
UltraLite®
Database Management and Reference

February 2009

Version 11.0.1

Copyright and trademarks
Copyright © 2009 iAnywhere Solutions, Inc. Portions copyright © 2009 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must retain
this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the documentation, 3) you
may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... xi

About the SQL Anywhere documentation .. xii

Introducing UltraLite .. 1

UltraLite feature comparison .. 2
UltraLite limitations ... 8
UltraLite data architecture .. 10
UltraLite storage and file name conventions .. 11
UltraLite transaction and state management .. 13
UltraLite isolation levels ... 18

Implementing an UltraLite solution .. 21

UltraLite supported platforms and protocols ... 22
Choosing an UltraLite data management component ... 23
Choosing an UltraLite programming interface ... 24

Using UltraLite Databases ... 27

Creating and configuring UltraLite databases .. 29
Creating an UltraLite database .. 30
Choosing database creation parameters for UltraLite ... 34
UltraLite character sets .. 36
Securing UltraLite databases ... 40

Connecting to an UltraLite database .. 43
UltraLite database connection parameters .. 44
UltraLite user authentication .. 51
Storing UltraLite parameters with the ULSQLCONNECT environment
variable .. 53

Deploying UltraLite to devices ... 55
Deploy Multiple UltraLite applications with the UltraLite engine 57
Deploy UltraLite with AES_FIPS database encryption .. 59
Deploy UltraLite with TLS-enabled synchronization .. 60

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 iii

Deploy the UltraLite HotSync conduit .. 62
Deploy the ActiveSync provider for UltraLite ... 64
Register applications with the ActiveSync Manager .. 66
Deploying UltraLite schema upgrades ... 67

Working with UltraLite databases ... 69
Working with UltraLite tables and columns .. 70
Working with UltraLite indexes .. 79
Working with UltraLite publications .. 83
Working with UltraLite users .. 87
Working with event notifications .. 89
UltraLite support for SQL passthrough .. 92

UltraLite CustDB samples ... 93
CustDB sample file locations ... 95
Lesson 1: Build and run the CustDB application ... 97
Lesson 2: Log in and populate the UltraLite remote database 99
Lesson 3: Use the CustDB client application ... 100
Lesson 4: Synchronize with the CustDB consolidated database 102
Lesson 5: Browse MobiLink synchronization scripts ... 104
Build your own application ... 106

UltraLite performance and optimization .. 107
Using index scans .. 108
Determining the access method used by the optimizer 110
Tuning query performance with index hashing .. 111
Choosing an optimal hash size .. 113
Setting the maximum hash size ... 116
Managing temporary tables ... 117
Flushing single or grouped transactions .. 119
How database encryption and obfuscation affect performance 120
UltraLite optimization strategies ... 121

UltraLite as a MobiLink Client ... 123

UltraLite clients ... 125
Built-in UltraLite synchronization features ... 126
Customizing UltraLite client synchronization behavior 127
Primary key uniqueness in UltraLite .. 129

UltraLite® - Database Management and Reference

iv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Designing synchronization in UltraLite ... 133
Using MobiLink file transfers .. 142

Using ActiveSync and HotSync with UltraLite ... 145
HotSync on Palm OS ... 146
ActiveSync on Windows Mobile ... 150

UltraLite synchronization parameters and network protocol options 153
Synchronization parameters for UltraLite .. 154
Network protocol options for UltraLite synchronization streams 178

UltraLite Database Reference ... 179

UltraLite creation parameters ... 181
UltraLite case creation parameter .. 183
UltraLite checksum_level creation parameter .. 184
UltraLite collation creation parameter .. 186
UltraLite date_format creation parameter .. 187
UltraLite date_order creation parameter .. 190
UltraLite fips creation parameter .. 192
UltraLite max_hash_size creation parameter .. 194
UltraLite nearest_century creation parameter ... 196
UltraLite obfuscate creation parameter .. 198
UltraLite page_size creation parameter ... 199
UltraLite precision creation parameter ... 201
UltraLite scale creation parameter ... 203
UltraLite time_format creation parameter .. 205
UltraLite timestamp_format creation parameter .. 207
UltraLite timestamp_increment creation parameter ... 210
UltraLite utf8_encoding creation parameter ... 211

UltraLite database properties ... 213
Accessing UltraLite database properties ... 218

UltraLite database options ... 219
UltraLite commit_flush_count option [temporary] .. 220
UltraLite commit_flush_timeout option [temporary] ... 221
UltraLite global_database_id option .. 222
UltraLite ml_remote_id option .. 223
Change UltraLite persistent database option settings 224

UltraLite connection parameters .. 225

UltraLite® - Database Management and Reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 v

UltraLite CACHE_SIZE connection parameter .. 226
UltraLite CE_FILE connection parameter .. 227
UltraLite COMMIT_FLUSH connection parameter .. 229
UltraLite CON connection parameter ... 230
UltraLite DBF connection parameter ... 231
UltraLite DBKEY connection parameter .. 233
UltraLite DBN connection parameter ... 234
UltraLite MIRROR_FILE connection parameter .. 235
UltraLite NT_FILE connection parameter .. 237
UltraLite ORDERED_TABLE_SCAN connection parameter [deprecated] 239
UltraLite PALM_ALLOW_BACKUP connection parameter 240
UltraLite PALM_FILE connection parameter ... 241
UltraLite PWD connection parameter .. 243
UltraLite RESERVE_SIZE connection parameter ... 244
UltraLite START connection parameter ... 245
UltraLite UID connection parameter .. 246

UltraLite utilities .. 247
Supported exit codes ... 248
Interactive SQL utility for UltraLite (dbisql) .. 249
SQL Preprocessor for UltraLite utility (sqlpp) .. 252
UltraLite Create Database utility (ulcreate) .. 255
UltraLite Data Management utility for Palm OS (ULDBUtil) 258
UltraLite Engine utility (uleng11) .. 260
UltraLite Engine Stop utility (ulstop) ... 261
UltraLite Erase database (ulerase) .. 262
UltraLite HotSync Conduit Installation utility for Palm OS (ulcond11) 263
UltraLite Information utility (ulinfo) ... 265
UltraLite Initialize Database utility (ulinit) ... 269
UltraLite Load XML to Database utility (ulload) ... 272
UltraLite Synchronization utility (ulsync) .. 275
Synchronization profile options .. 278
UltraLite Unload Database utility (ulunload) .. 281
UltraLite Unload Old Database utility (ulunloadold) ... 284
UltraLite Validate Database utility (ulvalid) .. 286

UltraLite system tables .. 289
View or hide UltraLite system tables .. 290

UltraLite® - Database Management and Reference

vi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

systable system table .. 291
syscolumn system table ... 292
sysindex system table .. 293
sysixcol system table ... 295
syspublication system table ... 296
sysarticle system table ... 297
sysuldata system table .. 298

UltraLite SQL Reference .. 299

UltraLite SQL elements ... 301
Keywords in UltraLite ... 302
Identifiers in UltraLite ... 303
Strings in UltraLite ... 304
Comments in UltraLite ... 305
Numbers in UltraLite .. 306
The NULL value in UltraLite ... 307
Special values in UltraLite ... 308
Dates and times in UltraLite ... 311
Data types in UltraLite ... 312
Expressions in UltraLite ... 325
Operators in UltraLite ... 338
Variables in UltraLite .. 341
Execution plans in UltraLite ... 342

UltraLite SQL functions .. 347
Function types ... 348
SQL functions (A-D) ... 354
SQL functions (E-O) .. 383
SQL functions (P-Z) ... 411

UltraLite SQL statements .. 447
UltraLite statement categories ... 449
UltraLite ALTER DATABASE SCHEMA FROM FILE statement 450
UltraLite ALTER PUBLICATION statement ... 451
UltraLite ALTER SYNCHRONIZATION PROFILE statement 452
UltraLite ALTER TABLE statement .. 454
UltraLite CHECKPOINT statement .. 458

UltraLite® - Database Management and Reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 vii

UltraLite COMMIT statement ... 459
UltraLite CREATE INDEX statement ... 460
UltraLite CREATE PUBLICATION statement .. 462
UltraLite CREATE SYNCHRONIZATION PROFILE statement 464
UltraLite CREATE TABLE statement ... 468
UltraLite DELETE statement .. 473
UltraLite DROP INDEX statement ... 474
UltraLite DROP PUBLICATION statement .. 475
UltraLite DROP SYNCHRONIZATION PROFILE statement 476
UltraLite DROP TABLE statement ... 477
UltraLite FROM clause .. 478
UltraLite INSERT statement .. 480
UltraLite LOAD TABLE statement ... 481
UltraLite ROLLBACK statement .. 485
UltraLite SELECT statement .. 486
UltraLite SET OPTION statement .. 488
UltraLite START SYNCHRONIZATION DELETE statement 489
UltraLite STOP SYNCHRONIZATION DELETE statement 490
UltraLite SYNCHRONIZE statement ... 491
UltraLite TRUNCATE TABLE statement .. 493
UltraLite UNION statement .. 495
UltraLite UPDATE statement ... 496

Troubleshooting UltraLite .. 497

Unable to start the UltraLite engine ... 498
Unable to connect to databases after upgrade .. 499
Database corruption .. 500
Database size not stabilizing .. 501
Importing ASCII data into a new database .. 502
Utilities still running as the previous version ... 503
Result set changes unpredictably ... 504
UltraLite engine client fails with error -764 ... 505

Glossary .. 507

UltraLite® - Database Management and Reference

viii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Glossary .. 509

Index .. 539

UltraLite® - Database Management and Reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 ix

x

About this book
Subject

This book introduces the UltraLite database system for small devices.

Audience
This book is intended for all developers who want to take advantage of the performance, resource efficiency,
robustness, and security of an UltraLite relational database for data storage and synchronization for
embedded or mobile devices.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xi

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats that contain identical information.

● HTML Help The online Help contains the complete SQL Anywhere documentation, including the
books and the context-sensitive help for SQL Anywhere tools.

If you are using a Microsoft Windows operating system, the online Help is provided in HTML Help
(CHM) format. To access the documentation, choose Start » Programs » SQL Anywhere 11 »
Documentation » Online Books.

The administration tools use the same online documentation for their Help features.

● Eclipse On Unix platforms, the complete online Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere 11 installation.

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation.

Use DocCommentXchange to:

○ View documentation

○ Check for clarifications users have made to sections of documentation

○ Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information. To download Adobe Reader, visit http://
get.adobe.com/reader/.

To access the PDF documentation on Microsoft Windows operating systems, choose Start »
Programs » SQL Anywhere 11 » Documentation » Online Books - PDF Format.

To access the PDF documentation on Unix operating systems, use a web browser to open install-dir/
documentation/en/pdf/index.html.

About the books in the documentation set
The SQL Anywhere documentation consists of the following books:

● SQL Anywhere 11 - Introduction This book introduces SQL Anywhere 11, a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

● SQL Anywhere 11 - Changes and Upgrading This book describes new features in SQL Anywhere
11 and in previous versions of the software.

● SQL Anywhere Server - Database Administration This book describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database server, database

About this book

xii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://dcx.sybase.com/
http://get.adobe.com/reader/
http://get.adobe.com/reader/

files, backup procedures, security, high availability, replication with the Replication Server, and
administration utilities and options.

● SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages such as Visual
Basic and Visual C#. A variety of programming interfaces such as ADO.NET and ODBC are described.

● SQL Anywhere Server - SQL Reference This book provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of the SQL
Anywhere implementation of the SQL language (search conditions, syntax, data types, and functions).

● SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

● MobiLink - Getting Started This book introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

● MobiLink - Client Administration This book describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases. This book also
describes the Dbmlsync API, which allows you to integrate synchronization seamlessly into your C++
or .NET client applications.

● MobiLink - Server Administration This book describes how to set up and administer MobiLink
applications.

● MobiLink - Server-Initiated Synchronization This book describes MobiLink server-initiated
synchronization, a feature that allows the MobiLink server to initiate synchronization or perform actions
on remote devices.

● QAnywhere This book describes QAnywhere, which is a messaging platform for mobile, wireless,
desktop, and laptop clients.

● SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

● UltraLite - Database Management and Reference This book introduces the UltraLite database
system for small devices.

● UltraLite - C and C++ Programming This book describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

● UltraLite - M-Business Anywhere Programming This book describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows Mobile, or
Windows.

● UltraLite - .NET Programming This book describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

● UltraLiteJ This book describes UltraLiteJ. With UltraLiteJ, you can develop and deploy database
applications in environments that support Java. UltraLiteJ supports BlackBerry smartphones and Java
SE environments. UltraLiteJ is based on the iAnywhere UltraLite database product.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xiii

● Error Messages This book provides a complete listing of SQL Anywhere error messages together
with diagnostic information.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. In most cases, the software behaves the same on all platforms,
but there are variations or limitations. These are commonly based on the underlying operating system
(Windows, Unix), and seldom on the particular variant (AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems as
follows:

● Windows The Microsoft Windows family includes Windows Vista and Windows XP, used primarily
on server, desktop, and laptop computers, and Windows Mobile used on mobile devices.

Unless otherwise specified, when the documentation refers to Windows, it refers to all Windows-based
platforms, including Windows Mobile.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all Unix-based
platforms, including Linux and Mac OS X.

Directory and file names

In most cases, references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the details
are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. In most cases, you can convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the directory
separator. For example, the PDF form of the documentation is found in install-dir\Documentation\en
\PDF (Windows form).

About this book

xiv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions, with
a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv11.exe. On Unix, it is dbsrv11.

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY11 is created and refers to this location. The documentation refers to this
location as install-dir.

For example, the documentation may refer to the file install-dir\readme.txt. On Windows, this is
equivalent to %SQLANY11%\readme.txt. On Unix, this is equivalent to $SQLANY11/readme.txt or $
{SQLANY11}/readme.txt.

For more information about the default location of install-dir, see “SQLANY11 environment variable”
[SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP11 is created and refers to this location. The
documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, from the Start menu, choose Programs » SQL
Anywhere 11 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP11 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax

Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS prompt)
and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend its
capabilities beyond simple commands. These features are driven by special characters. The special characters
and features vary from one shell to another. Incorrect use of these special characters often results in syntax
errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain characters
that the shell considers special, the command may require modification for the specific shell. The
modifications are beyond the scope of this documentation, but generally, use quotes around the parameters
containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xv

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"
● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the traditional

use of quotes to enclose the parameter. For example, to specify an encryption key whose value contains
double-quotes, you might have to enclose the key in quotes and then escape the embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Graphic icons
The following icons are used in this documentation.

● A client application.

● A database server, such as Sybase SQL Anywhere.

● A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

● Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

About this book

xvi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● A programming interface.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

To submit your comments and suggestions, send an email to the SQL Anywhere documentation team at
iasdoc@sybase.com. Although we do not reply to emails, your feedback helps us to improve our
documentation, so your input is welcome.

DocCommentXchange
You can also leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

Finding out more and requesting technical support
Additional information and resources are available at the Sybase iAnywhere Developer Community at http://
www.sybase.com/developer/library/sql-anywhere-techcorner.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the build
number of your version of SQL Anywhere. You can find this information by running the following command:
dbeng11 -v.

The newsgroups are located on the forums.sybase.com news server.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xvii

mailto:iasdoc@sybase.com
http://dcx.sybase.com/
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time. They
offer their help on a volunteer basis and may not be available regularly to provide solutions and information.
Their ability to help is based on their workload.

About this book

xviii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development

Introducing UltraLite

Contents
UltraLite feature comparison .. 2
UltraLite limitations ... 8
UltraLite data architecture .. 10
UltraLite storage and file name conventions .. 11
UltraLite transaction and state management .. 13
UltraLite isolation levels ... 18

UltraLite is a compact relational database with many of the features and functionality of SQL Anywhere.
UltraLite can be installed as part of a SQL Anywhere solution for enterprise-wide mobile data management,
or as part of a standalone embedded solution.

UltraLite provides built-in functionality to mobilize corporate data. When deployed as a MobiLink client,
you can implement a synchronization solution that delivers mission-critical information in a timely and
reliable way. Users can record and access the data they require—even when they cannot directly access the
corporate network.

An application development interface allows you to write applications and create added value for your users.

See also
● “Understanding MobiLink synchronization” [MobiLink - Getting Started]
● “MobiLink clients” [MobiLink - Client Administration]
● MobiLink - Getting Started
● MobiLink - Client Administration
● MobiLink - Server Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1

UltraLite feature comparison
In the C/C++ version, the UltraLite database and management system adds 400-500 KB to the size of your
application. The SQL Anywhere database, database server, and synchronization client add approximately 6
MB.

Feature SQL
Any-
where

Ultra-
Lite

Considerations

Transac-
tion pro-
cessing,
referential
integrity,
and multi-
table joins

X X

Triggers,
stored pro-
cedures,
and views

X

External
stored pro-
cedures
(callable
external
DLLs)

X

Built-in
referential
and entity
integrity

X X Declarative referential integrity, where deletes and updates are casca-
ded, is a feature that is not supported in UltraLite databases, except
during synchronization when deletes are cascaded for this purpose. See
“Avoiding synchronization issues with foreign key cy-
cles” on page 138.

Cascading
updates
and dele-
tes

X Limi-
ted

Dynamic,
multiple
database
support

X X With the UltraLite engine only.

Introducing UltraLite

2 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Feature SQL
Any-
where

Ultra-
Lite

Considerations

Multi-
threaded
applica-
tion sup-
port

X X

Row-level
locking

X X

XML un-
load and
load utilit-
ies

X UltraLite uses separate administration tools to complete XML load and
unloads. It is not built into the runtime. See “UltraLite Load XML to
Database utility (ulload)” on page 272 and “UltraLite Unload Data-
base utility (ulunload)” on page 281.

XML ex-
port and
import
utilities

X SQL Anywhere uses SQL statements to export/import data to XML.
You can also use dbunload to export your data. See “Importing and
exporting data” [SQL Anywhere Server - SQL Usage].

SQLX
function-
ality

X

SQL func-
tions

X X Not all SQL functions are available for use in UltraLite applications.
If you use an unsupported function, you trigger a Feature not
available in UltraLite error. See “UltraLite SQL func-
tions ” on page 347.

SQL state-
ments

X Limi-
ted

The scope of SQL statements are limited in UltraLite compared to SQL
Anywhere. See “UltraLite SQL statements” on page 447.

Integrated
HTTP
server

X

Strong en-
cryption
for data-
base files
and net-
work com-
munica-
tions

X X

UltraLite feature comparison

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 3

Feature SQL
Any-
where

Ultra-
Lite

Considerations

Event
schedul-
ing and
handling

X

High-per-
formance,
self-tun-
ing, cost-
based
query opti-
mizer

X UltraLite has a query optimizer, but it is not as extensive as that of SQL
Anywhere. Therefore, the UltraLite optimizer may not provide as high
performance as the SQL Anywhere optimizer on complex queries.

Choice of
several
thread-
safe APIs

X X UltraLite gives application developers a uniquely flexible architecture
that allows for the creation of applications for changing and/or varied
deployment environments. See “Choosing an UltraLite programming
interface” on page 24.

Cursor
support

X X See “UltraLite limitations” on page 8.

Dynamic
cache siz-
ing with an
advanced
cache
manage-
ment sys-
tem

X Cache sizing is static in UltraLite. Nonetheless, UltraLite allows you
to set the cache size when the database is started, which gives you the
ability to scale cache size. See “UltraLite CACHE_SIZE connection
parameter” on page 226.

Database
recovery
after sys-
tem or ap-
plication
failure

X X

Binary
Large Ob-
ject
(BLOB)
support

X X UltraLite cannot index or compare BLOBs.

Introducing UltraLite

4 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Feature SQL
Any-
where

Ultra-
Lite

Considerations

Windows
Perform-
ance Mon-
itor inte-
gration

X

Online ta-
ble and in-
dex de-
fragmenta-
tion

X

Online
backup

X

Small
footprint,
which can
be as small
as 500 KB

X Small footprint devices tend to have relatively slow processors. Ultra-
Lite employs algorithms and data structures that are targeted for these
devices, so UltraLite continues to provide high performance and low
memory use.

Supports
Palm OS

X

Direct de-
vice con-
nections to
a Win-
dows Mo-
bile device
from the
desktop.

X SQL Anywhere databases need a database server before allowing
desktop connections to the database that you deploy on a Windows
Mobile device. On UltraLite, you simply need to prefix the connection
string with WCE:\. See “Windows Mobile” on page 47.

High-per-
formance
updates
and re-
trievals
through
the use of
indexes

X X UltraLite uses a mechanism to determine whether each table is
searched using an index or by scanning the rows directly.

Additionally, you can hash indexes to speed up data retrieval. See
“UltraLite max_hash_size creation parameter” on page 194.

UltraLite feature comparison

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 5

Feature SQL
Any-
where

Ultra-
Lite

Considerations

Synchro-
nizing to
Oracle,
DB2, Syb-
ase Adap-
tive Server
Enter-
prise, or
SQL Any-
where

X X

Built-in
synchroni-
zation

X Unlike SQL Anywhere deployments, UltraLite does not require a cli-
ent agent for synchronization. Synchronization is built into the Ultra-
Lite runtime to minimize the components you need to deploy. See
“UltraLite clients” on page 125.

In-process
execution

X

Computed
columns

X

Declared
temporary
tables/
global
temporary
tables

X

System
functions

X UltraLite does not support SQL Anywhere system functions, including
property functions. You cannot include them as part of your UltraLite
application.

Time-
stamp col-
umns

X X SQL Anywhere Transact-SQL timestamp columns are created with the
DEFAULT TIMESTAMP default.

UltraLite timestamp columns are created with the DEFAULT CUR-
RENT TIMESTAMP default. Therefore, UltraLite does not automat-
ically update the timestamp when the row is updated.

Introducing UltraLite

6 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Feature SQL
Any-
where

Ultra-
Lite

Considerations

User-
based per-
mission
scheme to
determine
object-
based
ownership
and access

X UltraLite is primarily designed for single user databases in which an
authorization system is not needed. However, you can include up to
four user IDs and passwords, which are used for authentication pur-
poses only. These users have access to all database objects. See “Ul-
traLite user authentication” on page 51.

UltraLite feature comparison

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 7

UltraLite limitations
To compare UltraLite limitations with SQL Anywhere limitations, see “SQL Anywhere size and number
limitations” [SQL Anywhere Server - Database Administration].

Statistic Maximum for UltraLite

Number of con-
nections per data-
base

Up to 14 for single threaded applications.

Number of con-
current open con-
nections

Up to 8 for Palm OS.

Up to 32 for all other OS.

Total number of
concurrent con-
nections per ap-
plication

Up to 16 on Palm OS.

Up to 64 for all other OS.

SQL communica-
tion areas

Up to 63.

File-based persis-
tent store (data-
base size)

2 GB file or OS limit on file size.

Palm Computing
Platform database
size

128 MB (primary storage).

2 GB (expansion card file system).

Rows per table Up to 16 million.1

Rows per data-
base

Limited by persistent store.

Table size Limited only by database size.

Tables per data-
base

Limited only by database size.

Columns per table Row size is limited by page size, so the practical limit on the number of columns per
table is derived from this size. Typically, this practical limit is much less than 4000.

Indexes per table Limited only by database size.

Tables referenced
per transaction

No limit.

Introducing UltraLite

8 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistic Maximum for UltraLite

Stored procedure
length

Not applicable.

Stored procedures
per database

Not applicable.

Triggers per data-
base

Not applicable.

Nesting Not applicable.

Number of publi-
cations

32 publications.

Page size 16 KB.

Row size The length of each packed row must not exceed the page size. See “Row packing
and table definitions” on page 70.

Character strings are stored without padding when they are shorter than the column
size. This restriction excludes columns declared as long binary and long varchar as
these are stored separately.

Cursors per con-
nection

The number of maximum allowable cursors on a given connection to an UltraLite
database is 64 (all platforms).

Long binary/long
varchar size

Limited only by database size.

1 In some cases, changes to the row (deletes and updates) and other state information are maintained with
the row data. This information allows those changes to be synchronized. So, the actual row limit can be
smaller than 16 million, depending on the number of transactions on a table between synchronization, or
whether the table is synchronized at all. See “UltraLite transaction processing” on page 16.

UltraLite limitations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 9

UltraLite data architecture
UltraLite is a mobile database with true platform independence. UltraLite is designed to create custom
solutions for small-footprint devices such as cell phones, handheld computers, and embedded devices.

UltraLite provides you with a complete database management system including:

● Development layer UltraLite supports several programming interfaces that keep you from getting
locked into one deployment platform, development tool, or set of IT infrastructure products.

For information about which API you should choose, see “Choosing an UltraLite programming
interface” on page 24.

To help you maintain your UltraLite project, UltraLite completes its development support with a
comprehensive set of administration tools. You can run these tools either as command line utilities or as
wizards in the UltraLite plug-in for Sybase Central.

● Data management layer and synchronization client You can connect to an UltraLite database
with an in-process library called a runtime, or a separate process called an engine. Both processes control
connection and data access requests. They also include a built-in bi-directional synchronization client
that links UltraLite databases with enterprise back-end systems.

For information about which process you should choose, see “Choosing an UltraLite data management
component” on page 23.

● Data layer This layer is the local data repository either stored as a file or a series of data records (for
Palm OS). See “UltraLite storage and file name conventions” on page 11.

The data, management, and development layers are represented in the following figure.

Introducing UltraLite

10 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite storage and file name conventions
The file management requirements of a device dictate how an UltraLite database is stored and what database
name conventions must be used. While most platforms use traditional file-based storage, others, such as the
Palm OS record-based store, require that the database be saved differently. However, the UltraLite database
is typically referred to as a file. Depending on platform restrictions, you may be able to create a database on
the development desktop, and then deploy it to one or more platforms.

See also
● “Specifying file paths in an UltraLite connection parameter” on page 47

UltraLite database schema
The logical framework of the database is known as a schema. In UltraLite, the schema is maintained as a
catalog of system tables that hold the metadata for the UltraLite database. Metadata stored in the system
tables includes:

● Index definitions. See “sysindex system table” on page 293 and “sysixcol system table” on page 295.
● Table definitions. See “systable system table” on page 291.
● Column definitions. See “syscolumn system table” on page 292.
● Publication definitions. See “syspublication system table” on page 296 and “sysarticle system

table” on page 297.
● User names and passwords. See “sysuldata system table” on page 298.

Schema changes with DDL statements

You can change the schema of a database with the appropriate Data Definition Language (DDL) statements.
If you require more than just a few changes, you can use the ALTER DATABASE SCHEMA FROM FILE
statement to modify the schema definition using a SQL script.

Schema changes can take a considerable amount of time. For example, all rows in the associated table must
be updated when the column type is changed. DDL statements successfully execute when there are not any:

● Uncommitted transactions.

● Other active uses of the schema (for example, synchronization, prepared but unreleased statements, or
executing database operations).

If either of these conditions is true, the DDL statement fails. When the DDL statement is executing, any
other attempt to use the database is blocked until the DDL statements completes the schema change.

See also
● “UltraLite ALTER DATABASE SCHEMA FROM FILE statement” on page 450
● “UltraLite SQL statements” on page 447

UltraLite storage and file name conventions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 11

UltraLite temporary files
In addition to the database file, UltraLite creates and maintains a temporary file during database operation.
You do not need to work with or maintain the file in any way.

Temporary files are only used by UltraLite and are maintained in the same file path (if one exists) as the
UltraLite database itself. The temporary file has the same file name as the database, but with the following
difference:

● For file-based platforms The tilde is included in the extension of the file. For example, if you run
the CustDB.udb sample database, the temporary file called CustDB.~db is maintained in the same
directory as this file.

● For record-based platforms The tilde is appended to the end of the name of the file. For example,
if CustDB.udb existed as a record-based file for Palm OS, the temporary file for it would be maintained
as CustDB.udb~.

Tip
You can safely delete the temporary file without loss of data—as long as UltraLite is not running. It does
not contain information that is required across sessions.

UltraLite temporary tables
A temporary table is used by an access plan to store data during its execution in a transient or temporary
work table. This table only exists while the access plan is being executed. Generally, temporary tables are
used when subqueries need to be evaluated early in the access plan, or when intermediate results do not fit
in the available memory.

Data in a temporary table is held for a single connection only. Temporary tables consist of rows and columns.
Each column carries a particular kind of information, such as a phone number or a name, while each row
specifies a particular entry.

You can avoid using temporary tables by using an index for the columns used in the ORDER BY or GROUP
BY clauses.

See also
● “UltraLite temporary files” on page 12
● “UltraLite performance and optimization” on page 107
● “When to view an execution plan” on page 342

Introducing UltraLite

12 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite transaction and state management
UltraLite maintains state information along with the data in the database. UltraLite tracks and stores state
information so it can manage:

● Concurrent connections, so UltraLite can share resources as required. See “Concurrency in
UltraLite” on page 13.

● Synchronization progress counts, to ensure that synchronization occurs successfully. See “Built-in
UltraLite synchronization features” on page 126.

● Row state, to maintain data integrity by tracking how data has changed between synchronizations. See
“UltraLite row states” on page 14.

● Transactions, to determine when and how data gets committed. In UltraLite, a transaction is processed
in its entirety or not at all. See “UltraLite transaction processing” on page 16.

● Recovery and backup information, to protect data against operating system crashes, and end-user actions
such as removing storage cards, or device resets while UltraLite is running. See “Backing up and
recovering data in UltraLite” on page 15.

Concurrency in UltraLite
Concurrency is the manner in which UltraLite shares resources by allowing multiple connections at the same
time. UltraLite uses the following methods to manage concurrency:

● Multiple databases A single UltraLite application can open connections to multiple databases.
UltraLite can open up to 8 databases on Palm OS and up to 32 databases for all other platforms.

● Multiple applications The UltraLite database can only be opened by one process at a time. If you
plan to support concurrency among multiple applications, choose the UltraLite engine as your data
management component. See “Choosing an UltraLite data management component” on page 23.

● Multiple threads UltraLite supports multi-threaded applications. A single application can be written
to use multiple threads, each of which can connect to the same or different databases.

If you are managing your database with the runtime, ensure that you do not exceed the concurrent
connection limits supported by UltraLite. These are:

○ 16 concurrent connections for Palm OS.

○ 64 concurrent connections for all other platforms.

If you are managing your database connections with the UltraLite engine, the number of SQLCAs you
can use is typically restricted to 128. However, the implementation of UltraLite.NET API effectively
reduces this limit to 128 less the number of running UltraLite.NET clients.

● Multiple transactions/requests Each connection can have a single transaction in progress at one
time. Transactions can consist of a single request or multiple requests. Data modifications made during
a transaction are not made permanent in the database until the transaction is committed. Either all data

UltraLite transaction and state management

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 13

modifications made in a transaction are committed, or all are rolled back. See “UltraLite transaction
processing” on page 16.

● Synchronization During upload and download, read-write access to the database is permitted.
However, if an application changes a row that the download then attempts to change, the download fails
and rolls back. Use the Disable Concurrency synchronization parameter to disable access to data during
synchronization. See “Additional Parameters synchronization parameter” on page 155.

If synchronization fails, UltraLite supports resumable downloads on all platforms. See “Handling failed
downloads” [MobiLink - Server Administration].

See also
● “UltraLite clients” on page 125
● “Additional Parameters synchronization parameter” on page 155

UltraLite row states
Maintaining row state information is a powerful part of the UltraLite feature set. Tracking the state of tables
and rows is particularly important for data synchronization.

Changes to data
An internal marker is used to keep track of the row state in an UltraLite database. Row states control
transaction processing, recovery, and synchronization. When a row is inserted, updated, or deleted, the state
of the row is modified to reflect the operation and the connection that performed the operation. When a
transaction is committed, the states of all rows affected by the transaction are modified to reflect the commit.
If an unexpected failure occurs during a commit, the entire transaction is rolled back. The following list
summarizes these behaviors:

● When a delete is issued The state of each affected row is changed to reflect the fact that it was
deleted. Restore the original state of the row to undo the delete.

● When a delete is committed The affected rows are not always removed from memory. If the row
has never been synchronized, then it is removed. If the row has been synchronized, then it is not removed,
because the delete operation needs to be synchronized to the consolidated database first. After the next
synchronization, the row is removed from memory.

● When a row is updated A new version of the row is created. The states of the old and new rows are
set so the old row is no longer visible and the new row is visible.

● When a row update is committed When a transaction is committed, the states of all rows affected
by the transaction are modified to reflect the commit. When an update is synchronized, both the old and
new versions of the row are needed to allow conflict detection and resolution. The old row is then deleted
from the database and the new row simply becomes a normal row.

● When a row is added The row is added to the database and is marked as not committed.

● When an added row is committed The row is marked as committed and is also flagged as requiring
synchronization with the consolidated database.

Introducing UltraLite

14 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Backing up and recovering data in UltraLite” on page 15
● “Flushing single or grouped transactions” on page 119
● “UltraLite transaction processing” on page 16

Validate an UltraLite database
It is recommended that you validate when there is no other activity on the database.

You can validate an UltraLite database using any of the following methods:

● The Validate Database Wizard in Sybase Central.
● Calling the ValidateDatabase function.
● The ulvalid utility.
● The ValidateDatabase method.

Caution
Database validation should be performed while no connections are making changes to the database;
otherwise, errors indicating database corruption might be reported even though no corruption actually exists.

To validate a database (Sybase Central)

1. In the left pane of Sybase Central, select the UltraLite database.

2. Choose File » Validate Database.

3. Follow the instructions in the Validate Database Wizard.

Tip
You can also access the Validate Database Wizard from within Sybase Central using any of the following
methods:

● Right-clicking the UltraLite database, and choosing Validate Database.

● Selecting the UltraLite database, and choosing Tools » UltraLite 11 » Validate Database.

See also
● “ValidateDatabase method” [UltraLite - .NET Programming]
● “ValidateDatabase function” [UltraLite - C and C++ Programming]
● “UltraLite Validate Database utility (ulvalid)” on page 286

Backing up and recovering data in UltraLite
If an application using an UltraLite database stops unexpectedly, the UltraLite database automatically
recovers to a consistent state when the application is restarted. All committed transactions flushed to memory

UltraLite transaction and state management

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 15

prior to the unexpected failure are present in the UltraLite database. All transactions not flushed at the time
of the failure are rolled back.

UltraLite does not use a transaction log to perform recovery. Instead, UltraLite stores state information for
every row to determine the fate of a row when recovering. See “UltraLite row states” on page 14.

Backups
UltraLite provides protection against system failures, but not from media failures. The best way of making
a backup of an UltraLite application is to synchronize with a consolidated database. To restore an UltraLite
database, start with an empty database and populate it from the consolidated database through
synchronization.

In smaller UltraLite deployments, you can copy the database file to a desktop computer to provide a manual
backup.

Note
On Palm OS, you can also set the PALM_ALLOW_BACKUP connection parameter to true. This setting
allows you to back up the database over HotSync. See “UltraLite PALM_ALLOW_BACKUP connection
parameter” on page 240.

See also
● “Flushing single or grouped transactions” on page 119

UltraLite transaction processing
A transaction is a logical set of operations that are executed atomically: either all operations in the transaction
are stored in the database or none are. An UltraLite application's access to the UltraLite runtime is serialized.
While it is possible for multiple transactions to be open simultaneously, UltraLite only processes one
transaction at a time. This behavior means that an application cannot:

● Have blocked transactions (also known as deadlocks). UltraLite never blocks a request based on an
existing row lock. In this case, UltraLite immediately returns an error.

● Overwrite outstanding changes. A transaction cannot overwrite another transaction's outstanding
changes. When a transaction changes a row, UltraLite locks that row until the transaction is committed
or rolled back. The lock prevents other transactions from changing the row, although they can still read
the row.

For example, two applications, A and B, are reading the same row from the database and they both calculate
new values for one of its columns based on the data they read. If A updates the row with its new value and
B then tries to modify the same row, B gets an error. An attempt to change a locked row sets the error
SQLCODE SQLE_LOCKED, while an attempt to change a deleted row sets the error SQLE_NOTFOUND.
Therefore, you should program your application so it checks the SQLCODE value after attempting to modify
data.

Introducing UltraLite

16 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For more information about how to handle errors, see:

● UltraLite for C/C++: “Handling errors” [UltraLite - C and C++ Programming]
● UltraLite.NET: “Handling errors” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “Handling errors” [UltraLite - M-Business Anywhere

Programming]

Programming tip
All UltraLite APIs—except the C++ API—can operate in autocommit mode. Some APIs use autocommit
by default.

This default means that each transaction is automatically committed after each operation. If you are using
one of these interfaces, you must set autocommit to off to exploit multi-operation transactions. The way of
turning autocommit off depends on the programming interface you are using. In most interfaces it is a
property of the connection object.

See:

● UltraLite.NET: “Managing transactions” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “Managing transactions” [UltraLite - M-Business Anywhere

Programming]

UltraLite transaction and state management

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 17

UltraLite isolation levels
Isolation levels define the degree to which the operations in one transaction are visible to the operations in
other concurrent transactions. UltraLite uses the default isolation level read-committed for connections in
auto-commit mode. For .NET, read-committed is the default isolation level for new transactions created by
calling ULConnection.BeginTransaction without parameters. The default UltraLite isolation level provides
the best performance while ensuring data consistency.

With the ReadCommitted isolation level:

● Dirty reads are prevented

● No read locks are applied

● Uncommitted deletes are visible

● Non-repeatable reads and phantom rows are allowed

● No guarantee that data will not change during transaction

With the ReadUncommitted isolation level:

● Dirty reads are allowed

● No read locks are applied

● Non-repeatable reads and phantom rows are allowed

● No guarantee that concurrent transaction will not modify row or roll back changes to row

You can change the isolation level from ReadCommitted to ReadUncommitted. For UltraLite C++, use the
SetDatabaseOption method to change the isolation level. For UltraLite.NET 2.0, call the
ULConnection.BeginTransaction to create a transaction with the ReadUncommitted isolation level.

Note
For .NET, executing SetDatabaseOption while a transaction is active is not recommended. It changes the
isolation level of the connection, but does not update the ULTransaction.IsolationLevel.

Do not use SetDatabaseOption to change the isolation while a transaction is in progress; unpredictable results
might occur.

Isolation level side effects
As UltraLite operates by default at an isolation level of 0, the following side effects are possible:

● No locking operations are required when executing a SELECT statement.

● Applications can access uncommitted data (also known as dirty reads). In this scenario, an application
may access rows in the database that are not committed and may still get rolled back by another
transaction. This phenomena can result in phantom rows (rows that get added after the original query,
making the result set returned in a repeated, duplicate query different).

Introducing UltraLite

18 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For a tutorial that demonstrates the effects of dirty reads, see “Tutorial: Dirty reads” [SQL Anywhere
Server - SQL Usage]. For a tutorial that demonstrates a phantom row, see “Tutorial: Phantom rows” [SQL
Anywhere Server - SQL Usage].

● Applications can perform non-repeatable reads. In this scenario, an application reads a row from the
database, and then goes on to perform other operations. Then a second application updates/deletes the
row and commits the change. If the first application attempts to re-read the original row, it receives either
the updated information or discovers that the original row was deleted.

For a tutorial that demonstrates the effects of non-repeatable reads, see “Tutorial: Non-repeatable reads”
[SQL Anywhere Server - SQL Usage].

Example
Consider two connections, A and B, each with their own transactions.

1. As connection A works with the result set of a query, UltraLite fetches a copy of the current row into a
buffer.

Note
Reading or fetching a row does not lock the row. If connection A fetches but does not modify a row,
connection B can still modify the row.

2. As A modifies the current row, it changes the copy in the buffer. The copy in the buffer is written back
into the database when connection A calls an Update method or closes the result set.

3. A write lock is placed on the row to prevent other transactions from modifying it. This modification is
uncommitted, until connection A performs a commit.

4. Depending on the modification, if connection B fetches the current row, it may experience the following:

Connection A's modification Result1

Row has been deleted. Connection B gets the next row in the result set.

Row has been modified. Connection B gets the latest copy of the row.

1 Queries used by Connection A and B do not contain temporary tables. Temporary tables can cause
other side effects.

See also
● “BeginTransaction() method” [UltraLite - .NET Programming]
● “BeginTransaction(IsolationLevel) method” [UltraLite - .NET Programming]
● “SetDatabaseOption method” [UltraLite - .NET Programming]

UltraLite isolation levels

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 19

20

Implementing an UltraLite solution

Contents
UltraLite supported platforms and protocols ... 22
Choosing an UltraLite data management component ... 23
Choosing an UltraLite programming interface ... 24

When implementing an UltraLite solution, consider the following:

● How many applications need to connect to the UltraLite database? The number of concurrent connections
affects whether you need the UltraLite in-process runtime or the UltraLite engine. To understand how
they differ, see “Choosing an UltraLite data management component” on page 23.

● What platform(s) do you want to support? This choice can affect which APIs are available to program
your application. See “Choosing an UltraLite programming interface” on page 24.

● Which platforms will the database run on? Because file formats have been consolidated, you may be
able to create a database that runs on multiple platforms. See “Creating and configuring UltraLite
databases” on page 29.

Tip
If you need to create a file format that suits multiple platforms, use the Create Database Wizard in
Sybase Central to help you determine whether a single database is possible.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 21

UltraLite supported platforms and protocols
You can synchronize the data in UltraLite databases with a central consolidated database over the TCP/IP,
HTTP, or HTTPS network protocols.

For more information about which platforms different network protocols (also known as streams) are
supported on, see http://www.sybase.com/detail?id=1061806.

See also
● “UltraLite clients” on page 125
● “Network protocol options for UltraLite synchronization streams” on page 178
● “UltraLite Synchronization utility (ulsync)” on page 275

Implementing an UltraLite solution

22 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061806

Choosing an UltraLite data management component
UltraLite allows you to build a small-footprint relational database solution without requiring the additional
overhead of setting up a separate database server. Instead, UltraLite programming interfaces use one of two
library types.

UltraLite in-process runtime library

In UltraLite, the runtime and the application are part of the same process, which makes the database specific
to the application. For all platforms, the runtime manages UltraLite databases and built-in synchronization
operations. The UltraLite runtime can manage a maximum of 14 databases at any one time. Note that only
one application can access a database at any given time.

Linking to the runtime requires that you use a specific import library/DLL pair than that of the engine. For
details, see “Compiling and linking your application” [UltraLite - C and C++ Programming]. If you require
TLS-enabled synchronization, there are additional libraries you also require. See “Deploy UltraLite with
TLS-enabled synchronization” on page 60.

UltraLite database engine client library

The UltraLite engine is only available for Windows desktop and Windows Mobile platforms. The engine is
a separate executable, which provides concurrent database/application connections. Each application must
use a client library when using the UltraLite engine. This client library allows each application to
communicate with the UltraLite engine. The UltraLite engine requires more system resources than the
UltraLite runtime and may yield lower performance.

Linking to the engine requires that you a different import library/DLL pair than that of the runtime. If you
require TLS-enabled synchronization or AES FIPS database encryption, there are additional libraries you
also require. See “Deploy UltraLite with AES_FIPS database encryption” on page 59 and “Deploy
UltraLite with TLS-enabled synchronization” on page 60.

Note
Ensure that you do not exceed the concurrent connection limits supported by the UltraLite engine.

See also
● “UltraLite Engine utility (uleng11)” on page 260
● “Concurrency in UltraLite” on page 13
● “UltraLite feature comparison” on page 2
● “UltraLite limitations” on page 8

Choosing an UltraLite data management component

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 23

Choosing an UltraLite programming interface
All UltraLite APIs expose core database functionality. Some of the following APIs integrate with the
development environment to simplify programming tasks:

● C/C++ interface
● Embedded SQL for C/C++
● UltraLite.NET (C# or VB.NET)
● M-Business Anywhere (JavaScript)

UltraLite APIs offer different data access models, including a simple table-based data access interface and
dynamic SQL for more complex queries. By combining these benefits, UltraLite gives application developers
a flexible architecture that allows for the creation of applications for varied deployment environments.

Note
Pocket Builder is not supported in this version of UltraLite. Sybase PocketBuilder is not included with SQL
Anywhere. Contact Sybase for details (http://www.sybase.com/products/developmentintegration/
pocketbuilder).

See also
● UltraLite.NET: UltraLite - .NET Programming
● UltraLite C/C++ and embedded SQL: UltraLite - C and C++ Programming
● UltraLite for M-Business Anywhere: UltraLite - M-Business Anywhere Programming

To choose your programming interface

1. Choose your target platform(s). UltraLite supports Palm OS, Windows Mobile, Windows XP/embedded
Windows XP, and Java OS.

2. For each platform you need to support, determine if the API supports that platform. Different APIs
support different platforms. If you are doing cross-platform development, choose an API that supports
all of your intended targets.

Use this support matrix to help you quickly identify your development options.

Deploy-
ment tar-
gets

UltraLite for C/C++ and embed-
ded SQL

UltraLite.NET1 UltraLite for M-Busi-
ness Anywhere2

Palm OS version 4 + N/A version 5.0 +

Windows
Mobile

CE 5.0 + CE 5.0 with .NET
compact framework
2.0

version 3.0 +

Implementing an UltraLite solution

24 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/products/developmentintegration/pocketbuilder
http://www.sybase.com/products/developmentintegration/pocketbuilder

Deploy-
ment tar-
gets

UltraLite for C/C++ and embed-
ded SQL

UltraLite.NET1 UltraLite for M-Busi-
ness Anywhere2

Embedded
Windows
XP

Supported .NET framework 2.0 version 5.0 +

Java Java SE (1.5 and later)

RIM BlackBerry OS (4.1 and lat-
er)

N/A N/A

1 Development as an extension to Microsoft Visual Studio.NET. The driver supports ADO.NET versions
2.0.
2 For browser-based deployments of UltraLite programming in JavaScript.

3. Consider the effects of the following requirements, and then finalize your selection:

SQL Anywhere compatibility If database compatibility with SQL Anywhere is a concern, consider
the following:

● SQL Anywhere embedded SQL support provides a common programming interface for UltraLite
and SQL Anywhere databases.

● ADO.NET provides common programming models that are shared between UltraLite components
and SQL Anywhere.

Maintaining a common interface may be particularly useful on platforms such as Windows Mobile,
where both databases are available. If you need to move from UltraLite to a SQL Anywhere database,
you should use embedded SQL or ADO.NET to make application migration easier.

Tip
Even though a common interface exists, good development practice dictates that you create an abstract
data-access layer when writing your application.

Simplified deployments If simplifying your UltraLite deployment is an issue, consider
programming with the M-Business Anywhere API. Your end-users can download both the UltraLite
application and the database concurrently.

Application size If creating the smallest application footprint is a priority, you should program your
application with the C/C++ API. These applications typically yield the best performance and still
maintain a small application file size.

Application performance Each API has yields a different performance result. For example, the
performance of UltraLite.NET might not be as good as the performance of UltraLite C++, and UltraLite
embedded SQL might perform better than UltraLite C++.

Choosing an UltraLite programming interface

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 25

26

Using UltraLite Databases

This section describes how to create and use UltraLite databases.

Creating and configuring UltraLite databases .. 29
Connecting to an UltraLite database .. 43
Deploying UltraLite to devices ... 55
Working with UltraLite databases ... 69
UltraLite CustDB samples ... 93
UltraLite performance and optimization .. 107

Creating and configuring UltraLite databases

Contents
Creating an UltraLite database .. 30
Choosing database creation parameters for UltraLite ... 34
UltraLite character sets .. 36
Securing UltraLite databases .. 40

There are two types of database creation methods:

● Desktop creation methods with UltraLite administration tools designed for this purpose.

● On-device creation methods with UltraLite APIs. On-device creation methods are primarily described
in each API specific UltraLite programming book.

Once the database is created, you can connect to it and build tables and other database objects.

If you do not want to use default values, you must set the creation parameter values when creating a database.
The values cannot be changed after the database is created. If you need to change any database property,
you must re-create the database, specifying a different value for the creation parameter.

Sharing a database among multiple platforms
Within the configuration differences imposed by different operating systems, you might be able to copy the
database from one device to another. If you are unsure of property compatibility among multiple platforms,
create a database in Sybase Central with the UltraLite Create Database Wizard. This wizard handles the
file compatibility logic for you. In so doing, it prevents you from creating a file that is not supported on your
combination of deployment devices.

See also
● “UltraLite optimization strategies” on page 121
● “Choosing database creation parameters for UltraLite” on page 34
● “Change UltraLite persistent database option settings” on page 224
● “Working with UltraLite databases” on page 69

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 29

Creating an UltraLite database
The UltraLite Create Database Wizard Choose this method if you want help navigating the available
database creation parameters. This wizard simplifies your choices by restricting what you can configure
based on the target platform(s) you select. Once the database is created, it displays the command line syntax
that you can record and use with the ulcreate utility. See “Create a database with the Create Database
Wizard” on page 30.

The MobiLink Create Synchronization Model Wizard Choose this method if you are creating a
synchronization system with remote UltraLite databases and a centralized consolidated database.

See “Create an UltraLite database from a MobiLink synchronization model” on page 31.

The command line Choose any of the following utilities:

● Use the ulcreate utility if you are familiar with database creation parameters and want a fast alternative
to creating a new, empty UltraLite database. This option is particularly useful for creating databases in
batch operations. See “Create an UltraLite database from the command prompt” on page 30.

● Use the ulinit utility if you want to create a new, empty UltraLite database sourced from a SQL Anywhere
reference database schema. See “Create an UltraLite database from a SQL Anywhere reference
database” on page 31.

● Use the ulload utility if you have an XML file that will serve as the source point for the schema and/or
data of your new UltraLite database. See “Create an UltraLite database from XML” on page 32.

Create a database with the Create Database Wizard
You can create a database in Sybase Central using the Create Database Wizard.

To create a new UltraLite database (Sybase Central)

1. Choose Start » Programs » SQL Anywhere 11 » Sybase Central.

2. Choose Tools » UltraLite 11 » Create Database.

3. Follow the instructions in the Create Database Wizard.

Create an UltraLite database from the command prompt
Use the ulcreate utility to create a database from a command prompt. With this utility, you can include utility
options to configure the database.

To create a new UltraLite database (command prompt)
Run the ulcreate utility, including any necessary options. For example, to create a case-sensitive UTF-8
database called test.udb, overwriting the database if it already exists, run the following command:

ulcreate -c "DBF=test.udb" -o "case=respect;utf_encoding=1" -y

Creating and configuring UltraLite databases

30 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Supplying a database file in a connection string is an alternative to specifying the database file after the other
options. For example:

ulcreate -o "case=respect;utf_encoding=1" -y test.udb

Create an UltraLite database from a MobiLink
synchronization model

To simplify development, MobiLink includes a Create Synchronization Model Wizard to create your
UltraLite database and server-side synchronization logic.

Once you have created your model, you can work in MobiLink Model mode in Sybase Central to customize
your synchronization model before you deploy it. When the model is ready, you can then deploy it to generate
the scripts and tables required for your synchronization application.

See “MobiLink models” [MobiLink - Getting Started].

Create an UltraLite database from a SQL Anywhere
reference database

A reference database is a SQL Anywhere database that serves as a template for the UltraLite database you
are creating. Your UltraLite database is a subset of the columns, tables, and indexes in the reference database.
You select these objects as part of a publication in the reference database.

Creating a database from a reference database may be useful if you want to first model your data with an
architecture tool such as Sybase PowerDesigner.

To create a database from a reference database, use the ulinit utility.

To initialize/extract a new UltraLite database from a reference database (command prompt)

1. Create a new SQL Anywhere database as the reference database.

You can create a new SQL Anywhere database with the dbinit utility or Sybase Central. You can also
create a SQL Anywhere database from non-SQL Anywhere databases, by migrating data from these
third-party files.

See “Creating a database” [SQL Anywhere Server - Database Administration].

Configure the database with UltraLite usage in mind
The UltraLite database is generated with the same settings as those in the reference database. By setting
the following options in the reference database, you also control the behavior of your UltraLite database:

● Date format
● Date order
● Nearest century
● Precision
● Scale

Creating an UltraLite database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 31

● Time format
● Timestamp format

2. Prepare the reference database by adding objects required by the UltraLite database:

● Tables and keys Add the tables and remember to set primary keys as they are required by
UltraLite. If you need to, you can also assign foreign key relationships that you need within your
UltraLite application. You can use Sybase Central, Sybase PowerDesigner Physical Data Model, or
another database design tool. See “Working with UltraLite tables and columns” on page 70.

● Indexes An index can improve performance dramatically, particularly on slow devices. Note that
primary keys are automatically indexed, but other columns are not. See “When to use an
index” on page 79.

● Publications If you want to synchronize different tables at different times, use publications. You
can use multiple UltraLite publications to define table subsets and set synchronization priority with
them. See “Publications in UltraLite” on page 137.

Performance tip
If your UltraLite applications frequently retrieve information in a particular order, consider adding an
index to your reference database specifically for this purpose. See “Using index scans” on page 108.

3. Run the ulinit utility, including any necessary options.

For example, to initialize an UltraLite database called customer.udb with tables contained in two distinct
publications, run the following command. Pub1 may contain a small subset of tables for priority
synchronization, while Pub2 could contain the bulk of the data.

ulinit -a DBF=MySource.db -c DBF=customer.udb -n Pub1 -n Pub2

See also
● “Create a database with the Create Database Wizard” on page 30
● “Create an UltraLite database from the command prompt” on page 30
● “Create an UltraLite database from XML” on page 32
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “Choosing database creation parameters for UltraLite” on page 34
● “Upgrading UltraLite” [SQL Anywhere 11 - Changes and Upgrading]

Create an UltraLite database from XML
You can use XML as an intermediate format for managing your UltraLite database, provided that the format
follows the requirements for UltraLite usage. You can use XML as follows:

● Load data into a new database with a different set of database properties/options.

● Upgrade the schema from a database created by a previous version of UltraLite.

● Create a text version of your UltraLite database that you can check into a version control system.

Creating and configuring UltraLite databases

32 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite cannot use an arbitrary XML file. The install-dir\UltraLite directory contains a usm.xsd file. Use
this file to review the XML format.

To create an UltraLite database from an XML file

1. Save the XML file to a directory of your choosing. You can either:

● Export/unload a database to an XML file. If you are unloading a SQL Anywhere database, use any
of the supported export methods. See “Exporting relational data as XML” [SQL Anywhere Server -
SQL Usage].

● Take XML output from another source—that source could be another relational database or even a
web site where transactions are recorded to a file. You must always ensure that the format of the
XML meets the UltraLite requirements.

2. Run the ulload utility, including any necessary options.

For example, to create a new UltraLite database in the file sample.udb from the table formats and data
in sample.xml:

ulload -c DBF=sample.udb sample.xml

See also
● “Create a database with the Create Database Wizard” on page 30
● “Create an UltraLite database from the command prompt” on page 30
● “Create an UltraLite database from a SQL Anywhere reference database” on page 31
● “Upgrading UltraLite” [SQL Anywhere 11 - Changes and Upgrading]
● “UltraLite Load XML to Database utility (ulload)” on page 272
● “Choosing database creation parameters for UltraLite” on page 34

Create an UltraLite database on a first connection
You can program your application to create a new UltraLite database if one cannot be detected at connection
time. The application can then use SQL to create tables, indexes, foreign keys, and so on. To populate the
database, synchronize with a consolidated database.

Considerations
By adding the additional database creation and SQL code, your application size can grow considerably.
However, this option can simplify deployment because you only need to deploy the application to the device.
In some pre-production development cycles, you may want to delete and reconstruct the database on your
device for testing purposes.

See also
● “Creating an UltraLite database” on page 30
● UltraLite for C/C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]

Creating an UltraLite database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 33

Choosing database creation parameters for UltraLite
UltraLite database creation parameters are recorded as name=value pairs in the system tables that make up
the schema of the database. By storing these creation parameters in system tables, users and/or applications
can access them in the same way as other data. See “sysuldata system table” on page 298.

Accessing creation parameter values
You cannot change creation parameter values after you have created a database. However, you can view the
corresponding database properties in Sybase Central. See “Accessing UltraLite database
properties” on page 218.

You can also access the database properties programmatically from the UltraLite application by calling the
GetDatabaseProperty function appropriate to the API.

For API-specific details, see:

● UltraLite C/C++: “GetDatabaseProperty function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “GetDatabaseProperty method” [UltraLite - .NET Programming]
● M-Business: “getDatabaseProperty method” [UltraLite - M-Business Anywhere Programming]

In addition to these database creation parameters, you can further configure other aspects of your database
with database options and connection parameters. See:

● “UltraLite database options” on page 219
● “Connecting to an UltraLite database” on page 43
● “UltraLite connection parameters” on page 225

Property Description

case Sets the case-sensitivity of string comparisons in the UltraLite database. See
“UltraLite case creation parameter” on page 183.

checksum_level Sets the level of checksum validation in the database. See “UltraLite check-
sum_level creation parameter” on page 184.

collation Sets the collation sequence used by the UltraLite database. Setting this property
with or without the UTF-8 property determines the character set of the database.
See “UltraLite character sets” on page 36 and “UltraLite collation creation pa-
rameter” on page 186 and “UltraLite utf8_encoding creation parame-
ter” on page 211.

date_format Sets the default string format in which dates are retrieved from the database. See
“UltraLite date_format creation parameter” on page 187.

date_order Controls the interpretation of date ordering of months, days, and years. See
“UltraLite date_order creation parameter” on page 190.

Creating and configuring UltraLite databases

34 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

fips Controls AES FIPS compliant data encryption, by using a Certicom certified
cryptographic algorithm. FIPs encoding is a form of strong encryption. See
“Securing UltraLite databases” on page 40 and “UltraLite fips creation param-
eter” on page 192.

max_hash_size Sets the default index hash size in bytes. See “UltraLite max_hash_size creation
parameter” on page 194.

nearest_century Controls the interpretation of two-digit years in string-to-date conversions. See
“UltraLite nearest_century creation parameter” on page 196.

obfuscate Controls whether data in the database is obfuscated. Obfuscation is a form of
simple encryption. See “Securing UltraLite databases” on page 40 and “Ultra-
Lite obfuscate creation parameter” on page 198.

page_size Defines the database page size. See “UltraLite page_size creation parame-
ter” on page 199.

precision Specifies the maximum number of digits in decimal point arithmetic results. See
“UltraLite precision creation parameter” on page 201.

scale Specifies the minimum number of digits after the decimal point when an arith-
metic result is truncated to the maximum precision. See “UltraLite scale creation
parameter” on page 203.

time_format Sets the format for times retrieved from the database. See “UltraLite time_format
creation parameter” on page 205.

timestamp_format Sets the format for timestamps retrieved from the database. See “UltraLite time-
stamp_format creation parameter” on page 207.

timestamp_incre-
ment

Determines how the timestamp is truncated in UltraLite. See “UltraLite time-
stamp_increment creation parameter” on page 210.

utf8_encoding Encodes data using the UTF-8 format, 8-bit multibyte encoding for Unicode. See
“UltraLite character sets” on page 36 and “UltraLite utf8_encoding creation
parameter” on page 211.

Choosing database creation parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 35

UltraLite character sets
The results of comparisons on strings, and the sort order of strings, in part depends on the character set,
collation, and encoding properties of the database.

Choosing the correct character set, collation, and encoding properties for your database is primarily
determined by:

● The sort order you require. Generally speaking, you should choose the collation that best sorts the
characters you intend to store in your database.

● The platform of your device. Requirements among supported devices can vary, and some require that
you use UTF-8 to encode your characters. If you need to support multiple devices, you need to determine
whether a database can be shared.

● If you are synchronizing data, which languages and character sets are supported by the consolidated
database. You must ensure that the character sets used in the UltraLite database and the consolidated
database are compatible. Otherwise, data could be lost or become altered in unexpected ways if characters
in one database's character set do not exist in the other's character set. If you have deployed UltraLite in
a multilingual environment, you should also use UTF-8 to encode your UltraLite database.

When you synchronize, the MobiLink server converts characters as follows:

1. The UltraLite database characters are converted to Unicode.

2. The Unicode characters are converted into the consolidated database's character set.

See also
● “UltraLite platform requirements for character set encoding” on page 37
● “UltraLite collation creation parameter” on page 186
● “UltraLite utf8_encoding creation parameter” on page 211
● “Overview of character sets, encodings, and collations” [SQL Anywhere Server - Database

Administration]
● “UltraLite connection parameters” on page 225
● “Character set considerations” [MobiLink - Server Administration]
● “UltraLite case creation parameter” on page 183
● “Securing UltraLite databases” on page 40

Change the character set and collation
You cannot change the character set, collation, or encoding properties of the database once UltraLite writes
the file. You must recreate the database.

To recreate an UltraLite database with a new collation

1. Unload the database.

You can use either the Unload Database Wizard in Sybase Central or the ulunload utility. See “UltraLite
Unload Database utility (ulunload)” on page 281.

Creating and configuring UltraLite databases

36 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Create a new database with the appropriate collation.

3. Optional. Convert the data to match the new collation if required.

4. Reload the database.

You can use either the Load Database Wizard in Sybase Central or the ulload utility. See “UltraLite
Load XML to Database utility (ulload)” on page 272.

UltraLite platform requirements for character set encoding
Each platform has specific character set and encoding requirements.

Palm OS

Never use UTF-8 encoding; Palm does not support Unicode characters. Always choose a collation that
matches the code page of your intended device.

Windows desktop and Windows Mobile

When using a UTF-8 encoded database on Windows, you should pass wide characters to the database. If
you use UTF-8 encoding on these platforms, UltraLite expects that non-wide string parameters are UTF-8
encoded, which is not a natural character set to use on Windows. The exception is for connection strings,
where string parameters are expected to be in the active code page. However, by using wide characters, you
can avoid this complication.

See also
● “UltraLite utf8_encoding creation parameter” on page 211
● “Overview of character sets, encodings, and collations” [SQL Anywhere Server - Database

Administration]
● “UltraLite connection parameters” on page 225
● “Character set considerations” [MobiLink - Server Administration]
● “Securing UltraLite databases” on page 40

UltraLite supported collations
The following table lists the supported CHAR collations in UltraLite. You can also generate the list by
executing the following command:

ulcreate -l

Collation label Description

1250LATIN2 Code Page 1250, Windows Latin 2, Central/Eastern European

1250POL Code Page 1250, Windows Latin 2, Polish

UltraLite character sets

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 37

Collation label Description

1251CYR Code Page 1251, Windows Cyrillic

1252LATIN1 Code Page 1252, Windows Latin 1, Western

1252NOR Code Page 1252, Windows Latin 1, Norwegian

1252SPA Code Page 1252, Windows Latin 1, Spanish

1252SWEFIN Code Page 1252, Windows Latin 1, Swedish/Finnish

1253ELL Code Page 1253, Windows Greek, ISO8859-7 with extensions

1254TRK Code Page 1254, Windows Turkish, ISO8859-9 with extensions

1254TRKALT Code Page 1254, Windows Turkish, ISO8859-9 with extensions, I-dot e als I-no-dot

1255HEB Code Page 1255, Windows Hebrew, ISO8859-8 with extensions

1256ARA Code Page 1256, Windows Arabic, ISO8859-6 with extensions

1257LIT Code Page 1257, Windows Baltic Rim, Lithuanian

874THAIBIN Code Page 874, Windows Thai, ISO8859-11, binary ordering

932JPN Code Page 932, Japanese Shift-JIS with Microsoft extensions

936ZHO Code Page 936, Simplified Chinese, PRC GBK

949KOR Code Page 949, Korean KS C 5601-1987 Encoding, Wansung

950ZHO_HK Code Page 950, Traditional Chinese, Big 5 Encoding with HKSCS

950ZHO_TW Code Page 950, Traditional Chinese, Big 5 Encoding

EUC_CHINA Simplified Chinese, GB 2312-80 Encoding

EUC_JAPAN Japanese EUC JIS X 0208-1990 and JIS X 0212-1990 Encoding

EUC_KOREA Code Page 1361, Korean KS C 5601-1992 8-bit Encoding, Johab

EUC_TAIWAN Code Page 964, EUC-TW Encoding

ISO1LATIN1 ISO8859-1, ISO Latin 1, Western, Latin 1 Ordering

ISO9LATIN1 ISO8859-15, ISO Latin 9, Western, Latin 1 Ordering

ISO_1 ISO8859-1, ISO Latin 1, Western

Creating and configuring UltraLite databases

38 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Collation label Description

ISO_BINENG Binary ordering, English ISO/ASCII 7-bit letter case mappings

UTF8BIN UTF-8, 8-bit multibyte encoding for Unicode, binary ordering

UltraLite character sets

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 39

Securing UltraLite databases
By default, UltraLite databases are unencrypted on disk. When using a viewing tool such as a hex editor,
text and binary columns can be read. To encrypt data for greater security, consider the following options:

● Obfuscation Also known as simple encryption, this option provides protection against casual
attempts to access data in the database. It does not provide as much security as strong encryption.
Obfuscation has a minimal performance impact. You enable obfuscation with the obfuscate creation
parameter. End users do not need to supply a corresponding connection parameter. You do not need any
special configuration to use simple obfuscation on your device. See “UltraLite obfuscate creation
parameter” on page 198.

● AES 128-bit strong encryption UltraLite databases can be strongly encrypted using the AES 128-
bit algorithm, which is the same algorithm used to encrypt SQL Anywhere databases. Strong encryption
provides security against skilled and determined attempts to gain access to the data, but has a significant
performance impact. You set encryption in the wizards by selecting the Encrypt Database option and
then selecting AES Strong Encryption. Using a creation utility, you set the key with the key connection
parameter. This same parameter is used by end users when connecting to the database after it has been
created. You do not need any special configuration to use AES encryption on your device. See “UltraLite
fips creation parameter” on page 192.

● AES FIPS 140-2 compliant encryption UltraLite provides encryption libraries compliant with the
FIPS 140-2 US and Canadian government standard (using a Certicom certified cryptographic module).
You set FIPS compliant encryption with the fips creation parameter. The user must supply the required
key in their connection string. AES FIPS encryption requires that you configure your device
appropriately. See “Deploy UltraLite with AES_FIPS database encryption” on page 59, and “UltraLite
fips creation parameter” on page 192.

Tip
The MobiLink server's synchronization streams can use public/private keys to encrypt streamed data. For
ease of deployment, you can embed these certificates in the UltraLite database when you create it. See
“Configuring MobiLink clients to use transport-layer security” [SQL Anywhere Server - Database
Administration].

Notes
Both the FIPS and AES database encryption types use 128-bit AES. Therefore, if you use the same encryption
key, the database is encrypted the same way irrespective of the standard you choose.

Creating and configuring UltraLite databases

40 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Caution
You can change the encryption key after the database has been created, but only under extreme caution. See:

● UltraLite for C++: “ChangeEncryptionKey function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ChangeEncryptionKey method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “changeEncryptionKey method” [UltraLite - M-Business

Anywhere Programming]

This operation is costly and is non-recoverable: if your operation terminates mid-course, you will lose your
database entirely.

For strongly encrypted databases, be sure to store a copy of the key in a safe location. If you lose the
encryption key there is no way to access the data, even with the assistance of technical support. The database
must be discarded and you must create a new database.

See also
● “UltraLite fips creation parameter” on page 192
● “UltraLite obfuscate creation parameter” on page 198
● “UltraLite DBKEY connection parameter” on page 233
● “Deploy UltraLite with TLS-enabled synchronization” on page 60
● UltraLite.NET: “Encryption and obfuscation” [UltraLite - .NET Programming]
● UltraLite for C++: “Encrypting data” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Database encryption and obfuscation” [UltraLite - M-Business

Anywhere Programming]

Securing UltraLite databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 41

42

Connecting to an UltraLite database

Contents
UltraLite database connection parameters .. 44
UltraLite user authentication .. 51
Storing UltraLite parameters with the ULSQLCONNECT environment variable 53

Any application that uses a database must establish a connection to that database before any transactions
can occur. An application can be an UltraLite command line utility, a connection window from either Sybase
Central tool or Interactive SQL, or your own custom application.

By connecting to an UltraLite database, you form a channel through which all activity from the application
takes place. Each connection attempt creates a database specific SQL transaction.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 43

UltraLite database connection parameters
Some of the connection parameters you configure overlap with properties you define at creation time. At
creation time, you typically are defining the property required. At connection time, you must supply the
value that was configured at creation time. It is important that you understand the differences and
commonalities of these shared settings so you know what is expected and when.

Parameter name Description

CACHE_SIZE Defines the size of the database cache. See “UltraLite CACHE_SIZE
connection parameter” on page 226.

CON Specifies a name of the current connection. See “UltraLite CON con-
nection parameter” on page 230.

DBF, and CE_FILE,
PALM_FILE, or NT_FILE

At creation time these parameters set the location of the database. For
subsequent connections, they tell UltraLite where to find the file.

You can use DBF if you are creating a single-platform application or
are connecting to an UltraLite administration tool. Use the other plat-
form-specific versions if you are programming an UltraLite client that
connects to different platform-specific databases. See:

● “UltraLite DBF connection parameter” on page 231
● “UltraLite CE_FILE connection parameter” on page 227
● “UltraLite PALM_FILE connection parameter” on page 241
● “UltraLite NT_FILE connection parameter” on page 237

DBN Identifies a running database by name rather than file name. See “Ul-
traLite DBN connection parameter” on page 234.

DBKEY At creation-time, this parameter sets the encryption key to use. For
subsequent connections, names and then passes the same encryption
key for the database. If the incorrect key is named, the connection fails.
See “UltraLite DBKEY connection parameter” on page 233.

MIRROR_FILE Specifies the name of a database mirror file. See “UltraLite MIR-
ROR_FILE connection parameter” on page 235.

PALM_ALLOW_BACKUP Controls backup behavior over HotSync on Palm devices. See “Ultra-
Lite PALM_ALLOW_BACKUP connection parame-
ter” on page 240.

PWD At creation-time, sets the initial password for a user. For subsequent
connections, supplies the password for the user ID. See “UltraLite
PWD connection parameter” on page 243.

Connecting to an UltraLite database

44 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameter name Description

RESERVE_SIZE Pre-allocates the file system space required for your UltraLite database
without actually inserting any data. See “UltraLite RESERVE_SIZE
connection parameter” on page 244.

START Specifies the location of the UltraLite engine executable and then starts
it. See “UltraLite START connection parameter” on page 245.

UID At creation time, sets the initial user ID. For subsequent connections,
identifies a user to the database. The user ID must be one of up to four
user IDs stored in the UltraLite database. See “UltraLite UID connec-
tion parameter” on page 246.

See also
● “Interpreting user ID and password combinations” on page 51
● “UltraLite page_size creation parameter” on page 199

Supplying UltraLite connection parameters
How connection information is collected depends on how systematic or automated you require the input to
be. The more systematic the input, the more reliable the connection information is.

Connection details can be collected via different methods, depending on whether you are connecting from
a custom UltraLite application or from one of the SQL Anywhere administration tools for UltraLite.

Method Administration
tools

Custom applica-
tions

Prompt the end user at connection time when you require a user
to authenticate as one of the four supported database users. The
UltraLite graphical administration tools use a connection object.

Where possible, use either the ULConnectionParms or Connec-
tionParms object. It provides easier checking and a more sys-
tematic interface than using a connection string that is an argu-
ment for the Open method. See:

● UltraLite.NET: “Authenticating users” [UltraLite - .NET
Programming]

● UltraLite C/C++ : “Authenticating users” [UltraLite - C and
C++ Programming]

● UltraLite for M-Business Anywhere: “Authenticating
users” [UltraLite - M-Business Anywhere Programming]

● UltraLite for embedded SQL: “Authenticating users” [Ul-
traLite - C and C++ Programming]

X X

UltraLite database connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 45

Method Administration
tools

Custom applica-
tions

Use a connection string if user authentication is not required.
Common reasons for not authenticating a user may be because
the deployment is to a single-user device, or that it is too awk-
ward to prompt a user each time they start the application. The
UltraLite command line utilities typically use a connection
string if a connection to a database is required. You can also
program your UltraLite application to read the values from a
stored file, or hard code it into your application. See:

● UltraLite.NET: “Connecting to a database” [UltraLite
- .NET Programming]

● UltraLite C/C++ : “Connecting to a database” [UltraLite -
C and C++ Programming]

● UltraLite for M-Business Anywhere: “Connecting to an Ul-
traLite database” [UltraLite - M-Business Anywhere Pro-
gramming]

● UltraLite for embedded SQL: “Connecting to a database”
[UltraLite - C and C++ Programming]

X1 X3

Use the ULSQLCONNECT environment variable if you want
to store connection parameters you use repeatedly. By storing
parameters, you don't need to provide them repeatedly during
the development phase. Values you supply as a parameter in
ULSQLCONNECT become defaults for the UltraLite desktop
administration tools.

All UltraLite desktop administration tools check the ULSQL-
CONNECT values for any missing parameters not supplied in
a connection string, following parameter precedence rules. To
override these values, supply the alternate value in the connec-
tion string. See “Storing UltraLite parameters with the ULSQL-
CONNECT environment variable” on page 53.

X2 N/A

1 Typically user-supplied.
2 For desktop administration tools only.
3 Typically hard coded or stored in a file.

See also
● “Precedence of connection parameters for UltraLite administration tools” on page 49

Connecting to an UltraLite database

46 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Specifying file paths in an UltraLite connection parameter
The physical storage of your device determines:

● Whether the database is saved as a file.
● What naming conventions you must follow when identifying your database.

The DBF parameter is most appropriate when targeting a single deployment platform or when using UltraLite
desktop administration tools. For example:

ulload -c DBF=sample.udb sample.xml

Windows Mobile tip
You can use the UltraLite administration tools to administer databases already deployed to an attached
device. See “Windows Mobile” on page 47.

Otherwise, if you are writing a cross-platform application, use the platform specific (CE_FILE, NT_FILE,
or PALM_FILE) file connection parameters to construct a universal connection string. For example:

Connection = DatabaseMgr.OpenConnection("UID=JDoe;PWD=ULdb;
CE_FILE=\database\MyCEDB.udb;PALM_FILE=MyPalmDB")

Windows desktop

Desktops allow either absolute or relative paths.

Windows Mobile

Windows Mobile devices require that all paths be absolute.

You can administer a Windows Mobile database on either the desktop or the attached device. To administer
a database on a Windows Mobile device, ensure you prefix the absolute path with wce:\. For example, using
the ulunload utility:

ulunload -c DBF=wce:\UltraLite\myULdb.udb c:\out\ce.xml

In this example, UltraLite unloads the database from the Windows Mobile device to the ce.xml file in the
Windows desktop folder of c:\out.

If you are using the ulunloadold or ulunload utilities to administer a database on the Windows Mobile device
directly, UltraLite cannot back up the database before the unload or action occurs. You must perform this
action manually before running these utilities.

Palm OS

Palm OS does not necessarily use the concept of file paths. Therefore, how you define it depends on the
store type (that is, record-based, or VFS).

File-based stores (VFS) For databases on a VFS volume, define the file with the following syntax:

vfs: [volume-label: | volume-ordinal:] filename

UltraLite database connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 47

You can set the volume-label as INTERNAL for the built-in drive, or CARD for either an expansion card
or the label name of the volume. There is no default string for the volume-label.

Alternatively, you can set the volume-ordinal to identify the volume. Since the enumeration of mounted
volumes can vary, ensure that you set the correct ordinal volume for your chosen internal or external volume.
The default value is 0 (which is the first volume enumerated by the platform).

For the filename, always specify the absolute file path, following the file and path naming convention of
Palm OS. If directories specified in the path do not already exist, they are created.

Record-based data stores For record-based data stores, database names must follow all conventions
for Palm OS database names. For example, database names cannot exceed the 32 character limit and cannot
contain a path.

Also ensure that you use the appropriate value for DBF or PALM_FILE according to the database's location.

● Use the .pdb extension with DBF when you store a Palm OS database anywhere other than on the device
itself (for example, with ulload).

● Once you move the file to the device, the .pdb extension is dropped by the HotSync conduit. For example,
if the database you created on the desktop is named CustDB.pdb, then when you deploy it to the device,
the filename changes to CustDB.

Note
You cannot deploy databases to VFS volumes using the Palm install tool. Instead, you need to copy the
database directly onto the media with a card reader, or some other tool.

See also
● “UltraLite DBF connection parameter” on page 231
● “UltraLite NT_FILE connection parameter” on page 237
● “UltraLite CE_FILE connection parameter” on page 227
● “UltraLite PALM_FILE connection parameter” on page 241

Opening UltraLite connections with connection strings
A connection string is a set of parameters that is passed from an application to the runtime so that a connection
can be defined and established.

There are three steps that take place before a connection to a database is opened:

1. The parameter definition phase

You must define the connection via a combination of supported parameters. Some connection parameters
are always required to open a connection. Others are used to adjust database features for a single
connection.

How these parameters are supplied can vary depending on whether you are connecting from an UltraLite
administration tool or an UltraLite application. See “Supplying UltraLite connection
parameters” on page 45.

Connecting to an UltraLite database

48 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. The string assembly phase

Either you or the application assembles the supplied parameters into a string. Connection strings contain
a list of parameters defined as keyword=value pairs in a semicolon delimited list. See “Assembling
parameters into UltraLite connection strings” on page 49.

For example, a connection string fragment that supplies a file name, user ID, and password is written as
follows:

DBF=myULdb.udb;UID=JDoe;PWD=token
3. The transmittal phase

When the connection string has been assembled, it is passed to the database via an UltraLite API to the
UltraLite runtime for processing. If the connection attempt is validated, the connection is granted.
Connection failures can occur if:

● The database file does not exist.
● Authentication was unsuccessful.

Assembling parameters into UltraLite connection strings
An assembly of connection parameters supplied in any application's connection code (be it an administration
tool or a custom UltraLite application) is called a connection string. In some cases, applications parse the
fields of a ConnectionParms object into a string. In others, you type a connection string on a single line with
the parameter names and values separated by semicolons:

parameter1=value1;parameter2=value2

The UltraLite runtime ensures that the parameters are assembled into a connection string before establishing
a connection with it. For example, if you use the ulload utility, the following connection string is used to
load new XML data into an existing database. You cannot connect to the named database file until you
supply this string:

ulload -c "DBF=sample.udb;UID=DBA;PWD=sql" sample.xml

UltraLite generates an error when it encounters an unrecognized connection parameters.

Precedence of connection parameters for UltraLite administration tools

All the UltraLite administration tools follow a specific order of connection parameter precedence:

● If specified, the CE_FILE, NT_FILE, and PALM_FILE parameters always take precedence over DBF.

● If you specify two DBF parameters, the last one specified takes precedence.

● If you supply duplicate parameters in a connection string, the last one supplied is used. All others are
ignored.

● Parameters in the connection string take precedence over those supplied in the ULSQLCONNECT
environment variable or a connection object.

UltraLite database connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 49

● The ULSQLCONNECT environment variable is checked for connection parameters that are not supplied
in the connection string.

● If no value is supplied for both UID and PWD in either the connection string or ULSQLCONNECT, the
defaults of UID=DBA and PWD=sql are assumed.

Limitations
Any leading and/or trailing spaces in connection string parameter values are ignored. Connection parameter
values cannot include leading single quotes ('), leading double quotes ("), or semicolons (;).

See also
● “Storing UltraLite parameters with the ULSQLCONNECT environment variable” on page 53

Connecting to an UltraLite database

50 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite user authentication
You cannot disable UltraLite user authentication. A successful connection requires that a user be
authenticated. Unlike SQL Anywhere, UltraLite database users are created and managed solely for the
purposes of authentication—not for the purposes of object ownership. Once a user authenticates and connects
to the database, the user has unrestricted access to everything in that database, including schema data.

You can only add or modify UltraLite users from an existing connection. Therefore, any changes to your
UltraLite user base can only occur after you have connected with a valid user ID and password.

If this is your first time connecting, the UID and PWD required are the same values set when you first created
the database. If you did not set an initial user, then you must authenticate with the defaults of UID=DBA
and PWD=sql.

Bypass authentication
Although you cannot disable authentication, you can bypass it by using UltraLite defaults when you create
and connect to the database.

If you do not supply the UID and the PWD parameters, UltraLite assumes the defaults of UID=DBA and
PWD=sql.

To bypass authentication in UltraLite

1. Do not set the UID and PWD connection parameters when you create a database.

2. Do not delete or modify the default user in your UltraLite database.

3. Do not set the UID and PWD connection parameters when you connect to the database you have created.

See also
● “Limitations” on page 87
● “Working with UltraLite users” on page 87
● “Interpreting user ID and password combinations” on page 51

Interpreting user ID and password combinations
UltraLite allows you to set one, none, or both of the UID and PWD parameters—except when a partial
definition prevents a user from being identified by UltraLite. The table below tells you how UltraLite
interprets incomplete user definitions.

If you create a database with... It has this impact...

No user ID and password. UltraLite creates a default user with a UID of DBA and PWD of sql.
You do not need to supply these connection parameters upon future
connection attempts.

UltraLite user authentication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 51

If you create a database with... It has this impact...

The user ID parameter only.

Examples:

● UID=JaneD

● UID=JaneD;PWD=

● UID=JaneD;PWD=""

UltraLite creates a default user with a UID of JaneD and an empty
PWD. When connecting, you must always supply the UID parameter.
The PWD parameter is not required.

The password parameter only.

Examples:

● PWD=3saBys

● UID=;PWD=3saBys

● UID="";PWD=3saBys

UltraLite generates an error. UltraLite cannot set a password without
a user ID.

See also
● “UltraLite user authentication” on page 51
● “Limitations” on page 87
● “Working with UltraLite users” on page 87

Connecting to an UltraLite database

52 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Storing UltraLite parameters with the
ULSQLCONNECT environment variable

The ULSQLCONNECT environment variable is optional, and is not set by the installation program.
ULSQLCONNECT contains a list of parameters defined as keyword=value pairs in a semicolon delimited
list.

Use ULSQLCONNECT to avoid having to supply the same connection parameters repeatedly to UltraLite
administration tools during development. You cannot use ULSQLCONNECT for custom applications.

Caution
Do not use the pound character (#) as an alternative to the equal sign; the pound character is ignored in
UltraLite. All platforms supported by UltraLite allow you to use = inside an environment variable setting.

To set ULSQLCONNECT for UltraLite desktop tools

1. Run the following command:

set ULSQLCONNECT="parameter=value; ..."

2. If an administration tool requires any additional parameters or if you need to override default values set
with this environment variable, ensure you set these values. User supplied values always take precedence
over this environment variable.

See also
● “Precedence of connection parameters for UltraLite administration tools” on page 49
● “Supplying UltraLite connection parameters” on page 45

Example
To use ULSQLCONNECT to connect to a file named c:\database\myfile.udb and authenticate the user
demo with the password test, set the following variable in your ULSQLCONNECT environment variable:

set ULSQLCONNECT="DBF=c:\database\myfile.udb;UID=demo;PWD=test"

By setting this environment variable, you no longer need to use the -c connection option for these defaults
values—unless you need to override these values.

For example, if you were using ulload to add additional information to your database from an extra.xml file,
you would run the following command:

ulload -a extra.xml

Storing UltraLite parameters with the ULSQLCONNECT environment variable

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 53

54

Deploying UltraLite to devices

Contents
Deploy Multiple UltraLite applications with the UltraLite engine 57
Deploy UltraLite with AES_FIPS database encryption .. 59
Deploy UltraLite with TLS-enabled synchronization .. 60
Deploy the UltraLite HotSync conduit .. 62
Deploy the ActiveSync provider for UltraLite ... 64
Register applications with the ActiveSync Manager .. 66
Deploying UltraLite schema upgrades ... 67

In the majority of cases, development occurs on a Windows desktop with the final release target for UltraLite
being the mobile device. However, depending on your deployment environment, you can use various
deployment mechanisms to install UltraLite.

UltraLite application projects may evolve with different iterations of the same UltraLite database: a
development database, a test database, and a deployed production database. During the lifetime of a deployed
database application, changes and improvements are first made in the development database, then propagated
to the test database, before finally being distributed to the production database.

Initial installation
Initially installing your UltraLite solution on a device is a required step so that the device can be continuously
maintained.

Ongoing maintenance
The majority of the benefits and costs are associated with the application being deployed and used in the
field. To that end, UltraLite supports includes various mechanisms to deliver applications and synchronize
data, both of which are key features in any UltraLite deployment that make UltraLite so flexible.

Technique Windows Mobile Palm OS Java

File transfers yes record based and VFS

UltraLite as a MobiLink synchronization client yes record based and VFS

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 55

Technique Windows Mobile Palm OS Java

On device file system browsing tool or card reader VFS only (true)1

ActiveSync yes n/a

HotSync n/a record based only

ALTER DATABASE SCHEMA yes yes

1 You cannot deploy UltraLite databases with the Palm install tool, if the target is a VFS volume. Instead,
you need to copy the database directly onto the media using a card reader, or some other tool.

See also
● “Using MobiLink file transfers” on page 142
● “UltraLite clients” on page 125
● “HotSync on Palm OS” on page 146
● “ActiveSync on Windows Mobile” on page 150
● “Deploying UltraLite schema upgrades” on page 67
● “UltraLite ALTER DATABASE SCHEMA FROM FILE statement” on page 450

Deploying UltraLite to devices

56 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deploy Multiple UltraLite applications with the
UltraLite engine

The UltraLite engine is a data management module that manages concurrent UltraLite database connections
from applications on 32-bit Windows desktops and Windows Mobile only. The engine is automatically
installed to the desktop with the SQL Anywhere installer. Therefore, you only need to deploy the engine to
the Windows Mobile device.

To deploy uleng to a Windows Mobile device

1. Copy the uleng11.exe file and the appropriate *.dll files. The *.dll files you copy should include any
database encryption, synchronization encryption, or compression *.dll files required.

Filename Ba-
sic

ECC
TLS

RSA
TLS

FIPS
RSA TLS

HTT
PS

Com-
pres-
sion

FIPS AES
data en-
cryption

uleng11.exe X X X X X X X

mlcecc11.dll1 X X

mlcrsa11.dll1 X X

mlcrsafips11.dll X X

mlczlib11.dll X

sbgse2.dll X X X

ulfips11.dll X

ulrt11.dll2 X X X X X X X

1 File not needed if an application links directly against ulecc.lib and ulrsa.lib respectively.
2 File only needed if an application links against ulimp.lib.

2. Save the files to an appropriate directory. In most cases you would use one of the following destination
directories:

● The \windows directory. This location is the recommended location, as the client automatically looks
for the engine in this location.

● The directory for other UltraLite application files.

3. If you use any location other than the \windows directory, include the START connection parameter.
This parameter starts the UltraLite engine when the application connects the UltraLite database.

For example, a connection string to the database or connection code for a Windows Mobile client
application, might use this START parameter:

Deploy Multiple UltraLite applications with the UltraLite engine

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 57

"START=\Program Files\MyApp\uleng11.exe"

See also
● “Deploy UltraLite with AES_FIPS database encryption” on page 59
● “Deploy UltraLite with TLS-enabled synchronization” on page 60

Deploying UltraLite to devices

58 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deploy UltraLite with AES_FIPS database encryption
Strong database encryption technology makes a database inoperable and inaccessible without a key (a type
of a password). An algorithm encodes the information contained in your database and transaction log files
so they cannot be deciphered. However, database encryption requires that you deploy the appropriate number
of files with your database.

When you connect to UltraLite with the -fips option, you can run databases encrypted with AES or AES_FIPS
strong encryption. To ensure you are running with AES_FIPS, use -fips=1.

If you are encrypting your database with AES FIPS encryption, you must configure and deploy your device
for each platform.

To set up your application and device for an AES FIPS encrypted UltraLite database

1. Create an UltraLite database with the property fips=1. See “UltraLite fips creation
parameter” on page 192.

2. Use the following connection parameter in your application's connection string: DBKEY=key. See
“UltraLite DBKEY connection parameter” on page 233.

3. On Palm OS, enable database encryption by calling ULEnableRsaFipsStrongEncryption. See
“ULEnableFIPSStrongEncryption function” [UltraLite - C and C++ Programming].

4. On Palm OS, ensure that you link to the following files in addition to ulrt.lib:

● ulfips.lib
● gse1st.lib

5. Ensure that you deploy the appropriate files to your device.

● Windows desktop, Windows Mobile, require ulfips11.dll and sbgse2.dll. The Windows Mobile
component also requires the component DLL files.

● Palm OS requires libsbgse_4i.prc.

See also
● “Deploy UltraLite with TLS-enabled synchronization” on page 60
● UltraLite.NET: “Encryption and obfuscation” [UltraLite - .NET Programming]
● UltraLite for C++: “Encrypting data” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Database encryption and obfuscation” [UltraLite - M-Business

Anywhere Programming]
● “UltraLite fips creation parameter” on page 192
● “Securing UltraLite databases” on page 40

Deploy UltraLite with AES_FIPS database encryption

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 59

Deploy UltraLite with TLS-enabled synchronization
Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

UltraLite client applications of MobiLink must be configured to use enable TLS synchronization. Transport-
layer security enables encryption, tamper detection, and certificate-based authentication. See “Introduction
to transport-layer security” [SQL Anywhere Server - Database Administration].

Platform support
RSA, ECC, and FIPS encryption are not available on all platforms. For information about which platforms
support which encryption method, see http://www.sybase.com/detail?id=1061806.

To set up TLS synchronization on an UltraLite client application and device

1. Enable encrypted synchronization by calling one of the following in your application code:

● To enable RSA encryption, call ULEnableRsaSyncEncryption. See “ULEnableRsaSyncEncryption
function” [UltraLite - C and C++ Programming].

● To enable ECC encryption, call ULEnableEccSyncEncryption. See “ULEnableEccSyncEncryption
function” [UltraLite - C and C++ Programming].

● To enable FIPS RSA encryption, call ULEnableRsaFipsSyncEncryption. This function is only
required for Palm OS clients. See “ULEnableRsaFipsSyncEncryption function” [UltraLite - C and
C++ Programming].

2. Set the synchronization information stream to either TLS or HTTPS.

3. If you are enabling ECC or FIPS encryption, you also need to:

● ECC Set the tls_type network protocol option to ECC. See “tls_type” [MobiLink - Client
Administration].

● FIPS Set the fips network protocol option to Yes. See “fips” [MobiLink - Client Administration].

