for the UltraLite database. Metadata stored in the system
tables includes:

● Index definitions. See “sysindex system table” on page 221 and “sysixcol system table” on page 222.
● Table definitions. See “systable system table” on page 220.
● Column definitions. See “syscolumn system table” on page 220.
● Publication definitions. See “syspublication system table” on page 223 and “sysarticle system

table” on page 223.
● User names and passwords. See “sysuldata system table” on page 224.

Schema changes with DDL statements
You can change the schema of a database with the appropriate Data Definition Language (DDL)
statements or by using the ALTER DATABASE SCHEMA FROM FILE statement to modify the schema
definition using a SQL script.

Schema changes can take a considerable amount of time. For example, all rows in the associated table
must be updated when the column type is changed. DDL statements successfully execute when there are
not any:

● Uncommitted transactions.

● Other active uses of the database (for example, synchronization, prepared but unreleased statements,
or executing database operations).

When the DDL statement is executing, any other attempt to use the database is blocked until the DDL
statement completes the schema change.

See also
● “ALTER DATABASE SCHEMA FROM FILE statement [UltraLite]” on page 368
● “UltraLite SQL statements” on page 366

UltraLite temporary files
In addition to the database file, UltraLite creates and maintains a temporary file during database
operation. You do not need to work with or maintain the file in any way.

By default, UltraLite maintains its temporary file in the same folder (if one exists) as the UltraLite
database itself. The temporary file has the same file name as the database, but has a few differences.

For file-based platforms the tilde is included in the extension of the file. For example, if you run the
CustDB.udb sample database, the temporary file called CustDB.~db is maintained in the same directory as
this file.

For record-based platforms you can setup UltraLite to save the temporary file in another location by
supplying the TEMP_DIR connections parameter. See “UltraLite TEMP_DIR connection
parameter” on page 183

Introducing UltraLite

10 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite temporary tables
A temporary table is used by an access plan to store data during its execution in a transient or temporary
work table. This table only exists while the access plan is being executed. Generally, temporary tables are
used when intermediate results do not fit in the available memory, such as:

● When subqueries need to be evaluated early in the access plan.

● When data in a temporary table is held for a single connection only.

● When a query contains an ORDER BY on a column other than an index.

● When a query contains a GROUP BY on a column other than an index.

You can avoid using temporary tables by using an index for the columns used in the ORDER BY or
GROUP BY clauses.

See also
● “UltraLite temporary files” on page 10
● “UltraLite performance and optimization” on page 81
● “When to view an execution plan” on page 263

UltraLite transaction and state management
UltraLite maintains state information along with the data in the database. UltraLite tracks and stores state
information so it can manage:

● Concurrent connections, so UltraLite can share resources as required. See “Concurrency in
UltraLite” on page 11.

● Synchronization progress state, to ensure that synchronization occurs successfully. See “Built-in
UltraLite synchronization features” on page 93.

● Row state, to maintain data integrity by tracking how data has changed between synchronizations. See
“UltraLite row states” on page 12.

● Transactions, to determine when and how data gets committed. In UltraLite, a transaction is processed
in its entirety or not at all. See “UltraLite transaction processing” on page 14.

● Recovery and backup information, to protect data against operating system crashes, and end-user
actions such as removing storage cards, or device resets while UltraLite is running. See “Backing up
and recovering data in UltraLite” on page 14.

Concurrency in UltraLite
UltraLite uses the following methods to manage concurrent database accesses.

UltraLite transaction and state management

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 11



● Multiple databases A single UltraLite application can open connections to up to 32 databases.

● Multiple applications The UltraLite database can only be opened by one process at a time. If you
plan to support concurrency among multiple applications, choose the UltraLite engine as your data
management component. See “Choosing an UltraLite data management component” on page 19.

● Multiple threads UltraLite supports multi-threaded applications. A single application can be
written to use multiple threads, each of which can connect to the same or different databases.

If you are managing your database with the runtime there is a limit of 64 concurrent connections.

If you are managing your database connections with the UltraLite engine, the number of SQLCAs you
can use is typically restricted to 128. However, the implementation of UltraLite.NET API effectively
reduces this limit to 128 less the number of running UltraLite.NET clients.

● Multiple transactions/requests Each connection can have a single transaction in progress at one
time. Transactions can consist of a single request or multiple requests. Data modifications made
during a transaction are not made permanent in the database until the transaction is committed. Either
all data modifications made in a transaction are committed, or all are rolled back. See “UltraLite
transaction processing” on page 14.

● Synchronization During upload and download, read-write access to the database is permitted.
However, if an application changes a row that the download then attempts to change, the download
fails and rolls back. Use the Disable Concurrency synchronization parameter to disable access to data
during synchronization. See “Additional Parameters synchronization parameter” on page 111.

If synchronization fails, UltraLite supports resumable downloads on all platforms. See “Handling
failed downloads” [MobiLink - Server Administration].

See also
● “UltraLite clients” on page 93
● “Additional Parameters synchronization parameter” on page 111

UltraLite row states

Maintaining row state information is a powerful part of the UltraLite feature set. Tracking the state of
tables and rows is particularly important for data synchronization.

Changes to data
An internal marker is used to keep track of the row state in an UltraLite database. Row states control
transaction processing, recovery, and synchronization. When an application inserts, updates, or deletes a
row, UltraLite modifies the state of the row to reflect the operation and the connection that performed the
operation. When a transaction is committed, the states of all rows affected by the transaction are modified
to reflect the commit. If an unexpected failure occurs during a commit, the entire transaction is rolled
back. The following list summarizes these behaviors:

Introducing UltraLite

12 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● When a delete is issued The state of each affected row is changed to reflect the fact that it was
deleted. Restore the original state of the row to undo the delete.

● When a delete is committed The affected rows are not always removed from memory. If the row
has never been synchronized, then it is removed. If the row has been synchronized, then it is not
removed, because the delete operation needs to be synchronized to the consolidated database first.
After the next synchronization, the row is removed from memory.

● When a row is updated A new version of the row is created. The states of the old and new rows
are set so the old row is no longer visible and the new row is visible.

● When a row update is committed When a transaction is committed, the states of all rows
affected by the transaction are modified to reflect the commit. When an update is synchronized, both
the old and new versions of the row are needed to allow conflict detection and resolution. The old row
is then deleted from the database and the new row simply becomes a normal row.

● When a row is added The row is added to the database and is marked as not committed.

● When an added row is committed The row is marked as committed and is also flagged as
requiring synchronization with the consolidated database.

See also
● “Backing up and recovering data in UltraLite” on page 14
● “Flushing single or grouped transactions” on page 89
● “UltraLite transaction processing” on page 14

Validate an UltraLite database
You can validate an UltraLite database using any of the following methods:

● The Validate Database Wizard in Sybase Central.
● Calling the ValidateDatabase function or method depending on your API.
● The ulvalid command line utility.

UltraLiteJ does not support database validation.

Caution
Database validation should be performed while no connections are making changes to the database;
otherwise, errors indicating database corruption might be reported even though no corruption actually exists.

To validate a database (Sybase Central)

1. In the left pane of Sybase Central, select the UltraLite database.

2. Choose File » Validate Database.

3. Follow the instructions in the Validate Database Wizard.

UltraLite transaction and state management

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 13



See also
● .NET: “ValidateDatabase method” [UltraLite - .NET Programming]
● C++: “ValidateDatabase method” [UltraLite - C and C++ Programming]
● “UltraLite Validate Database utility (ulvalid)” on page 218

Backing up and recovering data in UltraLite
If an application using an UltraLite database stops unexpectedly, the UltraLite database automatically
recovers to a consistent state when the application is restarted. All committed transactions flushed to
memory before the unexpected failure are present in the UltraLite database. All transactions not flushed at
the time of the failure are rolled back.

UltraLite does not use a transaction log to perform recovery. Instead, UltraLite stores state information for
every row to determine the fate of a row when recovering. See “UltraLite row states” on page 12.

Backups
UltraLite provides protection against system failures, but not from media failures. The best way to make a
backup of an UltraLite application is to synchronize with a consolidated database. To restore an UltraLite
database, start with an empty database and populate it from the consolidated database through
synchronization.

In smaller UltraLite deployments, you can copy the database file to a desktop computer to provide a
manual backup.

See also
● “Flushing single or grouped transactions” on page 89

UltraLite transaction processing
A transaction is a logical set of operations that are executed atomically: either all operations in the
transaction are stored in the database or none are. An UltraLite application's access to the UltraLite
runtime is serialized. While it is possible for multiple transactions to be open simultaneously, UltraLite
only processes one transaction at a time. This behavior means that an application cannot:

● Have blocked transactions (also known as deadlocks). UltraLite never blocks a request based on an
existing row lock. In this case, UltraLite immediately returns an error.

● Overwrite outstanding changes. A transaction cannot overwrite another transaction's outstanding
changes. When a transaction changes a row, UltraLite locks that row until the transaction is
committed or rolled back. The lock prevents other transactions from changing the row, although they
can still read the row.

For example, two applications, A and B, are reading the same row from the database and they both
calculate new values for one of its columns based on the data they read. If A updates the row with its new
value and B then tries to modify the same row, B gets an error. An attempt to change a locked row sets the

Introducing UltraLite

14 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



error SQLCODE SQLE_LOCKED, while an attempt to change a deleted row sets the error
SQLE_NOTFOUND. Therefore, you should program your application so it checks the SQLCODE value
after attempting to modify data.

For more information about how to handle errors, see:

● UltraLite for C/C++: “Handling errors” [UltraLite - C and C++ Programming]
● UltraLite.NET: “Handling errors” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “Handling errors” [UltraLite - M-Business Anywhere

Programming]

Programming tip
All UltraLite APIs—except the C++ API—can operate in autocommit mode.

In autocommit mode, UltraLite executes a commit after each operation. Some APIs use autocommit by
default. If you are using one of these interfaces, you must set autocommit to off to exploit multi-operation
transactions. The way of turning autocommit off depends on the programming interface you are using. In
most interfaces it is a property of the connection object.

See:

● UltraLite.NET: “Managing transactions” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “Managing transactions” [UltraLite - M-Business Anywhere

Programming]

UltraLite isolation levels
Isolation levels define the degree to which the operations in one transaction are visible to the operations in
other concurrent transactions. UltraLite uses the default isolation level read-committed for connections in
auto-commit mode. For .NET, read-committed is the default isolation level for new transactions created
by calling ULConnection.BeginTransaction without parameters. The default UltraLite isolation level
provides the best performance while ensuring data consistency.

With the ReadCommitted isolation level:

● Dirty reads are prevented

● No read locks are applied

● Uncommitted deletes are visible

● Non-repeatable reads and phantom rows are allowed

● No guarantee that data will not change during transaction

With the ReadUncommitted isolation level:

UltraLite isolation levels

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 15



● Dirty reads are allowed

● No read locks are applied

● Non-repeatable reads and phantom rows are allowed

● No guarantee that concurrent transaction will not modify row or roll back changes to row

You can change the isolation level from ReadCommitted to ReadUncommitted. For UltraLite C++, use
the SetDatabaseOption method to change the isolation level. For UltraLite.NET 2.0, call the
ULConnection.BeginTransaction to create a transaction with the ReadUncommitted isolation level.
UltraLiteJ only supports the ReadUncommitted isolation level.

Note
For UltraLite.NET, executing SetDatabaseOption while a transaction is active is not recommended. It
changes the isolation level of the connection, but does not update the ULTransaction.IsolationLevel.

Do not use SetDatabaseOption to change the isolation while a transaction is in progress; unpredictable
results might occur.

Isolation level side effects
As UltraLite operates by default at an isolation level of 0, which is also known as ReadUncommitted the
following side effects are possible:

● No locking operations are required when executing a SELECT statement.

● Applications can read uncommitted data (also known as dirty reads). In this scenario, transaction may
access rows in the database that are not committed and may still get rolled back by another
transaction. This phenomena can result in phantom rows (rows that get added after the original query,
making the result set returned in a repeated, duplicate query different).

For a tutorial that demonstrates the effects of dirty reads, see “Tutorial: Dirty reads” [SQL Anywhere
Server - SQL Usage]. For a tutorial that demonstrates a phantom row, see “Tutorial: Phantom rows”
[SQL Anywhere Server - SQL Usage].

● Applications can perform non-repeatable reads. In this scenario, an application reads a row from the
database, and then goes on to perform other operations. Then a second application updates/deletes the
row and commits the change. If the first application attempts to re-read the original row, it receives
either the updated information or discovers that the original row was deleted.

For a tutorial that demonstrates the effects of non-repeatable reads, see “Tutorial: Non-repeatable
reads” [SQL Anywhere Server - SQL Usage].

Example
Consider two connections, A and B, each with their own transactions.

1. As connection A works with the result set of a query, UltraLite fetches a copy of the current row into
a buffer.

Introducing UltraLite

16 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Note
Reading or fetching a row does not lock the row. If connection A fetches but does not modify a row,
connection B can still modify the row.

2. As A modifies the current row, it changes the copy in the buffer. The copy in the buffer is written
back into the database when connection A calls an Update method or closes the result set.

3. A write lock is placed on the row to prevent other transactions from modifying it. This modification is
uncommitted, until connection A performs a commit.

4. Depending on the modification, if connection B fetches the current row, it may experience the following:

Connection A's modification Result1

Row has been deleted. Connection B gets the next row in the result set.

Row has been modified. Connection B gets the latest copy of the row.

1 Queries used by Connection A and B do not contain temporary tables. Temporary tables can cause
other side effects.

See also
● “BeginTransaction method” [UltraLite - .NET Programming]
● “SetDatabaseOption method” [UltraLite - .NET Programming]

UltraLite isolation levels

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 17



18



Implementing an UltraLite solution
When implementing an UltraLite solution, consider the following:

● How many applications need to connect to the UltraLite database? The number of concurrent
connections affects whether you need the UltraLite in-process runtime or the UltraLite engine. To
understand how they differ, see “Choosing an UltraLite data management component” on page 19.

● What platform(s) do you want to support? This choice can affect which APIs are available to program
your application. See “Choosing an UltraLite programming interface” on page 20.

● Which platforms will the database run on? Because file formats have been consolidated, you may be
able to create a database that runs on multiple platforms. See “Creating and configuring UltraLite
databases” on page 23.

Tip
If you need to create a file format that suits multiple platforms, use the Create Database Wizard in
Sybase Central to help you determine whether a single database is possible.

UltraLite supported platforms and protocols
You can synchronize the data in UltraLite databases with a central consolidated database over the TCP/IP,
HTTP, or HTTPS network protocols.

For more information about the device platforms and different network protocols (also known as streams)
supported by UltraLiteJ, see http://www.sybase.com/detail?id=1061806.

See also
● “UltraLite clients” on page 93
● “Network protocol options for UltraLite synchronization streams” on page 133
● “UltraLite Synchronization utility (ulsync)” on page 209

Choosing an UltraLite data management component
UltraLite allows you to build a small-footprint relational database solution without requiring the
additional overhead of setting up a separate database server. Instead, UltraLite programming interfaces
use one of two library types.

UltraLite in-process runtime library
In UltraLite, the runtime and the application are part of the same process, which makes the database
specific to the application. For all platforms, the runtime manages UltraLite databases and built-in
synchronization operations. The UltraLite runtime can manage a maximum of 14 databases at any one
time. Note that only one application can access a database at any given time.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 19

http://www.sybase.com/detail?id=1061806


On Windows or Windows Mobile, linking to the runtime requires that you use a specific import library/
DLL pair than that of the engine. For details, see “Compiling and linking your application” [UltraLite - C
and C++ Programming].

If you require TLS-enabled synchronization, there are additional libraries you also require. See “Deploy
UltraLite with TLS-enabled synchronization” on page 47.

On the iPhone, UltraLite is available only as an in-process runtime library. For information about building
an UltraLite application using the iPhone SDK See “UltraLite for C/C++ developers” [UltraLite - C and C
++ Programming].

UltraLiteJ for BlackBerry and Java SE is provided as an in-process JAR file. For information about
building an UltraLiteJ application using the BlackBerry JDE, see “Developing UltraLiteJ applications”
[UltraLiteJ].

UltraLite database engine (uleng12.exe)
The UltraLite engine is only available for Windows desktop, Windows Mobile, and Linux platforms. The
engine is a separate executable, which supports concurrent access from multiple applications. Each
application must use a client library to communicate with the UltraLite engine. The UltraLite engine
requires more system resources than the UltraLite runtime and may yield lower performance when large
amounts of data are moved between the client and database.

Connecting to the engine requires that you a different import library/DLL pair than that of the runtime.

Additional libraries
If you require TLS-enabled synchronization or AES FIPS database encryption, there are additional
libraries you also require. See “Deploy UltraLite with AES_FIPS database encryption” on page 46 and
“Deploy UltraLite with TLS-enabled synchronization” on page 47.

See also
● “UltraLite Engine utility (uleng12)” on page 194
● “Concurrency in UltraLite” on page 11
● “UltraLite feature comparison” on page 1
● “UltraLite limitations” on page 7

Choosing an UltraLite programming interface
UltraLite APIs offer different data access models, including a simple table-based data access interface and
dynamic SQL for more complex queries. By combining these benefits, UltraLite gives application
developers a flexible architecture for the creation of applications for your varied deployment environments.

To choose your programming interface

1. Choose your target platform(s).

Implementing an UltraLite solution

20 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



For each platform you need to support, determine if the API supports that platform. Different APIs
support different platforms. If you are doing cross-platform development, choose an API that supports
all of your intended targets.

The support matrix found here: http://www.sybase.com/detail?id=1061806, can be used to identify
your development options.

2. Consider the effects of the following requirements, and then finalize your selection:

SQL Anywhere compatibility  If database compatibility with SQL Anywhere is a concern,
consider the following:

● SQL Anywhere embedded SQL support provides a common programming interface for UltraLite
and SQL Anywhere databases.

● ADO.NET provides common programming models that are shared between UltraLite components
and SQL Anywhere.

Maintaining a common interface may be particularly useful on platforms such as Windows Mobile,
where both SQL ANywhere and UltraLite databases are supported. If you need to move from
UltraLite to a SQL Anywhere database, you should use embedded SQL or ADO.NET to make
application migration easier.

Simplified deployments  If simplifying your UltraLite deployment is an issue, consider
programming with the M-Business Anywhere API. Your end-users can download both the UltraLite
application and the database concurrently.

Application size  If creating the smallest application footprint is a priority, you should program
your application with the C/C++ API. These applications typically yield the best performance and still
maintain a small application file size.

Application performance  Each API yields a different performance result. While UltraLite
provides high performance in a variety of environments and use cases, embedded SQL and the C++
API are the lowest level of APIs and generally deliver the highest performance.

See also
● UltraLite.NET: “UltraLite - .NET Programming”
● UltraLite C/C++ and embedded SQL: “UltraLite - C and C++ Programming”
● UltraLite for M-Business Anywhere: “UltraLite - M-Business Anywhere Programming”

Choosing an UltraLite programming interface

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 21

http://www.sybase.com/detail?id=1061806


22



Using UltraLite databases
This part describes how to create and use UltraLite databases.

Creating and configuring UltraLite databases
There are three types of database creation methods:

● Desktop creation methods with UltraLite administration tools designed for this purpose.

● On-device creation methods with UltraLite APIs. On-device creation methods are primarily described
in each API specific UltraLite programming book.

● A Central Administration remote task, configured to create an UltraLite database on a device.

Once the database is created, you can connect to it and build tables and other database objects.

Sharing a database among multiple platforms
Within the configuration differences imposed by different operating systems, you might be able to copy
the database from one device to another. If you are unsure of property compatibility among multiple
platforms, create a database in Sybase Central with the UltraLite Create Database Wizard. This wizard
handles the file compatibility logic for you. In so doing, it prevents you from creating a file that is not
supported on your combination of deployment devices.

See also
● “Choosing database creation parameters for UltraLite” on page 28
● “Change UltraLite persistent database option settings” on page 167
● “Working with UltraLite databases” on page 52

Creating an UltraLite database

The UltraLite Create Database Wizard  Choose this method if you want help navigating the
available database creation parameters. This wizard simplifies your choices by restricting what you can
configure based on the target platform(s) you select. Once the database is created, it displays the
command line syntax that you can record and use with the ulinit utility. See “Create a database with the
Create Database Wizard” on page 24.

The MobiLink Create Synchronization Model Wizard  Choose this method if you are creating a
synchronization system with remote UltraLite databases and a centralized consolidated database.

See “Create an UltraLite database from a MobiLink synchronization model” on page 24.

The command line  Choose any of the following utilities:

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 23



● Use the ulinit utility if you want to create a new, empty UltraLite database or one sourced from a SQL
Anywhere reference database schema. See “Create an UltraLite database from a SQL Anywhere
reference database” on page 25.

● Use the ulload utility if you have an XML file that will serve as the source point for the schema and/or
data of your new UltraLite database. See “Create an UltraLite database from XML” on page 26.

● Central Administration: Choose this method if you have a deployment where the MobiLink Agent is
configured on all your deployed devices, or you are unable to deploy your initial UltraLite database
with your application. You can configure a remote task to create a new UltraLite database on the
device. This database can then be managed centrally by an administrator. See “Central administration
of remote databases” [MobiLink - Server Administration].

Create a database with the Create Database Wizard

You can create a database in Sybase Central using the Create Database Wizard.

To create a new UltraLite database (Sybase Central)

1. Choose Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Choose Tools » UltraLite 12 » Create Database.

3. Follow the instructions in the Create Database Wizard.

Create an UltraLite database from the command prompt

Use the ulinit utility to create a database from a command prompt. With this utility, you can include
utility options to configure the database.

To create a new UltraLite database (command line)
Run the ulinit utility specifying the new UltraLite database file if you want to accept the defaults:

ulinit test.udb

Refer to “UltraLite Initialize Database utility (ulinit)” on page 197 for a description of all available options.

Create an UltraLite database from a MobiLink synchronization model

To simplify development, MobiLink includes a Create Synchronization Model Wizard to create your
UltraLite database and server-side synchronization logic.

Once you have created your model, you can work in MobiLink Model mode in Sybase Central to
customize your synchronization model before you deploy it. When the model is ready, you can then
deploy it to generate the scripts and tables required for your synchronization application.

Using UltraLite databases

24 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See “MobiLink Plug-in for Sybase Central” [MobiLink - Getting Started].

Create an UltraLite database using central administration of remote
databases

MobiLink provides a create database command that allows you to create an UltraLite database. See
“Create database command” [MobiLink - Server Administration] and “Central administration of remote
databases” [MobiLink - Server Administration].

Create an UltraLite database from a SQL Anywhere reference
database

A reference database is a SQL Anywhere database that serves as a template for the UltraLite database you
are creating. Your UltraLite database is a subset of the columns, tables, and indexes in the reference
database. You select these objects as part of a publication in the reference database. You can also choose
to include data from your SQL Anywhere database in your new UltraLite database.

Creating a database from a reference database may be useful if you want to first model your data with an
architecture tool such as Sybase PowerDesigner.

To create a database from a reference database, use the ulinit utility. See “Create an UltraLite database
from a SQL Anywhere reference database” on page 25 and “UltraLite Initialize Database utility
(ulinit)” on page 197.

To initialize/extract a new UltraLite database from a reference database (command line)

1. Create a new SQL Anywhere database as the reference database.

You can create a new SQL Anywhere database with the dbinit utility or Sybase Central. You can also
create a SQL Anywhere database from non-SQL Anywhere databases, by migrating data from these
third-party files.

See “Creating a SQL Anywhere database” [SQL Anywhere Server - Database Administration].

Configure the database with UltraLite usage in mind   The UltraLite database is generated
with the same settings as those in the reference database. By setting the following options in the
reference database, you also control the behavior of your UltraLite database:

Creating and configuring UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 25



● Date format (see “UltraLite date_format creation parameter” on page 138)
● Date order (see “UltraLite date_order creation parameter” on page 141)
● Nearest century (see “UltraLite nearest_century creation parameter” on page 144)
● Precision (see “UltraLite precision creation parameter” on page 148)
● Scale (see “UltraLite scale creation parameter” on page 149)
● Time format (see “UltraLite time_format creation parameter” on page 150)
● Timestamp format (see “UltraLite timestamp_format creation parameter” on page 152)
● Timestamp with timezone (see “UltraLite timestamp_with_time_zone_format creation

parameter” on page 155)

2. Prepare the reference database by adding objects required by the UltraLite database:

● Tables and keys Add the tables and remember to set primary keys as they are required by
UltraLite. If you need to, you can also assign foreign key relationships that you need within your
UltraLite application. You can use Sybase Central, Sybase PowerDesigner Physical Data Model,
or another database design tool. See “Working with UltraLite tables and columns” on page 52.

● Indexes An index can improve performance dramatically, particularly on slow devices. Note
that primary keys are automatically indexed, but other columns are not. See “When to use an
index” on page 62.

● Publications If you want to synchronize different tables at different times, use publications.
You can use multiple UltraLite publications to define table subsets and set synchronization
priority with them. See “Publications in UltraLite” on page 102.

Performance tip
If your UltraLite applications frequently retrieve information in a particular order, consider adding an
index to your reference database specifically for this purpose. See “Using index scans” on page 82.

3. Run the ulinit utility, including any necessary options:

ulinit -a DBF=MySource.db customer.udb -n Pub1 -s Pub2

In this example, MySource.db is the SQL Anywhere reference database and customer.udb is the
UltraLite database that gets created. The tables and indexes will match those contained in the Pub1
and Pub2 publications. A publication for the UltraLite database is created for Pub2.

See also
● “Create a database with the Create Database Wizard” on page 24
● “Create an UltraLite database from the command prompt” on page 24
● “Create an UltraLite database from XML” on page 26
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “Choosing database creation parameters for UltraLite” on page 28
● “Upgrading UltraLite” [SQL Anywhere 12 - Changes and Upgrading]

Create an UltraLite database from XML

Using UltraLite databases

26 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



You can use XML as an intermediate format for managing your UltraLite database if the format follows
the requirements for UltraLite usage. You can use XML as follows:

● Load data into a new database with a different set of database properties/options.

● Upgrade the schema from a database created by a previous version of UltraLite.

● Create a text version of your UltraLite database.

UltraLite cannot use an arbitrary XML file. The install-dir\Bin32 and install-dir\Bin64 directories
contains a usm.xsd file, containing the schema definition. Use this file to review the XML format.

To create an UltraLite database from an XML file

1. Save the XML file to a directory of your choosing. You can either:

● Export/unload a database to an XML file. If you are unloading a SQL Anywhere database, use any
of the supported export methods. See “Exporting relational data as XML” [SQL Anywhere Server -
SQL Usage].

● Take XML output from another source—that source could be another relational database or even a
web site where transactions are recorded to a file. You must always ensure that the format of the
XML meets the UltraLite requirements.

2. Run the ulload utility, including any necessary options.

For example, to create a new UltraLite database in the file sample.udb from the table formats and data
in sample.xml:

ulload -c DBF=sample.udb sample.xml

See also
● “Create a database with the Create Database Wizard” on page 24
● “Create an UltraLite database from the command prompt” on page 24
● “Create an UltraLite database from a SQL Anywhere reference database” on page 25
● “Upgrading UltraLite” [SQL Anywhere 12 - Changes and Upgrading]
● “UltraLite Load XML to Database utility (ulload)” on page 205
● “Choosing database creation parameters for UltraLite” on page 28

Create an UltraLite database on a first connection

You can program your application to create a new UltraLite database if one cannot be detected at
connection time. The application can then use SQL to create tables, indexes, foreign keys, and so on. To
populate the database, synchronize with a consolidated database.

Considerations
By adding the additional database creation and SQL code, your application size can grow considerably.
However, this option can simplify deployment because you only need to deploy the application to the

Creating and configuring UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 27



device. In some pre-production development cycles, you may want to delete and reconstruct the database
on your device for testing purposes.

See also
● “Creating an UltraLite database” on page 23
● UltraLite for C/C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]

Choosing database creation parameters for UltraLite
There are several options you can control when creating your UltraLite database. These are designed to
help with the wide variety of UltraLite uses. Note that most parameters specified at creation time cannot
be changed later.

Accessing creation parameter values
You cannot change creation parameter values after you have created a database. However, you can view
the corresponding database properties in Sybase Central. See “Accessing UltraLite database
properties” on page 162.

You can also access the database properties programmatically from the UltraLite application by calling
the GetDatabaseProperty function appropriate to the API.

For API-specific details, see:

● UltraLite C/C++: “GetDatabaseProperty method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “GetDatabaseProperty method” [UltraLite - .NET Programming]
● M-Business: “getDatabaseProperty method” [UltraLite - M-Business Anywhere Programming]

In addition to these database creation parameters, you can further configure other aspects of your database
with database options and connection parameters. See:

● “UltraLite database options” on page 162
● “Connecting to an UltraLite database” on page 34
● “UltraLite connection parameters” on page 167

Property Description

case Sets the case-sensitivity of string comparisons in the UltraLite database. See
“UltraLite case creation parameter” on page 135.

checksum_level Sets the level of checksum validation in the database. See “UltraLite check-
sum_level creation parameter” on page 136.

Using UltraLite databases

28 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Property Description

collation Sets the collation sequence used by the UltraLite database. Setting this proper-
ty with or without the UTF-8 property determines the character set of the data-
base. See “UltraLite character sets” on page 30 and “UltraLite collation crea-
tion parameter” on page 137 and “UltraLite utf8_encoding creation parame-
ter” on page 157.

date_format Sets the default string format in which dates are retrieved from the database.
See “UltraLite date_format creation parameter” on page 138.

date_order Controls the interpretation of date ordering of months, days, and years. See
“UltraLite date_order creation parameter” on page 141.

fips Controls AES FIPS compliant data encryption, by using a Certicom certified
cryptographic algorithm. FIPS encoding is a form of strong encryption. See
“Securing UltraLite databases” on page 32 and “UltraLite fips creation param-
eter” on page 142.

max_hash_size Sets the default index hash size in bytes. See “UltraLite max_hash_size crea-
tion parameter” on page 143.

nearest_century Controls the interpretation of two-digit years in string-to-date conversions. See
“UltraLite nearest_century creation parameter” on page 144.

obfuscate Controls whether data in the database is obfuscated. Obfuscation is a form of
simple encryption. See “Securing UltraLite databases” on page 32 and “Ultra-
Lite obfuscate creation parameter” on page 146.

page_size Defines the database page size. See “UltraLite page_size creation parame-
ter” on page 146.

precision Specifies the maximum number of digits in decimal point arithmetic results.
See “UltraLite precision creation parameter” on page 148.

scale Specifies the minimum number of digits after the decimal point when an arith-
metic result is truncated to the maximum precision. See “UltraLite scale crea-
tion parameter” on page 149.

time_format Sets the format for times retrieved from the database. See “UltraLite time_for-
mat creation parameter” on page 150.

timestamp_format Sets the format for timestamps retrieved from the database. See “UltraLite time-
stamp_format creation parameter” on page 152.

timestamp_incre-
ment

Determines how the timestamp is truncated in UltraLite. See “UltraLite time-
stamp_increment creation parameter” on page 154.

Creating and configuring UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 29



Property Description

time-
stamp_with_time_zo
ne_format

This option sets the format for TIMESTAMP WITH TIME ZONE values re-
trieved from the database. See “UltraLite timestamp_with_time_zone_format
creation parameter” on page 155.

utf8_encoding Encodes data using the UTF-8 format, 8-bit multibyte encoding for Unicode.
See “UltraLite character sets” on page 30 and “UltraLite utf8_encoding crea-
tion parameter” on page 157.

UltraLite character sets

The results of comparisons on strings, and the sort order of strings, in part depends on the character set,
collation, and encoding properties of the database.

Choosing the correct character set, collation, and encoding properties for your database is primarily
determined by:

● The sort order you require. Generally speaking, you should choose the collation that best sorts the
characters you intend to store in your database.

● The platform of your device. Requirements among supported devices can vary, and some require that
you use UTF-8 to encode your characters. If you need to support multiple devices, you need to
determine whether a database can be shared.

● If you are synchronizing data, which languages and character sets are supported by the consolidated
database. You must ensure that the character sets used in the UltraLite database and the consolidated
database are compatible. Otherwise, data could be lost or become altered in unexpected ways if
characters in one database's character set do not exist in the other's character set. If you have deployed
UltraLite in a multilingual environment, you should also use UTF-8 to encode your UltraLite database.

When you synchronize, the MobiLink server converts characters as follows:

1. The UltraLite database characters are converted to Unicode.

2. The Unicode characters are converted into the consolidated database's character set.

See also
● “UltraLite platform requirements for character set encoding” on page 31
● “UltraLite collation creation parameter” on page 137
● “UltraLite utf8_encoding creation parameter” on page 157
● “Understanding character sets” [SQL Anywhere Server - Database Administration]
● “UltraLite connection parameters” on page 167
● “Character set considerations” [MobiLink - Server Administration]
● “UltraLite case creation parameter” on page 135
● “Securing UltraLite databases” on page 32

Using UltraLite databases

30 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite platform requirements for character set encoding

Each platform has specific character set and encoding requirements.

Windows desktop and Windows Mobile
When using a UTF-8 encoded database on Windows, you should pass wide characters to the database. If
you use UTF-8 encoding on these platforms, UltraLite expects that non-wide string parameters are UTF-8
encoded, which is not a natural character set to use on Windows. The exception is for connection strings,
where string parameters are expected to be in the active code page. However, by using wide characters,
you can avoid this complication.

See also
● “UltraLite utf8_encoding creation parameter” on page 157
● “Understanding character sets” [SQL Anywhere Server - Database Administration]
● “UltraLite connection parameters” on page 167
● “Character set considerations” [MobiLink - Server Administration]
● “Securing UltraLite databases” on page 32

UltraLite supported collations

The following table lists the supported CHAR collations in UltraLite. You can also generate the list by
executing the following command:

ulinit -Z

Collation label Description

1250LATIN2 Code Page 1250, Windows Latin 2, Central/Eastern European

1250POL Code Page 1250, Windows Latin 2, Polish

1251CYR Code Page 1251, Windows Cyrillic

1252LATIN1 Code Page 1252, Windows Latin 1, Western

1252NOR Code Page 1252, Windows Latin 1, Norwegian

1252SPA Code Page 1252, Windows Latin 1, Spanish

1252SWEFIN Code Page 1252, Windows Latin 1, Swedish/Finnish

1253ELL Code Page 1253, Windows Greek, ISO8859-7 with extensions

1254TRK Code Page 1254, Windows Turkish, ISO8859-9 with extensions

1254TRKALT Code Page 1254, Windows Turkish, ISO8859-9 with extensions, I-dot e als I-no-dot

Creating and configuring UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 31



Collation label Description

1255HEB Code Page 1255, Windows Hebrew, ISO8859-8 with extensions

1256ARA Code Page 1256, Windows Arabic, ISO8859-6 with extensions

1257LIT Code Page 1257, Windows Baltic Rim, Lithuanian

874THAIBIN Code Page 874, Windows Thai, ISO8859-11, binary ordering

932JPN Code Page 932, Japanese Shift-JIS with Microsoft extensions

936ZHO Code Page 936, Simplified Chinese, PRC GBK

949KOR Code Page 949, Korean KS C 5601-1987 Encoding, Wansung

950ZHO_HK Code Page 950, Traditional Chinese, Big 5 Encoding with HKSCS

950ZHO_TW Code Page 950, Traditional Chinese, Big 5 Encoding

EUC_CHINA Simplified Chinese, GB 2312-80 Encoding

EUC_JAPAN Japanese EUC JIS X 0208-1990 and JIS X 0212-1990 Encoding

EUC_KOREA Code Page 1361, Korean KS C 5601-1992 8-bit Encoding, Johab

EUC_TAIWAN Code Page 964, EUC-TW Encoding

ISO1LATIN1 ISO8859-1, ISO Latin 1, Western, Latin 1 Ordering

ISO9LATIN1 ISO8859-15, ISO Latin 9, Western, Latin 1 Ordering

ISO_1 ISO8859-1, ISO Latin 1, Western

ISO_BINENG Binary ordering, English ISO/ASCII 7-bit letter case mappings

UTF8BIN UTF-8, 8-bit multibyte encoding for Unicode, binary ordering

Securing UltraLite databases
By default, UltraLite databases are unencrypted on disk. When using a viewing tool such as a hex editor,
text and binary columns can be read. To encrypt data for greater security, consider the following options:

● Obfuscation Also known as simple encryption, this option provides protection against casual
attempts to access data in the database. It does not provide as much security as strong encryption.
Obfuscation has a minimal performance impact. You enable obfuscation with the obfuscate creation
parameter. End users do not need to supply a corresponding connection parameter. You do not need

Using UltraLite databases

32 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



any special configuration to use simple obfuscation on your device. See “UltraLite obfuscate creation
parameter” on page 146.

● AES 256-bit strong encryption UltraLite databases can be strongly encrypted using the AES 256-
bit algorithm, which is the same algorithm used to encrypt SQL Anywhere databases. Strong
encryption provides security against skilled and determined attempts to gain access to the data, but has
a significant performance impact. You set encryption in the wizards by selecting the Encrypt
Database option and then selecting AES Strong Encryption. Using a creation utility, you set the key
with the key connection parameter. This same parameter is used by end users when connecting to the
database after it has been created. You do not need any special configuration to use AES encryption
on your device. See “UltraLite fips creation parameter” on page 142.

● AES FIPS 140-2 compliant encryption UltraLite provides encryption libraries compliant with
the FIPS 140-2 US and Canadian government standard (using a Certicom certified cryptographic
module). You set FIPS compliant encryption with the fips creation parameter. The user must supply
the required key in their connection string. AES FIPS encryption requires that you configure your
device appropriately. See “Deploy UltraLite with AES_FIPS database encryption” on page 46, and
“UltraLite fips creation parameter” on page 142.

Note
Both the FIPS and AES database encryption types use 256-bit AES. Therefore, if you use the same
encryption key, the database is encrypted the same way irrespective of the standard you choose.

Caution
You can change the encryption key after the database has been created, but only under extreme caution. See:

● UltraLite for C++: “ChangeEncryptionKey method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ChangeEncryptionKey method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “changeEncryptionKey method” [UltraLite - M-Business

Anywhere Programming]

This operation is costly and is non-recoverable: if your operation terminates mid-course, you will lose
your database entirely.

For strongly encrypted databases, be sure to store a copy of the key in a safe location. If you lose the
encryption key there is no way to access the data, even with the assistance of technical support. The
database must be discarded and you must create a new database.

See also
● “UltraLite fips creation parameter” on page 142
● “UltraLite obfuscate creation parameter” on page 146
● “UltraLite DBKEY connection parameter” on page 174
● “Deploy UltraLite with TLS-enabled synchronization” on page 47
● UltraLite.NET: “Encryption and obfuscation” [UltraLite - .NET Programming]
● UltraLite for C++: “Encrypting data” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Database encryption and obfuscation” [UltraLite - M-Business

Anywhere Programming]

Creating and configuring UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 33



Connecting to an UltraLite database
Any application that uses a database must establish a connection to that database before any transactions
can occur. An application can be an UltraLite command line utility, a connection window from either
Sybase Central tool or Interactive SQL, or your own custom application.

By connecting to an UltraLite database, you form a channel through which all activity from the
application takes place. Each connection attempt creates a database specific SQL transaction.

UltraLite database connection parameters
UltraLite supports the following connection parameters.

Parameter name Description

CACHE_SIZE Defines the size of the database cache. See “UltraLite CACHE_SIZE
connection parameter” on page 167.

COMMIT_FLUSH Determines when committed transactions are flushed to storage after
a commit call. See “UltraLite COMMIT_FLUSH connection param-
eter” on page 170.

CON Specifies a name of the current connection. See “UltraLite CON con-
nection parameter” on page 171.

DBF, CE_FILE, desktop, de-
vice, and NT_FILE

At creation time these parameters set the location of the database.
For subsequent connections, they tell UltraLite where to find the file.

You can use DBF if you are creating a single-platform application or
are connecting to an UltraLite administration tool. Use the other plat-
form-specific versions if you are programming an UltraLite client
that connects to different platform-specific databases. See:

● “UltraLite DBF connection parameter” on page 172
● “UltraLite CE_FILE connection parameter” on page 169
● “UltraLite desktop connection parameter” on page 175
● “UltraLite device connection parameter” on page 177
● “UltraLite NT_FILE connection parameter” on page 179

DBN Identifies a running database by name rather than file name. See “Ul-
traLite DBN connection parameter” on page 174.

DBKEY Specifies the encryption key used to encrypt the database. See “Ultra-
Lite DBKEY connection parameter” on page 174.

Using UltraLite databases

34 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Parameter name Description

MIRROR_FILE Specifies the name of a database mirror file. See “UltraLite MIR-
ROR_FILE connection parameter” on page 178.

PWD At creation-time, sets the initial password for a user. For subsequent
connections, supplies the password for the user ID. See “UltraLite
PWD connection parameter” on page 180.

RESERVE_SIZE Pre-allocates the file system space required for your UltraLite data-
base without actually inserting any data. See “UltraLite RE-
SERVE_SIZE connection parameter” on page 181.

START Specifies the location of the UltraLite engine executable. See “Ultra-
Lite START connection parameter” on page 182.

TEMP_DIR Specifies the name of the directory (which must already exist) into
which UltraLite will place a temporary file (with a name derived
from the database name). See “UltraLite TEMP_DIR connection pa-
rameter” on page 183.

UID At creation time, sets the initial user ID. For subsequent connections,
identifies a user to the database. The user ID must be one of up to
four user IDs stored in the UltraLite database. See “UltraLite UID
connection parameter” on page 184.

See also
● “Interpreting user ID and password combinations” on page 40

Supplying UltraLite connection parameters

Connection details can be collected via different methods, depending on whether you are connecting from
a custom UltraLite application or from one of the SQL Anywhere administration tools for UltraLite.

Method

Prompt the end user at connection time when you require a user to authenticate as one of the four sup-
ported database users. The UltraLite graphical administration tools use a connection object.

You can use the UltraLite.Net ULConnectionParms object or the UltraLite for M-Business Anywhere
ConnectionParms object to aid connection parameter collection and inspection. See:

● UltraLite.NET: “ULConnectionParms class” [UltraLite - .NET Programming] and
● UltraLite for M-Business Anywhere: “ConnectionParms class” [UltraLite - M-Business Anywhere

Programming]

Connecting to an UltraLite database

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 35



Method

Use a fixed connection string if user authentication is not required. Common reasons for not authenticat-
ing a user may be because the deployment is to a single-user device, or that it is too awkward to prompt
a user each time they start the application. The UltraLite command line utilities typically use a connec-
tion string if a connection to a database is required. You can also program your UltraLite application to
read the values from a stored file, or hard code it into your application. See:

● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite C/C++ : “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Busi-

ness Anywhere Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]

dbisql is the only tool that supports ULSQLCONNECT. Use the ULSQLCONNECT environment vari-
able if you want to store connection parameters you use repeatedly. By storing parameters, you don't
need to provide them repeatedly during the development phase. Values you supply as a parameter in
ULSQLCONNECT become defaults for the UltraLite desktop administration tools.

1 Typically user-supplied.

2 For desktop administration tools only.

3 Typically hard coded or stored in a file.

See also
● “Precedence of connection parameters for UltraLite administration tools” on page 38

Specifying file paths in an UltraLite connection parameter

The physical storage of your device determines:

● Whether the database is saved as a file.
● What naming conventions you must follow when identifying your database.

Note
Use absolute file paths when using the UltraLite engine to support multi-process access to a database
since the engine may be started in different locations

The DBF parameter is most appropriate when targeting a single deployment platform or when using
UltraLite desktop administration tools. For example:

ulload -c DBF=sample.udb sample.xml

Windows Mobile tip
You can use the UltraLite administration tools to administer databases already deployed to an attached
device. See “Windows Mobile” on page 37.

Using UltraLite databases

36 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Otherwise, if you are writing a cross-platform application, use the platform specific (CE_DBF, or
NT_DBF) file connection parameters to construct a universal connection string. For example:

Connection = DatabaseManager::OpenConnection("UID=JDoe;PWD=ULdb;CE_DBF=
\database\MyCEDB.udb;NT_FILE=MyDB.udb")

Desktop
Desktops allow either absolute or relative paths.

Windows Mobile
Windows Mobile devices require that all paths be absolute.

You can administer a Windows Mobile database on either the desktop or the attached device. To
administer a database on a Windows Mobile device, ensure you prefix the absolute path with wce:\. For
example, using the ulunload utility:

ulunload -c DBF=wce:\UltraLite\myULdb.udb c:\out\ce.xml

In this example, UltraLite unloads the database from the Windows Mobile device to the ce.xml file in the
Windows desktop folder of c:\out.

If you are using the ulunloadold or ulunload utilities to administer a database on the Windows Mobile
device directly, UltraLite cannot back up the database before the unload or action occurs. You must
perform this action manually before running these utilities.

See also
● “UltraLite DBF connection parameter” on page 172
● “UltraLite NT_FILE connection parameter” on page 179
● “UltraLite CE_FILE connection parameter” on page 169

Opening UltraLite connections with connection strings

A connection string is a set of parameters that is passed from an application to the runtime so that a
connection can be defined and established.

There are three steps that take place before a connection to a database is opened:

1. The parameter definition phase

You must define the connection via a combination of supported parameters. Some connection
parameters are always required to open a connection. Others are used to adjust database features for a
single connection.

How these parameters are supplied can vary depending on whether you are connecting from an
UltraLite administration tool or an UltraLite application. See “Supplying UltraLite connection
parameters” on page 35.

2. The string assembly phase

Connecting to an UltraLite database

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 37



Either you or the application assembles the supplied parameters into a string. Connection strings
contain a list of parameters defined as keyword=value pairs in a semicolon delimited list. See
“Assembling parameters into UltraLite connection strings” on page 38.

For example, a connection string fragment that supplies a file name, user ID, and password is written
as follows:

DBF=myULdb.udb;UID=JDoe;PWD=token

3. The transmittal phase

When the connection string has been assembled, it is passed to the database via an UltraLite API to
the UltraLite runtime for processing. If the connection attempt is validated, the connection is granted.
Connection failures can occur if:

● The database file does not exist.
● Authentication was unsuccessful.

Assembling parameters into UltraLite connection strings

An assembly of connection parameters supplied in any application's connection code (be it an
administration tool or a custom UltraLite application) is called a connection string. An application can
parse the fields of a ConnectionParms object into a string, or you can type a connection string on a single
line with the parameter names and values separated by semicolons:

parameter1=value1;parameter2=value2

The UltraLite runtime ensures that the parameters are assembled into a connection string before
establishing a connection with it. For example, if you use the ulload utility, the following connection
string is used to load new XML data into an existing database. You cannot connect to the named database
file until you supply this string:

ulload -c "DBF=sample.udb;UID=DBA;PWD=sql" sample.xml

UltraLite generates an error when it encounters an unrecognized connection parameter.

Precedence of connection parameters for UltraLite administration tools
All the UltraLite administration tools follow a specific order of connection parameter precedence:

● O/S-specific options take precedence over nonspecific options. For example: CE_DBF takes
precedence over DBF on CE devices

● If specified, the CE_FILE, desktop, device, and NT_FILE parameters always take precedence over DBF.

● If you supply duplicate parameters in a connection string, the last one supplied is used. All others are
ignored.

● Parameters in the connection string take precedence over those supplied in the ULSQLCONNECT
environment variable or a connection object.

Using UltraLite databases

38 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● If no value is supplied for both UID and PWD in either the connection string or ULSQLCONNECT,
the defaults of UID=DBA and PWD=sql are assumed.

Limitations
Any leading and/or trailing spaces in connection string parameter values are ignored. Connection
parameter values cannot include leading single quotes ('), leading double quotes ("), or semicolons (;).

See also
● “Storing UltraLite parameters with the ULSQLCONNECT environment variable” on page 40

UltraLite user authentication

You cannot disable UltraLite user authentication. A successful connection requires that a user be
authenticated. Unlike SQL Anywhere, UltraLite database users are created and managed solely for
authentication and not for object ownership. Once a user authenticates and connects to the database, the
user has unrestricted access to everything in that database, including schema data.

You can only add or modify UltraLite users from an existing connection. Therefore, any changes to your
UltraLite user base can only occur after you have connected with a valid user ID and password.

If this is your first time connecting, the UID and PWD are the same values set when you first created the
database. If you did not set an initial user, then you must authenticate with the defaults of UID=DBA and
PWD=sql.

Bypass authentication

Although you cannot disable authentication, you can bypass it by using UltraLite defaults when you
create and connect to the database.

If you do not supply the UID and the PWD parameters, UltraLite assumes the defaults of UID=DBA and
PWD=sql.

To bypass authentication in UltraLite

1. Do not set the UID and PWD connection parameters when you create a database.

2. Do not delete or modify the default user in your UltraLite database.

3. Do not set the UID and PWD connection parameters when you connect to the database you have created.

See also
● “Limitations” on page 69
● “Working with UltraLite users” on page 69
● “Interpreting user ID and password combinations” on page 40

Connecting to an UltraLite database

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 39



Interpreting user ID and password combinations

UltraLite allows you to set one, none, or both of the UID and PWD parameters—except when a partial
definition prevents a user from being identified by UltraLite. The table below tells you how UltraLite
interprets incomplete user definitions.

If you create a database with... It has this impact...

No user ID or password. UltraLite creates a default user with a UID of DBA and PWD of
sql. You do not need to supply these connection parameters upon fu-
ture connection attempts.

The user ID parameter only. UltraLite creates a default user with a UID of JaneD and an empty
PWD. When connecting, you must always supply the UID parame-
ter. The PWD parameter is not required.

The password parameter only. UltraLite generates an error. UltraLite cannot set a password with-
out a user ID.

See also
● “UltraLite user authentication” on page 39
● “Limitations” on page 69
● “Working with UltraLite users” on page 69

Storing UltraLite parameters with the ULSQLCONNECT
environment variable

The ULSQLCONNECT environment variable is optional, and is not set by the installation program.
ULSQLCONNECT contains a list of parameters defined as keyword=value pairs in a semicolon delimited
list.

Use ULSQLCONNECT to avoid having to supply the same connection parameters repeatedly to dbisql
during development. You cannot use ULSQLCONNECT for custom applications.

Caution
Do not use the pound character (#) as an alternative to the equal sign; the pound character is ignored by
dbisql. All platforms supported by UltraLite allow you to use = inside an environment variable setting.

To set ULSQLCONNECT for UltraLite desktop tools

1. Run the following command:

set ULSQLCONNECT="parameter=value; ..."

Using UltraLite databases

40 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



2. If dbisql requires any additional parameters or if you need to override default values set with this
environment variable, ensure you set these values. User supplied values always take precedence over
this environment variable.

See also
● “Precedence of connection parameters for UltraLite administration tools” on page 38
● “Supplying UltraLite connection parameters” on page 35

Example
To use ULSQLCONNECT to connect to a file named c:\database\myfile.udb and authenticate the user
demo with the password test, set the following variable in your ULSQLCONNECT environment variable:

set ULSQLCONNECT="DBF=c:\database\myfile.udb;UID=demo;PWD=test"

By setting this environment variable, you no longer need to use the -c connection option for these defaults
values—unless you need to override these values.

For example, if you were using ulload to add additional information to your database from an extra.xml
file, you would run the following command:

ulload -a extra.xml

Deploying UltraLite to devices
In the majority of cases, development occurs on a Windows desktop with the final release target for
UltraLite being the mobile device. However, depending on your deployment environment, you can use
various deployment mechanisms to install UltraLite.

UltraLite application projects may evolve with different iterations of the same UltraLite database: a
development database, a test database, and a deployed production database. During the lifetime of a
deployed database application, changes and improvements are first made in the development database,
then propagated to the test database, before finally being distributed to the production database.

Key considerations
There are two primary considerations for deploying your UltraLite solution:

● Deploying the files that provide UltraLite functionality (the runtime files)
● Deploying the UltraLite database file or files (used by the runtime files and containing application data)

Deploying UltraLite to devices

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 41



Deploying the runtime files
Deploying the runtime files depends primarily on the language used to develop your solution (C/C+
+, .NET, M-Business, Objective C) and whether the UltraLite engine is required. The UltraLite engine is
required if:

● multiple processes access the same database file at potentially the same time (by "same time" we
mean multiple processes have connections open to the same database at the same time).

● Central Administration is used to manage the UltraLite application database.

The alternative to the UltraLite engine is the UltraLite "in-process" runtime, which can be simpler to
deploy and provide improved data access performance because process boundaries are not crossed
(however it means that multiple applications cannot have connections open to the same database at the
same time). The engine is available on:

● Desktop Windows (32 and 64 bit), Linux (32 bit) & Mac (64 bit)

● Device Windows Mobile devices

The engine executable can be found in %sqlany%\ultralite\<platform>\<chip>\.... In some cases, there is
a version of the engine under <chip>_dev (for example x86_dev). This version of the engine contains
development-time logging functionality that can be used to diagnose problems on platforms where it's
difficult to debug. The logging output is intended to be used by Sybase engineers rather than customers.
For production systems, use the version of the engine that is NOT in the _dev directory.

Deployment when the UltraLite engine is used
If your application uses the UltraLite engine, then you need to concern yourself with deploying all the
files required by the engine, and all the files required by the client using it. The client files are programming-
language specific. The engine files are independent of the programming language.

The engine consists of an executable (uleng12) and optional shared libraries that contain specific features.
See “Deploy multiple UltraLite applications with the UltraLite engine” on page 44 and “UltraLite
Engine utility (uleng12)” on page 194 for further information.

Deploying the UltraLite client files
The client files are closely associated with the application, and depend on the programming language of
the application.

C++ development
When building a C/C++ application, you can either link all the UltraLite client code into your application
or, if you are targeting Windows or Windows Mobile, you can load the client code dynamically at
runtime. Linking the UltraLite client code into your application means you do not need to deploy any
additional files with your application and the UltraLite engine. To link all the UltraLite client code into
your application, link with:

Platform Library Additional files to deploy

Windows x64 and x86 ulrtc.lib none

Using UltraLite databases

42 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Platform Library Additional files to deploy

Windows Mobile/CE ulrtc.lib none

Linux libulrtc.a none

Not supported on Mac OS X/iPhone N/A N/A

If you want to load the UltraLite client code dynamically at runtime, link your application code with:

Platform Library Additional files to deploy

Windows x64 and x86 ulimpc.lib ulrtc12.dll

Windows Mobile/CE ulimpc.lib ulrtc12.dll

Not supported on Linux N/A N/A

Not supported on Mac OS X/iPhone N/A N/A

.NET development
When building a .NET application using the UltraLite client, be sure to deploy ulnetclient12.dll along
with your .NET assemblies. See “System requirements and supported platforms” [UltraLite - .NET
Programming] for more information on required files for deployment.

Deployment when the in-process version of UltraLite is used
When building a C/C++ application that does not use the UltraLite engine, you can either link to a static
UltraLite runtime library (this makes sure all the UltraLite code is linked into your application) or, on
Windows and Windows Mobile, you can link to an import library and load the UltraLite runtime code
dynamically when the application starts. For Windows and Windows Mobile, if you link to the import
library, then you need to deploy ulrt12.dll along with your application. For more information on
compiling and linking your application, see “Developing applications using the UltraLite C++ API”
[UltraLite - C and C++ Programming]. If you are linking with the static runtime library, there are no
additional files to deploy with your application.

Initial installation
Initially installing your UltraLite solution on a device is a required step so that the device can be
continuously maintained.

See also
● “Using MobiLink file transfers” on page 106
● “UltraLite clients” on page 93
● “Using ActiveSync with UltraLite on Windows Mobile” on page 108
● “Deploying UltraLite schema upgrades” on page 51
● “ALTER DATABASE SCHEMA FROM FILE statement [UltraLite]” on page 368

Deploying UltraLite to devices

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 43



Deploying UltraLite databases

Once you get the UltraLite binaries deployed properly, you will want to determine how to get an initial
UltraLite database file on the device. There are several ways to get your initial UltraLite database file:

● Central Administration can be used to send down the initial UDB file, or send down a command to
create the initial database file and execute SQL to give it schema. See “Central administration of
remote databases” [MobiLink - Server Administration].

● The application can be programmed to create the initial database file.
● The method to deploy the application can include the initial database file in its file list.
● The application can be programmed to download the initial file if it doesn't exist.

Deploying upgrades to the UltraLite runtime files

When you change your application to use an upgraded version of the UltraLite runtime files (for example,
when you move from UltraLite version 11 to version 12) you will most likely need to rebuild your
application and re-link with the required UltraLite runtime libraries or assemblies. When you link with a
new version of the UltraLite libraries, you should be sure to deploy all updated versions of the UltraLite
files as described above. Note also that UltraLite clients must closely match with UltraLite engines (the
major versions must match). See “Upgrading databases created with previous versions of UltraLite” [SQL
Anywhere 12 - Changes and Upgrading].

Deploying changes to the UltraLite database files
When your application changes and you need to change the schema of your database, you can use Central
Administration to send a new version of the UltraLite database file to the device running the application.
See “Central administration of remote databases” [MobiLink - Server Administration].

Alternatively, you can write logic in your application that performs the upgrade.

Deploy multiple UltraLite applications with the UltraLite
engine

The UltraLite engine is a data management module that manages concurrent UltraLite database
connections from applications on Windows (32 and 64 bit), Linux (32 bit) & Mac (64 bit). The engine is
automatically installed to the desktop with the SQL Anywhere installer. Therefore, you only need to
deploy the engine to Windows Mobile devices, if required.

To deploy uleng to a Windows Mobile device

1. Copy the uleng12.exe file and the appropriate *.dll files. The *.dll files you copy should include any
database encryption, synchronization encryption, or compression *.dll files required.

Using UltraLite databases

44 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Filename Ba-
sic

ECC
TLS

RSA
TLS

FIPS
RSA TLS

HTT
PS

Com-
pres-
sion

FIPS AES
data en-
cryption

uleng12.exe X X X X X X X

mlcecc12.dll 1 X X

mlcrsa12.dll1 X X

mlcrsafips12.dll X X

mlczlib12.dll X

sbgse2.dll X X X

ulfips12.dll X

ulrt12.dll2 X X X X X X X

1 File not needed if an application links directly against ulecc.lib and ulrsa.lib respectively.

2 File only needed if an application links against ulimp.lib.

2. Save the files to an appropriate directory. Typically you use one of the following destination directories:

● The \windows directory. This location is the recommended location, as the client automatically
looks for the engine in this location. See “Starting the UltraLite engine” on page 45. for a
complete list of where UltraLite looks for the engine.

● The directory for other UltraLite application files.

3. If you use any location other than the \windows directory, include the START connection parameter.
This parameter starts the UltraLite engine when the application connects the UltraLite database.

For example, a connection string to the database or connection code for a Windows Mobile client
application, might use this START parameter:

"START=\Program Files\MyApp\uleng12.exe"

See also
● “UltraLite START connection parameter” on page 182
● “Deploy UltraLite with AES_FIPS database encryption” on page 46
● “Deploy UltraLite with TLS-enabled synchronization” on page 47

Starting the UltraLite engine
An UltraLite client application can automatically start the UltraLite engine, and will need to do that unless
it explicitly provides the location of the engine (see “UltraLite START connection
parameter” on page 182).

Deploying UltraLite to devices

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 45



When attempting to automatically start the UltraLite engine, an UltraLite client will look in the following
locations (depending on the platform):

Technique Windows Mobile

Windows
desktop

1. Directory of the application that's starting it

2. The current working directory

3. The system path

4. The SQL Anywhere install directory (either under bin32 or bin64), depending on
whether the client is 32-bit or 64-bit

Windows
Mobile/CE

1. \Windows\

2. \ (the root directory)

3. \UltraLiteDB\

Linux 1. The directory of the application that's auto-starting it

2. install-dir/bin32

Mac N/A

iPhone N/A

Deploy UltraLite with AES_FIPS database encryption
Strong database encryption technology makes a database inoperable and inaccessible without a key (a
type of a password). An algorithm encodes the information contained in your database and transaction log
files so they cannot be deciphered. However, database encryption requires that you deploy the appropriate
number of files with your database.

When you connect to UltraLite with the -fips option, you can run databases encrypted with AES or
AES_FIPS strong encryption. To ensure you are running with AES_FIPS, use -fips=1.

If you are encrypting your database with AES FIPS encryption, you must configure and deploy your
device for each platform.

To set up your application and device for an AES FIPS encrypted UltraLite database

1. Create an UltraLite database with the property fips=1. See “UltraLite fips creation
parameter” on page 142.

2. Use the following connection parameter in your application's connection string: DBKEY=key. See
“UltraLite DBKEY connection parameter” on page 174.

Using UltraLite databases

46 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



3. Ensure that you deploy the appropriate files to your device.

Windows desktop, Windows Mobile, require ulfips12.dll and sbgse2.dll. The Windows Mobile
component also requires the component DLL files.

See also
● “Deploy UltraLite with TLS-enabled synchronization” on page 47
● UltraLite.NET: “Encryption and obfuscation” [UltraLite - .NET Programming]
● UltraLite for C++: “Encrypting data” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Database encryption and obfuscation” [UltraLite - M-Business

Anywhere Programming]
● “UltraLite fips creation parameter” on page 142
● “Securing UltraLite databases” on page 32

Deploy UltraLite with TLS-enabled synchronization

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

UltraLite client applications of MobiLink must be configured to use enable TLS synchronization. Transport-
layer security enables encryption, tamper detection, and certificate-based authentication. See “Transport-
layer security” [SQL Anywhere Server - Database Administration].

Platform support
RSA, ECC, and FIPS encryption are not available on all platforms. For information about which
platforms support which encryption method, see http://www.sybase.com/detail?id=1061806.

To set up TLS synchronization on an UltraLite client application and device

1. Enable encrypted synchronization by calling one of the following in your application code:

● To enable RSA encryption, call ULEnableRsaSyncEncryption. See
“ULEnableRsaSyncEncryption method” [UltraLite - C and C++ Programming].

● To enable ECC encryption, call ULEnableEccSyncEncryption. See
“ULEnableEccSyncEncryption method” [UltraLite - C and C++ Programming].

2. Set the synchronization information stream to either TLS or HTTPS.

3. If you are enabling ECC or FIPS encryption, you also need to:

● ECC Set the tls_type network protocol option to ECC. See “tls_type” [MobiLink - Client
Administration].

● FIPS Set the fips network protocol option to Yes. See “fips” [MobiLink - Client Administration].

Deploying UltraLite to devices

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 47

http://www.sybase.com/detail?id=1061806


4. Ensure that you have linked to the appropriate libraries:

Platform Linking RSA encryption ECC encryption FIPS encryption

Windows desk-
top

static1 ulrsa.lib ulecc.lib none

Windows desk-
top

dynamic2 none none none

Windows Mo-
bile

static1 ulrsa.lib ulecc.lib none

Windows Mo-
bile

dynamic 1 none none none

1 You must also link to ulimp.lib.

5. Ensure that the appropriate files are copied to the device:

Platform Linking RSA encryption ECC encryption FIPS encryption

Windows
desktop

static none none mlcrsafips12.dll

sbgse2.dll

Windows
desktop

dynamic1 mlcrsa12.dll mlcecc12.dll mlcrsafips12.dll

sbgse2.dll

Windows Mo-
bile

static none none mlcrsafips12.dll

sbgse2.dll

Windows Mo-
bile

dynamic1 mlcrsa12.dll mlcecc12.dll mlcrsafips12.dll

sbgse2.dll

Windows Mo-
bile compo-
nents and Ul-
traLite engine

static2 mlcrsa12.dll mlcecc12.dll mlcrsafips12.dll

sbgse2.dll

1 You must also deploy ulrt12.dll.

2 You must also deploy your component .dll file and/or uleng12.exe.

Using UltraLite databases

48 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “Configuring UltraLite clients to use transport-layer security” [SQL Anywhere Server - Database

Administration]
● UltraLite.NET: “Encryption and obfuscation” [UltraLite - .NET Programming]
● UltraLite for C++: “Encrypting data” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Database encryption and obfuscation” [UltraLite - M-Business

Anywhere Programming]

Deploy the ActiveSync provider for UltraLite
The UltraLite ActiveSync provider is a software module that let users gain access to their devices from
the desktop. Like other software components, you need to deploy the necessary files to the device to
ensure that UltraLite operates with Windows Mobile ActiveSync.

During development you install UltraLite onto your desktop with the SQL Anywhere installer. However,
when you deploy UltraLite to the end user, you must manually install and register the ActiveSync
provider on the end user's computer. This requirement ensures that ActiveSync knows when to call a
specific instance of a provider for a specific application.

● mlasinst.exe Installs the ActiveSync provider and registers it with the ActiveSync Manager. This
utility also registers applications with the ActiveSync provider for synchronization.

● mlasdesk.dll The DLL that is loaded by the ActiveSync Manager on the desktop. mlasinst.exe
registers the location of this file with the ActiveSync Manager.

● mlasdev.dll The DLL that is loaded by the ActiveSync Manager on the device. mlasinst.exe
deploys this file to the correct location on the device.

● dblgen12.dll The language resource library.

For a list of supported provider platforms, see http://www.sybase.com/detail?id=1002288.

To install ActiveSync applications

1. Ensure that the end-user has:

● The ActiveSync Manager installed.

● The ActiveSync provider files copied from a development computer to the user's hard drive.

2. Run mlasinst to install a provider for ActiveSync. You can also use it to register and deploy the
UltraLite application to the user's Windows Mobile device—depending on the command line syntax
you use. If your UltraLite application uses multiple files, you must manually copy the required files.

The following example assumes that both mlasdesk.dll and mlasdev.dll are in the current directory.
The -k and -v options are used. The -p and -x options are command line options for the application
when it is started by ActiveSync.

mlasinst "C:\My Files\myULapp.exe" "\Program Files\myULapp.exe"
   "My Application" MYAPP -p -x -v -k

Deploying UltraLite to devices

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 49

http://www.sybase.com/detail?id=1002288


If you were to use this utility to deploy a pre-compiled CustDB for the ARM 5.0 processor, the
command line would be similar to the following one:

mlasinst -v "install-dir\UltraLite\ce\arm.50"
"install-dir\UltraLite\ce\arm.50\custdb.exe" custdb.exe CustDB CUSTDBDEMO

Note
You can also use the ActiveSync to register your UltraLite application at a later time if you choose.
See “Register applications with the ActiveSync Manager” on page 50.

3. Restart your computer so ActiveSync can recognize the new provider.

4. Enable the MobiLink provider.

a. From the ActiveSync window, click Options.

b. Check MobiLink Clients in the list and click OK to activate the provider.

c. To see a list of registered applications, click Options, choose MobiLink Clients, and click
Settings.

See also
● “Register applications with the ActiveSync Manager” on page 50
● “Microsoft ActiveSync Provider Installation utility (mlasinst)” [MobiLink - Client Administration]

Register applications with the ActiveSync Manager

You can register your application for use with ActiveSync either by using the ActiveSync Provider
Installation utility or using the ActiveSync Manager itself. This section describes how to use the
ActiveSync Manager.

To register an application for use with the ActiveSync Manager

1. Launch ActiveSync.

2. From the ActiveSync window, choose Options.

3. From the list of information types, choose MobiLink Clients and click Settings.

4. In the MobiLink Synchronization window, click New.

5. Enter the following information for your application:

● Application name A name identifying the application that appears in the ActiveSync user
interface.

● Class name The registered class name for the application. See “Assigning class names for
applications” [UltraLite - C and C++ Programming].

● Path The location of the application on the device.

Using UltraLite databases

50 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● Arguments Any command line arguments to be used when ActiveSync starts the application.

6. Click OK to register the application.

See also
● “Microsoft ActiveSync Provider Installation utility (mlasinst)” [MobiLink - Client Administration]

Deploying UltraLite schema upgrades
To make schema upgrades, use the SQL statement ALTER DATABASE SCHEMA FROM FILE.

The upgrade process

Caution
Do not reset a device during a schema upgrade. If you reset the device during a schema upgrade, data will
be lost and the UltraLite database marked as "bad."

1. Both the new and existing database schemas are compared to see what differs.

2. The schema of the existing database is altered.

3. Rows that do not fit the new schema are dropped. For example:

● If you add a uniqueness constraint to a table and there are multiple rows with the same values, all
but one row will be dropped.

● If you try to change a column domain and a conversion error occurs, then that row will be
dropped. For example, if you have a VARCHAR column and convert it to an INT column and the
value for a row is ABCD, then that row is dropped.

● If your new schema has new foreign keys where the foreign row does not have a matching primary
row, these rows are dropped.

4. When rows are dropped, a SQLE_ROW_DROPPED_DURING_SCHEMA_UPGRADE (130)
warning is raised.

To upgrade the UltraLite schema

1. Create a SQL script of DDL statements that define the new schema. The character set of the SQL
script file must match the character set of the database you want to upgrade.

You should use either ulinit or ulunload to extract the DDL statements required for your script. By
using these utilities with the following options, you ensure that the DDL statements are syntactically
correct.

● If you are using ulunload, use the -n and -s [ file ] options.

● If you are using ulinit, use the -l [ file ] option.

Deploying UltraLite to devices

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 51



If you do not use either ulunload or ulinit, review the script and ensure that:

● You do not rename tables, columns, or publications. RENAME operations are not supported. If
you rename a table, it is processed as a DROP TABLE and CREATE TABLE operation.

● You have not included non-DDL statements. Including non-DDL statements may not have the
effect you expect.

● Words in the SQL statement are separated by spaces.

● Only one SQL statement can appear in each line.

● Comments are prepended with double hyphens (-), and only occur at the start of a line.

2. Backup the database against which the upgrade will be performed.

3. Run the new statement. For example:

ALTER DATABASE SCHEMA FROM FILE 'MySchema.sql';

Error notification
Because UltraLite error callback is active during the upgrade process, you are notified of errors during the
conversion process. For example, SQLE_CONVERSION_ERROR reports all values that could not be
converted in its parameters. Errors do not mean the process failed. The final SQL code after the statement
returns is a 130 warning in this case. These warnings describe operations of the conversion process and do
not stop the upgrade process.

See also
● “ALTER DATABASE SCHEMA FROM FILE statement [UltraLite]” on page 368
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Database Unload utility (ulunload)” on page 214
● “UltraLite SQL statements” on page 366
● “Comments in UltraLite” on page 226

Working with UltraLite databases

Working with UltraLite tables and columns
Tables are used to store data and define the relationships for data in them. Tables consist of rows and
columns. Each column carries a particular kind of information, such as a phone number or a name, while
each row specifies a particular entry.

When you first create an UltraLite database, the only tables you will see are the system tables. System
tables hold the UltraLite schema. You can hide or show these tables from Sybase Central as needed.

You can then add new tables as required by your application. You can also browse data in those tables,
and copy and paste data among existing tables in the source database or even among other open
destination databases.

Using UltraLite databases

52 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Row packing and table definitions
UltraLite works with rows in two formats:

● Unpacked rows are the uncompressed format. Each row must be unpacked before individual
column values can be read or written.

● Packed rows are the compressed representation of the unpacked row, where each of the column
values is compressed so that the entire row takes up as little memory as possible. The size of a packed
row depends entirely on the values in each column: for example, two rows can belong to the same
table, but can differ significantly in their packed size. Note also that LONG BINARY and LONG
VARCHAR columns are stored separate from the packed row.

UltraLite has a limitation that a packed row must fit on a database page. Since LONG BINARY and
LONG VARCHAR columns are not stored with the packed row, they can exceed the page size.

It is important to understand that table definitions describe the row before the UltraLite runtime packs the
data. Because the size of a packed row depends on the values in each column, you cannot readily pre-
determine from the table definition whether the packed row requirement is satisfied. For this reason,
UltraLite allows you to define a table where an unpacked row would not fit on a page. To know if a row
fits on a page, you must try inserting or updating the row itself; if a row does not fit, UltraLite detects and
reports this error.

Note
You cannot declare tables to be any large size you require. UltraLite maintains a declared table row size
limit of 64 KB. If you try to define a table where an unpacked row can exceed this maximum, UltraLite
generates a SQL error code of SQLE_MAX_ROW_SIZE_EXCEEDED (-1132).

See also
● “UltraLite page_size creation parameter” on page 146
● “Database tables” [SQL Anywhere 12 - Introduction]
● “Creating a SQL Anywhere database” [SQL Anywhere Server - Database Administration]
● “UltraLite system tables” on page 219

Creating UltraLite tables

You can create new tables to hold your relational data, either with SQL statements in Interactive SQL or
with Sybase Central.

In UltraLite, you can only create base tables, which you declare to hold persistent data. The table and its
data continue to exist until you explicitly delete the data or drop the table. UltraLite does not support
global temporary or declared temporary tables.

Note
Tables in UltraLite applications must include a primary key. Primary keys are also required during
MobiLink synchronization, to associate rows in the UltraLite database with rows in the consolidated
database.

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 53



Sybase Central
In Sybase Central, you can perform these tasks while working with a selected database.

To create an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, right-click Tables and choose New » Table.

3. In the What Do You Want To Name The New Table field, type the new table name.

4. Click Finish.

5. From the File menu, choose Save Table.

Interactive SQL
In Interactive SQL, you can declare columns while creating a new table.

To create an UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE TABLE statement.

For example, the following statement creates a new table to describe the various skills and
professional aptitudes of employees within a company. The table has columns to hold an identifying
number, a name, and a type (for example, technical, or administrative) for each skill.

CREATE TABLE Skills (
   SkillID INTEGER PRIMARY KEY,
   SkillName CHAR( 20 ) NOT NULL,
   SkillType CHAR( 20 ) NOT NULL
);

See also
● “CREATE TABLE statement [UltraLite] [UltraLiteJ]” on page 384
● “Adding a column to an UltraLite table” on page 55

Using allsync and nosync suffixes

You can append either _allsync or _nosync to a table name to control data restriction for synchronization.
You can use these suffixes as an alternative to using publications to control data restrictions. To control
data priority, define one or more publications.

● If you create a table with a name ending in _allsync, all rows of that table are synchronized at each
synchronization—even if they have not changed since the last synchronization.

Using UltraLite databases

54 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Tip
You can store user specific or client specific data in allsync tables. You can then upload the data in the
UltraLite table to a temporary table in the consolidated database on synchronization. Synchronization
scripts can control the data and save you from having to maintain that data in the consolidated database.

● If you create a table with a name ending in _nosync, all rows of that table are excluded from
synchronization. You can use these tables for persistent data that is not required in the consolidated
database's table.

See also
● “Working with UltraLite publications” on page 65
● “Designing synchronization in UltraLite” on page 99
● “Non-synchronizing tables in UltraLite” on page 101
● “Allsync tables in UltraLite” on page 102
● “UltraLite CustDB samples” on page 72

Example
In the CustDB.udb sample database, you can see that one table was declared a nosync table because the
table name is named ULIdentifyEmployee_nosync. Therefore, no matter how data changes in this table, it
is never synchronized with MobiLink and information will not appear in the CustDB.db consolidated
database.

Adding a column to an UltraLite table

You can add a new column easily if the table is empty. However, if the table already holds data, you can
only add a column if the column definition includes a default value or allows NULL values.

You can use either Sybase Central or execute a SQL statement (for example, Interactive SQL) to perform
this task.

Sybase Central
In Sybase Central, you can perform this task while working with a selected table.

To add a new column to an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click Tables.

3. Double-click a table.

4. Click the Columns tab, right-click the white space below the table and choose New » Column.

5. Set the attributes for the new column.

6. From the File menu, choose Save Table.

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 55



Interactive SQL
In Interactive SQL, you can only declare columns while creating or altering a table.

To add columns to a new UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE TABLE statement or ALTER TABLE, and define the columns by declaring the
name, and other attributes.

The following example creates a table for a library database to hold information about borrowed
books. The default value for date_borrowed indicates that the book is borrowed on the day the entry is
made. The date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (
   loaner_name CHAR(100)  PRIMARY KEY,
   date_borrowed          DATE NOT NULL DEFAULT CURRENT DATE,
   date_returned          DATE,
   book                   CHAR(20)
   );

The following example modifies the customer table to now include a column for addresses that can
hold up to 50 characters:

ALTER TABLE customer
ADD address CHAR(50);

See also
● “Choosing object names” [SQL Anywhere Server - Database Administration]
● “Data types in UltraLite” on page 230
● “Choosing column data types” [SQL Anywhere Server - Database Administration]
● “CREATE TABLE statement [UltraLite] [UltraLiteJ]” on page 384
● “ALTER TABLE statement [UltraLite] [UltraLiteJ]” on page 371

Altering UltraLite column definitions

You can change the structure of column definitions for a table by altering various column attributes, or
even deleting columns entirely. The modified column definition must suit the requirements of any data
already stored in the column. For example, you cannot alter a column to disallow NULL if the column
already has a NULL entry.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central
In Sybase Central, you can perform these tasks while working with a selected table.

To alter an existing UltraLite column (Sybase Central)

1. Connect to the UltraLite database.

Using UltraLite databases

56 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



2. In the left pane, double-click Tables.

3. Double-click a table.

4. Click the Columns tab and alter the column attributes.

5. From the File menu, choose Save Table.

Interactive SQL
In Interactive SQL, you can perform these tasks with the ALTER TABLE statement.

To alter an existing UltraLite column (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute an ALTER TABLE statement.

The following examples show how to change the structure of the database. In all these cases, the
statement is committed immediately. So, once you make the change, any item referring to this table may
no longer work.

The following statement shortens the SkillDescription column from a maximum of 254 characters to a
maximum of 80:

ALTER TABLE Skills
MODIFY SkillDescription CHAR( 80 );

The following statement deletes the Classification column:

ALTER TABLE Skills
DROP Classification;

The following statement changes the name of the entire table:

ALTER TABLE Skills
RENAME Qualification;

See also
● “Choosing object names” [SQL Anywhere Server - Database Administration]
● “Data types in UltraLite” on page 230
● “Choosing column data types” [SQL Anywhere Server - Database Administration]
● “ALTER TABLE statement [UltraLite] [UltraLiteJ]” on page 371

Deleting UltraLite tables

You can drop any table if the table:

● Is not being used as an article in a publication.

● Does not have any columns that are referenced by another table's foreign key.

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 57



In these cases, you must change the publication or delete the foreign key before you can successfully
delete the table.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central
In Sybase Central, you can perform these tasks while working with a selected table.

To delete an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click Tables.

3. Right-click a table and choose Delete.

4. Click Yes.

Interactive SQL
In Interactive SQL, deleting a table is also called dropping it. You can drop a table by executing a DROP
TABLE statement.

To delete an UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a DROP TABLE statement.

For example, the following DROP TABLE statement deletes all the records in the Skills table and
then removes the definition of the Skills table from the database:

DROP TABLE Skills;

Like the CREATE statement, the DROP statement automatically executes a COMMIT statement
before and after dropping the table. This statement makes all changes to the database since the last
COMMIT or ROLLBACK permanent. The DROP statement also drops all indexes on the table.

See also
● “DROP TABLE statement [UltraLite] [UltraLiteJ]” on page 394

Browsing the information in UltraLite tables

You can use Sybase Central or Interactive SQL to browse the data held within the tables of an UltraLite
database. Tables can be user tables or system tables. You can filter tables by showing and hiding system
tables from your current view of the database. Because UltraLite does not have a concept of ownership,
all users can browse all tables.

Using UltraLite databases

58 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Sybase Central
In Sybase Central, you can perform these tasks while working with a selected database.

To browse UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. If system tables are hidden and you want to browse the data in one or more tables, right-click the
white space of the Contents pane and choose Show System Objects.

3. To view a list of tables, double-click Tables.

4. To view table data, double-click a table and click the Data tab in the right pane.

To filter UltraLite system tables (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the database you are connected to and choose either Hide System Objects or Show
System Objects.

Interactive SQL
In Interactive SQL, you can perform these tasks with the SELECT statement.

To browse UltraLite user tables (Interactive SQL)

1. Connect to a database.

2. Execute a SELECT statement, specifying the user table you want to browse.

To browse UltraLite system tables (Interactive SQL)

1. Connect to a database.

2. Execute a SELECT statement, by the system table you want to browse.

For example, to display the contents of the table systable on the Results tab in the Results pane in
Interactive SQL, execute the following command:

SELECT * FROM SYSTABLE;

See also
● “UltraLite system tables” on page 219

Copying and pasting data to or from UltraLite databases

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 59



With Sybase Central you can copy and paste and drag and drop. This data transferral allows you to share
or move objects among one or more databases. By copying and pasting or dragging and dropping you can
share data as described by the table that follows.

Target Result

Another UltraLite or SQL Anywhere database. A new object is created, and the original object's code
is copied to the new object.

The same UltraLite database. A copy of the object is created; you must rename the
new object.

Note
You can copy data from a database opened in MobiLink and paste it into an UltraLite database. However,
you cannot paste UltraLite data into a database opened in MobiLink.

Sybase Central
When you copy any of the following objects in the UltraLite plug-in, the SQL for the object is also copied
to the clipboard. You can paste this SQL into other applications, such as Interactive SQL or a text editor.
For example, if you copy an index in Sybase Central and paste it into a text editor, the CREATE INDEX
statement for that index appears. You can copy the following objects in the UltraLite plug-in:

● Articles
● Columns
● Foreign keys
● Indexes
● Publications
● Tables
● Unique constraints

Interactive SQL
With Interactive SQL you can also copy data from a result set into another object.

● Use the SELECT statement results into a named object.

● Use the INSERT statement to insert a row or selection of rows from elsewhere in the database into a
table.

See also
● “Copying database objects in the SQL Anywhere 12 plug-in” [SQL Anywhere Server - Database

Administration]
● “INSERT statement [UltraLite] [UltraLiteJ]” on page 397
● “SELECT statement [UltraLite] [UltraLiteJ]” on page 402

Viewing entity-relationship diagrams from the UltraLite plug-in

Using UltraLite databases

60 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



When you are connected to a database from the UltraLite plug-in, you can view an entity-relationship
diagram of the tables in the database. When you have the database selected, click the ER Diagram tab in
the right pane to see the diagram.

When you rearrange objects in the diagram, the changes persist between Sybase Central sessions. Double-
clicking a table takes you to the column definitions for that table.

See also
● “Creating a SQL Anywhere database” [SQL Anywhere Server - Database Administration]

Working with UltraLite indexes
An index provides an ordering (either ascending or descending) of a table's rows based on the values in
one or more columns. When UltraLite optimizes a query, it scans existing indexes to see if one exists for
the table(s) named in the query. If it can help UltraLite return rows more quickly, the index is used. If you
are using the UltraLite Table API in your application, you can specify an index that helps determine the
order in which rows are traversed.

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 61



Performance tip
Indexes can improve the performance of a query—especially for large tables. To see whether a query is
using a particular index, you can check the execution plan with Interactive SQL.

Alternatively, your UltraLite applications can include PreparedStatement objects which have a method to
return plans.

About composite indexes
Multi-column indexes are sometimes called composite indexes. Additional columns in an index can allow
you to narrow down your search, but having a two-column index is not the same as having two separate
indexes. For example, the following statement creates a two-column composite index:

CREATE INDEX name
ON Employees ( Surname, GivenName );

A composite index is useful if the first column alone does not provide high selectivity. For example, a
composite index on Surname and GivenName is useful when many employees have the same surname. A
composite index on EmployeeID and Surname would not be useful because each employee has a unique
ID, so the column Surname does not provide any additional selectivity.