4. Ensure that you have linked to the appropriate libraries:

Platform Linking RSA encryption ECC encryption FIPS encryption

Windows desk-
top

static1 ulrsa.lib ulecc.lib none

Windows desk-
top

dynamic2 none none none

Deploying UltraLite to devices

60 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061806

Platform Linking RSA encryption ECC encryption FIPS encryption

Windows Mo-
bile

static1 ulrsa.lib ulecc.lib none

Windows Mo-
bile

dynamic 2 none none none

Palm OS static1 ulrsa.lib ulecc.lib ulfips.lib, gse1st.lib

1 You must also link to ulrt.lib.
2 You must also link to ulimp.lib.

5. Ensure that the appropriate files are copied to the device:

Platform Linking RSA encryption ECC encryption FIPS encryption

Windows
desktop

static none none mlcrsafips11.dll

sbgse2.dll

Windows
desktop

dynamic1 mlcrsa11.dll mlcecc11.dll mlcrsafips11.dll

sbgse2.dll

Windows Mo-
bile

static none none mlcrsafips11.dll

sbgse2.dll

Windows Mo-
bile

dynamic1 mlcrsa11.dll mlcecc11.dll mlcrsafips11.dll

sbgse2.dll

Palm OS static none none libsbgse_4i.prc

Windows Mo-
bile compo-
nents and Ul-
traLite engine

static2 mlcrsa11.dll mlcecc11.dll mlcrsafips11.dll

sbgse2.dll

1 You must also deploy ulrt11.dll.
2 You must also deploy your component .dll file and/or uleng11.exe.

See also
● “Configuring UltraLite clients to use transport-layer security” [SQL Anywhere Server - Database

Administration]
● UltraLite.NET: “Encryption and obfuscation” [UltraLite - .NET Programming]
● UltraLite for C++: “Encrypting data” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Database encryption and obfuscation” [UltraLite - M-Business

Anywhere Programming]

Deploy UltraLite with TLS-enabled synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 61

Deploy the UltraLite HotSync conduit
The UltraLite HotSync conduit is a software module that let users gain access to their devices from the
desktop. Like other software components, you need to deploy the necessary files to the device to ensure that
UltraLite operates with either Windows Mobile ActiveSync and Palm OS HotSync software.

During development you install UltraLite onto your desktop with the SQL Anywhere installer. However,
you then need to deploy the required HotSync conduit files onto the end user's computer. HotSync Manager
must be installed on your computer for the installer to detect the software and run.

UltraLite HotSync conduit files
● install-dir\win32\Condmgr\condmgr.dll The utility DLL that locates the HotSync installation path

and registers the conduit with HotSync.

● install-dir\Bin32\ulcond11.exe The UltraLite HotSync Conduit Installation utility that installs or
removes the UltraLite HotSync conduit on the desktop computer. See “UltraLite HotSync Conduit
Installation utility for Palm OS (ulcond11)” on page 263.

● install-dir\Bin32\dbhsync11.dll The conduit DLL that is called by HotSync.

● install-dir\Bin32\dblgen11.dll The language resource library. For languages other than English, the
letters en in the file name are replaced by a two-letter abbreviation for the language, such as
dblgde11.dll for German, or dblgja11.dll for Japanese.

● Stream DLLs Optional. The stream DLL required for encrypted network communication between
the UltraLite HotSync conduit and the MobiLink server.

○ For RSA encryption with TLS and HTTPS, install-dir\Bin32\mlcrsa11.dll.

○ For ECC encryption with TLS and HTTPS, install-dir\Bin32\mlcecc11.dll.

○ For RSA FIPS encryption with TLS and HTTPS, install-dir\Bin32\mlcrsafips11.dll.

Separately licensed component required
ECC encryption and FIPS-approved encryption stream DLLs require a separate license. All strong encryption
technologies are subject to export regulations.

To order a separately licensed component, visit http://www.ianywhere.com/products/
separately_licensed_components.html.

For information about component and platform support, see http://www.sybase.com/detail?id=1002288.

To deploy and register the UltraLite HotSync conduit

1. On the end-user's desktop, create the following directories:

● MyDir\win32

● MyDir\win32\condmgr

2. Deploy a copy of the following files to the MyDir\win32 directory:

● ulcond11.exe
● dbhsync11.dll

Deploying UltraLite to devices

62 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.ianywhere.com/products/separately_licensed_components.html
http://www.ianywhere.com/products/separately_licensed_components.html
http://www.sybase.com/detail?id=1002288

● dblgen11.dll

3. Deploy a copy of the Condmgr.dll file to the MyDir\win32\condmgr directory.

4. Locate the following registry key:

HKEY_CURRENT_USER\Software\Sybase\SQL Anywhere\11.0\
5. Create a value named Location in this key and set this value data as the root deployment folder for the

conduit. For example, MyDir.

6. If the end user requires a certificate to encrypt the communication stream, install the root certificate on
the desktop computer so it can be accessed by the conduit.

7. Run ulcond11, ensuring that you have set connection string for each the UltraLite database with either
the -c option, and possibly the -a option. You must also set the correct creator ID.

This utility deploys and correctly configures the UltraLite HotSync conduit.

Tip
If you are using an encryption key, avoid setting the key in the connection string. This location can pose
a security risk. Instead, allow the conduit to prompt the user for the key.

For example, the following command installs a conduit for the application with creator ID Syb2, named
CustDB.

ulcond11 -c "DBF=custdb.udb;UID=DBA;PWD=sql" -n CustDB Syb2
8. If you did not include synchronization parameters in your UltraLite application's ul_synch_info structure,

configure this information either in HotSync or use ulcond11. See “Setting protocol options for MobiLink
synchronization” on page 148.

To check that the HotSync conduit is properly deployed

● In the computer's system tray, right-click HotSync Manager and choose Custom.

A list of conduits appears for each HotSync user. Verify that the conduit is listed before proceeding to
start the MobiLink server and test your synchronization operation.

Deploy the UltraLite HotSync conduit

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 63

Deploy the ActiveSync provider for UltraLite
The UltraLite ActiveSync provider is a software module that let users gain access to their devices from the
desktop. Like other software components, you need to deploy the necessary files to the device to ensure that
UltraLite operates with either Windows Mobile ActiveSync and Palm OS HotSync software.

During development you install UltraLite onto your desktop with the SQL Anywhere installer. However,
when you deploy UltraLite to the end user, you must manually install and register the ActiveSync provider
on the end user's computer. This requirement ensures that ActiveSync knows when to call a specific instance
of a provider for a specific application.

● mlasinst.exe Installs the ActiveSync provider and registers it with the ActiveSync Manager. This
utility also registers applications with the ActiveSync provider for synchronization.

● mlasdesk.dll The DLL that is loaded by the ActiveSync Manager on the desktop. mlasinst.exe
registers the location of this file with the ActiveSync Manager.

● mlasdev.dll The DLL that is loaded by the ActiveSync Manager on the device. mlasinst.exe deploys
this file to the correct location on the device.

● dblgen11.dll The language resource library.

For a list of supported provider platforms, see http://www.sybase.com/detail?id=1002288.

To install ActiveSync applications

1. Ensure that the end-user has:

● The ActiveSync Manager installed.

● The ActiveSync provider files copied from a development computer to the user's hard drive.

2. Run mlasinst to install a provider for ActiveSync. You can also use it to register and deploy the UltraLite
application to the user's Windows Mobile device—depending on the command line syntax you use. If
your UltraLite application uses multiple files, you must manually copy the required files.

The following example assumes that both mlasdesk.dll and mlasdev.dll are in the current directory. The
-k and -v options are used . The -p and -x options are command line options for the application when it
is started by ActiveSync.

mlasinst "C:\My Files\myULapp.exe" "\Program Files\myULapp.exe"
 "My Application" MYAPP -p -x -v -k

If you were to use this utility to deploy a pre-compiled CustDB for the ARM 5.0 processor, the command
line would be similar to the following one:

mlasinst -v "install-dir\UltraLite\ce\arm.50"
"install-dir\UltraLite\ce\arm.50\custdb.exe" custdb.exe CustDB CUSTDBDEMO

Note
You can also use the ActiveSync to register your UltraLite application at a later time if you choose. See
“Register applications with the ActiveSync Manager” on page 66.

Deploying UltraLite to devices

64 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288

3. Restart your computer so ActiveSync can recognize the new provider.

4. Enable the MobiLink provider.

a. From the ActiveSync window, click Options.

b. Check MobiLink Clients in the list and click OK to activate the provider.

c. To see a list of registered applications, click Options, choose MobiLink Clients, and click
Settings.

See also
● “Register applications with the ActiveSync Manager” on page 66
● “ActiveSync provider installation utility (mlasinst)” [MobiLink - Client Administration]

Deploy the ActiveSync provider for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 65

Register applications with the ActiveSync Manager
You can register your application for use with ActiveSync either by using the ActiveSync provider install
utility or using the ActiveSync Manager itself. This section describes how to use the ActiveSync Manager.

To register an application for use with the ActiveSync Manager

1. Launch ActiveSync.

2. From the ActiveSync window, choose Options.

3. From the list of information types, choose MobiLink Clients and click Settings.

4. In the MobiLink Synchronization window, click New.

5. Enter the following information for your application:

● Application name A name identifying the application that appears in the ActiveSync user
interface.

● Class name The registered class name for the application. See “Assigning class names for
applications” [UltraLite - C and C++ Programming].

● Path The location of the application on the device.

● Arguments Any command line arguments to be used when ActiveSync starts the application.

6. Click OK to register the application.

See also
● “ActiveSync provider installation utility (mlasinst)” [MobiLink - Client Administration]

Deploying UltraLite to devices

66 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deploying UltraLite schema upgrades
To make schema upgrades, use the SQL statement ALTER DATABASE SCHEMA FROM FILE.

The upgrade process

Caution
Do not reset a device during a schema upgrade. If you reset the device during a schema upgrade, data will
be lost and the UltraLite database marked as "bad."

1. Both the new and existing database schemas are compared to see what differs.

2. The schema of the existing database is altered.

3. Rows that do not fit the new schema are dropped. For example:

● If you add a uniqueness constraint to a table and there are multiple rows with the same values, all
but one row will be dropped.

● If you try to change a column domain and a conversion error occurs, then that row will be dropped.
For example, if you have a VARCHAR column and convert it to an INT column and the value for a
row is ABCD, then that row is dropped.

● If your new schema has new foreign keys where the foreign row does not have a matching primary
row, these rows are dropped.

4. When rows are dropped, a SQLE_ROW_DROPPED_DURING_SCHEMA_UPGRADE (130) warning
is raised.

To upgrade the UltraLite schema

1. Create a SQL script of DDL statements that define the new schema. The character set of the SQL script
file must match the character set of the database you want to upgrade.

You should use either ulinit or ulunload to extract the DDL statements required for your script. By using
these utilities with the following options, you ensure that the DDL statements are syntactically correct.

● If you are using ulunload, use the -n and -s [file] options.

● If you are using ulinit, use the -l [file] option.

If you do not use either ulunload or ulinit, review the script and ensure that:

● You do not rename tables, columns, or publications. RENAME operations are not supported. If you
rename a table, it is processed as a DROP TABLE and CREATE TABLE operation.

● You have not included non-DDL statements. Including non-DDL statements may not have the effect
you expect.

● Words in the SQL statement are separated by spaces.

● Only one SQL statement can appear in each line.

● Comments are prepended with double hyphens (–), and only occur at the start of a line.

Deploying UltraLite schema upgrades

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 67

2. Backup the database against which the upgrade will be performed.

3. Run the new statement. For example:

ALTER DATABASE SCHEMA FROM FILE 'MySchema.sql';

Error notification

Because Ultralite error callback is active during the upgrade process, you are notified of errors during the
conversion process. For example, SQLE_CONVERSION_ERROR reports all values that could not be
converted in its parameters. Errors do not mean the process failed. The final SQL code after the statement
returns is a 130 warning in this case. These warnings describe operations of the conversion process and do
not stop the upgrade process.

See also
● “UltraLite ALTER DATABASE SCHEMA FROM FILE statement” on page 450
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Unload Database utility (ulunload)” on page 281
● “UltraLite SQL statements” on page 447
● “Comments in UltraLite” on page 305

Deploying UltraLite to devices

68 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with UltraLite databases

Contents
Working with UltraLite tables and columns .. 70
Working with UltraLite indexes .. 79
Working with UltraLite publications .. 83
Working with UltraLite users .. 87
Working with event notifications .. 89
UltraLite support for SQL passthrough .. 92

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 69

Working with UltraLite tables and columns
Tables are used to store data and define the relationships for data in them. Tables consist of rows and columns.
Each column carries a particular kind of information, such as a phone number or a name, while each row
specifies a particular entry.

When you first create an UltraLite database, the only tables you will see are the system tables. System tables
hold the UltraLite schema. You can hide or show these tables from Sybase Central as needed.

You can then add new tables as required by your application. You can also browse data in those tables, and
copy and paste data among existing tables in the source database or even among other open destination
databases.

Row packing and table definitions

UltraLite works with rows in two formats:

● Unpacked rows are the uncompressed format. Each row must be unpacked before individual column
values can be read or written.

● Packed rows are the compressed representation of the unpacked row, where each of the column
values is compressed so that the entire row takes up as little memory as possible. The size of a packed
row depends entirely on the values in each column: for example, two rows can belong to the same table,
but can differ significantly in their packed size. Note also that LONG BINARY and LONG VARCHAR
columns are stored separate from the packed row.

UltraLite has a limitation that a packed row must fit on a database page. Since LONG BINARY and LONG
VARCHAR columns are not stored with the packed row, they can exceed the page size.

It is important to understand that table definitions describe the row before the UltraLite runtime packs the
data. Because the size of a packed row depends on the values in each column, you cannot readily pre-
determine from the table definition whether the packed row requirement is satisfied. For this reason, UltraLite
allows you to define a table where an unpacked row would not fit on a page. To know if a row fits on a page,
you must try inserting or updating the row itself; if a row does not fit, UltraLite detects and reports this error.

Note
You cannot declare tables to be any large size you require. UltraLite maintains a declared table row size
limit of 64 KB. If you try to define a table where an unpacked row can exceed this maximum, UltraLite
generates a SQL error code of SQLE_MAX_ROW_SIZE_EXCEEDED (-1132).

See also
● “UltraLite page_size creation parameter” on page 199
● “Database tables” [SQL Anywhere 11 - Introduction]
● “Creating databases in SQL Anywhere” [SQL Anywhere Server - SQL Usage]
● “UltraLite system tables” on page 289

Working with UltraLite databases

70 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating UltraLite tables
You can create new tables to hold your relational data, either with SQL statements in Interactive SQL or
with Sybase Central.

In UltraLite, you can only create base tables, which you declare to hold persistent data. The table and its
data continue to exist until you explicitly delete the data or drop the table. UltraLite does not support global
temporary or declared temporary tables.

Note
Tables in UltraLite applications must include a primary key. Primary keys are also required during MobiLink
synchronization, to associate rows in the UltraLite database with rows in the consolidated database.

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected database.

To create an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, right-click Tables and choose New » Table.

3. In the What Do You Want To Name The New Table field, type the new table name.

4. Click Finish.

5. From the File menu, choose Save Table.

Interactive SQL

In Interactive SQL, you can declare columns while creating a new table.

To create an UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE TABLE statement.

For example, the following statement creates a new table to describe the various skills and professional
aptitudes of employees within a company. The table has columns to hold an identifying number, a name,
and a type (for example, technical, or administrative) for each skill.

CREATE TABLE Skills (
 SkillID INTEGER PRIMARY KEY,
 SkillName CHAR(20) NOT NULL,
 SkillType CHAR(20) NOT NULL
);

See also
● “UltraLite CREATE TABLE statement” on page 468
● “Adding a column to an UltraLite table” on page 72

Working with UltraLite tables and columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 71

Using allsync and nosync suffixes
You can append either _allsync or _nosync to a table name to control data restriction for synchronization.
You can use these suffixes as an alternative to using publications to control data restrictions. To control data
priority, define one or more publications.

● If you create a table with a name ending in _allsync, all rows of that table are synchronized at each
synchronization—even if they have not changed since the last synchronization.

Tip
You can store user specific or client specific data in allsync tables. You can then upload the data in the
UltraLite table to a temporary table in the consolidated database on synchronization. Synchronization
scripts can control the data and save you from having to maintain that data in the consolidated database.

● If you create a table with a name ending in _nosync, all rows of that table are excluded from
synchronization. You can use these tables for persistent data that is not required in the consolidated
database's table.

See also
● “Working with UltraLite publications” on page 83
● “Designing synchronization in UltraLite” on page 133
● “Nosync tables in UltraLite” on page 136
● “Allsync tables in UltraLite” on page 136
● “UltraLite CustDB samples” on page 93

Example
In the CustDB.udb sample database, you can see that one table was declared a nosync table because the table
name is named ULIdentifyEmployee_nosync. Therefore, no matter how data changes in this table, it is never
synchronized with MobiLink and information will not appear in the CustDB.db consolidated database.

Adding a column to an UltraLite table
You can add a new column easily if the table is empty. However, if the table already holds data, you can
only add a column if the column definition includes a default value or allows NULL values.

You can use either Sybase Central or execute a SQL statement (for example, Interactive SQL) to perform
this task.

Sybase Central

In Sybase Central, you can perform this task while working with a selected table.

To add a new column to an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click Tables.

Working with UltraLite databases

72 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Double-click a table.

4. Click the Columns tab, right-click the white space below the table and choose New » Column.

5. Set the attributes for the new column.

6. From the File menu, choose Save Table.

Interactive SQL
In Interactive SQL, you can only declare columns while creating or altering a table.

To add columns to a new UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE TABLE statement or ALTER TABLE, and define the columns by declaring the
name, and other attributes.

The following example creates a table for a library database to hold information about borrowed books.
The default value for date_borrowed indicates that the book is borrowed on the day the entry is made.
The date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (
 loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
);

The following example modifies the customer table to now include a column for addresses that can hold
up to 50 characters:

ALTER TABLE customer
ADD address CHAR(50);

See also
● “Choosing object names” [SQL Anywhere Server - SQL Usage]
● “Data types in UltraLite” on page 312
● “Choosing column data types” [SQL Anywhere Server - SQL Usage]
● “UltraLite CREATE TABLE statement” on page 468
● “UltraLite ALTER TABLE statement” on page 454

Altering UltraLite column definitions
You can change the structure of column definitions for a table by altering various column attributes, or even
deleting columns entirely. The modified column definition must suit the requirements of any data already
stored in the column. For example, you cannot alter a column to disallow NULL if the column already has
a NULL entry.

You can use either Sybase Central or Interactive SQL to perform this task.

Working with UltraLite tables and columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 73

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected table.

To alter an existing UltraLite column (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click Tables.

3. Double-click a table.

4. Click the Columns tab and alter the column attributes.

5. From the File menu, choose Save Table.

Interactive SQL

In Interactive SQL, you can perform these tasks with the ALTER TABLE statement.

To alter an existing UltraLite column (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute an ALTER TABLE statement.

The following examples show how to change the structure of the database. In all these cases, the statement
is committed immediately. So, once you make the change, any item referring to this table may no longer
work.

The following statement shortens the SkillDescription column from a maximum of 254 characters to a
maximum of 80:

ALTER TABLE Skills
MODIFY SkillDescription CHAR(80);

The following statement deletes the Classification column:

ALTER TABLE Skills
DROP Classification;

The following statement changes the name of the entire table:

ALTER TABLE Skills
RENAME Qualification;

See also
● “Choosing object names” [SQL Anywhere Server - SQL Usage]
● “Data types in UltraLite” on page 312
● “Choosing column data types” [SQL Anywhere Server - SQL Usage]
● “UltraLite ALTER TABLE statement” on page 454

Working with UltraLite databases

74 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deleting UltraLite tables
You can drop any table provided that the table:

● Is not being used as an article in a publication.

● Does not have any columns that are referenced by another table's foreign key.

In these cases, you must change the publication or delete the foreign key before you can successfully delete
the table.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected table.

To delete an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click Tables.

3. Right-click a table and choose Delete.

4. Click Yes.

Interactive SQL

In Interactive SQL, deleting a table is also called dropping it. You can drop a table by executing a DROP
TABLE statement.

To delete an UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a DROP TABLE statement.

For example, the following DROP TABLE statement deletes all the records in the Skills table and then
removes the definition of the Skills table from the database:

DROP TABLE Skills;

Like the CREATE statement, the DROP statement automatically executes a COMMIT statement before
and after dropping the table. This statement makes all changes to the database since the last COMMIT
or ROLLBACK permanent. The DROP statement also drops all indexes on the table.

See also
● “UltraLite DROP TABLE statement” on page 477

Working with UltraLite tables and columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 75

Browsing the information in UltraLite tables
You can use Sybase Central or Interactive SQL to browse the data held within the tables of an UltraLite
database. Tables can be user tables or system tables. You can filter tables by showing and hiding system
tables from your current view of the database. Because UltraLite does not have a concept of ownership, all
users can browse all tables.

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected database.

To browse UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. If system tables are hidden and you want to browse the data in one or more tables, right-click the white
space of the Contents pane and choose Show System Objects.

3. To view a list of tables, double-click Tables.

4. To view table data, double-click a table and click the Data tab in the right pane.

To filter UltraLite system tables (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the database you are connected to and choose either Hide System Objects or Show System
Objects.

Interactive SQL

In Interactive SQL, you can perform these tasks with the SELECT statement.

To browse UltraLite user tables (Interactive SQL)

1. Connect to a database.

2. Execute a SELECT statement, specifying the user table you want to browse.

To browse UltraLite system tables (Interactive SQL)

1. Connect to a database.

2. Execute a SELECT statement, by the system table you want to browse.

For example, to display the contents of the table systable on the Results tab in the Results pane in
Interactive SQL, execute the following command:

SELECT * FROM SYSTABLE;

Working with UltraLite databases

76 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “UltraLite system tables” on page 289

Copying and pasting data to or from UltraLite databases
With Sybase Central you can copy and paste and drag and drop. This data transferral allows you to share or
move objects among one or more databases. By copying and pasting or dragging and dropping you can share
data as described by the table that follows.

Target Result

Another UltraLite or SQL Anywhere database. A new object is created, and the original object's code
is copied to the new object.

The same UltraLite database. A copy of the object is created; you must rename the
new object.

Note
You can copy data from a database opened in MobiLink and paste it into an UltraLite database. However,
you cannot paste UltraLite data into a database opened in MobiLink.

Sybase Central

When you copy any of the following objects in the UltraLite plug-in, the SQL for the object is also copied
to the clipboard. You can paste this SQL into other applications, such as Interactive SQL or a text editor.
For example, if you copy an index in Sybase Central and paste it into a text editor, the CREATE INDEX
statement for that index appears. You can copy the following objects in the UltraLite plug-in:

● Articles
● Columns
● Foreign keys
● Indexes
● Publications
● Tables
● Unique constraints

Interactive SQL

With Interactive SQL you can also copy data from a result set into another object.

● Use the SELECT statement results into a named object.

● Use the INSERT statement to insert a row or selection of rows from elsewhere in the database into a
table.

Working with UltraLite tables and columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 77

See also
● “Copying database objects in the SQL Anywhere plug-in” [SQL Anywhere Server - Database

Administration]
● “UltraLite INSERT statement” on page 480
● “UltraLite SELECT statement” on page 486

Viewing entity-relationship diagrams from the UltraLite
plug-in

When you are connected to a database from the UltraLite plug-in, you can view an entity-relationship diagram
of the tables in the database. When you have the database selected, click the ER Diagram tab in the right
pane to see the diagram.

When you rearrange objects in the diagram, the changes persist between Sybase Central sessions. Double-
clicking a table takes you to the column definitions for that table.

See also
● “Creating databases in SQL Anywhere” [SQL Anywhere Server - SQL Usage]

Working with UltraLite databases

78 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with UltraLite indexes
An index provides an ordering (either ascending or descending) of a table's rows based on the values in one
or more columns. When UltraLite optimizes a query, it scans existing indexes to see if one exists for the
table(s) named in the query. If it can help UltraLite return rows more quickly, the index is used. If you are
using the UltraLite Table API in your application, you can specify an index that helps determine the order
in which rows are traversed.

Performance tip
Indexes can improve the performance of a query—especially for large tables. To see whether a query is
using a particular index, you can check the execution plan with Interactive SQL.

Alternatively, your UltraLite applications can include PreparedStatement objects which have a method to
return plans.

About composite indexes
Multi-column indexes are sometimes called composite indexes. Additional columns in an index can allow
you to narrow down your search, but having a two-column index is not the same as having two separate
indexes. For example, the following statement creates a two-column composite index:

CREATE INDEX name
ON Employees (Surname, GivenName);

A composite index is useful if the first column alone does not provide high selectivity. For example, a
composite index on Surname and GivenName is useful when many employees have the same surname. A
composite index on EmployeeID and Surname would not be useful because each employee has a unique ID,
so the column Surname does not provide any additional selectivity.

See also
● “Using index scans” on page 108
● “Execution plans in UltraLite” on page 342
● “Composite indexes” [SQL Anywhere Server - SQL Usage]
● UltraLite.NET: “Accessing and manipulating data with the Table API” [UltraLite - .NET

Programming]
● UltraLite.NET: “Prepare method” [UltraLite - .NET Programming]
● UltraLite for C++: “Accessing data with the table API” [UltraLite - C and C++ Programming]
● UltraLite for C++: “UltraLite_PreparedStatement class” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Working with data using the Table API” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “PreparedStatement class” [UltraLite - M-Business Anywhere

Programming]

When to use an index
Use an index when:

Working with UltraLite indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 79

● You want UltraLite to maintain referential integrity An index also affords UltraLite a means of
enforcing a uniqueness constraint on the rows in a table. You do not need to add an index for data that
is very similar.

● The performance of a particular query is important to your application If an index improves
performance of a query and the performance of that query is important to your application and is used
frequently, then you want to maintain that index. Unless the table in question is extremely small, indexes
can improve search performance dramatically. Indexes are typically recommended whenever you search
data frequently.

● You have complicated queries More complicated queries, (for example, those with JOIN, GROUP
BY, and ORDER BY clauses), can yield substantial improvements when an index is used—though it
may be harder to determine the degree to which performance has been enhanced. Therefore, test your
queries both with and without indexes, to see which yields better performance.

● The size of an UltraLite table is large The average time to find a row increases with the size of the
table. Therefore, to increase searchability in a very large table, consider using an index. An index allows
UltraLite to find rows quickly—but only for columns that are indexed. Otherwise, UltraLite must search
every row in the table to see if the row matches the search condition, which can be time consuming in a
large table.

● The UltraLite client application is not performing a large amount of insert, update, or delete
operations Because UltraLite maintains indexes along with the data itself, an index in this context
will have an adverse effect on the performance of database operations. For this reason, you should restrict
the use of indexes to data that will be queried regularly as described in the point above. Maintaining the
UltraLite default indexes (indexes for primary keys and for unique constraints) may be enough.

● Use indexes on columns involved in WHERE clauses and/or ORDER BY clause These
indexes can speed the evaluation of these clauses. In particular, an index helps optimize a multi-column
ORDER BY clause—but only when the placement of columns in the index and ORDER BY clauses are
exactly the same.

Choosing an index type
UltraLite supports different types of indexes: unique keys, unique indexes, and non-unique indexes. What
differentiates one from the others is what is allowed in that index.

Index characteristic Unique
keys

Unique in-
dexes

Non-unique
indexes

Allows duplicate index entries for rows that have the same
values in indexed columns.

no no yes

Allows null values in index columns. no yes yes

Working with UltraLite databases

80 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Notes
You can create foreign keys to unique keys, but not to unique indexes.

Also, manually creating an index on a key column is not necessary and generally not recommended. UltraLite
creates and maintains indexes for unique keys automatically.

See also
● “Adding UltraLite indexes” on page 81

Adding UltraLite indexes
You can use either Sybase Central or Interactive SQL to perform this task.

Note
UltraLite does not detect duplicate or redundant indexes. As indexes must be maintained with the data in
your database, add your indexes carefully.

Sybase Central
In Sybase Central, you can perform this task while working with a selected database.

To create a new index for a given UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click Indexes, and choose New » Index.

3. Follow the instructions in the wizard.

Interactive SQL
In Interactive SQL, you can perform this task with the CREATE INDEX statement.

To create a new index for a given UltraLite table (Interactive SQL)

1. Connect to an UltraLite database.

2. Execute a CREATE INDEX statement.

This statement creates an index with the default maximum hash size you have configured. To create an
index that overrides the default, ensure you use the WITH MAX HASH SIZE value clause to set a new
value for this index instance. See “UltraLite CREATE INDEX statement” on page 460.

For example, to speed up a search on employee surnames in a database that tracks employee information,
and tune the performance of queries against this index, you could create an index called EmployeeNames
and increase the hash size to 20 bytes with the following statement:

CREATE INDEX EmployeeNames
ON Employees (Surname, GivenName)
WITH MAX HASH SIZE 20;

Working with UltraLite indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 81

See also
● “UltraLite CREATE INDEX statement” on page 460

Dropping an index
Dropping an index deletes it from the database.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central
In Sybase Central, you can perform this task while working with a selected database.

To drop an UltraLite index (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click Indexes.

3. Right-click an index and then choose Delete.

4. Click Yes.

Interactive SQL
In Interactive SQL, deleting a table is also called dropping it. You can perform this task with the DROP
INDEX statement.

To drop an UltraLite index (Interactive SQL)

1. Connect to a database.

2. Execute a DROP INDEX statement.

For example, the following statement removes the EmployeeNames index from the database:

DROP INDEX EmployeeNames;

See also
● “UltraLite DROP INDEX statement” on page 474

Working with UltraLite databases

82 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with UltraLite publications
A publication is a database object that identifies the data that is to be synchronized. If you want to synchronize
all tables and all rows of those tables in your UltraLite database, do not create any publications.

A publication consists of a set of articles. Each article may be an entire table, or may be rows in a table. You
can define this set of rows with a WHERE clause (except with HotSync on Palm OS).

Each database can have multiple publications, depending on the synchronization logic you require. For
example, you may want to create a publication for high-priority data. The user can synchronize this data
over high-speed wireless networks. Because wireless networks can have usage costs associated with them,
you would want to limit these usage fees to those that are business-critical only. All other less time-sensitive
data could be synchronized from a cradle at a later time.

You create publications using Sybase Central or with the CREATE PUBLICATION statement. In Sybase
Central, all publications and articles appear in the Publications folder.

Usage notes
● UltraLite publications do not support the definition of column subsets, nor the SUBSCRIBE BY clause.

If columns in an UltraLite table do not exactly match tables in a SQL Anywhere consolidated database,
use MobiLink scripts to resolve those differences.

● The publication determines which columns are selected, but it does not determine the order in which
they are sent. Columns are always sent in the order in which they were defined in the CREATE TABLE
statement.

● You do not need to set a table synchronization order in a publication. If table order is important for your
deployment, you can set the table order when you synchronize the UltraLite database by setting the Table
Order synchronization parameter.

● Because object ownership is not supported in UltraLite, any user can delete a publication.

See also
● “Table order in UltraLite” on page 138
● “Publishing data” [MobiLink - Client Administration]
● “Designing synchronization in UltraLite” on page 133
● “Introduction to synchronization scripts” [MobiLink - Server Administration]

Publishing whole tables in UltraLite
The simplest publication you can make consists of a single article, which consists of all rows and columns
of a table.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central
In Sybase Central, you can perform this task while working with the connected database.

Working with UltraLite publications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 83

To publish one or more whole UltraLite tables (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the Publications folder, and choose New » Publication.

3. In the What Do You Want To Name The New Publication field, type a name for the new publication.
Click Next.

4. On the Tables tab, select tables from the Available Tables list. Click Add.

5. Click Finish.

Interactive SQL

In Interactive SQL, you can perform this task with the CREATE PUBLICATION statement.

To publish one or more whole UltraLite tables (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
table you want to publish.

For example, the following statement creates a publication that publishes the whole customer table:

CREATE PUBLICATION pub_customer (
 TABLE customer
);

See also
● “UltraLite CREATE PUBLICATION statement” on page 462
● “UltraLite clients” on page 125

Publishing a subset of rows from an UltraLite table
A publication can only contain specific table rows. In Sybase Central or Interactive SQL, a WHERE clause
limits the rows that are uploaded to those that have changed and satisfy a search condition in the WHERE
clause.

To upload all changed rows, do not specify a WHERE clause.

Palm OS
You cannot use a CREATE PUBLICATION statement with a WHERE clause on this platform.

Sybase Central

In Sybase Central, you can perform this task while working with the connected database.

Working with UltraLite databases

84 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To publish only some rows in an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the Publications folder, and choose New » Publication.

3. In the What Do You Want To Name The New Publication field, type a name for the new publication.

4. Click Next.

5. In the Available Tables list, select a table and click Add.

6. Click the WHERE Clauses tab, and select the table from the Articles list. Optionally, you can use the
Insert window to assist you in formatting the search condition.

7. Click Finish.

Interactive SQL

In Interactive SQL, you can perform this task with the CREATE PUBLICATION statement.

To create a publication in UltraLite using a WHERE clause (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE PUBLICATION statement that includes the tables you want to include in the
publication and a WHERE condition.

For example, the following example creates a single-article publication that includes all sales order
information for sales rep number 856:

CREATE PUBLICATION pub_orders_samuel_singer
 (TABLE SalesOrders
 WHERE SalesRepresentative = 856);

See also
● “UltraLite CREATE PUBLICATION statement” on page 462
● “UltraLite clients” on page 125

Dropping a publication for UltraLite
You can drop a publication using either Sybase Central or Interactive SQL.

Sybase Central
In Sybase Central, you can perform this task while working with the connected database.

To drop a publication (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click the Publications folder.

Working with UltraLite publications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 85

3. Right-click the publication and choose Delete.

4. Click Yes.

Interactive SQL

In Interactive SQL, deleting a publication is also called dropping it. You can perform this task with the DROP
PUBLICATION statement.

To drop a publication (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a DROP PUBLICATION statement.

For example, the following statement drops the publication named pub_orders:

DROP PUBLICATION pub_orders;

See also
● “UltraLite DROP PUBLICATION statement” on page 475
● “UltraLite clients” on page 125

Working with UltraLite databases

86 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with UltraLite users
User IDs and passwords are encrypted in the UltraLite database, so you can only view the list of defined
users in Sybase Central.

UltraLite user IDs are not the same as MobiLink user names or SQL Anywhere user IDs.

Limitations
When creating unique user IDs, bear the following limitations in mind:

● UltraLite supports up to four unique users per database.

● Both the user ID and password values have a limit of 31 characters.

● Passwords are always case sensitive and user IDs are always case insensitive. You can change a password
anytime from Sybase Central.

● Any leading or trailing spaces the user ID are ignored. The user ID cannot include leading single quotes('),
leading double quotes ("), or semicolons(;).

● You cannot change a user ID once it is created. Instead, you must delete the user ID and then add a new
one.

● Passwords can be changed using Sybase Central.

Adding a new UltraLite user
UltraLite does not support the creation of users with Interactive SQL. However, you can add users by:

● Using Sybase Central to add users to the User folder.

● Using the GrantConnectTo function on the Connection object to add new users from an UltraLite
application.

To create a new UltraLite user (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the Users folder, and choose New » User.

3. Follow the instructions in the wizard. Ensure you understand how UltraLite interprets different user ID
and password combinations. See “Interpreting user ID and password combinations” on page 51.

See also

● UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
● UltraLite C/C++ : “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]

Working with UltraLite users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 87

Deleting an existing UltraLite user
UltraLite does not support the deletion of users using a SQL statement. However, you can delete users by
using:

● Sybase Central to delete users from the User folder.

● The RevokeConnectFrom function on the Connection object to remove users from an UltraLite
application.

To delete an existing UltraLite user (Sybase Central)

1. Connect to the UltraLite database.

2. In the left pane, double-click the Users folder.

3. Right-click the user and choose Delete.

See also

● UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
● UltraLite C/C++ : “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]

Working with UltraLite databases

88 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with event notifications
UltraLite now supports events and notifications. A notification is a message that is sent when an event occurs,
also providing additional parameter information. UltraLite has system events and events can also be user-
defined.

Event notifications allow you to provide coordination and signaling between connections or applications
connected to the same database. Notifications are managed in queues: either a connection's default queue
or, optionally, queues that are explicitly created and named. When an event occurs, notifications are sent to
registered queues (or connections).

Each connection manages its own notification queues. Named queues can be created for any connection.

Using predefined system events this feature also provides "triggers" for changes to data, such as when a
change is made to a table, for example, or signaling when a synchronization has occurred. Predefined events
include:

● Commit
● SyncComplete
● TableModified

User events may also be defined and triggered by an application.

APIs for events and notifications are provided in each supported language. Additionally, a SQL function is
provided to access the API functionality.

Events

Event Occurrence

Commit Signaled upon completion of a commit.

Syn-
cCom-
plete

Signaled upon completion of a sync.

Table-
Modifi-
ed

Triggered when rows in a table are inserted, updated, or deleted. One event is signaled per
request, no matter how many rows were affected by the request when registering for the event.

The object_name parameter specifies the table to monitor. A value of "*" means all tables in
the database.

The table_name notification parameter is the name of the modified table.

note_info.event_name = "SyncComplete";
note_info.event_name_len = 12;
note_info.parms_type = ul_ev_note_info::P_NONE;

note_info.event_name = "TableModified";
note_info.event_name_len = 13;
note_info.parms_type = ul_ev_note_info::P_TABLE_NAME;
note_info.parms = table->name->data;
note_info.parms_len = table->name->len;

Working with event notifications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 89

Working with queues
Queues can be created and destroyed.

CreateNotificationQueue creates an event notification queue for the current connection. Queue names are
scoped per-connection, so different connections can create queues with the same name. When an event
notification is sent, all queues in the database with a matching name receive a separate instance of the
notification. Names are case insensitive. A default queue is created on demand for each connection if no
queue is specified. This call fails with an error if the name already exists for the connection or isn't valid.

DestroyNotificationQueue destroys the given event notification queue. A warning is signaled if unread
notifications remain in the queue. Unread notifications are discarded. A connection's default event queue, if
created, is destroyed when the connection is closed.

Working with events
DeclareEvent declares an event which can then be registered for and triggered. UltraLite predefines some
system events triggered by operations on the database or the environment. The event name must be unique
and names are case insensitive. Returns true if the event was declared successfully, false if the name is
already used or invalid.

RegisterForEvent registers a queue to receive notifications of an event. If no queue name is supplied, the
default connection queue is implied, and created if required. Certain system events allow specification of an
object name to which the event applies. For example, the TableModified event can specify the table name.
Unlike SendNotification, only the specific queue registered will receive notifications of the event; other
queues with the same name on different connections will not (unless they are also explicitly registered).
Returns true if the registration succeeded, false if the queue or event does not exist.

TriggerEvent triggers an event and sends a notification to all registered queues. Returns the number of event
notifications sent. Parameters may be supplied as name=value; pairs.

Working with notifications
SendNotification sends a notification to all queues in the database matching the given name (including any
such queue on the current connection). This call does not block. Use the special queue name "*" to send to
all queues. Returns the number of notifications sent (the number of matching queues). Parameters may be
supplied as name=value; pairs.

GetNotification reads an event notification. This call blocks until a notification is received or until the given
wait period expires. To cancel a wait, send another notification to the given queue or use
CancelGetNotification. After reading a notification, use ReadNotificationParameter to retrieve additional
parameters. Returns true if an event was read, false if the wait period expired or was canceled.

GetNotificationParameter gets a named parameter for the event notification just read by GetNotification.
Only the parameters from the most-recently read notification on the given queue are available. Returns true
if the parameter was found, false if the parameter was not found.

CancelGetNotification cancels any pending GetNotification calls on all queues matching the given name.
Returns the number of affected queues (not necessarily the number of blocked reads).

Working with UltraLite databases

90 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Other considerations
● Notification queue and event names are limited to 32 characters.
● To govern system resources, the number of notifications is limited. When this limit is exceeded,

SQLE_EVENT_NOTIFICATION_QUEUE_FULL is signaled and the pending notification is
discarded.

Working with event notifications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 91

UltraLite support for SQL passthrough
The SQL passthrough feature allows the publisher of the consolidated database to send SQL statement scripts
to UltraLite for execution. SQL statement scripts can be executed automatically or manually by users with
DBA authority.

SQL statement scripts are downloaded to UltraLite automatically during synchronization and stored in the
syssql table. SQL statement scripts are not downloaded when a file-based download or a Ping is performed
or when a download is restarted.

SQL statement scripts are run automatically the next time the database is started unless:

● The flags parameter is set to manual in the execution script.
● The connection parameter dont_run_scripts is set.
● The upload failed.

If the flags parameter is set to manual in the execution script you can use the following methods to manually
apply scripts sent from the consolidated database:

● ExecuteSQLPassthroughScripts
● ExecuteNextSQLPassthroughScript
● GetSQLPassthroughScriptCount

During synchronization, UltraLite uploads the status of any scripts executed since the last synchronization.
If UltraLite encounters a problem executing a script, no further scripts are executed until the consolidated
database is notified and instructions for proceeding are sent. The status of executed scripts is stored in the
“ml_passthrough_status” [MobiLink - Server Administration] table in the consolidated database. You can
review the table to determine the success of distributed passthrough scripts.

You can use an observer callback function to monitor the progress of automatically or manually executed
scripts. See “Callback function for ULRegisterSQLPassthroughCallback” [UltraLite - C and C++
Programming].

See also
● “Introduction to SQL passthrough” [MobiLink - Client Administration]
● “ExecuteSQLPassthroughScripts method” [UltraLite - .NET Programming]
● “ExecuteNextSQLPassthroughScript method” [UltraLite - .NET Programming]
● “GetSQLPassthroughScriptCount method” [UltraLite - .NET Programming]

Working with UltraLite databases

92 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite CustDB samples

Contents
CustDB sample file locations ... 95
Lesson 1: Build and run the CustDB application ... 97
Lesson 2: Log in and populate the UltraLite remote database 99
Lesson 3: Use the CustDB client application ... 100
Lesson 4: Synchronize with the CustDB consolidated database 102
Lesson 5: Browse MobiLink synchronization scripts ... 104
Build your own application ... 106

The CustDB sample is installed with SQL Anywhere. It is a multi-tiered database management solution that
implements MobiLink synchronization with a SQL Anywhere consolidated database.

CustDB consists of the following:

● A consolidated SQL Anywhere database. This data is pre-populated with sales status data.

● A remote UltraLite database. This database is initially empty.

● An UltraLite client application.

● A MobiLink server synchronization sample with synchronization scripts.

Different versions of the application code exist for each supported programming interface and platform.
However, the tutorial references the compiled version of the application for Windows desktops only.
Remember that each version implements UltraLite features with some variation to conform to the
conventions of each platform.

Note
You can only run one instance of CustDB at a time. Trying to run more than one instance brings the first
instance to the foreground.

CustDB allows sales personnel to track and monitor transactions and then pool information from two types
of users:

● Sales personnel that authenticate with user IDs 51, 52, and 53.

● Mobile managers that authenticate with user ID 50.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 93

Information gathered by these different users can be synchronized with the consolidated database.

After following each lesson you will know how to:

● Run the MobiLink server to carry out data synchronization between the consolidated database and the
UltraLite remote.

● Use Sybase Central to browse the data in the UltraLite remote.

● Manage UltraLite databases with UltraLite command line utilities.

See also
● “CustDB sample file locations” on page 95
● “Scenario” [MobiLink - Getting Started]
● “Users in the CustDB sample” [MobiLink - Getting Started]
● “Tables in the CustDB databases” [MobiLink - Getting Started]

UltraLite CustDB samples

94 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CustDB sample file locations
SQL Anywhere CustDB database

This is the consolidated database. During installation, an ODBC data source called SQL Anywhere 11
CustDB is created for this database.

The CustDB installation depends on whether you want to use the existing sample or recreate a new file:

● For the existing sample: samples-dir\UltraLite\CustDB\custdb.db

● Erases changes that were synchronized into the consolidated CustDB.db file, so you have a clean version
to work with: samples-dir\UltraLite\CustDB\newdb.bat

For more information about the schema of this file, see “Exploring the CustDB sample for MobiLink”
[MobiLink - Getting Started].

For more information about the default location of samples-dir, by operating system, see “Samples directory”
[SQL Anywhere Server - Database Administration].

The UltraLite CustDB database
The remote version of the consolidated database that contains only a subset of the information, depending
on which user synchronizes the database.

The file name and location can vary depending on the platform, programming language, or even device.

● For UltraLite.NET: samples-dir\UltraLite.NET\CustDB\Common\

● For all other platforms and APIs: samples-dir\UltraLite\CustDB\custdb.udb

For more information about the default location of samples-dir, by operating system, see “Samples directory”
[SQL Anywhere Server - Database Administration].

RDBMS-specific build scripts
The SQL scripts that rebuild a CustDB consolidated database for any one of the supported RDBMSs.

In the samples-dir\MobiLink\CustDB directory, you can find the following files:

● For SQL Anywhere: custdb.sql
● For Adaptive Server Enterprise: custase.sql
● For Microsoft SQL Server: custmss.sql
● For Oracle: custora.sql
● For IBM DB2: custdb2.sql

For more information about setting up a consolidated database, see “Setting up the CustDB consolidated
database” [MobiLink - Getting Started].

For more information about the default location of samples-dir, by operating system, see “Samples directory”
[SQL Anywhere Server - Database Administration].

CustDB sample file locations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 95

UltraLite CustDB client applications and ReadMe files

These are the end-user tools that provide a user-friendly interface to the UltraLite remote database. There is
a sample client installed for each supported API.

Each client application also contains a ReadMe.html or ReadMe.txt file. The contents of these files vary.
However in some cases they outline the steps required to build and run that sample.

The location the applications and its ReadMe depends on your development environment. See “Lesson 1:
Build and run the CustDB application” on page 97.

SQL synchronization logic
These are the SQL statements needed to query and modify information from the UltraLite database and the
calls required to start synchronization with the consolidated database.

samples-dir\UltraLite\CustDB\custdb.sqc

For more information about the default location of samples-dir, by operating system, see “Samples directory”
[SQL Anywhere Server - Database Administration].

See also
● “MobiLink consolidated databases” [MobiLink - Server Administration]

UltraLite CustDB samples

96 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 1: Build and run the CustDB application
The CustDB application is built for many development environments. For a general procedure that applies
to all environments, see the following section.

To build and run the CustDB application

1. Build the CustDB application:

a. Open a CustDB project file in the appropriate environment.

b. Compile the source code.

2. Run the CustDB application:

a. Deploy the CustDB executable file to the mobile device.

b. Deploy the UltraLite CustDB database to the mobile device.

c. Run the CustDB executable file.

UltraLite for Windows 32-bit desktop
You do not need to build the CustDB application before running it.

You can find the CustDB executable file in the install-dir\UltraLite\win32\386 directory.

UltraLite for C/C++

● All versions of C/C++ You can find multiple versions of the C/C++ CustDB project file because of
the many C/C++ development environments. Most versions make use of the generic files. These files
are located in the samples-dir\UltraLite\Custdb directory.

For information about all versions of C/C++ CustDB applications, see samples-dir\UltraLite\Custdb
\readme.txt.

● CodeWarrior for Palm OS You can find the project files in the samples-dir\UltraLite\CustDB
\cwcommon and samples-dir\UltraLite\CustDB\cw directories.

For more information about building the C/C++ CustDB application, see “Building the CustDB sample
application in CodeWarrior” [UltraLite - C and C++ Programming].

● Visual Studio You can find project files in the samples-dir\UltraLite\CustDB\vs7 and samples-dir
\UltraLite\CustDB\vs8 directories depending on your version of Visual Studio. To build and run the
CustDB application, follow the instructions given in the beginning of the lesson.

UltraLite for embedded SQL

You can find project files specific to eMbedded Visual C++ in the samples-dir\UltraLite\CustDB\EVC and
samples-dir\UltraLite\CustDB\EVC40 directories depending on your version of embedded Visual C++.

For more information about building the embedded SQL CustDB application for Windows Mobile using
eMbedded Visual C++, see “Building the CustDB sample application” [UltraLite - C and C++
Programming].

Lesson 1: Build and run the CustDB application

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 97

UltraLite.NET

You can find project files specific to Visual Studio.NET in the samples-dir\UltraLite.NET\CustDB directory.

For instructions on building the CustDB application for Windows Mobile using Visual Studio.NET, see
samples-dir\UltraLite.NET\CustDB\ce\ReadMe.html.

To obtain deployment directory information for Microsoft Windows desktop, and information on where to
download additional UltraLite.NET samples, see samples-dir\UltraLite.NET\CustDB\Desktop
\ReadMe.html.

UltraLite for M-Business Anywhere

You can find project files specific to M-Business Anywhere in the samples-dir
\UltraLiteForMBusinessAnywhere\CustDB directory.

For more information about building the CustDB application using M-Business Anywhere, see “UltraLite
for M-Business Anywhere quick start” [UltraLite - M-Business Anywhere Programming]. The instructions
are applicable to Windows Mobile, Windows, and Palm OS.

UltraLite CustDB samples

98 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 2: Log in and populate the UltraLite remote
database

This lesson demonstrates how to:

● Start the sample MobiLink server.

● Start the sample UltraLite client application.

● Log into UltraLite.

In this tutorial, the sample application is running on the same desktop computer as the MobiLink server.
However, you can deploy a client application to the device and achieve the same result.

To start and synchronize the sample application

1. Choose Start » Programs » SQL Anywhere 11 » MobiLink » Synchronization Server Sample. Or,
execute the following command:

mlsrv11 -c "DSN=SQL Anywhere 11 CustDB" -zu+ -vcrs

A command prompt appears displaying messages about the MobiLink server's status.

2. Choose Start » Programs » SQL Anywhere 11 » UltraLite » Windows Sample Application.

3. In the Employee ID field, type 50. Press Enter.

The application synchronizes and the MobiLink server messages window displays messages showing
the synchronization taking place.

The default synchronization script determines which subset of customers, products, and orders is
downloaded to the application when user 50 logs in. In this case, only orders that have not yet been
approved are downloaded.

4. Confirm that the company name and a sample order appear in the application window.

Lesson 2: Log in and populate the UltraLite remote database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 99

Lesson 3: Use the CustDB client application
Both the consolidated and remote databases contain a table named ULOrder. While the consolidated database
holds all orders (approved and those pending approval), the UltraLite remote only displays a subset of
columns according to the user that has authenticated.

Columns in the table appear as fields in the client application. When you add an order, you must populate
the Customer, Product, Quantity, Price, and Discount fields. You can also append other details such as Status
or Notes. The timestamp column identifies whether the row needs to be synchronized.

To browse orders

Browsing orders is accomplished in a similar method for each version of the UltraLite client application.

By browsing an order, you are scrolling through the data in your local UltraLite database. Because customers
are sorted alphabetically, you can easily scroll through the list and locate a customer by name.

1. To scroll down the list of customers, click Next.

2. To scroll up through the list of customers, click Previous.

To add an order

Adding an order is carried out in a similar way in each version of the UltraLite client application.

By adding an order, you have modified the data in your local UltraLite database. This data is not shared with
the consolidated database until you synchronize.

1. Choose Order » New.

2. In the Customer list, choose Basements R Us.

3. In the Product list, choose Screwmaster Drill. The price of this item is automatically entered in the
Price field.

4. In the Quantity field, type 20.

5. In the Discount field, type 5 (percent) and press Enter.

To approve, deny, and delete orders

Because you have authenticated your identity as user ID 50, you are a manager that can perform all the same
tasks as a sales person, but you have the added ability to accept or reject orders. By accepting or rejecting
an order, you are changing the status of it and adding an additional note for the sales person to review.
However, the data in the consolidated database is unchanged until you synchronize.

1. Approve the order for Apple Street Builders.

a. To locate the customer, click Previous.

b. To approve the order, click Order and then Approve.

c. In the Note list, choose Good.

d. Press Enter.

UltraLite CustDB samples

100 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The order appears with a status of Approved.

2. Deny the order for Art's Renovations.

a. Go to the next order in the list, which is from Art's Renovations.

b. To deny the order, click Order and then Deny.

c. In the Note list, choose Discount Is Too High.

d. Press Enter.

The order appears with a status of Denied.

3. Delete the order for Awnings R Us.

a. Go to the next order in the list, which is from Awnings R Us.

b. Delete this order by choosing Order » Delete.
Click OK to confirm the deletion.
The order is marked as deleted. However, the current data remains in the UltraLite remote until you
synchronize changes to the consolidated database.

See also
● “Tables in the CustDB databases” [MobiLink - Getting Started]

Lesson 3: Use the CustDB client application

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 101

Lesson 4: Synchronize with the CustDB consolidated
database

For synchronization to take place, the MobiLink server must be running. If you have shut down your
MobiLink server, you need to restart it. See “Lesson 2: Log in and populate the UltraLite remote
database” on page 99.

The synchronization process for the sample application removes approved orders from your database.

You can use Interactive SQL or Sybase Central to connect to the consolidated database and confirm that
your changes were synchronized.

To synchronize the UltraLite remote

1. To synchronize your data, from the File menu choose Synchronize.

2. Confirm that synchronization took place.

● At the remote database, you can confirm that all required transactions occurred by checking that the
approved order for Apple Street Builders is now deleted. Perform this action by browsing the orders
to confirm the absence of this entry.

● At the consolidated database, you can also confirm that all required actions occurred by checking
data in the consolidated database.

To confirm the synchronization (Sybase Central)

1. Choose Start » Programs » SQL Anywhere 11 » Sybase Central.

2. Choose Connections » Connect With SQL Anywhere 11.

3. Click ODBC Data Source Name.

4. Click Browse and choose SQL Anywhere 11 CustDB.

5. Click OK.

6. Click OK.

7. Double-click Tables.

8. Double-click ULOrder (DBA).

9. Click the Data tab and verify that order 5100 is approved, order 5101 is denied, and order 5102 is deleted.

To confirm the synchronization (Interactive SQL)

1. Connect to the consolidated database from Interactive SQL.

a. From the Start menu, choose Programs » SQL Anywhere 11 » Interactive SQL.

b. Click ODBC Data Source Name and choose SQL Anywhere 11 CustDB.

2. To confirm that the approval and denial have been synchronized, execute the following statement:

UltraLite CustDB samples

102 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT order_id, status
FROM ULOrder
WHERE status IS NOT NULL;

The results show that order 5100 is approved, and 5101 is denied.

3. The deleted order has an order_id of 5102. The following query returns no rows, demonstrating that the
order has been removed from the system.

SELECT *
FROM ULOrder
WHERE order_id = 5102;

Lesson 4: Synchronize with the CustDB consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 103

Lesson 5: Browse MobiLink synchronization scripts
The synchronization logic for CustDB is held in the consolidated database as MobiLink synchronization
scripts. Synchronization logic allows you to determine how much of the consolidated database you need to
download and/or upload. You can download complete tables or partial tables (with either row or column
subsets) using such techniques as timestamp-based synchronization or snapshot synchronization.

In addition to the tables, users, and publications, you can also use Sybase Central to browse the
synchronization scripts that are stored in the consolidated database. Sybase Central is the primary tool for
adding these scripts to the database.

The custdb.sql file adds each synchronization script to the consolidated database by calling
ml_add_connection_script or ml_add_table_script. Connection scripts control high level events that are not
associated with a particular table. Use these events to perform global tasks that are required during every
synchronization. Table scripts allow actions at specific events relating to the synchronization of a specific
table, such as the start or end of uploading rows, resolving conflicts, or selecting rows to download.

For more information about the synchronization logic used in CustDB, see “Synchronization logic source
code” [MobiLink - Getting Started].

For more information about the implementation of synchronization in CustDB, see “Synchronization design”
[MobiLink - Getting Started].

To browse the synchronization scripts

1. From the Start menu, choose Programs » SQL Anywhere 11 » Sybase Central.

2. From the Connections menu, choose Connect With MobiLink 11.

3. Click ODBC Data Source Name.

4. Click Browse and choose SQL Anywhere 11 CustDB.

5. Click OK.

6. Click OK.

7. Double-click Connection Scripts.

The right pane lists a set of synchronization scripts and a set of events with which these scripts are
associated. As the MobiLink server carries out the synchronization process, it triggers a sequence of
events. Any synchronization script associated with an event is run at that time. By writing synchronization
scripts and assigning them to the synchronization events, you can control the actions that are carried out
during synchronization.

8. Click Synchronized Tables.

9. In the right pane, double-click ULCustomer.

A set of scripts specific to this table, and their corresponding events appears. These scripts control the
way that data in the ULCustomer table is synchronized with the remote databases.

UltraLite CustDB samples

104 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Writing synchronization scripts” [MobiLink - Server Administration]
● “UltraLite clients” on page 125
● “Connection scripts” [MobiLink - Server Administration]
● “Table scripts” [MobiLink - Server Administration]

Lesson 5: Browse MobiLink synchronization scripts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 105

Build your own application
Use one of the supported interfaces to build your own application. For more information, see:

● UltraLite C++: “Tutorial: Build an application using the C++ API” [UltraLite - C and C++
Programming]

● UltraLite.NET: “Tutorial: Build an UltraLite.NET application” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “Tutorial: A sample application for M-Business Anywhere”

[UltraLite - M-Business Anywhere Programming]

UltraLite CustDB samples

106 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite performance and optimization

Contents
Using index scans ... 108
Determining the access method used by the optimizer ... 110
Tuning query performance with index hashing .. 111
Choosing an optimal hash size .. 113
Setting the maximum hash size ... 116
Managing temporary tables ... 117
Flushing single or grouped transactions .. 119
How database encryption and obfuscation affect performance 120
UltraLite optimization strategies .. 121

UltraLite provides excellent SQL query performance. Index scans, direct page scans, and temporary tables
are internal optimization techniques that help you to achieve the most from the product. However, you can
further tune these features, depending on the results of any query performance tests you run.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 107

Using index scans
An index is a set of pointers to rows in a table, based on the order of the values of data in one or more table
columns. An index is a database object. The index is maintained automatically by UltraLite after it has been
created. You can create one or more indexes to improve the performance of your queries, or, depending on
the type of index you create, to ensure that row values remain unique.

An index provides an ordering of a table's rows based on the values in some or all of the columns. When
creating indexes, the order in which you select columns to be indexed becomes the order in which the columns
actually appear in the index. So, when you use them strategically, indexes can greatly improve the
performance of searches on the indexed column(s).

UltraLite supports the following indexes. These indexes can be single or multi-column (also known as
composite indexes). You cannot index LONG VARCHAR or LONG BINARY columns.

Index Characteristics

Primary key Required. An instance of a unique key. You can only have one primary key. Values
in the indexed column or columns must be unique and cannot be NULL.

Foreign key1 Optional. Values in the indexed column or columns can be duplicated. Nullability
depends on whether the column was created to allow NULL. Values in the foreign
key columns must exist in the table being referenced

Unique key2 Optional. Values in the indexed column or columns must be unique and cannot
be NULL.

Non-unique index Optional. Values in the indexed column or columns can be duplicated and can be
NULL.

Unique index Optional. Values in the indexed column or columns cannot be duplicated and can
be NULL.

1 A foreign key can reference either a primary key or a unique key.
2 Also known as a unique constraint.

Performance tips
● Create an index on any column:

○ for values that you search for on a regular basis
○ that the query uses to join tables
○ that are commonly used in ORDER BY, GROUP BY, or WHERE clauses

● When creating a composite index, the first column of the index should be the one that is used most often
by the predicate in your query.

● Ensure the update maintenance overhead an index introduces is not too high for the memory of your
device.

UltraLite performance and optimization

108 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Do not create or maintain unnecessary indexes: indexes must be updated when the data in a column is
modified, so all insert, update, and delete operations are performed on the indexes as well.

● Create an index on large tables.

● Do not create redundant indexes. For example, if you create an index on table T with columns (x, y),
you can create a redundancy if there is another existing index on T with columns (x, y, z).

See also
● “Managing temporary tables” on page 117
● “Using direct page scans” on page 117
● “View an UltraLite execution plan” on page 342
● “About composite indexes” on page 79
● “EXPLANATION function [Miscellaneous]” on page 383
● UltraLite C++: “GetPlan function” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “getPlan method” [UltraLite - M-Business Anywhere

Programming]
● “UltraLite page_size creation parameter” on page 199

Using index scans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 109

Determining the access method used by the optimizer
The UltraLite optimizer uses sophisticated optimization strategies when choosing an index for query
optimization. Except in the case of simple queries, you cannot easily predetermine which index the optimizer
uses to optimize the query performance, or if an index is used at all. As the complexity increases, the index
selected depends on the clauses required by your query. In some cases, the presence of a FOR READ ONLY
clause may cause the optimizer to choose a direct table scan instead of an index to yield better query
performance.

When optimizing a query, the optimizer looks at the requirements of the query and checks if there are any
indexes that it can use to improve performance. If performance cannot be improved with any index, then the
optimizer does not scan one: either a temporary table or a direct page scan is used instead. Therefore, you
may need to experiment with your indexes and frequently check the generated execution plans to ensure
that:

● You are not maintaining indexes that are not being used by the optimizer.

● You are minimizing the number of temporary tables being created. See “Managing temporary
tables” on page 117.

For complex queries, knowing which index is used is even less predictable. For example, when a query
contains a WHERE predicate and a GROUP BY clause in addition to an ORDER BY clause, one index alone
might not satisfy the search conditions of this query. So, if you have created an index to meet the selectivity
requirements of the WHERE predicate, you may find that the optimizer does not actually use it. Instead, the
optimizer may use an index that offers better performance for the ORDER BY conditions because this clause
could require the most processing.

Checking the execution plan
You can check the execution plan either programmatically with the appropriate API call or in the Plan Viewer
in Interactive SQL:

● If no index is used the execution plan appears as follows:

scan(T)
● If a temporary table is used the execution plan appears as follows:

temp [scan(T)]
● If an index is used the index name is included the execution plan:

scan (T, index_name)

UltraLite performance and optimization

110 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tuning query performance with index hashing
You can tune the performance of your queries by choosing a specific size for the maximum hash. A hash
key represents the actual values of the indexed column. An index hash key aims to avoid the expensive
operation of finding, loading, and then unpacking the rows to determine the indexed value. It prevents these
operations by including enough of the actual row data with a row ID.

A row ID allows UltraLite to locate the actual row data in the database file. If you set the hash size to 0
(which disables index hashing), then the index entry only contains this row ID. If you set the hash size to
anything other than 0, then a hash key is also used. A hash key can contain all or part of the transformed
data in that row, and is stored with the row ID in the index page.

How much row data the hash key includes is determined:

● Partly by the maximum hash size property you configure. See “Choosing an optimal hash
size” on page 113.

● Partly by how much is actually needed for the data type of the column.

A hash example
The value of an index hash maintains the order of the actual row data of indexed columns. For example, if
you have indexed a LastName column for a table called Employees, you may see four names ordered as
follows:

Anders

Anderseck

Andersen

Anderson

If you hashed the first six letters, your hash keys for these row values would appear as follows:

Anders

Anders

Anders

Anders

While these entries look the same, note that the first Anders in the list is used to represent the actual row
value of Anders. The last Anders in the list, however, is used to represent the actual row value Anderson.

Now, consider the following statement:

SELECT *
FROM Employees
WHERE LastName = 'Andersen';

If the Employees table only contained a very high proportion of names similar to Andersen, then the hash
key may not offer enough uniqueness to gain any performance benefits. In this case, UltraLite cannot
determine if any of the hash keys actually meets the conditions of this statement. When duplicate index hash
keys exist, UltraLite still needs to:

Tuning query performance with index hashing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 111

1. Find the table row that matches the row ID in question.

2. Load and then unpack the data so the value can be evaluated.

Performance benefits only occur when UltraLite can discern a proportionate number of unique hash so that
the query condition evaluation is immediate to the index itself. For example, if the Employees table had
thousands of names, there is still enough benefit to be gained by a hash of six letters. However, if the
Employees table only contained an inordinate number of names that begin with Anders*, then you should
hash at least seven letters so the degree of unique keys increases. Therefore, the original four names at the
start of this example how are now represented with these hash keys:

Anders

Anderse

Anderse

Anderso

Now, only two of the four row values would need to be unpacked and evaluated, rather than all four.

See also
● “UltraLite max_hash_size creation parameter” on page 194
● “Choosing an optimal hash size” on page 113
● “UltraLite performance and optimization” on page 107
● “Adding UltraLite indexes” on page 81

UltraLite performance and optimization

112 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Choosing an optimal hash size
The UltraLite default maximum hash size of 4 bytes was chosen to suit most deployments. You can increase
the size to include more data with the row ID. However, this change could increase the size of the index and
fragment it among multiple pages. This change can possibly increase the size of the database as a result. The
impact of an increased maximum hash size depends on the number of rows in the table: for example, if you
only have a few rows, a large index hash key would still fit on the index page. No index fragmentation occurs
in this case.

When choosing an optimal hash size, consider the data type, the row data, and the database size (especially
if a table contains many rows).

The only way to determine if you have chosen an optimal hash size is to run benchmark tests against your
UltraLite client application on the target device. You need to observe how various hash sizes affect the
application and query performance, in addition to the changes in database size itself.

The data type
If you want to hash the entire value in a column, note the size required by each data type in the table that
follows. UltraLite only uses the maximum hash size if it really needs to, and it never exceeds the maximum
hash size you specify. UltraLite always use a smaller hash size if the column type does not use the full byte
limit.

Data type Bytes used to hash the entire value

FLOAT, DOUBLE, and RE-
AL

Not hashed.

BIT and TINYINT 1

SMALL INT and SHORT 2

INTEGER, LONG ,and
DATE

4

DATETIME, TIME, TIME-
STAMP, and BIG

8

CHAR and VARCHAR To hash the entire string, the maximum hash size in bytes must match
the declared size of the column. In a UTF-8 encoded database, always
multiply the declared size by a factor of 2, but only to the allowed max-
imum of 32 bytes.

For example, if you declare a column VARCHAR(10) in a non-UTF-8
encoded database, the required size is 10 bytes. However, if you declare
the same column in a UTF-8 encoded database, the size used to hash the
entire string is 20 bytes.

Choosing an optimal hash size

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 113

Data type Bytes used to hash the entire value

BINARY The maximum hash size in bytes must match the declared size of the
column.

For example, if you declare a column BINARY(30), the required size is
30 bytes.

UUID 16

For example, if you set a maximum hash size of 6 bytes for a two-column composite index that you declared
as INTEGER and BINARY (20) respectively, then based on the data type size requirements, the following
occurs:

● The entire value of the row in the INTEGER column is hashed and stored in the index because only 4
bytes are required to hash integer data types.

● Only the first 2 bytes of the BINARY column are hashed and stored in the index because the first 4 bytes
are used by the INTEGER column. If these remaining 2 bytes do not hash an appropriate amount of the
BINARY column, increase the maximum hash size.

The row data
The row values of the data being stored in the database also influence the effectiveness of a hashed index.

For example, if you have a common prefix shared among entries of a given column, you may render the
hash ineffective if you choose a size that only hashes prefixes. In this case, you need to choose a size that
ensures more than just the common prefix is hashed. If the common prefix is long, you should consider not
hashing the values at all.

In cases where a non-unique index stores many duplicate values, and UltraLite cannot hash the entire value,
the hash likely cannot improve performance.

The database size
Each index page has some fixed overhead, but the majority of the page space is used by the actual index
entries. A larger hash size means each index entry is bigger, which means that fewer entries can fit on a page.
For large tables, indexes with large hashes use more pages than indexes with small or no hashes. The more
pages required increases the database size and degrades performance. The latter typically occurs because
the cache can only hold a fixed number of pages thereby causing UltraLite to swap pages.

The following table gives you an approximation of how the hash size can affect the number of pages required
to store data in an index:

Table Page size Hash size Number of entries Pages required

Table A 4 KB 0 1200 3 pages

Table B 4 KB 32 bytes 116 3 pages

Table C 4 KB 32 bytes 1200 entries 11 pages

UltraLite performance and optimization

114 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “UltraLite max_hash_size creation parameter” on page 194
● “UltraLite performance and optimization” on page 107
● “Adding UltraLite indexes” on page 81
● “Data types in UltraLite” on page 312

Choosing an optimal hash size

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 115

Setting the maximum hash size
You can set the maximum hash size in two ways:

● To store a database default for the maximum size, you can set the max_hash_size creation parameter
when you create your database. If you do not want to hash indexes by default, set this value to 0.
Otherwise, you can change it to any value up to 32 bytes, or keep the UltraLite default of 4 bytes.

● If you want to override the default, you can set a specific hash size when you create a new index. Do
one of the following:

○ In Sybase Central, set the Maximum Hash Size property when creating a new index.

○ With SQL, use the WITH MAX HASH SIZE clause in either the CREATE TABLE or CREATE
INDEX statement.

See also
● “UltraLite CREATE INDEX statement” on page 460
● “UltraLite CREATE TABLE statement” on page 468

UltraLite performance and optimization

116 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Managing temporary tables
In general, the optimizer always tries to avoid creating temporary tables to return query results because the
entire temporary table must be populated before the first row can be returned. If an index exists, the optimizer
tries to use the index first and only creates a temporary table as a last resort.

It is difficult to anticipate whether an index you have created avoids the necessity for a temporary table.
Therefore, you should always check the plans for a query to ensure the indexes you have created are actually
being used by the UltraLite query optimizer.

See also
● “UltraLite temporary tables” on page 12
● “Determining the access method used by the optimizer” on page 110
● “Reading UltraLite execution plans” on page 343

Using direct page scans
UltraLite uses direct page scans as an alternative to index scans when it is more efficient to access information
directly from the database page. A direct page scan is only used after the optimizer confirms that:

● No pre-existing index can return results more efficiently.

● You are not using the query to perform updates. For example, you have declared the statement to be
FOR READ ONLY (the default setting if no FOR clause has been specified), or have written the query
in such a way that it is obvious that data is not being updated.

Because UltraLite reads the rows directly from the pages on which the rows are stored, query results are
returned without order. The order of subsequent query results is unpredictable. If you need the order of rows
to be predictable and deterministic, use an ORDER BY clause to get results in a consistent order. On the
other hand, if order is not important, you can omit the ORDER BY clause to improve query performance.

Note
You cannot use direct page scans if you are using the Table API to program your application.

You can check to see when UltraLite scans a page directly or which index was used to return results. See
“Determining the access method used by the optimizer” on page 110.

Reverting to primary key index order
In version 10.0.0 and earlier of UltraLite, the primary key was used to return results when no other index
was used by the UltraLite optimizer. As a result, rows were ordered according to the order of the primary
key index.

If your results must be ordered by primary key, you should re-write your queries to include the ORDER BY
clause. If it is impractical to sort your rows with this clause, you can consider using the
ORDERED_TABLE_SCAN connection parameter.

Managing temporary tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 117

Tip
It is recommended that you use the ORDER BY clause whenever possible.

See also
● “UltraLite ORDERED_TABLE_SCAN connection parameter [deprecated]” on page 239
● “Using index scans” on page 108
● “UltraLite SELECT statement” on page 486

UltraLite performance and optimization

118 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Flushing single or grouped transactions
You can choose your recovery point in UltraLite by delaying committed transaction flushes. When UltraLite
releases the commit to storage, the recovery point helps control when a subset of SQL statements in a
transaction triggers additional operational overhead.

By default, UltraLite uses an operational-based default that flushes individual transactions to storage
immediately upon a commit. For some deployments, these frequent operations can be excessive and limit
the amount of transaction throughput. To reduce the performance expense caused by this default, you may
choose a state-based approach. Especially for applications that rely on autocommit operations, this approach
delays the additional overhead required to flush the committed transactions to storage:

● On checkpoint You can set your own checkpoint, and then use it to release the work performed over
the course of time. You can use as many checkpoints as you require, either within a single transaction
or over multiple transactions.

● Grouped You can choose a transaction count threshold and/or a timeout threshold to release the work
performed.

Delaying commit flushes based on state yields better performance and a cleaner application design because
applications are not required to wait for a response from UltraLite. By delaying commit flushes you also
minimize the exposure to transactions by giving more granular control over data for which work has not
been fully completed. For example, in a sales application, an order may be available to a second application
before all items have been added or even approved.

However, it is important for you to take into account the recoverability of a transaction for which commit
flushes have been delayed. Transactions that have not been released cannot be recovered. Therefore, you
need to evaluate the tradeoff between the data integrity of your application and its performance.

See also
● “UltraLite COMMIT_FLUSH connection parameter” on page 229
● “UltraLite commit_flush_count option [temporary]” on page 220
● “UltraLite commit_flush_timeout option [temporary]” on page 221
● “UltraLite CHECKPOINT statement” on page 458
● UltraLite for embedded SQL: “ULCheckpoint function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “Checkpoint function” [UltraLite - C and C++ Programming]

Flushing single or grouped transactions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 119

How database encryption and obfuscation affect
performance

You can encrypt the database to increase the security of the information stored in UltraLite. However, you
should note that there is an increase in overhead of between 5-10% as a result, resulting in decreased
performance. The exact effect on performance depends on the size of your cache. If your cache is too small,
encryption can add significant overhead. However, if your cache is sufficiently large, you may not see any
difference at all. To determine what the optimal cache size for your scenario is, you can graph the database
performance with benchmark tests.

Stressing the cache
You can benchmark test different cache sizes and watch for performance to change abruptly. Your cache
should be large enough to have a good working set of pages. Consider the following ideas to help you stress
the cache:

● Create multiple indexes on the table and add foreign keys.

● Insert rows randomly (something other than the index order).

● Create large rows, at least 25% of the database page size.

● Set the index hash to something other than 0. This increased size also increases the page accesses needed.

● Start graphing performance based on the smallest cache size. For example, 256 KB on Windows NT (the
smallest allowed cache for this platform) or 64 KB on all other platforms.

If you find that increasing the cache does not improve the performance of an encrypted database, consider
obfuscating the data rather than encrypting it. Obfuscation can yield better performance while still offering
some security benefits; the obfuscation algorithm uses less code compared to strong encryption, and performs
fewer computations. Simple encryption performance should only be marginally slower than no encryption
at all. However, your security requirements must ultimately dictate whether you choose to use strong
encryption or not.

See also
● “UltraLite performance and optimization” on page 107
● “UltraLite page_size creation parameter” on page 199
● “UltraLite fips creation parameter” on page 192
● “UltraLite CACHE_SIZE connection parameter” on page 226
● “UltraLite CREATE INDEX statement” on page 460

UltraLite performance and optimization

120 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite optimization strategies
Different UltraLite deployments of UltraLite may require very specific settings to tune the database for your
needs.

Early versions of Palm OS
Early versions (for example, version 4.x) of Palm devices only have approximately 200 KB of RAM. This
limitation can cause problems due to the dynamic memory requirements of UltraLite 11.

Platform strategies There are two alternatives:

● Upgrade to Palm OS 5.x. This suggestion is the preferred option.

● Downgrade UltraLite to version 9.0.x.

Database optimization strategies You should ensure that you are doing the following:

● For the CACHE_SIZE creation parameter Do not establish a connection using this parameter, and
allow UltraLite to set the default value. If you set your own value, you may inadvertently cause problems
with the dynamic memory required for synchronization.

● For the page_size creation database property Create a new database with the smallest possible
page size for your application. While 1 KB is the smallest page size, a 2 KB page size is the size typically
used for Palm OS.

UltraLite optimization strategies

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 121

122

UltraLite as a MobiLink Client

This section contains material that describes how to set up and run UltraLite clients for MobiLink synchronization.

UltraLite clients ... 125
Using ActiveSync and HotSync with UltraLite ... 145
UltraLite synchronization parameters and network protocol options .. 153

UltraLite clients

Contents
Built-in UltraLite synchronization features ... 126
Customizing UltraLite client synchronization behavior .. 127
Primary key uniqueness in UltraLite .. 129
Designing synchronization in UltraLite .. 133
Using MobiLink file transfers ... 142

Because the UltraLite runtime includes a built-in bi-directional synchronization framework that links field
and mobile workers with enterprise back-end systems, synchronizing UltraLite data is less involved than
other remote clients. This built-in framework means that all data in an UltraLite database is synchronized
automatically by default. Users new to MobiLink synchronization may use this default behavior, until
business requirements necessitate a custom synchronization design to alter what UltraLite data gets
synchronized to the consolidated database.

For more information about UltraLite, see “Introducing UltraLite” on page 1. For information about how to
use SQL Anywhere databases as MobiLink clients, see “SQL Anywhere clients” [MobiLink - Client
Administration].

Tip
The best way to back up an UltraLite application is to synchronize with a consolidated database. To restore
an UltraLite database, take an empty database and populate it from the consolidated database through
synchronization.

Tip
If you need to deploy multiple files, or if you need to target versions of the file to specific user IDs, consider
using the MobiLink server to transfer files. See “Using MobiLink file transfers” on page 142.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 125

Built-in UltraLite synchronization features
UltraLite contains MobiLink synchronization technology in the data management layer for UltraLite. Unlike
SQL Anywhere remote, you do not need to increase the size of the UltraLite footprint to include
synchronization functionality.

Important synchronization features built into the UltraLite runtime include a row-state tracking mechanism
and the progress counter.

The row-state tracking mechanism
Tracking the state of tables and rows is particularly important for data synchronization. Each row in an
UltraLite database has a one-byte marker to keep track of the state of the row. In addition to synchronization,
UltraLite also uses the row states to control transaction processing and data recovery. See “UltraLite row
states” on page 14.

The progress counter

UltraLite uses a progress counter to ensure robust synchronization. Each upload is given a unique number
to identify it. This allows UltraLite to determine whether an upload was successful, when a communication
error occurs.

When you first create a new database, UltraLite always sets the synchronization progress counter to zero.
A progress counter value of zero identifies the database as a new UltraLite database, which tells the MobiLink
server to reset its state information for this client.

Caution
Because UltraLite increments the progress counter each time a synchronization occurs, you cannot
synchronize an UltraLite database to different consolidated databases. If the progress counter value is not
zero and does not match that sequence number stored in the consolidated database, MobiLink
synchronization reports an offset mismatch and synchronization fails.

See also
● “ml_subscription” [MobiLink - Server Administration]

UltraLite clients

126 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Customizing UltraLite client synchronization
behavior

Adding custom synchronization support to UltraLite can involve up to three tasks:

● Maintain primary key uniqueness in synchronization models that include more than one
remote client Required. In a synchronization system, the primary key is the only way to identify the
same row in different databases (remote and consolidated) and the only way to detect conflicts. Therefore,
multiple clients must adhere to the following rules:

○ Every table that is to be synchronized must have a primary key.
○ Never update the values of primary keys.
○ Primary keys must be unique across all synchronized databases.

See “Maintaining unique primary keys” [MobiLink - Server Administration] and “Primary key
uniqueness in UltraLite” on page 129.

● Ensure your date columns are set up so that fractional data is not lost For a SQL Anywhere
consolidated database this is not typically an issue. However, for databases like Oracle, there may be
compatibility issues that you need to consider. For example, UltraLite and Oracle databases must share
the same timestamp precision. Additionally, you should also add a TIMESTAMP to the Oracle database
to avoid losing fractional second data when the UltraLite remote databases uploads data to the
consolidated database. See “Oracle consolidated database” [MobiLink - Server Administration] and
“UltraLite precision creation parameter” on page 201.

● Describe what data subsets you want to upload to the consolidated database Optional. You
only need to do this when you do not want to synchronize all data by default. To target what data you
want to synchronize, use one or more subsetting techniques. See “Designing synchronization in
UltraLite” on page 133.

For example, you may want to create a publication for high-priority data. The user can synchronize this
data over high-speed wireless networks. Because wireless networks can have high usage costs associated
with them, you would want to limit these usage fees to those that are business critical. You can then
synchronize less time-sensitive data from a cradle at a later time.

● Initialize synchronization from your UltraLite application and supply the parameters that
describe the session Required. Programming synchronization has two parts: describing the session,
and then initializing the synchronization operation.

Describing the session primarily involves choosing a synchronization communication stream (also
known as a network protocol), and the parameters for that stream, setting the version of your
synchronization scripts, and assigning the MobiLink user. However, there are other parameters you can
configure as well: for example, use the upload_only and download_only parameters to change the default
bi-directional synchronization to one-way only. See “Adding synchronization to your UltraLite
application” on page 139.

All other important synchronization behaviors are controlled with MobiLink synchronization scripts. You
need multiple scripts because each MobiLink remote database can contain a different subset of the data in
the consolidated database.

Customizing UltraLite client synchronization behavior

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 127

These include:

● What data is downloaded as updates to tables in the UltraLite remote.

● What processing is required on uploaded changes from a remote database.

This means that you can write your synchronization scripts so that data is partitioned among remote databases
in an appropriate manner.

See also
● “MobiLink consolidated databases” [MobiLink - Server Administration]
● “Introduction to synchronization scripts” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● “Partitioning rows among remote databases” [MobiLink - Server Administration]

UltraLite clients

128 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Primary key uniqueness in UltraLite
UltraLite can maintain primary key uniqueness using any of the techniques supported by MobiLink. See
“Maintaining unique primary keys” [MobiLink - Server Administration].

One of these methods is to use a global ID. The global ID affects how the GLOBAL AUTOINCREMENT
column values are generated. You need to use columns declared as GLOBAL AUTOINCREMENT when
a MobiLink server must manage synchronizations for multiple clients.

GLOBAL AUTOINCREMENT is similar to AUTOINCREMENT, except that the domain is partitioned.
UltraLite supplies column values only from the partition assigned to the database's global ID.

See also
● “UltraLite global_database_id option” on page 222

Using GLOBAL AUTOINCREMENT in UltraLite
You can declare the default value of a column in an UltraLite database to be of type GLOBAL
AUTOINCREMENT. However, before you can autoincrement these column IDs, you must first set the
global ID for the UltraLite remote.

Caution
GLOBAL AUTOINCREMENT column values downloaded via MobiLink synchronization do not update
the GLOBAL AUTOINCREMENT value counter. As a result, an error can occur should one MobiLink
client insert a value into another client's partition. To avoid this problem, ensure that each copy of your
UltraLite application inserts values only in its own partition.

To declare GLOBAL AUTOINCREMENT columns in your UltraLite database

1. Assign each copy of the database a unique global ID number.

The global_database_id database option sets the value in your UltraLite database. When deploying
UltraLite, you must assign a different identification number to each database. See “UltraLite
global_database_id option” on page 222.

2. Allow UltraLite to supply default values for the column using the partition uniquely identified by the
UltraLite database's number. UltraLite follows these rules:

● If the column contains no values in the current partition, the first default value is pn + 1. p represents
the partition size and n represents the global ID number.

● If the column contains values in the current partition, but all are less than p(n + 1), the next default
value will be one greater than the previous maximum value in this range.

● Default column values are not affected by values in the column outside the current partition; that is,
by numbers less than pn + 1 or greater than p(n + 1). Such values may be present if they have been
replicated from another database via MobiLink synchronization.

Primary key uniqueness in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 129

For example, if you assigned your UltraLite database a global ID of 1 and the partition size is 1000,
then the default values in that database would be chosen in the range 1001-2000. Another copy of
the database, assigned the identification number 2, would supply default values for the same column
in the range 2001-3000.

● Because you cannot set the global ID number to negative values, the values UltraLite chooses for
GLOBAL AUTOINCREMENT columns are always positive. The maximum identification number
is restricted only by the column data type and the partition size.

● If you do not set a global ID value, or if you exhaust values from the partition, a NULL value is
inserted into the column. Should NULL values not be permitted, the attempt to insert the row causes
an error.

3. If you exhaust or will soon exhaust available values for columns declared as GLOBAL
AUTOINCREMENT, you need to set a new global ID. UltraLite chooses GLOBAL
AUTOINCREMENT values from the partition identified by the global ID number, but only until the
maximum value is reached. If you exceed values, UltraLite begins to generate NULL values. By assigning
a new global ID number, you allow UltraLite to set appropriate values from another partition.

One method of choosing a new global ID is to maintain a pool of unused global ID values. This pool is
maintained in the same manner as a pool of primary keys. See “Using primary key pools” [SQL
Remote].

Tip
UltraLite APIs provide means of obtaining the proportion of numbers that have been used. The return
value is a SHORT in the range 0-100 that represents the percent of values used so far. For example, a
value of 99 indicates that very few unused values remain and the database should be assigned a new
identification number. The method of setting this identification number varies according to the
programming interface you are using.

See also
● “Overriding partition sizes for autoincremented columns” on page 131
● “UltraLite global_database_id option” on page 222
● UltraLite.NET: “Connection property” [UltraLite - .NET Programming]
● UltraLite C/C++: “Synchronize function” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “setDatabaseID method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “ULSetDatabaseID function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “GlobalAutoIncrementUsage property” [UltraLite - .NET Programming]
● UltraLite C/C++: “GetSynchResult function” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “getGlobalAutoIncrementUsage method” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for embedded SQL: “ULGlobalAutoincUsage function” [UltraLite - C and C++

Programming]

UltraLite clients

130 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Determining the most recently assigned GLOBAL
AUTOINCREMENT value

You can retrieve the GLOBAL AUTOINCREMENT value that was chosen during the most recent insert
operation. Since these values are often used for primary keys, knowing the generated value may let you more
easily insert rows that reference the primary key of the first row. You can check the value with:

● UltraLite for C/C++ Use the GetLastIdentity function on the ULConnection object. See
“GetLastIdentity function” [UltraLite - C and C++ Programming].

● UltraLite.NET Use the LastIdentity property on the ULConnection class. See “LastIdentity property”
[UltraLite - .NET Programming].

● UltraLite for M-Business Anywhere Use the GetLastIdentity method on the Connection class. See
“getLastIdentity method” [UltraLite - M-Business Anywhere Programming].

The returned value is an unsigned 64-bit integer, database data type UNSIGNED BIGINT. Since this
statement only allows you to determine the most recently assigned default value, you should retrieve this
value soon after executing the insert statement to avoid spurious results.

Note
Occasionally, a single INSERT statement may include more than one column of type GLOBAL
AUTOINCREMENT. In this case, the return value is one of the generated default values, but there is no
reliable means to determine which one. For this reason, you should design your database and write your
INSERT statements in a way that avoids this situation.

Overriding partition sizes for autoincremented columns
The partition size is any positive integer, although the partition size is generally chosen so that the supply
of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216 = 65536; for columns of other
types the default partition size is 232 = 4294967296. Since these defaults may be inappropriate, it is best to
specify the partition size explicitly.

Default partition sizes for some data types are different in UltraLite applications than in SQL Anywhere
databases. Declare the partition size explicitly if you want different databases to remain consistent.

To override UltraLite partition values (Sybase Central)

1. Connect to the UltraLite database.

2. Right-click the selected column and choose Properties.

3. Click the Value tab.

4. Enter any positive integer in the Partition Size field.

Primary key uniqueness in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 131

To declare autoincrement columns in UltraLite (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE TABLE or ALTER TABLE statement with a DEFAULT GLOBAL
AUTOINCREMENT clause with the partition size specified in parentheses. See “UltraLite CREATE
TABLE statement” on page 468 and “UltraLite ALTER TABLE statement” on page 454.

For example, the following statement creates a simple reference table with two columns: an integer that
holds a customer identification number and a character string that holds the customer's name. A partition
size of 5000 is required for this table.

CREATE TABLE customer (
 id INT DEFAULT GLOBAL AUTOINCREMENT (5000),
 name VARCHAR(128) NOT NULL,
 PRIMARY KEY (id)
);

See also
● UltraLite.NET: “GetColumnPartitionSize method” [UltraLite - .NET Programming]
● UltraLite C/C++: “GetGlobalAutoincPartitionSize function” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “getColumnPartitionSize method” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for embedded SQL: “ULGlobalAutoincUsage function” [UltraLite - C and C++

Programming]

UltraLite clients

132 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Designing synchronization in UltraLite
All data in the UltraLite database is synchronized by default. If you are new to deploying UltraLite as a
MobiLink remote database, plan to synchronize the entire UltraLite remote initially.

Once you become comfortable with the process, you may decide to customize the behavior of the
synchronization operation to capture more complex business logic. Designing custom synchronization
behavior requires that you ask yourself the following questions. If your business requirements are simple,
you may only need to use a single synchronization feature. However, in very complex deployments, you
may need to use multiple synchronization features to configure the synchronization behavior you require.

Design
question

If you answer yes, use the following

Do you
want to ex-
clude ta-
bles from
synchroni-
zation?

The nosync table name suffix allows you to identify any tables that you do not want to
synchronize. See “Nosync tables in UltraLite” on page 136.

Do you
only want
to syn-
chronize
entire ta-
bles even
when data
hasn't
changed?

The allsync table name suffix allows you to synchronize the entire table, even when no
changes are detected. See “Allsync tables in UltraLite” on page 136.

Designing synchronization in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 133

Design
question

If you answer yes, use the following

Do you
want to
synchron-
ize an en-
tire table
or just
rows that
meet spe-
cific con-
ditions?
Does some
of the data
require
synchroni-
zation pri-
ority due
to its im-
portance
or time-
sensitivi-
ty?

A publication includes articles that list the tables that require synchronization. An article
can include a WHERE clause that specifies the rows to upload based on whether the rows
meet the defined criteria.

Multiple publications can address priority issues that require certain UltraLite data be up-
loaded before others. See “Publications in UltraLite” on page 137.

Do you re-
quire a ta-
ble order
for syn-
chroniza-
tion be-
cause you
have cy-
cles of for-
eign keys?

The Table Order synchronization parameter allows you to determine the order of synchro-
nization operations when you have foreign key cycles. However, foreign key cycles are
generally not recommended for UltraLite. See “Table order in UltraLite” on page 138.

UltraLite clients

134 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Design
question

If you answer yes, use the following

Do you
want to
control
synchroni-
zation be-
havior?
For exam-
ple, do you
need
down-
loads to
occur at
the same
time as up-
loads? Or
do you
want to
change bi-
directional
synchroni-
zation to
one-way
only?

Use the appropriate synchronization parameter as part of:

● Your application's synchronization structure (or the synchronization enumeration).

● The ulsync utility's -e option.

See “UltraLite synchronization parameters and network protocol options” on page 153.

Do you
want syn-
chroniza-
tion trig-
gers to be
time-
based
(sched-
uled), cra-
dle-trig-
gered, or
user-initi-
ated? Or
do you re-
quire a
combina-
tion of the
above?

Different behavior can be achieved programmatically via an appropriate interface. In some
cases, HotSync or ActiveSync may manage the synchronization process. See “Adding syn-
chronization to your UltraLite application” on page 139.

Designing synchronization in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 135

Design
question

If you answer yes, use the following

Do you
want your
UltraLite
client to be
TLS-ena-
bled?