See also
● “Using index scans” on page 82
● “Execution plans in UltraLite” on page 262
● “Composite indexes” [SQL Anywhere Server - SQL Usage]
● UltraLite.NET: “Accessing and manipulating data with the Table API” [UltraLite - .NET

Programming]
● UltraLite.NET: “Prepare method” [UltraLite - .NET Programming]
● UltraLite for C++: “Accessing data using ULTable class” [UltraLite - C and C++ Programming]
● UltraLite for C++: “ULPreparedStatement class” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Working with data using the Table API” [UltraLite - M-

Business Anywhere Programming]
● UltraLite for M-Business Anywhere: “PreparedStatement class” [UltraLite - M-Business Anywhere

Programming]

When to use an index

Use an index when:

● You want UltraLite to maintain referential integrity An index also affords UltraLite a means of
enforcing a uniqueness constraint on the rows in a table. You do not need to add an index for data that
is very similar.

● The performance of a particular query is important to your application If an index improves
performance of a query and the performance of that query is important to your application and is used
frequently, then you want to maintain that index. Unless the table in question is extremely small,

Using UltraLite databases

62 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



indexes can improve search performance dramatically. Indexes are typically recommended whenever
you search data frequently.

● You have complicated queries More complicated queries, (for example, those with JOIN,
GROUP BY, and ORDER BY clauses), can yield substantial improvements when an index is used—
though it may be harder to determine the degree to which performance has been enhanced. Therefore,
test your queries both with and without indexes, to see which yields better performance.

● The size of an UltraLite table is large The average time to find a row increases with the size of
the table. Therefore, to increase searchability in a very large table, consider using an index. An index
allows UltraLite to find rows quickly—but only for columns that are indexed. Otherwise, UltraLite
must search every row in the table to see if the row matches the search condition, which can be time
consuming in a large table.

● The UltraLite client application is not performing a large amount of insert, update, or delete
operations Because UltraLite maintains indexes along with the data itself, an index in this context
will have an adverse effect on the performance of database operations. For this reason, you should
restrict the use of indexes to data that will be queried regularly as described in the point above.
Maintaining the UltraLite default indexes (indexes for primary keys and for unique constraints) may
be enough.

● Use indexes on columns involved in WHERE clauses and/or ORDER BY clause These
indexes can speed the evaluation of these clauses. In particular, an index helps optimize a multi-
column ORDER BY clause—but only when the placement of columns in the index and ORDER BY
clauses are exactly the same.

Choosing an index type

UltraLite supports different types of indexes: unique keys, unique indexes, and non-unique indexes. What
differentiates one from the others is what is allowed in that index.

Index characteristic Unique
keys

Unique in-
dexes

Non-unique
indexes

Allows duplicate index entries for rows that have the
same values in indexed columns.

no no yes

Allows null values in index columns. no yes yes

Notes
You can create foreign keys to unique keys, but not to unique indexes.

Also, manually creating an index on a key column is not necessary and generally not recommended.
UltraLite creates and maintains indexes for unique keys automatically.

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 63



See also
● “Adding UltraLite indexes” on page 64

Adding UltraLite indexes

You can use either Sybase Central or Interactive SQL to perform this task.

Note
UltraLite does not detect duplicate or redundant indexes. As indexes must be maintained with the data in
your database, add your indexes carefully.

Sybase Central
In Sybase Central, you can perform this task while working with a selected database.

To create a new index for a given UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click Indexes, and choose New » Index.

3. Follow the instructions in the wizard.

Interactive SQL
In Interactive SQL, you can perform this task with the CREATE INDEX statement.

To create a new index for a given UltraLite table (Interactive SQL)

1. Connect to an UltraLite database.

2. Execute a CREATE INDEX statement.

This statement creates an index with the default maximum hash size you have configured. To create
an index that overrides the default, ensure you use the WITH MAX HASH SIZE value clause to set a
new value for this index instance. See “CREATE INDEX statement [UltraLite]
[UltraLiteJ]” on page 376.

For example, to speed up a search on employee surnames in a database that tracks employee
information, and tune the performance of queries against this index, you could create an index called
EmployeeNames and increase the hash size to 20 bytes with the following statement:

CREATE INDEX EmployeeNames
ON Employees (Surname, GivenName)
WITH MAX HASH SIZE 20;

See also
● “CREATE INDEX statement [UltraLite] [UltraLiteJ]” on page 376

Using UltraLite databases

64 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Dropping an index

Dropping an index deletes it from the database.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central
In Sybase Central, you can perform this task while working with a selected database.

To drop an UltraLite index (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click Indexes.

3. Right-click an index and then choose Delete.

4. Click Yes.

Interactive SQL
In Interactive SQL, deleting an index is also called dropping it. You can perform this task with the DROP
INDEX statement.

To drop an UltraLite index (Interactive SQL)

1. Connect to a database.

2. Execute a DROP INDEX statement.

For example, the following statement removes the EmployeeNames index from the database:

DROP INDEX EmployeeNames;

See also
● “DROP INDEX statement [UltraLite] [UltraLiteJ]” on page 392

Working with UltraLite publications
A publication is a database object that identifies the data that is to be synchronized. If you want to
synchronize all tables and all rows of those tables in your UltraLite database, do not create any publications.

A publication consists of a set of articles. Each article may be an entire table, or may be rows in a table.
You can define this set of rows with a WHERE clause.

Each database can have multiple publications, depending on the synchronization logic you require. For
example, you may want to create a publication for high-priority data. The user can synchronize this data
over high-speed wireless networks. Because wireless networks can have usage costs associated with them,

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 65



you would want to limit these usage fees to those that are business-critical only. All other less time-
sensitive data could be synchronized from a cradle at a later time.

You create publications using Sybase Central or with the CREATE PUBLICATION statement. In Sybase
Central, all publications and articles appear in the Publications folder.

Usage notes
● UltraLite publications do not support the definition of column subsets, nor the SUBSCRIBE BY

clause. If columns in an UltraLite table do not exactly match tables in a SQL Anywhere consolidated
database, use MobiLink scripts to resolve those differences.

● Columns are always sent in the order in which they were defined in the CREATE TABLE statement.

● You do not need to set a table synchronization order in a publication. If table order is important for
your deployment, you can set the table order when you synchronize the UltraLite database by setting
the Table Order synchronization parameter.

● Because object ownership is not supported in UltraLite, any user can delete a publication.

See also
● “Table order in UltraLite” on page 103
● “Publishing data” [MobiLink - Client Administration]
● “Designing synchronization in UltraLite” on page 99
● “Writing synchronization scripts” [MobiLink - Server Administration]

Publishing whole tables in UltraLite

The simplest publication you can make consists of a single article, which consists of all rows and columns
of a table.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central
In Sybase Central, you can perform this task while working with the connected database.

To publish one or more whole UltraLite tables (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the Publications folder, and choose New » Publication.

3. In the What Do You Want To Name The New Publication field, type a name for the new
publication. Click Next.

4. On the Tables tab, select tables from the Available Tables list. Click Add.

5. Click Finish.

Using UltraLite databases

66 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Interactive SQL
In Interactive SQL, you can perform this task with the CREATE PUBLICATION statement.

To publish one or more whole UltraLite tables (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
table you want to publish.

For example, the following statement creates a publication that publishes the whole customer table:

CREATE PUBLICATION pub_customer (
   TABLE customer
);

See also
● “CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 378
● “UltraLite clients” on page 93

Publishing a subset of rows from an UltraLite table

A publication can only contain specific table rows. In Sybase Central or Interactive SQL, a WHERE
clause limits the rows that are uploaded to those that have changed and satisfy a search condition in the
WHERE clause.

To upload all changed rows, do not specify a WHERE clause.

Sybase Central
In Sybase Central, you can perform this task while working with the connected database.

To publish only some rows in an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the Publications folder, and choose New » Publication.

3. In the What Do You Want To Name The New Publication field, type a name for the new publication.

4. Click Next.

5. In the Available Tables list, select a table and click Add.

6. Click the WHERE Clauses tab, and select the table from the Articles list. Optionally, you can use the
Insert window to assist you in formatting the search condition.

7. Click Finish.

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 67



Interactive SQL
In Interactive SQL, you can perform this task with the CREATE PUBLICATION statement.

To create a publication in UltraLite using a WHERE clause (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE PUBLICATION statement that includes the tables you want to include in the
publication and a WHERE condition.

For example, the following example creates a single-article publication that includes all sales order
information for sales rep number 856:

CREATE PUBLICATION pub_orders_samuel_singer
 ( TABLE SalesOrders
     WHERE SalesRepresentative = 856 );

See also
● “CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 378
● “UltraLite clients” on page 93

Dropping a publication for UltraLite

You can drop a publication using either Sybase Central or Interactive SQL.

Sybase Central
In Sybase Central, you can perform this task while working with the connected database.

To drop a publication (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click the Publications folder.

3. Right-click the publication and choose Delete.

4. Click Yes.

Interactive SQL
In Interactive SQL, deleting a publication is also called dropping it. You can perform this task with the
DROP PUBLICATION statement.

To drop a publication (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a DROP PUBLICATION statement.

For example, the following statement drops the publication named pub_orders:

Using UltraLite databases

68 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



DROP PUBLICATION pub_orders;

See also
● “DROP PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 392
● “UltraLite clients” on page 93

Working with UltraLite users

User IDs and passwords are encrypted in the UltraLite database, so you can only view the list of defined
users in Sybase Central.

UltraLite user IDs are not the same as MobiLink user names or SQL Anywhere user IDs.

Limitations
When creating unique user IDs, bear the following limitations in mind:

● UltraLite supports up to four unique users per database.

● Both the user ID and password values have a limit of 31 characters.

● Passwords are always case sensitive and user IDs are always case insensitive. You can change a
password anytime from Sybase Central.

● Any leading or trailing spaces the user ID are ignored. The user ID cannot include leading single
quotes('), leading double quotes ("), or semicolons(;).

● You cannot change a user ID once it is created. Instead, you must delete the user ID and then add a
new one.

● Passwords can be changed using Sybase Central.

Adding a new UltraLite user

UltraLite does not support the creation of users with Interactive SQL. However, you can add users by:

● Using Sybase Central to add users to the User folder.

● Using the GrantConnectTo function on the Connection object to add new users from an UltraLite
application.

To create a new UltraLite user (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the Users folder, and choose New » User.

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 69



3. Follow the instructions in the wizard. Ensure you understand how UltraLite interprets different user
ID and password combinations. See “Interpreting user ID and password combinations” on page 40.

See also
● UltraLite.NET: “GrantConnectTo method” [UltraLite - .NET Programming]
● UltraLite C/C++ : “GrantConnectTo method” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “grantConnectTo method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “ULGrantConnectTo method” [UltraLite - C and C++ Programming]

Deleting an existing UltraLite user

UltraLite does not support the deletion of users using a SQL statement. However, you can delete users by
using:

● Sybase Central to delete users from the User folder.

● The RevokeConnectFrom function on the Connection object to remove users from an UltraLite
application.

To delete an existing UltraLite user (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click the Users folder.

3. Right-click the user and choose Delete.

See also
● UltraLite.NET: “RevokeConnectFrom method” [UltraLite - .NET Programming]
● UltraLite C/C++ : “RevokeConnectFrom method” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “revokeConnectFrom method” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for embedded SQL: “ULRevokeConnectFrom method” [UltraLite - C and C++

Programming]

Working with event notifications
UltraLite now supports events and notifications. A notification is a message that is sent when an event
occurs, also providing additional parameter information. UltraLite has system events and events can also
be user-defined.

Event notifications allow you to provide coordination and signaling between connections or applications
connected to the same database. Notifications are managed in queues: either a connection's default queue
or, optionally, queues that are explicitly created and named. When an event occurs, notifications are sent
to registered queues (or connections).

Using UltraLite databases

70 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Each connection manages its own notification queues. Named queues can be created for any connection.

Using predefined system events this feature also provides "triggers" for changes to data, such as when a
change is made to a table, for example, or signaling when a synchronization has occurred. Predefined
events include:

● Commit
● SyncComplete
● TableModified

User events may also be defined and triggered by an application.

APIs for events and notifications are provided in each supported language. Additionally, a SQL function
is provided to access the API functionality.

Events

Event Occurrence

Commit Signaled upon completion of a commit.

Syn-
cCom-
plete

Signaled upon completion of a sync.

Table-
Modifi-
ed

Triggered when rows in a table are inserted, updated, or deleted. One event is signaled per
request, no matter how many rows were affected by the request when registering for the event.

The object_name parameter specifies the table to monitor. A value of "*" means all tables
in the database.

The table_name notification parameter is the name of the modified table.

note_info.event_name = "SyncComplete";
note_info.event_name_len = 12;
note_info.parms_type = ul_ev_note_info::P_NONE;

note_info.event_name = "TableModified";
note_info.event_name_len = 13;
note_info.parms_type = ul_ev_note_info::P_TABLE_NAME;
note_info.parms = table->name->data;
note_info.parms_len = table->name->len;

Working with queues
Queues can be created and destroyed.

CreateNotificationQueue creates an event notification queue for the current connection. Queue names
are scoped per-connection, so different connections can create queues with the same name. When an
event notification is sent, all queues in the database with a matching name receive a separate instance of
the notification. Names are case insensitive. A default queue is created on demand for each connection if
no queue is specified. This call fails with an error if the name already exists for the connection or isn't valid.

Working with UltraLite databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 71



DestroyNotificationQueue destroys the given event notification queue. A warning is signaled if unread
notifications remain in the queue. Unread notifications are discarded. A connection's default event queue,
if created, is destroyed when the connection is closed.

Working with events
DeclareEvent declares an event which can then be registered for and triggered. UltraLite predefines some
system events triggered by operations on the database or the environment. The event name must be
unique and names are case insensitive. Returns true if the event was declared successfully, false if the
name is already used or invalid.

RegisterForEvent registers a queue to receive notifications of an event. If no queue name is supplied, the
default connection queue is implied, and created if required. Certain system events allow specification of
an object name to which the event applies. For example, the TableModified event can specify the table
name. Unlike SendNotification, only the specific queue registered will receive notifications of the event;
other queues with the same name on different connections will not (unless they are also explicitly
registered). Returns true if the registration succeeded, false if the queue or event does not exist.

TriggerEvent triggers an event and sends a notification to all registered queues. Returns the number of
event notifications sent. Parameters may be supplied as name=value; pairs.

Working with notifications
SendNotification sends a notification to all queues in the database matching the given name (including
any such queue on the current connection). This call does not block. Use the special queue name "*" to
send to all queues. Returns the number of notifications sent (the number of matching queues). Parameters
may be supplied as name=value; pairs.

GetNotification reads an event notification. This call blocks until a notification is received or until the
given wait period expires. To cancel a wait, send another notification to the given queue or use
CancelGetNotification. After reading a notification, use ReadNotificationParameter to retrieve additional
parameters. Returns true if an event was read, false if the wait period expired or was canceled.

GetNotificationParameter gets a named parameter for the event notification just read by
GetNotification. Only the parameters from the most-recently read notification on the given queue are
available. Returns true if the parameter was found, false if the parameter was not found.

CancelGetNotification cancels any pending GetNotification calls on all queues matching the given
name. Returns the number of affected queues (not necessarily the number of blocked reads).

Other considerations
● Notification queue and event names are limited to 32 characters.
● To govern system resources, the number of notifications is limited. When this limit is exceeded,

SQLE_EVENT_NOTIFICATION_QUEUE_FULL is signaled and the pending notification is
discarded.

UltraLite CustDB samples

Using UltraLite databases

72 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



The CustDB sample is installed with SQL Anywhere. It is a multi-tiered database management solution
that implements MobiLink synchronization with a SQL Anywhere consolidated database.

CustDB consists of the following:

● A consolidated SQL Anywhere database. The database is pre-populated with sales status data.

● A remote UltraLite database. This database is initially empty.

● An UltraLite client application.

● MobiLink server synchronization scripts.

Different versions of the application code exist for each supported programming interface and platform.
However, the tutorial references the compiled version of the application for Windows desktops only.
Remember that each version varies to conform to the conventions of each platform.

Note
You can only run one instance of CustDB at a time. Trying to run more than one instance brings the first
instance to the foreground.

CustDB allows sales personnel to track and monitor transactions and then pool information from two
types of users:

● Sales personnel that authenticate with user IDs 51, 52, and 53.

● Mobile managers that authenticate with user ID 50.

Information gathered by these different users can be synchronized with the consolidated database.

After following each lesson you will know how to:

● Run the MobiLink server to carry out data synchronization between the consolidated database and the
UltraLite remote.

● Use Sybase Central to browse the data in the UltraLite remote.

● Manage UltraLite databases with UltraLite command line utilities.

See also
● “CustDB sample overview” on page 73
● “CustDB Scenario” [MobiLink - Getting Started]
● “Users in the CustDB sample” [MobiLink - Getting Started]
● “Tables in the CustDB databases” [MobiLink - Getting Started]

CustDB sample overview

UltraLite CustDB samples

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 73



SQL Anywhere CustDB database
This is the consolidated database. During installation, an ODBC data source called SQL Anywhere 12
CustDB is created for this database. The database file is located at samples-dir\UltraLite\CustDB
\makedbs.cmd (makedbs.sh for Mac or Linux).

You can erase changes that were synchronized into the consolidated CustDB.db file, so you have a clean
version to work with using this script: samples-dir\UltraLite\CustDB\newdb.bat

For more information about the schema of this file, see “Exploring the CustDB sample for MobiLink”
[MobiLink - Getting Started].

For more information about the default location of samples-dir, by operating system, see “Samples
directory” [SQL Anywhere Server - Database Administration].

The UltraLite CustDB database
This is the remote version of the consolidated database that contains only a subset of the information,
depending on which user synchronizes the database.

The file name and location can vary depending on the platform, programming language, or even device.

● For UltraLite.NET: samples-dir\UltraLite.NET\CustDB\Common\

● For all other platforms and APIs: samples-dir\UltraLite\CustDB\custdb.udb

The UltraLite database is also recreated by the makedbs.cmd script (makedbs.sh for Mac or Linux).

For more information about the default location of samples-dir, by operating system, see “Samples
directory” [SQL Anywhere Server - Database Administration].

RDBMS-specific build scripts
The SQL scripts that rebuild a CustDB consolidated database for any one of the supported RDBMSs.

In the samples-dir\MobiLink\CustDB directory, you can find the following files:

● For SQL Anywhere: custdb.sql
● For Adaptive Server Enterprise: custase.sql
● For Microsoft SQL Server: custmss.sql
● For Oracle: custora.sql
● For IBM DB2: custdb2.sql

For more information about setting up a consolidated database, see “Setting up the CustDB consolidated
database” [MobiLink - Getting Started].

For more information about the default location of samples-dir, by operating system, see “Samples
directory” [SQL Anywhere Server - Database Administration].

UltraLite CustDB client applications and ReadMe files
These are the end-user applications that provide a user-friendly interface to the UltraLite remote database.
There is a sample client installed for each supported platform.

Using UltraLite databases

74 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Each client application also contains a ReadMe.html or ReadMe.txt file. Although the contents of these
files vary, they all include an outline the steps required to build and run the sample.

The location the applications and its ReadMe depends on your development environment. See “Lesson 1:
Build and run the CustDB application” on page 75.

Synchronization logic
The UltraLite database SQL statements and synchronization calls are located in custdbcpp.cpp for the C+
+ API and in custdb.sql for ESQL.

For more information about the default location of samples-dir, by operating system, see “Samples
directory” [SQL Anywhere Server - Database Administration].

See also
● “MobiLink consolidated databases” [MobiLink - Server Administration]

Lesson 1: Build and run the CustDB application

The CustDB application is built for many development environments. For a general procedure that applies
to all environments, see the following section.

To build and run the CustDB application

1. Build the CustDB application:

a. Open a CustDB project file in the appropriate environment.

b. Compile the source code.

2. Run the CustDB application:

a. Deploy the CustDB executable file to the mobile device.

b. Deploy the UltraLite CustDB database to the mobile device.

c. Run the CustDB executable file.

UltraLite for Windows 32-bit desktop
You do not need to build the CustDB application before running it.

You can find the CustDB executable file in the install-dir\UltraLite\Windows\x86  directory.

UltraLite for C/C++

● All versions of C/C++ You can find multiple versions of the C/C++ CustDB project file because
of the many C/C++ development environments. Most versions make use of the generic files. These
files are located in the samples-dir\UltraLite\Custdb directory.

UltraLite CustDB samples

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 75



For information about all versions of C/C++ CustDB applications, see samples-dir\UltraLite\Custdb
\readme.txt.

● Visual Studio You can find project files in the samples-dir\UltraLite\CustDB\vs9 and samples-dir
\UltraLite\CustDB\vs8 directories depending on your version of Visual Studio. To build and run the
CustDB application, follow the instructions given in the beginning of the lesson.

● Xcode for iPhone For development on Mac OS X and iPhone, see samples/ultralite/custdb/iphone.

UltraLite.NET
You can find project files specific to Microsoft Visual Studio in the samples-dir\UltraLite.NET\CustDB
directory.

For instructions on building the CustDB application for Windows Mobile using Microsoft Visual
Studiosamples-dir\UltraLite.NET\CustDB\CE\ReadMe.html.

To obtain deployment directory information for Microsoft Windows desktop, and information on where
to download additional UltraLite.NET samples, see samples-dir\UltraLite.NET\CustDB\Desktop
\ReadMe.html.

UltraLite for M-Business Anywhere
You can find project files specific to M-Business Anywhere in the samples-dir
\UltraLiteForMBusinessAnywhere\CustDB directory.

For more information about building the CustDB application using M-Business Anywhere, see “UltraLite
for M-Business Anywhere quick start” [UltraLite - M-Business Anywhere Programming]. The
instructions are applicable to Windows Mobile and Windows.

Lesson 2: Log in and populate the UltraLite remote database
This lesson demonstrates how to:

● Start the sample MobiLink server.

● Start the sample UltraLite client application.

● Log into UltraLite.

In this tutorial, the sample application is running on the same desktop computer as the MobiLink server.
However, you can deploy a client application to the device and achieve the same result.

To start and synchronize the sample application

1. Choose Start » Programs » SQL Anywhere 12 » MobiLink » Synchronization Server Sample.
Or, execute the following command:

mlsrv12 -c "DSN=SQL Anywhere 12 CustDB" -vcrs

Using UltraLite databases

76 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



(Use mobilink.sh on Mac OS X or Linux.)

The window displays messages about the MobiLink server's status.

2. Choose Start » Programs » SQL Anywhere 12 » UltraLite » Windows Sample Application.

3. In the Employee ID field, type 50. Press Enter.

The application synchronizes and the MobiLink server messages window displays messages showing
the synchronization taking place.

The synchronization script determines which subset of customers, products, and orders is downloaded
to the application when user 50 logs in. In this case, only orders that have not yet been approved are
downloaded.

4. Confirm that the company name and a sample order appear in the application window.

Lesson 3: Use the CustDB client application
Both the consolidated and remote databases contain a table named ULOrder. While the consolidated
database holds all orders (approved and those pending approval), the UltraLite remote only displays a
subset of rows according to the user that has authenticated.

Columns in the table appear as fields in the client application. When you add an order, you must populate
the Customer, Product, Quantity, Price, and Discount fields. You can also append other details such as
Status or Notes. The timestamp column identifies whether the row needs to be synchronized.

To browse orders

1. Browsing orders is accomplished in a similar method for each version of the UltraLite client
application. By browsing an order, you are scrolling through the data in your local UltraLite database.
Because customers are sorted alphabetically, you can easily scroll through the list and locate a
customer by name.

To scroll down the list of customers, click Next.

2. To scroll up through the list of customers, click Previous.

To add an order

1. Adding an order is carried out in a similar way in each version of the UltraLite client application. By
adding an order, you have modified the data in your local UltraLite database. This data is not shared
with the consolidated database until you synchronize.

Choose Order » New.

2. In the Customer list, choose Basements R Us.

UltraLite CustDB samples

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 77



3. In the Product list, choose Screwmaster Drill. The price of this item is automatically entered in the
Price field.

4. In the Quantity field, type 20.

5. In the Discount field, type 5 (percent) and press OK.

To approve, deny, and delete orders

1. Because you have authenticated your identity as user ID 50, you are a manager that can perform all
the same tasks as a sales person, but you have the added ability to accept or reject orders. By
accepting or rejecting an order, you are changing the status of it and adding an additional note for the
sales person to review. However, the data in the consolidated database is unchanged until you
synchronize.

Approve the order for Apple Street Builders.

a. To locate the customer, click Previous.

b. To approve the order, click Order and then Approve.

c. In the Note list, choose Good.

d. Press OK.
The order appears with a status of Approved.

2. Deny the order for Art's Renovations.

a. Go to the next order in the list, which is from Art's Renovations.

b. To deny the order, click Order and then Deny.

c. In the Note list, choose Discount Is Too High.

d. Press OK.

The order appears with a status of Denied.

3. Delete the order for Awnings R Us.

a. Go to the next order in the list, which is from Awnings R Us.

b. Delete this order by choosing Order » Delete.
Click OK to confirm the deletion.
The order is marked as deleted. However, the current data remains in the UltraLite remote until
you synchronize changes to the consolidated database.

See also
● “Tables in the CustDB databases” [MobiLink - Getting Started]

Using UltraLite databases

78 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Lesson 4: Synchronize with the CustDB consolidated
database

For synchronization to take place, the MobiLink server must be running. If you have shut down your
MobiLink server, you need to restart it. See “Lesson 2: Log in and populate the UltraLite remote
database” on page 76.

The synchronization process for the sample application removes approved orders from your database.

You can use Interactive SQL or Sybase Central to connect to the consolidated database and confirm that
your changes were synchronized.

To synchronize the UltraLite remote

1. To synchronize your data, from the File menu choose Synchronize.

2. Confirm that synchronization took place.

● At the remote database, you can confirm that all required transactions occurred by checking that
the approved order for Apple Street Builders is now deleted. Perform this action by browsing the
orders to confirm the absence of this entry.

● At the consolidated database, you can also confirm that all required actions occurred by checking
data in the consolidated database.

To confirm the synchronization (Sybase Central)

1. Choose Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Choose Connections » Connect With SQL Anywhere 12.

3. Click ODBC Data Source Name.

4. Click Browse and choose SQL Anywhere 12 CustDB.

5. Click OK.

6. Click OK.

7. Double-click Tables.

8. Double-click ULOrder (DBA).

9. Click the Data tab and verify that order 5100 is approved, order 5101 is denied, and order 5102 is deleted.

To confirm the synchronization (Interactive SQL)

1. Connect to the consolidated database from Interactive SQL.

UltraLite CustDB samples

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 79



a. From the Start menu, choose Programs » SQL Anywhere 12 » Administration Tools »
Interactive SQL.

b. Click ODBC Data Source Name and choose SQL Anywhere 12 CustDB.

2. To confirm that the approval and denial have been synchronized, execute the following statement:

SELECT order_id, status
FROM ULOrder
WHERE status IS NOT NULL;

The results show that order 5100 is approved, and 5101 is denied.

3. The deleted order has an order_id of 5102. The following query returns no rows, demonstrating that
the order has been removed from the system.

SELECT *
FROM ULOrder
WHERE order_id = 5102;

Lesson 5: Browse MobiLink synchronization scripts
The synchronization logic for CustDB is held in the consolidated database as MobiLink synchronization
scripts. Synchronization logic allows you to determine how much of the consolidated database you need
to download and/or upload. You can download complete tables or partial tables (with either row or
column subsets) using such techniques as timestamp-based synchronization or snapshot synchronization.

In addition to the tables, users, and publications, you can also use Sybase Central to browse the
synchronization scripts that are stored in the consolidated database. Sybase Central is the primary tool for
adding these scripts to the database.

The custdb.sql file adds each synchronization script to the consolidated database by calling
ml_add_connection_script or ml_add_table_script. Connection scripts control high level events that are
not associated with a particular table. Use these events to perform global tasks that are required during
every synchronization. Table scripts allow actions at specific events relating to the synchronization of a
specific table, such as the start or end of uploading rows, resolving conflicts, or selecting rows to download.

For more information about the synchronization logic used in CustDB, see “Synchronization logic source
code” [MobiLink - Getting Started].

For more information about the implementation of synchronization in CustDB, see “Synchronization
design” [MobiLink - Getting Started].

To browse the synchronization scripts

1. From the Start menu, choose Programs » SQL Anywhere 12 » Administration Tools » Sybase
Central.

2. In the left pane of Sybase Central, expand your MobiLink project name, then expand the
consolidated database you want to work with. You are connected to the consolidated database based

Using UltraLite databases

80 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



on the connection information that was provided when you added the consolidated database to your
project..

3. Click ODBC Data Source Name.

4. Click Browse and choose SQL Anywhere 12 CustDB.

5. Click OK.

6. Click OK.

7. Double-click Connection Scripts.

The right pane lists a set of synchronization scripts and a set of events with which these scripts are
associated. As the MobiLink server carries out the synchronization process, it triggers a sequence of
events. Any synchronization script associated with an event is run at that time. By writing
synchronization scripts and assigning them to the synchronization events, you can control the actions
that are carried out during synchronization.

8. Click Synchronized Tables.

9. In the right pane, double-click ULCustomer.

A set of scripts specific to this table, and their corresponding events appears. These scripts control the
way that data in the ULCustomer table is synchronized with the remote databases.

See also
● “Writing synchronization scripts” [MobiLink - Server Administration]
● “UltraLite clients” on page 93
● “Connection scripts” [MobiLink - Server Administration]
● “Table scripts” [MobiLink - Server Administration]

Build your own application
Use one of the supported interfaces to build your own application. For more information, see:

● UltraLite C++: “Tutorial: Build an application using the C++ API” [UltraLite - C and C++
Programming]

● UltraLite.NET: “Tutorial: Build an UltraLite.NET application” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “Tutorial: A sample application for M-Business Anywhere”

[UltraLite - M-Business Anywhere Programming]

UltraLite performance and optimization
UltraLite provides excellent SQL query performance. Index scans, direct page scans, and temporary tables
are internal optimization techniques that help you to achieve the most from the product. However, you can
further tune these features, depending on the results of any query performance tests you run.

UltraLite performance and optimization

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 81



Using index scans

An index is a set of pointers to rows in a table, based on the order of the values of data in one or more
table columns. An index is a database object. The index is maintained automatically by UltraLite after it
has been created. You can create one or more indexes to improve the performance of your queries, or,
depending on the type of index you create, to ensure that row values remain unique.

An index provides an ordering of a table's rows based on the values in some or all of the columns. When
creating indexes, the order in which you select columns to be indexed becomes the order in which the
columns actually appear in the index. So, when you use them strategically, indexes can greatly improve
the performance of searches on the indexed column(s).

UltraLite supports the following indexes. These indexes can be single or multi-column (also known as
composite indexes). You cannot index LONG VARCHAR or LONG BINARY columns.

Index Characteristics

Primary key Required. An instance of a unique key. You can only have one primary key. Val-
ues in the indexed column or columns must be unique and cannot be NULL.

Foreign key1 Optional. Values in the indexed column or columns can be duplicated. Nullabil-
ity depends on whether the column was created to allow NULL. Values in the
foreign key columns must exist in the table being referenced

Unique key2 Optional. Values in the indexed column or columns must be unique and cannot
be NULL.

Non-unique index Optional. Values in the indexed column or columns can be duplicated and can
be NULL.

Unique index Optional. Values in the indexed column or columns cannot be duplicated and
can be NULL.

1 A foreign key can reference either a primary key or a unique key.

2 Also known as a unique constraint.

Performance tips
● Create an index on any column:

○ for values that you search for on a regular basis
○ that the query uses to join tables
○ that are commonly used in ORDER BY, GROUP BY, or WHERE clauses

● When creating a composite index, the first column of the index should be the one that is used most
often by the predicate in your query.

Using UltraLite databases

82 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● Ensure the update maintenance overhead an index introduces is not too high for the memory of your
device.

● Do not create or maintain unnecessary indexes: indexes must be updated when the data in a column is
modified, so all insert, update, and delete operations are performed on the indexes as well.

● Create an index on large tables.

● Do not create redundant indexes. For example, if you create an index on table T with columns (x, y),
you can create a redundancy if there is another existing index on T with columns (x, y, z).

See also
● “Managing temporary tables” on page 88
● “Using direct page scans” on page 89
● “View an UltraLite execution plan” on page 263
● “About composite indexes” on page 62
● “EXPLANATION function [Miscellaneous]” on page 303
● UltraLite C++: “GetPlan method” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “getPlan method” [UltraLite - M-Business Anywhere

Programming]
● “UltraLite page_size creation parameter” on page 146

Determining the access method used by the optimizer
The UltraLite optimizer uses sophisticated optimization strategies when choosing an index for query
optimization. However, with simple queries you cannot easily predetermine which index the optimizer
uses to optimize the query performance, or if an index is used at all. As the complexity increases, the
index selected depends on the clauses required by your query. Usually, the presence of a FOR READ
ONLY clause may cause the optimizer to choose a direct table scan instead of an index to yield better
query performance.

When optimizing a query, the optimizer looks at the requirements of the query and checks if there are any
indexes that it can use to improve performance. If performance cannot be improved with any index, then
the optimizer does not scan one: either a temporary table or a direct page scan is used instead. Therefore,
you may need to experiment with your indexes and frequently check the generated execution plans to
ensure that:

● You are not maintaining indexes that are not being used by the optimizer.

● You are minimizing the number of temporary tables being created. See “Managing temporary
tables” on page 88.

For complex queries, knowing which index is used is even less predictable. For example, when a query
contains a WHERE predicate and a GROUP BY clause in addition to an ORDER BY clause, one index
alone might not satisfy the search conditions of this query. So, if you have created an index to meet the
selectivity requirements of the WHERE predicate, you may find that the optimizer does not actually use
it. Instead, the optimizer may use an index that offers better performance for the ORDER BY conditions
because this clause could require the most processing.

UltraLite performance and optimization

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 83



Checking the execution plan
You can check the execution plan either programmatically with the appropriate API call or in the Plan
Viewer in Interactive SQL:

● If no index is used the execution plan appears as follows:

scan(T)

● If a temporary table is used the execution plan appears as follows:

temp [scan(T)]

● If an index is used the index name is included the execution plan:

scan (T, index_name)

Tuning query performance with index hashing
You can tune the performance of your queries by choosing a specific size for the maximum hash. A hash
key represents the actual values of the indexed column. An index hash key aims to avoid the expensive
operation of finding, loading, and then unpacking the rows to determine the indexed value. It prevents
these operations by including enough of the actual row data with a row ID.

A row ID allows UltraLite to locate the actual row data in the database file. If you set the hash size to 0
(which disables index hashing), then the index entry only contains this row ID. If you set the hash size to
anything other than 0, then a hash key is also used. A hash key can contain all or part of the transformed
data in that row, and is stored with the row ID in the index page.

How much row data the hash key includes is determined:

● Partly by the maximum hash size property you configure. See “Choosing an optimal hash
size” on page 86.

● Partly by how much is actually needed for the data type of the column.

A hash example
The value of an index hash maintains the order of the actual row data of indexed columns. For example, if
you have indexed a LastName column for a table called Employees, you may see four names ordered as
follows:

Anders

Anderseck

Andersen

Anderson

If you hashed the first six letters, your hash keys for these row values would appear as follows:

Using UltraLite databases

84 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Anders

Anders

Anders

Anders

While these entries look the same, note that the first Anders in the list is used to represent the actual row
value of Anders. The last Anders in the list, however, is used to represent the actual row value Anderson.

Now, consider the following statement:

SELECT * 
FROM Employees
WHERE LastName = 'Andersen';

If the Employees table only contained a very high proportion of names similar to Andersen, then the hash
key may not offer enough uniqueness to gain any performance benefits. In this case, UltraLite cannot
determine if any of the hash keys actually meets the conditions of this statement. When duplicate index
hash keys exist, UltraLite still needs to:

1. Find the table row that matches the row ID in question.

2. Load and then unpack the data so the value can be evaluated.

Performance benefits only occur when UltraLite can discern a proportionate number of unique hash so
that the query condition evaluation is immediate to the index itself. For example, if the Employees table
had thousands of names, there is still enough benefit to be gained by a hash of six letters. However, if the
Employees table only contained an inordinate number of names that begin with Anders*, then you should
hash at least seven letters so the degree of unique keys increases. Therefore, the original four names at the
start of this example how are now represented with these hash keys:

Anders

Anderse

Anderse

Anderso

Now, only two of the four row values would need to be unpacked and evaluated, rather than all four.

See also
● “UltraLite max_hash_size creation parameter” on page 143
● “Choosing an optimal hash size” on page 86
● “UltraLite performance and optimization” on page 81
● “Adding UltraLite indexes” on page 64

UltraLite performance and optimization

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 85



Choosing an optimal hash size
The UltraLite default maximum hash size of 4 bytes was chosen to suit most deployments. You can
increase the size to include more data with the row ID. However, this change could increase the size of
the index and fragment it among multiple pages. This change can possibly increase the size of the
database as a result. The impact of an increased maximum hash size depends on the number of rows in the
table: for example, if you only have a few rows, a large index hash key would still fit on the index page.
No index fragmentation occurs in this case.

When choosing an optimal hash size, consider the data type, the row data, and the database size
(especially if a table contains many rows).

The only way to determine if you have chosen an optimal hash size is to run benchmark tests against your
UltraLite client application on the target device. You need to observe how various hash sizes affect the
application and query performance, in addition to the changes in database size itself.

The data type
If you want to hash the entire value in a column, note the size required by each data type in the table that
follows. UltraLite only uses the maximum hash size if it really needs to, and it never exceeds the
maximum hash size you specify. UltraLite always use a smaller hash size if the column type does not use
the full byte limit.

Data type Bytes used to hash the entire value

FLOAT, DOUBLE, and RE-
AL

Not hashed.

BIT and TINYINT 1

SMALL INT and SHORT 2

INTEGER, LONG, and
DATE

4

DATETIME, TIME, TIME-
STAMP, and BIG

8

CHAR and VARCHAR To hash the entire string, the maximum hash size in bytes must match
the declared size of the column. In a UTF-8 encoded database, always
multiply the declared size by a factor of 2, but only to the allowed max-
imum of 32 bytes.

For example, if you declare a column VARCHAR(10) in a non-UTF-8
encoded database, the required size is 10 bytes. However, if you de-
clare the same column in a UTF-8 encoded database, the size used to
hash the entire string is 20 bytes.

Using UltraLite databases

86 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Data type Bytes used to hash the entire value

BINARY The maximum hash size in bytes must match the declared size of the
column.

For example, if you declare a column BINARY(30), the required size
is 30 bytes.

UUID 16

For example, if you set a maximum hash size of 6 bytes for a two-column composite index that you
declared as INTEGER and BINARY (20) respectively, then based on the data type size requirements, the
following occurs:

● The entire value of the row in the INTEGER column is hashed and stored in the index because only 4
bytes are required to hash integer data types.

● Only the first 2 bytes of the BINARY column are hashed and stored in the index because the first 4
bytes are used by the INTEGER column. If these remaining 2 bytes do not hash an appropriate
amount of the BINARY column, increase the maximum hash size.

The row data
The row values of the data being stored in the database also influence the effectiveness of a hashed index.

For example, if you have a common prefix shared among entries of a given column, you may render the
hash ineffective if you choose a size that only hashes prefixes. In this case, you need to choose a size that
ensures more than just the common prefix is hashed. If the common prefix is long, you should consider
not hashing the values at all.

When a non-unique index stores many duplicate values, and UltraLite cannot hash the entire value, the
hash likely cannot improve performance.

The database size
Each index page has some fixed overhead, but the majority of the page space is used by the actual index
entries. A larger hash size means each index entry is bigger, which means that fewer entries can fit on a
page. For large tables, indexes with large hashes use more pages than indexes with small or no hashes.
The more pages required increases the database size and degrades performance. The latter typically
occurs because the cache can only hold a fixed number of pages thereby causing UltraLite to swap pages.

The following table gives you an approximation of how the hash size can affect the number of pages
required to store data in an index:

Table Page size Hash size Number of entries Pages required

Table A 4 KB 0 1200 3 pages

Table B 4 KB 32 bytes 116 3 pages

UltraLite performance and optimization

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 87



Table Page size Hash size Number of entries Pages required

Table C 4 KB 32 bytes 1200 entries 11 pages

See also
● “UltraLite max_hash_size creation parameter” on page 143
● “UltraLite performance and optimization” on page 81
● “Adding UltraLite indexes” on page 64
● “Data types in UltraLite” on page 230

Setting the maximum hash size
You can set the maximum hash size in two ways:

● To store a database default for the maximum size, you can set the max_hash_size creation parameter
when you create your database. If you do not want to hash indexes by default, set this value to 0.
Otherwise, you can change it to any value up to 32 bytes, or keep the UltraLite default of 4 bytes.

● If you want to override the default, you can set a specific hash size when you create a new index. Do
one of the following:

○ In Sybase Central, set the Maximum Hash Size property when creating a new index.

○ With SQL, use the WITH MAX HASH SIZE clause in either the CREATE TABLE or CREATE
INDEX statement.

See also
● “CREATE INDEX statement [UltraLite] [UltraLiteJ]” on page 376
● “CREATE TABLE statement [UltraLite] [UltraLiteJ]” on page 384

Managing temporary tables
In general, the optimizer always tries to avoid creating temporary tables to return query results because
the entire temporary table must be populated before the first row can be returned. If an index exists, the
optimizer tries to use the index first and only creates a temporary table as a last resort.

It is difficult to anticipate whether an index you have created avoids the necessity for a temporary table.
Therefore, you should always check the plans for a query to ensure the indexes you have created are
actually being used by the UltraLite query optimizer.

See also
● “UltraLite temporary tables” on page 11
● “Determining the access method used by the optimizer” on page 83
● “Reading UltraLite execution plans” on page 264

Using UltraLite databases

88 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Using direct page scans

UltraLite uses direct page scans as an alternative to index scans when it is more efficient to access
information directly from the database page. A direct page scan is only used after the optimizer confirms
that:

● No pre-existing index can return results more efficiently.

● You are not using the query to perform updates. For example, you have declared the statement to be
FOR READ ONLY (the default setting if no FOR clause has been specified), or have written the
query in such a way that it is obvious that data is not being updated.

Because UltraLite reads the rows directly from the pages on which the rows are stored, query results are
returned without order. The order of subsequent query results is unpredictable. If you need the order of
rows to be predictable and deterministic, use an ORDER BY clause to get results in a consistent order. On
the other hand, if order is not important, you can omit the ORDER BY clause to improve query performance.

Note
You cannot use direct page scans if you are using the Table API to program your application.

You can check to see when UltraLite scans a page directly or which index was used to return results. See
“Determining the access method used by the optimizer” on page 83.

Reverting to primary key index order

In version 10.0.0 and earlier of UltraLite, the primary key was used to return results when no other index
was used by the UltraLite optimizer. As a result, rows were ordered according to the order of the primary
key index.

If your results must be ordered by primary key, you should re-write your queries to include the ORDER
BY clause.

Tip
It is recommended that you use the ORDER BY clause whenever possible.

See also
● “Using index scans” on page 82
● “SELECT statement [UltraLite] [UltraLiteJ]” on page 402

Flushing single or grouped transactions
You can choose your recovery point in UltraLite by delaying committed transaction flushes. When
UltraLite releases the commit to storage, the recovery point helps control when a subset of SQL
statements in a transaction triggers additional operational overhead.

UltraLite performance and optimization

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 89



By default, UltraLite uses an operational-based default that flushes individual transactions to storage
immediately upon a commit. For some deployments, these frequent operations can be excessive and limit
the amount of transaction throughput. To reduce the performance expense caused by this default, you may
choose a state-based approach. Especially for applications that rely on autocommit operations, this
approach delays the additional overhead required to flush the committed transactions to storage:

● On checkpoint You can set your own checkpoint, and then use it to release the work performed
over the course of time. You can use as many checkpoints as you require, either within a single
transaction or over multiple transactions.

● Grouped You can choose a transaction count threshold and/or a timeout threshold to release the
work performed.

Delaying commit flushes based on state yields better performance and a cleaner application design
because applications are not required to wait for a response from UltraLite. By delaying commit flushes
you also minimize the exposure to transactions by giving more granular control over data for which work
has not been fully completed. For example, in a sales application, an order may be available to a second
application before all items have been added or even approved.

However, it is important for you to take into account the recoverability of a transaction for which commit
flushes have been delayed. Transactions that have not been released cannot be recovered. Therefore, you
need to evaluate the trade-off between the data integrity of your application and its performance.

See also
● “UltraLite COMMIT_FLUSH connection parameter” on page 170
● “UltraLite commit_flush_count option [temporary]” on page 163
● “UltraLite commit_flush_timeout option [temporary]” on page 164
● “CHECKPOINT statement [UltraLite]” on page 375
● UltraLite for embedded SQL: “ULCheckpoint method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “Checkpoint method” [UltraLite - C and C++ Programming]

How database encryption and obfuscation affect
performance

You can encrypt the database to increase the security of the information stored in UltraLite. However, you
should note that there is an increase in overhead of between 5-10% as a result, resulting in decreased
performance. The exact effect on performance depends on the size of your cache. If your cache is too
small, encryption can add significant overhead. However, if your cache is sufficiently large, you may not
see any difference at all. To determine what the optimal cache size for your scenario is, you can graph the
database performance with benchmark tests.

Stressing the cache
You can benchmark test different cache sizes and watch for performance to change abruptly. Your cache
should be large enough to have a good working set of pages. Consider the following ideas to help you
stress the cache:

Using UltraLite databases

90 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● Create multiple indexes on the table and add foreign keys.

● Insert rows randomly (something other than the index order).

● Create large rows, at least 25% of the database page size.

● Set the index hash to something other than 0. This increased size also increases the page accesses needed.

● Start graphing performance based on the smallest cache size. For example, 256 KB on Windows NT
(the smallest allowed cache for this platform) or 64 KB on all other platforms.

If you find that increasing the cache does not improve the performance of an encrypted database, consider
obfuscating the data rather than encrypting it. Obfuscation can yield better performance while still
offering some security benefits; the obfuscation algorithm uses less code compared to strong encryption,
and performs fewer computations. Simple encryption performance should only be marginally slower than
no encryption at all. However, your security requirements must ultimately dictate whether you choose to
use strong encryption or not.

See also
● “UltraLite performance and optimization” on page 81
● “UltraLite page_size creation parameter” on page 146
● “UltraLite fips creation parameter” on page 142
● “UltraLite CACHE_SIZE connection parameter” on page 167
● “CREATE INDEX statement [UltraLite] [UltraLiteJ]” on page 376

UltraLite performance and optimization

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 91



92



UltraLite as a MobiLink client
This section contains material that describes how to set up and run UltraLite clients for MobiLink
synchronization.

UltraLite clients
The UltraLite runtime and engine both include a built-in bi-directional synchronization client. This built-
in client means that all data in an UltraLite database is synchronized automatically by default. Users new
to MobiLink synchronization may use this default behavior, until business requirements necessitate a
custom synchronization design to alter what UltraLite data gets synchronized to the consolidated database.

For more information about UltraLite, see “Introducing UltraLite” on page 1. For information about how
to use SQL Anywhere databases as MobiLink clients, see “SQL Anywhere clients” [MobiLink - Client
Administration].

Built-in UltraLite synchronization features
UltraLite contains MobiLink synchronization technology in the data management layer for UltraLite.
Unlike SQL Anywhere remote databases, you do not need to increase the size of the UltraLite footprint to
include synchronization functionality.

Important synchronization features built into the UltraLite runtime include a row-state tracking
mechanism and a synchronization state tracking mechanism.

Synchronizing an UltraLite database requires your application to set synchronization parameters
identifying the address of the MobiLink server and other required information, and calling a
synchronization function or executing the SYNCHRONIZE SQL statement. The option you chose
depends on the API you are using.

The row-state tracking mechanism
Tracking the state of tables and rows is particularly important for data synchronization. Each row in an
UltraLite database has an associated row state structure. In addition to synchronization, UltraLite also
uses the row states to control transaction processing and data recovery. See “UltraLite row
states” on page 12.

Synchronization state tracking
UltraLite uses a progress counter to ensure robust synchronization. Each upload is given a unique number
to identify it. This allows UltraLite to determine whether an upload was successful when a
communication error occurs.

When you first create a new database, UltraLite always sets the synchronization progress counter to zero.
A progress counter value of zero identifies the database as a new UltraLite database, which tells the
MobiLink server to reset its state information for this client.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 93



Caution
Because UltraLite increments the progress counter each time a synchronization occurs, you cannot
synchronize an UltraLite database to different consolidated databases. If the progress counter value is not
zero and does not match that sequence number stored in the consolidated database, MobiLink
synchronization reports an offset mismatch and synchronization fails. You cannot replace an UltraLite
database with a backup copy if the progress counter is older than the current value.

Customizing UltraLite client synchronization behavior
Adding custom synchronization support to UltraLite can involve up to three tasks:

● Maintain primary key uniqueness in synchronization models that include more than one
remote client Required. In a synchronization system, the primary key is the only way to identify
the same row in different databases (remote and consolidated) and the only way to detect conflicts.
Therefore, multiple clients must adhere to the following rules:

○ Every table that is to be synchronized must have a primary key.
○ Never update the values of primary keys.
○ Primary keys must be unique across all synchronized databases.

See “Maintaining unique primary keys” [MobiLink - Server Administration] and “Primary key
uniqueness in UltraLite” on page 95.

● Ensure your date columns are set up so that fractional data is not lost For a SQL
Anywhere consolidated database this is not typically an issue. However, for databases like Oracle,
there may be compatibility issues that you need to consider. For example, UltraLite and Oracle
databases must share the same timestamp precision. Additionally, you should also add a
TIMESTAMP to the Oracle database to avoid losing fractional second data when the UltraLite remote
databases uploads data to the consolidated database. See “Oracle consolidated database” [MobiLink -
Server Administration] and “UltraLite precision creation parameter” on page 148.

● Describe what data subsets you want to upload to the consolidated database Optional.
You only need to do this when you do not want to synchronize all data by default. To target what data
you want to synchronize, use one or more subsetting techniques. See “Designing synchronization in
UltraLite” on page 99.

For example, you may want to create a publication for high-priority data. The application could then
synchronize this data over wireless networks. Because wireless networks can have high usage costs
associated with them, you may want to limit these usage fees to those that are business critical. You
can then synchronize less time-sensitive data from a cradle at a later time.

● Initialize synchronization from your UltraLite application and supply the parameters that
describe the session Required. Programming synchronization has two parts: describing the
session, and then initiating the synchronization operation.

Describing the session primarily involves choosing a synchronization communication stream (also
known as a network protocol), and the parameters for that stream, setting the version of your

UltraLite as a MobiLink client

94 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



synchronization scripts, and identifying the MobiLink user. However, there are other parameters you
can set: for example, use the upload_only and download_only parameters to change the default bi-
directional synchronization to one-way only. See “Adding synchronization to your UltraLite
application” on page 104.

All other important synchronization behaviors are controlled at the MobiLink server with MobiLink
synchronization scripts. These include:

● What data is downloaded as updates or inserts to tables in the UltraLite remote.

● What processing is required on uploaded changes from a remote database.

This means that you can write your synchronization scripts so that data is partitioned among remote
databases in an appropriate manner.

See also
● “MobiLink consolidated databases” [MobiLink - Server Administration]
● “Writing synchronization scripts” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● “Partitioning rows among remote databases” [MobiLink - Server Administration]

Primary key uniqueness in UltraLite
UltraLite can maintain primary key uniqueness using any of the techniques supported by MobiLink. See
“Maintaining unique primary keys” [MobiLink - Server Administration].

One of these methods is to use a GLOBAL AUTOINCREMENT column.GLOBAL AUTOINCREMENT
is similar to AUTOINCREMENT, except that the domain is partitioned. UltraLite supplies column values
only from the partition assigned to the database's global database ID. Each UltraLite database is assigned
a unique integer global database ID.

A second method is to use a UUID primary key column. A UUID requires more data, but needs no
distinct database identifier .

See also
● “UltraLite global_database_id option” on page 165

Using GLOBAL AUTOINCREMENT in UltraLite
You can declare the default value of a column in an UltraLite database to be of type GLOBAL
AUTOINCREMENT. However, before you can autoincrement these column IDs, you must first set the
global database ID for the UltraLite database.

UltraLite clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 95



Caution
GLOBAL AUTOINCREMENT column values downloaded via MobiLink synchronization do not update
the GLOBAL AUTOINCREMENT value counter. As a result, an error can occur should one MobiLink
client insert a value into another client's partition. To avoid this problem, ensure that each copy of your
UltraLite application inserts values only in its own partition.

To declare GLOBAL AUTOINCREMENT columns in your UltraLite database

1. Assign each copy of the database a unique global ID number.

The global_database_id database option sets the value in your UltraLite database. When deploying
UltraLite, you must assign a different identification number to each database. See “UltraLite
global_database_id option” on page 165.

2. Allow UltraLite to supply default values for the column using the partition uniquely identified by the
UltraLite database's number. UltraLite follows these rules:

● If the column contains no values in the current partition, the first default value is pn + 1. p
represents the partition size and n represents the global ID number.

● If the column contains values in the current partition, but all are less than p(n + 1), the next default
value will be one greater than the previous maximum value in this range.

● Default column values are not affected by values in the column outside the current partition; that
is, by numbers less than pn + 1 or greater than p(n + 1). Such values may be present if they have
been replicated from another database via MobiLink synchronization.

For example, if you assigned your UltraLite database a global ID of 1 and the partition size is
1000, then the default values in that database would be chosen in the range 1001-2000. Another
copy of the database, assigned the identification number 2, would supply default values for the
same column in the range 2001-3000.

● Because you cannot set the global ID number to negative values, the values UltraLite chooses for
GLOBAL AUTOINCREMENT columns are always positive. The maximum identification
number is restricted only by the column data type and the partition size.

● If you do not set a global ID value, or if you exhaust values from the partition, a NULL value is
inserted into the column. Should NULL values not be permitted, the attempt to insert the row
causes an error.

3. If you exhaust or will soon exhaust available values for columns declared as GLOBAL
AUTOINCREMENT, you need to set a new global database ID. UltraLite chooses GLOBAL
AUTOINCREMENT values from the partition identified by the global ID number, but only until the
maximum value is reached. If you exceed values, UltraLite begins to generate NULL values. By
assigning a new global database ID number, you allow UltraLite to set appropriate values from
another partition.

One method of choosing a new global database ID is to maintain a pool of unused global database ID
values. This pool is maintained in the same manner as a pool of primary keys. See “Using primary key
pools” [SQL Remote].

UltraLite as a MobiLink client

96 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Tip
UltraLite APIs provide means of obtaining the proportion of numbers that have been used. The return
value is a SHORT in the range 0-100 that represents the percent of values used so far. For example, a
value of 99 indicates that very few unused values remain and the database should be assigned a new
identification number. The method of setting this identification number varies according to the
programming interface you are using.

See also
● “Overriding partition sizes for autoincremented columns” on page 98
● “UltraLite global_database_id option” on page 165
● UltraLite.NET: “Connection property” [UltraLite - .NET Programming]
● UltraLite C/C++: “Synchronize method” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “setDatabaseID method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “ULSetDatabaseID method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “GlobalAutoIncrementUsage property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “getGlobalAutoIncrementUsage method” [UltraLite - M-

Business Anywhere Programming]
● UltraLite for embedded SQL: “ULGlobalAutoincUsage method” [UltraLite - C and C++

Programming]
● UltraLiteJ: “setDatabaseId method” [UltraLiteJ]
● UltraLiteJ: “getDatabaseId method” [UltraLiteJ]

Determining the most recently assigned GLOBAL
AUTOINCREMENT value

You can retrieve the GLOBAL AUTOINCREMENT value that was chosen during the most recent insert
operation. Since these values are often used for primary keys, knowing the generated value may let you
more easily insert rows that reference the primary key of the first row. You can check the value with:

● UltraLite for C/C++ Use the GetLastIdentity function on the ULConnection object. See
“GetLastIdentity method” [UltraLite - C and C++ Programming].

● UltraLite.NET Use the LastIdentity property on the ULConnection class. See “LastIdentity
property” [UltraLite - .NET Programming].

● UltraLite for M-Business Anywhere Use the GetLastIdentity method on the Connection class.
See “getLastIdentity method” [UltraLite - M-Business Anywhere Programming].

● API UltraLiteJ Use the getlastidentity method on the Connection interface. See “getLastIdentity
method” [UltraLiteJ].

The returned value is an unsigned 64-bit integer, database data type UNSIGNED BIGINT. Since this
statement only allows you to determine the most recently assigned default value, you should retrieve this
value soon after executing the insert statement to avoid spurious results.

UltraLite clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 97



Note
Occasionally, a single INSERT statement may include more than one column of type GLOBAL
AUTOINCREMENT. In this case, the return value is one of the generated default values, but there is no
reliable means to determine which one. For this reason, you should design your database and write your
INSERT statements in a way that avoids this situation.

Overriding partition sizes for autoincremented columns

The partition size is any positive integer, although the partition size is generally chosen so that the supply
of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216 = 65536; for columns of
other types the default partition size is 232 = 4294967296. Since these defaults may be inappropriate, it is
best to specify the partition size explicitly.

Default partition sizes for some data types are different in UltraLite applications than in SQL Anywhere
databases. Declare the partition size explicitly if you want different databases to remain consistent.

To override UltraLite partition values (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the selected column and choose Properties.

3. Click the Value tab.

4. Enter any positive integer in the Partition Size field.

To declare autoincrement columns in UltraLite (SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE TABLE or ALTER TABLE statement with a DEFAULT GLOBAL
AUTOINCREMENT clause with the partition size specified in parentheses. See “CREATE TABLE
statement [UltraLite] [UltraLiteJ]” on page 384 and “ALTER TABLE statement [UltraLite]
[UltraLiteJ]” on page 371.

For example, the following statement creates a simple reference table with two columns: an integer
that holds a customer identification number and a character string that holds the customer's name. A
partition size of 5000 is required for this table.

CREATE TABLE customer (
   id   INT          DEFAULT GLOBAL AUTOINCREMENT (5000),
   name VARCHAR(128) NOT NULL,
   PRIMARY KEY (id)
);

UltraLite as a MobiLink client

98 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● UltraLite.NET: “GetColumnPartitionSize method” [UltraLite - .NET Programming]
● UltraLite C/C++: “GetGlobalAutoincPartitionSize method” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “getColumnPartitionSize method” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for embedded SQL: “ULGlobalAutoincUsage method” [UltraLite - C and C++

Programming]
● API UltraLiteJ: “getLastIdentity method” [UltraLiteJ]

Designing synchronization in UltraLite
All data in an UltraLite database is synchronized by default. If you are new to deploying UltraLite as a
MobiLink remote database, plan to use the default behavior initially.

Once you become comfortable with the synchronization process, you may decide to customize the
behavior of the synchronization operation to capture more complex business logic. Designing custom
synchronization behavior requires that you ask yourself the following questions. If your business
requirements are simple, you may only need to use a single synchronization feature. However, in very
complex deployments, you may need to use multiple synchronization features to configure the
synchronization behavior you require.

Design
question

If you answer yes, use the following

Do you
want to ex-
clude ta-
bles from
synchroni-
zation?

The nosync table name suffix allows you to identify any tables that you do not want to
synchronize. See “Non-synchronizing tables in UltraLite” on page 101.

Do you
only want
to syn-
chronize
entire ta-
bles even
when data
hasn't
changed?

The allsync table name suffix allows you to synchronize the entire table, even when no
changes are detected. See “Allsync tables in UltraLite” on page 102.

UltraLite clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 99



Design
question

If you answer yes, use the following

Do you
want to
synchron-
ize an en-
tire table
or just
rows that
meet spe-
cific con-
ditions?
Does
some of
the data re-
quire syn-
chroniza-
tion priori-
ty due to
its impor-
tance or
time-sen-
sitivity?

A publication includes articles that list the tables that require synchronization. An article
can include a WHERE clause that specifies the rows to upload based on whether the rows
meet the defined criteria.

Multiple publications can address priority issues that require certain UltraLite data be up-
loaded before others. See “Publications in UltraLite” on page 102.

Do you re-
quire a ta-
ble order
for syn-
chroniza-
tion be-
cause you
have cy-
cles of for-
eign keys?

The Table Order synchronization parameter allows you to determine the order of synchro-
nization operations when you have foreign key cycles. However, foreign key cycles are
generally not recommended for UltraLite. See “Table order in UltraLite” on page 103.

UltraLite as a MobiLink client

100 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Design
question

If you answer yes, use the following

Do you
want to
control
synchroni-
zation be-
havior?
For exam-
ple, do
you need
down-
loads to
occur at
the same
time as up-
loads? Or
do you
want to
change bi-
directional
synchroni-
zation to
one-way
only?

Use the appropriate synchronization parameter as part of:

● Your application's synchronization structure (or the synchronization enumeration).

● The ulsync utility's -e option.

See “UltraLite synchronization parameters and network protocol options” on page 110.

Do you
want your
UltraLite
client to
be TLS-
enabled?

What encryption algorithm you choose determines how your device must be set up accord-
ing to the platform that runs on that device. See “Deploy UltraLite with TLS-enabled syn-
chronization” on page 47.

See also
● “The synchronization process” [MobiLink - Getting Started]
● “The upload and the download” [MobiLink - Getting Started]

Non-synchronizing tables in UltraLite

By creating the table using SYNCHRONIZE OFF, you control when to exclude the entire table from the
upload operation. You can use these non-synchronizing tables for client-specific persistent data that is not
required in the consolidated database. Other than being excluded from synchronization, you can use these
tables in exactly the same way as other tables in the UltraLite database.

UltraLite clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 101



If you create a table with a _nosync suffix, you can only rename that table so it retains the _nosync suffix.
For example, the following ALTER TABLE statement with a rename clause is not allowed because the
new name no longer ends in nosync:

ALTER TABLE purchase_comments_nosync 
RENAME comments;

To correct this, the statement must be rewritten to include this suffix:

ALTER TABLE purchase_comments_nosync 
RENAME comments_nosync;

You can alternatively use publications to achieve the same effect. See “Publications in
UltraLite” on page 102.

Allsync tables in UltraLite

By creating a table using SYNCHRONIZE ALL you control whether to change the synchronization
behavior during upload so that it synchronizes all table data, even if nothing has changed since the
previous synchronization session.

Some UltraLite applications require user/client-specific data that you can store in a SYNCHRONIZE
ALL TABLES. You can upload the data in the table to a temporary table in the consolidated database, use
the data to control synchronization by your other scripts without having the data maintained in the
consolidated database. For example, you may want your UltraLite applications to indicate which channels
or topics they are interested in, and use this information to download the appropriate rows.

Publications in UltraLite

Publications define a set of articles that describe the data to be synchronized. Each article can be a whole
table, or can define a subset of the data in a table. You can include an optional predicate (a WHERE
clause) if you want to define a subset of rows from a given table.

Publications are more flexible than creating tables with SYNCHRONIZE OFF. To synchronize data
subsets of an UltraLite database separately, use multiple publications. You can then combine publications
with upload-only or download-only synchronization parameters to synchronize high-priority changes
efficiently.

Maximum user publications
The maximum number of user publications in UltraLite is 63.

Adding publications
You can add publications to an UltraLite database with Sybase Central, or using SQL. For UltraLite
synchronization, each article in a publication may include either a complete table, or may include a
WHERE clause.

UltraLite as a MobiLink client

102 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Notes
UltraLite publications do not support the definition of column subsets, nor the SUBSCRIBE BY clause
that is available in SQL Anywhere. If columns in an UltraLite table do not exactly match tables in a
consolidated database, use MobiLink scripts to resolve those differences.

You do not need to set a table synchronization order in a publication. If table order is important for your
deployment, you can set the table order when you synchronize the UltraLite database by setting the Table
Order synchronization parameter.

To publish data from an UltraLite database (Sybase Central)

1. Connect to the UltraLite database using the UltraLite plug-in.

2. Right-click the Publications folder and choose New  » Publication.

3. Enter a name for the new publication. Click Next.

4. On the Tables tab, select a table from the Matching Tables list. Click Add.

The table appears in the Selected Tables list on the right.

5. Add additional tables.

6. If necessary, click the Where tab to specify the rows to be included in the publication. You cannot
specify column subsets.

7. Click Finish.

To publish data from an UltraLite database (SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
tables you want to publish.

See also
● “Working with UltraLite publications” on page 65
● “Download Only synchronization parameter” on page 115
● “Upload Only synchronization parameter” on page 130
● “Additional Parameters synchronization parameter” on page 111
● “Publishing data” [MobiLink - Client Administration]
● “CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 378
● “Writing synchronization scripts” [MobiLink - Server Administration]

Table order in UltraLite

By setting the Table Order synchronization parameter you can control the order of synchronization
operations. If you want to specify a table order for synchronization, you can use the Table Order

UltraLite clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 103



parameter programmatically or as part of the ulsync utility during testing. The Table Order parameter
specifies the order of tables that are to be uploaded. See “Additional Parameters synchronization
parameter” on page 111.

You only need to explicitly set the table order if your UltraLite database has:

● Foreign key cycles. You must then list all tables that are part of a cycle.

● Different foreign key relationships from those used in the consolidated database.

Avoiding synchronization issues with foreign key cycles
Table order is particularly important for UltraLite databases that use foreign key cycles. A cycle occurs
when you link a series of tables together such that a circle is formed. However, due to complexities that
arise when cycles between the consolidated database and the UltraLite remote differ, foreign key cycles
are not recommended.

With foreign key cycles, you should order your tables so that operations for a primary table come before
the associated foreign table. A Table Order parameter ensures that the insert in the foreign table will have
its foreign key referential integrity constraint satisfied (likewise for other operations like delete).

In addition to table ordering, another method you can use to avoid synchronization issues is to postpone
the checking of referential integrity until the transaction is committed. If your consolidated database is a
SQL Anywhere database, set one of the foreign keys to check on commit. This ensures that foreign key
referential integrity is checked during the commit phase rather than when the operation is initiated. For
example:

CREATE TABLE c (
    id INTEGER NOT NULL PRIMARY KEY,
    c_pk INTEGER NOT NULL
);
CREATE TABLE p (
    pk INTEGER NOT NULL PRIMARY KEY,
    c_id INTEGER NOT NULL,
    FOREIGN KEY p_to_c (c_id) REFERENCES c(id)
);
ALTER TABLE c
   ADD FOREIGN KEY c_to_p (c_pk)
   REFERENCES p(pk)
   CHECK ON COMMIT;

If your consolidated database is from another database vendor, check to see if the database has similar
methods of checking referential integrity. If so, you should implement this method. Otherwise, you must
redesign table relationships to eliminate all foreign key cycles.

See also
● “Referential integrity and synchronization” [MobiLink - Getting Started]

Adding synchronization to your UltraLite application

UltraLite as a MobiLink client

104 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



In UltraLite, synchronization begins by opening a specific connection with the MobiLink server over the
configured communication stream (also known as a network protocol). In addition to synchronization
support for direct network connections, Windows Mobile devices also support ActiveSync synchronization.

Defining the connection
Each UltraLite remote that synchronizes with a MobiLink server does so over a network protocol. You set
the network protocol with the synchronization stream parameter. Supported network protocols include TCP/
IP, HTTP, HTTPS, and TLS. For the protocol you choose, you also need to supply stream parameters that
define other required connection information like the MobiLink server host and the port. You must also
supply the MobiLink user information and the synchronization script version.

Defining the synchronization behavior
You can control synchronization behavior by setting various synchronization parameters. The way you set
parameters depends on the specific UltraLite interface you are using.

Important behaviors to consider include:

● Synchronization direction By default, synchronization is bi-directional. If you require one-way
synchronizations only, remember to use the appropriate upload_only or download_only parameter. By
performing one-way synchronizations, you minimize the synchronization time required. Also, with
download-only synchronization, you do not have to commit all changes to the UltraLite database
before synchronization. Uncommitted changes to tables not involved in synchronization are not
uploaded, so incomplete transactions do not cause problems.

To use download-only synchronization, you must ensure that rows overlapping with the download are
not changed locally. If any data is changed locally, synchronization fails in the UltraLite application
with a SQLE_DOWNLOAD_CONFLICT error.

● Concurrent changes during synchronization During the upload phase, UltraLite applications
can access UltraLite databases in a read-only fashion. During the download phase, read-write access is
permitted, but if an application changes a row that the download then attempts to change, the
download will fail and roll back. You can disable concurrent access to data during synchronization by
setting the disable_concurrency synchronization parameter.

To add synchronization code to your UltraLite application

1. Supply the necessary synchronization parameters and protocol options you require for the session as
fields of a synchronization information structure.

For example, using the C/C++ API, you add synchronization to the UltraLite application by setting
appropriate values in the ul_sync_info structure:

ul_sync_info info;       
       // define a sync structure named "info"
        ULEnableTcpipSynchronization( &sqlca );
       // use a TCP/IP stream
       conn->InitSynchInfo( &info );
       // initialize the structure
       info.stream = ULSocketStream();
       // specify the Socket Stream

UltraLite clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 105



       info.stream_parms= UL_TEXT( "host=myMLserver;port=2439"  );
       // set the MobiLink host information
       info.version = UL_TEXT( "custdb 11.0" );
       // set the MobiLink version information
       info.user_name = UL_TEXT( "50" );
       // set the MobiLink user name
       info.download_only =ul_true;
       // make the synchronization download-only

2. Initialize synchronization.

For direct synchronization, you would call an API-specific synchronization function. These functions
return a boolean indicating success or failure of the synchronization operation. If the synchronization
fails, you can examine detailed error status fields in another structure to get additional error information.

For ActiveSync synchronization, you must catch the synchronization message from the ActiveSync
provider and use the DoSync function to call ULSynchronize.

3. Use an observer callback function if you want to report the progress of the synchronization to the user.

Tip
If you have an environment where DLLs fail either because the DLL is very large or the network
connection is unreliable, you may want to implement resumable downloads. See “Handling failed
downloads” [MobiLink - Server Administration] and “Resuming failed downloads” [MobiLink -
Server Administration].

See also
● “Using ActiveSync with UltraLite on Windows Mobile” on page 108
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]
● “The upload and the download” [MobiLink - Getting Started]
● “UltraLite synchronization parameters and network protocol options” on page 110
● UltraLite.NET: “Synchronization in UltraLite applications” [UltraLite - .NET Programming]
● UltraLite C/C++: “Synchronizing data” [UltraLite - C and C++ Programming]
● UltraLite C/C++: “Adding ActiveSync synchronization to your application” [UltraLite - C and C++

Programming]
● UltraLite for M-Business Anywhere: “Synchronizing data” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “Adding synchronization to your application” [UltraLite - C and C++

Programming]
● API UltraLiteJ: “Using UltraLiteJ as a MobiLink client” [UltraLiteJ]

Using MobiLink file transfers
UltraLite supports the ability to transfer files with the MobiLink server. M-Business Anywhere does not
need this functionality because it has its own mechanism for file deployments or transfers (called channel
synchronization).

For all other APIs, use the MobiLink file transfer mechanism when:

UltraLite as a MobiLink client

106 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● You have multiple files that you need to deploy to multiple devices, particularly when corporate
firewalls are used as a security measure. Because MobiLink is already configured to handle
synchronization through these firewalls, the MLFileTransfer mechanism makes device provisioning
for upgrades and other types of file transfers very convenient.

● You have files that you want to target to a specific MobiLink user ID. This requires that you create
one or more user-specific directories on the MobiLink server for each user ID you require. Otherwise,
if you only have a single version of the file, you can use a default directory.

How file transfers work
You can employ one of two MobiLink-initiated file transfer mechanisms to download files to a device:
run the mlfiletransfer utility for desktop transfers, or call the appropriate function for the API you are
using to code your UltraLite application. Both approaches require that you:

1. Describe the transfer destination.

Whether you use the mlfiletransfer utility from the desktop, or whether you use the function
appropriate to your API, you must set the local path and file name of the file on the target device or
desktop computer. If none are supplied in the application or by the end user, then the source file name
is assumed and the file is stored in the current directory.

The destination directory of the target can vary depending on the device's operating system:

● On Windows Mobile, if the destination is NULL, the file is stored in the root directory ( \ ).

The file name must follow file name conventions for Windows Mobile. See “Windows
Mobile” on page 37.

● On the desktop, if the destination is NULL, the file is stored in the current directory.

The file name must follow file name conventions for the desktop system. See
“Desktop” on page 37.

● On iPhone, you should store files in your application's document directory. You can get the
location of the document directory by calling the NSSearchPathForDirectories/uDomains using
the NSDocumentDirectory parameter.

● On BlackBerry, set the location using the FileTransfer object.

2. Set the MobiLink user credentials that allow the user to be identified and the correct file(s) to be
downloaded.

This user name and password are separate from any database user ID and password, and serve to
identify and authenticate the application to the MobiLink server.

3. Set the stream type you want to use, and define the parameters for the stream you require. These are
the same parameters supported by UltraLite for MobiLink synchronization. See “UltraLite
synchronization parameters and network protocol options” on page 110.

UltraLite clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 107



Most synchronization streams require parameters to identify the MobiLink server address and control
other behavior. If you set the stream type to a value that is invalid for the platform, the stream type is
set to TCP/IP, except for UltraLiteJ which supports only HTTP.

4. Describe the required behavior for the transfer mechanism.

For example, you can set properties that allow this mechanism to force a download even when the file
already exists on the target and has not changed, or that allow partial downloads to be resumed. You
can also set whether you want the progress to be monitored and reported upon.

5. Ensure the MobiLink server is running and has been started with the -ftr option.

6. Start the transfer, and, if applicable, monitor the download progress.

By displaying the download progress, the user can cancel and resume the download at a later time.

See also
● “-ftr mlsrv12 option” [MobiLink - Server Administration]
● “MobiLink File Transfer utility (mlfiletransfer)” [MobiLink - Client Administration]
● UltraLite for C/C++: “MLFileDownload method” [UltraLite - C and C++ Programming] and

“MLFileUpload method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ULFileTransfer class” [UltraLite - .NET Programming]
● UltraLite for M-Business: Not supported
● API UltraLiteJ: “FileTransfer interface” [UltraLiteJ]

Using ActiveSync with UltraLite on Windows Mobile
While you can synchronize data from a Windows Mobile device over an Ethernet or Wi-Fi connection,
this section describes how to configure your desktop and device to use ActiveSync synchronization so
that your UltraLite database is synchronized at the same time as other ActiveSync operations. If you want
to synchronize directly using one of the other alternative methods, you need to program your application
to do so using an appropriate synchronize function.

To use ActiveSync initiated synchronization requires that you:

● Register all applications that need to use ActiveSync initiated synchronization with ActiveSync.

● Have the ActiveSync provider installed on your desktop, and deployed to your device.

To determine which platforms the provider is supported on, see http://www.sybase.com/detail?
id=1002288.

The ActiveSync architecture
The following diagram shows the computing layers required by the ActiveSync architecture.

UltraLite as a MobiLink client

108 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/detail?id=1002288
http://www.sybase.com/detail?id=1002288


Notice that you must install the ActiveSync provider on your device in addition to your desktop. You can
only have a single ActiveSync provider on a single computer. However, if you have more than one
UltraLite application installed on a Windows Mobile device, you can register them with the same provider
so they are synchronized simultaneously.

See also
● UltraLite C/C++ : “Adding ActiveSync synchronization to your application” [UltraLite - C and C++

Programming]
● UltraLite for embedded SQL: “Adding synchronization to your application” [UltraLite - C and C++

Programming]
● UltraLite for M-Business Anywhere: “Synchronizing data” [UltraLite - M-Business Anywhere

Programming]

ActiveSync synchronization overview
1. ActiveSync begins a synchronization session.

2. The ActiveSync provider sends a synchronize notification message to the first registered application
on the device. The application is started if it is not yet running.

3. WndProc is invoked for each registered application.

4. Once the application has determined that this is the synchronize notification message from
ActiveSync, the application calls ULIsSynchronizeMessage to invoke the database synchronization
procedure.

5. Once synchronization is complete, the application calls ULSignalSyncIsComplete to let the provider
know that it has finished synchronizing.

Using ActiveSync with UltraLite on Windows Mobile

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 109



6. Steps two-five are repeated for each application that has been registered with the provider.

UltraLite synchronization parameters and network
protocol options
Synchronization parameters for UltraLite

Synchronization parameters control the synchronization between an UltraLite database and the MobiLink
server. The way you set parameters depends on the specific UltraLite interface you are using. This section
describes the effects of the parameters, and provides links to other locations for information about to set
them.

Note
The parameters described in this section only apply to UltraLite remote databases. To synchronize SQL
Anywhere remote databases, see “MobiLink SQL Anywhere client utility (dbmlsync)” [MobiLink - Client
Administration].

For API-specific details, see:

● UltraLite for Embedded SQL: “ULSynchronize method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ULSyncParms class” [UltraLite - .NET Programming]
● UltraLite C/C++: “Synchronize method” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “SyncParms constructor” [UltraLiteJ]

Required parameters
The following parameters are required:

● Stream Type See “Stream Type synchronization parameter” on page 127.

● User Name See “User Name synchronization parameter” on page 131.

● Version See “Version synchronization parameter” on page 132.

If you do not set these parameters, the synchronization function throws an exception (for example,
SQLCode.SQLE_SYNC_INFO_INVALID or its equivalent).

Conflicting parameters
You can specify at most one of these parameters:

● Download Only See “Download Only synchronization parameter” on page 115.

● Ping See “Ping synchronization parameter” on page 121.

UltraLite as a MobiLink client

110 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● Upload Only See “Upload Only synchronization parameter” on page 130.

If you set more than one of these parameters to true, the synchronization function throws an exception (for
example, SQLCode.SQLE_SYNC_INFO_INVALID or its equivalent).

Additional Parameters synchronization parameter

This synchronization parameter allows an application to supply additional parameters that can not be
readily specified using any other predefined parameters. Some parameters that are seldom used are
specified in this parameter field.

The additional parameters are supplied as a string of keyword=value settings, separated with a semicolon.

Syntax
The syntax varies depending on the API you use. It is not available in UltraLiteJ.

Allowed values
The following properties can be specified as part of the additional parameters setting:

Property name Description

AllowDownloadDu-
pRows

Prevents errors from being raised when a synchronization encounters downloa-
ded rows with duplicate primary keys.

Set this property to 0 to raise errors and roll back the download; otherwise, set
to 1 to raise warnings and continue the download.

This property is only available in UltraLite C/C++.

CheckpointStore Adds additional checkpoints of the database during synchronization to limit da-
tabase growth during the synchronization process.

Set this property to 1 to enable this feature, which is beneficial for large down-
loads with many updates but slows down synchronization; otherwise, set to 0,
which is the default.

DisableConcurrency Disallows database access from other threads during synchronization during
the upload phase.

Set this property to 0 to allow concurrent database access; otherwise, set to 1.
By default, this property is set to 0.

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 111



Property name Description

TableOrder Sets the table order required for priority synchronization if the UltraLite de-
fault table ordering is not suitable for your deployment.

Set this property to a list of table names, arranged in the desired order for up-
load. For UltraLite, use a comma delimited list; for ulsync, use a semicolon
delimited list. By default, the order is based on foreign key relationships. Typ-
ically, the default is acceptable when the foreign keys on your consolidated da-
tabase match the UltraLite remote and there are no foreign key cycles.

Quote tables names with either single or double quotes. For example, "Custom-
er,Sales" and 'Customer,Sales' are both supported in UltraLite.

If you include tables that are not included in the synchronization, they are ig-
nored. Any tables that you do not list are appropriately sorted based on the for-
eign keys defined in the remote database.

The order of tables on the download is the same as those you define for upload.

You only need to explicitly set the table order if your UltraLite tables:

● Are part of foreign key cycles. You must then list all tables that are part of
a cycle.

● Have different foreign key relationships in the consolidated database.

See also
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AdditionalParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “setAdditionalParms method” [UltraLite - M-Business

Anywhere Programming]

Example
UltraLite for C/C++ applications can set additional parameters as follows:

ul_sync_info info;
// ...
info.additional_parms = UL_TEXT(
    "AllowDownloadDupRows=1;
    CheckpointStore=1;
    DisableConcurrency=1;
    TableOrder=Customer,Sales"
);

Authentication Parameters synchronization parameter

Supplies parameters to authentication parameters in MobiLink events.

UltraLite as a MobiLink client

112 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
The syntax varies depending on the API you use.

Remarks
Parameters may be a user name and password, for example.

If you use this parameter, you must also supply the number of parameters. See “Number of Authentication
Parameters parameter” on page 118.

Allowed values
An array of strings. Null is not allowed as a value for any of the strings, but you can supply an empty string.

See also
● “Number of Authentication Parameters parameter” on page 118
● “Authentication parameters” [MobiLink - Server Administration]
● “authenticate_parameters connection event” [MobiLink - Server Administration]
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AuthenticationParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “getAuthenticationParms method” [UltraLite - M-Business

Anywhere Programming]
● API UltraLiteJ: “setAuthenticationParms method” [UltraLiteJ]

Example
UltraLite for C/C++ applications can set the parameters as follows:

ul_char * Params[ 3 ] = { UL_TEXT( "parm1" ), 
                          UL_TEXT( "parm2" ), 
                          UL_TEXT( "parm3" ) };
// ...
info.num_auth_parms = 3;
info.auth_parms = Params;

Authentication Status synchronization parameter

This field is set by a synchronization to report the status of MobiLink user authentication. The MobiLink
server provides this information to the client.

Syntax
The syntax varies depending on the API you use.

Allowed values
The allowed values are held in an interface-specific enumeration. For example, for C/C++ applications
the enumeration is as follows.

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 113



Constant Value Description

UL_AUTH_STATUS_UNKNOWN 0 Authorization status is unknown, possibly
because the connection has not yet
synchronized.

UL_AUTH_STATUS_VALID 1 User ID and password were valid at the
time of synchronization.

UL_AUTH_STATUS_VALID_BUT_EX-
PIRES_SOON

2 User ID and password were valid at the
time of synchronization but will expire
soon.

UL_AUTH_STATUS_EXPIRED 3 Authorization failed: user ID or password
have expired.

UL_AUTH_STATUS_INVALID 4 Authorization failed: bad user ID or pass-
word.

UL_AUTH_STATUS_IN_USE 5 Authorization failed: user ID is already in
use.

Remarks
If a custom authenticate_user synchronization script at the consolidated database returns a different
value, the value is interpreted according to the rules given in an authenticate_user connection event. See
“authenticate_user connection event” [MobiLink - Server Administration].

If you are implementing a custom authentication scheme, the authenticate_user or
authenticate_user_hashed synchronization script must return one of the allowed values of this parameter.

The parameter is set by the MobiLink server, and so is read-only.

See also
● “MobiLink users” [MobiLink - Client Administration]
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AuthStatus property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]
● API ULtraLiteJ: “getAuthStatus method” [UltraLiteJ]

Example
UltraLite for C/C++ applications can access the parameter as follows:

ul_sync_info info;
// ...
returncode = info.auth_status;

UltraLite as a MobiLink client

114 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Authentication Value synchronization parameter

This field is set by a synchronization to report results of a custom MobiLink user authentication script.
The MobiLink server provides this information to the client.

Syntax
The syntax varies depending on the API you use. It is not available in UltraLiteJ.

Remarks
The values set by the default MobiLink user authentication mechanism are described in the
authenticate_user connection event and Authentication Status synchronization parameter.

The parameter is set by the MobiLink server, and so is read-only.

See also
● “authenticate_user connection event” [MobiLink - Server Administration]
● “authenticate_user_hashed connection event” [MobiLink - Server Administration]
● “Authentication Status synchronization parameter” on page 113
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AuthValue property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]
● API UltraLiteJ: “getAuthValue method” [UltraLiteJ]

Example
UltraLite for C/C++ applications can access the parameter as follows:

ul_sync_info info;
// ...
returncode = info.auth_value;

Download Only synchronization parameter

Prevents changes from being uploaded from the UltraLite database during this synchronization.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 115



Conflicts with
Ping and Upload Only

Remarks
When you have remotes that are synchronized by download-only synchronization, you should regularly
do a full synchronization to reduce the amount of log that is scanned by the download-only
synchronization. Otherwise, the download-only synchronizations will take an increasingly long time to
complete.

For ulsync  When download-only synchronization occurs, ulsync does not upload any changes to the
data. Instead, it:

● Uploads information about the schema and the value stored in the progress counter.

● Ensures that changes on the remote are not overwritten during download-only synchronization.

ulsync performs these actions by scanning the UltraLite database log to watch for rows with pending
operations on the consolidated database. If ulsync detects a conflict, the download is rolled back and the
synchronization fails. You must then do a full synchronization (that is an upload and a download) to
correct this conflict.

See also
● “Upload Only synchronization parameter” on page 130
● “Synchronization state tracking” on page 93
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “DownloadOnly property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● API UltraLite J: “setDownloadOnly method” [UltraLiteJ]

Examples
ulsync supports this parameter as an extended synchronization parameter:

ulsync -c DBF=myuldb.udb 
"MobiLinkUid=remoteA;ScriptVersion=2;DownloadOnly=ON;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.download_only = ul_true;

Ignored Rows synchronization parameter

This field is set by a synchronization to indicate that rows were ignored by the MobiLink server during
synchronization because of absent scripts.

UltraLite as a MobiLink client

116 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
The syntax varies depending on the API you use.

Allowed values
Boolean

Remarks
The parameter is read-only.

See also
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “IgnoredRows property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]
● API UltraLiteJ: “getIgnoredRows method” [UltraLiteJ]

Example
UltraLite for C/C++ applications can access the parameter as follows:

ul_sync_info info;
// ...
res = info.ignored_rows;

Keep Partial Download synchronization parameter

Controls whether UltraLite holds on to the partial download rather than rolling back the changes, when a
download fails because of a communications error during synchronization.

Syntax
The syntax varies depending on the API you use. It is not available in UltraLiteJ.

Default
False, which indicates that UltraLite rolls back all changes after a failed download.

Allowed values
Boolean

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “Resume Partial Download synchronization parameter” on page 123
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “KeepPartialDownload property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 117



Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.keep_partial_download = ul_true;

New Password synchronization parameter

Sets a new MobiLink password associated with the user name.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Allowed values
String

Remarks
The parameter is optional.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “NewPassword property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “setPassword method” [UltraLiteJ]

Example
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb 
"MobiLinkUid=remoteA;ScriptVersion=2;NewMobiLinkPwd=mynewpassword;Stream=http
"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.new_password = UL_TEXT( "mlnewpass" );

Number of Authentication Parameters parameter

Supplies the number of authentication parameters being passed to authentication parameters in MobiLink
events.

UltraLite as a MobiLink client

118 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
The syntax varies depending on the API you use. Not required for UltraLiteJ.

Default
No parameters passed to a custom authentication script.

Remarks
The parameter is used together with Authentication Parameters to supply information to custom
authentication scripts.

See also
● “Authentication Parameters synchronization parameter” on page 112
● “authenticate_parameters connection event” [MobiLink - Server Administration]
● “Authentication parameters” [MobiLink - Server Administration]
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AuthenticationParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.num_auth_parms = 3;

Observer synchronization parameter

Specifies a pointer to a callback function or event handler that monitors synchronization. The signature of
the callback function that you need to implement to use is of the type ul_sync_observer_fn:

typedef void(UL_CALLBACK_FN *ul_sync_observer_fn)( ul_sync_status * status );

The ul_sync_status structure is described in “ul_sync_status structure” [UltraLite - C and C++
Programming].

Syntax
The syntax varies depending on the API you use.

See also
● “User Data synchronization parameter” on page 131
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ULSyncProgressListener interface” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “synchronizeWithParm method” [UltraLite - M-Business

Anywhere Programming]
● UltraLiteJ: “setSyncObserver method” [UltraLiteJ]

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 119



Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.observer=callfunction;

Partial Download Retained synchronization parameter

This field is set by a synchronization to indicate whether UltraLite applied those changes that were
downloaded rather than rolling back the changes when a download fails because of a communications
error during synchronization.

Syntax
The syntax varies depending on the API you use. Not available in UltraLiteJ.

Allowed values
Boolean

Remarks
The parameter is set during synchronization if a download error occurs and a partial download was retained.

Partial downloads are retained only if Keep Partial Download is set to true. See “Keep Partial Download
synchronization parameter” on page 117.

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “Resume Partial Download synchronization parameter” on page 123
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “PartialDownloadRetained property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]

Example
Access the parameter as follows:

ul_sync_info info;
// ...
returncode=info.partial_download_retained;

Password synchronization parameter

Specifies the MobiLink password associated with the user name.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

UltraLite as a MobiLink client

120 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Allowed values
String

Remarks
The parameter is optional.

This MobiLink user name and password are different than any database user ID and password, and serve
to only identify and authenticate the application to the MobiLink server. See “User Name synchronization
parameter” on page 131.

If the MobiLink client already has a password, use the New Password parameter to change it. See “New
Password synchronization parameter” on page 118.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “Password property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “setPassword method” [UltraLiteJ]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb 
"MobiLinkUid=remoteA;ScriptVersion=2;MobiLinkPwd=mypassword;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.password = UL_TEXT( "mypassword" );

Ping synchronization parameter

Confirms communications between the UltraLite client and the MobiLink server. When this parameter is
set to true, no synchronization takes place.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 121



Remarks
When the MobiLink server receives a ping request, it connects to the consolidated database, authenticates
the user, and then sends the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If the ping does not succeed, it
issues an error message.

If the MobiLink user ID cannot be found in the ml_user system table and the MobiLink server is running
with the command line option -zu+, the MobiLink server adds the user to ml_user.

The MobiLink server may execute the following scripts, if they exist, for a ping request:

● begin_connection
● authenticate_user
● authenticate_user_hashed
● authenticate_parameters
● end_connection

See also
● “-pi dbmlsync option” [MobiLink - Client Administration]
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “PingOnly property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ:“setPingOnly method” [UltraLiteJ]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb 
"MobiLinkUid=remoteA;ScriptVersion=2;Ping=True;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.ping = ul_true;

Publications synchronization parameter

Specifies the publications to be synchronized.

Syntax
The syntax varies depending on the API you use. You can also use this parameter with ulsync.

Default
Synchronize all publications.

UltraLite as a MobiLink client

122 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Remarks
When synchronizing in C/C++, set the publications synchronization parameter to a publication list: a
comma-separated list of publication names.

See also
● “Publications in UltraLite” on page 102
● “Working with UltraLite publications” on page 65
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “SYNC_ALL_DB field” [UltraLite - .NET Programming] and “SYNC_ALL_PUBS

field” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “PublicationSchema class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “setPublications method” [UltraLiteJ]

Example
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb 
"MobiLinkUid=remoteA;ScriptVersion=2;Publications=UL_PUB_MYPUB1,UL_PUB_MYPUB2
;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.publications = UL_TEXT( "Pubs1,Pubs3" );

Resume Partial Download synchronization parameter

Resumes a failed download.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync. Not
available in UltraLiteJ.

Default
False

Allowed values
Boolean

Remarks
The synchronization does not upload changes; it only downloads those changes that were to be
downloaded in the failed download.

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 123



See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “Keep Partial Download synchronization parameter” on page 117
● “Partial Download Retained synchronization parameter” on page 120
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ResumePartialDownload property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.resume_partial_download = ul_true;

Send Column Names synchronization parameter

Specifies that column names should be sent in the upload.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

Remarks
This option is used by the MobiLink server for direct row handling. When using direct row handling, you
should enable this option. Otherwise, it has no effect. See “Direct row handling” [MobiLink - Server
Administration].

See also
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “SendColumnNames property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “setSendColumnNames method” [UltraLiteJ]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

UltraLite as a MobiLink client

124 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



ulsync -c DBF=myuldb.udb 
"MobiLinkUid=remoteA;ScriptVersion=2;SendColumnNames=true;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.send_column_names = ul_true;

Send Download Acknowledgement synchronization parameter

Instructs the MobiLink server that the client will provide a download acknowledgement.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

See also
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “SendDownloadAck property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “setAcknowledgeDownload method” [UltraLiteJ]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb 
"MobiLinkUid=remoteA;ScriptVersion=2;SendDownloadACK=true;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.send_download_ack = ul_true;

Stream Error synchronization parameter

Provides a structure to hold communications error reporting information.

Syntax
The syntax varies depending on the API you use.

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 125



Applies to
This parameter applies only to C/C++ interfaces.

Allowed values
The parameter has no default value, and must be explicitly set using one of the supported fields. The
ul_stream_error fields are as follows:

● stream_error_code For a listing of error numbers, see “MobiLink communication error
messages” [Error Messages]. For the error code suffixes, see install-dir\SDK\Include\sserror.h.

● system_error_code A system-specific error code. For more information about the error code, you
must look at your platform documentation. For Windows platforms, this is the Microsoft Developer
Network documentation.

The following are common system errors on Windows:

○ 10048 (WSAADDRINUSE) Address already in use.

○ 10053 (WSAECONNABORTED) Software caused connection abort.

○ 10054 (WSAECONNRESET) The other side of the communication closed the socket.

○ 10060 (WSAETIMEDOUT) Connection timed out.

○ 10061 (WSAECONNREFUSED) Connection refused. Typically, this means that the MobiLink
server is not running or is not listening on the specified port. See http://msdn2.microsoft.com/en-us/
library/ms740668.aspx.

● error_string An application-provided error message. The string may or may not be empty. A non-
empty error_string provides information in addition to the stream_error_code. For instance, for a write
error (error code 9) the error string is a number showing how many bytes it was trying to write.

● error_string_length Deprecated. The size of the error string buffer.

Remarks
UltraLite applications other than the UltraLite C++ Component receive communications error information
as part of the Sync Result parameter. See “Sync Result synchronization parameter” on page 129.

The stream_error field is a structure of type ul_stream_error.

typedef struct {
    ss_error_code stream_error_code;
    asa_uint16    alignment;
    asa_int32     system_error_code;
    char          error_string[UL_STREAM_ERROR_STRING_SIZE];
} ul_stream_error, * p_ul_stream_error;

The structure is defined in install-dir\SDK\Include\sserror.h.

Check for SQLE_COMMUNICATIONS_ERROR:

Connection conn;
ul_sync_info info;

UltraLite as a MobiLink client

126 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://msdn2.microsoft.com/en-us/library/ms740668.aspx
http://msdn2.microsoft.com/en-us/library/ms740668.aspx


...
conn.InitSynchInfo( &info );
info.stream_error.error_string = error_buff;
info.stream_error.error_string_length =
                   sizeof( error_buff );
if( !conn.Synchronize( &synch_info ) ){
    if( SQLCODE == SQLE_COMMUNICATIONS_ERROR ){
        printf( error_buff );
    // more error handling here

See also
● “ul_sync_info structure” [UltraLite - C and C++ Programming]

Stream Type synchronization parameter

Sets the MobiLink network protocol to use for synchronization.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Remarks
This parameter is required. It has no default value.

Most network protocols require protocol options to identify the MobiLink server address and other
behavior. These options are supplied in the Stream Parameters parameter. See “Stream Parameters
synchronization parameter” on page 128.

When the network protocol requires an option, pass that option using the Stream Parameters parameter;
otherwise, set the Stream Parameters parameter to null.

The following stream types are available, but not all are available on all target platforms:

Network protocol Description

HTTP Synchronize over HTTP.

HTTPS Synchronize over HTTPS.

The HTTPS protocol uses TLS as its underlying security layer. It
operates over TCP/IP.

TCP/IP Synchronize over TCP/IP. This protocol is not available in Ultra-
LiteJ.

TLS Synchronize over TCP/IP with transport-layer security (TLS).
TLS secures client/server communications using digital certifi-
cates and public-key cryptography.

For a list of supported platforms, see http://www.sybase.com/detail?id=1061806.

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 127

http://www.sybase.com/detail?id=1061806


See also
● “Certificate Creation utility (createcert)” [SQL Anywhere Server - Database Administration]
● “Certificate Viewer utility (viewcert)” [SQL Anywhere Server - Database Administration]
● “Transport-layer security” [SQL Anywhere Server - Database Administration]
● “UltraLite Synchronization utility (ulsync)” on page 209
● “Network protocol options for UltraLite synchronization streams” on page 133
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “Stream property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Example
For UltraLite for C/C++ applications, set the parameter as follows:

Connection conn;
ul_sync_info info;
...
conn.InitSynchInfo( &info );
info.stream = "http";

Stream Parameters synchronization parameter

Sets options to configure the network protocol.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
Null

Allowed values
String

Remarks
This parameter is optional. It accepts a semicolon separated list of network protocol options. Each option
is of the form keyword=value, where the allowed sets of keywords depends on the network protocol.

See also
● “UltraLite Synchronization utility (ulsync)” on page 209
● “Network protocol options for UltraLite synchronization streams” on page 133
● UltraLite for C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “StreamParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “StreamHTTPParms interface” [UltraLiteJ]

UltraLite as a MobiLink client

128 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.stream_parms= UL_TEXT( "host=myserver;port=2439" );

Sync Result synchronization parameter

Reports the status of a synchronization.

Syntax
The syntax varies depending on the API you use.

Remarks
The parameter is set by UltraLite, and is read-only.

The C/C++ interface receives this information in separate parameters as part of a ul_sync_info struct.
Otherwise, this information is defined as a compound parameter containing a variety of information in
separate fields:

● Authentication Status Reports success or failure of authentication. See “Authentication Status
synchronization parameter” on page 113.

● Ignored Rows Reports the number of ignored rows. See “Ignored Rows synchronization
parameter” on page 116.

● Stream Error information The Stream Error information includes a Stream Error Code, Stream
Error Context, Stream Error ID, and Stream Error System. See “Stream Error synchronization
parameter” on page 125.

● Upload OK Reports the success or failure of the upload phase. See “Upload OK synchronization
parameter” on page 129.

See also
● UltraLite.NET: “ULSyncParms class” [UltraLite - .NET Programming]
● UltraLite C/C++: “ul_sync_result structure” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “ULGetSyncResult method” [UltraLite - C and C++ Programming]
● UltraLiteJ: “SyncResult class” [UltraLiteJ]

Upload OK synchronization parameter

This field is set by a synchronization to report the status of data uploaded to the MobiLink server.

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 129



Syntax
The syntax varies depending on the API you use.

Remarks
The parameter is set by UltraLite, and so is read-only.

After synchronization, the parameter holds true if the upload was successful, and false otherwise. You
can check this parameter if there was a synchronization error, to know whether data was successfully
uploaded before the error occurred.

See also
● UltraLite C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “UploadOK property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “isUploadOK method” [UltraLiteJ]

Example
UltraLite for C/C++ applications can access the parameter as follows:

ul_sync_info info;
// ...
returncode = info.upload_ok;

Upload Only synchronization parameter

Indicates that there should be no downloads in the current synchronization, which can save
communication time, especially over slow communication links.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

Conflicts with
Download Only, Ping, and Resume Partial Download

Remarks
When set to true, the client waits for the upload acknowledgement from the MobiLink server, after which
it terminates the synchronization session successfully.

UltraLite as a MobiLink client

130 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “Designing synchronization in UltraLite” on page 99
● “Download Only synchronization parameter” on page 115
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “UploadOnly property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “isUploadOnly method” [UltraLiteJ]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb 
"MobiLinkUid=remoteA;ScriptVersion=2;UploadOnly=True;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.upload_only = ul_true;

User Data synchronization parameter

Makes application-specific information available to the synchronization observer.

Applies to
C/C++ applications only. Other components, such as UltraLite.NET, do not require a separate parameter
to handle user data and so have no User Data parameter.

Syntax
The syntax varies depending on the API you use.

Remarks
When implementing the synchronization observer callback function or event handler, you can make
application-specific information available by providing information using the User Data parameter.

See also
● “Observer synchronization parameter” on page 119
● UltraLite C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]

User Name synchronization parameter

Required. A string that the MobiLink server uses for authentication purposes.

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 131



Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Remarks
This parameter is required. Empty strings and NULL strings are universally rejected.

The parameter has no default value, and must be explicitly set.

The user name does not have to be unique when a remote ID is used. See “Remote IDs” [MobiLink -
Client Administration].

This MobiLink user name and password are separate from any database user ID and password, and serves
only to identify and authenticate the application to the MobiLink server. See “Password synchronization
parameter” on page 120.

For a user to be part of a synchronization system, you must register the user name with the MobiLink
server. The user name is stored in the name column of the ml_user MobiLink system table in the
consolidated database.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “UltraLite user authentication” [MobiLink - Client Administration]
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “UserName property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ:“setUserName method” [UltraLiteJ]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;ScriptVersion=2;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.user_name= UL_TEXT( "remoteA" );

Version synchronization parameter

Defines the consolidated database version.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

UltraLite as a MobiLink client

132 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Allowed values
String

Remarks
This parameter is required. Empty strings and NULL strings are universally rejected.

Each synchronization script in the consolidated database is marked with a version string. For example,
there may be two different download_cursor scripts, identified by different version strings.

See also
● “Script versions” [MobiLink - Server Administration]
● “UltraLite Synchronization utility (ulsync)” on page 209
● UltraLite C/C++: “ul_sync_info structure” [UltraLite - C and C++ Programming]
● UltraLite.NET: “Version property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLiteJ: “setVersion method” [UltraLiteJ]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;ScriptVersion=2;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info;
// ...
info.version = UL_TEXT( "default" );

Network protocol options for UltraLite synchronization
streams

You must set the network protocol in your application. Each UltraLite database that synchronizes with a
MobiLink server does so over a network protocol. Available network protocols include TCP/IP, HTTP,
HTTPS, and TLS. Support is also provided for ActiveSync notification on Windows Mobile.

For the network protocol you set, you can choose from a set of corresponding protocol options to ensure
that the UltraLite application can locate and properly communicate with the MobiLink server. The
network protocol options provide information such as addressing information (host and port) and protocol-
specific information. Refer to the table below to determine which options you can use for the stream type
you are using.

For a list of protocol options, see “MobiLink client network protocol option summary” [MobiLink - Client
Administration].

UltraLite synchronization parameters and network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 133



See also
● “Configuring UltraLite clients to use transport-layer security” [SQL Anywhere Server - Database

Administration]
● “Deploy UltraLite with TLS-enabled synchronization” on page 47
● “MobiLink client network protocol options” [MobiLink - Client Administration]
● “Stream Parameters synchronization parameter” on page 128
● -x option in “UltraLite Synchronization utility (ulsync)” on page 209

Setting the synchronization stream and options
You can provide the information needed to locate the MobiLink server in your application by setting the
Stream Parameters parameter. See “Stream Parameters synchronization parameter” on page 128.

For information about including stream parameters in your UltraLite synchronization call, see:

● UltraLite for UltraLite.NET: “StreamParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “setStreamParms method” [UltraLite - M-Business Anywhere

Programming]

UltraLite as a MobiLink client

134 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite database reference
This section provides a reference for UltraLite database properties, options, connection parameters, and
utilities.

UltraLite creation parameters
Creation parameters are used to configure the UltraLite database when you first create it. You can only
change these settings by recreating the database.

You can specify creation parameters when creating a database using the ulinit or ulload utility, and from
the supported client interfaces.

Boolean creation parameters are turned on with YES, Y, ON, TRUE, T, or 1, and are turned off with any
of NO, N, OFF, FALSE, F, and 0. The parameters are case insensitive.

UltraLite creation parameters are specified in a semicolon separated string when creating a database from
a programming interfaces and as a separate command line parameters when using a command line utility.
For example:

ulinit --case --utf8_encoding=1 test.udb

Alternatively, you can specify multiple -c options.

See also
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● “Accessing creation parameter values” on page 28

UltraLite case creation parameter
Sets the case sensitivity of string comparisons in the UltraLite database. Pass in case=respect to the
creation string parameter of the CreateDatabase method in your programming interface (or case=ignore
for a case-insensitive database.

Syntax
 ulinit  --case database.udb

Allowed values
Ignore, Respect

Default
Ignore

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 135



Remarks
The case sensitivity of data is reflected in tables, indexes, and so on. By default, UltraLite databases
perform case-insensitive comparisons, although data is always held in the case in which you enter it.
Identifiers (such as table and column names) and user IDs are always case insensitive, regardless of the
database case sensitivity. Passwords are always case sensitive, regardless of the case sensitivity of the
database. See “Strings in UltraLite” on page 225.

The results of comparisons on strings, and the sort order of strings, depend in part on the case sensitivity
of the database.

There are some collations where particular care is required when assuming case insensitivity of
identifiers. In particular, Turkish collations have a case-conversion behavior that can cause unexpected
and subtle errors. The most common error is that a system object containing a letter i or I is not found.

You cannot change the case of an existing database. Instead, you must create a new database.

From Sybase Central, you can set the case sensitivity in any wizard that creates a database. On the New
Database Collation And Character Set page, select the Use Case-sensitive String Comparisons option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

UltraLite checksum_level creation parameter
Sets the level of checksum validation for the database.

Syntax
 ulinit   --checksum_level=value

Allowed values
0, 1, 2

Default
0

Remarks

UltraLite database reference

136 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Checksums are used to detect offline corruption on pages stored to disk, flash, or memory, which can help
reduce the chances of other data being corrupted as the result of a bad critical page. Depending on the
level you choose, UltraLite calculates and records a checksum for each database page before it writes the
page to storage.

If the calculated checksum does not match the stored checksum for a page read from storage, the page has
been modified or became corrupted during the storage/retrieval of the page. If a checksum validation fails,
when the database loads a page, UltraLite stops the database and reports a fatal error. This error cannot be
corrected; you must re-create your UltraLite database and report the database failure to iAnywhere.

If you unload and reload an UltraLite database with checksums enabled, the checksum level is preserved
and restored.

The following values are supported for the checksum_level:

● 0 Do not add checksums to database pages.

● 1 Add checksums to important database pages, such as indexes and synchronization status pages,
but not row pages.

● 2 Add checksums to all database pages.

From Sybase Central, you can configure the use of checksums in any wizard that creates a database. On
the New Database Storage Settings page, select the Checksum Level For Database Pages option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● checksum_level database property: “UltraLite database properties” on page 158
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “UltraLite performance and optimization” on page 81
● “UltraLite page_size creation parameter” on page 146
● “Connecting to an UltraLite database” on page 34

UltraLite collation creation parameter
Sets the database collation.

Syntax
 ulinit --collation=value

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 137



Allowed values
String

Default
1252Latin1

Remarks
For a list of supported collations in UltraLite, see “UltraLite supported collations” on page 31.

You can also view a list of supported collations in UltraLite by executing the following command:

ulinit -Z

From Sybase Central, you can set the collation in any wizard that creates a database. On the New
Database Collation And Character Set page, choose either the default collation (1252Latin1), or an
alternate one from the list.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● “UltraLite character sets” on page 30
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

UltraLite date_format creation parameter
Sets the format for dates retrieved from the database.

Syntax
 ulinit   --date_format=value

Allowed values
String

Default
YYYY-MM-DD (this corresponds to ISO date format specifications)

UltraLite database reference

138 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Remarks
DATE data type values are represented in a format set by the date_format creation parameter. Date values
can, however, also be represented by strings. Before the value can be retrieved, it must be assigned to a
string.

UltraLite builds a date from date parts. Date parts can include the year, the month, the day of the month,
the day of the week, the day of the year, the hour, the minute, and the second (and parts thereof).

ISO (YYYY-MM-DD) is the default date format and order. For example, "7th of January 2006" in this
international format is written: 2006-01-07. If you do not want to use the default ISO date format and
order, you must specify a different format and order for these date parts.

The format is a string using the following symbols:

Symbol Description

yy Two digit year.

yyyy Four digit year.

mm Two digit month, or two digit minutes if following a colon (as in hh:mm).

mmm[m...] Character short form for months—as many characters as there are "m"s. An
uppercase M causes the output to be made uppercase.

d Single digit day of week, (0 = Sunday, 6 = Saturday).

dd Two digit day of month. A leading zero is not required.

ddd[d...] Character short form for day of the week. An uppercase D causes the output
to be made uppercase.

hh Two digit hours. A leading zero is not required.

nn Two digit minutes. A leading zero is not required.

ss[.ss..] Seconds and parts of a second.

aa Use 12 hour clock. Indicate times before noon with AM.

pp Use 12 hour clock. Indicate times after noon with PM.

jjj Day of the year, from 1 to 366.

You cannot change the date format of an existing database. Instead, you must create a new database.

Allowed values are constructed from the symbols listed in the table above. Each symbol is substituted
with the appropriate data for the date that is being formatted.

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 139



For the character short forms, the number of letters specified is counted. The A.M. or P.M. indicator
(which could be localized) is also truncated, if necessary, to the number of bytes corresponding to the
number of characters specified.

Controlling output case  For symbols that represent character data (such as mmm), you can control
the case of the output as follows:

● Type the symbol in uppercase to have the format appear in uppercase. For example, MMM produces
JAN.

● Type the symbol in lowercase to have the format appear in lowercase. For example, mmm produces jan.

● Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is
being used. For example, in English, typing Mmm produces May, while in French it produces mai.

Controlling zero-padding   For symbols that represent numeric data, you can control zero-padding
with the case of the symbols:

● Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

● Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd
could produce 2002/1/1.

From Sybase Central, you can set the date format in any wizard that creates a database. On the New
database creation parameters page, select the Date Format option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite date_order creation parameter” on page 141
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

Example
The following table illustrates date_format settings, together with the output from a SELECT CURRENT
DATE statement, executed on Thursday May 21, 2001.

date_format syntax used Result returned

yyyy/mm/dd/ddd 2001/05/21/thu

UltraLite database reference

140 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



date_format syntax used Result returned

jjj 141

mmm yyyy may 2001

mm-yyyy 05-2001

UltraLite date_order creation parameter
Controls the interpretation of date formats.

Syntax
 ulinit  --date_order=value

Allowed values
MDY, YMD, DMY

Default
YMD (this corresponds to ISO date format specifications)

Remarks
DATE data type values are represented in a format set by the date_format creation parameter. Date values
can, however, also be represented by strings. Before the value can be retrieved, it must be assigned to a
string.

UltraLite builds a date from date parts. Date parts can include the year, the month, the day of the month,
the day of the week, the day of the year, the hour, the minute, and the second (and parts thereof).

ISO (YYYY-MM-DD) is the default date format and order. For example, "7th of January 2006" in this
international format is written: 2006-01-07. If you do not want to use the default ISO date format and
order, you must specify a different format and order for these date parts.

You cannot change the date order of an existing database. Instead, you must create a new database.

From Sybase Central, you can set the date order in any wizard that creates a database. On the New
database creation parameters page, select the Date Order option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 141



See also
● “UltraLite date_format creation parameter” on page 138
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

Example
Different values determine how the date of 10/11/12 is translated:

Syntax used Translation

MDY Oct 11 1912

YMD Nov 12 1910

DMY Nov 10 1912

UltraLite fips creation parameter
Controls whether the new database should be encrypted using AES or AES_FIPS strong encryption.

Syntax
{ulinit -a | ulload -c } --fips=value  --key=value

Allowed values
Yes (use AES_FIPS), No (use AES)

Default
Yes

Remarks
The only way to change the type of database encryption is to recreate the database with the appropriate
fips or obfuscate creation parameter. You can change the database encryption key by specifying a new
encryption key on the Connection object. Users connecting to the database must supply the key each time
they connect.

From Sybase Central, you can configure strong encryption in any wizard that creates a database. On the
New Database Storage Settings page, select the AES FIPS Algorithm option. You must also set and
confirm the encryption key.

UltraLite database reference

142 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Set this parameter as one of the creation parameters for the create database method on the database
manager class.

To deploy a FIPS-enabled database, copy all appropriate libraries for your platform. See “Deploy
UltraLite with AES_FIPS database encryption” on page 46.

See also
● “Strong encryption” [SQL Anywhere Server - Database Administration]
● “Securing UltraLite databases” on page 32
● “UltraLite obfuscate creation parameter” on page 146
● “UltraLite DBKEY connection parameter” on page 174
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite C/C++: “ULChangeEncryptionKey method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite.NET: “ChangeEncryptionKey method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for M-Business Anywhere: “changeEncryptionKey method” [UltraLite - M-Business

Anywhere Programming]
● “Accessing creation parameter values” on page 28

UltraLite max_hash_size creation parameter
Sets the maximum default index hash size in bytes.

Syntax
 ulinit  --max_hash_size=value

Allowed values
0 to 32 bytes

Default
4 bytes

Remarks
A hash is an optional part of an index entry that is stored in the index page. The hash transforms the actual
row values for the indexed columns into a numerical equivalent (a key), while still preserving ordering for
that index. The size of the key, and how much of the actual value UltraLite hashes, is determined by the
hash size you set.

A row ID allows UltraLite to locate the row for the actual data in the table. A row ID is always part of an
index entry. If you set the hash size to 0 (disable index hashing), then the index entry only contains this
row ID. For all other hash sizes, the hash key, which can contain all or part of the transformed data in that

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 143



row, is stored along with the row ID in the index page. You can improve query performance on these
indexed columns because UltraLite may not always need to find, load, and unpack data before it can
compare actual row values.

Determining an appropriate default database hash size requires that you evaluate the trade-off between
query efficiency and database size: the higher the maximum hash value, the larger the database size grows.

UltraLite only uses as many bytes as required for the data type(s) of the column(s), up to the maximum
value specified by this parameter. The default hash size is only used if you do not set a size when you
create the index. If you set the default hash size to 0, UltraLite does not hash row values.

You cannot change the hash size for an existing index. When creating a new index, you can override the
default value with the UltraLite Create Index Wizard in Sybase Central, or with the WITH MAX SIZE
clause of a CREATE INDEX or a CREATE TABLE statement.

If you declare your columns as DOUBLE, FLOAT, or REAL, no hashing is used. The hash size is always
ignored.

From Sybase Central, you can set the maximum hash size in any wizard that creates a database. On the
New Database Storage Settings page, select the Maximum Hash Size For Indexes option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite performance and optimization” on page 81
● “Working with UltraLite indexes” on page 61
● “Choosing an optimal hash size” on page 86
● “CREATE INDEX statement [UltraLite] [UltraLiteJ]” on page 376
● “CREATE TABLE statement [UltraLite] [UltraLiteJ]” on page 384
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

UltraLite nearest_century creation parameter

Controls the interpretation of two-digit years in string-to-date conversions.

Syntax
 ulinit  --nearest_century=value

UltraLite database reference

144 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Allowed values
Integer, between 0 and 100, inclusive

Default
50

Remarks
UltraLite automatically converts a string into a date when a date value is expected, even if the year is
represented in the string by only two digits. For a two-digit date, you need to set the appropriate rollover
value. Two digit years less than the value are converted to 20yy, while years greater than or equal to the
value are converted to 19yy.

Choosing an appropriate rollover value typically is determined by:

● The use of two-digit dates Otherwise, nearest century conversion isn't applicable. Two-digit
years less than the nearest_century value you set are converted to 20yy, while years greater than or
equal to the value are converted to 19yy.

It is recommended that you store four-digit dates to avoid issues with incorrect conversions. See
“Ambiguous date and time conversions” [SQL Anywhere Server - SQL Reference].

● Consolidated database compatibility For example, the historical SQL Anywhere behavior is to
add 1900 to the year. Adaptive Server Enterprise behavior is to use the nearest century, so for any year
where value yy is less than 50, the year is set to 20yy.

● What the date represents: past event or future event Birth years are typically those that
would require a lower rollover value since they occur in the past. So for any year where yy is less than
20, the year should be set to 20yy. However, if the date is used as an expiry date, then having a higher
value would be a logical choice, since the date is occurring in the future.

You cannot change the nearest century of an existing database. Instead, you must create a new database.

From Sybase Central, you can configure the nearest century setting in any wizard that creates a database.
On the New database creation parameters page, select the Nearest Century option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 145



UltraLite obfuscate creation parameter

Controls obfuscation of data in the database. Obfuscation is a form of simple encryption.

Syntax
{ulinit -a | ulload -c } obfuscate=value

Allowed values
Boolean.

Default
0 (databases are not obfuscated)

Remarks
Simple encryption is equivalent to obfuscation and makes it more difficult for someone using a disk
utility to look at the file to decipher the data in your database. Simple encryption does not require a key to
encrypt the database.

If you want to make the database inaccessible without the correct encryption key, you must use strong
encryption. See “UltraLite fips creation parameter” on page 142.

From Sybase Central, you can set obfuscation in any wizard that creates a database. On the New
Database Storage Settings page, select the Use Simple Encryption (Obfuscation) option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “Simple encryption” [SQL Anywhere Server - Database Administration]
● “Securing UltraLite databases” on page 32
● “UltraLite fips creation parameter” on page 142
● “UltraLite DBKEY connection parameter” on page 174
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++ : “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

UltraLite page_size creation parameter

Defines the database page size in kilobytes.

UltraLite database reference

146 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
{ulinit -a  | ulload -c } --page_size=size ]

Allowed values
1, 2, 4, 8, 16

Default
4

Remarks
UltraLite databases are stored in pages, and all I/O operations are carried out a page at a time. The page
size you choose can affect the performance or size of the database.

If you use any value other than those listed, the size is changed to the next larger size. If you do not
specify a unit, bytes are assumed.

If your platform has limited dynamic memory, consider using a smaller page size to limit the effect on
synchronization memory requirements.

When choosing a page size, you should keep the following guidelines in mind:

● Database size Larger databases usually benefit from a larger page size. Larger pages hold more
information and therefore use space more effectively—particularly if you insert rows that are slightly
more than half a page in size. The larger the page, the less page swapping that is required.

● Number of rows Because a row (excluding BLOBs) must fit on a page, the page size determines
how large the largest packed row can be, and how many rows you can store on each page. Sometimes
reading one page to obtain the values of one row may have the side effect of loading the contents of
the next few rows into memory. See “Row packing and table definitions” on page 53.

● Query types In general, smaller page sizes are likely to benefit queries that retrieve a relatively
small number of rows from random locations. By contrast, larger pages tend to benefit queries that
perform sequential table scans.

● Cache size Large page sizes may require larger cache sizes. When your cache cannot hold enough
pages, performance suffers as UltraLite begins swapping frequently-used pages to disk. See “UltraLite
CACHE_SIZE connection parameter” on page 167.

● Index entries Page size also affects indexes. The larger the database page, the more index entries it
can hold. See “Working with UltraLite indexes” on page 61.

● Device memory Small pages are particularly useful if your database must run on small devices
with limited memory. For example, 1 MB of memory can hold 1000 pages that are each 1 KB in size,
but only 250 pages that are 4 KB in size.

You cannot change the page size of an existing database. Instead, you must create a new database.

From Sybase Central, you can set the page size in any wizard that creates a database. On the New
Database Storage Settings page, select the appropriate byte value.

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 147



From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “Row packing and table definitions” on page 53
● “UltraLite case creation parameter” on page 135
● “UltraLite CACHE_SIZE connection parameter” on page 167
● “UltraLite RESERVE_SIZE connection parameter” on page 181
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

Example
To set the page size of the database to 8 KB, specify page_size=8k or page_size=8192:

ulinit test.udb -a --page_size=8k

UltraLite precision creation parameter
Specifies the maximum number of digits in decimal point arithmetic results.

Syntax
 ulinit  precision=value

Allowed values
Integer, between 1 and 127, inclusive

Default
30

Remarks
The position of the decimal point is determined by the precision and the scale of the number: precision is
the total number of digits to the left and right of the decimal point; scale is the minimum number of digits
after the decimal point when an arithmetic result is truncated to the maximum precision.

Choosing an appropriate decimal point position is typically determined by:

● The type of arithmetic procedures you perform Multiplication, division, addition, subtraction,
and aggregate functions can all have results that exceed the maximum precision.

UltraLite database reference

148 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a
DECIMAL(17,4). If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is a
DECIMAL(15,4). If scale is 2, the result is a DECIMAL(15,2). In both cases, there is a possibility of
an overflow error.

● The relationship between scale and precision values The scale sets the number of digits in
the fractional part of the number, and cannot be negative or greater than the precision.

You cannot change the precision of an existing database. Instead, you must create a new database.

If you are using an Oracle database as the consolidated database, all UltraLite remotes and the Oracle
consolidated database must have the same precision value.

From Sybase Central, you can set the precision in any wizard that creates a database. On the New
database creation parameters page, select the Precision option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

UltraLite scale creation parameter
Specifies the minimum number of digits after the decimal point when an arithmetic result is truncated to
the maximum precision.

Syntax
 ulinit  --scale=value

Allowed values
Integer, between 0 and 127, inclusive

Default
6

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 149



Remarks
The position of the decimal point is determined by the precision and the scale of the number: precision is
the total number of digits to the left and right of the decimal point; scale is the minimum number of digits
after the decimal point when an arithmetic result is truncated to the maximum precision.

Choosing an appropriate decimal point position is typically determined by:

● The type of arithmetic procedures you perform Multiplication, division, addition, subtraction,
and aggregate functions can all have results that exceed the maximum precision.

For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a
DECIMAL(17,4). If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is a
DECIMAL(15,4). If scale is 2, the result is a DECIMAL(15,2). In both cases, there is a possibility of
an overflow error.

● The relationship between scale and precision values The scale sets the number of digits in
the fractional part of the number, and cannot be negative or greater than the precision.

You cannot change the scale of an existing database. Instead, you must create a new database.

From Sybase Central, you can set the scale in any wizard that creates a database. On the New database
creation parameters page, select the Scale option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite precision creation parameter” on page 148
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

Example
When a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a DECIMAL(17,4).
If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is DECIMAL(15,4). If scale
is 2, the result is a DECIMAL(15,2). In both cases, there is a possibility of overflow.

UltraLite time_format creation parameter

Sets the format for times retrieved from the database.

UltraLite database reference

150 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
 ulinit  --time_format=value

Allowed values
String (composed of the symbols listed below)

Default
HH:NN:SS.sss

Remarks
UltraLite writes times from time parts you set with the time_format creation parameter. Time parts can
include hours, minutes, seconds, and milliseconds.

Time values can also be represented by strings. Before a time value can be retrieved, it must be assigned
to a string variable.

ISO (HH:MM:SS) is the default time format. For example, "midnight" in this international format is
written: 00:00:00. If you do not want to use the default ISO time format, you must specify a different
format and order for these time parts.

The format is a string using the following symbols:

Symbol Description

HH Two digit hours (24 hour clock).

NN Two digit minutes.

MM Two digit minutes if following a colon (as in hh:mm).

SS[.s...] Two digit seconds plus optional fraction.

You cannot change the time format of an existing database. Instead, you must create a new database.

Each symbol is substituted with the appropriate data for the time that is being formatted. Any format
symbol that represents character rather than digit output can be put in uppercase, which causes the
substituted characters to be in uppercase. For numbers, using mixed case in the format string suppresses
leading zeros.

You can control zero-padding with the case of the symbols:

● Type the symbol in same-case (such as HH or hh) to allow zero padding. For example, HH:NN:SS
could produce 01:01:01.

● Type the symbol in mixed case (such as Hh or hH) to suppress zero padding. For example, Hh:Nn:Ss
could produce 1:1:1.

From Sybase Central, you can set the time format in any wizard that creates a database. On the New
database creation parameters page, select the Time Format option.

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 151



From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite timestamp_format creation parameter” on page 152
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

Example
If a transaction was executed at 3:30 P.M. and you used the default time_format syntax of HH:NN:SS.sss,
the result would be:

15:30:55.0

UltraLite timestamp_format creation parameter
Sets the format for timestamps that are retrieved from the database.

Syntax
 ulinit    --timestamp_format=value

Allowed values
String

Default
YYYY-MM-DD HH:NN:SS.SSS

Remarks
UltraLite creates a timestamp from date and time parts that you set with the date_format and time_format
creation parameters. Together, date and time total seven parts (year, month, day, hour, minute, second,
and millisecond).

Timestamp values can also be represented by strings. Before it can be retrieved, a timestamp value must
be assigned to a string variable.

Typically timestamp columns ensure that data integrity is maintained when synchronizing with a
consolidated database. Timestamps help identify when concurrent data updates have occurred among
multiple remote databases by tracking the last time that each user synchronized.

UltraLite database reference

152 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Tip
Ensure that the consolidated database and the UltraLite remote maintain timestamps and timestamp
increments to the same resolution. By setting the these creation parameters to match that of the
consolidated database, you can help avoid spurious inequalities.

The format is a string using the following symbols:

Symbol Description

YY Two digit year.

YYYY Four digit year.

MM Two digit month, or two digit minutes if following a colon (as in hh:mm).

MMM[m...] Character short form for months—as many characters as there are "m"s. An
uppercase M causes the output to be made uppercase.

D Single digit day of week, (0 = Sunday, 6 = Saturday).

DD Two digit day of month. A leading zero is not required.

DDD[d...] Character short form for day of the week. An uppercase D causes the output
to be made uppercase.

HH Two digit hours. A leading zero is not required.

NN Two digit minutes. A leading zero is not required.

SS[.ss..] Seconds and parts of a second.

AA Use 12 hour clock. Indicate times before noon with AM.

PP Use 12 hour clock. Indicate times after noon with PM.

JJJ Day of the year, from 1 to 366.

You cannot change the timestamp format of an existing database. Instead, you must create a new database.

Allowed values are constructed from the symbols listed in the table above. Each symbol is substituted
with the appropriate data for the date that is being formatted.

For the character short forms, the number of letters specified is counted. The A.M. or P.M. indicator
(which could be localized) is also truncated, if necessary, to the number of bytes corresponding to the
number of characters specified.

For symbols that represent character data (such as mmm), you can control the case of the output as follows:

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 153



● Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM
produces JAN.

● Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm
produces jan.

● Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is
being used. For example, in English, typing Mmm produces May, while in French it produces mai.

For symbols that represent numeric data, you can control zero-padding with the case of the symbols:

● Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

● Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd
could produce 2002/1/1.

From Sybase Central, you can set the timestamp format in any wizard that creates a database. On the New
database creation parameters page, select the Timestamp Format option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite timestamp_increment creation parameter” on page 154
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28
● “Timestamp-based downloads” [MobiLink - Server Administration]
● “Concurrency in UltraLite” on page 11

Example
If a transaction was executed on Friday May 12, 2006 at 3:30 PM and you used the default
timestamp_format syntax of YYYY-MM-DD HH:NN:SS.SSS, the result would be:

2006-05-12 15:30:55.0

UltraLite timestamp_increment creation parameter
Limits the resolution of timestamp values. As timestamps are inserted into the database, UltraLite
truncates them to match this increment.

UltraLite database reference

154 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
 ulinit   timestamp_increment=value

Allowed values
1 to 60000000 microseconds

Default
1 microsecond

Remarks
1000000 microseconds equals 1 second.

You cannot change the timestamp increment of an existing database. Instead, you must create a new database.

This increment is useful when a DEFAULT TIMESTAMP column is being used as a primary key or row
identifier.

From Sybase Central, you can set the timestamp increment in any wizard that creates a database. On the
New database creation parameters page, select the Timestamp Increment option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite timestamp_format creation parameter” on page 152
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for embedded SQL: “ULCreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28
● “Timestamp-based downloads” [MobiLink - Server Administration]
● “Concurrency in UltraLite” on page 11

Example
To store a value such as '2000/12/05 10:50:53:700', set this creation parameter to 100000. This value
truncates the timestamp after the first decimal place in the seconds component.

UltraLite timestamp_with_time_zone_format creation
parameter

Sets the format for TIMESTAMP WITH TIME ZONE values retrieved from the database.

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 155



Syntax
 ulinit  --timestamp_with_time_zone_format=value

Allowed values
String (composed of the symbols listed below)

Default
YYYY-MM-DD HH:NN:SS.SSS+HH:NN

Remarks
The format is a string using the following symbols:

Symbol Description

YY Two digit year

YYYY Four digit year

MM Two digit month, or two digit minutes if following a colon (as in
'HH:MM')

MMM[m...] Character short form for months—as many characters as there are "m"s

DD Two digit day of month

DDD[d...] Character short form for day of the week

HH Two digit hours

NN Two digit minutes

SS.SSSSSS Seconds and fractions of a second, up to six decimal places. Not all
platforms support timestamps to a precision of six places.

AA A.M. or P.M. (12 hour clock)—omit AA and PP for 24 hour time

PP P.M. if needed (12 hour clock)—omit AA and PP for 24 hour time

HH Two digit hours (time zone offset)

NN Two digit minutes (time zone offset)

Each symbol is substituted with the appropriate data for the date that is being formatted.

For symbols that represent character data (such as MMM), you can control the case of the output as follows:

● Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM
produces JAN.

UltraLite database reference

156 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm
produces jan.

● Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is
being used. For example, in English, typing Mmm produces May, while in French it produces mai.

If the character data is multibyte, the length of each symbol reflects the number of characters, not the
number of bytes. For example, the mmm symbol specifies a length of three characters for the month.

For symbols that represent numeric data, you can control zero-padding with the case of the symbols:

● Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

● Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd
could produce 2002/1/1.

Note
If you change the setting for timestamp_with_time_zone_format option in a way that re-orders the date
format, be sure to change the date_order option to reflect the same change, and vice versa. See
“date_order option” [SQL Anywhere Server - Database Administration].

See also
● “TIMESTAMP WITH TIME ZONE data type” [SQL Anywhere Server - SQL Reference]

UltraLite utf8_encoding creation parameter
Encodes data using the UTF-8 format, 8-bit multibyte encoding for Unicode.

Syntax
 ulload - c  --utf8_encoding

Values
Boolean.

Default
1 (databases are UTF-8 encoded)

Remarks
UTF-8 characters are represented by one to four bytes. For other multibyte collations, one or two bytes
are used. For all provided multibyte collations, characters of two or more bytes are considered to be
alphabetic. This means that you can use these characters in identifiers without requiring double quotes.

Characters in an UltraLite database are either from the codepage implicit in the chosen collation, or are
UTF8 encoded. UltraLite databases that use the UTF8BIN collation are automatically UTF8 encoded. If
the operating system to which you are deploying your UltraLite application uses UTF8 or Unicode (like

UltraLite creation parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 157



most Linux distributions, Windows Mobile and iPhone) or if you plan to store characters from multiple
languages in your database, you should create your database using a UTF8 encoding. If you try
synchronizing UTF-8 encoded characters into a consolidated table that does not support Unicode, a user
error is reported.

From Sybase Central, you can choose UTF-8 encoding in any wizard that creates a database. On the New
database collation and character set page, select the Yes, use UTF-8 as the database character set option.

From a client application, set this parameter as one of the creation parameters for the create database
method on the database manager class.

See also
● “UltraLite platform requirements for character set encoding” on page 31
● “UltraLite character sets” on page 30
● “UltraLite Initialize Database utility (ulinit)” on page 197
● “UltraLite Load XML to Database utility (ulload)” on page 205
● UltraLite for C++: “CreateDatabase method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 28

UltraLite database properties
Property Description

case Returns the status of the case sensitivity feature. Returns On if
the database is case sensitive. Otherwise, it returns Off. The val-
ue of this property is set when the database is created, and can
only be changed by creating a new database. See “UltraLite case
creation parameter” on page 135.

char_set Returns the CHAR character set of the database. The character
set used by the database is determined by the database's collation
sequence and whether the data is UTF-8 encoded.

See also:

● “UltraLite utf8_encoding creation parameter” on page 157
● “UltraLite collation creation parameter” on page 137

The value of this property is set when the database is created,
and can only be changed by creating a new database.

UltraLite database reference

158 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Property Description

checksum_level Returns the level of checksum validation in the database, one of
0 (do not add checksums), 1 (add checksums only to important
pages), or 2 (add checksums to all pages). The value of this prop-
erty is set when the database is created, and can only be changed
by creating a new database. See “UltraLite checksum_level crea-
tion parameter” on page 136.

collation Returns the name of the database's collation sequence. The value
of this property is set when the database is created, and can only
be changed by creating a new database. See “UltraLite collation
creation parameter” on page 137.

commit_flush_count Returns the value of the commit_flush_count option that sets a
commit count threshold. See “UltraLite commit_flush_count op-
tion [temporary]” on page 163.

commit_flush_timeout Returns the value of the commit_flush_timeout option that sets a
time interval threshold. See “UltraLite commit_flush_timeout op-
tion [temporary]” on page 164.

conn_count Returns the number of connections to the database. The value is
dynamic: it can vary depending on how many connections cur-
rently exist. UltraLite supports up to fourteen concurrent data-
base connections.

date_format Returns the date format the database uses for string conversions.
The value of this property is set when the database is created,
and can only be changed by creating a new database. See “Ultra-
Lite date_format creation parameter” on page 138.

date_order Returns the date order the database uses for string conversions.
The value of this property is set when the database is created,
and can only be changed by creating a new database. See “Ultra-
Lite date_order creation parameter” on page 141.

UltraLite database properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 159



Property Description

encryption Returns the type of database encryption, one of None, Simple,
AES, or AES_FIPS.

The encryption used by the database is determined by whether or
not you have configured strong encryption (AES or AES_FIPS)
and the DBKEY creation parameter, or obfuscation (simple en-
cryption).

The only time this property can change is when the value is orig-
inally None (that is, neither fips nor obfuscation is used) and you
then change the encryption key by specifying a new encryption
key on the Connection object by calling the correct function or
method for your API. In this case, the value would change to
AES because the fips creation parameter cannot be set after the
database has been created. See:

● UltraLite C/C++: “ULChangeEncryptionKey method” [Ultra-
Lite - C and C++ Programming]

● UltraLite.NET: “ChangeEncryptionKey method” [UltraLite
- .NET Programming]

● UltraLite for M-Business Anywhere: “changeEncryptionKey
method” [UltraLite - M-Business Anywhere Programming]

● “Securing UltraLite databases” on page 32
● “UltraLite fips creation parameter” on page 142
● “UltraLite obfuscate creation parameter” on page 146
● “UltraLite DBKEY connection parameter” on page 174

file Returns the name of the database root file for the current connec-
tion, the including path. This is the value specified in the DBF
connection parameter value. See:

● UltraLite C/C++: “GetDatabaseProperty method” [UltraLite
- C and C++ Programming]

● UltraLite.NET: “GetDatabaseProperty method” [UltraLite
- .NET Programming]

● UltraLite for M-Business Anywhere: “getDatabaseProperty
method” [UltraLite - M-Business Anywhere Programming]

● “UltraLite DBF connection parameter” on page 172

global_database_id Returns the value of the global_database_id option used for glob-
al autoincrement columns. See “UltraLite global_database_id op-
tion” on page 165.

max_hash_size Returns the default number of maximum bytes to use for index
hashing. This property can be set on a per-index basis. See “Ul-
traLite max_hash_size creation parameter” on page 143.

UltraLite database reference

160 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Property Description

ml_remote_id Returns the value of the ml_remote_id option that uniquely iden-
tifies the database for MobiLink synchronization. See “UltraLite
ml_remote_id option” on page 166.

name Returns the name (or alias) of the database for the current connec-
tion. The name returned matches the DBN connection parameter
value. If you did not use the DBN connection parameter, the
name returned is the database file without the path and extension.

See also:

● “UltraLite DBN connection parameter” on page 174
● “UltraLite DBF connection parameter” on page 172

nearest_century Returns the nearest century the database uses for string conver-
sions. The value of this property is set when the database is cre-
ated, and can only be changed by creating a new database. See
“UltraLite nearest_century creation parameter” on page 144.

page_size Returns the page size of the database, in bytes. The value of this
property is set when the database is created, and can only be
changed by creating a new database. See “UltraLite page_size
creation parameter” on page 146.

precision Returns the floating-point precision the database uses for string
conversions. The value of this property is set when the database
is created, and can only be changed by creating a new database.
See “UltraLite precision creation parameter” on page 148.

scale Returns the minimum number of digits after the decimal point
when an arithmetic result is truncated to the maximum PRECI-
SION during string conversions by the database. The value of
this property is set when the database is created, and can only be
changed by creating a new database. See “UltraLite scale crea-
tion parameter” on page 149.

time_format Returns the time format the database uses for string conversions.
The value of this property is set when the database is created,
and can only be changed by creating a new database. See “Ultra-
Lite time_format creation parameter” on page 150.

timestamp_format Returns the timestamp format the database uses for string conver-
sions. The value of this property is set when the database is cre-
ated, and can only be changed by creating a new database. See
“UltraLite timestamp_format creation parameter” on page 152.

UltraLite database properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 161



Property Description

timestamp_increment Returns the minimum difference between two unique time-
stamps, in microseconds. The value of this property is set when
the database is created, and can only be changed by creating a
new database. See “UltraLite timestamp_increment creation pa-
rameter” on page 154.

Accessing UltraLite database properties
UltraLite provides a set of properties that you can retrieve for a database.

You can change the settings of any database property that does not correspond to a database creation
parameter.

To browse UltraLite database properties (Sybase Central)

1. Connect to the database.

2. Right-click the database and choose Properties.

In the Database Properties window, database properties are listed on the General and
Synchronization Information tabs. On the Synchronization Information tab, the database
properties are listed alphabetically by the property name. To sort database properties by the value,
click the Value column.

To get the value of a database property (C/C++)

● In C/C++, call the GetDatabaseProperty function.

For example, to get the value of the conn_count property, call:

GetDatabaseProperty( ul_database_property_id conn_count )

To get the value of the char_set property, call:

GetDatabaseProperty( ul_database_property_id char_set )

See also
● UltraLite C/C++: “GetDatabaseProperty method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “GetDatabaseProperty method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “getDatabaseProperty method” [UltraLite - M-Business

Anywhere Programming]

UltraLite database options

UltraLite database reference

162 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Options are used to configure database behavior. Database options can be set or modified at any time. In
UltraLite, options can be persistent or temporary. Persistent options are stored in the database in the
sysuldata system table. Temporary option settings only persist while the database is running.

Option values are set by using the SET OPTION statement. For example, the following statement sets the
global_database_id option to 100:

SET OPTION global_database_id=100;

You can obtain the current setting of a database option by querying the value of the corresponding
database property or by using the appropriate get database property method. For example, to obtain the
current setting of the commit_flush_timeout database option, execute the following SQL statement:

SELECT DB_PROPERTY ( 'commit_flush_timeout' );

UltraLite commit_flush_count option [temporary]
Sets a commit count threshold, after which a commit flush is performed.

Allowed values
Integer

Default
10

Remarks
Use 0 to disable the transaction count. When the transaction count is disabled, the number of commits is
unlimited when a flush is triggered.

You must set this option each time you start the database if it is required.

Both commit_flush_count and commit_flush_timeout are temporary database options. You must set these
options each time you start a database. They persist as long as the database continues to run. They are
only required when you set COMMIT_FLUSH=grouped as part of a connection string.

When you set this option and set the COMMIT_FLUSH connection parameter to grouped in your
connection string, either threshold triggers a flush. When the flush occurs, UltraLite sets the counter and
the timer back to 0. Then, both the counter and timer are monitored until one of these thresholds is
subsequently reached.

An important consideration for setting the commit flush options is how much the delay to flush
committed transactions poses a risk to the recoverability of your data. There is a slight chance that a
transaction may be lost, even though it has been committed. If a serious hardware failure occurs after a
commit, but before the transaction is flushed to storage, the transaction is rolled back on recovery. A
longer delay can increase UltraLite performance. You must choose an appropriate count threshold with care.

To set the commit_flush_count option from a client application, set the option using the set database
option function for the programming interface you are using.

UltraLite database options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 163



See also
● “Flushing single or grouped transactions” on page 89
● “UltraLite commit_flush_timeout option [temporary]” on page 164
● “UltraLite COMMIT_FLUSH connection parameter” on page 170
● “SET OPTION statement [UltraLite] [UltraLiteJ]” on page 404
● UltraLite for C/C++: “SetDatabaseOption method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULSetDatabaseOptionString method” [UltraLite - C and C++

Programming]

UltraLite commit_flush_timeout option [temporary]
Sets a time interval threshold, after which a grouped commit flush is performed.

Allowed values
Integer, in milliseconds

Default
10000 milliseconds

Remarks
Use 0 to disable the time threshold.

You must set this option each time you start database, if it is required.

Both commit_flush_count and commit_flush_timeout are temporary database options. You must set these
options each time you start a database. They persist as long as the database continues to run. They are
only required when you set COMMIT_FLUSH=grouped as part of a connection string.

If you set this option in addition to the commit_flush_timeout option and if you have set the
COMMIT_FLUSH connection parameter to grouped, either threshold triggers a flush. When the flush
occurs, UltraLite sets the counter and the timer back to 0. Then, both the counter and timer are monitored
until one of these thresholds is subsequently reached.

An important consideration for setting the commit flush options is how much the delay to flush
committed transactions poses a risk to the recoverability of your data. There is a slight chance that a
transaction may be lost, even though it has been committed. If a serious hardware failure occurs after a
commit, but before the transaction is flushed to storage, the transaction is rolled back on recovery. A
longer delay can increase UltraLite performance. You must choose an appropriate timeout threshold with
care.

To set the commit_flush_timeout option from a client application, set it using the set database option
function for the programming interface you are using.

UltraLite database reference

164 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “UltraLite commit_flush_count option [temporary]” on page 163
● “UltraLite COMMIT_FLUSH connection parameter” on page 170
● “SET OPTION statement [UltraLite] [UltraLiteJ]” on page 404
● UltraLite for C/C++: “SetDatabaseOption method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULSetDatabaseOptionString method” [UltraLite - C and C++

Programming]

UltraLite global_database_id option
Sets the database identification number.

Allowed values
Unique, non-negative integer

Default
The range of default values for a particular global autoincrement column is pn + 1 to p(n + 1), where p is
the partition size of the column and n is the global database identification number.

Remarks
To maintain primary key uniqueness when synchronizing with a MobiLink server, the global ID sets a
starting value for GLOBAL AUTOINCREMENT columns. The global ID must be set before default
values can be assigned. If a row is added to a table and does not have a value set already, UltraLite
generates a value for the column by combining the global_database_id value and the partition size. See
“Using global autoincrement” [MobiLink - Server Administration].

When deploying an application, you must assign a different identification number to each database for
synchronization with the MobiLink server. You can change the global ID of an existing database at any time.

You can also set this option using the ulinfo utility:

ulinfo -g ID ...

To set the global_database_id option from a client application, use the set database ID function for the
programming interface you are using.

See also
● “Change UltraLite persistent database option settings” on page 167
● “UltraLite Information utility (ulinfo)” on page 196
● “SET OPTION statement [UltraLite] [UltraLiteJ]” on page 404
● “Using GLOBAL AUTOINCREMENT in UltraLite” on page 95
● UltraLite for C/C++: “SetDatabaseOptionInt method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULSetDatabaseID method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “DatabaseID property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “setDatabaseID method” [UltraLite - M-Business Anywhere

Programming]

UltraLite database options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 165



Example
To autoincrement UltraLite database columns from 3001 to 4000, set the global ID to 3.

SET OPTION global_database_id=3;

UltraLite ml_remote_id option
A unique identifier in UltraLite that is used for MobiLink synchronization.

Allowed values
Any value that uniquely identifies the database for MobiLink synchronization.

Default
Null

Remarks
The remote ID is a unique identifier for an UltraLite remote that is used for MobiLink synchronization.
The MobiLink remote ID is initially set to NULL. During the first synchronization, the MobiLink server
sets the remote ID to a GUID. However, the remote ID can be any string that has meaning to you, if the
string remains unique among all remote MobiLink clients. This uniqueness requirement is always enforced.

The remote ID stores the synchronization progress for the MobiLink user name. By including a unique
remote ID, user names are no longer required to be unique. The remote ID becomes particularly useful
when you have multiple MobiLink users synchronizing the same UltraLite client database. In this case,
your synchronization scripts should reference the remote ID and not just the user name.

To set the ml_remote_id option from a client application, set it using the set database option function for
the programming interface you are using.

See also
● “Change UltraLite persistent database option settings” on page 167
● “Remote IDs” [MobiLink - Client Administration]
● “Grant REMOTE permission” [SQL Remote]
● “UltraLite Information utility (ulinfo)” on page 196
● “SET OPTION statement [UltraLite] [UltraLiteJ]” on page 404
● UltraLite for C/C++: “SetDatabaseOption method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULSetDatabaseOptionString method” [UltraLite - C and C++

Programming]
● UltraLite.NET: “SetDatabaseOption method” [UltraLite - .NET Programming]
● “UltraLite clients” on page 93
● “UltraLite user authentication” [MobiLink - Client Administration]
● “User Name synchronization parameter” on page 131
● and “Password synchronization parameter” on page 120

UltraLite database reference

166 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Change UltraLite persistent database option settings
You can view and change the setting of persistent database options from Sybase Central. Temporary
UltraLite database options cannot be viewed or set from Sybase Central.

To browse or modify persistent UltraLite database options (Sybase Central)

1. Connect to the database.

2. Right-click the database and choose Options.

3. If you want to set or reset an option, type a new value in the Value field.

4. Click Set Now or Reset Now to commit the change.

See also
● “SET OPTION statement [UltraLite] [UltraLiteJ]” on page 404
● “Accessing UltraLite database properties” on page 162
● “DB_PROPERTY function [System]” on page 299
● UltraLite C/C++: “GetDatabaseProperty method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “GetDatabaseProperty method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “getDatabaseProperty method” [UltraLite - M-Business

Anywhere Programming]

UltraLite connection parameters

UltraLite CACHE_SIZE connection parameter
Defines the size of the database cache.

Syntax
CACHE_SIZE=number{ k | m | g }

Default
The default cache size is determined by the amount of memory available on your system and the size of
the database.

Remarks
The cache_size connection parameter specifies the amount of memory to allocate for the file cache. This
cache is used to hold recently used pages from the database file in memory so they can be accessed
quickly when needed again, and also to collect multiple modifications to a page before writing it back to
storage. Accessing a page from the cache is many times faster than reading from storage. Writing to
storage is even more expensive, so grouping multiple modifications in a single write is important for

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 167



performance. Encrypted databases also benefit from the cache because decryption occurs only when the
page is loaded into the cache, and encryption occurs before the page is written back to storage. If the
cache is sufficiently large, the overhead of encryption becomes negligible.

As an example of cache usage, consider synchronization. While UltraLite is receiving a download, the
rows are inserted into the database, and referential integrity checks are performed. When inserted, the
rows are also indexed - added to each index on the table. So, while synchronizing, the cache will tend to
hold the pages where the new rows are stored, as well as the index pages for the current table.
Synchronization performance will depend greatly on whether the cache is large enough to contain an
appropriate "working set" of pages for a table being synchronized. If the cache is too small, row inserts
may require repeated reads of index pages from storage, incurring a noticeable performance penalty over
the case when the required index pages fit in the cache.

If the cache size is not specified, or if you set the size to 0, the default size is used. If your testing shows
the need for better performance, you should increase the cache size. For Windows, the default cache is set
to about 1.5% of total physical memory, or 110% of the database file size, whichever is less. For
Windows Mobile, the default cache size is limited to the lesser of: 25% of total physical memory, 90% of
available physical memory less 1MB, or 110% of the database file size.

By default, the size is in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or gigabytes,
respectively.

If you exceed the maximum cache size, it is automatically replaced with your platform's upper cache size
limit. Increasing the cache size beyond the size of the database does not provide any performance
improvement, and a large cache size can interfere with the number of other applications you can use.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 37
● “UltraLite page_size creation parameter” on page 146
● “UltraLite RESERVE_SIZE connection parameter” on page 181
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment sets the cache size to 2 MB.

"CACHE_SIZE=2m"

UltraLite database reference

168 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite CE_FILE connection parameter

Names the new database file when creating a database. When opening a connection to an existing
database, this connection parameter identifies the database.

Syntax
CE_FILE=path\ce-db

Default
DBF connection parameter.

Behavior
1. If DBF is specified, look for a matching database (identical filename) and connect if found, proceed to

auto-start if not.

2. A database is auto-started when required if DBF is specified.

Remarks
You should use the CE_FILE connection parameter for UltraLite client applications that use the same
connection string to connect to a Microsoft Windows Mobile device, and other platforms.

The CE_FILE connection parameter takes precedence over the DBF connection parameter. If you are
connecting from an UltraLite administration tool, or your connection object only connects to a Windows
Mobile database, use the DBF connection parameter.

The value of CE_FILE must meet the file name requirements for Windows Mobile. If you include an
absolute path to the database, then all directories must exist before setting the path to this file. UltraLite
does not create them automatically.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 37
● “Specifying file paths in an UltraLite connection parameter” on page 36
● “Precedence of connection parameters for UltraLite administration tools” on page 38
● “UltraLite DBF connection parameter” on page 172
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 169



Example
The following example creates a new connection and identifies different database files for the Windows
desktop and Windows Mobile platforms:

Set Connection = DatabaseMgr.OpenConnection("DBF=d:\Dbfile.udb;CE_FILE=\myapp
\MyDB.udb")

UltraLite COMMIT_FLUSH connection parameter
Determines when committed transactions are flushed to storage after a commit call. If no calls to commit
are made by the UltraLite application, no flush can occur.

Syntax
COMMIT_FLUSH={ immediate | grouped | on_checkpoint }

Default
immediate

Remarks
This connection parameter defines which transactions are recovered following a hardware failure or crash.
You can group logical autocommit operations as a single recovery point.

By grouping these operations, you can improve UltraLite performance, but at the expense of data
recoverability. There is a slight chance that a transaction may be lost—even though it has been committed
—if a hardware failure or crash occurs after a commit, but before the transaction is flushed to storage.

The following parameters are supported:

● immediate Committed transactions are flushed to storage immediately upon a commit call before
the commit operation completes.

● grouped Committed transactions are flushed to storage on a commit call, but only after a threshold
you configure has been reached. You can configure either a transaction count threshold with the
commit_flush_count database option or a time-based threshold with the commit_flush_timeout
database option.

If set, both the commit_flush_count and the commit_flush_timeout options act as possible triggers for
the commit flush; the first threshold that is met triggers the flush. When the flush occurs, UltraLite
sets the counter and the timer back to 0. Then, both the counter and timer are monitored, until one of
these thresholds is reached again.

UltraLite database reference

170 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● on_checkpoint Committed transactions are flushed to storage on a checkpoint operation. You can
perform a checkpoint with any of the following:

○ The CHECKPOINT statement. APIs that do not have a checkpoint method must use this SQL
statement.

○ The ULCheckpoint function for UltraLite embedded SQL.
○ The Checkpoint method on a connection object in a C++ component.

See also
● “Flushing single or grouped transactions” on page 89
● “UltraLite commit_flush_count option [temporary]” on page 163
● “UltraLite commit_flush_timeout option [temporary]” on page 164
● “CHECKPOINT statement [UltraLite]” on page 375
● UltraLite embedded SQL: “ULCheckpoint method” [UltraLite - C and C++ Programming]
● UltraLite C++: “Checkpoint method” [UltraLite - C and C++ Programming]

UltraLite CON connection parameter
Names a connection so that switching to it is easier in multi-connection applications.

Syntax
CON=name

Default
No connection name.

Remarks
The CON connection parameter is global to the application.

Do not use this connection parameter unless you are going to establish and switch between two or more
concurrent connections.

The connection name is not the same as the database name.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 171



See also
● “Opening UltraLite connections with connection strings” on page 37
● “UltraLite DBN connection parameter” on page 174
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment sets the first connection name to MyFirstCon.

"CON=MyFirstCon"

UltraLite DBF connection parameter
Names the new database file when creating a database. When opening a connection, this connection
parameter indicates which database file you want to load and connect to.

Syntax
DBF=ul-db

Behavior
1. On connect, look to see if the database is already running. If DBN is specified, look for a matching

database and connect if found, proceed to auto-start if not.

2. If DBF is specified, look for a matching database (identical filename) and connect if found, proceed to
auto-start if not.

3. If neither DBN nor DBF is specified, and a single database is running, connect to it.

4. A database is auto-started when required if DBF is specified. If DBN is also specified, it becomes the
name of the running database, otherwise a name is generated from the base filename.

Remarks
Because they are aliases, if DBF is used concurrently, the last one specified takes precedence.

UltraLite database reference

172 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



If you are connecting to multiple databases on different devices from a single connection string, you can
use the following parameters to name platform-specific alternates:

● CE_FILE
● desktop
● device
● NT_FILE

If specified, these platform-specific connection parameters take precedence over DBF.

The value of DBF must meet the file name requirements for the platform.

Windows Mobile  If you are deploying to a Windows Mobile device, UltraLite utilities and wizards
can administer an UltraLite database on an attached Windows Mobile device. To identify a file on a
Windows Mobile device, you must specify the required absolute path, and use the wce:\ prefix.

Any leading or trailing spaces in parameter values are ignored. The value cannot include leading single
quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 37
● “Specifying file paths in an UltraLite connection parameter” on page 36
● “Precedence of connection parameters for UltraLite administration tools” on page 38
● “UltraLite DBN connection parameter” on page 174
● “UltraLite CE_FILE connection parameter” on page 169
● “UltraLite NT_FILE connection parameter” on page 179
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Examples
To connect to the database, MyULdb.udb, installed in the desktop directory c:\mydb, use the following
connection string:

"DBF=c:\mydb\MyULdb.udb"

To connect to the same database that is deployed to the UltraLite folder of the attached Windows Mobile
device, use the following connection string:

"DBF=wce:\UltraLite\MyULdb.udb"

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 173



UltraLite DBKEY connection parameter
Provides an encryption key for the database when creating a new database. When opening a connection to
an existing database, this connection parameter provides the encryption key for the database.

Syntax
DBKEY=string

Default
No key is provided.

Remarks
If you do not specify the correct encryption key for the database, the connection fails.

If a database is created using an encryption key, the database file is strongly encrypted using either the
AES 256-bit or AES FIPS algorithm. By using strong encryption, you have increased security against
skilled and determined attempts to gain access to the data. However, the use of strong encryption has a
significant performance impact.

Any leading or trailing spaces in parameter values are ignored. The value cannot include leading single
quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 37
● “Securing UltraLite databases” on page 32
● “UltraLite obfuscate creation parameter” on page 146
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite DBN connection parameter
Differentiates databases by name when applications connect to more than one database.

Syntax
DBN=db-name

Default
None.

UltraLite database reference

174 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Behavior
1. On connect, look to see if the database is already running. If DBN is specified, look for a matching

database and connect if found, proceed to auto-start if not.

2. If DBF is specified, look for a matching database (identical filename) and connect if found, proceed to
auto-start if not.

3. If neither DBN nor DBF is specified, and a single database is running, connect to it.

4. A database is auto-started when required if DBF is specified. If DBN is also specified, it becomes the
name of the running database, otherwise a name is generated from the base filename.

Remarks
UltraLite sets the database name after the database has been opened. Client applications can then connect
to this database via its name instead of its file.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 37
● “UltraLite DBF connection parameter” on page 172
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
Use the following parameters to connect to the running UltraLite database named Kitchener:

DBN=Kitchener;DBF=cities.udb

UltraLite desktop connection parameter
Names the new database file when creating a database. When opening a connection to an existing
database, this connection parameter identifies the database.

Syntax
desktop:DBF=path\db | temp_dir=\Temp

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 175



Remarks
You should use the desktop connection parameter for UltraLite client applications that use the same
connection string to connect to a Microsoft Windows NT or Mac device.

Colon (:) is considered to be a separator in addition to underscore (_). Options with a prefix take
precedence over options without a prefix.

A temp_dir connection parameter is now available. This must name a directory (which already exists).
UL will place the temporary file (with name still derived from the database name) in the specified
directory, rather than beside the database file (the default and previous behavior). Specifying a temporary
directory with faster I/O characteristics can improve the performance of things like temporary tables
which are large relative to the cache size. Long-running transactions can also consume noticeable space in
the temp file.

The value of desktop must meet the file name requirements for Windows NT or Mac. If you include an
absolute path to the database, then all directories must exist before setting the path to this file. UltraLite
does not create them automatically.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

Behavior
1. If DBF is specified, look for a matching database (identical filename) and connect if found, proceed to

auto-start if not.

2. A database is auto-started when required if DBF is specified.

See also
● “Opening UltraLite connections with connection strings” on page 37
● “Specifying file paths in an UltraLite connection parameter” on page 36
● “Precedence of connection parameters for UltraLite administration tools” on page 38
● “UltraLite DBF connection parameter” on page 172
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following example creates a new connection and identifies different database files for the Windows
desktop and Windows Mobile platforms:

"desktop:DBF=C:\dir\db.udb; device:DBF=\SD Card\db.udb; device:temp_dir=
\Temp; device:cache_size=4M"

UltraLite database reference

176 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite device connection parameter
Names the new database file when creating a database. When opening a connection to an existing
database, this connection parameter identifies the database.

Syntax
device:DBF=path\db | temp_dir=\Temp

Remarks
You should use the device connection parameter for UltraLite client applications that use the same
connection string to connect to a Microsoft Windows CE or iPhone device.

Colon (:) is considered to be a separator in addition to underscore (_). Options with a prefix take
precedence over options without a prefix.

A temp_dir connection parameter is now available. This must name a directory (which already exists).
UL will place the temporary file (with name still derived from the database name) in the specified
directory, rather than beside the database file (the default and previous behavior). Specifying a temporary
directory with faster I/O characteristics can improve the performance of things like temporary tables
which are large relative to the cache size. Long-running transactions can also consume noticeable space in
the temp file.

The value of device must meet the file name requirements for Windows CE or iPhone. If you include an
absolute path to the database, then all directories must exist before setting the path to this file. UltraLite
does not create them automatically.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 37
● “Specifying file paths in an UltraLite connection parameter” on page 36
● “Precedence of connection parameters for UltraLite administration tools” on page 38
● “UltraLite DBF connection parameter” on page 172
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following example creates a new connection and identifies different database files for the Windows
desktop and Windows Mobile platforms:

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 177



"desktop:DBF=C:\dir\db.udb; device:DBF=\SD Card\db.udb; device:temp_dir=
\Temp; device:cache_size=4M"

UltraLite MIRROR_FILE connection parameter
Specifies the name of the database mirror file to which all database writes will be issued (at the same time
as they are to the main database file).

Syntax
MIRROR_FILE=path\mirrorfile-db

Default
None.

Remarks
UltraLite provides basic database file mirroring to improve fault tolerance on potentially unreliable
storage systems. This is accomplished using the mirror file. All database writes are issued to the mirror
file at the same time as they are to the main database file (write overhead is therefore doubled; read
overhead is not affected). If a corrupt page is read from the database file, the page is recovered by reading
from the mirror file.

Mirroring is supported on all platforms using a file-based store.

When the mirror_file= option is specified when you start the database, UltraLite will open the named file
and verify that it matches the main database file before continuing. If the mirror file does not exist, it is
created at that point by copying the main file. If the mirror is not a database file, or is corrupt, an error is
reported and the database will not start until the file is removed or a different mirror is specified. If the
mirror does not match the database, SQLE_MIRROR_FILE_MISMATCH is generated and the database
will not start. When a corrupt page is recovered, the warning SQLE_CORRUPT_PAGE_READ_RETRY
is generated. (Without mirroring, or if the mirror file is also corrupt, the error SQLE_DEVICE_ERROR is
generated and the database is halted.)

To effectively protect against media failures, page checksums must be enabled when you use a mirror file.
(With or without mirroring, page checksums allow UltraLite to detect page corruption as soon as the page
is loaded and avoid referencing corrupt data.) Specify the checksum_level database creation option to
enable checksums. UltraLite will generate the warning
SQLE_MIRROR_FILE_REQUIRES_CHECKSUMS if checksums are not enabled when using a mirror
file. See “UltraLite checksum_level creation parameter” on page 136.

Note that because the mirror is an exact copy of the database file, it can be started directly as a database.
The ulvalid utility will report corrupt pages. See “UltraLite Validate Database utility
(ulvalid)” on page 218.

UltraLite database reference

178 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “Opening UltraLite connections with connection strings” on page 37
● “Specifying file paths in an UltraLite connection parameter” on page 36
● “Precedence of connection parameters for UltraLite administration tools” on page 38
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following example creates a new connection and creates a mirror file:

Connection = DatabaseMgr.OpenConnection("DBF=c:\Dbfile.udb; 
UID=JDoe;PWD=ULdb;
MIRROR_FILE=c:\test\MyMirrorDB.udb")

UltraLite NT_FILE connection parameter
Names the new database file when creating a database. When opening a connection to an existing
database, the parameter identifies the database.

Syntax
NT_FILE=path\nt-db

Default
DBF connection parameter.

Remarks
You should use the NT_FILE connection parameter for UltraLite client applications that use the same
connection string to connect to a desktop database, and a database on other platforms.

This connection parameter takes precedence over the DBF parameter. If you are connecting from an
UltraLite administration tool, or your connection object only connects to a desktop database, use the DBF
connection parameter.

The value of NT_FILE must meet the file name requirements for Windows desktop platforms.

The path can be absolute or relative. If you include a directory as part of the file name, then all directories
must exist before setting the path to this file. UltraLite does not create them automatically.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 179



See also
● “Opening UltraLite connections with connection strings” on page 37
● “Specifying file paths in an UltraLite connection parameter” on page 36
● “Precedence of connection parameters for UltraLite administration tools” on page 38
● “UltraLite DBF connection parameter” on page 172
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following example creates a new connection and identifies different database files for the desktop and
Windows Mobile platforms:

Connection = DatabaseMgr.OpenConnection("UID=JDoe;PWD=ULdb;
NT_FILE=c:\test\MyTestDB.udb;CE_FILE=\database\MyCEDB.udb")

UltraLite PWD connection parameter

Defines the password for a user ID that is used for authentication.

Syntax
PWD=password

Default
If you do not set both the UID and PWD, UltraLite opens connections with UID=DBA and PWD=sql.

Remarks
Every user of a database has a password. UltraLite supports up to four user ID/password combinations.

You can set passwords to NULL or an empty string.

A random 4-byte salt value is generated when a new user is created or an existing user changes their
password. The salt value is appended to the user's password when calculating the password hash and is
stored in the database along with the hash. Salting significantly decreases vulnerability to dictionary
attacks and also ensures that users with the same password will have different password hashes.

This connection parameter is not encrypted. However, UltraLite hashes the password before saving it, so
you can only modify a password using Sybase Central. See “Managing user permissions and authorities”
[SQL Anywhere Server - Database Administration].

UltraLite database reference

180 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “Opening UltraLite connections with connection strings” on page 37
● “UltraLite user authentication” on page 39
● “Interpreting user ID and password combinations” on page 40
● “UltraLite UID connection parameter” on page 184
● UltraLite for C/C++: “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Examples
The following partial connection string supplies the user ID DBA and password sql:

"UID=DBA;PWD=sql"

The following partial connection string supplies the user ID DBA and an empty password:

"UID=DBA;PWD=''"

UltraLite RESERVE_SIZE connection parameter
Pre-allocates the file system space required for your UltraLite database, without actually inserting any
data. By reserving the file system space means that the space cannot be used up by other files.

Syntax
RESERVE_SIZE= number{ k | m | g }

Default
0 (no reserve size).

Remarks
The value you supply can be any value from 0 to your maximum database size. Use k, m, or g to specify
units of kilobytes, megabytes, or gigabytes, respectively. If you do not specify a unit, bytes are assumed
by default.

You should run the database with test data and observe the database size and choose a reserve size that
suits your UltraLite deployment.

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 181



If the RESERVE_SIZE value is smaller than the database size, UltraLite ignores the parameter.

Reserving file system space can improve performance slightly because it may:

● Reduce the degree of file fragmentation compared to growing incrementally.

● Prevent out-of-storage memory failures.

Because an UltraLite database consists of data and metadata, the database size grows only when required
(when the application updates the database).

See also
● “Opening UltraLite connections with connection strings” on page 37
● “UltraLite CACHE_SIZE connection parameter” on page 167
● “UltraLite page_size creation parameter” on page 146
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment sets the reserve size to 128 KB so the system reserves that
much system space for the database upon startup.

"RESERVE_SIZE=128K"

UltraLite START connection parameter

Starts the UltraLite engine executable. This parameter is only required if the engine is not in one of the
expected locations. See “Starting the UltraLite engine” on page 45 for a list of the expected locations.

Syntax
START=path\uleng12.exe

Remarks
Only supply a StartLine (START) connection parameter if you are connecting to an engine that is not
currently running.

Paths with spaces require quotes. Otherwise, the client returns
SQLE_UNABLE_TO_CONNECT_OR_START.

UltraLite database reference

182 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “Starting the UltraLite engine” on page 45
● “UltraLite Engine utility (uleng12)” on page 194
● “Choosing an UltraLite data management component” on page 19
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following command starts the UltraLite engine that is located in the Program Files directory:

Start=\"Program Files\uleng12.exe"

An alternative way to define this path is to put the entire string in single quotes:

Start='"\Program Files\uleng12.exe"'

UltraLite TEMP_DIR connection parameter
Specifies the name of the directory (which must already exist) into which UltraLite will place the
temporary file (with a name derived from the database name).

Syntax
TEMP_DIR=\path

Remarks
Specifying a temporary directory with faster I/O characteristics can improve the performance of things
like temporary tables which are large relative to the cache size. Long-running transactions can also
consume noticeable space in the temp file.

Paths with spaces require quotes. Otherwise, the client returns
SQLE_UNABLE_TO_CONNECT_OR_START.

UltraLite connection parameters

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 183



See also
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment puts the temp file in the \Temp directory:

temp_dir=\Temp;

UltraLite UID connection parameter
Specifies the user ID with which you connect to the database. The value must be an authenticated user for
the database.

Syntax
UID=user

Default
If you do not set the UID and PWD, UltraLite opens connections with UID=DBA and PWD=sql.

Remarks
Every user of a database has a user ID. UltraLite supports up to four user ID/password combinations.

UltraLite user IDs are separate from MobiLink user names and from other SQL Anywhere user IDs. You
cannot change a user ID once it is created. Instead, you must delete the user ID and then add a new one.

You cannot set the UID to NULL or an empty string. The maximum length for a user ID is 31 characters.
User IDs are case insensitive.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

UltraLite database reference

184 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “Opening UltraLite connections with connection strings” on page 37
● “UltraLite user authentication” on page 39
● “Interpreting user ID and password combinations” on page 40
● UltraLite for C/C++: “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection method” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment supplies the user ID DBA and password sql for a database:

"UID=DBA;PWD=sql"

UltraLite utilities
UltraLite includes a set of utilities that are designed to perform basic database administration activities
from a command prompt. Many of these utilities share a similar functionality to the SQL Anywhere
Server utilities. However, the way options are used can vary. Always refer to the UltraLite reference
documentation for the UltraLite implementation of these options.

Note
Options for the utilities documented in this section are case sensitive, unless otherwise noted. Type
options exactly as they are displayed.