What encryption algorithm you choose determines how your device must be set up according
to the platform that runs on that device. See “Deploy UltraLite with TLS-enabled synchro-
nization” on page 60.

See also
● “The synchronization process” [MobiLink - Getting Started]
● “The upload and the download” [MobiLink - Getting Started]

Nosync tables in UltraLite
By adding the _nosync suffix to the table name, you control when to exclude the entire table from the upload
operation. You can use these non-synchronizing tables for client-specific persistent data that is not required
in the consolidated database. Other than being excluded from synchronization, you can use these tables in
exactly the same way as other tables in the UltraLite database.

If you create a table with a _nosync suffix, you can only rename that table so it retains the _nosync suffix.
For example, the following ALTER TABLE statement with a rename clause is not allowed because the new
name no longer ends in nosync:

ALTER TABLE purchase_comments_nosync
RENAME comments;

To correct this, the statement must be rewritten to include this suffix:

ALTER TABLE purchase_comments_nosync
RENAME comments_nosync;

You can alternatively use publications to achieve the same effect. See “Publications in
UltraLite” on page 137.

Allsync tables in UltraLite
By adding the _allsync suffix to the table name, you control whether to change the synchronization behavior
during upload so that it synchronizes all table data, even if nothing has changed since the previous
synchronization session.

Some UltraLite applications require user/client-specific data that you can store in allsync tables. Therefore,
if you upload the data in the table to a temporary table in the consolidated database, you can use the data to
control synchronization by your other scripts without having the data maintained in the consolidated
database. For example, you may want your UltraLite applications to indicate which channels or topics they
are interested in, and use this information to download the appropriate rows.

UltraLite clients

136 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Publications in UltraLite
Publications define a set of articles that describe the data to be synchronized. In general, each article can be
a whole table, or can define a subset of the data in a table. You can include an optional predicate (a WHERE
clause) if you want to define a subset of rows from a given table.

Publications are more flexible than the _nosync table suffix approach and allow you to have more granular
control. To synchronize data subsets of an UltraLite database separately, use multiple publications. You can
then combine publications with upload-only or download-only synchronization parameters to synchronize
high-priority changes efficiently.

Adding publications

You can add publications to the UltraLite database with Sybase Central, or from Interactive SQL. For
UltraLite synchronization, each article in a publication may include either a complete table, or may include
a WHERE clause (except with HotSync on Palm OS).

Notes
UltraLite publications do not support the definition of column subsets, nor the SUBSCRIBE BY clause. If
columns in an UltraLite table do not exactly match tables in a SQL Anywhere consolidated database, use
MobiLink scripts to resolve those differences.

You do not need to set a table synchronization order in a publication. If table order is important for your
deployment, you can set the table order when you synchronize the UltraLite database by setting the Table
Order synchronization parameter.

To publish data from an UltraLite database (Sybase Central)

1. Connect to the UltraLite database using the UltraLite plug-in.

2. Right-click the Publications folder and choose Add Publication.

3. Enter a name for the new publication. Click Next.

4. On the Tables tab, select a table from the Matching Tables list. Click Add. The table appears in the
Selected Tables list on the right.

5. Add additional tables.

6. If necessary, click the Where tab to specify the rows to be included in the publication. You cannot specify
column subsets. If you are using HotSync synchronization, do not specify a WHERE clause.

7. Click Finish.

To publish data from an UltraLite database (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
tables you want to publish.

Designing synchronization in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 137

See also
● “Download Only synchronization parameter” on page 159
● “Upload Only synchronization parameter” on page 174
● “Additional Parameters synchronization parameter” on page 155
● “Publishing data” [MobiLink - Client Administration]
● “UltraLite CREATE PUBLICATION statement” on page 462
● “Working with UltraLite publications” on page 83
● “Introduction to synchronization scripts” [MobiLink - Server Administration]

Table order in UltraLite
By setting the Table Order synchronization parameter you can control the order of synchronization
operations. If you want to specify a table order for synchronization, you can use the Table Order parameter
programmatically or as part of the ulsync utility during testing. The Table Order parameter specifies the
order of tables that are to be uploaded. See “Additional Parameters synchronization
parameter” on page 155.

You only need to explicitly set the table order if your UltraLite database has:

● Foreign key cycles. You must then list all tables that are part of a cycle.

● Different foreign key relationships from those used in the consolidated database.

Avoiding synchronization issues with foreign key cycles

Table order is particularly important for UltraLite databases that use foreign key cycles. A cycle occurs when
you link a series of tables together such that a circle is formed. However, due to complexities that arise when
cycles between the consolidated database and the UltraLite remote differ, foreign key cycles are not
recommended.

With foreign key cycles, you should order your tables so that operations for a primary table come before the
associated foreign table. A Table Order parameter ensures that the insert in the foreign table will have its
foreign key referential integrity constraint satisfied (likewise for other operations like delete).

In addition to table ordering, another method you can use to avoid synchronization issues is to check the
referential integrity before committing operations. If your consolidated database is a SQL Anywhere
database, set one of the foreign keys to check on commit. This ensures that foreign key referential integrity
is checked during the commit phase rather than when the operation is initiated. For example:

CREATE TABLE c (
 id INTEGER NOT NULL PRIMARY KEY,
 c_pk INTEGER NOT NULL
);
CREATE TABLE p (
 pk INTEGER NOT NULL PRIMARY KEY,
 c_id INTEGER NOT NULL,
 FOREIGN KEY p_to_c (c_id) REFERENCES c(id)
);
ALTER TABLE c
 ADD FOREIGN KEY c_to_p (c_pk)
 REFERENCES p(pk)
 CHECK ON COMMIT;

UltraLite clients

138 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If your consolidated database is from another database vendor, check to see if the database has similar
methods of checking referential integrity. If so, you should implement this method. Otherwise, you must
redesign table relationships to eliminate all foreign key cycles.

See also
● “Referential integrity and synchronization” [MobiLink - Getting Started]

Adding synchronization to your UltraLite application
In UltraLite, synchronization begins by opening a specific connection with the MobiLink server over the
configured communication stream (also known as a network protocol). In addition to synchronization support
for direct network connections, Palm OS devices also support HotSync synchronization, and Windows
Mobile devices also support ActiveSync synchronization.

Defining the connection
Each UltraLite remote that synchronizes with a MobiLink server does so over a network protocol. You set
the network protocol with the synchronization stream parameter. Supported network protocols include TCP/
IP, HTTP, HTTPS, and TLS. For the protocol you choose, you also need to supply stream parameters that
define other required connection information like the MobiLink server host and the port.

You must also supply the MobiLink user information and the synchronization script version with the
user_name and version parameters.

Defining the synchronization behavior

You can control synchronization behavior by setting various synchronization parameters. The way you set
parameters depends on the specific UltraLite interface you are using.

Important behaviors to consider include:

● Synchronization direction By default, synchronization is bi-directional. If you require one-way
synchronizations only, remember to use the appropriate upload_only or download_only parameter. By
performing one-way synchronizations, you minimize the synchronization time required. Also, with
download-only synchronization, you do not have to commit all changes to the UltraLite database before
synchronization. Uncommitted changes to tables not involved in synchronization are not uploaded, so
incomplete transactions do not cause problems.

To use download-only synchronization, you must ensure that rows overlapping with the download are
not changed locally. If any data is changed locally, synchronization fails in the UltraLite application with
a SQLE_DOWNLOAD_CONFLICT error.

● Concurrent changes during synchronization During the upload phase, UltraLite applications can
access UltraLite databases in a read-only fashion. During the download phase, read-write access is
permitted, but if an application changes a row that the download then attempts to change, the download
will fail and roll back. You can disable concurrent access to data during synchronization by setting the
disable_concurrency synchronization parameter.

Designing synchronization in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 139

To add synchronization code to your UltraLite application

1. Supply the necessary synchronization parameters and protocol options you require for the session as
fields of a synchronization information structure.

For example, using the C/C++ API, you add synchronization to the UltraLite application by setting
appropriate values in the ul_synch_info structure:

ul_synch_info info;
 // define a sync structure named "info"
 ULEnableTcpipSynchronization(&sqlca);
 // use a TCP/IP stream
 conn->InitSynchInfo(&info);
 // initialize the structure
 info.stream = ULSocketStream();
 // specify the Socket Stream
 info.stream_parms= UL_TEXT("host=myMLserver;port=2439");
 // set the MobiLink host information
 info.version = UL_TEXT("custdb 11.0");
 // set the MobiLink version information
 info.user_name = UL_TEXT("50");
 // set the MobiLink user name
 info.download_only =ul_true;
 // make the synchronization download-only

2. Initialize synchronization.

For direct TCP/IP-based synchronization, you would call an API-specific synchronization function.
These functions return a boolean indicating success or failure of the synchronization operation. If the
synchronization fails, you can examine detailed error status fields in another structure to get additional
error information.

For HotSync synchronization, you must use the ULSetSynchInfo function, supplying the ul_synch_info
structure as an argument. This attaches the ul_synch_info structure to the current database for use on a
subsequent synchronization.

For ActiveSync synchronization, you must catch the synchronization message from the ActiveSync
provider and use the DoSync function to call ULSynchronize.

3. Use an observer callback function if you want to report the progress of the synchronization to the user.

Tip
If you have an environment where DLLs fail either because the DLL is very large or the network
connection is unreliable, you may want to implement resumable downloads. See “Handling failed
downloads” [MobiLink - Server Administration] and “Resuming failed downloads” [MobiLink - Server
Administration].

UltraLite clients

140 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Using ActiveSync and HotSync with UltraLite” on page 145
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]
● “The upload and the download” [MobiLink - Getting Started]
● “UltraLite synchronization parameters and network protocol options” on page 153
● UltraLite.NET: “Synchronization in UltraLite applications” [UltraLite - .NET Programming]
● UltraLite C/C++: “Synchronizing data” [UltraLite - C and C++ Programming]
● UltraLite C/C++: “Adding HotSync synchronization to Palm applications” [UltraLite - C and C++

Programming]
● UltraLite C/C++: “Adding ActiveSync synchronization to your application” [UltraLite - C and C++

Programming]
● UltraLite for M-Business Anywhere: “Synchronizing data” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “Adding synchronization to your application” [UltraLite - C and C++

Programming]

Designing synchronization in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 141

Using MobiLink file transfers
All UltraLite libraries support the ability to transfer files with the MobiLink server, except M-Business
Anywhere. M-Business Anywhere does not need this functionality because it has its own mechanism for
file deployments or transfers (called channel synchronization).

For all other APIs, use the MobiLink file transfer mechanism when:

● You have multiple files that you need to deploy to multiple devices, particularly when corporate firewalls
are used as a security measure. Because MobiLink is already configured to handle synchronization
through these firewalls, the MLFileTransfer mechanism makes device provisioning for upgrades and
other types of file transfers very convenient.

● You have files that you want to target to a specific MobiLink user ID. This requires that you create one
or more user-specific directories on the MobiLink server for each user ID you require. Otherwise, if you
only have a single version of the file, you can use a default directory.

How file transfers work
You can employ one of two MobiLink-initiated file transfer mechanisms to download files to a device: run
the mlfiletransfer utility for desktop transfers, or call the appropriate function for the API you are using to
code your UltraLite application. Both approaches require that you:

1. Describe the transfer destination.

Whether you use the mlfiletransfer utility from the desktop, or whether you use the function appropriate
to your API, you must set the local path and file name of the file on the target device or desktop computer.
If none are supplied in the application or by the end user, then the source file name is assumed and the
file is stored in the current directory.

The destination directory of the target can vary depending on the device's operating system:

● On Palm OS, if your destination is an external storage media, you must prefix the destination of the
local path with vfs:.

If the destination is NULL, mlfiletransfer assumes that the file you need to download is a Palm record
database (a *.pdb file) to the device's record store.

The file name must follow file name conventions for Palm OS. See “Palm OS” on page 47.

● On Windows Mobile, if the destination is NULL, the file is stored in the root directory (\).

The file name must follow file name conventions for Windows Mobile. See “Windows
Mobile” on page 47.

● On the desktop, if the destination is NULL, the file is stored in the current directory.

The file name must follow file name conventions for the desktop system. See “Windows
desktop” on page 47.

2. Set the user credentials that allow the user to be identified and the correct file(s) to be downloaded.

This user name and password are separate from any database user ID and password, and serve to identify
and authenticate the application to the MobiLink server.

UltraLite clients

142 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Set the stream type you want to use, and define the parameters for the stream you require. These are the
same parameters supported by UltraLite for MobiLink synchronization. See “UltraLite synchronization
parameters and network protocol options” on page 153.

Most synchronization streams require parameters to identify the MobiLink server address and control
other behavior. If you set the stream type to a value that is invalid for the platform, the stream type is set
to TCP/IP.

4. Describe the required behavior for the transfer mechanism.

For example, you can set properties that allow this mechanism to force a download even when the file
already exists on the target and has not changed, or that allow partial downloads to be resumed. You can
also set whether you want the download progress to be monitored and reported upon.

5. Ensure the MobiLink server is running and has been started with the -ftr option.

6. Start the transfer, and, if applicable, monitor the download progress.

By displaying the download progress, the user can cancel and resume the download at a later time.

See also
● “-ftr option” [MobiLink - Server Administration]
● “MobiLink file transfer utility (mlfiletransfer)” [MobiLink - Client Administration]
● UltraLite for C/C++: “MLFileTransfer function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ULFileTransfer class” [UltraLite - .NET Programming]
● UltraLite for M-Business: Not supported

Using MobiLink file transfers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 143

144

Using ActiveSync and HotSync with UltraLite

Contents
HotSync on Palm OS ... 146
ActiveSync on Windows Mobile ... 150

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 145

HotSync on Palm OS
While you can synchronize data from a Palm OS device over an ethernet, Wi-Fi, or RAS connection, this
section describes how to configure your desktop and device for HotSync synchronization.

HotSync synchronization allows you to manage synchronization for all UltraLite databases on the Palm
device simultaneously from the user's desktop. HotSync synchronization is initiated externally by HotSync
when the device is connected to the desktop. This requires that you program your application for HotSync
synchronization. See “Adding HotSync synchronization to Palm applications” [UltraLite - C and C++
Programming].

If you were to synchronize UltraLite from an application directly (that is, without Hotsync), your end-users
need to open each application separately and synchronize each database in turn. You implement this
programmatically by initializing synchronization with an API specific synchronization function. See
“Adding TCP/IP, HTTP, or HTTPS synchronization to Palm applications” [UltraLite - C and C++
Programming].

The HotSync architecture

The HotSync architecture requires a consolidated database to which data to and from remote databases are
synchronized. The MobiLink server manages synchronization events among these databases. The UltraLite
Hotsync conduit manages synchronization events locally from the end user's desktop.

Using ActiveSync and HotSync with UltraLite

146 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You must use the HotSync Conduit Installation utility (ulcond11) to install a conduit and register each
UltraLite database. By registering each database with the conduit, you are configuring the UltraLite Hotsync
conduit to:

● Manage HotSync synchronization for all databases associated with an application (and therefore its
registered creator ID). The conduit must be installed for each applicable creator ID.

● Connect to each database with the appropriate connection string. If you need to register multiple
databases, use the -a option with the ulcond11 utility. This appends each additional connection string to
the one you define with the -c option.

This allows you to synchronize all databases simultaneously by initializing synchronization with HotSync
from the desktop.

See also
● “UltraLite HotSync Conduit Installation utility for Palm OS (ulcond11)” on page 263
● UltraLite C/C++ : “Developing UltraLite applications for the Palm OS” [UltraLite - C and C++

Programming]
● UltraLite for embedded SQL: “Adding synchronization to your application” [UltraLite - C and C++

Programming]
● UltraLite for M-Business Anywhere: “Synchronizing data” [UltraLite - M-Business Anywhere

Programming]

HotSync synchronization overview
1. Ensure that you have specified the required synchronization parameters in the application with the

ul_synch_info structure. These synchronization parameters are then set for HotSync synchronization by
calling the SetSynchInfo function. The synchronization parameters also include the network protocol
options you need to communicate with the MobiLink server. See “Setting protocol options for MobiLink
synchronization” on page 148.

2. When your UltraLite application is closed, the state of your UltraLite application is stored in a temporary
file, separately from the database. See “Maintaining state in UltraLite Palm applications (deprecated)”
[UltraLite - C and C++ Programming].

3. When you synchronize your Palm device, HotSync calls the UltraLite HotSync conduit on the desktop
for a specific creator ID.

4. The UltraLite HotSync conduit connects to all registered databases using the appropriate connection
string and then synchronizes them. Databases that do not call SetSynchInfo properly will fail to
synchronize.

5. When your application is launched, it loads the previously saved state of your UltraLite application. See
“Restoring state in UltraLite Palm applications (deprecated)” [UltraLite - C and C++ Programming].

See also
● “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● “SetSynchInfo function” [UltraLite - C and C++ Programming]

HotSync on Palm OS

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 147

Setting protocol options for MobiLink synchronization
Protocol options describe the connection from the UltraLite HotSync conduit to the MobiLink server.
Typically you would add this information as part of the application's synchronization code. However, you
can also enter the required parameters from HotSync, or even ulcond11.

If you are using the ul_synch_info structure, the argument has the following form:

stream=name;parameters

stream=name indicates the type of network protocol. The default value for the stream=name is TCPIP.

parameters is a set of network protocol options for use by the conduit, and has the same form as the
stream_parms argument for the protocol in use. For the given stream, the parameters adopts the same
defaults as the stream_parms argument for the protocol.

Note
If you do not supply protocol options, the conduit searches in the registry for the protocol name and protocol
options that you may have also supplied when you ran ulcond11.

If HotSync finds no valid network protocol, the default protocol and protocol options are used. This default
stream parameter setting is:

stream=tcpip;host=localhost

See also
● “Network protocol options for UltraLite synchronization streams” on page 178
● UltraLite.NET: “ULStreamType enumeration” [UltraLite - .NET Programming]
● UltraLite for embedded SQL: “ULSetSynchInfo function” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “SetSynchInfo function” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite for M-Business: “setStream method” [UltraLite - M-Business Anywhere Programming]

Debugging HotSync operations
A HotSync log file is maintained in the Palm-install\User-dir directory. By default, this file contains
information on:

● The time of the synchronization event.
● Status of each registered conduit.

You can obtain additional debugging information in this file by setting the UL_DEBUG_CONDUIT_LOG
environment variable. There are two levels you can choose from, depending on the amount of information
you need to capture:

UL_DEBUG_CONDUIT_LOG = 1 Record basic information. For example, synchronization parameters,
and registry locations.

Using ActiveSync and HotSync with UltraLite

148 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UL_DEBUG_CONDUIT_LOG = 2 Record additional UltraLite details, including input/output
operations.

Restart HotSync so the new setting takes effect.

See also
● “Introduction to SQL Anywhere environment variables” [SQL Anywhere Server - Database

Administration]

HotSync on Palm OS

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 149

ActiveSync on Windows Mobile
While you can synchronize data from a Windows Mobile device over an ethernet or Wi-Fi connection, this
section describes how to configure your desktop and device to use ActiveSync synchronization. If you want
to synchronize directly using one of the other alternative methods, you need to program your application to
do so using an appropriate synchronize function.

To use ActiveSync initiated synchronization requires that you:

● Register all applications that need to use ActiveSync initiated synchronization with ActiveSync.

● Have the ActiveSync provider installed on your desktop, and deployed to your device.

To determine which platforms the provider is supported on, see http://www.sybase.com/detail?
id=1002288.

The ActiveSync architecture

The following diagram shows the computing layers required by the ActiveSync architecture.

Notice that you must install the ActiveSync provider on your device in addition to your desktop. You can
only have a single ActiveSync provider on a single computer. However, if you have more than one UltraLite
application installed on a Windows Mobile device, you can register them with the same provider so they are
synchronized simultaneously.

Using ActiveSync and HotSync with UltraLite

150 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288
http://www.sybase.com/detail?id=1002288

See also
● UltraLite C/C++ : “Adding ActiveSync synchronization to your application” [UltraLite - C and C++

Programming]
● UltraLite for embedded SQL: “Adding synchronization to your application” [UltraLite - C and C++

Programming]
● UltraLite for M-Business Anywhere: “Synchronizing data” [UltraLite - M-Business Anywhere

Programming]

ActiveSync synchronization overview
1. ActiveSync begins a synchronization session.

2. The ActiveSync provider sends a synchronize notification message to the first registered application on
the device. The application is started if it is not yet running.

3. WndProc is invoked for each registered application.

4. Once the application has determined that this is the synchronize notification message from ActiveSync,
the application calls ULIsSynchronizeMessage to invoke the database synchronization procedure.

5. Once synchronization is complete, the application calls ULSignalSyncIsComplete to let the provider
know that it has finished synchronizing.

6. Steps two-five are repeated for each application that has been registered with the provider.

ActiveSync on Windows Mobile

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 151

152

UltraLite synchronization parameters and
network protocol options

Contents
Synchronization parameters for UltraLite .. 154
Network protocol options for UltraLite synchronization streams 178

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 153

Synchronization parameters for UltraLite
Synchronization parameters control the synchronization between an UltraLite database and the MobiLink
server. The way you set parameters depends on the specific UltraLite interface you are using. This chapter
describes the effects of the parameters, and provides links to other locations for information about how to
set them.

Note
The parameters described in this chapter only apply to UltraLite remote databases. To synchronize SQL
Anywhere remote databases, see “MobiLink SQL Anywhere client utility (dbmlsync)” [MobiLink - Client
Administration].

For API-specific details, see:

● UltraLite for Embedded SQL: “ULSynchronize function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ULSyncParms class” [UltraLite - .NET Programming]
● UltraLite C/C++: “Synchronize function” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Required parameters
The following parameters are required:

● Stream Type See “Stream Type synchronization parameter” on page 171.

● User Name See “User Name synchronization parameter” on page 175.

● Version See “Version synchronization parameter” on page 176.

If you do not set these parameters, the synchronization function throws an exception (for example,
SQLCode.SQLE_SYNC_INFO_INVALID or its equivalent).

Conflicting parameters
You can only specify one of these parameters:

● Download Only See “Download Only synchronization parameter” on page 159.

● Ping See “Ping synchronization parameter” on page 165.

● Upload Only See “Upload Only synchronization parameter” on page 174.

If you set more than one of these parameters to true, the synchronization function throws an exception (for
example, SQLCode.SQLE_SYNC_INFO_INVALID or its equivalent).

UltraLite synchronization parameters and network protocol options

154 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Additional Parameters synchronization parameter
This synchronization parameter allows an application to supply additional parameters that can not be readily
specified using any other predefined parameters. Some parameters that are seldom used are specified in this
parameter field.

The additional parameters are supplied as a string of keyword=value settings, separated with a semicolon.

Syntax
The syntax varies depending on the API you use.

Allowed values
The following properties can be specified as part of the additional parameters setting:

Property name Description

AllowDownloadDu-
pRows

Prevents errors from being raised when a synchronization encounters downloa-
ded rows with duplicate primary keys.

Set this property to 0 to raise errors and roll back the download; otherwise, set
to 1 to raise warnings and continue the download.

This property is only available in UltraLite C/C++.

CheckpointStore Adds additional checkpoints of the database during synchronization to limit da-
tabase growth during the synchronization process.

Set this property to 1 to enable this feature, which is beneficial for large down-
loads with many updates but slows down synchronization; otherwise, set to 0,
which is the default.

DisableConcurrency Disallows database access from other threads during synchronization during the
upload phase.

Set this property to 0 to allow concurrent database access; otherwise, set to 1.
By default, this property is set to 0.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 155

Property name Description

TableOrder Sets the table order required for priority synchronization if the UltraLite default
table ordering is not suitable for your deployment.

Set this property to a list of table names, arranged in the desired order for upload.
For UltraLite, use a comma delimited list; for ulsync, use a semicolon delimited
list. By default, the order is based on foreign key relationships. Typically, the
default is acceptable when the foreign keys on your consolidated database match
the UltraLite remote and there are no foreign key cycles.

Quote tables names with either single or double quotes. For example, "Custom-
er,Sales" and 'Customer,Sales' are both supported in UltraLite.

If you include tables that are not included in the synchronization, they are ig-
nored. Any tables that you do not list are appropriately sorted based on the for-
eign keys defined in the remote database.

The order of tables on the download is the same as those you define for upload.

You only need to explicitly set the table order if your UltraLite tables:

● Are part of foreign key cycles. You must then list all tables that are part of
a cycle.

● Have different foreign key relationships in the consolidated database.

See also
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AdditionalParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “setAdditionalParms method” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can set additional parameters as follows:

ul_synch_info info;
// ...
info.additional_parms = UL_TEXT(
 "AllowDownloadDupRows=1;
 CheckpointStore=1;
 DisableConcurrency=1;
 TableOrder=Customer,Sales"
);

Authentication Parameters synchronization parameter
Supplies parameters to authentication parameters in MobiLink events.

UltraLite synchronization parameters and network protocol options

156 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
The syntax varies depending on the API you use.

Remarks
Parameters may be a user name and password, for example.

If you use this parameter, you must also supply the number of parameters. See “Number of Authentication
Parameters parameter” on page 162.

Allowed values
An array of strings. Null is not allowed as a value for any of the strings, but you can supply an empty string.

See also
● “Number of Authentication Parameters parameter” on page 162
● “Authentication parameters” [MobiLink - Server Administration]
● “authenticate_parameters connection event” [MobiLink - Server Administration]
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AuthenticationParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “setAuthenticationParms method” [UltraLite - M-Business

Anywhere Programming]

Example
UltraLite for C/C++ applications can set the parameters as follows:

ul_char * Params[3] = { UL_TEXT("parm1"),
 UL_TEXT("parm2"),
 UL_TEXT("parm3") };
// ...
info.num_auth_parms = 3;
info.auth_parms = Params;

Authentication Status synchronization parameter
This field is set by a synchronization to report the status of MobiLink user authentication. The MobiLink
server provides this information to the client.

Syntax
The syntax varies depending on the API you use.

Allowed values
The allowed values are held in an interface-specific enumeration. For example, for C/C++ applications the
enumeration is as follows.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 157

Constant Value Description

UL_AUTH_STATUS_UNKNOWN 0 Authorization status is unknown, possibly
because the connection has not yet
synchronized.

UL_AUTH_STATUS_VALID 1 User ID and password were valid at the
time of synchronization.

UL_AUTH_STATUS_VALID_BUT_EX-
PIRES_SOON

2 User ID and password were valid at the
time of synchronization but will expire
soon.

UL_AUTH_STATUS_EXPIRED 3 Authorization failed: user ID or password
have expired.

UL_AUTH_STATUS_INVALID 4 Authorization failed: bad user ID or pass-
word.

UL_AUTH_STATUS_IN_USE 5 Authorization failed: user ID is already in
use.

Remarks
If a custom authenticate_user synchronization script at the consolidated database returns a different value,
the value is interpreted according to the rules given in an authenticate_user connection event. See
“authenticate_user connection event” [MobiLink - Server Administration].

If you are implementing a custom authentication scheme, the authenticate_user or authenticate_user_hashed
synchronization script must return one of the allowed values of this parameter.

The parameter is set by the MobiLink server, and so is read-only.

See also
● “MobiLink users” [MobiLink - Client Administration]
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AuthStatus property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.auth_status;

UltraLite synchronization parameters and network protocol options

158 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Authentication Value synchronization parameter
This field is set by a synchronization to report results of a custom MobiLink user authentication script. The
MobiLink server provides this information to the client.

Syntax
The syntax varies depending on the API you use.

Remarks
The values set by the default MobiLink user authentication mechanism are described in the authenticate_user
connection event and Authentication Status synchronization parameter.

The parameter is set by the MobiLink server, and so is read-only.

See also
● “authenticate_user connection event” [MobiLink - Server Administration]
● “authenticate_user_hashed connection event” [MobiLink - Server Administration]
● “Authentication Status synchronization parameter” on page 157
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AuthValue property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.auth_value;

Download Only synchronization parameter
Prevents changes from being uploaded from the UltraLite database during this synchronization.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

Conflicts with
Ping and Upload Only

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 159

Remarks
When you have remotes that are synchronized by download-only synchronization, you should regularly do
a full synchronization to reduce the amount of log that is scanned by the download-only synchronization.
Otherwise, the download-only synchronizations will take an increasingly long time to complete.

For ulsync When download-only synchronization occurs, ulsync does not upload any changes to the
data. Instead, it:

● Uploads information about the schema and the value stored in the progress counter.

● Ensures that changes on the remote are not overwritten during download-only synchronization.

ulsync performs these actions by scanning the UltraLite database log to watch for rows with pending
operations on the consolidated database. If ulsync detects a conflict, the download is rolled back and the
synchronization fails. You must then do a full synchronization (that is an upload and a download) to correct
this conflict.

See also
● “Upload Only synchronization parameter” on page 174
● “The progress counter” on page 126
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “DownloadOnly property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Examples
ulsync supports this parameter as an extended synchronization parameter:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;DownloadOnly=ON;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.download_only = ul_true;

Ignored Rows synchronization parameter
This field is set by a synchronization to indicate that rows were ignored by the MobiLink server during
synchronization because of absent scripts.

Syntax
The syntax varies depending on the API you use.

Allowed values
Boolean

UltraLite synchronization parameters and network protocol options

160 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
The parameter is read-only.

See also
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “IgnoredRows property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can access the parameter as follows:

ul_synch_info info;
// ...
res = info.ignored_rows;

Keep Partial Download synchronization parameter
Controls whether UltraLite holds on to the partial download rather than rolling back the changes, when a
download fails because of a communications error during synchronization.

Syntax
The syntax varies depending on the API you use.

Default
False, which indicates that UltraLite rolls back all changes after a failed download.

Allowed values
Boolean

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “Resume Partial Download synchronization parameter” on page 167
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “KeepPartialDownload property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.keep_partial_download = ul_true;

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 161

New Password synchronization parameter
Sets a new MobiLink password associated with the user name.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Allowed values
String

Remarks
The parameter is optional.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “NewPassword property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Example
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;NewMobiLinkPwd=mynewpassword;Stream=http
"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.new_password = UL_TEXT("mlnewpass");

Number of Authentication Parameters parameter
Supplies the number of authentication parameters being passed to authentication parameters in MobiLink
events.

Syntax
The syntax varies depending on the API you use.

Default
No parameters passed to a custom authentication script.

UltraLite synchronization parameters and network protocol options

162 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
The parameter is used together with Authentication Parameters to supply information to custom
authentication scripts.

See also
● “Authentication Parameters synchronization parameter” on page 156
● “authenticate_parameters connection event” [MobiLink - Server Administration]
● “Authentication parameters” [MobiLink - Server Administration]
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “AuthenticationParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.num_auth_parms = 3;

Observer synchronization parameter
Specifies a pointer to a callback function or event handler that monitors synchronization.

Syntax
The syntax varies depending on the API you use.

See also
● “User Data synchronization parameter” on page 175
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ULSyncProgressListener members” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “synchronizeWithParm method” [UltraLite - M-Business

Anywhere Programming]

Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.observer=callfunction;

Partial Download Retained synchronization parameter
This field is set by a synchronization to indicate whether UltraLite applied those changes that were
downloaded rather than rolling back the changes when a download fails because of a communications error
during synchronization.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 163

Syntax
The syntax varies depending on the API you use.

Allowed values
Boolean

Remarks
The parameter is set during synchronization if a download error occurs and a partial download was retained.

Partial downloads are retained only if Keep Partial Download is set to true. See “Keep Partial Download
synchronization parameter” on page 161.

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “Resume Partial Download synchronization parameter” on page 167
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “PartialDownloadRetained property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]

Example
Access the parameter as follows:

ul_synch_info info;
// ...
returncode=info.partial_download_retained;

Password synchronization parameter
Specifies the MobiLink password associated with the user name.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Allowed values
String

Remarks
The parameter is optional.

This MobiLink user name and password are different than any database user ID and password, and serve to
only identify and authenticate the application to the MobiLink server. See “User Name synchronization
parameter” on page 175.

If the MobiLink client already has a password, use the New Password parameter to change it. See “New
Password synchronization parameter” on page 162.

UltraLite synchronization parameters and network protocol options

164 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “MobiLink users” [MobiLink - Client Administration]
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “Password property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;MobiLinkPwd=mypassword;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.password = UL_TEXT("mypassword");

Ping synchronization parameter
Confirms communications between the UltraLite client and the MobiLink server. When this parameter is
set to true, no synchronization takes place.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

Remarks
When the MobiLink server receives a ping request, it connects to the consolidated database, authenticates
the user, and then sends the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If the ping does not succeed, it
issues an error message.

If the MobiLink user ID cannot be found in the ml_user system table and the MobiLink server is running
with the command line option -zu+, the MobiLink server adds the user to ml_user.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 165

The MobiLink server may execute the following scripts, if they exist, for a ping request:

● begin_connection
● authenticate_user
● authenticate_user_hashed
● authenticate_parameters
● end_connection

See also
● “-pi option” [MobiLink - Client Administration]
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “PingOnly property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;Ping=True;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.ping = ul_true;

Publications synchronization parameter
Specifies the publications to be synchronized.

Syntax
The syntax varies depending on the API you use. You can also use this parameter with ulsync.

Default
Synchronize all publications.

Remarks
When synchronizing in C/C++, set the publications synchronization parameter to a publication list: a
comma-separated list of publication names.

UltraLite synchronization parameters and network protocol options

166 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Publications in UltraLite” on page 137
● “Working with UltraLite publications” on page 83
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ULPublicationSchema class” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “PublicationSchema class” [UltraLite - M-Business Anywhere

Programming]

Example
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;Publications=UL_PUB_MYPUB1,UL_PUB_MYPUB2
;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.publications = UL_TEXT("Pubs1,Pubs3");

Resume Partial Download synchronization parameter
Resumes a failed download.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

Remarks
The synchronization does not upload changes; it only downloads those changes that were to be downloaded
in the failed download.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 167

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “Keep Partial Download synchronization parameter” on page 161
● “Partial Download Retained synchronization parameter” on page 163
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “ResumePartialDownload property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.resume_partial_download = ul_true;

Send Column Names synchronization parameter
Specifies that column names should be sent in the upload.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

Remarks
This option is used by the MobiLink server for direct row handling. When using direct row handling, you
should enable this option. Otherwise, it has no effect. See “Direct row handling” [MobiLink - Server
Administration].

See also
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “SendColumnNames property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

UltraLite synchronization parameters and network protocol options

168 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;SendColumnNames=true;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.send_column_names = ul_true;

Send Download Acknowledgement synchronization
parameter

Instructs the MobiLink server that the client will provide a download acknowledgement.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

See also
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “SendDownloadAck property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;SendDownloadACK=true;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.send_download_ack = ul_true;

Stream Error synchronization parameter
Provides a structure to hold communications error reporting information.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 169

Syntax
The syntax varies depending on the API you use.

Applies to
This parameter applies only to C/C++ interfaces.

Allowed values
The parameter has no default value, and must be explicitly set using one of the supported fields. The
ul_stream_error fields are as follows:

● stream_error_code Not required. The value is always 0.

For a listing of error numbers, see “MobiLink communication error messages” [Error Messages]. For
the error code suffixes, see install-dir\SDK\Include\sserror.h.

● system_error_code A system-specific error code. For more information about the error code, you
must look at your platform documentation. For Windows platforms, this is the Microsoft Developer
Network documentation.

The following are common system errors on Windows:

○ 10048 (WSAADDRINUSE) Address already in use.

○ 10053 (WSAECONNABORTED) Software caused connection abort.

○ 10054 (WSAECONNRESET) The other side of the communication closed the socket.

○ 10060 (WSAETIMEDOUT) Connection timed out.

○ 10061 (WSAECONNREFUSED) Connection refused. Typically, this means that the MobiLink
server is not running or is not listening on the specified port. See the Microsoft Developer Network
web site.

● error_string An application-provided error message. The string may or may not be empty. A non-
empty error_string provides information in addition to the stream_error_code. For instance, for a write
error (error code 9) the error string is a number showing how many bytes it was trying to write.

● error_string_length Deprecated. The size of the error string buffer.

Remarks
UltraLite applications other than the UltraLite C++ Component receive communications error information
as part of the Sync Result parameter. See “Sync Result synchronization parameter” on page 173.

The stream_error field is a structure of type ul_stream_error.

typedef struct {
 ss_error_code stream_error_code;
 asa_uint16 alignment;
 asa_int32 system_error_code;
 char error_string[UL_STREAM_ERROR_STRING_SIZE];
} ul_stream_error, * p_ul_stream_error;

The structure is defined in install-dir\SDK\Include\sserror.h.

Check for SQLE_COMMUNICATIONS_ERROR:

UltraLite synchronization parameters and network protocol options

170 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://msdn2.microsoft.com/en-us/library/ms740668.aspx
http://msdn2.microsoft.com/en-us/library/ms740668.aspx

Connection conn;
ul_synch_info info;
...
conn.InitSynchInfo(&info);
info.stream_error.error_string = error_buff;
info.stream_error.error_string_length =
 sizeof(error_buff);
if(!conn.Synchronize(&synch_info)){
 if(SQLCODE == SQLE_COMMUNICATIONS_ERROR){
 printf(error_buff);
 // more error handline here

See also
● “ul_synch_info_a struct” [UltraLite - C and C++ Programming]

Stream Type synchronization parameter
Sets the MobiLink network protocol to use for synchronization.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Remarks
This parameter is required. It has no default value.

Most network protocols require protocol options to identify the MobiLink server address and other behavior.
These options are supplied in the Stream Parameters parameter. See “Stream Parameters synchronization
parameter” on page 172.

When the network protocol requires an option, pass that option using the Stream Parameters parameter;
otherwise, set the Stream Parameters parameter to null.

The following stream types are available, but not all are available on all target platforms:

Network protocol Description

HTTP Synchronize over HTTP.

HTTPS Synchronize over HTTPS.

The HTTPS protocol uses TLS as its underlying security layer. It
operates over TCP/IP.

TCP/IP Synchronize over TCP/IP.

TLS Synchronize over TCP/IP with transport-layer security (TLS). TLS
secures client/server communications using digital certificates and
public-key cryptography.

For a list of supported platforms, see http://www.sybase.com/detail?id=1061806.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 171

http://www.sybase.com/detail?id=1061806

See also
● “Certificate Creation utility (createcert)” [SQL Anywhere Server - Database Administration]
● “Certificate Viewer utility (viewcert)” [SQL Anywhere Server - Database Administration]
● “Transport-layer security” [SQL Anywhere Server - Database Administration]
● “UltraLite Synchronization utility (ulsync)” on page 275
● “Network protocol options for UltraLite synchronization streams” on page 178
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “Stream property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Example
For UltraLite for C/C++ applications, set the parameter as follows:

Connection conn;
ul_synch_info info;
...
conn.InitSynchInfo(&info);
info.stream = "http";

Stream Parameters synchronization parameter
Sets options to configure the network protocol.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
Null

Allowed values
String

Remarks
This parameter is optional. It accepts a semicolon separated list of network protocol options. Each option is
of the form keyword=value, where the allowed sets of keywords depends on the network protocol.

See also
● “UltraLite Synchronization utility (ulsync)” on page 275
● “Network protocol options for UltraLite synchronization streams” on page 178
● UltraLite for C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “StreamParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

UltraLite synchronization parameters and network protocol options

172 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.stream_parms= UL_TEXT("host=myserver;port=2439");

Sync Result synchronization parameter
Reports the status of a synchronization.

Syntax
The syntax varies depending on the API you use.

Remarks
The parameter is set by UltraLite, and is read-only.

The C/C++ interface receives this information in separate parameters as part of a ul_synch_info struct.
Otherwise, this information is defined as a compound parameter containing a variety of information in
separate fields:

● Authentication Status Reports success or failure of authentication. See “Authentication Status
synchronization parameter” on page 157.

● Ignored Rows Reports the number of ignored rows. See “Ignored Rows synchronization
parameter” on page 160.

● Stream Error information The Stream Error information includes a Stream Error Code, Stream Error
Context, Stream Error ID, and Stream Error System. See “Stream Error synchronization
parameter” on page 169.

● Upload OK Reports the success or failure of the upload phase. See “Upload OK synchronization
parameter” on page 173.

See also
● UltraLite.NET: “ULSyncParms class” [UltraLite - .NET Programming]
● UltraLite C/C++: “ul_synch_result struct” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for embedded SQL: “ULGetSynchResult function” [UltraLite - C and C++ Programming]

Upload OK synchronization parameter
This field is set by a synchronization to report the status of data uploaded to the MobiLink server.

Syntax
The syntax varies depending on the API you use.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 173

Remarks
The parameter is set by UltraLite, and so is read-only.

After synchronization, the parameter holds true if the upload was successful, and false otherwise. You can
check this parameter if there was a synchronization error, to know whether data was successfully uploaded
before the error occurred.

See also
● UltraLite C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “UploadOK property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncResult class” [UltraLite - M-Business Anywhere

Programming]

Example
UltraLite for C/C++ applications can access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.upload_ok;

Upload Only synchronization parameter
Indicates that there should be no downloads in the current synchronization, which can save communication
time, especially over slow communication links.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default
False

Allowed values
Boolean

Conflicts with
Download Only, Ping, and Resume Partial Download

Remarks
When set to true, the client waits for the upload acknowledgement from the MobiLink server, after which
it terminates the synchronization session successfully.

UltraLite synchronization parameters and network protocol options

174 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Designing synchronization in UltraLite” on page 133
● “Download Only synchronization parameter” on page 159
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “UploadOnly property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;UploadOnly=True;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.upload_only = ul_true;

User Data synchronization parameter
Makes application-specific information available to the synchronization observer.

Applies to
C/C++ applications only. Other components, such as UltraLite.NET, do not require a separate parameter to
handle user data and so have no User Data parameter.

Syntax
The syntax varies depending on the API you use.

Remarks
When implementing the synchronization observer callback function or event handler, you can make
application-specific information available by providing information using the User Data parameter.

See also
● “Observer synchronization parameter” on page 163
● UltraLite C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]

User Name synchronization parameter
Required. A string that the MobiLink server uses for authentication purposes.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 175

Remarks
This parameter is required. Empty strings and NULL strings are universally rejected.

The parameter has no default value, and must be explicitly set.

The user name does not have to be unique when a remote ID is used. See “Remote IDs” [MobiLink - Client
Administration].

This MobiLink user name and password are separate from any database user ID and password, and serves
only to identify and authenticate the application to the MobiLink server. See “Password synchronization
parameter” on page 164.

For a user to be part of a synchronization system, you must register the user name with the MobiLink server.
The user name is stored in the name column of the ml_user MobiLink system table in the consolidated
database.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “UltraLite user authentication” [MobiLink - Client Administration]
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “UserName property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;ScriptVersion=2;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.user_name= UL_TEXT("remoteA");

Version synchronization parameter
Defines the consolidated database version.

Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Allowed values
String

Remarks
This parameter is required. Empty strings and NULL strings are universally rejected.

UltraLite synchronization parameters and network protocol options

176 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Each synchronization script in the consolidated database is marked with a version string. For example, there
may be two different download_cursor scripts, identified by different version strings.

See also
● “Script versions” [MobiLink - Server Administration]
● “UltraLite Synchronization utility (ulsync)” on page 275
● UltraLite C/C++: “ul_synch_info_a struct” [UltraLite - C and C++ Programming]
● UltraLite.NET: “Version property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “SyncParms class” [UltraLite - M-Business Anywhere

Programming]

Examples
ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;ScriptVersion=2;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_synch_info info;
// ...
info.version = UL_TEXT("default");

Synchronization parameters for UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 177

Network protocol options for UltraLite
synchronization streams

You must set the network protocol in your application. Each UltraLite database that synchronizes with a
MobiLink server does so over a network protocol. Available network protocols include TCP/IP, HTTP,
HTTPS, and TLS. Support is also provided for HotSync synchronization on the Palm OS and for ActiveSync
notification on Windows Mobile.

For the network protocol you set, you can choose from a set of corresponding protocol options to ensure that
the UltraLite application can locate and properly communicate with the MobiLink server. The network
protocol options provide information such as addressing information (host and port) and protocol-specific
information. Refer to the table below to determine which options you can use for the stream type you are
using.

For a list of protocol options, see “MobiLink client network protocol option summary” [MobiLink - Client
Administration].

See also
● “Configuring UltraLite clients to use transport-layer security” [SQL Anywhere Server - Database

Administration]
● “Deploy UltraLite with TLS-enabled synchronization” on page 60
● “MobiLink client network protocol options” [MobiLink - Client Administration]
● “Stream Parameters synchronization parameter” on page 172
● -x option in “UltraLite Synchronization utility (ulsync)” on page 275

Setting the synchronization stream and options
You can provide the information needed to locate the MobiLink server in your application by setting the
Stream Parameters parameter. See “Stream Parameters synchronization parameter” on page 172.

However, if you are using HotSync, and if you did not specify a Stream Parameter value, or even if you
specified the value as NULL, you can enter the required parameters from the HotSync Manager. See “Setting
protocol options for MobiLink synchronization” on page 148.

For information about including stream parameters in your UltraLite synchronization call, see:

● UltraLite for C/C++: “Adding HotSync synchronization to Palm applications” [UltraLite - C and C++
Programming]

● UltraLite for UltraLite.NET: “StreamParms property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “setStreamParms method” [UltraLite - M-Business Anywhere

Programming]

zlib compression note
zlib compression is not supported on Palm OS.

UltraLite synchronization parameters and network protocol options

178 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite Database Reference

This section provides a reference for UltraLite database properties, options, connection parameters, and utilities.

UltraLite creation parameters ... 181
UltraLite database properties ... 213
UltraLite database options ... 219
UltraLite connection parameters .. 225
UltraLite utilities .. 247
UltraLite system tables .. 289

UltraLite creation parameters

Contents
UltraLite case creation parameter ... 183
UltraLite checksum_level creation parameter ... 184
UltraLite collation creation parameter .. 186
UltraLite date_format creation parameter .. 187
UltraLite date_order creation parameter .. 190
UltraLite fips creation parameter ... 192
UltraLite max_hash_size creation parameter .. 194
UltraLite nearest_century creation parameter ... 196
UltraLite obfuscate creation parameter ... 198
UltraLite page_size creation parameter ... 199
UltraLite precision creation parameter ... 201
UltraLite scale creation parameter ... 203
UltraLite time_format creation parameter .. 205
UltraLite timestamp_format creation parameter .. 207
UltraLite timestamp_increment creation parameter ... 210
UltraLite utf8_encoding creation parameter .. 211

Creation parameters are used to configure the UltraLite database when you first create it. You can only
change these settings by recreating the database.

You can specify creation parameters when creating a database using the ulcreate, ulinit, or ulload utility,
and from the supported client applications.

Boolean creation parameters are turned on with YES, Y, ON, TRUE, T, or 1, and are turned off with any of
NO, N, OFF, FALSE, F, and 0. The parameters are case insensitive.

UltraLite creation parameters are specified in a semicolon separated string. For example:

ulcreate -o "case=respect;utf_encoding=1" -y test.udb

Alternatively, you can specify multiple -o options.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 181

See also
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● “Accessing creation parameter values” on page 34

UltraLite creation parameters

182 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite case creation parameter
Sets the case sensitivity of string comparisons in the UltraLite database.

Syntax
{ ulcreate | ulinit | ulload } -o case=value;...

Allowed values
Ignore, Respect

Default
Ignore

Remarks
The case sensitivity of data is reflected in tables, indexes, and so on. By default, UltraLite databases perform
case-insensitive comparisons, although data is always held in the case in which you enter it. Identifiers (such
as table and column names) and user IDs are always case insensitive, regardless of the database case
sensitivity. Passwords are always case sensitive, regardless of the case sensitivity of the database. See
“Strings in UltraLite” on page 304.

The results of comparisons on strings, and the sort order of strings, depend in part on the case sensitivity of
the database.

There are some collations where particular care is required when assuming case insensitivity of identifiers.
In particular, Turkish collations have a case-conversion behavior that can cause unexpected and subtle errors.
The most common error is that a system object containing a letter i or I is not found.

You cannot change the case of an existing database. Instead, you must create a new database.

From Sybase Central, you can set the case sensitivity in any wizard that creates a database. On the New
Database Collation And Character Set page, select the Use Case-sensitive String Comparisons option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

See also
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

UltraLite case creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 183

UltraLite checksum_level creation parameter
Sets the level of checksum validation for the database.

Syntax
{ ulcreate | ulinit | ulload } -o checksum_level=value;...

Allowed values
0, 1, 2

Default
0

Remarks

Checksums are used to detect offline corruption on pages stored to disk, flash, or memory, which can help
reduce the chances of other data being corrupted as the result of a bad critical page. Depending on the level
you choose, UltraLite calculates and records a checksum for each database page before it writes the page to
storage.

If the calculated checksum does not match the stored checksum for a page read from storage, the page has
been modified or became corrupted during the storage/retrieval of the page. If a checksum validation fails,
when the database loads a page, UltraLite stops the database and reports a fatal error. This error cannot be
corrected; you must re-create your UltraLite database and report the database failure to iAnywhere.

If you unload and reload an UltraLite database with checksums enabled, the checksum level is preserved
and restored.

The following values are supported for the checksum_level:

● 0 Do not add checksums to database pages.

● 1 Add checksums to important database pages, such as indexes and synchronization status pages, but
not row pages.

● 2 Add checksums to all database pages.

From Sybase Central, you can configure the use of checksums in any wizard that creates a database. On the
New Database Storage Settings page, select the Checksum Level For Database Pages option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

UltraLite creation parameters

184 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● checksum_level database property: “UltraLite database properties” on page 213
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “UltraLite optimization strategies” on page 121
● “UltraLite performance and optimization” on page 107
● “UltraLite page_size creation parameter” on page 199
● “Connecting to an UltraLite database” on page 43

UltraLite checksum_level creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 185

UltraLite collation creation parameter
Sets the database collation.

Syntax
{ ulcreate | ulinit | ulload } -o collation=value;...

Allowed values
String

Default
1252Latin1

Remarks
For a list of supported collations in UltraLite, see “UltraLite supported collations” on page 37.

You can also view a list of supported collations in UltraLite by executing the following command:

ulcreate -l

From Sybase Central, you can set the collation in any wizard that creates a database. On the New Database
Collation And Character Set page, choose either the default collation (1252Latin1), or an alternate one
from the list.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

See also
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● “UltraLite character sets” on page 36
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

UltraLite creation parameters

186 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite date_format creation parameter
Sets the format for dates retrieved from the database.

Syntax
{ ulcreate | ulinit | ulload } -o date_format=value;...

Allowed values
String

Default
YYYY-MM-DD (this corresponds to ISO date format specifications)

Remarks
DATE data type values are represented in a format set by the date_format creation parameter. Date values
can, however, also be represented by strings. Before the value can be retrieved, it must be assigned to a
string.

UltraLite builds a date from date parts. Date parts can include the year, the month, the day of the month, the
day of the week, the day of the year, the hour, the minute, and the second (and parts thereof).

ISO (YYYY-MM-DD) is the default date format and order. For example, "7th of January 2006" in this
international format is written: 2006-01-07. If you do not want to use the default ISO date format and order,
you must specify a different format and order for these date parts.

The format is a string using the following symbols:

Symbol Description

yy Two digit year.

yyyy Four digit year.

mm Two digit month, or two digit minutes if following a colon (as in hh:mm).

mmm[m...] Character short form for months—as many characters as there are "m"s. An
uppercase M causes the output to be made uppercase.

d Single digit day of week, (0 = Sunday, 6 = Saturday).

dd Two digit day of month. A leading zero is not required.

ddd[d...] Character short form for day of the week. An uppercase D causes the output to
be made uppercase.

hh Two digit hours. A leading zero is not required.

nn Two digit minutes. A leading zero is not required.

UltraLite date_format creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 187

Symbol Description

ss[.ss..] Seconds and parts of a second.

aa Use 12 hour clock. Indicate times before noon with AM.

pp Use 12 hour clock. Indicate times after noon with PM.

jjj Day of the year, from 1 to 366.

You cannot change the date format of an existing database. Instead, you must create a new database.

Allowed values are constructed from the symbols listed in the table above. Each symbol is substituted with
the appropriate data for the date that is being formatted.

For the character short forms, the number of letters specified is counted. The A.M. or P.M. indicator (which
could be localized) is also truncated, if necessary, to the number of bytes corresponding to the number of
characters specified.

Controlling output case For symbols that represent character data (such as mmm), you can control the
case of the output as follows:

● Type the symbol in uppercase to have the format appear in uppercase. For example, MMM produces
JAN.

● Type the symbol in lowercase to have the format appear in lowercase. For example, mmm produces jan.

● Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is
being used. For example, in English, typing Mmm produces May, while in French it produces mai.

Controlling zero-padding
For symbols that represent numeric data, you can control zero-padding with the case of the symbols:

● Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

● Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

From Sybase Central, you can set the date format in any wizard that creates a database. On the New database
creation parameters page, select the Date Format option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

UltraLite creation parameters

188 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “UltraLite date_order creation parameter” on page 190
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

Example
The following table illustrates date_format settings, together with the output from a SELECT CURRENT
DATE statement, executed on Thursday May 21, 2001.

date_format syntax used Result returned

yyyy/mm/dd/ddd 2001/05/21/thu

jjj 141

mmm yyyy may 2001

mm-yyyy 05-2001

UltraLite date_format creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 189

UltraLite date_order creation parameter
Controls the interpretation of date formats.

Syntax
{ ulcreate | ulinit | ulload } -o date_order=value;...

Allowed values
MDY, YMD, DMY

Default
YMD (this corresponds to ISO date format specifications)

Remarks
DATE data type values are represented in a format set by the date_format creation parameter. Date values
can, however, also be represented by strings. Before the value can be retrieved, it must be assigned to a
string.

UltraLite builds a date from date parts. Date parts can include the year, the month, the day of the month, the
day of the week, the day of the year, the hour, the minute, and the second (and parts thereof).

ISO (YYYY-MM-DD) is the default date format and order. For example, "7th of January 2006" in this
international format is written: 2006-01-07. If you do not want to use the default ISO date format and order,
you must specify a different format and order for these date parts.

You cannot change the date order of an existing database. Instead, you must create a new database.

From Sybase Central, you can set the date order in any wizard that creates a database. On the New database
creation parameters page, select the Date Order option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

See also
● “UltraLite date_format creation parameter” on page 187
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

Example
Different values determine how the date of 10/11/12 is translated:

UltraLite creation parameters

190 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax used Translation

MDY Oct 11 1912

YMD Nov 12 1910

DMY Nov 10 1912

UltraLite date_order creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 191

UltraLite fips creation parameter
Controls whether the new database should be encrypted using AES or AES_FIPS strong encryption.

Syntax
{ ulcreate | ulinit | ulload } -o fips=value;KEY=value;...

Allowed values
Yes (use AES_FIPS), No (use AES)

Default
Yes

Remarks
The only way to change the type of database encryption is to recreate the database with the appropriate fips
or obfuscate creation parameter. You can change the database encryption key by specifying a new encryption
key on the Connection object. Users connecting to the database must supply the key each time they connect.

From Sybase Central, you can configure strong encryption in any wizard that creates a database. On the
New Database Storage Settings page, select the AES FIPS Algorithm option. You must also set and
confirm the encryption key.

On Palm OS, use the ULEnableFipsStrongEncryption method.

On all other platforms, set this parameter as one of the creation parameters for the create database method
on the database manager class.

To deploy a FIPS-enabled database, copy all appropriate libraries for your platform. See “Deploy UltraLite
with AES_FIPS database encryption” on page 59.

UltraLite creation parameters

192 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Strong encryption” [SQL Anywhere Server - Database Administration]
● “Securing UltraLite databases” on page 40
● “UltraLite obfuscate creation parameter” on page 198
● “UltraLite DBKEY connection parameter” on page 233
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● “Saving, retrieving, and clearing encryption keys on Palm OS” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite C/C++: “ULChangeEncryptionKey function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite.NET: “ChangeEncryptionKey method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for M-Business Anywhere: “changeEncryptionKey method” [UltraLite - M-Business

Anywhere Programming]
● “Accessing creation parameter values” on page 34

UltraLite fips creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 193

UltraLite max_hash_size creation parameter
Sets the maximum default index hash size in bytes.

Syntax
{ ulcreate | ulinit | ulload } -o max_hash_size=value;...

Allowed values
0 to 32 bytes

Default
4 bytes

Remarks
A hash is an optional part of an index entry that is stored in the index page. The hash transforms the actual
row values for the indexed columns into a numerical equivalent (a key), while still preserving ordering for
that index. The size of the key, and how much of the actual value UltraLite hashes, is determined by the hash
size you set.

A row ID allows UltraLite to locate the row for the actual data in the table. A row ID is always part of an
index entry. If you set the hash size to 0 (disable index hashing), then the index entry only contains this row
ID. For all other hash sizes, the hash key, which can contain all or part of the transformed data in that row,
is stored along with the row ID in the index page. You can improve query performance on these indexed
columns because UltraLite may not always need to find, load, and unpack data before it can compare actual
row values.

Determining an appropriate default database hash size requires that you evaluate the tradeoff between query
efficiency and database size: the higher the maximum hash value, the larger the database size grows.

UltraLite only uses as many bytes as required for the data type(s) of the column(s), up to the maximum value
specified by this parameter. The default hash size is only used if you do not set a size when you create the
index. If you set the default hash size to 0, UltraLite does not hash row values.

You cannot change the hash size for an existing index. When creating a new index, you can override the
default value with the UltraLite Create Index Wizard in Sybase Central, or with the WITH MAX SIZE
clause of a CREATE INDEX or a CREATE TABLE statement.

If you declare your columns as DOUBLE, FLOAT, or REAL, no hashing is used. The hash size is always
ignored.

From Sybase Central, you can set the maximum hash size in any wizard that creates a database. On the New
Database Storage Settings page, select the Maximum Hash Size For Indexes option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

UltraLite creation parameters

194 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “UltraLite performance and optimization” on page 107
● “Working with UltraLite indexes” on page 79
● “Choosing an optimal hash size” on page 113
● “UltraLite CREATE INDEX statement” on page 460
● “UltraLite CREATE TABLE statement” on page 468
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

UltraLite max_hash_size creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 195

UltraLite nearest_century creation parameter
Controls the interpretation of two-digit years in string-to-date conversions.

Syntax
{ ulcreate | ulinit | ulload } -o nearest_century=value;...

Allowed values
Integer, between 0 and 100, inclusive

Default
50

Remarks
UltraLite automatically converts a string into a date when a date value is expected, even if the year is
represented in the string by only two digits. In the case of a two-digit date, you need to set the appropriate
rollover value. Two digit years less than the value are converted to 20yy, while years greater than or equal
to the value are converted to 19yy.

Choosing an appropriate rollover value typically is determined by:

● The use of two-digit dates Otherwise, nearest century conversion isn't applicable. Two-digit years
less than the nearest_century value you set are converted to 20yy, while years greater than or equal to
the value are converted to 19yy.

It is recommended that you store four-digit dates to avoid issues with incorrect conversions. See “Using
unambiguous dates and times” [SQL Anywhere Server - SQL Reference].

● Consolidated database compatibility For example, the historical SQL Anywhere behavior is to
add 1900 to the year. Adaptive Server Enterprise behavior is to use the nearest century, so for any year
where value yy is less than 50, the year is set to 20yy.

● What the date represents: past event or future event Birth years are typically those that would
require a lower rollover value since they occur in the past. So for any year where yy is less than 20, the
year should be set to 20yy. However, if the date is used as an expiry date, then having a higher value
would be a logical choice, since the date is occurring in the future.

You cannot change the nearest century of an existing database. Instead, you must create a new database.

From Sybase Central, you can configure the nearest century setting in any wizard that creates a database.
On the New database creation parameters page, select the Nearest Century option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

UltraLite creation parameters

196 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Ambiguous string to date conversions” [SQL Anywhere Server - SQL Reference]
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

UltraLite nearest_century creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 197

UltraLite obfuscate creation parameter
Controls obfuscation of data in the database. Obfuscation is a form of simple encryption.

Syntax
{ ulcreate | ulinit | ulload } -o obfuscate=value;...

Allowed values
Boolean.

Default
0 (databases are not obfuscated)

Remarks
Simple encryption is equivalent to obfuscation and makes it more difficult for someone using a disk utility
to look at the file to decipher the data in your database. Simple encryption does not require a key to encrypt
the database.

If you want to make the database inaccessible without the correct encryption key, you must use strong
encryption. See “UltraLite fips creation parameter” on page 192.

From Sybase Central, you can set obfuscation in any wizard that creates a database. On the New Database
Storage Settings page, select the Use Simple Encryption (Obfuscation) option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

See also
● “Simple encryption” [SQL Anywhere Server - Database Administration]
● “Securing UltraLite databases” on page 40
● “UltraLite fips creation parameter” on page 192
● “UltraLite DBKEY connection parameter” on page 233
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++ : “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

UltraLite creation parameters

198 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite page_size creation parameter
Defines the database page size.

Syntax
{ ulcreate | ulinit | ulload } -o page_size=size[k];...

Allowed values
1k, 2k, 4k, 8k, 16k

Default
4k

Remarks
UltraLite databases are stored in pages, and all I/O operations are carried out a page at a time. The page size
you choose can affect the performance or size of the database.

If you use any value other than those listed, the size is changed to the next larger size. If you do not specify
a unit, bytes are assumed.

If your platform has limited dynamic memory, consider using a smaller page size to limit the effect on
synchronization memory requirements.

When choosing a page size, you should keep the following guidelines in mind:

● Database size Larger databases usually benefit from a larger page size. Larger pages hold more
information and therefore use space more effectively—particularly if you insert rows that are slightly
more than half a page in size. The larger the page, the less page swapping that is required.

● Number of rows Because a row (excluding BLOBs) must fit on a page, the page size determines
how large the largest packed row can be, and how many rows you can store on each page. In some cases,
reading one page to obtain the values of one row may have the side effect of loading the contents of the
next few rows into memory. See “Row packing and table definitions” on page 70.

● Query types In general, smaller page sizes are likely to benefit queries that retrieve a relatively small
number of rows from random locations. By contrast, larger pages tend to benefit queries that perform
sequential table scans.

● Cache size Large page sizes may require larger cache sizes. When your cache cannot hold enough
pages, performance suffers as UltraLite begins swapping frequently-used pages to disk. See “UltraLite
CACHE_SIZE connection parameter” on page 226.

● Index entries Page size also affects indexes. The larger the database page, the more index entries it
can hold. See “Working with UltraLite indexes” on page 79.

● Device memory Small pages are particularly useful if your database must run on small devices with
limited memory. For example, 1 MB of memory can hold 1000 pages that are each 1 KB in size, but
only 250 pages that are 4 KB in size.

You cannot change the page size of an existing database. Instead, you must create a new database.

UltraLite page_size creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 199

From Sybase Central, you can set the page size in any wizard that creates a database. On the New Database
Storage Settings page, select the appropriate byte value.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

See also
● “UltraLite optimization strategies” on page 121
● “Row packing and table definitions” on page 70
● “UltraLite case creation parameter” on page 183
● “UltraLite CACHE_SIZE connection parameter” on page 226
● “UltraLite RESERVE_SIZE connection parameter” on page 244
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

Example
To set the page size of the database to 8 KB, specify page_size=8k or page_size=8192:

ulcreate test.udb -o page_size=8k

UltraLite creation parameters

200 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite precision creation parameter
Specifies the maximum number of digits in decimal point arithmetic results.

Syntax
{ ulcreate | ulinit | ulload } -o precision=value;...

Allowed values
Integer, between 1 and 127, inclusive

Default
30

Remarks
The position of the decimal point is determined by the precision and the scale of the number: precision is
the total number of digits to the left and right of the decimal point; scale is the minimum number of digits
after the decimal point when an arithmetic result is truncated to the maximum precision.

Choosing an appropriate decimal point position is typically determined by:

● The type of arithmetic procedures you perform Multiplication, division, addition, subtraction,
and aggregate functions can all have results that exceed the maximum precision.

For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a
DECIMAL(17,4). If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is a
DECIMAL(15,4). If scale is 2, the result is a DECIMAL(15,2). In both cases, there is a possibility of an
overflow error.

● The relationship between scale and precision values The scale sets the number of digits in the
fractional part of the number, and cannot be negative or greater than the precision.

You cannot change the precision of an existing database. Instead, you must create a new database.

If you are using an Oracle database as the consolidated database, all UltraLite remotes and the Oracle
consolidated database must have the same precision value.

From Sybase Central, you can set the precision in any wizard that creates a database. On the New database
creation parameters page, select the Precision option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

UltraLite precision creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 201

See also
● “UltraLite scale creation parameter” on page 203
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

UltraLite creation parameters

202 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite scale creation parameter
Specifies the minimum number of digits after the decimal point when an arithmetic result is truncated to the
maximum precision.

Syntax
{ ulcreate | ulinit | ulload } -o scale=value;...

Allowed values
Integer, between 0 and 127, inclusive

Default
6

Remarks
The position of the decimal point is determined by the precision and the scale of the number: precision is
the total number of digits to the left and right of the decimal point; scale is the minimum number of digits
after the decimal point when an arithmetic result is truncated to the maximum precision.

Choosing an appropriate decimal point position is typically determined by:

● The type of arithmetic procedures you perform Multiplication, division, addition, subtraction,
and aggregate functions can all have results that exceed the maximum precision.

For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a
DECIMAL(17,4). If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is a
DECIMAL(15,4). If scale is 2, the result is a DECIMAL(15,2). In both cases, there is a possibility of an
overflow error.

● The relationship between scale and precision values The scale sets the number of digits in the
fractional part of the number, and cannot be negative or greater than the precision.

You cannot change the scale of an existing database. Instead, you must create a new database.

From Sybase Central, you can set the scale in any wizard that creates a database. On the New database
creation parameters page, select the Scale option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

UltraLite scale creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 203

See also
● “UltraLite precision creation parameter” on page 201
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

Example
When a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a DECIMAL(17,4).
If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is DECIMAL(15,4). If scale is
2, the result is a DECIMAL(15,2). In both cases, there is a possibility of overflow.

UltraLite creation parameters

204 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite time_format creation parameter
Sets the format for times retrieved from the database.

Syntax
{ ulcreate | ulinit | ulload } -o time_format=value;...

Allowed values
String (composed of the symbols listed below)

Default
HH:NN:SS.sss

Remarks
UltraLite writes times from time parts you set with the time_format creation parameter. Time parts can
include hours, minutes, seconds, and milliseconds.

Time values can also be represented by strings. Before a time value can be retrieved, it must be assigned to
a string variable.

ISO (HH:MM:SS) is the default time format. For example, "midnight" in this international format is written:
00:00:00. If you do not want to use the default ISO time format, you must specify a different format and
order for these time parts.

The format is a string using the following symbols:

Symbol Description

HH Two digit hours (24 hour clock).

NN Two digit minutes.

MM Two digit minutes if following a colon (as in hh:mm).

SS[.s...] Two digit seconds plus optional fraction.

You cannot change the time format of an existing database. Instead, you must create a new database.

Each symbol is substituted with the appropriate data for the time that is being formatted. Any format symbol
that represents character rather than digit output can be put in uppercase, which causes the substituted
characters to be in uppercase. For numbers, using mixed case in the format string suppresses leading zeros.

You can control zero-padding with the case of the symbols:

● Type the symbol in same-case (such as HH or hh) to allow zero padding. For example, HH:NN:SS could
produce 01:01:01.

● Type the symbol in mixed case (such as Hh or hH) to suppress zero padding. For example, Hh:Nn:Ss
could produce 1:1:1.

UltraLite time_format creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 205

From Sybase Central, you can set the time format in any wizard that creates a database. On the New database
creation parameters page, select the Time Format option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

See also
● “UltraLite timestamp_format creation parameter” on page 207
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

Example
If a transaction was executed at 3:30 P.M. and you used the default time_format syntax of HH:NN:SS.sss,
the result would be:

15:30:55.0

UltraLite creation parameters

206 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite timestamp_format creation parameter
Sets the format for timestamps that are retrieved from the database.

Syntax
{ ulcreate | ulinit | ulload } -o timestamp_format=value;...

Allowed values
String

Default
YYYY-MM-DD HH:NN:SS.SSS

Remarks
UltraLite creates a timestamp from date and time parts that you set with the date_format and time_format
creation parameters. Together, date and time total seven parts (year, month, day, hour, minute, second, and
millisecond).

Timestamp values can also be represented by strings. Before it can be retrieved, a timestamp value must be
assigned to a string variable.

Typically timestamp columns ensure that data integrity is maintained when synchronizing with a
consolidated database. Timestamps help identify when concurrent data updates have occurred among
multiple remote databases by tracking the last time that each user synchronized.

Tip
Ensure that the consolidated database and the UltraLite remote maintain timestamps and timestamp
increments to the same resolution. By setting the these creation parameters to match that of the consolidated
database, you can help avoid spurious inequalities.

The format is a string using the following symbols:

Symbol Description

YY Two digit year.

YYYY Four digit year.

MM Two digit month, or two digit minutes if following a colon (as in hh:mm).

MMM[m...] Character short form for months—as many characters as there are "m"s. An
uppercase M causes the output to be made uppercase.

D Single digit day of week, (0 = Sunday, 6 = Saturday).

DD Two digit day of month. A leading zero is not required.

UltraLite timestamp_format creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 207

Symbol Description

DDD[d...] Character short form for day of the week. An uppercase D causes the output to
be made uppercase.

HH Two digit hours. A leading zero is not required.

NN Two digit minutes. A leading zero is not required.

SS[.ss..] Seconds and parts of a second.

AA Use 12 hour clock. Indicate times before noon with AM.

PP Use 12 hour clock. Indicate times after noon with PM.

JJJ Day of the year, from 1 to 366.

You cannot change the timestamp format of an existing database. Instead, you must create a new database.

Allowed values are constructed from the symbols listed in the table above. Each symbol is substituted with
the appropriate data for the date that is being formatted.

For the character short forms, the number of letters specified is counted. The A.M. or P.M. indicator (which
could be localized) is also truncated, if necessary, to the number of bytes corresponding to the number of
characters specified.

For symbols that represent character data (such as mmm), you can control the case of the output as follows:

● Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM produces
JAN.

● Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm produces
jan.

● Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is
being used. For example, in English, typing Mmm produces May, while in French it produces mai.

For symbols that represent numeric data, you can control zero-padding with the case of the symbols:

● Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

● Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

From Sybase Central, you can set the timestamp format in any wizard that creates a database. On the New
database creation parameters page, select the Timestamp Format option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

UltraLite creation parameters

208 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “UltraLite timestamp_increment creation parameter” on page 210
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34
● “Timestamp-based downloads” [MobiLink - Server Administration]
● “Concurrency in UltraLite” on page 13

Example
If a transaction was executed on Friday May 12, 2006 at 3:30 PM and you used the default timestamp_format
syntax of YYYY-MM-DD HH:NN:SS.SSS, the result would be:

2006-05-12 15:30:55.0

UltraLite timestamp_format creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 209

UltraLite timestamp_increment creation parameter
Limits the resolution of timestamp values. As timestamps are inserted into the database, UltraLite truncates
them to match this increment.

Syntax
{ ulcreate | ulinit | ulload } -o timestamp_increment=value;...

Allowed values
1 to 60000000 microseconds

Default
1 microsecond

Remarks

1000000 microseconds equals 1 second.

You cannot change the timestamp increment of an existing database. Instead, you must create a new database.

This increment is useful when a DEFAULT TIMESTAMP column is being used as a primary key or row
identifier.

From Sybase Central, you can set the timestamp increment in any wizard that creates a database. On the
New database creation parameters page, select the Timestamp Increment option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

See also
● “UltraLite timestamp_format creation parameter” on page 207
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34
● “Timestamp-based downloads” [MobiLink - Server Administration]
● “Concurrency in UltraLite” on page 13

Example
To store a value such as '2000/12/05 10:50:53:700', set this creation parameter to 100000. This value truncates
the timestamp after the first decimal place in the seconds component.

UltraLite creation parameters

210 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite utf8_encoding creation parameter
Encodes data using the UTF-8 format, 8-bit multibyte encoding for Unicode.

Syntax
{ ulcreate | ulinit | ulload } -o utf8_encoding=value;...

Values
Boolean.

Default
0 (databases are not UTF-8 encoded)

Remarks
UTF-8 characters are represented by one to four bytes. For other multibyte collations, one or two bytes are
used. For all provided multibyte collations, characters of two or more bytes are considered to be alphabetic.
This means that you can use these characters in identifiers without requiring double quotes.

By encoding your database in UTF-8, UltraLite uses the UTF8BIN collation to sort characters. The UTF8BIN
character set is not specific to any particular native language; no specific code page is associated with this
character set. So, you can synchronize data from multiple native languages to the same consolidated database.
If you try synchronizing UTF-8 encoded characters into a consolidated table that does not support Unicode,
a user error is reported.

From Sybase Central, you can choose UTF-8 encoding in any wizard that creates a database. On the New
database collation and character set page, select the Yes, use UTF-8 as the database character set option.

From a client application, set this parameter as one of the creation parameters for the create database method
on the database manager class.

See also
● “UltraLite platform requirements for character set encoding” on page 37
● “UltraLite character sets” on page 36
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite Initialize Database utility (ulinit)” on page 269
● “UltraLite Load XML to Database utility (ulload)” on page 272
● UltraLite for embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite for C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “createDatabase method” [UltraLite - M-Business Anywhere

Programming]
● “Accessing creation parameter values” on page 34

UltraLite utf8_encoding creation parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 211

212

UltraLite database properties

Contents
Accessing UltraLite database properties ... 218

Property Description

case Returns the status of the case sensitivity feature. Returns On if the
database is case sensitive. Otherwise, it returns Off. The value of
this property is set when the database is created, and can only be
changed by creating a new database. See “UltraLite case creation
parameter” on page 183.

char_set Returns the CHAR character set of the database. The character set
used by the database is determined by the database's collation se-
quence and whether the data is UTF-8 encoded.

See also:

● “UltraLite utf8_encoding creation parameter” on page 211
● “UltraLite collation creation parameter” on page 186

The value of this property is set when the database is created, and
can only be changed by creating a new database.

checksum_level Returns the level of checksum validation in the database, one of 0
(do not add checksums), 1 (add checksums only to important pa-
ges), or 2 (add checksums to all pages). The value of this property
is set when the database is created, and can only be changed by
creating a new database. See “UltraLite checksum_level creation
parameter” on page 184.

collation Returns the name of the database's collation sequence. The value
of this property is set when the database is created, and can only
be changed by creating a new database. See “UltraLite collation
creation parameter” on page 186.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 213

Property Description

commit_flush_count Returns the value of the commit_flush_count option that sets a
commit count threshold. See “UltraLite commit_flush_count op-
tion [temporary]” on page 220.

commit_flush_timeout Returns the value of the commit_flush_timeout option that sets a
time interval threshold. See “UltraLite commit_flush_timeout op-
tion [temporary]” on page 221.

conn_count Returns the number of connections to the database. The value is
dynamic: it can vary depending on how many connections cur-
rently exist. UltraLite supports up to fourteen concurrent database
connections.

date_format Returns the date format the database uses for string conversions.
The value of this property is set when the database is created, and
can only be changed by creating a new database. See “UltraLite
date_format creation parameter” on page 187.

date_order Returns the date order the database uses for string conversions.
The value of this property is set when the database is created, and
can only be changed by creating a new database. See “UltraLite
date_order creation parameter” on page 190.

UltraLite database properties

214 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

encryption Returns the type of database encryption, one of None, Simple,
AES, or AES_FIPS.

The encryption used by the database is determined by whether or
not you have configured strong encryption (AES or AES_FIPS)
and the DBKEY creation parameter, or obfuscation (simple en-
cryption).

The only time this property can change is when the value is orig-
inally None (that is, neither fips nor obfuscation is used) and you
then change the encryption key by specifying a new encryption
key on the Connection object by calling the correct function or
method for your API. In this case, the value would change to AES
because the fips creation parameter cannot be set after the database
has been created. See:

● UltraLite C/C++: “ULChangeEncryptionKey function” [Ul-
traLite - C and C++ Programming]

● UltraLite.NET: “ChangeEncryptionKey method” [UltraLite
- .NET Programming]

● UltraLite for M-Business Anywhere: “changeEncryptionKey
method” [UltraLite - M-Business Anywhere Programming]

● “Securing UltraLite databases” on page 40
● “UltraLite fips creation parameter” on page 192
● “UltraLite obfuscate creation parameter” on page 198
● “UltraLite DBKEY connection parameter” on page 233

file Returns the name of the database root file for the current connec-
tion, the including path. This is the value specified in the DBF
connection parameter value. See:

● UltraLite C/C++: “GetDatabaseProperty function” [UltraLite
- C and C++ Programming]

● UltraLite.NET: “GetDatabaseProperty method” [UltraLite
- .NET Programming]

● UltraLite for M-Business Anywhere: “getDatabaseProperty
method” [UltraLite - M-Business Anywhere Programming]

● “UltraLite DBF connection parameter” on page 231

global_database_id Returns the value of the global_database_id option used for global
autoincrement columns. See “UltraLite global_database_id op-
tion” on page 222.

max_hash_size Returns the default number of maximum bytes to use for index
hashing. This property can be set on a per-index basis. See “Ul-
traLite max_hash_size creation parameter” on page 194.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 215

Property Description

ml_remote_id Returns the value of the ml_remote_id option that uniquely iden-
tifies the database for MobiLink synchronization. See “UltraLite
ml_remote_id option” on page 223.

name Returns the name (or alias) of the database for the current connec-
tion. The name returned matches the DBN connection parameter
value. If you did not use the DBN connection parameter, the name
returned is the database file without the path and extension.

See also:

● “UltraLite DBN connection parameter” on page 234
● “UltraLite DBF connection parameter” on page 231

nearest_century Returns the nearest century the database uses for string conver-
sions. The value of this property is set when the database is created,
and can only be changed by creating a new database. See “Ultra-
Lite nearest_century creation parameter” on page 196.

page_size Returns the page size of the database, in bytes. The value of this
property is set when the database is created, and can only be
changed by creating a new database. See “UltraLite page_size
creation parameter” on page 199.

precision Returns the floating-point precision the database uses for string
conversions. The value of this property is set when the database is
created, and can only be changed by creating a new database. See
“UltraLite precision creation parameter” on page 201.

scale Returns the minimum number of digits after the decimal point
when an arithmetic result is truncated to the maximum PRECI-
SION during string conversions by the database. The value of this
property is set when the database is created, and can only be
changed by creating a new database. See “UltraLite scale creation
parameter” on page 203.

time_format Returns the time format the database uses for string conversions.
The value of this property is set when the database is created, and
can only be changed by creating a new database. See “UltraLite
time_format creation parameter” on page 205.

timestamp_format Returns the timestamp format the database uses for string conver-
sions. The value of this property is set when the database is created,
and can only be changed by creating a new database. See “Ultra-
Lite timestamp_format creation parameter” on page 207.

UltraLite database properties

216 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

timestamp_increment Returns the minimum difference between two unique timestamps,
in microseconds. The value of this property is set when the data-
base is created, and can only be changed by creating a new data-
base. See “UltraLite timestamp_increment creation parame-
ter” on page 210.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 217

Accessing UltraLite database properties
UltraLite provides a set of properties that you can retrieve for a database.

You can change the settings of any database property that does not correspond to a database creation
parameter.

To browse UltraLite database properties (Sybase Central)

1. Connect to the database.

2. Right-click the database and choose Properties.

In the Database Properties window, database properties are listed on the General and Extended
Information tabs. On the Extended Information tab, the database properties are listed alphabetically
by the property name. To sort database properties by the value, click the Value column.

3. If the database properties have changed since you started browsing them, click Refresh.

To get the value of a database property (C/C++)

● In C/C++, call the GetDatabaseProperty function.

For example, to get the value of the conn_count property, call:

GetDatabaseProperty(ul_database_property_id conn_count)

To get the value of the char_set property, call:

GetDatabaseProperty(ul_database_property_id char_set)

See also
● UltraLite C/C++: “GetDatabaseProperty function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “GetDatabaseProperty method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “getDatabaseProperty method” [UltraLite - M-Business Anywhere

Programming]

UltraLite database properties

218 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite database options

Contents
UltraLite commit_flush_count option [temporary] .. 220
UltraLite commit_flush_timeout option [temporary] ... 221
UltraLite global_database_id option .. 222
UltraLite ml_remote_id option .. 223
Change UltraLite persistent database option settings ... 224

Options are used to configure database behavior. Database options can be set or modified at any time. In
UltraLite, options can be persistent or temporary. Persistent options are stored in the database in the sysuldata
system table. Temporary option settings only persist while the database is running.

Option values are set by using the SET OPTION statement. For example, the following statement sets the
global_database_id option to 100:

SET OPTION global_database_id=100;

You can obtain the current setting of a database option by querying the value of the corresponding database
property or by using the appropriate get database property method. For example, to obtain the current setting
of the commit_flush_timeout database option, execute the following SQL statement:

SELECT DB_PROPERTY ('commit_flush_timeout');

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 219

UltraLite commit_flush_count option [temporary]
Sets a commit count threshold, after which a commit flush is performed.

Allowed values
Integer

Default
10

Remarks
Use 0 to disable the transaction count. When the transaction count is disabled, the number of commits is
unlimited when a flush is triggered.

You must set this option each time you start the database if it is required.

Both commit_flush_count and commit_flush_timeout are temporary database options. You must set these
options each time you start a database. They persist as long as the database continues to run. They are only
required when you set COMMIT_FLUSH=grouped as part of a connection string.

When you set this option and set the COMMIT_FLUSH connection parameter to grouped in your connection
string, either threshold triggers a flush. When the flush occurs, UltraLite sets the counter and the timer back
to 0. Then, both the counter and timer are monitored until one of these thresholds is subsequently reached.

An important consideration for setting the commit flush options is how much the delay to flush committed
transactions poses a risk to the recoverability of your data. There is a slight chance that a transaction may
be lost, even though it has been committed. If a serious hardware failure occurs after a commit, but before
the transaction is flushed to storage, the transaction is rolled back on recovery. A longer delay can increase
UltraLite performance. You must choose an appropriate count threshold with care.

To set the commit_flush_count option from a client application, set the option using the set database option
function for the programming interface you are using.

See also
● “Flushing single or grouped transactions” on page 119
● “UltraLite commit_flush_timeout option [temporary]” on page 221
● “UltraLite COMMIT_FLUSH connection parameter” on page 229
● “UltraLite SET OPTION statement” on page 488
● UltraLite for C/C++: “SetDatabaseOption function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULSetDatabaseOptionString function” [UltraLite - C and C++

Programming]

UltraLite database options

220 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite commit_flush_timeout option [temporary]
Sets a time interval threshold, after which a grouped commit flush is performed.

Allowed values
Integer, in milliseconds

Default
10000 milliseconds

Remarks
Use 0 to disable the time threshold.

You must set this option each time you start database, if it is required.

Both commit_flush_count and commit_flush_timeout are temporary database options. You must set these
options each time you start a database. They persist as long as the database continues to run. They are only
required when you set COMMIT_FLUSH=grouped as part of a connection string.

If you set this option in addition to the commit_flush_timeout option and if you have set the
COMMIT_FLUSH connection parameter to grouped, either threshold triggers a flush. When the flush
occurs, UltraLite sets the counter and the timer back to 0. Then, both the counter and timer are monitored
until one of these thresholds is subsequently reached.

An important consideration for setting the commit flush options is how much the delay to flush committed
transactions poses a risk to the recoverability of your data. There is a slight chance that a transaction may
be lost, even though it has been committed. If a serious hardware failure occurs after a commit, but before
the transaction is flushed to storage, the transaction is rolled back on recovery. A longer delay can increase
UltraLite performance. You must choose an appropriate timeout threshold with care.

To set the commit_flush_timeout option from a client application, set it using the set database option function
for the programming interface you are using.

See also
● “UltraLite commit_flush_count option [temporary]” on page 220
● “UltraLite COMMIT_FLUSH connection parameter” on page 229
● “UltraLite SET OPTION statement” on page 488
● UltraLite for C/C++: “SetDatabaseOption function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULSetDatabaseOptionString function” [UltraLite - C and C++

Programming]

UltraLite commit_flush_timeout option [temporary]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 221

UltraLite global_database_id option
Sets the database identification number.

Allowed values
Unique, non-negative integer

Default
The range of default values for a particular global autoincrement column is pn + 1 to p(n + 1), where p is
the partition size of the column and n is the global database identification number.

Remarks
To maintain primary key uniqueness when synchronizing with a MobiLink server, the global ID sets a starting
value for GLOBAL AUTOINCREMENT columns. The global ID must be set before default values can be
assigned. If a row is added to a table and does not have a value set already, UltraLite generates a value for
the column by combining the global_database_id value and the partition size. See “Using global
autoincrement” [MobiLink - Server Administration].

When deploying an application, you must assign a different identification number to each database for
synchronization with the MobiLink server. You can change the global ID of an existing database at any time.

You can also set this option using the ulinfo utility:

ulinfo -g ID ...

To set the global_database_id option from a client application, use the set database ID function for the
programming interface you are using.

See also
● “Change UltraLite persistent database option settings” on page 224
● “UltraLite Information utility (ulinfo)” on page 265
● “UltraLite SET OPTION statement” on page 488
● “Using GLOBAL AUTOINCREMENT in UltraLite” on page 129
● UltraLite for C/C++: “SetDatabaseID function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULSetDatabaseID function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “DatabaseID property” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “setDatabaseID method” [UltraLite - M-Business Anywhere

Programming]

Example
To autoincrement UltraLite database columns from 3001 to 4000, set the global ID to 3.

SET OPTION global_database_id="3";

UltraLite database options

222 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite ml_remote_id option
A unique identifier in UltraLite that is used for MobiLink synchronization.

Allowed values
Any value that uniquely identifies the database for MobiLink synchronization.

Default
Null

Remarks
The remote ID is a unique identifier for an UltraLite remote that is used for MobiLink synchronization. The
MobiLink remote ID is initially set to NULL. During the first synchronization, the MobiLink server sets the
remote ID to a GUID. However, the remote ID can be any string that has meaning to you, provided that the
string remains unique among all remote MobiLink clients. This uniqueness requirement is always enforced.

The remote ID stores the synchronization progress for the MobiLink user name. By including a unique
remote ID, user names are no longer required to be unique. The remote ID becomes particularly useful when
you have multiple MobiLink users synchronizing the same UltraLite client database. In this case, your
synchronization scripts should reference the remote ID and not just the user name.

You can also set this option using the ulinfo utility:

ulinfo -r ID ...

To set the ml_remote_id option from a client application, set it using the set database option function for the
programming interface you are using.

See also
● “Change UltraLite persistent database option settings” on page 224
● “Remote IDs” [MobiLink - Client Administration]
● “Grant REMOTE permission” [SQL Remote]
● “UltraLite Information utility (ulinfo)” on page 265
● “UltraLite SET OPTION statement” on page 488
● UltraLite for C/C++: “SetDatabaseOption function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “ULSetDatabaseOptionString function” [UltraLite - C and C++

Programming]
● UltraLite.NET: “SetDatabaseOption method” [UltraLite - .NET Programming]
● “UltraLite clients” on page 125
● “UltraLite user authentication” [MobiLink - Client Administration]
● “User Name synchronization parameter” on page 175
● and “Password synchronization parameter” on page 164

UltraLite ml_remote_id option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 223

Change UltraLite persistent database option settings
You can view and change the setting of persistent database options from Sybase Central. Temporary UltraLite
database options cannot be viewed or set from Sybase Central.

To browse or modify persistent UltraLite database options (Sybase Central)

1. Connect to the database.

2. Right-click the database and choose Options.

3. If you want to set or reset an option, type a new value in the Value field.

4. Click Set Now or Reset Now to commit the change.

See also
● “UltraLite SET OPTION statement” on page 488
● “Accessing UltraLite database properties” on page 218
● “DB_PROPERTY function [System]” on page 380
● UltraLite C/C++: “GetDatabaseProperty function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “GetDatabaseProperty method” [UltraLite - .NET Programming]
● UltraLite for M-Business Anywhere: “getDatabaseProperty method” [UltraLite - M-Business Anywhere

Programming]

UltraLite database options

224 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite connection parameters

Contents
UltraLite CACHE_SIZE connection parameter .. 226
UltraLite CE_FILE connection parameter .. 227
UltraLite COMMIT_FLUSH connection parameter .. 229
UltraLite CON connection parameter .. 230
UltraLite DBF connection parameter ... 231
UltraLite DBKEY connection parameter .. 233
UltraLite DBN connection parameter ... 234
UltraLite MIRROR_FILE connection parameter .. 235
UltraLite NT_FILE connection parameter .. 237
UltraLite ORDERED_TABLE_SCAN connection parameter [deprecated] 239
UltraLite PALM_ALLOW_BACKUP connection parameter 240
UltraLite PALM_FILE connection parameter ... 241
UltraLite PWD connection parameter .. 243
UltraLite RESERVE_SIZE connection parameter ... 244
UltraLite START connection parameter ... 245
UltraLite UID connection parameter .. 246

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 225

UltraLite CACHE_SIZE connection parameter
Defines the size of the database cache.

Syntax
CACHE_SIZE=number{ k | m | g }

Default
The default cache size is determined by the amount of memory available on your system and the size of the
database.

Remarks
If the cache size is not specified, or if you set the size to 0, the default size is used. If your testing shows the
need for better performance, you should increase the cache size.

By default, the size is in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or gigabytes,
respectively.

If you exceed the maximum cache size, it is automatically replaced with your platform's upper cache size
limit. Increasing the cache size beyond the size of the database does not provide any performance
improvement, and a large cache size can interfere with the number of other applications you can use.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “UltraLite optimization strategies” on page 121
● “Opening UltraLite connections with connection strings” on page 48
● “UltraLite page_size creation parameter” on page 199
● “UltraLite RESERVE_SIZE connection parameter” on page 244
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment sets the cache size to 2 MB.

"CACHE_SIZE=2m"

UltraLite connection parameters

226 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite CE_FILE connection parameter
Names the new database file when creating a database. When opening a connection to an existing database,
this connection parameter identifies the database.

Syntax
CE_FILE=path\ce-db

Default
● DBF connection parameter.

● If you do not set a value for the DBF connection parameter or this connection parameter, then the default
value is \UltraLiteDB\ulstore.udb.

Remarks
You should use the CE_FILE connection parameter for UltraLite client applications that use the same
connection string to connect to a Microsoft Windows Mobile device, and other platforms.