Supported exit codes
The ulload, ulsync, and ulunload utilities return exit codes to indicate whether the operation a utility
attempted to complete was successful. 0 indicates a successful operation. Any other value indicates that
the operation failed.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 185



Exit code Status Description

0 EXIT_OKAY Operation successful.

1 EXIT_FAIL Operation failure.

3 EXIT_FILE_ERROR Database cannot be found.

4 EXIT_OUT_OF_MEMORY Exhausted the dynamic memory of the device.

6 EXIT_COMMUNICATIONS_FAIL Communications error generated while talking to
the UltraLite engine.

9 EXIT_UNABLE_TO_CONNECT Invalid UID or PWD provided, therefore cannot
connect to the database.

12 EXIT_BAD_ENCRYPT_KEY Missing or invalid encryption key.

13 EXIT_DB_VER_NEWER Detected that the database version is incompatible.
The database must be upgraded to a newer version.

255 EXIT_USAGE Invalid command line options.

Interactive SQL for UltraLite utility (dbisql)
Executes SQL commands and runs command files against a database.

Syntax
dbisql -c "connection-string" [ options ] [ dbisql-command | command-file ]

dbisql -c "connection-string" -ul [ options ] [ dbisql-command | command-file ]

dbisql-command: A SQL statement  or a series of sql statements separated by a command-delimiter.

UltraLite database reference

186 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

@data Reads in options from the specified environment
variable or configuration file.

If both the environment variable and configura-
tion file exist with the same name, the environ-
ment variable is used. See “Using configuration
files” [SQL Anywhere Server - Database Adminis-
tration].

If you want to protect passwords or other informa-
tion in the configuration file, you can use the File
Hiding utility to obfuscate the contents of the con-
figuration file. See “File Hiding utility (dbfhide)”
[SQL Anywhere Server - Database Administra-
tion].

-c "keyword=value; ..." Specifies connection parameters. If Interactive
SQL cannot connect, you are presented with a win-
dow where you can enter the connection parame-
ters. If you do not specify both a user ID and a
password, the default UID of DBA and PWD of
sql are assumed. See “Connection parameters”
[SQL Anywhere Server - Database Administra-
tion].

-d delimiter Specifies a command delimiter. Quotation marks
around the delimiter are optional, but are required
when the command shell itself interprets the de-
limiter in some special way.

This option overrides the setting of the com-
mand_delimiter option. See “command_delimiter
option [Interactive SQL]” [SQL Anywhere Server
- Database Administration].

-d1 Echoes all statements explicitly executed by the
user to the command window (STDOUT). This
can provide useful feedback for debugging SQL
scripts, or when Interactive SQL is processing a
long SQL script. (The final character is a number
1, not a lowercase L). This option is only availa-
ble when you run Interactive SQL as a command
line program.

-datasource DSN-name Specifies an ODBC data source to connect to.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 187



Option Description

-f filename Opens (but does not run) in the SQL Statements
pane the file called filename.

If the -f option is given, the -c option is ignored;
that is, no connection is made to the database.

The file name can be enclosed in quotation
marks, and must be enclosed in quotation marks
if the file name contains a space.

If the file does not exist, or if it is really a directo-
ry instead of a file, Interactive SQL prints an er-
ror message and then quits.

If the file name does not include a full drive and
path specification, it is assumed to be relative to
the current directory.

This option is only supported when Interactive
SQL is run as a windowed application.

-host hostname Specifies the hostname or IP address of the com-
puter on which the database server is running.
You can use the name localhost to represent the
current computer.

-nogui Runs Interactive SQL as a console application,
with no windowed user interface. This is useful
for batch operations.

If you specify either dbisql-command or command-
file, then -nogui is assumed.

In this mode, Interactive SQL sets the program ex-
it code to indicate success or failure. On Win-
dows operating systems, the environment varia-
ble ERRORLEVEL is set to the program exit
code. See “Software component exit codes” [SQL
Anywhere Server - Programming].

UltraLite database reference

188 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-onerror { continue | exit } Controls what happens if an error is encountered
while reading statements from a command file. It
is useful when using Interactive SQL in batch op-
erations. This option overrides the on_error set-
ting. See “on_error option [Interactive SQL]”
[SQL Anywhere Server - Database Administra-
tion].

Define one of the following supported behavior
values:

● Continue The error is ignored and Interac-
tive SQL continues executing statements.

● Exit Interactive SQL terminates.

-q Suppresses output messages. Sets the utility to
run in quiet mode. This is useful only if you start
Interactive SQL with a command or command
file. Specifying this option does not suppress er-
ror messages, but it does suppress the following:

● warnings and other non-fatal messages

● the printing of result sets

-ul Specifies that UltraLite databases are the default.
Interactive SQL customizes the options available
to you depending on the type of database you are
connected to.

By default, Interactive SQL assumes that you are
connecting to SQL Anywhere databases. When
you specify the -ul option, the default changes to
UltraLite databases. Regardless of the type of da-
tabase set as the default, you can connect to either
SQL Anywhere or UltraLite databases by choos-
ing the database type from the Change Database
Type dropdown list on the Connect window.

For more information about connecting to Ultra-
Lite databases from Interactive SQL, see “Interac-
tive SQL for UltraLite utility
(dbisql)” on page 186.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 189



Option Description

-version Displays the version number of Interactive SQL.
You can also view the version number from with-
in Interactive SQL; from the Help menu, choose
About Interactive SQL.

-x Scans commands but does not execute them. This
is useful for checking long command files for syn-
tax errors.

For detailed descriptions of SQL statements and
Interactive SQL commands, see “SQL language
elements” [SQL Anywhere Server - SQL Refer-
ence].

dbisql-command | command-file Execute the SQL statement or execute the speci-
fied command-file.

If you do not specify a SQL-statement or command-
file, Interactive SQL enters interactive mode,
where you can type a command into a command
window.

Remarks
Interactive SQL allows you to browse the database, execute SQL commands, and run command files. It
also provides feedback about:

● the number of rows affected
● the time required for each command
● the execution plan of queries
● any error messages

You can connect to both SQL Anywhere and UltraLite databases. For information about connecting to
SQL Anywhere databases, see “Interactive SQL utility (dbisql)” [SQL Anywhere Server - Database
Administration].

Interactive SQL is supported on Windows, Solaris, Linux, and Mac OS X. See http://www.sybase.com/
detail?id=1061806.

For Windows, there are two executables:

1. Batch scripts should call dbisql or dbisql.com, not dbisql.exe. The dbisql.com executable is linked as a
console application.

2. The dbisql.exe executable is linked as a windowed application and does not block the command shell
from which it was started. If dbisql.exe is run from a batch file, you won't see any output sent to the
standard output or standard error files.

UltraLite database reference

190 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806


The default encoding for Interactive SQL can also be temporarily set using the default_isql_encoding
option. See “default_isql_encoding option [Interactive SQL]” [SQL Anywhere Server - Database
Administration].

You can specify the encoding to use when reading or writing files using the ENCODING clause of the
INPUT, OUTPUT, or READ statement. See:

● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Exit codes are 0 (success) or non-zero (failure). Non-zero exit codes are set only when you run Interactive
SQL in batch mode (with a command line that contains a SQL statement or the name of a script file). See
“Software component exit codes” [SQL Anywhere Server - Programming].

In command-prompt mode, Interactive SQL sets the program exit code to indicate success or failure. On
Windows operating systems, the environment variable ERRORLEVEL is set to the program exit code.

When executing a reload.sql file with Interactive SQL, you must specify the encryption key as a
parameter. If you do not provide the key in the READ statement, Interactive SQL prompts for the key.

You can start Interactive SQL in the following ways:

● From Sybase Central, choosing File » Open Interactive SQL.
● From the Start menu by choosing Start » Programs » SQL Anywhere 12 » Administration Tools »

Interactive SQL.
● Using the dbisql command from a command prompt.

See also
● “Interactive SQL SQL statements” [SQL Anywhere Server - Database Administration]
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]
● “Using configuration files” [SQL Anywhere Server - Database Administration]
● “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database Administration]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “UltraLite connection parameters” on page 167
● “Supported exit codes” on page 185

Example
The following command runs the command file mycom.sql against the CustDB.udb database for UltraLite.
Because a user ID and password are not defined, the default user ID DBA and password sql are assumed.
The -onerror option is defined as Exit; so, if there is an error in the command file, the process terminates.

dbisql -ul -c DBF=CustDB.udb -onerror exit mycom.sql

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 191



SQL preprocessor for UltraLite utility (sqlpp)
Preprocesses a C/C++ program that contains embedded SQL (ESQL), so that code required for that
program can be generated before you run the compiler. The table below describes the entire set of options
for completeness, but the only relevant options for UltraLite are -eu and -wu.

Syntax
sqlpp -u [ options ] esql-filename [ output-filename ]

Option Description

-d Generate code that reduces data space size, but increases code size. Data structures are
reused and initialized at execution time before use.

-e flag This option flags as an error any static embedded SQL that is not part of a specified
standard. The level value indicates the standard to use. For example, sqlpp -e
c03 ... flags any syntax that is not part of the core SQL/2003 standard.

The allowed values of level are:

● c03 Flag syntax that is not core SQL/2003 syntax

● p03 Flag syntax that is not full SQL/2003 syntax

● c99 Flag syntax that is not core SQL/1999 syntax

● p99 Flag syntax that is not full SQL/1999 syntax

● e92 Flag syntax that is not entry-level SQL/1992 syntax

● i92 Flag syntax that is not intermediate-level SQL/1992 syntax

● f92 Flag syntax that is not full-SQL/1992 syntax

● t Flag non-standard host variable types

● u Flag syntax that is not supported by UltraLite

For compatibility with previous SQL Anywhere versions, you can also specify e, I,
and f, which correspond to e92, i92, and f92, respectively.

-h width Limits the maximum length of split lines output by sqlpp to width in the .c file. Back-
slash characters are added to the end of split lines, so that a C compiler can parse the
split lines as one continuous line. The default value is no maximum line length (output
lines are not split by default).

-k Notify the preprocessor that the program to be compiled includes a user declaration of
SQLCODE.

UltraLite database reference

192 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-n Generate line number information in the C file by using #line directives in the appro-
priate places in the generated code.

Use this option to the report source errors and to debug source on line numbers in the
esql-filename file, rather than in the output-filename file.

-o O/S spec Not applicable to UltraLite.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

-r Not applicable to UltraLite.

-s string-
length

Set the maximum size string that the preprocessor will put into the C file. Strings lon-
ger than this value are initialized using a list of characters ('a','b','c', and so on). Most
C compilers have a limit on the size of string literal they can handle. This option is
used to set that upper limit. The default value is 500.

-u Required for UltraLite. Generate output specifically required for UltraLite databases.

-w level Flag non-conforming SQL syntax as a warning. The level value indicates the standard
to use. For example, sqlpp -w c03 ... flags any SQL syntax that is not part of
the core SQL/2003 syntax.

The allowed values of level are:

● c03 Flag syntax that is not core SQL/2003 syntax

● p03 Flag syntax that is not full SQL/2003 syntax

● c99 Flag syntax that is not core SQL/1999 syntax

● p99 Flag syntax that is not full SQL/1999 syntax

● e92 Flag syntax that is not entry-level SQL/1992 syntax

● i92 Flag syntax that is not intermediate-level SQL/1992 syntax

● f92 Flag syntax that is not full-SQL/1992 syntax

● t Flag non-standard host variable types

● u Flag syntax that is not supported by UltraLite

For compatibility with previous SQL Anywhere versions, you can also specify e, I,
and f, which correspond to e92, i92, and f92, respectively.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 193



Option Description

-x Change multibyte strings to escape sequences, so that they can be passed through a com-
piler.

-z collation-
sequence

Specify the collation sequence.

Remarks
This preprocessor translates the SQL statements in the input-file into C/C++. It writes the result to the output-
filename. The normal extension for source files containing embedded SQL is sqc. The default output-
filename is the esql-filename base name with an extension of c. However, if the esql-filename already has
the .c extension, the default output extension is .cc.

The collation sequence is used to help the preprocessor understand the characters used in the source code
of the program. For example, in identifying alphabetic characters suitable for use in identifiers. In
UltraLite, collations include a code page plus a sort order. If you do not specify -z, the preprocessor
attempts to determine a reasonable collation to use based on the operating system.

To see a list of supported collations (and their corresponding codepages), run the command ulinit -Z.

Tip
The SQL preprocessor (sqlpp) has the ability to flag static SQL statements in an embedded SQL
application at compile time. This feature can be especially useful when developing an UltraLite
application, to verify SQL statements for UltraLite compatibility. You can test compatibility of SQL for
both SQL Anywhere and UltraLite applications by using either -e and/or -w options. For an overview of
the SQL Flagger, see “Testing SQL compliance using the SQL Flagger” [SQL Anywhere Server - SQL
Usage].

See also
● “Embedded SQL” [SQL Anywhere Server - Programming]
● “UltraLite character sets” on page 30

Example
The following command preprocesses the srcfile.sqc embedded SQL file in quiet mode for an UltraLite
application.

sqlpp -u -q MyEsqlFile.sqc

UltraLite Engine utility (uleng12)
Manages concurrent UltraLite database connections from applications on 32- and 64-bit Windows
Desktop, 32-bit Linux and Windows Mobile.

UltraLite database reference

194 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
uleng12

Remarks
The UltraLite engine does not display a messages window on startup.

The UltraLite engine should be used by an application in scenarios where multiple processes could be
accessing the same database at the same time. The engine is installed in the SQL Anywhere bin32 or
bin64 directory because the UltraLite desktop administration tools use the engine to connect to databases.

See:

● “Deploying UltraLite to devices” on page 41
● “Compiling and linking your application” [UltraLite - C and C++ Programming]
● “Deploy UltraLite with AES_FIPS database encryption” on page 46
● “Deploy UltraLite with TLS-enabled synchronization” on page 47

See also
● “Working with UltraLite databases” on page 52
● “Choosing an UltraLite data management component” on page 19
● “UltraLite Engine Stop utility (ulstop)” on page 195
● “UltraLite START connection parameter” on page 182

UltraLite Engine Stop utility (ulstop)
Stops the UltraLite engine on 32-bit Windows desktops and Windows Mobile.

Syntax
ulstop

Remarks
Use ulstop during development to shut down the engine manually. You typically do not require ulstop in
live deployments.

See also
● “Choosing an UltraLite data management component” on page 19
● “UltraLite Engine utility (uleng12)” on page 194

UltraLite Erase database (ulerase)
Erases an UltraLite database.

Syntax
ulerase[options] [ db-file-name ] 

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 195



Option Description

-k key

OR

--ek=key

Specify the encryption key for an encrypted database.

-p

OR

--ep

Specify that you want to be prompted for the encryption key.

--log Log operations to the specified file.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational banners, version
numbers, and status messages. Error messages are still displayed, however.

-u <uid>,<pwd>

OR

--dba=<uid>,<pwd>

Specify the userid and password required to access the database.

-? Displays utility usage information and exits.

dbname Erase the specified database.

Remarks
The database must be accessible. The user ID and password combination must allow a connection,
otherwise the database is not erased.

Encrypted databases require a key provided in the connection string, or using one of -k key or -p.

UltraLite Information utility (ulinfo)
Displays information about an UltraLite database.

Syntax
ulinfo -c  options 

UltraLite database reference

196 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-c "keyword=value;..."

OR

--connect"keyword=value;..."

Supply database connection parameters. Required.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational banners,
version numbers, and status messages. Error messages are still dis-
played, however.

--log=filename Log operations to the specified file.

-?

OR

--help

Displays utility usage information and exits.

Remarks
Warning messages generated when opening an UltraLite database are always displayed unless you use the
-q option.

See also
● “UltraLite connection parameters” on page 167
● “UltraLite global_database_id option” on page 165
● “UltraLite ml_remote_id option” on page 166

Example
Show basic database internals for a file named cv_dbattr.udb that has already been synchronized:

ulinfo -c DBF=cv_dbattr.udb

Show database internals for a file named CustDB.udb and display database properties by enabling verbose
messaging:

ulinfo -c DBF=CustDB.udb -v

UltraLite Initialize Database utility (ulinit)
Creates a new UltraLite database. This utility will either create an empty database with characteristics
specified with the command line arguments ("empty mode"), or it can create a database based on a SQL
Anywhere database "extract mode". In the latter case, an initial schema is created that matches tables and
indexes in the SQL Anywhere reference database. Moreover, many of the SQL Anywhere reference
database characteristics will be used for the new UltraLite database.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 197



In the usage below, some options are only permissible in "extract mode," while others are only
permissible in "empty mode." If no mode is stated in the description, then the option can be used in either
mode.

Syntax
ulinit options dbname 

Option Description

-a " keyword=value;..."

OR

--SAconnect="keyword=value;..."

Sets the utility to "extract" mode and connects to
an existing database using the specified connec-
tion parameters (extract mode). If this option is
not present, the utility creates a new database us-
ing the specified connection parameters (empty
mode).

-c

OR

--case

Empty mode.

Enforce case sensitivity on all string comparisons.

-d

OR

--datacopy

Extract mode.

For each table in the new UltraLite database, copy
data from the corresponding table in the SQL Any-
where database. By default, this data will not be
uploaded in subsequent synchronizations. To in-
clude the data in the next upload synchronization,
use -i with -d.

--date_format=format Empty mode.

Sets the format for dates retrieved from the data-
base. See “UltraLite date_format creation parame-
ter” on page 138

--date_order=date-format-interpretation Empty mode.

Sets the interpretation of the date format. See “Ul-
traLite date_order creation parame-
ter” on page 141.

UltraLite database reference

198 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-e value

OR

--fips=value

Empty mode.

On or off, 1 or 0, etc. Controls AES FIPS compli-
ant data encryption, by using a Certicom certified
cryptographic algorithm. FIPS encoding is a form
of strong encryption. See “Securing UltraLite da-
tabases” on page 32 and “UltraLite fips creation
parameter” on page 142.

-f

OR

---exactschema

Extract mode.

Fail if exact schema is not supported in UltraLite;
otherwise, warnings will appear if schema differs.

-g id

OR

--databaseid=id

Set the initial database ID to the INTEGER value
you assign. This initial value is used with a parti-
tion size for new rows that have global autoincre-
ment columns. When deploying an application,
you must assign a different range of identification
numbers to each database for synchronization
with the MobiLink server. See “UltraLite glob-
al_database_id option” on page 165.

-i

OR

--insertforupload

Extract mode.

Use with -d. Include inserted rows in the next up-
load synchronization. By default, rows inserted by
this utility are not uploaded during synchronization.

-k key

OR

--key=key

Extract mode.

Specify the encryption key for an encrypted data-
base.

-K

OR

--prompt

Empty mode.

Specify that you want to be prompted for the en-
cryption key.

-l  logfile

OR

--sql=logfile

Extract mode.

Log DDL database schema creation SQL state-
ments, as executed, to logfile.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 199



Option Description

--log=filename Empty mode.

Log operations to the specified file.

-m filename

OR

--mirror_file=filename

Extract mode.

Specify the database mirror file. See “UltraLite
MIRROR_FILE connection parame-
ter” on page 178.

--max_hash_size=size Empty mode.

Sets the default index hash size in bytes. See “Ul-
traLite max_hash_size creation parame-
ter” on page 143.

-n pubname

OR

--publication=pubname

Extract mode.

Required. Add tables to the UltraLite database
schema.

pubname specifies a publication in the reference
database. Tables in the publication are added to
the UltraLite database.

Specify the option multiple times to add tables
from multiple publications to the UltraLite data-
base. To add all tables in the reference database to
the UltraLite database, specify -n*.

--nearest_century=yy Empty mode.

Controls the interpretation of two-digit years in
string-to-date conversions. See “UltraLite near-
est_century creation parameter” on page 144.

-o value

OR

--obfuscate=value

Empty mode.

On or off, 1 or 0, etc. Controls whether data in the
database is obfuscated. Obfuscation is a form of
simple encryption. See “Securing UltraLite databa-
ses” on page 32 and “UltraLite obfuscate creation
parameter” on page 146.

UltraLite database reference

200 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-p size

OR

--page_size=size

Empty mode.

Specify the database page size.

--precision=precision Empty mode.

Specifies the maximum number of digits in deci-
mal point arithmetic results. See “UltraLite preci-
sion creation parameter” on page 148.

-q

OR

--quiet

Empty mode and extract mode.

Set the utility to run in quiet mode. Suppress infor-
mational banners, version numbers, and status mes-
sages. Error messages and warnings are still dis-
played, however.

-r size

OR

--reserve_size

Database connection only.

Reserve size. See “UltraLite RESERVE_SIZE con-
nection parameter” on page 181.

-s pubname

OR

--sync_publication

Extract mode.

Create a publication in the UltraLite database with
the same definition as pubname in the reference da-
tabase. Publications are used to configure synchro-
nization. Supply more than one -s option to name
more than one synchronization publication.

Note that the tables in this publication must be in-
cluded in a publication listed by the -n option.

If -s is not supplied, the UltraLite remote has no
named publications.

For more information about how to create publica-
tions for MobiLink synchronization, see “Publica-
tions in UltraLite” on page 102.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 201



Option Description

-S checksum_level

OR

--checksum_level=checksum_level

Empty mode.

0, 1, or 2. Specifies the checksum level validation
on database pages. See “UltraLite checksum_level
creation parameter” on page 136.

--scale=scale Empty mode.

Specifies the minimum number of digits after the
decimal point when an arithmetic result is trunca-
ted to the maximum precision. See “UltraLite
scale creation parameter” on page 149.

-t file

OR

--rootcert=file

Empty mode and extract mode.

Specify the file containing the trusted root certifi-
cate. This certificate is required for server authen-
tication.

--time_format=format Empty mode.

Sets the format for times retrieved from the data-
base. See “UltraLite time_format creation parame-
ter” on page 150.

--timestamp_format=format Empty mode.

Sets the format for timestamps retrieved from the
database. See “UltraLite timestamp_format crea-
tion parameter” on page 152.

--timestamp_increment=increment Empty mode.

Determines how the timestamp is truncated in Ul-
traLite. See “UltraLite timestamp_increment crea-
tion parameter” on page 154.

--timestamp_with_time_zone_format=

format

Empty mode.

This option sets the format for TIMESTAMP
WITH TIME ZONE values retrieved from the da-
tabase. See .“UltraLite time-
stamp_with_time_zone_format creation parame-
ter” on page 155

UltraLite database reference

202 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-u <uid>,<pwd>

OR

--dba=<uid>,<pwd>

Database connection only.

Specify the userid and password.

--utf8_encoding=value Empty mode.

On or off, 1 or 0, etc. Encodes data using the
UTF-8 format, 8-bit multibyte encoding for Uni-
code. See “UltraLite character sets” on page 30
and “UltraLite utf8_encoding creation parame-
ter” on page 157.

-w

OR

--nowarnings

Extract mode.

Do not display warnings.

-x table

OR

--exclude

Extract mode.

Exclude the tables named in the list.

-y

OR

--overwrite

Empty mode and extract mode.

Over-write the existing database file.

-z collation-sequence

OR

--collation=collation-sequence

Empty mode.

Specify the collation sequence.

-Z

OR

--listcollation

Empty mode.

List the available collation sequences and exit.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 203



Option Description

-?

OR

--help

Display utility usage and exit.

Remarks
The SQL Anywhere reference database, when used, acts as the source for:

● database configuration (for example, the collation sequence used)
● table definitions
● synchronization publications

Together they help create the UltraLite schema—information that defines the structure of the new
UltraLite database. However, the new database you create is initially empty unless you use the -d option.

When run in extract mode, ULINIT will attempt to create an UltraLite database that matches, as closely as
possible, the SQL Anywhere database. For example, if a column in the SQL Anywhere database includes
a clause that UltraLite does not support, the default value will be ignored and the UltraLite default used
instead. A warning will be generated and creation will continue. This supports the case where SQL
Anywhere tables cannot be modified, but a reasonable UltraLite alternative is available. To enforce an
exact schema match, use the -f option. If the schema will not support a reasonable UltraLite alternative,
ulinit will fail.

If you want to initialize an UltraLite database from an RDBMS other than SQL Anywhere, use the Create
Synchronization Model Wizard in Sybase Central. When you run the wizard, you are prompted to
connect to a consolidated database to obtain schema information.

UltraLite uses the name of the collation sequence that was defined in the reference database. However,
you can still choose to use UTF-8 to encode the database, by setting the utf8_encoding property.

To see a list of supported collations (and corresponding codepages), run ulinit -Z at a command prompt.
If your collation sequence is not supported by UltraLite, you should change it to one that is. For example,
if your reference database collation is the UCA collation, you should:

1. Unload the reference database and then reload it with a different collation.

2. Run ulinit on this new version of the database.

See also
● “Create an UltraLite database from a SQL Anywhere reference database” on page 25
● “Introduction to synchronization models” [MobiLink - Getting Started]
● “UltraLite connection parameters” on page 167

Examples
Create a file called customer.udb that contains the tables defined in TestPublication:

UltraLite database reference

204 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



ulinit -a "DSN=MySADb;UID=JimmyB;PWD=secret" -n TestPublication -k mykey 
customer.udb

This example connects to a SQL Anywhere database defined in the MySADb datasource. It creates an
UltraLite database with all the database options from that database and all the tables contained in the
TestPublication publication. The new UltraLite database is called customer.udb and is encrypted with the
key mykey.

Create a file called customer.udb that contains two distinct publications. Specifically, Pub1 may contain a
small subset of data for priority synchronization, while Pub2 could contain the bulk of the data:

ulinit -a "DSN=MySADb;UID=JimmyB;PWD=secret" --exactschema -n Pub1 -n Pub2 -s 
Pub1 -s Pub2 customer.udb

This example connects to a SQL Anywhere database defined in the MySADb datasource. It creates an
UltraLite database with all the database options from that database and all the tables contained in the
publications Pub1 and Pub2. The new UltraLite database is also created with the publications Pub1 and
Pub2. Since the --exactschema option is set, ulinit will fail if it cannot extract the all precise schema.

Create a new blank database that overwrites another customer.udb file if it already exists. The new
database has no schema and all the database options are set to default values.

ulinit -y customer.udb

UltraLite Load XML to Database utility (ulload)
Loads data from an XML file into a new or existing database.

Syntax
ulload  -c "connection-string" [ options ] xml-file

Option Description

-a

OR

--append

Add data and schema definitions into an existing database.

-c "keyword=value;..."

OR

--connect "keyword=value;..."

Supply the database connection parameters.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 205



Option Description

-d

OR

--dataonly

Load data only, ignoring any schema meta-data in the XML file input.

-d or --dataonly switches can only be used when -a is specified (be-
cause it is loading data only, the UDB it is loading the data into must
exist with a schema that supports the data being loaded into it).

-e value

OR

--fips= value

On or off, 1 or 0, etc. Controls AES FIPS compliant data encryption,
by using a Certicom certified cryptographic algorithm. FIPs encoding
is a form of strong encryption. See “Securing UltraLite databa-
ses” on page 32 and “UltraLite fips creation parameter” on page 142.

-E behavior

OR

--onerror=behavior

Control what happens if an error is encountered while reading data
from the XML file. Specify one of the following supported behavior
values:

● continue ulload ignores the error and continues to load XML.

● prompt ulload prompts you to see if you want to continue.

● quit ulload stops loading the XML and terminates with an er-
ror. This behavior is the default behavior if none is specified.

● exit ulload exits.

-f directory

OR

--filedir=directory

Set the directory that contains files with additional data to load. See
“UltraLite Database Unload utility (ulunload)” on page 214.

-g ID

OR

--databaseid=ID

Set the initial database ID to the INTEGER value you assign. This ini-
tial value is used with a partition size for new rows that have global
autoincrement columns. When deploying an application, you must as-
sign a different range of identification numbers to each database for
synchronization with the MobiLink server. See “UltraLite global_da-
tabase_id option” on page 165.

-i

OR

--insertforsync

Include inserted rows in the next upload synchronization. By default,
rows inserted by this utility are not uploaded during synchronization.

UltraLite database reference

206 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-l filename

OR

--log=filename

Log operations to the specified file.

-n

OR

--schemaonly

Load schema meta-data only, ignoring any data in the XML input file.

-o value

OR

--obfuscate=value

On or off, 1 or 0, etc. Controls whether data in the database is obfusca-
ted. Obfuscation is a form of simple encryption. See “Securing Ultra-
Lite databases” on page 32 and “UltraLite obfuscate creation parame-
ter” on page 146.

-p page-size

OR

--page_size=page-size

Defines the database page size. See “UltraLite page_size creation pa-
rameter” on page 146.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational banners,
version numbers, and status messages. Error messages are still dis-
played, however.

-s file

OR

--sql=file

Log the SQL statements used to load the database into the specified
file.

-t file

OR

--rootcert=file

Specify the file containing the trusted root certificate. This certificate
is required for server authentication.

--utf8_encoding=value On or off, 1 or 0, etc. Encodes data using the UTF-8 format, 8-bit mul-
tibyte encoding for Unicode. See “UltraLite character
sets” on page 30 and “UltraLite utf8_encoding creation parame-
ter” on page 157.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 207



Option Description

-v

OR

--verbose

Print verbose messages.

-y

OR

--overwrite

Overwrite the database file without confirmation. This only applies
when you use ulload to create a new database.

-?

OR

--help

Display the utility usage and exit.

Remarks
The ulload utility takes an input XML file generated by ulunload, ulunloadold (provided with SQL
Anywhere 10), or ulxml (in UltraLite versions 8 and 9). When used along with ulunload this utility
provides you with the ability to rebuild a database. An alternative method to rebuild a database is using
ulunload to generate SQL statements and then use DBISQL to read them into a new database.

The XML file can contain meta-data for the schema and/or meta-data for the database data. -d ignores the
schema meta-data, only adding data to the .udb file. -n ignores the data and the meta-data, only adding the
schema to the .udb file.

Setting an option or specifying a certificate on the command line overrides any settings in the xml-file that
is processed by ulload.

The ulload utility restores any synchronization profiles to the database when reading the XML.

This utility returns error codes. Any value other than 0 means that the operation failed.

See also
● “UltraLite connection parameters” on page 167
● “UltraLite Database Unload utility (ulunload)” on page 214
● “Supported exit codes” on page 185
● “UltraLite global_database_id option” on page 165

Example
Create a new UltraLite database file, sample.udb, and load it with data in sample.xml:

ulload -c DBF=sample.udb sample.xml

Load the data from sample.xml into the existing database sample.udb, and if an error occurs, prompt for
action:

UltraLite database reference

208 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



ulload -d -c DBF=sample.udb --onerror=prompt sample.xml

Create the schema and data stored in test_data.xml in the sample.udb database. Since the -a switch is
specified, sample.udb must exist prior to running this command. Moreover, any schema or data that
conflicts with what is already in sample.udb will mean the ULLOAD command will fail.

ulload -c DBF=sample.udb -a test_data.xml

UltraLite Synchronization utility (ulsync)
Synchronizes an UltraLite database with a MobiLink server. This tool can be used for testing
synchronization during application development.

Syntax
ulsync -c [ options ]  [synchronization parameters]

Option Description

-c "connec-
tion-string"

Required. Connect to the database as identified in the DBF or file_name parameter of
your connection-string. If you do not specify both a user ID and a password, the default
UID of DBA and PWD of sql are assumed.

--log Log operations to the specified file.

-p profile-
name

OR

--pro-
file=profile

Synchronize using the named sync profile, equivalent to:

synchronize profileName merge 'syncOptions'

where sync options are taken from the trailing ulsync options. For example:

ulsync -p profileName 
"MobiLinkUid=ml;ScriptVersion=Version001...syncOptions"

See “Synchronization profile options” on page 212.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

-r

OR

--result

Display last synchronization results and exit.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 209



Option Description

-v

OR

--verbose

Display synchronization progress messages. This also determines whether progress is
displayed for any synchronization, whether using the C++ API or the SQL synchronize
profile statement. See “CREATE SYNCHRONIZATION PROFILE statement [Ultra-
Lite] [UltraLiteJ]” on page 379.

Remarks
When a certificate file is specified either with the trusted_certificates or the e2ee_public_key option, the
UltraLite runtime will look for these files only in the main resource bundle, which is a part of every
iPhone application deployment package. Add items to this bundle by including them in the /Resources
folder in your xCode project. This is not applicable to certificates that are stored in the Ultralite database,
and does not affect Mac OS clients (only iPhone). See “trusted_certificates” [MobiLink - Client
Administration]and “e2ee_type” [MobiLink - Client Administration].

The following options that were valid for versions 10 and preceding are no longer supported: -a authenticate-
parameters, -e sync-parms, -k stream-type, -n (no sync), and -x protocol options. -e
<keyword>=<value> is now part of the sync parameters string and -k and -x have been folded into the
Stream=<stream{<stream-parms>} sync parameters string.

ulsync can be considered to be equivalent to one the following SQL statements, depending on usage:

ulsync -p <profile> "<parms>"

is equivalent to:

 SYNCHRONIZE PROFILE <profile> MERGE
<parms>

and

ulsync "<parms>"

is equivalent to:

 SYNCHRONIZE USING <parms>

For secure synchronization, the UltraLite application must have access to the public certificate. You can
reference a certificate by:

● Incorporating the certificate information into the UltraLite database at creation time with the -t file
option using ulinit or ulload.

● Referencing an external certificate file at synchronization time with the trusted_certificates=file
stream option.

This utility returns error codes. Any value other than 0 means that the operation failed.

UltraLite database reference

210 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “Synchronization profile options” on page 212
● “End-to-end encryption” [SQL Anywhere Server - Database Administration]
● “trusted_certificates” [MobiLink - Client Administration]
● “UltraLite connection parameters” on page 167
● “UltraLite clients” on page 93
● “Supported exit codes” on page 185
● “MobiLink File Transfer utility (mlfiletransfer)” [MobiLink - Client Administration]
● “Deploy UltraLite with TLS-enabled synchronization” on page 47

Examples
The following command synchronizes a database file called myuldb.udb for a MobiLink user called
remoteA.

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;Stream=http;ScriptVersion=2"

The following command synchronizes a database file called myuldb.udb over HTTPS with the c:\certs
\rsa.crt certificate. The trusted_certificates=file  option must be used because the trusted certificate file
was not added to the database when the database was created. Additionally, the MobiLink user name is
remoteB.

ulsync -c DBF=myuldb.udb "Stream=https{trusted_certificates=c:\certs
\rsa.crt};
MobiLinkUid=remoteB;ScriptVersion=2;UploadOnly=ON"

The following command displays the last synchronization results for a database file named synced.udb.

ulsync -r -c dbf=synced.udb

The previous synchronization results are listed as follows:

SQL Anywhere UltraLite Database Synchronize Utility Version XX.X
    Results of last synchronization:
    Succeeded
        Download timestamp: 2006-07-25 16:39:36.708000
        Upload OK
        No ignored rows
        Partial download retained
        Authentication value: 1000 (0x3e8)

The following example shows the command line used to synchronize the CustDB database with a user
name of 50 over TCP/IP on a port of 2439. It uses verbose progress messages.

ulsync -c "dbf=C:\Documents and Settings\All Users\Documents\SQL Anywhere 
12\Samples\UltraLite\SyncEncrypt\custdb.udb" 
MobiLinkUid=50;ScriptVersion=custdb 12.0;Stream=tcpip{port=2439}

The following command illustrates how to use TLS encryption with E2EE:

ulsync -c "uid=dba;pwd=sql;dbf=myudb.db" 
"MobiLinkUid=rem1;MobiLinkPwd=password;ScriptVersion=v1;Stream=tls{host=mySer
ver;port=2439;trusted_certificates=c:
\clientcert.pem;e2ee_type=rsa;e2ee_public_key=c:\e2eepublic.pem}"

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 211



Synchronization profile options
You specify synchronization profile options with the ulsync utility on the command line after you have
defined all other command line options you want to use. The keywords are case insensitive.

Synchro-
nization
profile
option

Valid
values

Description

Allow-
Download-
DupRows

Boo-
lean

This option prevents errors from being raised when multiple rows are downloa-
ded that have the same primary key. This can be used to allow inconsistent data
to be synchronized without causing the synchronisation to fail. The default val-
ue is "no." See “Additional Parameters synchronization parameter” on page 111

Auth-
Parms

String
(com-
ma
separa-
ted)

Specifies the list of authentication parameters sent to the MobiLink server. You
can use authentication parameters to perform custom authentication in Mobi-
Link scripts. See “Authentication Parameters synchronization parame-
ter” on page 112.

Check-
pointStore

Boo-
lean

Adds additional checkpoints of the database during synchronization to limit da-
tabase growth during the synchronization process. See “Additional Parameters
synchronization parameter” on page 111.

Continue-
Download

Boo-
lean

Restarts a previously failed download. When continuing a download, only the
changes that were selected to be downloaded with the failed synchronization are
received. By default, UltraLite does not continue downloads. See “Resuming
failed downloads” [MobiLink - Server Administration].

Disable-
Concur-
rency

Boo-
lean

Disallow database access from other threads during synchronization. See “Addi-
tional Parameters synchronization parameter” on page 111.

Downloa-
dOnly

Boo-
lean

Performs a download-only synchronization. See “Download Only synchroniza-
tion parameter” on page 115.

KeepPar-
tialDown-
load

Boo-
lean

Controls whether UltraLite keeps a partial download if a communication error
occurs. By default, UltraLite does not roll back partially downloaded changes.
See “Keep Partial Download synchronization parameter” on page 117.

Mobi-
LinkPwd

String Specifies the existing MobiLink password associated with the user name. See
“MobiLinkPwd (mp) extended option” [MobiLink - Client Administration].

MobiLin-
kUid

String Specifies the MobiLink user name. See “-u dbmlsync option (deprecated)” [Mo-
biLink - Client Administration]. See “-mn dbmlsync option” [MobiLink - Client
Administration].

UltraLite database reference

212 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Synchro-
nization
profile
option

Valid
values

Description

NewMo-
bi-
LinkPwd

String Supplies a new password for the MobiLink user. Use this option when you want
to change an existing password. See “-mn dbmlsync option” [MobiLink - Client
Administration].

Ping Boo-
lean

Confirms communications with the server only; no synchronization is per-
formed. See “Ping synchronization parameter” on page 121.

Publica-
tions

String
(com-
ma
separa-
ted)

Specifies the publications(s) to synchronize. The publications determine the ta-
bles on the remote that are involved in synchronization. If this parameter is
blank (the default) then all tables are synchronized. If the parameter is an aster-
isk (*) then all publications are synchronized. See “Publications in Ultra-
Lite” on page 102.

Script-
Version

String Specifies the MobiLink script version. The script version determines which
scripts are run by MobiLink on the consolidated database during synchroniza-
tion. If you do not specify a script version, 'default' is used. See “ScriptVersion
(sv) extended option” [MobiLink - Client Administration].

SendCo-
lumn-
Names

String Specifies that column names should be sent to the MobiLink server as part of
the upload file when synchronizing. By default, column names are not sent. See
“Send Column Names synchronization parameter” on page 124.

Send-
Downloa-
dACK

Boo-
lean

Specifies that a download acknowledgement should be sent from the client to
the server. By default, the MobiLink server does not provide a download ac-
knowledgement. See “Send Download Acknowledgement synchronization pa-
rameter” on page 125.

Stream String
(with
sub-
list)

Specifies the MobiLink network synchronization protocol. See “Stream Type
synchronization parameter” on page 127.

TableOr-
der

String
(com-
ma
separa-
ted)

Specifies the order of tables in the upload. By default, UltraLite selects an order
based on foreign key relationships. See “Additional Parameters synchronization
parameter” on page 111.

Uploa-
dOnly

String Specifies that synchronization will only include an upload, and no download
will occur. See “Upload Only synchronization parameter” on page 130.

The Boolean values can be specified as Yes/No, 1/0, True/False, On/Off. In all the Boolean cases, the
default is No. For all other values, the default is simply unspecified.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 213



See also
● “ALTER SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 369
● “DROP SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 393
● “SYNCHRONIZE statement [UltraLite] [UltraLiteJ]” on page 407
● “UltraLite creation parameters” on page 135

UltraLite Database Unload utility (ulunload)
Unloads any of the following, depending on the options used:

● An entire UltraLite database to XML or SQL.
● All or part of UltraLite data only to XML or SQL.

Syntax
ulunload -c "connection-string" [ options ] output-file

Option Description

-b max-size

OR

--maxblob=max-size

Set the maximum size of column data to be stored in the XML file.
The default is 10 KB. To store all data in the XML file (no maximum
size), use -b -1.

-c "keyword=value;..."

OR

--connect="keyword=value;..."

Required. Connect to the database as identified in the DBF or
file_name parameter of your connection-string. If you do not specify
both a user ID and a password, the default UID of DBA and PWD of
sql are assumed.

-d

OR

--dataonly

Only unload the data from the database to the output file. Do not un-
load any schema information.

-e table,...

OR

--exclude=table,...

Exclude the named table when unloading the database. You can
name multiple tables in a comma-separated list. For example:

-e mydbtable1,mydbtable5

-f directory

OR

--filedir=directory

Set the directory to store data larger than the maximum size specified
by -b. The default is the same directory as the output file.

UltraLite database reference

214 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-l filename

OR

--log=filename

Unload schema only, ignoring any data in the database.

-n

OR

--schemaonly

Unload schema only, ignoring any data in the database.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational banners,
version numbers, and status messages. Error messages are still dis-
played, however.

-s

OR

--sql

Unload as SQL Anywhere-compatible SQL statements. SQL file out-
put can be read by UltraLite or SQL Anywhere using DBISQL.

-t table,...

OR

--include=table,...

Unload data in the named table only. You can name multiple tables
in a comma separated list. For example:

-t mydbtable2,mydbtable6

-v

OR

--verbose

Print verbose messages.

-x owner

OR

--owner=owner

Output tables so they are owned by a specific user ID. You can use
this option with the -s option.

-y

OR

--overwrite

Overwrite output-file without confirmation.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 215



Option Description

output-file Required. Set the name of the file that the database is unloaded into.
If you use the -s option, database is unloaded as SQL statements. Oth-
erwise, the database is unloaded as XML.

Remarks
By default, ulunload outputs XML that describes the schema and data in the database. You can use the
output for archival purposes, or to keep the UltraLite database portable across all releases.

Saving a database with a synchronization profile results in XML that is incompatible with earlier versions
of the UltraLite utilities. A workaround is to edit the XML and remove the text section marked with

<syncprofiles>...</syncprofiles>

Unloading a database does not preserve:

● Synchronization state, stored synchronization counts, and row deletions. Ensure you synchronize the
database before unloading it.

● UltraLite user entries.

To confirm what database options or properties have been preserved, run ulinfo after you have reloaded
your database with the ulload utility.

If column data exceeds the maximum size you specified with -b, the overflow is saved to a *.bin file in either:

● the same directory as the XML file
● the directory specified by -f.

The file follows this naming convention:

tablename-columname-rownumber.bin

The -x option allows you to assign ownership to UltraLite tables. You only need to assign an owner to a
table if you intend to use the resulting SQL statements for creating or modifying a SQL Anywhere
database. When read by UltraLite, the owner names are silently ignored.

This utility returns error codes. Any value other than 0 means that the operation failed.

If you are using this utility to unload a database on the Windows Mobile device directly, UltraLite cannot
back up the database before the unload or action occurs. You must perform this action manually before
running these wizards.

See also
● “UltraLite connection parameters” on page 167
● “Supported exit codes” on page 185
● “UltraLite Load XML to Database utility (ulload)” on page 205
● “UltraLite Information utility (ulinfo)” on page 196

UltraLite database reference

216 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
Unload the sample.udb database into the sample.xml file.

ulunload -c DBF=sample.udb sample.xml

Unload the data from the sample.udb database into a SQL file called sample1.sql. Overwrite the SQL file
if it exists.

ulunload -c DBF=sample.udb -d -y sample.sql

UltraLite Unload Old Database utility (ulunloadold)

Unloads UltraLite version 8.0.2 to 9.0.x databases and/or schema files (*.usm) into an XML file.

Syntax
ulunloadold -c "connection-string" [ options ] xml-file

Option Description

-b max-size Set the maximum size of column data to be stored in the XML file. The default
is 10 KB. To store all data in the XML file (no maximum size), use -b -1.

-c "connection-
string"

Required. Connect to the database as identified in the DBF or file_name parame-
ter of your connection-string. If you do not specify both a user ID and a pass-
word, the default UID of DBA and PWD of sql are assumed.

-f directory Set the directory to store data larger than the maximum size specified by -b. The
default is the same directory as the XML file.

-q Set the utility to run in quiet mode. Suppress informational banners, version num-
bers, and status messages. Error messages are still displayed, however.

-v Print verbose messages.

-y Overwrite xml-file without confirmation.

xml-file Set the name of the XML file that data will be unloaded into.

Remarks
UltraLite version 12 cannot directly upgrade version 8.x or version 9.x databases. Use this tool to generate
an XML file that can then be used by ulload to create a version 12 database. Do not unload UltraLite
version 12 databases with this utility. Use the ulunload utility instead.

Unloading a database does not preserve:

● Synchronization state, stored synchronization counts, and row deletions. Ensure you synchronize the
database before unloading it.

UltraLite utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 217



● UltraLite user entries.

To confirm what database options or properties have been preserved, run ulinfo after you have reloaded
your database with the ulload utility.

If column data exceeds the maximum size you specified with -b, the overflow is saved to a *.bin file in either:

● the same directory as the XML file
● the directory specified by -f

The file name follows this naming convention:

tablename-columname-rownumber.bin

Any error code value other than 0 means that the operation failed.

This utility cannot be used to unload databases directly on Windows Mobile devices. You must first copy
them to a desktop computer.

See also
● “UltraLite connection parameters” on page 167
● “UltraLite Load XML to Database utility (ulload)” on page 205
● “UltraLite Database Unload utility (ulunload)” on page 214
● “UltraLite Information utility (ulinfo)” on page 196

Example
Upgrading an UltraLite 8.0.x schema file named dbschema8.usm into an UltraLite version 12 database
named db.udb requires these two commands:

ulunloadold -c SCHEMA_FILE=dbschema8.usm dbschema.xml

ulload -c DBF=db.udb dbschema.xml

UltraLite Validate Database utility (ulvalid)

Performs a full ("normal") validation of an UltraLite database.

Syntax
ulvalid -c "connection-string" [ options ] 

Option Description

-c "connection-
string"

Required. Connect to the database as identified in connection-string. If you do
not specify both a user ID and a password, the default UID of DBA and PWD of
sql are assumed.

UltraLite database reference

218 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Option Description

-e Express validation. Only perform table validation. This option provides a faster
validation than normal validation.

-q Set the utility to run in quiet mode. Suppress informational banners, version num-
bers, and status messages. Error messages are still displayed, however.

-v Print verbose messages.

-? Displays utility usage information and exits.

Remarks
Validating a database verifies the accuracy of the table meta-data and ensures the file has not been corrupted.

The validation includes:

● Database pages Validate all database pages, using checksums when enabled. Note that certain
critical pages always have checksums and even pages without checksums undergo a basic validity
check. See “UltraLite checksum_level creation parameter” on page 136.

● Tables Validate table(s) by checking that the table row count matches the count in each index.

● Indexes Validate indexes by checking that entries refer to valid rows. ulvalid -e performs an
express check, which includes only table validation.

See also
● “Validate an UltraLite database” on page 13

Example
An example of an express validation of a database named sample.udb run in quiet mode.

ulvalid -c DBF=sample.udb -e -q

UltraLite system tables
The schema of an UltraLite database is stored in a proprietary format. Earlier versions of UltraLite
databases were stored in several system tables. These system tables can still be queried for backwards
compatibility (they are in essence system views), but they only contain information about user schema
(like tables, columns, indexes) not system schema. For example, you cannot query systable to find the
properties of systable itself. You can only query systable to find the properties of user-created tables.

Each UltraLite programming API supports objects and methods that can be used to query the database
about its schema. It is recommended that you use these objects and APIs to explore schema rather than
querying the system views.

UltraLite system tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 219



Note that all queries performed on these system views are equivalent to full table scans. Index scans are
not supported on these system views.

systable system table
Each row in the systable system table describes one table in the database.

Column name Column type Description

column_count UNSIGNED INT The number of columns in the table.

index_count UNSIGNED INT The number of indexes in the table.

ixcol_count UNSIGNED INT The total number of columns in all indexes in the table.

map_handle UNSIGNED INT Internal use only.

table_name VARCHAR(128) The name of the table.

object_id UNSIGNED INT A unique identifier for that table.

sync_type VARCHAR(32) Used for MobiLink synchronization. Can be one of either
no_sync for no synchronization, all_sync to synchronize every
row, or normal_sync for synchronize changed rows only.

table_type VARCHAR(32) user to indicate user-created tables.

tpd_handle UNSIGNED INT Internal user only.

Constraints
PRIMARY KEY (object_id)

syscolumn system table
Each row in the syscolumn system table describes one column.

Column name Column type Description

column_name VARCHAR(128) The name of the column.

default VARCHAR(128) The default value for this column. For example, autoincrement.

domain UNSIGNED INT The column domain, which is an enumerated value indicating the
domain of the column.

UltraLite database reference

220 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Column name Column type Description

domain_info UNSIGNED INT Used with a variable sized domain.

nulls CHAR(1) Determines if the column allows nulls default.

object_id UNSIGNED INT A unique identifier for that column.

table_id UNSIGNED INT The identifier of the table to which the column belongs.

Constraints
PRIMARY KEY( table_id, object_id )

FOREIGN KEY (table_id) REFERENCES systable (object_id)

sysindex system table
Each row in the sysindex system table describes one index in the database.

Column name Column type Description

check_on_commit BIT Indicates when referential integrity is checked to ensure
there is a matching primary row for every foreign key. It is
only required if type is foreign.

index_name VARCHAR(128) The name of the index.

ixcol_count UNSIGNED INT The number of columns in the index.

nullable BIT Only required if type is foreign. Indicates if nulls are allowed.

object_id UNSIGNED INT A unique identifier for an index.

primary_index_id UNSIGNED INT Only required if type is foreign. Lists the identifier of the pri-
mary index.

primary_table_id UNSIGNED INT Only required if type is foreign. Lists the identifier of the pri-
mary table.

root_handle UNSIGNED INT For internal use only.

table_id UNSIGNED INT A unique identifier for the table to which the index applies.

UltraLite system tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 221



Column name Column type Description

type VARCHAR(10) The type of index. Can be one of:

● primary
● foreign
● key
● unique
● index

hash_size UNSIGNED
SHORT

Stores the hash size used for index hashing.

Constraints
PRIMARY KEY (table_id, object_id)

FOREIGN KEY( table_id ) REFERENCES systable( object_id )

See also
● “sysixcol system table” on page 222

sysixcol system table
Each row in the sysixcol system table describes one column of an index listed in sysindex.

Column name Column type Description

column_id UNSIGNED INT A unique identifier for the column being indexed.

index_id UNSIGNED INT A unique identifier for the index that this index-column belongs to.

order CHAR(1) Indicates whether the column in the index is kept in ascending
(A) or descending (D) order.

sequence UNSIGNED INT The order of the column in the index.

table_id UNSIGNED INT A unique identifier for the table to which the index applies.

Constraints
PRIMARY KEY( table_id, index_id, sequence )

FOREIGN KEY( table_id, index_id ) REFERENCES sysindex( table_id, object_id )

FOREIGN KEY( table_id, column_id ) REFERENCES syscolumn( table_id, object_id )

UltraLite database reference

222 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “sysindex system table” on page 221

syspublication system table
Each row in the syspublication system table describes a publication.

Column name Column type Description

download_timestamp TIMESTAMP The time of the last download.

last_sync UNSIGNED BIGINT Used to keep track of upload progress.

publication_id UNSIGNED INT A unique identifier for the publication.

publication_name CHAR(128) The name of the publication.

Constraints
PRIMARY KEY (publication_id)

See also
● “sysarticle system table” on page 223

sysarticle system table
Each row in the sysarticle system table describes a table that belongs to a publication.

Column name Column type Description

publication _id UNSIGNED INT An identifier for the publication that this article belongs to.

table_id UNSIGNED INT The identifier of the table that belongs to the publication.

where_expr VARCHAR(256) An optional predicate to filter rows.

Constraints
PRIMARY KEY (publication_id, table_id)

FOREIGN KEY (publication_id) REFERENCES syspublication (publication_id)

FOREIGN KEY (table_id) REFERENCES systable (object_id)

UltraLite system tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 223



See also
● “syspublication system table” on page 223

sysuldata system table
The sysuldata system table stores schema information about the UltraLite database. In previous versions,
this table stored database properties and options, however users should not use this table to query these
values. Instead, use the db_property() function to get the value of specific properties or options: For
name, the name or identifier of the property; for type, a value that indicates the type of property or data.

Column name Column type Description

long_setting LONGBINARY A BLOB for long values.

name VARCHAR(128) The name of the property.

setting VARCHAR(128) The value of the property.

type VARCHAR(32) One of either sys for internals, opt for options, or prop for prop-
erties

Constraints
PRIMARY KEY (name, type)

See also
● “UltraLite database properties” on page 158

UltraLite database reference

224 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite SQL reference
This section provides a reference for UltraLite SQL. UltraLite SQL is a unique subset of the SQL
supported by SQL Anywhere databases.

UltraLite SQL elements
Keywords in UltraLite

Each SQL statement contains one or more keywords. SQL keywords are case insensitive, but throughout
these manuals, keywords are indicated in uppercase. Some keywords cannot be used as identifiers without
surrounding them in double quotes. These are called reserved words. See “Reserved words” [SQL
Anywhere Server - SQL Reference].

Note
UltraLite only supports a subset of SQL Anywhere keywords. However, to avoid potential problems in
future releases, you should assume that all the reserved words for SQL Anywhere apply to UltraLite as well.

Identifiers in UltraLite
Identifiers are names of objects in the database, such as user IDs, tables, and columns. Identifiers have a
maximum length of 128 bytes.

You must enclose identifiers in double quotes if any of the following conditions are true:

● The identifier contains spaces.

● The first character of the identifier is not an alphabetic character. The database collation sequence
dictates which characters are considered alphabetic or digit characters.

● The identifier contains a reserved word. See “Reserved words” [SQL Anywhere Server - SQL
Reference].

● The identifier contains characters other than alphabetic characters and digits.

You can only use a single backslash in an identifier if it is used as an escape character.

Strings in UltraLite
Strings are used to hold character data in the database. UltraLite supports the same rules for strings as
SQL Anywhere. The results of comparisons on strings, and the sort order of strings, depends on the case
sensitivity of the database, the character set, and the collation sequence. These properties are set when the
database is created.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 225



See also
● “Strings” [SQL Anywhere Server - SQL Reference]
● “UltraLite character sets” on page 30

Comments in UltraLite

Comments are used to attach explanatory text to SQL statements or statement blocks. The UltraLite
runtime does not execute comments.

The following comment indicators are available in UltraLite:

● -- (Double hyphen) The database server ignores any remaining characters on the line. This
indicator is the SQL/2003 comment indicator.

● // (Double slash) The double slash has the same meaning as the double hyphen.

● /* ... */ (Slash-asterisk) Any characters between the two comment markers are ignored. The two
comment markers may be on the same or different lines. Comments indicated in this style can be
nested. This style of commenting is also called C-style comments.

Note
The percent sign (%) is not supported in UltraLite.

Examples
● The following example illustrates the use of double-hyphen comments:

CREATE TABLE borrowed_book (
   loaner_name CHAR(100)      PRIMARY KEY,
   date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
   date_returned       DATE,
   book                CHAR(20)
   FOREIGN KEY book REFERENCES library_books (isbn),
);
--This statement creates a table for a library database to hold information 
on borrowed books. 
--The default value for date_borrowed indicates that the book is borrowed 
on the day the entry is made. 
--The date_returned column is NULL until the book is returned.

● The following example illustrates the use of C-style comments:

CREATE TABLE borrowed_book (
   loaner_name CHAR(100)      PRIMARY KEY,
   date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
   date_returned       DATE,
   book                CHAR(20)
   FOREIGN KEY book REFERENCES library_books (isbn),
);
/* This statement creates a table for a library database to hold 
information on borrowed books. 
The default value for date_borrowed indicates that the book is borrowed on 

UltraLite SQL reference

226 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



the day the entry is made. 
The date_returned column is NULL until the book is returned. */

Numbers in UltraLite

Numbers are used to hold numerical data in the database. A number can:

● be any sequence of digits
● be appended with decimal parts
● include an optional negative sign (-) or a plus sign (+)
● be followed by an e and then a numerical exponent value

For example, all numbers shown below are supported by UltraLite:

42

-4.038

.001

3.4e10

1e-10

The NULL value in UltraLite

As with SQL Anywhere, NULL is a special value that is different from any valid value for any data type.
However, the NULL value is a legal value in any data type. NULL is used to represent unknown (no
value) or inapplicable information. See “NULL value” [SQL Anywhere Server - SQL Reference].

Special values in UltraLite

You can use special values in expressions, and as column defaults when you create tables.

CURRENT DATE special value

Returns the current year, month, and day.

Data type
DATE

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 227



Remarks
The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT DATE with any of the following, all values are based on
separate clock readings:

● CURRENT DATE multiple times within the same statement

● CURRENT DATE with CURRENT TIME or CURRENT TIMESTAMP within a single statement

● CURRENT DATE with the NOW function or GETDATE function within a single statement

See also
● “Expressions in UltraLite” on page 246
● “GETDATE function [Date and time]” on page 304
● “NOW function [Date and time]” on page 329

CURRENT TIME special value

The current hour, minute, second, and fraction of a second.

Data type
TIME

Remarks
The fraction of a second is stored to 6 decimal places. The accuracy of the current time is limited by the
accuracy of the system clock.

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT TIME with any of the following, all values are based on
separate clock readings:

● CURRENT TIME multiple times within the same statement

● CURRENT TIME with CURRENT DATE or CURRENT TIMESTAMP within a single statement

● CURRENT TIME with the NOW function or GETDATE function within a single statement

See also
● “Expressions in UltraLite” on page 246
● “GETDATE function [Date and time]” on page 304
● “NOW function [Date and time]” on page 329

CURRENT TIMESTAMP special value

UltraLite SQL reference

228 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP value containing the year,
month, day, hour, minute, second, and fraction of a second.

Data type
TIMESTAMP

Remarks
The fraction of a second is stored to 3 decimal places. The accuracy is limited by the accuracy of the
system clock.

Columns declared with DEFAULT CURRENT TIMESTAMP do not necessarily contain unique values.

The information CURRENT TIMESTAMP returns is equivalent to the information returned by the
GETDATE and NOW functions.

CURRENT_TIMESTAMP is equivalent to CURRENT TIMESTAMP.

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT TIMESTAMP with any of the following, all values are based on
separate clock readings:

● CURRENT TIMESTAMP multiple times within the same statement

● CURRENT TIMESTAMP with CURRENT DATE or CURRENT TIME within a single statement

● CURRENT TIMESTAMP with the NOW function or GETDATE function within a single statement

See also
● “CURRENT TIME special value” on page 228
● “Expressions in UltraLite” on page 246
● “NOW function [Date and time]” on page 329
● “GETDATE function [Date and time]” on page 304
● “NOW function [Date and time]” on page 329

CURRENT UTC TIMESTAMP special value

Returns a TIMESTAMP WITH TIME ZONE value that reflects the current UTC time containing the
year, month, and day.

Data type
DATE

Remarks
The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime.

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 229



● CURRENT DATE multiple times within the same statement

● CURRENT DATE with CURRENT TIME or CURRENT TIMESTAMP within a single statement

● CURRENT DATE with the NOW function or GETDATE function within a single statement

See also
● “Expressions in UltraLite” on page 246
● “GETDATE function [Date and time]” on page 304
● “CURRENT TIMESTAMP special value” on page 228
● “NOW function [Date and time]” on page 329

SQLCODE special value

Current SQLCODE value at the time the special value was evaluated. UltraLite only (not supported for
UltraLiteJ).

Data type
String

Remarks
The SQLCODE value is set after each statement. You can check the SQLCODE to determine if the
statement succeeded.

See also
● “Expressions in UltraLite” on page 246
● “Error Messages”

Example
Use a SELECT statement to produce an error code for each attempt to fetch a new row from the result set.
For example: SELECT a, b, SQLCODE FROM MyTable.

Dates and times in UltraLite
Many of the date and time functions use dates built from date and time parts. UltraLite and SQL
Anywhere support the same date parts. See “Specifying date parts” on page 267.

Data types in UltraLite
Available data types in UltraLite SQL include:

● Integer

UltraLite SQL reference

230 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● Decimal

● Floating-point

● Character

● Binary

● Date/time

Note
Domains (user-defined data types) are not supported in UltraLite SQL.

Note
You cannot concatenate LONGVARCHAR and LONGBINARY data types. See “String
operators” on page 260.

You can create a host variable with any one of the supported types. UltraLite supports a subset of the data
types available in SQL Anywhere. The following are the SQL data types supported in UltraLite databases.

Data type Description

BIT Boolean values (0 or 1). See “BIT data type” [SQL Anywhere Serv-
er - SQL Reference].

{ CHAR | CHARACTER }
( max-length )

Character data of max-length, in the range of 1-32767 bytes. See
“CHAR data type” [SQL Anywhere Server - SQL Reference].

When evaluating expressions, the maximum length for a temporary
character value is 2048 bytes.

VARCHAR ( max-length ) VARCHAR is used for variable-length character data of max-
length. See “VARCHAR data type” [SQL Anywhere Server - SQL
Reference].

LONG VARCHAR Arbitrary length character data. Conditions in SQL statements
(such as in the WHERE clause) cannot operate on LONG VAR-
CHAR columns. The only operations allowed on LONG VAR-
CHAR columns are to insert, update, or delete them, or to include
them in the select-list of a query. See “LONG VARCHAR data
type” [SQL Anywhere Server - SQL Reference].

You can cast strings to/from LONGVARCHAR data.

[ UNSIGNED ] BIGINT An integer requiring 8 bytes of storage. See “BIGINT data type”
[SQL Anywhere Server - SQL Reference].

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 231



Data type Description

{ DECIMAL | DEC | NUMER-
IC } ( precision, scale ] ) ]

The representation of a decimal number using two parts: precision
(total digits) and scale (digits that follow a decimal point). See
“DECIMAL data type” [SQL Anywhere Server - SQL Reference],
“NUMERIC data type” [SQL Anywhere Server - SQL Reference],
“UltraLite precision creation parameter” on page 148, and “Ultra-
Lite scale creation parameter” on page 149.

DOUBLE [ PRECISION ] A double-precision floating-point number. In this data type PRECI-
SION is an optional part of the DOUBLE data type name. See
“DOUBLE data type” [SQL Anywhere Server - SQL Reference].

FLOAT [ ( precision ) ] A floating-point number, which may be single or double precision.
See “FLOAT data type” [SQL Anywhere Server - SQL Reference].

[ UNSIGNED ] { INT | INTE-
GER }

An unsigned integer requiring 4 bytes of storage. See “INTEGER
data type” [SQL Anywhere Server - SQL Reference].

REAL A single-precision floating-point number stored in 4 bytes. See “RE-
AL data type” [SQL Anywhere Server - SQL Reference].

[ UNSIGNED ] SMALLINT An integer requiring 2 bytes of storage. See “SMALLINT data
type” [SQL Anywhere Server - SQL Reference].

[ UNSIGNED ] TINYINT An integer requiring 1 byte of storage. See “TINYINT data type”
[SQL Anywhere Server - SQL Reference].

DATE A calendar date, such as a year, month, and day. See “DATE data
type” [SQL Anywhere Server - SQL Reference].

TIME The time of day, containing hour, minute, second, and fraction of a
second. See “TIME data type” [SQL Anywhere Server - SQL Refer-
ence].

DATETIME Identical to TIMESTAMP. See “DATETIME data type” [SQL Any-
where Server - SQL Reference].

TIMESTAMP A point in time, containing year, month, day, hour, minute, second,
and fraction of a second. See “TIMESTAMP data type” [SQL Any-
where Server - SQL Reference].

VARBINARY ( max-length ) Identical to BINARY. See “VARBINARY data type” [SQL Any-
where Server - SQL Reference].

BINARY ( max-length ) Binary data of maximum length max-length bytes. The maximum
length should not exceed 2048 bytes. See “BINARY data type”
[SQL Anywhere Server - SQL Reference].

UltraLite SQL reference

232 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Data type Description

LONG BINARY Arbitrary length binary data. Conditions in SQL statements (such
as in the WHERE clause) cannot operate on LONG BINARY col-
umns. The only operations allowed on LONG BINARY columns
are to insert, update, or delete them, or to include them in the select-
list of a query. See “LONG BINARY data type” [SQL Anywhere
Server - SQL Reference].

You can cast values to/from LONGBINARY data.

UNIQUEIDENTIFIER Typically used for a primary key or other unique column to hold
UUID (Universally Unique Identifier) values that uniquely identify
rows. UltraLite provides functions that generate UUID values.
These values are generated so that a value produced on one comput-
er does not match a UUID produced on another computer. UNIQUE-
IDENTIFIER values generated in this way can therefore be used as
keys in a synchronization environment. See “UNIQUEIDENTIFI-
ER data type” [SQL Anywhere Server - SQL Reference].

User-defined data types and their equivalents

Unlike SQL Anywhere databases, UltraLite does not support user-defined data types. The following table
lists UltraLite data type equivalents to built-in SQL Anywhere aliases:

SQL Anywhere data type UltraLite equivalent

MONEY NUMERIC(19,4)

SMALLMONEY NUMERIC(10,4)

TEXT LONG VARCHAR

XML LONG VARCHAR

Converting data types explicitly

UltraLite allows you to request data type conversions explicitly, by using either the CAST or CONVERT
function.

NOTE
Self-casting usually has no effect on operations. However, self-casts to CHAR/VARCHAR, BINARY/
VARBINARY and NUMERIC are not no-op procedures.

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 233



You can CAST or CONVERT most combinations of data types, as illustrated by the table that follows.

The ability to convert or not is contingent upon the value used in the conversion. As the Value-
dependent column shows, the value must be compatible with the new data type to avoid generating a
specific type of conversion error. For example:

● If you cast varchar "1234" to long, this conversion is supported. However, if you cast varchar
"hello" to long, then this conversion generates a SQLE_CONVERSION_ERROR error because
hello is not a number.

● If you cast long 1234 to short, this conversion is supported. However, if you cast long 1000000 to
short, then this conversion generates a SQLE_OVERFLOW_ERROR error, because 1000000 is
beyond the range of numbers a short can hold.

From Always Never Value-dependent

BINARY
or VARBI-
NARY

CHAR or VARCHAR

BINARY

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

BIGINT

SIGNED BIG

LONG VARCHAR

REAL

TIME

TIMESTAMP

DOUBLE

DATE

NUMERIC

UID1

UltraLite SQL reference

234 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



From Always Never Value-dependent

LONG BI-
NARY

BINARY

LONG BINARY

BIT

CHAR or VARCHAR

LONG VARCHAR

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

TIME

TIMESTAMP

UID

N/A

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 235



From Always Never Value-dependent

BIT CHAR or VARCHAR

BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

REAL

SIGNED BIG

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

N/A

UltraLite SQL reference

236 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



From Always Never Value-dependent

CHAR or
VAR-
CHAR

BINARY or VARBINARY

CHAR or VARCHAR

LONG VARCHAR

LONG BINARY BIT

TINYINT

SIGNED SHORT

SHORT INT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

DOUBLE

NUMERIC

REAL

DATE

TIME

TIMESTAMP

UID

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 237



From Always Never Value-dependent

LONG
VAR-
CHAR

CHAR or VARCHAR

LONG VARCHAR

BINARY or VARBINARY

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

NUMERIC

DATE

TIME

TIMESTAMP

DOUBLE

UID

UltraLite SQL reference

238 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



From Always Never Value-dependent

TINYINT BINARY or VARBINARY

CHAR or VARCHAR

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

SHORT
INT

BINARY or VARBINARY

CHAR or VARCHAR

SHORT INT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SIGNED SHORT

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 239



From Always Never Value-dependent

SIGNED
SHORT

BINARY or VARBINARY

CHAR or VARCHAR

SIGNED SHORT

SIGNED LONG

SIGNED BIG

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

SHORT INT

LONG INT

BIGINT

BIT

TINYINT

LONG INT BINARY or VARBINARY

CHAR or VARCHAR

LONG INT

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

SIGNED LONG

SIGNED
LONG

BINARY or VARBINARY

CHAR or VARCHAR

SIGNED LONG

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

TIMESTAMP

LONG VARCHAR

LONG BINARY

TIME

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

BIGINT

UltraLite SQL reference

240 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



From Always Never Value-dependent

BIGINT BINARY or VARBINARY

CHAR or VARCHAR

BIGINT

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

SIGNED BIG

SIGNED
BIG

BINARY or VARBINARY

CHAR or VARCHAR

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

TIMESTAMP

LONG VARCHAR

LONG BINARY

TIME

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

REAL CHAR or VARCHAR

REAL

DOUBLE

NUMERIC

LONG VARCHAR

BINARY or VARBINARY

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 241



From Always Never Value-dependent

DOUBLE CHAR or VARCHAR

DOUBLE

NUMERIC

LONG VARCHAR

BINARY or VARBINARY

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

NUMERIC CHAR or VARCHAR

REAL

NUMERIC

DOUBLE

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BINARY or VARBINARY2

BIT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

TINYINT

UltraLite SQL reference

242 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



From Always Never Value-dependent

DATE CHAR or VARCHAR

SIGNED LONG

SIGNED BIG

DATE

TIMESTAMP

LONG VARCHAR

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

BIGINT

REAL

DOUBLE

NUMERIC

TIME

BINARY or VARBINARY

UID

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 243



From Always Never Value-dependent

TIME CHAR or VARCHAR

TIME

TIMESTAMP

LONG VARCHAR

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

BINARY or VARBINARY

UID

UltraLite SQL reference

244 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



From Always Never Value-dependent

TIME-
STAMP

CHAR or VARCHAR

SIGNED LONG

SIGNED BIG

DATE

TIME

TIMESTAMP

LONG VARCHAR

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

BIGINT

REAL

DOUBLE

NUMERIC

BINARY or VARBINARY

UID

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 245



From Always Never Value-dependent

UID CHAR or VARCHAR

UID

LONG VARCHAR

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

TIME

TIMESTAMP

BINARY or VARBINARY1

1 The BINARY value must be a 16 byte length to be compatible with a UUID.

2 Only works if the source NUMERIC value is able to cast as a BIGINT.

Expressions in UltraLite
Expressions are formed by combining data, often in the form of column references, with operators or
functions.

Syntax
expression:
 case-expression
| constant
| [correlation-name.]column-name
| - expression

UltraLite SQL reference

246 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



| expression operator expression
| ( expression )
| function-name ( expression, ... )
| if-expression
| special value
| input-parameter

Parameters
case-expression:
CASE expression
WHEN expression
THEN expression,...
[ ELSE expression ]
END

alternative form of case-expression:
CASE
WHEN search-condition
THEN expression,...
[ ELSE expression ]
END

constant:
 integer  | number  | string | host-variable

special-value:
 CURRENT { DATE  |  TIME  |  TIMESTAMP  }
| NULL
| SQLCODE
| SQLSTATE

if-expression:
IF condition
THEN expression
[ ELSE expression ]
ENDIF

input-parameter:
{ ? | :name [ : indicator-name ] }

operator:
{  +  |  -  |  *  |  /  |  ||  |  % }

See also
● “Constants in expressions” on page 248
● “Special values in UltraLite” on page 227
● “Column names in expressions” on page 248
● “UltraLite SQL functions” on page 266
● “Subqueries in expressions” on page 251
● “Search conditions in UltraLite” on page 253
● “Data types in UltraLite” on page 230
● “CASE expressions” on page 249
● “Input parameters” on page 251

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 247



Constants in expressions

In UltraLite, constants are numbers or string literals.

Syntax
' constant '

Usage
String constants are enclosed in single quotes (').

An apostrophe is represented inside a string by two single quotes in a row ('').

See also
● “Escape sequences” [SQL Anywhere Server - SQL Reference]

Example
To use a possessive phrase, type the string literal as follows:

'John''s database'

Column names in expressions

An identifier in an expression.

Syntax
correlation-name.column-name

Remarks
A column name is preceded by an optional correlation name, which typically is the name of a table.

If a column name is a keyword or has characters other than letters, digits and underscore, it must be
surrounded by quotation marks (" "). For example, the following are valid column names:

Employees.Name
address
"date hired"
"salary"."date paid"

See also
● “FROM clause [UltraLite]” on page 395

IF expressions

Sets a search condition to return a specific subset of data.

UltraLite SQL reference

248 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax 1
IF search-condition
THEN expression1
[ ELSE expression2 ]
ENDIF

Remarks
For compatibility reasons, this expression can end in either ENDIF or END IF.

This expression returns the following:

● If search-condition is TRUE, the IF expression returns expression1.

● If search-condition is FALSE and an ELSE clause is specified, the IF expression returns expression2.

● If search-condition is FALSE, and there is no expression2, the IF expression returns NULL.

● If search-condition is UNKNOWN, the IF expression returns NULL.

See also
● “NULL value” [SQL Anywhere Server - SQL Reference]
● “Search conditions” [SQL Anywhere Server - SQL Reference]

CASE expressions

Provides conditional SQL expressions.

Syntax 1
CASE  expression1
WHEN expression2 THEN expression3, ...
[ ELSE expression4 ]
END

SELECT id,
   ( CASE name
      WHEN 'Tee Shirt' THEN 'Shirt'
      WHEN 'Sweatshirt' THEN 'Shirt'
      WHEN 'Baseball Cap' THEN 'Hat'
      ELSE 'Unknown'
   END ) as Type
FROM Product;

Syntax 2
CASE
WHEN search-condition
THEN expression1, ...
[ ELSE expression2 ]
END

Remarks
For compatibility reasons, you can end this expression with either ENDCASE or END CASE.

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 249



You can use case expressions anywhere you can use regular expression.

Syntax 1  If the expression following the CASE keyword is equal to the expression following the first
WHEN keyword, then the expression following the associated THEN keyword is returned. Otherwise the
expression following the ELSE keyword is returned, if specified.

For example, the following code uses a case expression as the second clause in a SELECT statement. It
selects a row from the Product table where the name column has a value of Sweatshirt.

Syntax 2  If the search-condition following the first WHEN keyword is TRUE, the expression
following the associate THEN keyword is returned. Otherwise the expression following the ELSE clause
is returned, if specified.

NULLIF function for abbreviated CASE expressions  The NULLIF function provides a way to
write some CASE statements in short form. The syntax for NULLIF is as follows:

NULLIF ( expression-1, expression-2 )

NULLIF compares the values of the two expressions. If the first expression equals the second expression,
NULLIF returns NULL. If the first expression does not equal the second expression, NULLIF returns the
first expression.

Example
The following statement uses a CASE expression as the third clause of a SELECT statement to associate a
string with a search condition. If the name column's value is Tee Shirt, this query returns Sale. And if the
name column's value is not Tee Shirt and the quantity is greater than fifty, it returns Big Sale. However,
for all others, the query then returns Regular price.

SELECT id, name,
   ( CASE
      WHEN name='Tee Shirt' THEN 'Sale'
      WHEN quantity >= 50  THEN 'Big Sale'
      ELSE 'Regular price'
   END ) as Type
FROM Product;

Aggregate expressions

Performs an aggregate computation that the UltraLite runtime does not provide.

Syntax
SUM( expression )

Remarks
An aggregate expression calculates a single value from a range of rows.

An aggregate expression is one in which either an aggregate function is used, or in which one or more of
the operands is an aggregate expression.

UltraLite SQL reference

250 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



When a SELECT statement does not have a GROUP BY clause, the expressions in the select-list must
either contain all aggregate expressions or no aggregate expressions. When a SELECT statement does
have a GROUP BY clause, any non-aggregate expression in the select-list must appear in the GROUP BY
list.

Example
For example, the following query computes the total payroll for employees in the employee table. In this
query, SUM( salary ) is an aggregate expression:

SELECT SUM( salary )
FROM employee;

Subqueries in expressions

A SELECT statement that is nested inside another SELECT statement.

Syntax
A subquery is structured like a regular query.

Remarks
In UltraLite, you can only use subquery references in the following situations:

● As a table expression in the FROM clause. This form of table expression (also called derived tables)
must have a derived table name and column names in which values in the SELECT list are fetched.

● To supply values for the EXISTS, ANY, ALL, and IN search conditions.

You can write subqueries about names that are specified before (to the left of) the subquery, sometimes
known as outer references to the left. However, you cannot have references to items within subqueries
(sometimes known as inner references).

See also
● “SELECT statement [UltraLite] [UltraLiteJ]” on page 402
● “Using subqueries” [SQL Anywhere Server - SQL Usage]
● “Search conditions in UltraLite” on page 253

Example
The following subquery is used to list all product IDs for items that are low in stock (that is, less than 20
items).

FROM SalesOrderItems
 ( SELECT ID
   FROM Products
   WHERE Quantity < 20 );

Input parameters

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 251



Acts as placeholders to allow end-users to supply values to a prepared statement. These user-supplied
values are then used to execute the statement.

Syntax
{ ? | :name [ : indicator-name ]  }

Remarks
Use the placeholder character of ? or the named form in expressions. You can use input parameters
whenever you can use a column name or constant.

The precise mechanism used to supply the values to the statement are dependent upon the API you use to
create your UltraLite client.

Using the named form  The named form of an input parameter has special meaning. In general, name
is always used to specify multiple locations where an actual value is supplied.

For embedded SQL applications only, the indicator-name supplies the variable into which the null
indicator is placed. If you use the named form with the other components, indicator-name is ignored.

Deducing data types  The data type of the input parameter is deduced when the statement is prepared
from one of the following patterns:

● CAST ( ? AS type )

In this case, type is a database type specification such as CHAR(32).

● Exactly one operand of a binary operator is an input parameter. The type is deduced to be the type of
the operand.

If the type cannot be deduced, UltraLite generates an error. For example:

● -?: the operand is unary.

● ? + ?: both are input parameters.

See also
● “Using host variables” [UltraLite - C and C++ Programming]
● “Preparing statements” [SQL Anywhere Server - Programming]
● UltraLite C/C++: “Data manipulation: Insert, Delete, and Update” [UltraLite - C and C++

Programming]
● UltraLite.NET: “Data manipulation: INSERT, UPDATE, and DELETE” [UltraLite - .NET

Programming]
● UltraLite for M-Business: “Data manipulation: INSERT, UPDATE, and DELETE” [UltraLite - M-

Business Anywhere Programming]

Example
The following embedded SQL statement has two input parameters:

INSERT INTO MyTable VALUES ( :v1, :v2, :v1);

UltraLite SQL reference

252 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



The first instance of v1 supplies its value to both the v2 and v1 locations in the statement.

Search conditions in UltraLite

Specifies a search condition for a WHERE clause, a HAVING clause, an ON phrase in a join, or an IF
expression. A search condition is also called a predicate.

Syntax
search-condition:
 expression compare expression
| expression IS [ NOT ] { NULL | TRUE | FALSE | UNKNOWN }
| expression [ NOT ] BETWEEN expression AND expression
| expression [ NOT ] IN ( expression, ... )
| expression [ NOT ] IN ( subquery )
| expression [ NOT ] { ANY | ALL } ( subquery ) 
| expression [ NOT ] EXISTS ( subquery ) 
| NOT search-condition
| search-condition AND search-condition
| search-condition OR search-condition
| ( search-condition )

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

Remarks
In UltraLite, search conditions can appear in the:

● WHERE clause

● HAVING clause

● ON phrase

● SQL queries

Search conditions can be used to choose a subset of the rows from a table in a FROM clause in a SELECT
statement, or in expressions such as an IF or CASE to select specific values. In UltraLite, every condition
evaluates as one of three states: TRUE, FALSE, or UNKNOWN. When combined, these states are
referred to as three-valued logic. The result of a comparison is UNKNOWN if either value being
compared is the NULL value. Search conditions are satisfied only if the result of the condition is TRUE.

The different types of search conditions supported by UltraLite include:

● ALL conditions
● ANY conditions
● BETWEEN conditions
● EXISTS conditions
● IN conditions

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 253



These conditions are discussed in separate sections that follow.

Note
Subqueries form an important class of expression that is used in many search conditions.

See also
● “Comparison operators” on page 254
● “Three-valued logic” [SQL Anywhere Server - SQL Reference]
● “Subqueries in expressions” on page 251

Comparison operators

Any operator that allows two or more expressions to be compared with in a search condition.

Syntax
expression operator expression

Parameters

Operator Interpretation

= equal to

[ NOT ] LIKE a text comparison, possibly using regular expressions

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

<> not equal to

!> not greater than

!< not less than

Remarks
Comparing dates  In comparing dates, < means earlier and > means later.

Comparing LONG VARCHAR or LONG BINARY values  UltraLite does not support comparisons
using LONG VARCHAR or LONG BINARY values.

UltraLite SQL reference

254 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Case-sensitivity  In UltraLite, comparisons are carried out with the same attention to case as the
database on which they are operating. By default, UltraLite databases are created as case insensitive.

NOT operator  The NOT operator negates an expression.

See also
● “Logical operators” on page 255
● “Search conditions in UltraLite” on page 253

Example
Either of the following two queries will find all Tee shirts and baseball caps that cost $10 or less.
However, note the difference in position between the negative logical operator (NOT) and the negative
comparison operator (!>).

SELECT ID, Name, Quantity
FROM Products
WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
AND NOT UnitPrice > 10;

SELECT ID, Name, Quantity
FROM Products
WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
AND UnitPrice !> 10;

Logical operators

Does any of the following:

● Compare conditions (AND, OR, and NOT).

● Test the truth or NULL value nature of the expressions (IS).

Syntax 1
condition1 logical-operator condition2

Syntax 2
NOT condition

Syntax 3
expression IS [ NOT ] { truth-value | NULL }

Remarks
Search conditions can be used to choose a subset of the rows from a table in a FROM clause in a SELECT
statement, or in expressions such as an IF or CASE to select specific values. In UltraLite, every condition
evaluates as one of three states: TRUE, FALSE, or UNKNOWN. When combined, these states are
referred to as three-valued logic. The result of a comparison is UNKNOWN if either value being
compared is the NULL value. Search conditions are satisfied only if the result of the condition is TRUE.

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 255



AND  The combined condition is TRUE if both conditions are TRUE, FALSE if either condition is
FALSE, and UNKNOWN otherwise.

condition1 OR condition2

OR  The combined condition is TRUE if either condition is TRUE, FALSE if both conditions are
FALSE, and UNKNOWN otherwise.

NOT  The NOT condition is TRUE if condition is FALSE, FALSE if condition is TRUE, and
UNKNOWN if condition is UNKNOWN.

IS  The condition is TRUE if the expression evaluates to the supplied truth-value, which must be one of
TRUE, FALSE, or UNKNOWN. Otherwise, the value is FALSE.

See also
● “Three-valued logic” [SQL Anywhere Server - SQL Reference]
● “Comparison operators” on page 254
● “Search conditions in UltraLite” on page 253

Example
The IS NULL condition is satisfied if the column contains a NULL value. If you use the IS NOT NULL
operator, the condition is satisfied when the column contains a value that is not NULL. This example
shows an IS NULL condition: WHERE paid_date IS NULL.

ALL conditions

Use the ALL condition in conjunction with a comparison operators to compare a single value to the data
values produced by the subquery.

Syntax
expression compare   [ NOT ] ALL ( subquery )

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

Remarks
UltraLite uses the specified comparison operator to compare the test value to each data value in the result
set. If all the comparisons yield TRUE results, the ALL test returns TRUE.

See also
● “Subqueries and the ALL test” [SQL Anywhere Server - SQL Usage]
● “Comparison operators” on page 254

Example
Find the order and customer IDs of those orders placed after all products of order #2001 were shipped.

UltraLite SQL reference

256 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ALL (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2001);

ANY conditions

Use the ANY condition in conjunction with a comparison operators to compare a single value to the
column of data values produced by the subquery.

Syntax 1
expression compare  [ NOT ] ANY ( subquery )

Syntax 2
expression = ANY ( subquery )

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

Remarks
UltraLite uses the specified comparison operator to compare the test value to each data value in the
column. If any of the comparisons yields a TRUE result, the ANY test returns TRUE.

Syntax 1  is TRUE if expression is equal to any of the values in the result of the subquery, and FALSE
if the expression is not NULL and does not equal any of the values returned by the subquery. The ANY
condition is UNKNOWN if expression is the NULL value, unless the result of the subquery has no rows,
in which case the condition is always FALSE.

See also
● “Subqueries and the ANY test” [SQL Anywhere Server - SQL Usage]
● “Comparison operators” on page 254

Example
Find the order and customer IDs of those orders placed after the first product of the order #2005 was shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ANY (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2005);

BETWEEN conditions

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 257



Specifies an inclusive range, in which the lower value and the upper value and the values they delimit are
searched for.

Syntax
expression [ NOT ] BETWEEN start-expression AND end-expression

Remarks
The BETWEEN condition can evaluate to TRUE, FALSE, or UNKNOWN. Without the NOT keyword,
the condition evaluates as TRUE if expression is between start-expression and end-expression. The NOT
keyword reverses the meaning of the condition, but leaves UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two inequalities:

[ NOT ] ( expression >= start-expression
                AND expression <= end-expression )

Example
List all the products cheaper than $10 or more expensive than $15.

SELECT Name, UnitPrice
FROM Products
WHERE UnitPrice NOT BETWEEN 10 AND 15;

EXISTS conditions

Checks whether a subquery produces any rows of query results

Syntax
 [ NOT ] EXISTS ( subquery )

Remarks
The EXISTS condition is TRUE if the subquery result contains at least one row, and FALSE if the
subquery result does not contain any rows. The EXISTS condition cannot be UNKNOWN.

You can reverse the logic of the EXISTS condition by using the NOT EXISTS form. In this case, the test
returns TRUE if the subquery produces no rows, and FALSE otherwise.

Example
List the customers who placed orders after July 13, 2001.

SELECT GivenName, Surname
FROM Customers
WHERE EXISTS (
 SELECT *
 FROM SalesOrders
 WHERE (OrderDate > '2001-07-13') AND
       (Customers.ID = SalesOrders.CustomerID));

UltraLite SQL reference

258 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



IN conditions

Checks membership by searching a value from the main query with another value in the subquery.

Syntax
expression [ NOT ] IN 
{ ( subquery ) |  ( value-expr, ... ) }

Parameters
value-expr are expressions that take on a single value, which may be a string, a number, a date, or any
other SQL data type.

Remarks
An IN condition, without the NOT keyword, evaluates according to the following rules:

● TRUE if expression is not NULL and equals at least one of the values.

● UNKNOWN if expression is NULL and the values list is not empty, or if at least one of the values is
NULL and expression does not equal any of the other values.

● FALSE if expression is NULL and subquery returns no values; or if expression is not NULL, none of
the values are NULL, and expression does not equal any of the values.

You can reverse the logic of the IN condition by using the NOT IN form.

The following search condition expression IN ( values ) is identical to the search condition expression =
ANY ( values ). The search condition expression NOT IN ( values ) is identical to the search condition
expression <> ALL ( values ).

Example
Select the company name and state for customers who live in the following Canadian provinces: Ontario,
Manitoba, and Quebec.

SELECT CompanyName , Province
FROM Customers
WHERE State IN( 'ON', 'MB', 'PQ');

Operators in UltraLite
Operators are used to compute values, which may in turn be used as operands in a higher-level expression.

UltraLite SQL supports the following types of operators:

● Comparison operators evaluate and return a result using one (unary) or two (binary) comparison
operands. Comparisons result in the usual three logical values: true, false, and unknown.

● Arithmetic operators evaluate and return a result set for all floating-point, decimal, and integer numbers.

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 259



● String operators concatenate two string values together. For example, "my" + "string" returns the
string "my string".

● Bitwise operators evaluate and turn specific bits on or off within the internal representation of an integer.

● Logical operators evaluate search conditions. Logical evaluations result in the usual three logical
values: true, false, and unknown.

The normal precedence of operations applies.

See also
● “Operator precedence” on page 261
● “Comparison operators” on page 254
● “Arithmetic operators” on page 260
● “String operators” on page 260
● “Bitwise operators” on page 261
● “Logical operators” on page 255

Arithmetic operators

Arithmetic operators allow you to perform calculations.

expression + expression  Addition. If either expression is NULL, the result is NULL.

expression - expression  Subtraction. If either expression is NULL, the result is NULL.

- expression  Negation. If the expression is NULL, the result is NULL.

expression * expression  Multiplication. If either expression is NULL, the result is NULL.

expression / expression  Division. If either expression is NULL or if the second expression is 0, the
result is NULL.

expression % expression  Modulo finds the integer remainder after a division involving two whole
numbers. For example, 21 % 11 = 10 because 21 divided by 11 equals 1 with a remainder of 10. If either
expression is NULL, the result is NULL.

See also
● “Arithmetic operations” [SQL Anywhere Server - SQL Usage]

String operators

String operators allow you to concatenate strings—except for LONGVARCHAR and LONGBINARY
data types.

expression || expression  String concatenation (two vertical bars). If either string is NULL, it is
treated as the empty string for concatenation.

UltraLite SQL reference

260 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



expression + expression  Alternative string concatenation. When using the + concatenation
operator, you must ensure the operands are explicitly set to character data types rather than relying on
implicit data conversion.

For example, the following query returns the integer value 579:

SELECT 123 + 456;

However, the following query returns the character string 123456:

SELECT '123' + '456';

You can use the CAST or CONVERT functions to explicitly convert data types.

Bitwise operators

Bitwise operators perform bit manipulations between two expressions. The following operators can be
used on integer data types in UltraLite.

Operator Description

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ bitwise NOT

The bitwise operators &, |, and ~ are not interchangeable with the logical operators AND, OR, and NOT.
The bitwise operators operate on integer values using the bit representation of the values.

Example
The following statement selects rows in which the specified bits are set.

SELECT *
FROM tableA
WHERE (options & 0x0101) <> 0;

Operator precedence

The precedence of operators in expressions is as follows. Expressions in parentheses are evaluated first,
then multiplication and division before addition and subtraction. String concatenation happens after
addition and subtraction. The operators at the top of the list are evaluated before those at the bottom of the
list.

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 261



Tip
Make the order of operation explicit in UltraLite, rather than relying on an operator precedence. That
means, when you use more than one operator in an expression you should order operations clearly with
parentheses.

1. names, functions, constants, IF expressions, CASE expressions

2. ()

3. unary operators (operators that require a single operand): +, -

4. ~

5. &, | , ^

6. *, /, %

7. +, -

8. ||

9. comparisons: >, <, <>, !=, <=, >=, [ NOT ] BETWEEN, [ NOT ] IN, [ NOT ] LIKE

10. comparisons: IS [NOT] TRUE, FALSE, UNKNOWN

11. NOT

12. AND

13. OR

Variables in UltraLite
You cannot use SQL variables (including global variables) in UltraLite applications.

Execution plans in UltraLite
UltraLite execution plans show how tables and indexes are accessed when a query is executed. UltraLite
includes a query optimizer. The optimizer is an internal component of the UltraLite runtime that attempts
to produce an efficient plan for the query. It tries to avoid the use of temporary tables to store intermediate
results and attempts to ensure that only the pertinent subset of a table is accessed when a query joins two
tables.

Overriding the optimizer
The optimizer always aims identify the most efficient access plan possible, but this goal is not guaranteed
—especially with a complicated query where a great number of possibilities may exist. In extreme cases,

UltraLite SQL reference

262 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



you can override the table order it selects by adding the OPTION (FORCE ORDER) clause to a query,
which forces UltraLite to access the tables in the order they appear in the query. This option is not
recommended for general use. If performance is slow, a better approach is usually to create appropriate
indexes to speed up execution.

Performance tip
If you are not going to update data with the query, you should specify the FOR READ ONLY clause in
your query. This clause may yield better performance. See “SELECT statement [UltraLite]
[UltraLiteJ]” on page 402.

When to view an execution plan

View an execution plan in Interactive SQL when you need to know:

● What index will be used to return the results. An index scan object contains the name of the table and
the index on that table that is being used.

● Whether a temporary table will be used to return the results. Temporary tables are written to the
UltraLite temporary file. See “UltraLite temporary files” on page 10.

● Which order tables are joined. This information allows you to determine how performance is affected.

● Why a query is running slowly or to ensure that a query does not run slowly.

View an UltraLite execution plan

As a development aid, you can use Interactive SQL to display an UltraLite plan that summarizes how a
prepared statement is to be executed. The text plan is displayed in the Interactive SQL Plan Viewer.

In UltraLite, an execution plan is strictly a short textual summary of the plan. No other plan types are
supported. However, being a short plan, it allows you to compare plans quickly, because information is
summarized on a single line.

To view an execution plan in the Plan Viewer

1. Choose Tools » Plan Viewer.

2. In the SQL pane, type a query.

3. Click Get Plan to generate a plan for the specified SQL statements.

Example
The text plan appears in the lower pane of the Plan Viewer.

Consider the following statement:

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 263



SELECT I.inv_no, I.name, T.quantity, T.prod_no
FROM Invoice I, Transactions T
WHERE I.inv_no = T.inv_no;

This statement might produce the following plan:

join[scan(Invoice,primary),index-scan(Transactions,secondary)]

The plan indicates that the join operation is completed by reading all rows from the Invoice table
(following index named primary). It then uses the index named secondary from the Transactions table to
read only the row whose inv_no column matches.

See also
● “Interactive SQL utility (dbisql)” [SQL Anywhere Server - Database Administration]
● “Reading UltraLite execution plans” on page 264

Reading UltraLite execution plans

Because UltraLite short plans are textual summaries of how a query is accessed, you need to understand
how the operations of either a join or a scan of a table are implemented.

● For scan operations Represented with a single operand, which applies to a single table only and
uses an index. The table name and index name are displayed as round brackets ( (, ) ) following the
operation name.

● For other operations Represented with one or more operands, which can also be plans in and of
themselves. In UltraLite, these operands are comma-separated lists contained by square brackets ( [ ] ).

Operation list
Operations supported by UltraLite are listed in the table that follows.

Operation Description

count(*) Counts the number of rows in a table.

distinct[ plan ] Implements the DISTINCT aspect of a query to compare
and eliminate duplicate rows. It is used when the underly-
ing plan sorts rows in such a way that duplicate contiguous
rows are eliminated. If two contiguous rows match, only
the first row is added to the result set.

dummy No operation performed. It only occurs in two cases:

● When you specify DUMMY in a FROM clause.

● When the FROM clause is missing from the query.

UltraLite SQL reference

264 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Operation Description

filter[ plan ] Executes a search condition for each row supplied by the
underlying plan. Only the rows that evaluate to true are for-
warded as part of the result set.

group-by[ plan ] Creates an aggregate of GROUP BY results, to sort multi-
ple rows of grouped data. Rows are listed in the order they
occur and are grouped by comparing contiguous rows.

group-single[ plan ] Creates an aggregate of GROUP BY results, but only
when it is known that a single row will be returned.

keyset[ plan ] Records which rows were used to create rows in a tempo-
rary table so UltraLite can update the original rows. If you
do not want those rows to be updated, then use the FOR
READ ONLY clause in the query to eliminate this operation.

index-scan( table-name, index-name ) Reads only part of the table; the index is used to find the
starting row.

join[ plan, plan ] Performs an inner join between two plans.

lojoin[ plan, plan ] Performs a left outer join between two plans.

like-scan( table-name, index-name ) Reads only part of a table; the index is used to find the start-
ing row by pattern matching.

rowlimit[ plan ] Performs the row limiting operation on propagated rows.
Row limits are set by the TOP n or FIRST clause of the
SELECT statement.

scan( table-name, index-name ) Reads an entire table following the order indicated by the
index.

sub-query[ plan ] Marks the start of a subquery.

temp[ plan ] Creates a temporary table from the rows in the underlying
plan. UltraLite uses a temporary table when underlying
rows must be ordered and no index was found to do this
ordering.

You can add an index to eliminate the need for a tempora-
ry table. However, each additional index used increases
the duration needed to insert or synchronize rows in the ta-
ble for which the index applies.

UltraLite SQL elements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 265



Operation Description

union-all[ plan, ..., plan ] Performs a UNION ALL operation on the rows generated
in the underlying plan.

UltraLite SQL functions
Functions are used to return information from the database. They are allowed anywhere an expression is
allowed.

Unless otherwise specified in the documentation, NULL is returned for a function if any argument is NULL.

Functions use the same syntax conventions used by SQL statements. For a complete list of syntax
conventions, see “Syntax conventions” [SQL Anywhere Server - SQL Reference].

Function types
This section groups the available function by type.

UltraLite supports a subset of the same functions documented for SQL Anywhere, and sometimes with a
few differences.

See “Functions for spatial data” on page 415 for information on the new UltraLite spatial functions.

Note
Unless otherwise stated, any function that receives NULL as a parameter returns NULL.

UltraLite aggregate functions

Aggregate functions summarize data over a group of rows from the database. The groups are formed
using the GROUP BY clause of the SELECT statement. Aggregate functions are allowed only in the
select list and in the HAVING and ORDER BY clauses of a SELECT statement.

UltraLite SQL reference

266 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



List of functions
The following aggregate functions are available:

● “AVG function [Aggregate]” on page 277
● “COUNT function [Aggregate]” on page 288
● “COUNT_UPLOAD_ROWS function [Aggregate]” on page 289
● “LIST function [Aggregate]” on page 315
● “MAX function [Aggregate]” on page 320
● “MIN function [Aggregate]” on page 321
● “SUM function [Aggregate]” on page 353

UltraLite data type conversion functions

Data type conversion functions are used to convert arguments from one data type to another, or to test
whether they can be converted.

List of functions
The following data type conversion functions are available:

● “CAST function [Data type conversion]” on page 279
● “CONVERT function [Data type conversion]” on page 285
● “HEXTOINT function [Data type conversion]” on page 306
● “INTTOHEX function [Data type conversion]” on page 310
● “ISDATE function [Data type conversion]” on page 311

UltraLite date and time functions

Date and time functions perform operations on DATE, TIME, TIMESTAMP, and TIMESTAMP WITH
TIME ZONE data types.

SQL Anywhere includes compatibility support for Transact-SQL date and time types, including
DATETIME and SMALLDATETIME. These Transact-SQL data types are implemented as domains over
the native SQL Anywhere TIMESTAMP data type.

For more information about datetime data types, see “Data types in UltraLite” on page 230.

Specifying date parts
Many of the date functions use dates built from date parts. The following table displays allowed values
of date parts.

When using date and time functions, you can specify a minus sign to subtract from a date or time. For
example, to get a timestamp from 31 days ago, you can execute the following:

SELECT DATEADD(day, -31, NOW());

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 267



Date part Abbreviation Values

Year yy 1-9999

Quarter qq 1-4

Month mm 1-12

Week wk 1-54. Weeks begin on Sunday.

Day dd 1-31

Dayofyear dy 1-366

Weekday dw 1-7 (Sunday = 1, ..., Saturday = 7)

Hour hh 0-23

Minute mi 0-59

Second ss 0-59

Millisecond ms 0-999

Microsecond mcs or us 0-999999

Calyearofweek cyr Integer. The year in which the week begins. The week containing the
first few days of the year may have started in the previous year, de-
pending on the weekday on which the year started. Years starting on
Monday through Thursday have no days that are part of the previous
year, but years starting on Friday through Sunday start their first
week on the first Monday of the year.

Calweekofyear cwk 1-53. The week number within the year that contains the specified date.

For more information about the ISO week system and the ISO 8601
date and time standard, see http://en.wikipedia.org/wiki/
ISO_week_date.

Caldayofweek cdw 1-7. (Monday = 1, ..., Sunday = 7)

TZ Offset tz -840 to 840

UltraLite SQL reference

268 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://en.wikipedia.org/wiki/ISO_week_date
http://en.wikipedia.org/wiki/ISO_week_date


List of date and time functions
The following date and time functions are available:

● “DATE function [Date and time]” on page 291
● “DATEADD function [Date and time]” on page 291
● “DATEDIFF function [Date and time]” on page 292
● “DATEFORMAT function [Date and time]” on page 294
● “DATENAME function [Date and time]” on page 294
● “DATEPART function [Date and time]” on page 295
● “DATETIME function [Date and time]” on page 296
● “DAY function [Date and time]” on page 297
● “DAYNAME function [Date and time]” on page 297
● “DAYS function [Date and time]” on page 298
● “DOW function [Date and time]” on page 301
● “GETDATE function [Date and time]” on page 304
● “HOUR function [Date and time]” on page 307
● “HOURS function [Date and time]” [SQL Anywhere Server - SQL Reference]
● “MINUTE function [Date and time]” on page 321
● “MINUTES function [Date and time]” on page 322
● “MONTH function [Date and time]” on page 325
● “MONTHNAME function [Date and time]” on page 326
● “MONTHS function [Date and time]” on page 327
● “NOW function [Date and time]” on page 329
● “QUARTER function [Date and time]” on page 333
● “SECOND function [Date and time]” on page 341
● “SECONDS function [Date and time]” on page 342
● “SWITCHOFFSET function [Date and time]” on page 354
● “TODAY function [Date and time]” on page 357
● “TODATETIMEOFFSET function [Date and time]” on page 357
● “WEEKS function [Date and time]” on page 362
● “YEAR function [Date and time]” on page 364
● “YEARS function [Date and time]” on page 364
● “YMD function [Date and time]” on page 366

UltraLite miscellaneous functions

Miscellaneous functions perform operations on arithmetic, string, or date/time expressions, including the
return values of other functions.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 269



List of functions
The following miscellaneous functions are available:

● “ARGN function [Miscellaneous]” on page 273
● “COALESCE function [Miscellaneous]” on page 284
● “EXPLANATION function [Miscellaneous]” on page 303
● “GREATER function [Miscellaneous]” on page 305
● “IFNULL function [Miscellaneous]” on page 309
● “ISNULL function [Miscellaneous]” on page 311
● “LESSER function [Miscellaneous]” on page 314
● “NEWID function [Miscellaneous]” on page 328
● “NULLIF function [Miscellaneous]” on page 330

UltraLite numeric functions

Numeric functions perform mathematical operations on numerical data types or return numeric information.

List of functions
The following numeric functions are available:

● “ABS function [Numeric]” on page 272
● “ACOS function [Numeric]” on page 273
● “ASIN function [Numeric]” on page 275
● “ATAN function [Numeric]” on page 275
● “ATAN2 function [Numeric]” on page 276
● “CEILING function [Numeric]” on page 280
● “COS function [Numeric]” on page 287
● “COT function [Numeric]” on page 288
● “DEGREES function [Numeric]” on page 300
● “EXP function [Numeric]” on page 302
● “FLOOR function [Numeric]” on page 304
● “LOG function [Numeric]” on page 317
● “LOG10 function [Numeric]” on page 318
● “MOD function [Numeric]” on page 325
● “PI function [Numeric]” [SQL Anywhere Server - SQL Reference]
● “POWER function [Numeric]” on page 332
● “RADIANS function [Numeric]” on page 334
● “REMAINDER function [Numeric]” on page 336
● “ROUND function [Numeric]” on page 340
● “SIGN function [Numeric]” on page 344
● “SIN function [Numeric]” on page 346
● “SQRT function [Numeric]” [SQL Anywhere Server - SQL Reference]
● “TAN function [Numeric]” on page 356
● “TRUNCNUM function [Numeric]” on page 359

UltraLite SQL reference

270 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite string functions

String functions perform conversion, extraction, or manipulation operations on strings, or return
information about strings.

When working in a multibyte character set, check carefully whether the function being used returns
information concerning characters or bytes.

List of functions
The following string functions are available:

● “ASCII function [String]” on page 274
● “BYTE_LENGTH function [String]” on page 278
● “BYTE_SUBSTR function [String]” on page 279
● “CHAR function [String]” on page 281
● “CHARINDEX function [String]” on page 283
● “CHAR_LENGTH function [String]” on page 282
● “DIFFERENCE function [String]” on page 301
● “INSERTSTR function [String]” on page 309
● “LCASE function [String]” on page 312
● “LEFT function [String]” on page 313
● “LENGTH function [String]” on page 314
● “LOCATE function [String]” on page 316
● “LOWER function [String]” on page 318
● “LTRIM function [String]” on page 319
● “PATINDEX function [String]” on page 331
● “REPEAT function [String]” on page 337
● “REPLACE function [String]” on page 337
● “REPLICATE function [String]” on page 338
● “RIGHT function [String]” on page 339
● “RTRIM function [String]” on page 341
● “SIMILAR function [String]” on page 345
● “SOUNDEX function [String]” on page 347
● “SPACE function [String]” on page 347
● “STR function [String]” on page 349
● “STRING function [String]” on page 349
● “STRTOUUID function [String]” on page 350
● “STUFF function [String]” on page 351
● “SUBSTRING function [String]” on page 352
● “TRIM function [String]” on page 358
● “UCASE function [String]” on page 360
● “UPPER function [String]” on page 360
● “UUIDTOSTR function [String]” on page 361

UltraLite system functions

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 271



System functions return system information.

List of functions
The following system functions are available in UltraLite:

● “DB_PROPERTY function [System]” on page 299
● “ML_GET_SERVER_NOTIFICATION [System]” on page 324
● “SYNC_PROFILE_OPTION_VALUE function [System]” on page 355

Functions
Each function is listed, and the function type (numeric, character, and so on) is indicated next to it.

For links to all functions of a given type, see “Function types” on page 266.

ABS function [Numeric]

Returns the absolute value of a numeric expression.

Syntax
ABS( numeric-expression )

Parameters
● numeric-expression The number whose absolute value is to be returned.

Returns
An absolute value of the numeric expression.

Numeric-expression data type Returns

INT INT

FLOAT FLOAT

DOUBLE DOUBLE

NUMERIC NUMERIC

Standards and compatibility
● SQL/2008 The ABS function is part of optional SQL/2008 language feature T441.

Example
The following statement returns the value 66.

SELECT ABS( -66 );

UltraLite SQL reference

272 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



ACOS function [Numeric]

Returns the arc-cosine, in radians, of a numeric expression. Supported in UltraLite but not UltraLiteJ.

Syntax
ACOS( numeric-expression )

Parameters
● numeric-expression The cosine of the angle.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

See also
● “ASIN function [Numeric]” on page 275
● “ATAN function [Numeric]” on page 275
● “ATAN2 function [Numeric]” on page 276
● “COS function [Numeric]” on page 287

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the arc-cosine value for 0.52.

SELECT ACOS( 0.52 );

ARGN function [Miscellaneous]

Returns a selected argument from a list of arguments.

Syntax
ARGN( integer-expression, expression [ , ...] )

Parameters
● integer-expression The position of an argument within the list of expressions.

● expression An expression of any data type passed into the function. All supplied expressions must
be of the same data type.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 273



Returns
Using the value of the integer-expression as n, returns the nth argument (starting at 1) from the remaining
list of arguments.

Remarks
While the expressions can be of any data type, they must all be of the same data type. The integer
expression must be from one to the number of expressions in the list or NULL is returned. Multiple
expressions are separated by a comma.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 6.

SELECT ARGN( 6, 1,2,3,4,5,6 );

ASCII function [String]

Returns the integer ASCII value of the first byte in a string-expression.

Syntax
ASCII( string-expression )

Parameters
● string-expression The string.

Returns
SMALLINT

Remarks
If the string is empty, then ASCII returns zero. Literal strings must be enclosed in quotes. If the database
character set is multibyte and the first character of the parameter string consists of more than one byte, the
result is NULL.

See also
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 90.

SELECT ASCII( 'Z' );

UltraLite SQL reference

274 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



ASIN function [Numeric]

Returns the arc-sine, in radians, of a number.

Syntax
ASIN( numeric-expression )

Parameters
● numeric-expression The sine of the angle.

Returns
DOUBLE

Remarks
The SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

See also
● “ACOS function [Numeric]” on page 273
● “ATAN function [Numeric]” on page 275
● “ATAN2 function [Numeric]” on page 276
● “SIN function [Numeric]” on page 346

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the arc-sine value for 0.52.

SELECT ASIN( 0.52 );

ATAN function [Numeric]

Returns the arc-tangent, in radians, of a number. Supported in UltraLite but not UltraLiteJ.

Syntax
ATAN( numeric-expression )

Remarks
The ATAN and TAN functions are inverse operations.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 275



Parameters
● numeric-expression The tangent of the angle.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

See also
● “ACOS function [Numeric]” on page 273
● “ASIN function [Numeric]” on page 275
● “ATAN2 function [Numeric]” on page 276
● “TAN function [Numeric]” on page 356

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the arc-tangent value for 0.52.

SELECT ATAN( 0.52 );

ATAN2 function [Numeric]

Returns the arc-tangent, in radians, of the ratio of two numbers. Supported in UltraLite but not UltraLiteJ.

Syntax
ATAN2 ( numeric-expression-1, numeric-expression-2 )

Parameters
● numeric-expression-1 The numerator in the ratio whose arc-tangent is calculated.

● numeric-expression-2 The denominator in the ratio whose arc-tangent is calculated.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic.

UltraLite SQL reference

276 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “ACOS function [Numeric]” on page 273
● “ASIN function [Numeric]” on page 275
● “ATAN function [Numeric]” on page 275
● “TAN function [Numeric]” on page 356

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the arc-tangent value for the ratio 0.52 to 0.60.

SELECT ATAN2( 0.52, 0.60 );

AVG function [Aggregate]

Computes the average, for a set of rows, of a numeric expression or of a set of unique values.

Syntax 1
AVG( [ DISTINCT ] numeric-expression )

Parameters
● [ ALL ] numeric-expression The expression whose average is calculated over the rows in each

group.

● DISTINCT clause Computes the average of the unique numeric values in each group.

Returns
Returns the NULL value for a group containing no rows.

Returns DOUBLE if the argument is DOUBLE, otherwise NUMERIC.

Remarks
This average does not include rows where the numeric-expression is the NULL value.

This function can generate an overflow error, resulting in an error being returned. You can use the CAST
function on numeric-expression to avoid the overflow error. See “CAST function [Data type conversion]”
[SQL Anywhere Server - SQL Reference].

See also
● “SUM function [Aggregate]” on page 353
● “COUNT function [Aggregate]” on page 288

Standards and compatibility
● SQL/2008 AVG is a core feature of the SQL/2008 standard.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 277



Example
The following statement returns the value 49988.623200.

SELECT AVG( Salary ) FROM Employees;

The following statement returns the average product price from the Products table:

SELECT AVG( DISTINCT UnitPrice ) FROM Products;

BYTE_LENGTH function [String]

Returns the number of bytes in a string.

Syntax
BYTE_LENGTH( string-expression )

Parameters
● string-expression The string whose length is to be calculated.

Returns
INT

Remarks
Trailing white space characters in the string-expression are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the BYTE_LENGTH value may differ from the number of
characters returned by CHAR_LENGTH.

See also
● “CHAR_LENGTH function [String]” on page 282
● “DATALENGTH function [System]” on page 290
● “LENGTH function [String]” on page 314
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension. The equivalent function in the SQL/2008 standard is the

OCTET_LENGTH function.

Example
The following statement returns the value 12.

SELECT BYTE_LENGTH( 'Test Message' );

UltraLite SQL reference

278 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



BYTE_SUBSTR function [String]

Returns a substring of a string. The substring is calculated using bytes, not characters.

Syntax
BYTE_SUBSTR( string-expression, start  [, length ] )

Parameters
● string-expression The string from which the substring is taken.

● start An integer expression indicating the start of the substring. A positive integer starts from the
beginning of the string, with the first character being position 1. A negative integer specifies a
substring starting from the end of the string, the final character being at position -1.

● length An integer expression indicating the length of the substring. A positive length specifies the
number of bytes to be taken starting at the start position. A negative length returns at most length
bytes up to, and including, the starting position, from the left of the starting position.

Returns
BINARY, VARCHAR, or NVARCHAR. The value returned depends on the type of string-expression.
Also, the arguments you specify determine if the returned value is LONG. For example, LONG is not
returned when you specify a constant < 32K for length.

Remarks
If length is specified, the substring is restricted to that number of bytes. Both start and length can be either
positive or negative. Using appropriate combinations of negative and positive numbers, you can get a
substring from either the beginning or end of the string.

If start is zero and length is non-negative, a start value of 1 is used. If start is zero and length is negative,
a start value of -1 is used.

See also
● “SUBSTRING function [String]” on page 352
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value Test.

SELECT BYTE_SUBSTR( 'Test Message', 1, 4 );

CAST function [Data type conversion]

Returns the value of an expression converted to a supplied data type.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 279



The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” [SQL Anywhere Server - SQL Reference].

Syntax
CAST( expression AS datatype )

Parameters
● expression The expression to be converted.

● data type The target data type.

Returns
Depends on the data type requested.

Remarks
If you do not indicate a length for character string types, the database server chooses an appropriate
length. If neither precision nor scale is specified for a DECIMAL conversion, the database server selects
appropriate values.

See also
● “Data type conversions” [SQL Anywhere Server - SQL Reference]
● “CONVERT function [Data type conversion]” on page 285
● “LEFT function [String]” on page 313

Standards and compatibility
● SQL/2008 The CAST function is a core feature of the SQL/2008 standard. However, in SQL

Anywhere CAST supports a number of data type conversions that are not permitted by the SQL
standard. For example, in SQL Anywhere you can CAST an integer value to a DATE type, whereas in
the SQL standard this type conversion is not permitted. For more information, see “Data type
conversions” [SQL Anywhere Server - SQL Reference].

Example
The following function ensures a string is used as a date:

SELECT CAST( '2000-10-31' AS DATE );

The value of the expression 1 + 2 is calculated, and the result is then cast into a single-character string.

SELECT CAST( 1 + 2 AS CHAR );

You can use the CAST function to shorten strings

SELECT CAST ( 'Surname' AS CHAR(5) );

CEILING function [Numeric]

UltraLite SQL reference

280 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Returns the first integer that is greater or equal to a given value. For positive numbers, this is known as
rounding up.

Syntax
{ CEILING | CEIL } ( numeric-expression )

Parameters
● numeric-expression The number whose ceiling is to be calculated.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

See also
● “FLOOR function [Numeric]” on page 304

Standards and compatibility
● SQL/2008 The CEILING function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following statement returns the value 60.

SELECT CEILING( 59.84567 );

CHAR function [String]

Returns the character with the ASCII value of a number.

Syntax
CHAR( integer-expression )

Parameters
● integer-expression The number to be converted to an ASCII character. The number must be in

the range 0 to 255, inclusive.

Returns
VARCHAR

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 281



Remarks
The character returned corresponds to the supplied numeric expression in the current database character
set, according to a binary sort order.

CHAR returns NULL for integer expressions with values greater than 255 or less than zero.

See also
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value Y.

SELECT CHAR( 89 );

CHAR_LENGTH function [String]

Returns the number of characters in a string.

Syntax
CHAR_LENGTH ( string-expression )

Parameters
● string-expression The string whose length is to be calculated.

Returns
INT

Remarks
Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the value returned by the CHAR_LENGTH function may
differ from the number of bytes returned by the BYTE_LENGTH function.

Note
You can use the CHAR_LENGTH function and the LENGTH function interchangeably for CHAR,
VARCHAR, and LONG VARCHAR data types. However, you must use the LENGTH function for
BINARY and bit array data types.

UltraLite SQL reference

282 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “BYTE_LENGTH function [String]” on page 278
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 CHAR_LENGTH is a core feature of the SQL/2008 standard. Using CHAR_LENGTH

over an expression of type NCHAR comprises part of optional SQL/2008 language feature F421.

Example
The following statement returns the value 8.

SELECT CHAR_LENGTH( 'Chemical' );

CHARINDEX function [String]

Returns the position of one string in another.

Syntax
CHARINDEX( string-expression-1, string-expression-2 )

Parameters
● string-expression-1 The string for which you are searching.

● string-expression-2 The string to be searched.

Returns
INT

Remarks
The first character of string-expression-1 is identified as 1. If the string being searched contains more than
one instance of the other string, then the CHARINDEX function returns the position of the first instance.

If the string being searched does not contain the other string, then the CHARINDEX function returns 0.

If any of the arguments are NULL, the result is NULL.

See also
● “SUBSTRING function [String]” on page 352
● “REPLACE function [String]” on page 337
● “LOCATE function [String]” on page 316
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 283



Example
The following statement returns last and first names from the Surname and GivenName columns of the
Employees table, but only when the last name includes the letter K:

SELECT Surname, GivenName
FROM Employees
WHERE CHARINDEX( 'K', Surname ) = 1;

Results returned:

Surname GivenName

Klobucher James

Kuo Felicia

Kelly Moira

COALESCE function [Miscellaneous]

Returns the first non-NULL expression from a list. This function is identical to the ISNULL function.

Syntax
COALESCE( expression, expression [ , ...] )

Parameters
● expression Any expression.

At least two expressions must be passed into the function, and all expressions must be comparable.

Returns
ANY

Remarks
The result is NULL only if all the arguments are NULL.

The parameters can be of any scalar type, but not necessarily same type.

For a more detailed description of how the database server processes this function, see “ISNULL function
[Miscellaneous]” on page 311.

See also
● “ISNULL function [Miscellaneous]” on page 311

Standards and compatibility
● SQL/2008 Core feature.

UltraLite SQL reference

284 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
The following statement returns the value 34.

SELECT COALESCE( NULL, 34, 13, 0 );

CONVERT function [Data type conversion]

Returns an expression converted to a supplied data type.

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” [SQL Anywhere Server - SQL Reference].

Syntax
CONVERT( datatype, expression [ , format-style ] )

Parameters
● datatype The data type to which the expression is converted.

● expression The expression to be converted.

● format-style The style code to apply to the outputted value. Use this parameter when converting
strings to date or time data types, and vice versa. The table below shows the supported style codes,
followed by a representation of the output format produced by that style code. The style codes are
separated into two columns, depending on whether the century is included in the output format (for
example, 06 versus 2006).

Without century (yy) style
codes

With century (yyyy) style co-
des

Output format

- 0 or 100 Mmm dd yyyy hh:nnAA

1 101 mm/dd/yy[yy]

2 102 [yy]yy.mm.dd

3 103 dd/mm/yy[yy]

4 104 dd.mm.yy[yy]

5 105 dd-mm-yy[yy]

6 106 dd Mmm yy[yy]

7 107 Mmm dd, yy[yy]

8 108 hh:nn:ss

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 285



Without century (yy) style
codes

With century (yyyy) style co-
des

Output format

- 9 or 109 Mmm dd yyyy hh:nn:ss:sssAA

10 110 mm-dd-yy[yy]

11 111 [yy]yy/mm/dd

12 112 [yy]yymmdd

- 13 or 113 dd Mmm yyyy hh:nn:ss:sss (24 hour
clock, Europe default + milliseconds, 4-
digit year )

- 14 or 114 hh:nn:ss:sss (24 hour clock)

- 20 or 120 yyyy-mm-dd hh:nn:ss (24-hour clock,
ODBC canonical, 4-digit year)

- 21 or 121 yyyy-mm-dd hh:nn:ss.sss (24 hour
clock, ODBC canonical with millisec-
onds, 4-digit year )

Returns
Depends on the data type specified.

Remarks
If no format-style argument is provided, style code 0 is used.

For a description of the styles produced by each output symbol (such as Mmm), see “UltraLite
date_format creation parameter” on page 138.

See also
● “CAST function [Data type conversion]” on page 279
● “CSCONVERT function [String]” [SQL Anywhere Server - SQL Reference]

Standards and compatibility
● SQL/2008 Vendor extension. The CONVERT function is defined in the SQL/2008 standard.

However, in the SQL standard the purpose of CONVERT is to perform a transcoding of the input
string expression to a different character set, which is implemented in SQL Anywhere as the
CSCONVERT function.

Example
The following statements illustrate the use of format style.

SELECT CONVERT( CHAR( 20 ), OrderDate, 104 ) FROM SalesOrders;

UltraLite SQL reference

286 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



OrderDate

16.03.2000

20.03.2000

23.03.2000

25.03.2000

...

SELECT CONVERT( CHAR( 20 ), OrderDate, 7 ) FROM SalesOrders;

OrderDate

Mar 16, 00

Mar 20, 00

Mar 23, 00

Mar 25, 00

...

The following statement illustrates conversion to an integer, and returns the value 5.

SELECT CONVERT( integer, 5.2 );

COS function [Numeric]

Returns the cosine of the angle in radians given by its argument.

Syntax
COS( numeric-expression )

Parameters
● numeric-expression The angle, in radians.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 287



See also
● “ACOS function [Numeric]” on page 273
● “COT function [Numeric]” on page 288
● “SIN function [Numeric]” on page 346
● “TAN function [Numeric]” on page 356

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value of the cosine of an angle 0.52 radians.

SELECT COS( 0.52 );

COT function [Numeric]

Returns the cotangent of the angle in radians given by its argument.

Syntax
COT( numeric-expression )

Parameters
● numeric-expression The angle, in radians.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

See also
● “COS function [Numeric]” on page 287
● “SIN function [Numeric]” on page 346
● “TAN function [Numeric]” on page 356

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the cotangent value of 0.52.

SELECT COT( 0.52 );

COUNT function [Aggregate]

Counts the number of rows in a group depending on the specified parameters.

UltraLite SQL reference

288 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax 1
COUNT( [ * | [ DISTINCT ] expression ] )

Parameters
● * Return the number of rows in each group. COUNT(*) and COUNT() are semantically equivalent.

● expression Return the number of rows in each group where the value of expression is not null.

● DISTINCT expression Return the number of distinct values of expression for all of the rows in
each group where expression is not null.

Returns
The COUNT function returns a value of type INT.

COUNT never returns the value NULL. If a group contains no rows, or if there are no non-null values of
expression in a group, then COUNT returns 0.

Remarks
The COUNT function returns a maximum value of 2147483647.

See also
● “AVG function [Aggregate]” on page 277
● “SUM function [Aggregate]” on page 353

Standards and compatibility
● SQL/2008 Core feature.

Example
The following statement returns each unique city, and the number of employees working in that city.

SELECT City, COUNT( * ) FROM Employees GROUP BY City;

COUNT_UPLOAD_ROWS function [Aggregate]

Returns a count of the number of rows that will be uploaded in the next synchronization.

Syntax
COUNT_UPLOAD_ROWS( pubs,threshold)

Parameters
● pubs A comma-separated list of publications to check for rows.

● threshold The maximum number of rows to count (a value of 0 corresponds to the maximum limit).

Returns
INT

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 289



Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following returns the total number of rows to upload in mypub1 and mypub2:

SELECT COUNT_UPLOAD_ROWS('mypub1,mypub2', 0);

DATALENGTH function [System]

Returns the length, in bytes, of the underlying storage for the result of an expression.

Syntax
DATALENGTH( expression )

Parameters
● expression Usually a column name. If expression is a string constant, you must enclose it in quotes.

Returns
UNSIGNED INT

Remarks
The return values of the DATALENGTH function are as follows:

Data type DATALENGTH

SMALLINT 2

INTEGER 4

DOUBLE 8

CHAR Length of the data

BINARY Length of the data

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the length of the longest string in the CompanyName column.

SELECT MAX( DATALENGTH( CompanyName ) )
FROM Customers;

The following statement returns the length of the string '8sdofinsv8s7a7s7gehe4h':

UltraLite SQL reference

290 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SELECT DATALENGTH( '8sdofinsv8s7a7s7gehe4h' );

DATE function [Date and time]

Converts the expression into a date, and removes any hours, minutes, or seconds.

For information about controlling the interpretation of date formats, see “UltraLite date_order creation
parameter” on page 141.

Syntax
DATE( expression )

Returns
DATE

Parameters
● expression The value to be converted to date format, typically a string.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 1999-01-02 as a date.

SELECT DATE( '1999-01-02 21:20:53' );

The following statement returns the create dates of all the objects listed in the SYSOBJECT system view:

SELECT DATE( creation_time ) FROM SYSOBJECT;

DATEADD function [Date and time]

Returns a TIMESTAMP or TIMESTAMP WITH TIME ZONE value produced by adding a date part to
its argument.

Syntax
DATEADD( date-part, integer-expression, timestamp-expression )

date-part :
year 
| quarter 
| month 
| week 
| day 
| dayofyear 
| hour 
| minute 

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 291



| second 
| millisecond
| microsecond

Parameters
● date-part The date part that integer-expression represents.

For a complete listing of allowed date parts, see “Specifying date parts” on page 267.

● integer-expression The number of date-part values to be added to timestamp-expression. Note
that integer-expression can be any numeric type, but its value is truncated to an INTEGER.

● timestamp-expression The TIMESTAMP or TIMESTAMP WITH TIME ZONE value to be
modified.

Returns
TIMESTAMP WITH TIME ZONE if timestamp-expression is a TIMESTAMP WITH TIME ZONE;
otherwise TIMESTAMP.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the TIMESTAMP value 1995-11-02 00:00:00.000.

SELECT DATEADD( month, 102, '1987/05/02' );

The following statement returns the TIMESTAMP value 1987-05-02 04:00:00.000.

SELECT DATEADD( hour, 4, '1987/05/02' );

The following statement returns the TIMESTAMP WITH TIME ZONE value 1987-05-06
11:33:00.000+04:00

SELECT DATEADD( day, 4, CAST( '1987/05/02 11:33:00.000000+04:00' as TIMESTAMP 
WITH TIME ZONE ));

DATEDIFF function [Date and time]

Returns the interval between two dates.

Syntax
DATEDIFF( date-part, date-expression-1, date-expression-2 )

date-part :
year 
| quarter 
| month 
| week 
| day 

UltraLite SQL reference

292 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



| dayofyear 
| hour
| minute 
| second 
| millisecond
| microsecond

Parameters
● date-part Specifies the date part in which the interval is to be measured.

Choose one of the date objects listed above. For a complete list of date parts, see “Specifying date
parts” on page 267.

● date-expression-1 The starting date for the interval. This value is subtracted from date-
expression-2 to return the number of date-parts between the two arguments.

● date-expression-2 The ending date for the interval. Date-expression-1 is subtracted from this
value to return the number of date-parts between the two arguments.

Returns
INT

Remarks
This function calculates the number of date parts between two specified dates. The result is a signed
integer value equal to (date2 - date1), in date parts.

The DATEDIFF function results are truncated, not rounded, when the result is not an even multiple of the
date part.

When you use day as the date part, the DATEDIFF function returns the number of midnights between the
two times specified, including the second date but not the first.

When you use month as the date part, the DATEDIFF function returns the number of first-of-the-months
between two dates, including the second date but not the first.

When you use week as the date part, the DATEDIFF function returns the number of Sundays between the
two dates, including the second date but not the first.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns 1.

SELECT DATEDIFF( hour, '4:00AM', '5:50AM' );

The following statement returns 102.

SELECT DATEDIFF( month, '1987/05/02', '1995/11/15' );

The following statement returns 0.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 293



SELECT DATEDIFF( day, '00:00', '23:59' );

The following statement returns 4.

SELECT DATEDIFF( day,
   '1999/07/19 00:00',
   '1999/07/23 23:59' );

The following statement returns 0.

SELECT DATEDIFF( month, '1999/07/19', '1999/07/23' );

The following statement returns 1.

SELECT DATEDIFF( month, '1999/07/19', '1999/08/23' );

DATEFORMAT function [Date and time]

Returns a string representing a date expression in the specified format.

Syntax
DATEFORMAT( datetime-expression, string-expression )

Parameters
● datetime-expression The datetime to be converted.

● string-expression The format of the converted date.

For information about date format descriptions, see “UltraLite date_format creation
parameter” on page 138.

Returns
VARCHAR

Remarks
Any allowable date format can be used for the string-expression.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value Jan 01, 1989.

SELECT DATEFORMAT( '1989-01-01', 'Mmm dd, yyyy' );

DATENAME function [Date and time]

UltraLite SQL reference

294 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Returns the name of the specified part (such as the month June) of a TIMESTAMP or TIMESTAMP
WITH TIME ZONE value, as a character string.

Syntax
DATENAME( date-part, timestamp-expression )

Parameters
● date-part The date part to be named.

For a complete listing of allowed date parts, see “Specifying date parts” on page 267.

● timestamp-expression The TIMESTAMP or TIMESTAMP WITH TIME ZONE value for which
the date part name is to be returned. For meaningful results, timestamp-expression should contain the
requested date-part.

Returns
VARCHAR

Remarks
The DATENAME function returns a string, even if the result is numeric, such as 23 for the day.

See also
● “DATEPART function [Date and time]” on page 295

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value May.

SELECT DATENAME( month, '1987/05/02' );

DATEPART function [Date and time]

Syntax
DATEPART( date-part, timestamp-expression )

Parameters
● date-part The date part to be returned.

For a complete listing of allowed date parts, see “Specifying date parts” on page 267.

● timestamp-expression The TIMESTAMP or TIMESTAMP WITH TIME ZONE value for which
the part is to be returned.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 295



Returns
INT

Remarks
For meaningful results timestamp-expression should contain the required date-part portion.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 5.

SELECT DATEPART( month , '1987/05/02' );

The following example creates a table, TableStatistics, and inserts into it the total number of sales orders
per year as stored in the SalesOrders table:

CREATE TABLE TableStatistics ( 
   ID INTEGER NOT NULL DEFAULT AUTOINCREMENT, 
   Year INT, 
   NumberOrders INT );
INSERT INTO TableStatistics ( Year, NumberOrders )
   SELECT DATEPART( Year, OrderDate ), COUNT(*)
   FROM SalesOrders
   GROUP BY DATEPART( Year, OrderDate );

DATETIME function [Date and time]

Converts an expression into a TIMESTAMP value.

Syntax
DATETIME( expression )

Parameters
● expression The expression to be converted. It is generally a string.

Returns
TIMESTAMP

Remarks
Attempts to convert numerical values return an error.

See also
● “CAST function [Data type conversion]” on page 279

Standards and compatibility
● SQL/2008 Vendor extension.

UltraLite SQL reference

296 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
The following statement returns a timestamp with value 1998-09-09 12:12:12.000.

SELECT DATETIME( '1998-09-09 12:12:12.000' );

DAY function [Date and time]

Returns the day of the month of its argument as an integer between 1 and 31.

Syntax
DAY( date-expression )

Parameters
● date-expression The date as a DATE data type.

Returns
SMALLINT

Remarks
The DAY function returns an integer between 1 and 31, corresponding to the day of the month in the
argument.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 12.

SELECT DAY( '2001-09-12' );

DAYNAME function [Date and time]

Returns the name of the day of the week from a date.

Syntax
DAYNAME( date-expression )

Parameters
● date-expression The date.

Returns
VARCHAR

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 297



Remarks
The English names are returned as: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value Saturday.

SELECT DAYNAME ( '1987/05/02' );

DAYS function [Date and time]

The DAYS function manipulates a TIMESTAMP, or returns the number of days between two
TIMESTAMP values. For specific details, see the Remarks section below.

Syntax 1
DAYS( timestamp-expression )

Syntax 2
DAYS( timestamp-expression, timestamp-expression )

Syntax 3
DAYS( timestamp-expression, integer-expression )

Parameters
● timestamp-expression A TIMESTAMP value.

● integer-expression The number of days to be added to the timestamp-expression. If the integer-
expression is negative, the appropriate number of days is subtracted from timestamp-expression.. If
you supply an integer expression, the timestamp-expression must be explicitly cast as a TIME, DATE
or TIMESTAMP. If timestamp-expression is a TIME value, the current date is assumed.

For information about casting data types, see “CAST function [Data type conversion]” on page 279.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIMESTAMP with Syntax 3.

Remarks
The result of the DAYS function depends on its arguments. The DAYS function ignores hours, minutes,
and seconds in its arguments.

● Syntax 1 If you pass a single timestamp-expression to the DAYS function, it will return the
number of days between 0000-02-29 and timestamp-expression as an INTEGER.

UltraLite SQL reference

298 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Note
0000-02-29 is not meant to imply an actual date; it is the default date used by the DAYS function.

● Syntax 2 If you pass two TIMESTAMP values to the DAYS function, the function returns the
integer number of days between them.

● Syntax 3 If you pass a TIMESTAMP value and an integer to the DAYS function, the function
returns the TIMESTAMP result of adding the integer number of days to the timestamp-expression
argument.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

See also
● “DATEDIFF function [Date and time]” on page 292
● “DATEADD function [Date and time]” on page 291

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the integer 729889.

SELECT DAYS( '1998-07-13 06:07:12' );

The following statements return the integer value -366, indicating that the second DATE value is 366
days before the first. It is recommended that you use the second example (DATEDIFF).

SELECT DAYS( '1998-07-13 06:07:12',
             '1997-07-12 10:07:12' );

SELECT DATEDIFF( day,
   '1998-07-13 06:07:12',
   '1997-07-12 10:07:12' );

The following statements return the TIMESTAMP value 1999-07-14 00:00:00.000. It is recommended
that you use the second example (DATEADD).

SELECT DAYS( CAST('1998-07-13' AS DATE ), 366 );

SELECT DATEADD( day, 366, '1998-07-13' );

DB_PROPERTY function [System]

Returns the value of the given property. Supported in UltraLite but not UltraLiteJ.

Syntax
DB_PROPERTY( property-name )

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 299



Parameters
● property-name The database property name.

Returns
VARCHAR, LONG VARCHAR

Remarks
Returns a string.

To set an option in UltraLite, use the SET OPTION statement or your component's API-specific Set
Database Option method.

See also
● “SET OPTION statement [UltraLite] [UltraLiteJ]” on page 404
● UltraLite C++: “SetDatabaseOption method” [UltraLite - C and C++ Programming]
● UltraLite.NET: “SetDatabaseOption method” [UltraLite - .NET Programming]

Example
The following statement returns the page size of the current database, in bytes.

SELECT DB_PROPERTY( 'page_size');

DEGREES function [Numeric]

Converts a number from radians to degrees.

Syntax
DEGREES( numeric-expression )

Parameters
● numeric-expression An angle in radians.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns the degrees of the angle given by numeric-expression. If the parameter is
NULL, the result is NULL.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 29.79380534680281.

UltraLite SQL reference

300 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SELECT DEGREES( 0.52 );

DIFFERENCE function [String]

Returns the difference in the SOUNDEX values between the two string expressions.

Syntax
DIFFERENCE ( string-expression-1, string-expression-2  )

Parameters
● string-expression-1 The first SOUNDEX argument.

● string-expression-2 The second SOUNDEX argument.

Returns
SMALLINT

Remarks
The DIFFERENCE function compares the SOUNDEX values of two strings and evaluates the similarity
between them, returning a value from 0 through 4, where 4 is the best match.

This function always returns some value. The result is NULL only if one of the arguments are NULL.

See also
● “SOUNDEX function [String]” on page 347
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns similarity between the words test and chest:

SELECT DIFFERENCE( 'test', 'chest' );

DOW function [Date and time]

Returns a number from 1 to 7 representing the day of the week of a date, where Sunday=1, Monday=2,
and so on.

Syntax
DOW( date-expression )

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 301



Parameters
● date-expression The value (of type DATE) to be evaluated.

Returns
SMALLINT

Remarks
The DOW function is not affected by the value specified for the first_day_of_week database option. For
example, even if first_day_of_week is set to Monday, the DOW function returns a 2 for Monday.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 5.

SELECT DOW( '1998-07-09' );

The following statement returns the value 1.

SELECT DOW( CAST( '2010/05/30 11:33:00.000000+04:00' as TIMESTAMP WITH TIME 
ZONE ));

The following statement queries the Employees table and returns the employees StartDate, expressed as
the number of the day of the week:

SELECT DOW( StartDate ) FROM Employees;

EXP function [Numeric]

Returns the result of the base of natural logarithms e raised to the power of the given argument (not
supported in UltraLiteJ).

Syntax
EXP( numeric-expression )

Parameters
● numeric-expression The exponent.

Returns
DOUBLE

Remarks
The EXP function returns the result of raising the base of natural logarithms e by the value specified by
numeric-expression.

UltraLite SQL reference

302 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards and compatibility
● SQL/2008 The EXP function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The statement returns the value 3269017.3724721107.

SELECT EXP( 15 );

EXPLANATION function [Miscellaneous]

Returns the optimization strategy of an SQL statement as a plain text string.

Syntax
EXPLANATION( string-expression )  

Parameters
● string-expression The SQL statement, which is commonly a SELECT statement, but can also be

an UPDATE, MERGE, or DELETE statement.

Returns
LONG VARCHAR

Remarks
The statement's access plan is returned as a string. To interpret the result, see “Reading execution plans”
[SQL Anywhere Server - SQL Usage]. The GRAPHICAL_PLAN function offers significantly greater
information about access plans, including system properties that may have affected how the statement was
optimized.

This information can help you decide which indexes to add or how to structure your database for better
performance.

See also
● “Execution plans in UltraLite” on page 262

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement passes a SELECT statement as a string parameter and returns the plan for
executing the query.

SELECT EXPLANATION( 'SELECT * FROM Departments WHERE DepartmentID > 100' );

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 303



FLOOR function [Numeric]

Returns the largest integer not greater than the given number.

Syntax
FLOOR( numeric-expression )

Parameters
● numeric-expression The value to be truncated, typically a fixed numeric type with non-zero scale

or an approximate numeric type (DOUBLE, REAL, or FLOAT).

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic.

See also
● “CEILING function [Numeric]” on page 280

Standards and compatibility
● SQL/2008 The FLOOR function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following statement returns a Floor value of 123:

SELECT FLOOR (123);

The following statement returns a value of 123:

SELECT FLOOR (123.45);

The following statement returns a value of -124:

SELECT FLOOR (-123.45);

GETDATE function [Date and time]

Returns the current year, month, day, hour, minute, second and fraction of a second.

Syntax
GETDATE( ) 

UltraLite SQL reference

304 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Returns
TIMESTAMP

Remarks
The accuracy is limited by the accuracy of the system clock.

The information the GETDATE function returns is equivalent to the information returned by the NOW
function and the CURRENT TIMESTAMP special value.

See also
● “NOW function [Date and time]” on page 329

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the system date and time.

SELECT GETDATE( );

GREATER function [Miscellaneous]

Returns the greater of two parameter values.

Syntax
GREATER( expression-1, expression-2 )

Parameters
● expression-1 The first parameter value to be compared.

● expression-2 The second parameter value to be compared.

Returns
Depends on the parameters that are compared.

Remarks
If the parameters are equal, the first is returned.

See also
● “LESSER function [Miscellaneous]” on page 314

Standards and compatibility
● SQL/2008 Vendor extension.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 305



Example
The following statement returns the value 10.

SELECT GREATER( 10, 5 ) FROM dummy;

HEXTOINT function [Data type conversion]

Returns the decimal integer equivalent of a hexadecimal string.

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” [SQL Anywhere Server - SQL Reference].

Syntax
HEXTOINT( hexadecimal-string )

Parameters
● hexadecimal-string The string to be converted to an integer.

Returns
The HEXTOINT function returns as INT the platform-independent SQL INTEGER equivalent of the
hexadecimal string. The hexadecimal value represents a negative integer if the 8th digit from the right is
one of the digits 8-9 and the uppercase or lowercase letters A-F and the previous leading digits are all
uppercase or lowercase letter F. The following is not a valid use of HEXTOINT since the argument
represents a positive integer value that cannot be represented as a signed 32-bit integer:

SELECT HEXTOINT( '0x0080000001' );

Remarks
The HEXTOINT function accepts string literals or variables consisting only of digits and the uppercase or
lowercase letters A-F, with or without a 0x prefix. The following are all valid uses of HEXTOINT:

SELECT HEXTOINT( '0xFFFFFFFF' );
SELECT HEXTOINT( '0x00000100' );
SELECT HEXTOINT( '100' );
SELECT HEXTOINT( '0xffffffff80000001' );

The HEXTOINT function removes the 0x prefix, if present. If the data exceeds 8 digits, it must represent
a value that can be represented as a signed 32-bit integer value.

See also
● “INTTOHEX function [Data type conversion]” on page 310

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 420.

UltraLite SQL reference

306 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SELECT HEXTOINT( '1A4' );

HOUR function [Date and time]

Returns the hour component of a TIMESTAMP value.

Syntax
HOUR( timestamp-expression )

Parameters
● timestamp-expression A TIMESTAMP value.

Returns
SMALLINT

Remarks
The value returned is the hour portion of the TIMESTAMP expression, a SMALLINT value between 0
and 23.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 21:

SELECT HOUR( '1998-07-09 21:12:13' );

HOURS function [Date and time]

The HOURS function manipulates a TIMESTAMP, or returns the number of hours between two
TIMESTAMP values. For specific details, see this function's usage.

Syntax 1
HOURS ( timestamp-expression )

Syntax 2
HOURS ( timestamp-expression, timestamp-expression )

Syntax 3
HOURS ( time-or-timestamp-expression, integer-expression )

Parameters
● time-or-timestamp-expression A value of type TIME or TIMESTAMP.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 307



● timestamp-expression A value of type TIMESTAMP.

● integer-expression The number of hours to be added to time-or-timestamp-expression. If integer-
expression is negative, the appropriate number of hours is subtracted from time-or-timestamp-
expression..

For information about casting data types, see “CAST function [Data type conversion]” on page 279.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIME or TIMESTAMP with Syntax 3.

Remarks
The result of the HOURS function depends on its arguments.

● Syntax 1 If you pass a single timestamp-expression to the HOURS function, it will return the
number of hours between midnight 0000-02-29 and timestamp-expression as an INTEGER.

Note
0000-02-29 is not meant to imply an actual date; it is the default TIMESTAMP value used by the
HOURS function.

● Syntax 2 If you pass two TIMESTAMP values to the HOURS function, the function returns the
integer number of hours between them.

● Syntax 3 If you pass a TIMESTAMP value and an INTEGER value to the HOURS function, the
function returns the TIMESTAMP result of adding the integer number of hours to time-or-timestamp-
expression argument. Similarly, if you pass a TIME value as the first argument, a TIME value is
returned as the result. Syntax 3 does not support implicit conversion of the first argument. It may be
necessary to explicitly cast the first argument to a DATE, TIME or TIMESTAMP value. If the first
argument is a DATE, midnight is assumed for the time portion.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

See also
● “DATEDIFF function [Date and time]” on page 292
● “DATEADD function [Date and time]” on page 291

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the value 4, signifying that the second TIMESTAMP value is four hours
after the first. It is recommended that you use the second example (DATEDIFF).

SELECT HOURS( '1999-07-13 06:07:12', '1999-07-13 10:07:12' );
SELECT DATEDIFF( hour, '1999-07-13 06:07:12', '1999-07-13 10:07:12' );

UltraLite SQL reference

308 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



The following statement returns the value 17517342.

SELECT HOURS( '1998-07-13 06:07:12' );

The following statements return the datetime 1999-05-13 02:05:07.000. It is recommended that you use
the second example (DATEADD).

SELECT HOURS( CAST( '1999-05-12 21:05:07' AS DATETIME ), 5 );
SELECT DATEADD( hour, 5, '1999-05-12 21:05:07' );

IFNULL function [Miscellaneous]

If the first expression is the NULL value, then the value of the second expression is returned. If the first
expression is not NULL, the value of the third expression is returned. If the first expression is not NULL
and there is no third expression, NULL is returned.

Syntax
IFNULL( expression-1, expression-2 [ , expression-3 ] )

Parameters
● expression-1 The expression to be evaluated. Its value determines whether expression-2 or

expression-3 is returned.

● expression-2 The return value if expression-1 is NULL.

● expression-3 The return value if expression-1 is not NULL.

Returns
The data type returned depends on the data type of expression-2 and expression-3.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value -66.

SELECT IFNULL( NULL, -66 );

The following statement returns NULL, because the first expression is not NULL and there is no third
expression.

SELECT IFNULL( -66, -66 );

INSERTSTR function [String]

Inserts a string into another string at a specified position.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 309



Syntax
INSERTSTR( integer-expression, string-expression-1, string-expression-2 )

Parameters
● integer-expression The position after which the string is to be inserted. Use zero to insert a string

at the beginning.

● string-expression-1 The string into which the other string is to be inserted.

● string-expression-2 The string to be inserted.

Returns
LONG VARCHAR

See also
● “STUFF function [String]” on page 351
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value backoffice.

SELECT INSERTSTR( 0, 'office ', 'back' );

INTTOHEX function [Data type conversion]

Returns a string containing the hexadecimal equivalent of an integer.

Syntax
INTTOHEX( integer-expression )

Parameters
● integer-expression The integer to be converted to hexadecimal.

Returns
VARCHAR

Remarks
The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information, see “Converting to and from hexadecimal values” [SQL
Anywhere Server - SQL Reference].

UltraLite SQL reference

310 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “HEXTOINT function [Data type conversion]” on page 306

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 0000009c.

SELECT INTTOHEX( 156 );

ISDATE function [Data type conversion]

Tests if a string argument can be converted to a date.

Syntax
ISDATE( string )

Parameters
● string The string to be analyzed to determine if the string represents a valid date.

Returns
INT

Remarks
If a conversion is possible, the function returns 1; otherwise, 0 is returned. If the argument is NULL, 0 is
returned.

Standards and compatibility
● SQL/2008 Vendor extension.

ISNULL function [Miscellaneous]

Returns the first non-NULL expression from a list. This function is identical to the COALESCE function.

Syntax
ISNULL( expression, expression [, ...] )

Parameters
● expression An expression to be tested against NULL.

At least two expressions must be passed into the function, and all expressions must be comparable.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 311



Returns
The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the result in the type used for the
comparison. If the database server cannot find a common comparison type, an error is returned.

See also
● “COALESCE function [Miscellaneous]” on page 284

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value -66.

SELECT ISNULL( NULL ,-66, 55, 45, NULL, 16 );

LCASE function [String]

Converts all characters in a string to lowercase.

Syntax
LCASE( string-expression )

Parameters
● string-expression The string to be converted to lowercase.

Returns
● CHAR
● NCHAR
● LONG VARCHAR
● VARCHAR
● NVARCHAR

Remarks
The LCASE function is identical to the LOWER function.

See also
● “LOWER function [String]” on page 318
● “UCASE function [String]” on page 360
● “UPPER function [String]” on page 360
● “UltraLite string functions” on page 271

UltraLite SQL reference

312 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Standards and compatibility
● SQL/2008 Vendor extension. The equivalent function LOWER is a core feature of the SQL/2008

standard.

Example
The following statement returns the value chocolate.

SELECT LCASE( 'ChoCOlatE' );

LEFT function [String]

Returns multiple characters from the beginning of a string.

Syntax
LEFT( string-expression, integer-expression )

Parameters
● string-expression The string.

● integer-expression The number of characters to return.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
If the string contains multibyte characters, and the proper collation is being used, the number of bytes
returned may be greater than the specified number of characters.

You can specify an integer-expression that is larger than the value in the argument string expression. In
this case, the entire value is returned.

Whenever possible, if the input string uses character-length semantics, the return value is described in
character-length semantics.

See also
● “RIGHT function [String]” on page 339
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the first 5 characters of each Surname value in the Customers table.

SELECT LEFT( Surname, 5) FROM Customers;

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 313



LENGTH function [String]

Returns the number of characters in the specified string.

Syntax
LENGTH( string-expression )

Parameters
● string-expression The string.

Returns
INT

Remarks
Use this function to determine the length of a string. For example, specify a column name for string-
expression to determine the length of values in the column.

If the string contains multibyte characters, and the proper collation is being used, LENGTH returns the
number of characters, not the number of bytes. If the string is of data type BINARY, the LENGTH
function behaves as the BYTE_LENGTH function.

Note
You can use the LENGTH function and the CHAR_LENGTH function interchangeably for CHAR,
VARCHAR, and LONG VARCHAR data types. However, you must use the LENGTH function for
BINARY and bit array data types.

See also
● “BYTE_LENGTH function [String]” on page 278
● “International languages and character sets” [SQL Anywhere Server - Database Administration]
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 The LENGTH function is a vendor extension; however, its semantics are identical to

that of the CHAR_LENGTH function in the SQL/2008 standard. Using LENGTH over a string
expression of type NCHAR comprises part of optional SQL/2008 language feature F421.

Example
The following statement returns the value 9.

SELECT LENGTH( 'chocolate' );

LESSER function [Miscellaneous]

Returns the lesser of two parameter values.

UltraLite SQL reference

314 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
LESSER( expression-1, expression-2 )

Parameters
● expression-1 The first parameter value to be compared.

● expression-2 The second parameter value to be compared.

Returns
The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the result in the type used for the
comparison. If the database server cannot find a common comparison type, an error is returned.

Remarks
If the parameters are equal, the first value is returned.

See also
● “GREATER function [Miscellaneous]” on page 305

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 5.

SELECT LESSER( 10, 5 ) FROM dummy;

LIST function [Aggregate]

Returns a delimited list of values for every row in a group.

Syntax
LIST( 
[ DISTINCT ] string-expression
[  , delimiter-string ] )

Parameters
● string-expression A string expression, usually a column name. For each row in the group, the

value of string-expression is added to the result string, with values separated by delimiter-string.
When DISTINCT is specified, only unique string-expression values are added.

● delimiter-string A delimiter string for the list items. The default setting is a comma. There is no
delimiter if a value of NULL or an empty string is supplied. The delimiter-string must be a constant.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 315



Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
The LIST function returns the concatenation (with delimiters) of all the non-NULL values of X for each
row in the group. If there does not exist at least one row in the group with a definite X-value, then
LIST( X ) returns the empty string.

NULL values and empty strings are ignored by the LIST function.

A LIST function cannot be used as a window function, but it can be used as input to a window function.

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following statement returns all street addresses from the Employees table.

SELECT LIST( Street ) FROM Employees;

LOCATE function [String]

Returns the position of one string within another.

Syntax
LOCATE( string-expression-1, string-expression-2 [, integer-expression ] )

Parameters
● string-expression-1 The string to be searched.

● string-expression-2 The string to be searched for.

● integer-expression The character position in the string to begin the search. The first character is
position 1. If the starting offset is negative, the locate function returns the last matching string offset
rather than the first. A negative offset indicates how much of the end of the string is to be excluded
from the search. The number of bytes excluded is calculated as (-1 * offset) -1.

Returns
INT

Remarks
If integer-expression is specified, the search starts at that offset into the string.

The first string can be a long string (longer than 255 bytes), but the second is limited to 255 bytes. If a
long string is given as the second argument, the function returns a NULL value. If the string is not found,

UltraLite SQL reference

316 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



0 is returned. Searching for a zero-length string will return 1. If any of the arguments are NULL, the result
is NULL.

If multibyte characters are used, with the appropriate collation, then the starting position and the return
value may be different from the byte positions.

See also
● “UltraLite string functions” on page 271
● “CHARINDEX function [String]” on page 283

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 8.

SELECT LOCATE(
   'office party this week - rsvp as soon as possible',
   'party',
   2 );

LOG function [Numeric]

Returns the natural logarithm of a number (not supported in UltraLiteJ).

Syntax
LOG( numeric-expression )

Parameters
● numeric-expression The number.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Remarks
The argument is an expression that returns the value of any built-in numeric data type.

See also
● “LOG10 function [Numeric]” on page 318

Standards and compatibility
● SQL/2008 The SQL/2008 standard defines the natural logarithm function using the keyword LN.

The natural logarithm function comprises part of optional SQL/2008 language feature T621,
"Enhanced numeric functions".

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 317



Example
The following statement returns the natural logarithm of 50.

SELECT LOG( 50 );

LOG10 function [Numeric]

Returns the base 10 logarithm of a number (not supported in UltraLiteJ).

Syntax
LOG10( numeric-expression )

Parameters
● numeric-expression The number.

Returns
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic. If the parameter is NULL, the result is NULL.

Remarks
The argument is an expression that returns the value of any built-in numeric data type.

See also
● “LOG function [Numeric]” on page 317

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the base 10 logarithm for 50.

SELECT LOG10( 50 );

LOWER function [String]

Converts all characters in a string to lowercase. This function is identical to the LCASE function.

Syntax
LOWER( string-expression )

Parameters
● string-expression The string to be converted to lowercase.

UltraLite SQL reference

318 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Returns
CHAR, VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, or LONG NVARCHAR
corresponding to the data type of the argument.

Remarks
The LCASE function is identical to the LOWER function.

See also
● “LCASE function [String]” on page 312
● “UCASE function [String]” on page 360
● “UPPER function [String]” on page 360
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 The LOWER function is a core feature of the SQL/2008 standard. Using LOWER over

an expression of type NCHAR comprises part of optional SQL/2008 language feature F421.

Example
The following statement returns the value chocolate.

SELECT LOWER( 'chOCOLate' );

LTRIM function [String]

Removes leading blanks from the string.

Syntax
LTRIM( string-expression )

Parameters
● string-expression The string to be trimmed.

Returns
● VARCHAR
● NVARCHAR
● LONG VARCHAR
● LONG NVARCHAR

Remarks
The actual length of the result is the length of the expression minus the number of characters removed. If
all the characters are removed, the result is an empty string.

If the parameter can be null, the result can be null.

If the parameter is null, the result is the null value.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 319



See also
● “RTRIM function [String]” on page 341
● “TRIM function [String]” on page 358
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

The TRIM specifications defined by the SQL/2008 standard (LEADING and TRAILING) are
supplied by the SQL Anywhere LTRIM and RTRIM functions respectively.

Example
The following statement returns the value Test Message with all leading blanks removed.

SELECT LTRIM( '     Test Message' );

MAX function [Aggregate]

Returns the maximum expression value found in each group of rows.

Syntax 1
MAX( [ DISTINCT ] expression )

Parameters
● expression The expression for which the maximum value is to be calculated. This is commonly a

column name.

● DISTINCT expression Returns the same as MAX( expression ), and is included for completeness.

Returns
The same data type as the argument.

Remarks
Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

For simple comparisons of two expressions, you can also use the GREATER function. See “GREATER
function [Miscellaneous]” [SQL Anywhere Server - SQL Reference].

See also
● “MIN function [Aggregate]” on page 321

Standards and compatibility
● SQL/2008 Core feature.

UltraLite SQL reference

320 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
The following statement returns the value 138948.000, representing the maximum salary in the
Employees table.

SELECT MAX( Salary )
FROM Employees;

MIN function [Aggregate]

Returns the minimum expression value found in each group of rows.

Syntax 1
MIN( [ DISTINCT ] expression )

Parameters
● expression The expression for which the minimum value is to be calculated. This is commonly a

column name.

● DISTINCT expression Returns the same as MIN( expression ), and is included for completeness.

Returns
The same data type as the argument.

Remarks
Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

For simple comparisons of two expressions, you can also use the LESSER function. See “LESSER
function [Miscellaneous]” [SQL Anywhere Server - SQL Reference].

See also
● “MAX function [Aggregate]” on page 320

Standards and compatibility
● SQL/2008 Core feature.

Example
The following statement returns the value 24903.000, representing the minimum salary in the Employees
table.

SELECT MIN( Salary )
FROM Employees;

MINUTE function [Date and time]

Returns the minute component of a TIMESTAMP value.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 321



Syntax
MINUTE( timestamp-expression )

Parameters
● timestamp-expression The TIMESTAMP value.

Returns
SMALLINT

Remarks
The value returned is the minute portion of the TIMESTAMP expression, a SMALLINT value between 0
and 59.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 22.

SELECT MINUTE( '1998-07-13 12:22:34' );

MINUTES function [Date and time]

The MINUTES function manipulates a TIMESTAMP, or returns the number of minutes between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
MINUTES( timestamp-expression )

Syntax 2
MINUTES( timestamp-expression, timestamp-expression )

Syntax 3
MINUTES( timestamp-or-time-expression, integer-expression )

Parameters
● timestamp-expression An expression of type TIMESTAMP.

● timestamp-or-time-expression An expression of type TIME or TIMESTAMP.

● integer-expression The number of minutes to be added to timestamp-or-time-expression. If integer-
expression is negative, the appropriate number of minutes is subtracted from timestamp-or-time-
expression.

UltraLite SQL reference

322 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Returns
INTEGER with Syntax 1 or Syntax 2.

TIME or TIMESTAMP with Syntax 3.

Remarks
The result of the MINUTES function depends on its arguments.

● Syntax 1 If you pass a single timestamp-expression to the MINUTES function, it will return the
number of minutes between midnight 0000-02-29 and timestamp-expression as an INTEGER.

Note
0000-02-29 is not meant to imply an actual date; it is the default date used by the MINUTES function.

● Syntax 2 If you pass two TIMESTAMP values to the MINUTES function, the function returns the
integer number of minutes between them.

● Syntax 3 If you pass a TIMESTAMP value and an INTEGER value to the MINUTES function, the
function returns the TIMESTAMP result of adding the integer number of minutes to timestamp-
expression argument. Similarly, if the first argument to MINUTES is a TIME value, then the result is
also a TIME value. Syntax 3 does not support implicit conversion of the first argument. It may be
necessary to explicitly cast the first argument to a DATE, TIME or TIMESTAMP value. If the first
argument is of type DATE, midnight is assumed for the time portion.

Since MINUTES returns an integer, overflow can occur when Syntax 1 is used with TIMESTAMP values
greater than or equal to 4083-03-23 02:08:00.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

See also
● “DATEDIFF function [Date and time]” [SQL Anywhere Server - SQL Reference]
● “DATEADD function [Date and time]” [SQL Anywhere Server - SQL Reference]
● “CAST function [Data type conversion]” on page 279

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the value 240, signifying that the second TIMESTAMP value is 240
minutes after the first. It is recommended that you use the second example (DATEDIFF).

SELECT MINUTES( '1999-07-13 06:07:12',
    '1999-07-13 10:07:12' );
SELECT DATEDIFF( minute,
     '1999-07-13 06:07:12',
     '1999-07-13 10:07:12' );

The following statement returns the value 1051040527.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 323



SELECT MINUTES( '1998-07-13 06:07:12' );

The following statements return the TIMESTAMP value 1999-05-12 21:10:07.000. Note that the first
statement requires an explicit cast of the literal string parameter. It is recommended that you use the
second example (DATEADD).

SELECT MINUTES( CAST( '1999-05-12 21:05:07' AS TIMESTAMP ), 5); 
SELECT DATEADD( minute, 5, '1999-05-12 21:05:07' );

ML_GET_SERVER_NOTIFICATION [System]

This function allows UltraLite users to use light weight polling to query a notifier on a MobiLink server
for server-initiated sync requests. Not supported for UltraLiteJ

Syntax
ML_GET_SERVER_NOTIFICATION(notifier, address, key)

Parameters
● Notifier The name of the notifier on the MobiLink server to poll.

● Address The stream parameters, specified as:

tcpip{host=pc1;port=1234}

for example.

● Key Optional. The notification request key.

Returns
Returns the subject and content of a notification request for the given request key.

Remarks
If there are no requests for the given request key, or if the notifier name does not exist on the MobiLink
server, the result is NULL. If NULL is provided for the request key, then the remote ID of the user is used
as the request key. If a request does exist, the resulting message is returned in the form:
[subject]content (for example, [sync]profile1).

This function communicates over the network as it retrieves responses from the MobiLink server. As a
result, this function may require a long execution time resulting from network latency. During execution,
there may be periods when the function can execute in the background, allowing work to be performed in
the runtime on other connections. These periods are not guaranteed however, and depend on the
complexity of the SQL. The recommended method for users to retrieve a MobiLink address to use in this
function is to use the sync_profile_option_value function with an existing synchronization profile to get
the value for the Stream profile option. The value returned by this function call can be used directly as
the MobiLink address parameter.

UltraLite SQL reference

324 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “SYNC_PROFILE_OPTION_VALUE function [System]” on page 355

Standards and compatibility
● SQL/2008 Vendor extension.

Example
SELECT ML_GET_SERVER_NOTIFICATION('Notifier1', 
'tcpip{host=sybase;port=1234}', 'MyKey')
 

MOD function [Numeric]

Returns the remainder when one whole number is divided by another.

Syntax
MOD( dividend, divisor )

Parameters
● dividend The dividend, or numerator of the division.

● divisor The divisor, or denominator of the division.

Returns
● SMALLINT
● INT
● NUMERIC

Remarks
Division involving a negative dividend gives a negative or zero result. The sign of the divisor has no effect.

See also
● “REMAINDER function [Numeric]” on page 336

Standards and compatibility
● SQL/2008 The MOD function is part of optional SQL/2008 language feature T441.

Example
The following statement returns the value 2.

SELECT MOD( 5, 3 );

MONTH function [Date and time]

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 325



Returns the month of the given date.

Syntax
MONTH( date-expression )

Parameters
● date-expression A value of type DATE.

Returns
SMALLINT

Remarks
The value returned is a number between 1 and 12, corresponding to the month of the given date.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 7.

SELECT MONTH( '1998-07-13' );

MONTHNAME function [Date and time]

Returns the name of the month from a date.

Syntax
MONTHNAME( date-expression )

Parameters
● timestamp-expression A TIMESTAMP value.

Returns
VARCHAR

Remarks
The MONTHNAME function returns a string, even if the result is numeric, such as 2 for the month of
February.

See also
● “DATEPART function [Date and time]” on page 295

Standards and compatibility
● SQL/2008 Vendor extension.

UltraLite SQL reference

326 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
The following statement returns the value September.

SELECT MONTHNAME( '1998-09-05' );

MONTHS function [Date and time]

The MONTHS function manipulates a TIMESTAMP, or returns the number of months between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
MONTHS( timestamp-expression )

Syntax 2
MONTHS( timestamp-expression, timestamp-expression )

Syntax 3
MONTHS( timestamp-expression, integer-expression )

Parameters
● timestamp-expression A date and time of type TIMESTAMP.

● integer-expression The integer number of months (of type SMALLINT) to be added to the
timestamp-expression. If integer-expression is negative, the appropriate number of months is
subtracted from timestamp-expression. If you supply an integer-expression, the timestamp-expression
must be explicitly cast as a TIME, DATE or TIMESTAMP data type. If timestamp-expression is a
TIME value, the current month is assumed.

For information about casting data types, see “CAST function [Data type conversion]” on page 279.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIMESTAMP with Syntax 3.

Remarks
The result of the MONTHS function depends on its arguments. The MONTHS function ignores hours,
minutes, and seconds in its arguments.

● Syntax 1 If you pass a single timestamp-expression to the MONTHS function, it will return the
number of months between 0000-02 and timestamp-expression as an INTEGER.

Note
0000-02 is not meant to imply an actual date; it is the default date used by the MONTHS function.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 327



● Syntax 2 If you pass two TIMESTAMP values to the MONTHS function, the function returns the
integer number of months between them.

● Syntax 3 If you pass a TIMESTAMP value and a SMALLINT value to the MONTHS function, the
function returns the TIMESTAMP result of adding the integer number of months to timestamp-
expression.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

The value of MONTHS is calculated from the number of first days of the month between the two dates.

See also
● “DATEDIFF function [Date and time]” on page 292
● “DATEADD function [Date and time]” on page 291

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the value 2, signifying that the second date is two months after the first. It
is recommended that you use the second example (DATEDIFF).

SELECT MONTHS( '1999-07-13 06:07:12', '1999-09-13 10:07:12' );
SELECT DATEDIFF( month,
   '1999-07-13 06:07:12',
   '1999-09-13 10:07:12' );

The following statement returns the value 23981.

SELECT MONTHS( '1998-07-13 06:07:12' );

The following statements return the TIMESTAMP value 1999-10-12 21:05:07.000. It is recommended
that you use the second example (DATEADD).

SELECT MONTHS( CAST( '1999-05-12 21:05:07' AS DATETIME ), 5);
SELECT DATEADD( month, 5, '1999-05-12 21:05:07' );

NEWID function [Miscellaneous]

Generates a UUID (Universally Unique Identifier) value. A UUID is the same as a GUID (Globally
Unique Identifier).

Syntax
NEWID( ) 

Parameters
There are no parameters associated with the NEWID function.

UltraLite SQL reference

328 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Returns
UNIQUEIDENTIFIER

Remarks
The NEWID function can be used in a DEFAULT clause for a column.

UUIDs can be used to uniquely identify rows in a table. A value produced on one computer does not
match a value produced on another computer, so they can be used as keys in synchronization and
replication environments.

See also
● “The NEWID default” [SQL Anywhere Server - SQL Usage]
● “STRTOUUID function [String]” on page 350
● “UUIDTOSTR function [String]” on page 361

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement creates a table named mytab with two columns. Column pk has a unique
identifier data type, and assigns the NEWID function as the default value. Column c1 has an integer data
type.

CREATE TABLE mytab( 
   pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(), 
   c1 INT );

The following statement returns a unique identifier as a string:

SELECT NEWID();

For example, the value returned might be 96603324-6FF6-49DE-BF7D-F44C1C7E6856.

NOW function [Date and time]

Returns the current date and time as a TIMESTAMP value. The accuracy is limited by the accuracy of the
system clock.

Syntax
NOW( [ * ] )

Returns
TIMESTAMP

Remarks
NOW is equivalent to the GETDATE function and the CURRENT TIMESTAMP special value. NOW(*)
and NOW() are equivalent constructions.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 329



Each instance of the NOW function in a request is evaluated at most once. Multiple instances of NOW in
the same request may or may not share the identical TIMESTAMP value.

See also
● “GETDATE function [Date and time]” on page 304
● “CURRENT TIMESTAMP special value” on page 228

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the current date and time.

SELECT NOW( * );

NULLIF function [Miscellaneous]

Provides an abbreviated CASE expression by comparing expressions.

Syntax
NULLIF( expression-1, expression-2 )

Parameters
● expression-1 An expression to be compared.

● expression-2 An expression to be compared.

Returns
Data type of the first argument.

Remarks
NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second expression is NULL,
NULLIF returns the first expression.

The NULLIF function provides a short way to write some CASE expressions.

See also
● “CASE expressions” on page 249

Standards and compatibility
● SQL/2008 Core feature.

UltraLite SQL reference

330 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
The following statement returns the value a:

SELECT NULLIF( 'a', 'b' );

The following statement returns NULL.

SELECT NULLIF( 'a', 'a' );

PATINDEX function [String]

Returns an integer representing the starting position of the first occurrence of a pattern in a string.

Syntax
PATINDEX( '%pattern%', string-expression )

Parameters
● pattern The pattern to be searched for. If the leading percent wildcard is omitted, the PATINDEX

function returns one (1) if the pattern occurs at the beginning of the string, and zero if not.

The pattern for UltraLite uses the following wildcards:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

● string-expression The string to be searched for the pattern.

Returns
INT

Remarks
The PATINDEX function returns the starting position of the first occurrence of the pattern. If the pattern
is not found, it returns zero (0).

See also
● “LOCATE function [String]” on page 316
● “UltraLite string functions” on page 271

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 331



Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 2.

SELECT PATINDEX( '%hoco%', 'chocolate' );

The following statement returns the value 11.

SELECT PATINDEX( '%4_5_', '0a1A 2a3A 4a5A' );

The following statement returns 14 which is the first non-alphanumeric character in the string expression.
Note that the pattern '%[^a-z0-9]%' can be used instead of '%[^a-zA-Z0-9]%' if the database is
case insensitive.