The CE_FILE connection parameter takes precedence over the DBF connection parameter. If you are
connecting from an UltraLite administration tool, or your connection object only connects to a Windows
Mobile database, use the DBF connection parameter.

The value of CE_FILE must meet the file name requirements for Windows Mobile. If you include an absolute
path to the database, then all directories must exist before setting the path to this file. UltraLite does not
create them automatically.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 48
● “Specifying file paths in an UltraLite connection parameter” on page 47
● “Precedence of connection parameters for UltraLite administration tools” on page 49
● “UltraLite DBF connection parameter” on page 231
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following example creates a new connection and identifies different database files for the Windows
desktop and Windows Mobile platforms:

UltraLite CE_FILE connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 227

Set Connection = DatabaseMgr.OpenConnection("DBF=d:\Dbfile.udb;CE_FILE=\myapp
\MyDB.udb")

UltraLite connection parameters

228 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite COMMIT_FLUSH connection parameter
Determines when committed transactions are flushed to storage after a commit call. If no calls to commit
are made by the UltraLite application, no flush can occur.

Syntax
COMMIT_FLUSH={ immediate | grouped | on_checkpoint }

Default
immediate

Remarks
This connection parameter defines which transactions are recovered following a hardware failure or crash.
You can group logical autocommit operations as a single recovery point.

By grouping these operations, you can improve UltraLite performance, but at the expense of data
recoverability. There is a slight chance that a transaction may be lost—even though it has been committed
—if a hardware failure or crash occurs after a commit, but before the transaction is flushed to storage.

The following parameters are supported:

● immediate Committed transactions are flushed to storage immediately upon a commit call before the
commit operation completes.

● grouped Committed transactions are flushed to storage on a commit call, but only after a threshold
you configure has been reached. You can configure either a transaction count threshold with the
commit_flush_count database option or a time-based threshold with the commit_flush_timeout database
option.

If set, both the commit_flush_count and the commit_flush_timeout options act as possible triggers for
the commit flush; the first threshold that is met triggers the flush. When the flush occurs, UltraLite sets
the counter and the timer back to 0. Then, both the counter and timer are monitored, until one of these
thresholds is reached again.

● on_checkpoint Committed transactions are flushed to storage on a checkpoint operation. You can
perform a checkpoint with any of the following:

○ The CHECKPOINT statement. APIs that do not have a checkpoint method must use this SQL
statement.

○ The ULCheckpoint function for UltraLite embedded SQL.
○ The Checkpoint method on a connection object in a C++ component.

See also
● “Flushing single or grouped transactions” on page 119
● “UltraLite commit_flush_count option [temporary]” on page 220
● “UltraLite commit_flush_timeout option [temporary]” on page 221
● “UltraLite CHECKPOINT statement” on page 458
● UltraLite embedded SQL: “ULCheckpoint function” [UltraLite - C and C++ Programming]
● UltraLite C++: “Checkpoint function” [UltraLite - C and C++ Programming]

UltraLite COMMIT_FLUSH connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 229

UltraLite CON connection parameter
Names a connection so that switching to it is easier in multi-connection applications.

Syntax
CON=name

Default
No connection name.

Remarks
The CON connection parameter is global to the application.

Do not use this connection parameter unless you are going to establish and switch between two or more
concurrent connections.

The connection name is not the same as the database name.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 48
● “UltraLite DBN connection parameter” on page 234
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment sets the first connection name to MyFirstCon.

"CON=MyFirstCon"

UltraLite connection parameters

230 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite DBF connection parameter
Names the new database file when creating a database. When opening a connection, this connection
parameter indicates which database file you want to load and connect to.

Syntax
DBF=ul-db

Default
● On desktop platforms If you do not specify an NT_FILE or DBF value, UltraLite sets the file name

to \UltraLiteDB\ulstore.udb.

● On Windows Mobile If you do not specify a CE_FILE or DBF value, UltraLite sets the file name to
\UltraLiteDB\ulstore.udb.

● On Palm OS If you do not specify a PALM_FILE or DBF value, UltraLite sets the file name to
ulstore.udb.

Remarks

If you are connecting to multiple databases on different devices from a single connection string, you can use
the following parameters to name platform-specific alternates:

● CE_FILE
● PALM_FILE
● NT_FILE

If specified, these platform-specific connection parameters take precedence over DBF.

The value of DBF must meet the file name requirements for the platform.

Palm OS You cannot deploy databases to VFS volumes using the Palm install tool. Instead, you need to
copy the database directly onto the media with a card reader, or some other tool.

If you are creating a file with the DBF parameter, you must name the database with a .pdb extension. This
database name is used while administering the Palm OS database on the desktop. Administration tools and
utilities can connect to the database with the DBF connection parameter and the database with the .pdb
extension. Once you deploy the file to the device however, the .pdb extension is dropped. Your application
must then connect to the database using the Palm_FILE parameter and no extension.

For example, if you name a file CustDB.pdb use DBF=CustDB.pdb with your administration tools desktop.
Then, when the database is deployed to the device the application connects to the same database with
PALM_FILE=CustDB.

Windows Mobile If you are deploying to a Windows Mobile device, UltraLite utilities and wizards can
administer an UltraLite database on an attached Windows Mobile device. To identify a file on a Windows
Mobile device, you must specify the required absolute path, and use the wce:\ prefix.

Any leading or trailing spaces in parameter values are ignored. The value cannot include leading single
quotes, leading double quotes, or semicolons.

UltraLite DBF connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 231

See also
● “Opening UltraLite connections with connection strings” on page 48
● “Specifying file paths in an UltraLite connection parameter” on page 47
● “Precedence of connection parameters for UltraLite administration tools” on page 49
● “UltraLite DBN connection parameter” on page 234
● “UltraLite CE_FILE connection parameter” on page 227
● “UltraLite PALM_FILE connection parameter” on page 241
● “UltraLite NT_FILE connection parameter” on page 237
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Examples
To connect to the database, MyULdb.udb, installed in the desktop directory c:\mydb, use the following
connection string:

"DBF=c:\mydb\MyULdb.udb"

To connect to the same database that is deployed to the UltraLite folder of the attached Windows Mobile
device, use the following connection string:

"DBF=wce:\UltraLite\MyULdb.udb"

UltraLite connection parameters

232 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite DBKEY connection parameter
Provides an encryption key for the database when creating a new database. When opening a connection to
an existing database, this connection parameter provides the encryption key for the database.

Syntax
DBKEY=string

Default
No key is provided.

Remarks
If you do not specify the correct encryption key for the database, the connection fails.

If a database is created using an encryption key, the database file is strongly encrypted using either the AES
128-bit or AES FIPS algorithm. By using strong encryption, you have increased security against skilled and
determined attempts to gain access to the data. However, the use of strong encryption has a significant
performance impact.

On Palm OS, applications are automatically shut down by the system whenever a user switches to a different
application. However, you can program your UltraLite client to circumvent the need to re-enter the key each
time a user switches back to the application again.

Any leading or trailing spaces in parameter values are ignored. The value cannot include leading single
quotes, leading double quotes, or semicolons.

See also
● UltraLite for C/C++: “Saving, retrieving, and clearing encryption keys on Palm OS” [UltraLite - C and

C++ Programming]
● “Opening UltraLite connections with connection strings” on page 48
● “Securing UltraLite databases” on page 40
● “UltraLite obfuscate creation parameter” on page 198
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite DBKEY connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 233

UltraLite DBN connection parameter
Differentiates databases by name when applications connect to more than one database.

Syntax
DBN=db-name

Default
● Palm OS The creator ID.

● All other platforms The file name without the path and extension, if they exist. Cannot exceed 16
characters in length.

Remarks
UltraLite sets the database name after the database has been opened. Client applications can then connect
to this database via its name instead of its file.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 48
● “UltraLite DBF connection parameter” on page 231
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
Use the following parameters to connect to the running UltraLite database named Kitchener:

DBN=Kitchener;DBF=cities.udb

UltraLite connection parameters

234 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite MIRROR_FILE connection parameter
Specifies the name of the database mirror file to which all database writes will be issued (at the same time
as they are to the main database file).

Syntax
MIRROR_FILE=path\mirrorfile-db

Default
None.

Remarks
UltraLite provides basic database file mirroring to improve fault tolerance on potentially unreliable storage
systems. This is accomplished using the mirror file. All database writes are issued to the mirror file at the
same time as they are to the main database file (write overhead is therefore doubled; read overhead is not
affected). If a corrupt page is read from the database file, the page is recovered by reading from the mirror
file.

Mirroring is supported on all platforms using a file-based store, including Palm VFS, but not on Palm record
databases.

When the mirror_file= option is specified when you start the database, UltraLite will open the named file
and verify that it matches the main database file before continuing. If the mirror file does not exist, it is
created at that point by copying the main file. If the mirror is not a database file, or is corrupt, an error is
reported and the database will not start until the file is removed or a different mirror is specified. If the mirror
does not match the database, SQLE_MIRROR_FILE_MISMATCH is generated and the database will not
start. When a corrupt page is recovered, the warning SQLE_CORRUPT_PAGE_READ_RETRY is
generated. (Without mirroring, or if the mirror file is also corrupt, the error SQLE_DEVICE_ERROR is
generated and the database is halted.)

To effectively protect against media failures, page checksums must be enabled when you use a mirror file.
(With or without mirroring, page checksums allow UltraLite to detect page corruption as soon as the page
is loaded and avoid referencing corrupt data.) Specify the checksum_level database creation option to enable
checksums. UltraLite will generate the warning SQLE_MIRROR_FILE_REQUIRES_CHECKSUMS if
checksums are not enabled when using a mirror file. See “UltraLite checksum_level creation
parameter” on page 184.

Note that because the mirror is an exact copy of the database file, it can be started directly as a database.
The ulvalid utility will report corrupt pages. See “UltraLite Validate Database utility
(ulvalid)” on page 286.

UltraLite MIRROR_FILE connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 235

See also
● “Opening UltraLite connections with connection strings” on page 48
● “Specifying file paths in an UltraLite connection parameter” on page 47
● “Precedence of connection parameters for UltraLite administration tools” on page 49
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following example creates a new connection and creates a mirror file:

Connection = DatabaseMgr.OpenConnection("DBF=c:\Dbfile.udb;
UID=JDoe;PWD=ULdb;
MIRROR_FILE=c:\test\MyMirrorDB.udb")

UltraLite connection parameters

236 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite NT_FILE connection parameter
Names the new database file when creating a database. When opening a connection to an existing database,
the parameter identifies the database.

Syntax
NT_FILE=path\nt-db

Default
● DBF connection parameter.

● If you do not set a value for the DBF connection parameter or this connection parameter, then the default
value is \UltraLiteDB\ulstore.udb.

Remarks
You should use the NT_FILE connection parameter for UltraLite client applications that use the same
connection string to connect to a desktop database, and a database on other platforms.

This connection parameter takes precedence over the DBF parameter. If you are connecting from an UltraLite
administration tool, or your connection object only connects to a desktop database, use the DBF connection
parameter.

The value of NT_FILE must meet the file name requirements for Windows desktop platforms.

The path can be absolute or relative. If you include a directory as part of the file name, then all directories
must exist before setting the path to this file. UltraLite does not create them automatically.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 48
● “Specifying file paths in an UltraLite connection parameter” on page 47
● “Precedence of connection parameters for UltraLite administration tools” on page 49
● “UltraLite DBF connection parameter” on page 231
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following example creates a new connection and identifies different database files for the desktop, Palm
OS, and Windows Mobile platforms:

UltraLite NT_FILE connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 237

Connection = DatabaseMgr.OpenConnection("UID=JDoe;PWD=ULdb;
NT_FILE=c:\test\MyTestDB.udb;CE_FILE=\database
\MyCEDB.udb;PALM_FILE=MyPalmDB_MyCreatorID")

UltraLite connection parameters

238 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite ORDERED_TABLE_SCAN connection
parameter [deprecated]

Controls whether queries access rows via a primary key index or from the database page directly.

Syntax
ORDERED_TABLE_SCAN={ yes | no }

Default
no (the database page is scanned directly)

Remarks
If you want results returned with the row order of the primary key index, rewrite your queries to include the
ORDER BY clause first. Otherwise, you cannot take advantage of the performance benefits introduced by
allowing direct page scans for this connection. Only use this connection parameter if it is impractical to re-
write your queries to use the ORDER BY clause.

In versions 10.0.0 and earlier of UltraLite, UltraLite used the primary key index to return results when no
other index was selected by the UltraLite optimizer.

See also
● “Using direct page scans” on page 117
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite ORDERED_TABLE_SCAN connection parameter [deprecated]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 239

UltraLite PALM_ALLOW_BACKUP connection
parameter

Controls backup behavior over HotSync, which is disabled in UltraLite by default.

Syntax
PALM_ALLOW_BACKUP={ yes | no }

Default
no

Remarks
This connection parameter is supported for desktop backup using the UltraLite HotSync conduit for Palm
OS devices.

On Palm, you can back up the database to desktop using HotSync. In most UltraLite client applications, data
is backed up by synchronization. There is no need to use informal backups to the desktop. Therefore, the
UltraLite runtime disables Palm's backup behavior. However, if your deployment explicitly requires that
HotSync back up the UltraLite database to the desktop while it is also being synchronized, use this connection
parameter to override the UltraLite default.

Once you have enabled backups for HotSync, you do not need to configure backups in ULDBUtil. Backups
occur with each synchronization attempt until you disable them.

See also
● “Opening UltraLite connections with connection strings” on page 48
● “UltraLite Data Management utility for Palm OS (ULDBUtil)” on page 258
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite connection parameters

240 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite PALM_FILE connection parameter
Names the new database file when creating a database. When opening a connection to an existing database,
this connection parameter identifies the database.

Syntax 1: record based stores
PALM_FILE=name

Syntax 2: file-based stores
PALM_FILE=vfs:[volume-label:| volume-ordinal:]filename

Default
● DBF connection parameter.

● If you do not set a value for the DBF connection parameter or this connection parameter, then the default
value is ulstore.udb.

Remarks
You should use the PALM_FILE connection parameter for UltraLite client applications that use the same
connection string to connect to a Palm device, and other platforms.

This connection parameter takes precedence over the DBF connection parameter. If you are connecting from
an UltraLite administration tool, or your connection object only connects to a Palm OS database, use DBF.

The value of PALM_FILE must meet the file name requirements for Palm OS platforms.

You cannot deploy databases to VFS volumes using the Palm install tool. Instead, you need to copy the
database directly onto the media with a card reader, or some other tool.

If you are creating a file, you must use the DBF connection parameter and name the database with a .pdb
extension. This database name is used while administering the Palm OS database on the desktop.
Administration tools and utilities can connect to the database with the DBF connection parameter and the
database with the .pdb extension. Once you deploy the file to the device, the .pdb extension is dropped. Your
application must then connect to the database using the Palm_FILE connection parameter and no extension.

For example, if you name a file CustDB.pdb use DBF=CustDB.pdb with your administration tools desktop.
When the database is deployed to the device, the application connects to the same database with
PALM_FILE=CustDB.

On VFS stores, always specify the absolute file path. If directories are specified in the full path name, they
are created if they do not already exist.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

UltraLite PALM_FILE connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 241

See also
● “Opening UltraLite connections with connection strings” on page 48
● “Specifying file paths in an UltraLite connection parameter” on page 47
● “Precedence of connection parameters for UltraLite administration tools” on page 49
● “Registering the Palm creator ID” [UltraLite - C and C++ Programming]
● “UltraLite DBF connection parameter” on page 231
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following example creates a new connection and identifies different database files for the desktop, Palm
OS, and Windows Mobile platforms:

Connection = DatabaseMgr.OpenConnection("UID=JDoe;PWD=ULdb;
NT_FILE=c:\test\MyTestDB.udb;CE_FILE=\database
\MyCEDB.udb;PALM_FILE=MyPalmDB_MyCreatorID")

UltraLite connection parameters

242 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite PWD connection parameter
Defines the password for a user ID that is used for authentication.

Syntax
PWD=password

Default
If you do not set both the UID and PWD, UltraLite opens connections with UID=DBA and PWD=sql.

Remarks
You can set passwords to NULL or an empty string, but they cannot exceed the maximum length of 31
characters.

Every user of a database has a password. UltraLite supports up to four user ID/password combinations.

This connection parameter is not encrypted. However, UltraLite hashes the password before saving it, so
you can only modify a password from Sybase Central.

See also
● “Opening UltraLite connections with connection strings” on page 48
● “UltraLite user authentication” on page 51
● “Interpreting user ID and password combinations” on page 51
● “UltraLite UID connection parameter” on page 246
● UltraLite for C/C++: “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Examples
The following partial connection string supplies the user ID DBA and password sql:

"UID=DBA;PWD=sql"

The following partial connection string supplies the user ID DBA and an empty password:

"UID=DBA;PWD=''"

UltraLite PWD connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 243

UltraLite RESERVE_SIZE connection parameter
Pre-allocates the file system space required for your UltraLite database, without actually inserting any data.
By reserving the file system space means that the space cannot be used up by other files.

Syntax
RESERVE_SIZE= number{ k | m | g }

Default
0 (no reserve size)

Remarks
The value you supply can be any value from 0 to your maximum database size. Use k, m, or g to specify
units of kilobytes, megabytes, or gigabytes, respectively. If you do not specify a unit, bytes are assumed by
default.

You should run the database with test data and observe the database size and choose a reserve size that suits
your UltraLite deployment.

If the RESERVE_SIZE value is smaller than the database size, UltraLite ignores the parameter.

Reserving file system space can improve performance slightly because it may:

● Reduce the degree of file fragmentation compared to growing incrementally.

● Prevent out-of-storage memory failures.

Because an UltraLite database consists of data and metadata, the database size grows only when required
(when the application updates the database).

See also
● “Opening UltraLite connections with connection strings” on page 48
● “UltraLite CACHE_SIZE connection parameter” on page 226
● “UltraLite page_size creation parameter” on page 199
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment sets the reserve size to 128 KB so the system reserves that much
system space for the database upon startup.

"RESERVE_SIZE=128K"

UltraLite connection parameters

244 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite START connection parameter
Starts the UltraLite engine executable.

Syntax
START=path\uleng11.exe

Remarks
Only supply a StartLine (START) connection parameter if you are connecting to an engine that is not
currently running.

Paths with spaces require quotes. Otherwise, the client returns
SQLE_UNABLE_TO_CONNECT_OR_START.

See also
● “UltraLite Engine utility (uleng11)” on page 260
● “Choosing an UltraLite data management component” on page 23
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following command starts the UltraLite engine that is located in the Program Files directory:

Start=\"Program Files\uleng11.exe"

An alternative way to define this path is to put the entire string in single quotes:

Start='"\Program Files\uleng11.exe"'

UltraLite START connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 245

UltraLite UID connection parameter
Specifies the user ID with which you connect to the database. The value must be an authenticated user for
the database.

Syntax
UID=user

Default
If you do not set the UID and PWD, UltraLite opens connections with UID=DBA and PWD=sql.

Remarks
Every user of a database has a user ID. UltraLite supports up to four user ID/password combinations.

UltraLite user IDs are separate from MobiLink user names and from other SQL Anywhere user IDs. You
cannot change a user ID once it is created. Instead, you must delete the user ID and then add a new one.

You cannot set the UID to NULL or an empty string. The maximum length for a user ID is 31 characters.
User IDs are case insensitive.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

See also
● “Opening UltraLite connections with connection strings” on page 48
● “UltraLite user authentication” on page 51
● “Interpreting user ID and password combinations” on page 51
● UltraLite for C/C++: “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]
● UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
● UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
● UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
● UltraLite for M-Business Anywhere: “openConnection method” [UltraLite - M-Business Anywhere

Programming]
● UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
● UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
● UltraLite.NET: “Open method” [UltraLite - .NET Programming]

Example
The following connection string fragment supplies the user ID DBA and password sql for a database:

"UID=DBA;PWD=sql"

UltraLite connection parameters

246 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite utilities

Contents
Supported exit codes ... 248
Interactive SQL utility for UltraLite (dbisql) .. 249
SQL Preprocessor for UltraLite utility (sqlpp) .. 252
UltraLite Create Database utility (ulcreate) .. 255
UltraLite Data Management utility for Palm OS (ULDBUtil) 258
UltraLite Engine utility (uleng11) .. 260
UltraLite Engine Stop utility (ulstop) .. 261
UltraLite Erase database (ulerase) .. 262
UltraLite HotSync Conduit Installation utility for Palm OS (ulcond11) 263
UltraLite Information utility (ulinfo) ... 265
UltraLite Initialize Database utility (ulinit) ... 269
UltraLite Load XML to Database utility (ulload) ... 272
UltraLite Synchronization utility (ulsync) .. 275
Synchronization profile options .. 278
UltraLite Unload Database utility (ulunload) .. 281
UltraLite Unload Old Database utility (ulunloadold) ... 284
UltraLite Validate Database utility (ulvalid) .. 286

UltraLite includes a set of utilities that are designed to perform basic database administration activities from
a command prompt. Many of these utilities share a similar functionality to the SQL Anywhere Server utilities.
However, the way options are used can vary. Always refer to the UltraLite reference documentation for the
UltraLite implementation of these options.

Note
Options for the utilities documented in this chapter are case sensitive, unless otherwise noted. Type options
exactly as they are displayed.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 247

Supported exit codes
The ulcreate, ulload, ulsync, and ulunload utilities return exit codes to indicate whether the operation a utility
attempted to complete was successful. 0 indicates a successful operation. Any other value indicates that the
operation failed.

Exit code Status Description

0 EXIT_OKAY Operation successful.

1 EXIT_FAIL Operation failure.

3 EXIT_FILE_ERROR Database cannot be found.

4 EXIT_OUT_OF_MEMORY Exhausted the dynamic memory of the device.

6 EXIT_COMMUNICATIONS_FAIL Communications error generated while talking to the
UltraLite engine.

9 EXIT_UNABLE_TO_CONNECT Invalid UID or PWD provided, therefore cannot
connect to the database.

12 EXIT_BAD_ENCRYPT_KEY Missing or invalid encryption key.

13 EXIT_DB_VER_NEWER Detected that the database version is incompatible.
The database must be upgraded to a newer version.

255 EXIT_USAGE Invalid command line options.

UltraLite utilities

248 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Interactive SQL utility for UltraLite (dbisql)
Executes SQL commands or runs command files.

Syntax
dbisql -c "connection-string" -ul [options] [dbisql-command | command-file]

Option Description

@data Read options from the specified environment variable or configuration file. If both exist
with the same name, the environment variable is used.

If you want to protect passwords or other information in the configuration file, you can use
the File Hiding utility to obfuscate the contents of the configuration file. See “Using con-
figuration files” [SQL Anywhere Server - Database Administration].

-c "con-
nection-
string"

Required. Connect to the database as identified in the DBF or file_name connection param-
eter of your connection-string. If you do not specify both a user ID and a password, the
default UID of DBA and PWD of sql are assumed.

-d delimit-
er

Specify a command delimiter. Quotation marks around the delimiter are optional, but are
required when the command shell itself interprets the delimiter in some special way.

Command delimiters are used for all connections in that Interactive SQL session, regardless
of the setting stored in the database.

-d1 Echo all statements explicitly executed by the user to the Command window (STDOUT).
This echo can provide useful feedback for debugging SQL scripts, or when Interactive SQL
is processing a long SQL script.

-f file-
name

Open but do not run the file called filename. Enclose the file name in quotation marks if the
file name contains a space.

If the -f option is given, the -c option is ignored; that is, no connection is made to the database.

If you do not include a full path to the file, a path relative to the current directory is assumed.
If the file does not exist, or if it is a directory instead of a file, Interactive SQL prints an error
message and then shuts down.

This option is only supported when Interactive SQL is run as a windowed application.

-nogui Run in command-prompt mode. If you specify either dbisql-command or command-file, then
-nogui is assumed.

Interactive SQL utility for UltraLite (dbisql)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 249

Option Description

-onerror
behavior

Control what happens if an error is encountered while reading data from the specified com-
mand file. Define one of the following supported behavior values:

● Stop Interactive SQL stops executing statements.

● Prompt Interactive SQL prompts the user to see if the user wants to continue.

● Continue The error is ignored and Interactive SQL continues executing statements.

● Exit Interactive SQL terminates.

● Notify_Continue The error is reporting, and the user is prompted to press Enter or
click OK to continue.

● Notify_Stop The error is reported, and the user is prompted to press Enter or click
OK to stop executing statements.

● Notify_Exit The error is reported and the user is prompted to press Enter or click
OK to terminate Interactive SQL.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers, and
status messages. Error messages are still displayed, however.

-ul Connect to UltraLite databases by default.

By default, Interactive SQL assumes that you are connecting to SQL Anywhere databases.
When you specify the -ul option, the default becomes UltraLite connections. Regardless of
the type of database set as the default, you can connect to either SQL Anywhere or UltraLite
databases. Perform this action by choosing the database type from the dropdown list on the
Connect window.

-version Displays the version number of Interactive SQL. You can also view the version number
from within Interactive SQL; from the Help menu, choose About Interactive SQL.

-x Scan commands, but do not execute them. This option is useful for checking long command
files for syntax errors.

SQL-com-
mand |
command-
file

Execute the SQL statement or the specified command-file.

If you do not specify a SQL-statement or command-file, Interactive SQL enters interactive
mode, where you can type a command into a command window.

UltraLite utilities

250 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Interactive SQL allows you to execute SQL commands or run command files. It also provides feedback
about:

● the number of rows affected
● the time required for each command
● the execution plan of queries
● any error messages

When you connect to an UltraLite database, menu items that are SQL Anywhere-specific are not displayed
in the interface. For example, Tools » Lookup Procedure Name, or Tools » Index Consultant.

In UltraLite, collations include a code page plus a sort order. Therefore, code page numbers correspond to
the number displayed as part of the UltraLite collation name. To see a list of supported collations (and their
corresponding code pages), run ulcreate -l at a command prompt.

You can specify a code page to use when reading or writing files using the ENCODING clause of the INPUT,
OUTPUT, or READ statement. For example, on an English 32-bit Windows desktop computer, windowed
programs use the 1252 (ANSI) code page. If you want Interactive SQL to read a file named status.txt created
using the 297 (IBM France) code page, use the following statement:

READ
ENCODING 297
status.txt;

Exit codes are 0 (success) or non-zero (failure). Non-zero exit codes are set only when you run Interactive
SQL in batch mode (with a command line that contains a SQL statement or the name of a script file).

In command line mode, Interactive SQL sets the program exit code to indicate success or failure. On
Windows operating systems, the environment variable ERRORLEVEL is set to the program exit code.

See also
● “Using configuration files” [SQL Anywhere Server - Database Administration]
● “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database Administration]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “UltraLite connection parameters” on page 225
● “UltraLite Create Database utility (ulcreate)” on page 255
● “Supported exit codes” on page 248

Example
The following command runs the command file mycom.sql against the CustDB.udb database for UltraLite.
Because a user ID and password are not defined, the default user ID DBA and password sql are assumed.
If there is an error in the command file, the process terminates.

dbisql -ul -c DBF=CustDB.udb -onerror exit mycom.sql

Interactive SQL utility for UltraLite (dbisql)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 251

SQL Preprocessor for UltraLite utility (sqlpp)
Preprocesses a C/C++ program that contains embedded SQL (ESQL), so that code required for that program
can be generated before you run the compiler. Note that the table below describes the entire set of options
for completeness, but the only relevant options for UltraLite are -eu and -wu.

Syntax
sqlpp -u [options] esql-filename [output-filename]

Option Description

-d Generate code that reduces data space size, but increases code size. Data structures are
reused and initialized at execution time before use.

-e flag This option flags as an error any static embedded SQL that is not part of a specified
standard. The level value indicates the standard to use. For example, sqlpp -e
c03 ... flags any syntax that is not part of the core SQL/2003 standard.

The allowed values of level are:

● c03 Flag syntax that is not core SQL/2003 syntax

● p03 Flag syntax that is not full SQL/2003 syntax

● c99 Flag syntax that is not core SQL/1999 syntax

● p99 Flag syntax that is not full SQL/1999 syntax

● e92 Flag syntax that is not entry-level SQL/1992 syntax

● i92 Flag syntax that is not intermediate-level SQL/1992 syntax

● f92 Flag syntax that is not full-SQL/1992 syntax

● t Flag non-standard host variable types

● u Flag syntax that is not supported by UltraLite

For compatibility with previous SQL Anywhere versions, you can also specify e, I, and
f, which correspond to e92, i92, and f92, respectively.

-h width Limits the maximum length of split lines output by sqlpp to width in the .c file. Backslash
characters are added to the end of split lines, so that a C compiler can parse the split lines
as one continuous line. The default value is no maximum line length (output lines are not
split by default).

-k Notify the preprocessor that the program to be compiled includes a user declaration of
SQLCODE.

UltraLite utilities

252 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-n Generate line number information in the C file by using #line directives in the appro-
priate places in the generated code.

Use this option to the report source errors and to debug source on line numbers in the
esql-filename file, rather than in the output-filename file.

-o O/S spec Not applicable to UltraLite.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

-r Not applicable to UltraLite.

-s string-
length

Set the maximum size string that the preprocessor will put into the C file. Strings longer
than this value are initialized using a list of characters ('a','b','c', and so on). Most C
compilers have a limit on the size of string literal they can handle. This option is used to
set that upper limit. The default value is 500.

-u Required for UltraLite. Generate output specifically required for UltraLite databases.

-w level Flag non-conforming SQL syntax as a warning. The level value indicates the standard to
use. For example, sqlpp -w c03 ... flags any SQL syntax that is not part of the
core SQL/2003 syntax.

The allowed values of level are:

● c03 Flag syntax that is not core SQL/2003 syntax

● p03 Flag syntax that is not full SQL/2003 syntax

● c99 Flag syntax that is not core SQL/1999 syntax

● p99 Flag syntax that is not full SQL/1999 syntax

● e92 Flag syntax that is not entry-level SQL/1992 syntax

● i92 Flag syntax that is not intermediate-level SQL/1992 syntax

● f92 Flag syntax that is not full-SQL/1992 syntax

● t Flag non-standard host variable types

● u Flag syntax that is not supported by UltraLite

For compatibility with previous SQL Anywhere versions, you can also specify e, I, and
f, which correspond to e92, i92, and f92, respectively.

-x Change multibyte strings to escape sequences, so that they can be passed through a com-
piler.

SQL Preprocessor for UltraLite utility (sqlpp)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 253

Option Description

-z collation-
sequence

Specify the collation sequence.

Remarks
This preprocessor translates the SQL statements in the input-file into C/C++. It writes the result to the output-
filename. The normal extension for source files containing embedded SQL is sqc. The default output-
filename is the esql-filename base name with an extension of c. However, if the esql-filename already has
the .c extension, the default output extension is .cc.

The collation sequence is used to help the preprocessor understand the characters used in the source code of
the program. For example, in identifying alphabetic characters suitable for use in identifiers. In UltraLite,
collations include a code page plus a sort order. If you do not specify -z, the preprocessor attempts to
determine a reasonable collation to use based on the operating system.

To see a list of supported collations (and its corresponding codepage), run ulcreate -l at a command
prompt.

Tip
The SQL preprocessor (sqlpp) has the ability to flag static SQL statements in an embedded SQL application
at compile time. This feature can be especially useful when developing an UltraLite application, to verify
SQL statements for UltraLite compatibility. You can test compatibility of SQL for both SQL Anywhere and
UltraLite applications by using either -e and/or -w options. For an overview of the SQL Flagger, see “Testing
SQL compliance using the SQL Flagger” [SQL Anywhere Server - SQL Usage].

See also
● “SQL Anywhere embedded SQL” [SQL Anywhere Server - Programming]
● “UltraLite character sets” on page 36

Example
The following command preprocesses the srcfile.sqc embedded SQL file in quiet mode for an UltraLite
application.

sqlpp -u -q MyEsqlFile.sqc

UltraLite utilities

254 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite Create Database utility (ulcreate)
Creates an UltraLite database with the properties you define.

Syntax
ulcreate [options][new-database-file]

Option Description

-c "connec-
tion-string"

Create the database as identified in the DBF or file_name parameter of your connection-
string. If you do not specify both a user ID and a password, the default UID of DBA
and PWD of sql are assumed. If you do specify a userid and password, those will be
required to access the database.

If you do not provide a file name as a parameter in the connection string, ulcreate checks
the end of the command for the file you specified as new-database-file.

-g global-ID Set the initial database ID to the INTEGER value you assign. This initial value is used
with a partition size for new rows that have global autoincrement columns. When de-
ploying an application, you must assign a different range of identification numbers to
each database for synchronization with the MobiLink server. See “UltraLite global_da-
tabase_id option” on page 222.

-l List the available collation sequences and exit.

-o [extended-
options]

Specify a semicolon separated list of UltraLite database creation parameters. See
“Choosing database creation parameters for UltraLite” on page 34.

-ol List the available database creation parameters and exit. See “Choosing database crea-
tion parameters for UltraLite” on page 34.

-p creator-ID Required for Palm OS when the database is being installed to the record store. Create
the database with the specified four character creator-ID of the UltraLite client appli-
cation. If you are deploying the database to a VFS store, then do not use this option.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

-t file Loads the specified file containing the public trusted root certificate into the database,
and eliminates the requirement to download the trusted_certificates sync parameter. This
certificate is required for server authentication.

-v Print verbose messages.

-y Overwrite the database file if it exists.

-z collation-
sequence

Specify the label of the collation to be used.

UltraLite Create Database utility (ulcreate)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 255

Option Description

new-database-
file

Create a file with the specified name. Only use this standalone file name if you are not
using a connection string to set initial database parameters like a user ID (UID) or a
password (PWD). Ensure the standalone file name you set is appropriate for your plat-
form.

Remarks
If you do not set any database properties, ulcreate creates a case insensitive database with a collation sequence
that depends on the current locale.

Database passwords are always case sensitive, regardless of the case-sensitivity of the database. Database
case sensitivity depends on whether you use the case=respect creation parameter.

The collation sequence is used for all string comparisons in the database. In UltraLite, collations include a
code page plus a sort order. If you do not specify -z, ulcreate attempts to determine a reasonable collation
to use based on the current locale of the desktop.

To see a list of supported collations (and its corresponding codepage), run ulcreate -l at a command
prompt.

The operating system of your device determines if UTF-8 encoding should be used.

Palm OS databases written to the desktop must be identified with the .pdb extension. However, once you
deploy the database to the device, the extension is dropped. For more information about file name formats,
see “Palm OS” on page 47.

You cannot deploy UltraLite databases with the Palm install tool if the target is a VFS volume. Instead, you
need to copy the database directly onto the media using a card reader, or some other tool.

This utility returns error codes. Any value other than 0 means that the operation failed.

See also
● “Creating and configuring UltraLite databases” on page 29
● “Specifying file paths in an UltraLite connection parameter” on page 47
● “UltraLite connection parameters” on page 225
● “Supported exit codes” on page 248
● “Supported and alternate collations” [SQL Anywhere Server - Database Administration]
● “Registering the Palm creator ID” [UltraLite - C and C++ Programming]
● “UltraLite case creation parameter” on page 183
● “UltraLite platform requirements for character set encoding” on page 37
● “Introduction to MobiLink models” [MobiLink - Getting Started]

Example
Create an UltraLite database called test.udb as a case-insensitive, non-Unicode database with a collation
sequence that depends on the current locale:

ulcreate test.udb

Create a case sensitive database called test.udb, so that the database is created with ISO-compatible date
formatting and ordering:

UltraLite utilities

256 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ulcreate -c DBF=test.udb -o case=respect;date_format=YYYY-MM-
DD;date_order=YMD

Create an encrypted database called test.udb with the afvc_1835 encryption key:

ulcreate -c "DBF=test.udb;DBKEY=afvc_1835"

UltraLite Create Database utility (ulcreate)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 257

UltraLite Data Management utility for Palm OS
(ULDBUtil)

Deletes the database from the device, or backs up the database at the next synchronization.

Syntax
N/A.

Remarks

You can use this utility to perform the following tasks:

● Delete the database from the device when the device is shared among different users. Deleting the file
allows you to save space or to maintain privacy. You can then reinstall the database or even have the
database create a new unpopulated database.

● Back up the database upon next synchronization. Use this feature to perform an initial synchronization,
and then back up the database. This allows you to deploy the database to other devices, so they do not
need to perform an initial synchronization.

This utility is installed as the following file:

install-dir\UltraLite\Palm\68k\ULDBUtil.prc

Once installed, ULDBUtil uses a file name filter. This filter only detects UltraLite database files that meet
UltraLite extension requirements. The file name filter list excludes all files with the following
extensions: .bak, .dat, .dba, .htm, .html, .in, .jpeg, .jpg, .prc, .pqa, and .tda. Ensure you do not name an
UltraLite database with any extension used by this filter.

To delete UltraLite application data from a Palm OS device

1. Switch to ULDBUtil.

2. If your device has expansion cards, pick the media (internal/external volume or record-based) from which
the application database file is to be deleted.

3. From the list of UltraLite version 11 databases, select a database.

4. Tap Delete on the Palm device to remove the data.

The following procedure only applies to databases deployed with the HotSync conduit.

To back up the database from a Palm OS device to a desktop

1. Switch to ULDBUtil.

2. Select the Backup option so HotSync knows to back up the database on the next synchronization attempt.
You need to select this option for each subsequent back up you need. This option is disabled for databases
stored on VFS volumes such as cards.

UltraLite utilities

258 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tip
If you want to enable automatic backups and thereby avoid the need to select this option each time you
synchronize, use the PALM_ALLOW_BACKUP parameter. See “UltraLite PALM_ALLOW_BACKUP
connection parameter” on page 240.

See also
● “UltraLite HotSync Conduit Installation utility for Palm OS (ulcond11)” on page 263

Example
N/A.

UltraLite Data Management utility for Palm OS (ULDBUtil)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 259

UltraLite Engine utility (uleng11)
Manages concurrent UltraLite database connections from applications on 32-bit Windows desktops and
Windows Mobile.

Syntax
uleng11

Remarks
The UltraLite engine does not display a messages window on startup.

Linking to the UltraLite engine requires a different set of libraries than those used by the UltraLite runtime.
If you also require TLS-enabled synchronization or AES FIPS database encryption, further libraries are
required.

See:

● “Compiling and linking your application” [UltraLite - C and C++ Programming]
● “Deploy UltraLite with AES_FIPS database encryption” on page 59
● “Deploy UltraLite with TLS-enabled synchronization” on page 60

See also
● “Working with UltraLite databases” on page 69
● “Choosing an UltraLite data management component” on page 23
● “UltraLite Engine Stop utility (ulstop)” on page 261
● “UltraLite START connection parameter” on page 245

UltraLite utilities

260 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite Engine Stop utility (ulstop)
Stops the UltraLite engine on 32-bit Windows desktops and Windows Mobile.

Syntax
ulstop

Remarks
Use ulstop during development to shut down the engine manually. You typically do not require ulstop in
live deployments.

There are no options for this utility.

See also
● “Choosing an UltraLite data management component” on page 23
● “UltraLite Engine utility (uleng11)” on page 260

UltraLite Engine Stop utility (ulstop)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 261

UltraLite Erase database (ulerase)
Erases an UltraLite database.

Syntax
ulerase -c "connection-string" [options] [dbname]

Option Description

-c "connection-
string"keyword=val-
ue

Required. Connect to the database as identified in the DBF or file_name pa-
rameter of your connection-string. If you do not specify both a user ID and a
password, the default UID of DBA and PWD of sql are assumed.

-ek key Specify the encryption key for an encrypted database.

-ep Specify that you want to be prompted for the encryption key.

-q Set the utility to run in quiet mode. Suppress informational banners, version
numbers, and status messages. Error messages are still displayed, however.

-v Print verbose messages.

Remarks
The database must be accessible. The User ID and password combination must allow a connection, otherwise
the database will not be erased.

Encrypted databases require a key provided in the connection string, or using one of -ek <key> or -ep.

UltraLite utilities

262 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite HotSync Conduit Installation utility for Palm
OS (ulcond11)

Installs and registers each Palm OS database with the HotSync conduit so the conduit can manage HotSync
synchronization operations for each database. You can also use this utility to uninstall the conduit.

Syntax
ulcond11 -c "connection-string" [options] creator-ID

Option Description

creator-ID Required. Set the creator ID of the application that uses the conduit. If a conduit
already exists for the specified creator ID, it is replaced by the new conduit.

-a Append additional database connection strings to the connection string configured
with the -c option. Use this option to register more than one database with the conduit.

-c "connection-
string sync_pro-
file=pro-
file_name{}

Required. Connect to the Palm database on the device as identified by the DBF pa-
rameter of your connection-string. The connection string you define registers the de-
ployed Palm database with the conduit. The connection parameters are stored as part
of the conduit's configuration information.

sync_profile specifies the sync profile to use, along with any merge parameters. The
default profile is ul_palm_conduit.

If you do not specify both a user ID and a password, the default UID of DBA and
PWD of sql are assumed.

-d filename Set the name of the plug-in .dll file.

The utility creates a registry key (Software\Sybase\SQL Anywhere\version\Conduit
\creator-ID) with a value named PluginDLL. The value for PluginDLL is the file-
name you set.

Supply an empty string (-d"") to clear an existing file name from the registry.

-n name Set the name displayed by the HotSync manager. The default value is Conduit.

Do not use this option with the -u option.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

If you are running ulcond11 on Windows Vista with the correct privileges, the window
is shut down immediately when no errors are reported. Otherwise, a five second delay
applies.

UltraLite HotSync Conduit Installation utility for Palm OS (ulcond11)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 263

Option Description

-QQ Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

If you are running ulcond11 on Windows Vista with the correct privileges, the window
is shut down immediately.

-u Uninstall the conduit for the creator ID. If you do not specify -u, a conduit is installed.
If you specify -u, do not specify -n.

Remarks
ulcond11 is a command line utility. On Windows Vista, ulcond11 runs elevated. The executable window
does not close for five seconds, allowing you to view the output.

HotSync records when each synchronization took place and whether each installed conduit worked as
expected. The HotSync log file is in the subdirectory User of your Palm desktop installation directory.

See also
● “UltraLite connection parameters” on page 225
● “UltraLite Data Management utility for Palm OS (ULDBUtil)” on page 258
● “Deploy the UltraLite HotSync conduit” on page 62
● “Network protocol options for UltraLite synchronization streams” on page 178
● “HotSync on Palm OS” on page 146
● “Registering the Palm creator ID” [UltraLite - C and C++ Programming]

Examples
The following command installs a conduit for the application with creator ID Syb2, named CustDB. These
are the settings for the CustDB sample application:

ulcond11 -c "DBF=custdb.udb;UID=DBA;PWD=sql" -n CustDB Syb2

The following command uninstalls the conduit for the same CustDB sample application:

ulcond11 -u Syb2

The following command installs the conduit for palmdb using the default sync profile for Palm:

ulcond11 ... -c
"dbf=palmdb;sync_profile=ul_palm_conduit{stream.host=override_host}" ...

UltraLite utilities

264 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite Information utility (ulinfo)
Displays information about an UltraLite database and changes or clears the global_id or ml_remote_id
database options.

Syntax
ulinfo -c "connection-string" [options]

Option Description

-c "connec-
tion-string"

Required. Connect to the database as identified in the DBF or file_name parameter of
your connection-string. If you do not specify both a user ID and a password, the default
UID of DBA and PWD of sql are assumed.

-g ID Set the initial global database ID to the value you assign. This value is used by the
database for all new rows that have global autoincrement columns. The database uses
this base value to autoincrement IDs associated with each additional row and/or column.

When deploying an application, you must assign a different identification number to each
database for synchronization with the MobiLink server.

-oa Cancel the process if it identifies that the database was created by a previous version of
UltraLite (which would cause the database to be upgraded).

-or Open the database in read-only mode. UltraLite makes a copy of the original file, which
you can then use to test your scripts without altering the database. Changes to the copied
file are discarded upon completion.

If you are connecting directly from the desktop to a database already deployed to a Win-
dows Mobile device, this option is not supported.

-ou Upgrade the database if it was created with an older UltraLite release.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

-r ID Set the initial ml_remote_id to the value you assign. By default, new UltraLite databases
set the MobiLink remote ID to NULL. You can keep this default if you choose: both
UltraLite and dbmlsync automatically set the MobiLink remote ID to a unique user ID
(UUID) at the start of synchronization.

-rc Set the MobiLink remote ID to NULL.

-v Print verbose messages. Display current database properties in addition to the database
internals for the named database.

UltraLite Information utility (ulinfo)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 265

Remarks
Warning messages generated when opening an UltraLite database are always displayed unless you use the
-q option.

The ulinfo utility displays information about existing synchronization profiles and the number of pending
SQL pass-through scripts unless the quiet (-q) flag is used. For example:

Sync profile cv_prosync:
"TableOrder=cv_prosync;MobiLinkUid=cv_prosync;ScriptVersion=test;"
Number of available SQL pass-through scripts: 0

See also
● “UltraLite connection parameters” on page 225
● “UltraLite global_database_id option” on page 222
● “UltraLite ml_remote_id option” on page 223

Example
Show basic database internals for a file named sample.udb that has already been synchronized:

ulinfo -c DBF=cv_dbattr.udb
ulinfo -c DBF=cv_dbattr.udb
Utility Version 11.*suppressed*
Collation: 1252LATIN1
Number of Users: 1
 1. User: 'DBA'
Page size: 4096
Default index maximum hash size: 4
Checksum level: 0
MobiLink Remote ID: not set
Global database ID: 1000
Global autoincrement usage: 0%
Number of tables: 3
Number of columns: 7
Number of publications: 3
Number of tables that will always be uploaded: 0
Number of tables that are never synchronized: 0
Number of primary Keys: 3
Number of foreign Keys: 0
Number of indexes: 0
This database has not yet been synchronized.
Synchronization by publication number:
 1. Publication cv_sync
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
 2. Publication cv_syncPub2
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
 3. Publication cv_syncPub3
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
Number of available SQL pass-through scripts: 0
ulsync ...
Utility Version 11.*suppressed*
Results of this synchronization:
Succeeded
Download timestamp: 20XX-XX-XX XX:XX:XX.XXXXXX
 Upload OK
 No ignored rows

UltraLite utilities

266 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 No part download remaining
 Authentication value: 1000 (0x3e8)
ulinfo -c dbf=cv_dbattr.udb
Utility Version 11.*suppressed*
Collation: 1252LATIN1
Number of Users: 1
 1. User: 'DBA'
Page size: 4096
Default index maximum hash size: 4
Checksum level: 0
MobiLink Remote ID: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
Global database ID: 1000
Global autoincrement usage: 0%
Number of tables: 3
Number of columns: 7
Number of publications: 3
Number of tables that will always be uploaded: 0
Number of tables that are never synchronized: 0
Number of primary Keys: 3
Number of foreign Keys: 0
Number of indexes: 0
Last synchronization completed successfully
Download occurred: *suppressed*
Upload OK
Upload rows not ignored
No partial downloads
Actual MobiLink Authentication value: 1000
Authentication valid
Synchronization by publication number:
 1. Publication cv_sync
 Number of rows in next upload: 0
 Last download: 20XX-XX-XX XX:XX:XX.XXXXXX
 2. Publication cv_syncPub2
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
 3. Publication cv_syncPub3
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
Number of available SQL pass-through scripts: 0

Show database internals for a file named CustDB.udb and display database properties by enabling verbose
messaging:

ulinfo -c DBF=CustDB.udb -v

Utility Version 11.*suppressed*
Database information
Database name: custdb
Disk file 'C:\Documents and Settings\All Users\Shared Documents\SQL Anywhere
11\Samples\UltraLite\CustDB\custdb.udb'
Collation: 1252LATIN1
Number of Users: 1
 1. User: 'DBA'
Page size: 4096
Default index maximum hash size: 8
Checksum level: 0
MobiLink Remote ID: not set
Global database ID: not set
Encryption: None
Character encoding set: 1252LATIN1
Case sensitive: OFF
Date format: YYYY-MM-DD
Date order: YMD

UltraLite Information utility (ulinfo)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 267

Nearest century: 50
Numeric precision: 30
Numeric scale: 6
Time format: HH:NN:SS.SSS
Timestamp format: YYYY-MM-DD HH:NN:SS.SSS
Timestamp increment: 1
Number of tables: 6
Number of columns: 16
Number of publications: 1
Number of tables that will always be uploaded: 0
Number of tables that are never synchronized: 1
Number of primary Keys: 6
Number of foreign Keys: 2
Number of indexes: 3
This database has not yet been synchronized.
Synchronization by publication number:
 1. Publication test
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
Done.

Set the ml_remote_id to NULL for a file called sample.udb:

ulinfo -c DBF=sample.udb -rc

UltraLite utilities

268 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite Initialize Database utility (ulinit)
Creates an UltraLite database from an existing SQL Anywhere database.

Syntax
ulinit -a "SAconnection-string" -c "ULconnection-string" -n pubname [options]

Option Description

-a "SAcon-
nection-
string"

Required. Connect to the SQL Anywhere reference database specified in the SAconnection-
string.

-c "ULcon-
nection-
string"

Required. Connect to the database as identified in the DBF or file_name parameter of your
connection-string. If you do not specify both a user ID and a password, the default UID of
DBA and PWD of sql are assumed.

-d For each table in the new UltraLite database, copy data from the corresponding table in
the SQL Anywhere database. By default, this data will not be uploaded in subsequent
synchronizations. To include the data in the next upload synchronization, use -I with -d.

-e table, ... Exclude the named table. The named table(s) are not created in the UltraLite database.
You can name multiple tables in a comma-separated list. For example:

-e mydbtable1,mydbtable5

-I Use with -d. Include inserted rows in the next upload synchronization. By default, rows
inserted by this utility are not uploaded during synchronization.

-l logfile Log DDL database schema creation SQL statements, as executed, to logfile.

-n pubname Required. Add tables to the UltraLite database schema.

pubname specifies a publication in the reference database. Tables in the publication are
added to the UltraLite database.

Specify the option multiple times to add tables from multiple publications to the UltraLite
database. To add all tables in the reference database to the UltraLite database, specify -
n*.

-o [exten-
ded-op-
tions]

Specify a semicolon separated list of UltraLite database creation parameters. See “Choos-
ing database creation parameters for UltraLite” on page 34.

-p creator-
ID

Required for Palm OS when the database is being installed to the record store. Create the
database with the specified four character creator-ID of the UltraLite client application. If
you are deploying the database to a VFS store, then do not use this option.

UltraLite Initialize Database utility (ulinit)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 269

Option Description

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers, and
status messages. Error messages are still displayed, however.

-s pubname Create a publication in the UltraLite database with the same definition as pubname in the
reference database. Publications are used to configure synchronization. Supply more than
one -s option to name more than one synchronization publication.

Note that the tables in this publication must be included in a publication listed by the -n
option.

If -s is not supplied, the UltraLite remote has no named publications.

For more information about how to create publications for MobiLink synchronization, see
“Publications in UltraLite” on page 137.

-t file Specify the file containing the trusted root certificate. This certificate is required for server
authentication.

-w Do not display warnings.

Remarks

The SQL Anywhere reference database acts as the source for:

● database configuration (for example, the collation sequence used)
● table definitions
● synchronization publications

Together they help create the UltraLite schema—information that defines the structure of the new UltraLite
database. However, the new database you create is initially empty.

If you want to create an UltraLite database without using a SQL Anywhere reference database, try one of
the following methods:

● If you want to initialize an UltraLite database from an RDBMS other than SQL Anywhere, use the
Create Synchronization Model Wizard in Sybase Central. When you run the wizard, you are prompted
to connect to a consolidated database to obtain schema information.

● If you want to create an empty UltraLite database that you can configure independent of any kind of
reference database, use the ulcreate utility or the Create Database Wizard for UltraLite.

UltraLite uses the name of the collation sequence that was defined in the reference database. However, you
can still choose to use UTF-8 to encode the database, by setting the utf8_encoding property as part of your
extended-options list.

To see a list of supported collations (and corresponding codepages), run ulcreate -l at a command
prompt. If your collation sequence is not supported by UltraLite, you should change it to one that is. For
example, if your reference database collation is the UCA collation, you should:

UltraLite utilities

270 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

1. Unload the reference database and then reload it with a different collation.

2. Run ulinit on this new version of the database.

Palm databases written to the desktop must be identified with the .pdb extension. However, once you deploy
the database to the device, the extension is dropped. For more information about file name formats, see
“Palm OS” on page 47.

You cannot deploy UltraLite databases with the Palm install tool if the target is a VFS volume. Instead, you
must copy the database directly onto the media using a card reader, or some other tool.

See also
● “Create an UltraLite database from a SQL Anywhere reference database” on page 31
● “Introduction to MobiLink models” [MobiLink - Getting Started]
● “UltraLite Create Database utility (ulcreate)” on page 255
● “UltraLite connection parameters” on page 225

Examples
Create a file called customer.udb that contains the tables defined in TestPublication:

ulinit -a "DSN=dbdsn;UID=JimmyB;PWD=secret" -c DBF=customer.udb -n
TestPublication

Create a file called customer.udb that contains two distinct publications. Specifically, Pub1 may contain a
small subset of data for priority synchronization, while Pub2 could contain the bulk of the data:

ulinit -a "DSN=dbdsn;UID=JimmyB;PWD=secret" -c DBF=customer.udb -n Pub1 -n
Pub2 -s Pub1 -s Pub2

Create a file called customer.udb for Palm OS using a registered creator ID:

ulinit -a "DSN=dbdsn;UID=JimmyB;PWD=secret" -c DBF=customer.udb.pdb -n
TutCustomersPub -p creator-id

UltraLite Initialize Database utility (ulinit)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 271

UltraLite Load XML to Database utility (ulload)
Loads data from an XML file into a new or existing database.

Syntax
ulload -c "connection-string" [options] xml-file

Option Description

-a Add data and schema definitions into an existing database.

If you are adding data into a pre-existing record-based database for Palm OS (database
with a .pdb extension), do not use the -p option.

-c "connec-
tion-string"

Required. Connect to the database as identified in the DBF or file_name parameter of your
connection-string. If you do not specify both a user ID and a password, the default UID
of DBA and PWD of sql are assumed.

-d Load data only, ignoring any schema meta-data in the XML file input.

-f directory Set the directory that contains files with additional data to load. See the -f option in ulun-
load (“UltraLite Unload Database utility (ulunload)” on page 281).

-g ID Set the initial database ID to the INTEGER value you assign. This value is used by the
database for all new rows that have global autoincrement columns. The database uses this
base value to autoincrement IDs associated with each additional row and/or column.

When deploying an application, you must assign a different identification number to each
database for synchronization with the MobiLink server.

-I Include inserted rows in the next upload synchronization. By default, rows inserted by
this utility are not uploaded during synchronization.

-n Load schema meta-data only, ignoring any data in the XML input file.

-o [exten-
ded-op-
tions]

Specify a semicolon separated list of UltraLite database creation parameters. See “Choos-
ing database creation parameters for UltraLite” on page 34.

-oa Cancel the process if it identifies that the database was created by a previous version of
UltraLite (which would cause the database to be upgraded).

-ol List the available database creation parameters and exit. See “Choosing database creation
parameters for UltraLite” on page 34.

UltraLite utilities

272 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-onerror be-
havior

Control what happens if an error is encountered while reading data from the XML file.
Specify one of the following supported behavior values:

● continue ulload ignores the error and continues to load XML.

● prompt ulload prompts you to see if you want to continue.

● quit ulload stops loading the XML and terminates with an error. This behavior is
the default behavior if none is specified.

● exit ulload exits.

-or Open database in read-only mode. UltraLite makes a copy of the original file, and then
uses the copy to test your scripts without altering the database. Changes to the copied file
are discarded upon completion.

If you are connecting directly from the desktop to a database already deployed to a Win-
dows Mobile device, this option is not supported.

-ou Upgrade the database if it was created with an older UltraLite release.

-p creator-
ID

Required for Palm OS when the database is being installed to the record store. Create the
database with the specified four character creator-ID of the UltraLite client application.
If you are deploying the database to a VFS store, then do not use this option.

If you are appending data into a pre-existing record-based database for Palm OS (database
with a .pdb extension), do not use this option with the -a option.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers, and
status messages. Error messages are still displayed, however.

-s file Log the SQL statements used to load the database into the specified file.

-t file Specify the file containing the trusted root certificate. This certificate is required for server
authentication.

-v Print verbose messages.

-y Overwrite the database file without confirmation. This only applies when you use ulload
to create a new database.

xml-file Specify the name of the XML file from which data is loaded.

Remarks
The ulload utility takes an input XML file generated by ulunload, ulunloadold, or ulxml (in UltraLite versions
8 and 9). When used along with ulunload this utility provides you with the ability to rebuild a database. An
alternative method to rebuild a database is using ulunload to generate SQL statements and then use DBISQL
to read them into a new database.

UltraLite Load XML to Database utility (ulload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 273

The XML file can contain meta-data for the schema and/or meta-data for the database data. -d ignores the
schema meta-data, only adding data to the .udb file. -n ignores the data and the meta-data, only adding the
schema to the .udb file.

Setting an option or specifying a certificate on the command line overrides any settings in the xml-file that
is processed by ulload.

The ulload utility restores any synchronization profiles to the database when reading the XML.

This utility returns error codes. Any value other than 0 means that the operation failed.

Palm databases written to the desktop must be identified with the .pdb extension. However, once you deploy
the database to the device, the extension is dropped. For more information about file name formats, see
“Palm OS” on page 47.

You cannot deploy UltraLite databases with the Palm install tool if the target is a VFS volume. Instead, you
need to copy the database directly onto the media using a card reader, or some other tool.

See also
● “Registering the Palm creator ID” [UltraLite - C and C++ Programming]
● “UltraLite connection parameters” on page 225
● “UltraLite Unload Database utility (ulunload)” on page 281
● “Supported exit codes” on page 248
● “UltraLite global_database_id option” on page 222

Example
Create a new UltraLite database file, sample.udb, and load it with data in sample.xml:

ulload -c DBF=sample.udb sample.xml

Load the data from sample.xml into the existing database sample.udb, and if an error occurs, prompt for
action:

ulload -d -c DBF=sample.udb -onerror prompt sample.xml

Load XML from a file named test_data.xml into the copy UltraLite makes of the database named
sample.udb. Discard those changes upon completion. This file allows you to check for errors in the XML
data and correct them. When data loads successfully, you can run the command without the -or option to
keep the XML updates:

ulload -or -c DBF=sample.udb -a test_data.xml

UltraLite utilities

274 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite Synchronization utility (ulsync)
Synchronizes an UltraLite database with a MobiLink server. This tool can be used for testing synchronization
during application development.

Syntax
ulsync -c "connection-string" [options] [synchronization parameters { REPLACE | MERGE } profile-
string]

Option Description

-c "con-
nection-
string"

Required. Connect to the database as identified in the DBF or file_name parameter of your
connection-string. If you do not specify both a user ID and a password, the default UID of
DBA and PWD of sql are assumed.

-oa Cancel the process if it identifies that the database was created by a previous version of Ul-
traLite (which would cause the database to be upgraded).

-or Synchronize the database in read-only mode. UltraLite makes a copy of the original file, and
then uses the copy to test your scripts without altering the database. Changes to the copied file
are discarded upon completion.

If you are connecting directly from the desktop to a database already deployed to a Windows
Mobile device, the parameter is not supported.

-ou Upgrade the database if it was created with an older UltraLite release.

-p Synchronize using the named sync profile, equivalent to:

synchronize profileName merge 'syncOptions'

where sync options are taken from the trailing ulsync options. For example:

ulsync -p profileName
"MobiLinkUid=ml;ScriptVersion=Version001...syncOptions"

See “Synchronization profile options” on page 278.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers, and
status messages. Error messages are still displayed, however.

-r Display last synchronization results and exit.

-s Run available SQL passthrough scripts after syncing.

-v Display synchronization progress messages. This also determines whether progress is dis-
played for any synchronization, whether using the C++ API or the SQL synchronize profile
statement. See “UltraLite CREATE SYNCHRONIZATION PROFILE state-
ment” on page 464.

UltraLite Synchronization utility (ulsync)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 275

Remarks
The following options that were valid for versions 10 and preceding are no longer supported: -a authenticate-
parameters, -e sync-parms, -k stream-type, -n (no sync), and -x protocol options. -e
<keyword>=<value> is now part of the sync parameters string and -k and -x have been folded into the
Stream=<stream{<stream-parms>} sync parameters string.

ulsync can be considered to be equivalent to one the following SQL statements, depending on usage:

ulsync -p <profile> "<parms>"

is equivalent to:

 SYNCHRONIZE PROFILE <profile> MERGE
<parms>

and

ulsync "<parms>"

is equivalent to:

 SYNCHRONIZE USING <parms>

For secure synchronization, the UltraLite application must have access to the public certificate. You can
reference a certificate by:

● Incorporating the certificate information into the UltraLite database at creation time with the -t file option
using ulinit, ulload, or ulcreate.

● Referencing an external certificate file at synchronization time with the trusted_certificates=file stream
option.

This utility returns error codes. Any value other than 0 means that the operation failed.

See also
● “Synchronization profile options” on page 278
● “UltraLite connection parameters” on page 225
● “UltraLite clients” on page 125
● “Supported exit codes” on page 248
● “MobiLink file transfer utility (mlfiletransfer)” [MobiLink - Client Administration]
● “Deploy UltraLite with TLS-enabled synchronization” on page 60

Examples
The following command synchronizes a database file called myuldb.udbfor a MobiLink user called
remoteA.

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;Stream=http;ScriptVersion=2"

The following command synchronizes a database file calledmyuldb.udb over HTTPS with the c:\certs
\rsa.crt certificate. The trusted_certificates=file option must be used because the trusted certificate file
was not added to the database when the database was created. Additionally, the MobiLink user name is
remoteB.

UltraLite utilities

276 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ulsync -c DBF=myuldb.udb "Stream=https{trusted_certificates=c:\certs
\rsa.crt};
MobiLinkUid=remoteB;ScriptVersion=2;UploadOnly=ON"

The following command displays the last synchronization results for a database file named synced.udb.

ulsync -r -c dbf=synced.udb

The previous synchronization results are listed as follows:

SQL Anywhere UltraLite Database Synchronize Utility Version XX.X
 Results of last synchronization:
 Succeeded
 Download timestamp: 2006-07-25 16:39:36.708000
 Upload OK
 No ignored rows
 Partial download retained
 Authentication value: 1000 (0x3e8)

The following example shows the command line used to synchronize the CustDB database with a user name
of 50 over TCP/IP on a port of 2439. It uses verbose progress messages.

ulsync -c "dbf=C:\Documents and Settings\All Users\Documents\SQL Anywhere
11\Samples\UltraLite\SyncEncrypt\custdb.udb"
MobiLinkUid=50;ScriptVersion=custdb 11.0;Stream=tcpip{port=2439}

UltraLite Synchronization utility (ulsync)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 277

Synchronization profile options
You specify synchronization profile options with the ulsync utility on the command line after you have
defined all other command line options you want to use. The keywords are case insensitive.

Synchro-
nization
profile
option

Valid
values

Description

Allow-
Download-
DupRows

Boo-
lean

This option prevents errors from being raised when multiple rows are downloaded
that have the same primary key. This can be used to allow inconsistent data to be
synchronized without causing the synchronisation to fail. The default value is "no."
See “Additional Parameters synchronization parameter” on page 155

Auth-
Parms

String
(com-
ma
separa-
ted)

Specifies the list of authentication parameters sent to the MobiLink server. You
can use authentication parameters to perform custom authentication in MobiLink
scripts. See “Authentication Parameters synchronization parame-
ter” on page 156.

Check-
pointStore

Boo-
lean

Adds additional checkpoints of the database during synchronization to limit da-
tabase growth during the synchronization process. See “Additional Parameters
synchronization parameter” on page 155.

Continue-
Download

Boo-
lean

Restarts a previously failed download. When continuing a download, only the
changes that were selected to be downloaded with the failed synchronization are
received. By default, UltraLite does not continue downloads. See “Resuming
failed downloads” [MobiLink - Server Administration].

Disable-
Concur-
rency

Boo-
lean

Disallow database access from other threads during synchronization. See “Addi-
tional Parameters synchronization parameter” on page 155.

Downloa-
dOnly

Boo-
lean

Performs a download-only synchronization. See “Download Only synchroniza-
tion parameter” on page 159.

KeepPar-
tialDown-
load

Boo-
lean

Controls whether UltraLite keeps a partial download if a communication error
occurs. By default, UltraLite does not roll back partially downloaded changes. See
“Keep Partial Download synchronization parameter” on page 161.

Mobi-
LinkPwd

String Specifies the existing MobiLink password associated with the user name. See
“MobiLinkPwd (mp) extended option” [MobiLink - Client Administration].

MobiLin-
kUid

String Specifies the MobiLink user name. See “-u option” [MobiLink - Client Adminis-
tration]. See “-mn option” [MobiLink - Client Administration].

UltraLite utilities

278 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Synchro-
nization
profile
option

Valid
values

Description

NewMo-
bi-
LinkPwd

String Supplies a new password for the MobiLink user. Use this option when you want
to change an existing password. See “-mn option” [MobiLink - Client Adminis-
tration].

Ping Boo-
lean

Confirms communications with the server only; no synchronization is performed.
See “Ping synchronization parameter” on page 165.

Publica-
tions

String
(com-
ma
separa-
ted)

Specifies the publications(s) to synchronize. The publications determine the tables
on the remote that are involved in synchronization. If this parameter is blank (the
default) then all tables are synchronized. If the parameter is an asterisk (*) then
all publications are synchronized. See “Publications in UltraLite” on page 137.

Script-
Version

String Specifies the MobiLink script version. The script version determines which scripts
are run by MobiLink on the consolidated database during synchronization. If you
do not specify a script version, 'default' is used. See “ScriptVersion (sv) extended
option” [MobiLink - Client Administration].

SendCo-
lumn-
Names

String Specifies that column names should be sent to the MobiLink server as part of the
upload file when synchronizing. By default, column names are not sent. See “Send
Column Names synchronization parameter” on page 168.

Send-
Downloa-
dACK

Boo-
lean

Specifies that a download acknowledgement should be sent from the client to the
server. By default, the MobiLink server does not provide a download acknowl-
edgement. See “Send Download Acknowledgement synchronization parame-
ter” on page 169.

Stream String
(with
sub-
list)

Specifies the MobiLink network synchronization protocol. See “Stream Type
synchronization parameter” on page 171.

TableOr-
der

String
(com-
ma
separa-
ted)

Specifies the order of tables in the upload. By default, UltraLite selects an order
based on foreign key relationships. See “Additional Parameters synchronization
parameter” on page 155.

Uploa-
dOnly

String Specifies that synchronization will only include an upload, and no download will
occur. See “Upload Only synchronization parameter” on page 174.

The Boolean values can be specified as Yes/No, 1/0, True/False, On/Off. In all the Boolean cases, the default
is "No". For all other values, the default is simply unspecified.

Synchronization profile options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 279

See also
● “UltraLite ALTER SYNCHRONIZATION PROFILE statement” on page 452
● “UltraLite DROP SYNCHRONIZATION PROFILE statement” on page 476
● “UltraLite SYNCHRONIZE statement” on page 491
● “UltraLite creation parameters” on page 181

UltraLite utilities

280 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite Unload Database utility (ulunload)
Unloads any of the following, depending on the options used:

● An entire UltraLite database to XML or SQL.
● All or part of UltraLite data only to XML or SQL.

Syntax
ulunload -c "connection-string" [options] output-file

Option Description

-b max-size Set the maximum size of column data to be stored in the XML file. The default is 10 KB.
To store all data in the XML file (no maximum size), use -b -1.

-c "connec-
tion-string"

Required. Connect to the database as identified in the DBF or file_name parameter of
your connection-string. If you do not specify both a user ID and a password, the default
UID of DBA and PWD of sql are assumed.

-d Only unload the data from the database to the output file. Do not unload any schema
information.

-e table,... Exclude the named table when unloading the database. You can name multiple tables in
a comma-separated list. For example:

-e mydbtable1,mydbtable5

-f directory Set the directory to store data larger than the maximum size specified by -b. The default
is the same directory as the output file.

-n Unload schema only, ignoring any data in the database.

-oa Cancel the process if it identifies that the database was created by a previous version of
UltraLite (which would cause the database to be upgraded).

-or Open the database in read-only mode. UltraLite makes a copy of the original file and
uses that to unload. This ensures that databases created with earlier versions of the soft-
ware are not upgraded.

If you are connecting directly from the desktop to a database already deployed to a
Windows Mobile device, the parameter is not supported.

-ou Upgrade the database if it was created with an older UltraLite release.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

-s Unload as SQL Anywhere-compatible SQL statements. SQL file output can be read by
UltraLite or SQL Anywhere using DBISQL.

UltraLite Unload Database utility (ulunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 281

Option Description

-t table,... Unload data in the named table only. You can name multiple tables in a comma separated
list. For example:

-t mydbtable2,mydbtable6

-v Print verbose messages.

-x owner Output tables so they are owned by a specific user ID. You can use this option with the
-s option.

-y Overwrite output-file without confirmation.

output-file Required. Set the name of the file that the database is unloaded into. If you use the -s
option, database is unloaded as SQL statements. Otherwise, the database is unloaded as
XML.

Remarks
By default, ulunload outputs XML that describes the schema and data in the database. You can use the output
for archival purposes, or to keep the UltraLite database portable across all releases.

Saving a database with a synchronization profile results in XML that is incompatible with earlier versions
of the UltraLite utilities. A workaround is to edit the XML and remove the text section marked with

<syncprofiles>...</syncprofiles>

Unloading a database does not preserve:

● Synchronization state, stored synchronization counts, and row deletions. Ensure you synchronize the
database before unloading it.

● UltraLite user entries.

To confirm what database options or properties have been preserved, run ulinfo after you have reloaded your
database with the ulload utility.

If column data exceeds the maximum size you specified with -b, the overflow is saved to a *.bin file in either:

● the same directory as the XML file
● the directory specified by -f.

The file follows this naming convention:

tablename-columname-rownumber.bin

The -x option allows you to assign ownership to UltraLite tables. You only need to assign an owner to a
table if you intend to use the resulting SQL statements for creating or modifying a SQL Anywhere database.
When read by UltraLite, the owner names are silently ignored.

This utility returns error codes. Any value other than 0 means that the operation failed.

UltraLite utilities

282 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If you are using this utility to unload a database on the Windows Mobile device directly, UltraLite cannot
back up the database before the unload or action occurs. You must perform this action manually before
running these wizards.

See also
● “UltraLite connection parameters” on page 225
● “Supported exit codes” on page 248
● “UltraLite Load XML to Database utility (ulload)” on page 272
● “UltraLite Information utility (ulinfo)” on page 265

Example
Unload the sample.udb database into the sample.xml file.

ulunload -c DBF=sample.udb sample.xml

Unload the data from the sample.udb database into a SQL file called sample1.sql. Overwrite the SQL file if
it exists.

ulunload -c DBF=sample.udb -d -y sample.sql

UltraLite Unload Database utility (ulunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 283

UltraLite Unload Old Database utility (ulunloadold)
Unloads UltraLite version 8.0.2 to 9.0.x databases and/or schema files (*.usm) into an XML file.

Syntax
ulunloadold -c "connection-string" [options] xml-file

Option Description

-b max-size Set the maximum size of column data to be stored in the XML file. The default is
10 KB. To store all data in the XML file (no maximum size), use -b -1.

-c "connection-
string"

Required. Connect to the database as identified in the DBF or file_name parameter
of your connection-string. If you do not specify both a user ID and a password, the
default UID of DBA and PWD of sql are assumed.

-f directory Set the directory to store data larger than the maximum size specified by -b. The
default is the same directory as the XML file.

-q Set the utility to run in quiet mode. Suppress informational banners, version num-
bers, and status messages. Error messages are still displayed, however.

-v Print verbose messages.

-y Overwrite xml-file without confirmation.

xml-file Set the name of the XML file that data will be unloaded into.

Remarks
UltraLite version 11 cannot directly upgrade version 8.x or version 9.x databases. Use this tool to generate
an XML file that can then be used by ulload to create a version 11 database. Do not unload UltraLite version
11 databases with this utility. Use the ulunload utility instead.

Unloading a database does not preserve:

● Synchronization state, stored synchronization counts, and row deletions. Ensure you synchronize the
database before unloading it.

● UltraLite user entries.

To confirm what database options or properties have been preserved, run ulinfo after you have reloaded your
database with the ulload utility.

If column data exceeds the maximum size you specified with -b, the overflow is saved to a *.bin file in either:

● the same directory as the XML file
● the directory specified by -f

The file name follows this naming convention:

UltraLite utilities

284 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

tablename-columname-rownumber.bin

Any error code value other than 0 means that the operation failed.

This utility cannot be used to unload databases directly on Windows Mobile devices. You must first copy
them to a desktop computer.

See also
● “UltraLite connection parameters” on page 225
● “UltraLite Load XML to Database utility (ulload)” on page 272
● “UltraLite Unload Database utility (ulunload)” on page 281
● “UltraLite Information utility (ulinfo)” on page 265

Example
Upgrading an UltraLite 8.0.x schema file named dbschema8.usm into an UltraLite version 11 database named
db.udb requires these two commands:

ulunloadold -c SCHEMA_FILE=dbschema8.usm dbschema.xml
ulload -c DBF=db.udb dbschema.xml

Upgrading an UltraLite version 9.0.x database for Palm OS named palm9db.pdb to an UltraLite version 11
database named palm11db.pdb requires these two commands:

ulunloadold -c DBF=palm9db.pdb dbdata.xml
ulload -c DBF=palm11db.pdb -p Syb1 dbdata.xml

UltraLite Unload Old Database utility (ulunloadold)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 285

UltraLite Validate Database utility (ulvalid)
Performs a full ("normal") validation of an UltraLite database, including:

● database pages - validate all database pages, using checksums when enabled (see the checksum_level
database creation parameter). Note that certain critical pages always have checksums and even pages
without checksums undergo a basic validity check.

● table - validate table(s) by checking that the table row count matches the count in each index

● index - validate indexes by checking that entries refer to valid rows. ulvalid -e performs an express check,
which includes only table validation.

Syntax
ulvalid -c "connection-string" [options]

Option Description

-c "connec-
tion-string"

Required. Connect to the database as identified in connection-string. If you do not
specify both a user ID and a password, the default UID of DBA and PWD of sql are
assumed.

-e Express validation. Only perform table validation. This option provides a faster vali-
dation than normal validation

-oa Cancel the process if it identifies that the database was created by a previous version of
UltraLite (which would cause the database to be upgraded).

-or Open the database in read-only mode. UltraLite makes a copy of the original file, which
you can then use to test your scripts without altering the database. Changes to the copied
file are discarded upon completion.

If you are connecting directly from the desktop to a database already deployed to a
Windows Mobile device, the parameter is not supported.

-ou Upgrade the database if it was created with an older UltraLite release.

-q Set the utility to run in quiet mode. Suppress informational banners, version numbers,
and status messages. Error messages are still displayed, however.

-v Print verbose messages.

Remarks
Validating a database verifies the accuracy of the table meta-data and ensures the file has not been corrupted.

See also
● “Validate an UltraLite database” on page 15

UltraLite utilities

286 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
An example of an express validation of a database named sample.udb run in quiet mode.

ulvalid -c DBF=sample.udb -e -q

UltraLite Validate Database utility (ulvalid)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 287

288

UltraLite system tables

Contents
View or hide UltraLite system tables ... 290
systable system table .. 291
syscolumn system table .. 292
sysindex system table ... 293
sysixcol system table ... 295
syspublication system table ... 296
sysarticle system table .. 297
sysuldata system table .. 298

The schema of every UltraLite database is described in several system tables. Because UltraLite does not
support table ownership, these system tables are accessible to any UltraLite user.

The contents of system tables can be changed only by UltraLite itself. UPDATE, DELETE, and INSERT
commands cannot be used to modify the contents of these tables. Furthermore, the structure of these tables
cannot be changed using the ALTER TABLE and DROP statements.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 289

View or hide UltraLite system tables
To hide or show system objects (Sybase Central)

1. Connect to the database.

2. Browse the objects of the database.

3. Right-click the contents pane and choose Hide/Show System Objects.

4. Click Tables and browse the available tables.

UltraLite system tables

290 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

systable system table
Each row in the systable system table describes one table in the database.

Column name Column type Description

column_count UNSIGNED INT The number of columns in the table.

index_count UNSIGNED INT The number of indexes in the table.

indexcol_count UNSIGNED INT The total number of columns in all indexes in the table.

map_handle UNSIGNED INT Internal use only.

table_name VARCHAR(128) The name of the table.

object_id UNSIGNED INT A unique identifier for that table.

sync_type VARCHAR(128) Used for MobiLink synchronization. Can be one of either
no_sync for no synchronization, all_sync to synchronize every
row, or normal_sync for synchronize changed rows only.

table_name VARCHAR(128) The name of the table.

table_type TINYINT One of either sys for system tables or user for regular tables.

tpd_handle UNSIGNED INT Internal user only.

Constraints
PRIMARY KEY (object_id)

systable system table

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 291

syscolumn system table
Each row in the syscolumn system table describes one column.

Column name Column type Description

column_name VARCHAR(128) A unique identifier of the column.

default VARCHAR(128) The default value for this column. For example, autoincrement.

domain UNSIGNED INT The column domain, which is an enumerated value indicating the
domain of the column.

domain_info SMALLINT Used with a variable sized domain.

nulls CHAR(1) Determines if the column allows nulls default.

object_id UNSIGNED INT A unique identifier for that column.

table_id UNSIGNED INT The identifier of the table to which the column belongs.

Constraints
PRIMARY KEY(table_id, object_id)

FOREIGN KEY (table_id) REFERENCES systable (object_id)

UltraLite system tables

292 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sysindex system table
Each row in the sysindex system table describes one index in the database.

Column name Column type Description

check_on_commit UNSIGNED
INT

Indicates when referential integrity is checked to ensure there is
a matching primary row for every foreign key. It is only required
if type is foreign.

index_name UNSIGNED
INT

The name of the index.

ixcol_count UNSIGNED
INT

The number of columns in the index.

nullable BIT Only required if type is foreign. Indicates if nulls are allowed.

object_id UNSIGNED
INT

A unique identifier for an index.

primary_index_id UNSIGNED
INT

Only required if type is foreign. Lists the identifier of the primary
index.

primary_table_id UNSIGNED
INT

Only required if type is foreign. Lists the identifier of the primary
table.

root_handle UNSIGNED
INT

For internal use only.

table_id UNSIGNED
INT

A unique identifier for the table to which the index applies.

type SMALLINT
(10)

The type of index. Can be one of:

● primary
● foreign
● key
● unique
● index

hash_size SHORT Stores the hash size used for index hashing.

Constraints
PRIMARY KEY (table_id, object_id)

FOREIGN KEY(table_id) REFERENCES systable(object_id)

sysindex system table

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 293

See also
● “sysixcol system table” on page 295

UltraLite system tables

294 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sysixcol system table
Each row in the sysixcol system table describes one column of an index listed in sysindex.

Column name Column type Description

column_id UNSIGNED INT A unique identifier for the column being indexed.

index_id UNSIGNED INT A unique identifier for the index that this index-column belongs to.

order CHAR(1) Indicates whether the column in the index is kept in ascending (A)
or descending (D) order.

sequence SMALLINT The order of the column in the index.

table_id UNSIGNED INT A unique identifier for the table to which the index applies.

Constraints
PRIMARY KEY(table_id, index_id, sequence)

FOREIGN KEY(table_id, index_id) REFERENCES sysindex(table_id, object_id)

FOREIGN KEY(table_id, column_id) REFERENCES syscolumn(table_id, object_id)

See also
● “sysindex system table” on page 293

sysixcol system table

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 295

syspublication system table
Each row in the syspublication system table describes a publication.

Column name Column type Description

download_timestamp UNSIGNED INT The time of the last download.

last_sync UNSIGNED BIGINT Used to keep track of upload progress.

publication_id UNSIGNED INT A unique identifier for the publication.

publication_name CHAR(128) The name of the publication.

Constraints
PRIMARY KEY (publication_id)

See also
● “sysarticle system table” on page 297

UltraLite system tables

296 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sysarticle system table
Each row in the sysarticle system table describes a table that belongs to a publication.

Column name Column type Description

publication _id UNSIGNED INT An identifier for the publication that this article belongs to.

table_id UNSIGNED INT The identifier of the table that belongs to the publication.

where_expr TINY INT An optional predicate to filter rows.

Constraints
PRIMARY KEY (publication_id, table_id)

FOREIGN KEY (publication_id) REFERENCES syspublication (publication_id)

FOREIGN KEY (table_id) REFERENCES systable (object_id)

See also
● “syspublication system table” on page 296

sysarticle system table

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 297

sysuldata system table
Each row in the sysuldata system table names value pairs of options and properties.

Column name Column type Description

long_setting LONGBINARY A BLOB for long values.

name VARCHAR(128) The name of the property.

setting VARCHAR(128) The value of the property.

type VARCHAR(128) One of either sys for internals, opt for options, or prop for prop-
erties

Constraints
PRIMARY KEY (name, type)

See also
● “UltraLite database properties” on page 213

UltraLite system tables

298 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite SQL Reference

This section provides a reference for UltraLite SQL. UltraLite SQL is a unique subset of the SQL supported by
SQL Anywhere databases.

UltraLite SQL elements ... 301
UltraLite SQL functions .. 347
UltraLite SQL statements .. 447

UltraLite SQL elements

Contents
Keywords in UltraLite ... 302
Identifiers in UltraLite ... 303
Strings in UltraLite ... 304
Comments in UltraLite ... 305
Numbers in UltraLite .. 306
The NULL value in UltraLite .. 307
Special values in UltraLite ... 308
Dates and times in UltraLite .. 311
Data types in UltraLite ... 312
Expressions in UltraLite ... 325
Operators in UltraLite .. 338
Variables in UltraLite ... 341
Execution plans in UltraLite ... 342

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 301

Keywords in UltraLite
Each SQL statement contains one or more keywords. SQL keywords are case insensitive, but throughout
these manuals, keywords are indicated in uppercase. Some keywords cannot be used as identifiers without
surrounding them in double quotes. These are called reserved words. See “Reserved words” [SQL Anywhere
Server - SQL Reference].

Note
UltraLite only supports a subset of SQL Anywhere keywords. However, to avoid potential problems in future
releases, you should assume that all the reserved words for SQL Anywhere apply to UltraLite as well.

UltraLite SQL elements

302 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Identifiers in UltraLite
Identifiers are names of objects in the database, such as user IDs, tables, and columns. Identifiers have a
maximum length of 128 bytes.

You must enclose identifiers in double quotes if any of the following conditions are true:

● The identifier contains spaces.

● The first character of the identifier is not an alphabetic character. The database collation sequence dictates
which characters are considered alphabetic or digit characters.

● The identifier contains a reserved word. See “Reserved words” [SQL Anywhere Server - SQL
Reference].

● The identifier contains characters other than alphabetic characters and digits.

You can only use a single backslash in an identifier if it is used as an escape character.

Identifiers in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 303

Strings in UltraLite
Strings are used to hold character data in the database. UltraLite supports the same rules for strings as SQL
Anywhere. The results of comparisons on strings, and the sort order of strings, depends on the case sensitivity
of the database, the character set, and the collation sequence. These properties are set when the database is
created.

See also
● “Strings” [SQL Anywhere Server - SQL Reference]
● “UltraLite character sets” on page 36

UltraLite SQL elements

304 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Comments in UltraLite
Comments are used to attach explanatory text to SQL statements or statement blocks. The UltraLite runtime
does not execute comments.

The following comment indicators are available in UltraLite:

● -- (Double hyphen) The database server ignores any remaining characters on the line. This indicator
is the SQL/2003 comment indicator.

● // (Double slash) The double slash has the same meaning as the double hyphen.

● /* ... */ (Slash-asterisk) Any characters between the two comment markers are ignored. The two
comment markers may be on the same or different lines. Comments indicated in this style can be nested.
This style of commenting is also called C-style comments.

Note
The percent sign (%) is not supported in UltraLite.

Examples
● The following example illustrates the use of double-hyphen comments:

CREATE TABLE borrowed_book (
 loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 FOREIGN KEY book REFERENCES library_books (isbn),
);
--This statement creates a table for a library database to hold information
on borrowed books.
--The default value for date_borrowed indicates that the book is borrowed
on the day the entry is made.
--The date_returned column is NULL until the book is returned.

● The following example illustrates the use of C-style comments:

CREATE TABLE borrowed_book (
 loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 FOREIGN KEY book REFERENCES library_books (isbn),
);
/* This statement creates a table for a library database to hold
information on borrowed books.
The default value for date_borrowed indicates that the book is borrowed on
the day the entry is made.
The date_returned column is NULL until the book is returned. */

Comments in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 305

Numbers in UltraLite
Numbers are used to hold numerical data in the database. A number can:

● be any sequence of digits
● be appended with decimal parts
● include an optional negative sign (-) or a plus sign (+)
● be followed by an e and then a numerical exponent value

For example, all numbers shown below are supported by UltraLite:

42

-4.038

.001

3.4e10

1e-10

UltraLite SQL elements

306 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The NULL value in UltraLite
As with SQL Anywhere, NULL is a special value that is different from any valid value for any data type.
However, the NULL value is a legal value in any data type. NULL is used to represent unknown (no value)
or inapplicable information. See “NULL value” [SQL Anywhere Server - SQL Reference].

The NULL value in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 307

Special values in UltraLite
You can use special values in expressions, and as column defaults when you create tables.

CURRENT DATE special value
Returns the current year, month, and day.

Data type
DATE

Remarks
The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT DATE with any of the following, all values are based on separate
clock readings:

● CURRENT DATE multiple times within the same statement

● CURRENT DATE with CURRENT TIME or CURRENT TIMESTAMP within a single statement

● CURRENT DATE with the NOW function or GETDATE function within a single statement

See also
● “Expressions in UltraLite” on page 325
● “GETDATE function [Date and time]” on page 385
● “NOW function [Date and time]” on page 408

CURRENT TIME special value
The current hour, minute, second, and fraction of a second.

Data type
TIME

Remarks
The fraction of a second is stored to 6 decimal places. The accuracy of the current time is limited by the
accuracy of the system clock.

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT TIME with any of the following, all values are based on separate
clock readings:

● CURRENT TIME multiple times within the same statement

● CURRENT TIME with CURRENT DATE or CURRENT TIMESTAMP within a single statement

UltraLite SQL elements

308 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● CURRENT TIME with the NOW function or GETDATE function within a single statement

See also
● “Expressions in UltraLite” on page 325
● “GETDATE function [Date and time]” on page 385
● “NOW function [Date and time]” on page 408

CURRENT TIMESTAMP special value
Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP value containing the year,
month, day, hour, minute, second, and fraction of a second.

Data type
TIMESTAMP

Remarks
The fraction of a second is stored to 3 decimal places. The accuracy is limited by the accuracy of the system
clock.

Columns declared with DEFAULT CURRENT TIMESTAMP do not necessarily contain unique values.

The information CURRENT TIMESTAMP returns is equivalent to the information returned by the
GETDATE and NOW functions.

CURRENT_TIMESTAMP is equivalent to CURRENT TIMESTAMP.

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT TIMESTAMP with any of the following, all values are based on
separate clock readings:

● CURRENT TIMESTAMP multiple times within the same statement

● CURRENT TIMESTAMP with CURRENT DATE or CURRENT TIME within a single statement

● CURRENT TIMESTAMP with the NOW function or GETDATE function within a single statement

See also
● “CURRENT TIME special value” on page 308
● “Expressions in UltraLite” on page 325
● “NOW function [Date and time]” on page 408
● “GETDATE function [Date and time]” on page 385
● “NOW function [Date and time]” on page 408

SQLCODE special value
Current SQLCODE value at the time the special value was evaluated.

Special values in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 309

Data type
String

Remarks
The SQLCODE value is set after each statement. You can check the SQLCODE to determine if the statement
succeeded.

See also
● “Expressions in UltraLite” on page 325
● Error Messages

Example
Use a SELECT statement to produce an error code for each attempt to fetch a new row from the result set.
For example: SELECT a, b, SQLCODE FROM MyTable.

UltraLite SQL elements

310 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Dates and times in UltraLite
Many of the date and time functions use dates built from date and time parts. UltraLite and SQL Anywhere
support the same date parts. See “Date parts” on page 349.

Dates and times in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 311

Data types in UltraLite
Available data types in UltraLite SQL include:

● Integer

● Decimal

● Floating-point

● Character

● Binary

● Date/time

Note
Domains (user-defined data types) are not supported in UltraLite SQL.

Note
You cannot concatenate LONGVARCHAR and LONGBINARY data types. See “String
operators” on page 339.

You can create a host variable with any one of the supported types. UltraLite supports a subset of the data
types available in SQL Anywhere. The following are the SQL data types supported in UltraLite databases.

Data type Description

BIT Boolean values (0 or 1). See “BIT data type” [SQL Anywhere Server
- SQL Reference].

{ CHAR | CHARACTER }
(max-length)

Character data of max-length, in the range of 1-32767 bytes. See
“CHAR data type” [SQL Anywhere Server - SQL Reference].

When evaluating expressions, the maximum length for a temporary
character value is 2048 bytes.

VARCHAR(max-length) VARCHAR is used for variable-length character data of max-
length. See “VARCHAR data type” [SQL Anywhere Server - SQL
Reference].

LONG VARCHAR Arbitrary length character data. Conditions in SQL statements (such
as in the WHERE clause) cannot operate on LONG VARCHAR col-
umns. The only operations allowed on LONG VARCHAR columns
are to insert, update, or delete them, or to include them in the select-
list of a query. See “LONG VARCHAR data type” [SQL Anywhere
Server - SQL Reference].

You can cast strings to/from LONGVARCHAR data.

UltraLite SQL elements

312 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Data type Description

[UNSIGNED] BIGINT An integer requiring 8 bytes of storage. See “BIGINT data type”
[SQL Anywhere Server - SQL Reference].

{ DECIMAL | DEC | NUMER-
IC } (precision , scale])]

The representation of a decimal number using two parts: precision
(total digits) and scale (digits that follow a decimal point). See
“DECIMAL data type” [SQL Anywhere Server - SQL Reference],
“NUMERIC data type” [SQL Anywhere Server - SQL Reference],
“UltraLite precision creation parameter” on page 201, and “UltraLite
scale creation parameter” on page 203.