SELECT PATINDEX( '%[^a-zA-Z0-9]%', 'SQLAnywhere12 has many new features' );

To get the first alphanumeric word in a string, you can use something like the following:

SELECT LEFT( @string, PATINDEX( '%[^a-zA-Z0-9]%', @string ) );

PI function [Numeric]

Returns the numeric value PI.

Syntax
PI( [ * ] )

Returns
DOUBLE

Standards and compatibility
● SQL/2008 Vendor extension.

Remarks
This function returns a DOUBLE value.

PI(*) and PI() are semantically equivalent.

Example
The following statement returns the value 3.141592653...

SELECT PI( * );

POWER function [Numeric]

UltraLite SQL reference

332 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Calculates one number raised to the power of another.

Syntax
POWER( numeric-expression-1, numeric-expression-2 )

Parameters
● numeric-expression-1 The base.

● numeric-expression-2 The exponent.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If any argument is NULL, the result is a NULL value.

Standards and compatibility
● SQL/2008 The POWER function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following statement returns the value 64.

SELECT POWER( 2, 6 );

QUARTER function [Date and time]

Returns a number indicating the quarter of the year from the supplied TIMESTAMP expression.

Syntax
QUARTER( timestamp-expression )

Parameters
● timestamp-expression The date.

Returns
INTEGER

Remarks
The quarters are as follows:

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 333



Quarter Period (inclusive)

1 January 1 to March 31

2 April 1 to June 30

3 July 1 to September 30

4 October 1 to December 31

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 2.

SELECT QUARTER( '1987/05/02' );

RADIANS function [Numeric]

Converts a number from degrees to radians.

Syntax
RADIANS( numeric-expression )

Parameters
● numeric-expression A number, in degrees. This angle is converted to radians.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a value of approximately 0.5236.

SELECT RADIANS( 30 );

UltraLite SQL reference

334 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



RAND function [Numeric]

Returns a random number in the interval 0 to 1, with an optional seed. Not supported by UltraLiteJ

Syntax
RAND( [integer-expression] )

Parameters
● integer-expression An optional seed used to create a random number. This argument allows you

to create repeatable random number sequences.

Returns
DOUBLE

Remarks
The RAND function is a multiplicative linear congruential random number generator. See Park and Miller
(1988), CACM 31(10), pp. 1192-1201 and Press et al. (1992), Numerical Recipes in C (2nd edition,
Chapter 7, pp. 279). The result of calling the RAND function is a pseudo-random number n where 0 < n <
1 (neither 0.0 nor 1.0 can be the result).

When a connection is made to the server, the random number generator seeds an initial value. Each
connection is uniquely seeded so that it sees a different random sequence from other connections. You
can also specify a seed value (integer-expression) as an argument. Normally, you should only do this once
before requesting a sequence of random numbers through successive calls to the RAND function. If you
initialize the seed value more than once, the sequence is restarted. If you specify the same seed value, the
same sequence is generated. Seed values that are close in value generate similar initial sequences, with
divergence further out in the sequence.

Never combine the sequence generated from one seed value with the sequence generated from a second
seed value, in an attempt to obtain statistically random results. In other words, do not reset the seed value
at any time during the generation of a sequence of random values.

The RAND function is treated as a non-deterministic function. The query optimizer does not cache the
results of the RAND function.

For more information about non-deterministic functions, see “Function caching” [SQL Anywhere Server -
SQL Usage].

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements produce eleven random results. Each subsequent call to the RAND function
where a seed is not specified continues to produce different results:

SELECT RAND( 1 );
SELECT RAND( ), RAND( ), RAND( ), RAND( ), RAND( );
SELECT RAND( ), RAND( ), RAND( ), RAND( ), RAND( );

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 335



The following example produces two sets of results with identical sequences, since the seed value is
specified twice:

SELECT RAND( 1 ), RAND( ), RAND( ), RAND( ), RAND( );
SELECT RAND( 1 ), RAND( ), RAND( ), RAND( ), RAND( );

The following example produces five results that are near each other in value, and do not have a random
distribution. For this reason, calling the RAND function more than once with similar seed values is not
recommended:

SELECT RAND( 1 ), RAND( 2 ), RAND( 3 ), RAND( 4 ), RAND( 5 );

The following example produces five identical results, and should be avoided:

SELECT RAND( 1 ), RAND( 1 ), RAND( 1 ), RAND( 1 ), RAND( 1 );

REMAINDER function [Numeric]

Returns the remainder when one whole number is divided by another.

Syntax
REMAINDER( dividend, divisor )

Parameters
● dividend The dividend, or numerator of the division.

● divisor The divisor, or denominator of the division.

Returns
● INTEGER
● NUMERIC

Remarks
You can also use the MOD function to return the remainder.

See also
● “MOD function [Numeric]” on page 325

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 2.

SELECT REMAINDER( 5, 3 );

UltraLite SQL reference

336 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



REPEAT function [String]

Concatenates a string a specified number of times.

Syntax
REPEAT( string-expression, integer-expression )

Parameters
● string-expression The string to be repeated.

● integer-expression The number of times the string is to be repeated. If integer-expression is
negative, an empty string is returned.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
If the actual length of the result string exceeds the maximum for the return type, an error occurs. The
result is truncated to the maximum string size allowed.

The behavior of this function is identical to that of the REPLICATE function.

See also
● “REPLICATE function [String]” on page 338
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value repeatrepeatrepeat.

SELECT REPEAT( 'repeat', 3 );

REPLACE function [String]

Replaces a string with another string, and returns the new results.

Syntax
REPLACE( original-string, search-string, replace-string )

Parameters
If any argument is NULL, the function returns NULL.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 337



● original-string The string to be searched. This can be any length.

● search-string The string to be searched for and replaced with replace-string. This string is limited
to 255 bytes. If search-string is an empty string, the original string is returned unchanged.

● replace-string The replacement string, which replaces search-string. This can be any length. If
replacement-string is an empty string, all occurrences of search-string are deleted.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
This function replaces all occurrences.

Comparisons are case-sensitive on case-sensitive databases.

See also
● “SUBSTRING function [String]” on page 352
● “CHARINDEX function [String]” on page 283
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value xx.def.xx.ghi.

SELECT REPLACE( 'abc.def.abc.ghi', 'abc', 'xx' );

The following statement generates a result set containing ALTER PROCEDURE statements which, when
executed, would repair stored procedures that reference a table that has been renamed. (To be useful, the
table name must be unique.)

SELECT REPLACE(
   REPLACE( proc_defn, 'OldTableName', 'NewTableName' ),
   'CREATE PROCEDURE',
   'ALTER PROCEDURE')
FROM SYS.SYSPROCEDURE
WHERE proc_defn LIKE '%OldTableName%';

REPLICATE function [String]

Concatenates a string a specified number of times.

Syntax
REPLICATE( string-expression, integer-expression )

UltraLite SQL reference

338 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Parameters
● string-expression The string to be repeated.

● integer-expression The number of times the string is to be repeated.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
If the actual length of the result string exceeds the maximum for the return type, an error occurs. The
result is truncated to the maximum string size allowed.

The behavior of this function is identical to that of the REPEAT function.

See also
● “REPEAT function [String]” on page 337
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value repeatrepeatrepeat.

SELECT REPLICATE( 'repeat', 3 );

RIGHT function [String]
Returns the rightmost characters of a string.

Syntax
RIGHT( string-expression, integer-expression )

Parameters
● string-expression The string to be left-truncated.

● integer-expression The number of characters at the end of the string to return.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
If the string contains multibyte characters, and the proper collation is being used, the number of bytes
returned may be greater than the specified number of characters.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 339



You can specify an integer-expression that is larger than the value in the column. In this case, the entire
value is returned.

Whenever possible, if the input string uses character-length semantics, the return value is described in
character-length semantics.

See also
● “LEFT function [String]” on page 313
● “International languages and character sets” [SQL Anywhere Server - Database Administration]
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the last 5 characters of each Surname value in the Customers table.

SELECT RIGHT( Surname, 5) FROM Customers;

ROUND function [Numeric]

Rounds the numeric-expression to the specified integer-expression amount of places after the decimal point.

Syntax
ROUND( numeric-expression, integer-expression )

Parameters
● numeric-expression The number, passed into the function, to be rounded.

● integer-expression A positive integer specifies the number of significant digits to the right of the
decimal point at which to round. A negative expression specifies the number of significant digits to
the left of the decimal point at which to round.

Returns
NUMERIC

Remarks
The result of this function is either numeric or double. When there is a numeric result and the integer integer-
expression is a negative value, the precision is increased by one.

See also
● “TRUNCNUM function [Numeric]” on page 359

Standards and compatibility
● SQL/2008 Vendor extension.

UltraLite SQL reference

340 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
The following statement returns the value 123.200.

SELECT ROUND( 123.234, 1 );

RTRIM function [String]

Removes trailing blanks from the string.

Syntax
RTRIM( string-expression )

Parameters
● string-expression The string to be trimmed.

Returns
● VARCHAR
● NVARCHAR
● LONG VARCHAR
● LONG NVARCHAR

Remarks
The actual length of the result is the length of the expression minus the number of characters removed. If
all the characters are removed, the result is an empty string.

If the argument is null, the result is the null value.

See also
● “TRIM function [String]” on page 358
● “LTRIM function [String]” on page 319
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

The TRIM specifications defined by the SQL/2008 standard (LEADING and TRAILING) are
supplied by the SQL Anywhere LTRIM and RTRIM functions respectively.

Example
The following statement returns the string Test Message, with all trailing blanks removed.

SELECT RTRIM( 'Test Message     ' );

SECOND function [Date and time]

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 341



Returns the seconds value of the TIMESTAMP argument.

Syntax
SECOND( timestamp-expression )

Parameters
● timestamp-expression The TIMESTAMP value.

Returns
SMALLINT

Remarks
Returns a number from 0 to 59 corresponding to the seconds component of the given TIMESTAMP
argument value.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 25.

SELECT SECOND( '1998-07-13 21:21:25' );

SECONDS function [Date and time]

The SECONDS function manipulates a TIMESTAMP, or returns the number of seconds between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
SECONDS( timestamp-expression )

Syntax 2
SECONDS( timestamp-expression, timestamp-expression )

Syntax 3
SECONDS( time-or-timestamp-expression, integer-expression )

Parameters
● timestamp-expression A TIMESTAMP value.

● time-or-timestamp-expression A value of type TIME or TIMESTAMP.

● integer-expression The number of seconds to be added to the time-or-timestamp-expression. If
integer-expression is negative, the appropriate number of seconds is subtracted from time-or-timestamp-
expression.. If you supply an integer expression, the time-or-timestamp-expression must be explicitly

UltraLite SQL reference

342 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



cast as a TIME, DATE, or TIMESTAMP data type. If time-or-timestamp-expression is a DATE type,
its time portion is assumed to be midnight.

Returns
UNSIGNED BIGINT with Syntax 1.

SIGNED BIGINT with Syntax 2.

TIME or TIMESTAMP with Syntax 3.

Remarks
The result of the SECONDS function depends on its arguments.

● Syntax 1 If you pass a single timestamp-expression to the SECONDS function, it will return the
number of seconds between midnight 0000-02-29 and timestamp-expression as an UNSIGNED BIGINT.

Note
0000-02 is not meant to imply an actual date; it is the default date used by the SECONDS function.

● Syntax 2 If you pass two TIMESTAMP values to the SECONDS function, the function returns the
integer number of seconds between them as a SIGNED BIGINT value.

● Syntax 3 If you pass a TIMESTAMP value and a INTEGER value to the SECONDS function, the
function returns the TIMESTAMP result of adding the integer number of seconds to time-or-timestamp-
expression. Similarly, if you pass a TIME value to the SECONDS function, the function returns a
value of type TIME.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

See also
● “CAST function [Data type conversion]” on page 279
● “DATEADD function [Date and time]” on page 291
● “DATEDIFF function [Date and time]” on page 292

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the value 14400, signifying that the second TIMESTAMP value is 14400
seconds after the first.

SELECT SECONDS( '1999-07-13 06:07:12',
   '1999-07-13 10:07:12' );
SELECT DATEDIFF( second,
   '1999-07-13 06:07:12',
   '1999-07-13 10:07:12' );

The following statement returns the value 63062431632.

SELECT SECONDS( '1998-07-13 06:07:12' );

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 343



The following statements return the TIMESTAMP value 1999-05-12 21:05:12.000.

SELECT SECONDS( CAST( '1999-05-12 21:05:07' AS TIMESTAMP ), 5);
SELECT DATEADD( second, 5, '1999-05-12 21:05:07' );

SHORT_PLAN function [Miscellaneous]

Returns a short description of the UltraLite plan optimization strategy of a SQL statement, as a string. The
description is the same as that returned by the EXPLANATION function.

Syntax
SHORT_PLAN( string-expression )

Remarks
For some queries, the execution plan for UltraLite may differ from the plan selected for SQL Anywhere.

Parameters
● string-expression The SQL statement, which is commonly a SELECT statement, but can also be

an UPDATE or DELETE statement.

Returns
LONG VARCHAR

See also
● “EXPLANATION function [Miscellaneous]” on page 303

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement passes a SELECT statement as a string parameter and returns the plan for
executing the query.

SELECT SHORT_PLAN(
   'SELECT * FROM Departments WHERE DepartmentID > 100' );

SIGN function [Numeric]

Returns the sign (positive or negative) of the given number.

Syntax
SIGN( numeric-expression )

UltraLite SQL reference

344 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Parameters
● numeric-expression The number for which the sign is to be returned. numeric-expression may be

of type INTEGER, DOUBLE, or NUMERIC.

Returns
SMALLINT

Remarks
For negative numbers, the SIGN function returns -1.

For zero, the SIGN function returns 0.

For positive numbers, the SIGN function returns 1.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value -1

SELECT SIGN( -550 );

SIMILAR function [String]

Returns a number indicating the similarity between two strings.

Syntax
SIMILAR( string-expression-1, string-expression-2 )

Parameters
● string-expression-1 The first string to be compared.

● string-expression-2 The second string to be compared.

Returns
SMALL INT

Remarks
The function returns an integer between 0 and 100 representing the similarity between the two strings.
The result can be interpreted as the percentage of characters matched between the two strings. A value of
100 indicates that the two strings are identical.

This function can be used to correct a list of names (such as customers). Some customers may have been
added to the list more than once with slightly different names. You can use the SIMILAR function to find
similar customer names by joining the customer table to itself, producing a report of all similarities
greater than 90 percent, but less than 100 percent.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 345



The calculation performed for the SIMILAR function is more complex than just the number of characters
that match.

See also
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 75, indicating that the two values are 75% similar.

SELECT SIMILAR( 'toast', 'coast' );

SIN function [Numeric]

Returns the sine of a number.

Syntax
SIN( numeric-expression )

Parameters
● numeric-expression The angle, in radians.

Returns
DOUBLE

Remarks
The SIN function returns the sine of the argument, where the argument is an angle expressed in radians.
The SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result.

See also
● “ASIN function [Numeric]” on page 275
● “COS function [Numeric]” on page 287
● “COT function [Numeric]” on page 288
● “TAN function [Numeric]” on page 356

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the SIN value of 0.52.

UltraLite SQL reference

346 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SELECT SIN( 0.52 );

SOUNDEX function [String]

Returns a number representing the sound of a string.

Syntax
SOUNDEX( string-expression )

Parameters
● string-expression The string to be evaluated.

Returns
SMALLINT

Remarks
The SOUNDEX function value for a string is based on the first letter and the next three consonants other
than H, Y, and W. Vowels in string-expression are ignored unless they are the first letter of the string.
Doubled letters are counted as one letter. For example, the word "apples" is based on the letters A, P, L,
and S.

Multibyte characters are ignored by the SOUNDEX function.

Although it is not perfect, the SOUNDEX function normally returns the same number for words that
sound similar and that start with the same letter.

The SOUNDEX function works best with English words. It is less useful for other languages.

See also
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns two identical numbers, 3827, representing the sound of each name.

SELECT SOUNDEX( 'Smith' ), SOUNDEX( 'Smythe' );

SPACE function [String]

Returns a specified number of spaces.

Syntax
SPACE( integer-expression )

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 347



Parameters
● integer-expression The number of spaces to return.

Returns
LONG VARCHAR

Remarks
If integer-expression is negative, a null string is returned.

See also
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a string containing 10 spaces.

SELECT SPACE( 10 );

SQRT function [Numeric]

Returns the square root of a number.

Syntax
SQRT( numeric-expression )

Parameters
● numeric-expression The number for which the square root is to be calculated.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result.

Standards and compatibility
● SQL/2008 The SQRT function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following statement returns the value 3.

SELECT SQRT( 9 );

UltraLite SQL reference

348 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



STR function [String]

Returns the string equivalent of a number.

Syntax
STR( numeric-expression [, length [, decimal ] ] )

Parameters
● numeric-expression Any approximate numeric (float, real, or double precision) expression

between -1E126 and 1E127.

● length The number of characters to be returned (including the decimal point, all digits to the right
and left of the decimal point, and blanks). The default is 10.

● decimal The number of decimal digits to be returned. The default is 0.

Returns
VARCHAR

Remarks
If the integer portion of the number cannot fit in the length specified, then the result is a string of the
specified length containing all asterisks. For example, the following statement returns ***.

SELECT STR( 1234.56, 3 );

Note
The maximum length that is supported is 128. Any length that is not between 1 and 128 yields a result of
NULL.

See also
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a string of six spaces followed by 1235, for a total of ten characters.

SELECT STR( 1234.56 );

The following statement returns the result 1234.6.

SELECT STR( 1234.56, 6, 1 );

STRING function [String]

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 349



Concatenates one or more strings into one large string.

Syntax
STRING( string-expression [, ... ])

Parameters
● string-expression The string to be evaluated.

If only one argument is supplied, it is converted into a single expression. If more than one argument is
supplied, they are concatenated into a single string.

Returns
● LONG VARCHAR
● LONG NVARCHAR
● LONG BINARY

Remarks
Numeric or date parameters are converted to strings before concatenation. The STRING function can also
be used to convert any single expression to a string by supplying that expression as the only parameter.

If all parameters are NULL, STRING returns NULL. If any parameters are non-NULL, then any NULL
parameters are treated as empty strings.

See also
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value testing123.

SELECT STRING( 'testing', NULL, 123 );

STRTOUUID function [String]

Converts a string value to a unique identifier (UUID or GUID) value.

Not needed in newer databases
In databases created before version 9.0.2, the STRTOUUID and UUIDTOSTR functions were needed to
convert between binary and string representations of UUID values.

In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a
native data type. You do not need to use STRTOUUID and UUIDTOSTR functions with these versions.

For more information, see “Data types in UltraLite” on page 230.

UltraLite SQL reference

350 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
STRTOUUID( string-expression )

Parameters
● string-expression A string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

Returns
UNIQUEIDENTIFIER

Remarks
Converts a string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where x is a hexadecimal digit, to
a unique identifier value.

This function is useful for inserting UUID values into a database.

See also
● “UUIDTOSTR function [String]” on page 361
● “NEWID function [Miscellaneous]” on page 328
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

STUFF function [String]

Deletes multiple characters from one string and replaces them with another string.

Syntax
STUFF( string-expression-1, start, length, string-expression-2 )

Parameters
● string-expression-1 The string to be modified by the STUFF function.

● start The character position at which to begin deleting characters. The first character in the string is
position 1.

● length The number of characters to delete.

● string-expression-2 The string to be inserted. To delete a portion of a string using the STUFF
function, use a replacement string of NULL.

Returns
LONG NVARCHAR

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 351



See also
● “INSERTSTR function [String]” on page 309
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value chocolate pie.

SELECT STUFF( 'chocolate cake', 11, 4, 'pie' );

SUBSTRING function [String]

Returns a substring of a string.

Syntax
{ SUBSTRING | SUBSTR } ( string-expression, start 
[, length ] )

Parameters
● string-expression The string from which a substring is to be returned.

● start The start position of the substring to return, in characters.

● length The length of the substring to return, in characters. If length is specified, the substring is
restricted to that length.

Returns
● LONG BINARY
● LONG VARCHAR
● LONG NVARCHAR

Remarks
In UltraLite, the database does not have an ansi_substring option, but the SUBSTR function behaves as if
ansi_substring is set to on by default. The function's behavior corresponds to ANSI/ISO SQL/2008 behavior:

● Start value The first character in the string is at position 1. A negative or zero start offset is treated
as if the string were padded on the left with non-characters.

● Length value A positive length specifies that the substring ends length characters to the right of
the starting position.

A negative length returns an error.

A length of zero returns an empty string.

UltraLite SQL reference

352 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



If string-expression is of binary data type, the SUBSTRING function behaves as BYTE_SUBSTR.

To obtain characters at the end of a string, use the RIGHT function.

Whenever possible, if the input string uses character-length semantics, the return value is described in
character-length semantics.

See also
● “BYTE_SUBSTR function [String]” on page 279
● “LEFT function [String]” on page 313
● “RIGHT function [String]” on page 339
● “CHARINDEX function [String]” on page 283
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 SUBSTRING is a core feature of the SQL/2008 standard. The standard's

implementation differs slightly from the SQL Anywhere implementation: in the standard,
SUBSTRING is defined with three parameters using the keywords FROM and FOR, neither of which
are required by SQL Anywhere.

Example
The following table shows the values returned by the SUBSTRING function.

Example Result

SUBSTRING( 'front yard', 1, 4 ) fron

SUBSTRING( 'back yard', 6, 4 ) yard

SUBSTR( 'abcdefgh', 0, -2 ) Returns an error

SUBSTR( 'abcdefgh', -2, 2 ) Returns an empty string

SUM function [Aggregate]

Returns the total of the specified expression for each group of rows.

Syntax 1
SUM( [ DISTINCT ] expression )

Parameters
● expression The name of the expression to be summed. This is commonly a column name.

● DISTINCT expression Computes the sum of the unique values of expression within each group.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 353



Returns
● INTEGER
● DOUBLE
● NUMERIC

Remarks
Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

This function can generate an overflow error, resulting in an error being returned. You can use the CAST
function on numeric-expression to avoid the overflow error. See “CAST function [Data type conversion]”
[SQL Anywhere Server - SQL Reference].

See also
● “COUNT function [Aggregate]” on page 288
● “AVG function [Aggregate]” on page 277

Standards and compatibility
● SQL/2008 Core feature.

Example
The following statement returns the value 3749146.740.

SELECT SUM( Salary )
FROM Employees;

SWITCHOFFSET function [Date and time]

Returns a TIMESTAMP WITH TIME ZONE value that is converted from its original time zone offset to
the specified time zone offset.

Syntax
SWITCHOFFSET( tmz-expression, time-zone-offset )

Parameters
● tmz-expression The TIMESTAMP WITH TIME ZONE value to be converted.

● time-zone-offset The time zone offset of the result. The value can be an integer representing the
minutes before or after Coordinated Universal Time (UTC), a string in the form { + | - } hh:nn, or Z
for the Zulu Time Zone. The Zulu Time Zone is the same time zone as UTC.

Returns
TIMESTAMP WITH TIME ZONE

UltraLite SQL reference

354 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “TIMESTAMP WITH TIME ZONE data type” [SQL Anywhere Server - SQL Reference]
● “SYSDATETIMEOFFSET function [Date and time]” [SQL Anywhere Server - SQL Reference]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example changes a time zone offset value from -04:00 hours to -07:00 hours. The value
returned is 2009-04-03 11:45:12.123-07:00.

SELECT CAST ( '2009-04-03 14:45:12.123-04:00' AS datetimeoffset ) AS EDT,
SWITCHOFFSET( EDT,'-07:00' ) AS PDT;

SYNC_PROFILE_OPTION_VALUE function [System]

Returns the value of the option corresponding to the given option name. Not supported for UltraLiteJ.

Syntax
SYNC_PROFILE_OPTION_VALUE(profile_name, option_name)

Parameters
● profile_name The name of the sync profile to inspect.

● option_name The name of the option to retrieve the corresponding value for.

Returns
Returns the value of the option corresponding to the given option name.

Remarks
Option names with periods will retrieve values from a sublist with the given base option name before the
period, and the given sublist option name after the period.

See also
● “ML_GET_SERVER_NOTIFICATION [System]” on page 324

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Consider the profile:

MobiLinkUid=joe;Stream=tcpip{host=sybase;port=1234};Ping=1
 

● MobiLinkUid joe

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 355



● Stream tcpip{host=sybase;port=1234}

● Stream.host sybase

● Stream.port 1234

● Ping 1

SYNC_PROFILE_PARM function [System]

Returns the description of an UltraLite sync profile. Not supported for UltraLiteJ.

Syntax
SYNC_PROFILE_PARM(profile_name, parameter-number)

Parameters
● profile_name The name of the sync profile to inspect.

● parameter number The number of the parameter to retrieve the corresponding value for.

Returns
The parameters are returned in the form parm=value. If parameter 0 is requested, the entire
synchronization profile is returned (truncated at 2000 characters).

Standards and compatibility
● SQL/2008 Vendor extension.

TAN function [Numeric]

Returns the tangent of a number.

Syntax
TAN( numeric-expression )

Parameters
● numeric-expression An angle, in radians.

Returns
DOUBLE

Remarks
The ATAN and TAN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result.

UltraLite SQL reference

356 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “COS function [Numeric]” on page 287
● “SIN function [Numeric]” on page 346

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value of the tan of 0.52.

SELECT TAN( 0.52 );

TODATETIMEOFFSET function [Date and time]

Converts a TIMESTAMP value to a TIME STAMP WITH TIME ZONE value using the specified time
zone offset.

Syntax
TODATETIMEOFFSET( timestamp-expression, time-zone-offset )

Parameters
● timestamp-expression The TIMESTAMP expression to be converted.

● time-zone-offset The time zone offset. The value can be an INTEGER representing minutes
before or after UTC, a VARCHAR string in the form of { + | - }hh:nn, or the string "Z" for the Zulu
Time Zone. The Zulu Time Zone is the same time zone as UTC.

Returns
TIMESTAMP WITH TIME ZONE

See also
● “TIMESTAMP WITH TIME ZONE data type” [SQL Anywhere Server - SQL Reference]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example changes a time zone offset value from -4.00 hours to +11.00 hours.

SELECT TODATETIMEOFFSET ('2009-04-03 14:45:12.123-04:00','+11:00');

TODAY function [Date and time]

Returns the current date as a DATE value.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 357



Syntax
TODAY( [ * ] )

Returns
DATE

Remarks
TODAY(*) and TODAY() are semantically equivalent. TODAY is equivalent to the CURRENT DATE
special value.

Each instance of the TODAY function in a request is evaluated at most once. Multiple instances of
TODAY in the same request may or may not share the identical DATE value.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the current day according to the system clock.

SELECT TODAY( * );
SELECT CURRENT DATE;

TRIM function [String]

Removes leading and trailing blanks from a string.

Syntax
TRIM( string-expression )

Parameters
● string-expression The string to be trimmed.

Returns
● VARCHAR
● NVARCHAR
● LONG VARCHAR
● LONG NVARCHAR

See also
● “LTRIM function [String]” on page 319
● “RTRIM function [String]” on page 341
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 The TRIM function is a SQL/2008 core feature.

UltraLite SQL reference

358 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SQL Anywhere does not support the additional parameters trim specification and trim character, as
defined in SQL/2008. The SQL Anywhere implementation of TRIM corresponds to a TRIM
specification of BOTH.

For the other TRIM specifications defined by the SQL/2008 standard (LEADING and TRAILING),
SQL Anywhere supplies the LTRIM and RTRIM functions respectively.

Example
The following statement returns the value chocolate with no leading or trailing blanks.

SELECT TRIM( '   chocolate   ' );

TRUNCNUM function [Numeric]

Truncates a number at a specified number of places after the decimal point.

Syntax
{ TRUNCNUM | TRUNCATE }( numeric-expression, integer-expression )

Parameters
● numeric-expression The number to be truncated. This argument may be of type NUMERIC or

DOUBLE.

● integer-expression A positive integer specifies the number of significant digits to the right of the
decimal point at which to round. A negative value specifies the number of significant digits to the left
of the decimal point at which to round.

Returns
NUMERIC or DOUBLE

Remarks
If any parameter is NULL, the result is NULL.

You should use the TRUNCNUM function, not the TRUNCATE function, when truncating numbers.

Use of the TRUNCATE function is not recommended because the word truncate is a keyword, and
therefore requires you to either set the quoted_identifier option to OFF, or put quotes around the word
TRUNCATE.

See also
● “ROUND function [Numeric]” on page 340

Standards and compatibility
● SQL/2008 Vendor extension.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 359



Example
The following statement returns the value 600.

SELECT TRUNCNUM( 655, -2 );

The following statement: returns the value 655.340.

SELECT TRUNCNUM( 655.348, 2 );

UCASE function [String]

Converts all characters in a string to uppercase.

Syntax
UCASE( string-expression )

Parameters
● string-expression The string to be converted to uppercase.

Returns
CHAR, VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, or LONG NVARCHAR
corresponding on the type of the argument.

Remarks
This function is identical to the UPPER function.

See also
● “UPPER function [String]” on page 360
● “LCASE function [String]” on page 312
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension. The UPPER function is SQL/2008 compliant.

Example
The following statement returns the value CHOCOLATE.

SELECT UCASE( 'ChocoLate' );

UPPER function [String]

Converts all characters in a string to uppercase.

Syntax
UPPER( string-expression )

UltraLite SQL reference

360 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Parameters
● string-expression The string to be converted to uppercase.

Returns
CHAR, VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, or LONG NVARCHAR
corresponding to the data type of the argument.

Remarks
This function is identical to the UCASE function.

See also
● “UCASE function [String]” on page 360
● “LCASE function [String]” on page 312
● “LOWER function [String]” on page 318
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 The UPPER function is a core feature of the SQL/2008 standard.

Example
The following statement returns the value CHOCOLATE.

SELECT UPPER( 'ChocoLate' );

UUIDTOSTR function [String]

Converts a unique identifier value (UUID, also known as GUID) to a string value.

Not needed in newer databases
In databases created before version 9.0.2, the STRTOUUID and UUIDTOSTR functions were needed to
convert between binary and string representations of UUID values.

In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a
native data type. You do not need to use STRTOUUID and UUIDTOSTR functions with these versions.

For more information, see “Data types in UltraLite” on page 230.

Syntax
UUIDTOSTR( uuid-expression )

Parameters
● uuid-expression A unique identifier value.

Returns
VARCHAR

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 361



Remarks
Converts a unique identifier to a string value in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where
x is a hexadecimal digit. If the binary value is not a valid uniqueidentifier, NULL is returned.

This function is useful if you want to view a UUID value.

See also
● “NEWID function [Miscellaneous]” on page 328
● “STRTOUUID function [String]” on page 350
● “UltraLite string functions” on page 271

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement creates a table mytab with two columns. Column pk has a unique identifier data
type, and column c1 has an integer data type. It then inserts two rows with the values 1 and 2 respectively
into column c1.

CREATE TABLE mytab(
    pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
    c1 INT );
INSERT INTO mytab( c1 ) values ( 1 );
INSERT INTO mytab( c1 ) values ( 2 );

Executing the following SELECT statement returns all the data in the newly created table.

SELECT * FROM mytab;

You will see a two-column, two-row table. The value displayed for column pk will be binary values.

To convert the unique identifier values into a readable format, execute the following command:

SELECT UUIDTOSTR(pk), c1 FROM mytab;

The UUIDTOSTR function is not needed for databases created with version 9.0.2 or later.

WEEKS function [Date and time]

The WEEKS function manipulates a TIMESTAMP, or returns the number of weeks between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
WEEKS( timestamp-expression )

Syntax 2
WEEKS( timestamp-expression, timestamp-expression )

UltraLite SQL reference

362 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax 3
WEEKS( timestamp-expression, integer-expression )

Parameters
● timestamp-expression A date and time value of type TIMESTAMP.

● integer-expression The number of weeks to be added to timestamp-expression. If integer-
expression is negative, the appropriate number of weeks is subtracted from timestamp-expression. If
you supply an integer-expression, timestamp-expression must be explicitly cast as a DATE or
TIMESTAMP.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIMESTAMP with Syntax 3.

Remarks
Given a single date (Syntax 1), the WEEKS function returns the number of weeks since 0000-02-29.

Given two dates (Syntax 2), the WEEKS function returns the number of weeks between them. The
WEEKS function is similar to the DATEDIFF function, however the method used to calculate the number
of weeks between two dates is not the same and can return a different result. The return value for WEEKS
is determined by dividing the number of days between the two dates by seven, and then rounding down.
However, DATEDIFF uses number of week boundaries in its computation. This can cause the values
returned from the two functions to be different. For example, if the first date is a Friday and the second
date is the following Monday, the WEEKS function returns a difference of 0, but the DATEDIFF function
returns a difference of 1. While neither method is better than the other, you should consider the difference
when choosing between WEEKS and DATEDIFF.

For more information about the DATEDIFF function, see “DATEDIFF function [Date and
time]” on page 292.

Given a date and an integer (Syntax 3), the WEEKS function adds the integer number of weeks to timestamp-
expression. With Syntax 3, you must explicitly cast timestamp-expression as a TIME, DATE, or
TIMESTAMP data type. If timestamp-expression is a TIME value, the current date is assumed. Instead of
Syntax 3, use the DATEADD function.

For more information about the DATEADD function, see “DATEADD function [Date and
time]” on page 291.

See also
For information about casting data types, see “CAST function [Data type conversion]” on page 279.

Standards and compatibility
● SQL/2008 Vendor extension.

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 363



Example
The following statement returns the value 8, signifying that 2008-09-13 10:07:12 is eight weeks after
2008-07-13 06:07:12.

SELECT WEEKS( '2008-07-13 06:07:12', '2008-09-13 10:07:12' );

The following statement returns the value 104792, signifying that the date is 104792 weeks after 0000-02-29.

SELECT WEEKS( '2008-07-13 06:07:12' );

The following statement returns the TIMESTAMP value 2008-06-16 21:05:07.0, indicating the date and
time five weeks after 2008-05-12 21:05:07.

SELECT WEEKS( CAST( '2008-05-12 21:05:07' AS TIMESTAMP ), 5);

YEAR function [Date and time]

Returns the year component of the TIMESTAMP argument.

Syntax
YEAR( timestamp-expression )

Parameters
● timestamp-expression A TIMESTAMP value.

Returns
SMALLINT

Remarks
The value returned is the years component of the given TIMESTAMP value, returned as a SMALLINT.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example returns the value 2001.

SELECT YEAR( '2001-09-12' );

YEARS function [Date and time]

The YEARS function manipulates a TIMESTAMP, or returns the number of years between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
YEARS( timestamp-expression )

UltraLite SQL reference

364 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax 2
YEARS( timestamp-expression, timestamp-expression )

Syntax 2
YEARS( timestamp-expression, integer-expression )

Parameters
● timestamp-expression A date and time value of type TIMESTAMP.

● integer-expression The number of years (as a SMALLINT value) to be added to timestamp-
expression. If integer-expression is negative, the appropriate number of years is subtracted from
timestamp-expression.. If you supply an integer-expression, the timestamp-expression must be
explicitly cast as a DATE, TIME, or TIMESTAMP value. If timestamp-expression is a TIME, the
current year is assumed.

For information about casting data types, see “CAST function [Data type conversion]” on page 279.

Returns
SMALLINT with Syntax 1 or Syntax 2.

TIMESTAMP with Syntax 3.

Remarks
The value of YEARS is computed by counting the number of first days of the year between the two dates.

See also
● “DATEDIFF function [Date and time]” on page 292
● “DATEADD function [Date and time]” on page 291

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements both return -4.

SELECT YEARS( '1998-07-13 06:07:12',
              '1994-03-13 08:07:13' );
SELECT DATEDIFF( year,
   '1998-07-13 06:07:12',
   '1994-03-13 08:07:13' );

The following statements return 1998.

SELECT YEARS( '1998-07-13 06:07:12' )
SELECT DATEPART( year, '1998-07-13 06:07:12' );

The following statements return the given date advanced 300 years.

SELECT YEARS( CAST( '1998-07-13 06:07:12' AS TIMESTAMP ), 300 )

UltraLite SQL functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 365



SELECT DATEADD( year, 300, '1998-07-13 06:07:12' );

YMD function [Date and time]

Returns a date value corresponding to the given year, month, and day of the month. Arguments are
SMALLINT values from -32768 to 32767.

Syntax
YMD( smallint-expression1, smallint-expression2, smallint-expression3 )

Parameters
● smallint-expression1 The year.

● smallint-expression2 The number of the month. The year is adjusted if the month is outside the
range 1-12.

● smallint-expression3 The day number. The day can be any integer; the date is adjusted accordingly.

Returns
DATE

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 1998-06-12.

SELECT YMD( 1998, 06, 12 );

If the values are outside their normal range, the date is adjusted accordingly. For example, the following
statement returns the DATE value 2000-03-01.

SELECT YMD( 1999, 15, 1 );

UltraLite SQL statements
The SQL statements supported by UltraLite SQL are a subset of the statements supported by SQL
Anywhere databases.

Before you begin
● Tables in UltraLite do not support the concept of an owner. As a convenience for existing SQL and

for SQL that is programmatically generated, UltraLite still allows the syntax owner.table-name.
However, the owner is not checked because table owners are not supported in UltraLite.

UltraLite SQL reference

366 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● UltraLite SQL statement documentation follows the same syntax conventions used by SQL Anywhere
statements. Ensure you understand these conventions and how they are used to represent SQL syntax.
See “Syntax conventions” [SQL Anywhere Server - SQL Reference].

● Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs,
UPDATEs, and DELETEs) since the last ROLLBACK or COMMIT. See “UltraLite transaction
processing” on page 14.

These changes can be made permanent by executing a COMMIT. A ROLLBACK statement causes
the changes to be removed. See “COMMIT statement [UltraLite] [UltraLiteJ]” on page 376 and
“ROLLBACK statement [UltraLite] [UltraLiteJ]” on page 402.

● If you are looking for statements used by Interactive SQL, see “SQL statements” [SQL Anywhere
Server - SQL Reference]. Statements used by Interactive SQL have [Interactive SQL] after the
statement name. For example, “CONFIGURE statement [Interactive SQL]” [SQL Anywhere Server -
SQL Reference].

UltraLite statement categories
SQL statements are organized and identified by the initial word in a statement, which is almost always a
verb. This action-oriented syntax makes the nature of the language into a set of imperative statements
(commands) to the database. In UltraLite, supported SQL statements can be classified as follows:

● Data retrieval statements Also known as queries. These statements allow select rows of data
expressions from tables. Data retrieval is achieved with the SELECT statement. See “SELECT
statement [UltraLite] [UltraLiteJ]” on page 402.

● Data manipulation statements Allow you to change content in the database. Data manipulation
is achieved with:

○ “DELETE statement [UltraLite] [UltraLiteJ]” on page 391
○ “INSERT statement [UltraLite] [UltraLiteJ]” on page 397
○ “UPDATE statement [UltraLite] [UltraLiteJ]” on page 410

● Data definition statements Allow you to define the structure or schema of a database. The
schema can be changed with:

○ “ALTER DATABASE SCHEMA FROM FILE statement [UltraLite]” on page 368
○ “CREATE INDEX statement [UltraLite] [UltraLiteJ]” on page 376
○ “CREATE TABLE statement [UltraLite] [UltraLiteJ]” on page 384
○ “DROP INDEX statement [UltraLite] [UltraLiteJ]” on page 392
○ “DROP TABLE statement [UltraLite] [UltraLiteJ]” on page 394
○ “ALTER TABLE statement [UltraLite] [UltraLiteJ]” on page 371
○ “TRUNCATE TABLE statement [UltraLite] [UltraLiteJ]” on page 408

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 367



● Transaction control statements Allow you to control transactions within your UltraLite
application. Transaction control is achieved with:

○ “CHECKPOINT statement [UltraLite]” on page 375
○ “COMMIT statement [UltraLite] [UltraLiteJ]” on page 376
○ “ROLLBACK statement [UltraLite] [UltraLiteJ]” on page 402

● Synchronization management Allow you to temporarily control synchronization with a
MobiLink server. Synchronization management is achieved with:

○ “START SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 405
○ “STOP SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 406
○ “CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 378
○ “ALTER PUBLICATION statement [UltraLite][UltraLiteJ]” on page 369
○ “DROP PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 392

See also
● “Expressions in UltraLite” on page 246
● “Operators in UltraLite” on page 259

ALTER DATABASE SCHEMA FROM FILE statement
[UltraLite]

Use this statement to modify the schema definition of an existing UltraLite database using a SQL script.

Syntax
ALTER DATABASE SCHEMA FROM FILE filename

Parameters
filename  Defines the name and path to the SQL script used to upgrade the schema of an existing
UltraLite database.

Remarks
Use either ulinit or ulunload to extract the DDL statements required for your script. By using these
utilities, you ensure that the DDL statements are syntactically correct. Use ulinit (-l logfile option) or
ulunload (using the -n -s output-file options). See “UltraLite Initialize Database utility
(ulinit)” on page 197, and “UltraLite Database Unload utility (ulunload)” on page 214.

Backup the database before executing this statement.

The character set of the SQL script file must match the character set of the database you want to upgrade.

Ensure that your device is not reset while this statement is executing. If you reset the device during a
schema upgrade, the UltraLite database becomes unusable.

Any rows that do not fit into the schema will be dropped (for instance if a uniqueness constraint is added
and multiple rows contain the same values, all but one row will be dropped). In this case, the

UltraLite SQL reference

368 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SQLE_ROW_DROPPED_DURING_SCHEMA_UPGRADE warning is generated. You can use this
warning to detect the error and restore the database from the backup version.

See also
● “Deploying UltraLite schema upgrades” on page 51

Example
The following statement modifies the schema of the database using a SQL script, MySchema.sql:

ALTER DATABASE SCHEMA FROM FILE 'MySchema.sql';

ALTER PUBLICATION statement [UltraLite][UltraLiteJ]

Use this statement to alter a publication. A publication identifies data in a remote database that is to be
synchronized.

Syntax
ALTER PUBLICATION publication-name alterpub-clause

alterpub-clause :
  ADD TABLE table-name [ WHERE search-condition ]
| ALTER TABLE table-name  [ WHERE search-condition ]
| { DROP | DELETE } TABLE table-name
| RENAME publication-name

Side effects
Automatic commit.

See also
● “Search conditions in UltraLite” on page 253
● “Designing synchronization in UltraLite” on page 99
● “CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 378
● “DROP PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 392
● “START SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 405
● “STOP SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 406

Example
The following ALTER PUBLICATION statement adds the Customers table to the pub_contact publication.

ALTER PUBLICATION pub_contact
   ADD TABLE Customers;

ALTER SYNCHRONIZATION PROFILE statement [UltraLite]
[UltraLiteJ]

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 369



Use this statement to alter an UltraLite or UltraLiteJ synchronization profile. Synchronization profiles
define how an UltraLite or UltraLiteJ databases synchronize with the MobiLink server.

Syntax
ALTER SYNCHRONIZATION PROFILE sync-profile-name
MERGE  sync-option [; ... ]

sync-option :
sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters
● sync-profile-name The name of the synchronization profile.

● MERGE clause Use this clause to change existing, or add new, options to a synchronization profile.

● sync-option A string of one or more synchronization option value pairs, separated by semicolons.
For example, 'option1=value1;option2=value2'.

● sync-option-name The name of the synchronization profile option.

● sync-option-value The value for the synchronization profile option.

Remarks
See “CREATE SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 379 for a
list of the synchronization profile options supported by UltraLite and UltraLiteJ.

The REPLACE clause supported by earlier versions of UltraLite has been deprecated. Use CREATE
SYNCHRONIZATION PROFILE with the OR REPLACE clause instead. See “ALTER
SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 369.

Side effects
None.

See also
● “DROP SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 393
● “SYNCHRONIZE statement [UltraLite] [UltraLiteJ]” on page 407

Example
The following is an example of the ALTER SYNCHRONIZATION PROFILE...REPLACE statement:

CREATE SYNCHRONIZATION PROFILE myProfile1;
ALTER SYNCHRONIZATION PROFILE myProfile1
   REPLACE 'publication=p1;uploadonly=on';

The following is an example of the ALTER SYNCHRONIZATION PROFILE...MERGE statement.

UltraLite SQL reference

370 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



CREATE SYNCHRONIZATION PROFILE myProfile2 'publication=p1;verbosity=high';
ALTER SYNCHRONIZATION PROFILE myProfile2 
   MERGE'publication=p2;uploadonly=on';

ALTER TABLE statement [UltraLite] [UltraLiteJ]
Use this statement to modify a table definition.

Syntax
ALTER TABLE table-name {
add-clause 
| modify-clause 
| drop-clause 
| rename-clause 
}

add-clause :
 ADD { column-definition | table-constraint }

modify-clause :
ALTER column-definition | sync-constraint

drop-clause :
DROP { column-name | CONSTRAINT constraint-name }

rename-clause :   
RENAME { 
   new-table-name   
   | [ old-column-name TO ] new-column-name
   | CONSTRAINT old-constraint-name TO new-constraint-name }

column-definition :
column-name data-type
   [ [ NOT ] NULL ] 
   [ DEFAULT column-default ] 
   [ UNIQUE ]

column-default :
GLOBAL AUTOINCREMENT [ ( number ) ] 
| AUTOINCREMENT 
| CURRENT DATE 
| CURRENT TIME 
| CURRENT TIMESTAMP 
| NULL 
| NEWID( ) 
| constant-value

table-constraint :
[ CONSTRAINT constraint-name ] 
{ fkey-constraint | unique-key-constraint } 
[ WITH MAX HASH SIZE integer ]

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 371



fkey-constraint : 
[ NOT NULL ] FOREIGN KEY [ role-name ] ( ordered-column-list )
   REFERENCES table-name ( column-name, ... ) 
   [ CHECK ON COMMIT ] 

unique-key-constraint :
UNIQUE ( ordered-column-list )

 ordered-column-list :
( column-name [ ASC | DESC ], ... )

sync-constraint :SYNCHRONIZE ON|OFF|ALL

Parameters
add-clause  Adds a new column or table constraint to the table:

● ADD column-definition clause Adds a new column to the table. If the column has a default
value, all rows in the new column are populated with that default value. For descriptions of the
keywords and subclauses for this clause, see “CREATE TABLE statement [UltraLite]
[UltraLiteJ]” on page 384.

● ADD table-constraint clause Adds a constraint to the table. The optional constraint name allows
you to modify or drop individual constraints at a later time, rather than having to modify the entire
table constraint. For descriptions of the keywords and subclauses for this clause, see “CREATE
TABLE statement [UltraLite] [UltraLiteJ]” on page 384.

Note
You cannot add a primary key in UltraLite or UltraLiteJ.

modify-clause  Change a single column definition. Note that you cannot use primary keys in the column-
definition when part of an ALTER statement. If necessary, the data in the modified column is converted to
the new data type. If a conversion error occurs, the operation will fail and the table is left unchanged. For
a full explanation of column-definition, see “CREATE TABLE statement [UltraLite]
[UltraLiteJ]” on page 384.

drop-clause  Delete a column or a table constraint:

● DROP column-name Delete the column from the table. If the column is contained in any index,
uniqueness constraint, foreign key, or primary key, then the object must be deleted before UltraLite
can delete the column.

● DROP CONSTRAINT table-constraint Delete the named constraint from the table definition. For
a full explanation of  table-constraint, see “CREATE TABLE statement [UltraLite]
[UltraLiteJ]” on page 384.

Note
You cannot drop a primary key in UltraLite or UltraLiteJ.

rename-clause  Change the name of a table, column, or constraint:

UltraLite SQL reference

372 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



● RENAME new-table-name Change the name of the table to new-table-name. Note that any
applications using the old table name must be modified. Foreign keys that were automatically
assigned the old table name will not change names.

● RENAME old-column-name TO new-column-name Change the name of the column to the new-
column-name. Note that any applications using the old column name will need to be modified.

● RENAME old-constraint-name TO new-constraint-name Change the name of the constraint to
the new-constraint-name. Note that any applications using the old constraint name need to be modified.

Note
You cannot rename a primary key in UltraLite.

column-constraint  A column constraint restricts the values the column can hold to ensure the
integrity of data in the database. A column constraint can only be UNIQUE.

UNIQUE  Identifies one or more columns that uniquely identify each row in the table. No two rows in
the table can have the same values in all the named column(s). A table may have more than one unique
constraint.

sync-constraint clause  Specify a sync constraint to determine whether a table can be synchronized
or not.

● SYNCHRONIZE Determines whether a table can be synchronized or not and whether all rows are
uploaded or just changes to the table are uploaded. Valid values are ON (default setting - the table can
be synchronized and only changes to the table are sent in the upload), OFF (the table cannot be
synchronized and it is an error to include the table in a publication), and ALL (the table can be
synchronized and all rows in the table are sent in the upload).

Remarks
Only one table-constraint or column-constraint can be added, modified, or deleted in one ALTER
TABLE statement.

The role name is the name of the foreign key. The main function of the role-name is to distinguish two
foreign keys to the same table. Alternatively, you can name the foreign key with CONSTRAINT constraint-
name. However, do not use both methods to name a foreign key.

You cannot MODIFY a table or column constraint. To change a constraint, you must DELETE the old
constraint and ADD the new constraint.

A table whose name ends with nosync can only be renamed to a table name that also ends with nosync.
See “Non-synchronizing tables in UltraLite” on page 101.

ALTER TABLE cannot execute if a statement that affects the table is already being referenced by another
request or query. Similarly, UltraLite does not process requests referencing the table while that table is
being altered. Furthermore, you cannot execute ALTER TABLE when the database includes active
queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for
all data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 373



Statements are not released if schema changes are initiated at the same time. See “Schema changes with
DDL statements” on page 10.

See also
● “CREATE TABLE statement [UltraLite] [UltraLiteJ]” on page 384
● “DROP TABLE statement [UltraLite] [UltraLiteJ]” on page 394
● “Data types in UltraLite” on page 230
● “Altering tables” [SQL Anywhere Server - SQL Usage]
● “Using table and column constraints” [SQL Anywhere Server - SQL Usage]
● “Overriding partition sizes for autoincremented columns” on page 98
● “Determining the most recently assigned GLOBAL AUTOINCREMENT value” on page 97

Examples
The following statement drops the Street column from a fictitious table called MyEmployees.

ALTER TABLE MyEmployees
DROP Street;

The following example changes the Street column of the fictitious table, MyCustomers, to hold
approximately 50 characters.

ALTER TABLE MyCustomers
MODIFY Street CHAR(50);

ALTER USER statement [UltraLite]
Alters user settings. UltraLite only. Not supported for UltraLiteJ.

Syntax 1
ALTER USER user-name [ IDENTIFIED BY password ]

Parameters
user-name The name of the user.

IDENTIFIED BY clause The password for the user.

Remarks
User IDs and passwords cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons

A password can be either a valid identifier, or a string (maximum 255 bytes) placed in single quotes.
Passwords are case sensitive. It is recommended that the password be composed of 7-bit ASCII
characters, as other characters may not work correctly if the database server cannot convert them from the
client's character set to UTF-8.

UltraLite SQL reference

374 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Permissions
Any user can change their own password. All other changes require DBA authority.

Side effects
None.

See also
● “CREATE USER statement [UltraLite]” on page 390
● “DROP USER statement [UltraLite]” on page 394

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following alters a user named SQLTester. The password is set to "welcome".

ALTER USER SQLTester IDENTIFIED BY welcome;

CHECKPOINT statement [UltraLite]
Use this statement to checkpoint the database.

Syntax
CHECKPOINT

Remarks
You can use the CHECKPOINT statement as a trigger for a commit flush. A commit flush writes
uncommitted transactions to storage.

If you are using the embedded SQL API, you can also use the ULCheckpoint method. If you are writing a
C++ component application, you can also use the Checkpoint method on a connection object. All other
APIs must use this statement.

Side effects
While this statement flushes any pending committed transactions to storage, it does not commit or flush
current transactions.

See also
● “Flushing single or grouped transactions” on page 89
● “COMMIT statement [UltraLite] [UltraLiteJ]” on page 376
● “UltraLite COMMIT_FLUSH connection parameter” on page 170
● UltraLite embedded SQL: “ULCheckpoint method” [UltraLite - C and C++ Programming]
● UltraLite C++: “Checkpoint method” [UltraLite - C and C++ Programming]

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 375



Example
The following statement performs a checkpoint of the database:

CHECKPOINT;

COMMIT statement [UltraLite] [UltraLiteJ]
Use this statement to make changes to the database permanent.

Syntax
COMMIT [ WORK ]

Remarks
Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs, UPDATEs,
and DELETEs) since the last ROLLBACK or COMMIT. The COMMIT statement ends the current
transaction and makes all changes made during the transaction permanent in the database.

Changes to the database objects using the ALTER, CREATE, and DROP statements are committed
automatically.

See also
● “CHECKPOINT statement [UltraLite]” on page 375
● “ROLLBACK statement [UltraLite] [UltraLiteJ]” on page 402

Example
The following statement makes the changes in the current transaction permanent in the database:

COMMIT;

CREATE INDEX statement [UltraLite] [UltraLiteJ]
Use this statement to create an index on a specified table.

Syntax
CREATE [ UNIQUE ] INDEX [ IF NOT EXISTS ]  [ index-name ]
ON table-name ( ordered-column-list ) 
[ WITH MAX HASH SIZE integer ]

ordered-column-list :
( column-name [ ASC | DESC ], ... )

Parameters

UNIQUE  The UNIQUE attribute ensures that there will not be two rows in the table with identical
values in all the columns in the index. Each index key must be unique or contain a NULL in at least one
column.

UltraLite SQL reference

376 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



There is a difference between a unique constraint on a table and a unique index. Columns of a unique
index are allowed to be NULL, while columns in a unique constraint are not. A foreign key can reference
either a primary key or a unique constraint, but not a unique index, because it can include multiple
instances of NULL.

If the columns in a unique constraint are changed during an update, and a foreign key references that
unique constraint, any rows no longer referencing rows in the unique constraint are deleted from the remote.

IF NOT EXISTS clause  When the IF NOT EXISTS attribute is specified and the named index already
exists, no changes are made and an error is not returned.

ordered-column-list  An ordered list of columns. Column values in the index can be sorted in
ascending or descending order.

WITH MAX HASH SIZE  Sets the hash size (in bytes) for this index. This value overrides the default
MaxHashSize property in effect for the database. To learn the default size, see “Accessing UltraLite
database properties” on page 162. This is not supported for UltraLiteJ.

Remarks
UltraLite automatically creates indexes for primary keys and for unique constraints.

Indexes can improve query performance by providing quick ways for UltraLite to look up specific rows.
Conversely, because they have to be maintained, indexes may slow down synchronization and INSERT,
DELETE, and UPDATE statements.

Indexes are automatically used to improve the performance of queries issued to the database, and to sort
queries with an ORDER BY clause. Once an index is created, it is never referenced in a SQL statement
again except to remove it with DROP INDEX.

Indexes use space in the database. Also, the additional work required to maintain indexes can affect the
performance of data modification operations. For these reasons, you should avoid creating indexes that do
not improve query performance.

UltraLite does not process requests or queries referencing the index while the CREATE INDEX statement
is being processed. Furthermore, you cannot execute CREATE INDEX when the database includes active
queries or uncommitted transactions.

UltraLite can also use execution plans to optimize queries. See “Execution plans in
UltraLite” on page 262.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for
all data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Schema changes with
DDL statements” on page 10.

Side effects
● Automatic commit.

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 377



See also
● “UltraLite performance and optimization” on page 81
● “DROP INDEX statement [UltraLite] [UltraLiteJ]” on page 392
● “UltraLite max_hash_size creation parameter” on page 143
● “Working with UltraLite indexes” on page 61

Example
The following statement creates a two-column index on the Employees table.

CREATE INDEX employee_name_index
ON Employees ( Surname, GivenName );

The following statement creates an index on the SalesOrderItems table for the ProductID column.

CREATE INDEX item_prod
ON SalesOrderItems ( ProductID );

CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]
Use this statement to create a publication. A publication identifies synchronized data in an UltraLite
remote database.

Syntax
CREATE PUBLICATION [ IF NOT EXISTS ]publication-name
( TABLE table-name [ WHERE search-condition ], ... ) 

Parameters

● IF NOT EXISTS clause When the IF NOT EXISTS clause is specified and the named publication
already exists, no changes are made and an error is not returned.

● TABLE clause Use the table to include a TABLE in the publication. There is no limit to the
number of TABLE clauses.

● WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are
considered for upload from the associated table during synchronization. See “Search conditions in
UltraLite” on page 253.

If you do not specify a WHERE clause, every row in the table that has changed in UltraLite since the
last synchronization is considered for upload.

Remarks
A publication establishes tables that are synchronized during a single synchronization operation, and
determines which data is uploaded to the MobiLink server. The MobiLink server may send back rows for
these (and only these) tables during its download session; however, rows that are downloaded do not have
to satisfy the WHERE clause for a table.

Only entire tables can be published. You cannot publish specific columns of a table in UltraLite.

UltraLite SQL reference

378 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Side effects
● Automatic commit.

See also
● “UltraLite clients” on page 93
● “DROP PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 392
● “ALTER PUBLICATION statement [UltraLite][UltraLiteJ]” on page 369
● “Search conditions in UltraLite” on page 253

Example
The following statement publishes all the columns and rows of two tables.

CREATE PUBLICATION pub_contact (
   TABLE Contacts,
   TABLE Customers
);

The following statement publishes only the rows of the Customers table where the State column contains
MN.

CREATE PUBLICATION pub_customer (
   TABLE Customers 
   WHERE State = 'MN'
);

CREATE SYNCHRONIZATION PROFILE statement
[UltraLite] [UltraLiteJ]

Use this statement to create or replace an UltraLite or UltraLiteJ synchronization profile. Synchronization
profiles define how an UltraLite database synchronizes with the MobiLink server.

Syntax
CREATE [OR REPLACE] SYNCHRONIZATION PROFILEsync-profile-name sync-option  [;...]

sync-option :
sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters
● OR REPLACE clause If the named synchronization profile already exists, then it will be replaced.

If the profile does not exist, it will be created.

● sync-profile-name The name of the synchronization profile.

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 379



● sync-option A string of one or more synchronization option value pairs, separated by semicolons.
For example, 'option1=value1;option2=value2'.

● sync-option-name The name of the synchronization profile option.

● sync-option-value The value for the synchronization profile option.

Remarks
There are two possible ways to make changes to an existing synchronization profile. The first is to use the
REPLACE clause. This will replace the contents of the synchronization profile with whatever is contained
in the new sync-option string. This is the same as dropping the synchronization profile and then creating
one with the same name but using the new string. Note, therefore, that a synchronization profile does not
need to contain a full synchronization definition because parameters can be merged in (or overridden) at
synchronization time.

The second way to modify a synchronization profile is to use the MERGE clause. When using this clause,
only the sync options that are specified in the MERGE clause are changed. To remove a sync option from
a synchronization profile, the sync-option string should look like 'option1=;' (to set the option to an
empty value).

The STREAM synchronization profile option is different from the other options because its value
contains a sub-list. For example: 'STREAM=TCPIP{host=192.168.1.1;port=1234}'. In this
case 'host=192.168.1.1;port=1234' is the sub-list. To add or remove a sub-list value, use a
period between the STREAM sync-option-name and the sub-option-name. For example, MERGE
'stream.port=5678;stream.host=;compression=zlib' results in a synchronization
profile of: stream=TCPIP{port=5678;compression=zlib}. Attempting to set the stream to a
new value will replace the entire stream value. For example: MERGE 'stream=HTTPS' results in a
synchronization profile of: stream=HTTPS{}.

The following table lists the synchronization profile options supported by UltraLite and UltraLiteJ.

Synchro-
nization
profile
option

Valid
values

Description

Allow-
Download-
DupRows
(UltraLite
only)

Boo-
lean

This option prevents errors from being raised when multiple rows are downloa-
ded that have the same primary key. This can be used to allow inconsistent data
to be synchronized without causing the synchronisation to fail. The default val-
ue is "no." See “Additional Parameters synchronization parameter” on page 111.

Auth-
Parms
(UltraLite
and Ultra-
LiteJ)

String
(com-
ma
separa-
ted)

Specifies the list of authentication parameters sent to the MobiLink server. You
can use authentication parameters to perform custom authentication in Mobi-
Link scripts. See “Authentication Parameters synchronization parame-
ter” on page 112.

UltraLite SQL reference

380 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Synchro-
nization
profile
option

Valid
values

Description

Check-
pointStore
(UltraLite
only)

Boo-
lean

Adds additional checkpoints of the database during synchronization to limit da-
tabase growth during the synchronization process. See “Additional Parameters
synchronization parameter” on page 111.

Continue-
Download
(UltraLite
only)

Boo-
lean

Restarts a previously failed download. When continuing a download, only the
changes that were selected to be downloaded with the failed synchronization are
received. By default, UltraLite does not continue downloads. See “Resuming
failed downloads” [MobiLink - Server Administration].

Disable-
Concur-
rency (Ul-
traLite on-
ly)

Boo-
lean

Disallow database access from other threads during synchronization. See “Addi-
tional Parameters synchronization parameter” on page 111.

Downloa-
dOnly
(UltraLite
and Ultra-
LiteJ)

Boo-
lean

Performs a download-only synchronization. See “Download Only synchroniza-
tion parameter” on page 115.

KeepPar-
tialDown-
load (Ul-
traLite on-
ly)

Boo-
lean

Controls whether UltraLite keeps a partial download if a communication error
occurs. By default, UltraLite does not roll back partially downloaded changes.
See “Keep Partial Download synchronization parameter” on page 117.

Mobi-
LinkPwd
(UltraLite
and Ultra-
LiteJ)

String Specifies the existing MobiLink password associated with the user name. See
“MobiLinkPwd (mp) extended option” [MobiLink - Client Administration].

MobiLin-
kUid (Ul-
traLite
and Ultra-
LiteJ)

String Specifies the MobiLink user name. See “-u dbmlsync option (deprecated)” [Mo-
biLink - Client Administration]. See “-mn dbmlsync option” [MobiLink - Client
Administration].

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 381



Synchro-
nization
profile
option

Valid
values

Description

NewMo-
bi-
LinkPwd
(UltraLite
and Ultra-
LiteJ)

String Supplies a new password for the MobiLink user. Use this option when you want
to change an existing password. See “-mn dbmlsync option” [MobiLink - Client
Administration].

Ping (Ul-
traLite
and Ultra-
LiteJ)

Boo-
lean

Confirms communications with the server only; no synchronization is per-
formed. See “Ping synchronization parameter” on page 121.

Publica-
tions (Ul-
traLite
and Ultra-
LiteJ)

String
(com-
ma
separa-
ted)

Specifies the publications(s) to synchronize. The publications determine the ta-
bles on the remote that are involved in synchronization. If this parameter is
blank (the default) then all tables are synchronized. If the parameter is an aster-
isk (*) then all publications are synchronized. See “Publications in Ultra-
Lite” on page 102.

Script-
Version
(UltraLite
and Ultra-
LiteJ)

String Specifies the MobiLink script version. The script version determines which
scripts are run by MobiLink on the consolidated database during synchroniza-
tion. If you do not specify a script version, 'default' is used. See “ScriptVersion
(sv) extended option” [MobiLink - Client Administration].

SendCo-
lumn-
Names
(UltraLite
and Ultra-
LiteJ)

String Specifies that column names should be sent to the MobiLink server as part of
the upload file when synchronizing. By default, column names are not sent. See
“Send Column Names synchronization parameter” on page 124.

Send-
Downloa-
dACK
(UltraLite
and Ultra-
LiteJ)

Boo-
lean

Specifies that a download acknowledgement should be sent from the client to
the server. By default, the MobiLink server does not provide a download ac-
knowledgement. See “Send Download Acknowledgement synchronization pa-
rameter” on page 125.

Stream
(UltraLite
and Ultra-
LiteJ)

String
(with
sub-
list)

Specifies the MobiLink network synchronization protocol. See “Stream Type
synchronization parameter” on page 127.

UltraLite SQL reference

382 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Synchro-
nization
profile
option

Valid
values

Description

TableOr-
der (Ultra-
Lite and
UltraLi-
teJ)

String
(com-
ma
separa-
ted)

Specifies the order of tables in the upload. By default, UltraLite and UltraLiteJ
select an order based on foreign key relationships. See “Additional Parameters
synchronization parameter” on page 111.

Uploa-
dOnly
(UltraLite
and Ultra-
LiteJ)

String Specifies that synchronization will only include an upload, and no download
will occur. See “Upload Only synchronization parameter” on page 130.

The Boolean values can be specified as Yes/No, 1/0, True/False, On/Off. In all the Boolean cases, the
default is "No". For all other values, the default is simply unspecified.

Side effects
None.

See also
● “ALTER SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 369
● “DROP SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 393
● “SYNCHRONIZE statement [UltraLite] [UltraLiteJ]” on page 407

Example
The following creates a synchronization profile called Test1.

CREATE SYNCHRONIZATION PROFILE Test1 
'MobiLinkUid=mary;Stream=TCPIP{host=192.168.1.1;port=1234}'

The following examples illustrate the changes that occur after executing a sequence of ALTER
SYNCHRONIZATION PROFILE commands with different options.

Suppose myProfile1='MobiLinkUID=mary;ScriptVersion=default'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 REPLACE
'MobiLinkPwd=sql;ScriptVersion=1', myProfile1 is
'MobiLinkPwd=sql;ScriptVersion=1'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkUID=mary;STREAM=tcpip', myProfile1 is
'MobiLinkPwd=sql;ScriptVersion=1;MobiLinkUID=mary;STREAM=tcpip'.

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 383



After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkUID=;STREAM.host=192.168.1.1;STREAM.port=1234;ScriptVersion=;
', myProfile1 is 'MobiLinkPwd=sql;STREAM=tcpip{192.168.1.1;port=1234}'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkPwd=;Ping=yes;STREAM =HTTP', myProfile1 is 'Ping=yes;STREAM=HTTP'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'STREAM=HTTP{host=192.168.1.1}', myProfile1 is
'Ping=yes;STREAM=HTTP{host=192.168.1.1}'.

CREATE TABLE statement [UltraLite] [UltraLiteJ]

Use this statement to create a table.

Syntax
CREATE TABLE [ IF NOT EXISTS ] table-name (
 { column-definition | table-constraint| sync-constraint }, ... 
)

column-definition :
column-name  data-type    
[ [ NOT ] NULL ] 
[ DEFAULT column-default]
[STORE AS FILE (file-name) [CASCADE DELETE ] 
[ column-constraint ]

column-default :
AUTOFILENAME(prefix,extension)
| GLOBAL AUTOINCREMENT [ ( number ) ] 
| AUTOINCREMENT 
| CURRENT DATE 
| CURRENT TIME 
| CURRENT TIMESTAMP
| NULL 
| NEWID( )
| constant-value

file-name
"filename"

column-constraint :
PRIMARY KEY
| UNIQUE

table-constraint :
{ [ CONSTRAINT constraint-name ] 
   pkey-constraint 
   | fkey-constraint 
   | unique-key-constraint } 
[ WITH MAX HASH SIZE integer ]

UltraLite SQL reference

384 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



pkey-constraint : 
PRIMARY KEY [ ordered-column-list ]

fkey-constraint : 
[ NOT NULL ] FOREIGN KEY [ role-name ] ( ordered-column-list )
   REFERENCES table-name ( column-name, ... ) 
   [ CHECK ON COMMIT ] 

unique-key-constraint :
UNIQUE ( ordered-column-list )

 ordered-column-list :
( column-name [ ASC | DESC ], ... )

sync-constraint :SYNCHRONIZE ON|OFF|ALL

Parameters

IF NOT EXISTS clause  Use this clause to create a table. No changes are made if the named table
already exists, and an error is not returned.

column-definition  Defines a column in a table. Available parameters for this clause include:

● column-name The column name is an identifier. Two columns in the same table cannot have the
same name. See “Identifiers in UltraLite” on page 225.

UltraLiteJ, using BlackBerry OS 4.2 or J2SE, supports the partitioning of database files such that
external files may now be used to store large BLOB values, with the files referenced using the
file_name and file_contents columns. The file_name column stores a data type of CHAR(size) and
the file_contents column stores a LONG BINARY data type. This column is read-only.

See “Data types in UltraLite” on page 230.

● data-type The data type of the column. See “Data types in UltraLite” on page 230.

● [ NOT ] NULL If NOT NULL is specified, or if the column is in a PRIMARY KEY or UNIQUE
constraint, the column cannot contain NULL in any row. Otherwise, NULL is allowed.

● column-default Sets the default value for the column. If a DEFAULT value is specified, it is used
as the value for the column in any INSERT statement that does not specify a value for the column. If
no DEFAULT is specified, it is equivalent to DEFAULT NULL. Default options include:

○ AUTOFILENAME This clause supports the storing of external BLOB files in a partitioned
UltraLiteJ database.

The file_name column requires the AUTOFILENAME(prefix,extension) clause. This clause
specifies how new filenames are to be generated for downloaded BLOB values. The prefix and
extension values are string literal constants. The filename must be a valid filename. For the
BlackBerry, relative filenames are resolved against the database option
OPTION_BLOB_FILE_BASE_DIR. If UltraLite determines that a filename does not begin with
the prefix "file://", it will prepend the filename with the value of the

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 385



OPTION_BLOB_FILE_BASE_DIR option before attempting to open it. See
“OPTION_BLOB_FILE_BASE_DIR variable” [UltraLiteJ].

○ AUTOINCREMENT UltraLiteJ only.

When using AUTOINCREMENT, the column must be one of the integer data types, or an exact
numeric type. On inserts into the table, if a value is not specified for the AUTOINCREMENT
column, a unique value larger than any other value in the column is generated. If an INSERT
specifies a value for the column that is larger than the current maximum value for the column, that
value is used as a starting point for subsequent inserts.

Tip
In UltraLite, the autoincrement value is not set to 0 when the table is created, and
AUTOINCREMENT generates negative numbers when a signed data type is used for the column.
Therefore, declare AUTOINCREMENT columns as unsigned integers to prevent negative values
from being used.

○ GLOBAL AUTOINCREMENT Similar to AUTOINCREMENT, except that the domain is
partitioned. Each partition contains the same number of values. You assign each copy of the
database a unique global database identification number. UltraLite supplies default values in a
database only from the partition uniquely identified by that database's number.

Tip
If the column is of type BIGINT or UNSIGNED BIGINT, the default partition size is 2^32 =
4294967296; for columns of all other types, the default partition size is 2^16 = 65536. Since these
defaults may be inappropriate, especially if your column is not of type INT or BIGINT, it is best
to specify the partition size explicitly.

See “Using GLOBAL AUTOINCREMENT in UltraLite” on page 95, and “UltraLite
global_database_id option” on page 165.

○ [ NOT ] NULL Controls whether the column can contain NULLs.

○ NEWID( ) A function that generates a unique identifier value. See “NEWID function
[Miscellaneous]” on page 328.

○ CURRENT TIMESTAMP Combines CURRENT DATE and CURRENT TIME to form a
TIMESTAMP value containing the year, month, day, hour, minute, second, and fraction of a
second. The fraction of a second is stored to 3 decimal places. The accuracy is limited by the
accuracy of the system clock. See “CURRENT TIMESTAMP special value” on page 228.

○ CURRENT DATE Stores the current year, month, and day. See “CURRENT DATE special
value” on page 227.

○ CURRENT TIME Stores the current hour, minute, second and fraction of a second. See
“CURRENT TIME special value” on page 228.

UltraLite SQL reference

386 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



○ constant-value A constant for the data type of the column. Typically the constant is a number
or a string.

● STORE AS FILE (file-name) [CASCADE DELETE] UltraLiteJ only.

The file_contents column must specify an existing CHAR column as the STORE AS FILE
argument. The file_contents column behaves as a read-only column.

On deletion of a row containing a BLOB file, the file will be deleted if CASCADE DELETE is
specified. Otherwise the file will be left in the file system and will no longer be a property of the
database. Specifying the CASCADE DELETE clause ensures that a file is never inserted into the
database twice. On rollback of an insert, the file will not be deleted even if CASCADE DELETE is
specified.

An update that changes the contents of a filename column is identical to a DELETE followed by an
INSERT. If CASCADE DELETE is specified, the file pointed to by the old filename will be deleted.
If a row with a BLOB file is updated and the filename column is not changed, or if the filename
column is updated to be the exact same value, the file is protected from being deleted. A BLOB file
column may not be changed in an UPDATE statement.

● column-constraint clause Specify a column constraint to restrict the values allowed in a column.
A column constraint can be one of:

○ PRIMARY KEY When set as part of a column-constraint, the PRIMARY KEY clause sets the
column as the primary key for the table. Primary keys uniquely identify each row in a table. By
default, columns included in primary keys do not allow NULL.

○ UNIQUE Identifies one or more columns that uniquely identify each row in the table. No two
rows in the table can have the same values in all the named column(s). A table may have more
than one unique constraint. NULL values are not allowed.

table-constraint clause  Specify a table constraint to restrict the values that one or more columns in
the table can hold. Use the CONSTRAINT clause to specify an identifier for the table constraint. Table
constraints can be in the form of a primary key constraint, a foreign key constraint, or a unique constraint,
as defined below:

● pkey-constraint clause Sets the specified column(s) as the primary key for the table. Primary
keys uniquely identify each row in a table. Columns included in primary keys cannot allow NULLs.

● fkey-constraint clause Specify a foreign key constraint to restrict values for one or more columns
that must match the values in a primary key (or a unique constraint) of another table.

○ NOT NULL clause Specify NOT NULL to disallow NULLs in the foreign key columns. A
NULL in a foreign key means that no row in the primary table corresponds to this row in the
foreign table. If at least one value in a multi-column foreign key is NULL, there is no restriction
on the values that can be held in other columns of the key.

○ role-name clause Specify a role-name to name the foreign key. role-name is used to
distinguish foreign keys within the same table. Alternatively, you can name the foreign key using
CONSTRAINT constraint-name. However, do not use both methods to name a foreign key.

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 387



○ REFERENCES clause Specify the REFERENCES clause to define one or more columns in
the primary table to use as the foreign key constraint. Any column-name you specify in a
REFERENCES column constraint must be a column in the primary table, and must be subject to a
unique constraint or primary key constraint.

○ CHECK ON COMMIT UltraLite only. Not supported for UltraLiteJ. Specify CHECK ON
COMMIT to cause the database server to wait for a COMMIT before enforcing foreign key
constraints. By default, foreign key constraints are enforced immediately during insert, update, or
delete operations. However, when CHECK ON COMMIT is set, database changes can be made in
any order, even if they violate foreign key constraints, if inconsistent data is resolved before the
next COMMIT.

● unique-key-constraint clause Specify a unique constraint to identify one or more columns that
uniquely identify each row in the table. No two rows in the table can have the same values in all the
named column(s). A table may have more than one unique constraint.

● WITH MAX HASH SIZE Sets the hash size (in bytes) for this index. This value overrides the
default MaxHashSize property in effect for the database. To learn the default size, see “Accessing
UltraLite database properties” on page 162. This is not supported for UltraLiteJ.

sync-constraint clause  Specify a sync constraint to determine whether a table can be synchronized
or not.

● SYNCHRONIZE Determines whether a table can be synchronized or not and whether all rows are
uploaded or just changes to the table are uploaded. Valid values are ON (default setting - the table can
be synchronized and only changes to the table are sent in the upload), OFF (the table cannot be
synchronized and it is an error to include the table in a publication), and ALL (used for UltraLite only
- the table can be synchronized and all rows in the table are sent in the upload).

Remarks
Column constraints are normally used unless the constraint references more than one column in the table.
In these cases, a table constraint must be used. If a statement causes a violation of a constraint, execution
of the statement does not complete. Any changes made by the statement before error detection are
undone, and an error is reported.

Each row in the table has a unique primary key value.

If no role name is specified, the role name is assigned as follows:

1. If there is no foreign key with a role name the same as the table name, the table name is assigned as
the role name.

2. If the table name is already taken, the role name is the table name concatenated with a zero-padded,
three-digit number unique to the table.

Schema changes  Statements are not released if schema changes are initiated at the same time. See
“Schema changes with DDL statements” on page 10.

UltraLite SQL reference

388 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite does not process requests or queries referencing the table while the CREATE TABLE statement
is being processed. Furthermore, you cannot execute CREATE TABLE when the database includes active
queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for
all data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Synchronization of external BLOB columns (UltraLiteJ only)  On the consolidated database, the
filename column is stored as a regular CHAR column and the BLOB file column is stored as a regular
BLOB (LONG BINARY) column. On a download, the filename column is ignored and a new filename is
generated using the database option (Connection.OPTION_BLOB_FILE_BASE_DIR) and the prefix and
extension strings specified on the DEFAULT AUTOFILENAME clause. For J2SE the syntax is
<database_option_blob_file_base_dir><prefix><auto generated integer
value>.<extension> and for the BlackBerry the syntax is <prefix><auto
generated integer value>.<extension>. Therefore, for the BlackBerry generated filenames
are always relative.

Side effects
Automatic commit.

See also
● “Expressions in UltraLite” on page 246
● “DROP TABLE statement [UltraLite] [UltraLiteJ]” on page 394
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Data types in UltraLite” on page 230
● “Overriding partition sizes for autoincremented columns” on page 98

Example
The following statement creates a table for a library database to hold book information.

CREATE TABLE library_books (
   isbn CHAR(20)      PRIMARY KEY,
   copyright_date     DATE,
   title              CHAR(100),
   author             CHAR(50),
   location           CHAR(50),
   FOREIGN KEY location REFERENCES room
);

The following statement creates a table for a library database to hold information on borrowed books. The
default value for date_borrowed indicates that the book is borrowed on the day the entry is made. The
date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (
   loaner_name   CHAR(100) PRIMARY KEY,
   date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
   date_returned DATE,
   book CHAR(20),
   FOREIGN KEY (book) REFERENCES library_books (isbn)
);

The following statement creates tables for a sales database to hold order and order item information.

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 389



CREATE TABLE Orders (
   order_num INTEGER NOT NULL PRIMARY KEY,
   date_ordered DATE,
   name CHAR(80)
);
CREATE TABLE Order_item (
   order_num        INTEGER NOT NULL,
   item_num         SMALLINT NOT NULL,
   PRIMARY KEY (order_num, item_num),
   FOREIGN KEY (order_num)
   REFERENCES Orders (order_num)
);

CREATE USER statement [UltraLite]
Creates a database user or group. UltraLite only. Not supported for UltraLiteJ.

Syntax
CREATE USER user-name [ IDENTIFIED BY password ]

Parameters
user-name The name of the user you are creating.

Remarks
You do not have to specify a password for the user. A user without a password cannot connect to the
database. This is useful if you are creating a group and do not want anyone to connect to the database
using the group user ID. A user ID must be a valid identifier.

User IDs and passwords cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons

A password can be either a valid identifier, or a string (maximum 255 bytes) placed in single quotes.
Passwords are case sensitive. It is recommended that the password be composed of 7-bit ASCII
characters, as other characters may not work correctly if the database server cannot convert them from the
client's character set to UTF-8.

Permissions
DBA authority

Side effects
None.

UltraLite SQL reference

390 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “ALTER USER statement [UltraLite]” on page 374
● “DROP USER statement [UltraLite]” on page 394

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following example creates a user named SQLTester with the password welcome.

CREATE USER SQLTester IDENTIFIED BY welcome;

DELETE statement [UltraLite] [UltraLiteJ]

Use this statement to delete rows from a table in the database.

Syntax
DELETE [ FROM ] table-name[[AS] correlation-name]
[ WHERE search-condition ]

Parameters

correlation-name  An identifier to use when referencing the table from elsewhere in the statement.

WHERE clause  If a WHERE clause is specified, only rows satisfying search-condition are deleted.
See “Search conditions in UltraLite” on page 253.
The WHERE clause does not support non-deterministic functions (like RAND) or variables. Nor does this
clause restrict columns; columns may need to reference another table when used in a subquery.

Remarks
The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “UltraLite row states” on page 12.

See also
● “START SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 405
● “STOP SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 406

Example
The following statement removes employee 105 from the Employees table.

DELETE
FROM Employees
WHERE EmployeeID = 105;

The following statement removes all data before the year 2000 from the FinancialData table.

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 391



DELETE
FROM FinancialData
WHERE Year < 2000;

DROP INDEX statement [UltraLite] [UltraLiteJ]

Use this statement to delete an index.

Syntax
DROP INDEX[ IF EXISTS ] [ table-name.]index-name

Remarks
You cannot drop the primary index of a table.

UltraLite does not process requests or queries referencing the index while the DROP INDEX statement is
being processed. Furthermore, you cannot execute DROP INDEX when the database includes active
queries or uncommitted transactions.

Use the IF EXISTS clause if you do not want an error returned when the DROP INDEX statement
attempts to remove an index that does not exist.

When you specify the IF EXISTS clause and the named table cannot be located, an error is returned.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for
all data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Schema changes with
DDL statements” on page 10.

See also
● “CREATE INDEX statement [UltraLite] [UltraLiteJ]” on page 376
● “Working with UltraLite indexes” on page 61

Example
The following statement deletes a fictitious index, fin_codes_idx, on the FinancialData table:

DROP INDEX FinancialData.fin_codes_idx;

DROP PUBLICATION statement [UltraLite] [UltraLiteJ]

Use this statement to delete publications.

Syntax
DROP PUBLICATION[ IF EXISTS ]  publication-name, ... 

UltraLite SQL reference

392 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP PUBLICATION
statement attempts to remove a publication that does not exist.

See also
● “Designing synchronization in UltraLite” on page 99
● “ALTER PUBLICATION statement [UltraLite][UltraLiteJ]” on page 369
● “CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]” on page 378

Example
The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact;

DROP SYNCHRONIZATION PROFILE statement [UltraLite]
[UltraLiteJ]

Use this statement to delete an UltraLite or UltraLiteJ synchronization profile. Synchronization profiles
define how an UltraLite or UltraLiteJ database synchronizes with the MobiLink server.

Syntax
DROP SYNCHRONIZATION PROFILE [ IF EXISTS ] sync-profile-name

Parameters
● sync-profile-name The name of the synchronization profile.

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP SYNCHRONIZATION
PROFILE statement attempts to remove a synchronization profile that does not exist.

Side effects
None.

See also
● “CREATE SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 379
● “ALTER SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 369
● “SYNCHRONIZE statement [UltraLite] [UltraLiteJ]” on page 407

Example
The following example shows the syntax for dropping a synchronization profile called Test1.

DROP SYNCHRONIZATION PROFILE Test1;

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 393



DROP TABLE statement [UltraLite] [UltraLiteJ]
Use this statement to remove a table, and all its data, from a database.

Syntax
DROP TABLE [ IF EXISTS ]  table-name

Remarks
The DROP TABLE statement drops the specified table from the database. All data in the table and any
indexes and keys are also removed.

UltraLite does not process requests or queries referencing the table, or its indexes, while the DROP
TABLE statement is being processed. Furthermore, you cannot execute DROP TABLE when there are
active queries or uncommitted transactions.

Use the IF EXISTS clause if you do not want an error returned when the DROP TABLE statement
attempts to remove a table that does not exist.

For UltraLite.NET, you cannot execute this statement unless you also call the Dispose method for all data
objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Schema changes with
DDL statements” on page 10.

See also
● “ALTER TABLE statement [UltraLite] [UltraLiteJ]” on page 371
● “CREATE TABLE statement [UltraLite] [UltraLiteJ]” on page 384

Example
The following statement deletes a fictitious table, EmployeeBenefits, from the database:

DROP TABLE EmployeeBenefits;

DROP USER statement [UltraLite]
Drops a user. UltraLite only. Not supported for UltraLiteJ.

Syntax
DROP USER userid 

Parameters
● userid The userid of the user you are dropping.

Permissions
DBA authority.

UltraLite SQL reference

394 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Remarks
None.

Side effects
None.

See also
● “ALTER USER statement [UltraLite]” on page 374
● “CREATE USER statement [UltraLite]” on page 390

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following example drops the user SQLTester from a database.

DROP USER SQLTester;

FROM clause [UltraLite]
Use this clause to specify the tables or views involved in a SELECT statement.

Syntax
FROM  table-expression, ...

table-expression :
table-name [ [ AS ] correlation-name ]
| ( select-list ) [ AS ] derived-table-name ( column-name, ... )
| ( table-expression )
| table-expression join-operator table-expression [ ON search-condition ] ...

join-operator :
,
| INNER JOIN
| CROSS JOIN 
| LEFT OUTER JOIN 
| JOIN

Parameters
table-name  A base table or temporary table. Tables cannot be owned by different users in UltraLite. If
you qualify tables with user ID, the ID is ignored.

correlation-name  An identifier to use when referencing the table from elsewhere in the statement.
For example, in the following statement, a is defined as the correlation name for the Contacts table, and b
is the correlation name for the Customers table.

SELECT *
FROM Contacts a, Customers b 
WHERE a.CustomerID=b.ID;

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 395



derived-table-name  A derived table is a nested SELECT statement in the FROM clause.

Items from the select list of the derived table are referenced by the (optional) derived table name followed
by a period (.) and the column name. You can use the column name by itself if it is unambiguous.

You cannot reference derived tables from within the SELECT statement. See “Subqueries in
expressions” on page 251.

join-operator  Specify the type of join. If you specify a comma (,), or CROSS JOIN, you cannot
specify an ON subclause. If you specify JOIN, you must specify an ON subclause. For INNER JOIN and
LEFT OUTER JOIN, the ON clause is optional.

Remarks
When there is no FROM clause, the expressions in the SELECT statement must be a constant expression.

Derived tables
Although this description refers to tables, it also applies to derived tables unless otherwise noted.

The FROM clause creates a result set consisting of all the columns from all the tables specified. Initially,
all combinations of rows in the specified tables are in the result set, and the number of combinations is
usually reduced by JOIN conditions and/or WHERE conditions.

If you do not specify the type of join, and instead list the tables as a comma-separated list, a CROSS JOIN
is used, by default.

For INNER joins, restricting results of the join using an ON clause or WHERE clause returns equivalent
results. For OUTER joins, they are not equivalent.

Note
UltraLite does not support KEY JOINS nor NATURAL joins.

See also
● “Joins: Retrieving data from several tables” [SQL Anywhere Server - SQL Usage]
● “DELETE statement [UltraLite] [UltraLiteJ]” on page 391
● “SELECT statement [UltraLite] [UltraLiteJ]” on page 402
● “UPDATE statement [UltraLite] [UltraLiteJ]” on page 410

Example
The following are valid FROM clauses:

...
FROM Employees
...
...
FROM Customers
CROSS JOIN SalesOrders
CROSS JOIN SalesOrderItems
CROSS JOIN Products
...

UltraLite SQL reference

396 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



The following query uses a derived table to return the names of the customers in the Customers table who
have more than three orders in the SalesOrders table:

SELECT Surname, GivenName, number_of_orders
FROM Customers JOIN
     ( SELECT CustomerID, COUNT(*)
       FROM SalesOrders
       GROUP BY CustomerID )
     AS sales_order_counts( CustomerID, number_of_orders )
ON ( Customers.id = sales_order_counts.CustomerID )
WHERE number_of_orders > 3;

Grant Connect to statement [UltraLite]

Use this statement to grant connection permission for a user.

Syntax
GRANT CONNECT TO userid.
[IDENTIFIED BY password]

See also
● “GrantConnectTo method” [UltraLite - C and C++ Programming] (C++)
● “GrantConnectTo method” [UltraLite - .NET Programming] (.NET)
● “grantConnectTo method” [UltraLite - M-Business Anywhere Programming](M-Business Anywhere)

INSERT statement [UltraLite] [UltraLiteJ]

Use this statement to insert rows into a table.

Syntax
INSERT [ INTO ] 
table-name [ ( column-name, ... ) ]
{ VALUES ( expression, ... ) | select-statement }

Remarks
The INSERT statement can be used to insert a single row, or to insert multiple rows from a query result set.

If columns are specified, values are inserted one for one into the specified columns. If the list of column
names is not specified, values are inserted into the table columns in the order in which they appear in the
table (the same order as retrieved with SELECT *). Rows are inserted into the table in an arbitrary order.

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive.

See also
● “SELECT statement [UltraLite] [UltraLiteJ]” on page 402

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 397



Example
The following statement adds an Eastern Sales department to the database.

INSERT
INTO Departments ( DepartmentID, DepartmentName )
VALUES ( 230, 'Eastern Sales' );

LOAD TABLE statement [UltraLite]
Use this statement to import bulk data into a database table from an external file. This statement also
provides support for handling the output of the SQL Anywhere dbunload utility (the reload.sql file).
LOAD TABLE is not supported on devices (Windows Mobile, iPhone, embedded Linux).

LOAD [ INTO ] TABLE [ owner.]table-name 
( column-name, ... ) 
FROM stringfilename
[ load-option ... ]

load-option :
CHECK CONSTRAINTS { ON | OFF } 
| COMPUTES { ON | OFF}
| DEFAULTS { ON | OFF }
| DELIMITED BY string
| ENCODING encoding
| ESCAPES { ON }
| FORMAT { ASCII | TEXT}
| ORDER { ON | OFF}| 
| QUOTES { ON | OFF }
| SKIP integer
| STRIP { ON | OFF | BOTH }
| WITH CHECKPOINT { ON | OFF }

comment-prefix : string

encoding : string

Parameters
● column-name Use this clause to specify one or more columns to load data into. Any columns not

present in the column list become NULL if DEFAULTS is OFF. If DEFAULTS is ON and the
column has a default value, that value is used. If DEFAULTS is OFF and a non-nullable column is
omitted from the column list, the database server attempts to convert the empty string to the column's
type.

When a column list is specified, it lists the columns that are expected to exist in the file and the order
in which they are expected to appear. Column names cannot be repeated.

● FROM string-filename Use this to specify a file from which to load the data. The string-filename
is passed to the database server as a string. The string is therefore subject to the same database
formatting requirements as other SQL strings. In particular:

UltraLite SQL reference

398 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



○ To indicate directory paths, the backslash character (\) must be represented by two backslashes.
The statement to load data from the file c:\temp\input.dat into the Employees table is:

LOAD TABLE Employees
FROM 'c:\\temp\\input.dat' ...

○ The path name is relative to the database server, not to the client application.

○ You can use UNC path names to load data from files on computers other than the database server.

● load-option clause There are several load options you can specify to control how data is loaded.
The following list gives the supported load options:

○ CHECK CONSTRAINTS clause This clause controls whether constraints are checked during
loading. CHECK CONSTRAINTS is ON by default, but the Unload utility (ulunload) writes out
LOAD TABLE statements with CHECK CONSTRAINTS set to OFF. Setting CHECK
CONSTRAINTS to OFF disables check constraints, which can be useful, for example, during
database rebuilding.

○ COMPUTES clause This option is processed but ignored by UltraLite.

○ DEFAULTS clause By default, DEFAULTS is set to OFF. If DEFAULTS is OFF, any column
not present in the list of columns is assigned NULL. If DEFAULTS is set to OFF and a non-
nullable column is omitted from the list, the database server attempts to convert the empty string
to the column's type. If DEFAULTS is set to ON and the column has a default value, that value is
used.

○ DELIMITED BY clause Use this clause to specify the column delimiter string. The default
column delimiter string is a comma; however, it can be any string up to 255 bytes in length (for
example, ... DELIMITED BY '###' ...). The formatting requirements of other SQL
strings apply. If you want to specify tab-delimited values, you could specify the hexadecimal
escape sequence for the tab character (9), ... DELIMITED BY '\x09' ....

○ ENCODING clause This clause specifies the character encoding used for the data being loaded
into the database.

○ ESCAPES clause ESCAPES is always ON, therefore characters following the backslash
character are recognized and interpreted as special characters by the database server. Newline
characters can be included as the combination \n, and other characters can be included in data as
hexadecimal ASCII codes, such as \x09 for the tab character. A sequence of two backslash
characters ( \\ ) is interpreted as a single backslash. A backslash followed by any character other
than n, x, X, or \ is interpreted as two separate characters. For example, \q inserts a backslash and
the letter q.

○ FORMAT clause This clause specifies the format of the data source you are loading data from.
With TEXT, input lines are assumed to be characters (as defined by the ENCODING option), one
row per line, with values separated by the column delimiter string. ASCII is also supported.

○ QUOTES clause This clause specifies whether strings are enclosed in quotes. UltraLite only
supports ON, therefore the LOAD TABLE statement expects strings to be enclosed in quote

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 399



characters. The quote character is an apostrophe (single quote). The first such character
encountered in a string is treated as the quote character for the string. Strings must be terminated
by a matching quote.

Column delimiter strings can be included in column values. Also, quote characters are assumed
not to be part of the value. Therefore, the following line is treated as two values, not three, despite
the presence of the comma in the address. Also, the quotes surrounding the address are not
inserted into the database.

'123 High Street, Anytown',(715)398-2354

To include a quote character in a value, you must use two quotes. The following line includes a
value in the third column that is a single quote character:

'123 High Street, Anytown','(715)398-2354',''''

○ SKIP clause Use this clause to specify whether to ignore lines at the beginning of a file. The
integer argument specifies the number of lines to skip. You can use this clause to skip over a line
containing column headings, for example.

○ STRIP clause This clause is processed but ignored. This clause specifies whether unquoted
values should have leading or trailing blanks stripped off before they are inserted. The STRIP
option accepts the following options:

● STRIP ON Strip leading blanks.

● STRIP OFF Do not strip off leading or trailing blanks.

● STRIP BOTH Strip both leading and trailing blanks.

○ WITH CHECKPOINT clause Use this clause to specify whether to perform a checkpoint. The
default setting is OFF. If this clause is set to ON, a checkpoint is issued after successfully
completing the statement.

Remarks
LOAD TABLE allows efficient mass insertion into a database table from a file. It is provided primarily as
a means of supporting the output of the SQL Anywhere dbunload utility (the reload.sql file).

LOAD TABLE is only supported for Windows and Linux, not Windows Mobile.

With FORMAT TEXT, a NULL value is indicated by specifying no value. For example, if three values
are expected and the file contains 1,,'Fred',, then the values inserted are 1, NULL, and Fred. If the
file contains 1,2,, then the values 1, 2, and NULL are inserted. Values that consist only of spaces are
also considered NULL values. For example, if the file contains 1, ,'Fred',, then values 1, NULL,
and Fred are inserted. All other values are considered not NULL. For example, '' (single-quote single-
quote) is an empty string. 'NULL' is a string containing four letters.

If a column being loaded by LOAD TABLE does not allow NULL values and the file value is NULL,
then numeric columns are given the value 0 (zero), character columns are given an empty string (''). If a
column being loaded by LOAD TABLE allows NULL values and the file value is NULL, then the
column value is NULL (for all types).

UltraLite SQL reference

400 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



If the table contains columns a, b, and c, and the input data contains a, b, and c, but the LOAD statement
only specifies a and b as columns to load data into, the following values are inserted into column c:

● if DEFAULTS ON is specified, and column c has a default value, the default value is used.

● if column c does not have a default value, and NULLs are allowed, a NULL is used.

● if column c has no default value and does not allow NULLs, either a zero (0) or an empty string (''), is
used, or an error is returned, depending on the data type of the column.

Side effects
Automatic commit.

See also
● “INSERT statement [UltraLite] [UltraLiteJ]” on page 397
● “UltraLite Database Unload utility (ulunload)” on page 214
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2003 Vendor extension.

Example
Following is an example of LOAD TABLE. First, you create a table, and then load data into it using a file
called input.txt.

CREATE TABLE t( a CHAR(100) primary key, let_me_default INT DEFAULT 1, c 
CHAR(100) );

Following is the content of a file called input.txt:

'this_is_for_column_c', 'this_is_for_column_a', ignore_me

The following LOAD statement loads the file called input.txt:

LOAD TABLE T ( c, a ) FROM 'input.txt' FORMAT TEXT DEFAULTS ON;

The command SELECT * FROM t yields the result set:

a let_me_default c

this_is_for_column_a 1 this_is_for_column_c

REVOKE CONNECT FROM statement [UltraLite]
Use this statement to revoke connection permission for a user.

Syntax
REVOKE CONNECT FROM userid

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 401



See also
● “RevokeConnectFrom method” [UltraLite - C and C++ Programming] (C++)
● “RevokeConnectFrom method” [UltraLite - .NET Programming] (.NET)
● “revokeConnectFrom method” [UltraLite - M-Business Anywhere Programming](M-Business

Anywhere)

ROLLBACK statement [UltraLite] [UltraLiteJ]
Use this statement to end a transaction and revert any changes made to data since the last COMMIT or
ROLLBACK statement was executed.

Syntax
ROLLBACK [ WORK ]

Remarks
Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs, UPDATEs,
and DELETEs) since the last ROLLBACK or COMMIT. The ROLLBACK statement ends the current
transaction and undoes all changes made to the database since the previous COMMIT or ROLLBACK.

See also
● “COMMIT statement [UltraLite] [UltraLiteJ]” on page 376

Example
The following statement rolls the database back to the state it was in at the previous commit:

ROLLBACK;

SELECT statement [UltraLite] [UltraLiteJ]
Use this statement to retrieve information from the database.

Syntax
SELECT [ DISTINCT ] [ row-limitation  ] 
select-list
[ FROM table-expression, ... ]
[ WHERE search-condition ]
[ GROUP BY group-by-expression, ... ]
[ ORDER BY order-by-expression, ... ]
[ FOR  { UPDATE | READ ONLY } ]
[ OPTION ( FORCE ORDER ) ]

row-limitation : 
FIRST 
| TOP n [ START AT m ]

UltraLite SQL reference

402 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



select-list :
expression [ [ AS ] alias-name ], ...

order-by-expression :
{ integer | expression } [ ASC | DESC ]

Parameters

DISTINCT clause  Specify DISTINCT to eliminate duplicate rows from the results. If you do not
specify DISTINCT, all rows that satisfy the clauses of the SELECT statement are returned, including
duplicate rows. Many statements take significantly longer to execute when DISTINCT is specified, so
you should reserve DISTINCT for cases where it is necessary.

row-limitation clause  Use row limitations to return a subset of the results. For example, specify
FIRST to retrieve the first row of a result set. Use TOPn to return the first n rows of the results. Specify
START ATm to control the location of the starting row when retrieving the TOPn rows. To order the
rows so that these clauses return meaningful results, specify an ORDER BY clause for the SELECT
statement.

select-list  A list of expressions specifying what to retrieve from the database. Usually, the expressions
in a select list are column names. However, they can be other types of expressions, such as functions. Use
an asterisk (*) to select all columns of all tables listed in the FROM clause. Optionally, you can define an
alias for each expression in the select-list. Using an alias allows you to reference the select-list
expressions from elsewhere in the query, such as from within the WHERE and ORDER BY clauses.

FROM clause  Rows are retrieved from the tables and views specified in the table-expression. See
“FROM clause [UltraLite]” on page 395.

WHERE clause  If a WHERE clause is specified, only rows satisfying search-condition are selected.
See “Search conditions in UltraLite” on page 253.

GROUP BY clause  The result of the query that has a GROUP BY clause contains one row for each
distinct set of values in the GROUP BY expression. The resulting rows are often referred to as groups
since there is one row in the result for each group of rows from the table list. Aggregate functions can be
applied to the rows in these groups. NULL is considered to be a unique value if it occurs.

ORDER BY clause  This clause sorts the results of a query according to the expression specified in the
clause. Each expression in the ORDER BY clause can be sorted in ascending (ASC) or descending
(DESC) order (the default). If the expression is an integer n, then the query results are sorted by the nth
expression in the select list.
The only way to ensure that rows are returned in a particular order is to use ORDER BY. In the absence
of an ORDER BY clause, UltraLite returns rows in whatever order is most efficient.

FOR clause  This clause has two variations that control the query's behavior:

● FOR READ ONLY This clause indicates the query is not being used for updates. You should
specify this clause whenever possible, since UltraLite can sometimes achieve better performance
when it is known that a query is not going to be used for updates. For example, UltraLite could

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 403



perform a direct table scan when it learns that read-only access is required. FOR READ ONLY is the
default behavior. See “Using direct page scans” on page 89.

● FOR UPDATE This clause allows the query to be used for updates. This clause must be explicitly
specified otherwise updates are not permitted (FOR READ ONLY is the default behavior).

OPTION ( FORCE ORDER ) clause  This clause is not recommended for general use. It overrides the
UltraLite choice of the order in which to access tables, and requires that UltraLite access the tables in the
order they appear in the query. Only use this clause when the query order is determined to be more
efficient than the UltraLite order.

UltraLite can also use execution plans to optimize queries. See “Execution plans in
UltraLite” on page 262.

Remarks
Always remember to close the query. Otherwise memory cannot be freed and the number of temporary
tables that remain can proliferate unnecessarily.

See also
● “UltraLite performance and optimization” on page 81
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “Querying data” [SQL Anywhere Server - SQL Usage]

Example
The following statement selects the number of employees from the Employees table.

SELECT COUNT(*)
FROM Employees;

The following statement selects 10 rows from the Employees table starting from the 40th row and ending
at the 49th row.

SELECT TOP 10 START AT 40 * FROM Employees;

SET OPTION statement [UltraLite] [UltraLiteJ]
Use this statement to change the values of database options.

Syntax
SET OPTION option-name=option-value

option-name: identifier 

option-value: string, identifier, or number

UltraLite SQL reference

404 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Remarks
You can only set database options with this statement and properties cannot be modified after the database
has been created. The exception to these rules isml_remote_id.

You cannot specify whether an option is persistent or not. The way an option has been implemented in
UltraLite determines whether it is a persistent or temporary option. Persistent options are stored in the
sysuldata table. Temporary options are used only until the database stops running.

The only database option that can be unset is ml_remote_id. For example:

SET OPTION ml_remote_id=;

The result is that the ID is set to NULL.

See also
● “sysuldata system table” on page 224
● “UltraLite database options” on page 162
● “DB_PROPERTY function [System]” on page 299
● “UltraLite ml_remote_id option” on page 166

Example
The following statement sets the global_database_id option to 100:

SET OPTION global_database_id=100;

START SYNCHRONIZATION DELETE statement [UltraLite]
[UltraLiteJ]

Use this statement to restart the logging of deleted rows for MobiLink synchronization.

Syntax
START SYNCHRONIZATION DELETE

Remarks
UltraLite databases automatically log changes made to rows that need to be synchronized. UltraLite
uploads these changes to the consolidated database during the next synchronization. This statement allows
you to restart logging of deleted rows, previously stopped by a STOP SYNCHRONIZATION DELETE
statement.

When a STOP SYNCHRONIZATION DELETE statement is executed, none of the delete operations
executed on that connection are synchronized. The effect continues until a START
SYNCHRONIZATION DELETE statement is executed.

Do not use START SYNCHRONIZATION DELETE if your application does not synchronize data.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “UltraLite row states” on page 12.

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 405



See also
● “STOP SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 406

Example
The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION
DELETE and STOP SYNCHRONIZATION DELETE.

STOP SYNCHRONIZATION DELETE;
DELETE FROM PROPOSAL
  WHERE last_modified < months( CURRENT TIMESTAMP, -1 );
START SYNCHRONIZATION DELETE;
COMMIT;

STOP SYNCHRONIZATION DELETE statement [UltraLite]
[UltraLiteJ]

Use this statement to stop the logging of deleted rows for MobiLink synchronization.

Syntax
STOP SYNCHRONIZATION DELETE

Remarks
UltraLite databases automatically log changes made to rows that need to be synchronized. UltraLite
uploads these changes to the consolidated database during the next synchronization. This statement allows
you to stop the logging of deleted rows, previously started using a STOP SYNCHRONIZATION
DELETE statement. This command can be useful when making corrections to a remote database, but
should be used with caution as it effectively disables MobiLink synchronization. You should only stop
deletion logging temporarily.

When a STOP SYNCHRONIZATION DELETE statement is executed, no further delete operations
executed on that connection are synchronized. The effect continues until a START
SYNCHRONIZATION DELETE statement is executed.

Do not use STOP SYNCHRONIZATION DELETE if your application does not synchronize data.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “UltraLite row states” on page 12.

See also
● “START SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 405

Example
The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION
DELETE and STOP SYNCHRONIZATION DELETE.

STOP SYNCHRONIZATION DELETE;
DELETE FROM PROPOSAL

UltraLite SQL reference

406 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



WHERE last_modified < months( CURRENT TIMESTAMP, -1 );
START SYNCHRONIZATION DELETE;
COMMIT;

SYNCHRONIZE statement [UltraLite] [UltraLiteJ]

Use this statement to synchronize an UltraLite or UltraLiteJ database via the MobiLink server. The
synchronization is configured according to the parameters in the synchronization profile, or the
parameters can be specified in the statement itself.

Syntax
SYNCHRONIZE {
PROFILE sync-profile-name [ MERGE sync-option [ ;... ] ]
| USING sync-option  [ ;... ]
}

sync-option :
sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters
● sync-profile-name The name of the synchronization profile.

● MERGE clause Use this clause when you want to add or override options that are provided in the
synchronization profile.

● USING clause Use this clause when you want to specify the synchronization options without
referencing a synchronization profile.

● sync-option A string of one or more synchronization option value pairs, separated by semicolons.
For example, 'option1=value1;option2=value2'.

● sync-option-name The name of the synchronization option.

● sync-option-value The value for the synchronization option.

Remarks
See “CREATE SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 379 for a
list of the synchronization profile options supported by UltraLite.

See “ALTER SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 369 to
understand how sync options are merged with existing options in the synchronization profile.

By allowing sync options to be merged in, developers can choose to omit storing some options in the
database (like the MobiLinkPwd for instance).

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 407



If a synchronization callback function is defined and registered with UltraLite, whenever a
SYNCHRONIZE statement is executed, progress information for that synchronization is passed to the
callback function. If no callback is registered, progress information is suppressed.

Side effects
None.

See also
● “ALTER SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 369
● “DROP SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]” on page 393
● “ULSetSynchronizationCallback method” [UltraLite - C and C++ Programming]

Example
The following example shows the syntax for synchronizing a synchronization profile called Test1 where
the MobiLinkPwd has not been stored as part of the profile:

 SYNCHRONIZE PROFILE Test1 MERGE ''MobiLinkPwd=sql'

The following example shows the syntax for adding the publication and uploadonly options to a
synchronization profile called Test1.

SYNCHRONIZE PROFILE Test1
   MERGE'publication=p2;uploadonly=on';

The following example illustrates how to use USING.

SYNCHRONIZE USING 
''MobiLinkUid=joe;MobiLinkPwd=sql;ScriptVersion=1;Stream=TCPIP{host=localhost
}'

The following example shows the syntax for synchronizing the publication and uploadonly options.

SYNCHRONIZE 
   USING 'publication=p2;uploadonly=on';

TRUNCATE TABLE statement [UltraLite] [UltraLiteJ]
Use this statement to delete all rows from a table, without deleting the table.

Syntax
TRUNCATE TABLE table-name

Remarks
The TRUNCATE TABLE statement deletes all rows from a table and the MobiLink server is not
informed of their removal upon subsequent synchronization. It is equivalent to executing the following
statements:

STOP SYNCHRONIZATION DELETE;
DELETE FROM TABLE;
START SYNCHRONIZATION DELETE;

UltraLite SQL reference

408 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Note
This statement should be used with great care on a database involved in synchronization or replication.
Because the MobiLink server is not notified, this deletion can lead to inconsistencies that can cause
synchronization or replication to fail.

After a TRUNCATE TABLE statement, the table structure, all the indexes, and the constraints and
column definitions continue to exist; only data is deleted.

TRUNCATE TABLE cannot execute if a statement that affects the table is already being referenced by
another request or query. Similarly, UltraLite does not process requests referencing the table while that
table is being altered. Furthermore, you cannot execute TRUNCATE TABLE when the database includes
active queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for
all data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Schema changes  Statements are not released if schema changes are initiated at the same time. See
“Schema changes with DDL statements” on page 10.

Side effects
If the table contains a column defined as DEFAULT AUTOINCREMENT or DEFAULT GLOBAL
AUTOINCREMENT, TRUNCATE TABLE resets the next available value for the column.

Once rows are marked as deleted with TRUNCATE TABLE, they are no longer accessible to the user
who performed this action, unless the user issues a ROLLBACK statement. However, they do remain
accessible from other connections. Use COMMIT to make the deletion permanent, thereby making the
data inaccessible from all connections.

If you synchronize the truncated table, all INSERT statements applied to the table take precedence over a
TRUNCATE TABLE statement.

See also
● “DELETE statement [UltraLite] [UltraLiteJ]” on page 391
● “START SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 405
● “STOP SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 406

Example
The following statement deletes all rows from the Departments table.

TRUNCATE TABLE Departments;

If you execute this example, be sure to execute a ROLLBACK statement to revert your change. See
“ROLLBACK statement [UltraLite] [UltraLiteJ]” on page 402.

UNION statement [UltraLite]
Use this statement to combine the results of two or more select statements.

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 409



Syntax
select-statement-without-ordering
[ UNION [ ALL | DISTINCT ] select-statement-without-ordering ]...
[ ORDER BY [ number [ ASC | DESC ] , ... ]

Remarks
The results of several SELECT statements can be combined into a larger result using UNION. Each
SELECT statement must have the same number of expressions in their respective select list, and cannot
contain an ORDER BY clause.

The results of UNION ALL are the combined results of the unioned SELECT statements. Specify
UNION or UNION DISTINCT to get results without duplicate rows; however, note that removing
duplicate rows adds to the total execution time for the statement. Specify UNION ALL to allow duplicate
rows.

When attempting to combine corresponding expressions that are of different data types, UltraLite attempts
find a data type in which to represent the combined values. If this is not possible, the union operation fails
and an error is returned (for example "Cannot convert 'Surname' to a numeric").

The column names displayed in the results are column names (or aliases) used for the first SELECT
statement.

ORDER BY for UNION is restricted to the integer format. The ORDER BY clause uses integers to
establish the ordering, where the integer indicates the query expression(s) on which to sort the results.

See also
● “SELECT statement [UltraLite] [UltraLiteJ]” on page 402

Example
The following example lists all distinct surnames found in the Employees and Customers tables, combined.

SELECT Surname FROM Employees
UNION
SELECT Surname FROM Customers;

UPDATE statement [UltraLite] [UltraLiteJ]
Use this statement to modify rows in a table.

Syntax
UPDATE table-name[[AS] correlation-name]
SET column-name  = expression, ...
[ WHERE search-condition ]

Parameters
table-name  The table-name specifies the name of the table to update. Only a single table is allowed.

correlation-name  An identifier to use when referencing the table from elsewhere in the statement.

UltraLite SQL reference

410 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SET clause  Each named column is set to the value of the expression on the right-hand side of the
equal sign. There are no restrictions on the expression. If the expression is a column-name, the old value
is used.

Only columns specified in the SET clause have their values changed. In particular, you cannot use
UPDATE to set a column's value to its default.

WHERE clause  If a WHERE clause is specified, only rows satisfying search-condition are updated.
See “Search conditions in UltraLite” on page 253.

Remarks
The UPDATE statement modifies values in a table.

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive.

See also
● “INSERT statement [UltraLite] [UltraLiteJ]” on page 397
● “DELETE statement [UltraLite] [UltraLiteJ]” on page 391
● “Search conditions in UltraLite” on page 253

Example
The following statement transfers employee Philip Chin (employee 129) from the sales department to the
marketing department (department 400).

UPDATE Employees
SET DepartmentID = 400
WHERE EmployeeID = 129;

An example using correlation-name.

UPDATE Employee E 
SET salary = salary * 1.05 
WHERE EXISTS( SELECT 1 FROM Sales S HAVING E.Sales > Avg( S.sales) 
GROUP BY S.dept_no )

UltraLite SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 411



412



UltraLite support for spatial data
This section introduces UltraLite spatial support and explains its purpose, describes the supported data
types, and explains how to generate and analyze spatial data.

The spatial data documentation assumes you already have some familiarity with spatial reference systems
and with the spatial data you intend to work with. If you do not, links to additional reading material can
be found here: “Recommended reading on spatial topics” [SQL Anywhere Server - Spatial Data Support].

Introduction to spatial data
Spatial data is data that describes the position, shape, and orientation of objects in a defined space.
UltraLite provides storage and data management features for spatial data, in the form of points, allowing
you to store information such as geographic locations and routing information, for instance. Points are
defined using a spatial type, ST_Geometry. You use functions and constructors to access and manipulate
the spatial data. UltraLite also provides a set of SQL spatial functions designed for compatibility with
other products.

A point defines a single location in space. A point geometry does not have length or area. A point always
has an X and Y coordinate.

In GIS data, points are typically used to represent locations such as addresses, or geographic features such
as a mountain.

In UltraLite, points are specified using the ST_Geometry type. See “ST_Geometry type” on page 414.

Compliance and support
This section describes UltraLite's compliance with existing standards and provides a high level view of
the supported features.

Compliance with spatial standards
UltraLite spatial support complies with the following standards:

● International Organization for Standardization (ISO) UltraLite geometries conform to the ISO
standards for defining spatial user-types, routines, schemas, and for processing spatial data. UltraLite
conforms to the specific recommendations made by the International Standard ISO/IEC
13249-3:2006. See http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651.

● Open Geospatial Consortium (OGC) Geometry Model UltraLite geometries conform to the
OGC OpenGIS Implementation Specification for Geographic information - Simple feature access -
Part 2: SQL option version 1.2.0 (OGC 06-104r3). See http://www.opengeospatial.org/standards/sfs.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 413

http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651
http://www.opengeospatial.org/standards/sfs


UltraLite uses the standards recommended by the OGC to ensure that spatial information can be
shared between different vendors and applications.

To ensure compatibility with UltraLite spatial geometries, it is recommended that you adhere to the
standards specified by the OGC.

● SQL Multimedia (SQL/MM) UltraLite follows the SQL/MM standard, and uses the prefix ST_ for
all function names.

SQL/MM is an international standard that defines how to store, retrieve, and process spatial data using
SQL. Spatial type hierarchies such as ST_Geometry are one of the functions used to retrieve spatial
data. The ST_Geometry hierarchy includes a number of subtypes such as ST_Point, ST_Curve, and
ST_Polygon. With the SQL/MM standard, every spatial value included in a query must be defined in
the same spatial reference system.

ST_Geometry type
The ST_Geometry type is used to store spatial data in the form of points.

Casts
Geometry objects can be explicitly and implicitly cast to any character or binary type. In the case of a
character type, the geometry will be presented in EWKT format. In the case of a binary type, the
geometry will be presented in WKB format. Character and binary types can also be explicitly and
implicitly cast as a geometry value. For binary values, the value must represent a valid geometry in WKB
format. For character values, the value must represent a valid geometry in either WKT or EWKT format.
If casting from WKB or WKT to a geometry value, the default value SRID of 0 is assigned to the object.

Column and object definitions
UltraLite provides a fixed set of three different reference systems that can be attributed to a column
during its creation. Individual geometry objects can be associated with any SRID value except the
undefined reference system, and can only be stored in a column associated with a matching SRID value or
the undefined reference system.

The predefined reference systems are:

● Undefined or "null" reference system This is the default reference system if no SRID value is
provided. It allows contained geometry values to be in any valid reference system. This allows for "catch-
all" columns that do not enforce any reference system consistency among their geometry objects.

● Default planar reference system Defined by specifying a SRID value of 0 during column
creation, this column can contain only geometry values associated with this reference system. The
values are treated as being in 2D planar space.

● WGS 84 Geodetic Reference System Defined by specifying a SRID value of 4326 during
column creation, this column can only contain geometry values associated with this reference system.
The values are treated as being on the Earth's surface and operations are applied accordingly.

UltraLite support for spatial data

414 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SRID 4326
A point in SRID 4326 can be stored in a column with the WGS 84 reference system or with the undefined
reference system, but not in the default planar system.

No transformations between reference systems is supported.

Example
create table T1 (
V1 Integer primary key,
V2 ST_Geometry(SRID=0),
V3 ST_Geometry);

creates a table with one column associated with the default planar reference system and one with an
undefined reference system.

Note
ST_Geometry columns cannot be primary keys.

Functions for spatial data
UltraLite supports the following functions:

ST_AsBinary function
The ST_AsBinary function returns a binary string representing the geometry. The output format is WKB
as defined by OGC SFS 1.1. This format does not contain Z and M values.

Syntax
.ST_AsBinary(geometry-expression)

Returns
● BINARY Returns the WKB representation of the geometry-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.37

Example
The following returns the result 0x0101000000000000000000f03f0000000000000040.

select ST_AsBinary(ST_Point(1.0, 2.0, 4326))

The following returns the result 0x0101000000000000000000f03f0000000000000040. The
server implicitly invokes the ST_AsBinary() function when converting geometries to BINARY.

select cast(ST_Point(1.0, 2.0, 4326) as binary(50))

Functions for spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 415



ST_AsExtText function
The ST_AsExtText function returns a binary string representing the geometry. The output format is EWKT.

Syntax
.ST_AsExtText(geometry-expression)

Returns
● VARCHAR Returns the EWKT representation of the geometry-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.37

Example
The following returns the result SRID=4326;Point (1 2). The SRID is included in the result as a
prefix.

select ST_AsExtText(ST_Point 1.0, 2.0, 4326))

The following returns the result SRID=4326;Point(1 2). The ST_AsExtText() function is implicitly
invoked when converting geometries to VARCHAR types.

select cast(ST_Point(1.0, 2.0, 4326) as varchar(25))

ST_AsText function
The ST_AsText function returns a binary string representing the geometry. The output format is WKT as
defined by OGC SFS 1.1.

Syntax
.ST_AsText(geometry-expression)

Returns
● VARCHAR Returns the WKT representation of the geometry-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.37

Example
The following returns the result Point (1 2).

select ST_AsText(ST_Point(1.0, 2.0, 4326))

UltraLite support for spatial data

416 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



ST_Distance function
Returns the smallest distance between two specified geometry values. If the points are in SRID 4326, the
units are in meters.

Syntax
ST_Distance(geo1,geo2 )

Parameters

Name Type Description

geo1 ST_Geometry The first geometry value to be used to calculate the distance between two ge-
ometry values.

geo2 ST_Geometry The second geometry value to be used to calculate the distance between two
geometry values.

Returns
● DOUBLE Returns the smallest distance between the specified geometry values.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.23

Example
Select ST_Distance(ST_Point(-79.38,43.65,4326),ST_Point(-123.1,49.28,4326))

Returns 3367142.463.

ST_Equals function
Tests whether an ST_Geometry value is spatially equal to another ST_Geometry value. Two geometry
values can be considered equal if they have the same x and y coordinates and are in the same reference
system.

The test may be limited by the resolution of the spatial reference system or the accuracy of the data.

The ST_Equals function defines the semantics used for comparison predicates (= and <>), IN list
predicates, DISTINCT, and GROUP BY.

Syntax
ST_Equals(geo1,geo2 )

Functions for spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 417



Parameters

Name Type Description

geo1 ST_Geometry The first geometry value to be compared.

geo2 ST_Geometry The second geometry value to be compared.

Returns
● BIT Returns 1 if the two geometry values are spatially equal, otherwise 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.24

Example
Select ST_Equals(ST_Point(1,1,4326),ST_Point(1,1,4326))

Returns 1.

ST_IntersectsRect function
The ST_IntersectsRect function tests if point is located within the box defined by the two points, min and
max.

Syntax
ST_IntersectsRect(location,min,max)

Parameters

Name Type Description

location ST_Geometry The point to be tested.

min ST_Geometry The minimum point value used to define the box.

max ST_Geometry The maximum point value used to define the box.

Returns
● BIT Returns 1 if location intersects with the specified box, otherwise 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
Select ST_IntersectsRect(ST_Point(1,1,4326),ST_Point(0,0,4326), 
ST_Point(3,3,4326))

UltraLite support for spatial data

418 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Returns 1.

ST_Point function
Constructs a point based on x and y coordinates.

Syntax
ST_Point(x,y,SRID)

Parameters

Name Type Description

x DOUBLE The x coordinate to use to construct the point.

y DOUBLE The y coordinate to use to construct the point.

SRID INTEGER The SRID value associated with the point.

Returns
● ST_Point Returns an ST_Geometry value created from the input string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.8

Example
ST_Point(10.0,20.0,2163)

Creates a point (10.0,20.0) in the 2163 reference system.

ST_PointFromExtText function
Returns an ST_Geometry value, which is transformed from a VARCHAR value containing the EWKT
representation of an ST_Geometry.

Syntax
ST_PointFromText(ewkt)

Parameters

Name Type Description

ewkt VARCHAR The EWKT representation.

Functions for spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 419



Returns
● ST_Geometry Returns an ST_Geometry value created from the input string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.8

Example
ST_PointFromExtText('SRID=4326;Point(10 20)')

Creates a point (10,20) in the 4326 reference system.

ST_PointFromText function
Returns an ST_Geometry value, which is transformed from a VARCHAR value containing the WKT
representation of an ST_Geometry.

Syntax
ST_PointFromText(wkt)

Parameters

Name Type Description

wkt VARCHAR The WKT representation.

Returns
● ST_Geometry Returns an ST_Geometry value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.8

Example
ST_PointFromText('Point(10 20)',4326)

Creates a point (10, 20) in the 4326 reference system.

ST_PointFromWKB function
Returns an ST_Geometry value, which is transformed from a BINARY value containing the WKB
representation of an ST_Geometry.

UltraLite support for spatial data

420 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Syntax
ST_PointFromWKB(wkb,SRID)

Parameters

Name Type Description

wkb BINARY The WKB representation.

SRID INTEGER The SRID value associated with the point.

Returns
● ST_Geometry Returns an ST_Geometry value created from the input string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.9

Example
The following returns point (1.0, 2.0, 4326).

ST_PointFromWKB(0x0101000000000000000000f03f0000000000000040,4326)

ST_SRID function

Retrieves the spatial reference system (SRID) associated with the geometry value.

Syntax
ST_SRID(geo1, SRID)

Parameters

Name Type Description

geo1 ST_Geometry The point value.

SRID INTEGER The SRID value associated with the point.

Returns
● INT Returns the SRID of the geometry.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.5

Example
The following returns 4326.

Functions for spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 421



Select ST_SRID(ST_Point(10,20,4326))

ST_X function
Returns the x coordinate of the ST_Geometry value.

Syntax
ST_X(geo1)

Parameters

Name Type Description

geo1 ST_Geometry The ST_Geometry value to determine the x value of.

Returns
● DOUBLE Returns the x coordinate of the ST_Geometry value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.3

Example
The following example returns the result 10.0.

SELECT ST_X(ST_Point(10.0,20.0,4326))

ST_Y function
Returns the y coordinate of the ST_Geometry value.

Syntax
.ST_Y(geo1)

Parameters

Name Type Description

geo1 ST_Geometry The ST_Geometry value to determine the y value of.

Returns
● DOUBLE Returns the y coordinate of the ST_Geometry value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.3

UltraLite support for spatial data

422 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Example
The following example returns the result 20.0.

SELECT ST_Y(ST_Point(10.0,20.0,4326))

Functions for spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 423



424



Troubleshooting UltraLite

Unable to start the UltraLite engine
Symptom

You have use the START connection parameter to start the UltraLite engine with the following definition;
however, the client returns SQLE_UNABLE_TO_CONNECT_OR_START.

START="\Program Files\uleng12.exe"

Explanation
The location of the quotes is incorrect.

Recommendation
For this parameter to work, the first quotation mark must follow the \ character. For example, you can
delimit spaces in this path as follows:

START=\ :Program Files\uleng12.exe"

or

START='"\Program Files\uleng12.exe"'

Unable to connect to databases after upgrade
Symptom

You have upgraded UltraLite. You discover that you are able to create an empty UltraLite database using
the administration tools. However, when you try to connect to this or any other UltraLite database
(including CustDB.udb) with Sybase Central, you receive an error. Connecting to SQL Anywhere
databases works without incident, however.

Explanation
You did not close all SQL Anywhere applications and processes. Therefore, your UltraLite plug-ins were
not installed correctly.

Recommendation
Remove and reinstall SQL Anywhere.

1. Close Sybase Central, Interactive SQL, and any running database engines.

2. Run the following commands:

dbisql -terminate

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 425



scjview -terminate

3. Open the Windows Task Manager, and end any scjview.exe and dbisql.exe processes.

4. Reinstall the latest version of UltraLite.

See also
● “Upgrading UltraLite” [SQL Anywhere 12 - Changes and Upgrading]

Database corruption
Symptom

Your database may be corrupt if it:

● Generates the following errors:

○ SQLE_DEVICE_ERROR
○ SQLE_DATABASE_ERROR (can also be a symptom of other issues)
○ SQLE_MEMORY_ERROR (can also be a symptom of other issues)

● Crashes or returns invalid query results.

Explanation
There are two more typical causes corruption:

● The more frequent cause occurs if the device has problems storing the file, thereby spuriously
changing the contents of it. This issue usually stops the database from functioning fairly quickly.

● The less frequent cause occurs if an error in the UltraLite code fails to maintain an index correctly.
These issues can go undetected for much longer because the change to the results of a query are more
subtle.

Recommendation
Checksums are used to detect offline corruption, which can help reduce the chances of other data being
corrupted as the result of a bad critical page. If a checksum validation fails when the database loads a
page, UltraLite immediately stops the database and reports a fatal error. This error cannot be corrected.
Instead you must:

1. Report the error to iAnywhere. It is helpful if you know the sequence of events that caused the
corruption to occur, and if the error is reproducible.

2. If you need the data, unload the contents of the database to a file.

3. Create a new database.

4. Repopulate the data either by synchronizing or by loading the unloaded data.

Troubleshooting UltraLite

426 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



See also
● “UltraLite checksum_level creation parameter” on page 136

Database size not stabilizing
Symptom

Your application collects a lot of large binary objects among multiple client devices, synchronizes this
information to a consolidated database, and then the synchronized data is deleted from each client device.
However, the database size remains large despite the data being removed from the database. This is a
concern because file size needs to be managed carefully due to limited resources of the device.

Explanation
Database size should only increase if your data grows in the database. However, once grown, the database
file keeps that size, and does not shrink on its own. Free space is maintained internally to the file.

Recommendation
Ensure you are not using the STOP SYNCHRONIZATION DELETE or TRUNCATE statements for
tables that do not get synchronized. Instead use the DELETE statement with a FROM table-name clause
for tables that do not get synchronized.

Recreate the database post-synchronization:

1. Create your UltraLite database that is deployed to the devices.

2. Creating a SQL script of DDL statements that define the schema required by the client devices. See
“Deploying UltraLite schema upgrades” on page 51.

3. Synchronize the data.

4. Drop the database.

5. Create a new, empty database and use standard database schema with the ALTER DATABASE
SCHEMA FROM FILE statement.

See also
● “STOP SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]” on page 406
● “TRUNCATE TABLE statement [UltraLite] [UltraLiteJ]” on page 408
● “DELETE statement [UltraLite] [UltraLiteJ]” on page 391
● “ALTER DATABASE SCHEMA FROM FILE statement [UltraLite]” on page 368

Importing ASCII data into a new database
Symptom

You have created a new UltraLite database, but have a .csv ASCII data file that you cannot import.

Database size not stabilizing

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 427



Explanation
The .csv format is not supported by any of the UltraLite administration tools.

Recommendation
You can try one of the following techniques:

● Use Interactive SQL (dbisql) to import the data. You can connect to the UltraLite database and then
choose Data » Import Data. Alternatively, you can connect to the UltraLite database and run the
INPUT statement (this statement cannot be used in an UltraLite PreparedStatement object).

Note
UltraLite requires primary keys. Although Interactive SQL can create the table for you, it does not
automatically create the primary keys for them. Always connect to an empty UltraLite database you
have created for this purpose.

● If you incorporate this functionality as part of a batch process, you must write your own code.

See also
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Interactive SQL for UltraLite utility (dbisql)” on page 186

Utilities still running as the previous version
Symptom

You have just installed UltraLite 12. However, when you try to run any of the UltraLite utilities, the
previous version starts.

Explanation
If you have multiple versions of UltraLite on your computer, you must pay attention to your system path
when using the administration. Since the installation adds the most recently installed version executable
directory to the end of your system path, it is possible to install a new version of the software, and still
inadvertently be running the previously installed version.

Recommendation
There are various workarounds to this problem. See “Using the utilities” [SQL Anywhere 12 - Changes
and Upgrading].

Result set changes unpredictably
Symptom

You run a query and the result set you expect changes each time you run it.

Troubleshooting UltraLite

428 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Explanation
Carefully review the result set you are getting. Are the results in the set truly different? Or are they simply
being returned in the most efficient order each time. The order selected can change each time you execute
the query, depending on when you last accessed the row and other factors.

Recommendation
If your result set must be returned in a predictable or consistent order, ensure that the SELECT statement
includes an ORDER BY clause. If the result set is still returning results incorrectly, your database may be
corrupt.

See also
● “SELECT statement [UltraLite] [UltraLiteJ]” on page 402
● “Database corruption” on page 426

UltraLite engine client fails with error -764
Applies to

Windows Mobile

Symptom
You are running the UltraLite engine on Windows Mobile device, and the client returns a -764 error.

Explanation
An error of -764 means that the engine could not be found and was unable to start.

Recommendation
Consider one of the following actions:

● Consider redeploying the engine to the recommended deployment location, the \Windows directory.
UltraLite automatically looks for the engine files in this location.

● If you have install the engine to any other location, ensure your connection code uses the START
connection parameter.

● If you have used the START connection parameter, and you are sure the path to the engine is correct,
ensure you have used the correct escape sequences for special characters in the path name.

For example, you may need to change this code:

ULConnection conn = new ULConnection(@"dbf=\Program Files\HelloEngine
\HelloEngine.udb;
START=\Windows\uleng12.exe")

To something similar to:

UltraLite engine client fails with error -764

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 429



ULConnection conn = new ULConnection(@"dbf=\\\"Program Files \"\
\HelloEngine\\HelloEngine.udb;
START=\\Windows\\uleng12.exe");

See also
● “Deploy multiple UltraLite applications with the UltraLite engine” on page 44
● “UltraLite START connection parameter” on page 182

Troubleshooting UltraLite

430 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



Index
Symbols
% operator

modulo function, UltraLite, 325
&

UltraLite bitwise operator, 261
- comment indicator

UltraLite about, 226
-a option

ulinit creation parameters, 28
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205

-b option
UltraLite database unload utility (ulunload), 214
UltraLite unload old database utility (ulunloadold),
217

-c option
UltraLite database unload utility (ulunload), 214
UltraLite information utility (ulinfo), 196
UltraLite initialize database utility (ulinit), 198
UltraLite Interactive SQL utility (dbisql), 186
UltraLite load XML to database utility (ulload),
205
UltraLite synchronization utility (ulsync), 209
UltraLite unload old database utility (ulunloadold),
217
UltraLite validate database utility (ulvalid) utility,
218

-d option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198
UltraLite Interactive SQL utility (dbisql), 186
UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192

-d1 option
UltraLite Interactive SQL utility (dbisql), 186

-E option
UltraLite load XML to database utility (ulload),
205

-e option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198

UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192
UltraLite validate database utility (ulvalid) utility,
218

-f option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198
UltraLite Interactive SQL utility (dbisql), 186
UltraLite load XML to database utility (ulload),
205
UltraLite unload old database utility (ulunloadold),
217

-g option
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192

-h option
UltraLite SQL preprocessor utility (sqlpp), 192

-i option
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205

-K option
UltraLite initialize database utility (ulinit), 198

-k option
UltraLite erase database utility (ulerase), 196
UltraLite initialize database utility (ulinit), 198
UltraLite SQL preprocessor utility (sqlpp), 192

-l option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205

-m option
UltraLite initialize database utility (ulinit), 198

-n option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192

-nogui option
UltraLite Interactive SQL utility (dbisql), 186

-o option
UltraLite initialize database utility (ulinit), 198

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 431



UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192

-onerror option
UltraLite Interactive SQL utility (dbisql), 186

-p option
UltraLite erase database utility (ulerase), 196
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205
UltraLite synchronization utility (ulsync), 209

-q option
UltraLite database unload utility (ulunload), 214
UltraLite erase database utility (ulerase), 196
UltraLite information utility (ulinfo), 196
UltraLite initialize database utility (ulinit), 198
UltraLite Interactive SQL utility (dbisql), 186
UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192
UltraLite synchronization utility (ulsync), 209
UltraLite unload old database utility (ulunloadold),
217
UltraLite validate database utility (ulvalid) utility,
218

-r option
UltraLite initialize database utility (ulinit), 198
UltraLite SQL preprocessor utility (sqlpp), 192
UltraLite synchronization utility (ulsync), 209

-S option
UltraLite initialize database utility (ulinit), 198

-s option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192

-SQL command
UltraLite Interactive SQL utility (dbisql), 186

-t option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205

-u option
UltraLite erase database utility (ulerase), 196
UltraLite initialize database utility (ulinit), 198
UltraLite SQL preprocessor utility (sqlpp), 192

-ul option
UltraLite Interactive SQL utility (dbisql), 186

-v option
UltraLite database unload utility (ulunload), 214
UltraLite load XML to database utility (ulload),
205
UltraLite synchronization utility (ulsync), 209
UltraLite unload old database utility (ulunloadold),
217
UltraLite validate database utility (ulvalid) utility,
218

-version
UltraLite Interactive SQL utility (dbisql), 186

-w option
UltraLite initialize database utility (ulinit), 198
UltraLite SQL preprocessor utility (sqlpp), 192

-x option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198
UltraLite Interactive SQL utility (dbisql), 186
UltraLite SQL preprocessor utility (sqlpp), 192

-xml-file
UltraLite unload old database utility (ulunloadold),
217

-y option
UltraLite database unload utility (ulunload), 214
UltraLite initialize database utility (ulinit), 198
UltraLite load XML to database utility (ulload),
205
UltraLite unload old database utility (ulunloadold),
217

-Z option
UltraLite initialize database utility (ulinit), 198

-z option
UltraLite initialize database utility (ulinit), 198
UltraLite SQL preprocessor utility (sqlpp), 192

.NET
UltraLite engine support, 19

.NET compatibility
UltraLite driver for ADO.NET, 20

/* comment indicator
UltraLite about, 226

// comment indicator
UltraLite about, 226

10054
UltraLite synchronization stream system errors,
126

130 error

Index

432 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SQL code for UltraLite schema upgrade, 51
256-bit strong encryption

UltraLite connection parameter for, 174
UltraLite usage of, 32

?
UltraLite input parameter, 251

@data option
UltraLite Interactive SQL utility (dbisql), 186

^
UltraLite bitwise operator, 261

|
UltraLite bitwise operator, 261

~
UltraLite bitwise operator, 261

A
ABS function

UltraLite syntax, 272
ACOS function

UltraLite syntax, 273
ActiveSync

deploy ActiveSync provider for UltraLite , 49
deploying MobiLink UltraLite applications, 108
registering applications for UltraLite clients, 50
UltraLite deploying provider files, 49

ActiveSync provider installation utility (mlasinst)
registering applications for UltraLite clients, 50

adding
UltraLite column methods, 55
UltraLite columns, 371
UltraLite indexes, 64
UltraLite users, 69
UltraLiteJ columns, 371

adding synchronization
UltraLite applications, 104

adding UltraLite indexes
about, 64

adding UltraLite users
about, 69

adding users
UltraLite, 69

additional parameters
UltraLite synchronization parameter, 111

administration tools
UltraLite troubleshooting, 425

administration utilities
UltraLite utilities reference, 185

ADO.NET
UltraLite drivers for, 20

AES encryption algorithm
UltraLite deployment steps, 46
UltraLite fips creation parameter, 142
UltraLite fips usage, 32
UltraLite usage, 32

aggregate expressions
UltraLite SQL syntax, 250

aggregate functions
UltraLite alphabetical list, 266

aliases
UltraLite columns, 403
UltraLite equivalents, 233

ALL search conditions
UltraLite SQL, 256

AllowDownloadDupRows
UltraLite synchronization parameter, 111

allsync tables
UltraLite overview, 54
UltraLite synchronizing tables, 102

ALTER DATABASE SCHEMA FROM FILE
statement

UltraLite schema changes impact, 10
UltraLite syntax, 368
usage, 51

ALTER PUBLICATION statement
UltraLite syntax, 369

ALTER SYNCHRONIZATION PROFILE statement
UltraLite syntax, 369
UltraLiteJ syntax, 369

ALTER TABLE statement
UltraLite Interactive SQL example, 57
UltraLite syntax, 371
UltraLiteJ syntax, 371

ALTER USER statement
UltraLite syntax, 374

altering
UltraLite ALTER PUBLICATION statement, 369
UltraLite ALTER TABLE statement, 371
UltraLite ALTER USER statement, 374
UltraLite column methods, 57
UltraLite columns methods, 56
UltraLite table methods, 57
UltraLiteJ ALTER TABLE statement, 371

altering UltraLite column definitions
about, 56

ambiguous string to date conversions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 433



UltraLite, 144
AND

UltraLite bitwise operators, 261
UltraLite logical operators, 255

ANY search condition
UltraLite SQL, 257

APIs
UltraLite choices, 20

applications
(see also UltraLite applications)

ApplyFile method
UltraLite replacement for schema upgrade , 51

arc-cosine function
UltraLite ACOS function, 273

arc-sine function
UltraLite ASIN function, 275

arc-tangent function
UltraLite ATAN function, 275

ARGN function
UltraLite syntax, 273

arithmetic operators
UltraLite operators, 260
UltraLite SQL syntax, 260

articles
UltraLite copying method, 60
UltraLite databases, 102
UltraLite restrictions, 102

ASCII
UltraLite sorting, 30
UltraLite syntax, 274

ASCII files
UltraLite importing, 427

ASIN function
UltraLite syntax, 275

assembling parameters into connection strings
UltraLite about, 38

ATAN function
UltraLite syntax, 275

ATAN2 function
UltraLite syntax, 276

authentication
UltraLite bypassing, 39
UltraLite setup, 39

authentication parameters
UltraLite synchronization parameter, 112

authentication status
UltraLite synchronization parameter, 113

authentication value

UltraLite synchronization parameter, 115
autocommit

UltraLite transaction overview , 14
AUTOINCREMENT

UltraLite syntax, 385
average function

UltraLite AVG function, 277
AVG function

UltraLite syntax, 277

B
backing up (see backups)
backup and recovery

UltraLite about, 14
backups

UltraLite databases on Windows Mobile, 37
UltraLite internal mechanism, 14
UltraLite transaction overview , 14

base 10 logarithm
UltraLite LOG10 function, 318

BETWEEN search condition
UltraLite SQL, 257

BIGINT data type
UltraLite, 231

binary
UltraLite sorting, 30

binary data types
UltraLite, 231
UltraLite maximum size, 7

bitwise operators
UltraLite SQL syntax, 261

browsing
UltraLite table information, 58
UltraLite table methods, 58

bugs
providing feedback, viii

building
UltraLite CustDB application, 75

bulk loading
UltraLite LOAD TABLE statement, 398

BYTE_LENGTH function
UltraLite syntax, 278

BYTE_SUBSTR function
UltraLite syntax, 279

C
C programming language

Index

434 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite support, 20
cache

UltraLite maximum size, 7
UltraLite performance, 90

cache size
UltraLite limit, 7
UltraLite usage, 146

CACHE_SIZE connection parameter
UltraLite syntax, 167

callback
UltraLite schema upgrade errors, 52

cascading deletes
UltraLite limitations, 1

cascading updates
UltraLite limitations, 1

case creation parameter
UltraLite description, 135

CASE expression
UltraLite NULLIF function, 330
UltraLite SQL syntax, 249

case property
UltraLite description, 158

case sensitivity
UltraLite case creation parameter, 135
UltraLite case property, 158
UltraLite comparison operators, 254
UltraLite strings, 225

case sensitivity considerations
UltraLite about, 135

CAST function
UltraLite syntax, 279

casting
UltraLite data types list, 233

catalog
UltraLite system tables, 219

CE_FILE connection parameter
UltraLite syntax, 169

CEILING function
UltraLite syntax, 280

central administration of remote databases
UltraLite databases, 25

Certicom
UltraLite cryptographic module, 32
UltraLite TLS-enabled synchronization, 47

certificates
UltraLite application access to encryption
information, 210

CHAR data type

UltraLite, 231
CHAR function

UltraLite syntax, 281
CHAR_LENGTH function

UltraLite syntax, 282
char_set property

UltraLite description, 158
character functions

UltraLite alphabetical list, 271
character set conversion

passwords, 374, 390
character sets

UltraLite char_set property, 158
UltraLite collation creation parameter, 137
UltraLite databases, 31
UltraLite on Windows, 31
UltraLite on Windows Mobile, 31
UltraLite strings, 225

character strings
UltraLite embedded SQL, 192

CHARINDEX function
UltraLite syntax, 283

CHECK constraints
UltraLite limitations, 1

CHECK CONSTRAINTS clause
UltraLite LOAD TABLE statement, 399

CHECKPOINT statement
UltraLite syntax, 375

checkpointing
UltraLite CHECKPOINT syntax, 375

checkpoints
UltraLite performance optimization, 89

CheckpointStore
UltraLite synchronization parameter, 111

checksum_level creation parameter
UltraLite description, 136

checksum_level property
UltraLite description, 158

checksums
UltraLite checksum_level creation parameter, 136
UltraLite checksum_level property, 158

choosing a data management component
UltraLite about, 19

choosing an index type
UltraLite about, 63

choosing your programming interface
UltraLite about, 20

client databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 435



UltraLite options, 110
clients

UltraLite embedded engine, 19
UltraLite MobiLink clients, 93

COALESCE function
UltraLite syntax, 284

code points
UltraLite, 30

CodeWarrior
UltraLite building CustDB application, 75

collation creation parameter
UltraLite description, 137

collation property
UltraLite description, 158

collation sequences
UltraLite about, 30
UltraLite changing, 30

collations
UltraLite collation creation parameter, 137
UltraLite CollationName property, 158
UltraLite unsupported, 204

column compression
UltraLite SQL ALTER TABLE statement, 371
UltraLiteJ SQL ALTER TABLE statement, 371

column names
UltraLite SQL syntax, 248

column names in expressions
UltraLite about, 248

columns
UltraLite adding methods, 55
UltraLite aliases, 403
UltraLite ALTER TABLE statement, 371
UltraLite altering methods, 57
UltraLite altering usage, 56
UltraLite copying method, 60
UltraLite limitations, 7
UltraLiteJ ALTER TABLE statement, 371

comma-separated lists
UltraLite LIST function syntax, 315

command line utilities
UltraLite database unload (ulunload) syntax, 214
UltraLite engine start (uleng12) syntax, 194
UltraLite engine stop (ulstop) syntax, 195
UltraLite erase database (ulerase) syntax, 195
UltraLite information (ulinfo) syntax, 196
UltraLite initialize database (ulinit) syntax, 197
UltraLite Interactive SQL (dbisql) syntax, 186

UltraLite load XML to database (ulload) syntax,
205
UltraLite SQL preprocessor (sqlpp) syntax, 192
UltraLite synchronization (ulsync) syntax, 209
UltraLite unload old database (ulunloadold) syntax,
217
UltraLite validate database (ulvalid) syntax, 218

command prompts
conventions, vii
curly braces, vii
environment variables, vii
Interactive SQL mode, 186
parentheses, vii
quotes, vii
semicolons, vii

command shells
conventions, vii
curly braces, vii
environment variables, vii
parentheses, vii
quotes, vii

comments
UltraLite syntax, 226

commit flush
UltraLite configuration, 163

COMMIT statement
UltraLite syntax, 376
UltraLiteJ syntax, 376

COMMIT_FLUSH connection parameter
UltraLite syntax, 170

commit_flush_count database option
UltraLite, 163

commit_flush_count property
UltraLite description, 158

commit_flush_timeout database option
UltraLite, 164

commit_flush_timeout property
UltraLite description, 158

committing
UltraLite COMMIT syntax, 376
UltraLite database rows, 12
UltraLite transaction overview , 14
UltraLiteJ COMMIT syntax, 376

comparing
UltraLite and SQL Anywhere databases, 1

comparing UltraLite and SQL Anywhere
about, 1

comparison operators

Index

436 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite dynamic SQL syntax, 254
UltraLite SQL, 254

compatibility
UltraLite SQL, 254

compressed columns
UltraLite ALTER TABLE statement, 371
UltraLiteJ ALTER TABLE statement, 371

computed columns
UltraLite limitations, 1

COMPUTES clause
UltraLite LOAD TABLE statement, 399

CON connection parameter
UltraLite syntax, 171

concatenating strings
UltraLite string operators, 260

concurrency
UltraLite issues, 11
UltraLite synchronization, 12

concurrent access
UltraLite engine, 19

conditions
UltraLite ALL conditions, 256
UltraLite ANY, 257
UltraLite BETWEEN, 257
UltraLite EXISTS, 258
UltraLite IN, 259
UltraLite searching, 253

conn_count property
UltraLite description, 158

connecting
MobiLink UltraLite Stream Type synchronization
parameter, 127
UltraLite database troubleshooting, 38
UltraLite databases, 39

connecting to an UltraLite database
about, 34

connection failures
UltraLite troubleshooting, 38

connection methods
UltraLite about, 34

connection parameters
alphabetical list (UltraLite), 167
CE, 177
DBN for UltraLite, 174
iPhone, 177
Mac, 175
NT, 175
UltraLite, 34

UltraLite CACHE_SIZE, 167
UltraLite CE_FILE, 169
UltraLite choosing between, 36
UltraLite COMMIT_FLUSH, 170
UltraLite CON, 171
UltraLite connection summary, 37
UltraLite DBF, 172
UltraLite DBKEY, 174
UltraLite desktop, 175
UltraLite device, 177
UltraLite file_name, 172
UltraLite key, 174
UltraLite list of, 34
UltraLite MIRROR_FILE, 178
UltraLite NT_FILE, 179
UltraLite overview, 37
UltraLite password, 180
UltraLite precedence of, 38
UltraLite PWD, 180
UltraLite RESERVE_SIZE , 181
UltraLite START , 182
UltraLite supplying, 35
UltraLite TEMP_DIR , 183
UltraLite troubleshooting transmission of, 38
UltraLite UID , 184
UltraLite userid , 184

connection strings
UltraLite connection parameters, 167
UltraLite parameters overview, 37
UltraLite setting , 38

connections
UltraLite concurrency, 12
UltraLite conn_count property, 158
UltraLite overview, 34
UltraLite troubleshooting, 425

consolidated databases
UltraLite choosing, 93
UltraLite compatibility, 94
UltraLite sample, 80

constants
UltraLite SQL syntax, 248

constants in expressions
UltraLite about, 248

constraints
UltraLite ALTER TABLE statement, 371
UltraLite referential integrity, 104
UltraLite renaming, 371
UltraLiteJ ALTER TABLE statement, 371

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 437



UltraLiteJ renaming, 371
controlling synchronization

UltraLite publications, 102
conventions

command prompts, vii
command shells, vii
documentation, v
file names in documentation, vi
operating systems, v
Unix , v
Windows, v
Windows CE, v
Windows Mobile, v

conversion
UltraLite CAST, 279

conversion functions
UltraLite alphabetical list, 267

CONVERT function
UltraLite syntax, 285

converting
UltraLite ambiguous dates, 144
UltraLite data types list, 233

converting data types
UltraLite about, 233

converting strings
UltraLite about, 271

coordinated universal timestamp
UltraLite CURRENT UTC TIMESTAMP, 229

copying
UltraLite table method, 59

copying data
UltraLite databases, 59

COS function
UltraLite syntax, 287

cosine function
UltraLite COS function, 287

COT function
UltraLite syntax, 288

cotangent function
UltraLite COT function, 288

COUNT function
UltraLite syntax, 288

count operation
UltraLite execution plans, 264

COUNT_UPLOAD_ROWS function
syntax, 289

CPU
UltraLite limits, 7

create database wizard
UltraLite usage, 24

CREATE INDEX statement
UltraLite Interactive SQL example, 64
UltraLite syntax, 376
UltraLiteJ syntax, 376
UNIQUE parameter, 376

create index wizard
UltraLite using, 64

CREATE PUBLICATION statement
UltraLite Interactive SQL example, 67
UltraLite Interactive SQL subset example, 68
UltraLite Interactive SQL whole table example, 67
UltraLite syntax, 378
UltraLite usage, 103

create publication wizard
UltraLite rows publishing, 67
UltraLite usage, 66

CREATE SYNCHRONIZATION PROFILE statement
UltraLite syntax, 379
UltraLiteJ syntax, 379

CREATE TABLE statement
UltraLite syntax , 384
UltraLiteJ syntax , 384

create table wizard
UltraLite usage, 54

CREATE USER statement
UltraLite dynamic SQL syntax, 390

create user wizard
UltraLite usage, 69

creating
reference databases for UltraLite, 25
UltraLite CREATE PUBLICATION statement,
378
UltraLite CREATE TABLE statement, 384
UltraLite databases from a MobiLink sync model,
24
UltraLite databases from the command prompt, 24
UltraLite databases from XML, 26
UltraLite databases overview of methods, 23
UltraLite databases using central administration of
remote databases, 25
UltraLite databases with ulinit, 197
UltraLite indexes, 64
UltraLite publications, 102
UltraLite publications tables, 66
UltraLite remote databases, 95
UltraLite table methods, 53

Index

438 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite users, 69
UltraLiteJ CREATE TABLE statement, 384

creating databases
Sybase Central UltraLite plug-in, 24
UltraLite creation parameters, 135
UltraLite remote , 95

creating publications
UltraLite databases with MobiLink applications,
102

creating remote databases
UltraLite clients, 95

creating UltraLite databases
about, 23

creating UltraLite tables
about, 53

creation parameters (UltraLite)
about, 135
case, 135
checksum_level, 136
collation, 137
date_format, 138
date_order, 141
fips creation parameter, 142
max_hash_size, 143
nearest_century, 144
obfuscate, 146
page_size, 146
precision, 148
scale , 149
time_format, 150
timestamp_format, 152
timestamp_increment, 154
utf8_encoding, 157

CROSS JOIN clause
UltraLite syntax, 395

Crossfire
UltraLite support, 20

cryptography
UltraLite Certicom module, 32

CSV files
UltraLite importing, 427

CURRENT DATE function
UltraLite TODAY function, 357

CURRENT DATE special value
UltraLite syntax, 227

current row
UltraLite concurrency, 12

CURRENT TIME special value

UltraLite syntax, 228
CURRENT TIMESTAMP special value

UltraLite feature comparison, 1
UltraLite syntax, 228

CURRENT UTC TIMESTAMP special value
UltraLite syntax, 229

CURRENT_TIMESTAMP special value
UltraLite syntax, 228

cursors
UltraLite current row, 12
UltraLite dirty reads, 16

CustDB
UltraLite application readme files, 74
UltraLite building application, 75
UltraLite limitations on instances of, 73
UltraLite running application, 75
UltraLite running multiple instances, 73
UltraLite sample , 72
UltraLite sample file locations, 73
UltraLite starting, 76

custdb.db
location of, 73

custdb.sql
calling synchronization scripts, 80

custdb.udb
UltraLite location of, 73

cycles
UltraLite foreign key issues, 104
UltraLite foreign keys, 103

D
data

UltraLite loading, 205
UltraLite selecting rows, 402
UltraLite unloading, 214
UltraLite viewing methods, 58
UltraLiteJ selecting rows, 402

data consistency
UltraLite dirty reads, 16

data management
UltraLite components available for, 19
UltraLite description, 8
UltraLite state information, 11

Data Manager
UltraLite database storage, 36

data sources
UltraLite CustDB tutorial example, 79

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 439



data type conversion functions
UltraLite about, 267

data type conversions
UltraLite CAST, 279

data types
UltraLite about, 230
UltraLite alias equivalents, 233
UltraLite casting of values, 233
UltraLite limitations, 7
UltraLite special value, 227
UltraLite SQL conversion functions, 267

data types in UltraLite
about, 230

database encryption
UltraLite performance impact of, 90

database engines
UltraLite about, 19

database files
(see also UltraLite databases)
UltraLite connection parameters, 36
UltraLite encrypting, 174
UltraLite maximum size, 7

database management
UltraLite layers of, 8

database objects
UltraLite copying method, 60

database options
(see also database options (UltraLite))
UltraLite, 162

database options (UltraLite)
browsing, 167
commit_flush_count, 163
commit_flush_timeout, 164
DB_PROPERTY function , 299
global_database_id, 165
ml_remote_id, 166
SET OPTION statement, 404

database options window
accessing, 167

database page size considerations
UltraLite about, 146

database properties
(see also database properties (UltraLite))
UltraLite, 158
UltraLite alphabetical list, 158

database properties (UltraLite)
browsing, 162
creation parameters, 28

fips usage, 32
obfuscate usage, 32
utf8_encoding usage, 31

database schemas
UltraLite system tables, 219

database sizes
UltraLite limit, 7

database utilities
UltraLite database connections, 38

database validation
UltraLite, 13

databases
(see also UltraLite databases)
comparing UltraLite and SQL Anywhere, 1
creating with UltraLite plug-in, 24
UltraLite loading bulk data into, 398

DATALENGTH function
UltraLite syntax, 290

date considerations
UltraLite about, 138

DATE data type
UltraLite, 231

DATE function
UltraLite syntax, 291

date functions
UltraLite alphabetical list, 267

date parts
about, 267
available in UltraLite, 138

date_format creation parameter
UltraLite description, 138

date_format property
UltraLite description, 158

date_order creation parameter
UltraLite description, 141

date_order property
UltraLite description, 158

DATEADD function
UltraLite syntax, 291

DATEDIFF function
UltraLite syntax, 292

DATEFORMAT function
UltraLite syntax, 294

DATENAME function
UltraLite syntax, 294

DATEPART function
UltraLite syntax, 295

dates

Index

440 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



query the current system date, 305
UltraLite ambiguous string conversions , 144
UltraLite conversion functions, 267
UltraLite date_format property, 158
UltraLite date_order property, 158
UltraLite formatting, 138
UltraLite ordering, 141
UltraLite rollover point, 144

datetime
UltraLite conversion functions, 267

DATETIME function
UltraLite syntax, 296

DAY function
UltraLite syntax, 297

day of week
UltraLite DOW function, 301

DAYNAME function
UltraLite syntax, 297

DAYS function
UltraLite syntax, 298

DB_PROPERTY function
UltraLite syntax, 299

DBF connection parameter
UltraLite syntax, 172

dbisql utility
UltraLite exit codes, 191
UltraLite syntax, 186
UltraLite troubleshooting data imports, 427

dbisql.com
about, 190

dbisql.exe
about, 190
shutting down before installing, 425

DBKEY connection parameter
UltraLite syntax, 174

dblgen12.dll
ActiveSync conduit deployment in UltraLite, 49

DBN connection parameter
UltraLite syntax, 174

DCX
about, v

DDL
UltraLite schema changes with, 10

deadlocks
UltraLite prevention of, 14

DECIMAL data type
UltraLite, 231

decimal point position considerations

UltraLite precision, 148
UltraLite scale creation parameter, 149

decimal precision
UltraLite precision, 148

decimals
UltraLite, 227

declaring default global autoincrement columns
UltraLite clients in MobiLink systems, 98

DEFAULT TIMESTAMP columns
UltraLite syntax, 385

default values
UltraLite CURRENT DATE, 227
UltraLite CURRENT TIME, 228
UltraLite CURRENT TIMESTAMP, 228
UltraLite CURRENT UTC TIMESTAMP, 229
UltraLite SQLCODE, 230

defaults
UltraLite autoincrement, 385

DEFAULTS clause
UltraLite LOAD TABLE statement, 399

DEGREES function
syntax, 300

delaying commits
performance enhancements, 89

DELETE statement
UltraLite dynamic SQL syntax, 391
UltraLiteJ dynamic SQL syntax, 391

deleting
UltraLite columns, 371
UltraLite databases, 12
UltraLite indexes, 65
UltraLite publications, 68
UltraLite START SYNCHRONIZATION
DELETE statement, 405
UltraLite table methods, 57
UltraLite TRUNCATE TABLE statement, 408
UltraLite users, 70
UltraLiteJ columns, 371
UltraLiteJ START SYNCHRONIZATION
DELETE statement, 405
UltraLiteJ TRUNCATE TABLE statement, 408

deleting data
UltraLite file size impact of, 427

deleting UltraLite users
about, 70

deleting users
UltraLite, 70

DELIMITED BY clause

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 441



UltraLite LOAD TABLE statement, 399
demos

(see also tutorials)
deploying

applications that use ActiveSync for UltraLite
clients, 108
changes to UltraLite database files, 41
in-process version of UltraLite, 43
UltraLite ActiveSync provider files, 49
UltraLite databases, 44
UltraLite engine troubleshooting, 429
UltraLite FIPS-enabled applications, 143
UltraLite schema upgrades, 51
UltraLite to devices, 41
UltraLite upgrades to devices, 41
upgrades to UltraLite databases, 44

derived tables
UltraLite FROM clause, 395
UltraLite SQL, 251

designing
UltraLite implementation , 19

Designing synchronization in UltraLite
about, 99

desktop connection parameter
UltraLite syntax, 175

desktop creation
UltraLite about, 23

developer centers
finding out more and requesting technical support,
ix

developer community
newsgroups, viii

development platforms
UltraLite support for, 20

device connection parameter
UltraLite syntax, 177

devices
UltraLite deployment techniques, 41
UltraLite multiple connection parameters for, 36

DIFFERENCE function
UltraLite syntax, 301

digits
UltraLite maximum number, 148

direct page scans
UltraLite about, 89

dirty reads
UltraLite isolation levels, 16

disable concurrency

UltraLite synchronization parameter overview, 12
DisableConcurrency

UltraLite synchronization parameter, 111
DISTINCT keyword

UltraLite SQL, 403
distinct operation

UltraLite execution plans, 264
DocCommentXchange (DCX)

about, v
documentation

conventions, v
SQL Anywhere, v

DOUBLE data type
UltraLite, 231

double hyphen
UltraLite comment indicator, 226

double slash
UltraLite comment indicator, 226

DOW function
UltraLite syntax, 301

download acknowledgements
UltraLite send_download_ack synchronization
parameter, 125

download only
UltraLite synchronization parameter, 115

download only synchronization
UltraLite download_only synchronization
parameter , 115

download-only synchronization
UltraLite defining overview, 105
UltraLite synchronization parameter, 115

download_only synchronization parameter
UltraLite reference, 115

DROP INDEX statement
UltraLite Interactive SQL example, 65
UltraLite syntax, 392
UltraLiteJ syntax, 392

DROP PUBLICATION statement
UltraLite Interactive SQL example, 68
UltraLite syntax, 392

DROP SYNCHRONIZATION PROFILE statement
UltraLite syntax, 393
UltraLiteJ syntax, 393

DROP TABLE statement
UltraLite Interactive SQL example, 58
UltraLite syntax, 394
UltraLiteJ syntax, 394

DROP USER statement

Index

442 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite syntax, 394
dropping

UltraLite columns, 371
UltraLite DROP SYNCHRONIZATION PROFILE
statement, 393
UltraLite indexes, 65
UltraLite SQL CREATE INDEX statement, 376
UltraLite SQL DROP INDEX statement, 392
UltraLite SQL DROP PUBLICATION statement,
392
UltraLite SQL DROP TABLE statement, 394
UltraLite SQL DROP USER statement, 394
UltraLite table methods, 57
UltraLiteJ columns, 371
UltraLiteJ DROP SYNCHRONIZATION
PROFILE statement, 393
UltraLiteJ SQL CREATE INDEX statement, 376
UltraLiteJ SQL DROP INDEX statement, 392
UltraLiteJ SQL DROP TABLE statement, 394

dropping an index
UltraLite about, 65

dropping publications
UltraLite clients, 68

dropping UltraLite tables
about, 57

dummy operation
UltraLite execution plans, 264

dynamic SQL
UltraLite arithmetic operators, 260
UltraLite bitwise operators, 261
UltraLite logical operators, 255
UltraLite operator precedence, 261
UltraLite string operators, 260

E
editing

UltraLite table methods, 58
ELSE

UltraLite CASE expression, 249
UltraLite IF expressions, 248

embedded SQL
UltraLite NULL values, 227

empty databases
UltraLite populating after running ulinit, 204

encoding
UltraLite utf8_encoding creation parameter, 157
UltraLite utf8_encoding usage, 31

ENCODING clause
UltraLite LOAD TABLE statement, 399

encryption
UltraLite changing key, 142
UltraLite data deployment considerations, 46
UltraLite deployment steps, 46
UltraLite encryption keys, 174
UltraLite encryption property, 158
UltraLite fips creation parameter, 142
UltraLite fips property usage, 32
UltraLite fips usage, 32
UltraLite obfuscate creation parameter, 146
UltraLite obfuscate property usage, 32
UltraLite performance impact of, 90
UltraLite synchronization deployment
considerations, 47
UltraLite TLS synchronization configuration, 47

encryption keys
UltraLite changing, 142

encryption property
UltraLite description, 158

END
UltraLite CASE expression, 249

ENDIF
UltraLite IF expressions, 248

engines
(see also UltraLite engine)

entity-relationship diagrams
UltraLite about, 60

entity-relationship tab
UltraLite using, 60

environment variables
command prompts, vii
command shells, vii
ERRORLEVEL for UltraLite, 191
UltraLite ULSQLCONNECT, 40
UltraLite usage, 38

ER diagram tab
UltraLite about, 60

erase database utility
UltraLite syntax, 195

error callback
UltraLite schema upgrade errors, 52

error codes
UltraLite database synchronization utility (ulsync),
185
UltraLite load XML to database utility (ulload),
185

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 443



UltraLite unload data to XML utility (ulunload),
185
UltraLite utilities, 185

ERRORLEVEL environment variable
Interactive SQL return code for UltraLite, 191

errors
UltraLite client error -764, 429
UltraLite SQLE_DATABASE_ERROR, 426
UltraLite SQLE_DEVICE_ERROR, 426
UltraLite SQLE_MEMORY_ERROR, 426

escape sequences
UltraLite engine paths, 429

ESCAPES clause
UltraLite LOAD TABLE statement, 399

ESQL (see embedded SQL) (see UltraLite SQL)
event notifications

UltraLite working with, 70
examples

(see also samples)
(see also tutorials)

exclusive OR
UltraLite bitwise operator, 261

execution plans
UltraLite checking for index usage, 83
UltraLite how to read, 264
UltraLite operations, 264
UltraLite overriding, 262
UltraLite text of, 263
UltraLite working with, 262

EXISTS search condition
UltraLite SQL, 258

exit codes
Interactive SQL utility (dbisql) for UltraLite, 191
UltraLite database synchronization utility (ulsync),
185
UltraLite load XML to database utility (ulload),
185
UltraLite unload data to XML utility (ulunload),
185

EXP function
UltraLite syntax, 302

EXPLANATION function
UltraLite syntax, 303

exponential function
UltraLite EXP function, 302

exponents
UltraLite, 227

export tools

UltraLite ulunload utility, 214
exporting

UltraLite databases with ulunload, 214
expressions

UltraLite aggregate, 250
UltraLite CASE expressions, 249
UltraLite column names, 248
UltraLite constants, 248
UltraLite IF expressions, 248
UltraLite input parameters, 251
UltraLite SQL, 246
UltraLite SQL operator precedence, 261
UltraLite subqueries, 251

expressions in UltraLite
about, 246

F
failures

UltraLite preventing out-of-memory errors, 181
UltraLite schema upgrade errors, 52

features
UltraLite comparison list, 1

Federal Information Processing Standards  (see FIPS)
feedback

documentation, viii
providing, viii
reporting an error, viii
requesting an update, viii

fetches
UltraLite, 16

fetching rows
UltraLite concurrency, 16

file names
UltraLite connection parameters, 36

file objects
UltraLite types, 9

file property
UltraLite description, 158

file size
UltraLite database troubleshooting, 427

file systems
(see also VFS)

files
transferring with MLFileTransfer, 106
UltraLite ActiveSync provider, 49
UltraLite CustDB sample location, 73

filter operation

Index

444 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite execution plans, 264
filtering

UltraLite table methods, 59
finding out more and requesting technical assistance

technical support, viii
FIPS

UltraLite encrypted database deployment, 46
UltraLite fips property usage, 32
UltraLite setup and deployment, 143
UltraLite TLS-enabled synchronization, 47

FIPS creation parameter
UltraLite description, 142

fips database property
UltraLite deployment steps, 46
UltraLite usage, 32

fips network protocol option
UltraLite TLS-enabled synchronization, 47

FIRST clause
UltraLite SELECT statement, 402
UltraLiteJ SELECT statement, 402

FLOAT data type
UltraLite, 231

FLOOR function
UltraLite syntax, 304

flush count
UltraLite formatting, 163

flush timeout
UltraLite formatting, 164

flushing
UltraLite databases, 163

footprint
UltraLite databases, 1

FOR clause
UltraLite SELECT statement, 403

FOR READ ONLY clause
UltraLite direct page scans with, 89

FORCE ORDER clause
UltraLite SELECT statement, 404

foreign key cycles
UltraLite about, 103
UltraLite issues, 104

foreign keys
UltraLite characteristics, 82
UltraLite copying method, 60
UltraLite foreign keys, 385
UltraLite of unnamed, 385

FORMAT clause
UltraLite LOAD TABLE statement, 399

format options (UltraLite)
utf8_encoding usage, 31

FROM clause
UltraLite LOAD TABLE statement, 398
UltraLite SELECT statement, 403
UltraLite syntax, 395

functions
return NULL if you specify NULL argument, 266
types of function for UltraLite, 266
UltraLite aggregate, 266
UltraLite data type conversion SQL, 267
UltraLite date and time, 267
UltraLite introduction, 266
UltraLite miscellaneous, 269
UltraLite numeric, 270
UltraLite string, 271
UltraLite system SQL, 271

functions, aggregate
about, 266
UltraLite AVG, 277
UltraLite COUNT, 288
UltraLite LIST, 315
UltraLite MAX, 320
UltraLite MIN, 321
UltraLite SUM, 353

functions, data type conversion
UltraLite about, 267
UltraLite CAST, 279
UltraLite CONVERT, 285
UltraLite HEXTOINT, 306
UltraLite INTTOHEX, 310
UltraLite ISDATE, 311
UltraLite ISNULL, 311

functions, date and time
SWITCHOFFSET, 354
TODATETIMEOFFSET, 357
UltraLite about, 267
UltraLite DATE, 291
UltraLite DATEADD, 291
UltraLite DATEDIFF, 292
UltraLite DATEFORMAT, 294
UltraLite DATENAME, 294
UltraLite DATEPART, 295
UltraLite DATETIME, 296
UltraLite DAY, 297
UltraLite DAYNAME, 297
UltraLite DAYS, 298
UltraLite DOW, 301