DOUBLE [PRECISION] A double-precision floating-point number. In this data type PRECI-
SION is an optional part of the DOUBLE data type name. See
“DOUBLE data type” [SQL Anywhere Server - SQL Reference].

FLOAT [(precision)] A floating-point number, which may be single or double precision.
See “FLOAT data type” [SQL Anywhere Server - SQL Reference].

[UNSIGNED] { INT | INTE-
GER }

An unsigned integer requiring 4 bytes of storage. See “INTEGER
data type” [SQL Anywhere Server - SQL Reference].

REAL A single-precision floating-point number stored in 4 bytes. See “RE-
AL data type” [SQL Anywhere Server - SQL Reference].

[UNSIGNED] SMALLINT An integer requiring 2 bytes of storage. See “SMALLINT data type”
[SQL Anywhere Server - SQL Reference].

[UNSIGNED] TINYINT An integer requiring 1 byte of storage. See “TINYINT data type”
[SQL Anywhere Server - SQL Reference].

DATE A calendar date, such as a year, month, and day. See “DATE data
type” [SQL Anywhere Server - SQL Reference].

TIME The time of day, containing hour, minute, second, and fraction of a
second. See “TIME data type” [SQL Anywhere Server - SQL Refer-
ence].

DATETIME Identical to TIMESTAMP. See “DATETIME data type” [SQL Any-
where Server - SQL Reference].

TIMESTAMP A point in time, containing year, month, day, hour, minute, second,
and fraction of a second. See “TIMESTAMP data type” [SQL Any-
where Server - SQL Reference].

VARBINARY (max-length) Identical to BINARY. See “VARBINARY data type” [SQL Any-
where Server - SQL Reference].

Data types in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 313

Data type Description

BINARY (max-length) Binary data of maximum length max-length bytes. The maximum
length should not exceed 2048 bytes. See “BINARY data type” [SQL
Anywhere Server - SQL Reference].

LONG BINARY Arbitrary length binary data. Conditions in SQL statements (such as
in the WHERE clause) cannot operate on LONG BINARY columns.
The only operations allowed on LONG BINARY columns are to
insert, update, or delete them, or to include them in the select-list of
a query. See “LONG BINARY data type” [SQL Anywhere Server -
SQL Reference].

You can cast values to/from LONGBINARY data.

UNIQUEIDENTIFIER Typically used for a primary key or other unique column to hold
UUID (Universally Unique Identifier) values that uniquely identify
rows. UltraLite provides functions that generate UUID values. These
values are generated so that a value produced on one computer does
not match a UUID produced on another computer. UNIQUEIDEN-
TIFIER values generated in this way can therefore be used as keys
in a synchronization environment. See “UNIQUEIDENTIFIER data
type” [SQL Anywhere Server - SQL Reference].

User-defined data types and their equivalents
Unlike SQL Anywhere databases, UltraLite does not support user-defined data types. The following table
lists UltraLite data type equivalents to built-in SQL Anywhere aliases:

SQL Anywhere data type UltraLite equivalent

MONEY NUMERIC(19,4)

SMALLMONEY NUMERIC(10,4)

TEXT LONG VARCHAR

XML LONG VARCHAR

Converting data types explicitly
UltraLite allows you to request data type conversions explicitly, by using either the CAST or CONVERT
function.

UltraLite SQL elements

314 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

NOTE
In most cases, self-casting has no effect on operations. However, self-casts to CHAR/VARCHAR, BINARY/
VARBINARY and NUMERIC are not no-op procedures.

You can CAST or CONVERT most combinations of data types, as illustrated by the table that follows.

In some cases, however, the ability to convert or not is contingent upon the value used in the conversion. As
the Value-dependent column shows, the value must be compatible with the new data type to avoid
generating a specific type of conversion error. For example:

● If you cast varchar "1234" to long, this conversion is supported. However, if you cast varchar
"hello" to long, then this conversion generates a SQLE_CONVERSION_ERROR error because
hello is not a number.

● If you cast long 1234 to short, this conversion is supported. However, if you cast long 1000000 to
short, then this conversion generates a SQLE_OVERFLOW_ERROR error, because 1000000 is
beyond the range of numbers a short can hold.

From Always Never Value-dependent

BINARY
or VARBI-
NARY

CHAR or VARCHAR

BINARY

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

LONG VARCHAR

REAL

TIME

TIMESTAMP

DOUBLE

DATE

NUMERIC

UID1

Data types in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 315

From Always Never Value-dependent

LONG BI-
NARY

BINARY

LONG BINARY

BIT

CHAR or VARCHAR

LONG VARCHAR

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

TIME

TIMESTAMP

UID

N/A

BIT CHAR or VARCHAR

BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

REAL

SIGNED BIG

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

N/A

UltraLite SQL elements

316 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

From Always Never Value-dependent

CHAR or
VAR-
CHAR

BINARY or VARBINARY

CHAR or VARCHAR

LONG VARCHAR

LONG BINARY BIT

TINYINT

SIGNED SHORT

SHORT INT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

DOUBLE

NUMERIC

REAL

DATE

TIME

TIMESTAMP

UID

Data types in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 317

From Always Never Value-dependent

LONG
VAR-
CHAR

CHAR or VARCHAR

LONG VARCHAR

BINARY or VARBINARY

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

NUMERIC

DATE

TIME

TIMESTAMP

DOUBLE

UID

TINYINT BINARY or VARBINARY

CHAR or VARCHAR

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

UltraLite SQL elements

318 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

From Always Never Value-dependent

SHORT
INT

BINARY or VARBINARY

CHAR or VARCHAR

SHORT INT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SIGNED SHORT

SIGNED
SHORT

BINARY or VARBINARY

CHAR or VARCHAR

SIGNED SHORT

SIGNED LONG

SIGNED BIG

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

SHORT INT

LONG INT

BIGINT

BIT

TINYINT

LONG INT BINARY or VARBINARY

CHAR or VARCHAR

LONG INT

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

SIGNED LONG

Data types in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 319

From Always Never Value-dependent

SIGNED
LONG

BINARY or VARBINARY

CHAR or VARCHAR

SIGNED LONG

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

TIMESTAMP

LONG VARCHAR

LONG BINARY

TIME

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

BIGINT

BIGINT BINARY or VARBINARY

CHAR or VARCHAR

BIGINT

REAL

DOUBLE

NUMERIC

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

SIGNED BIG

SIGNED
BIG

BINARY or VARBINARY

CHAR or VARCHAR

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

TIMESTAMP

LONG VARCHAR

LONG BINARY

TIME

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

UltraLite SQL elements

320 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

From Always Never Value-dependent

REAL CHAR or VARCHAR

REAL

DOUBLE

NUMERIC

LONG VARCHAR

BINARY or VARBINARY

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

DOUBLE CHAR or VARCHAR

DOUBLE

NUMERIC

LONG VARCHAR

BINARY or VARBINARY

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

NUMERIC CHAR or VARCHAR

REAL

NUMERIC

DOUBLE

LONG VARCHAR

LONG BINARY

DATE

TIME

TIMESTAMP

UID

BINARY or VARBINARY2

BIT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

TINYINT

Data types in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 321

From Always Never Value-dependent

DATE CHAR or VARCHAR

SIGNED LONG

SIGNED BIG

DATE

TIMESTAMP

LONG VARCHAR

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

BIGINT

REAL

DOUBLE

NUMERIC

TIME

BINARY or VARBINARY

UID

TIME CHAR or VARCHAR

TIME

TIMESTAMP

LONG VARCHAR

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

BINARY or VARBINARY

UID

UltraLite SQL elements

322 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

From Always Never Value-dependent

TIME-
STAMP

CHAR or VARCHAR

SIGNED LONG

SIGNED BIG

DATE

TIME

TIMESTAMP

LONG VARCHAR

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

BIGINT

REAL

DOUBLE

NUMERIC

BINARY or VARBINARY

UID

UID CHAR or VARCHAR

UID

LONG VARCHAR

LONG BINARY

BIT

TINYINT

SHORT INT

SIGNED SHORT

LONG INT

SIGNED LONG

BIGINT

SIGNED BIG

REAL

DOUBLE

NUMERIC

DATE

TIME

TIMESTAMP

BINARY or VARBINARY1

1 The BINARY value must be a 16 byte length to be compatible with a UUID.

Data types in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 323

2 Only works if the source NUMERIC value is able to cast as a BIGINT.

UltraLite SQL elements

324 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Expressions in UltraLite
Expressions are formed by combining data, often in the form of column references, with operators or
functions.

Syntax
expression:
 case-expression
| constant
| [correlation-name.]column-name
| - expression
| expression operator expression
| (expression)
| function-name (expression, ...)
| if-expression
| special value
| input-parameter

Parameters
case-expression:
CASE expression
WHEN expression
THEN expression,...
[ELSE expression]
END

alternative form of case-expression:
CASE
WHEN search-condition
THEN expression,...
[ELSE expression]
END

constant:
 integer | number | string | host-variable

special-value:
 CURRENT { DATE | TIME | TIMESTAMP }
| NULL
| SQLCODE
| SQLSTATE

if-expression:
IF condition
THEN expression
[ELSE expression]
ENDIF

input-parameter:
{ ? | :name [: indicator-name] }

operator:
{ + | - | * | / | || | % }

Expressions in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 325

See also
● “Constants in expressions” on page 326
● “Special values in UltraLite” on page 308
● “Column names in expressions” on page 326
● “UltraLite SQL functions ” on page 347
● “Subqueries in expressions” on page 329
● “Search conditions in UltraLite” on page 331
● “Data types in UltraLite” on page 312
● “CASE expressions” on page 327
● “Input parameters” on page 330

Constants in expressions
In UltraLite, constants are numbers or string literals.

Syntax
' constant '

Usage
String constants are enclosed in single quotes (').

An apostrophe is represented inside a string by two single quotes in a row ('').

See also
● “Escape sequences” [SQL Anywhere Server - SQL Reference]

Example
To use a possessive phrase, type the string literal as follows:

'John''s database'

Column names in expressions
An identifier in an expression.

Syntax
correlation-name.column-name

Remarks
A column name is preceded by an optional correlation name, which typically is the name of a table.

If a column name is a keyword or has characters other than letters, digits and underscore, it must be
surrounded by quotation marks (" "). For example, the following are valid column names:

Employees.Name
address

UltraLite SQL elements

326 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

"date hired"
"salary"."date paid"

See also
● “UltraLite FROM clause” on page 478

IF expressions
Sets a search condition to return a specific subset of data.

Syntax 1
IF search-condition
THEN expression1
[ELSE expression2]
ENDIF

Remarks
For compatibility reasons, this expression can end in either ENDIF or END IF.

This expression returns the following:

● If search-condition is TRUE, the IF expression returns expression1.

● If search-condition is FALSE and an ELSE clause is specified, the IF expression returns expression2.

● If search-condition is FALSE, and there is no expression2, the IF expression returns NULL.

● If search-condition is UNKNOWN, the IF expression returns NULL.

See also
● “NULL value” [SQL Anywhere Server - SQL Reference]
● “Search conditions” [SQL Anywhere Server - SQL Reference]

CASE expressions
Provides conditional SQL expressions.

Syntax 1
CASE expression1
WHEN expression2 THEN expression3, ...
[ELSE expression4]
END

SELECT id,
 (CASE name
 WHEN 'Tee Shirt' THEN 'Shirt'
 WHEN 'Sweatshirt' THEN 'Shirt'
 WHEN 'Baseball Cap' THEN 'Hat'
 ELSE 'Unknown'

Expressions in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 327

 END) as Type
FROM Product;

Syntax 2
CASE
WHEN search-condition
THEN expression1, ...
[ELSE expression2]
END

Remarks
For compatibility reasons, you can end this expression with either ENDCASE or END CASE.

You can use case expressions anywhere you can use regular expression.

Syntax 1 If the expression following the CASE keyword is equal to the expression following the first
WHEN keyword, then the expression following the associated THEN keyword is returned. Otherwise the
expression following the ELSE keyword is returned, if specified.

For example, the following code uses a case expression as the second clause in a SELECT statement. It
selects a row from the Product table where the name column has a value of Sweatshirt.

Syntax 2 If the search-condition following the first WHEN keyword is TRUE, the expression following
the associate THEN keyword is returned. Otherwise the expression following the ELSE clause is returned,
if specified.

NULLIF function for abbreviated CASE expressions The NULLIF function provides a way to write
some CASE statements in short form. The syntax for NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression equals the second expression,
NULLIF returns NULL. If the first expression does not equal the second expression, NULLIF returns the
first expression.

Example
The following statement uses a CASE expression as the third clause of a SELECT statement to associate a
string with a search condition. If the name column's value is Tee Shirt, this query returns Sale. And if the
name column's value is not Tee Shirt and the quantity is greater than fifty, it returns Big Sale. However, for
all others, the query then returns Regular price.

SELECT id, name,
 (CASE
 WHEN name='Tee Shirt' THEN 'Sale'
 WHEN quantity >= 50 THEN 'Big Sale'
 ELSE 'Regular price'
 END) as Type
FROM Product;

Aggregate expressions
Performs an aggregate computation that the UltraLite runtime does not provide.

UltraLite SQL elements

328 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
SUM(expression)

Remarks
An aggregate expression calculates a single value from a range of rows.

An aggregate expression is one in which either an aggregate function is used, or in which one or more of
the operands is an aggregate expression.

When a SELECT statement does not have a GROUP BY clause, the expressions in the select-list must either
contain all aggregate expressions or no aggregate expressions. When a SELECT statement does have a
GROUP BY clause, any non-aggregate expression in the select-list must appear in the GROUP BY list.

Example
For example, the following query computes the total payroll for employees in the employee table. In this
query, SUM(salary) is an aggregate expression:

SELECT SUM(salary)
FROM employee;

Subqueries in expressions
A SELECT statement that is nested inside another SELECT statement.

Syntax
A subquery is structured like a regular query.

Remarks
In UltraLite, you can only use subquery references in the following situations:

● As a table expression in the FROM clause. This form of table expression (also called derived tables)
must have a derived table name and column names in which values in the SELECT list are fetched.

● To supply values for the EXISTS, ANY, ALL, and IN search conditions.

You can write subqueries with references to names that are specified before (to the left of) the subquery,
sometimes known as outer references to the left. However, you cannot have references to items within
subqueries (sometimes known as inner references).

See also
● “UltraLite SELECT statement” on page 486
● “Using subqueries” [SQL Anywhere Server - SQL Usage]
● “Search conditions in UltraLite” on page 331

Example
The following subquery is used to list all product IDs for items that are low in stock (that is, less than 20
items).

Expressions in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 329

FROM SalesOrderItems
 (SELECT ID
 FROM Products
 WHERE Quantity < 20);

Input parameters
Acts as placeholders to allow end-users to supply values to a prepared statement. These user-supplied values
are then used to execute the statement.

Syntax
{ ? | :name [: indicator-name] }

Remarks
Use the placeholder character of ? or the named form in expressions. You can use input parameters whenever
you can use a column name or constant.

The precise mechanism used to supply the values to the statement are dependent upon the API you use to
create your UltraLite client.

Using the named form The named form of an input parameter has special meaning. In general, name
is always used to specify multiple locations where an actual value is supplied.

For embedded SQL applications only, the indicator-name supplies the variable into which the null indicator
is placed. If you use the named form with the other components, indicator-name is ignored.

Deducing data types The data type of the input parameter is deduced when the statement is prepared
from one of the following patterns:

● CAST (? AS type)

In this case, type is a database type specification such as CHAR(32).

● Exactly one operand of a binary operator is an input parameter. The type is deduced to be the type of the
operand.

If the type cannot be deduced, UltraLite generates an error. For example:

● -?: the operand is unary.

● ? + ?: both are input parameters.

See also
● “Using host variables” [UltraLite - C and C++ Programming]
● “Preparing statements” [SQL Anywhere Server - Programming]
● UltraLite C/C++: “Data manipulation: Insert, Delete, and Update” [UltraLite - C and C++

Programming]
● UltraLite.NET: “Data manipulation: INSERT, UPDATE, and DELETE” [UltraLite - .NET

Programming]
● UltraLite for M-Business: “Data manipulation: INSERT, UPDATE, and DELETE” [UltraLite - M-

Business Anywhere Programming]

UltraLite SQL elements

330 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following embedded SQL statement has two input parameters:

INSERT INTO MyTable VALUES (:v1, :v2, :v1);

The first instance of v1 supplies its value to both the v2 and v1 locations in the statement.

Search conditions in UltraLite
Specifies a search condition for a WHERE clause, a HAVING clause, an ON phrase in a join, or an IF
expression. A search condition is also called a predicate.

Syntax
search-condition:
 expression compare expression
| expression IS [NOT] { NULL | TRUE | FALSE | UNKNOWN }
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] IN (expression, ...)
| expression [NOT] IN (subquery)
| expression [NOT] { ANY | ALL } (subquery)
| expression [NOT] EXISTS (subquery)
| NOT search-condition
| search-condition AND search-condition
| search-condition OR search-condition
| (search-condition)

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

Remarks
In UltraLite, search conditions can appear in the:

● WHERE clause

● HAVING clause

● ON phrase

● SQL queries

Search conditions can be used to choose a subset of the rows from a table in a FROM clause in a SELECT
statement, or in expressions such as an IF or CASE to select specific values. In UltraLite, every condition
evaluates as one of three states: TRUE, FALSE, or UNKNOWN. When combined, these states are referred
to as three-valued logic. The result of a comparison is UNKNOWN if either value being compared is the
NULL value. Search conditions are satisfied only if the result of the condition is TRUE.

Expressions in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 331

The different types of search conditions supported by UltraLite include:

● ALL conditions
● ANY conditions
● BETWEEN conditions
● EXISTS conditions
● IN conditions

These conditions are discussed in separate sections that follow.

Note
Subqueries form an important class of expression that is used in many search conditions.

See also
● “Comparison operators” on page 332
● “Three-valued logic” [SQL Anywhere Server - SQL Reference]
● “Subqueries in expressions” on page 329

Comparison operators
Any operator that allows two or more expressions to be compared with in a search condition.

Syntax
expression operator expression

Parameters

Operator Interpretation

= equal to

[NOT] LIKE a text comparison, possibly using regular expressions

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

<> not equal to

!> not greater than

UltraLite SQL elements

332 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Operator Interpretation

!< not less than

Remarks
Comparing dates In comparing dates, < means earlier and > means later.

Comparing LONG VARCHAR or LONG BINARY values UltraLite does not support comparisons
using LONG VARCHAR or LONG BINARY values.

Case-sensitivity In UltraLite, comparisons are carried out with the same attention to case as the database
on which they are operating. By default, UltraLite databases are created as case insensitive.

NOT operator The NOT operator negates an expression.

See also
● “Logical operators” on page 333
● “Search conditions in UltraLite” on page 331

Example
Either of the following two queries will find all Tee shirts and baseball caps that cost $10 or less. However,
note the difference in position between the negative logical operator (NOT) and the negative comparison
operator (!>).

SELECT ID, Name, Quantity
FROM Products
WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
AND NOT UnitPrice > 10;
SELECT ID, Name, Quantity
FROM Products
WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
AND UnitPrice !> 10;

Logical operators
Does any of the following:

● Compare conditions (AND, OR, and NOT).

● Test the truth or NULL value nature of the expressions (IS).

Syntax 1
condition1 logical-operator condition2

Syntax 2
NOT condition

Syntax 3
expression IS [NOT] { truth-value | NULL }

Expressions in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 333

Remarks
Search conditions can be used to choose a subset of the rows from a table in a FROM clause in a SELECT
statement, or in expressions such as an IF or CASE to select specific values. In UltraLite, every condition
evaluates as one of three states: TRUE, FALSE, or UNKNOWN. When combined, these states are referred
to as three-valued logic. The result of a comparison is UNKNOWN if either value being compared is the
NULL value. Search conditions are satisfied only if the result of the condition is TRUE.

AND The combined condition is TRUE if both conditions are TRUE, FALSE if either condition is FALSE,
and UNKNOWN otherwise.

condition1 OR condition2

OR The combined condition is TRUE if either condition is TRUE, FALSE if both conditions are FALSE,
and UNKNOWN otherwise.

NOT The NOT condition is TRUE if condition is FALSE, FALSE if condition is TRUE, and UNKNOWN
if condition is UNKNOWN.

IS The condition is TRUE if the expression evaluates to the supplied truth-value, which must be one of
TRUE, FALSE, or UNKNOWN. Otherwise, the value is FALSE.

See also
● “Three-valued logic” [SQL Anywhere Server - SQL Reference]
● “Comparison operators” on page 332
● “Search conditions in UltraLite” on page 331

Example
The IS NULL condition is satisfied if the column contains a NULL value. If you use the IS NOT NULL
operator, the condition is satisfied when the column contains a value that is not NULL. This example shows
an IS NULL condition: WHERE paid_date IS NULL.

ALL conditions
Use the ALL condition in conjunction with a comparison operators to compare a single value to the data
values produced by the subquery.

Syntax
expression compare [NOT] ALL (subquery)

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

Remarks
UltraLite uses the specified comparison operator to compare the test value to each data value in the result
set. If all the comparisons yield TRUE results, the ALL test returns TRUE.

UltraLite SQL elements

334 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Subqueries and the ALL test” [SQL Anywhere Server - SQL Usage]
● “Comparison operators” on page 332

Example
Find the order and customer IDs of those orders placed after all products of order #2001 were shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ALL (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2001);

ANY conditions
Use the ANY condition in conjunction with a comparison operators to compare a single value to the column
of data values produced by the subquery.

Syntax 1
expression compare [NOT] ANY (subquery)

Syntax 2
expression = ANY (subquery)

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

Remarks
UltraLite uses the specified comparison operator to compare the test value to each data value in the column.
If any of the comparisons yields a TRUE result, the ANY test returns TRUE.

Syntax 1 is TRUE if expression is equal to any of the values in the result of the subquery, and FALSE if
the expression is not NULL and does not equal any of the values returned by the subquery. The ANY
condition is UNKNOWN if expression is the NULL value, unless the result of the subquery has no rows, in
which case the condition is always FALSE.

See also
● “Subqueries and the ANY test” [SQL Anywhere Server - SQL Usage]
● “Comparison operators” on page 332

Example
Find the order and customer IDs of those orders placed after the first product of the order #2005 was shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ANY (
 SELECT ShipDate

Expressions in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 335

 FROM SalesOrderItems
 WHERE ID=2005);

BETWEEN conditions
Specifies an inclusive range, in which the lower value and the upper value and the values they delimit are
searched for.

Syntax
expression [NOT] BETWEEN start-expression AND end-expression

Remarks
The BETWEEN condition can evaluate to TRUE, FALSE, or UNKNOWN. Without the NOT keyword, the
condition evaluates as TRUE if expression is between start-expression and end-expression. The NOT
keyword reverses the meaning of the condition, but leaves UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two inequalities:

[NOT] (expression >= start-expression
 AND expression <= end-expression)

Example
List all the products cheaper than $10 or more expensive than $15.

SELECT Name, UnitPrice
FROM Products
WHERE UnitPrice NOT BETWEEN 10 AND 15;

EXISTS conditions
Checks whether a subquery produces any rows of query results

Syntax
 [NOT] EXISTS (subquery)

Remarks
The EXISTS condition is TRUE if the subquery result contains at least one row, and FALSE if the subquery
result does not contain any rows. The EXISTS condition cannot be UNKNOWN.

You can reverse the logic of the EXISTS condition by using the NOT EXISTS form. In this case, the test
returns TRUE if the subquery produces no rows, and FALSE otherwise.

Example
List the customers who placed orders after July 13, 2001.

SELECT GivenName, Surname
FROM Customers
WHERE EXISTS (
 SELECT *

UltraLite SQL elements

336 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 FROM SalesOrders
 WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID));

IN conditions
Checks membership by searching a value from the main query with another value in the subquery.

Syntax
expression [NOT] IN
{ (subquery) | (value-expr, ...) }

Parameters
value-expr are expressions that take on a single value, which may be a string, a number, a date, or any other
SQL data type.

Remarks
An IN condition, without the NOT keyword, evaluates according to the following rules:

● TRUE if expression is not NULL and equals at least one of the values.

● UNKNOWN if expression is NULL and the values list is not empty, or if at least one of the values is
NULL and expression does not equal any of the other values.

● FALSE if expression is NULL and subquery returns no values; or if expression is not NULL, none of
the values are NULL, and expression does not equal any of the values.

You can reverse the logic of the IN condition by using the NOT IN form.

The following search condition expression IN (values) is identical to the search condition expression =
ANY (values). The search condition expression NOT IN (values) is identical to the search condition
expression <> ALL (values).

Example
Select the company name and state for customers who live in the following Canadian provinces: Ontario,
Manitoba, and Quebec.

SELECT CompanyName , Province
FROM Customers
WHERE State IN('ON', 'MB', 'PQ');

Expressions in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 337

Operators in UltraLite
Operators are used to compute values, which may in turn be used as operands in a higher-level expression.

UltraLite SQL supports the following types of operators:

● Comparison operators evaluate and return a result using one (unary) or two (binary) comparison
operands. Comparisons result in the usual three logical values: true, false, and unknown.

● Arithmetic operators evaluate and return a result set for all floating-point, decimal, and integer numbers.

● String operators concatenate two string values together. For example, "my" + "string" returns the string
"my string".

● Bitwise operators evaluate and turn specific bits on or off within the internal representation of an integer.

● Logical operators evaluate search conditions. Logical evaluations result in the usual three logical values:
true, false, and unknown.

The normal precedence of operations applies.

See also
● “Operator precedence” on page 340
● “Comparison operators” on page 332
● “Arithmetic operators” on page 338
● “String operators” on page 339
● “Bitwise operators” on page 339
● “Logical operators” on page 333

Arithmetic operators
Arithmetic operators allow you to perform calculations.

expression + expression Addition. If either expression is NULL, the result is NULL.

expression - expression Subtraction. If either expression is NULL, the result is NULL.

- expression Negation. If the expression is NULL, the result is NULL.

expression * expression Multiplication. If either expression is NULL, the result is NULL.

expression / expression Division. If either expression is NULL or if the second expression is 0, the
result is NULL.

expression % expression Modulo finds the integer remainder after a division involving two whole
numbers. For example, 21 % 11 = 10 because 21 divided by 11 equals 1 with a remainder of 10. If either
expression is NULL, the result is NULL.

See also
● “Arithmetic operations” [SQL Anywhere Server - SQL Usage]

UltraLite SQL elements

338 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

String operators
String operators allow you to concatenate strings—except for LONGVARCHAR and LONGBINARY data
types.

expression || expression String concatenation (two vertical bars). If either string is NULL, it is treated
as the empty string for concatenation.

expression + expression Alternative string concatenation. When using the + concatenation operator,
you must ensure the operands are explicitly set to character data types rather than relying on implicit data
conversion.

For example, the following query returns the integer value 579:

SELECT 123 + 456;

However, the following query returns the character string 123456:

SELECT '123' + '456';

You can use the CAST or CONVERT functions to explicitly convert data types.

Bitwise operators
Bitwise operators perform bit manipulations between two expressions. The following operators can be used
on integer data types in UltraLite.

Operator Description

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ bitwise NOT

The bitwise operators &, |, and ~ are not interchangeable with the logical operators AND, OR, and NOT.
The bitwise operators operate on integer values using the bit representation of the values.

Example
The following statement selects rows in which the specified bits are set.

SELECT *
FROM tableA
WHERE (options & 0x0101) <> 0;

Operators in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 339

Operator precedence
The precedence of operators in expressions is as follows. Expressions in parentheses are evaluated first, then
multiplication and division before addition and subtraction. String concatenation happens after addition and
subtraction. The operators at the top of the list are evaluated before those at the bottom of the list.

Tip
Make the order of operation explicit in UltraLite, rather than relying on an operator precedence. That means,
when you use more than one operator in an expression you should order operations clearly with parentheses.

1. names, functions, constants, IF expressions, CASE expressions

2. ()

3. unary operators (operators that require a single operand): +, -

4. ~

5. &, | , ^

6. *, /, %

7. +, -

8. ||

9. comparisons: >, <, <>, !=, <=, >=, [NOT] BETWEEN, [NOT] IN, [NOT] LIKE

10. comparisons: IS [NOT] TRUE, FALSE, UNKNOWN

11. NOT

12. AND

13. OR

UltraLite SQL elements

340 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Variables in UltraLite
You cannot use SQL variables (including global variables) in UltraLite applications.

Variables in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 341

Execution plans in UltraLite
UltraLite execution plans show how tables and indexes are accessed when a query is executed. UltraLite
includes a query optimizer. The optimizer is an internal component of the UltraLite runtime that attempts
to produce an efficient plan for the query. It tries to avoid the use of temporary tables to store intermediate
results and attempts to ensure that only the pertinent subset of a table is accessed when a query joins two
tables.

Overriding the optimizer

The optimizer always aims identify the most efficient access plan possible, but this goal is not guaranteed
—especially with a complicated query where a great number of possibilities may exist. In extreme cases,
you can override the table order it selects by adding the OPTION (FORCE ORDER) clause to a query,
which forces UltraLite to access the tables in the order they appear in the query. This option is not
recommended for general use. If performance is slow, a better approach is usually to create appropriate
indexes to speed up execution.

Performance tip
If you are not going to update data with the query, you should specify the FOR READ ONLY clause in your
query. This clause may yield better performance. See “UltraLite SELECT statement” on page 486.

When to view an execution plan
View an execution plan in Interactive SQL when you need to know:

● What index will be used to return the results. An index scan object contains the name of the table and
the index on that table that is being used.

● Whether a temporary table will be used to return the results. Temporary tables are written to the UltraLite
temporary file. See “UltraLite temporary files” on page 12.

● Which order tables are joined. This information allows you to determine how performance is affected.

● Why a query is running slowly or to ensure that a query does not run slowly.

View an UltraLite execution plan
As a development aid, you can use Interactive SQL to display an UltraLite plan that summarizes how a
prepared statement is to be executed. The text plan is displayed in the Interactive SQL Plan Viewer.

In UltraLite, an execution plan is strictly a short textual summary of the plan. No other plan types are
supported. However, being a short plan, it allows you to compare plans quickly, because information is
summarized on a single line.

UltraLite SQL elements

342 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To view an execution plan in the Plan Viewer

1. Choose Tools » Plan Viewer.

2. In the SQL pane, type a query.

3. Click Get Plan to generate a plan for the specified SQL statements.

Example
The text plan appears in the lower pane of the Plan Viewer.

Consider the following statement:

SELECT I.inv_no, I.name, T.quantity, T.prod_no
FROM Invoice I, Transactions T
WHERE I.inv_no = T.inv_no;

This statement might produce the following plan:

join[scan(Invoice,primary),index-scan(Transactions,secondary)]

The plan indicates that the join operation is completed by reading all rows from the Invoice table (following
index named primary). It then uses the index named secondary from the Transactions table to read only the
row whose inv_no column matches.

See also
● “Interactive SQL utility (dbisql)” [SQL Anywhere Server - Database Administration]
● “Reading UltraLite execution plans” on page 343

Reading UltraLite execution plans
Because UltraLite short plans are textual summaries of how a query is accessed, you need to understand
how the operations of either a join or a scan of a table are implemented.

● For scan operations Represented with a single operand, which applies to a single table only and
uses an index. The table name and index name are displayed as round brackets ((,)) following the
operation name.

● For other operations Represented with one or more operands, which can also be plans in and of
themselves. In UltraLite, these operands are comma-separated lists contained by square brackets ([]).

Operation list
Operations supported by UltraLite are listed in the table that follows.

Operation Description

count(*) Counts the number of rows in a table.

Execution plans in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 343

Operation Description

distinct[plan] Implements the DISTINCT aspect of a query to compare and
eliminate duplicate rows. It is used when the underlying plan
sorts rows in such a way that duplicate contiguous rows are
eliminated. If two contiguous rows match, only the first row
is added to the result set.

dummy No operation performed. It only occurs in two cases:

● When you specify DUMMY in a FROM clause.

● When the FROM clause is missing from the query.

filter[plan] Executes a search condition for each row supplied by the
underlying plan. Only the rows that evaluate to true are for-
warded as part of the result set.

group-by[plan] Creates an aggregate of GROUP BY results, to sort multiple
rows of grouped data. Rows are listed in the order they occur
and are grouped by comparing contiguous rows.

group-single[plan] Creates an aggregate of GROUP BY results, but only when
it is known that a single row will be returned.

keyset[plan] Records which rows were used to create rows in a temporary
table so UltraLite can update the original rows. If you do not
want those rows to be updated, then use the FOR READ
ONLY clause in the query to eliminate this operation.

index-scan(table-name, index-name) Reads only part of the table; the index is used to find the
starting row.

join[plan, plan] Performs an inner join between two plans.

lojoin[plan, plan] Performs a left outer join between two plans.

like-scan(table-name, index-name) Reads only part of a table; the index is used to find the start-
ing row by pattern matching.

rowlimit[plan] Performs the row limiting operation on propagated rows.
Row limits are set by the TOP n or FIRST clause of the
SELECT statement.

scan(table-name, index-name) Reads an entire table following the order indicated by the
index.

sub-query[plan] Marks the start of a subquery.

UltraLite SQL elements

344 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Operation Description

temp[plan] Creates a temporary table from the rows in the underlying
plan. UltraLite uses a temporary table when underlying rows
must be ordered and no index was found to do this ordering.

You can add an index to eliminate the need for a temporary
table. However, each additional index used increases the
duration needed to insert or synchronize rows in the table
for which the index applies.

union-all[plan, ..., plan] Performs a UNION ALL operation on the rows generated in
the underlying plan.

Execution plans in UltraLite

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 345

346

UltraLite SQL functions

Contents
Function types ... 348
SQL functions (A-D) .. 354
SQL functions (E-O) .. 383
SQL functions (P-Z) ... 411

Functions are used to return information from the database. They are allowed anywhere an expression is
allowed.

Unless otherwise specified in the documentation, NULL is returned for a function if any argument is NULL.

Functions use the same syntax conventions used by SQL statements. For a complete list of syntax
conventions, see “Syntax conventions” [SQL Anywhere Server - SQL Reference].

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 347

Function types
This section groups the available function by type.

UltraLite supports a subset of the same functions documented for SQL Anywhere, and sometimes with a
few differences.

Note
Unless otherwise stated, any function that receives NULL as a parameter returns NULL.

UltraLite aggregate functions
Aggregate functions summarize data over a group of rows from the database. The groups are formed using
the GROUP BY clause of the SELECT statement. Aggregate functions are allowed only in the select list
and in the HAVING and ORDER BY clauses of a SELECT statement.

List of functions
The following aggregate functions are available:

● “AVG function [Aggregate]” on page 359
● “COUNT function [Aggregate]” on page 370
● “LIST function [Aggregate]” on page 395
● “MAX function [Aggregate]” on page 400
● “MIN function [Aggregate]” on page 401
● “SUM function [Aggregate]” on page 432

UltraLite data type conversion functions
Data type conversion functions are used to convert arguments from one data type to another, or to test whether
they can be converted.

List of functions
The following data type conversion functions are available:

● “CAST function [Data type conversion]” on page 361
● “CONVERT function [Data type conversion]” on page 366
● “HEXTOINT function [Data type conversion]” on page 386
● “INTTOHEX function [Data type conversion]” on page 390
● “ISDATE function [Data type conversion]” on page 391

UltraLite date and time functions
Date and time functions perform operations on date and time data types or return date or time information.

UltraLite SQL functions

348 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In this chapter, the term datetime is used to mean date or time or timestamp. The specific data type
DATETIME is indicated as DATETIME.

For more information about datetime data types, see “Data types in UltraLite” on page 312.

List of functions
The following date and time functions are available:

● “DATE function [Date and time]” on page 372
● “DATEADD function [Date and time]” on page 372
● “DATEDIFF function [Date and time]” on page 373
● “DATEFORMAT function [Date and time]” on page 375
● “DATENAME function [Date and time]” on page 375
● “DATEPART function [Date and time]” on page 376
● “DATETIME function [Date and time]” on page 377
● “DAY function [Date and time]” on page 377
● “DAYNAME function [Date and time]” on page 378
● “DAYS function [Date and time]” on page 379
● “DOW function [Date and time]” on page 382
● “GETDATE function [Date and time]” on page 385
● “HOUR function [Date and time]” on page 387
● “HOURS function [Date and time]” on page 388
● “MINUTE function [Date and time]” on page 401
● “MINUTES function [Date and time]” on page 402
● “MONTH function [Date and time]” on page 405
● “MONTHNAME function [Date and time]” on page 406
● “MONTHS function [Date and time]” on page 406
● “NOW function [Date and time]” on page 408
● “QUARTER function [Date and time]” on page 413
● “SECOND function [Date and time]” on page 420
● “SECONDS function [Date and time]” on page 421
● “TODAY function [Date and time]” on page 435
● “WEEKS function [Date and time]” on page 442
● “YEAR function [Date and time]” on page 444
● “YEARS function [Date and time]” on page 444
● “YMD function [Date and time]” on page 445

Date parts
Many of the date functions use dates built from date parts. The following table displays allowed values of
date parts.

Date part Abbreviation Values

Year yy 1-9999

Quarter qq 1-4

Function types

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 349

Date part Abbreviation Values

Month mm 1-12

Week wk 1-54. Weeks begin on Sunday.

Day dd 1-31

Dayofyear dy 1-366

Weekday dw 1-7 (Sunday = 1, ..., Saturday = 7)

Hour hh 0-23

Minute mi 0-59

Second ss 0-59

Millisecond ms 0-999

Calyearofweek cyr Integer. The year in which the week begins. The week containing the
first few days of the year may have started in the previous year, de-
pending on the weekday on which the year started. Years starting on
Monday through Thursday have no days that are part of the previous
year, but years starting on Friday through Sunday start their first week
on the first Monday of the year.

Calweekofyear cwk 1-54. The week number within the year that contains the specified date.

Caldayofweek cdw 1-7. (Monday = 1, ..., Sunday = 7)

UltraLite miscellaneous functions
Miscellaneous functions perform operations on arithmetic, string, or date/time expressions, including the
return values of other functions.

UltraLite SQL functions

350 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

List of functions
The following miscellaneous functions are available:

● “ARGN function [Miscellaneous]” on page 355
● “COALESCE function [Miscellaneous]” on page 366
● “EXPLANATION function [Miscellaneous]” on page 383
● “GREATER function [Miscellaneous]” on page 385
● “IFNULL function [Miscellaneous]” on page 389
● “ISNULL function [Miscellaneous]” on page 392
● “LESSER function [Miscellaneous]” on page 395
● “NEWID function [Miscellaneous]” on page 407
● “NULLIF function [Miscellaneous]” on page 409

UltraLite numeric functions
Numeric functions perform mathematical operations on numerical data types or return numeric information.

List of functions
The following numeric functions are available:

● “ABS function [Numeric]” on page 354
● “ACOS function [Numeric]” on page 354
● “ASIN function [Numeric]” on page 357
● “ATAN function [Numeric]” on page 357
● “ATAN2 function [Numeric]” on page 358
● “CEILING function [Numeric]” on page 362
● “COS function [Numeric]” on page 369
● “COT function [Numeric]” on page 369
● “DEGREES function [Numeric]” on page 381
● “EXP function [Numeric]” on page 383
● “FLOOR function [Numeric]” on page 384
● “LOG function [Numeric]” on page 397
● “LOG10 function [Numeric]” on page 398
● “MOD function [Numeric]” on page 404
● “PI function [Numeric]” on page 412
● “POWER function [Numeric]” on page 412
● “RADIANS function [Numeric]” on page 414
● “REMAINDER function [Numeric]” on page 414
● “ROUND function [Numeric]” on page 419
● “SIGN function [Numeric]” on page 423
● “SIN function [Numeric]” on page 424
● “SQRT function [Numeric]” on page 427
● “TAN function [Numeric]” on page 435
● “TRUNCNUM function [Numeric]” on page 437

Function types

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 351

UltraLite string functions
String functions perform conversion, extraction, or manipulation operations on strings, or return information
about strings.

When working in a multibyte character set, check carefully whether the function being used returns
information concerning characters or bytes.

List of functions
The following string functions are available:

● “ASCII function [String]” on page 356
● “BYTE_LENGTH function [String]” on page 360
● “BYTE_SUBSTR function [String]” on page 360
● “CHAR function [String]” on page 363
● “CHARINDEX function [String]” on page 364
● “CHAR_LENGTH function [String]” on page 365
● “DIFFERENCE function [String]” on page 381
● “INSERTSTR function [String]” on page 390
● “LCASE function [String]” on page 392
● “LEFT function [String]” on page 393
● “LENGTH function [String]” on page 394
● “LOCATE function [String]” on page 396
● “LOWER function [String]” on page 398
● “LTRIM function [String]” on page 399
● “PATINDEX function [String]” on page 411
● “REPEAT function [String]” on page 415
● “REPLACE function [String]” on page 416
● “REPLICATE function [String]” on page 417
● “RIGHT function [String]” on page 418
● “RTRIM function [String]” on page 419
● “SIMILAR function [String]” on page 424
● “SOUNDEX function [String]” on page 425
● “SPACE function [String]” on page 426
● “STR function [String]” on page 427
● “STRING function [String]” on page 428
● “STRTOUUID function [String]” on page 429
● “STUFF function [String]” on page 430
● “SUBSTRING function [String]” on page 430
● “TRIM function [String]” on page 436
● “UCASE function [String]” on page 438
● “UPPER function [String]” on page 439
● “UUIDTOSTR function [String]” on page 441

UltraLite SQL functions

352 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite system functions
System functions return system information.

List of functions
The following system functions are available in UltraLite:

● “DB_PROPERTY function [System]” on page 380
● “ML_GET_SERVER_NOTIFICATION [System]” on page 403
● “SYNC_PROFILE_OPTION_VALUE function [System]” on page 434

Function types

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 353

SQL functions (A-D)
Each function is listed, and the function type (numeric, character, and so on) is indicated next to it.

For links to all functions of a given type, see “Function types” on page 348.

See also
● “SQL functions (E-O)” [SQL Anywhere Server - SQL Reference]
● “SQL functions (P-Z)” [SQL Anywhere Server - SQL Reference]

ABS function [Numeric]
Returns the absolute value of a numeric expression.

Syntax
ABS(numeric-expression)

Parameters
● numeric-expression The number whose absolute value is to be returned.

Returns
An absolute value of the numeric expression.

Numeric-expression data type Returns

INT INT

FLOAT FLOAT

DOUBLE DOUBLE

NUMERIC NUMERIC

Standards and compatibility
● SQL/2003 SQL foundation feature outside core SQL.

Example
The following statement returns the value 66.

SELECT ABS(-66);

ACOS function [Numeric]
Returns the arc-cosine, in radians, of a numeric expression.

UltraLite SQL functions

354 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
ACOS(numeric-expression)

Parameters
● numeric-expression The cosine of the angle.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating
point.

See also
● “ASIN function [Numeric]” on page 357
● “ATAN function [Numeric]” on page 357
● “ATAN2 function [Numeric]” on page 358
● “COS function [Numeric]” on page 369

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the arc-cosine value for 0.52.

SELECT ACOS(0.52);

ARGN function [Miscellaneous]
Returns a selected argument from a list of arguments.

Syntax
ARGN(integer-expression, expression [, ...])

Parameters
● integer-expression The position of an argument within the list of expressions.

● expression An expression of any data type passed into the function. All supplied expressions must
be of the same data type.

Returns
Using the value of the integer-expression as n, returns the nth argument (starting at 1) from the remaining
list of arguments.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 355

Remarks
While the expressions can be of any data type, they must all be of the same data type. The integer expression
must be from one to the number of expressions in the list or NULL is returned. Multiple expressions are
separated by a comma.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 6.

SELECT ARGN(6, 1,2,3,4,5,6);

ASCII function [String]
Returns the integer ASCII value of the first byte in a string-expression.

Syntax
ASCII(string-expression)

Parameters
● string-expression The string.

Returns
SMALLINT

Remarks
If the string is empty, then ASCII returns zero. Literal strings must be enclosed in quotes. If the database
character set is multibyte and the first character of the parameter string consists of more than one byte, the
result is NULL.

See also
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 90.

SELECT ASCII('Z');

UltraLite SQL functions

356 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ASIN function [Numeric]
Returns the arc-sine, in radians, of a number.

Syntax
ASIN(numeric-expression)

Parameters
● numeric-expression The sine of the angle.

Returns
DOUBLE

Remarks
The SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, and performs the computation in double-precision floating
point.

See also
● “ACOS function [Numeric]” on page 354
● “ATAN function [Numeric]” on page 357
● “ATAN2 function [Numeric]” on page 358
● “SIN function [Numeric]” on page 424

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the arc-sine value for 0.52.

SELECT ASIN(0.52);

ATAN function [Numeric]
Returns the arc-tangent, in radians, of a number.

Syntax
ATAN(numeric-expression)

Remarks
The ATAN and TAN functions are inverse operations.

Parameters
● numeric-expression The tangent of the angle.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 357

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating
point.

See also
● “ACOS function [Numeric]” on page 354
● “ASIN function [Numeric]” on page 357
● “ATAN2 function [Numeric]” on page 358
● “TAN function [Numeric]” on page 435

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the arc-tangent value for 0.52.

SELECT ATAN(0.52);

ATAN2 function [Numeric]
Returns the arc-tangent, in radians, of the ratio of two numbers.

Syntax
ATAN2 (numeric-expression-1, numeric-expression-2)

Parameters
● numeric-expression-1 The numerator in the ratio whose arc-tangent is calculated.

● numeric-expression-2 The denominator in the ratio whose arc-tangent is calculated.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision floating
point.

See also
● “ACOS function [Numeric]” on page 354
● “ASIN function [Numeric]” on page 357
● “ATAN function [Numeric]” on page 357
● “TAN function [Numeric]” on page 435

UltraLite SQL functions

358 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the arc-tangent value for the ratio 0.52 to 0.60.

SELECT ATAN2(0.52, 0.60);

AVG function [Aggregate]
Computes the average, for a set of rows, of a numeric expression or of a set of unique values.

Syntax 1
AVG(numeric-expression | DISTINCT numeric-expression)

Parameters
● numeric-expression The expression whose average is calculated over a set of rows.

● DISTINCT clause Computes the average of the unique numeric values in the input.

Returns
Returns the NULL value for a group containing no rows.

Returns DOUBLE if the argument is DOUBLE, otherwise NUMERIC.

Remarks
This average does not include rows where the numeric-expression is the NULL value.

See also
● “SUM function [Aggregate]” on page 432
● “COUNT function [Aggregate]” on page 370

Standards and compatibility
● SQL/2003 Core feature.

Example
The following statement returns the value 49988.623200.

SELECT AVG(Salary) FROM Employees;

The following statement returns the average product price from the Products table:

SELECT AVG(DISTINCT UnitPrice) FROM Products;

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 359

BYTE_LENGTH function [String]
Returns the number of bytes in a string.

Syntax
BYTE_LENGTH(string-expression)

Parameters
● string-expression The string whose length is to be calculated.

Returns
INT

Remarks
Trailing white space characters in the string-expression are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the BYTE_LENGTH value may differ from the number of
characters returned by CHAR_LENGTH.

See also
● “CHAR_LENGTH function [String]” on page 365
● “DATALENGTH function [System]” on page 371
● “LENGTH function [String]” on page 394
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 12.

SELECT BYTE_LENGTH('Test Message');

BYTE_SUBSTR function [String]
Returns a substring of a string. The substring is calculated using bytes, not characters.

Syntax
BYTE_SUBSTR(string-expression, start [, length])

Parameters
● string-expression The string from which the substring is taken.

UltraLite SQL functions

360 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● start An integer expression indicating the start of the substring. A positive integer starts from the
beginning of the string, with the first character being position 1. A negative integer specifies a substring
starting from the end of the string, the final character being at position -1.

● length An integer expression indicating the length of the substring. A positive length specifies the
number of bytes to be taken starting at the start position. A negative length returns at most length bytes
up to, and including, the starting position, from the left of the starting position.

Returns
The value returned depends on the type of string-expression. Also, the arguments you specify determine if
the returned value is LONG. For example, LONG is not returned when you specify a constant < 32K for
length.

BINARY

VARCHAR

NVARCHAR

Remarks
If length is specified, the substring is restricted to that number of bytes. Both start and length can be either
positive or negative. Using appropriate combinations of negative and positive numbers, you can get a
substring from either the beginning or end of the string.

If start is zero and length is non-negative, a start value of 1 is used. If start is zero and length is negative, a
start value of -1 is used.

See also
● “SUBSTRING function [String]” on page 430
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value Test.

SELECT BYTE_SUBSTR('Test Message', 1, 4);

CAST function [Data type conversion]
Returns the value of an expression converted to a supplied data type.

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” [SQL Anywhere Server - SQL Reference].

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 361

Syntax
CAST(expression AS datatype)

Parameters
● expression The expression to be converted.

● data type The target data type.

Returns
The specified data type.

Remarks
If you do not indicate a length for character string types, the database server chooses an appropriate length.
If neither precision nor scale is specified for a DECIMAL conversion, the database server selects appropriate
values.

See also
● “CONVERT function [Data type conversion]” on page 366
● “LEFT function [String]” on page 393

Standards and compatibility
● SQL/2003 Core feature.

Example
The following function ensures a string is used as a date:

SELECT CAST('2000-10-31' AS DATE);

The value of the expression 1 + 2 is calculated, and the result is then cast into a single-character string.

SELECT CAST(1 + 2 AS CHAR);

You can use the CAST function to shorten strings

SELECT CAST ('Surname' AS CHAR(5));

CEILING function [Numeric]
Returns the first integer that is greater or equal to a given value. For positive numbers, this is known as
rounding up.

Syntax
CEILING(numeric-expression)

Parameters
● numeric-expression The number whose ceiling is to be calculated.

UltraLite SQL functions

362 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating
point.

See also
● “FLOOR function [Numeric]” on page 384

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 60.

SELECT CEILING(59.84567);

CHAR function [String]
Returns the character with the ASCII value of a number.

Syntax
CHAR(integer-expression)

Parameters
● integer-expression The number to be converted to an ASCII character. The number must be in the

range 0 to 255, inclusive.

Returns
VARCHAR

Remarks
The character returned corresponds to the supplied numeric expression in the current database character set,
according to a binary sort order.

CHAR returns NULL for integer expressions with values greater than 255 or less than zero.

See also
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 363

Example
The following statement returns the value Y.

SELECT CHAR(89);

CHARINDEX function [String]
Returns the position of one string in another.

Syntax
CHARINDEX(string-expression-1, string-expression-2)

Parameters
● string-expression-1 The string for which you are searching.

● string-expression-2 The string to be searched.

Returns
INT

Remarks
The first character of string-expression-1 is identified as 1. If the string being searched contains more than
one instance of the other string, then the CHARINDEX function returns the position of the first instance.

If the string being searched does not contain the other string, then the CHARINDEX function returns 0.

See also
● “SUBSTRING function [String]” on page 430
● “REPLACE function [String]” on page 416
● “LOCATE function [String]” on page 396
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns last and first names from the Surname and GivenName columns of the
Employees table, but only when the last name includes the letter K:

SELECT Surname, GivenName
FROM Employees
WHERE CHARINDEX('K', Surname) = 1;

Results returned:

UltraLite SQL functions

364 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Surname GivenName

Klobucher James

Kuo Felicia

Kelly Moira

CHAR_LENGTH function [String]
Returns the number of characters in a string.

Syntax
CHAR_LENGTH (string-expression)

Parameters
● string-expression The string whose length is to be calculated.

Returns
INT

Remarks
Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the value returned by the CHAR_LENGTH function may differ
from the number of bytes returned by the BYTE_LENGTH function.

Note
You can use the CHAR_LENGTH function and the LENGTH function interchangeably for CHAR,
VARCHAR, and LONG VARCHAR data types. However, you must use the LENGTH function for
BINARY and bit array data types.

See also
● “BYTE_LENGTH function [String]” on page 360
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Core feature.

Example
The following statement returns the value 8.

SELECT CHAR_LENGTH('Chemical');

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 365

COALESCE function [Miscellaneous]
Returns the first non-NULL expression from a list. This function is identical to the ISNULL function.

Syntax
COALESCE(expression, expression [, ...])

Parameters
● expression Any expression.

At least two expressions must be passed into the function, and all expressions must be comparable.

Returns
ANY

Remarks
The result is NULL only if all the arguments are NULL.

The parameters can be of any scalar type, but not necessarily same type.

For a more detailed description of how the database server processes this function, see “ISNULL function
[Miscellaneous]” on page 392.

See also
● “ISNULL function [Miscellaneous]” on page 392

Standards and compatibility
● SQL/2003 Core feature.

Example
The following statement returns the value 34.

SELECT COALESCE(NULL, 34, 13, 0);

CONVERT function [Data type conversion]
Returns an expression converted to a supplied data type.

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” [SQL Anywhere Server - SQL Reference].

Syntax
CONVERT(datatype, expression [, format-style])

UltraLite SQL functions

366 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● datatype The data type to which the expression is converted.

● expression The expression to be converted.

● format-style The style code to apply to the outputted value. Use this parameter when converting
strings to date or time data types, and vice versa. The table below shows the supported style codes,
followed by a representation of the output format produced by that style code. The style codes are
separated into two columns, depending on whether the century is included in the output format (for
example, 06 versus 2006).

Without century (yy) style
codes

With century (yyyy) style co-
des

Output format

- 0 or 100 Mmm dd yyyy hh:nnAA

1 101 mm/dd/yy[yy]

2 102 [yy]yy.mm.dd

3 103 dd/mm/yy[yy]

4 104 dd.mm.yy[yy]

5 105 dd-mm-yy[yy]

6 106 dd Mmm yy[yy]

7 107 Mmm dd, yy[yy]

8 108 hh:nn:ss

- 9 or 109 Mmm dd yyyy hh:nn:ss:sssAA

10 110 mm-dd-yy[yy]

11 111 [yy]yy/mm/dd

12 112 [yy]yymmdd

- 13 or 113 dd Mmm yyyy hh:nn:ss:sss (24 hour
clock, Europe default + milliseconds, 4-
digit year)

- 14 or 114 hh:nn:ss:sss (24 hour clock)

- 20 or 120 yyyy-mm-dd hh:nn:ss (24-hour clock,
ODBC canonical, 4-digit year)

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 367

Without century (yy) style
codes

With century (yyyy) style co-
des

Output format

- 21 or 121 yyyy-mm-dd hh:nn:ss.sss (24 hour
clock, ODBC canonical with millisec-
onds, 4-digit year)

Returns
The data type specified.

Remarks
If no format-style argument is provided, style code 0 is used.

For a description of the styles produced by each output symbol (such as Mmm), see “UltraLite date_format
creation parameter” on page 187.

See also
● “CAST function [Data type conversion]” on page 361

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statements illustrate the use of format style.

SELECT CONVERT(CHAR(20), OrderDate, 104) FROM SalesOrders;

OrderDate

16.03.2000

20.03.2000

23.03.2000

25.03.2000

...

SELECT CONVERT(CHAR(20), OrderDate, 7) FROM SalesOrders;

OrderDate

Mar 16, 00

Mar 20, 00

UltraLite SQL functions

368 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OrderDate

Mar 23, 00

Mar 25, 00

...

The following statement illustrates conversion to an integer, and returns the value 5.

SELECT CONVERT(integer, 5.2);

COS function [Numeric]
Returns the cosine of the angle in radians given by its argument.

Syntax
COS(numeric-expression)

Parameters
● numeric-expression The angle, in radians.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

See also
● “ACOS function [Numeric]” on page 354
● “COT function [Numeric]” on page 369
● “SIN function [Numeric]” on page 424
● “TAN function [Numeric]” on page 435

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value of the cosine of an angle 0.52 radians.

SELECT COS(0.52);

COT function [Numeric]
Returns the cotangent of the angle in radians given by its argument.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 369

Syntax
COT(numeric-expression)

Parameters
● numeric-expression The angle, in radians.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

See also
● “COS function [Numeric]” on page 369
● “SIN function [Numeric]” on page 424
● “TAN function [Numeric]” on page 435

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the cotangent value of 0.52.

SELECT COT(0.52);

COUNT function [Aggregate]
Counts the number of rows in a group depending on the specified parameters.

Syntax 1
COUNT(
*
| expression
| DISTINCT expression
)

Parameters
● * Return the number of rows in each group.

● expression The expression for which to return the number of rows.

● DISTINCT expression The expression for which to return the number of distinct rows.

Returns
INT

Remarks
Rows where the value is the NULL value are not included in the count.

UltraLite SQL functions

370 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “AVG function [Aggregate]” on page 359
● “SUM function [Aggregate]” on page 432

Standards and compatibility
● SQL/2003 Core feature. Syntax 2 is feature T611.

Example
The following statement returns each unique city, and the number of rows with that city value.

SELECT City, COUNT(*) FROM Employees GROUP BY City;

DATALENGTH function [System]
Returns the length, in bytes, of the underlying storage for the result of an expression.

Syntax
DATALENGTH(expression)

Parameters
● expression Usually a column name. If expression is a string constant, you must enclose it in quotes.

Returns
UNSIGNED INT

Remarks
The return values of the DATALENGTH function are as follows:

Data type DATALENGTH

SMALLINT 2

INTEGER 4

DOUBLE 8

CHAR Length of the data

BINARY Length of the data

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the length of the longest string in the CompanyName column.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 371

SELECT MAX(DATALENGTH(CompanyName))
FROM Customers;

The following statement returns the length of the string '8sdofinsv8s7a7s7gehe4h':

SELECT DATALENGTH('8sdofinsv8s7a7s7gehe4h');

DATE function [Date and time]
Converts the expression into a date, and removes any hours, minutes, or seconds.

For information about controlling the interpretation of date formats, see “UltraLite date_order creation
parameter” on page 190.

Syntax
DATE(expression)

Returns
DATE

Parameters
● expression The value to be converted to date format, typically a string.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 1999-01-02 as a date.

SELECT DATE('1999-01-02 21:20:53');

The following statement returns the create dates of all the objects listed in the SYSOBJECT system view:

SELECT DATE(creation_time) FROM SYSOBJECT;

DATEADD function [Date and time]
Returns the date produced by adding multiple date parts to a date.

Syntax
DATEADD(date-part, numeric-expression, date-expression)

date-part :
year
| quarter
| month
| week
| day

UltraLite SQL functions

372 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

| dayofyear
| hour
| minute
| second
| millisecond

Parameters
● date-part The date part to be added to the date. For more information about date parts, see “Date

parts” on page 349.

● numeric-expression The number of date parts to be added to the date. The numeric-expression can
be any numeric type, but the value is truncated to an integer.

● date-expression The date to be modified.

Returns
TIMESTAMP

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value: 1995-11-02 00:00:00.000.

SELECT DATEADD(month, 102, '1987/05/02');

DATEDIFF function [Date and time]
Returns the interval between two dates.

Syntax
DATEDIFF(date-part, date-expression-1, date-expression-2)

date-part :
year
| quarter
| month
| week
| day
| dayofyear
| hour
| minute
| second
| millisecond

Parameters
● date-part Specifies the date part in which the interval is to be measured.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 373

Choose one of the date objects listed above. For a complete list of date parts, see “Date
parts” on page 349.

● date-expression-1 The starting date for the interval. This value is subtracted from date-
expression-2 to return the number of date-parts between the two arguments.

● date-expression-2 The ending date for the interval. Date-expression-1 is subtracted from this value
to return the number of date-parts between the two arguments.

Returns
INT

Remarks
This function calculates the number of date parts between two specified dates. The result is a signed integer
value equal to (date2 - date1), in date parts.

The DATEDIFF function results are truncated, not rounded, when the result is not an even multiple of the
date part.

When you use day as the date part, the DATEDIFF function returns the number of midnights between the
two times specified, including the second date but not the first.

When you use month as the date part, the DATEDIFF function returns the number of first-of-the-months
between two dates, including the second date but not the first.

When you use week as the date part, the DATEDIFF function returns the number of Sundays between the
two dates, including the second date but not the first.

For the smaller time units there are overflow values:

● milliseconds 24 days

● seconds 68 years

● minutes 4083 years

● others No overflow limit

The function returns an overflow error if you exceed these limits.

Standards and compatibility
● SQL/2003 Transact-SQL extension.

Example
The following statement returns 1.

SELECT DATEDIFF(hour, '4:00AM', '5:50AM');

The following statement returns 102.

SELECT DATEDIFF(month, '1987/05/02', '1995/11/15');

The following statement returns 0.

SELECT DATEDIFF(day, '00:00', '23:59');

UltraLite SQL functions

374 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following statement returns 4.

SELECT DATEDIFF(day,
 '1999/07/19 00:00',
 '1999/07/23 23:59');

The following statement returns 0.

SELECT DATEDIFF(month, '1999/07/19', '1999/07/23');

The following statement returns 1.

SELECT DATEDIFF(month, '1999/07/19', '1999/08/23');

DATEFORMAT function [Date and time]
Returns a string representing a date expression in the specified format.

Syntax
DATEFORMAT(datetime-expression, string-expression)

Parameters
● datetime-expression The datetime to be converted.

● string-expression The format of the converted date.

For information about date format descriptions, see “UltraLite date_format creation
parameter” on page 187.

Returns
VARCHAR

Remarks
Any allowable date format can be used for the string-expression.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value Jan 01, 1989.

SELECT DATEFORMAT('1989-01-01', 'Mmm dd, yyyy');

DATENAME function [Date and time]
Returns the name of the specified part (such as the month June) of a datetime value, as a character string.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 375

Syntax
DATENAME(date-part, date-expression)

Parameters
● date-part The date part to be named.

For a complete listing of allowed date parts, see “Date parts” on page 349.

● date-expression The date for which the date part name is to be returned. The date must contain the
requested date-part.

Returns
VARCHAR

Remarks
The DATENAME function returns a string, even if the result is numeric, such as 23 for the day.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value May.

SELECT DATENAME(month, '1987/05/02');

DATEPART function [Date and time]
Returns the value of part of a datetime value.

Syntax
DATEPART(date-part, date-expression)

Parameters
● date-part The date part to be returned.

For a complete listing of allowed date parts, see “Date parts” on page 349.

● date-expression The date for which the part is to be returned.

Returns
INT

Remarks
The date must contain the date-part field.

UltraLite SQL functions

376 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 5.

SELECT DATEPART(month , '1987/05/02');

The following example creates a table, TableStatistics, and inserts into it the total number of sales orders
per year as stored in the SalesOrders table:

CREATE TABLE TableStatistics (
 ID INTEGER NOT NULL DEFAULT AUTOINCREMENT,
 Year INT,
 NumberOrders INT);
INSERT INTO TableStatistics (Year, NumberOrders)
 SELECT DATEPART(Year, OrderDate), COUNT(*)
 FROM SalesOrders
 GROUP BY DATEPART(Year, OrderDate);

DATETIME function [Date and time]
Converts an expression into a timestamp.

Syntax
DATETIME(expression)

Parameters
● expression The expression to be converted. It is generally a string.

Returns
TIMESTAMP

Remarks
Attempts to convert numerical values return an error.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns a timestamp with value 1998-09-09 12:12:12.000.

SELECT DATETIME('1998-09-09 12:12:12.000');

DAY function [Date and time]
Returns an integer from 1 to 31.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 377

Syntax
DAY(date-expression)

Parameters
● date-expression The date.

Returns
SMALLINT

Remarks
The integers 1 to 31 correspond to the day of the month in a date.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 12.

SELECT DAY('2001-09-12');

DAYNAME function [Date and time]
Returns the name of the day of the week from a date.

Syntax
DAYNAME(date-expression)

Parameters
● date-expression The date.

Returns
VARCHAR

Remarks
The English names are returned as: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value Saturday.

SELECT DAYNAME ('1987/05/02');

UltraLite SQL functions

378 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DAYS function [Date and time]
A function that evaluates days. For specific details, see this function's usage.

Syntax 1: integer
DAYS([datetime-expression,] datetime-expression)

Syntax 2: timestamp
DAYS(datetime-expression, integer-expression)

Parameters
● datetime-expression A date and time.

● integer-expression The number of days to be added to the datetime-expression. If the integer-
expression is negative, the appropriate number of days is subtracted from the timestamp. If you supply
an integer expression, the datetime-expression must be explicitly cast as a date or timestamp.

For information about casting data types, see “CAST function [Data type conversion]” on page 361.

Returns
INT when you specify two datetime expressions.

TIMESTAMP when the second argument you specify is an integer.

Remarks
The behavior of this function varies depending on the information you specify:

● If you give a single date, this function returns the number of days since 0000-02-29.

Note
0000-02-29 is not meant to imply an actual date; it is the date used by the date algorithm.

● If you give two dates, this function returns the integer number of days between them. Instead, use the
DATEDIFF function.

● If you give a date and an integer, this function adds the integer number of days to the specified date.
Instead, use the DATEADD function.

This function ignores hours, minutes, and seconds.

See also
● “DATEDIFF function [Date and time]” on page 373
● “DATEADD function [Date and time]” on page 372

Standards and compatibility
● SQL/2003 Vendor extension.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 379

Example
The following statement returns the integer 729889.

SELECT DAYS('1998-07-13 06:07:12');

The following statements return the integer value -366, indicating that the second date is 366 days prior to
the first. It is recommended that you use the second example (DATEDIFF).

SELECT DAYS('1998-07-13 06:07:12',
 '1997-07-12 10:07:12');
SELECT DATEDIFF(day,
 '1998-07-13 06:07:12',
 '1997-07-12 10:07:12');

The following statements return the timestamp 1999-07-14 00:00:00.000. It is recommended that you use
the second example (DATEADD).

SELECT DAYS(CAST('1998-07-13' AS DATE), 366);
SELECT DATEADD(day, 366, '1998-07-13');

DB_PROPERTY function [System]
Returns the value of the given property.

Syntax
DB_PROPERTY(property-name)

Parameters
● property-name The database property name.

Returns
VARCHAR

Remarks
Returns a string.

To set an option in UltraLite, use the SET OPTION statement or your component's API-specific Set Database
Option method.

See also
● “UltraLite SET OPTION statement” on page 488
● UltraLite C++: “SetDatabaseOption function” [UltraLite - C and C++ Programming]
● UltraLite.NET: “SetDatabaseOption method” [UltraLite - .NET Programming]

Example
The following statement returns the page size of the current database, in bytes.

SELECT DB_PROPERTY('page_size');

UltraLite SQL functions

380 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DEGREES function [Numeric]
Converts a number from radians to degrees.

Syntax
DEGREES(numeric-expression)

Parameters
● numeric-expression An angle in radians.

Returns
Returns the degrees of the angle given by numeric-expression.

DOUBLE

Remarks
This function converts its argument to DOUBLE, AND performs the computation in double-precision
floating point. If the parameter is NULL, the result is NULL.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 29.79380534680281.

SELECT DEGREES(0.52);

DIFFERENCE function [String]
Returns the difference in the SOUNDEX values between the two string expressions.

Syntax
DIFFERENCE (string-expression-1, string-expression-2)

Parameters
● string-expression-1 The first SOUNDEX argument.

● string-expression-2 The second SOUNDEX argument.

Returns
SMALLINT

Remarks
The DIFFERENCE function compares the SOUNDEX values of two strings and evaluates the similarity
between them, returning a value from 0 through 4, where 4 is the best match.

SQL functions (A-D)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 381

This function always returns some value. The result is NULL only if one of the arguments are NULL.

See also
● “SOUNDEX function [String]” on page 425
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 3.

SELECT DIFFERENCE('test', 'chest');

DOW function [Date and time]
Returns a number from 1 to 7 representing the day of the week of a date, where Sunday=1, Monday=2, and
so on.

Syntax
DOW(date-expression)

Parameters
● date-expression The date to evaluate.

Returns
SMALLINT

Remarks
The DOW function is not affected by the value specified for the first_day_of_week database option. For
example, even if first_day_of_week is set to Monday, the DOW function returns a 2 for Monday.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 5.

SELECT DOW('1998-07-09');

The following statement queries the Employees table and returns the employees StartDate, expressed as the
number of the day of the week:

SELECT DOW(StartDate) FROM Employees;

UltraLite SQL functions

382 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL functions (E-O)
Each function is listed, and the function type (numeric, character, and so on) is indicated next to it.

For links to all functions of a given type, see “Function types” on page 348.

See also
● “SQL functions (A-D)” [SQL Anywhere Server - SQL Reference]
● “SQL functions (P-Z)” [SQL Anywhere Server - SQL Reference]

EXP function [Numeric]
Returns the exponential function, e to the power of a number.

Syntax
EXP(numeric-expression)

Parameters
● numeric-expression The exponent.

Returns
DOUBLE

Remarks
The EXP function returns the exponential of the value specified by numeric-expression.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The statement returns the value 3269017.3724721107.

SELECT EXP(15);

EXPLANATION function [Miscellaneous]
Returns the plan optimization strategy of a SQL statement.

Syntax
EXPLANATION(string-expression)

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 383

Parameters
● string-expression The SQL statement, which is commonly a SELECT statement, but can also be

an UPDATE or DELETE statement.

Returns
LONG VARCHAR

Remarks
The optimization is returned as a string.

This information can help you decide which indexes to add or how to structure your database for better
performance.

See also
● “Execution plans in UltraLite” on page 342

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement passes a SELECT statement as a string parameter and returns the plan for executing
the query.

SELECT EXPLANATION('SELECT * FROM Departments WHERE DepartmentID > 100');

FLOOR function [Numeric]
Returns the largest integer not greater than a number.

Syntax
FLOOR(numeric-expression)

Parameters
● numeric-expression The value, usually a FLOAT.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision floating
point.

See also
● “CEILING function [Numeric]” on page 362

UltraLite SQL functions

384 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statements returns a Floor value of 123

SELECT FLOOR (123);

The following statements returns a Floor value of 123

SELECT FLOOR (123.45);

The following statements returns a Floor value of -124

SELECT FLOOR (-123.45);

GETDATE function [Date and time]
Returns the current year, month, day, hour, minute, second and fraction of a second.

Syntax
GETDATE()

Returns
TIMESTAMP

Remarks
The accuracy is limited by the accuracy of the system clock.

The information the GETDATE function returns is equivalent to the information returned by the NOW
function and the CURRENT TIMESTAMP special value.

See also
● “NOW function [Date and time]” on page 408

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the system date and time.

SELECT GETDATE();

GREATER function [Miscellaneous]
Returns the greater of two parameter values.

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 385

Syntax
GREATER(expression-1, expression-2)

Parameters
● expression-1 The first parameter value to be compared.

● expression-2 The second parameter value to be compared.

Returns
ANY

Remarks
If the parameters are equal, the first is returned.

See also
● “LESSER function [Miscellaneous]” on page 395

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 10.

SELECT GREATER(10, 5) FROM dummy;

HEXTOINT function [Data type conversion]
Returns the decimal integer equivalent of a hexadecimal string.

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” [SQL Anywhere Server - SQL Reference].

Syntax
HEXTOINT(hexadecimal-string)

Parameters
● hexadecimal-string The string to be converted to an integer.

Returns
The HEXTOINT function returns the platform-independent SQL INTEGER equivalent of the hexadecimal
string. The hexadecimal value represents a negative integer if the 8th digit from the right is one of the digits
8-9 and the uppercase or lowercase letters A-F and the previous leading digits are all uppercase or lowercase
letter F. The following is not a valid use of HEXTOINT since the argument represents a positive integer
value that cannot be represented as a signed 32-bit integer:

UltraLite SQL functions

386 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT HEXTOINT('0x0080000001');

INT

Remarks
The HEXTOINT function accepts string literals or variables consisting only of digits and the uppercase or
lowercase letters A-F, with or without a 0x prefix. The following are all valid uses of HEXTOINT:

SELECT HEXTOINT('0xFFFFFFFF');
SELECT HEXTOINT('0x00000100');
SELECT HEXTOINT('100');
SELECT HEXTOINT('0xffffffff80000001');

The HEXTOINT function removes the 0x prefix, if present. If the data exceeds 8 digits, it must represent a
value that can be represented as a signed 32-bit integer value.

See also
● “INTTOHEX function [Data type conversion]” on page 390

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 420.

SELECT HEXTOINT('1A4');

HOUR function [Date and time]
Returns the hour component of a datetime.

Syntax
HOUR(datetime-expression)

Parameters
● datetime-expression The datetime.

Returns
SMALLINT

Remarks
The value returned is a number from 0 to 23 corresponding to the datetime hour.

Standards and compatibility
● SQL/2003 Vendor extension.

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 387

Example
The following statement returns the value 21:

SELECT HOUR('1998-07-09 21:12:13');

HOURS function [Date and time]
A function that evaluates hours. For specific details, see this function's usage.

Syntax 1: integer
HOURS ([datetime-expression,] datetime-expression)

Syntax 2: timestamp
HOURS (datetime-expression, integer-expression)

Parameters
● datetime-expression A date and time.

● integer-expression The number of hours to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of hours is subtracted from the datetime. If you supply
an integer expression, the datetime-expression must be explicitly cast as a DATETIME data type.

For information about casting data types, see “CAST function [Data type conversion]” on page 361.

Returns
INT

TIMESTAMP

Remarks
The information you specify changes the behavior of this function:

● If you give a single date, this function returns the number of hours since 0000-02-29.

Note
0000-02-29 is not meant to imply an actual date; it is the date used by the date algorithm.

● If you give two time stamps, this function returns the integer number of hours between them. Instead,
use the DATEDIFF function.

● If you give a date and an integer, this function adds the integer number of hours to the specified timestamp.
Instead, use the DATEADD function.

See also
● “DATEDIFF function [Date and time]” on page 373
● “DATEADD function [Date and time]” on page 372

UltraLite SQL functions

388 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statements return the value 4, signifying that the second timestamp is four hours after the first.
It is recommended that you use the second example (DATEDIFF).

SELECT HOURS('1999-07-13 06:07:12',
 '1999-07-13 10:07:12');
SELECT DATEDIFF(hour,
 '1999-07-13 06:07:12',
 '1999-07-13 10:07:12');

The following statement returns the value 17517342.

SELECT HOURS('1998-07-13 06:07:12');

The following statements return the datetime 1999-05-13 02:05:07.000. It is recommended that you use the
second example (DATEADD).

SELECT HOURS(
 CAST('1999-05-12 21:05:07' AS DATETIME), 5);
SELECT DATEADD(hour, 5, '1999-05-12 21:05:07');

IFNULL function [Miscellaneous]
If the first expression is the NULL value, then the value of the second expression is returned. If the first
expression is not NULL, the value of the third expression is returned. If the first expression is not NULL
and there is no third expression, NULL is returned.

Syntax
IFNULL(expression-1, expression-2 [, expression-3])

Parameters
● expression-1 The expression to be evaluated. Its value determines whether expression-2 or

expression-3 is returned.

● expression-2 The return value if expression-1 is NULL.

● expression-3 The return value if expression-1 is not NULL.

Returns
The data type returned depends on the data type of expression-2 and expression-3.

Standards and compatibility
● SQL/2003 Transact-SQL extension.

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 389

Example
The following statement returns the value -66.

SELECT IFNULL(NULL, -66);

The following statement returns NULL, because the first expression is not NULL and there is no third
expression.

SELECT IFNULL(-66, -66);

INSERTSTR function [String]
Inserts a string into another string at a specified position.

Syntax
INSERTSTR(integer-expression, string-expression-1, string-expression-2)

Parameters
● integer-expression The position after which the string is to be inserted. Use zero to insert a string

at the beginning.

● string-expression-1 The string into which the other string is to be inserted.

● string-expression-2 The string to be inserted.

Returns
LONG VARCHAR

See also
● “STUFF function [String]” on page 430
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value backoffice.

SELECT INSERTSTR(0, 'office ', 'back');

INTTOHEX function [Data type conversion]
Returns a string containing the hexadecimal equivalent of an integer.

Syntax
INTTOHEX(integer-expression)

UltraLite SQL functions

390 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● integer-expression The integer to be converted to hexadecimal.

Returns
VARCHAR

Remarks
The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information, see “Converting to and from hexadecimal values” [SQL
Anywhere Server - SQL Reference].

See also
● “HEXTOINT function [Data type conversion]” on page 386

Standards and compatibility
● SQL/2003 Transact-SQL extension.

Example
The following statement returns the value 0000009c.

SELECT INTTOHEX(156);

ISDATE function [Data type conversion]
Tests if a string argument can be converted to a date.

Syntax
ISDATE(string)

Parameters
● string The string to be analyzed to determine if the string represents a valid date.

Returns
INT

Remarks
If a conversion is possible, the function returns 1; otherwise, 0 is returned. If the argument is NULL, 0 is
returned.

Standards and compatibility
● SQL/2003 Vendor extension.

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 391

ISNULL function [Miscellaneous]
Returns the first non-NULL expression from a list. This function is identical to the COALESCE function.

Syntax
ISNULL(expression, expression [, ...])

Parameters
● expression An expression to be tested against NULL.

At least two expressions must be passed into the function, and all expressions must be comparable.

Returns
The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the result in the type used for the
comparison. If the database server cannot find a common comparison type, an error is returned.

See also
● “COALESCE function [Miscellaneous]” on page 366

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value -66.

SELECT ISNULL(NULL ,-66, 55, 45, NULL, 16);

LCASE function [String]
Converts all characters in a string to lowercase. This function is identical the LOWER function.

Syntax
LCASE(string-expression)

Parameters
● string-expression The string to be converted to lowercase.

Returns
CHAR

NCHAR

LONG VARCHAR

VARCHAR

UltraLite SQL functions

392 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

NVARCHAR

Remarks
The LCASE function is similar to the LOWER function.

See also
● “LOWER function [String]” on page 398
● “UCASE function [String]” on page 438
● “UPPER function [String]” on page 439
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value chocolate.

SELECT LCASE('ChoCOlatE');

LEFT function [String]
Returns multiple characters from the beginning of a string.

Syntax
LEFT(string-expression, integer-expression)

Parameters
● string-expression The string.

● integer-expression The number of characters to return.

Returns
LONG VARCHAR

LONG NVARCHAR

Remarks
If the string contains multibyte characters, and the proper collation is being used, the number of bytes returned
may be greater than the specified number of characters.

You can specify an integer-expression that is larger than the value in the argument string expression. In this
case, the entire value is returned.

Whenever possible, if the input string uses character length semantics the return value will be described in
terms of character length semantics.

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 393

See also
● “RIGHT function [String]” on page 418
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the first 5 characters of each Surname value in the Customers table.

SELECT LEFT(Surname, 5) FROM Customers;

LENGTH function [String]
Returns the number of characters in the specified string.

Syntax
LENGTH(string-expression)

Parameters
● string-expression The string.

Returns
INT

Remarks
Use this function to determine the length of a string. For example, specify a column name for string-
expression to determine the length of values in the column.

If the string contains multibyte characters, and the proper collation is being used, LENGTH returns the
number of characters, not the number of bytes. If the string is of data type BINARY, the LENGTH function
behaves as the BYTE_LENGTH function.

Note
You can use the LENGTH function and the CHAR_LENGTH function interchangeably for CHAR,
VARCHAR, and LONG VARCHAR data types. However, you must use the LENGTH function for
BINARY and bit array data types.

See also
● “BYTE_LENGTH function [String]” on page 360
● “International languages and character sets” [SQL Anywhere Server - Database Administration]
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

UltraLite SQL functions

394 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following statement returns the value 9.

SELECT LENGTH('chocolate');

LESSER function [Miscellaneous]
Returns the lesser of two parameter values.

Syntax
LESSER(expression-1, expression-2)

Parameters
● expression-1 The first parameter value to be compared.

● expression-2 The second parameter value to be compared.

Returns
The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the result in the type used for the
comparison. If the database server cannot find a common comparison type, an error is returned.

Remarks
If the parameters are equal, the first value is returned.

See also
● “GREATER function [Miscellaneous]” on page 385

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 5.

SELECT LESSER(10, 5) FROM dummy;

LIST function [Aggregate]
Returns a comma-delimited list of values.

Syntax
LIST(
[DISTINCT] string-expression
[, delimiter-string])

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 395

Parameters
● string-expression A string expression, usually a column name. For each row in the column, the

value is added to a comma-separated list. When DISTINCT is specified, only unique values are added.

● delimiter-string A delimiter string for the list items. The default setting is a comma. There is no
delimiter if a value of NULL or an empty string is supplied. The delimiter-string must be a constant.

Returns
LONG VARCHAR

LONG NVARCHAR

Remarks
NULL values are not added to the list. LIST (X) returns the concatenation (with delimiters) of all the non-
NULL values of X for each row in the group. If there does not exist at least one row in the group with a
definite X-value, then LIST(X) returns the empty string.

A LIST function cannot be used as a window function, but it can be used as input to a window function.

Standards and compatibility
● SQL/2003 Vendor extension.

Examples
The following statement returns all street addresses from the Employees table.

SELECT LIST(Street) FROM Employees;

LOCATE function [String]
Returns the position of one string within another.

Syntax
LOCATE(string-expression-1, string-expression-2 [, integer-expression])

Parameters
● string-expression-1 The string to be searched.

● string-expression-2 The string to be searched for.

● integer-expression The character position in the string to begin the search. The first character is
position 1. If the starting offset is negative, the locate function returns the last matching string offset
rather than the first. A negative offset indicates how much of the end of the string is to be excluded from
the search. The number of bytes excluded is calculated as (-1 * offset) -1.

Returns
INT

UltraLite SQL functions

396 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
If integer-expression is specified, the search starts at that offset into the string.

The first string can be a long string (longer than 255 bytes), but the second is limited to 255 bytes. If a long
string is given as the second argument, the function returns a NULL value. If the string is not found, 0 is
returned. Searching for a zero-length string will return 1. If any of the arguments are NULL, the result is
NULL.

If multibyte characters are used, with the appropriate collation, then the starting position and the return value
may be different from the byte positions.

See also
● “UltraLite string functions” on page 352
● “CHARINDEX function [String]” on page 364

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 8.

SELECT LOCATE(
 'office party this week - rsvp as soon as possible',
 'party',
 2);

LOG function [Numeric]
Returns the natural logarithm of a number.

Syntax
LOG(numeric-expression)

Parameters
● numeric-expression The number.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Remarks
The argument is an expression that returns the value of any built-in numeric data type.

See also
● “LOG10 function [Numeric]” on page 398

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 397

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the natural logarithm of 50.

SELECT LOG(50);

LOG10 function [Numeric]
Returns the base 10 logarithm of a number.

Syntax
LOG10(numeric-expression)

Parameters
● numeric-expression The number.

Returns
This function converts its argument to DOUBLE, and performs the computation in double-precision floating
point. If the parameter is NULL, the result is NULL.

Remarks
The argument is an expression that returns the value of any built-in numeric data type.

See also
● “LOG function [Numeric]” on page 397

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the base 10 logarithm for 50.

SELECT LOG10(50);

LOWER function [String]
Converts all characters in a string to lowercase. This function is identical the LCASE function.

Syntax
LOWER(string-expression)

UltraLite SQL functions

398 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● string-expression The string to be converted.

Returns
CHAR

NCHAR

LONG VARCHAR

VARCHAR

NVARCHAR

Remarks
The LCASE function is identical to the LOWER function.

See also
● “LCASE function [String]” on page 392
● “UCASE function [String]” on page 438
● “UPPER function [String]” on page 439
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Core feature.

Example
The following statement returns the value chocolate.

SELECT LOWER('chOCOLate');

LTRIM function [String]
Removes leading and trailing blanks from a string.

Syntax
LTRIM(string-expression)

Parameters
● string-expression The string to be trimmed.

Returns
VARCHAR

NVARCHAR

LONG VARCHAR

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 399

LONG NVARCHAR

Remarks
The actual length of the result is the length of the expression minus the number of characters removed. If all
the characters are removed, the result is an empty string.

If the parameter can be null, the result can be null.

If the parameter is null, the result is the null value.

See also
● “RTRIM function [String]” on page 419
● “TRIM function [String]” on page 436
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

The TRIM specifications defined by the SQL/2003 standard (LEADING and TRAILING) are supplied
by the SQL Anywhere LTRIM and RTRIM functions respectively.

Example
The following statement returns the value Test Message with all leading blanks removed.

SELECT LTRIM(' Test Message');

MAX function [Aggregate]
Returns the maximum expression value found in each group of rows.

Syntax 1
MAX(expression | DISTINCT expression)

Parameters
● expression The expression for which the maximum value is to be calculated. This is commonly a

column name.

● DISTINCT expression Returns the same as MAX(expression), and is included for completeness.

Returns
The same data type as the argument.

Remarks
Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

See also
● “MIN function [Aggregate]” on page 401

UltraLite SQL functions

400 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Standards and compatibility
● SQL/2003 Core feature.

Example
The following statement returns the value 138948.000, representing the maximum salary in the Employees
table.

SELECT MAX(Salary)
FROM Employees;

MIN function [Aggregate]
Returns the minimum expression value found in each group of rows.

Syntax 1
MIN(expression | DISTINCT expression)

Parameters
● expression The expression for which the minimum value is to be calculated. This is commonly a

column name.

● DISTINCT expression Returns the same as MIN(expression), and is included for completeness.

Returns
The same data type as the argument.

Remarks
Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

See also
● “MAX function [Aggregate]” on page 400

Standards and compatibility
● SQL/2003 Core feature.

Example
The following statement returns the value 24903.000, representing the minimum salary in the Employees
table.

SELECT MIN(Salary)
FROM Employees;

MINUTE function [Date and time]
Returns a minute component of a datetime value.

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 401

Syntax
MINUTE(datetime-expression)

Parameters
● datetime-expression The datetime value.

Returns
SMALLINT

Remarks
The value returned is a number from number from 0 to 59 corresponding to the datetime minute.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 22.

SELECT MINUTE('1998-07-13 12:22:34');

MINUTES function [Date and time]
The information you specify changes the behavior of this function:

● If you give a single date, this function returns the number of minutes since 0000-02-29.

Note
0000-02-29 is not meant to imply an actual date; it is the date used by the date algorithm.

● If you give two time stamps, this function returns the integer number of minutes between them. Instead,
use the DATEDIFF function.

● If you give a date and an integer, this function adds the integer number of minutes to the specified
timestamp. Instead, use the DATEADD function.

Syntax 1: integer
MINUTES([datetime-expression,] datetime-expression)

Syntax 2: timestamp
MINUTES(datetime-expression, integer-expression)

Parameters
● datetime-expression A date and time.

UltraLite SQL functions

402 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● integer-expression The number of minutes to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of minutes is subtracted from the datetime value. If you
supply an integer expression, the datetime-expression must be explicitly cast as a DATETIME data type.

Returns
INT

TIMESTAMP

Remarks
Since this function returns an integer, overflow can occur when syntax 1 is used with time stamps greater
than or equal to 4083-03-23 02:08:00.

See also
● “CAST function [Data type conversion]” on page 361

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statements return the value 240, signifying that the second timestamp is 240 minutes after the
first. It is recommended that you use the second example (DATEDIFF).

SELECT MINUTES('1999-07-13 06:07:12',
 '1999-07-13 10:07:12');
SELECT DATEDIFF(minute,
 '1999-07-13 06:07:12',
 '1999-07-13 10:07:12');

The following statement returns the value 1051040527.

SELECT MINUTES('1998-07-13 06:07:12');

The following statements return the timestamp 1999-05-12 21:10:07.000. It is recommended that you use
the second example (DATEADD).

SELECT MINUTES(CAST('1999-05-12 21:05:07'
AS DATETIME), 5);
SELECT DATEADD(minute, 5, '1999-05-12 21:05:07');

ML_GET_SERVER_NOTIFICATION [System]
This function allows Ultralite users to use light weight polling to query a notifier on a MobiLink server for
server-initiated sync requests.

Syntax
ML_GET_SERVER_NOTIFICATION(notifier, address, key)

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 403

Parameters
● Notifier The name of the notifier on the MobiLink server to poll.

● Address The stream parameters, specified as:

tcpip{host=pc1;port=1234}

for example.

● Key Optional. The notification request key.

Returns
Returns the subject and content of a notification request for the given request key.

Remarks
If there are no requests for the given request key, or if the notifier name does not exist on the MobiLink
server, the result is NULL. If NULL is provided for the request key, then the remote ID of the user is used
as the request key. If a request does exist, the resulting message is returned in the form:
[subject]content (for example, [sync]profile1).

This function communicates over the network as it retrieves responses from the MobiLink server. As a result,
this function may require a long execution time resulting from network latency. During execution, there may
be periods when the function can execute in the background, allowing work to be performed in the runtime
on other connections. These periods are not guaranteed however, and depend on the complexity of the SQL.
The recommended method for users to retrieve a MobiLink address to use in this function is to use the
sync_profile_option_value function with an existing synchronization profile to get the value for the
Stream profile option. The value returned by this function call can be used directly as the MobiLink address
parameter.

See also
● “SYNC_PROFILE_OPTION_VALUE function [System]” on page 434

Standards and compatibility

Example
Select ml_get_server_notification('Notifier1',
'tcpip{host=sybase;port=1234}', 'MyKey'

MOD function [Numeric]
Returns the remainder when one whole number is divided by another.

Syntax
MOD(dividend, divisor)

Parameters
● dividend The dividend, or numerator of the division.

UltraLite SQL functions

404 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● divisor The divisor, or denominator of the division.

Returns
SMALLINT

INT

NUMERIC

Remarks
Division involving a negative dividend gives a negative or zero result. The sign of the divisor has no effect.

See also
● “REMAINDER function [Numeric]” on page 414

Standards and compatibility
● SQL/2003 SQL foundation feature outside core SQL.

Example
The following statement returns the value 2.

SELECT MOD(5, 3);

MONTH function [Date and time]
Returns a month of the given date.

Syntax
MONTH(date-expression)

Parameters
● date-expression A datetime value.

Returns
SMALLINT

Remarks
The value returned is a number from number from 1 to 12 corresponding to the datetime month.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 7.

SELECT MONTH('1998-07-13');

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 405

MONTHNAME function [Date and time]
Returns the name of the month from a date.

Syntax
MONTHNAME(date-expression)

Parameters
● date-expression The datetime value.

Returns
VARCHAR

Remarks
The MONTHNAME function returns a string, even if the result is numeric, such as 2 for the month of
February.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value September.

SELECT MONTHNAME('1998-09-05');

MONTHS function [Date and time]
The information you specify changes the behavior of this function:

● If you give a single date, this function returns the number of months since 0000-02.

Note
0000-02 is not meant to imply an actual date; it is the date used by the date algorithm.

● If you give two time stamps, this function returns the integer number of months between them. Instead,
use the DATEDIFF function.

● If you give a date and an integer, this function adds the integer number of minutes to the specified
timestamp. Instead, use the DATEADD function.

Syntax 1: integer
MONTHS([datetime-expression,] datetime-expression)

Syntax 2: timestamp
MONTHS(datetime-expression, integer-expression)

UltraLite SQL functions

406 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● datetime-expression A date and time.

● integer-expression The number of months to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of months is subtracted from the datetime value. If you
supply an integer-expression, the datetime-expression must be explicitly cast as a datetime data type.

For information about casting data types, see “CAST function [Data type conversion]” on page 361.

Returns
INT

TIMESTAMP

Remarks
The value of MONTHS is calculated from the number of first days of the month between the two dates.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statements return the value 2, signifying that the second date is two months after the first. It
is recommended that you use the second example (DATEDIFF).

SELECT MONTHS('1999-07-13 06:07:12',
 '1999-09-13 10:07:12');
SELECT DATEDIFF(month,
 '1999-07-13 06:07:12',
 '1999-09-13 10:07:12');

The following statement returns the value 23981.

SELECT MONTHS('1998-07-13 06:07:12');

The following statements return the timestamp 1999-10-12 21:05:07.000. It is recommended that you use
the second example (DATEADD).

SELECT MONTHS(CAST('1999-05-12 21:05:07'
AS DATETIME), 5);
SELECT DATEADD(month, 5, '1999-05-12 21:05:07');

NEWID function [Miscellaneous]
Generates a UUID (Universally Unique Identifier) value. A UUID is the same as a GUID (Globally Unique
Identifier).

Syntax
NEWID()

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 407

Parameters
There are no parameters associated with the NEWID function.

Returns
UNIQUEIDENTIFIER

Remarks
The NEWID function can be used in a DEFAULT clause for a column.

UUIDs can be used to uniquely identify rows in a table. A value produced on one computer does not match
a value produced on another computer, so they can be used as keys in synchronization and replication
environments.

See also
● “The NEWID default” [SQL Anywhere Server - SQL Usage]
● “STRTOUUID function [String]” on page 429
● “UUIDTOSTR function [String]” on page 441

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement creates a table named mytab with two columns. Column pk has a unique identifier
data type, and assigns the NEWID function as the default value. Column c1 has an integer data type.

CREATE TABLE mytab(
 pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
 c1 INT);

The following statement returns a unique identifier as a string:

SELECT NEWID();

For example, the value returned might be 96603324-6FF6-49DE-BF7D-F44C1C7E6856.

NOW function [Date and time]
Returns the current year, month, day, hour, minute, second, and fraction of a second. The accuracy is limited
by the accuracy of the system clock.

Syntax
NOW(*)

Returns
TIMESTAMP

UltraLite SQL functions

408 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
The information the NOW function returns is equivalent to the information returned by the GETDATE
function and the CURRENT TIMESTAMP special value.

See also
● “GETDATE function [Date and time]” on page 385
● “CURRENT TIMESTAMP special value” on page 309

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the current date and time.

SELECT NOW(*);

NULLIF function [Miscellaneous]
Provides an abbreviated CASE expression by comparing expressions.

Syntax
NULLIF(expression-1, expression-2)

Parameters
● expression-1 An expression to be compared.

● expression-2 An expression to be compared.

Returns
Data type of the first argument.

Remarks
NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second expression is NULL, NULLIF
returns the first expression.

The NULLIF function provides a short way to write some CASE expressions.

See also
● “CASE expressions” on page 327

Standards and compatibility
● SQL/2003 Core feature.

SQL functions (E-O)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 409

Example
The following statement returns the value a:

SELECT NULLIF('a', 'b');

The following statement returns NULL.

SELECT NULLIF('a', 'a');

UltraLite SQL functions

410 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL functions (P-Z)
Each function is listed, and the function type (numeric, character, and so on) is indicated next to it.

For links to all functions of a given type, see “Function types” on page 348.

See also
● “SQL functions (A-D)” [SQL Anywhere Server - SQL Reference]
● “SQL functions (E-O)” [SQL Anywhere Server - SQL Reference]

PATINDEX function [String]
Returns an integer representing the starting position of the first occurrence of a pattern in a string.

Syntax
PATINDEX('%pattern%', string-expression)

Parameters
● pattern The pattern to be searched for. If the leading percent wildcard is omitted, the PATINDEX

function returns one (1) if the pattern occurs at the beginning of the string, and zero if not.

The pattern for UltraLite uses the following wildcards:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

● string-expression The string to be searched for the pattern.

Returns
INT

Remarks
The PATINDEX function returns the starting position of the first occurrence of the pattern. If the pattern is
not found, it returns zero (0).

See also
● “LOCATE function [String]” on page 396
● “UltraLite string functions” on page 352

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 411

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 2.

SELECT PATINDEX('%hoco%', 'chocolate');

The following statement returns the value 11.

SELECT PATINDEX('%4_5_', '0a1A 2a3A 4a5A');

The following statement returns 14 which is the first non-alphanumeric character in the string expression.
Note that the pattern '%[^a-z0-9]%' can be used instead of '%[^a-zA-Z0-9]%' if the database is
case insensitive.

SELECT PATINDEX('%[^a-zA-Z0-9]%', 'SQLAnywhere11 has many new features');

To get the first alphanumeric word in a string, you can use something like the following:

SELECT LEFT(@string, PATINDEX('%[^a-zA-Z0-9]%', @string));

PI function [Numeric]
Returns the numeric value PI.

Syntax
PI(*)

Returns
DOUBLE

Standards and compatibility
● SQL/2003 Vendor extension.

Remarks
This function returns a DOUBLE value.

Example
The following statement returns the value 3.141592653...

SELECT PI(*);

POWER function [Numeric]
Calculates one number raised to the power of another.

UltraLite SQL functions

412 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
POWER(numeric-expression-1, numeric-expression-2)

Parameters
● numeric-expression-1 The base.

● numeric-expression-2 The exponent.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision floating
point. If any argument is NULL, the result is a NULL value.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 64.

SELECT POWER(2, 6);

QUARTER function [Date and time]
Returns a number indicating the quarter of the year from the supplied date expression.

Syntax
QUARTER(date-expression)

Parameters
● date-expression The date.

Returns
INT

Remarks
The quarters are as follows:

Quarter Period (inclusive)

1 January 1 to March 31

2 April 1 to June 30

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 413

Quarter Period (inclusive)

3 July 1 to September 30

4 October 1 to December 31

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 2.

SELECT QUARTER('1987/05/02');

RADIANS function [Numeric]
Converts a number from degrees to radians.

Syntax
RADIANS(numeric-expression)

Parameters
● numeric-expression A number, in degrees. This angle is converted to radians.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating
point.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns a value of approximately 0.5236.

SELECT RADIANS(30);

REMAINDER function [Numeric]
Returns the remainder when one whole number is divided by another.

UltraLite SQL functions

414 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
REMAINDER(dividend, divisor)

Parameters
● dividend The dividend, or numerator of the division.

● divisor The divisor, or denominator of the division.

Returns
INTEGER

NUMERIC

Remarks
Alternatively, try using the MOD function.

See also
● “MOD function [Numeric]” on page 404

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 2.

SELECT REMAINDER(5, 3);

REPEAT function [String]
Concatenates a string a specified number of times.

Syntax
REPEAT(string-expression, integer-expression)

Parameters
● string-expression The string to be repeated.

● integer-expression The number of times the string is to be repeated. If integer-expression is
negative, an empty string is returned.

Returns
LONG VARCHAR

LONG NVARCHAR

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 415

Remarks
If the actual length of the result string exceeds the maximum for the return type, an error occurs. The result
is truncated to the maximum string size allowed.

Alternatively, try using the REPLICATE function.

See also
● “REPLICATE function [String]” on page 417
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value repeatrepeatrepeat.

SELECT REPEAT('repeat', 3);

REPLACE function [String]
Replaces a string with another string, and returns the new results.

Syntax
REPLACE(original-string, search-string, replace-string)

Parameters
If any argument is NULL, the function returns NULL.

● original-string The string to be searched. This can be any length.

● search-string The string to be searched for and replaced with replace-string. This string is limited
to 255 bytes. If search-string is an empty string, the original string is returned unchanged.

● replace-string The replacement string, which replaces search-string. This can be any length. If
replacement-string is an empty string, all occurrences of search-string are deleted.

Returns
LONG VARCHAR

LONG NVARCHAR

Remarks
This function replaces all occurrences.

Comparisons are case-sensitive on case-sensitive databases.

UltraLite SQL functions

416 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “SUBSTRING function [String]” on page 430
● “CHARINDEX function [String]” on page 364
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value xx.def.xx.ghi.

SELECT REPLACE('abc.def.abc.ghi', 'abc', 'xx');

The following statement generates a result set containing ALTER PROCEDURE statements which, when
executed, would repair stored procedures that reference a table that has been renamed. (To be useful, the
table name must be unique.)

SELECT REPLACE(
 REPLACE(proc_defn, 'OldTableName', 'NewTableName'),
 'CREATE PROCEDURE',
 'ALTER PROCEDURE')
FROM SYS.SYSPROCEDURE
WHERE proc_defn LIKE '%OldTableName%';

REPLICATE function [String]
Concatenates a string a specified number of times.

Syntax
REPLICATE(string-expression, integer-expression)

Parameters
● string-expression The string to be repeated.

● integer-expression The number of times the string is to be repeated.

Returns
LONG VARCHAR

LONG NVARCHAR

Remarks
If the actual length of the result string exceeds the maximum for the return type, an error occurs. The result
is truncated to the maximum string size allowed.

Alternatively, try using the REPEAT function.

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 417

See also
● “REPEAT function [String]” on page 415
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value repeatrepeatrepeat.

SELECT REPLICATE('repeat', 3);

RIGHT function [String]
Returns the rightmost characters of a string.

Syntax
RIGHT(string-expression, integer-expression)

Parameters
● string-expression The string to be left-truncated.

● integer-expression The number of characters at the end of the string to return.

Returns
LONG VARCHAR

LONG NVARCHAR

Remarks
If the string contains multibyte characters, and the proper collation is being used, the number of bytes returned
may be greater than the specified number of characters.

You can specify an integer-expression that is larger than the value in the column. In this case, the entire
value is returned.

Whenever possible, if the input string uses character length semantics the return value will be described in
terms of character length semantics.

See also
● “LEFT function [String]” on page 393
● “International languages and character sets” [SQL Anywhere Server - Database Administration]
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

UltraLite SQL functions

418 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following statement returns the last 5 characters of each Surname value in the Customers table.

SELECT RIGHT(Surname, 5) FROM Customers;

ROUND function [Numeric]
Rounds the numeric-expression to the specified integer-expression amount of places after the decimal point.

Syntax
ROUND(numeric-expression, integer-expression)

Parameters
● numeric-expression The number, passed into the function, to be rounded.

● integer-expression A positive integer specifies the number of significant digits to the right of the
decimal point at which to round. A negative expression specifies the number of significant digits to the
left of the decimal point at which to round.

Returns
NUMERIC

Remarks
The result of this function is either numeric or double. When there is a numeric result and the integer integer-
expression is a negative value, the precision is increased by one.

See also
● “TRUNCNUM function [Numeric]” on page 437

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 123.200.

SELECT ROUND(123.234, 1);

RTRIM function [String]
Removes leading and trailing blanks from a string.

Syntax
RTRIM(string-expression)

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 419

Parameters
● string-expression The string to be trimmed.

Returns
VARCHAR

NVARCHAR

LONG VARCHAR

LONG NVARCHAR

Remarks
The actual length of the result is the length of the expression minus the number of characters removed. If all
the characters are removed, the result is an empty string.

If the argument is null, the result is the null value.

See also
● “TRIM function [String]” on page 436
● “LTRIM function [String]” on page 399
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

The TRIM specifications defined by the SQL/2003 standard (LEADING and TRAILING) are supplied
by the SQL Anywhere LTRIM and RTRIM functions respectively.

Example
The following statement returns the string Test Message, with all trailing blanks removed.

SELECT RTRIM('Test Message ');

SECOND function [Date and time]
Returns a second of the given date.

Syntax
SECOND(datetime-expression)

Parameters
● datetime-expression The datetime value.

Returns
SMALLINT

UltraLite SQL functions

420 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Returns a number from 0 to 59 corresponding to the second component of the given datetime value.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 25.

SELECT SECOND('1998-07-13 21:21:25');

SECONDS function [Date and time]
The behavior of this function can vary depending on what you supply:

● If you give a single date, this function returns the number of seconds since 0000-02-29.

Note
0000-02-29 is not meant to imply an actual date; it is the date used by the date algorithm.

● If you give two time stamps, this function returns the integer number of seconds between them. Instead,
use the DATEDIFF function.

● If you give a date and an integer, this function adds the integer number of seconds to the specified
timestamp. Instead, use the DATEADD function.

Syntax 1: integer
SECONDS([datetime-expression,] datetime-expression)

Syntax 2: timestamp
SECONDS(datetime-expression, integer-expression)

Parameters
● datetime-expression A date and time.

● integer-expression The number of seconds to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of minutes is subtracted from the datetime value. If you
supply an integer expression, the datetime-expression must be explicitly cast as a datetime data type.

Returns
INTEGER

TIMESTAMP

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 421

See also
● “CAST function [Data type conversion]” on page 361
● “DATEADD function [Date and time]” on page 372
● “DATEDIFF function [Date and time]” on page 373

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statements return the value 14400, signifying that the second timestamp is 14400 seconds
after the first.

SELECT SECONDS('1999-07-13 06:07:12',
 '1999-07-13 10:07:12');
SELECT DATEDIFF(second,
 '1999-07-13 06:07:12',
 '1999-07-13 10:07:12');

The following statement returns the value 63062431632.

SELECT SECONDS('1998-07-13 06:07:12');

The following statements return the datetime 1999-05-12 21:05:12.000.

SELECT SECONDS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5);
SELECT DATEADD(second, 5, '1999-05-12 21:05:07');

SHORT_PLAN function [Miscellaneous]
Returns a short description of the UltraLite plan optimization strategy of a SQL statement, as a string. The
description is the same as that returned by the EXPLANATION function.

Syntax
SHORT_PLAN(string-expression)

Remarks
For some queries, the execution plan for UltraLite may differ from the plan selected for SQL Anywhere.

Parameters
● string-expression The SQL statement, which is commonly a SELECT statement, but can also be

an UPDATE or DELETE statement.

Returns
LONG VARCHAR

UltraLite SQL functions

422 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “EXPLANATION function [Miscellaneous]” on page 383

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement passes a SELECT statement as a string parameter and returns the plan for executing
the query.

SELECT SHORT_PLAN(
 'SELECT * FROM Departments WHERE DepartmentID > 100');

This information can help with decisions about indexes to add or how to structure your database for better
performance.

SIGN function [Numeric]
Returns the sign of a number.

Syntax
SIGN(numeric-expression)

Parameters
● numeric-expression The number for which the sign is to be returned.

Returns
SMALL INT

Remarks
For negative numbers, the SIGN function returns -1.

For zero, the SIGN function returns 0.

For positive numbers, the SIGN function returns 1.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value -1

SELECT SIGN(-550);

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 423

SIMILAR function [String]
Returns a number indicating the similarity between two strings.

Syntax
SIMILAR(string-expression-1, string-expression-2)

Parameters
● string-expression-1 The first string to be compared.

● string-expression-2 The second string to be compared.

Returns
SMALL INT

Remarks
The function returns an integer between 0 and 100 representing the similarity between the two strings. The
result can be interpreted as the percentage of characters matched between the two strings. A value of 100
indicates that the two strings are identical.

This function can be used to correct a list of names (such as customers). Some customers may have been
added to the list more than once with slightly different names. Join the table to itself and produce a report
of all similarities greater than 90 percent, but less than 100 percent.

The calculation performed for the SIMILAR function is more complex than just the number of characters
that match.

See also
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 75, indicating that the two values are 75% similar.

SELECT SIMILAR('toast', 'coast');

SIN function [Numeric]
Returns the sine of a number.

Syntax
SIN(numeric-expression)

UltraLite SQL functions

424 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● numeric-expression The angle, in radians.

Returns
DOUBLE

Remarks
The SIN function returns the sine of the argument, where the argument is an angle expressed in radians. The
SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
● “ASIN function [Numeric]” on page 357
● “COS function [Numeric]” on page 369
● “COT function [Numeric]” on page 369
● “TAN function [Numeric]” on page 435

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the SIN value of 0.52.

SELECT SIN(0.52);

SOUNDEX function [String]
Returns a number representing the sound of a string.

Syntax
SOUNDEX(string-expression)

Parameters
● string-expression The string to be evaluated.

Returns
SMALLINT

Remarks
The SOUNDEX function value for a string is based on the first letter and the next three consonants other
than H, Y, and W. Vowels in string-expression are ignored unless they are the first letter of the string.
Doubled letters are counted as one letter. For example, the word apples is based on the letters A, P, L, and
S.

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 425

Multibyte characters are ignored by the SOUNDEX function.

Although it is not perfect, the SOUNDEX function normally returns the same number for words that sound
similar and that start with the same letter.

The SOUNDEX function works best with English words. It is less useful for other languages.

See also
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns two identical numbers, 3827, representing the sound of each name.

SELECT SOUNDEX('Smith'), SOUNDEX('Smythe');

SPACE function [String]
Returns a specified number of spaces.

Syntax
SPACE(integer-expression)

Parameters
● integer-expression The number of spaces to return.

Returns
LONG VARCHAR

Remarks
If integer-expression is negative, a null string is returned.

See also
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns a string containing 10 spaces.

SELECT SPACE(10);

UltraLite SQL functions

426 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQRT function [Numeric]
Returns the square root of a number.

Syntax
SQRT(numeric-expression)

Parameters
● numeric-expression The number for which the square root is to be calculated.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 3.

SELECT SQRT(9);

STR function [String]
Returns the string equivalent of a number.

Syntax
STR(numeric-expression [, length [, decimal]])

Parameters
● numeric-expression Any approximate numeric (float, real, or double precision) expression between

-1E126 and 1E127.

● length The number of characters to be returned (including the decimal point, all digits to the right
and left of the decimal point, and blanks). The default is 10.

● decimal The number of decimal digits to be returned. The default is 0.

Returns
VARCHAR

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 427

Remarks
If the integer portion of the number cannot fit in the length specified, then the result is a string of the specified
length containing all asterisks. For example, the following statement returns ***.

SELECT STR(1234.56, 3);

Note
The maximum length that is supported is 128. Any length that is not between 1 and 128 yields a result of
NULL.

See also
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns a string of six spaces followed by 1235, for a total of ten characters.

SELECT STR(1234.56);

The following statement returns the result 1234.6.

SELECT STR(1234.56, 6, 1);

STRING function [String]
Concatenates one or more strings into one large string.

Syntax
STRING(string-expression [, ...])

Parameters
● string-expression The string to be evaluated.

If only one argument is supplied, it is converted into a single expression. If more than one argument is
supplied, they are concatenated into a single string.

Returns
LONG VARCHAR

LONG NVARCHAR

LONG BINARY

Remarks
Numeric or date parameters are converted to strings before concatenation. The STRING function can also
be used to convert any single expression to a string by supplying that expression as the only parameter.

UltraLite SQL functions

428 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If all parameters are NULL, STRING returns NULL. If any parameters are non-NULL, then any NULL
parameters are treated as empty strings.

See also
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value testing123.

SELECT STRING('testing', NULL, 123);

STRTOUUID function [String]
Converts a string value to a unique identifier (UUID or GUID) value.

Not needed in newer databases
In databases created before version 9.0.2, the STRTOUUID and UUIDTOSTR functions were needed to
convert between binary and string representations of UUID values.

In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a
native data type. You do not need to use STRTOUUID and UUIDTOSTR functions with these versions.

For more information, see “Data types in UltraLite” on page 312.

Syntax
STRTOUUID(string-expression)

Parameters
● string-expression A string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

Returns
UNIQUEIDENTIFIER

Remarks
Converts a string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx , where x is a hexadecimal digit, to a
unique identifier value.

This function is useful for inserting UUID values into a database.

See also
● “UUIDTOSTR function [String]” on page 441
● “NEWID function [Miscellaneous]” on page 407
● “UltraLite string functions” on page 352

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 429

Standards and compatibility
● SQL/2003 Vendor extension.

STUFF function [String]
Deletes multiple characters from one string and replaces them with another string.

Syntax
STUFF(string-expression-1, start, length, string-expression-2)

Parameters
● string-expression-1 The string to be modified by the STUFF function.

● start The character position at which to begin deleting characters. The first character in the string is
position 1.

● length The number of characters to delete.

● string-expression-2 The string to be inserted. To delete a portion of a string using the STUFF
function, use a replacement string of NULL.

Returns
LONG NVARCHAR

See also
● “INSERTSTR function [String]” on page 390
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value chocolate pie.

SELECT STUFF('chocolate cake', 11, 4, 'pie');

SUBSTRING function [String]
Returns a substring of a string.

Syntax
{ SUBSTRING | SUBSTR } (string-expression, start
[, length])

UltraLite SQL functions

430 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● string-expression The string from which a substring is to be returned.

● start The start position of the substring to return, in characters.

● length The length of the substring to return, in characters. If length is specified, the substring is
restricted to that length.

Returns
LONG BINARY

LONG VARCHAR

LONG NVARCHAR

Remarks
In UltraLite, the database does not have an ansi_substring option, but the SUBSTR function behaves as if
ansi_substring is set to on by default. The function's behavior corresponds to ANSI/ISO SQL/2003 behavior:

● Start value The first character in the string is at position 1. A negative or zero start offset is treated
as if the string were padded on the left with non-characters.

● Length value A positive length specifies that the substring ends length characters to the right of the
starting position.

A negative length returns an error.

A length of zero returns an empty string.

If string-expression is of binary data type, the SUBSTRING function behaves as BYTE_SUBSTR.

To obtain characters at the end of a string, use the RIGHT function.

Whenever possible, if the input string uses character length semantics the return value is described in terms
of character length semantics.

See also
● “BYTE_SUBSTR function [String]” on page 360
● “LEFT function [String]” on page 393
● “RIGHT function [String]” on page 418
● “CHARINDEX function [String]” on page 364
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Core feature.

Example
The following table shows the values returned by the SUBSTRING function.

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 431

Example Result

SUBSTRING('front yard', 1, 4) fron

SUBSTRING('back yard', 6, 4) yard

SUBSTR('abcdefgh', 0, -2) Returns an error

SUBSTR('abcdefgh', -2, 2) Returns an empty string

SUM function [Aggregate]
Returns the total of the specified expression for each group of rows.

Syntax 1
SUM(expression | DISTINCT expression)

Parameters
● expression The object to be summed. This is commonly a column name.

● DISTINCT expression Computes the sum of the unique values of expression in the input.

Returns
INTEGER

DOUBLE

NUMERIC

Remarks
Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

See also
● “COUNT function [Aggregate]” on page 370
● “AVG function [Aggregate]” on page 359

Standards and compatibility
● SQL/2003 Core feature.

Example
The following statement returns the value 3749146.740.

SELECT SUM(Salary)
FROM Employees;

UltraLite SQL functions

432 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SUSER_ID function [System]
Returns the numeric user ID for the specified user name.

Syntax
SUSER_ID([user-name])

Parameters
● user-name The user name for the user ID you are searching for.

Returns
INT

Remarks
If you do not specify user-name, the ID of the current user is returned.

See also
● “SUSER_NAME function [System]” [SQL Anywhere Server - SQL Reference]
● “USER_ID function [System]” [SQL Anywhere Server - SQL Reference]

Standards and compatibility
● SQL/2003 Transact-SQL extension.

Example
The following statement returns the ID for the GROUPO user.

SELECT SUSER_ID('GROUPO');

SUSER_NAME function [System]
Returns the user name for the specified user ID.

Syntax
SUSER_NAME([user-id])

Parameters
● user-id The user ID of the user you are searching for.

Returns
LONG VARCHAR

Remarks
If you do not specify user-id, the user name of the current user is returned.

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 433

See also
● “SUSER_ID function [System]” [SQL Anywhere Server - SQL Reference]
● “USER_NAME function [System]” [SQL Anywhere Server - SQL Reference]

Standards and compatibility
● SQL/2003 Transact-SQL extension.

Example
The following statement returns the user name for a user with ID 101.

SELECT SUSER_NAME(101);

SYNC_PROFILE_OPTION_VALUE function [System]
Returns the value of the option corresponding to the given option name.

Syntax
SYNC_PROFILE_OPTION_VALUE(profile_name, option_name)

Parameters
● profile_name The name of the sync profile to inspect.

● option_name The name of the option to retrieve the corresponding value for.

Returns
Returns the value of the option corresponding to the given option name.

Remarks
Option names with periods will retrieve values from a sublist with the given base option name before the
period, and the given sublist option name after the period.

See also
● “ML_GET_SERVER_NOTIFICATION [System]” on page 403

Standards and compatibility
● SQL/2003 Vendor extension.

Example
Consider the profile:

MobilinkUid=joe;Stream=tcpip{host=sybase;port=1234};Ping=1

● MobilinkUid joe

● Stream tcpip{host=sybase;port=1234}

UltraLite SQL functions

434 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Stream.host sybase

● Stream.port 1234

● Ping 1

TAN function [Numeric]
Returns the tangent of a number.

Syntax
TAN(numeric-expression)

Parameters
● numeric-expression An angle, in radians.

Returns
DOUBLE

Remarks
The ATAN and TAN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
● “COS function [Numeric]” on page 369
● “SIN function [Numeric]” on page 424

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value of the tan of 0.52.

SELECT TAN(0.52);

TODAY function [Date and time]
Returns the current date.

Syntax
TODAY(*)

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 435

Returns
DATE

Remarks
Use this syntax in place of the historical CURRENT DATE function.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statements return the current day according to the system clock.

SELECT TODAY(*);
SELECT CURRENT DATE;

TRIM function [String]
Removes leading and trailing blanks from a string.

Syntax
TRIM(string-expression)

Parameters
● string-expression The string to be trimmed.

Returns
VARCHAR

NVARCHAR

LONG VARCHAR

LONG NVARCHAR

See also
● “LTRIM function [String]” on page 399
● “RTRIM function [String]” on page 419
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 The TRIM function is a SQL/2003 core feature.

SQL Anywhere does not support the additional parameters trim specification and trim character, as
defined in SQL/2003. The SQL Anywhere implementation of TRIM corresponds to a TRIM specification
of BOTH.

UltraLite SQL functions

436 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For the other TRIM specifications defined by the SQL/2003 standard (LEADING and TRAILING), SQL
Anywhere supplies the LTRIM and RTRIM functions respectively.

Example
The following statement returns the value chocolate with no leading or trailing blanks.

SELECT TRIM(' chocolate ');

TRUNCNUM function [Numeric]
Truncates a number at a specified number of places after the decimal point.

Syntax
{ TRUNCNUM | "TRUNCATE" }(numeric-expression, integer-expression)

Parameters
● numeric-expression The number to be truncated.

● integer-expression A positive integer specifies the number of significant digits to the right of the
decimal point at which to round. A negative expression specifies the number of significant digits to the
left of the decimal point at which to round.

Returns
NUMERIC

Remarks
If any parameter is NULL, the result is NULL.

See also
● “ROUND function [Numeric]” on page 419

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 600.

SELECT TRUNCNUM(655, -2);

The following statement: returns the value 655.340.

SELECT TRUNCNUM(655.348, 2);

TSEQUAL function [System] (deprecated)
Compares two timestamp values and returns whether they are the same.

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 437

Syntax
TSEQUAL (timestamp1, timestamp2)

Parameters
● timestamp1 Timestamp expression.

● timestamp2 Timestamp expression.

Returns
BIT

Remarks
The TSEQUAL function can only be used in a WHERE clause and is most commonly used as part of an
UPDATE statement.

If timestamp1 is equal to timestamp2, a row has changed since it was fetched. If the row changed, its
timestamp has been modified and the TSEQUAL function returns FALSE. When the TSEQUAL function
returns FALSE, the application determines that no rows were updated and assumes that the row was modified
by another user. The updated row is re-fetched.

You can use the TSEQUAL function to determine whether a row has been changed since it was fetched.

See also
● “The data type of a timestamp column” [SQL Anywhere Server - SQL Usage]
● “TIMESTAMP special value” [SQL Anywhere Server - SQL Reference]
● “The special Transact-SQL timestamp column and data type” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2003 Vendor extension.

Example
Suppose you create a TIMESTAMP column Products.LastUpdated to store the timestamp for the last time
the row was updated. The following UPDATE statement uses the TSEQUAL function to determine whether
to update the row. If the value of LastUpdated is '2010/12/25 11:08:34.173226', the row is updated.

UPDATE Products
SET Color = 'Yellow'
WHERE ID = '300'
AND TSEQUAL(LastUpdated, '2010/12/25 11:08:34.173226');

UCASE function [String]
Converts all characters in a string to uppercase. This function is identical to the UPPER function.

Syntax
UCASE(string-expression)

UltraLite SQL functions

438 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● string-expression The string to be converted to uppercase.

Returns
VARCHAR

NVARCHAR

LONG VARCHAR

LONG NVARCHAR

See also
● “UPPER function [String]” on page 439
● “LCASE function [String]” on page 392
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value CHOCOLATE.

SELECT UCASE('ChocoLate');

UPPER function [String]
Converts all characters in a string to uppercase. This function is identical the UCASE function.

Syntax
UPPER(string-expression)

Parameters
● string-expression The string to be converted to uppercase.

Returns
VARCHAR

NVARCHAR

LONG VARCHAR

LONG NVARCHAR

Remarks
The UCASE function is similar to the UPPER function.

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 439

See also
● “UCASE function [String]” on page 438
● “LCASE function [String]” on page 392
● “LOWER function [String]” on page 398
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value CHOCOLATE.

SELECT UPPER('ChocoLate');

USER_ID function [System]
Returns the numeric user ID for the specified user name.

Syntax
USER_ID([user-name])

Parameters
● user-name The user name for the user ID you are searching for.

Returns
INT

Remarks
If you do not specify user-name, the ID of the current user is returned.

See also
● “USER_NAME function [System]” [SQL Anywhere Server - SQL Reference]
● “SUSER_ID function [System]” [SQL Anywhere Server - SQL Reference]

Standards and compatibility
● SQL/2003 Transact-SQL extension.

Example
The following statement returns the GROUPO user ID.

SELECT USER_ID('GROUPO');

UltraLite SQL functions

440 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

USER_NAME function [System]
Returns the user name for the specified user ID.

Syntax
USER_NAME([user-id])

Parameters
● user-id The user ID of the user you are searching for.

Returns
LONG VARCHAR

Remarks
If you do not specify user-id, the user name of the current user is returned.

See also
● “USER_ID function [System]” [SQL Anywhere Server - SQL Reference]
● “SUSER_NAME function [System]” [SQL Anywhere Server - SQL Reference]

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the user name for user ID 101.

SELECT USER_NAME(101);

UUIDTOSTR function [String]
Converts a unique identifier value (UUID, also known as GUID) to a string value.

Not needed in newer databases
In databases created before version 9.0.2, the STRTOUUID and UUIDTOSTR functions were needed to
convert between binary and string representations of UUID values.

In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a
native data type. You do not need to use STRTOUUID and UUIDTOSTR functions with these versions.

For more information, see “Data types in UltraLite” on page 312.

Syntax
UUIDTOSTR(uuid-expression)

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 441

Parameters
● uuid-expression A unique identifier value.

Returns
VARCHAR

Remarks
Converts a unique identifier to a string value in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where x
is a hexadecimal digit. If the binary value is not a valid uniqueidentifier, NULL is returned.

This function is useful if you want to view a UUID value.

See also
● “NEWID function [Miscellaneous]” on page 407
● “STRTOUUID function [String]” on page 429
● “UltraLite string functions” on page 352

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement creates a table mytab with two columns. Column pk has a unique identifier data
type, and column c1 has an integer data type. It then inserts two rows with the values 1 and 2 respectively
into column c1.

CREATE TABLE mytab(
 pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
 c1 INT);
INSERT INTO mytab(c1) values (1);
INSERT INTO mytab(c1) values (2);

Executing the following SELECT statement returns all the data in the newly created table.

SELECT * FROM mytab;

You will see a two-column, two-row table. The value displayed for column pk will be binary values.

To convert the unique identifier values into a readable format, execute the following command:

SELECT UUIDTOSTR(pk), c1 FROM mytab;

The UUIDTOSTR function is not needed for databases created with version 9.0.2 or later.

WEEKS function [Date and time]
Returns the number of weeks between two dates.

Syntax 1
WEEKS([datetime-expression,] datetime-expression)

UltraLite SQL functions

442 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax 2
WEEKS(datetime-expression, integer-expression)

Parameters
● datetime-expression A date and time.

● integer-expression The number of weeks to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of weeks is subtracted from the datetime value. If you
supply an integer-expression, the datetime-expression must be explicitly cast as DATETIME.

Returns
Syntax 1 returns an INTEGER.

Syntax 2 returns a TIMESTAMP.

Remarks
Given a single date (Syntax 1), the WEEKS function returns the number of weeks since 0000-02-29.

Given two dates (Syntax 1), the WEEKS function returns the number of weeks between them. The WEEKS
function is similar to the DATEDIFF function, however the method used to calculate the number of weeks
between two dates is not the same and can return a different result. The return value for WEEKS is determined
by dividing the number of days between the two dates by seven, and then rounding down; however,
DATEDIFF uses number of week boundaries. This can cause the values returned to be different. For example,
if the first date is a Friday and the second date is the following Monday, the WEEKS function returns a
difference of 0, and the DATEDIFF function returns a difference of 1. While neither method is better than
the other, you should consider the difference when choosing between WEEKS and DATEDIFF.

For more information about the DATEDIFF function, see “DATEDIFF function [Date and
time]” on page 373.

Given a date and an integer (Syntax 2), the WEEKS function adds the integer number of weeks to the specified
date. This function is similar to the DATEADD function.

For more information about the DATEADD function, see “DATEADD function [Date and
time]” on page 372.

See also
For information about casting data types, see “CAST function [Data type conversion]” on page 361.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 8, signifying that 2008-09-13 10:07:12 is eight weeks after
2008-07-13 06:07:12.

SELECT WEEKS('2008-07-13 06:07:12',
 '2008-09-13 10:07:12');

The following statement returns the value 104792, signifying that the date is 104792 weeks after 0000-02-29.

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 443

SELECT WEEKS('2008-07-13 06:07:12');

The following statement returns the timestamp 2008-06-16 21:05:07.0, indicating the date and time five
weeks after 2008-05-12 21:05:07.

SELECT WEEKS(CAST('2008-05-12 21:05:07'
AS TIMESTAMP), 5);

YEAR function [Date and time]
Takes a timestamp value as a parameter and returns the year specified by that timestamp.

Syntax
YEAR(datetime-expression)

Parameters
● datetime-expression A date, time, or timestamp.

Returns
SMALLINT

Remarks
The value is returned as a SMALL INT.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following example returns the value 2001.

SELECT YEAR('2001-09-12');

YEARS function [Date and time]
Given two dates, this function returns the integer number of years between them. It is recommended that
you use the DATEDIFF function instead. See “DATEDIFF function [Date and time]” on page 373.

Given one date, it returns the year. It is recommended that you use the DATEPART function instead. See
“DATEPART function [Date and time]” [SQL Anywhere Server - SQL Reference].

Given one date and an integer, it adds the integer number of years to the specified date. It is recommended
that you use the DATEADD function instead. See “DATEADD function [Date and time]” [SQL Anywhere
Server - SQL Reference].

Syntax 1
YEARS([datetime-expression,] datetime-expression)

UltraLite SQL functions

444 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax 2
YEARS(datetime-expression, integer-expression)

Parameters
● datetime-expression A date and time.

● integer-expression The number of years to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of years is subtracted from the datetime value. If you
supply an integer-expression, the datetime-expression must be explicitly cast as a datetime data type.

For information about casting data types, see “CAST function [Data type conversion]” on page 361.

Returns
Syntax 1 returns an INTEGER. Syntax 2 returns a TIMESTAMP.

Remarks
The value of YEARS is calculated from the number of first days of the year between the two dates.

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statements both return -4.

SELECT YEARS('1998-07-13 06:07:12',
 '1994-03-13 08:07:13');
SELECT DATEDIFF(year,
 '1998-07-13 06:07:12',
 '1994-03-13 08:07:13');

The following statements return 1998.

SELECT YEARS('1998-07-13 06:07:12')
SELECT DATEPART(year, '1998-07-13 06:07:12');

The following statements return the given date advanced 300 years.

SELECT YEARS(CAST('1998-07-13 06:07:12' AS TIMESTAMP), 300)
SELECT DATEADD(year, 300, '1998-07-13 06:07:12');

YMD function [Date and time]
Returns a date value corresponding to the given year, month, and day of the month. Values are small integers
from -32768 to 32767.

Syntax
YMD(
integer-expression1,

SQL functions (P-Z)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 445

integer-expression2,
integer-expression3)

Parameters
● integer-expression1 The year.

● integer-expression2 The number of the month. The year is adjusted if the month is outside the range
1-12.

● integer-expression3 The day number. The day can be any integer; the date is adjusted.

Returns
DATE

Standards and compatibility
● SQL/2003 Vendor extension.

Example
The following statement returns the value 1998-06-12.

SELECT YMD(1998, 06, 12);

If the values are outside their normal range, the date is adjusted. For example, the following statement returns
the value 2000-03-01.

SELECT YMD(1999, 15, 1);

UltraLite SQL functions

446 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite SQL statements

Contents
UltraLite statement categories ... 449
UltraLite ALTER DATABASE SCHEMA FROM FILE statement 450
UltraLite ALTER PUBLICATION statement ... 451
UltraLite ALTER SYNCHRONIZATION PROFILE statement 452
UltraLite ALTER TABLE statement ... 454
UltraLite CHECKPOINT statement .. 458
UltraLite COMMIT statement ... 459
UltraLite CREATE INDEX statement ... 460
UltraLite CREATE PUBLICATION statement .. 462
UltraLite CREATE SYNCHRONIZATION PROFILE statement 464
UltraLite CREATE TABLE statement .. 468
UltraLite DELETE statement ... 473
UltraLite DROP INDEX statement ... 474
UltraLite DROP PUBLICATION statement .. 475
UltraLite DROP SYNCHRONIZATION PROFILE statement 476
UltraLite DROP TABLE statement ... 477
UltraLite FROM clause .. 478
UltraLite INSERT statement .. 480
UltraLite LOAD TABLE statement ... 481
UltraLite ROLLBACK statement .. 485
UltraLite SELECT statement ... 486
UltraLite SET OPTION statement .. 488
UltraLite START SYNCHRONIZATION DELETE statement 489
UltraLite STOP SYNCHRONIZATION DELETE statement 490
UltraLite SYNCHRONIZE statement ... 491
UltraLite TRUNCATE TABLE statement ... 493
UltraLite UNION statement .. 495
UltraLite UPDATE statement ... 496

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 447

The SQL statements supported by UltraLite SQL are a subset of the statements supported by SQL Anywhere
databases.

Before you begin
● Tables in UltraLite do not support the concept of an owner. As a convenience for existing SQL and for

SQL that is programmatically generated, UltraLite still allows the syntax owner.table-name. However,
the owner is not checked because table owners are not supported in UltraLite.

● UltraLite SQL statement documentation follows the same syntax conventions used by SQL Anywhere
statements. Ensure you understand these conventions and how they are used to represent SQL syntax.
See “Syntax conventions” [SQL Anywhere Server - SQL Reference].

● Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs, UPDATEs,
and DELETEs) since the last ROLLBACK or COMMIT. See “UltraLite transaction
processing” on page 16.

These changes can be made permanent by executing a COMMIT. A ROLLBACK statement causes the
changes to be removed. See “UltraLite COMMIT statement” on page 459 and “UltraLite ROLLBACK
statement” on page 485.

● If you are looking for statements used by Interactive SQL, see “SQL statements” [SQL Anywhere Server
- SQL Reference]. Statements used by Interactive SQL have [Interactive SQL] after the statement name.
For example, “CONFIGURE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference].

UltraLite SQL statements

448 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite statement categories
SQL statements are organized and identified by the initial word in a statement, which is almost always a
verb. This action-oriented syntax makes the nature of the language into a set of imperative statements
(commands) to the database. In UltraLite, supported SQL statements can be classified as follows:

● Data retrieval statements Also known as queries. These statements allow select rows of data
expressions from tables. Data retrieval is achieved with the SELECT statement. See “UltraLite SELECT
statement” on page 486.

● Data manipulation statements Allow you to change content in the database. Data manipulation is
achieved with:

○ “UltraLite DELETE statement” on page 473
○ “UltraLite INSERT statement” on page 480
○ “UltraLite UPDATE statement” on page 496

● Data definition statements Allow you to define the structure or schema of a database. The schema
can be changed with:

○ “UltraLite ALTER DATABASE SCHEMA FROM FILE statement” on page 450
○ “UltraLite CREATE INDEX statement” on page 460
○ “UltraLite CREATE TABLE statement” on page 468
○ “UltraLite DROP INDEX statement” on page 474
○ “UltraLite DROP TABLE statement” on page 477
○ “UltraLite ALTER TABLE statement” on page 454
○ “UltraLite TRUNCATE TABLE statement” on page 493

● Transaction control statements Allow you to control transactions within your UltraLite
application. Transaction control is achieved with:

○ “UltraLite CHECKPOINT statement” on page 458
○ “UltraLite COMMIT statement” on page 459
○ “UltraLite ROLLBACK statement” on page 485

● Synchronization management Allow you to temporarily control synchronization with a MobiLink
server. Synchronization management is achieved with:

○ “UltraLite START SYNCHRONIZATION DELETE statement” on page 489
○ “UltraLite STOP SYNCHRONIZATION DELETE statement” on page 490
○ “UltraLite CREATE PUBLICATION statement” on page 462
○ “UltraLite ALTER PUBLICATION statement” on page 451
○ “UltraLite DROP PUBLICATION statement” on page 475

See also
● “Expressions in UltraLite” on page 325
● “Operators in UltraLite” on page 338

UltraLite statement categories

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 449

UltraLite ALTER DATABASE SCHEMA FROM FILE
statement

Use this statement to modify the schema definition of an existing UltraLite database using a SQL script.

Syntax
ALTER DATABASE SCHEMA FROM FILE filename

Parameters
filename Defines the name and path to the SQL script used to upgrade the schema of an existing UltraLite
database.

Remarks
Use either ulinit or ulunload to extract the DDL statements required for your script. By using these utilities,
you ensure that the DDL statements are syntactically correct. Use ulinit (-l logfile option) or ulunload (using
the -n -s output-file options). See “UltraLite Initialize Database utility (ulinit)” on page 269, and “UltraLite
Unload Database utility (ulunload)” on page 281.

Backup the database before executing this statement.

The character set of the SQL script file must match the character set of the database you want to upgrade.

Ensure that your device is not reset while this statement is executing. If you reset the device during a schema
upgrade, the UltraLite database becomes unusable.

Any rows that do not fit into the schema will be dropped (for instance if a uniqueness constraint is added
and multiple rows contain the same values, all but one row will be dropped). In this case, the
SQLE_ROW_DROPPED_DURING_SCHEMA_UPGRADE warning is generated. You can use this
warning to detect the error and restore the database from the backup version.

See also
● “Deploying UltraLite schema upgrades” on page 67

Example
The following statement modifies the schema of the database using a SQL script, MySchema.sql:

ALTER DATABASE SCHEMA FROM FILE 'MySchema.sql';

UltraLite SQL statements

450 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite ALTER PUBLICATION statement
Use this statement to alter a publication. A publication identifies data in a remote database that is to be
synchronized.

Syntax
ALTER PUBLICATION publication-name alterpub-clause

alterpub-clause :
 ADD TABLE table-name [WHERE search-condition]
| ALTER TABLE table-name [WHERE search-condition]
| { DROP | DELETE } TABLE table-name
| RENAME publication-name

Side effects
Automatic commit.

See also
● “Search conditions in UltraLite” on page 331
● “Designing synchronization in UltraLite” on page 133
● “UltraLite CREATE PUBLICATION statement” on page 462
● “UltraLite DROP PUBLICATION statement” on page 475
● “UltraLite START SYNCHRONIZATION DELETE statement” on page 489
● “UltraLite STOP SYNCHRONIZATION DELETE statement” on page 490

Example
The following ALTER PUBLICATION statement adds the Customers table to the pub_contact publication.

ALTER PUBLICATION pub_contact
 ADD TABLE Customers;

UltraLite ALTER PUBLICATION statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 451

UltraLite ALTER SYNCHRONIZATION PROFILE
statement

Use this statement to alter an UltraLite synchronization profile. Synchronization profiles define how an
UltraLite database synchronizes with the MobiLink server.

Syntax
ALTER SYNCHRONIZATION PROFILE sync-profile-name
{ REPLACE | MERGE } sync-option [; ...]

sync-option :
sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters
● sync-profile-name The name of the synchronization profile.

● REPLACE clause Use this clause to drop the options currently defined for the profile, and add the
specified options instead.

● MERGE clause Use this clause to change existing, or add new, options to a synchronization profile.

● sync-option A string of one or more synchronization option value pairs, separated by semicolons.
For example, 'option1=value1;option2=value2'.

● sync-option-name The name of the synchronization profile option.

● sync-option-value The value for the synchronization profile option.

Remarks
See “UltraLite CREATE SYNCHRONIZATION PROFILE statement” on page 464 for a list of the
synchronization profile options supported by UltraLite.

Side effects
None.

See also
● “UltraLite DROP SYNCHRONIZATION PROFILE statement” on page 476
● “UltraLite SYNCHRONIZE statement” on page 491

Example
The following is an example of the ALTER SYNCHRONIZATION PROFILE...REPLACE statement:

CREATE SYNCHRONIZATION PROFILE myProfile1;
ALTER SYNCHRONIZATION PROFILE myProfile1
 REPLACE 'publication=p1;uploadonly=on';

UltraLite SQL statements

452 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following is an example of the ALTER SYNCHRONIZATION PROFILE...MERGE statement.

CREATE SYNCHRONIZATION PROFILE myProfile2 'publication=p1;verbosity=high';
ALTER SYNCHRONIZATION PROFILE myProfile2
 MERGE'publication=p2;uploadonly=on';

UltraLite ALTER SYNCHRONIZATION PROFILE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 453

UltraLite ALTER TABLE statement
Use this statement to modify a table definition.

Syntax
ALTER TABLE table-name {
add-clause
| modify-clause
| drop-clause
| rename-clause
}

add-clause :
 ADD { column-definition | table-constraint }

modify-clause :
ALTER column-definition

drop-clause :
DROP { column-name | CONSTRAINT constraint-name }

rename-clause :
RENAME {
 new-table-name
 | [old-column-name TO] new-column-name
 | CONSTRAINT old-constraint-name TO new-constraint-name }

column-definition :
column-name data-type
 [[NOT] NULL]
 [DEFAULT column-default]
 [UNIQUE]

column-default :
GLOBAL AUTOINCREMENT [(number)]
| AUTOINCREMENT
| CURRENT DATE
| CURRENT TIME
| CURRENT TIMESTAMP
| NULL
| NEWID()
| constant-value

table-constraint :
[CONSTRAINT constraint-name]
{ fkey-constraint | unique-key-constraint }
[WITH MAX HASH SIZE integer]

fkey-constraint :
[NOT NULL] FOREIGN KEY [role-name] (ordered-column-list)
 REFERENCES table-name (column-name, ...)
 [CHECK ON COMMIT]

UltraLite SQL statements

454 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

unique-key-constraint :
UNIQUE (ordered-column-list)

 ordered-column-list :
(column-name [ASC | DESC], ...)

Parameters
add-clause Adds a new column or table constraint to the table:

● ADD column-definition clause Adds a new column to the table. If the column has a default value,
all rows in the new column are populated with that default value. For descriptions of the keywords and
subclauses for this clause, see “UltraLite CREATE TABLE statement” on page 468.

● ADD table-constraint clause Adds a constraint to the table. The optional constraint name allows
you to modify or drop individual constraints at a later time, rather than having to modify the entire table
constraint. For descriptions of the keywords and subclauses for this clause, see “UltraLite CREATE
TABLE statement” on page 468.

Note
You cannot add a primary key in UltraLite.

modify-clause Change a single column definition. Note that you cannot use primary keys in the column-
definition when part of an ALTER statement. For a full explanation of column-definition, see “UltraLite
CREATE TABLE statement” on page 468.

drop-clause Delete a column or a table constraint:

● DROP column-name Delete the column from the table. If the column is contained in any index,
uniqueness constraint, foreign key, or primary key, then the object must be deleted before UltraLite can
delete the column.

● DROP CONSTRAINT table-constraint Delete the named constraint from the table definition. For
a full explanation of table-constraint, see “UltraLite CREATE TABLE statement” on page 468.

Note
You cannot drop a primary key in UltraLite.

rename-clause Change the name of a table, column, or constraint:

● RENAME new-table-name Change the name of the table to new-table-name. Note that any
applications using the old table name must be modified. Foreign keys that were automatically assigned
the old table name will not change names.

● RENAME old-column-name TO new-column-name Change the name of the column to the new-
column-name. Note that any applications using the old column name will need to be modified.

● RENAME old-constraint-name TO new-constraint-name Change the name of the constraint to
the new-constraint-name. Note that any applications using the old constraint name need to be modified.

UltraLite ALTER TABLE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 455

Note
You cannot rename a primary key in UltraLite.

column-constraint A column constraint restricts the values the column can hold to ensure the integrity
of data in the database. A column constraint can only be UNIQUE.

UNIQUE Identifies one or more columns that uniquely identify each row in the table. No two rows in the
table can have the same values in all the named column(s). A table may have more than one unique constraint.

Remarks
Only one table-constraint or column-constraint can be added, modified, or deleted in one ALTER TABLE
statement.

The role name is the name of the foreign key. The main function of the role-name is to distinguish two
foreign keys to the same table. Alternatively, you can name the foreign key with CONSTRAINT constraint-
name. However, do not use both methods to name a foreign key.

You cannot MODIFY a table or column constraint. To change a constraint, you must DELETE the old
constraint and ADD the new constraint.

A table whose name ends with nosync can only be renamed to a table name that also ends with nosync. See
“Nosync tables in UltraLite” on page 136.

ALTER TABLE cannot execute if a statement that affects the table is already being referenced by another
request or query. Similarly, UltraLite does not process requests referencing the table while that table is being
altered. Furthermore, you cannot execute ALTER TABLE when the database includes active queries or
uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Schema changes with
DDL statements” on page 11.

See also
● “UltraLite CREATE TABLE statement” on page 468
● “UltraLite DROP TABLE statement” on page 477
● “Data types in UltraLite” on page 312
● “Altering tables” [SQL Anywhere Server - SQL Usage]
● “Using table and column constraints” [SQL Anywhere Server - SQL Usage]
● “Overriding partition sizes for autoincremented columns” on page 131
● “Determining the most recently assigned GLOBAL AUTOINCREMENT value” on page 131

Examples
The following statement drops the Street column from a fictitious table called MyEmployees.

ALTER TABLE MyEmployees
DROP Street;

The following example changes the Street column of the fictitious table, MyCustomers, to hold
approximately 50 characters.

UltraLite SQL statements

456 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ALTER TABLE MyCustomers
MODIFY Street CHAR(50);

UltraLite ALTER TABLE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 457

UltraLite CHECKPOINT statement
Use this statement to checkpoint the database.

Syntax
CHECKPOINT

Remarks
You can use the CHECKPOINT statement as a trigger for a commit flush. A commit flush writes
uncommitted transactions to storage.

If you are using the embedded SQL API, you can also use the ULCheckpoint method. If you are writing a
C++ component application, you can also use the Checkpoint method on a connection object. All other APIs
must use this statement.

Side effects
While this statement flushes any pending committed transactions to storage, it does not commit or flush
current transactions.

See also
● “Flushing single or grouped transactions” on page 119
● “UltraLite COMMIT statement” on page 459
● “UltraLite COMMIT_FLUSH connection parameter” on page 229
● UltraLite embedded SQL: “ULCheckpoint function” [UltraLite - C and C++ Programming]
● UltraLite C++: “Checkpoint function” [UltraLite - C and C++ Programming]

Example
The following statement performs a checkpoint of the database:

CHECKPOINT;

UltraLite SQL statements

458 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite COMMIT statement
Use this statement to make changes to the database permanent.

Syntax
COMMIT [WORK]

Remarks
Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs, UPDATEs, and
DELETEs) since the last ROLLBACK or COMMIT. The COMMIT statement ends the current transaction
and makes all changes made during the transaction permanent in the database.

Changes to the database objects using the ALTER, CREATE, and DROP statements are committed
automatically.

See also
● “UltraLite CHECKPOINT statement” on page 458
● “UltraLite ROLLBACK statement” on page 485

Example
The following statement makes the changes in the current transaction permanent in the database:

COMMIT;

UltraLite COMMIT statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 459

UltraLite CREATE INDEX statement
Use this statement to create an index on a specified table.

Syntax
CREATE [UNIQUE] INDEX [index-name]
ON table-name (ordered-column-list)
[WITH MAX HASH SIZE integer]

ordered-column-list :
(column-name [ASC | DESC], ...)

Parameters

UNIQUE The UNIQUE parameter ensures that there are not two rows in the table with identical values
in all the columns in the index. Each index key must be unique or contain a NULL in at least one column.

There is a difference between a unique constraint on a table and a unique index. Columns in a unique index
are allowed to be NULL, while columns in a unique constraint are not. Also, a foreign key can reference
either a primary key or a column with a unique constraint. A foreign key cannot, however, reference a unique
index.

ordered-column-list An ordered list of columns. Column values in the index can be sorted in ascending
or descending order.

WITH MAX HASH SIZE Sets the hash size (in bytes) for this index. This value overrides the default
MaxHashSize property in effect for the database. To learn the default size, see “Accessing UltraLite database
properties” on page 218.

Remarks

UltraLite automatically creates indexes for primary keys and for unique constraints.

Indexes can improve query performance by providing quick ways for UltraLite to look up specific rows.
Conversely, because they have to be maintained, indexes may slow down synchronization and INSERT,
DELETE, and UPDATE statements.

Indexes are automatically used to improve the performance of queries issued to the database, and to sort
queries with an ORDER BY clause. Once an index is created, it is never referenced in a SQL statement again
except to remove it with DROP INDEX.

Indexes use space in the database. Also, the additional work required to maintain indexes can affect the
performance of data modification operations. For these reasons, you should avoid creating indexes that do
not improve query performance.

UltraLite does not process requests or queries referencing the index while the CREATE INDEX statement
is being processed. Furthermore, you cannot execute CREATE INDEX when the database includes active
queries or uncommitted transactions.

UltraLite can also use execution plans to optimize queries. See “Execution plans in
UltraLite” on page 342.

UltraLite SQL statements

460 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Schema changes with
DDL statements” on page 11.

Side effects
● Automatic commit.

See also
● “UltraLite performance and optimization” on page 107
● “UltraLite DROP INDEX statement” on page 474
● “Working with UltraLite indexes” on page 79

Example
The following statement creates a two-column index on the Employees table.

CREATE INDEX employee_name_index
ON Employees (Surname, GivenName);

The following statement creates an index on the SalesOrderItems table for the ProductID column.

CREATE INDEX item_prod
ON SalesOrderItems (ProductID);

UltraLite CREATE INDEX statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 461

UltraLite CREATE PUBLICATION statement
Use this statement to create a publication. A publication identifies synchronized data in an UltraLite remote
database.

Syntax
CREATE PUBLICATION publication-name
(TABLE table-name [WHERE search-condition], ...)

Parameters

TABLE clause Use the table to include a TABLE in the publication. There is no limit to the number of
TABLE clauses

WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are considered
for upload from the associated table during synchronization. See “Search conditions in
UltraLite” on page 331.

If you do not specify a WHERE clause, every row in the table that has changed in UltraLite since the last
synchronization is considered for upload.

Remarks
A publication establishes tables that are synchronized during a single synchronization operation, and
determines which data is uploaded to the MobiLink server. The MobiLink server may send back rows for
these (and only these) tables during its download session; however, rows that are downloaded do not have
to satisfy the WHERE clause for a table.

Only entire tables can be published. You cannot publish specific columns of a table in UltraLite.

Side effects
● Automatic commit.

See also
● “UltraLite clients” on page 125
● “UltraLite DROP PUBLICATION statement” on page 475
● “UltraLite ALTER PUBLICATION statement” on page 451
● “Search conditions in UltraLite” on page 331

Example
The following statement publishes all the columns and rows of two tables.

CREATE PUBLICATION pub_contact (
 TABLE Contacts,
 TABLE Customers
);

The following statement publishes only the rows of the Customers table where the State column contains
MN.

UltraLite SQL statements

462 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CREATE PUBLICATION pub_customer (
 TABLE Customers
 WHERE State = 'MN'
);

UltraLite CREATE PUBLICATION statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 463

UltraLite CREATE SYNCHRONIZATION PROFILE
statement

Use this statement to create an UltraLite synchronization profile. Synchronization profiles define how an
UltraLite database synchronizes with the MobiLink server.

Syntax
CREATE SYNCHRONIZATION PROFILE sync-profile-name sync-option [;...]

sync-option :
sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters
● sync-profile-name The name of the synchronization profile.

● sync-option A string of one or more synchronization option value pairs, separated by semicolons.
For example, 'option1=value1;option2=value2'.

● sync-option-name The name of the synchronization profile option.

● sync-option-value The value for the synchronization profile option.

Remarks
There are two possible ways to make changes to an existing synchronization profile. The first is to use the
REPLACE clause. This will replace the contents of the synchronization profile with whatever is contained
in the new sync-option string. This is the same as dropping the synchronization profile and then creating one
with the same name but using the new string. Note, therefore, that a synchronization profile does not need
to contain a full synchronization definition because parameters can be merged in (or overridden) at
synchronization time.

The second way to modify a synchronization profile is to use the MERGE clause. When using this clause,
only the sync options that are specified in the MERGE clause are changed. To remove a sync option from
a synchronization profile, the sync-option string should look like 'option1=;' (to set the option to an
empty value).

The STREAM synchronization profile option is different from the other options because its value contains
a sub-list. For example: 'STREAM=TCPIP{host=192.168.1.1;port=1234}'. In this case
'host=192.168.1.1;port=1234' is the sub-list. To add or remove a sub-list value, use a period
between the STREAM sync-option-name and the sub-option-name. For example, MERGE
'stream.port=5678;stream.host=;compression=zlib' results in a synchronization profile
of: stream=TCPIP{port=5678;compression=zlib}. Attempting to set the stream to a new value
will replace the entire stream value. For example: MERGE 'stream=HTTPS' results in a synchronization
profile of: stream=HTTPS{}.

The following table lists the synchronization profile options supported by UltraLite.

UltraLite SQL statements

464 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Synchro-
nization
profile
option

Valid
values

Description

Allow-
Download-
DupRows

Boo-
lean

This option prevents errors from being raised when multiple rows are downloaded
that have the same primary key. This can be used to allow inconsistent data to be
synchronized without causing the synchronisation to fail. The default value is "no."
See “Additional Parameters synchronization parameter” on page 155.

Auth-
Parms

String
(com-
ma
separa-
ted)

Specifies the list of authentication parameters sent to the MobiLink server. You
can use authentication parameters to perform custom authentication in MobiLink
scripts. See “Authentication Parameters synchronization parame-
ter” on page 156.

Check-
pointStore

Boo-
lean

Adds additional checkpoints of the database during synchronization to limit da-
tabase growth during the synchronization process. See “Additional Parameters
synchronization parameter” on page 155.

Continue-
Download

Boo-
lean

Restarts a previously failed download. When continuing a download, only the
changes that were selected to be downloaded with the failed synchronization are
received. By default, UltraLite does not continue downloads. See “Resuming
failed downloads” [MobiLink - Server Administration].

Disable-
Concur-
rency

Boo-
lean

Disallow database access from other threads during synchronization. See “Addi-
tional Parameters synchronization parameter” on page 155.

Downloa-
dOnly

Boo-
lean

Performs a download-only synchronization. See “Download Only synchroniza-
tion parameter” on page 159.

KeepPar-
tialDown-
load

Boo-
lean

Controls whether UltraLite keeps a partial download if a communication error
occurs. By default, UltraLite does not roll back partially downloaded changes. See
“Keep Partial Download synchronization parameter” on page 161.

Mobi-
LinkPwd

String Specifies the existing MobiLink password associated with the user name. See
“MobiLinkPwd (mp) extended option” [MobiLink - Client Administration].

MobiLin-
kUid

String Specifies the MobiLink user name. See “-u option” [MobiLink - Client Adminis-
tration]. See “-mn option” [MobiLink - Client Administration].

NewMo-
bi-
LinkPwd

String Supplies a new password for the MobiLink user. Use this option when you want
to change an existing password. See “-mn option” [MobiLink - Client Adminis-
tration].

Ping Boo-
lean

Confirms communications with the server only; no synchronization is performed.
See “Ping synchronization parameter” on page 165.

UltraLite CREATE SYNCHRONIZATION PROFILE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 465

Synchro-
nization
profile
option

Valid
values

Description

Publica-
tions

String
(com-
ma
separa-
ted)

Specifies the publications(s) to synchronize. The publications determine the tables
on the remote that are involved in synchronization. If this parameter is blank (the
default) then all tables are synchronized. If the parameter is an asterisk (*) then
all publications are synchronized. See “Publications in UltraLite” on page 137.

Script-
Version

String Specifies the MobiLink script version. The script version determines which scripts
are run by MobiLink on the consolidated database during synchronization. If you
do not specify a script version, 'default' is used. See “ScriptVersion (sv) extended
option” [MobiLink - Client Administration].

SendCo-
lumn-
Names

String Specifies that column names should be sent to the MobiLink server as part of the
upload file when synchronizing. By default, column names are not sent. See “Send
Column Names synchronization parameter” on page 168.

Send-
Downloa-
dACK

Boo-
lean

Specifies that a download acknowledgement should be sent from the client to the
server. By default, the MobiLink server does not provide a download acknowl-
edgement. See “Send Download Acknowledgement synchronization parame-
ter” on page 169.

Stream String
(with
sub-
list)

Specifies the MobiLink network synchronization protocol. See “Stream Type
synchronization parameter” on page 171.

TableOr-
der

String
(com-
ma
separa-
ted)

Specifies the order of tables in the upload. By default, UltraLite selects an order
based on foreign key relationships. See “Additional Parameters synchronization
parameter” on page 155.

Uploa-
dOnly

String Specifies that synchronization will only include an upload, and no download will
occur. See “Upload Only synchronization parameter” on page 174.

The Boolean values can be specified as Yes/No, 1/0, True/False, On/Off. In all the Boolean cases, the default
is "No". For all other values, the default is simply unspecified.

Side effects
None.

UltraLite SQL statements

466 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “UltraLite ALTER SYNCHRONIZATION PROFILE statement” on page 452
● “UltraLite DROP SYNCHRONIZATION PROFILE statement” on page 476
● “UltraLite SYNCHRONIZE statement” on page 491

Example
The following creates a synchronization profile called Test1.

CREATE SYNCHRONIZATION PROFILE Test1
'MobiLinkUid=mary;Stream=TCPIP{host=192.168.1.1;port=1234}'

The following examples illustrate the changes that occur after executing a sequence of ALTER
SYNCHRONIZATION PROFILE commands with different options.

Suppose myProfile1='MobiLinkUID=mary;ScriptVersion=default'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 REPLACE
'MobiLinkPwd=sql;ScriptVersion=1', myProfile1 is
'MobiLinkPwd=sql;ScriptVersion=1'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkUID=mary;STREAM=tcpip', myProfile1 is
'MobiLinkPwd=sql;ScriptVersion=1;MobiLinkUID=mary;STREAM=tcpip'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkUID=;STREAM.host=192.168.1.1;STREAM.port=1234;ScriptVersion=;
', myProfile1 is 'MobiLinkPwd=sql;STREAM=tcpip{192.168.1.1;port=1234}'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkPwd=;Ping=yes;STREAM =HTTP', myProfile1 is 'Ping=yes;STREAM=HTTP'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'STREAM=HTTP{host=192.168.1.1}', myProfile1 is
'Ping=yes;STREAM=HTTP{host=192.168.1.1}'.

UltraLite CREATE SYNCHRONIZATION PROFILE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 467

UltraLite CREATE TABLE statement
Use this statement to create a table.

Syntax
CREATE TABLE table-name (
 { column-definition | table-constraint }, ...
)

column-definition :
column-name data-type
[[NOT] NULL]
[DEFAULT column-default]
[column-constraint]

column-default :
GLOBAL AUTOINCREMENT [(number)]
| AUTOINCREMENT
| CURRENT DATE
| CURRENT TIME
| CURRENT TIMESTAMP
| NULL
| NEWID()
| constant-value

column-constraint :
PRIMARY KEY
| UNIQUE

table-constraint :
{ [CONSTRAINT constraint-name]
 pkey-constraint
 | fkey-constraint
 | unique-key-constraint }
[WITH MAX HASH SIZE integer]

pkey-constraint :
PRIMARY KEY [ordered-column-list]

fkey-constraint :
[NOT NULL] FOREIGN KEY [role-name] (ordered-column-list)
 REFERENCES table-name (column-name, ...)
 [CHECK ON COMMIT]

unique-key-constraint :
UNIQUE (ordered-column-list)

 ordered-column-list :
(column-name [ASC | DESC], ...)

Parameters

column-definition Defines a column in a table. Available parameters for this clause include:

UltraLite SQL statements

468 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● column-name The column name is an identifier. Two columns in the same table cannot have the
same name. See “Identifiers in UltraLite” on page 303.

● data-type The data type of the column. See “Data types in UltraLite” on page 312.

● [NOT] NULL If NOT NULL is specified, or if the column is in a PRIMARY KEY or UNIQUE
constraint, the column cannot contain NULL in any row. Otherwise, NULL is allowed.

● column-default Sets the default value for the column. If a DEFAULT value is specified, it is used
as the value for the column in any INSERT statement that does not specify a value for the column. If no
DEFAULT is specified, it is equivalent to DEFAULT NULL. Default options include:

○ AUTOINCREMENT When using AUTOINCREMENT, the column must be one of the integer
data types, or an exact numeric type. On inserts into the table, if a value is not specified for the
AUTOINCREMENT column, a unique value larger than any other value in the column is generated.
If an INSERT specifies a value for the column that is larger than the current maximum value for the
column, that value is used as a starting point for subsequent inserts.

Tip
In UltraLite, the autoincrement value is not set to 0 when the table is created, and
AUTOINCREMENT generates negative numbers when a signed data type is used for the column.
Therefore, declare AUTOINCREMENT columns as unsigned integers to prevent negative values
from being used.

○ GLOBAL AUTOINCREMENT Similar to AUTOINCREMENT, except that the domain is
partitioned. Each partition contains the same number of values. You assign each copy of the database
a unique global database identification number. UltraLite supplies default values in a database only
from the partition uniquely identified by that database's number. See “Using GLOBAL
AUTOINCREMENT in UltraLite” on page 129, and “UltraLite global_database_id
option” on page 222.

○ [NOT] NULL Controls whether the column can contain NULLs.

○ NEWID() A function that generates a unique identifier value. See “NEWID function
[Miscellaneous]” on page 407.

○ CURRENT TIMESTAMP Combines CURRENT DATE and CURRENT TIME to form a
TIMESTAMP value containing the year, month, day, hour, minute, second, and fraction of a second.
The fraction of a second is stored to 3 decimal places. The accuracy is limited by the accuracy of the
system clock. See “CURRENT TIMESTAMP special value” on page 309.

○ CURRENT DATE Stores the current year, month, and day. See “CURRENT DATE special
value” on page 308.

○ CURRENT TIME Stores the current hour, minute, second and fraction of a second. See
“CURRENT TIME special value” on page 308.

○ constant-value A constant for the data type of the column. Typically the constant is a number
or a string.

● column-constraint clause Specify a column constraint to restrict the values allowed in a column.
A column constraint can be one of:

UltraLite CREATE TABLE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 469

○ PRIMARY KEY When set as part of a column-constraint, the PRIMARY KEY clause sets the
column as the primary key for the table. Primary keys uniquely identify each row in a table. By
default, columns included in primary keys do not allow NULL.

○ UNIQUE Identifies one or more columns that uniquely identify each row in the table. No two rows
in the table can have the same values in all the named column(s). A table may have more than one
unique constraint. NULL values are not allowed.

table-constraint clause Specify a table constraint to restrict the values that one or more columns in the
table can hold. Use the CONSTRAINT clause to specify an identifier for the table constraint. Table
constraints can be in the form of a primary key constraint, a foreign key constraint, or a unique constraint,
as defined below:

● pkey-constraint clause Sets the specified column(s) as the primary key for the table. Primary keys
uniquely identify each row in a table. Columns included in primary keys cannot allow NULLs.

● fkey-constraint clause Specify a foreign key constraint to restrict values for one or more columns
that must match the values in a primary key (or a unique constraint) of another table.

○ NOT NULL clause Specify NOT NULL to disallow NULLs in the foreign key columns. A NULL
in a foreign key means that no row in the primary table corresponds to this row in the foreign table.
If at least one value in a multi-column foreign key is NULL, there is no restriction on the values that
can be held in other columns of the key.

○ role-name clause Specify a role-name to name the foreign key. role-name is used to distinguish
foreign keys within the same table. Alternatively, you can name the foreign key using CONSTRAINT
constraint-name. However, do not use both methods to name a foreign key.

○ REFERENCES clause Specify the REFERENCES clause to define one or more columns in the
primary table to use as the foreign key constraint. Any column-name you specify in a REFERENCES
column constraint must be a column in the primary table, and must be subject to a unique constraint
or primary key constraint.

○ CHECK ON COMMIT Specify CHECK ON COMMIT to cause the database server to wait for a
COMMIT before enforcing foreign key constraints. By default, foreign key constraints are enforced
immediately during insert, update, or delete operations. However, when CHECK ON COMMIT is
set, database changes can be made in any order, even if they violate foreign key constraints, provided
that inconsistent data is resolved prior to the next COMMIT.

● unique-key-constraint clause Specify a unique constraint to identify one or more columns that
uniquely identify each row in the table. No two rows in the table can have the same values in all the
named column(s). A table may have more than one unique constraint.

● WITH MAX HASH SIZE Sets the hash size (in bytes) for this index. This value overrides the default
MaxHashSize property in effect for the database. To learn the default size, see “Accessing UltraLite
database properties” on page 218.

Remarks
Column constraints are normally used unless the constraint references more than one column in the table.
In these cases, a table constraint must be used. If a statement causes a violation of a constraint, execution of
the statement does not complete. Any changes made by the statement before error detection are undone, and
an error is reported.

UltraLite SQL statements

470 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Each row in the table has a unique primary key value.

If no role name is specified, the role name is assigned as follows:

1. If there is no foreign key with a role name the same as the table name, the table name is assigned as the
role name.

2. If the table name is already taken, the role name is the table name concatenated with a zero-padded,
three-digit number unique to the table.

Schema changes Statements are not released if schema changes are initiated at the same time. See
“Schema changes with DDL statements” on page 11.

UltraLite does not process requests or queries referencing the table while the CREATE TABLE statement
is being processed. Furthermore, you cannot execute CREATE TABLE when the database includes active
queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Side effects
Automatic commit.

See also
● “Expressions in UltraLite” on page 325
● “UltraLite DROP TABLE statement” on page 477
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Data types in UltraLite” on page 312
● “Overriding partition sizes for autoincremented columns” on page 131

Example
The following statement creates a table for a library database to hold book information.

CREATE TABLE library_books (
 isbn CHAR(20) PRIMARY KEY,
 copyright_date DATE,
 title CHAR(100),
 author CHAR(50),
 location CHAR(50),
 FOREIGN KEY location REFERENCES room
);

The following statement creates a table for a library database to hold information on borrowed books. The
default value for date_borrowed indicates that the book is borrowed on the day the entry is made. The
date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (
 loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 FOREIGN KEY book REFERENCES library_books (isbn)
);

UltraLite CREATE TABLE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 471

The following statement creates tables for a sales database to hold order and order item information.

CREATE TABLE Orders (
 order_num INTEGER NOT NULL PRIMARY KEY,
 date_ordered DATE,
 name CHAR(80)
);
CREATE TABLE Order_item (
 order_num INTEGER NOT NULL,
 item_num SMALLINT NOT NULL,
 PRIMARY KEY (order_num, item_num),
 FOREIGN KEY (order_num)
 REFERENCES Orders (order_num)
);

UltraLite SQL statements

472 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite DELETE statement
Use this statement to delete rows from a table in the database.

Syntax
DELETE [FROM] table-name[[AS] correlation-name]
[WHERE search-condition]

Parameters

correlation-name An identifier to use when referencing the table from elsewhere in the statement.

WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are deleted. See
“Search conditions in UltraLite” on page 331.

The WHERE clause does not support non-deterministic functions (like RAND) or variables. Nor does this
clause restrict columns; columns may need to reference another table when used in a subquery.

Remarks
The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “UltraLite row states” on page 14.

See also
● “UltraLite START SYNCHRONIZATION DELETE statement” on page 489
● “UltraLite STOP SYNCHRONIZATION DELETE statement” on page 490

Example
The following statement removes employee 105 from the Employees table.

DELETE
FROM Employees
WHERE EmployeeID = 105;

The following statement removes all data prior to the year 2000 from the FinancialData table.

DELETE
FROM FinancialData
WHERE Year < 2000;

UltraLite DELETE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 473

UltraLite DROP INDEX statement
Use this statement to delete an index.

Syntax
DROP INDEX [table-name.]index-name

Remarks
You cannot drop the primary index of a table.

UltraLite does not process requests or queries referencing the index while the DROP INDEX statement is
being processed. Furthermore, you cannot execute DROP INDEX when the database includes active queries
or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Schema changes with
DDL statements” on page 11.

See also
● “UltraLite CREATE INDEX statement” on page 460
● “Working with UltraLite indexes” on page 79

Example
The following statement deletes a fictitious index, fin_codes_idx, on the FinancialData table:

DROP INDEX FinancialData.fin_codes_idx;

UltraLite SQL statements

474 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite DROP PUBLICATION statement
Use this statement to delete publications.

Syntax
DROP PUBLICATION publication-name, ...

See also
● “Designing synchronization in UltraLite” on page 133
● “UltraLite ALTER PUBLICATION statement” on page 451
● “UltraLite CREATE PUBLICATION statement” on page 462

Example
The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact;

UltraLite DROP PUBLICATION statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 475

UltraLite DROP SYNCHRONIZATION PROFILE
statement

Use this statement to delete an UltraLite synchronization profile. Synchronization profiles define how an
UltraLite database synchronizes with the MobiLink server.

Syntax
DROP SYNCHRONIZATION PROFILE sync-profile-name

Parameters
● sync-profile-name The name of the synchronization profile.

Remarks
None.

Side effects
None.

See also
● “UltraLite CREATE SYNCHRONIZATION PROFILE statement” on page 464
● “UltraLite ALTER SYNCHRONIZATION PROFILE statement” on page 452
● “UltraLite SYNCHRONIZE statement” on page 491

Example
The following example shows the syntax for dropping a synchronization profile called Test1.

DROP SYNCHRONIZATION PROFILE Test1;

UltraLite SQL statements

476 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite DROP TABLE statement
Use this statement to remove a table, and all its data, from a database.

Syntax
DROP TABLE table-name

Remarks
The DROP TABLE statement drops the specified table from the database. All data in the table and any
indexes and keys are also removed.

UltraLite does not process requests or queries referencing the table, or its indexes, while the DROP TABLE
statement is being processed. Furthermore, you cannot execute DROP TABLE when there are active queries
or uncommitted transactions.

For UltraLite.NET, you cannot execute this statement unless you also call the Dispose method for all data
objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Schema changes with
DDL statements” on page 11.

See also
● “UltraLite ALTER TABLE statement” on page 454
● “UltraLite CREATE TABLE statement” on page 468

Example
The following statement deletes a fictitious table, EmployeeBenefits, from the database:

DROP TABLE EmployeeBenefits;

UltraLite DROP TABLE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 477

UltraLite FROM clause
Use this clause to specify the tables or views involved in a SELECT statement.

Syntax
FROM table-expression, ...

table-expression :
table-name [[AS] correlation-name]
| (select-list) [AS] derived-table-name (column-name, ...)
| (table-expression)
| table-expression join-operator table-expression [ON search-condition] ...

join-operator :
,
| INNER JOIN
| CROSS JOIN
| LEFT OUTER JOIN
| JOIN

Parameters
table-name A base table or temporary table. Tables cannot be owned by different users in UltraLite. If
you qualify tables with user ID, the ID is ignored.

correlation-name An identifier to use when referencing the table from elsewhere in the statement. For
example, in the following statement, a is defined as the correlation name for the Contacts table, and b is the
correlation name for the Customers table.

SELECT *
FROM Contacts a, Customers b
WHERE a.CustomerID=b.ID;

derived-table-name A derived table is a nested SELECT statement in the FROM clause.

Items from the select list of the derived table are referenced by the (optional) derived table name followed
by a period (.) and the column name. You can use the column name by itself if it is unambiguous.

You cannot reference derived tables from within the SELECT statement. See “Subqueries in
expressions” on page 329.

join-operator Specify the type of join. If you specify a comma (,), or CROSS JOIN, you cannot specify
an ON subclause. If you specify JOIN, you must specify an ON subclause. For INNER JOIN and LEFT
OUTER JOIN, the ON clause is optional.

Remarks
When there is no FROM clause, the expressions in the SELECT statement must be a constant expression.

Derived tables
Although this description refers to tables, it also applies to derived tables unless otherwise noted.

UltraLite SQL statements

478 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The FROM clause creates a result set consisting of all the columns from all the tables specified. Initially, all
combinations of rows in the specified tables are in the result set, and the number of combinations is usually
reduced by JOIN conditions and/or WHERE conditions.

If you do not specify the type of join, and instead list the tables as a comma-separated list, a CROSS JOIN
is used, by default.

For INNER joins, restricting results of the join using an ON clause or WHERE clause returns equivalent
results. For OUTER joins, they are not equivalent.

Note
UltraLite does not support KEY JOINS nor NATURAL joins.

See also
● “Joins: Retrieving data from several tables” [SQL Anywhere Server - SQL Usage]
● “UltraLite DELETE statement” on page 473
● “UltraLite SELECT statement” on page 486
● “UltraLite UPDATE statement” on page 496

Example
The following are valid FROM clauses:

...
FROM Employees
...
...
FROM Customers
CROSS JOIN SalesOrders
CROSS JOIN SalesOrderItems
CROSS JOIN Products
...

The following query uses a derived table to return the names of the customers in the Customers table who
have more than three orders in the SalesOrders table:

SELECT Surname, GivenName, number_of_orders
FROM Customers JOIN
 (SELECT CustomerID, COUNT(*)
 FROM SalesOrders
 GROUP BY CustomerID)
 AS sales_order_counts(CustomerID, number_of_orders)
ON (Customers.id = sales_order_counts.CustomerID)
WHERE number_of_orders > 3;

UltraLite FROM clause

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 479

UltraLite INSERT statement
Use this statement to insert rows into a table

Syntax
INSERT [INTO]
table-name [(column-name, ...)]
{ VALUES (expression, ...) | select-statement }

Remarks
The INSERT statement can be used to insert a single row, or to insert multiple rows from a query result set.

If columns are specified, values are inserted one for one into the specified columns. If the list of column
names is not specified, values are inserted into the table columns in the order in which they appear in the
table (the same order as retrieved with SELECT *). Rows are inserted into the table in an arbitrary order.

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive.

See also
● “UltraLite SELECT statement” on page 486

Example
The following statement adds an Eastern Sales department to the database.

INSERT
INTO Departments (DepartmentID, DepartmentName)
VALUES (230, 'Eastern Sales');

UltraLite SQL statements

480 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite LOAD TABLE statement
Use this statement to import bulk data into a database table from an external file. This statement also provides
support for handling the output of the SQL Anywhere dbunload utility (the reload.sql file).

LOAD [INTO] TABLE [owner.]table-name
(column-name, ...)
FROM stringfilename
[load-option ...]

load-option :
CHECK CONSTRAINTS { ON | OFF }
| COMPUTES { ON | OFF}
| DEFAULTS { ON | OFF }
| DELIMITED BY string
| ENCODING encoding
| ESCAPES { ON }
| FORMAT { ASCII | TEXT}
| ORDER { ON | OFF}|
| QUOTES { ON | OFF }
| SKIP integer
| STRIP { ON | OFF | BOTH }
| WITH CHECKPOINT { ON | OFF }

comment-prefix : string

encoding : string

Parameters
● column-name Use this clause to specify one or more columns to load data into. Any columns not

present in the column list become NULL if DEFAULTS is OFF. If DEFAULTS is ON and the column
has a default value, that value is used. If DEFAULTS is OFF and a non-nullable column is omitted from
the column list, the database server attempts to convert the empty string to the column's type.

When a column list is specified, it lists the columns that are expected to exist in the file and the order in
which they are expected to appear. Column names cannot be repeated.

● FROM string-filename Use this to specify a file from which to load the data. The string-filename is
passed to the database server as a string. The string is therefore subject to the same database formatting
requirements as other SQL strings. In particular:

○ To indicate directory paths, the backslash character (\) must be represented by two backslashes. The
statement to load data from the file c:\temp\input.dat into the Employees table is:

LOAD TABLE Employees
FROM 'c:\\temp\\input.dat' ...

○ The path name is relative to the database server, not to the client application.

○ You can use UNC path names to load data from files on computers other than the database server.

● load-option clause There are several load options you can specify to control how data is loaded.
The following list gives the supported load options:

UltraLite LOAD TABLE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 481

○ CHECK CONSTRAINTS clause This clause controls whether constraints are checked during
loading. CHECK CONSTRAINTS is ON by default, but the Unload utility (ulunload) writes out
LOAD TABLE statements with CHECK CONSTRAINTS set to OFF. Setting CHECK
CONSTRAINTS to OFF disables check constraints, which can be useful, for example, during
database rebuilding.

○ COMPUTES clause This option is processed but ignored by UltraLite.

○ DEFAULTS clause By default, DEFAULTS is set to OFF. If DEFAULTS is OFF, any column
not present in the list of columns is assigned NULL. If DEFAULTS is set to OFF and a non-nullable
column is omitted from the list, the database server attempts to convert the empty string to the
column's type. If DEFAULTS is set to ON and the column has a default value, that value is used.

○ DELIMITED BY clause Use this clause to specify the column delimiter string. The default column
delimiter string is a comma; however, it can be any string up to 255 bytes in length (for example, ...
DELIMITED BY '###' ...). The formatting requirements of other SQL strings apply. If you
want to specify tab-delimited values, you could specify the hexadecimal escape sequence for the tab
character (9), ... DELIMITED BY '\x09'

○ ENCODING clause This clause specifies the character encoding used for the data being loaded
into the database.

○ ESCAPES clause ESCAPES is always ON, therefore characters following the backslash
character are recognized and interpreted as special characters by the database server. Newline
characters can be included as the combination \n, and other characters can be included in data as
hexadecimal ASCII codes, such as \x09 for the tab character. A sequence of two backslash characters
(\\) is interpreted as a single backslash. A backslash followed by any character other than n, x, X,
or \ is interpreted as two separate characters. For example, \q inserts a backslash and the letter q.

○ FORMAT clause This clause specifies the format of the data source you are loading data from.
With TEXT, input lines are assumed to be characters (as defined by the ENCODING option), one
row per line, with values separated by the column delimiter string. ASCII is also supported.

○ QUOTES clause This clause specifies whether strings are enclosed in quotes. UltraLite only
supports ON, therefore the LOAD TABLE statement expects strings to be enclosed in quote
characters. The quote character is an apostrophe (single quote). The first such character encountered
in a string is treated as the quote character for the string. Strings must be terminated by a matching
quote.

Column delimiter strings can be included in column values. Also, quote characters are assumed not
to be part of the value. Therefore, the following line is treated as two values, not three, despite the
presence of the comma in the address. Also, the quotes surrounding the address are not inserted into
the database.

'123 High Street, Anytown',(715)398-2354

To include a quote character in a value, you must use two quotes. The following line includes a value
in the third column that is a single quote character:

'123 High Street, Anytown','(715)398-2354',''''

UltraLite SQL statements

482 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

○ SKIP clause Use this clause to specify whether to ignore lines at the beginning of a file. The
integer argument specifies the number of lines to skip. You can use this clause to skip over a line
containing column headings, for example.

○ STRIP clause This clause is processed but ignored. This clause specifies whether unquoted values
should have leading or trailing blanks stripped off before they are inserted. The STRIP option accepts
the following options:

● STRIP ON Strip leading blanks.

● STRIP OFF Do not strip off leading or trailing blanks.

● STRIP BOTH Strip both leading and trailing blanks.

○ WITH CHECKPOINT clause Use this clause to specify whether to perform a checkpoint. The
default setting is OFF. If this clause is set to ON, a checkpoint is issued after successfully completing
the statement.

Remarks
LOAD TABLE allows efficient mass insertion into a database table from a file. It is provided primarily as
a means of supporting the output of the SQL Anywhere dbunload utility (the reload.sql file).

LOAD TABLE is only supported for Windows and Linux, not Palm OS or Windows Mobile.

With FORMAT TEXT, a NULL value is indicated by specifying no value. For example, if three values are
expected and the file contains 1,,'Fred',, then the values inserted are 1, NULL, and Fred. If the file
contains 1,2,, then the values 1, 2, and NULL are inserted. Values that consist only of spaces are also
considered NULL values. For example, if the file contains 1, ,'Fred',, then values 1, NULL, and Fred
are inserted. All other values are considered not NULL. For example, '' (single-quote single-quote) is an
empty string. 'NULL' is a string containing four letters.

If a column being loaded by LOAD TABLE does not allow NULL values and the file value is NULL, then
numeric columns are given the value 0 (zero), character columns are given an empty string (''). If a column
being loaded by LOAD TABLE allows NULL values and the file value is NULL, then the column value is
NULL (for all types).

If the table contains columns a, b, and c, and the input data contains a, b, and c, but the LOAD statement
only specifies a and b as columns to load data into, the following values are inserted into column c:

● if DEFAULTS ON is specified, and column c has a default value, the default value is used.

● if column c does not have a default value, and NULLs are allowed, a NULL is used.

● if column c has no default value and does not allow NULLs, either a zero (0) or an empty string (''), is
used, or an error is returned, depending on the data type of the column.

Side effects
Automatic commit.

UltraLite LOAD TABLE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 483

See also
● “UltraLite INSERT statement” on page 480
● “UltraLite Unload Database utility (ulunload)” on page 281
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2003 Vendor extension.

Example
Following is an example of LOAD TABLE. First, you create a table, and then load data into it using a file
called input.txt.

CREATE TABLE t(a CHAR(100) primary key, let_me_default INT DEFAULT 1, c
CHAR(100));

Following is the content of a file called input.txt:

'this_is_for_column_c', 'this_is_for_column_a', ignore_me

The following LOAD statement loads the file called input.txt:

LOAD TABLE T (c, a) FROM 'input.txt' FORMAT TEXT DEFAULTS ON;

The command SELECT * FROM t yields the result set:

a let_me_default c

this_is_for_column_a 1 this_is_for_column_c

UltraLite SQL statements

484 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite ROLLBACK statement
Use this statement to end a transaction and revert any changes made to data since the last COMMIT or
ROLLBACK statement was executed.

Syntax
ROLLBACK [WORK]

Remarks
Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs, UPDATEs, and
DELETEs) since the last ROLLBACK or COMMIT. The ROLLBACK statement ends the current
transaction and undoes all changes made to the database since the previous COMMIT or ROLLBACK.

See also
● “UltraLite COMMIT statement” on page 459

Example
The following statement rolls the database back to the state it was in at the previous commit:

ROLLBACK;

UltraLite ROLLBACK statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 485

UltraLite SELECT statement
Use this statement to retrieve information from the database.

Syntax
SELECT [DISTINCT] [row-limitation]
select-list
[FROM table-expression, ...]
[WHERE search-condition]
[GROUP BY group-by-expression, ...]
[ORDER BY order-by-expression, ...]
[FOR { UPDATE | READ ONLY }]
[OPTION (FORCE ORDER)]

row-limitation :
FIRST
| TOP n [START AT m]

select-list :
expression [[AS] alias-name], ...

order-by-expression :
{ integer | expression } [ASC | DESC]

Parameters

DISTINCT clause Specify DISTINCT to eliminate duplicate rows from the results. If you do not specify
DISTINCT, all rows that satisfy the clauses of the SELECT statement are returned, including duplicate rows.
Many statements take significantly longer to execute when DISTINCT is specified, so you should reserve
DISTINCT for cases where it is necessary.

row-limitation clause Use row limitations to return a subset of the results. For example, specify FIRST
to retrieve the first row of a result set. Use TOPn to return the first n rows of the results. Specify START
ATm to control the location of the starting row when retrieving the TOPn rows. To order the rows so that
these clauses return meaningful results, specify an ORDER BY clause for the SELECT statement.

select-list A list of expressions specifying what to retrieve from the database. Usually, the expressions
in a select list are column names. However, they can be other types of expressions, such as functions. Use
an asterisk (*) to select all columns of all tables listed in the FROM clause. Optionally, you can define an
alias for each expression in the select-list. Using an alias allows you to reference the select-list expressions
from elsewhere in the query, such as from within the WHERE and ORDER BY clauses.

FROM clause Rows are retrieved from the tables and views specified in the table-expression. See
“UltraLite FROM clause” on page 478.

WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are selected. See
“Search conditions in UltraLite” on page 331.

GROUP BY clause The result of the query that has a GROUP BY clause contains one row for each
distinct set of values in the GROUP BY expression. The resulting rows are often referred to as groups since
there is one row in the result for each group of rows from the table list. Aggregate functions can be applied
to the rows in these groups. NULL is considered to be a unique value if it occurs.

UltraLite SQL statements

486 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ORDER BY clause This clause sorts the results of a query according to the expression specified in the
clause. Each expression in the ORDER BY clause can be sorted in ascending (ASC) or descending (DESC)
order (the default). If the expression is an integer n, then the query results are sorted by the nth expression
in the select list.