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 445



UltraLite GETDATE, 304
UltraLite HOUR, 307
UltraLite HOURS, 307
UltraLite MINUTE, 321
UltraLite MINUTES, 322
UltraLite MONTH, 325
UltraLite MONTHNAME, 326
UltraLite MONTHS, 327
UltraLite NOW, 329
UltraLite QUARTER, 333
UltraLite SECOND, 341
UltraLite SECONDS, 342
UltraLite TODAY, 357
UltraLite WEEKS, 362
UltraLite YEAR, 364
UltraLite YEARS, 364
UltraLite YMD, 366

functions, miscellaneous
UltraLite about, 269
UltraLite ARGN, 273
UltraLite COALESCE, 284
UltraLite EXPLANATION, 303
UltraLite GREATER, 305
UltraLite IFNULL, 309
UltraLite LESSER, 314
UltraLite NEWID, 328
UltraLite NULLIF, 330
UltraLite SHORT_PLAN, 344

functions, numeric
COUNT_UPLOAD_ROWS, 289
DEGREES, 300
RAND, 335
UltraLite about, 270
UltraLite ABS, 272
UltraLite ACOS, 273
UltraLite ASIN, 275
UltraLite ATAN, 275
UltraLite ATAN2, 276
UltraLite CEILING, 280
UltraLite COS, 287
UltraLite COT, 288
UltraLite EXP, 302
UltraLite FLOOR, 304
UltraLite LOG, 317
UltraLite LOG10, 318
UltraLite MOD, 325
UltraLite PI, 332
UltraLite POWER, 332

UltraLite RADIANS, 334
UltraLite REMAINDER, 336
UltraLite ROUND, 340
UltraLite SIGN, 344
UltraLite SIN, 346
UltraLite SQRT, 348
UltraLite TAN, 356
UltraLite TRUNCATE, 359
UltraLite TRUNCNUM, 359
UltraLiteJ RAND, 335

functions, string
UltraLite about, 271
UltraLite ASCII, 274
UltraLite BYTE_LENGTH, 278
UltraLite BYTE_SUBSTR, 279
UltraLite CHAR, 281
UltraLite CHAR_LENGTH, 282
UltraLite CHARINDEX, 283
UltraLite DIFFERENCE, 301
UltraLite INSERTSTR, 309
UltraLite LCASE, 312
UltraLite LEFT, 313
UltraLite LENGTH, 314
UltraLite LOCATE, 316
UltraLite LOWER, 318
UltraLite LTRIM, 319
UltraLite PATINDEX, 331
UltraLite REPEAT, 337
UltraLite REPLACE, 337
UltraLite REPLICATE, 338
UltraLite RIGHT, 339
UltraLite RTRIM, 341
UltraLite SIMILAR, 345
UltraLite SOUNDEX, 347
UltraLite SPACE, 347
UltraLite STR, 349
UltraLite STRING, 349
UltraLite STRTOUUID, 350
UltraLite STUFF, 351
UltraLite SUBSTRING, 352
UltraLite TRIM, 358
UltraLite UCASE, 360
UltraLite UPPER, 360
UltraLite UUIDTOSTR, 361

functions, system
DB_PROPERTY, 299
ML_GET_SERVER_NOTIFICATION, 324
SYNC_PROFILE_OPTION_VALUE, 355

Index

446 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



SYNC_PROFILE_PARM, 356
UltraLite DATALENGTH, 290

fundamentals
UltraLite database management, 11

G
GETDATE function

query the current system date, 305
UltraLite syntax, 304

GetLastIdentity method
UltraLite synchronization, 97

getScriptVersion method
UltraLite example, 132

getStream method
UltraLite example, 127

getting help
technical support, viii

getUploadOK method
UltraLite example, 129

global autoincrement
exhausted range in UltraLite, 96
UltraLite clients in MobiLink systems , 95
UltraLite global_database_id, 165
UltraLite, setting, 96
UltraLite, setting defaults, 98

global database ID considerations
UltraLite about, 165

global database identifier
UltraLite global_database_id, 165
UltraLite, setting, 96

global_database_id option
UltraLite, 165
UltraLite CREATE TABLE statement, 385
UltraLite, setting, 96

global_database_id property
UltraLite description, 158

globally unique identifiers
UltraLite clients in MobiLink systems, 95
UltraLite SQL syntax for NEWID function, 328

GRANT CONNECT TO statement
UltraLite syntax, 397

grant permissions
UltraLite GRANT CONNECT TO statement, 397

graphical plans
UltraLite not supported, 263

GREATER function
UltraLite syntax, 305

GROUP BY clause
UltraLite SELECT statement, 403

group-by operation
UltraLite execution plans, 264

GUIDs
UltraLite clients in MobiLink systems, 95
UltraLite SQL syntax for NEWID function, 328
UltraLite SQL syntax for STRTOUUID function,
350
UltraLite SQL syntax for UUIDTOSTR function,
361

H
hash

UltraLite configuring size for, 88
UltraLite max_hash_size property, 158
UltraLite optimal size for, 86
UltraLite size considerations, 143

hashing
UltraLite indexes, 143

help
technical support, viii

hexadecimal strings
UltraLite about, 306

HEXTOINT function
UltraLite syntax, 306

host
UltraLite ULSynchronize arguments, 128

host platforms
UltraLite Windows supported platforms, 20

HOUR function
UltraLite syntax, 307

HOURS function
UltraLite syntax, 307

I
iAnywhere developer community

newsgroups, viii
IDENTIFIED BY password clause

ALTER USER statement, 374
identifiers

UltraLite SQL, 225
IDs

ml_remote_id option, 166
UltraLite global database, 165
UltraLite user, 39

IF expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 447



UltraLite SQL syntax, 248
IF NOT EXISTS clause

CREATE PUBLICATION statement [UltraLite]
[UltraLiteJ], 378
UltraLite, CREATE TABLE statement [UltraLite]
[UltraLiteJ] , 384
UltraLite, CREATE TEXT INDEX statement
[UltraLite] [UltraLiteJ] , 376

IFNULL function
UltraLite syntax, 309

ignored rows
UltraLite synchronization parameter, 116

ignored_rows synchronization parameter
UltraLite reference, 116

importing data
UltraLite troubleshooting, 427

importing data into databases
UltraLite ulload utility, 205

IN search condition
UltraLite SQL, 259

in-process runtime
UltraLite about, 19

index performance considerations
UltraLite about, 143

index scans
UltraLite, 82

index-based UltraLite optimizations
UltraLite about, 82

index-scan operation
UltraLite execution plans, 264

indexes
UltraLite bypassing use of, 89
UltraLite copying method, 60
UltraLite creating, 64
UltraLite deleting, 65
UltraLite determining which index is scanned, 83
UltraLite hash considerations, 143
UltraLite hash value, 143
UltraLite introduction of, 82
UltraLite limitations, 7
UltraLite non-unique index characteristics, 63
UltraLite page_size usage, 146
UltraLite performance enhancements, 84
UltraLite primary keys, 26
UltraLite sysindex system table, 221
UltraLite sysixcol system table, 222
UltraLite types, 63
UltraLite unique index characteristics, 63

UltraLite unique key characteristics, 63
UltraLite UNIQUE SQL parameter, 376
UltraLite when to create, 64
UltraLite when to use, 62
UltraLite working with, 61

indicators
UltraLite comments in SQL block, 226

initializing
UltraLite databases with ulinit, 197

initializing databases
Sybase Central UltraLite plug-in, 24

INNER JOIN clause
UltraLite syntax, 395

inner references
UltraLite subqueries, 251

input parameters
UltraLite about, 251

INPUT statement
UltraLite troubleshooting, 427

INSERT statement
UltraLite Interactive SQL example, 60
UltraLite syntax, 397
UltraLiteJ syntax, 397

inserting
UltraLite data using LOAD TABLE statement, 398
UltraLite INSERT statement, 397
UltraLite rows in bulk, 398
UltraLiteJ INSERT statement, 397

INSERTSTR function
UltraLite syntax, 309

install-dir
documentation usage, vi

installation
UltraLite troubleshooting, 425

installing
UltraLite on devices, 41

INTEGER data type
UltraLite, 231

integrity
UltraLite CREATE TABLE statement, 385

integrity constraints
UltraLite usage, 385

Interactive SQL
command line, 190
UltraLite command line, 186
UltraLite displaying plans, 262
UltraLite plan interpretation, 264
UltraLite plan operations, 264

Index

448 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite text plans, 263
UltraLite troubleshooting data imports, 427

Interactive SQL utility (dbisql)
UltraLite exit codes, 191
UltraLite syntax, 186

INTTOHEX function
UltraLite syntax, 310

IS
UltraLite logical operators, 255

ISDATE function
UltraLite syntax, 311

ISNULL function
UltraLite syntax, 311

isolation levels
UltraLite about, 15
UltraLite dirty reads, 16
UltraLite isolation levels, 15

J
join operation

UltraLite execution plans, 264
joins

UltraLite FROM clause syntax, 395

K
keep partial download synchronization parameter

UltraLite reference , 117
key connection parameter

UltraLite syntax, 174
KEY JOIN clause

UltraLite syntax, 395
keys

UltraLite index creation from, 63
UltraLite index hash, 143
UltraLite primary, 53

keyset operation
UltraLite execution plans, 264

keywords
UltraLite SQL, 225

L
LCASE function

UltraLite syntax, 312
LEFT function

UltraLite syntax, 313
LEFT OUTER JOIN clause

UltraLite syntax, 395

LENGTH function
UltraLite syntax, 314

LESSER function
UltraLite syntax, 314

libraries
UltraLite choices, 20
UltraLite deploying uleng to Windows Mobile, 44
UltraLite FIPS-enabled applications, 143

like-scan operation
UltraLite execution plans, 264

limitations
UltraLite, 7
UltraLite data types, 230

limits
UltraLite, 7

line length
UltraLite sqlpp utility output, 192

linking
UltraLite engine libraries, 20
UltraLite runtime libraries, 19

LIST function
UltraLite syntax, 315

lists
UltraLite LIST function syntax, 315

literals
UltraLite constants, 248

LOAD TABLE statement
UltraLite syntax, 398

loading
UltraLite bulk inserts, 398
UltraLite LOAD TABLE statement, 398

loading data
UltraLite LOAD TABLE statement, 398

loading databases
UltraLite databases with ulload, 205

LOCATE function
UltraLite syntax, 316

locking
UltraLite concurrency, 14

LOG function
UltraLite syntax, 317

LOG10 function
UltraLite syntax, 318

logging
UltraLite internal mechanism, 14

logic
UltraLite capturing for synchronization design, 99

logical operators

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 449



UltraLite SQL syntax, 255
lojoin operation

UltraLite execution plans, 264
LONG BINARY data type

UltraLite, 231
LONG VARCHAR data type

UltraLite, 231
LOWER function

UltraLite syntax, 318
lowercase strings

UltraLite LCASE function, 312
UltraLite LOWER function, 318

LTRIM function
UltraLite syntax, 319

M
maintaining

UltraLite on devices, 41
maintaining primary key uniqueness

UltraLite clients in MobiLink systems, 95
management tools

UltraLite utilities reference, 185
managing databases

UltraLite data and state, 11
managing temporary tables

UltraLite about, 88
managing transactions

UltraLite increased throughput, 89
mathematical expressions

UltraLite arithmetic operators, 260
MAX function

UltraLite syntax, 320
max_hash_size creation parameter

UltraLite description, 143
max_hash_size property

UltraLite description, 158
maximum

UltraLite date ranges, 230
UltraLite physical limits, 7

mechanism
UltraLite application and database deployment, 41

media failures
UltraLite transaction overview , 14

memory
UltraLite limits, 7

memory failures
UltraLite preventing, 181

memory usage
UltraLite database storage, 36
UltraLite indexes, 82
UltraLite row states, 12

metadata
UltraLite considering for reserve size, 181

MIN function
UltraLite syntax, 321

minimum
UltraLite date ranges, 230

MINUTE function
UltraLite syntax, 321

MINUTES function
UltraLite syntax, 322

MIRROR_FILE connection parameter
UltraLite syntax , 178

ml_add_connection_script system procedure
adding, 80

ml_add_table_script system procedure
adding, 80

ML_GET_SERVER_NOTIFICATION
syntax, 324

ml_remote_id option
UltraLite, 166
UltraLite property configuration, 196

ml_remote_id property
UltraLite description, 158

mlasdesk.dll
deploying UltraLite applications, 49

mlasdev.dll
deploying UltraLite applications, 49

mlasinst utility
registering applications for UltraLite clients, 50
UltraLite deploying with DLL files, 49

MobiLink
UltraLite clients, 93
UltraLite CREATE PUBLICATION statement,
378
UltraLite SQL statements, 366
UltraLite user ID uniqueness, 166

MobiLink ActiveSync provider installation utility
(mlasinst)

registering applications for UltraLite clients, 50
MobiLink clients

UltraLite progress counter, 93
MobiLink file transfers

UltraLite client overview of, 106
MobiLink synchronization

Index

450 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



setting timestamp_increment creation parameter,
155
UltraLite clients, 93

MOD function
UltraLite syntax, 325

modeling
UltraLite databases from MobiLink, 24

modifying
UltraLite columns, 371
UltraLite tables, 371
UltraLiteJ columns, 371
UltraLiteJ tables, 371

MONEY data type
UltraLite equivalent, 233

monitoring synchronization
UltraLite observer synchronization parameter, 119
UltraLite setObserver method, 119

MONTH function
UltraLite syntax, 325

MONTHNAME function
UltraLite syntax, 326

MONTHS function
UltraLite syntax, 327

multi-process access
UltraLite engine, 19

multi-table joins
UltraLite databases, 1

multi-threaded
UltraLite applications, 12

multi-threaded applications
UltraLite about , 19

multiple databases
UltraLite maximum of, 12

multiple devices
UltraLite connection parameters for, 36

N
name property

UltraLite description, 158
names

UltraLite column names, 248
NATURAL JOIN clause

UltraLite syntax, 395
nearest century conversion considerations

UltraLite about, 144
nearest_century creation parameter

UltraLite description, 144

nearest_century property
UltraLite description, 158

network protocols
UltraLite supported, 19
UltraLite Sync Result synchronization parameter,
129
UltraLite synchronization using HTTP, 127
UltraLite synchronization using HTTPS, 127
UltraLite synchronization using TCP/IP, 127

new password
UltraLite synchronization parameter, 118

NEWID function
UltraLite syntax, 328

newmobilinkpwd synchronization parameter
UltraLite reference, 118

newsgroups
technical support, viii

Non-repeatable reads
UltraLite about, 16

non-unique indexes
UltraLite characteristics, 82
UltraLite index creation from, 63

nosync tables
UltraLite non-synchronizing tables , 101
UltraLite overview, 54

NOT
UltraLite bitwise operator, 261
UltraLite logical operators, 255

NOW function
UltraLite syntax, 329

NT_FILE connection parameter
UltraLite syntax , 179

NULL
UltraLite ISNULL function, 311

NULL values
UltraLite SQL, 227

NULLIF function
UltraLite about, 330
UltraLite using with CASE expressions, 250

NULLs
returned by functions if a NULL argument is
specified, 266

number of authentication parameters
UltraLite synchronization parameter, 118

numbers
UltraLite SQL, 227

NUMERIC data type
UltraLite, 231

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 451



numeric functions
UltraLite alphabetical list, 270

numeric precision
UltraLite precision, 148

O
obfuscate database creation parameter

UltraLite description, 146
obfuscate database property

UltraLite usage, 32
obfuscation

UltraLite performance impact of, 91
UltraLite usage, 32

observer synchronization parameter
UltraLite description, 119

on-device creation
about, 27

online books
PDF, v

operating systems
UltraLite Windows supported platforms, 20
Unix, v
Windows, v
Windows CE, v
Windows Mobile, v

operator precedence
UltraLite SQL syntax, 261

operators
UltraLite arithmetic operators, 260
UltraLite bitwise operators, 261
UltraLite comparison operators, 254
UltraLite logical operators, 255
UltraLite precedence of operators, 261
UltraLite SQL syntax, 259
UltraLite string operator, 260

optimization
UltraLite checkpoints, 89
UltraLite execution plan access options, 83
UltraLite indexes, 86
UltraLite queries, 403
UltraLite SQL, 262

optimizer
(see also query optimizer)
UltraLite execution plan access options, 83
UltraLite impact of, 262
UltraLite overriding, 262
UltraLite plan interpretation, 264

UltraLite plan operations, 264
UltraLite using, 262

optimizing UltraLite
query performance, 81

options
UltraLite browsing, 167
UltraLite database unload utility (ulunload), 214
UltraLite erase database utility (ulerase), 196
UltraLite information utility (ulinfo), 196
UltraLite initialize database utility (ulinit), 198
UltraLite Interactive SQL utility (dbisql), 186
UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192
UltraLite synchronization profiles, 212
UltraLite synchronization utility (ulsync), 209
UltraLite unload old database utility (ulunloadold),
217
UltraLite validate database utility (ulvalid) utility,
218

options (UltraLite)
commit_flush_count, 163
commit_flush_timeout, 164
DB_PROPERTY function, 299
global_database_id, 165
ml_remote_id, 166
SET OPTION statement, 404

OR
UltraLite bitwise operators, 261
UltraLite logical operators, 255

Oracle consolidated databases
UltraLite issues with, 94

ORDER BY clause
UltraLite SELECT statement, 403
UltraLite troubleshooting with, 428

order of operations
UltraLite SQL operator precedence, 261

ordering query results
UltraLite about, 89

ordering result sets
UltraLite troubleshooting, 428

outer references
UltraLite subqueries, 251

overflow errors
AVG function, 277
SUM function, 354

overhead
UltraLite considering for reserve size, 181

Index

452 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



P
packed rows

UltraLite about, 53
packing rows

UltraLite effect of, 147
page sizes

UltraLite page_size property, 158
page_size creation parameter

UltraLite description, 146
page_size property

UltraLite description, 158
pages

UltraLite size considerations, 146
parameters

UltraLite connection list, 34
UltraLite connection overview, 37
UltraLite database creation, 135
UltraLite SQL input, 251

partial download retained synchronization parameter
UltraLite reference, 120

partition sizes
UltraLite defaults, choosing, 96
UltraLite defaults, overriding, 98
UltraLite exhausting defaults, 96

partitioning
UltraLite primary keys, 96
UltraLite rows publishing, 67

password
UltraLite synchronization parameter, 120

Password connection parameter
UltraLite syntax, 180

passwords
character set conversion, 374, 390
maximum length, 374, 390
PWD UltraLite connection parameter, 180
salt value for UltraLite connection parameter, 180
UltraLite adding new, 39
UltraLite changing, 69
UltraLite considerations, 69
UltraLite databases, 39
UltraLite defaults, 69
UltraLite new MobiLink password parameter, 118
UltraLite password synchronization parameter, 120
UltraLite semantics, 40

paths
UltraLite connection parameters, 36
UltraLite engine, 425

PATINDEX function
UltraLite syntax, 331

pattern matching
UltraLite PATINDEX function, 331

PDF
documentation, v

performance
separating commits from checkpoints, 89
UltraLite CACHE_SIZE connection parameter,
167
UltraLite choosing optimal hash size, 86
UltraLite download-only synchronization, 115
UltraLite index hashing, 143
UltraLite page sizes, 146
UltraLite preventing memory failures, 181
UltraLite query optimization, 403
UltraLite query optimization techniques, 81
UltraLite query tuning with index hashing, 84
UltraLite specifying FOR READ ONLY clause,
263
UltraLite upload only synchronization, 130
UltraLite using index, 62
UltraLite using index for applications, 25
UltraLite using index for improving query
performance, 377
UltraLite using index for large tables, 61
UltraLite viewing an execution plan, 263

persistent memory
UltraLite database storage, 36

phantom rows
UltraLite, 16

physical limitations
UltraLite, 7

PI function
UltraLite syntax, 332

ping
UltraLite synchronization parameter, 121

placeholder
UltraLite SQL input parameter, 251

planning
UltraLite synchronization design overview, 99

plans
UltraLite cursors, 303
UltraLite operations for, 264
UltraLite plan interpretation, 264
UltraLite plan operations, 264
UltraLite queries, overriding, 262
UltraLite queries, reading, 264

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 453



UltraLite queries, working with, 262
UltraLite syntax, 303
UltraLite text plans, 263

platforms
UltraLite file storage, 36
UltraLite multiple connection parameters for, 36

plug-ins
UltraLite troubleshooting, 425

pools
UltraLite unused Global IDs, 96

populating
UltraLite databases created with ulinit, 204

port number
UltraLite ULSynchronize arguments, 128

POWER function
UltraLite syntax, 332

precedence
UltraLite SQL operator precedence, 261

precision creation parameter
UltraLite description, 148

precision property
UltraLite description, 158

predicates
UltraLite ALL, 256
UltraLite ANY, 257
UltraLite BETWEEN, 257
UltraLite comparison operators, 254
UltraLite EXISTS, 258
UltraLite IN, 259
UltraLite SQL, 253

prefix
UltraLite for Windows Mobile databases , 37

prepared statements
UltraLite input parameters, 251

primary key indexes
UltraLite bypassing use of, 89
UltraLite using, 89

primary keys
UltraLite characteristics, 82
UltraLite generating unique values, 328
UltraLite generating unique values using UUIDs,
328
UltraLite indexing, 26
UltraLite integrity constraints, 385
UltraLite order of columns, 385
UltraLite table order, 104
UltraLite tables, 53
UltraLite troubleshooting data imports, 427

UltraLite UUIDs and GUIDs, 328
procedures

UltraLite limitations, 1
programming interfaces

UltraLite supported, 20
progress counter

UltraLite offset mismatches with , 93
properties

DB_PROPERTY function, 299
UltraLite alphabetical list, 158
UltraLite browsing, 162
UltraLite database creation parameters, 28
UltraLite system table for, 224

properties (UltraLite)
DB_PROPERTY function, 299

provider files
UltraLite deploying ActiveSync, 49

providers
UltraLite ActiveSync files, 49

public certificate
UltraLite application access to, 210

publication creation wizard
UltraLite creating publications, 102

publications
UltraLite ALTER PUBLICATION statement, 369
UltraLite copying method, 60
UltraLite CREATE PUBLICATION statement,
378
UltraLite design plans with, 99
UltraLite dropping , 68
UltraLite limit, 197
UltraLite publication synchronization parameter,
122
UltraLite publishing overview, 102
UltraLite publishing tables, 66
UltraLite rows publishing, 67
UltraLite schema description for, 223
UltraLite SQL CREATE INDEX statement, 376
UltraLite SQL DROP INDEX statement, 392
UltraLite SQL DROP PUBLICATION statement,
392
UltraLite SQL DROP TABLE statement, 394
UltraLite synchronization, 122
UltraLite synchronization parameter for, 122
UltraLite sysarticle system table, 223
UltraLite syspublication system table, 223
UltraLite table listing in schema , 223
UltraLite WHERE clause usage, 67

Index

454 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite working with, 65
UltraLiteJ SQL CREATE INDEX statement, 376
UltraLiteJ SQL DROP INDEX statement, 392
UltraLiteJ SQL DROP TABLE statement, 394

publishing
UltraLite rows, 67
UltraLite tables, 66
UltraLite whole table, 102

publishing whole tables
UltraLite, 66

PWD connection parameter
UltraLite syntax, 180

Q
QUARTER function

UltraLite syntax, 333
queries

UltraLite optimization, 403
UltraLite ordering results with primary key, 89
UltraLite troubleshooting unpredictable result sets,
428

query optimization
(see also optimizer)
UltraLite SQL, 262

query optimizer
(see also optimizer)
UltraLite, 262

QUOTES clause
UltraLite LOAD TABLE statement, 399

R
RADIANS function

UltraLite syntax, 334
RAND function

syntax, 335
UltraLiteJ syntax, 335

random numbers
RAND function, 335
UltraLiteJ RAND, 335

range
UltraLite date type, 230

read-only tables
UltraLite databases, 105
UltraLite synchronizing, 105

ReadCommitted
UltraLite isolation levels, 15

reading

UltraLite table rows, 16
reading UltraLite access plans

about, 264
readme files

UltraLite CustDB applications, 74
ReadUncommitted

UltraLite isolation levels, 15
REAL data type

UltraLite, 231
recovery

UltraLite, 14
UltraLite introduction, 12
UltraLite transaction overview , 14

recovery from system failure
UltraLite internal mechanism, 14

reference databases
about, 25
creating for UltraLite, 25
options for UltraLite, 25

referential integrity
UltraLite databases, 1
UltraLite indexes, 62
UltraLite table order, 104

registering
MobiLink UltraLite applications with ActiveSync,
50

reload.sql
UltraLite loading, 398

REMAINDER function
UltraLite syntax, 336

remote databases
creating UltraLite clients, 95
UltraLite synchronization count, 93

remote IDs
setting in UltraLite databases, 166

remote servers
UltraLite CREATE TABLE statement, 384
UltraLiteJ CREATE TABLE statement, 384

removing
UltraLite users, 70

removing data
UltraLite file size impact of, 427

renaming
UltraLite database objects during upgrade, 51
UltraLite tables, 371
UltraLiteJ tables, 371

REPEAT function
UltraLite syntax, 337

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 455



REPLACE function
UltraLite syntax, 337

REPLICATE function
UltraLite syntax, 338

requests
UltraLite concurrency, 12
UltraLite management of, 12

RESERVE_SIZE connection parameter
UltraLite syntax, 181

reserved words
UltraLite SQL, 225

restartable downloads
UltraLite keep partial download, 117
UltraLite partial download retained, 120
UltraLite resume partial download, 123

restoring
UltraLite transaction overview , 14

result sets
UltraLite troubleshooting unpredictable changes,
428

resume partial download synchronization parameter
UltraLite reference, 123

return codes
Interactive SQL utility (dbisql) for UltraLite, 191

REVOKE CONNECT FROM statement
UltraLite syntax, 401

revoke permissions
UltraLite REVOKE CONNECT FROM statement,
401

RIGHT function
UltraLite syntax, 339

RIGHT OUTER JOIN clause
UltraLite syntax, 395

role names
UltraLite foreign keys, 385
UltraLite role names, 385

role of user authentication
UltraLite about, 39

ROLLBACK statement
UltraLite syntax, 402
UltraLiteJ syntax, 402

rollbacks
UltraLite databases, 12

rolling back
UltraLite transaction overview , 14
UltraLite transactions, 402
UltraLiteJ transactions, 402

ROUND function

UltraLite syntax, 340
rounding

UltraLite scale, 149
UltraLite scale creation parameter , 149

row packing
UltraLite about, 53
UltraLite effect of, 147
UltraLite observing, 181

rowlimit operation
UltraLite execution plans, 264

rows
UltraLite deleting all rows from a table, 408
UltraLite fetching, 16
UltraLite INSERT statement, 397
UltraLite inserting in bulk, 398
UltraLite locking of, 14
UltraLite publishing, 67
UltraLiteJ deleting all rows from a table, 408
UltraLiteJ INSERT statement, 397

RSA encryption algorithm
UltraLite TLS-enabled synchronization, 47

RTRIM function
UltraLite syntax, 341

running
UltraLite CustDB application, 75

runtime libraries
UltraLite list of, 19

runtimes
(see also UltraLite runtime)

S
salt value for password

UltraLite syntax, 180
sample application

starting CustDB in UltraLite, 76
samples

(see also examples)
(see also tutorials)

samples-dir
documentation usage, vi

scale creation parameter
UltraLite description, 149

scale property
UltraLite description, 158

scan operation
UltraLite execution plans, 264

scanning

Index

456 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite database pages in queries, 89
UltraLite indexes in queries, 82

schema
UltraLite catalog of tables for, 9
UltraLite changes, precautions, 10

schemas
UltraLite SQL ALTER DATABASE SCHEMA
FROM FILE syntax, 368
UltraLite system tables, 219

scjview
terminating before installing, 425

script versions
UltraLite getScriptVersion, 132
UltraLite setScriptVersion method , 132
UltraLite version synchronization parameter , 132

scripted upload
UltraLite CREATE PUBLICATION syntax, 378

search conditions
UltraLite ALL, 256
UltraLite ANY, 257
UltraLite BETWEEN, 257
UltraLite EXISTS, 258
UltraLite IN, 259
UltraLite SQL, 253

SECOND function
UltraLite syntax, 341

SECONDS function
UltraLite syntax, 342

security
UltraLite, 32
UltraLite AES FIPS database deployment, 46
UltraLite FIPS encryption, 142
UltraLite overview of, 32
UltraLite TLS-enabled synchronization, 47
UltraLite user authentication, 39

SELECT statement
UltraLite browsing data example, 59
UltraLite copying result sets with, 60
UltraLite syntax, 402
UltraLite troubleshooting result sets, 428
UltraLiteJ syntax, 402

selecting
UltraLite SELECT statement, 402
UltraLiteJ SELECT statement, 402

send column names
UltraLite synchronization parameter, 124

send download acknowledgement
UltraLite synchronization parameter, 125

send_column_names synchronization parameter
UltraLite reference, 124

send_download_ack synchronization parameter
UltraLite reference, 125

sensitivity
UltraLite case creation parameter, 135

serialized transaction
UltraLite processing of, 14

SET OPTION statement
UltraLite syntax, 404

setObserver method
UltraLite example, 119

setScriptVersion method
UltraLite example, 132

setStream method
UltraLite example, 127

setStreamParms method
UltraLite example, 128

setting the global database identifier
UltraLite clients in MobiLink systems, 96

setting the hash size
about, 88

setUserData method
UltraLite example, 131

SHORT_PLAN function
UltraLite syntax, 344

SIGN function
UltraLite syntax, 344

SIMILAR function
UltraLite syntax, 345

simple encryption
UltraLite performance impact of, 91

SIN function
UltraLite syntax, 346

SKIP clause
UltraLite LOAD TABLE statement, 400

slash-asterisk
UltraLite comment indicator, 226

SMALLINT data type
UltraLite, 231

SMALLMONEY data type
UltraLite equivalent, 233

sort order
UltraLite collations, 31

SOUNDEX function
UltraLite syntax, 347

SPACE function
UltraLite syntax, 347

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 457



spaces
UltraLite filepath definitions, 425

spatial data
about (UltraLite), 413
introduction (UltraLite), 413
standards compliance (UltraLite), 413

Spatial SQL API
ST_Geometry type for UltraLite, 414
ST_Point function for UltraLite, 419
ST_PointFromExtText function for UltraLite, 419
ST_PointFromText for UltraLite, 420
ST_PointFromWKB for UltraLite, 420

special values
UltraLite CURRENT DATE, 227
UltraLite CURRENT TIME, 228
UltraLite CURRENT TIMESTAMP, 228
UltraLite SQL, 227
UltraLite SQLCODE, 230
UltraLiteCURRENT UTC TIMESTAMP, 229

SQL
(see also UltraLite SQL)
data types in UltraLite, 230
UltraLite comparison operators, 254
UltraLite expressions, 246
UltraLite identifiers, 225
UltraLite keywords, 225
UltraLite numbers, 227
UltraLite operators, 259
UltraLite reserved words, 225
UltraLite schema changes with, 10
UltraLite search conditions, 253
UltraLite statement types, 367
UltraLite strings, 225
UltraLite variables, 262

SQL Anywhere
documentation, v

SQL Anywhere databases
database comparison with UltraLite, 1

SQL Anywhere Developer Centers
finding out more and requesting technical support,
ix

SQL Anywhere Tech Corner
finding out more and requesting technical support,
ix

SQL code
UltraLite schema upgrade errors, 52

SQL Flagger
UltraLite usage, 192

SQL functions
return NULL if you specify NULL argument, 266
types of function for UltraLite, 266
UltraLite aggregate, 266
UltraLite data type conversion, 267
UltraLite date and time, 267
UltraLite introduction, 266
UltraLite miscellaneous, 269
UltraLite numeric, 270
UltraLite string, 271
UltraLite system, 271

SQL preprocessor utility (sqlpp)
UltraLite syntax , 192

SQL standards
spatial data (UltraLite), 413

SQL statements
alphabetical list of UltraLite statements, 366
UltraLite, 366

SQL syntax
UltraLite CASE expression, 249
UltraLite column names, 248
UltraLite comments, 226
UltraLite constants, 248
UltraLite functions, 266
UltraLite IF expressions, 248
UltraLite input parameters, 251
UltraLite special values, 227
UltraLite SQLCODE special value, 230

SQL/MM standard
about (UltraLite), 414

SQLCODE
UltraLite concurrency checks, 14
UltraLite special value, 230

SQLCODE SQLE_LOCKED
UltraLite concurrency error, 14

SQLE_CONVERSION_ERROR
UltraLite upgrade warning, 52

SQLE_DATABASE_ERROR
UltraLite data corruption, 426

SQLE_DEVICE_ERROR
UltraLite data corruption, 426

SQLE_DOWNLOAD_CONFLICT error
UltraLite synchronization, 105

SQLE_MAX_ROW_SIZE_EXCEEDED
UltraLite error, 53

SQLE_MEMORY_ERROR
UltraLite data corruption, 426

SQLE_NOTFOUND

Index

458 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite concurrency error, 14
SQLE_ROW_DROPPED_DURING_SCHEMA_UP
GRADE

UltraLite upgrade warning, 51
SQLE_UNABLE_TO_CONNECT_OR_START

troubleshooting, 425
sqlpp utility

UltraLite syntax, 192
SQRT function

UltraLite syntax, 348
square root function

UltraLite SQRT function, 348
ST_AsBinary function

ST_Geometry type for UltraLite, 415
ST_AsExtText function

ST_Geometry type for UltraLite, 416
ST_AsText function

ST_Geometry type for UltraLite, 416
ST_Distance function

ST_Geometry type for UltraLite, 417
ST_Equals function

ST_Geometry type for UltraLite, 417
ST_Geometry type

description for UltraLite, 414
ST_AsBinary function for UltraLite, 415
ST_AsExtText function for UltraLite, 416
ST_AsText function for UltraLite, 416
ST_Distance function for UltraLite, 417
ST_Equals function for UltraLite, 417
ST_IntersectsRect function for UltraLite, 418
ST_SRID function, 421
ST_X function, 422
ST_Y function, 422

ST_IntersectsRect function
ST_Geometry type for UltraLite, 418

ST_PointFromText function [Spatial]
Spatial SQL API for UltraLite, 419, 420

ST_PointFromWKB function [Spatial]
Spatial SQL API for UltraLite, 420

ST_SRID function
ST_Geometry type, 421

ST_X function
ST_Geometry type, 422

ST_Y function
ST_Geometry type, 422

START connection parameter
UltraLite for uleng12 on Windows Mobile, 44
UltraLite syntax, 182

START SYNCHRONIZATION DELETE statement
UltraLite syntax, 405
UltraLiteJ syntax, 405

state bytes
UltraLite databases, 12

state management
UltraLite overview, 11

statements
UltraLite, 366
UltraLite prepared, input parameters for, 251
UltraLite types, 367

STOP SYNCHRONIZATION DELETE statement
UltraLite syntax, 406
UltraLiteJ syntax, 406

storage
UltraLite databases, 9
UltraLite limits, 7
UltraLite reserve size, 181

stored procedures
UltraLite limitations, 1

STR function
UltraLite syntax, 349

stream error
UltraLite synchronization parameter, 125

stream parameters
UltraLite synchronization parameter, 128

stream synchronization parameters
UltraLite synchronization parameter, 128

stream type
UltraLite synchronization parameter, 127

stream_error synchronization parameter
UltraLite reference, 125
UltraLite ul_stream_error structure, 125

stream_parms synchronization parameter
UltraLite reference, 128

STRING function
UltraLite syntax, 349

string functions
UltraLite alphabetical list, 271

string length
UltraLite LENGTH function, 314

string literals
UltraLite constants, 248

string operators
UltraLite dynamic SQL syntax, 260

string position
UltraLite LOCATION function, 316

strings

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 459



UltraLite case sensitivity, 225
UltraLite maximum size, 7
UltraLite nearest_century conversions to dates
with , 144
UltraLite removing trailing blanks , 341
UltraLite replacing, 337
UltraLite SQL, 225
UltraLite SQL functions, 271

STRIP clause
UltraLite LOAD TABLE statement, 400

strong encryption
UltraLite deployment steps, 46
UltraLite fips creation parameter, 142
UltraLite performance impact of, 90
UltraLite usage, 32

STRTOUUID function
UltraLite syntax, 350

STUFF function
UltraLite syntax, 351

subqueries
UltraLite SQL, 251

subquery operation
UltraLite execution plans, 264

SUBSCRIBE BY clause
UltraLite synchronization limitations, 102

SUBSTR function
UltraLite syntax, 352

SUBSTRING function
UltraLite syntax, 352

substrings
UltraLite about, 352
UltraLite replacing, 337

SUM function
UltraLite syntax, 353

supplying UltraLite connection parameters
about, 35

support
newsgroups, viii

switches
UltraLite database unload utility (ulunload), 214
UltraLite erase database utility (ulerase), 196
UltraLite information utility (ulinfo), 196
UltraLite initialize database utility (ulinit), 198
UltraLite Interactive SQL utility (dbisql), 186
UltraLite load XML to database utility (ulload),
205
UltraLite SQL preprocessor utility (sqlpp), 192
UltraLite synchronization utility (ulsync), 209

UltraLite unload old database utility (ulunloadold),
217
UltraLite validate database utility (ulvalid) utility,
218

SWITCHOFFSET function
syntax, 354

Sybase Central
browsing CustDB in UltraLite, 80
creating UltraLite databases, 24
troubleshooting UltraLite connections, 425
UltraLite column creation methods, 55
UltraLite copying database objects method, 60
UltraLite creating indexes, 64
UltraLite creating publications , 102
UltraLite creating table methods, 54
UltraLite system table browsing methods, 59
UltraLite table alteration methods, 56
UltraLite table browsing methods, 59
UltraLite table deletion methods, 58

sync result
UltraLite synchronization parameter, 129

SYNC_PROFILE_OPTION_VALUE function
syntax, 355

SYNC_PROFILE_PARM function
syntax, 356

synchronization
character sets in UltraLite, 30
setting timestamp_increment creation parameter,
155
ulsync utility for UltraLite databases, 209
UltraLite application implementation , 104
UltraLite client-specific data, 102
UltraLite clients, 93
UltraLite CustDB tutorial, 79
UltraLite design overview, 99
UltraLite download_only parameter, 115
UltraLite excluding tables with publications, 102
UltraLite foreign keys, 103
UltraLite ignored rows, 116
UltraLite introduction , 93
UltraLite M-Business Anywhere channel, 106
UltraLite monitoring, 119
UltraLite progress counting mechanism, 93
UltraLite read-only tables , 105
UltraLite referential integrity, 104
UltraLite schema changes during, 10
UltraLite SQLE_DOWNLOAD_CONFLICT error,
105

Index

460 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite stopping, 119
UltraLite system table, 220
UltraLite task overview , 94
UltraLite upload only parameter, 130

synchronization logic
browsing Sybase Central in UltraLite, 80

synchronization models
UltraLite databases, 24

synchronization parameters
UltraLite, 110
UltraLite additionalparms, 111
UltraLite Authentication Value, 115
UltraLite Disable Concurrency overview, 12
UltraLite download_only, 115
UltraLite getScriptVersion , 132
UltraLite getStream method , 127
UltraLite getUploadOK method, 129
UltraLite keep partial download, 117
UltraLite newmobilinkpwd, 118
UltraLite observer , 119
UltraLite partial download retained, 120
UltraLite password, 120
UltraLite ping, 121
UltraLite publication, 122
UltraLite required, 110
UltraLite resume partial download, 123
UltraLite send_column_names, 124
UltraLite send_download_ack , 125
UltraLite setObserver method, 119
UltraLite setScriptVersion method, 132
UltraLite setStream method , 127
UltraLite setStreamParms method, 128
UltraLite setSynchPublication method, 122
UltraLite setUserData method, 131
UltraLite stream type , 127
UltraLite stream_error, 125
UltraLite stream_parms, 128
UltraLite Sync Result , 129
UltraLite upload_ok , 129
UltraLite upload_only, 130
UltraLite user_data, 131
UltraLite user_name, 131
UltraLite version , 132

synchronization profile options
about, 212
UltraLite synchronization, 212

synchronization profiles

UltraLite ALTER SYNCHRONIZATION
PROFILE statement, 369
UltraLite DROP SYNCHRONIZATION PROFILE
statement, 379, 393
UltraLite SYNCHRONIZE statement, 407
UltraLiteJ ALTER SYNCHRONIZATION
PROFILE statement, 369
UltraLiteJ DROP SYNCHRONIZATION
PROFILE statement, 379, 393
UltraLiteJ SYNCHRONIZE statement, 407

synchronization scripts
browsing the UltraLite sample, 80

synchronization stream parameters
UltraLite stream type , 127

synchronization streams
UltraLite getStream method, 127
UltraLite setStream method, 127
UltraLite setStreamParms method, 128
UltraLite setting , 127
UltraLite stream synchronization parameter , 127
UltraLite stream_error synchronization parameter,
125
UltraLite stream_parms synchronization parameter,
128
UltraLite ULHTTPSStream, 127
UltraLite ULHTTPStream, 127

SYNCHRONIZE statement
UltraLite syntax, 407
UltraLiteJ syntax, 407

synchronizing
UltraLite databases on Windows Mobile, 108

synchronizing data
UltraLite file size impact of, 427

syntax
UltraLite arithmetic operators, 260
UltraLite bitwise operators, 261
UltraLite CASE expression, 249
UltraLite column names, 248
UltraLite comparison operators, 254
UltraLite constants, 248
UltraLite CURRENT DATE special value, 227
UltraLite CURRENT TIMESTAMP special value,
228
UltraLite CURRENT UTC TIMESTAMP special
value, 229
UltraLite IF expressions, 248
UltraLite logical operators, 255
UltraLite special values, 227

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 461



UltraLite SQL comments, 226
UltraLite SQL CURRENT TIME special value,
228
UltraLite SQL functions, 266
UltraLite SQL input parameters, 251
UltraLite SQL operator precedence, 261
UltraLite SQL operators, 259
UltraLite SQLCODE special value, 230
UltraLite string operators, 260

SYS
UltraLite system tables, 219

sysarticle system table [UltraLite]
about, 223

syscolumn system table [UltraLite]
about, 220

sysindex system table [UltraLite]
about, 221

sysixcol system table [UltraLite]
about, 222

syspublication system table [UltraLite]
about, 223

systable system table [UltraLite]
about, 220

system failure
UltraLite recover from, 14

system failures
UltraLite transaction overview , 14

system functions
UltraLite about, 271
UltraLite limitations, 1

system objects
UltraLite displaying methods, 59

system tables
UltraLite about, 219
UltraLite browsing methods, 58
UltraLite sysarticle, 223
UltraLite syscolumn, 220
UltraLite sysindex, 221
UltraLite sysixcol, 222
UltraLite syspublication, 223
UltraLite systable, 220
UltraLite sysuldata, 224

system_error_code values
UltraLite synchronization stream errors, 126

sysuldata system table [UltraLite]
about, 224

T
table constraints

UltraLite adding, deleting, or modifying, 371
UltraLite CREATE TABLE statement, 385
UltraLiteJ adding, deleting, or modifying, 371

table expressions
UltraLite subqueries, 251

table owners
UltraLite, 225

table scans
UltraLite ordering results with primary key, 89

table size
number of rows, 7
UltraLite limit, 7

TableOrder
UltraLite synchronization parameter, 111

tableOrder
UltraLite ulsync options, 209

tables
UltraLite allsync, 102
UltraLite ALTER TABLE statement, 371
UltraLite altering methods, 57
UltraLite browsing methods, 58
UltraLite bulk loading, 398
UltraLite controlling synchronization with
publications, 102
UltraLite copying method, 60
UltraLite copying methods, 59
UltraLite CREATE TABLE statement, 384
UltraLite creating methods, 53
UltraLite deleting methods, 57
UltraLite editing methods, 58
UltraLite INSERT statement, 397
UltraLite intermediate query result storage, 11
UltraLite limitations, 7
UltraLite nosync, 101
UltraLite order of, 104
UltraLite publications, 102
UltraLite rows publishing, 67
UltraLite size limit, 53
UltraLite table filtering methods, 59
UltraLite temporary table usage, 263
UltraLite TRUNCATE TABLE statement, 408
UltraLite working with, 52
UltraLiteJ ALTER TABLE statement, 371
UltraLiteJ CREATE TABLE statement, 384
UltraLiteJ INSERT statement, 397

Index

462 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLiteJ TRUNCATE TABLE statement, 408
TAN function

UltraLite syntax, 356
TCP/IP

(see also TCP/IP synchronization)
tech corners

finding out more and requesting technical support,
ix

technical support
newsgroups, viii

temp operation
UltraLite execution plans, 264

TEMP_DIR connection parameter
UltraLite syntax, 183

temporary files
UltraLite limitation, 10

temporary tables
UltraLite about, 11
UltraLite limitations, 1, 7
UltraLite managing, 88
UltraLite queries, 263
UltraLite synchronization using, 102

terminating processes
UltraLite troubleshooting upgrades, 425

TEXT data type
UltraLite equivalent, 233

text plans
UltraLite viewing, 263

THEN
UltraLite IF expressions, 248

threads
UltraLite concurrency, 12

time considerations
UltraLite about, 150

TIME data type
UltraLite, 231

time functions
UltraLite alphabetical list, 267

time_format creation parameter
UltraLite description, 150

time_format property
UltraLite description, 158

times
UltraLite conversion functions, 267

TIMESTAMP data type
UltraLite, 231
UltraLite column limitations, 1

TIMESTAMP special value

UltraLite column limitations, 1
UltraLite TIMESTAMP columns, 385

timestamp_format creation parameter
UltraLite description, 152

timestamp_format property
UltraLite description, 158

timestamp_increment creation parameter
UltraLite description, 154
using in MobiLink synchronization, 155

timestamp_increment property
UltraLite description, 158

timestamp_with_time_zone_format creation parameter
UltraLite, 155

timestamps
UltraLite timestamp_format creation parameter,
152
UltraLite timestamp_increment creation parameter,
154

TINYINT data type
UltraLite, 231

tips
UltraLite implementation , 19

TLS
UltraLite client configuration, 47
UltraLite synchronization deployment
considerations, 47

TLS_TYPE network protocol option
UltraLite TLS-enabled synchronization, 47

TODATETIMEOFFSET function
syntax, 357

TODAY function
UltraLite syntax, 357

TOP clause
UltraLite SELECT statement, 402
UltraLiteJ SELECT statement, 402

tracking
UltraLite synchronization, 93

transaction logging
UltraLite internal mechanism, 14

transaction management
UltraLite, 11

transaction processing
checkpoints and commits, 89
UltraLite COMMIT_FLUSH connection
parameter, 170
UltraLite commit_flush_count option, 163
UltraLite commit_flush_timeout option, 164

transactions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 463



UltraLite checkpoints for, 375
UltraLite COMMIT statement, 376
UltraLite concurrency, 12
UltraLite databases, 12
UltraLite flushing, 163
UltraLite isolation level, 16
UltraLite rolling back, 402
UltraLite schema changes impact, 10
UltraLiteJ COMMIT statement, 376
UltraLiteJ rolling back, 402

transferring files
UltraLite files with MLFileTransfer, 106

transport-layer security
(see also TLS)

triggers
UltraLite limitations, 1

TRIM function
UltraLite syntax, 358

troubleshooting
avoiding synchronization issues with foreign key
cycles, 104
newsgroups, viii
UltraLite backing up application, 93
UltraLite checksum failures, 136
UltraLite connection parameter precedence, 38
UltraLite getUploadOK method , 129
UltraLite global ID numbers, 96
UltraLite implementing resumable downloads, 105
UltraLite maintaining timestamps and timestamp
increments, 152
UltraLite ping synchronization parameter, 121
UltraLite retrieving GLOBAL
AUTOINCREMENT value, 97
UltraLite Stream Error synchronization parameter,
125
UltraLite Sync Result synchronization parameter ,
129
UltraLite transmittal of connection parameters, 38
UltraLite upload_ok synchronization parameter,
129

TRUNCATE function
UltraLite syntax, 359

TRUNCATE TABLE statement
UltraLite syntax, 408
UltraLiteJ syntax, 408

truncating
UltraLite tables, 408
UltraLiteJ tables, 408

TRUNCNUM function
UltraLite syntax, 359

trusted certificates
UltraLite application access to encryption
information, 210

tuning performance
UltraLite max_hash_size, 143
UltraLite with index hashing, 84

tutorials
UltraLite CustDB database synchronization, 79
UltraLite CustDB introduction, 72

U
UCASE function

UltraLite syntax, 360
UDB

(see also UltraLite databases)
UID connection parameter

UltraLite syntax, 184
ul_stream_error structure

UltraLite example, 125
UL_SYNC_ALL macro

UltraLite publications list, 122
UL_SYNC_ALL_PUBS macro

UltraLite publications list, 122
uleng12 utility

deploying to Windows Mobile, 44
in-process database support, 194
syntax, 194

ulerase utility
syntax, 195

ULHTTPSStream function [UL ESQL]
UltraLite synchronization stream, 127

ULHTTPStream function [UL ESQL]
UltraLite synchronization stream, 127

ulinfo utility
syntax, 196

ulinit utility
syntax, 197
unsupported collation workaround, 204
using, 24, 25

ulload utility
syntax, 205
using, 26

ULSocketStream function
UltraLite synchronization stream, 127

ULSQLCONNECT environment variable

Index

464 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



about, 35
description, 40

ulstop utility
syntax, 195

ulsync utility
synchronization profile options, 212
syntax, 209

UltraLite
(see also UltraLite APIs)
(see also UltraLite applications)
(see also UltraLite databases)
(see also UltraLite embedded SQL)
(see also UltraLite SQL)
(see also UltraLite utilities)
about, 1
collations unsupported, 204
concurrency, 11
data conversion, 267
data management options, 19
database creation parameters, 135
deploying applications and databases, 41
deploying databases, 44
deploying upgrades to UltraLite databases, 44
deployment options, 19
embedded engine client files, 19
engine and runtime for, 19
engine starting, 194
engine stopping, 195
environment variables, 38
error codes, 185
implementation , 19
installing applications and databases, 41
introduction, 8
management layers of, 8
multi-threaded applications, 19
runtime files, 19
SQL functions, aggregate, 266
SQL functions, data type conversion, 267
SQL functions, types of, 266
SQL statement reference, 366
SQLE_MAX_ROW_SIZE_EXCEEDED error, 53
supported network protocols, 19
system functions, 271
table owners, 225
timestamp_with_time_zone_format creation
parameter, 155
troubleshooting, 425
UTF8BIN collation for UNICODE characters, 31

utilities reference , 185
UltraLite administration tools

troubleshooting, 428
UltraLite APIs (see UltraLite C/C++ API) (see
UltraLite for AppForge API) (see UltraLite for M-
Business Anywhere API) (see UltraLite.NET API)
UltraLite applications

(see also UltraLite C/C++ API)
(see also UltraLite for AppForge API)
(see also UltraLite for M-Business Anywhere API)
(see also UltraLite.NET API)
APIs choosing , 20
building CustDB, 75
concurrency, 11
CustDB applications and readme files, 74
defining a temporary file location at connection
time, 183
defining engine location at connection time, 182
deploying ActiveSync provider files, 49
deploying FIPS-enabled, 143
deploying to devices, 44
development platforms, 20
error -764, 429
libraries choosing , 20
managing multiple requests, 12
public certificate access, 210
supported Windows platforms, 20
synchronization , 93
TLS-enabled synchronization, 47
transferring files with MobiLink, 106
troubleshooting
SQLE_UNABLE_TO_CONNECT_OR_START,
425

UltraLite C/C++
building CustDB application, 75
CustDB sample and readme files, 75
engine support, 19

UltraLite client synchronization
parameters and options about, 110

UltraLite clients
about MobiLink, 93

UltraLite columns
renaming during schema upgrade, 51

UltraLite connection parameters
about, 37
list of, 34

UltraLite connections
troubleshooting, 425

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 465



UltraLite creation parameters
about, 135

UltraLite database properties
about, 158

UltraLite database synchronization utility (ulsync)
synchronization profile options, 212

UltraLite databases
backing up on Windows Mobile, 37
backups, 14
checkpoint usage, 89
collation sequences, 30
columns adding, 55
columns altering, 56
columns of tables in, 222
connection overview, 34
connection parameter list, 34
connection parameters overview, 37
connections overview, 12
counting synchronizations, 93
create with the create database wizard, 24
creating, 23
creating from SQL Anywhere reference database,
25
creating from the command prompt, 24
creating from XML, 26
creation parameters, 28
data and state management, 11
database comparison with SQL Anywhere, 1
database integrity, 12
deadlocks, 14
deploying for data encryption, 46
deploying for synchronization encryption, 47
deploying to devices, 41
encrypting with the fips creation parameter, 142
encryption impact on performance, 90
entity-relationship diagrams, 60
erasing, 195
fetching rows, 16
file path definition, 36
indexes creating, 376
indexes hashing, 143
indexes types of, 63
indexes working with, 61
indexes, when to create, 64
indexing primary keys, 26
initializing from Sybase Central, 24
initializing from the command prompt, 25
isolation levels, 16

maintaining row state, 12
management fundamentals, 11
managing multiple, 12
memory usage, 12
modeling from MobiLink, 24
multi-table joins, 1
obfuscation impact on performance, 91
objects copy method, 60
Oracle as reference database for, 94
page_size creation parameter, 146
populating after running ulinit, 204
properties browsing, 162
publications about, 65
publications dropping, 68
publications in, 223
publishing rows, 67
publishing tables, 66
recovery, 12
recovery from system failure, 14
renaming objects during schema upgrade, 51
requests overview, 12
rollbacks, 12
row fetching, 16
row locking, 14
row packing, 147
row packing introduction, 53
row size limit, 53
rows deleting, 12
schema, 219
schema changes, 10
schema overview, 9
security overview, 32
size reduction, 427
state bytes used, 12
storage, 9
storing indexes in, 221
storing properties of, 224
supported index types, 82
synchronization introduction, 12
synchronization profile options, 212
synchronization utility (ulsync) syntax, 209
system failure recovery, 14
table synchronization suffixes, 54
tables copying, 59
tables creating, 53
tables dropping, 57
tables filtering, 59
tables, browsing, 58

Index

466 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



temporary files, 10
temporary table management, 88
temporary tables and files, 11
threads overview, 12
transactions overview, 12
troubleshooting connections, 425
UltraLite file property, 158
UltraLite name property, 158
UltraLite schema upgrades reference, 368
UltraLite size limit, 7
unique keys, 63
upgrade previous versions, 23
upgrading schema on devices, 51
user IDs, 39
users adding, 69
users deleting, 70
utilities reference , 185
validating, 13
viewing option settings, 167
Windows Mobile file paths, 37
working with, 52

UltraLite embedded SQL
(see also UltraLite embedded SQL library functions)
character strings, 192
line numbers, 192
preprocessor, 192
support, 20

UltraLite engine
concurrency in, 11
contrasting with in-process runtime, 19
data management with, 19
defining a temporary file location at connection
time, 183
defining executable location at connection time,
182
erase database utility, 195
error codes, 185
start utility, 194
stop utility, 195
troubleshooting, 425
troubleshooting error -764, 429
Windows Mobile deployment, 44

UltraLite engine start utility
syntax, 194

UltraLite engine stop utility (ulstop)
syntax, 195

UltraLite erase database utility
syntax, 195

UltraLite for M-Business Anywhere
building CustDB application, 76
deployment targets, 20
engine support, 19
UltraLite CustDB sample and readme files, 76

UltraLite implementation
about, 19

UltraLite information utility (ulinfo)
syntax, 196

UltraLite initialize database utility (ulinit)
syntax, 197

UltraLite load XML to database utility
syntax, 205

UltraLite optimizer
execution plan access options, 83

UltraLite passwords
about, 39

UltraLite plug-in
troubleshooting, 425

UltraLite publications
renaming during schema upgrade, 51

UltraLite runtime
about, 19
concurrency in, 11

UltraLite schema
upgrading on device, 51

UltraLite SQL
(see also UltraLite embedded SQL)
comma-separated lists, 315
comments, 226
data types, 230
dates, 230
execution plans for, 262
expressions, 246
identifiers, 225
index-based optimizations, 82
keywords, 225
NULL values, 227
numbers, 227
operators, 259
page-based optimizations, 89
special values, 227
SQL functions date and time, 267
SQL functions, miscellaneous, 269
SQL functions, numeric, 270
SQL functions, string, 271
strings, 225
times, 230

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 467



troubleshooting queries, 428
UltraLite ordering query results with primary key,
89
variables, 262

UltraLite SQL statements
about, 366
ALTER DATABASE SCHEMA FROM FILE
statement syntax, 368
ALTER PUBLICATION statement syntax, 369
ALTER SYNCHRONIZATION PROFILE
statement syntax, 369
ALTER TABLE statement syntax, 371
ALTER USER statement syntax, 374
categories of, 367
CHECKPOINT statement syntax, 375
COMMIT statement syntax, 376
CREATE INDEX statement syntax, 376
CREATE PUBLICATION statement syntax, 378
CREATE SYNCHRONIZATION PROFILE
statement syntax, 379
CREATE TABLE statement syntax, 384
CREATE USER statement syntax, 390
DELETE statement syntax, 391
DROP INDEX statement syntax, 392
FROM clause, 395
GRANT CONNECT TO statement, 397
INSERT statement, 397
LOAD TABLE statement syntax, 398
REVOKE CONNECT FROM statement, 401
ROLLBACK statement syntax, 402
SELECT statement syntax, 402
SET OPTION statement syntax, 404
START SYNCHRONIZATION DELETE
statement syntax, 405
STOP SYNCHRONIZATION DELETE statement
syntax, 406
SYNCHRONIZE statement syntax, 407
TRUNCATE TABLE syntax, 408
UltraLite DROP TABLE statement syntax, 394
UltraLite DROP USER statement syntax, 394
UNION operation syntax, 409
UNIQUE parameter, 376
UPDATE statement syntax, 410

UltraLite synchronization
about, 93
remote IDs and user IDs, 166

UltraLite synchronization utility (ulsync)
syntax, 209

UltraLite system table reference
about, 219

UltraLite system tables
about, 219

UltraLite tables
excluding from creation process, 197
renaming during schema upgrade, 51

UltraLite temporary files
about, 10

UltraLite temporary tables
managing, 88

UltraLite unload database to XML utility (ulunload)
syntax, 214

UltraLite unload old database utility (ulunloadold)
syntax, 217

UltraLite user IDs
about, 39
MobiLink uniqueness, 166

UltraLite utilities
about, 185
UltraLite database unload (ulunload) syntax, 214
UltraLite engine (uleng12) syntax, 194
UltraLite engine start (uleng12) syntax, 194
UltraLite engine stop (ulstop) syntax, 195
UltraLite erase database (ulerase) syntax, 195
UltraLite information (ulinfo) syntax, 196
UltraLite initialize database (ulinit) syntax, 197
UltraLite Interactive SQL (dbisql) syntax, 186
UltraLite load XML to database (ulload) syntax,
205
UltraLite SQL preprocessor (sqlpp) syntax, 192
UltraLite synchronization (ulsync) syntax, 209
UltraLite unload old database (ulunloadold) syntax,
217
UltraLite validate database (ulvalid) syntax, 218

UltraLite validate database utility (ulvalid)
about, 218

UltraLite.NET
building CustDB application, 76
CustDB sample and readme files, 76
UltraLite engine support, 19

UltraLiteJ SQL statements
ALTER SYNCHRONIZATION PROFILE
statement syntax, 369
ALTER TABLE statement syntax, 371
COMMIT statement syntax, 376
CREATE INDEX statement syntax, 376

Index

468 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



CREATE SYNCHRONIZATION PROFILE
statement syntax, 379
CREATE TABLE statement syntax, 384
DELETE statement syntax, 391
DROP INDEX statement syntax, 392
INSERT statement, 397
ROLLBACK statement syntax, 402
SELECT statement syntax, 402
START SYNCHRONIZATION DELETE
statement syntax, 405
STOP SYNCHRONIZATION DELETE statement
syntax, 406
SYNCHRONIZE statement syntax, 407
TRUNCATE TABLE syntax, 408
UltraLite DROP TABLE statement syntax, 394
UPDATE statement syntax, 410

ulunload utility
syntax, 214

ulunloadold utility
syntax, 217

ulvalid utility
about, 218

uncommitted transactions
UltraLite isolation level, 16
UltraLite overview, 14

undoing
UltraLite transactions, 402
UltraLiteJ transactions, 402

UNICODE characters
UltraLite collation for, 31

UNION operation
UltraLite syntax, 409

UNION statement
UltraLite syntax, 409

union-all operation
UltraLite execution plans, 264

unions
UltraLite multiple select statements, 409

UNIQUE
UltraLite CREATE INDEX parameter, 376

unique constraints
UltraLite characteristics, 82
UltraLite copying method, 60
UltraLite CREATE TABLE statement, 385

unique indexes
UltraLite characteristics, 82
UltraLite index creation from, 63
UltraLite UNIQUE SQL parameter, 376

unique keys
UltraLite characteristics, 82
UltraLite index creation from, 63

UNIQUEIDENTIFIER data type
UltraLite, 231

universally unique identifiers
(see also UUIDs)
UltraLite SQL syntax for NEWID function, 328

Unix
documentation conventions, v
operating systems, v

unload old database utility (ulunloadold)
syntax, 217

unloading
UltraLite databases, 214
UltraLite databases from earlier versions, 217
UltraLite databases with ulunload, 214
UltraLite databases with ulunloadold, 217

unnamed foreign keys
UltraLite usage, 385

unpacked rows
UltraLite about, 53

UPDATE statement
UltraLite syntax, 410
UltraLiteJ syntax, 410

updates
UltraLite databases, 12

updating
UltraLite updating rows, 410
UltraLiteJ updating rows, 410

UpgradeSchemaFromFile method
UltraLite replacement for schema upgrade , 51

upgrading
UltraLite schema error callback, 52
UltraLite schema process, 51
UltraLite SQL ALTER DATABASE SCHEMA
FROM FILE syntax, 368

upgrading UltraLite
troubleshooting connections, 425

upload ok
UltraLite synchronization parameter, 129

upload only
UltraLite synchronization parameter, 130

upload only synchronization
UltraLite databases, 130
UltraLite upload_only synchronization parameter,
130

upload_ok synchronization parameter

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 469



UltraLite reference, 129
upload_only synchronization parameter

UltraLite reference, 130
UPPER function

UltraLite syntax, 360
uppercase characters

UltraLite UPPER function, 360
uppercase strings

UltraLite UCASE function, 360
UltraLite UPPER function, 360

user authentication
custom MobiLink, 112
PWD UltraLite connection parameter, 180
UltraLite about, 39
UltraLite Authentication Value synchronization
parameter, 115
UltraLite bypassing, 39
UltraLite custom for synchronization, 118
UltraLite getUserName method, 131
UltraLite password synchronization parameter, 120
UltraLite role of, 39
UltraLite setup, 39
UltraLite synchronization status reports, 113
UltraLite user_name synchronization , 131

user data
UltraLite synchronization parameter, 131

user IDs
UltraLite adding new, 39
UltraLite changing, 69
UltraLite considerations, 69
UltraLite databases, 39
UltraLite defaults, 69
UltraLite semantics, 40

user name
UltraLite synchronization parameter, 131

user-defined data types
UltraLite equivalents, 233
UltraLite unsupported in, 230

user_data
UltraLite synchronization parameter, 131

user_name
UltraLite synchronization parameter, 131

users
UltraLite adding, 69
UltraLite ALTER USER statement, 374
UltraLite deleting, 70
UltraLite SQL DROP USER statement, 394
UltraLite working with, 69

utf8_encoding creation parameter
UltraLite description, 157

utf8_encoding database property
UltraLite usage, 31

UTF8BIN collation
UltraLite considerations, 31

utilities
UltraLite, 185
UltraLite database unload (ulunload) syntax, 214
UltraLite engine start (uleng12) syntax, 194
UltraLite engine stop (ulstop) syntax, 195
UltraLite erase database (ulerase) syntax, 195
UltraLite error codes, 185
UltraLite information (ulinfo) syntax, 196
UltraLite initialize database (ulinit) syntax, 197
UltraLite Interactive SQL (dbisql) syntax, 186
UltraLite load XML to database (ulload) syntax,
205
UltraLite SQL preprocessor (sqlpp) syntax, 192
UltraLite synchronization (ulsync) syntax, 209
UltraLite troubleshooting, 428
UltraLite unload old database (ulunloadold) syntax,
217
UltraLite validate database (ulvalid) syntax, 218
Windows Mobile database administration on
device, 37

UUIDs
UltraLite SQL syntax for NEWID function, 328
UltraLite SQL syntax for STRTOUUID function,
350
UltraLite SQL syntax for UUIDTOSTR function,
361

UUIDTOSTR function
UltraLite syntax, 361

V
validate database utility (ulvalid)

UltraLite about, 218
validating

(see also validating databases)
UltraLite checksum_level creation parameter, 136
UltraLite databases with the validate database
wizard, 13
UltraLite databases with ulvalid, 218

validating databases
UltraLite validate database utility (ulvalid), 218

values

Index

470 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0



UltraLite index hash, 143
VARBINARY data type

UltraLite, 231
VARCHAR data type

UltraLite, 231
variables

UltraLite SQL, 262
version

UltraLite synchronization parameter, 132
version synchronization parameter

UltraLite reference, 132
versions

UltraLite troubleshooting utilities, 428
viewing

UltraLite execution plant, 263
UltraLite table methods, 58

viewing UltraLite database settings
about, 162

virtual file system (see VFS)
Visual Basic compatibility

UltraLite support, 20
Visual Studio

UltraLite building CustDB application, 75

W
WEEKS function

UltraLite syntax, 362
WHEN

UltraLite CASE expression, 249
WHERE clause

CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 378
UltraLite CREATE PUBLICATION statement,
378
UltraLite DELETE statement, 391
UltraLite publication usage, 67
UltraLite SELECT statement, 403
UltraLite synchronization limitations, 102
UltraLite UPDATE statement, 411

whole tables
UltraLite publishing, 102

wildcards
UltraLite PATINDEX function, 331

Windows
(see also Windows ME)
(see also Windows Mobile 5)
(see also Windows NT)

(see also Windows Vista)
(see also Windows XP/200x)
documentation conventions, v
operating systems, v
UltraLite character sets, 31

Windows desktop
UltraLite databases, 37
UltraLite engine support, 19

Windows Mobile
documentation conventions, v
operating systems, v
troubleshooting error -764, 429
UltraLite ActiveSync deployment, 49
UltraLite building CustDB application using .NET,
76
UltraLite character sets, 31
UltraLite engine deployment , 44
UltraLite engine support, 19
UltraLite file path prefix, 37
UltraLite FIPS enablement, 143
UltraLite MobiLink clients, 108
UltraLite uleng12 deployment, 44
Windows CE, v

WITH CHECKPOINT clause
UltraLite LOAD TABLE statement, 400

words
UltraLite keywords, 225
UltraLite reserved words, 225

working with indexes
UltraLite about, 61

X
XML

loading to database, 205
sourcing UltraLite databases from , 26
UltraLite unloading databases, 209

XML data type
UltraLite equivalent, 233

Y
YEAR function

UltraLite syntax, 364
YEARS function

UltraLite syntax, 364
YMD function

UltraLite syntax, 366

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 471



Z
zero-padding

controlling with
timestamp_with_time_zone_format option, 157
UltraLite date_format creation parameter, 140
UltraLite timestamp_format creation parameter,
154

Index

472 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0


	UltraLite® - Database Management and Reference
	Contents
	About this book
	About the SQL Anywhere documentation
	Documentation conventions
	Contacting the documentation team
	Finding out more and requesting technical support


	Introducing UltraLite
	UltraLite feature comparison
	UltraLite limitations
	UltraLite data architecture
	UltraLite storage and file name conventions
	UltraLite database schema
	UltraLite temporary files
	UltraLite temporary tables

	UltraLite transaction and state management
	Concurrency in UltraLite
	UltraLite row states
	Validate an UltraLite database
	Backing up and recovering data in UltraLite
	UltraLite transaction processing

	UltraLite isolation levels
	Isolation level side effects


	Implementing an UltraLite solution
	UltraLite supported platforms and protocols
	Choosing an UltraLite data management component
	Choosing an UltraLite programming interface

	Using UltraLite databases
	Creating and configuring UltraLite databases
	Creating an UltraLite database
	Create a database with the Create Database Wizard
	Create an UltraLite database from the command prompt
	Create an UltraLite database from a MobiLink synchronization model
	Create an UltraLite database using central administration of remote databases
	Create an UltraLite database from a SQL Anywhere reference database
	Create an UltraLite database from XML
	Create an UltraLite database on a first connection

	Choosing database creation parameters for UltraLite
	UltraLite character sets
	UltraLite platform requirements for character set encoding
	UltraLite supported collations

	Securing UltraLite databases

	Connecting to an UltraLite database
	UltraLite database connection parameters
	Supplying UltraLite connection parameters
	Specifying file paths in an UltraLite connection parameter
	Opening UltraLite connections with connection strings
	Assembling parameters into UltraLite connection strings

	UltraLite user authentication
	Bypass authentication
	Interpreting user ID and password combinations

	Storing UltraLite parameters with the ULSQLCONNECT environment variable

	Deploying UltraLite to devices
	Deploying UltraLite databases
	Deploying upgrades to the UltraLite runtime files
	Deploying changes to the UltraLite database files
	Deploy multiple UltraLite applications with the UltraLite engine
	Starting the UltraLite engine
	Deploy UltraLite with AES_FIPS database encryption
	Deploy UltraLite with TLS-enabled synchronization
	Deploy the ActiveSync provider for UltraLite
	Register applications with the ActiveSync Manager
	Deploying UltraLite schema upgrades

	Working with UltraLite databases
	Working with UltraLite tables and columns
	Creating UltraLite tables
	Using allsync and nosync suffixes
	Adding a column to an UltraLite table
	Altering UltraLite column definitions
	Deleting UltraLite tables
	Browsing the information in UltraLite tables
	Copying and pasting data to or from UltraLite databases
	Viewing entity-relationship diagrams from the UltraLite plug-in

	Working with UltraLite indexes
	When to use an index
	Choosing an index type
	Adding UltraLite indexes
	Dropping an index

	Working with UltraLite publications
	Publishing whole tables in UltraLite
	Publishing a subset of rows from an UltraLite table
	Dropping a publication for UltraLite

	Working with UltraLite users
	Adding a new UltraLite user
	Deleting an existing UltraLite user

	Working with event notifications

	UltraLite CustDB samples
	CustDB sample overview
	Lesson 1: Build and run the CustDB application
	Lesson 2: Log in and populate the UltraLite remote database
	Lesson 3: Use the CustDB client application
	Lesson 4: Synchronize with the CustDB consolidated database
	Lesson 5: Browse MobiLink synchronization scripts
	Build your own application

	UltraLite performance and optimization
	Using index scans
	Determining the access method used by the optimizer
	Tuning query performance with index hashing
	Choosing an optimal hash size
	Setting the maximum hash size
	Managing temporary tables
	Using direct page scans
	Reverting to primary key index order

	Flushing single or grouped transactions
	How database encryption and obfuscation affect performance


	UltraLite as a MobiLink client
	UltraLite clients
	Built-in UltraLite synchronization features
	Customizing UltraLite client synchronization behavior
	Primary key uniqueness in UltraLite
	Using GLOBAL AUTOINCREMENT in UltraLite
	Determining the most recently assigned GLOBAL AUTOINCREMENT value
	Overriding partition sizes for autoincremented columns

	Designing synchronization in UltraLite
	Non-synchronizing tables in UltraLite
	Allsync tables in UltraLite
	Publications in UltraLite
	Table order in UltraLite
	Adding synchronization to your UltraLite application

	Using MobiLink file transfers

	Using ActiveSync with UltraLite on Windows Mobile
	ActiveSync synchronization overview

	UltraLite synchronization parameters and network protocol options
	Synchronization parameters for UltraLite
	Additional Parameters synchronization parameter
	Authentication Parameters synchronization parameter
	Authentication Status synchronization parameter
	Authentication Value synchronization parameter
	Download Only synchronization parameter
	Ignored Rows synchronization parameter
	Keep Partial Download synchronization parameter
	New Password synchronization parameter
	Number of Authentication Parameters parameter
	Observer synchronization parameter
	Partial Download Retained synchronization parameter
	Password synchronization parameter
	Ping synchronization parameter
	Publications synchronization parameter
	Resume Partial Download synchronization parameter
	Send Column Names synchronization parameter
	Send Download Acknowledgement synchronization parameter
	Stream Error synchronization parameter
	Stream Type synchronization parameter
	Stream Parameters synchronization parameter
	Sync Result synchronization parameter
	Upload OK synchronization parameter
	Upload Only synchronization parameter
	User Data synchronization parameter
	User Name synchronization parameter
	Version synchronization parameter

	Network protocol options for UltraLite synchronization streams
	Setting the synchronization stream and options



	UltraLite database reference
	UltraLite creation parameters
	UltraLite case creation parameter
	UltraLite checksum_level creation parameter
	UltraLite collation creation parameter
	UltraLite date_format creation parameter
	UltraLite date_order creation parameter
	UltraLite fips creation parameter
	UltraLite max_hash_size creation parameter
	UltraLite nearest_century creation parameter
	UltraLite obfuscate creation parameter
	UltraLite page_size creation parameter
	UltraLite precision creation parameter
	UltraLite scale creation parameter
	UltraLite time_format creation parameter
	UltraLite timestamp_format creation parameter
	UltraLite timestamp_increment creation parameter
	UltraLite timestamp_with_time_zone_format creation parameter
	UltraLite utf8_encoding creation parameter

	UltraLite database properties
	Accessing UltraLite database properties

	UltraLite database options
	UltraLite commit_flush_count option [temporary]
	UltraLite commit_flush_timeout option [temporary]
	UltraLite global_database_id option
	UltraLite ml_remote_id option
	Change UltraLite persistent database option settings

	UltraLite connection parameters
	UltraLite CACHE_SIZE connection parameter
	UltraLite CE_FILE connection parameter
	UltraLite COMMIT_FLUSH connection parameter
	UltraLite CON connection parameter
	UltraLite DBF connection parameter
	UltraLite DBKEY connection parameter
	UltraLite DBN connection parameter
	UltraLite desktop connection parameter
	UltraLite device connection parameter
	UltraLite MIRROR_FILE connection parameter
	UltraLite NT_FILE connection parameter
	UltraLite PWD connection parameter
	UltraLite RESERVE_SIZE connection parameter
	UltraLite START connection parameter
	UltraLite TEMP_DIR connection parameter
	UltraLite UID connection parameter

	UltraLite utilities
	Supported exit codes
	Interactive SQL for UltraLite utility (dbisql)
	SQL preprocessor for UltraLite utility (sqlpp)
	UltraLite Engine utility (uleng12)
	UltraLite Engine Stop utility (ulstop)
	UltraLite Erase database (ulerase)
	UltraLite Information utility (ulinfo)
	UltraLite Initialize Database utility (ulinit)
	UltraLite Load XML to Database utility (ulload)
	UltraLite Synchronization utility (ulsync)
	Synchronization profile options
	UltraLite Database Unload utility (ulunload)
	UltraLite Unload Old Database utility (ulunloadold)
	UltraLite Validate Database utility (ulvalid)

	UltraLite system tables
	systable system table
	syscolumn system table
	sysindex system table
	sysixcol system table
	syspublication system table
	sysarticle system table
	sysuldata system table


	UltraLite SQL reference
	UltraLite SQL elements
	Keywords in UltraLite
	Identifiers in UltraLite
	Strings in UltraLite
	Comments in UltraLite
	Numbers in UltraLite
	The NULL value in UltraLite
	Special values in UltraLite
	CURRENT DATE special value
	CURRENT TIME special value
	CURRENT TIMESTAMP special value
	CURRENT UTC TIMESTAMP special value
	SQLCODE special value

	Dates and times in UltraLite
	Data types in UltraLite
	User-defined data types and their equivalents
	Converting data types explicitly

	Expressions in UltraLite
	Constants in expressions
	Column names in expressions
	IF expressions
	CASE expressions
	Aggregate expressions
	Subqueries in expressions
	Input parameters
	Search conditions in UltraLite
	Comparison operators
	Logical operators
	ALL conditions
	ANY conditions
	BETWEEN conditions
	EXISTS conditions
	IN conditions


	Operators in UltraLite
	Arithmetic operators
	String operators
	Bitwise operators
	Operator precedence

	Variables in UltraLite
	Execution plans in UltraLite
	When to view an execution plan
	View an UltraLite execution plan
	Reading UltraLite execution plans


	UltraLite SQL functions
	Function types
	UltraLite aggregate functions
	UltraLite data type conversion functions
	UltraLite date and time functions
	UltraLite miscellaneous functions
	UltraLite numeric functions
	UltraLite string functions
	UltraLite system functions

	Functions
	ABS function [Numeric]
	ACOS function [Numeric]
	ARGN function [Miscellaneous]
	ASCII function [String]
	ASIN function [Numeric]
	ATAN function [Numeric]
	ATAN2 function [Numeric]
	AVG function [Aggregate]
	BYTE_LENGTH function [String]
	BYTE_SUBSTR function [String]
	CAST function [Data type conversion]
	CEILING function [Numeric]
	CHAR function [String]
	CHAR_LENGTH function [String]
	CHARINDEX function [String]
	COALESCE function [Miscellaneous]
	CONVERT function [Data type conversion]
	COS function [Numeric]
	COT function [Numeric]
	COUNT function [Aggregate]
	COUNT_UPLOAD_ROWS function [Aggregate]
	DATALENGTH function [System]
	DATE function [Date and time]
	DATEADD function [Date and time]
	DATEDIFF function [Date and time]
	DATEFORMAT function [Date and time]
	DATENAME function [Date and time]
	DATEPART function [Date and time]
	DATETIME function [Date and time]
	DAY function [Date and time]
	DAYNAME function [Date and time]
	DAYS function [Date and time]
	DB_PROPERTY function [System]
	DEGREES function [Numeric]
	DIFFERENCE function [String]
	DOW function [Date and time]
	EXP function [Numeric]
	EXPLANATION function [Miscellaneous]
	FLOOR function [Numeric]
	GETDATE function [Date and time]
	GREATER function [Miscellaneous]
	HEXTOINT function [Data type conversion]
	HOUR function [Date and time]
	HOURS function [Date and time]
	IFNULL function [Miscellaneous]
	INSERTSTR function [String]
	INTTOHEX function [Data type conversion]
	ISDATE function [Data type conversion]
	ISNULL function [Miscellaneous]
	LCASE function [String]
	LEFT function [String]
	LENGTH function [String]
	LESSER function [Miscellaneous]
	LIST function [Aggregate]
	LOCATE function [String]
	LOG function [Numeric]
	LOG10 function [Numeric]
	LOWER function [String]
	LTRIM function [String]
	MAX function [Aggregate]
	MIN function [Aggregate]
	MINUTE function [Date and time]
	MINUTES function [Date and time]
	ML_GET_SERVER_NOTIFICATION [System]
	MOD function [Numeric]
	MONTH function [Date and time]
	MONTHNAME function [Date and time]
	MONTHS function [Date and time]
	NEWID function [Miscellaneous]
	NOW function [Date and time]
	NULLIF function [Miscellaneous]
	PATINDEX function [String]
	PI function [Numeric]
	POWER function [Numeric]
	QUARTER function [Date and time]
	RADIANS function [Numeric]
	RAND function [Numeric]
	REMAINDER function [Numeric]
	REPEAT function [String]
	REPLACE function [String]
	REPLICATE function [String]
	RIGHT function [String]
	ROUND function [Numeric]
	RTRIM function [String]
	SECOND function [Date and time]
	SECONDS function [Date and time]
	SHORT_PLAN function [Miscellaneous]
	SIGN function [Numeric]
	SIMILAR function [String]
	SIN function [Numeric]
	SOUNDEX function [String]
	SPACE function [String]
	SQRT function [Numeric]
	STR function [String]
	STRING function [String]
	STRTOUUID function [String]
	STUFF function [String]
	SUBSTRING function [String]
	SUM function [Aggregate]
	SWITCHOFFSET function [Date and time]
	SYNC_PROFILE_OPTION_VALUE function [System]
	SYNC_PROFILE_PARM function [System]

	TAN function [Numeric]
	TODATETIMEOFFSET function [Date and time]
	TODAY function [Date and time]
	TRIM function [String]
	TRUNCNUM function [Numeric]
	UCASE function [String]
	UPPER function [String]
	UUIDTOSTR function [String]
	WEEKS function [Date and time]
	YEAR function [Date and time]
	YEARS function [Date and time]
	YMD function [Date and time]


	UltraLite SQL statements
	UltraLite statement categories
	ALTER DATABASE SCHEMA FROM FILE statement [UltraLite]
	ALTER PUBLICATION statement [UltraLite][UltraLiteJ]
	ALTER SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]
	ALTER TABLE statement [UltraLite] [UltraLiteJ]
	ALTER USER statement [UltraLite]
	CHECKPOINT statement [UltraLite]
	COMMIT statement [UltraLite] [UltraLiteJ]
	CREATE INDEX statement [UltraLite] [UltraLiteJ]
	CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]
	CREATE SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]
	CREATE TABLE statement [UltraLite] [UltraLiteJ]
	CREATE USER statement [UltraLite]
	DELETE statement [UltraLite] [UltraLiteJ]
	DROP INDEX statement [UltraLite] [UltraLiteJ]
	DROP PUBLICATION statement [UltraLite] [UltraLiteJ]
	DROP SYNCHRONIZATION PROFILE statement [UltraLite] [UltraLiteJ]
	DROP TABLE statement [UltraLite] [UltraLiteJ]
	DROP USER statement [UltraLite]
	FROM clause [UltraLite]
	Grant Connect to statement [UltraLite]
	INSERT statement [UltraLite] [UltraLiteJ]
	LOAD TABLE statement [UltraLite]
	REVOKE CONNECT FROM statement [UltraLite]
	ROLLBACK statement [UltraLite] [UltraLiteJ]
	SELECT statement [UltraLite] [UltraLiteJ]
	SET OPTION statement [UltraLite] [UltraLiteJ]
	START SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]
	STOP SYNCHRONIZATION DELETE statement [UltraLite] [UltraLiteJ]
	SYNCHRONIZE statement [UltraLite] [UltraLiteJ]
	TRUNCATE TABLE statement [UltraLite] [UltraLiteJ]
	UNION statement [UltraLite]
	UPDATE statement [UltraLite] [UltraLiteJ]


	UltraLite support for spatial data
	Introduction to spatial data
	Compliance and support
	Compliance with spatial standards

	ST_Geometry type
	Functions for spatial data
	ST_AsBinary function
	ST_AsExtText function
	ST_AsText function
	ST_Distance function
	ST_Equals function
	ST_IntersectsRect function
	ST_Point function
	ST_PointFromExtText function
	ST_PointFromText function
	ST_PointFromWKB function
	ST_SRID function
	ST_X function
	ST_Y function


	Troubleshooting UltraLite
	Unable to start the UltraLite engine
	Unable to connect to databases after upgrade
	Database corruption
	Database size not stabilizing
	Importing ASCII data into a new database
	Utilities still running as the previous version
	Result set changes unpredictably
	UltraLite engine client fails with error -764

	Index