The only way to ensure that rows are returned in a particular order is to use ORDER BY. In the absence of
an ORDER BY clause, UltraLite returns rows in whatever order is most efficient.

FOR clause This clause has two variations that control the query's behavior:

● FOR READ ONLY This clause indicates the query is not being used for updates. You should specify
this clause whenever possible, since UltraLite can sometimes achieve better performance when it is
known that a query is not going to be used for updates. For example, UltraLite could perform a direct
table scan when it learns that read-only access is required. FOR READ ONLY is the default behavior.
See “Using direct page scans” on page 117.

● FOR UPDATE This clause allows the query to be used for updates. This clause must be explicitly
specified otherwise updates are not permitted (FOR READ ONLY is the default behavior).

OPTION (FORCE ORDER) clause This clause is not recommended for general use. It overrides the
UltraLite choice of the order in which to access tables, and requires that UltraLite access the tables in the
order they appear in the query. Only use this clause when the query order is determined to be more efficient
than the UltraLite order.

UltraLite can also use execution plans to optimize queries. See “Execution plans in
UltraLite” on page 342.

Remarks
Always remember to close the query. Otherwise memory cannot be freed and the number of temporary tables
that remain can proliferate unnecessarily.

See also
● “UltraLite performance and optimization” on page 107
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “Querying data” [SQL Anywhere Server - SQL Usage]

Example
The following statement selects the number of employees from the Employees table.

SELECT COUNT(*)
FROM Employees;

The following statement selects 10 rows from the Employees table starting from the 40th row and ending at
the 49th row.

SELECT TOP 10 START AT 40 * FROM Employees;

UltraLite SELECT statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 487

UltraLite SET OPTION statement
Use this statement to change the values of database options.

Syntax
SET OPTION option-name=option-value

option-name: identifier

option-value: string, identifier, or number

Remarks
You can only set database options with this statement and properties cannot be modified after the database
has been created. The exception to these rules isml_remote_id (see below).

You cannot specify whether an option is persistent or not. The way an option has been implemented in
UltraLite determines whether it is a persistent or temporary option. Persistent options are stored in the
sysuldata table. Temporary options are used only until the database stops running.

The only database option that can be unset is ml_remote_id. For example:

SET OPTION ml_remote_id=;

The result is that the ID is set to NULL.

See also
● “sysuldata system table” on page 298
● “UltraLite database options” on page 219
● “DB_PROPERTY function [System]” on page 380
● “UltraLite ml_remote_id option” on page 223

Example
The following statement sets the global_database_id option to 100:

SET OPTION global_database_id=100;

UltraLite SQL statements

488 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite START SYNCHRONIZATION DELETE
statement

Use this statement to restart the logging of deleted rows for MobiLink synchronization.

Syntax
START SYNCHRONIZATION DELETE

Remarks
UltraLite databases automatically log changes made to rows that need to be synchronized. UltraLite uploads
these changes to the consolidated database during the next synchronization. This statement allows you to
restart logging of deleted rows, previously stopped by a STOP SYNCHRONIZATION DELETE statement.

When a STOP SYNCHRONIZATION DELETE statement is executed, none of the delete operations
executed on that connection are synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed.

Do not use START SYNCHRONIZATION DELETE if your application does not synchronize data.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “UltraLite row states” on page 14.

See also
● “UltraLite STOP SYNCHRONIZATION DELETE statement” on page 490

Example
The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION DELETE
and STOP SYNCHRONIZATION DELETE.

STOP SYNCHRONIZATION DELETE;
DELETE FROM PROPOSAL
 WHERE last_modified < months(CURRENT TIMESTAMP, -1);
START SYNCHRONIZATION DELETE;
COMMIT;

UltraLite START SYNCHRONIZATION DELETE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 489

UltraLite STOP SYNCHRONIZATION DELETE
statement

Use this statement to stop the logging of deleted rows for MobiLink synchronization.

Syntax
STOP SYNCHRONIZATION DELETE

Remarks
UltraLite databases automatically log changes made to rows that need to be synchronized. UltraLite uploads
these changes to the consolidated database during the next synchronization. This statement allows you to
stop the logging of deleted rows, previously started using a STOP SYNCHRONIZATION DELETE
statement. This command can be useful when making corrections to a remote database, but should be used
with caution as it effectively disables MobiLink synchronization. You should only stop deletion logging
temporarily.

When a STOP SYNCHRONIZATION DELETE statement is executed, no further delete operations executed
on that connection are synchronized. The effect continues until a START SYNCHRONIZATION DELETE
statement is executed.

Do not use STOP SYNCHRONIZATION DELETE if your application does not synchronize data.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “UltraLite row states” on page 14.

See also
● “UltraLite START SYNCHRONIZATION DELETE statement” on page 489

Example
The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION DELETE
and STOP SYNCHRONIZATION DELETE.

STOP SYNCHRONIZATION DELETE;
DELETE FROM PROPOSAL
WHERE last_modified < months(CURRENT TIMESTAMP, -1);
START SYNCHRONIZATION DELETE;
COMMIT;

UltraLite SQL statements

490 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite SYNCHRONIZE statement
Use this statement to synchronize an UltraLite database via the MobiLink server. The synchronization is
configured according to the parameters in the synchronization profile, or the parameters can be specified in
the statement itself.

Syntax
SYNCHRONIZE {
PROFILE sync-profile-name [MERGE sync-option [;...]]
| USING sync-option [;...]
}

sync-option :
sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters
● sync-profile-name The name of the synchronization profile.

● MERGE clause Use this clause when you want to add or override options that are provided in the
synchronization profile.

● USING clause Use this clause when you want to specify the synchronization options without
referencing a synchronization profile.

● sync-option A string of one or more synchronization option value pairs, separated by semicolons.
For example, 'option1=value1;option2=value2'.

● sync-option-name The name of the synchronization option.

● sync-option-value The value for the synchronization option.

Remarks
See “UltraLite CREATE SYNCHRONIZATION PROFILE statement” on page 464 for a list of the
synchronization profile options supported by UltraLite.

See “UltraLite ALTER SYNCHRONIZATION PROFILE statement” on page 452 to understand how sync
options are merged with existing options in the synchronization profile.

By allowing sync options to be merged in, developers can choose to omit storing some options in the database
(like the MobiLinkPwd for instance).

If a synchronization callback function is defined and registered with UltraLite, whenever a SYNCHRONIZE
statement is executed, progress information for that synchronization is passed to the callback function. If no
callback is registered, progress information is suppressed.

Side effects
None.

UltraLite SYNCHRONIZE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 491

See also
● “UltraLite ALTER SYNCHRONIZATION PROFILE statement” on page 452
● “UltraLite DROP SYNCHRONIZATION PROFILE statement” on page 476
● “ULRegisterSynchronizationCallback” [UltraLite - C and C++ Programming]

Example
The following example shows the syntax for synchronizing a synchronization profile called Test1 where the
MobiLinkPwd has not been stored as part of the profile:

 SYNCHRONIZE PROFILE Test1 MERGE ''MobiLinkPwd=sql'

The following example shows the syntax for adding the publication and uploadonly options to a
synchronization profile called Test1.

SYNCHRONIZE PROFILE Test1
 MERGE'publication=p2;uploadonly=on';

The following example illustrates how to use USING.

SYNCHRONIZE USING
''MobiLinkUid=joe;MobiLinkPwd=sql;ScriptVersion=1;Stream=TCPIP{host=localhost
}'

The following example shows the syntax for synchronizing the publication and uploadonly options.

SYNCHRONIZE
 USING 'publication=p2;uploadonly=on';

UltraLite SQL statements

492 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite TRUNCATE TABLE statement
Use this statement to delete all rows from a table, without deleting the table.

Syntax
TRUNCATE TABLE table-name

Remarks
The TRUNCATE TABLE statement deletes all rows from a table and the MobiLink server is not informed
of their removal upon subsequent synchronization. It is equivalent to executing the following statements:

STOP SYNCHRONIZATION DELETE;
DELETE FROM TABLE;
START SYNCHRONIZATION DELETE;

Note
This statement should be used with great care on a database involved in synchronization or replication.
Because the MobiLink server is not notified, this deletion can lead to inconsistencies that can cause
synchronization or replication to fail.

After a TRUNCATE TABLE statement, the table structure, all the indexes, and the constraints and column
definitions continue to exist; only data is deleted.

TRUNCATE TABLE cannot execute if a statement that affects the table is already being referenced by
another request or query. Similarly, UltraLite does not process requests referencing the table while that table
is being altered. Furthermore, you cannot execute TRUNCATE TABLE when the database includes active
queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Schema changes Statements are not released if schema changes are initiated at the same time. See
“Schema changes with DDL statements” on page 11.

Side effects
If the table contains a column defined as DEFAULT AUTOINCREMENT or DEFAULT GLOBAL
AUTOINCREMENT, TRUNCATE TABLE resets the next available value for the column.

Once rows are marked as deleted with TRUNCATE TABLE, they are no longer accessible to the user who
performed this action, unless the user issues a ROLLBACK statement. However, they do remain accessible
from other connections. Use COMMIT to make the deletion permanent, thereby making the data inaccessible
from all connections.

If you synchronize the truncated table, all INSERT statements applied to the table take precedence over a
TRUNCATE TABLE statement.

UltraLite TRUNCATE TABLE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 493

See also
● “UltraLite DELETE statement” on page 473
● “UltraLite START SYNCHRONIZATION DELETE statement” on page 489
● “UltraLite STOP SYNCHRONIZATION DELETE statement” on page 490

Example
The following statement deletes all rows from the Departments table.

TRUNCATE TABLE Departments;

If you execute this example, be sure to execute a ROLLBACK statement to revert your change. See “UltraLite
ROLLBACK statement” on page 485.

UltraLite SQL statements

494 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite UNION statement
Use this statement to combine the results of two or more select statements.

Syntax
select-statement-without-ordering
[UNION [ALL | DISTINCT] select-statement-without-ordering]...
[ORDER BY [number [ASC | DESC] , ...]

Remarks
The results of several SELECT statements can be combined into a larger result using UNION. Each SELECT
statement must have the same number of expressions in their respective select list, and cannot contain an
ORDER BY clause.

The results of UNION ALL are the combined results of the unioned SELECT statements. Specify UNION
or UNION DISTINCT to get results without duplicate rows; however, note that removing duplicate rows
adds to the total execution time for the statement. Specify UNION ALL to allow duplicate rows.

When attempting to combine corresponding expressions that are of different data types, UltraLite attempts
find a data type in which to represent the combined values. If this is not possible, the union operation fails
and an error is returned (for example "Cannot convert 'Surname' to a numeric").

The column names displayed in the results are column names (or aliases) used for the first SELECT
statement.

The ORDER BY clause uses integers to establish the ordering, where the integer indicates the query
expression(s) on which to sort the results.

See also
● “UltraLite SELECT statement” on page 486

Example
The following example lists all distinct surnames found in the Employees and Customers tables, combined.

SELECT Surname FROM Employees
UNION
SELECT Surname FROM Customers;

UltraLite UNION statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 495

UltraLite UPDATE statement
Use this statement to modify rows in a table.

Syntax
UPDATE table-name[[AS] correlation-name]
SET column-name = expression, ...
[WHERE search-condition]

Parameters
table-name The table-name specifies the name of the table to update. Only a single table is allowed.

correlation-name An identifier to use when referencing the table from elsewhere in the statement.

SET clause Each named column is set to the value of the expression on the right-hand side of the equal
sign. There are no restrictions on the expression . If the expression is a column-name, the old value is used.

Only columns specified in the SET clause have their values changed. In particular, you cannot use UPDATE
to set a column's value to its default.

WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are updated. See
“Search conditions in UltraLite” on page 331.

Remarks
The UPDATE statement modifies values in a table.

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive.

See also
● “UltraLite INSERT statement” on page 480
● “UltraLite DELETE statement” on page 473
● “Search conditions in UltraLite” on page 331

Example
The following statement transfers employee Philip Chin (employee 129) from the sales department to the
marketing department (department 400).

UPDATE Employees
SET DepartmentID = 400
WHERE EmployeeID = 129;

An example using correlation-name.

UPDATE Employee E
SET salary = salary * 1.05
WHERE EXISTS(SELECT 1 FROM Sales S HAVING E.Sales > Avg(S.sales)
GROUP BY S.dept_no)

UltraLite SQL statements

496 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting UltraLite

Contents
Unable to start the UltraLite engine ... 498
Unable to connect to databases after upgrade .. 499
Database corruption .. 500
Database size not stabilizing .. 501
Importing ASCII data into a new database .. 502
Utilities still running as the previous version ... 503
Result set changes unpredictably ... 504
UltraLite engine client fails with error -764 ... 505

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 497

Unable to start the UltraLite engine
Symptom

You have use the START connection parameter to start the UltraLite engine with the following definition;
however, the client returns SQLE_UNABLE_TO_CONNECT_OR_START.

START="\Program Files\uleng11.exe"

Explanation
The location of the quotes is incorrect.

Recommendation
For this parameter to work, the first quotation mark must follow the \ character. For example, you can delimit
spaces in this path as follows:

START=\ :Program Files\uleng11.exe"

or

START='"\Program Files\uleng11.exe"'

Troubleshooting UltraLite

498 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Unable to connect to databases after upgrade
Symptom

You have upgraded UltraLite. You discover that you are able to create an empty UltraLite database using
the administration tools. However, when you try to connect to this or any other UltraLite database (including
CustDB.udb) with Sybase Central, you receive an error. Connecting to SQL Anywhere databases works
without incident, however.

Explanation
You did not close all SQL Anywhere applications and processes. Therefore, your UltraLite plug-ins were
not installed correctly.

Recommendation
Remove and reinstall SQL Anywhere.

1. Close Sybase Central, Interactive SQL, and any running database engines.

2. Run the following commands:

dbisql -terminate
scjview -terminate

3. Open the Windows Task Manager, and end any scjview.exe and dbisql.exe processes.

4. Reinstall the latest version of UltraLite.

See also
● “Upgrading UltraLite” [SQL Anywhere 11 - Changes and Upgrading]

Unable to connect to databases after upgrade

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 499

Database corruption
Symptom

Your database may be corrupt if it:

● Generates the following errors:

○ SQLE_DEVICE_ERROR
○ SQLE_DATABASE_ERROR (can also be a symptom of other issues)
○ SQLE_MEMORY_ERROR (can also be a symptom of other issues)

● Crashes or returns invalid query results.

Explanation
There are two more typical causes corruption:

● The more frequent cause occurs if the device has problems storing the file, thereby spuriously changing
the contents of it. This issue usually stops the database from functioning fairly quickly.

● The less frequent cause occurs if an error in the UltraLite code fails to maintain an index correctly. These
issues can go undetected for much longer because the change to the results of a query are more subtle.

Recommendation
Checksums are used to detect offline corruption, which can help reduce the chances of other data being
corrupted as the result of a bad critical page. If a checksum validation fails when the database loads a page,
UltraLite immediately stops the database and reports a fatal error. This error cannot be corrected. Instead
you must:

1. Report the error to iAnywhere. It is helpful if you know the sequence of events that caused the corruption
to occur, and if the error is reproducible.

2. If you need the data, unload the contents of the database to a file.

3. Create a new database.

4. Repopulate the data either by synchronizing or by loading the unloaded data.

See also
● “UltraLite checksum_level creation parameter” on page 184
● “ULSQLCode enumeration” [UltraLite - .NET Programming]

Troubleshooting UltraLite

500 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database size not stabilizing
Symptom

Your application collects a lot of large binary objects among multiple client devices, synchronizes this
information to a consolidated database, and then the synchronized data is deleted from each client device.
However, the database size remains large despite the data being removed from the database. This is a concern
because file size needs to be managed carefully due to limited resources of the device.

Explanation
Database size should only increase if your data grows in the database. However, once grown, the database
file keeps that size, and does not shrink on its own. Free space is maintained internally to the file.

Recommendation
Ensure you are not using the STOP SYNCHRONIZATION DELETE or TRUNCATE statements for tables
that do not get synchronized. Instead use the DELETE statement with a FROM table-name clause for tables
that do not get synchronized.

Recreate the database post-synchronization:

1. Create your UltraLite database that is deployed to the devices.

2. Creating a SQL script of DDL statements that define the schema required by the client devices. See
“Deploying UltraLite schema upgrades” on page 67.

3. Synchronize the data.

4. Drop the database.

5. Create a new, empty database and use standard database schema with the ALTER DATABASE
SCHEMA FROM FILE statement.

See also
● “UltraLite STOP SYNCHRONIZATION DELETE statement” on page 490
● “UltraLite TRUNCATE TABLE statement” on page 493
● “UltraLite DELETE statement” on page 473
● “UltraLite ALTER DATABASE SCHEMA FROM FILE statement” on page 450

Database size not stabilizing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 501

Importing ASCII data into a new database
Symptom

You have created a new UltraLite database, but have a .csv ASCII data file that you cannot import.

Explanation
The .csv format is not supported by any of the UltraLite administration tools.

Recommendation
You can try one of the following techniques:

● Use Interactive SQL (dbisql) to import the data. You can connect to the UltraLite database and then
choose Data » Import Data. Alternatively, you can connect to the UltraLite database and run the INPUT
statement (this statement cannot be used in an UltraLite PreparedStatement object).

Note
UltraLite requires primary keys. Although Interactive SQL can create the table for you, it does not
automatically create the primary keys for them. Always connect to an empty UltraLite database you have
created for this purpose.

● If you to incorporate this functionality as part of a batch process, you must write your own code.

See also
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Interactive SQL utility for UltraLite (dbisql)” on page 249

Troubleshooting UltraLite

502 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Utilities still running as the previous version
Symptom

You have just installed UltraLite 11. However, when you try to run any of the UltraLite utilities, the previous
version starts.

Explanation
If you have multiple versions of UltraLite on your computer, you must pay attention to your system path
when using the administration. Since the installation adds the most recently installed version executable
directory to the end of your system path, it is possible to install a new version of the software, and still
inadvertently be running the previously installed version.

Recommendation
There are various workarounds to this problem. See “Using the utilities” [SQL Anywhere 11 - Changes and
Upgrading].

Utilities still running as the previous version

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 503

Result set changes unpredictably
Symptom

You run a query and the result set you expect changes each time you run it.

Explanation
Carefully review the result set you are getting. Are the results in the set truly different? Or are they simply
being returned in the most efficient order each time. The order selected can change each time you execute
the query, depending on when you last accessed the row and other factors.

Recommendation
If your result set must be returned in a predictable or consistent order, ensure that the SELECT statement
includes an ORDER BY clause. If the result set is still returning results incorrectly, your database may be
corrupt.

See also
● “UltraLite SELECT statement” on page 486
● “Database corruption” on page 500

Troubleshooting UltraLite

504 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite engine client fails with error -764
Applies to

Windows Mobile

Symptom
You are running the UltraLite engine on Windows Mobile device, and the client returns a -764 error.

Explanation
An error of -764 means that the engine could not be found and was unable to start.

Recommendation
Consider one of the following actions:

● Consider redeploying the engine to the recommended deployment location, the \Windows directory.
UltraLite automatically looks for the engine files in this location.

● If you have install the engine to any other location, ensure your connection code uses the START
connection parameter.

● If you have used the START connection parameter, and you are sure the path to the engine is correct,
ensure you have used the correct escape sequences for special characters in the path name.

For example, in some cases you may need to change this code:

ULConnection conn = new ULConnection(@"dbf=\Program Files\HelloEngine
\HelloEngine.udb;
START=\Windows\uleng11.exe")

To something similar to:

ULConnection conn = new ULConnection(@"dbf=\\\"Program Files \"\
\HelloEngine\\HelloEngine.udb;
START=\\Windows\\uleng11.exe");

See also
● “Deploy Multiple UltraLite applications with the UltraLite engine” on page 57
● “UltraLite START connection parameter” on page 245

UltraLite engine client fails with error -764

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 505

506

Glossary

Glossary .. 509

Glossary

Adaptive Server Anywhere (ASA)
The relational database server component of SQL Anywhere Studio, intended for use in mobile and
embedded environments or as a server for small and medium-sized businesses. In version 10.0.0, Adaptive
Server Anywhere was renamed SQL Anywhere Server, and SQL Anywhere Studio was renamed SQL
Anywhere.

See also: “SQL Anywhere” on page 533.

agent ID

See also: “client message store ID” on page 511.

article

In MobiLink or SQL Remote, an article is a database object that represents a whole table, or a subset of the
columns and rows in a table. Articles are grouped together in a publication.

See also:

● “replication” on page 531
● “publication” on page 528

atomic transaction

A transaction that is guaranteed to complete successfully or not at all. If an error prevents part of an atomic
transaction from completing, the transaction is rolled back to prevent the database from being left in an
inconsistent state.

base table

Permanent tables for data. Tables are sometimes called base tables to distinguish them from temporary
tables and views.

See also:

● “temporary table” on page 535
● “view” on page 537

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 509

bit array

A bit array is a type of array data structure that is used for efficient storage of a sequence of bits. A bit array
is similar to a character string, except that the individual pieces are 0s (zeros) and 1s (ones) instead of
characters. Bit arrays are typically used to hold a string of Boolean values.

business rule

A guideline based on real-world requirements. Business rules are typically implemented through check
constraints, user-defined data types, and the appropriate use of transactions.

See also:

● “constraint” on page 513
● “user-defined data type” on page 537

carrier

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about a public carrier for use by server-initiated synchronization.

See also: “server-initiated synchronization” on page 532.

character set

A character set is a set of symbols, including letters, digits, spaces, and other symbols. An example of a
character set is ISO-8859-1, also known as Latin1.

See also:

● “code page” on page 511
● “encoding” on page 517
● “collation” on page 511

check constraint

A restriction that enforces specified conditions on a column or set of columns.

See also:

● “constraint” on page 513
● “foreign key constraint” on page 518
● “primary key constraint” on page 528
● “unique constraint” on page 536

checkpoint

The point at which all changes to the database are saved to the database file. At other times, committed
changes are saved only to the transaction log.

Glossary

510 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

checksum

The calculated number of bits of a database page that is recorded with the database page itself. The checksum
allows the database management system to validate the integrity of the page by ensuring that the numbers
match as the page is being written to disk. If the counts match, it's assumed that page was successfully written.

client message store

In QAnywhere, a SQL Anywhere database on the remote device that stores messages.

client message store ID

In QAnywhere, a MobiLink remote ID that uniquely identifies a client message store.

client/server

A software architecture where one application (the client) obtains information from and sends information
to another application (the server). The two applications often reside on different computers connected by
a network.

code page

A code page is an encoding that maps characters of a character set to numeric representations, typically an
integer between 0 and 255. An example of a code page is Windows code page 1252. For the purposes of this
documentation, code page and encoding are interchangeable terms.

See also:

● “character set” on page 510
● “encoding” on page 517
● “collation” on page 511

collation

A combination of a character set and a sort order that defines the properties of text in the database. For SQL
Anywhere databases, the default collation is determined by the operating system and language on which the
server is running; for example, the default collation on English Windows systems is 1252LATIN1. A
collation, also called a collating sequence, is used for comparing and sorting strings.

See also:

● “character set” on page 510
● “code page” on page 511
● “encoding” on page 517

command file

A text file containing SQL statements. Command files can be built manually, or they can be built
automatically by database utilities. The dbunload utility, for example, creates a command file consisting of
the SQL statements necessary to recreate a given database.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 511

communication stream

In MobiLink, the network protocol used for communication between the MobiLink client and the MobiLink
server.

concurrency

The simultaneous execution of two or more independent, and possibly competing, processes. SQL Anywhere
automatically uses locking to isolate transactions and ensure that each concurrent application sees a
consistent set of data.

See also:

● “transaction” on page 535
● “isolation level” on page 521

conflict resolution

In MobiLink, conflict resolution is logic that specifies what to do when two users modify the same row on
different remote databases.

connection ID

A unique number that identifies a given connection between a client application and the database. You can
determine the current connection ID using the following SQL statement:

SELECT CONNECTION_PROPERTY('Number');

connection-initiated synchronization

A form of MobiLink server-initiated synchronization in which synchronization is initiated when there are
changes to connectivity.

See also: “server-initiated synchronization” on page 532.

connection profile

A set of parameters that are required to connect to a database, such as user name, password, and server name,
that is stored and used as a convenience.

consolidated database

In distributed database environments, a database that stores the master copy of the data. In case of conflict
or discrepancy, the consolidated database is considered to have the primary copy of the data.

See also:

● “synchronization” on page 535
● “replication” on page 531

Glossary

512 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

constraint

A restriction on the values contained in a particular database object, such as a table or column. For example,
a column may have a uniqueness constraint, which requires that all values in the column be different. A table
may have a foreign key constraint, which specifies how the information in the table relates to data in some
other table.

See also:

● “check constraint” on page 510
● “foreign key constraint” on page 518
● “primary key constraint” on page 528
● “unique constraint” on page 536

contention

The act of competing for resources. For example, in database terms, two or more users trying to edit the
same row of a database contend for the rights to edit that row.

correlation name

The name of a table or view that is used in the FROM clause of a query—either its original name, or an
alternate name, that is defined in the FROM clause.

creator ID

In UltraLite Palm OS applications, an ID that is assigned when the application is created.

cursor

A named linkage to a result set, used to access and update rows from a programming interface. In SQL
Anywhere, cursors support forward and backward movement through the query results. Cursors consist of
two parts: the cursor result set, typically defined by a SELECT statement; and the cursor position.

See also:

● “cursor result set” on page 513
● “cursor position” on page 513

cursor position

A pointer to one row within the cursor result set.

See also:

● “cursor” on page 513
● “cursor result set” on page 513

cursor result set

The set of rows resulting from a query that is associated with a cursor.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 513

See also:

● “cursor” on page 513
● “cursor position” on page 513

data cube

A multi-dimensional result set with each dimension reflecting a different way to group and sort the same
results. Data cubes provide complex information about data that would otherwise require self-join queries
and correlated subqueries. Data cubes are a part of OLAP functionality.

data definition language (DDL)

The subset of SQL statements for defining the structure of data in the database. DDL statements create,
modify, and remove database objects, such as tables and users.

data manipulation language (DML)

The subset of SQL statements for manipulating data in the database. DML statements retrieve, insert, update,
and delete data in the database.

data type

The format of data, such as CHAR or NUMERIC. In the ANSI SQL standard, data types can also include a
restriction on size, character set, and collation.

See also: “domain” on page 516.

database

A collection of tables that are related by primary and foreign keys. The tables hold the information in the
database. The tables and keys together define the structure of the database. A database management system
accesses this information.

See also:

● “foreign key” on page 518
● “primary key” on page 528
● “database management system (DBMS)” on page 515
● “relational database management system (RDBMS)” on page 530

database administrator (DBA)

The user with the permissions required to maintain the database. The DBA is generally responsible for all
changes to a database schema, and for managing users and groups. The role of database administrator is
automatically built into databases as user ID DBA with password sql.

Glossary

514 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database connection

A communication channel between a client application and the database. A valid user ID and password are
required to establish a connection. The privileges granted to the user ID determine the actions that can be
carried out during the connection.

database file

A database is held in one or more database files. There is an initial file, and subsequent files are called
dbspaces. Each table, including its indexes, must be contained within a single database file.

See also: “dbspace” on page 516.

database management system (DBMS)

A collection of programs that allow you to create and use databases.

See also: “relational database management system (RDBMS)” on page 530.

database name

The name given to a database when it is loaded by a server. The default database name is the root of the
initial database file.

See also: “database file” on page 515.

database object

A component of a database that contains or receives information. Tables, indexes, views, procedures, and
triggers are database objects.

database owner (dbo)

A special user that owns the system objects not owned by SYS.

See also:

● “database administrator (DBA)” on page 514
● “SYS” on page 535

database server

A computer program that regulates all access to information in a database. SQL Anywhere provides two
types of servers: network servers and personal servers.

DBA authority

The level of permission that enables a user to do administrative activity in the database. The DBA user has
DBA authority by default.

See also: “database administrator (DBA)” on page 514.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 515

dbspace

An additional database file that creates more space for data. A database can be held in up to 13 separate files
(an initial file and 12 dbspaces). Each table, together with its indexes, must be contained in a single database
file. The SQL command CREATE DBSPACE adds a new file to the database.

See also: “database file” on page 515.

deadlock

A state where a set of transactions arrives at a place where none can proceed.

device tracking

In MobiLink server-initiated synchronization, functionality that allows you to address messages using the
MobiLink user name that identifies a device.

See also: “server-initiated synchronization” on page 532.

direct row handling

In MobiLink, a way to synchronize table data to sources other than the MobiLink-supported consolidated
databases. You can implement both uploads and downloads with direct row handling.

See also:

● “consolidated database” on page 512
● “SQL-based synchronization” on page 533

domain

Aliases for built-in data types, including precision and scale values where applicable, and optionally
including DEFAULT values and CHECK conditions. Some domains, such as the monetary data types, are
pre-defined in SQL Anywhere. Also called user-defined data type.

See also: “data type” on page 514.

download

The stage in synchronization where data is transferred from the consolidated database to a remote database.

dynamic SQL

SQL that is generated programmatically by your program before it is executed. UltraLite dynamic SQL is
a variant designed for small-footprint devices.

EBF

Express Bug Fix. An express bug fix is a subset of the software with one or more bug fixes. The bug fixes
are listed in the release notes for the update. Bug fix updates may only be applied to installed software with
the same version number. Some testing has been performed on the software, but the software has not

Glossary

516 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

undergone full testing. You should not distribute these files with your application unless you have verified
the suitability of the software yourself.

embedded SQL

A programming interface for C programs. SQL Anywhere embedded SQL is an implementation of the ANSI
and IBM standard.

encoding

Also known as character encoding, an encoding is a method by which each character in a character set is
mapped onto one or more bytes of information, typically represented as a hexadecimal number. An example
of an encoding is UTF-8.

See also:

● “character set” on page 510
● “code page” on page 511
● “collation” on page 511

event model

In MobiLink, the sequence of events that make up a synchronization, such as begin_synchronization and
download_cursor. Events are invoked if a script is created for them.

external login

An alternate login name and password used when communicating with a remote server. By default, SQL
Anywhere uses the names and passwords of its clients whenever it connects to a remote server on behalf of
those clients. However, this default can be overridden by creating external logins. External logins are
alternate login names and passwords used when communicating with a remote server.

extraction

In SQL Remote replication, the act of unloading the appropriate structure and data from the consolidated
database. This information is used to initialize the remote database.

See also: “replication” on page 531.

failover

Switching to a redundant or standby server, system, or network on failure or unplanned termination of the
active server, system, or network. Failover happens automatically.

FILE

In SQL Remote replication, a message system that uses shared files for exchanging replication messages.
This is useful for testing and for installations without an explicit message-transport system.

See also:“replication” on page 531.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 517

file-based download

In MobiLink, a way to synchronize data in which downloads are distributed as files, allowing offline
distribution of synchronization changes.

file-definition database

In MobiLink, a SQL Anywhere database that is used for creating download files.

See also: “file-based download” on page 518.

foreign key

One or more columns in a table that duplicate the primary key values in another table. Foreign keys establish
relationships between tables.

See also:

● “primary key” on page 528
● “foreign table” on page 518

foreign key constraint

A restriction on a column or set of columns that specifies how the data in the table relates to the data in some
other table. Imposing a foreign key constraint on a set of columns makes those columns the foreign key.

See also:

● “constraint” on page 513
● “check constraint” on page 510
● “primary key constraint” on page 528
● “unique constraint” on page 536

foreign table

The table containing the foreign key.

See also: “foreign key” on page 518.

full backup

A backup of the entire database, and optionally, the transaction log. A full backup contains all the information
in the database and provides protection in the event of a system or media failure.

See also: “incremental backup” on page 520.

gateway

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about how to send messages for server-initiated synchronization.

See also: “server-initiated synchronization” on page 532.

Glossary

518 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

generated join condition

A restriction on join results that is automatically generated. There are two types: key and natural. Key joins
are generated when you specify KEY JOIN or when you specify the keyword JOIN but do not use the
keywords CROSS, NATURAL, or ON. For a key join, the generated join condition is based on foreign key
relationships between tables. Natural joins are generated when you specify NATURAL JOIN; the generated
join condition is based on common column names in the two tables.

See also:

● “join” on page 522
● “join condition” on page 522

generation number

In MobiLink, a mechanism for forcing remote databases to upload data before applying any more download
files.

See also: “file-based download” on page 518.

global temporary table

A type of temporary table for which data definitions are visible to all users until explicitly dropped. Global
temporary tables let each user open their own identical instance of a table. By default, rows are deleted on
commit, and rows are always deleted when the connection is ended.

See also:

● “temporary table” on page 535
● “local temporary table” on page 522

grant option

The level of permission that allows a user to grant permissions to other users.

hash

A hash is an index optimization that transforms index entries into keys. An index hash aims to avoid the
expensive operation of finding, loading, and then unpacking the rows to determine the indexed value, by
including enough of the actual row data with its row ID.

histogram

The most important component of column statistics, histograms are a representation of data distribution.
SQL Anywhere maintains histograms to provide the optimizer with statistical information about the
distribution of values in columns.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 519

iAnywhere JDBC driver

The iAnywhere JDBC driver provides a JDBC driver that has some performance benefits and feature benefits
compared to the pure Java jConnect JDBC driver, but which is not a pure-Java solution. The iAnywhere
JDBC driver is recommended in most cases.

See also:

● “JDBC” on page 521
● “jConnect” on page 521

identifier

A string of characters used to reference a database object, such as a table or column. An identifier may
contain any character from A through Z, a through z, 0 through 9, underscore (_), at sign (@), number sign
(#), or dollar sign ($).

incremental backup

A backup of the transaction log only, typically used between full backups.

See also: “transaction log” on page 535.

index

A sorted set of keys and pointers associated with one or more columns in a base table. An index on one or
more columns of a table can improve performance.

InfoMaker

A reporting and data maintenance tool that lets you create sophisticated forms, reports, graphs, cross-tabs,
and tables, and applications that use these reports as building blocks.

inner join

A join in which rows appear in the result set only if both tables satisfy the join condition. Inner joins are the
default.

See also:

● “join” on page 522
● “outer join” on page 526

integrated login

A login feature that allows the same single user ID and password to be used for operating system logins,
network logins, and database connections.

Glossary

520 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

integrity

Adherence to rules that ensure that data is correct and accurate, and that the relational structure of the database
is intact.

See also: “referential integrity” on page 530.

Interactive SQL

A SQL Anywhere application that allows you to query and alter data in your database, and modify the
structure of your database. Interactive SQL provides a pane for you to enter SQL statements, and panes that
return information about how the query was processed and the result set.

isolation level

The degree to which operations in one transaction are visible to operations in other concurrent transactions.
There are four isolation levels, numbered 0 through 3. Level 3 provides the highest level of isolation. Level
0 is the default setting. SQL Anywhere also supports three snapshot isolation levels: snapshot, statement-
snapshot, and readonly-statement-snapshot.

See also: “snapshot isolation” on page 533.

JAR file

Java archive file. A compressed file format consisting of a collection of one or more packages used for Java
applications. It includes all the resources necessary to install and run a Java program in a single compressed
file.

Java class

The main structural unit of code in Java. It is a collection of procedures and variables grouped together
because they all relate to a specific, identifiable category.

jConnect

A Java implementation of the JavaSoft JDBC standard. It provides Java developers with native database
access in multi-tier and heterogeneous environments. However, the iAnywhere JDBC driver is the preferred
JDBC driver for most cases.

See also:

● “JDBC” on page 521
● “iAnywhere JDBC driver” on page 520

JDBC

Java Database Connectivity. A SQL-language programming interface that allows Java applications to access
relational data. The preferred JDBC driver is the iAnywhere JDBC driver.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 521

See also:

● “jConnect” on page 521
● “iAnywhere JDBC driver” on page 520

join

A basic operation in a relational system that links the rows in two or more tables by comparing the values
in specified columns.

join condition

A restriction that affects join results. You specify a join condition by inserting an ON clause or WHERE
clause immediately after the join. In the case of natural and key joins, SQL Anywhere generates a join
condition.

See also:

● “join” on page 522
● “generated join condition” on page 519

join type

SQL Anywhere provides four types of joins: cross join, key join, natural join, and joins using an ON clause.

See also: “join” on page 522.

light weight poller
In MobiLink server-initiated synchronization, a device application that polls for push notifications from a
MobiLink server.

See also: “server-initiated synchronization” on page 532.

Listener

A program, dblsn, that is used for MobiLink server-initiated synchronization. Listeners are installed on
remote devices and configured to initiate actions on the device when they receive push notifications.

See also: “server-initiated synchronization” on page 532.

local temporary table

A type of temporary table that exists only for the duration of a compound statement or until the end of the
connection. Local temporary tables are useful when you need to load a set of data only once. By default,
rows are deleted on commit.

See also:

● “temporary table” on page 535
● “global temporary table” on page 519

Glossary

522 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

lock

A concurrency control mechanism that protects the integrity of data during the simultaneous execution of
multiple transactions. SQL Anywhere automatically applies locks to prevent two connections from changing
the same data at the same time, and to prevent other connections from reading data that is in the process of
being changed.

You control locking by setting the isolation level.

See also:

● “isolation level” on page 521
● “concurrency” on page 512
● “integrity” on page 521

log file

A log of transactions maintained by SQL Anywhere. The log file is used to ensure that the database is
recoverable in the event of a system or media failure, to improve database performance, and to allow data
replication using SQL Remote.

See also:

● “transaction log” on page 535
● “transaction log mirror” on page 536
● “full backup” on page 518

logical index

A reference (pointer) to a physical index. There is no indexing structure stored on disk for a logical index.

LTM

Log Transfer Manager (LTM) also called Replication Agent. Used with Replication Server, the LTM is the
program that reads a database transaction log and sends committed changes to Sybase Replication Server.

See: “Replication Server” on page 531.

maintenance release

A maintenance release is a complete set of software that upgrades installed software from an older version
with the same major version number (version number format is major.minor.patch.build). Bug fixes and
other changes are listed in the release notes for the upgrade.

materialized view

A materialized view is a view that has been computed and stored on disk. Materialized views have
characteristics of both views (they are defined using a query specification), and of tables (they allow most
table operations to be performed on them).

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 523

See also:

● “base table” on page 509
● “view” on page 537

message log

A log where messages from an application such as a database server or MobiLink server can be stored. This
information can also appear in a messages window or be logged to a file. The message log includes
informational messages, errors, warnings, and messages from the MESSAGE statement.

message store

In QAnywhere, databases on the client and server device that store messages.

See also:

● “client message store” on page 511
● “server message store” on page 533

message system

In SQL Remote replication, a protocol for exchanging messages between the consolidated database and a
remote database. SQL Anywhere includes support for the following message systems: FILE, FTP, and
SMTP.

See also:

● “replication” on page 531
● “FILE” on page 517

message type

In SQL Remote replication, a database object that specifies how remote users communicate with the publisher
of a consolidated database. A consolidated database may have several message types defined for it; this
allows different remote users to communicate with it using different message systems.

See also:

● “replication” on page 531
● “consolidated database” on page 512

metadata

Data about data. Metadata describes the nature and content of other data.

See also: “schema” on page 532.

mirror log

See also: “transaction log mirror” on page 536.

Glossary

524 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink

A session-based synchronization technology designed to synchronize UltraLite and SQL Anywhere remote
databases with a consolidated database.

See also:

● “consolidated database” on page 512
● “synchronization” on page 535
● “UltraLite” on page 536

MobiLink client

There are two kinds of MobiLink clients. For SQL Anywhere remote databases, the MobiLink client is the
dbmlsync command line utility. For UltraLite remote databases, the MobiLink client is built in to the
UltraLite runtime library.

MobiLink Monitor

A graphical tool for monitoring MobiLink synchronizations.

MobiLink server

The computer program that runs MobiLink synchronization, mlsrv11.

MobiLink system table

System tables that are required by MobiLink synchronization. They are installed by MobiLink setup scripts
into the MobiLink consolidated database.

MobiLink user

A MobiLink user is used to connect to the MobiLink server. You create the MobiLink user on the remote
database and register it in the consolidated database. MobiLink user names are entirely independent of
database user names.

network protocol

The type of communication, such as TCP/IP or HTTP.

network server

A database server that accepts connections from computers sharing a common network.

See also: “personal server” on page 527.

normalization

The refinement of a database schema to eliminate redundancy and improve organization according to rules
based on relational database theory.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 525

Notifier

A program that is used by MobiLink server-initiated synchronization. Notifiers are integrated into the
MobiLink server. They check the consolidated database for push requests, and send push notifications.

See also:

● “server-initiated synchronization” on page 532
● “Listener” on page 522

object tree

In Sybase Central, the hierarchy of database objects. The top level of the object tree shows all products that
your version of Sybase Central supports. Each product expands to reveal its own sub-tree of objects.

See also: “Sybase Central” on page 534.

ODBC

Open Database Connectivity. A standard Windows interface to database management systems. ODBC is
one of several interfaces supported by SQL Anywhere.

ODBC Administrator

A Microsoft program included with Windows operating systems for setting up ODBC data sources.

ODBC data source

A specification of the data a user wants to access via ODBC, and the information needed to get to that data.

outer join

A join that preserves all the rows in a table. SQL Anywhere supports left, right, and full outer joins. A left
outer join preserves the rows in the table to the left of the join operator, and returns a null when a row in the
right table does not satisfy the join condition. A full outer join preserves all the rows from both tables.

See also:

● “join” on page 522
● “inner join” on page 520

package

In Java, a collection of related classes.

parse tree

An algebraic representation of a query.

PDB

A Palm database file.

Glossary

526 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

performance statistic

A value reflecting the performance of the database system. The CURRREAD statistic, for example,
represents the number of file reads issued by the database server that have not yet completed.

personal server

A database server that runs on the same computer as the client application. A personal database server is
typically used by a single user on a single computer, but it can support several concurrent connections from
that user.

physical index

The actual indexing structure of an index, as it is stored on disk.

plug-in module

In Sybase Central, a way to access and administer a product. Plug-ins are usually installed and registered
automatically with Sybase Central when you install the respective product. Typically, a plug-in appears as
a top-level container, in the Sybase Central main window, using the name of the product itself; for example,
SQL Anywhere.

See also: “Sybase Central” on page 534.

policy

In QAnywhere, the way you specify when message transmission should occur.

polling

In MobiLink server-initiated synchronization, the way a light weight poller, such as the MobiLink Listener,
requests push notifications from a Notifier.

See also: “server-initiated synchronization” on page 532.

PowerDesigner

A database modeling application. PowerDesigner provides a structured approach to designing a database or
data warehouse. SQL Anywhere includes the Physical Data Model component of PowerDesigner.

PowerJ

A Sybase product for developing Java applications.

predicate

A conditional expression that is optionally combined with the logical operators AND and OR to make up
the set of conditions in a WHERE or HAVING clause. In SQL, a predicate that evaluates to UNKNOWN
is interpreted as FALSE.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 527

primary key

A column or list of columns whose values uniquely identify every row in the table.

See also: “foreign key” on page 518.

primary key constraint

A uniqueness constraint on the primary key columns. A table can have only one primary key constraint.

See also:

● “constraint” on page 513
● “check constraint” on page 510
● “foreign key constraint” on page 518
● “unique constraint” on page 536
● “integrity” on page 521

primary table

The table containing the primary key in a foreign key relationship.

proxy table

A local table containing metadata used to access a table on a remote database server as if it were a local
table.

See also: “metadata” on page 524.

publication

In MobiLink or SQL Remote, a database object that identifies data that is to be synchronized. In MobiLink,
publications exist only on the clients. A publication consists of articles. SQL Remote users can receive a
publication by subscribing to it. MobiLink users can synchronize a publication by creating a synchronization
subscription to it.

See also:

● “replication” on page 531
● “article” on page 509
● “publication update” on page 528

publication update

In SQL Remote replication, a list of changes made to one or more publications in one database. A publication
update is sent periodically as part of a replication message to the remote database(s).

See also:

● “replication” on page 531
● “publication” on page 528

Glossary

528 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

publisher

In SQL Remote replication, the single user in a database who can exchange replication messages with other
replicating databases.

See also: “replication” on page 531.

push notification

In QAnywhere, a special message delivered from the server to a QAnywhere client that prompts the client
to initiate a message transmission. In MobiLink server-initiated synchronization, a special message delivered
from a Notifer to a device that contains push request data and internal information.

See also:

● “QAnywhere” on page 529
● “server-initiated synchronization” on page 532

push request

In MobiLink server-initiated synchronization, a row of values in a result set that a Notifier checks to
determine if push notifications need to be sent to a device.

See also: “server-initiated synchronization” on page 532.

QAnywhere

Application-to-application messaging, including mobile device to mobile device and mobile device to and
from the enterprise, that permits communication between custom programs running on mobile or wireless
devices and a centrally located server application.

QAnywhere agent

In QAnywhere, a process running on the client device that monitors the client message store and determines
when message transmission should occur.

query

A SQL statement or group of SQL statements that access and/or manipulate data in a database.

See also: “SQL” on page 533.

Redirector

A web server plug-in that routes requests and responses between a client and the MobiLink server. This
plug-in also implements load-balancing and failover mechanisms.

reference database

In MobiLink, a SQL Anywhere database used in the development of UltraLite clients. You can use a single
SQL Anywhere database as both reference and consolidated database during development. Databases made
with other products cannot be used as reference databases.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 529

referencing object

An object, such as a view, whose definition directly references another object in the database, such as a table.

See also: “foreign key” on page 518.

referenced object

An object, such as a table, that is directly referenced in the definition of another object, such as a view.

See also: “primary key” on page 528.

referential integrity

Adherence to rules governing data consistency, specifically the relationships between the primary and
foreign key values in different tables. To have referential integrity, the values in each foreign key must
correspond to the primary key values of a row in the referenced table.

See also:

● “primary key” on page 528
● “foreign key” on page 518

regular expression

A regular expression is a sequence of characters, wildcards, and operators that defines a pattern to search
for within a string.

relational database management system (RDBMS)

A type of database management system that stores data in the form of related tables.

See also: “database management system (DBMS)” on page 515.

remote database

In MobiLink or SQL Remote, a database that exchanges data with a consolidated database. Remote databases
may share all or some of the data in the consolidated database.

See also:

● “synchronization” on page 535
● “consolidated database” on page 512

REMOTE DBA authority

In SQL Remote, a level of permission required by the Message Agent (dbremote). In MobiLink, a level of
permission required by the SQL Anywhere synchronization client (dbmlsync). When the Message Agent
(dbremote) or synchronization client connects as a user who has this authority, it has full DBA access. The
user ID has no additional permissions when not connected through the Message Agent (dbremote) or
synchronization client (dbmlsync).

See also: “DBA authority” on page 515.

Glossary

530 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

remote ID

A unique identifier in SQL Anywhere and UltraLite databases that is used by MobiLink. The remote ID is
initially set to NULL and is set to a GUID during a database's first synchronization.

replication

The sharing of data among physically distinct databases. Sybase has three replication technologies:
MobiLink, SQL Remote, and Replication Server.

Replication Agent

See: “LTM” on page 523.

replication frequency

In SQL Remote replication, a setting for each remote user that determines how often the publisher's message
agent should send replication messages to that remote user.

See also: “replication” on page 531.

replication message

In SQL Remote or Replication Server, a communication sent between a publishing database and a subscribing
database. Messages contain data, passthrough statements, and information required by the replication system.

See also:

● “replication” on page 531
● “publication update” on page 528

Replication Server

A Sybase connection-based replication technology that works with SQL Anywhere and Adaptive Server
Enterprise. It is intended for near-real time replication between a few databases.

See also: “LTM” on page 523.

role

In conceptual database modeling, a verb or phrase that describes a relationship from one point of view. You
can describe each relationship with two roles. Examples of roles are "contains" and "is a member of."

role name

The name of a foreign key. This is called a role name because it names the relationship between the foreign
table and primary table. By default, the role name is the table name, unless another foreign key is already
using that name, in which case the default role name is the table name followed by a three-digit unique
number. You can also create the role name yourself.

See also: “foreign key” on page 518.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 531

rollback log

A record of the changes made during each uncommitted transaction. In the event of a ROLLBACK request
or a system failure, uncommitted transactions are reversed out of the database, returning the database to its
former state. Each transaction has a separate rollback log, which is deleted when the transaction is complete.

See also: “transaction” on page 535.

row-level trigger

A trigger that executes once for each row that is changed.

See also:

● “trigger” on page 536
● “statement-level trigger” on page 534

schema

The structure of a database, including tables, columns, and indexes, and the relationships between them.

script

In MobiLink, code written to handle MobiLink events. Scripts programmatically control data exchange to
meet business needs.

See also: “event model” on page 517.

script-based upload

In MobiLink, a way to customize the upload process as an alternative to using the log file.

script version

In MobiLink, a set of synchronization scripts that are applied together to create a synchronization.

secured feature

A feature specified by the -sf option when a database server is started, so it is not available for any database
running on that database server.

server-initiated synchronization

A way to initiate MobiLink synchronization from the MobiLink server.

server management request

A QAnywhere message that is formatted as XML and sent to the QAnywhere system queue as a way to
administer the server message store or monitor QAnywhere applications.

Glossary

532 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

server message store

In QAnywhere, a relational database on the server that temporarily stores messages until they are transmitted
to a client message store or JMS system. Messages are exchanged between clients via the server message
store.

service

In Windows operating systems, a way of running applications when the user ID running the application is
not logged on.

session-based synchronization

A type of synchronization where synchronization results in consistent data representation across both the
consolidated and remote databases. MobiLink is session-based.

snapshot isolation

A type of isolation level that returns a committed version of the data for transactions that issue read requests.
SQL Anywhere provides three snapshot isolation levels: snapshot, statement-snapshot, and readonly-
statement-snapshot. When using snapshot isolation, read operations do not block write operations.

See also: “isolation level” on page 521.

SQL

The language used to communicate with relational databases. ANSI has defined standards for SQL, the latest
of which is SQL-2003. SQL stands, unofficially, for Structured Query Language.

SQL Anywhere

The relational database server component of SQL Anywhere that is intended for use in mobile and embedded
environments or as a server for small and medium-sized businesses. SQL Anywhere is also the name of the
package that contains the SQL Anywhere RDBMS, the UltraLite RDBMS, MobiLink synchronization
software, and other components.

SQL-based synchronization

In MobiLink, a way to synchronize table data to MobiLink-supported consolidated databases using
MobiLink events. For SQL-based synchronization, you can use SQL directly or you can return SQL using
the MobiLink server APIs for Java and .NET.

SQL Remote

A message-based data replication technology for two-way replication between consolidated and remote
databases. The consolidated and remote databases must be SQL Anywhere.

SQL statement

A string containing SQL keywords designed for passing instructions to a DBMS.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 533

See also:

● “schema” on page 532
● “SQL” on page 533
● “database management system (DBMS)” on page 515

statement-level trigger

A trigger that executes after the entire triggering statement is completed.

See also:

● “trigger” on page 536
● “row-level trigger” on page 532

stored procedure

A stored procedure is a group of SQL instructions stored in the database and used to execute a set of operations
or queries on a database server

string literal

A string literal is a sequence of characters enclosed in single quotes.

subquery

A SELECT statement that is nested inside another SELECT, INSERT, UPDATE, or DELETE statement,
or another subquery.

There are two types of subquery: correlated and nested.

subscription

In MobiLink synchronization, a link in a client database between a publication and a MobiLink user, allowing
the data described by the publication to be synchronized.

In SQL Remote replication, a link between a publication and a remote user, allowing the user to exchange
updates on that publication with the consolidated database.

See also:

● “publication” on page 528
● “MobiLink user” on page 525

Sybase Central

A database management tool that provides SQL Anywhere database settings, properties, and utilities in a
graphical user interface. Sybase Central can also be used for managing other Sybase products, including
MobiLink.

Glossary

534 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

synchronization

The process of replicating data between databases using MobiLink technology.

In SQL Remote, synchronization is used exclusively to denote the process of initializing a remote database
with an initial set of data.

See also:

● “MobiLink” on page 525
● “SQL Remote” on page 533

SYS

A special user that owns most of the system objects. You cannot log in as SYS.

system object

Database objects owned by SYS or dbo.

system table

A table, owned by SYS or dbo, that holds metadata. System tables, also known as data dictionary tables, are
created and maintained by the database server.

system view

A type of view, included in every database, that presents the information held in the system tables in an
easily understood format.

temporary table

A table that is created for the temporary storage of data. There are two types: global and local.

See also:

● “local temporary table” on page 522
● “global temporary table” on page 519

transaction

A sequence of SQL statements that comprise a logical unit of work. A transaction is processed in its entirety
or not at all. SQL Anywhere supports transaction processing, with locking features built in to allow
concurrent transactions to access the database without corrupting the data. Transactions end either with a
COMMIT statement, which makes the changes to the data permanent, or a ROLLBACK statement, which
undoes all the changes made during the transaction.

transaction log

A file storing all changes made to a database, in the order in which they are made. It improves performance
and allows data recovery in the event the database file is damaged.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 535

transaction log mirror

An optional identical copy of the transaction log file, maintained simultaneously. Every time a database
change is written to the transaction log file, it is also written to the transaction log mirror file.

A mirror file should be kept on a separate device from the transaction log, so that if either device fails, the
other copy of the log keeps the data safe for recovery.

See also: “transaction log” on page 535.

transactional integrity

In MobiLink, the guaranteed maintenance of transactions across the synchronization system. Either a
complete transaction is synchronized, or no part of the transaction is synchronized.

transmission rule

In QAnywhere, logic that determines when message transmission is to occur, which messages to transmit,
and when messages should be deleted.

trigger

A special form of stored procedure that is executed automatically when a user runs a query that modifies the
data.

See also:

● “row-level trigger” on page 532
● “statement-level trigger” on page 534
● “integrity” on page 521

UltraLite

A database optimized for small, mobile, and embedded devices. Intended platforms include cell phones,
pagers, and personal organizers.

UltraLite runtime

An in-process relational database management system that includes a built-in MobiLink synchronization
client. The UltraLite runtime is included in the libraries used by each of the UltraLite programming interfaces,
and in the UltraLite engine.

unique constraint

A restriction on a column or set of columns requiring that all non-null values are different. A table can have
multiple unique constraints.

See also:

● “foreign key constraint” on page 518
● “primary key constraint” on page 528
● “constraint” on page 513

Glossary

536 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

unload

Unloading a database exports the structure and/or data of the database to text files (SQL command files for
the structure, and ASCII comma-separated files for the data). You unload a database with the Unload utility.

In addition, you can unload selected portions of your data using the UNLOAD statement.

upload

The stage in synchronization where data is transferred from a remote database to a consolidated database.

user-defined data type

See “domain” on page 516.

validate

To test for particular types of file corruption of a database, table, or index.

view

A SELECT statement that is stored in the database as an object. It allows users to see a subset of rows or
columns from one or more tables. Each time a user uses a view of a particular table, or combination of tables,
it is recomputed from the information stored in those tables. Views are useful for security purposes, and to
tailor the appearance of database information to make data access straightforward.

window

The group of rows over which an analytic function is performed. A window may contain one, many, or all
rows of data that has been partitioned according to the grouping specifications provided in the window
definition. The window moves to include the number or range of rows needed to perform the calculations
for the current row in the input. The main benefit of the window construct is that it allows additional
opportunities for grouping and analysis of results, without having to perform additional queries.

Windows

The Microsoft Windows family of operating systems, such as Windows Vista, Windows XP, and Windows
200x.

Windows CE
See “Windows Mobile” on page 537.

Windows Mobile

A family of operating systems produced by Microsoft for mobile devices.

work table

An internal storage area for interim results during query optimization.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 537

538

Index
Symbols
% operator

modulo function, UltraLite, 404
&

bitwise operator for UltraLite, 339
- comment indicator

UltraLite about, 305
-a option

UltraLite HotSync Conduit installer [ulcond11]
utility, 263
UltraLite initialize database [ulinit] utility, 269
UltraLite load XML to database [ulload] utility,
272

-b option
UltraLite unload data to XML [ulunload] utility,
281
UltraLite unload old database [ulunloadold] utility,
284

-c option
UltraLite database creation [ulcreate] utility, 255
UltraLite erase database [ulerase] utility, 262
UltraLite HotSync Conduit installer [ulcond11]
utility, 263
UltraLite information [ulinfo] utility, 265
UltraLite initialize database [ulinit] utility, 269
UltraLite Interactive SQL [dbisql] utility, 249
UltraLite load XML to database [ulload] utility,
272
UltraLite synchronization [ulsync] utility, 275
UltraLite unload data to XML [ulunload] utility,
281
UltraLite unload old database [ulunloadold] utility,
284
UltraLite validate database utility (ulvalid) utility,
286

-creator-ID
UltraLite HotSync Conduit installer [ulcond11]
utility, 263

-d option
UltraLite HotSync Conduit installer [ulcond11]
utility, 263
UltraLite initialize database [ulinit] utility, 269
UltraLite Interactive SQL [dbisql] utility, 249

UltraLite load XML to database [ulload] utility,
272
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite unload data to XML [ulunload] utility,
281

-d1 option
UltraLite Interactive SQL [dbisql] utility, 249

-e option
UltraLite initialize database [ulinit] utility, 269
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite unload data to XML [ulunload] utility,
281
UltraLite validate database utility (ulvalid) utility,
286

-ek option
UltraLite erase database [ulerase] utility, 262

-ep option
UltraLite erase database [ulerase] utility, 262

-f option
UltraLite Interactive SQL [dbisql] utility, 249
UltraLite load XML to database [ulload] utility,
272
UltraLite unload data to XML [ulunload] utility,
281
UltraLite unload old database [ulunloadold] utility,
284

-g option
UltraLite database creation [ulcreate] utility, 255
UltraLite information [ulinfo] utility, 265
UltraLite load XML to database [ulload] utility,
272
UltraLite SQL Preprocessor [sqlpp] utility, 252

-h option
UltraLite SQL Preprocessor [sqlpp] utility, 252

-I option
UltraLite initialize database [ulinit] utility, 269
UltraLite load XML to database [ulload] utility,
272

-k option
UltraLite SQL Preprocessor [sqlpp] utility, 252

-l option
UltraLite database creation [ulcreate] utility, 255
UltraLite initialize database [ulinit] utility, 269

-n option
UltraLite HotSync Conduit installer [ulcond11]
utility, 263
UltraLite initialize database [ulinit] utility, 269

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 539

UltraLite load XML to database [ulload] utility,
272
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite unload data to XML [ulunload] utility,
281

-nogui option
UltraLite Interactive SQL [dbisql] utility, 249

-o option
ulcreate creation parameters, 34
UltraLite database creation [ulcreate] utility, 255
UltraLite initialize database [ulinit] utility, 269
UltraLite load XML to database [ulload] utility,
272
UltraLite SQL Preprocessor [sqlpp] utility, 252

-oa option
UltraLite information [ulinfo] utility, 265
UltraLite load XML to database [ulload] utility,
272
UltraLite synchronization [ulsync] utility, 275
UltraLite unload data to XML [ulunload] utility,
281
UltraLite validate database utility (ulvalid) utility,
286

-ol option
UltraLite database creation [ulcreate] utility, 255
UltraLite load XML to database [ulload] utility,
272

-onerror option
UltraLite Interactive SQL [dbisql] utility, 249
UltraLite load XML to database [ulload] utility,
272

-or option
UltraLite information [ulinfo] utility, 265
UltraLite load XML to database [ulload] utility,
272
UltraLite synchronization [ulsync] utility, 275
UltraLite unload data to XML [ulunload] utility,
281
UltraLite validate database utility (ulvalid) utility,
286

-ou option
UltraLite information [ulinfo] utility, 265
UltraLite load XML to database [ulload] utility,
272
UltraLite synchronization [ulsync] utility, 275
UltraLite unload data to XML [ulunload] utility,
281

UltraLite validate database utility (ulvalid) utility,
286

-output-file
UltraLite unload data to XML [ulunload] utility,
281

-p option
UltraLite database creation [ulcreate] utility, 255
UltraLite initialize database [ulinit] utility, 269
UltraLite load XML to database [ulload] utility,
272
UltraLite synchronization [ulsync] utility, 275

-q option
UltraLite database creation [ulcreate] utility, 255
UltraLite erase database [ulerase] utility, 262
UltraLite HotSync Conduit installer [ulcond11]
utility, 263
UltraLite information [ulinfo] utility, 265
UltraLite initialize database [ulinit] utility, 269
UltraLite Interactive SQL [dbisql] utility, 249
UltraLite load XML to database [ulload] utility,
272
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite synchronization [ulsync] utility, 275
UltraLite unload data to XML [ulunload] utility,
281
UltraLite unload old database [ulunloadold] utility,
284
UltraLite validate database utility (ulvalid) utility,
286

-qq option
UltraLite HotSync Conduit installer [ulcond11]
utility, 263

-r option
UltraLite information [ulinfo] utility, 265
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite synchronization [ulsync] utility, 275

-rc option
UltraLite information [ulinfo] utility, 265

-s option
UltraLite initialize database [ulinit] utility, 269
UltraLite load XML to database [ulload] utility,
272
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite synchronization [ulsync] utility, 275
UltraLite unload data to XML [ulunload] utility,
281

-SQL command
UltraLite Interactive SQL [dbisql] utility, 249

Index

540 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-t option
UltraLite database creation [ulcreate] utility, 255
UltraLite initialize database [ulinit] utility, 269
UltraLite load XML to database [ulload] utility,
272
UltraLite unload data to XML [ulunload] utility,
281

-u option
UltraLite HotSync Conduit installer [ulcond11]
utility, 263
UltraLite SQL Preprocessor [sqlpp] utility, 252

-ul option
UltraLite Interactive SQL [dbisql] utility, 249

-v option
UltraLite database creation [ulcreate] utility, 255
UltraLite erase database [ulerase] utility, 262
UltraLite information [ulinfo] utility, 265
UltraLite load XML to database [ulload] utility,
272
UltraLite synchronization [ulsync] utility, 275
UltraLite unload data to XML [ulunload] utility,
281
UltraLite unload old database [ulunloadold] utility,
284
UltraLite validate database utility (ulvalid) utility,
286

-version
Interactive SQL [dbisql] utility, 249

-w option
UltraLite initialize database [ulinit] utility, 269
UltraLite SQL Preprocessor [sqlpp] utility, 252

-x option
UltraLite Interactive SQL [dbisql] utility, 249
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite unload data to XML [ulunload] utility,
281

-xml-file
UltraLite unload old database [ulunloadold] utility,
284

-y option
UltraLite database creation [ulcreate] utility, 255
UltraLite load XML to database [ulload] utility,
272
UltraLite unload data to XML [ulunload] utility,
281
UltraLite unload old database [ulunloadold] utility,
284

-z option

UltraLite database creation [ulcreate] utility, 255
UltraLite SQL Preprocessor [sqlpp] utility, 252

.NET
UltraLite engine support, 23

.NET compatibility
UltraLite driver for ADO.NET, 24

/* comment indicator
UltraLite about, 305

// comment indicator
UltraLite about, 305

10054
UltraLite synchronization stream system errors,
170

128-bit strong encryption
UltraLite connection parameter for, 233
UltraLite usage of, 40

130 error
SQL code for UltraLite schema upgrade, 67

?
UltraLite input parameter, 330

@data option
UltraLite Interactive SQL [dbisql] utility, 249

^
bitwise operator for UltraLite, 339

|
bitwise operator for UltraLite, 339

~
bitwise operator for UltraLite, 339

A
ABS function

UltraLite syntax, 354
ACOS function

UltraLite syntax, 354
ActiveSync

deploying MobiLink UltraLite applications, 150
registering applications for UltraLite clients, 66
UltraLite deploying provider files, 64

adding
UltraLite column methods, 72
UltraLite columns, 454
UltraLite indexes, 81
UltraLite users, 87

adding synchronization
UltraLite applications, 139

adding UltraLite indexes
about, 81

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 541

adding UltraLite users
about, 87

adding users
UltraLite, 87

additional parameters
UltraLite synchronization parameter, 155

administration tools
UltraLite troubleshooting, 499

administration utilities
UltraLite utilities reference, 247

ADO.NET
UltraLite drivers for, 24

AES encryption algorithm
UltraLite deployment steps, 59
UltraLite fips creation parameter, 192
UltraLite fips usage, 40
UltraLite usage, 40

agent IDs
glossary definition, 509

aggregate expressions
UltraLite SQL syntax, 328

aggregate functions
UltraLite alphabetical list, 348

aliases
UltraLite columns, 486
UltraLite equivalents, 314

ALL conditions
UltraLite SQL, 334

AllowDownloadDupRows
UltraLite synchronization parameter, 155

allsync tables
UltraLite overview, 72
UltraLite synchronizing tables, 136

ALTER DATABASE SCHEMA FROM FILE
statement

UltraLite schema changes impact, 11
UltraLite syntax, 450
usage, 67

ALTER PUBLICATION statement
UltraLite syntax, 451

ALTER SYNCHRONIZATION PROFILE statement
UltraLite syntax, 452

ALTER TABLE statement
UltraLite Interactive SQL example, 74
UltraLite syntax, 454

altering
UltraLite ALTER PUBLICATION statement, 451
UltraLite ALTER TABLE statement, 454

UltraLite column methods, 74
UltraLite columns methods, 73
UltraLite table methods, 74

altering UltraLite column definitions
about, 73

ambiguous string to date conversions
UltraLite, 196

AND
bitwise operators for UltraLite, 339
logical operators for UltraLite, 333

ANY conditions
UltraLite SQL, 335

APIs
UltraLite choices, 24

applications
(see also UltraLite applications)

ApplyFile method
UltraLite replacement for schema upgrade , 67

arc-cosine function
UltraLite ACOS function, 354

arc-sine function
UltraLite ASIN function, 357

arc-tangent function
UltraLite ATAN function, 357

ARGN function
UltraLite syntax, 355

arithmetic
operators and UltraLite SQL syntax, 338

arithmetic operators
UltraLite SQL syntax, 338

articles
glossary definition, 509
UltraLite copying method, 77
UltraLite databases, 137
UltraLite restrictions, 137

ASCII
UltraLite sorting, 36
UltraLite syntax, 356

ASCII files
UltraLite importing, 502

ASIN function
UltraLite syntax, 357

assembling parameters into connection strings
UltraLite about, 49

ATAN function
UltraLite syntax, 357

ATAN2 function
UltraLite syntax, 358

Index

542 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

atomic transactions
glossary definition, 509

authentication
UltraLite bypassing, 51
UltraLite setup, 51

authentication parameters
UltraLite synchronization parameter, 156

authentication status
UltraLite synchronization parameter, 157

authentication value
UltraLite synchronization parameter, 159

autocommit
UltraLite transaction overview , 16

AUTOINCREMENT
UltraLite syntax, 468

average function
UltraLite AVG function, 359

AVG function
UltraLite syntax, 359

B
backing up (see backups)
backup and data recovery

UltraLite about, 15
backups

UltraLite databases on Palm, 258
UltraLite databases on Windows Mobile, 47
UltraLite internal mechanism, 15
UltraLite transaction overview , 16

base 10 logarithm
UltraLite LOG10 function, 398

base tables
glossary definition, 509

BETWEEN conditions
UltraLite SQL, 336

BIGINT data type
UltraLite, 312

binary
UltraLite sorting, 36

BINARY data types
UltraLite, 312
UltraLite maximum size, 8

bit arrays
glossary definition, 510

bitwise operators
UltraLite SQL syntax, 339

browsing

UltraLite table information, 76
UltraLite table methods, 76

bugs
providing feedback, xvii

building
UltraLite CustDB application, 97

bulk loading
UltraLite LOAD TABLE statement, 481

business rules
glossary definition, 510

BYTE_LENGTH function
UltraLite syntax, 360

BYTE_SUBSTR function
UltraLite syntax, 360

C
C-language programming

UltraLite support, 24
cache

UltraLite maximum size, 8
UltraLite performance, 120

cache size
UltraLite limit, 8
UltraLite usage, 199

CACHE_SIZE connection parameter
UltraLite optimization for early Palm OS, 121
UltraLite syntax, 226

callback
UltraLite schema upgrade errors, 68

carriers
glossary definition, 510

cascading deletes
UltraLite limitations, 2

cascading updates
UltraLite limitations, 2

case creation parameter
UltraLite description, 183

case database property
UltraLite database creation [ulcreate] utility, 255

CASE expression
UltraLite NULLIF function, 409
UltraLite SQL syntax, 327

case property
UltraLite description, 213

case sensitivity
comparison operators for UltraLite, 332
UltraLite case creation parameter, 183

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 543

UltraLite case property, 213
UltraLite strings, 304

case sensitivity considerations
UltraLite about, 183

CAST function
UltraLite syntax, 361

casting
UltraLite data types list, 314

catalog
UltraLite system tables, 289

CE_FILE connection parameter
UltraLite syntax, 227

CEILING function
UltraLite syntax, 362

Certicom
UltraLite cryptographic module, 40
UltraLite modules for Palm and Windows Mobile,
59
UltraLite TLS-enabled synchronization, 60

certificates
UltraLite application access to encryption
information, 276

CHAR data type
UltraLite, 312

CHAR function
UltraLite syntax, 363

CHAR_LENGTH function
UltraLite syntax, 365

char_set property
UltraLite description, 213

character functions
UltraLite alphabetical list, 352

character set considerations
UltraLite, 36

character sets
glossary definition, 510
synchronization for UltraLite, 36
UltraLite char_set property, 213
UltraLite collation creation parameter, 186
UltraLite databases, 37
UltraLite on Palm OS, 37
UltraLite on Windows, 37
UltraLite on Windows Mobile, 37
UltraLite strings, 304

character strings
UltraLite embedded SQL, 252

CHARINDEX function
UltraLite syntax, 364

CHECK constraints
glossary definition, 510
UltraLite limitations, 2

CHECK CONSTRAINTS clause
UltraLite LOAD TABLE statement, 482

CHECKPOINT statement
UltraLite syntax, 458

checkpointing
UltraLite CHECKPOINT syntax, 458

checkpoints
glossary definition, 510
UltraLite performance optimization, 119

CheckpointStore
UltraLite synchronization parameter, 155

checksum_level creation parameter
UltraLite description, 184

checksum_level property
UltraLite description, 213

checksums
glossary definition, 511
UltraLite checksum_level creation parameter, 184
UltraLite checksum_level property, 213

choosing a data management component
UltraLite about, 23

choosing an index type
UltraLite about, 80

choosing your programming interface
UltraLite about, 24

client databases
UltraLite options, 154

client message store IDs
glossary definition, 511

client message stores
glossary definition, 511

client/server
glossary definition, 511

clients
UltraLite embedded engine, 23
UltraLite MobiLink clients, 125

COALESCE function
UltraLite syntax, 366

code pages
glossary definition, 511

code points
UltraLite, 36

CodeWarrior
UltraLite building CustDB application, 97

COL_LENGTH function

Index

544 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

syntax, 353
COL_NAME function

syntax, 353
collation creation parameter

UltraLite description, 186
collation property

UltraLite description, 213
collation sequences

UltraLite about, 36
UltraLite changing, 36

collations
glossary definition, 511
UltraLite collation creation parameter, 186
UltraLite CollationName property, 213
UltraLite unsupported, 270

column compression
UltraLite SQL ALTER TABLE statement, 454

column names
UltraLite SQL syntax, 326

column names in expressions
UltraLite about, 326

columns
UltraLite adding methods, 72
UltraLite aliases, 486
UltraLite ALTER TABLE statement, 454
UltraLite altering methods, 74
UltraLite altering usage, 73
UltraLite copying method, 77
UltraLite limitations, 8

comma-separated lists
UltraLite LIST function syntax, 395

command files
glossary definition, 511

command line utilities
UltraLite database creation [ulcreate] utility, 255
UltraLite engine start [uleng11] utility, 260
UltraLite engine stop [ulstop] utility, 261
UltraLite erase database [ulerase] utility, 262
UltraLite HotSync Conduit installer [ulcond11]
utility, 263
UltraLite information [ulinfo] utility, 265
UltraLite initialize database [ulinit] utility, 269
UltraLite Interactive SQL [dbisql] syntax, 249
UltraLite load XML to database [ulload] utility,
272
UltraLite Palm [ULDBUtil] utility, 258
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite synchronization [ulsync] , 275

UltraLite unload data to XML [ulunload] utility,
281
UltraLite unload old database [ulunloadold] utility,
284

command prompts
conventions, xv
curly braces, xv
environment variables, xv
parentheses, xv
quotes, xv

command shells
conventions, xv
curly braces, xv
environment variables, xv
parentheses, xv
quotes, xv

comments
UltraLite syntax, 305

commit flush
UltraLite configuration, 220

COMMIT statement
UltraLite syntax, 459

COMMIT_FLUSH connection parameter
UltraLite syntax, 229

commit_flush_count database option
UltraLite, 220

commit_flush_count property
UltraLite description, 213

commit_flush_timeout database option
UltraLite, 221

commit_flush_timeout property
UltraLite description, 213

committing
UltraLite COMMIT syntax, 459
UltraLite database rows, 14
UltraLite transaction overview , 16

communication streams
glossary definition, 512

comparing
UltraLite and SQL Anywhere databases, 2

comparing UltraLite and SQL Anywhere
about, 2

comparison operators
dynamic SQL syntax for UltraLite, 332
UltraLite SQL, 332

compatibility
UltraLite SQL, 332

compressed columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 545

UltraLite ALTER TABLE statement, 454
computed columns

UltraLite limitations, 2
COMPUTES clause

UltraLite LOAD TABLE statement, 482
CON connection parameter

UltraLite syntax, 230
concatenating strings

string operators for UltraLite, 339
concurrency

glossary definition, 512
UltraLite issues, 13
UltraLite synchronization, 13

concurrent access
UltraLite engine, 23

conditions
ALL conditions for UltraLite SQL, 334
ANY for UltraLite SQL, 335
BETWEEN for UltraLite SQL, 336
EXISTS for UltraLite SQL, 336
IN for UltraLite SQL, 337
searching in UltraLite SQL, 331

conduit
deploying UltraLite applications, 146
installing, 263
installing for CustDB, 263
UltraLite HotSync, 62

conduit files
deploying HotSync, 146

conduits
UltraLite HotSync conduit files, 62

conflict resolution
glossary definition, 512

conn_count property
UltraLite description, 213

connecting
MobiLink UltraLite Stream Type synchronization
parameter, 171
UltraLite database troubleshooting, 49
UltraLite databases, 51

connecting to an UltraLite database
about, 43

connection failures
UltraLite troubleshooting, 49

connection IDs
glossary definition, 512

connection methods
UltraLite about, 43

connection parameters
alphabetical list (UltraLite), 225
DBN for UltraLite, 234
UltraLite, 43
UltraLite CACHE_SIZE, 226
UltraLite CE_FILE, 227
UltraLite choosing between, 47
UltraLite COMMIT_FLUSH, 229
UltraLite CON, 230
UltraLite connection summary, 48
UltraLite DBF, 231
UltraLite DBKEY, 233
UltraLite file_name, 231
UltraLite key, 233
UltraLite list of, 44
UltraLite MIRROR_FILE, 235
UltraLite NT_FILE, 237
UltraLite overview, 48
UltraLite PALM_ALLOW_BACKUP, 240
UltraLite PALM_FILE, 241
UltraLite password, 243
UltraLite precedence of, 49
UltraLite PWD, 243
UltraLite RESERVE_SIZE , 244
UltraLite START , 245
UltraLite supplying, 45
UltraLite troubleshooting transmission of, 49
UltraLite UID , 246
UltraLite userid , 246

connection profiles
glossary definition, 512

connection strings
UltraLite connection parameters, 225
UltraLite parameters overview, 48
UltraLite setting , 49

connection-initiated synchronization
glossary definition, 512

connections
UltraLite concurrency, 13
UltraLite conn_count property, 213
UltraLite overview, 43
UltraLite troubleshooting, 499

consolidated databases
glossary definition, 512
UltraLite choosing, 126
UltraLite compatibility, 127
UltraLite sample, 104

constants

Index

546 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite SQL syntax, 326
constants in expressions

UltraLite about, 326
constraints

glossary definition, 513
UltraLite ALTER TABLE statement, 454
UltraLite referential integrity, 138
UltraLite renaming, 454

contention
glossary definition, 513

controlling synchronization
UltraLite publications, 137

conventions
command prompts, xv
command shells, xv
documentation, xiv
file names in documentation, xiv

conversion functions
UltraLite alphabetical list, 348

CONVERT function
UltraLite syntax, 366

converting
UltraLite ambiguous dates, 196
UltraLite data types list, 314

converting data types
UltraLite about, 314

converting strings
UltraLite about, 352

copying
UltraLite table method, 77

copying data
UltraLite databases, 77

correlation names
glossary definition, 513

COS function
UltraLite syntax, 369

cosine function
UltraLite COS function, 369

COT function
UltraLite syntax, 369

cotangent function
UltraLite COT function, 369

COUNT function
UltraLite syntax, 370

count operation
UltraLite execution plans, 343

CPU
UltraLite limits, 8

create database wizard
UltraLite usage, 30

CREATE INDEX statement
UltraLite Interactive SQL example, 81
UltraLite syntax, 460
UNIQUE parameter, 460

create index wizard
UltraLite using, 81

CREATE PUBLICATION statement
UltraLite Interactive SQL example, 84
UltraLite Interactive SQL subset example, 85
UltraLite Interactive SQL whole table example, 84
UltraLite syntax, 462
UltraLite usage, 137

create publication wizard
UltraLite rows publishing, 84
UltraLite usage, 83

CREATE SYNCHRONIZATION PROFILE statement
UltraLite syntax, 464

CREATE TABLE statement
UltraLite Interactive SQL example, 71
UltraLite syntax , 468

create table wizard
UltraLite usage, 71

create user wizard
UltraLite usage, 87

creating
reference databases for UltraLite, 31
UltraLite CREATE PUBLICATION statement,
462
UltraLite CREATE TABLE statement, 468
UltraLite databases from a MobiLink sync model,
31
UltraLite databases from the command prompt, 30
UltraLite databases from XML, 32
UltraLite databases overview of methods, 29
UltraLite databases with ulcreate, 255
UltraLite databases with ulinit, 269
UltraLite indexes, 81
UltraLite publications, 137
UltraLite publications tables, 83
UltraLite remote databases, 128
UltraLite table methods, 71
UltraLite users, 87

creating databases
Sybase Central UltraLite plug-in, 30
UltraLite creation parameters, 181
UltraLite remote , 128

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 547

creating publications
UltraLite databases with MobiLink applications,
137

creating remote databases
UltraLite clients, 128

creating UltraLite databases
about, 29

creating UltraLite tables
about, 71

creation parameters (UltraLite)
about, 181
case, 183
checksum_level, 184
collation, 186
date_format, 187
date_order, 190
fips creation parameter, 192
max_hash_size, 194
nearest_century, 196
obfuscate, 198
page_size, 199
precision, 201
scale , 203
time_format, 205
timestamp_format, 207
timestamp_increment, 210
utf8_encoding, 211

creator ID
glossary definition, 513

CROSS JOIN clause
UltraLite syntax, 478

Crossfire
UltraLite support, 24

cryptography
UltraLite Certicom module, 40

CSV files
UltraLite importing, 502

CURRENT DATE
UltraLite special value, 308

current date function
UltraLite TODAY function, 435

current row
UltraLite concurrency, 13

CURRENT TIME
UltraLite special value, 308

CURRENT TIMESTAMP
UltraLite special value, 309
UltraLite special value for, 2

cursor positions
glossary definition, 513

cursor result sets
glossary definition, 513

cursors
glossary definition, 513
UltraLite current row, 13
UltraLite dirty reads, 18

CustDB
UltraLite application readme files, 96
UltraLite building application, 97
UltraLite database synchronization, 102
UltraLite limitations on instances of, 93
UltraLite running application, 97
UltraLite running multiple instances, 93
UltraLite sample , 93
UltraLite sample file locations, 95
UltraLite starting, 99

custdb.db
location of, 95

custdb.sql
calling synchronization scripts, 104

custdb.udb
UltraLite location of, 95

cycles
UltraLite foreign key issues, 138
UltraLite foreign keys, 138

D
data

UltraLite loading, 272
UltraLite selecting rows, 486
UltraLite unloading, 281
UltraLite viewing methods, 76

data consistency
UltraLite dirty reads, 18

data cube
glossary definition, 514

data management
UltraLite components available for, 23
UltraLite description, 10
UltraLite state information, 13

Data Manager
UltraLite database storage, 47

data manipulation language
glossary definition, 514

data sources

Index

548 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite CustDB tutorial example, 102
data type conversion functions

UltraLite about, 348
data types

alphabetical list of UltraLite data types, 312
glossary definition, 514
UltraLite alias equivalents, 314
UltraLite casting of values, 314
UltraLite limitations, 8
UltraLite SQL conversion functions, 348

data types in UltraLite
about, 312

database administrator
glossary definition, 514

database connections
glossary definition, 515

database encryption
UltraLite performance impact of, 120

database engines
UltraLite about, 23

database files
(see also UltraLite databases)
glossary definition, 515
UltraLite connection parameters, 47
UltraLite encrypting, 233
UltraLite maximum size, 8

database management
UltraLite layers of, 10

database names
glossary definition, 515

database objects
glossary definition, 515
UltraLite copying method, 77

database options
(see also database options (UltraLite))
UltraLite, 219

database options (UltraLite)
browsing, 224
commit_flush_count, 220
commit_flush_timeout, 221
DB_PROPERTY function , 380
global_database_id, 222
ml_remote_id, 223
SET OPTION statement, 488

database options window
accessing, 224

database owner
glossary definition, 515

database page size considerations
UltraLite about, 199

database properties
(see also database properties (UltraLite))
UltraLite, 213
UltraLite alphabetical list, 213

database properties (UltraLite)
browsing, 218
creation parameters, 34
fips usage, 40
obfuscate usage, 40
utf8_encoding usage, 37

database schemas
UltraLite system tables, 289

database servers
glossary definition, 515

database sizes
UltraLite limit, 8

database utilities
UltraLite database connections, 49

database validation
UltraLite, 15

databases
(see also UltraLite databases)
comparing UltraLite and SQL Anywhere, 2
creating with UltraLite plug-in, 30
glossary definition, 514
UltraLite loading bulk data into, 481

DATALENGTH function
UltraLite syntax, 371

date considerations
UltraLite about, 187

DATE data type
UltraLite, 312

DATE function
UltraLite syntax, 372

date functions
UltraLite alphabetical list, 348

date parts
about, 349
available in UltraLite, 187

date_format creation parameter
UltraLite description, 187

date_format property
UltraLite description, 213

date_order creation parameter
UltraLite description, 190

date_order property

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 549

UltraLite description, 213
DATEADD function

UltraLite syntax, 372
DATEDIFF function

UltraLite syntax, 373
DATEFORMAT function

UltraLite syntax, 375
DATENAME function

UltraLite syntax, 375
DATEPART function

UltraLite syntax, 376
dates

UltraLite ambiguous string conversions , 196
UltraLite conversion functions, 348
UltraLite date_format property, 213
UltraLite date_order property, 213
UltraLite formatting, 187
UltraLite ordering, 190
UltraLite rollover point, 196

datetime
UltraLite conversion functions, 348

DATETIME function
UltraLite syntax, 377

DAY function
UltraLite syntax, 377

day of week
UltraLite DOW function, 382

DAYNAME function
UltraLite syntax, 378

DAYS function
UltraLite syntax, 379

DB_PROPERTY function
UltraLite syntax, 380

DBA authority
glossary definition, 515

DBF connection parameter
UltraLite syntax, 231

dbhsync11.dll
HotSync conduit in UltraLite, 146

dbisql utility
UltraLite exit codes, 251
UltraLite syntax, 249
UltraLite troubleshooting data imports, 502

dbisql.exe
shutting down before installing, 499

DBKEY connection parameter
UltraLite syntax, 233

dblgen11.dll

ActiveSync conduit deployment in UltraLite, 64
HotSync conduit deployment in UltraLite, 146

dbmlhttp11.dll
deploying UltraLite applications, 146

dbmlhttps11.dll
deploying UltraLite applications, 146

dbmlsock11.dll
deploying UltraLite applications, 146

dbmltls11.dll
deploying UltraLite applications, 146

DBMS
glossary definition, 515

DBN connection parameter
UltraLite syntax, 234

dbser11.dll
deploying UltraLite applications, 146

dbspaces
glossary definition, 516

DCX
about, xii

DDL
glossary definition, 514

DDL statements
UltraLite schema changes with, 11

deadlocks
glossary definition, 516
UltraLite prevention of, 16

DECIMAL data type
UltraLite, 312

decimal point position considerations
UltraLite precision, 201
UltraLite scale creation parameter, 203

decimal precision
UltraLite precision, 201

decimals
used in UltraLite, 306

declaring default global autoincrement columns
UltraLite clients in MobiLink systems, 131

DEFAULT TIMESTAMP columns
UltraLite syntax, 468

default values
UltraLite CURRENT DATE, 308
UltraLite CURRENT TIME, 308
UltraLite CURRENT TIMESTAMP, 309
UltraLite SQLCODE, 309

defaults
UltraLite autoincrement, 468

DEFAULTS clause

Index

550 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite LOAD TABLE statement, 482
DEGREES function

syntax, 381
delaying commits

performance enhancements, 119
DELETE statement

UltraLite dynamic SQL syntax, 473
deleting

UltraLite columns, 454
UltraLite databases, 14
UltraLite indexes, 82
UltraLite publications, 85
UltraLite START SYNCHRONIZATION DELETE
statement, 489
UltraLite table methods, 75
UltraLite TRUNCATE TABLE statement, 493
UltraLite users, 88
UltraLite utility to delete databases, 258

deleting data
UltraLite file size impact of, 501

deleting UltraLite users
about, 88

deleting users
UltraLite, 88

DELIMITED BY clause
UltraLite LOAD TABLE statement, 482

demos
(see also tutorials)

deploying
applications that use ActiveSync for UltraLite
clients, 150
HotSync conduit files, 146
UltraLite ActiveSync provider files, 64
UltraLite engine troubleshooting, 505
UltraLite FIPS-enabled applications, 192
UltraLite schema upgrades, 67
UltraLite to devices, 55

derived tables
subqueries for UltraLite SQL, 329
UltraLite FROM clause, 478
UltraLite SQL, 329

designing
UltraLite implementation , 21

Designing synchronization in UltraLite
about, 133

desktop creation
UltraLite about, 30

developer community

newsgroups, xvii
development platforms

UltraLite support for, 24
device tracking

glossary definition, 516
devices

UltraLite deployment techniques, 55
UltraLite multiple connection parameters for, 47

DIFFERENCE function
UltraLite syntax, 381

digits
UltraLite maximum number, 201

direct page scans
UltraLite about, 117

direct row handling
glossary definition, 516

dirty reads
UltraLite isolation levels, 18

disable concurrency
UltraLite synchronization parameter overview, 13

DisableConcurrency
UltraLite synchronization parameter, 155

DISTINCT keyword
UltraLite SQL, 486

distinct operation
UltraLite execution plans, 343

DML
glossary definition, 514

DocCommentXchange (DCX)
about, xii

documentation
conventions, xiv
SQL Anywhere, xii

domains
glossary definition, 516

DOUBLE data type
UltraLite, 312

double hyphen
UltraLite comment indicator, 305

double slash
UltraLite comment indicator, 305

DOW function
UltraLite syntax, 382

download acknowledgements
UltraLite send_download_ack synchronization
parameter, 169

download only
UltraLite synchronization parameter, 159

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 551

download only synchronization
UltraLite download_only synchronization
parameter , 159

download-only synchronization
UltraLite defining overview, 139
UltraLite synchronization parameter, 159

download_only synchronization parameter
UltraLite reference, 159

downloads
glossary definition, 516

DROP INDEX statement
UltraLite Interactive SQL example, 82
UltraLite syntax, 474

DROP PUBLICATION statement
UltraLite Interactive SQL example, 86
UltraLite syntax, 475

DROP SYNCHRONIZATION PROFILE statement
UltraLite syntax, 476

DROP TABLE statement
UltraLite Interactive SQL example, 75
UltraLite syntax, 477

dropping
UltraLite columns, 454
UltraLite DROP SYNCHRONIZATION PROFILE
statement, 476
UltraLite indexes, 82
UltraLite SQL CREATE INDEX statement, 460
UltraLite SQL DROP INDEX statement, 474
UltraLite SQL DROP PUBLICATION statement,
475
UltraLite SQL DROP TABLE statement, 477
UltraLite table methods, 75

dropping an index
UltraLite about, 82

dropping publications
UltraLite clients, 85

dropping UltraLite tables
about, 75

dummy operation
UltraLite execution plans, 343

dynamic SQL
arithmetic operators for UltraLite, 338
bitwise operators for UltraLite, 339
glossary definition, 516
logical operators for UltraLite, 333
operator precedence for UltraLite, 340
string operators for UltraLite, 339

E
EBFs

glossary definition, 516
editing

UltraLite table methods, 76
ELSE

CASE expression for UltraLite, 327
UltraLite IF expressions, 327

embedded SQL
glossary definition, 517
NULL values in UltraLite, 307

eMbedded Visual C++
UltraLite CustDB sample and readme files, 97

empty databases
UltraLite populating after running ulinit, 270

encoding
glossary definition, 517
UltraLite utf8_encoding creation parameter, 211
UltraLite utf8_encoding usage, 37

ENCODING clause
UltraLite LOAD TABLE statement, 482

encryption
UltraLite changing key, 192
UltraLite data deployment considerations, 59
UltraLite deployment steps, 59
UltraLite encryption keys, 233
UltraLite encryption property, 213
UltraLite fips creation parameter, 192
UltraLite fips property usage, 40
UltraLite fips usage, 40
UltraLite obfuscate creation parameter, 198
UltraLite obfuscate property usage, 40
UltraLite performance impact of, 120
UltraLite synchronization deployment
considerations, 60
UltraLite TLS synchronization configuration, 60

encryption keys
UltraLite changing, 192

encryption property
UltraLite description, 213

END
CASE expression for UltraLite, 327

ENDIF
UltraLite IF expressions , 327

engines
(see also UltraLite engine)

entity-relationship diagrams

Index

552 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite about, 78
entity-relationship tab

UltraLite using, 78
environment variables

command prompts, xv
command shells, xv
ERRORLEVEL for UltraLite, 251
UltraLite ULSQLCONNECT, 53
UltraLite usage, 49

ER diagram tab
UltraLite about, 78

erasing
UltraLite table methods, 75

error callback
UltraLite schema upgrade errors, 68

error codes
UltraLite database creation [ulcreate] utility, 248
UltraLite database synchronization [ulsync] utility,
248
UltraLite load XML to database [ulload] utility,
248
UltraLite unload data to XML [ulunload] utility,
248
UltraLite utilities, 248

ERRORLEVEL environment variable
Interactive SQL return code for UltraLite, 251

errors
UltraLite client error -764, 505
UltraLite SQLE_DATABASE_ERROR, 500
UltraLite SQLE_DEVICE_ERROR, 500
UltraLite SQLE_MEMORY_ERROR, 500

escape sequences
UltraLite engine paths, 505

ESCAPES clause
UltraLite LOAD TABLE statement, 482

ESQL (see embedded SQL) (see UltraLite SQL)
event model

glossary definition, 517
event notifications

UltraLite working with, 89
examples

(see also samples)
(see also tutorials)

exclusive OR
bitwise operator for UltraLite, 339

execution plans
UltraLite checking for index usage, 110
UltraLite how to read, 343

UltraLite operations, 343
UltraLite overriding, 342
UltraLite text of, 342
UltraLite working with, 342

EXISTS conditions
UltraLite SQL, 336

exit codes
Interactive SQL [dbisql] utility for UltraLite, 251
UltraLite database creation [ulcreate] utility, 248
UltraLite database synchronization [ulsync] utility,
248
UltraLite load XML to database [ulload] utility,
248
UltraLite unload data to XML [ulunload] utility,
248

EXP function
UltraLite syntax, 383

expansion cards
UltraLite writing to, 47

EXPLANATION function
UltraLite syntax, 383

exponential function
UltraLite EXP function, 383

exponents
in UltraLite, 306

export tools
UltraLite ulunload utility, 281

exporting
UltraLite databases with ulunload, 281

expressions
aggregate for UltraLite, 328
CASE expressions for UltraLite, 327
SQL operator precedence for UltraLite, 340
subqueries for UltraLite SQL, 329
UltraLite column names, 326
UltraLite constants, 326
UltraLite IF expressions, 327
UltraLite input parameters, 330
UltraLite SQL, 325

expressions in UltraLite
about, 325

extensions
UltraLite disallowed, 258

external logins
glossary definition, 517

extraction
glossary definition, 517

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 553

F
failover

glossary definition, 517
failures

UltraLite preventing out-of-memory errors, 244
UltraLite schema upgrade errors, 68

features
UltraLite comparison list, 2

Federal Information Processing Standards (see FIPS)
feedback

documentation, xvii
providing, xvii
reporting an error, xvii
requesting an update, xvii

fetches
UltraLite, 18

fetching rows
UltraLite concurrency, 18

FILE
glossary definition, 517

FILE message type
glossary definition, 517

file names
UltraLite connection parameters, 47

file objects
UltraLite types, 11

file property
UltraLite description, 213

file size
UltraLite database troubleshooting, 501

file systems
(see also VFS)

file-based downloads
glossary definition, 518

file-definition database
glossary definition, 518

files
HotSync conduit, 146
transferring with MLFileTransfer, 142
UltraLite ActiveSync provider, 64
UltraLite CustDB sample location, 95

filter operation
UltraLite execution plans, 343

filtering
UltraLite table methods, 77

filters
UltraLite filenames, 258

finding out more and requesting technical assistance
technical support, xvii

FIPS
UltraLite encrypted database deployment, 59
UltraLite fips property usage, 40
UltraLite setup and deployment, 192
UltraLite TLS-enabled synchronization, 60

FIPS creation parameter
UltraLite description, 192

fips database property
UltraLite deployment steps, 59
UltraLite usage, 40

fips network protocol option
UltraLite TLS-enabled synchronization, 60

FIRST clause
UltraLite SELECT statement, 486

FLOAT data type
UltraLite, 312

FLOOR function
UltraLite syntax, 384

flush count
UltraLite formatting, 220

flush timeout
UltraLite formatting, 221

flushing
UltraLite databases, 220

footprint
UltraLite databases, 2

FOR clause
UltraLite SELECT statement, 487

FOR READ ONLY clause
UltraLite direct page scans with, 117

FORCE ORDER clause
UltraLite SELECT statement, 487

foreign key constraints
glossary definition, 518

foreign key cycles
UltraLite about, 138
UltraLite issues, 138

foreign keys
glossary definition, 518
UltraLite characteristics, 108
UltraLite copying method, 77
UltraLite foreign keys, 468
UltraLite of unnamed, 468

foreign tables
glossary definition, 518

FORMAT clause

Index

554 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite LOAD TABLE statement, 482
format options (UltraLite)

utf8_encoding usage, 37
FROM clause

UltraLite LOAD TABLE statement, 481
UltraLite SELECT statement, 486
UltraLite syntax, 478

full backups
glossary definition, 518

function syntax
alphabetical list of UltraLite functions A-D, 354
alphabetical list of UltraLite functions E-O, 383
alphabetical list of UltraLite functions P-Z, 411

functions
alphabetical list of UltraLite functions A-D, 354
alphabetical list of UltraLite functions E-O, 383
alphabetical list of UltraLite functions P-Z, 411
return NULL if you specify NULL argument, 347
types of function for UltraLite, 348
UltraLite aggregate, 348
UltraLite data type conversion SQL, 348
UltraLite date and time, 348
UltraLite introduction, 347
UltraLite miscellaneous, 350
UltraLite numeric, 351
UltraLite string, 352
UltraLite system SQL, 353

functions, aggregate
about, 348
UltraLite AVG, 359
UltraLite COUNT, 370
UltraLite LIST, 395
UltraLite MAX, 400
UltraLite MIN, 401
UltraLite SUM, 432

functions, data type conversion
UltraLite about, 348
UltraLite CAST, 361
UltraLite CONVERT, 366
UltraLite HEXTOINT, 386
UltraLite INTTOHEX, 390
UltraLite ISDATE, 391
UltraLite ISNULL, 392

functions, date and time
UltraLite about, 348
UltraLite DATE, 372
UltraLite DATEADD, 372
UltraLite DATEDIFF, 373

UltraLite DATEFORMAT, 375
UltraLite DATENAME, 375
UltraLite DATEPART, 376
UltraLite DATETIME, 377
UltraLite DAY, 377
UltraLite DAYNAME, 378
UltraLite DAYS, 379
UltraLite DOW, 382
UltraLite GETDATE, 385
UltraLite HOUR, 387
UltraLite HOURS, 388
UltraLite MINUTE, 401
UltraLite MINUTES, 402
UltraLite MONTH, 405
UltraLite MONTHNAME, 406
UltraLite MONTHS, 406
UltraLite NOW, 408
UltraLite QUARTER, 413
UltraLite SECOND, 420
UltraLite SECONDS, 421
UltraLite TODAY, 435
UltraLite WEEKS, 442
UltraLite YEAR, 444
UltraLite YEARS, 444
UltraLite YMD, 445

functions, miscellaneous
UltraLite about, 350
UltraLite ARGN, 355
UltraLite COALESCE, 366
UltraLite EXPLANATION, 383
UltraLite GREATER, 385
UltraLite IFNULL, 389
UltraLite LESSER, 395
UltraLite NEWID, 407
UltraLite NULLIF, 409
UltraLite SHORT_PLAN, 422

functions, numeric
DEGREES, 381
UltraLite about, 351
UltraLite ABS, 354
UltraLite ACOS, 354
UltraLite ASIN, 357
UltraLite ATAN, 357
UltraLite ATAN2, 358
UltraLite CEILING, 362
UltraLite COS, 369
UltraLite COT, 369
UltraLite EXP, 383

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 555

UltraLite FLOOR, 384
UltraLite LOG, 397
UltraLite LOG10, 398
UltraLite MOD, 404
UltraLite PI, 412
UltraLite POWER, 412
UltraLite RADIANS, 414
UltraLite REMAINDER, 414
UltraLite ROUND, 419
UltraLite SIGN, 423
UltraLite SIN, 424
UltraLite SQRT, 427
UltraLite TAN, 435
UltraLite TRUNCNUM, 437

functions, string
UltraLite about, 352
UltraLite ASCII, 356
UltraLite BYTE_LENGTH, 360
UltraLite BYTE_SUBSTR, 360
UltraLite CHAR, 363
UltraLite CHAR_LENGTH, 365
UltraLite CHARINDEX, 364
UltraLite DIFFERENCE, 381
UltraLite INSERTSTR, 390
UltraLite LCASE, 392
UltraLite LEFT, 393
UltraLite LENGTH, 394
UltraLite LOCATE, 396
UltraLite LOWER, 398
UltraLite LTRIM, 399
UltraLite PATINDEX, 411
UltraLite REPEAT, 415
UltraLite REPLACE, 416
UltraLite REPLICATE, 417
UltraLite RIGHT, 418
UltraLite RTRIM, 419
UltraLite SIMILAR, 424
UltraLite SOUNDEX, 425
UltraLite SPACE, 426
UltraLite STR, 427
UltraLite STRING, 428
UltraLite STRTOUUID, 429
UltraLite STUFF, 430
UltraLite SUBSTRING, 430
UltraLite TRIM, 436
UltraLite UCASE, 438
UltraLite UPPER, 439
UltraLite UUIDTOSTR, 441

functions, system
DB_PROPERTY, 380
ML_GET_SERVER_NOTIFICATION, 403
SUSER_ID, 433
SUSER_NAME, 433
SYNC_PROFILE_OPTION_VALUE, 434
TSEQUAL, 437
UltraLite DATALENGTH, 371
USER_ID, 440
USER_NAME, 441

fundamentals
UltraLite database management, 13

G
gateways

glossary definition, 518
generated join conditions

glossary definition, 519
generation numbers

glossary definition, 519
GETDATE function

UltraLite syntax, 385
GetLastIdentity method

UltraLite synchronization, 131
getScriptVersion method

UltraLite example, 176
getStream method

UltraLite example, 171
getting help

technical support, xvii
getUploadOK method

UltraLite example, 173
global autoincrement

exhausted range in UltraLite, 129
UltraLite clients in MobiLink systems , 129
UltraLite global_database_id, 222
UltraLite, setting, 129
UltraLite, setting defaults, 131

global database ID considerations
UltraLite about, 222

global database identifier
UltraLite global_database_id, 222
UltraLite, setting, 129

global temporary tables
glossary definition, 519

global_database_id option
UltraLite, 222

Index

556 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite CREATE TABLE statement, 468
UltraLite, setting, 129

global_database_id property
UltraLite description, 213

globally unique identifiers
UltraLite clients in MobiLink systems, 129
UltraLite SQL syntax for NEWID function, 407

glossary
list of SQL Anywhere terminology, 509

grant options
glossary definition, 519

graphical plans
UltraLite not supported, 342

GREATER function
UltraLite syntax, 385

GROUP BY clause
UltraLite SELECT statement, 486

group-by operation
UltraLite execution plans, 343

GUIDs
UltraLite clients in MobiLink systems, 129
UltraLite SQL syntax for NEWID function, 407
UltraLite SQL syntax for STRTOUUID function,
429
UltraLite SQL syntax for UUIDTOSTR function,
441

H
hash

glossary definition, 519
UltraLite configuring size for, 116
UltraLite max_hash_size property, 213
UltraLite optimal size for, 113
UltraLite size considerations, 194

hashing
UltraLite indexes, 194

help
technical support, xvii

hexadecimal strings
UltraLite about, 386

HEXTOINT function
UltraLite syntax, 386

histograms
glossary definition, 519

host name
UltraLite ULSynchronize arguments, 172

host platforms

UltraLite Windows supported platforms, 24
HotSync

deploying conduit files, 146
HotSync conduit

installing, 263
installing for CustDB, 263

HotSync configuration overview
UltraLite clients, 62

HotSync synchronization
configuring, 148
UltraLite architecture , 146
UltraLite clients, 147
UltraLite Palm OS , 62

HOUR function
UltraLite syntax, 387

HOURS function
UltraLite syntax, 388

I
iAnywhere developer community

newsgroups, xvii
iAnywhere JDBC driver

glossary definition, 520
icons

used in this Help, xvi
identifiers

glossary definition, 520
UltraLite SQL, 303

IDs
ml_remote_id option, 223
UltraLite global database, 222
UltraLite user, 51

IF expressions
UltraLite SQL syntax, 327

IFNULL function
UltraLite syntax, 389

ignored rows
UltraLite synchronization parameter, 160

ignored_rows synchronization parameter
UltraLite reference, 160

importing data
UltraLite troubleshooting, 502

importing data into databases
UltraLite ulload utility, 272

IN conditions
UltraLite SQL, 337

in-process runtime

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 557

UltraLite about, 23
incremental backups

glossary definition, 520
index performance considerations

UltraLite about, 194
index scans

UltraLite, 108
index-based UltraLite optimizations

UltraLite about, 108
index-scan operation

UltraLite execution plans, 343
INDEX_COL function

syntax, 353
indexes

glossary definition, 520
UltraLite bypassing use of, 117
UltraLite copying method, 77
UltraLite creating, 81
UltraLite deleting, 82
UltraLite determining which index is scanned, 110
UltraLite hash considerations, 194
UltraLite hash value, 194
UltraLite introduction of, 108
UltraLite limitations, 8
UltraLite non-unique index characteristics, 80
UltraLite page_size usage, 199
UltraLite performance enhancements, 111
UltraLite primary keys, 32
UltraLite sysindex system table, 293
UltraLite sysixcol system table, 295
UltraLite types, 80
UltraLite unique index characteristics, 80
UltraLite unique key characteristics, 80
UltraLite UNIQUE SQL parameter, 460
UltraLite when to create, 81
UltraLite when to use, 79
UltraLite working with, 79

indicators
UltraLite comments in SQL block, 305

InfoMaker
glossary definition, 520

initializing
UltraLite databases with ulinit, 269

initializing databases
Sybase Central UltraLite plug-in, 30

INNER JOIN clause
UltraLite syntax, 478

inner joins

glossary definition, 520
inner references

subqueries for UltraLite SQL, 329
input parameters

UltraLite about, 330
INPUT statement

UltraLite troubleshooting, 502
INSERT statement

UltraLite Interactive SQL example, 77
UltraLite syntax, 480

inserting
UltraLite data using LOAD TABLE statement, 481
UltraLite INSERT statement, 480
UltraLite rows in bulk, 481

INSERTSTR function
UltraLite syntax, 390

install-dir
documentation usage, xiv

installation
UltraLite troubleshooting, 499

installing
UltraLite on devices, 55

INTEGER data type
UltraLite, 312

integrated logins
glossary definition, 520

integrity
glossary definition, 521
UltraLite CREATE TABLE statement, 468

integrity constraints
UltraLite usage, 468

Interactive SQL
alphabetical list of UltraLite functions A-D, 354
alphabetical list of UltraLite functions E-O, 383
alphabetical list of UltraLite functions P-Z, 411
glossary definition, 521
UltraLite command line, 249
UltraLite displaying plans, 342
UltraLite plan interpretation, 343
UltraLite plan operations, 343
UltraLite text plans, 342
UltraLite troubleshooting data imports, 502

Interactive SQL utility [dbisql]
UltraLite exit codes, 251
UltraLite syntax, 249

INTTOHEX function
UltraLite syntax, 390

IS

Index

558 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

logical operators for UltraLite, 333
ISDATE function

UltraLite syntax, 391
ISNULL function

UltraLite syntax, 392
isolation levels

glossary definition, 521
UltraLite about, 18
UltraLite dirty reads, 18
UltraLite isolation levels, 18

J
JAR files

glossary definition, 521
Java classes

glossary definition, 521
jConnect

glossary definition, 521
JDBC

glossary definition, 521
join conditions

glossary definition, 522
join operation

UltraLite execution plans, 343
join types

glossary definition, 522
joins

glossary definition, 522
UltraLite FROM clause syntax, 478

K
keep partial download synchronization parameter

UltraLite reference , 161
key connection parameter

UltraLite syntax, 233
KEY JOIN clause

UltraLite syntax, 478
key joins

glossary definition, 519
keys

registry for ulcond11 cache size, 263
UltraLite index creation from, 80
UltraLite index hash, 194
UltraLite primary, 71

keyset operation
UltraLite execution plans, 343

keywords

UltraLite SQL, 302

L
LCASE function

UltraLite syntax, 392
LEFT function

UltraLite syntax, 393
LEFT OUTER JOIN clause

UltraLite syntax, 478
LENGTH function

UltraLite syntax, 394
LESSER function

UltraLite syntax, 395
libraries

UltraLite choices, 24
UltraLite deploying uleng to Windows Mobile, 57
UltraLite FIPS-enabled applications, 192

like-scan operation
UltraLite execution plans, 343

limitations
UltraLite, 8
UltraLite data types, 312

limits
UltraLite, 8

line length
UltraLite sqlpp utility output, 252

linking
UltraLite engine libraries, 23
UltraLite runtime libraries, 23

LIST function
UltraLite syntax, 395

Listeners
glossary definition, 522

lists
UltraLite LIST function syntax, 395

literals
UltraLite constants, 326

LOAD TABLE statement
UltraLite syntax, 481

loading
UltraLite bulk inserts, 481
UltraLite LOAD TABLE statement, 481

loading data
UltraLite LOAD TABLE statement, 481

loading databases
UltraLite databases with ulload, 272

local temporary tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 559

glossary definition, 522
LOCATE function

UltraLite syntax, 396
locking

UltraLite concurrency, 16
locks

glossary definition, 523
log files

glossary definition, 523
UltraLite Palm synchronization, 148

LOG function
UltraLite syntax, 397

LOG10 function
UltraLite syntax, 398

logging
UltraLite internal mechanism, 15

logic
UltraLite capturing for synchronization design, 133

logical indexes
glossary definition, 523

logical operators
UltraLite SQL syntax, 333

lojoin operation
UltraLite execution plans, 343

LONG BINARY data type
UltraLite, 312

LONG VARCHAR data type
UltraLite, 312

LOWER function
UltraLite syntax, 398

lowercase strings
UltraLite LCASE function, 392
UltraLite LOWER function, 398

LTM
glossary definition, 523

LTRIM function
UltraLite syntax, 399

M
maintaining

UltraLite on devices, 55
maintaining primary key uniqueness

UltraLite clients in MobiLink systems, 129
maintenance releases

glossary definition, 523
management tools

UltraLite utilities reference, 247

managing databases
UltraLite data and state, 13

managing temporary tables
UltraLite about, 117

managing transactions
UltraLite increased throughput, 119

materialized views
glossary definition, 523

mathematical expressions
arithmetic operators for UltraLite, 338

MAX function
UltraLite syntax, 400

max_hash_size creation parameter
UltraLite description, 194

max_hash_size property
UltraLite description, 213

maximum
UltraLite date ranges, 312
UltraLite physical limits, 8

mechanism
UltraLite application and database deployment, 55

media failures
UltraLite transaction overview , 16

memory
UltraLite limits, 8

memory failures
UltraLite preventing, 244

memory usage
UltraLite database storage, 47
UltraLite indexes, 108
UltraLite row states, 14

message log
glossary definition, 524

message stores
glossary definition, 524

message systems
glossary definition, 524

message types
glossary definition, 524

metadata
glossary definition, 524
UltraLite considering for reserve size, 244

MIN function
UltraLite syntax, 401

minimum
UltraLite date ranges, 312

MINUTE function
UltraLite syntax, 401

Index

560 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MINUTES function
UltraLite syntax, 402

mirror logs
glossary definition, 524

MIRROR_FILE connection parameter
UltraLite syntax , 235

ml_add_connection_script system procedure
adding, 104

ml_add_table_script system procedure
adding, 104

ML_GET_SERVER_NOTIFICATION
syntax, 403

ml_remote_id
UltraLite property configuration, 265
UltraLite setting value, 223

ml_remote_id option
UltraLite, 223

ml_remote_id property
UltraLite description, 213

mlasdesk.dll
deploying UltraLite applications, 64

mlasdev.dll
deploying UltraLite applications, 64

mlasinst utility
UltraLite deploying with DLL files, 64

mlcecc11.dll
deploying UltraLite applications, 146

mlcrsa11.dll
deploying UltraLite applications, 146

mlcrsafips11.dll
deploying UltraLite applications, 146

mlczlib11.dll
deploying UltraLite applications, 146

MobiLink
glossary definition, 525
UltraLite clients, 125
UltraLite CREATE PUBLICATION statement,
462
UltraLite SQL statements, 448
UltraLite user ID uniqueness, 223

MobiLink clients
glossary definition, 525
UltraLite progress counter, 126

MobiLink file transfers
UltraLite client overview of, 142

MobiLink Monitor
glossary definition, 525

MobiLink server

glossary definition, 525
UltraLite HotSync, 62

MobiLink synchronization
setting timestamp_increment creation parameter,
210
UltraLite clients, 125

MobiLink system tables
glossary definition, 525

MobiLink users
glossary definition, 525

MOD function
UltraLite syntax, 404

modeling
UltraLite databases from MobiLink, 31

modifying
UltraLite columns, 454
UltraLite tables, 454

MONEY data type
UltraLite equivalent, 314

monitoring synchronization
UltraLite observer synchronization parameter, 163
UltraLite setObserver method, 163

MONTH function
UltraLite syntax, 405

MONTHNAME function
UltraLite syntax, 406

MONTHS function
UltraLite syntax, 406

multi-process access
UltraLite engine, 23

multi-table joins
UltraLite databases, 2

multi-threaded
UltraLite applications, 13

multi-threaded applications
UltraLite about , 23

multiple databases
UltraLite maximum of, 13

multiple devices
UltraLite connection parameters for, 47

N
name property

UltraLite description, 213
names

UltraLite column names, 326
NATURAL JOIN clause

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 561

UltraLite syntax, 478
natural joins

glossary definition, 519
nearest century conversion considerations

UltraLite about, 196
nearest_century creation parameter

UltraLite description, 196
nearest_century property

UltraLite description, 213
network protocols

glossary definition, 525
UltraLite supported, 22
UltraLite Sync Result synchronization parameter,
173
UltraLite synchronization using HTTP, 171
UltraLite synchronization using HTTPS, 171
UltraLite synchronization using TCP/IP, 171

network server
glossary definition, 525

new password
UltraLite synchronization parameter, 162

new-database-ulcreatefile
UltraLite database creation [ulcreate] utility, 255

NEWID function
UltraLite syntax, 407

newmobilinkpwd synchronization parameter
UltraLite reference, 162

newsgroups
technical support, xvii

Non-repeatable reads
UltraLite about, 18

non-unique indexes
UltraLite characteristics, 108
UltraLite index creation from, 80

normalization
glossary definition, 525

nosync tables
UltraLite non-synchronizing tables , 136
UltraLite overview, 72

NOT
bitwise operator for UltraLite, 339
logical operators for UltraLite, 333

Notifiers
glossary definition, 526

NOW function
UltraLite syntax, 408

NT_FILE connection parameter
UltraLite syntax , 237

NULL
UltraLite ISNULL function, 392

NULL values
UltraLite SQL, 307

NULLIF function
UltraLite about, 409
using with CASE expressions in UltraLite, 328

NULLs
returned by functions if a NULL argument is
specified, 347

number of authentication parameters
UltraLite synchronization parameter, 162

numbers
UltraLite SQL, 306

NUMERIC data type
UltraLite, 312

numeric functions
UltraLite alphabetical list, 351

numeric precision
UltraLite precision, 201

O
obfuscate database creation parameter

UltraLite description, 198
obfuscate database property

UltraLite usage, 40
obfuscation

UltraLite performance impact of, 120
UltraLite usage, 40

object trees
glossary definition, 526

OBJECT_ID function
syntax, 353

OBJECT_NAME function
syntax, 353

observer synchronization parameter
UltraLite description, 163

ODBC
glossary definition, 526

ODBC Administrator
glossary definition, 526

ODBC data sources
glossary definition, 526

on-device creation
about, 33

online books
PDF, xii

Index

562 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

operating systems
UltraLite Windows supported platforms, 24

operator precedence
UltraLite SQL syntax, 340

operators
arithmetic operators for UltraLite, 338
bitwise operators for UltraLite, 339
comparison operators for UltraLite, 332
logical operators for UltraLite, 333
precedence of operators for UltraLite, 340
string operators for UltraLite, 339
UltraLite SQL syntax, 338

optimization
UltraLite checkpoints, 119
UltraLite execution plan access options, 110
UltraLite indexes, 113
UltraLite queries, 487
UltraLite SQL, 342

optimizer
(see also query optimizer)
UltraLite execution plan access options, 110
UltraLite impact of, 342
UltraLite overriding, 342
UltraLite plan interpretation, 343
UltraLite plan operations, 343
UltraLite using, 342

optimizing UltraLite
query performance, 107

options
UltraLite browsing, 224

options (UltraLite)
commit_flush_count, 220
commit_flush_timeout, 221
DB_PROPERTY function, 380
global_database_id, 222
ml_remote_id, 223
SET OPTION statement, 488

OR
bitwise operators for UltraLite, 339
logical operators for UltraLite, 333

Oracle consolidated databases
UltraLite issues with, 127

ORDER BY clause
UltraLite SELECT statement, 487
UltraLite troubleshooting with, 504

order of operations
SQL operator precedence for UltraLite, 340

ORDERED_TABLE_SCAN connection parameter
(deprecated)

UltraLite syntax, 239
ordering query results

UltraLite about, 117
ordering result sets

UltraLite troubleshooting, 504
outer joins

glossary definition, 526
outer references

subqueries for UltraLite SQL, 329
overhead

UltraLite considering for reserve size, 244

P
packages

glossary definition, 526
packed rows

UltraLite about, 70
packing rows

UltraLite effect of, 199
page sizes

UltraLite page_size property, 213
page_size creation database property

UltraLite optimization for early Palm OS, 121
page_size creation parameter

UltraLite description, 199
page_size property

UltraLite description, 213
pages

UltraLite size considerations, 199
Palm Computing Platform

(see also Palm OS)
Palm data management utility

syntax, 258
Palm HotSync Conduit installer utility

syntax, 263
Palm OS

configuring UltraLite for early versions of, 121
expansion cards, using, 47
UltraLite application development for MobiLink,
146
UltraLite character sets, 37
UltraLite CustDB sample and readme files, 97
UltraLite data management utility for, 258
UltraLite databases, 47
UltraLite HotSync , 62

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 563

UltraLite HotSync deployment, 62
UltraLite PDB records, 47
UltraLite publication restrictions, 137
UltraLite VFS databases, 47
UltraLite VFS deployment, 256

PALM_ALLOW_BACKUP connection parameter
UltraLite syntax, 240

PALM_FILE connection parameter
UltraLite syntax , 241

parameters
UltraLite connection list, 44
UltraLite connection overview, 48
UltraLite database creation, 181
UltraLite SQL input, 330

parse trees
glossary definition, 526

partial download retained synchronization parameter
UltraLite reference, 163

partition sizes
UltraLite defaults, choosing, 129
UltraLite defaults, overriding, 131
UltraLite exhausting defaults, 129

partitioning
UltraLite primary keys, 129
UltraLite rows publishing, 84

passthrough mode
UltraLite, 92

password
UltraLite synchronization parameter, 164

Password connection parameter
UltraLite syntax, 243

passwords
PWD UltraLite connection parameter, 243
UltraLite adding new, 51
UltraLite changing, 87
UltraLite considerations, 87
UltraLite databases, 51
UltraLite defaults, 87
UltraLite new mobilink password parameter, 162
UltraLite password synchronization parameter, 164
UltraLite semantics, 51

paths
UltraLite connection parameters, 47
UltraLite engine, 498

PATINDEX function
UltraLite syntax, 411

pattern matching
UltraLite PATINDEX function, 411

PDB
(see also UltraLite databases and Palm OS)
glossary definition, 526
UltraLite databases, 47

PDF
documentation, xii

performance
separating commits from checkpoints, 119
UltraLite CACHE_SIZE connection parameter,
226
UltraLite choosing optimal hash size, 113
UltraLite download-only synchronization, 159
UltraLite index hashing, 194
UltraLite page sizes, 199
UltraLite preventing memory failures, 244
UltraLite query optimization, 487
UltraLite query optimization techniques, 107
UltraLite query tuning with index hashing, 111
UltraLite specifying FOR READ ONLY clause,
342
UltraLite ulcond11 cache, 263
UltraLite upload only synchronization, 174
UltraLite using index, 79
UltraLite using index for applications, 32
UltraLite using index for improving query
performance, 460
UltraLite using index for large tables, 79
UltraLite viewing an execution plan, 342

performance statistics
glossary definition, 527

persistent memory
UltraLite database storage, 47

personal server
glossary definition, 527

phantom rows
UltraLite, 18

physical indexes
glossary definition, 527

physical limitations
UltraLite, 8

PI function
UltraLite syntax, 412

ping
UltraLite synchronization parameter, 165

placeholder
UltraLite SQL input parameter, 330

planning
UltraLite synchronization design overview, 133

Index

564 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

plans
UltraLite cursors, 383
UltraLite operations for, 343
UltraLite plan interpretation, 343
UltraLite plan operations, 343
UltraLite queries, overriding, 342
UltraLite queries, reading, 343
UltraLite queries, working with, 342
UltraLite syntax, 383
UltraLite text plans, 342

platforms
UltraLite file storage, 47
UltraLite multiple connection parameters for, 47

plug-in modules
glossary definition, 527

plug-ins
UltraLite troubleshooting, 499

policies
glossary definition, 527

polling
glossary definition, 527

pools
UltraLite unused Global IDs, 129

populating
UltraLite databases created with ulinit, 270

port number
UltraLite ULSynchronize arguments, 172

POWER function
UltraLite syntax, 412

PowerDesigner
glossary definition, 527

PowerJ
glossary definition, 527

precedence
SQL operator precedence for UltraLite, 340

precision creation parameter
UltraLite description, 201

precision property
UltraLite description, 213

predicates
ALL for UltraLite SQL, 334
ANY for UltraLite SQL, 335
BETWEEN for UltraLite SQL, 336
comparison operators for UltraLite, 332
EXISTS for UltraLite SQL, 336
glossary definition, 527
IN for UltraLite SQL, 337
UltraLite SQL, 331

prefix
UltraLite for Windows Mobile databases , 47

prepared statements
UltraLite input parameters, 330

primary key constraints
glossary definition, 528

primary key indexes
UltraLite bypassing use of, 117
UltraLite using, 117

primary keys
glossary definition, 528
UltraLite characteristics, 108
UltraLite generating unique values, 407
UltraLite generating unique values using UUIDs,
407
UltraLite indexing, 32
UltraLite integrity constraints, 468
UltraLite order of columns, 468
UltraLite table order, 138
UltraLite tables, 71
UltraLite troubleshooting data imports, 502
UltraLite UUIDs and GUIDs, 407

primary tables
glossary definition, 528

procedures
UltraLite limitations, 2

programming interfaces
UltraLite supported, 24

progress counter
UltraLite offset mismatches with , 126

properties
DB_PROPERTY function, 380
UltraLite alphabetical list, 213
UltraLite browsing, 218
UltraLite database creation parameters, 34
UltraLite system table for, 298

properties (UltraLite)
DB_PROPERTY function, 380

protocol options
UltraLite HotSync, 148

provider files
UltraLite deploying ActiveSync, 64

providers
UltraLite ActiveSync files, 64

proxy tables
glossary definition, 528

public certificate
UltraLite application access to, 276

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 565

publication creation wizard
UltraLite creating publications, 137

publication updates
glossary definition, 528

publications
glossary definition, 528
UltraLite ALTER PUBLICATION statement, 451
UltraLite copying method, 77
UltraLite CREATE PUBLICATION statement,
462
UltraLite design plans with, 133
UltraLite dropping , 85
UltraLite limit of, 269
UltraLite publication synchronization parameter,
166
UltraLite publishing overview, 137
UltraLite publishing tables, 83
UltraLite rows publishing, 84
UltraLite schema description for, 296
UltraLite SQL CREATE INDEX statement, 460
UltraLite SQL DROP INDEX statement, 474
UltraLite SQL DROP PUBLICATION statement,
475
UltraLite SQL DROP TABLE statement, 477
UltraLite synchronization, 166
UltraLite synchronization parameter for, 166
UltraLite sysarticle system table, 297
UltraLite syspublication system table, 296
UltraLite table listing in schema , 297
UltraLite WHERE clause usage, 84
UltraLite working with, 83

publisher
glossary definition, 529

publishing
UltraLite rows, 84
UltraLite tables, 83
UltraLite whole table, 137

publishing whole tables
UltraLite, 83

push notifications
glossary definition, 529

push requests
glossary definition, 529

PWD connection parameter
UltraLite syntax, 243

Q
QAnywhere

glossary definition, 529
QAnywhere Agent

glossary definition, 529
QUARTER function

UltraLite syntax, 413
queries

glossary definition, 529
UltraLite optimization, 487
UltraLite ordering results with primary key, 117
UltraLite troubleshooting unpredictable result sets,
504

query optimization
(see also optimizer)
UltraLite SQL, 342

query optimizer
(see also optimizer)
UltraLite, 342

QUOTES clause
UltraLite LOAD TABLE statement, 482

R
RADIANS function

UltraLite syntax, 414
range

UltraLite date type, 312
RDBMS

glossary definition, 530
read-only tables

UltraLite databases, 139
UltraLite synchronizing, 139

ReadCommitted
UltraLite isolation levels, 18

reading
UltraLite table rows, 18

reading UltraLite access plans
about, 343

readme files
UltraLite CustDB applications, 96

ReadUncommitted
UltraLite isolation levels, 18

REAL data type
UltraLite, 312

recovery
UltraLite, 15
UltraLite introduction, 14

Index

566 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite transaction overview , 16
recovery from system failure

UltraLite internal mechanism, 15
Redirector

glossary definition, 529
reference databases

creating for UltraLite, 31
glossary definition, 529
options for UltraLite, 31

referenced object
glossary definition, 530

referencing object
glossary definition, 530

referential integrity
glossary definition, 530
UltraLite databases, 2
UltraLite indexes, 79
UltraLite table order, 138

registering
MobiLink UltraLite applications with ActiveSync,
66

registry
UltraLite Hotsync keys, 62

registry keys
ulcond11 cache size, 263

regular expressions
glossary definition, 530

reload.sql
UltraLite loading, 481

REMAINDER function
UltraLite syntax, 414

remote databases
creating UltraLite clients, 128
deleting UltraLite data, 258
glossary definition, 530
UltraLite synchronization count, 126

REMOTE DBA authority
glossary definition, 530

remote IDs
glossary definition, 531
setting in UltraLite databases, 223

remote servers
UltraLite CREATE TABLE statement, 468

removing
UltraLite users, 88

removing data
UltraLite file size impact of, 501

renaming

UltraLite database objects during upgrade, 67
UltraLite tables, 454

REPEAT function
UltraLite syntax, 415

REPLACE function
UltraLite syntax, 416

REPLICATE function
UltraLite syntax, 417

replication
glossary definition, 531

Replication Agent
glossary definition, 531

replication frequency
glossary definition, 531

replication messages
glossary definition, 531

Replication Server
glossary definition, 531

requests
UltraLite concurrency, 13
UltraLite management of, 13

RESERVE_SIZE connection parameter
UltraLite syntax, 244

reserved words
UltraLite SQL, 302

restartable downloads
UltraLite keep partial download, 161
UltraLite partial download retained, 163
UltraLite resume partial download, 167

restoring
UltraLite transaction overview , 16

result sets
UltraLite troubleshooting unpredictable changes,
504

resume partial download synchronization parameter
UltraLite reference, 167

return codes
Interactive SQL [dbisql] utility for UltraLite, 251

RIGHT function
UltraLite syntax, 418

RIGHT OUTER JOIN clause
UltraLite syntax, 478

role names
glossary definition, 531
UltraLite foreign keys, 468
UltraLite role names, 468

role of user authentication
UltraLite about, 51

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 567

roles
glossary definition, 531

rollback logs
glossary definition, 532

ROLLBACK statement
UltraLite syntax, 485

rollbacks
UltraLite databases, 14

rolling back
UltraLite transaction overview , 16
UltraLite transactions, 485

ROUND function
UltraLite syntax, 419

rounding
UltraLite scale, 203
UltraLite scale creation parameter , 203

row packing
UltraLite about, 70
UltraLite effect of, 199
UltraLite observing, 244

row-level triggers
glossary definition, 532

rowlimit operation
UltraLite execution plans, 343

rows
UltraLite deleting all rows from a table, 493
UltraLite fetching, 18
UltraLite INSERT statement, 480
UltraLite inserting in bulk, 481
UltraLite locking of, 16
UltraLite publishing, 84

RSA encryption algorithm
UltraLite TLS-enabled synchronization, 60

RTRIM function
UltraLite syntax, 419

running
UltraLite CustDB application, 97

runtime libraries
UltraLite list of, 23

runtimes
(see also UltraLite runtime)

S
sample application

starting CustDB in UltraLite, 99
samples

(see also examples)

(see also tutorials)
samples-dir

documentation usage, xiv
scale creation parameter

UltraLite description, 203
scale property

UltraLite description, 213
scan operation

UltraLite execution plans, 343
scanning

UltraLite database pages in queries, 117
UltraLite indexes in queries, 108

schema
UltraLite catalog of tables for, 11
UltraLite changes, precautions, 11

schemas
glossary definition, 532
UltraLite SQL ALTER DATABASE SCHEMA
FROM FILE syntax, 450
UltraLite system tables, 289

scjview
terminating before installing, 499

script versions
glossary definition, 532
UltraLite getScriptVersion, 176
UltraLite setScriptVersion method , 176
UltraLite version synchronization parameter , 176

script-based uploads
glossary definition, 532

scripted upload
UltraLite CREATE PUBLICATION syntax, 462

scripts
glossary definition, 532

search conditions
ALL for UltraLite SQL, 334
ANY for UltraLite SQL, 335
BETWEEN for UltraLite SQL, 336
EXISTS for UltraLite SQL, 336
IN for UltraLite SQL, 337
UltraLite SQL, 331

SECOND function
UltraLite syntax, 420

SECONDS function
UltraLite syntax, 421

secured features
glossary definition, 532

security
UltraLite, 40

Index

568 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite AES FIPS database deployment, 59
UltraLite FIPS encryption, 192
UltraLite overview of, 40
UltraLite TLS-enabled synchronization, 60
UltraLite user authentication, 51

SELECT statement
UltraLite browsing data example, 76
UltraLite copying result sets with, 77
UltraLite syntax, 486
UltraLite troubleshooting result sets, 504

selecting
UltraLite SELECT statement, 486

send column names
UltraLite synchronization parameter, 168

send download acknowledgement
UltraLite synchronization parameter, 169

send_column_names synchronization parameter
UltraLite reference, 168

send_download_ack synchronization parameter
UltraLite reference, 169

sensitivity
UltraLite case creation parameter, 183

serialized transaction
UltraLite processing of, 16

server management requests
glossary definition, 532

server message stores
glossary definition, 533

server-initiated synchronization
glossary definition, 532

services
glossary definition, 533

session-based synchronization
glossary definition, 533

SET OPTION statement
UltraLite syntax, 488

setObserver method
UltraLite example, 163

setScriptVersion method
UltraLite example, 176

setStream method
UltraLite example, 171

setStreamParms method
UltraLite example, 172

setting the global database identifier
UltraLite clients in MobiLink systems, 129

setting the hash size
about, 116

setUserData method
UltraLite example, 175

SHORT_PLAN function
UltraLite syntax, 422

SIGN function
UltraLite syntax, 423

SIMILAR function
UltraLite syntax, 424

simple encryption
UltraLite performance impact of, 120

SIN function
UltraLite syntax, 424

SKIP clause
UltraLite LOAD TABLE statement, 483

slash-asterisk
UltraLite comment indicator, 305

SMALLINT data type
UltraLite, 312

SMALLMONEY data type
UltraLite equivalent, 314

snapshot isolation
glossary definition, 533

sort order
UltraLite collations, 37

SOUNDEX function
UltraLite syntax, 425

SPACE function
UltraLite syntax, 426

spaces
UltraLite filepath definitions, 498

special values
UltraLite CURRENT DATE, 308
UltraLite CURRENT TIME, 308
UltraLite CURRENT TIMESTAMP, 309
UltraLite SQL, 308
UltraLite SQLCODE, 309

SQL
(see also UltraLite SQL)
comparison operators for UltraLite, 332
data types in UltraLite, 312
expressions in UltraLite, 325
glossary definition, 533
operators in UltraLite, 338
search conditions in UltraLite, 331
UltraLite identifiers , 303
UltraLite keywords , 302
UltraLite numbers, 306
UltraLite reserved words, 302

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 569

UltraLite schema changes with, 11
UltraLite statement types, 449
UltraLite strings, 304
variables in UltraLite, 341

SQL Anywhere
documentation, xii
glossary definition, 533

SQL Anywhere databases
database comparison with UltraLite, 2

SQL code
UltraLite schema upgrade errors, 68

SQL Flagger
UltraLite usage of, 252

SQL functions
alphabetical list of UltraLite functions A-D, 354
alphabetical list of UltraLite functions E-O, 383
alphabetical list of UltraLite functions P-Z, 411
return NULL if you specify NULL argument, 347
types of function for UltraLite, 348
UltraLite aggregate, 348
UltraLite data type conversion, 348
UltraLite date and time, 348
UltraLite introduction, 347
UltraLite miscellaneous, 350
UltraLite numeric, 351
UltraLite string, 352
UltraLite system, 353

SQL passthrough
UltraLite support, 92

SQL preprocessor utility
UltraLite syntax , 252

SQL Remote
glossary definition, 533

SQL statements
alphabetical list of UltraLite statements, 448
glossary definition, 533
UltraLite, 448

SQL syntax
CASE expression for UltraLite, 327
UltraLite column names, 326
UltraLite comments, 305
UltraLite constants, 326
UltraLite functions, 348
UltraLite IF expressions , 327
UltraLite input parameters, 330
UltraLite special values, 308
UltraLite SQLCODE special value, 309

SQL-based synchronization

glossary definition, 533
SQLCODE

UltraLite concurrency checks, 16
UltraLite special value, 309
UltraLite SQLE_MAX_ROW_SIZE_EXCEEDED
error, 70

SQLCODE SQLE_LOCKED
UltraLite concurrency error, 16

SQLE_CONVERSION_ERROR
UltraLite upgrade warning, 68

SQLE_DATABASE_ERROR
UltraLite data corruption, 500

SQLE_DEVICE_ERROR
UltraLite data corruption, 500

SQLE_DOWNLOAD_CONFLICT error
UltraLite synchronization, 139

SQLE_MAX_ROW_SIZE_EXCEEDED
UltraLite error, 70

SQLE_MEMORY_ERROR
UltraLite data corruption, 500

SQLE_NOTFOUND
UltraLite concurrency error, 16

SQLE_ROW_DROPPED_DURING_SCHEMA_UP
GRADE

UltraLite upgrade warning, 67
SQLE_UNABLE_TO_CONNECT_OR_START

troubleshooting, 498
sqlpp utility

UltraLite syntax, 252
SQRT function

UltraLite syntax, 427
square root function

UltraLite SQRT function, 427
START connection parameter

UltraLite for uleng11 on Windows Mobile, 57
UltraLite syntax, 245

START SYNCHRONIZATION DELETE statement
UltraLite syntax, 489

state bytes
UltraLite databases, 14

state management
UltraLite overview, 13

statement-level triggers
glossary definition, 534

statements
UltraLite, 448
UltraLite prepared, input parameters for, 330
UltraLite types, 449

Index

570 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

STOP SYNCHRONIZATION DELETE statement
UltraLite syntax, 490

storage
UltraLite databases, 11
UltraLite limits, 8
UltraLite PALM_ALLOW_BACKUP , 240
UltraLite reserve size, 244

stored procedures
glossary definition, 534
UltraLite limitations, 2

STR function
UltraLite syntax, 427

stream error
UltraLite synchronization parameter, 169

stream parameters
UltraLite HotSync synchronization, 148
UltraLite synchronization parameter, 172

stream synchronization parameters
UltraLite synchronization parameter, 172

stream type
UltraLite synchronization parameter, 171

stream_error synchronization parameter
UltraLite reference, 169
UltraLite ul_stream_error structure, 169

stream_parms synchronization parameter
UltraLite reference, 172
UltraLite synchronization using HotSync, 146
UltraLite usage, 148

STRING function
UltraLite syntax, 428

string functions
UltraLite alphabetical list, 352

string length
UltraLite LENGTH function, 394

string literal
glossary definition, 534

string literals
UltraLite constants, 326

string operators
dynamic SQL syntax for UltraLite, 339

string position
UltraLite LOCATION function, 396

strings
UltraLite case sensitivity, 304
UltraLite maximum size, 8
UltraLite nearest_century conversions to dates with ,
196
UltraLite removing trailing blanks , 419

UltraLite replacing, 416
UltraLite SQL, 304
UltraLite SQL functions, 352

STRIP clause
UltraLite LOAD TABLE statement, 483

strong encryption
UltraLite deployment steps, 59
UltraLite fips creation parameter, 192
UltraLite performance impact of, 120
UltraLite usage, 40

STRTOUUID function
UltraLite syntax, 429

STUFF function
UltraLite syntax, 430

subqueries
glossary definition, 534
UltraLite SQL, 329

subquery operation
UltraLite execution plans, 343

SUBSCRIBE BY clause
UltraLite synchronization limitations, 137

subscriptions
glossary definition, 534

SUBSTR function
UltraLite syntax, 430

SUBSTRING function
UltraLite syntax, 430

substrings
UltraLite about, 430
UltraLite replacing, 416

SUM function
UltraLite syntax, 432

supplying UltraLite connection parameters
about, 45

support
newsgroups, xvii

SUSER_ID function
syntax, 433

SUSER_NAME function
syntax, 433

Sybase Central
browsing CustDB in UltraLite, 104
creating UltraLite databases, 30
glossary definition, 534
troubleshooting UltraLite connections, 499
UltraLite column creation methods, 72
UltraLite copying database objects method, 77
UltraLite creating indexes, 81

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 571

UltraLite creating publications , 137
UltraLite creating table methods, 71
UltraLite system table browsing methods, 76
UltraLite table alteration methods, 74
UltraLite table browsing methods, 76
UltraLite table deletion methods, 75

sync result
UltraLite synchronization parameter, 173

SYNC_PROFILE_OPTION_VALUE function
syntax, 434

synchronization
character sets in UltraLite, 36
glossary definition, 535
setting timestamp_increment creation parameter,
210
ulsync utility for UltraLite databases, 275
UltraLite application implementation , 139
UltraLite client-specific data, 136
UltraLite clients, 125
UltraLite CustDB tutorial, 102
UltraLite design overview, 133
UltraLite download_only parameter, 159
UltraLite excluding tables with publications, 137
UltraLite foreign keys, 138
UltraLite HotSync protocol options, 148
UltraLite ignored rows, 160
UltraLite introduction , 125
UltraLite M-Business Anywhere channel, 142
UltraLite monitoring, 163
UltraLite Palm OS, 62
UltraLite progress counting mechanism, 126
UltraLite read-only tables , 139
UltraLite referential integrity, 138
UltraLite schema changes during, 11
UltraLite SQLE_DOWNLOAD_CONFLICT error,
139
UltraLite stopping, 163
UltraLite system table, 291
UltraLite task overview , 127
UltraLite upload only parameter, 174

synchronization logic
browsing Sybase Central in UltraLite, 104

synchronization models
UltraLite databases, 31

synchronization parameters
UltraLite, 154
UltraLite additionalparms, 155
UltraLite Authentication Value, 159

UltraLite Disable Concurrency overview, 13
UltraLite download_only, 159
UltraLite getScriptVersion , 176
UltraLite getStream method , 171
UltraLite getUploadOK method, 173
UltraLite keep partial download, 161
UltraLite newmobilinkpwd, 162
UltraLite observer , 163
UltraLite partial download retained, 163
UltraLite password, 164
UltraLite ping, 165
UltraLite publication, 166
UltraLite required, 154
UltraLite resume partial download, 167
UltraLite send_column_names, 168
UltraLite send_download_ack , 169
UltraLite setObserver method, 163
UltraLite setScriptVersion method, 176
UltraLite setStream method , 171
UltraLite setStreamParms method, 172
UltraLite setSynchPublication method, 166
UltraLite setUserData method, 175
UltraLite stream type , 171
UltraLite stream_error, 169
UltraLite stream_parms, 172
UltraLite Sync Result , 173
UltraLite upload_ok , 173
UltraLite upload_only, 174
UltraLite user_data, 175
UltraLite user_name, 175
UltraLite version , 176

synchronization profile options
about, 278
UltraLite synchronization, 278

synchronization profiles
UltraLite ALTER SYNCHRONIZATION
PROFILE statement, 452
UltraLite DROP SYNCHRONIZATION PROFILE
statement, 464, 476
UltraLite SYNCHRONIZE statement, 491

synchronization scripts
browsing the UltraLite sample, 104

synchronization stream parameters
UltraLite stream type , 171

synchronization streams
UltraLite getStream method, 171
UltraLite setStream method, 171
UltraLite setStreamParms method, 172

Index

572 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite setting , 171
UltraLite stream synchronization parameter , 171
UltraLite stream_error synchronization parameter,
169
UltraLite stream_parms synchronization parameter,
172
UltraLite ULHTTPSStream, 171
UltraLite ULHTTPStream, 171

SYNCHRONIZE statement
UltraLite syntax, 491

synchronizing
UltraLite databases on Windows Mobile, 150

synchronizing data
UltraLite file size impact of, 501

syntax
arithmetic operators for UltraLite, 338
bitwise operators for UltraLite, 339
CASE expression for UltraLite, 327
comparison operators for UltraLite, 332
logical operators for UltraLite, 333
SQL operator precedence for UltraLite, 340
string operators for UltraLite, 339
UltraLite column names, 326
UltraLite constants, 326
UltraLite CURRENT DATE special value, 308
UltraLite CURRENT TIMESTAMP special value,
309
UltraLite IF expressions , 327
UltraLite special values, 308
UltraLite SQL comments, 305
UltraLite SQL CURRENT TIME special value,
308
UltraLite SQL functions, 348
UltraLite SQL functions A-D, 354
UltraLite SQL functions E-O, 383
UltraLite SQL functions P-Z, 411
UltraLite SQL input parameters, 330
UltraLite SQL operators, 338
UltraLite SQLCODE special value, 309

SYS
glossary definition, 535
UltraLite system tables, 289

sysarticle system table [UltraLite]
about, 297

syscolumn system table [UltraLite]
about, 292

sysindex system table [UltraLite]
about, 293

sysixcol system table [UltraLite]
about, 295

syspublication system table [UltraLite]
about, 296

systable system table [UltraLite]
about, 291

system failure
UltraLIte recover from, 15

system failures
UltraLite transaction overview , 16

system functions
UltraLite about, 353
UltraLite limitations, 2

system objects
glossary definition, 535
UltraLite displaying methods, 77

system tables
glossary definition, 535
UltraLite about, 289
UltraLite browsing methods, 76
UltraLite hiding and showing, 290
UltraLite sysarticle, 297
UltraLite syscolumn, 292
UltraLite sysindex, 293
UltraLite sysixcol, 295
UltraLite syspublication, 296
UltraLite systable, 291
UltraLite sysuldata, 298

system views
glossary definition, 535

system_error_code values
UltraLite synchronization stream errors, 170

sysuldata system table [UltraLite]
about, 298

T
table constraints

UltraLite adding, deleting, or modifying, 454
UltraLite CREATE TABLE statement, 468

table expressions
subqueries for UltraLite SQL, 329

table owners
UltraLite, 303

table scans
UltraLite ordering results with primary key, 117

table size
number of rows, 8

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 573

UltraLite limit, 8
TableOrder

UltraLite synchronization parameter, 155
tableOrder

UltraLite ulsync options for, 275
tables

UltraLite allsync, 136
UltraLite ALTER TABLE statement, 454
UltraLite altering methods, 74
UltraLite browsing methods, 76
UltraLite bulk loading, 481
UltraLite controlling synchronization with
publications, 137
UltraLite copying method, 77
UltraLite copying methods, 77
UltraLite CREATE TABLE statement, 468
UltraLite creating methods, 71
UltraLite deleting methods, 75
UltraLite editing methods, 76
UltraLite INSERT statement, 480
UltraLite intermediate query result storage, 12
UltraLite limitations, 8
UltraLite nosync, 136
UltraLite order of, 138
UltraLite publications, 137
UltraLite rows publishing, 84
UltraLite size limit, 70
UltraLite table filtering methods, 77
UltraLite temporary table usage, 342
UltraLite TRUNCATE TABLE statement, 493
UltraLite working with, 70

TAN function
UltraLite syntax, 435

TCP/IP
(see also TCP/IP synchronization)

technical support
newsgroups, xvii

temp operation
UltraLite execution plans, 343

temporary files
UltraLite limitation, 12

temporary tables
glossary definition, 535
UltraLite about, 12
UltraLite limitations, 2, 8
UltraLite managing, 117
UltraLite queries, 342
UltraLite synchronization using, 136

terminating processes
UltraLite troubleshooting upgrades, 499

TEXT data type
UltraLite equivalent, 314

text plans
viewing in UltraLite, 342

THEN
UltraLite IF expressions, 327

threads
UltraLite concurrency, 13

time considerations
UltraLite about, 205

TIME data type
UltraLite , 312

time functions
UltraLite alphabetical list, 348

time_format creation parameter
UltraLite description, 205

time_format property
UltraLite description, 213

times
UltraLite conversion functions, 348

TIMESTAMP
UltraLite column limitations, 2
UltraLite TIMESTAMP columns, 468

TIMESTAMP data type
UltraLite, 312

timestamp_format creation parameter
UltraLite description, 207

timestamp_format property
UltraLite description, 213

timestamp_increment creation parameter
UltraLite description, 210
using in MobiLink synchronization, 210

timestamp_increment property
UltraLite description, 213

timestamps
UltraLite timestamp_format creation parameter,
207
UltraLite timestamp_increment creation parameter,
210

TINYINT data type
UltraLite, 312

tips
UltraLite implementation , 21

TLS
UltraLite client configuration, 60

Index

574 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite synchronization deployment
considerations, 60

TLS_TYPE network protocol option
UltraLite TLS-enabled synchronization, 60

TODAY function
UltraLite syntax, 435

TOP clause
UltraLite SELECT statement, 486

topics
graphic icons, xvi

tracking
UltraLite synchronization, 126

transaction log
glossary definition, 535

transaction log mirror
glossary definition, 536

transaction logging
UltraLite internal mechanism, 15

transaction management
UltraLite, 13

transaction processing
checkpoints and commits, 119
UltraLite COMMIT_FLUSH connection parameter,
229
UltraLite commit_flush_count option, 220
UltraLite commit_flush_timeout option, 221

transactional integrity
glossary definition, 536

transactions
glossary definition, 535
UltraLite checkpoints for, 458
UltraLite COMMIT statement, 459
UltraLite concurrency, 13
UltraLite databases, 14
UltraLite flushing, 220
UltraLite isolation level, 18
UltraLite rolling back, 485
UltraLite schema changes impact, 11

transferring files
UltraLite files with MLFileTransfer, 142

transmission rules
glossary definition, 536

transport-layer security
(see also TLS)

triggers
glossary definition, 536
UltraLite limitations, 2

TRIM function

UltraLite syntax, 436
troubleshooting

avoiding synchronization issues with foreign key
cycles, 138
newsgroups, xvii
UltraLite backing up application, 125
UltraLite changing collation, 36
UltraLite checksum failures, 184
UltraLite connection parameter precedence, 49
UltraLite enabling automatic backups, 259
UltraLite getUploadOK method , 173
UltraLite global ID numbers, 130
UltraLite HotSync , 148
UltraLite implementing resumable downloads, 140
UltraLite maintaining timestamps and timestamp
increments, 207
UltraLite ping synchronization parameter, 165
UltraLite retrieving GLOBAL AUTOINCREMENT
value, 131
UltraLite running on early Palm OS, 121
UltraLite Stream Error synchronization parameter,
169
UltraLite Sync Result synchronization parameter ,
173
UltraLite transmittal of connection parameters, 49
UltraLite upload_ok synchronization parameter,
173

TRUNCATE TABLE statement
UltraLite syntax, 493

truncating
UltraLite tables, 493

TRUNCNUM function
UltraLite syntax, 437

trusted certificates
UltraLite application access to encryption
information, 276

TSEQUAL function
syntax, 437

tuning performance
UltraLite max_hash_size, 194
UltraLite with index hashing, 111

tutorials
UltraLite CustDB database synchronization, 102
UltraLite CustDB files, 95
UltraLite CustDB introduction, 93

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 575

U
UCASE function

UltraLite syntax, 438
UDB

(see also UltraLite databases)
UID connection parameter

UltraLite syntax, 246
UL_DEBUG_CONDUIT_LOG environment variable

UltraLite HotSync troubleshooting, 148
ul_stream_error structure

UltraLite example, 169
UL_SYNC_ALL macro

UltraLite publications list, 166
UL_SYNC_ALL_PUBS macro

UltraLite publications list, 166
ulcond11 utility

syntax, 263
ULConduitStream function

UltraLite synchronization stream, 171
ulcreate utility

syntax, 255
UltraLite Palm OS VFS considerations, 256
using, 30

ULDBUtil
about, 258

uleng11 utility
deploying to Windows Mobile, 57
in-process database support, 260
syntax, 260

ulerase utility
syntax, 262

ULHTTPSStream function [UL ESQL]
UltraLite synchronization stream, 171

ULHTTPStream function [UL ESQL]
UltraLite synchronization stream, 171

ulinfo utility
UltraLite syntax, 265

ulinit utility
syntax, 269
UltraLite Palm OS VFS considerations, 271
unsupported collation workaround, 270
using, 31

ulload utility
syntax, 272
UltraLite Palm OS VFS considerations, 274
using, 32

ULSocketStream function

UltraLite synchronization stream, 171
ULSQLCONNECT environment variable

about, 45
description, 53

ulstop utility
syntax, 261

ulsync utility
synchronization profile options, 278
syntax, 275

UltraLite
(see also UltraLite APIs)
(see also UltraLite applications)
(see also UltraLite databases)
(see also UltraLite embedded SQL)
(see also UltraLite SQL)
(see also UltraLite utilities)
about, 1
collations unsupported, 270
data conversion, 348
database creation parameters, 181
deploying applications and databases, 55
error codes, 248
glossary definition, 536
installing applications and databases, 55
multi-threaded applications, 23
SQL functions, aggregate, 348
SQL functions, data type conversion, 348
SQL functions, types of, 348
SQL statement reference, 448
SQLE_MAX_ROW_SIZE_EXCEEDED error, 70
system functions, 353
table owners, 303
troubleshooting, 497
utilities reference , 247

UltraLite administration tools
troubleshooting, 503

UltraLite APIs (see UltraLite C/C++ API) (see
UltraLite for AppForge API) (see UltraLite for M-
Business Anywhere API) (see UltraLite.NET API)
UltraLite applications

(see also UltraLite C/C++ API)
(see also UltraLite for AppForge API)
(see also UltraLite for M-Business Anywhere API)
(see also UltraLite.NET API)
APIs choosing , 24
building CustDB, 97
concurrency, 13
CustDB applications and readme files, 96

Index

576 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

defining engine location at connection time, 245
deploying ActiveSync provider files, 64
deploying FIPS-enabled, 192
deploying HotSync conduit files, 146
deploying to devices, 57
development platforms, 24
error -764, 505
libraries choosing , 24
managing multiple requests, 13
public certificate access, 276
supported Windows platforms, 24
synchronization , 125
TLS-enabled synchronization, 60
transferring files with MobiLink, 142
troubleshooting
SQLE_UNABLE_TO_CONNECT_OR_START,
498

UltraLite C/C++
building CustDB application, 97
CustDB sample and readme files, 97
engine support, 23

UltraLite client synchronization
parameters and options about, 154

UltraLite clients
about MobiLink, 125

UltraLite columns
renaming during schema upgrade, 67

UltraLite connection parameters
about, 48
list of, 44

UltraLite connections
troubleshooting, 498, 499

UltraLite creation parameters
about, 181

UltraLite database creation utility
syntax, 255

UltraLite database properties
about, 213

UltraLite database synchronization utility
synchronization profile options, 278

UltraLite databases
about, 11
backing up on Windows Mobile, 47
backups, 15
checkpoint usage, 119
collation sequences, 36
columns adding, 72
columns altering, 73

composition of, 11
concurrency, 13
connection optimization strategies, 121
connection overview, 43
connection parameter list, 44
connection parameters overview, 48
connections overview, 13
counting synchronizations, 126
create with the create database wizard, 30
creating, 29
creating from SQL Anywhere reference database,
31
creating from the command prompt, 30
creation parameters, 34
data and state management, 13
data management options, 23
database comparison with SQL Anywhere, 2
database integrity, 14
deadlocks, 16
deleting application data from Palm OS device,
258
deploying for data encryption, 59
deploying for synchronization encryption, 60
deploying to devices, 55
deployment options, 23
describing columns of tables in, 295
describing publications in, 297
describing tables in, 291
desktop creation options, 30
displaying system tables, 290
embedded engine client files, 23
encrypting with the fips creation parameter, 192
encryption impact on performance, 120
engine and runtime for, 23
engine starting, 260
engine stopping, 261
entity-relationship diagrams, 78
environment variables, 49
erasing databases, 262
fetching rows, 18
file internals, 11
file path definition, 47
file storage on Palm OS, 47
filename filter, 258
footprint of, 2
implementation , 21
indexes creating, 460
indexes hashing, 194

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 577

indexes hashing overview, 194
indexes types of, 80
indexes working with, 79
indexes, when to create, 81
indexing primary keys, 32
initializing from Sybase Central, 30
initializing from the command prompt, 31
introduction, 10
isolation levels, 18
maintaining row state, 14
management fundamentals, 13
management layers of, 10
managing multiple, 13
memory usage, 14
methods of creating, 29
modeling from MobiLink, 31
multi-table joins, 2
obfuscation impact on performance, 120
objects copy method, 77
Oracle as reference database for, 127
page_size creation parameter, 199
page_size usage, 199
Palm OS deleting from, 258
Palm OS support, 47
populating after running ulinit, 270
properties browsing, 218
property optimization strategies, 121
publications about, 83
publications dropping, 85
publishing rows, 84
publishing tables, 83
recovery, 14
recovery from system failure, 15
renaming objects during schema upgrade, 67
requests overview, 13
rollbacks, 14
row fetching, 18
row locking, 16
row packing, 199
row packing introduction, 70
row size limit, 70
rows deleting, 14
runtime files, 23
schema, 289
schema changes, 11
schema overview, 11
security overview, 40
size reduction, 501

sourcing from XML, 32
state bytes used, 14
storing indexes in, 293
storing properties of, 298
storing publications in, 296
supported index types, 108
supported network protocols, 22
synchronization introduction, 13
synchronization profile options, 278
synchronization utility [ulsync] syntax, 275
system failure recovery, 15
table definition tip, 70
table synchronization suffixes, 72
tables copying, 77
tables creating, 71
tables dropping, 75
tables filtering, 77
tables, browsing, 76
temporary files, 12
temporary table management, 117
temporary tables and files, 12
threads overview, 13
transactions overview, 13
troubleshooting, 500, 501, 502
troubleshooting connections, 499
ULSQLCONNECT, 49
UltraLite file property, 213
UltraLite name property, 213
UltraLite schema upgrades reference, 450
UltraLite size limit, 8
unique keys, 80
upgrade previous versions, 29
upgrading schema on devices, 67
user IDs, 51
users adding, 87
users deleting, 88
UTF8BIN collation for UNICODE characters, 37
utilities reference , 247
validating, 15
viewing option settings, 224
Windows desktop, 47
Windows Mobile file paths, 47
working with, 69

UltraLite embedded SQL
(see also UltraLite embedded SQL library functions)
character strings, 252
CustDB sample and readme files, 97
line numbers, 252

Index

578 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

preprocessor, 252
support, 24

UltraLite engine
concurrency in, 13
contrasting with in-process runtime, 23
data management with, 23
defining executable location at connection time,
245
erase database utility for, 262
error codes, 248
start utility for, 260
stop utility for, 261
troubleshooting, 498
troubleshooting error -764, 505
Windows Mobile deployment, 57

UltraLite engine start utility
syntax, 260

UltraLite engine stop utility
syntax, 261

UltraLite erase database utility
syntax, 262

UltraLite for M-Business Anywhere
building CustDB application, 98
deployment targets, 24
engine support, 23
UltraLite CustDB sample and readme files, 98

UltraLite HotSync conduit
deploying, 62

UltraLite implementation
about, 21

UltraLite information utility
about, 265

UltraLite initialize database utility
about, 269

UltraLite load XML to database utility
syntax, 272

UltraLite optimizer
execution plan access options, 110

UltraLite passwords
about, 51

UltraLite plug-ins
troubleshooting, 499

UltraLite publications
renaming during schema upgrade, 67

UltraLite runtime
about, 23
concurrency in, 13
glossary definition, 536

UltraLite schema
upgrading on device, 67

UltraLite SQL
(see also UltraLite embedded SQL)
comma-separated lists, 395
comments, 305
CustDB sample and readme files, 97
data types, 312
dates, 311
execution plans for, 342
expressions, 325
identifiers, 303
index-based optimizations, 108
keywords, 302
NULL values, 307
numbers, 306
operators, 338
page-based optimizations, 117
special values, 308
SQL functions date and time, 348
SQL functions, miscellaneous, 350
SQL functions, numeric, 351
SQL functions, string, 352
strings, 304
times, 311
troubleshooting queries, 504
UltraLite ordering query results with primary key,
117
variables, 341

UltraLite SQL statements
about, 448
ALTER DATABASE SCHEMA FROM FILE
statement syntax, 450
ALTER PUBLICATION statement syntax, 451
ALTER SYNCHRONIZATION PROFILE
statement syntax, 452
ALTER TABLE statement syntax, 454
categories of, 449
CHECKPOINT statement syntax, 458
COMMIT statement syntax, 459
CREATE INDEX statement syntax, 460
CREATE PUBLICATION statement syntax, 462
CREATE SYNCHRONIZATION PROFILE
statement syntax, 464
CREATE TABLE statement syntax, 468
DELETE statement syntax, 473
DROP INDEX statement syntax, 474
FROM clause, 478

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 579

INSERT statement, 480
LOAD TABLE statement syntax, 481
ROLLBACK statement syntax, 485
SELECT statement syntax, 486
SET OPTION statement syntax, 488
START SYNCHRONIZATION DELETE
statement syntax, 489
STOP SYNCHRONIZATION DELETE statement
syntax, 490
SYNCHRONIZE statement syntax, 491
TRUNCATE TABLE syntax, 493
UltraLite DROP TABLE statement syntax, 477
UNION operation syntax, 495
UNIQUE parameter, 460
UPDATE statement syntax, 496

UltraLite synchronization
about, 125
remote IDs and user IDs, 223

UltraLite synchronization utility
syntax, 275

UltraLite system table reference
about, 289

UltraLite system tables
about, 289

UltraLite tables
excluding from creation process, 269
renaming during schema upgrade, 67

UltraLite temporary files
about, 12

UltraLite temporary tables
managing, 117

UltraLite unload database utility
syntax, 281

UltraLite unload old database utility
syntax, 284

UltraLite user IDs
about, 51
MobiLink uniqueness, 223

UltraLite utilities
dbisql utility, 249
sqlpp utility, 252
ulcond11 utility, 263
ulcreate utility, 255
ULDBUtil utility, 258
uleng11 utility, 260
ulerase utility, 262
ulinfo utility, 265
ulinit utility, 269

ulload utility, 272
ulstop utility, 261
ulsync utility, 275
ulunload utility, 281
ulunloadold utility, 284
validate database utility, 286

UltraLite utilities reference
about, 247

UltraLite Validate Database utility (ulvalid)
about, 286

UltraLite.NET
building CustDB application, 98
CustDB sample and readme files, 98
UltraLite engine support, 23

ulunload utility
syntax, 281

ulunloadold utility
syntax, 284

ulvalid
about, 286

uncommitted transactions
UltraLite isolation level, 18
UltraLite overview, 16

undoing
UltraLite transactions, 485

UNICODE characters
UltraLite collation for, 37

UNION operation
UltraLite syntax, 495

UNION statement
UltraLite syntax, 495

union-all operation
UltraLite execution plans, 343

unions
UltraLite multiple select statements, 495

UNIQUE
UltraLite CREATE INDEX parameter, 460

unique constraints
glossary definition, 536
UltraLite characteristics, 108
UltraLite copying method, 77
UltraLite CREATE TABLE statement, 468

unique indexes
UltraLite characteristics, 108
UltraLite index creation from, 80
UltraLite UNIQUE SQL parameter, 460

unique keys
UltraLite characteristics, 108

Index

580 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite index creation from, 80
UNIQUEIDENTIFIER data type

UltraLite, 312
universally unique identifiers

(see also UUIDs)
UltraLite SQL syntax for NEWID function, 407

unload
glossary definition, 537

unload old database utility [ulunloadold]
syntax, 284

unloading
UltraLite databases, 281
UltraLite databases from earlier versions, 284
UltraLite databases with ulunload, 281
UltraLite databases with ulunloadold, 284

unnamed foreign keys
UltraLite usage, 468

unpacked rows
UltraLite about, 70

UPDATE statement
UltraLite syntax, 496

updates
UltraLite databases, 14

updating
UltraLite updating rows, 496

UpgradeSchemaFromFile method
UltraLite replacement for schema upgrade , 67

upgrading
UltraLite schema error callback, 68
UltraLite schema process, 67
UltraLite SQL ALTER DATABASE SCHEMA
FROM FILE syntax, 450

upgrading UltraLite
troubleshooting connections, 499

upload ok
UltraLite synchronization parameter, 173

upload only
UltraLite synchronization parameter, 174

upload only synchronization
UltraLite databases, 174
UltraLite upload_only synchronization parameter,
174

upload_ok synchronization parameter
UltraLite reference, 173

upload_only synchronization parameter
UltraLite reference, 174

uploads
glossary definition, 537

UPPER function
UltraLite syntax, 439

uppercase characters
UltraLite UPPER function, 439

uppercase strings
UltraLite UCASE function, 438
UltraLite UPPER function, 439

user authentication
custom MobiLink, 156
PWD UltraLite connection parameter, 243
UltraLite about, 51
UltraLite Authentication Value synchronization
parameter, 159
UltraLite bypassing, 51
UltraLite custom for synchronization, 162
UltraLite getUserName method, 175
UltraLite password synchronization parameter, 164
UltraLite role of, 51
UltraLite setup, 51
UltraLite synchronization status reports, 157
UltraLite user_name synchronization , 175

user data
UltraLite synchronization parameter, 175

user IDs
UltraLite adding new, 51
UltraLite changing, 87
UltraLite considerations, 87
UltraLite databases, 51
UltraLite defaults, 87
UltraLite semantics, 51

user name
UltraLite synchronization parameter, 175

user-defined data types
glossary definition, 537
UltraLite equivalents, 314
unsupported in UltraLite, 312

user_data
UltraLite synchronization parameter, 175

USER_ID function
syntax, 440

user_name
UltraLite synchronization parameter, 175

USER_NAME function
syntax, 441

users
UltraLite adding, 87
UltraLite deleting, 88
UltraLite working with, 87

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 581

utf8_encoding creation parameter
UltraLite description, 211

utf8_encoding database property
UltraLite usage, 37

UTF8BIN collation
UltraLite considerations, 37

utilities
ulcreate, 255
UltraLite database creation [ulcreate] utility, 255
UltraLite engine start [uleng11] utility, 260
UltraLite engine stop [ulstop] utility, 261
UltraLite erase database [ulerase] utility, 262
UltraLite error codes, 248
UltraLite HotSync Conduit installer [ulcond11]
utility, 263
UltraLite information [ulinfo] utility, 265
UltraLite initialize database [ulinit] utility, 269
UltraLite Interactive SQL [dbisql] syntax, 249
UltraLite load XML to database [ulload] utility,
272
UltraLite Palm [ULDBUtil] utility, 258
UltraLite SQL Preprocessor [sqlpp] utility, 252
UltraLite synchronization [ulsync] , 275
UltraLite troubleshooting, 503
UltraLite unload data to XML [ulunload] utility,
281
UltraLite unload old database [ulunloadold] utility,
284
Windows Mobile database administration on device,
47

UUIDs
UltraLite SQL syntax for NEWID function, 407
UltraLite SQL syntax for STRTOUUID function,
429
UltraLite SQL syntax for UUIDTOSTR function,
441

UUIDTOSTR function
UltraLite syntax, 441

V
validate

glossary definition, 537
validate database utility

UltraLite about, 286
validating

(see also validating databases)
UltraLite checksum_level creation parameter, 184

UltraLite databases with the validate database
wizard, 15
UltraLite databases with ulvalid, 286

validating databases
UltraLite validate database utility (ulvalid), 286

values
UltraLite index hash, 194

VARBINARY data type
UltraLite, 312

VARCHAR data type
UltraLite, 312

variables
UltraLite SQL, 341

version
UltraLite synchronization parameter, 176

version synchronization parameter
UltraLite reference, 176

versions
UltraLite troubleshooting utilities, 503

VFS
UltraLite database deployment, 256
UltraLite databases, 47

viewing
UltraLite execution plant, 342
UltraLite table methods, 76

viewing UltraLite database settings
about, 218

views
glossary definition, 537

virtual file system (see VFS)
Visual Basic compatibility

UltraLite support, 24
Visual Studio

UltraLite building CustDB application, 97

W
WEEKS function

UltraLite syntax, 442
WHEN

CASE expression for UltraLite, 327
WHERE clause

UltraLite CREATE PUBLICATION statement,
462
UltraLite DELETE statement, 473
UltraLite publication usage, 84
UltraLite SELECT statement, 486
UltraLite synchronization limitations, 137

Index

582 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite UPDATE statement, 496
whole tables

UltraLite publishing, 137
wildcards

UltraLite PATINDEX function, 411
window (OLAP)

glossary definition, 537
Windows

(see also Windows ME)
(see also Windows Mobile 5)
(see also Windows NT)
(see also Windows Vista)
(see also Windows XP/200x)
glossary definition, 537
UltraLite character sets, 37

Windows desktop
UltraLite databases, 47
UltraLite engine support, 23

Windows Mobile
glossary definition, 537
troubleshooting error -764, 505
UltraLite ActiveSync deployment, 64
UltraLite building CustDB application using .NET,
98
UltraLite character sets, 37
UltraLite engine deployment , 57
UltraLite engine support, 23
UltraLite file path prefix, 47
UltraLite FIPS enablement, 192
UltraLite MobiLink clients, 150
UltraLite uleng11 deployment, 57

WITH CHECKPOINT clause
UltraLite LOAD TABLE statement, 483

words
UltraLite keywords, 302
UltraLite reserved words, 302

work tables
glossary definition, 537

working with indexes
UltraLite about, 79

X
XML

loading to database, 272
sourcing UltraLite databases from , 32
unloading database to, 275

XML data type

UltraLite equivalent, 314

Y
YEAR function

UltraLite syntax, 444
YEARS function

UltraLite syntax, 444
YMD function

UltraLite syntax, 445

Z
zero-padding

UltraLite date_format creation parameter, 188
UltraLite timestamp_format creation parameter,
208

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 583

584

	UltraLite® - Database Management and Reference
	Contents
	About this book
	About the SQL Anywhere documentation
	About the books in the documentation set
	Documentation conventions
	Graphic icons
	Contacting the documentation team
	Finding out more and requesting technical support

	Introducing UltraLite
	UltraLite feature comparison
	UltraLite limitations
	UltraLite data architecture
	UltraLite storage and file name conventions
	UltraLite database schema
	UltraLite temporary files
	UltraLite temporary tables

	UltraLite transaction and state management
	Concurrency in UltraLite
	UltraLite row states
	Validate an UltraLite database
	Backing up and recovering data in UltraLite
	UltraLite transaction processing

	UltraLite isolation levels
	Isolation level side effects

	Implementing an UltraLite solution
	UltraLite supported platforms and protocols
	Choosing an UltraLite data management component
	Choosing an UltraLite programming interface

	Using UltraLite Databases
	Creating and configuring UltraLite databases
	Creating an UltraLite database
	Create a database with the Create Database Wizard
	Create an UltraLite database from the command prompt
	Create an UltraLite database from a MobiLink synchronization model
	Create an UltraLite database from a SQL Anywhere reference database
	Create an UltraLite database from XML
	Create an UltraLite database on a first connection

	Choosing database creation parameters for UltraLite
	UltraLite character sets
	Change the character set and collation
	UltraLite platform requirements for character set encoding
	UltraLite supported collations

	Securing UltraLite databases

	Connecting to an UltraLite database
	UltraLite database connection parameters
	Supplying UltraLite connection parameters
	Specifying file paths in an UltraLite connection parameter
	Opening UltraLite connections with connection strings
	Assembling parameters into UltraLite connection strings

	UltraLite user authentication
	Bypass authentication
	Interpreting user ID and password combinations

	Storing UltraLite parameters with the ULSQLCONNECT environment variable

	Deploying UltraLite to devices
	Deploy Multiple UltraLite applications with the UltraLite engine
	Deploy UltraLite with AES_FIPS database encryption
	Deploy UltraLite with TLS-enabled synchronization
	Deploy the UltraLite HotSync conduit
	Deploy the ActiveSync provider for UltraLite
	Register applications with the ActiveSync Manager
	Deploying UltraLite schema upgrades

	Working with UltraLite databases
	Working with UltraLite tables and columns
	Creating UltraLite tables
	Using allsync and nosync suffixes
	Adding a column to an UltraLite table
	Altering UltraLite column definitions
	Deleting UltraLite tables
	Browsing the information in UltraLite tables
	Copying and pasting data to or from UltraLite databases
	Viewing entity-relationship diagrams from the UltraLite plug-in

	Working with UltraLite indexes
	When to use an index
	Choosing an index type
	Adding UltraLite indexes
	Dropping an index

	Working with UltraLite publications
	Publishing whole tables in UltraLite
	Publishing a subset of rows from an UltraLite table
	Dropping a publication for UltraLite

	Working with UltraLite users
	Adding a new UltraLite user
	Deleting an existing UltraLite user

	Working with event notifications
	UltraLite support for SQL passthrough

	UltraLite CustDB samples
	CustDB sample file locations
	Lesson 1: Build and run the CustDB application
	Lesson 2: Log in and populate the UltraLite remote database
	Lesson 3: Use the CustDB client application
	Lesson 4: Synchronize with the CustDB consolidated database
	Lesson 5: Browse MobiLink synchronization scripts
	Build your own application

	UltraLite performance and optimization
	Using index scans
	Determining the access method used by the optimizer
	Tuning query performance with index hashing
	Choosing an optimal hash size
	Setting the maximum hash size
	Managing temporary tables
	Using direct page scans
	Reverting to primary key index order

	Flushing single or grouped transactions
	How database encryption and obfuscation affect performance
	UltraLite optimization strategies

	UltraLite as a MobiLink Client
	UltraLite clients
	Built-in UltraLite synchronization features
	Customizing UltraLite client synchronization behavior
	Primary key uniqueness in UltraLite
	Using GLOBAL AUTOINCREMENT in UltraLite
	Determining the most recently assigned GLOBAL AUTOINCREMENT value
	Overriding partition sizes for autoincremented columns

	Designing synchronization in UltraLite
	Nosync tables in UltraLite
	Allsync tables in UltraLite
	Publications in UltraLite
	Table order in UltraLite
	Adding synchronization to your UltraLite application

	Using MobiLink file transfers

	Using ActiveSync and HotSync with UltraLite
	HotSync on Palm OS
	HotSync synchronization overview
	Setting protocol options for MobiLink synchronization
	Debugging HotSync operations

	ActiveSync on Windows Mobile
	ActiveSync synchronization overview

	UltraLite synchronization parameters and network protocol options
	Synchronization parameters for UltraLite
	Additional Parameters synchronization parameter
	Authentication Parameters synchronization parameter
	Authentication Status synchronization parameter
	Authentication Value synchronization parameter
	Download Only synchronization parameter
	Ignored Rows synchronization parameter
	Keep Partial Download synchronization parameter
	New Password synchronization parameter
	Number of Authentication Parameters parameter
	Observer synchronization parameter
	Partial Download Retained synchronization parameter
	Password synchronization parameter
	Ping synchronization parameter
	Publications synchronization parameter
	Resume Partial Download synchronization parameter
	Send Column Names synchronization parameter
	Send Download Acknowledgement synchronization parameter
	Stream Error synchronization parameter
	Stream Type synchronization parameter
	Stream Parameters synchronization parameter
	Sync Result synchronization parameter
	Upload OK synchronization parameter
	Upload Only synchronization parameter
	User Data synchronization parameter
	User Name synchronization parameter
	Version synchronization parameter

	Network protocol options for UltraLite synchronization streams
	Setting the synchronization stream and options

	UltraLite Database Reference
	UltraLite creation parameters
	UltraLite case creation parameter
	UltraLite checksum_level creation parameter
	UltraLite collation creation parameter
	UltraLite date_format creation parameter
	UltraLite date_order creation parameter
	UltraLite fips creation parameter
	UltraLite max_hash_size creation parameter
	UltraLite nearest_century creation parameter
	UltraLite obfuscate creation parameter
	UltraLite page_size creation parameter
	UltraLite precision creation parameter
	UltraLite scale creation parameter
	UltraLite time_format creation parameter
	UltraLite timestamp_format creation parameter
	UltraLite timestamp_increment creation parameter
	UltraLite utf8_encoding creation parameter

	UltraLite database properties
	Accessing UltraLite database properties

	UltraLite database options
	UltraLite commit_flush_count option [temporary]
	UltraLite commit_flush_timeout option [temporary]
	UltraLite global_database_id option
	UltraLite ml_remote_id option
	Change UltraLite persistent database option settings

	UltraLite connection parameters
	UltraLite CACHE_SIZE connection parameter
	UltraLite CE_FILE connection parameter
	UltraLite COMMIT_FLUSH connection parameter
	UltraLite CON connection parameter
	UltraLite DBF connection parameter
	UltraLite DBKEY connection parameter
	UltraLite DBN connection parameter
	UltraLite MIRROR_FILE connection parameter
	UltraLite NT_FILE connection parameter
	UltraLite ORDERED_TABLE_SCAN connection parameter [deprecated]
	UltraLite PALM_ALLOW_BACKUP connection parameter
	UltraLite PALM_FILE connection parameter
	UltraLite PWD connection parameter
	UltraLite RESERVE_SIZE connection parameter
	UltraLite START connection parameter
	UltraLite UID connection parameter

	UltraLite utilities
	Supported exit codes
	Interactive SQL utility for UltraLite (dbisql)
	SQL Preprocessor for UltraLite utility (sqlpp)
	UltraLite Create Database utility (ulcreate)
	UltraLite Data Management utility for Palm OS (ULDBUtil)
	UltraLite Engine utility (uleng11)
	UltraLite Engine Stop utility (ulstop)
	UltraLite Erase database (ulerase)
	UltraLite HotSync Conduit Installation utility for Palm OS (ulcond11)
	UltraLite Information utility (ulinfo)
	UltraLite Initialize Database utility (ulinit)
	UltraLite Load XML to Database utility (ulload)
	UltraLite Synchronization utility (ulsync)
	Synchronization profile options
	UltraLite Unload Database utility (ulunload)
	UltraLite Unload Old Database utility (ulunloadold)
	UltraLite Validate Database utility (ulvalid)

	UltraLite system tables
	View or hide UltraLite system tables
	systable system table
	syscolumn system table
	sysindex system table
	sysixcol system table
	syspublication system table
	sysarticle system table
	sysuldata system table

	UltraLite SQL Reference
	UltraLite SQL elements
	Keywords in UltraLite
	Identifiers in UltraLite
	Strings in UltraLite
	Comments in UltraLite
	Numbers in UltraLite
	The NULL value in UltraLite
	Special values in UltraLite
	CURRENT DATE special value
	CURRENT TIME special value
	CURRENT TIMESTAMP special value
	SQLCODE special value

	Dates and times in UltraLite
	Data types in UltraLite
	User-defined data types and their equivalents
	Converting data types explicitly

	Expressions in UltraLite
	Constants in expressions
	Column names in expressions
	IF expressions
	CASE expressions
	Aggregate expressions
	Subqueries in expressions
	Input parameters
	Search conditions in UltraLite
	Comparison operators
	Logical operators
	ALL conditions
	ANY conditions
	BETWEEN conditions
	EXISTS conditions
	IN conditions

	Operators in UltraLite
	Arithmetic operators
	String operators
	Bitwise operators
	Operator precedence

	Variables in UltraLite
	Execution plans in UltraLite
	When to view an execution plan
	View an UltraLite execution plan
	Reading UltraLite execution plans

	UltraLite SQL functions
	Function types
	UltraLite aggregate functions
	UltraLite data type conversion functions
	UltraLite date and time functions
	Date parts

	UltraLite miscellaneous functions
	UltraLite numeric functions
	UltraLite string functions
	UltraLite system functions

	SQL functions (A-D)
	ABS function [Numeric]
	ACOS function [Numeric]
	ARGN function [Miscellaneous]
	ASCII function [String]
	ASIN function [Numeric]
	ATAN function [Numeric]
	ATAN2 function [Numeric]
	AVG function [Aggregate]
	BYTE_LENGTH function [String]
	BYTE_SUBSTR function [String]
	CAST function [Data type conversion]
	CEILING function [Numeric]
	CHAR function [String]
	CHARINDEX function [String]
	CHAR_LENGTH function [String]
	COALESCE function [Miscellaneous]
	CONVERT function [Data type conversion]
	COS function [Numeric]
	COT function [Numeric]
	COUNT function [Aggregate]
	DATALENGTH function [System]
	DATE function [Date and time]
	DATEADD function [Date and time]
	DATEDIFF function [Date and time]
	DATEFORMAT function [Date and time]
	DATENAME function [Date and time]
	DATEPART function [Date and time]
	DATETIME function [Date and time]
	DAY function [Date and time]
	DAYNAME function [Date and time]
	DAYS function [Date and time]
	DB_PROPERTY function [System]
	DEGREES function [Numeric]
	DIFFERENCE function [String]
	DOW function [Date and time]

	SQL functions (E-O)
	EXP function [Numeric]
	EXPLANATION function [Miscellaneous]
	FLOOR function [Numeric]
	GETDATE function [Date and time]
	GREATER function [Miscellaneous]
	HEXTOINT function [Data type conversion]
	HOUR function [Date and time]
	HOURS function [Date and time]
	IFNULL function [Miscellaneous]
	INSERTSTR function [String]
	INTTOHEX function [Data type conversion]
	ISDATE function [Data type conversion]
	ISNULL function [Miscellaneous]
	LCASE function [String]
	LEFT function [String]
	LENGTH function [String]
	LESSER function [Miscellaneous]
	LIST function [Aggregate]
	LOCATE function [String]
	LOG function [Numeric]
	LOG10 function [Numeric]
	LOWER function [String]
	LTRIM function [String]
	MAX function [Aggregate]
	MIN function [Aggregate]
	MINUTE function [Date and time]
	MINUTES function [Date and time]
	ML_GET_SERVER_NOTIFICATION [System]
	MOD function [Numeric]
	MONTH function [Date and time]
	MONTHNAME function [Date and time]
	MONTHS function [Date and time]
	NEWID function [Miscellaneous]
	NOW function [Date and time]
	NULLIF function [Miscellaneous]

	SQL functions (P-Z)
	PATINDEX function [String]
	PI function [Numeric]
	POWER function [Numeric]
	QUARTER function [Date and time]
	RADIANS function [Numeric]
	REMAINDER function [Numeric]
	REPEAT function [String]
	REPLACE function [String]
	REPLICATE function [String]
	RIGHT function [String]
	ROUND function [Numeric]
	RTRIM function [String]
	SECOND function [Date and time]
	SECONDS function [Date and time]
	SHORT_PLAN function [Miscellaneous]
	SIGN function [Numeric]
	SIMILAR function [String]
	SIN function [Numeric]
	SOUNDEX function [String]
	SPACE function [String]
	SQRT function [Numeric]
	STR function [String]
	STRING function [String]
	STRTOUUID function [String]
	STUFF function [String]
	SUBSTRING function [String]
	SUM function [Aggregate]
	SUSER_ID function [System]
	SUSER_NAME function [System]
	SYNC_PROFILE_OPTION_VALUE function [System]
	TAN function [Numeric]
	TODAY function [Date and time]
	TRIM function [String]
	TRUNCNUM function [Numeric]
	TSEQUAL function [System] (deprecated)
	UCASE function [String]
	UPPER function [String]
	USER_ID function [System]
	USER_NAME function [System]
	UUIDTOSTR function [String]
	WEEKS function [Date and time]
	YEAR function [Date and time]
	YEARS function [Date and time]
	YMD function [Date and time]

	UltraLite SQL statements
	UltraLite statement categories
	UltraLite ALTER DATABASE SCHEMA FROM FILE statement
	UltraLite ALTER PUBLICATION statement
	UltraLite ALTER SYNCHRONIZATION PROFILE statement
	UltraLite ALTER TABLE statement
	UltraLite CHECKPOINT statement
	UltraLite COMMIT statement
	UltraLite CREATE INDEX statement
	UltraLite CREATE PUBLICATION statement
	UltraLite CREATE SYNCHRONIZATION PROFILE statement
	UltraLite CREATE TABLE statement
	UltraLite DELETE statement
	UltraLite DROP INDEX statement
	UltraLite DROP PUBLICATION statement
	UltraLite DROP SYNCHRONIZATION PROFILE statement
	UltraLite DROP TABLE statement
	UltraLite FROM clause
	UltraLite INSERT statement
	UltraLite LOAD TABLE statement
	UltraLite ROLLBACK statement
	UltraLite SELECT statement
	UltraLite SET OPTION statement
	UltraLite START SYNCHRONIZATION DELETE statement
	UltraLite STOP SYNCHRONIZATION DELETE statement
	UltraLite SYNCHRONIZE statement
	UltraLite TRUNCATE TABLE statement
	UltraLite UNION statement
	UltraLite UPDATE statement

	Troubleshooting UltraLite
	Unable to start the UltraLite engine
	Unable to connect to databases after upgrade
	Database corruption
	Database size not stabilizing
	Importing ASCII data into a new database
	Utilities still running as the previous version
	Result set changes unpredictably
	UltraLite engine client fails with error -764

	Glossary
	Glossary

	Index

